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ABSTRACT

The population growth correlates with an increase in the volume of wastewater
generated through daily activities, exacerbating environmental issues. Therefore,
countries have proposed stricter wastewater purification and discharge standards.
Consequently, the control community is increasingly interested in researching the
efficacy and discharge standards of wastewater treatment plants. This thesis proposes
designing different architectures for activated sludge wastewater treatments to address
various wastewater requirements. Additionally, it suggests designing and applying
advanced control systems to enhance the efficiency of wastewater treatment and ensure

compliance with emission quality standards.

Various challenges are encountered during the design and operation of activated sludge
wastewater treatment plants. The architecture of these plants must accommodate the
required wastewater volume while considering space limitations for construction.

Moreover, the designs must prioritize ease of maintenance and durability.

Due to the complexity of activated sludge wastewater treatment plants, which are highly
nonlinear systems with many unknown and time-varying plant parameters, designing
control systems that adjust global plant parameters using local constraints to achieve

efficient wastewater purification is challenging.



For small wastewater treatment requirements, a single aeration system architecture for
activated sludge treatment was designed. An advanced adaptive control system was
developed and applied to this architecture. The simulation results of the wastewater

purification process were satisfactory.

During the activated sludge wastewater treatment process, unexpected situations may
arise that affect the quality of sewage purification and energy consumption. For instance,
if the air supply exceeds the required amount in the aeration system, the discharged
water quality may not meet the desired standard. To address this issue, a new adaptive
control system was designed and applied in the sewage treatment of a single air aeration
system. Experimental results demonstrated that the new adaptive control system is

efficient in resolving this issue.

For large wastewater treatment requirements, an aeration system with three settlement
tanks was designed for the activated sludge process. A supervised decentralized
adaptive control system was developed and applied to this architecture. The simulation

results were satisfactory.

The architecture of the activated sludge wastewater treatment plant was designed based
on wastewater purification volume requirements. The activated sludge treatment

mathematical model was based on mass balance and ion kinetic energy conservation.



The advanced adaptive control systems were designed using global plant parameters

and local mathematical model limitations.

The designed architecture of the activated sludge wastewater treatment plant, along
with the corresponding adaptive control system, effectively addressed the wastewater

treatment challenges mentioned.
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Chapter 1 Introduction

1.1 Background

During the development of industrialization and urbanization, wastewater discharge
and treatment have had an increasing impact on human life. Therefore, researchers are
required to find the best ways to solve this issue. The activated sludge method for
addressing wastewater discharges has garnered researchers' attention. Because the
activated sludge wastewater treatment plant uses biological treatment approaches, it
does not produce secondary pollutants and has a simple architecture. Moreover, a
straightforward control system can be applied to achieve the goal of wastewater

purification.

Wastewater contains a large volume of metals, toxic microorganisms, and bacteria. The
activated sludge wastewater purification method removes these harmful substances
through the growth and development of microorganisms. There are corresponding

purification structures and control systems to eliminate different harmful substances.

The activated sludge wastewater treatment process involves the degradation of organic
and inorganic matter by microorganisms, converting waste into carbon dioxide and

biomass. The process is designed to purify wastewater. Organic matter is a compound
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containing carbon and hydrogen, which provides energy and a carbon source for
microorganisms. Nutrients such as nitrogen and phosphorus support the basic biomass

of microorganisms and promote their degradation activity.

In previous activated sludge wastewater industries, individual components were used
to perform specific purification functions, such as primary filtration, aeration systems,
and sedimentation components. During the development of wastewater purification
technology, modular components have replaced individual components to complete the
wastewater purification process, which can save construction space and time. Technical
issues will be encountered in the process of modular design and application. For
example, the modular structure must effectively respond to changes in wastewater
volume and chemical composition through standardized industrial units while saving
construction space to achieve the standard for discharging clean water after wastewater

purification.

The activated sludge wastewater treatment plant is widely used for city wastewater,
domestic wastewater, and industrial wastewater. However, achieving a balance
between saving building space, reducing energy consumption, and maintaining
efficient purification without advanced control system applications remains a
challenging issue. Therefore, the structural design of activated sludge wastewater

treatment plants and the application of control systems continue to pose challenges.
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1.1.1 Activated sludge wastewater treatment manufactory components

The activated sludge wastewater treatment manufactory can be divided into three
components depending on the function of the purification wastewater. The first
component is a primary treatment plant, the second component is a secondary treatment

plant, and the last component is a tertiary treatment plant, as shown in Figure 1-1.

Sewage Inflow | primary Wastewater [Sewage [Secondary Wastewater| Sewage

e Treatment » Treatment ——» ANastewater
Plant Plant Treatment
Plant

l l

Separate Solid Sludge Flow Out

Clean Water Flow Out

Figure 1- 1 The basic structure of activated sludge wastewater treatment plant

The primary wastewater treatment equipment includes collection tanks and primary
filtration tanks. In this stage, sewage is collected, and larger particles are filtered out
using pipes and hydraulic devices. The main function of primary wastewater treatment
is to filter and initially physically precipitate large particles of impurities. After this

process, the wastewater flows into secondary treatment.

The secondary treatment of activated sludge is to achieve the purpose of sewage

purification by promoting the growth and degradation of microorganisms in sewage

20



through dissolved oxygen. The growth and degradation of organic microorganisms
include microbial adsorption, oxygen ion replacement reactions, and oxidation
reactions. Biochemical reactions within different microbial populations occur on

varying time scales.

Tertiary wastewater treatment uses gravity to settle the harmful substances of the
flocculent to the bottom of the sedimentation tank. This sedimentation process is the
process of separating the clean water and the sludge. The clean water is either
discharged or further settled, while the new sludge is recycled, and the old sludge is

discharged.

Wastewater purification plants use integrated components and advanced control
systems to address the constraints of construction area and purification efficiency. New
components include miniaturized integrated aeration systems, variable frequency
blowers, and integrated biochemical reaction tanks. The focus of this paper is integrated
aeration systems and biochemical reaction tanks. In terms of control systems, advanced
adaptive control systems will be used to adjust dissolved oxygen concentrationsto solve
efficient and stable sewage purification processes. Since the time scales of biochemical
reactions are different and involve many unknown reaction parameters, merging or
reorganizing these treatment stages poses challenges. Therefore, designing an efficient

control system is a challenge.
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1.1.2 Activated wastewater treatment purification advanced control system

The basic principle of the activated sludge sewage treatment purification method is to
use the replacement and oxidation of dissolved oxygen to support the growth of organic
microorganisms and remove harmful substances. The biochemical reactions during
microbial growth occur on different time scales; therefore, the concentration of

dissolved oxygen is crucial and directly affects the efficiency of sewage purification.

In earlier control systems, the concentration of dissolved oxygen was adjusted using
only simple control logic due to the hardware constraints of the detection and
purification systems. With advancements in automation and digitalization, modern
control systems now integrate more advanced hardware and technologies. In this study,
we introduce an adaptive control system based on artificial intelligence to enhance the
efficiency of sewage treatment plants with various architectures while reducing energy

consumption.
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1.2 Motivations

Wastewater contains harmful microorganisms, including nitrogen compounds,
phosphorus compounds, heavy metals, bacteria, and viruses. Therefore, the ability and

efficiency of sewage purification are crucial.

Activated sludge wastewater treatment is an organic purification method that helps
reduce secondary environmental pollution. Activated sludge wastewater purification
removes harmful substances by utilizing the decomposition and degradation of
microorganisms. Dissolved oxygen is an indispensable chemical substance in the
growth of organic microorganisms. The concentration of dissolved oxygen serves not
only as a criterion for assessing the efficiency of sewage purification but also as a

measure of energy consumption.

When the dissolved oxygen concentration is extremely high, it can accelerate the
growth of microorganisms, but it can also inhibit microbial degradation. On the
contrary, when the dissolved oxygen concentration is low, it will lead to a decrease in
the rate of microbial oxidation reactions, resulting in excessive growth of algae and
bacteria, thereby changing the structure of microorganisms in the natural environment.

Therefore, the regulation of dissolved oxygen concentration is crucial.

The structure and control system of the activated sludge wastewater treatment

manufactory are both important factors that directly affect the efficiency of wastewater
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purification. The size and number of aeration system components in a wastewater
treatment plant can affect the distribution and transport efficiency of dissolved oxygen

and even cause the collapse of the purification system.

In addition, advanced control systems are essential to improve the balance between
purification efficiency and energy consumption. The application of unstable control
systems during the operation of the wastewater purification factory will lead to an
increase in energy consumption during the purification process and even cause the
collapse of the purification process. Therefore, advanced dissolved oxygen

concentration control systems have attracted attention from the control community.

Activated sludge wastewater treatment manufactories with typical architecture cannot
efficiently purify various types and volumes of wastewater within a limited space. In
this thesis, we integrate the second and third wastewater treatment components into one
comprehensive purification functional component to solve the specific wastewater

purification requirements.

It is crucial to design a suitable activated sludge sewage treatment plant structure and
advanced control system according to the sewage treatment requirements of different
scales and chemical characteristics. Advanced control systems can help improve
wastewater purification efficiency. In the activated sludge sewage purification process,

there are many unknown parameters. These uncertain system parameters increase the
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difficulty and stability of designing advanced control systems. Maintaining a suitable
dissolved oxygen concentration in the aeration tank is the only way to increase the
efficiency of organic matter degradation and the rate of nitrification. In addition, the
advantage control system can effectively dissolve and regulate, prevent the occurrence
of anaerobic bacteria, and inhibit the growth of filamentous bacteria. It can also enhance
the responsiveness of the purification system to load fluctuations, thereby achieving
efficient, stable operation and the anti-interference capabilities of activated sludge

sewage purification.

This study designs the structure and components of an activated sludge wastewater
treatment plant based on different construction and wastewater volume constraints.
Based on these constraints, an advanced adaptive control system is designed and
implemented to achieve real-time adjustment of the blower. The control system ensures
that the microorganisms receive the appropriate dissolved oxygen concentration during
growth and degradation, thereby promoting an efficient and energy-saving wastewater

purification process.

1.3 Aims and objectives

This study aims to address the requirements of building space limitations by designing
the structure of a wastewater treatment facility and designing an advanced adaptive

control system to achieve efficient and stable operation. The activated sludge
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wastewater purification system must be able to cope with unpredictable external and

internal disturbances while reducing energy consumption accordingly.

According to the constraints of the sewage treatment plant, an active sewage treatment
plant was built, and an advanced control system was designed and implemented. This
enables real-time monitoring and regulation of dissolved oxygen concentration in the
biochemical reaction tank. The purpose of the dissolved oxygen control system is to
increase the degradation rate of microorganisms and improve the adsorption capacity
of oxygen atoms by optimizing the proportion of dissolved oxygen in the biochemical
reaction process. To meet the efficient nutrient removal. In addition, energy-saving

requirements are achieved by accurately controlling the oxygen supply system.

The objectives can be summarized as follows:

1) Under the constraints of purifying a small amount of sewage and limited
building area in the sewage treatment plant, an activated sludge sewage
treatment plant is designed, composed of a biochemical reaction unit, a
sedimentation unit, and an aeration unit. The sewage purification plant operates
under the ideal conditions of the blower. Based on this new structure and
operating state, a direct model reference adaptive control system is designed to
adjust the dissolved oxygen concentration in the biochemical reaction tank. This

control system needs to keep the dissolved oxygen concentration in the
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2)

3)

biochemical reaction tank at an optimal level to support the degradation,
decomposition, and precipitation processes of organic microorganisms, thereby
achieving stable and efficient operation of the activated sludge sewage
purification process. At the same time, it aims to achieve a balance between
purification efficiency and energy consumption.

According to the structure of the existing activated sludge sewage purification
plant, we assume that the blower is working in an overloaded state, which leads
to instability and even collapse of the sewage purification system. Therefore, it
is necessary to design and implement a control system that can filter out excess
air and adjust the dissolved oxygen concentration adaptively. When designing a
new adaptive control system, its ability to filter out excess air and adjust the
dissolved oxygen concentration must be considered to ensure that the
decomposition, degradation, and precipitation of microorganisms remain in the
best state. An adaptive control system should also have the ability to resist
uncertain interference to achieve stable and efficient operation of the sewage
purification process.

Assume that the wastewater treatment manufactory needs to purify a large
amount of wastewater while meeting the constraint of a small building area. To
satisfy these two constraints, the structure of the activated sludge wastewater

treatment manufactory is designed to be segmented, including three aeration
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units and one sedimentation unit. It will use an air supplier to provide an
appropriate proportion of dissolved oxygen concentration to the three aeration
units in series to smoothly complete the wastewater purification process. Based
on the structure of the wastewater purification manufactory, a supervised fuzzy
logic direct model reference adaptive control system is designed and applied to
adjust the dissolved oxygen concentration during the biochemical reaction
process to meet the air supply needs of each aeration unit. This ensures that the
microorganisms are always in the best active state, thereby improving the
stability, adaptability, and purification rate of the wastewater purification

process.

1.4 Contributions

The architecture of the activated sludge wastewater treatment manufactory was
designed according to the building area restrictions and the requirements for the volume
of wastewater to be purified. Through a detailed analysis of the biochemical
decomposition and degradation processes of wastewater by activated sludge, an
adaptive control system was designed and applied to achieve stable operation of the

wastewater purification process in both time and spatial dimensions.
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The ASWWTP purification process is a complex system with many uncertain
manufacturing parameters, multiple time-scale parameters, and unmeasurable
parameters throughout the entire process. The mathematical model of the ASWWTP is
established based on mass balance and ion conservation of kinetic energy to simulate
the entire wastewater purification process using disciplines such as fluid mechanics,
biology, chemical engineering, and gravity. This mathematical model is used to
describe the wastewater purification process under different building structures and
operating conditions. By considering more wastewater purification process parameters
in two-dimensional space, the accuracy and predictive ability of the mathematical
model can be improved. Therefore, we can design an accurate and stable control system

according to different manufacturing architectures and operating conditions

According to the construction architecture and operating conditions of different
wastewater purification manufactories, this study proposes an adaptive control system
strategy based on real-time monitoring and prediction of wastewater purification
process parameters, which are used to adjust the dissolved oxygen concentration in time
and space as conditions vary. Different adaptive control systems are designed to adjust
the dissolved oxygen concentration involved in biochemical reactions in two
dimensions, thereby improving the stability and efficiency of wastewater purification.
Since dissolved oxygen is the only catalyst that participates in chemical and biological

reactions to remove pollutants from wastewater, the effectiveness, stability, and anti-
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interference ability of the adaptive control system are confirmed by MATLAB

simulation.

These adaptive control systems enable the detection and prediction of the wastewater
purification process under different operating conditions in real time. Dynamic
adjustment of the dissolved oxygen concentration in the aeration system allows
microorganisms to grow in their optimal state, thereby improving the degradation rate
of organic matter and achieving the stability, efficiency, and anti-interference
capabilities of the wastewater purification manufactory while reducing the energy

consumption of the wastewater purification plant's operation.

1.5 Thesis outlines

The content of each chapter can be summarized as follows:

Chapter 2: The components and functions of each wastewater purification unit, as well
as the energy consumption required by these components, are reviewed. Next, the
biochemical reactions involved in the growth of microorganisms under different
wastewater purification operating conditions are examined in detail. The catalytic effect
of dissolved oxygen in the ASWWTP purification process and the effects of different

dissolved oxygen concentrations on the decomposition, degradation, and precipitation
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processes of organic matter at various time points are discussed. The description of
biochemical reactions and physical phenomena involved in the wastewater purification
process through mathematics is also reviewed. These mathematical models are all based
on mass balance and ion conservation of kinetic energy. Finally, this chapter reviews
the basic theories of adaptive control and fuzzy control, along with their optimization

methods.

Chapter 3: The architecture of the ASWWTP is designed based on the wastewater
volume requirements, manufacturing area limitations, and stability. It is also necessary
to consider the stability and purification efficiency of the control system, as well as the
anti-interference requirements of its purification system. The manufactory architecture
consists of a bioreactor unit, a blower, and a sedimentation unit. The blower is assumed
to operate under ideal conditions. Subsequently, the mathematical model of the
ASWWTP is established to describe the wastewater purification process. This
mathematical model is based on the principles of mass balance and the conservation of
ionic kinetic energy, and it is implemented by modifying the Activated Sludge Model

2D.

Based on the finite parameters derived from the mathematical model of the ASWWTP,
a direct model reference adaptive control system for regulating dissolved oxygen
concentration is designed. Subsequently, the global parameters of the ASWWTP are

used to achieve a stable control state, and the adaptive controller parameters are
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adjusted through MATLAB simulation to meet the design requirements of the control
system. The simulation results confirm the stability, effectiveness, and anti-interference
ability of the ASWWTP adaptive control system. The stability of the controller is

further verified using the Lyapunov function.

Chapter 4: In the existing ASWWTP manufactory architectures, we assume that the
blower is overproducing and delivering an excess volume of air, which can lead to
excessive energy consumption and may even cause the purification system to collapse.
Considering the specific operating status of the ASWWTP, a direct model reference
adaptive control system with a filtering function is designed. The adaptive control
parameters are derived from the finite parameters of the wastewater purification process.
The adaptive control system is then applied to the global parameter mathematical model
of the ASWWTP to achieve a stable wastewater purification process. The parameters
of the adaptive filtering control system are adjusted and verified through MATLAB
simulation. The simulation results demonstrate the adaptive control system’s ability to
filter excess air volume, as well as its stability and anti-interference capabilities. The

stability of the adaptive control system is verified using the Lyapunov function.

Chapter 5: In this chapter, a different ASWWTP manufactory architecture is designed
compared to those in Chapters 3 and 4 to meet the constraints of large-scale wastewater

treatment while minimizing building area usage. The mathematical model describing
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the operation of the ASWWTP is formed by modifying the Activated Sludge Model 2D

based on the principles of mass balance and the conservation of ionic kinetic energy.

The supervised fuzzy logic - direct model reference adaptive controller design is based
on the specific parameters of a limited ASWWTP. The control system is applied to the
ASWWTP with global variable parameters. The adaptive control parameters are
adjusted through MATLAB simulations to meet the controller design requirements, and
the fuzzy logic is optimized through a genetic algorithm. The simulation results confirm
that the control system can handle varying flows of wastewater, and it is stable, efficient,
and possesses strong anti-interference capabilities. The stability of the two-layer control

system is further confirmed by using the Lyapunov function.

Chapter 6: The research is summarized, and future research topics are anticipated.
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Chapter 2 Literature Review

2.1 Overview of Activated Sludge Wastewater Treatment

Plant and Application

2.1.1 History of the development of activated sludge wastewater treatment Plant

The activated sludge process is one of the wastewater purification methods. Its
purification principle is to continuously introduce air into the wastewater so that
microorganisms form sludge on suspended organic particles. The sludge contains
microorganisms and bacteria. The activated sludge purification method was invented
by Edward Arden and William Lockett in 1914 [1, 2]. With increasingly stringent
wastewater purification and discharge standards, the sewage treatment method has
evolved from a single method of continuously injecting air into wastewater to form
flocs and then precipitating to form sludge to the current method of removing chemical
pollutants. Now consider removing nutrients such as nitrogen and phosphorus to ensure
that the discharged clean water will not be over eutrophic. Although the existing sludge

treatment methods include the high negative pressure activated sludge method, delayed
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gas explosion method, and activated sludge method, it is still a challenge for the design

of control systems to maintain a stable and efficient purification process.

2.1.2 Basic working principles of ASWWTPs

Dissolved oxygen is an important factor that directly affects the efficiency and energy
consumption of sewage purification. The concentration of dissolved oxygen determines
the activity of microorganisms in the aeration tank. In addition, it is also the key to
determining the degradation rate of organic microorganisms. The concentration of
dissolved oxygen in the aeration tank should be maintained in a reasonable range of 2
mg/l to 4 mg/l [3]. The mixed liquid will separate the sludge and clean water in the
sedimentation tank. The separation process may take several hours to several days,

depending on the different chemical components of the wastewater [4].

In the sewage purification process, the time and proportion of dissolved oxygen
injection into the aeration tank are crucial. Therefore, the accuracy, response time, and
robustness of dissolved oxygen concentration control have received attention. The
control system needs to be able to detect and adjust the dissolved oxygen concentration
in the aeration tank in real time [5]. It is crucial to monitor the fusion rate of dissolved
oxygen and organic microorganisms in real time because the fusion rate is the key factor

in adjusting the blower power [6]. The growth of organic microorganisms in the

35



activated sludge purification plant is closely related to the concentration of dissolved
oxygen, and dissolved oxygen can determine the growth process of organic

microorganisms.

2.1.3 Types of ASWWTPs

In the development of activated sludge sewage purification technology, sewage
purification methods can be divided into traditional activated sludge methods, delayed
aeration methods, sequencing batch reactor methods, and membrane bioreactor

methods [7].

The traditional activated sludge method has the characteristics of strong fluidity and
short aeration time. Compared with other sewage purification methods, only the
traditional activated sludge purification method uses young sludge return flow, which
uses the organic microorganisms contained in young sludge to help the growth rate of
biological populations [8]. This sewage purification method is often used for municipal

sewage treatment and industrial sewage with high pollutant concentrations.

The delayed aeration sewage treatment method has the advantage of less sludge
discharge. However, its aeration time is extremely long. Therefore, this sewage
purification method is often used in small sewage purification projects in smaller

communities [9].
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The sequencing batch wastewater purification method uses a single container to carry
out aeration, sedimentation, drainage, sludge removal, and other processes in sequence.
Although it has the advantage of a small footprint, it has the disadvantage of a long
purification cycle. Therefore, it is suitable for treating sewage containing highly

sensitive pollutants.

The membrane bioreactor wastewater purification method adds membrane filtration to
the traditional activated sludge method and uses biofilm to further filter the wastewater
produced by the activated sludge method [10]. Because it can achieve higher water
quality, but the purification cost is higher, it is usually used in treatment plants with

strict purification standards.

For this study, the traditional activated sludge method was selected to solve some
limitations of wastewater purification. Although this method has advantages such as
simple maintenance and low energy consumption that other methods do not have, it
relies heavily on an efficient dissolved oxygen control system. Therefore, the design

and application of the dissolved oxygen control system must meet strict requirements.

2.1.4 Basic structure of ASWWTP

The process of decomposition and degradation of organic microorganisms that occurs

during sewage purification is an important procedure for sewage purification. The
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process involves various biochemical reaction units and physical components, each of
which has a specific role and is essential to ensure that sewage is properly treated and
meets the required discharge standards. Sewage undergoes oxidation and displacement.
Clean water is produced in the combined process. An activated sludge wastewater
treatment plant consists of three main treatment units: Primary treatment unit: sewage
collection tank and primary sedimentation tank. Secondary treatment unit: bioreactor,
aeration station, and secondary sedimentation tank. Tertiary treatment unit: secondary
sedimentation tank, clean water outflow, and sludge treatment facility [11, 12]. These

units are shown in Figure 2-1.

Sewage

Sewage without Clear Water High Quality
Metal Clear Water
Primary Secondary Tertiary
—_—» » » —>
Treatment Treatment Treatment
Sludge Waste Products

Figure 2- 1 The architecture structure of ASWWTP

The wastewater flows into the primary sedimentation tank. The primary sedimentation
tank uses a screen to physically filter out impurities such as silt and oil. This step is to

precipitate and remove large impurities, such as heavy metal particles. Next, the sewage
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flows into the biochemical reaction tank. Next, organic microorganisms decompose
harmful substances through redox reactions, thereby removing toxic and harmful
substances from sewage. Finally, the clean water is separated from the sludge in the

secondary sedimentation tank [13, 14].

The aeration station consists of a bioreactor and an air supply system. The bioreactor
acts as a container for chemical reactions, while the air supply provides the necessary
oxygen for biodegradation. In addition, the sedimentation tank uses gravity to separate
cleanwater from sludge [15, 16]. Clean water is suspended above the tank, while sludge
settles at the bottom of the tank. Afterwards, the clean water is discharged, while the
sludge is concentrated, digested, and dried before being discharged into the
environment. This thesis focuses on the working status of the aeration station to

improve the purification efficiency of the ASWWTP.

2.1.5 Limitation and challenges in ASWWTP

There are some constraints in the construction and operation of sewage treatment plants.
As described in [17], the increasing urban population and the reduction of available
urban space limit the construction area of sewage treatment plants, which poses a
challenge to the treatment capacity of sewage treatment plants. In addition, the

composition of wastewater pollutants has become increasingly diverse, ranging from
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single organic microorganisms to various chemical elements such as phosphorus and
nitrogen, as described in [18]. Various internal and external interferences will be
encountered in the sewage purification process, such as external temperature, humidity,
and the coupling phenomenon of each microbial population inside, as described in the

[19].

Traditional activated sludge wastewater treatment has the disadvantage of requiring a
larger aeration system unit, unlike other activated sludge processes. This leads to high
construction and maintenance costs, and in addition, it has special requirements for the
control system [20]. The aeration system includes an aeration tank, a sedimentation
tank, and a blower. This study aims to design an advanced adaptive control system for
sewage treatment plants to enhance the efficiency and stability of the treatment process.
In addition, building space limitations need to be considered when designing the
structure of a sewage treatment plant. In addition, the design of the control system will
consider energy consumption, focusing on the problem of balancing energy

consumption and wastewater purification rate.

According to the characteristics of the activated sludge method, the blower needs to
continuously supply air to the biochemical reaction tank. This is because dissolved
oxygen is an essential element for the decomposition and degradation of organic
microorganisms [21]. The continuous oxygen supply system consumes a lot of energy,

accounting for 50% to 70% of the total energy consumption. Although the traditional
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activated sludge method can effectively remove organic microorganisms, it is difficult
to balance energy consumption and purification efficiency. The use of advanced
adaptive controllers to dynamically adjust the power of the oxygen supply system to

obtain the optimal purification efficiency is described in detail in Chapter 3.

In addition, the traditional sewage purification method also has the problem of sludge
swelling, leading to a reduction in sedimentation rate when the dissolved oxygen
concentration in the aeration tank is extremely low [22]. Moreover, if the dissolved
oxygen concentration is extremely high, foaming problems will occur, resulting in the
sludge not being able to settle quickly. Therefore, improving the dynamic adjustment
ability of the dissolved oxygen control system is also a research focus. We will try to
obtain the optimal online adjustment parameter capability by implementing monitoring

and analysing system parameters.

2.2 Key Components of Aeration Station: Air Supplier Unit,

Bioreaction Unit, and Sedimentation Unit
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2.2.1 Air Supplier unit

The principle of sewage purification is to utilize the growth of aerobic microorganisms
to achieve the degradation of organic pollutants. These microorganisms require
adequate oxygen for respiration and metabolism [23, 24]. Therefore, maintaining an
optimal dissolved oxygen concentration is essential for enhancing the efficiency of the
activity sludge system operation and achieving the desired standards for effluent water
quality [25].

The air supply station provides sufficient air for aerobic microorganisms, ensuring their
metabolism and reproduction processes. These microorganisms utilize organic matter
in wastewater as a carbon and energy source, thereby facilitating the decomposition of
organic pollutants into harmless carbon dioxide and water [26, 27]. Moreover, the air
supply process also prevents anaerobic conditions under specific circumstances. In
addition, when the diffuser introduces air into the water, it creates a stirring effect,
promoting the uniform distribution of activated sludge in the biochemical reaction tank
[28, 29]. This process effectively prevents sludge settling and clumping.

Aeration methods can be divided into mechanical aeration, blower aeration, pure
oxygen aeration, and surface aeration. Compared with other types, blower aeration can
produce tiny bubbles through diffusers, thereby providing a larger gas-liquid contact
surface area and promoting efficient oxygen transfer [30]. The blower can be controlled

by an intelligent system to precisely adjust the air volume to meet different wastewater
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treatment requirements and changes in wastewater capacity load, thereby reducing

energy consumption [31].

2.2.2 Bioreaction unit

Microbial metabolism refers to the degradation of organic and inorganic matter in the
bioreactor. The bioreactor must be carefully considered when designing and
constructing an ASWWTP facility. It requires less space than traditional treatment
methods, and its operating conditions (such as dissolved oxygen, pH, and temperature)
are easier to accurately control. The bioreaction tank is capable of treating various types
and concentrations of wastewater. In addition, the activated sludge wastewater
purification method is less dependent on chemical catalysts than other treatment
methods [32, 33].

In wastewater, the microorganisms use dissolved oxygen to decompose organic matter
into carbon dioxide and water, as well as new biomass. The anaerobic zone of the
bioreactor refers to the specific microorganisms that carry out denitrification and
biological phosphorus removal [34-36]. The bioreaction tank is the most important
component of the ASWWTP. Wastewater, oxygen, and young sludge flow into the
biochemical reaction tank. After that, mix the water flow into the settlement tank.
There are four types of bioreactors: complete mixing reactor (CMR), plug flow reactor

(PFR), sequencing batch reactor (SBR), and membrane bioreactor (MBR) [37-39]. The
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SBR uses a staged approach to purify wastewater. Each stage of water inlet,
biochemical reaction, and sedimentation operates independently. Precise control over
the timing and operating conditions of each stage leads to efficient and accurate online
updating of system parameters [40]. In our experiment, we chose SBR as the bioreactor.

More details will be discussed later.

2.2.3 Sedimentation unit

Sedimentation systems are an integral component of the ASWWTP. The separation of
liquids and solids takes hours or days, using gravity to concentrate the solid sludge.
This process ensures that the clean water is free of toxic and hazardous substances.
Depending on the clean water discharge requirements, secondary or tertiary
sedimentation may be required [41].

According to the standards and process requirements for wastewater purification, there
are four types of sedimentation systems: primary sedimentation tank, secondary
sedimentation tank, final sedimentation tank, and advection sedimentation tank. In the
sedimentation tank, the mixed liquid is separated into activated sludge and clear water
by gravity [42]. Other sedimentation methods can be used according to different
discharge requirements. In our study, a primary sedimentation device was used in

Chapter 3.
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Another function of the sedimentation tank is to separate new activated sludge from
aged sludge. New activated sludge is circulated to the biochemical reaction tank to
ensure that the biological treatment process is uninterrupted by the population of
organic microorganisms. The speed of this cycle depends on various factors, as studied
in [43]]. As described in [1, 2, 44], new sludge contains microbial populations that have
adapted to the biochemical treatment environment, so increasing the return of young
sludge can enhance the adaptability of the microbial community, accelerate microbial
degradation, and improve the separation efficiency of liquids and solids. Finally, clean

water and aged sludge are discharged, as shown in Figure 3.

Clear Water

} Old Sludge

Young Sludge

Settlement Tank

Figure 2- 2 The settler process in the ASWWTP

2.3 Challenges in Mathematical Modelling of ASWWTP
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2.3.1 Nonlinear behaviour in biological and chemical processes

The activated sludge wastewater purification process is a very complex and nonlinear
system. Since the metabolism of microorganisms is nonlinear, the chemical reactions
are also nonlinear in the microbial metabolism process [45, 46]. Furthermore, the
metabolism and chemical reactions of these microorganisms occur on different time

scales and exist in different spatial dimensions.

As mentioned in [47], the growth rate of organic microorganisms in the metabolic
process is nonlinear and will be affected by internal and external disturbances, including
changes in dissolved oxygen concentration and temperature during microbial growth.
As discussed in [48], the metabolic rate of microorganisms depends on the mixing rate
of dissolved oxygen and organic microorganisms. In addition, there are coupled
reactions between their parameters, so chemical reactions will also affect the growth of
organic microorganisms in both temporal and spatial dimensions. Each microbial
population has its own biological characteristics, resulting them to compete with each
other during growth. This competition can either accelerate their growth or inhibit the
growth of other populations in a short period of time, as mentioned in [49, 50]. When
the external environment fluctuates greatly, the metabolic rate of microorganisms will

fluctuate greatly. It is a nonlinear dynamic process, which is demonstrated in [51].
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As mentioned in [52], the sewage purification process involves many chemical
reactions. According to the characteristics of each chemical reaction, the process and
results of these chemical reactions will be affected by factors such as temperature and
pollutant concentration. Therefore, these chemical reactions are highly nonlinear. In
addition, according to the characteristics of each chemical reaction, the biochemical
reactions of pollutants in different environments will be saturated and inhibited, as

studied in [53, 54].

In addition, since the growth of microorganisms and chemical reactions are nonlinear,
the impact of changes in the external environment on the sewage purification system is
also nonlinear, which is a challenge for describing the sewage purification process using

mathematical models, as studied in [55].

2.3.2 Operation of coupled processes and multivariable interactions

There is a coupling phenomenon between the metabolism of organic microorganisms
and biochemical reactions in the activated sludge purification process. As mentioned in
[56], changes in any parameter between them will cause changes in other parameters,
thereby directly changing and affecting the structure of microbial metabolic processes
and chemical reactions through various pathways. Therefore, these coupling

phenomena and the influence between parameters will lead to the enhancement of their
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nonlinear characteristics and the complexity of dynamics. As demonstrated in [57], the
activated sludge purification process cannot be described by a simple coupling method,

and itis necessary to consider the influence of multiple factors on biochemical reactions.

The activated sludge purification process also involves the phenomenon of mutual
constraints between physical processes and microbial growth processes. As studied in
[58], when oxygen enters the biochemical pool and merges with wastewater, the
connect aera and time between oxygen ions and pollutant ions during the fusion process
need to be considered because these factors directly affect the activity of organic
microorganisms. As studied in [59], the amount of oxygen supplied and the cycle in the
aeration tank will directly affect whether the microorganisms have enough dissolved
oxygen to promote biochemical reactions. Therefore, when using mathematical models
to describe the activated sludge purification process, it is necessary to consider the

effects of multiple time scales and multiple variables on its growth process.

Since the activated sludge purification system involves the growth and chemical
reaction processes of various types of organic microorganisms, these processes are
described by different time-scale parameters, growth state parameters, and required
chemical reaction environment parameters, such as chemical, physical, biological,

environmental, and mechanical parameters, as detailed in [60-62].
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Therefore, in the complex microbial growth and chemical reaction process, it is
impossible to describe it with a mathematical model of a single feedback mechanism.
Multiple mechanisms such as positive feedback and negative feedback need to be
described at the same time, otherwise the predictability and accuracy of the
mathematical model will decrease, resulting in a decrease in the performance of the

subsequent control system, as described in [63].

2.3.3 Challenges of external disturbances and uncertainties to mathematical

models

The oxygen concentration and microbial concentration in organic matter in sewage
affected by the pollution source and the external environment in the biochemical
reaction tank. As described in [64, 65], when these parameters change, the
concentration parameters of organic matter in the biochemical reaction tank will change
nonlinearly, resulting in periodic changes in the organic load. In addition, these changes
can also cause the microorganisms to become less active or anaerobic, resulting in a
decrease in sewage purification capacity, as discussed in [66-68]. The changes in these

parameters pose a challenge to the accuracy of the mathematical model.

The changes in chemical composition and concentration fluctuations in sewage are

based on the source of sewage and external interference [69]. The fluctuations and
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changes in oxygen concentration and microbial concentration are nonlinear or periodic.
The composition of factory emissions determines the composition of wastewater.
Changes in the external natural environment determine the concentration of wastewater
[70]. For example, excessive rainfall will cause the concentration of pollutants in
sewage to decrease while high temperatures will cause the concentration of pollutants
in sewage to increase. Pollutants in sewage include toxic chemical components, organic
microorganisms, and metal components. Chemical composition and pollutant
concentrations affect the growth of organic microbial populations in wastewater, and
these effects can lead to reduced wastewater purification efficiency. The growth process
of microorganisms is nonlinear. Organic microbial populations compete with each

other during growth. This relationship is nonlinear, as studied in [71, 72].

As external environmental disturbance factors change, the chemical composition and
concentration of pollutants in wastewater change over time, and this change is nonlinear
[73]. Chemical components in wastewater, such as nitrogen, phosphorus, potassium,
can affect the activity of organic matter in a short period of time, which is difficult to
predict. Therefore, the requirement for the dynamic adjustment capability of

mathematical models poses a huge challenge, as described in [74, 75].

Fluctuations in wastewater flow affect the amount of gas supplied to the bioreactor and
the rate at which dissolved oxygen combines with organic matter. In addition, these

fluctuation affects the residence time of dissolved oxygen and wastewater mixing in the
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sedimentation tank. Furthermore, the effect on microbial growth is nonlinear, as
mentioned in [76-78]. For example, when the wastewater flow rate fluctuations greatly,
the oxygen supply system needs to respond quickly to provide a large amount of air.
such a phenomenon affects the stability of the wastewater purification system. In
addition, if the oxygen supply system responds extremely slowly, the oxygen supply
system needs to respond quick to provide a small amount of air. Such a phenomenon

will cause the sewage purification rate to drop rapidly, as discussed in [79].

2.3.4 High-dimensional models and model validation

The mathematical model of activated sludge has the characteristics of multivariable,
multi-time, and multi-space scales. It needs to calculate the input of multiple parameters
at the same time, such as sewage inflow and outflow, sewage composition, oxygen
content in sewage, input oxygen, concentration of organic microorganisms,
concentration of each chemical element, concentration of sludge, clean water outflow,
and return flow of young sludge [80, 81]. These variables are nonlinear, which greatly

increases the computational complexity and the accuracy of the mathematical model.

In addition, these variables exist on different temporal and spatial scales, including
competition among local microbial populations, coupled chemical reactions during

growth, and global fluid dynamics. These factors require mathematical models to be
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calculated at different levels, which poses a challenge to the dynamic response and

regulation capabilities of mathematical models.

The accuracy of the mathematical model requires long-term data accumulation and
repeated verification under different environments. Its debugging and optimization
require continuous debugging of different parameters, such as microbial decomposition
rate, microbial growth rate, organic microbial oxidation rate, nitrification rate, and
denitrification rate [82, 83]. The debugging process requires multiple iterations to

ensure the accuracy and predictability of the mathematical model.

2.4 Role of Dissolved Oxygen in Wastewater Treatment

Processes

2.4.1 Importance of dissolved oxygen in biochemical reactions in ASWWTP

Dissolved oxygen is an essential chemical element in the activated sludge process for
sewage purification. It is essential for the chemical reaction process that removes
harmful substances from the environment through biodegradation. Dissolved oxygen is
a chemical element that promotes the growth and respiration of organic microorganisms,
as described in [84, 85]. In addition, dissolved oxygen is an indispensable catalyst in

the nitrification process. When the dissolved oxygen concentration is insufficient,
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organic microorganisms will undergo anaerobic phenomena, which will lead to a

decrease in the sewage purification rate, as described in [86].

The air supply provides oxygen while the microorganisms perform aerobic respiration.
Microorganisms use the process of aerobic respiration to break down organic pollutants,
converting them into carbon dioxide, water, and new cell material, as described in [87].
High concentrations of dissolved oxygen can increase the efficiency of microorganisms
in breaking down organic matter. Conversely, low concentrations of dissolved oxygen
can turn organic microorganisms into anaerobic microorganisms, as discussed in [88].

The chemical formulation for nitrification reaction can be expressed as follows:

NH; +20, > NO; +H,0+2H" (2.4.1-1)

Where: NH, represents ammonia nitrogen, O, represents oxygen, NO; nitrate,

H,O represent water, and H " represents hydron.

Dissolved oxygen is an essential biochemical element in the processes of denitrification
and biological phosphorus removal. Its concentration determines the efficiency of
denitrification and phosphorus removal, as described in [89]. In the denitrification

process, dissolved oxygen is a catalyst for nitrification. Nitrifying bacteria require a
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high concentration of dissolved oxygen, usually maintained at 1.5-2.5 mg/l, as
described in [90]. The chemical formulation for denitrification reaction is illustrated as

follows [91]:

NO; +CH,0+2H" = N, +CO, + H,0 (2.4.1-2)

Where: NO; represents nitrate. CH,O represents formaldehyde, H* represents

hydron. N, represents nitrogen, and CO, H,O represents water.

During the biochemical reaction of denitrification, the dissolved oxygen concentration
must be maintained at a high level. As described in [92], nitrifying bacteria convert
nitrogen into nitrogen gas during the denitrification process, thereby achieving the

purpose of denitrification.

Finally, in the biological phosphorus removal process, dissolved oxygen interacts with
polyphosphate bacteria and absorbs phosphorus into polyphosphate bacteria, thereby

achieving phosphorus removal, as described in [93]. Its chemical formula is:

PO; (wastewater) — PO; (intracellular) (stored in PAO cells) (2.4.1-3)

Where: PO} is phosphorus, PAQ is polyphosphate — accumulating organisms.
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2.4.2 Dissolved oxygen’s role in nutrient removal and organic matter

decomposition

The percentage of the nutrient removal is a standard factor for evaluating wastewater
discharge. Excessive nutrients remaining in the discharged water can promote the
overgrowth of algae and other plants, leading to the phenomenon known as algal bloom.
This disruption of the aquatic ecosystem balance can result in hypoxia in water bodies

[94].

The term ‘nutrient’ refers to the organic carbon, nitrogen, and phosphorus, all of which
require a series of oxygen-dependent biochemical reactions for removal. The removal
of organic carbon is crucial to preventing the overgrowth of microorganisms, as carbon
is a nutrient source for their growth and reproduction. Carbon is the basis for nitrogen
and phosphorus removal. Therefore, maintaining carbon concentration is necessary in

wastewater purification.

First, the removal of organic carbon is divided into two categories: soluble carbon and
insoluble carbon, both of which react biologically with dissolved oxygen [95, 96].
Through metabolic processes promoted by microorganisms, soluble carbon is degraded
into biomass, carbon dioxide and water; insoluble carbon exists in suspended particles
in wastewater. This form of carbon is degraded externally into soluble carbon, which is

absorbed and utilized by microorganisms, further undergoing biological reactions and
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purifying wastewater. These biochemical processes occur slower than the metabolism
of soluble carbon. This is an important factor that needs to be considered when
establishing mathematical models and designing control systems. Soluble carbon is

oxidized to produce carbon dioxide and biomass, as shown in Figure 2-3.
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Figure 2- 3 The function of DO in carbon removal

Secondly, denitrification is essential to prevent eutrophication of water bodies, prevent
excessive growth of aquatic plants such as algae, reduce odor and corrosion, and
improve purification effects. Excessive nitrogen content in wastewater will produce
ammonia gas, causing air pollution. Nitrogen content is one of the criteria for

wastewater discharge purification.

Denitrification chemical reactions include aerobic digestion reactions and anoxic
denitrification reactions. In the aerobic denitrification process, soluble carbon and
ammonium compounds react biochemically with dissolved oxygen to produce nitrite

and biomass. At the same time, in the anoxic denitrification process, soluble carbon
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reacts biochemically with nitrite to produce nitrogen gas and biomass, as shown in

Figure 2-4.
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Figure 2- 4 The function of DO in nitrogen removal

Finally, excessive algae growth, algae death, or decomposition can cause water bodies
to turn green and emit foul odors because of excessive phosphorus concentrations,
which leads to a decrease in oxygen content in the water. Biological phosphorus
removal consists of two steps: the first anaerobic reaction and the second aerobic

reaction.

Anaerobic reaction process:

Carbon-based biomass in the wastewater reacts to form polyhydroxyalkanoates (PHA).

Next, new biomass converts into polyphosphates (PP).

Aerobic reaction process:

57



During the aerobic process, dissolved oxygen interacts biologically with PHA and
soluble phosphates. After these processes, the soluble phosphates are produced, as
shown in Figure 2-5. The biological nutrient removal model was designed by the

International Association for Water Quality (IAWQ) [94].
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Figure 2- 5 The function of DO in phosphorous removal

As described in [97], the nutrient removal process involves the mass transfer of
nutrients. During The biochemical reactions of oxidation and degradation include the
transfer of oxygen ions to organic matter and metals. The process produces gas and
solid particles; the solid particles settle at the bottom of the primary sedimentation tank,
while the gas and sludge are discharged simultaneously. In order to meet specific clean
water discharge standards, the treated water from the primary sedimentation tank

typically requires further treatment, such as membrane filtration or the addition of
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chemical agents, before it can be discharged or reused [98]. The rate of biochemical
reactions is related to the increased gas-liquid and liquid-solid contact areas and the

oxygen consumption [99].

Oxygen is an essential chemical element in the wastewater purification process and
directly affects the balance between wastewater purification efficiency and energy
consumption, which usually tend to increase proportionally. Therefore, it is necessary
to find the most economical and effective way to adjust the oxygen ratio in the
wastewater purification process through a suitable control system. The appropriate ratio
of dissolved oxygen concentration to wastewater mixing can enhance the efficiency of
biochemical reactions [100]. In the biochemical nutrient removal process, each
biochemical reaction occurs at a different rate, depending on the characteristics of each
biochemical component [101]. The details of the oxygen transfer function are discussed

in Chapters 3, 4, and 5.

2.4.3 Influence of dissolved oxygen concentration on energy efficiency in

wastewater treatment

In the process of activated sludge wastewater purification, dissolved oxygen is a key
factor that directly affects the biological growth of organic microorganisms and the

efficiency of biochemical reactions. Dissolved oxygen is produced by the blower,
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which consumes the most energy in the sewage purification process. This is because
only in an environment with high concentrations of dissolved oxygen can the removal
of organic microorganisms and nutrients be maintained efficiently. Maintaining a high
concentration of dissolved oxygen requires blowers to continuously produce and output
air to the biochemical reaction tank, so the blower requires a lot of energy to support its
continuous operation. This is the most energy-consuming component in the wastewater

purification process, as discussed in [102].

Although high concentrations of dissolved oxygen can ensure efficient sewage
purification, considering energy consumption, sewage purification plants generally
adjust dissolved oxygen concentrations within a reasonable range according to sewage
discharge standards. As mentioned in [103], it is difficult to achieve a balance between
energy consumption and purification efficiency because their direct relationship is
nonlinear. As discussed in [104], in sewage purification plants with different sewage
sources, reducing dissolved oxygen concentrations can improve denitrification
efficiency and thus reduce energy consumption, which illustrates the feasibility of
reducing dissolved oxygen. The mathematical model used to describe the sewage

purification process has strict requirements.
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2.4.4 Impact of dissolved oxygen control on system performance and stability

As mentioned in [105], the activity of microorganisms depends on the concentration of
dissolved oxygen. The dissolved oxygen concentration required by different microbial
communities to maintain their high growth and high metabolic rates depends on
different dissolved oxygen concentrations. In the wastewater purification process,
efficient metabolism and reproduction of single or multiple microbial populations are
not feasible. Due to the inhibition and inability of other microbial populations to grow,
as discussed in [106, 107], maintaining a balance in the growth of each biological

population is one of the key performance factors of the control system.

The accuracy of the dissolved oxygen concentration control system directly affects the
sewage purification rate because the decomposition rate of organic microorganisms and
the efficiency of nitrogen and phosphorus removal depend on the dissolved oxygen
concentration. In addition, the dissolved oxygen concentrations they require are
different. As discussed in [108], dissolved oxygen has the effect of increasing the
efficiency of microbial decomposition at high concentrations. However, at high
concentrations of dissolved oxygen, the efficiency of denitrification decreases.
Therefore, the performance and stability of the dissolved oxygen control system affect

the quality of purified water.
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As mentioned in [109], current sewage purification plants achieve a balance between
efficient purification and energy consumption by utilizing adaptive control or artificial

intelligence control systems to adjust the concentration of dissolved oxygen in real time.

2.5 Challenges in Dissolved Oxygen Control System for
ASWWTP

2.5.1 Complexity of dissolved oxygen in nonlinear and environments

As mentioned in [110], the flow of sewage from a sewage treatment plant will change
due to the influence of the external environment, such as climate change and sewage
sources. There are sudden and large fluctuations in sewage sources. Since the sewage
flow is not constant for 24 hours, urban sewage sources are cyclical. As discussed in
[111], when the sewage inflow increases or decreases in a short period of time, the
demand for dissolved oxygen changes. If the dissolved oxygen control system cannot
meet the urgent oxygenation demand, it will lead to a decrease in the degradation rate
of organic microorganisms or the occurrence of anaerobic conditions. In this case, the
requirement for predictability and robustness of the dissolved oxygen control system is

a challenge. As studied in [112], the decomposition of organic microorganisms is
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affected by multiple factors, leading to rapid growth or growth inhibition. Therefore, it
poses a challenge to the accuracy of the control system. As described in [113], the
decomposition of organic microorganisms is affected by a variety of factors, resulting
in their rapid growth or growth inhibition. Therefore, the requirements for the control

system are a challenge.

As described in [114], the oxygen supply system is a nonlinear system. Because it needs
to consider the amount of sewage flowing in, it also needs to consider the oxygen
conversion efficiency. When the oxygen conversion efficiency is low, increasing the
power of the blower does not directly increase the dissolved oxygen concentration
because the ambient temperature of the chemical reaction must also be considered. The
nonlinear nature of the oxygen supply system requires precise control of the dissolved
oxygen levels, especially when sewage flow is high, as discussed in [115]. To ensure
high dissolved oxygen levels that support microbial growth, blowers often provide extra
air. However, this increases energy consumption significantly, as mentioned in [116].

The formula for calculating the oxygen transfer efficiency is:

The oxygen transfer modelling in this context is based on the mass balance principle.

The equation of oxygen mass transfer can be expressed as follows:

(rate of oxygen transfer)=(mass transfer coefficient) x
(air-water surface area) x (concentration difference)
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Mathematical model for the oxygen mass transfer equation can be formulated as

follows:

r, =K, a(DO,, — DO) (2.3.5-2)

Where: DO, and DO represent the saturation of DO concentration and DO

sat

concentration, respectively, while K, and a are constants representing the air flow

rate.

Mathematical model for the nutrient mass transfer equation can be written as:

N =K, (W, — ACF,) (2.3.5-3)

Where: N, K, represents nutrient mass transfer flux and liquid film mass transfer
coefficient. W, ACF, represent nutrient concentration in the aqueous phase and

nutrient concentration in activated sludge flocs.

The dissolved oxygen required for the growth of microorganisms is nonlinear, as
mentioned in [117]. According to research in [118], high concentrations of oxygen are
beneficial for microbial growth, but they result in significant energy consumption. On
the contrary, extremely low a concentration of oxygen is beneficial for energy
consumption, but it can lead to incomplete decomposition of microorganisms, resulting

in a reduced purification rate or the collapse of the control system.
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As described in [119], the dissolved oxygen control system must be able to predict
changes in organic microorganism concentrations due to the time delay in supplying

the oxygen required by these microorganisms.

2.5.2 Energy consumption and efficiency trade-offs in aeration

As demonstrated in [120], according to the physical principles of sewage purification,
to provide efficient sewage purification rates, the air supply system will continuously
generate and supply air to microorganisms, even exceeding the amount of air required
for microbial growth, so that they can have enough dissolved oxygen to grow. In this
case, energy consumption is a heavy burden on sewage treatment plants, especially
when wastewater treatment factories are under high load. As demonstrated in [121],
excessive dissolved oxygen in the biochemical reaction tank does not accelerate the
biochemical reaction rate. They can inhibit some biochemical reactions, like
denitrification [122]. According to biological principles, organic microorganisms can
only achieve the best growth rate under an appropriate percentage of dissolved oxygen
conditions. Therefore, providing excessive dissolved oxygen to microorganisms to

increase their growth rate is not possible, as it will inhibit their growth [123].

In activated sludge wastewater purification plants, the air supply system is the

component with the highest energy consumption, accounting for 50% to 70% of the
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total energy consumption, as mentioned in [124]. To reduce energy consumption while
ensuring high purification efficiency, it is necessary to adjust the percentage of
dissolved oxygen in the biochemical reaction very accurately and quickly to strike a
balance between energy consumption and high purification rate. However, due to the
coupling phenomenon between microbial growth and chemical reactions, the balance
between energy consumption and a high purification rate is a challenge for the control

system [125].

As described in [126], the dissolved oxygen concentration standard in the biochemical
reaction tank is determined by the sewage inflow, the clean water effluent standard, and
the microbial concentration of the sewage treatment plant, all of which are time-varying
and nonlinear. According to the principle of biochemical reaction, the dissolved oxygen
concentration ranges from 1.5 to 2.0 mg/l. As shown in [127], reducing the power and
energy consumption of the blower can help reduce the ineffective dissolved oxygen in
the biochemical reaction tank. Ineffective dissolved oxygen refers to the dissolved
oxygen that is unevenly distributed in the biochemical reaction tank. In addition, by
real-time monitoring of the sewage inflow, the MPI-Fuzzy control system with strong
predictive ability is used to predict and provide dissolved oxygen, which is then stirred
in the biochemical reaction tank to make the dissolved oxygen evenly distributed in the
biochemical reaction tank so that the dissolved oxygen is fully combined with organic

microorganisms to obtain the best microbial growth rate, as described in [128].
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The dissolved oxygen concentration can be adjusted in the biochemical reaction tank
by zoning, but the requirements for factory hardware are relatively high, as discussed
in [129]. In addition, an intermittent blower can be used to generate and transport air to
the biochemical reaction tank to provide the dissolved oxygen required by
microorganisms and support the efficient growth of organic microorganisms, as

mentioned in [130].

When balancing energy consumption and purification efficiency, it is necessary to
consider not only the coupled response in the microbial demand for dissolved oxygen,
but also the interfering factors that affect the sewage purification efficiency, such as

weather, temperature, and rainfall, as discussed in [131].

2.5.3 Robustness and real-time control challenges

As described in [132], during the sewage purification process, the concentration of
dissolved oxygen is subject to unpredictable external disturbances. These disturbances
have irreversible effects on the sewage composition and flow rate. In addition, it poses
a challenge to the robustness of the control system. These disturbances include
temperature, rainfall, and seasonal water quality changes. Temperature can affect the
activity of organic microorganisms, which depends on the biological characteristics of

different microorganisms. The activity criteria for each microbial population are
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different, as described in [133]. Sewage inflow depends on industrial emission
standards and rainfall, as mentioned in [134]. Seasonal changes are the factors affecting
sewage flow. For example, during the rainy season, the concentration of organic
microorganisms decreases, while in the dry season, it increases, as described in [135].
Based on the impact of these uncertainties on the sewage purification rate, these

influences pose a challenge to the robustness of the dissolved oxygen control system.

According to the principle of adaptive control, it can make real-time predictions and
collect data based on external interference. Dissolve oxygen control parameters are
adjusted in real time based on external disturbances, ensuring the stable operation of

sewage purification.

As described in [136], the need to monitor and adjust the operating parameters of
activated sludge wastewater treatment plants in real time poses challenges to sensor
performance and control system response speed. Sensor performance refers to the
accuracy and reliability of detection, as well as the speed and error magnitude of data
acquisition. The control system must handle data transmission delays and respond
quickly to maintain effective operation. Therefore, advanced dissolved oxygen control
systems are essential. As described in [137], an MPI controller is used to predict future
wastewater treatment system parameters and adjust dissolved oxygen concentration to

achieve efficient wastewater treatment. However, the results show that the accumulated
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error of the MPI dissolved oxygen control system is unacceptable, which impairs the

stability of the control system [138].

As described in [139], the dissolved oxygen control system has the ability to resist
external environmental disturbances and changes in sewage load while achieving data
optimization to improve purification efficiency and system stability. The design of the
adaptive controller must consider the problem of regulating dissolved oxygen while
also considering resistance to external and internal disturbances in the purification
system; however, when the control parameters are adjusted quickly, the accumulated
superposition errors will cause the control system to be unstable. Chapters 3, 4, and 5

provide detailed solutions for various sewage purification plants.

2.6 Advanced Control Strategies for Dissolved Oxygen in
ASWWTP

2.6.1 Traditional control methods: MPID and NMPC

As discussed in [140], activated sludge wastewater treatment plants use an MPI control
system to regulate dissolved oxygen concentration. However, this control system has

insufficient regulation accuracy, slow response speed, and high computing ability
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requirements. As described in [141], the MPI controller also has difficulty handling

system delays and lacks adaptive capabilities.

As described in [142], activated sludge wastewater treatment plants use NMPC control
systems to regulate dissolved oxygen concentration. The predictive capability of the
NMPC controller is limited, and it requires the mathematical model to be highly
accurate. As mentioned in [143], NMPC is not suitable for regulating dissolved oxygen
concentration because its calculation is very complicated, and its real-time adjustment
capability is limited. It is unable to meet the requirements for real-time dissolved
oxygen control. In addition, the robustness of NMPC control systems is limited, which
reduces the ability to resist external and internal interference in the sewage treatment
process. As described in [144], the high-frequency regulation actions of NMPC

controllers in nonlinear sewage systems bring complexity and higher error rates.

As mentioned in [145], activated sludge wastewater purification plants use fuzzy
controllers to quickly adjust dissolved oxygen concentrations. However, fuzzy
controllers rely heavily on engineers’ experience to formulate rules, so they are less
efficient in dealing with emergencies. As described in [146], fuzzy controllers require
too many rules to adjust dissolved oxygen concentrations, which requires high
computing power. Although this type of controller does not require an accurate
mathematical model, it is much more difficult to quantitatively analyse and adjust than

Pl and PID controllers, and optimization is still challenging [147].
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2.6.2 Adaptive control system: direct model reference adaptive control for

ASWWTP - advantage and challenge

As described in [148], DMRAC can monitor the parameters of the wastewater
purification system in real time and dynamically adjust the control parameters to
achieve an efficient purification process. It also has the advantage of fast response speed.
In addition, compared with other controllers, its performance optimization is relatively

simple.

In addition, compared with Pl and PIC controllers, it shows stronger robustness and
adaptability in solving the problems of fluctuations in sewage inflow, pollutants, and
dissolved oxygen concentration in sewage. Since DMRAC can quickly and
dynamically adjust the parameters of dissolved oxygen, it can improve the efficiency
of the sewage purification system and achieve a balance between sewage purification

rate and energy consumption.

The design and application of DMRAC in regulating dissolved oxygen concentration
requires several key points: 1) The design of the control system relies on an accurate
mathematical model that describes the activated sludge purification process. 2) In the
activated sludge purification processes, the growth and biochemical reactions of
organic microorganisms occur on multiple time scales. There are multiple coupling

phenomena in the biochemical reactions, which increase the complexity of the
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mathematical model. Therefore, it is a challenge to establish a reference model. 3)
Errors will continue to accumulate in the operation of the long-term control system,
which will cause the drift of the adaptive control parameters and cause the instability
of the control system. Therefore, the long-term stability and efficient operation of the
control system are challenges. 4) The optimization of the DMRAC control system is to
continuously debug the initial parameters of the control system and the adaptive
algorithm. This process is very complex, especially in sewage purification; there are
many unknown system parameters, which are in multiple different time scales and

spaces.

Direct model reference adaptive control, which addresses complex, time-varying, and
uncertain systems, demonstrates strong adaptability, as described in [169]. The
controller is modified based on the guidance of a reference model. This method
involves comparing the real output with the reference output and adjusting control
parameters accordingly to make the controller output approach the reference output.

This reference model represents the expected output under ideal conditions over time.

In a first-order linear system, the DMRAC can be expressed as follows [149]:

yo(k+1)=a,y,(k)+b,u(k) (2.6.1-1)

Where: u(k) is the system input, and y, (k) is the system output. The a, and b, are
system parameters.
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Based on the expected real-time output ability of the system, the reference model
provides the anticipated system response; this enables the controller to adjust the system
input to make control output close to reference output [140]. Thus, the model reference

equation can be expressed as:

Y (K +1) =2y, (k) +b,r(k) (26.1-2)

Where: r(k) is the reference model input. y_ (k) is the reference model output. Both

a,, and b, are reference model system parameters.

The goal of direct model reference adaptive control is to adjust the system input (u(k) ),

in order to make system output (y,(k)) converge as close as to reference model output

(Yn(K)).

The structure of adaptive control can be expresses as:

u(k) = 6" (K)o (K) (2.6.1-3)

Where 8(k) is adaptive parameter vector , o (k) is the system state vector .

The update rule for adaptive parameters can be written as:

Ok +1) = O(k) + wo (k)e(k) (2.6.1-4)

e(k) =y, (k) =y, (k) (2.6.1-5)

Where: y is adaptive rate, e is error dynamic.

73



The analysis of control stability is indispensable for ensuring the smooth operation of
the system. Typically, stability analysis in DMRAC utilizes a Lyapunov function [150]

and can be expressed as follows:

V(0,e) = %eT R¢9+%e2 (2.6.1-6)
V(0,e) =—0"Ro(k)e(k) (2.6.1-7)

Where: R is small postive constant volume .

To determine the stability or instability of the system, the stability condition is satisfied

only when V (6,e) is less than or equal to zero, and both #=0, and e =0[12].

The DMRAC was designed and implemented based on the dissolved oxygen
concentration requirements of the activated sludge wastewater treatment plant for
nutrient removal. Various Multiple variations DMRAC designs were developed to meet

different objectives, as detailed in Chapters 3.4 and 5.

2.6.3 Two-level control for large-scale ASWWTP - advantage and challenge

The ASWWTP structure adopts a segmented design to help understand and regulate the
dissolved oxygen concentration. Each control unit is responsible for a different

wastewater purification unit. The purpose of this control structure is to reduce the
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burden on the central control unit, thereby improving the reliability and flexibility of
the system. As described in [44], the two-level control strategy is also based on online

updating of state variables, so it has powerful fault diagnosis and correction capabilities.

The ASWWTP operation employs a hierarchical control system. The upper layer
control system is responsible for overall system monitoring and optimization, while the
lower layer control system is divided into four independent control systems for the
wastewater purification unit [137], as depicted in Figure 2-6. 1) The inlet control system
controls the flow rate of sewage according to the sewage load of ASWWTP. Ensure
that the subsequent treatment process does not produce unnecessary overload. 2) The
aeration control system is responsible for maintaining the appropriate concentration of
dissolved oxygen to promote microorganism activity. It employs a dissolved oxygen
sensor control system and a blower control system to adjust the aeration volume. 3) The
sediment tank control system is responsible for monitoring the sludge interface and
effluent quality and controlling the discharge sludge pump operation, ensuring that
clear water and sludge are separated and discharged according to required standards. 4)

The sludge concentration and dewatering control are applied if required.
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Figure 2- 6 The hierarchical DO concentration control structure of ASWWTP

As discussed in [139], a two-layer control system is used to regulate the dissolved
oxygen concentration. In this two-layer control system, local controllers are used to
adjust the dissolved oxygen concentration in each biochemical reaction tank separately,
especially to solve the sudden demand for dissolved oxygen by microorganisms. The
global controller is used to coordinate the aerator and multiple biochemical reaction
tanks as a whole and optimize the long-term purification performance. Local and global
parameters are on different time scales, so the coordination between them is more
difficult. There is a time lag phenomenon when the two-layer control system adjusts
the dissolved oxygen concentration. As described in [91], the two-layer control system
can resist external interference in the local controller. Therefore, the robustness and
anti-interference ability of the two-layer control system are acceptable. The two-layer

control system can reasonably coordinate the coupling phenomenon of multiple
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variables through the global controller, thereby improving the ability to dynamically

adjust the load.

Fast response between global controller and local controller is a difficult problem in
two-level control systems. As discussed in [151], if the local control cannot respond
quickly to sudden or uncertain disturbances, the global control system will be unstable,
resulting in a decrease in the wastewater purification effect. The coordination between
the two-level controllers plays a decisive role in the stability of the global control
system. The local controller needs to respond quickly to the organic microbial growth
and biochemical reactions, which are nonlinear dynamic changes. As discussed in [104],
the local controller regulates the urgency and complexity of the parameters of the
coupled phenomena, which are system parameters at multiple time scales and different

spatial dimensions.

This study considers using a two-layer controller to regulate dissolved oxygen
concentration. The upper-level control system uses a fuzzy controller, while the lower-
level control system uses an adaptive controller. This two-layer controller can achieve

stable and efficient nutrient removal. A detailed study is provided in Chapter 5.
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2.7 Addressing Spaces and Capacity Constraints in
ASWWTP

2.7.1 Structural optimization of ASWWTP under space constraints

As described in [105], the aeration and sedimentation tanks are arranged vertically and
compactly to address space constraints. This design places high demands on the
accuracy of the control system. According to [98], the sewage purification components
are modularized, with their functions segmented and partitioned to minimize the plant's
footprint, although this structure results in higher maintenance costs. As described in
[99], integrating multiple functions into a single unit further reduces the plant's footprint,
but it inhibits microorganism growth due to numerous coupling effects between

microbial growth and biochemical reactions.

In low-flow sewage systems, small biochemical reaction tanks are used to solve the
limitations of small areas. However, it has the disadvantage of extending the
purification time. A decentralized mass structure is used to solve the limitation of small
amounts of sewage and effective area. In addition, an adaptive control system is used
to adjust the dissolved oxygen concentration to reduce energy consumption without

affecting the purification efficiency, which will be discussed in detail in Chapter 3.
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2.7.2 Design of small-space ASWWTP for low-volume wastewater treatment

As mentioned in [152], compact wastewater purification equipment can greatly reduce
the use of pipelines, thus solving the problem of unnecessary energy consumption in
the dissolved oxygen transfer process. However, this method leads to long purification
times and low purification efficiency. As discussed in [153], the use of internal
circulation in biochemical reactions can solve the problem of reducing the residence
time of the mixed liquid in the sedimentation tank, but this method will lead to
extremely complex control system design, increase sewage purification time, and
increase maintenance costs. When treating small-flow sewage, the control system
requires higher accuracy; otherwise, a lot of energy will be wasted to produce oxygen.

Therefore, designing an efficient and stable control system is a challenge.

Multiple biochemical reaction tanks and two-layer control systems are used to meet the
limitations of construction space and flow. The concentration of dissolved oxygen is
dynamically adjusted to achieve an efficient and stable sewage purification process,

which is described in detail in Chapter 4.

2.7.3 Design of small-space ASWWTP for high-volume wastewater treatment

As discussed [97], a vertical multi-layer sewage treatment plant structure was designed

to solve the space limitations of the sewage treatment plant. Due to the complex, time-
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varying biochemical reactions, the sewage purification efficiency is low. As discussed
in [135], the integrated building structure is designed to solve the limitation of small
space and large sewage flow in sewage treatment plants. However, its excessive energy
consumption is unacceptable. Although the intelligent control system can realize the
efficient purification process of large-flow sewage, this type of structure cannot respond

quickly to sudden large load fluctuations.

In cases of limited space and high sewage volume, the simple use of advanced
purification device structures alone cannot achieve an efficient and stable purification
process. It is also necessary to design a highly intelligent control system to adjust the
dissolved oxygen concentration. In addition, the dissolved oxygen control system must
have a fast response speed, be real-time adjustable, and have strong robustness. which

is studied in detail in Chapter 5.

2.8 Summary

This chapter introduces the history, principles, types, limitations and challenges of
activated sludge wastewater purification. It also introduces the key components of
wastewater treatment plants, such as air supply, biological reaction ,  and
sedimentation units. It focuses on the metabolic process of organic microorganisms and
the series of chemical reactions involved in the wastewater purification process.
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The challenges in building a mathematical model for the ASWWTP are introduced,
such as the process of nutrient removal and the importance of oxygen in the purification
process. The importance of the dissolved oxygen control system on the sewage
purification rate and energy consumption is also explained. Finally, solutions to the
constraints of building an activated sludge sewage purification plant and the dissolved
oxygen control system are proposed, which are described in detail in Sections 3, 4,

and 5.
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CHAPTER 3 Direct Model Reference Adaptive

Control of Nutrient Removal at ASWWTP

An architecture of ASWWTP was established to address the need for small-scale
sewage purification while reducing construction space and maintenance costs.
According to this structure, a direct model reference adaptive control system is designed
based on the limited parameters of the ASWWTP to achieve stable and efficient nutrient
removal under its global parameters mathematical model. The operating conditions of
the air supply system are assumed to be ideal. The mathematical model of ASWWTP
is implemented by rewriting ASM 2d based on mass balance principles. The stability
of the DMRAC is proven through the Lyapunov function. In addition, MATLAB
simulations based on real data records demonstrated that the system was able to operate

efficiently and stably while being able to resist disturbances.

3.1 Introduction

According to the previous introduction, the concentration of dissolved oxygen during
the operation of ASWWTP can determine its operating efficiency and purification rate.
In this chapter, we are developing the DMRAC system based on limited mathematical

model parameters and applying it to the mathematical model of global parameters. To
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achieve high efficiency of nutrient removal, therefore achieving a stable, effective, and

disturbance-resistant wastewater purification process.

The structure design of ASWWTP can efficiently purify small-scale wastewater while
minimizing constructed space and maintenance costs. It consists of three treatment units:
1) the wastewater collection unit, which is used for collecting wastewater and
performing preliminary filtering; 2) the biological purification unit, which utilizes
oxygen to convert the organic matter into harmless substances through degradation; and
3) the primary sedimentation unit, which separates sludge and clear water. This chapter
focuses on the growth and degradation processes within the microorganisms in units 2
and 3, as illtreated in Figure 3-1. The wastewater collection treatment unit can be
neglected due to its single function and lack of involvement in biochemical reactions

for wastewater purification.
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Figure 3- 1 The architecture of the ASWWTP
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The ASWWTP operation involves multiple treatment units working together. Therefore,
the ASWWTP operation control system involves multiple-layers control systems. The
upper layer control system is delivering the wastewater into a bioreaction tank from the
first collecting tank. Simultaneously, the lower layer control system provides
predictions of the amount of air required for a series of biochemical reactions that vary

over time. subsequently, the wastewater delivers into the primary settlement tank,

3.2 Nutrients removal processes

Wastewater flows into the biological reaction tank from the wastewater collection
treatment unit, and air is introduced into the biological reaction tank by a blower, which
is responsible for generating and delivering air. In addition, young sludge flows back
from the settling back to the biological reaction tank. When wastewater, young sludge,
and air flow into the bioreaction tank simultaneously, organic microorganisms are fed
by oxygen and undergo a series of biochemical reactions to effectively purify the
wastewater. These biochemical reactions include microbially adsorbed suspended
solids, oxidation of organic matter, and oxygen replacement [154]. The ASWWTP
operation involves two-hierarchical DO concentration control structures. The two-
hierarchical control system aims to ensure the DO concentration trajectory (DO(t)) in

the bioreaction tank tacks the reference DO concentration trajectory (DO™ (t)), based
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on the airflow (Q

air

(t)) provided in the lower layer, as described in [155]. The lower

layer control system, through the blower actuator, provides Q

i (1) tooptimally control
the DO(t) to track the DO™ (t). The DO™ (t) of the upper control is derived from the
pre-calculating set-points reference airflow ( Q' (t)). The Q' (t) is determined by the

air air

inflowing wastewater and young sludge.

In our study, we focused on calculating the blower actuator’s airflow to ensure that the
trajectory of the DO concentration trajectory tracks the reference DO concentration
trajectory in the bioreaction tank. The reference airflow is regulated by the upper layer
control system in an overall medium-level control structure [113]. The blower actuator
is the control input in the lower layer control system. The DO concentration trajectory
isdiscussed in [113], and it is part of the lower layer control system. In this chapter, we
utilized DMRAC as the lower layer control system. This controller algorithm is derived
from the DMRAC method [156]. Finally, the mixing wastewater flows into the

settlement tank, as illustrated in Figure 3-2.
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Figure 3- 2 The architecture of ASWWTP for nutrient removal

The settlement tank uses gravity to separate sludge and clean water; this process may
take hours or days, as discussed in [34]. The clean water flows out of pipes, waiting for
use; if there are special discharge requirements, wastewater must undergo secondary
sedimentation in tertiary wastewater treatment [107]. Solid particles and flocs settle to
the bottom of the sedimentation tank by gravity, and the sludge at the bottom is divided
into aged sludge and new sludge. New sludge flows back to the biochemical reactor to
wait for the purification of activated sludge again. Aged sludge is discharged directly
or discharged after being concentrated again according to the discharge standards. The
organic matter in the young sludge assists microorganisms in ongoing degradation
[179]. In this chapter, we assume that the settler is in an ideal state and, therefore, does
not require stirring, in contrast to the approach presented in [180], as illustrated in

Figure 3-3.
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Figure 3- 3 The settlement tank processes

At the biochemical reaction tank, a serial biochemical reaction occurs, involving
oxygen consumption [43]. Therefore, following the mass balance principle, we can
write an oxygen balance equation to describe the inflow and outflow matter from the

bioreaction tank.

In this chapter, we consider the amount of oxygen required to achieve optimal

biochemical reactions on the left-hand side of the equation. unlike [11, 160].

3.3 Control problem statement

The state variables in the ASWWTP process cannot be directly detected and measured.
A mathematical model that accurately describes the ASWWTP process is established
to achieve precise real-time evaluation of purification system parameters in the DO
control system and to predict future parameter changes during the estimation process.

The mathematical model of ASWWTP describes the biological reaction process,
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chemical reaction process, purification system state variable, and the rate of

microorganism growth and chemical reaction rates [181].

The architecture of ASWWTP is shown in Figure 3-2. The mathematical model of the

ASWWTP can be derived by rewriting ASM 2d based on the mass balance principle.

The state-space model, introduced in [182], can be written as follows:

‘L_T = 4(®)X () = D)L+ )X + DO X, (t)

ds __u®X(©) _ D(t)1+r)S(t)+ D(t)S,, (t)
dt Y
d([j)to _ Koﬂ(:()x ® by rypow)
+K_, (Q,, (D)(DO,,, — DO(t)) + D(t) DO, (t)
ddxtr = D)L+ 1) X ()~ DE(B+1)X, (1)

S(t) DO(t)
K, +S(t) Ky, +DO(t)

() = py

where

003 12 5%

(3.3-1)

(3.3-2)

(3.3-3)

(3.3-4)

(3.3-5)

(3.3-6)

X(t)! S(t)! Domax’ Xr(t)l D(t)! Sin(t)! Doin(t)! Y, :U(t)! lumax’ Ks' KDO' Qair(t)’

Ko, 1, B, Q. 1), Q.1, Q), Q,t), V, are biomass concentration, substrate

concentration, maximum dissolved oxygen concentration, recycled biomass
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concentration, dilution rate, substrate concentration in the influent, dissolved oxygen
concentration in the influent, biomass yield factor, biomass growth rate, maximum
specific growth rate, affinity constant, saturation constant, aeration rate, model
constant, recycled sludge rate, removed sludge rate, influent flow rate, effluent flow

rate, recycled flow rate, waste flow rate and aerator volume.

The oxygen transfer function (OTF) k ,(Q

i (D), presented in equation (3.3-3), is
known to be nonlinear. The operation of the blower and the dissolved oxygen

consumption by microorganisms over time contribute to this nonlinearity [105]. Under

these conditions, the OTF can be written as follows:

kLa (t) = aQair (t) + 5 (33_7)

Where: o and & are known constants for the oxygen transfer function.

We only considered accurate output DO as control output. Therefore, ASM 3 is not
appropriate for describing this ASWWTP process, as it is modelled for specific
treatment environments [157]. However, ASM 1 has been found to have limitations in
adjusting the ASWWTP‘s parameter, as demonstrated in [158]. Furthermore, ASM 2
has demonstrated low accuracy due to its one-dimensional nature; it is unable to

consider both time and space, as described in [159].
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Figure 3- 4 The architecture of ASWWTP with airflow actuator

The architecture of the ASWWTP with a blower is depicted in Figure 3-4, where the
blower is used for producing oxygen. The time scale of the blower operation differs

from that of the bioreactor operation. The blower actuator state belongs to the lower

layer control system and determines the airflow ( Q

air

(t) ), while the bioreactor belongs

to the upper layer control system and reference airflow (Q.' (t)) [20]. Additionally, the

state variables of the ASWWTP are on different time scales; it has been discussed in

Chapter 2.4 and in [160].

However, the design of the blower control system has been detailed in [36]. In this
chapter, we ignore the discussion of the blower controller design. It is assumed that the

ideal blower operation exists; hence, the blower control output is equal to the reference

airflow, Q™ (t)=Q,, (t), it has demonstrated in [83]. The ASWWTP disturbance

air

substrate concentration S.

In?

inputs include influent flow rate Q. and dissolved oxygen

in?

concentration in the fluent DO,, . Moreover, those disturbance inputs are time varying,
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and the control output is DO concentration. The structure of the DO control system,
assuming the existence of an ideal DO concentration sensor as shown in Figure 3-5,
employs the DMRAC system to estimate the ideal DO concentration sensor using
adaptive control laws. Therefore, respiration does not need to be estimated. This

represents a different control method compared to that described in [83]. Our aim is to

design a DMRAC control system where the output trajectory DO(t) can quickly and
accurately follow the reference DO ( DO™ (t)) trajectory, while also maintaining

robust performance against interference.

Tracking lQW’ 5 DO,

ref :
DO7. ~error 0 Q7 | Aeration |Q
Controller Control Plant

_“®D0o System

v

Figure 3- 5 The architecture of ASWWTP with aeration

The equations (3.3-1), (3.3-2), (3.3-3), (3.3-4), and (3.3-5) represent the ASWWTP
dynamics. It is characterized as a fourth-order nonlinear complex system with different
time-scale dynamics models. The PI control system is unsuitable for implementation
on a full range of process conditions, due to its uncertainty and varying. Moreover, it

exhibits lower response times and large error dynamics [63]. Furthermore, being a
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linear control system, it is unsuitable for this nonlinear ASWWTP system. As discussed
in [3], the application of the MPC control system on the ASM 2d is extremely complex.
This complexity arises from the ASM 2d being a two-dimensional mathematical model,
which necessitates calculations at multiple points across both time and spatial
dimensional [124]. Considering the features of the ASM 2d model, although it focuses
on a single unit (bioreaction tank), it still involves multiple inputs existing that interact
and must be considered together. Therefore, fuzzy logic control is unsuitable for this

plant [113].

In this chapter, adaptive control is considered, which is different from the previous [12].
The design of the DMRAC is based on the SISO model of dissolved oxygen dynamics
in equation 3.4-1, achieved through a reasonable arrangement of the state space model
equations (3.3-1), (3.3-2), (3.3-3), and (3.3-4). The mathematical model of the
ASWWTP has unmeasured state variables related to air quantity. We integrated those
state variables into one term, which is respiration. The adaptive controller estimates the
respiration rate, and it is updated by the adaptive control laws, which are set indirectly

and automatically [83].

Subsequently, design and implement a direct model reference adaptive control that
applies to DO concentration dynamics at ASWWTP. Following implementation,
validate the stability of the controller through simulation results and the application of

a Lyapunov function.
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3.4 Dissolved oxygen controller design

The state space equation of the ASWWTP system has been described by equations (3.3-
1) ... (3.3-4) and (3.3-5) in the previous section and contains highly nonlinear and
unknown system state variables. While system state variables suchas X, (t), X(t), and
S(t) are remain unmeasurable, other parameters such as Q;,(t) and Q,(t) can be
detected online. In addition, the dissolved oxygen dynamic model is formulated as a
first-order SISO system. The dissolved oxygen dynamic trajectory is influenced by both
state variables and disturbances. The stability and effectiveness of the DO dynamic
controller depend on the global state parameters and disturbances of the wastewater
purification process. The mathematical ASM 2d model of ASWWTP is relatively
accurate compared to other models [161]. However, in the wastewater purification
system, there are uncertain disturbance inputs and unpredictable system state variables.
Therefore, the first order of the SISO DO dynamic equation is the basis for adaptive
controller design. According to the online update characteristics of the adaptive control
system, it can exploit robustness to handle these unknown system state variables and

unknown disturbances.

The DMRAC structure is represented in Figure 3-6.
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Figure 3- 6 The structure of direct model reference adaptive control

Starting with equation (3.3-3), the SISO model for DO concentration is constructed by

substituting «(t) (3.3-7) with equation (3.3-5). The DMRAC design is based on the

equation (3.4-1). The resulting input-output model is presented below:

dDO _KX(®)
" D(t)(1+r)DO(t) v u(t) (3.4-1)

+(aQ,, (1) + 6)(DO,,, — DO(t)) + D() DO, (1)
The fourth term in equation (3.4-1) represents the slowly varying component, indicating
that the inflow rate of DO in the wastewater entering the biological reactor changes
gradually. Consequently, the magnitude of the fourth term D(t)DO, (t) becomes
extremely small and can be neglected. As a result, the SISO model for DO

concentration is reformulated, and input is Qair (t) and output is DO(t), as follows:

dDO _ 4 ))DO(t) —c, (t) f (DO(H))

at (3.4-2)
+b, (H)Qy (©) +d,

Where: a, (t), c,(t), b, (t) and d are the model parameters and
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Q,d+r)

ap(t)z—

a

Ko X (1)  #eS(1)
Y (K. +S()
DO(t)
(Kpo +DO(1))
b, (t) = (DO, — DO(t))
d, = ADO,,,

c,(t)=

f(DO(t)) = (3.4-3)

The parameter d, consists of g and DO both of which are known and exhibit

hnax
slowly variations over time. Additionally, X (t) and S(t) represent internal dynamic
biological state variables. When compared to the components of DO(t) [19, 115],
these parameters are varying slowly. Hence, the parameter ¢, (t) is both slow-varying
and unknown. The time scale associated with variables Q. (t) and Q,,(t) are dependent
on the upper layer control. In comparison to the time scale of DO(t) , these time scales
are slow. The variables recycled flow rate (Q,(t)) and waste flow rate (Q,(t)) are
associated with the operation time of the upper layer control system, and their time
scales are the same as the time scales of disturbance inputs Q,,(t), S, (t),and DO, (t).
Moreover, the internal state variable DO has a faster time scale compared to the
variables recycle flow rate and waste flow rate. Therefore, the parameter a, (t) can be
deemed a rapidly fluctuating yet known variable, as discussed in [124] and [160].

however, they have

max !

Finally, the parameter b (t) is dependent on DO(t) and DO

the same time scale, as indicated by equation (3.4-3). Because the known oxygen
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transfer constant, parameter b (t) can be classified as a rapidly fluctuating and known

variable.

In the closed-loop to achieve the control output DO(t) trajectory fast and stable tracks

the prescribed DO reference dynamics (DO_ . (t)). The reference DO trajectory is

m.ref

derived from the reference air set by upper layer control [113]. The model reference

dynamics (DO, . (t)) (MRD) equation can be written as:

dDO
J“fz—%oomﬂayu%Doma) (3.4-4)

Where: DO,, ¢ (t) defines the model reference dynamic output DO(t) , and model
reference parameters a, and b are defined as constants determined by designer.

Hence, a, =h..

As mentioned in [44], the expanded model reference adaptive control laws can be

written as follows.

Quir (1) = a5, (1) DO(t) +a, (t) f (DO(L))
(t)~ 00 (3.4-5)

+a__. ()DO™
DO bp (t)

The equation (3.4-4), which represents the model reference dynamic (MRD), is linear.
Additionally, in equation (3.4-5), the second and fourth terms can asymptotically cancel
the effects of the nonlinear term and the additional term in (3.4-2) in a closed loop,

respectively.
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The parameters of the direct model reference adaptive control law (DMRACL) are

denotedas ay,(t), a,(t),and a__. (t). When the MRD is in a closed loop, We assume

that ideal parameters exist. The close-loop DMRAC control equation (3.4-1) is

achieved by using equation (3.4-5), which leads to the derivation of equation (3.4-6):

D9 __(a, (1) -b, (s (£)DO()

dt
—(c, (1) b, (t)a, (1)) f (DO(t)) (3.4-6)
+b, (t)a .. (t)DO™ (1)

and

—(a, () - b, (1)) (1)) = 4,
—(c, ()b, (D)a, (1)) =0 (3.4-7)

bp (t)éDoref (t) = bm

The ideal parameter can be derived by rewriting equation (3.4-7), resulting in:
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élDo (t) = b (t)
APRECR0 _
a, (t)= b O (3.4-8)
X b,
Ao t)= bp ®

A

Since the values of b, and b, (t) are known, &__.. (t) can be determined online using
available data. The model reference adaptive control law can thus be reformulated as

follows:

Quir (1) = a0 (DO(1) + 2 (1) f (DO(1))

% o 1y~ $00m: (3.4-9)

b, (t) by (t)

_l_

Unlike the [156], the MRAC control law does not include the adaptive control

parameter a_ .. (t). The corresponding closed-loop SISO dynamic DO(t) by equation

(3.4-9) can be rewritten as:

B (2,05, 02, ©)DOW)
~(e,® b, (Ha, () f (DO() (3.4-10)
bm ref
+b, (1) G DO™ (t)

The parameters a, (t) and a, (t) in equation (3.4-8) can be determined on-line using

parameter adaptive laws. However, system parameters a (t) and c,(t) remain
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unknown. Using parameter adaptive laws to calculate a,,(t) and a, (t) necessitates

knowing the error dynamics between the DO(t) dynamic and the DO,, . (t) . The
dynamic of the error equation is presented below.
e(t) = Do(t) - Dom_ref (t) (34_11)

As discussed in [162], the parameter adaptive law that ensues the stability of the
adaptive control system is derived. The adaptive control system is applied to the SISO
dynamic system. This first-order dynamic system includes uncertain time-varying
constants, nonlinear additive structure, and known parameters. By applying these
parameter adaptive laws to equation (3.4-1), the parameter adaptive of DMRAC applied

to the ASWWTP system can be obtained as follows:

Gap, _ —y,e(t)DO(t) (3.4-12)
dt

da,

— =701 (0OW) (3.4-13)

In equations (3.4-12) and (3.4-13), y, and y, represent adaptive gains parameters, both
of which are small positive constants. These parameters can be used to adjust the rate
of adaptive control. By adjusting these gains, the adaptive rate can be changed to rapidly

respond to parameter changes during the operation of the ASWWTP. Therefore, the
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adaptive rate must be coordinated with the rate of change of the ASWWTP parameters

to ensure the stability of the closed-loop system.

3.5 Stability analysis

The on-line updates for estimated parameters a,,(t) and a, (t) are provided by the
parameter adaptive laws. as shown in equations (3.4-12) and (3.4-13). Hence, the

difference between the ideal adaptive law parameters and the estimated adaptive law

parameters is represented by Aa,,(t) and Aa, (t), respectively.
Aa-Do (t) =0 (t) - é‘DO (t) (3.5-1)
Aa (t) =a, (t) &, (t) (3.5-2)

The Lyapunov function isemployed in the stability analysis of DMRAC. The Lyapunov

function utilized in this analysis is presented below;
14,1 20y L Lo 2
V(t) ==e(t)+=Aay, (1) +=Aa, " (t) (3.5-3)
2 2 2
The equation (3.5-3) can be expanded as follows:

= e(t) e(t) + (Ao (t) — no (1)) (@00 (t) — Aoo (1) —

dv (t) 1
at “io (3.5-4)

+(a, () -4, ()@ (1) -4 (1))
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The real dynamic DO(t) in equation (3.4-1) and the model reference DO™ (t) in
equation (3.4-10) are both substituted into equation (3.4-11) to derive the error

dynamics.

e(t) = —(a, (t) —b, () (£) DO(t)
- (cp - bp (t)a, (t) f (DO(t)) (3.5-5)
+ am Dom.ref (t)

Additionally, the term a_DO(t) is added and subtracted on the right-hand side of

equation (3.5-5) of the Lyapunov function as follows:

e(t) = -a,e(t) - (2, (1) - b, (1)apo (1) -a,)DO(H) (35.6)
- (¢, -b, (Ha, (1) F (DO()

By substituting equations (3.4-10) and (3.4-11) into equation (3.5-4) can be expressed

as:

€(t) = ~2,8(t) + (2o (1) — oo (1), (1)DO(H) (35.7)
+(a, ()-8, (Db, (1) f (DO(V)

By substituting equations (3.5-7), (3.4-12), and (3.4-13) into equation (3.5-4), it can be

expressed as:

dv(t) _ _ .
e ®

+ (apo (t) —8po (D) [e(t)b, (1) DO(t) —e(t) DO(t) - doo(t) i] (3.5-8)
"1
+(a; (1) —a; (1) [e®)b, (t) f (DO(t)) —e(t) f (DO(Y)) —ai(t) %]
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A quadratic function of the squared error constitutes the right-hand side of equation
(3.5-8). From the equation (3.5-8), it can be easily determined that the e(t)® is positive

and the —a, <0. Therefore, the first term of the equation (3.5-8) is negative. Hence,

av (t)

the left-hand side of the equation (3.5-8) is negative for <0 to hold. The

derivation is in Appendix A. By squaring equation (3.5-8), it is easily illustrated that

is bounded.

d?V(t)
dt

Perform a stability analysis of the Lyapunov function result using Barbalat’s lemma.

If the dynamics of the plant’s initial conditions and equations (3.4-12), (3.4-13)

approach the equilibrium point, and the parameter adaptive rates y, and y, are chosen

to be sufficiently small, then.

1) The parameter adaptive rates are bounded by the model reference adaptive control

law.

2) Hence, the output DO(t) of the direct model reference adaptive control can achieve

asymptotic tracking of the model reference DO™ (t), and the ideal parameters apo (1)

and &, (t) remain bounded.

3)The parameters a,,(t) and a, (t) of the parameter adaptive laws are bound by the

squared error dynamics.
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The stability analysis, employing the Lyapunov function and Barbalat’s lemma, easily
proves that DMRAC is stable. MATLAB simulation results demonstrate that the

stability of DMRAC is bounded by estimates of the model reference and adaptive gain.

3.6 Simulation results and discussion

This section presents the simulation results of DMRAC applied to the ASWWTP to
control the dissolved oxygen dynamic. These results verify the stability and robustness

of the DMRAC system using real data records [161].

The initial plant state parameters are: X(0)=15mg/l , S(0)=200mg/I
DO(0)=3mg /I, X,(0)=18mg/l, DO,, =10mg/Il, S, (0)=600mg/l, D(0) =3,
DO, (0)=0.5mg/l . The plant process constant parameters are «=3.34m>
§=354h"" , K,=0.5. The kinetic parameters are: g, =0.15mg/l , K =100mg/l ,
Kpo=2mg/l. The plant disturbance inputs are piecewise variable, as illustrated in

Figure 3-7, 3-8 and 3-9.
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Figure 3- 9 Influent dissolved oxygen DO, (t)

The model reference parameters were a, =30 and b,=30 . The ASWWTP

mathematical model of global variables uses the ASM 2d. The model reference for
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dissolved oxygen DO (t) was taken piecewise constant. The results show that

controlling the output DO concentration trajectory under the slow adaptive rates yields

good tracking performance and stability, as demonstrated in Figure 3-10. Figure 3-11

shows that under the slow adaptive rate, the control output DO concentration trajectory

effectively suppresses the disturbance input and has good stability and tracking

performance.

DO and DOref(mg/l)

W
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DO(t)
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I
4 5
Time(h)

Figure 3- 10 The dynamics trajectories of DO(t) and DO™ (t) under conditions of no

disturbance inputs and slow adaptive rates 5, =05, 7, =05.
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Figure 3- 11 The dynamics trajectories of DO(t) and DO™ (t) under conditions of

disturbance inputs and slow adaptive rates y, =05, y,=05.
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The same initial conditions as in Figure 3-11 are used in Figure 3-12. and it uses some
piecewise constant model reference, but the adaptive rates are faster than before, as
indicated by 7, =95, 7, =5. The dissolved oxygen response tracking trajectory depicted
in Figure 3-12 is unstable. The utilization of high adaptive rates reduces robustness and
causes the adaptive parameters a,,(t), a,(t) to become unconstrained by the error

dynamics. Consequently, the DMRAC output ( DO(t) ) trajectory is unable to rapidly

and stably track the reference (DO™ (t) )trajectory.

DO(t)
--------- DOref(t)
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Figure 3- 12 Unstable DO(t) response with fast adaption rates 4, =5, y, =5, and

without disturbance inputs
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Figure 3- 13 Unstable DO(t) response with fast adaption rates y, =5, y, =5, and with

large disturbance inputs

106



Figure 3-13 uses the same initial condition and model reference as Figure 3-11, but with
large disturbance inputs. The results clearly indicate that the closed-loop adaptive
control system becomes unstable under such conditions. This instability is caused by
the large unknown disturbance input and the excessive gain scheduling, leading to an

unstable response of the adaptive control system.
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Figure 3- 14 The initial conditions of the ASWWTP are significantly distant from the
equilibrium point, and the dynamics of DO(t) fail to track the trajectory of DO™ (t),

thus rendering the system unstable under conditions characterized by the absence of

perturbation input and slow adaptive rates y, =05, y,=0.5

The initial conditions of the ASWWTP are deliberately selected to be distant from the
anticipated equilibrium point. The initial plant conditions are X(0)=30mg/I ,
S$(0)=960mg /I, X, (0)=7mg/1, DO(0)=7mg/l . Results indicate that, despite
employing slow adaptive rates, the DO(t) dynamic tracking trajectory performance of
the control system output is unstable. This instability arises due to the excessively long

convergence time of the adaptive control system and the time delay in the dynamics
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response of the purification system. Therefore, the parameters of the adaptive control
system are deemed invalid, as depicted in Figure 3-14. The simulation results validate

the stability analysis presented in Chapter 3.5.

3.7 Conclusions

According to the requirements of small wastewater treatment volume and small
available space, a new architecture of ASWWTP is designed, which consists of a
bioreactor unit, a blower, and a sedimentation unit. The mathematical model is
established by mass balance and rewriting ASM 2d. The mathematical model of the
ASWWTP is based on the principle of mass balance and ion Kinetic energy

conservation and is formed by rewriting the ASM 2d model.

A direct model reference adaptive control system is designed to adjust dissolved oxygen
concentration in the ASWWTP system, utilizing limited ASWWTP parameters and
applying it to the mathematical model of global ASWWTP parameters. The adaptive
control parameters are adjusted through MATLAB simulation to meet design
requirements. The MATLAB simulation results demonstrate the stability and
effectiveness of the ASWWTP system, also demonstrating its resilience against
disturbances. Stability of the control system is further verified using a Lyapunov
function.
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CHAPTER 4 Direct Model Reference Adaptive
Control of Nutrient Removal at ASWWTP with

Blower Constraint

The architecture of the ASWWTP used in this chapter remains the same as in Chapter
3. However, we assume that the ASWWTP operates under unknown disturbances. A
blower supplies excessive air into the bioreactor to facilitate the growth and degradation
of microorganisms. The DMRAC with filter design is based on the limited ASWWTP
mathematical model parameters and is applied to the global parameter model of the
ASWWTP. This control system ensures stable and efficient operation of the ASWWTP
under disturbances while filtering out excess airflow. The mathematical model of the
ASWWTP is developed based on mass balance and kinetic energy conservation
principles, with modifications to the ASM2d model. MATLAB simulations, using real

data, were performed to verify the performance of the DMRAC system [53].
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4.1 Introduction to ASWWTP operation with blower

constraint

In actual wastewater purification plant operations, it is often challenging to maintain
the ideal ASWWTP operating state due to unpredictable disturbances. During the
ASWWTP process, the system may encounter airflow overload conditions, leading to
instability, which can be caused by a sudden influx of large amounts of air or failures
in dissolved oxygen sensors. In this chapter, we focus on the issue of blowers generating

and transferring excess air.

As previously discussed in [193], a high concentration of DO in the bioreaction tank
leads to a decrease in the degradation rate of microorganisms, a reduction in oxidative
displacement rate, and the generation of oxidative by-products. Leading to the amounts
of aerobic microorganisms decreasing and an increase in anaerobic microorganisms.
Thus, an imbalance in microbial populations will affect the overall denitrification
process. Moreover, the high DO concentration results in reduced nitrogen removal

efficiency.

The design and application of DMRAC with a filter aim to address the challenge of
maintaining a suitable DO concentration to achieve stable and highly efficient
ASWWTP operation when the ASWWTP system operates in an air overload state. The

mathematical model of the ASWWTP rewrites ASM 2d based on the mass balance
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principle. Demonstrating the stability and anti-disturbance performance of DMRAC

with filter through Lyapunov function analysis and MATLAB simulation.

4.2 The architecture of ASWWTP

The architecture of the ASWWTP consists of both primary and secondary wastewater
treatment components. In the primary wastewater treatment unit, large pollutant
particles are collected and filtered. Next, the wastewater flows into the secondary
wastewater treatment unit, which includes a bioreaction tank, sedimentation tank, and
blower. The blower’s operating condition is crucial for the growth and degradation of
microorganisms because it produces and delivers airflow into the bioreaction tank. The
sedimentation tank separates the clear water from the sludge by gravity. The
architecture of the ASWWTP is depicted in Figure 4-1. We consider the DO
concentration trajectory, tracking the reference DO concentration trajectory in the

bioreaction tank, which involves highly nonlinear dynamics.
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Figure 4- 1 The architecture of ASWWTP

4.3 Aeration station processes

After filtering out large particles, the wastewater flows into the bioreaction tank. In the
biological reaction, wastewater, dissolved oxygen, and young sludge are mixed to
initiate a biochemical process. Dissolved oxygen acts as a catalyst for microbial growth
and degradation, while young sludge is maintained in the bioreaction tank to sustain the
microbial population. After a series of biological reactions, the wastewater flows into
the sedimentation tank, where clean water and sludge are separated by gravity.
Dissolved oxygen is supplied by a blower, which serves as a control input, as shown in
Figure 4-2. By adjusting the dissolved oxygen concentration, the level required for
microbial growth and degradation in the bioreaction tank is achieved. Microorganisms

carry out the removal process during the biochemical reaction.
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As discussed in [19, 156], the purpose of the two-layer control system is adjust to DO
concentration trajectory (DO(t) ) to track the reference DO concentration trajectory
(DO™ (t)) in the bioreaction tank. The upper control system determines po™ (t) based
on the pre-established set-points reference airflow (Q™ (t)). The lower layer control

system output DO(t) is derived from the optimized airflow (Q

air

(t)) to ensure that
DO(t) trajectory to track DO™ (t)trajectory. The Q™ (t) is derived from the inflow of
wastewater and young sludge in the biochemical reaction tank. In the blower operation
with ideal conditions, the airflow equivalent to the reference airflow has been discussed
in [126]. Additionally, in Chapter 3, when the output of the blower actuator matches
the blower output, the DMRAC output allows the DO concentration trajectory to
rapidly and stably track the reference DO concentration trajectory. Thus, the
microorganisms in the biochemical reaction tank can obtain the required dissolved
oxygen. The lower layer control system employing an MPC controller was
demonstrated in [163]. Our study utilizes the DMRAC with a filter as the lower layer

control system. This controller algorithm is based on the DMRAC method [156].
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Figure 4- 2 The architecture of nutrient removal with blower

In our study, assume that the lower layer control system blower is unable to produce
airflow that matches the reference airflow provided by the upper layer control system.
In addition, we assume that the actual air volume exceeds the reference air volume,
resulting in an excessively high DO concentration in the bioreactor. As described in the
[51], high DO concentrations will reduce the degradation capacity of anaerobic
microorganisms and have a negative impact on the denitrification reaction, thereby
reducing the overall denitrification efficiency. On the contrary, aerobic microorganisms
will settle, resulting in reduced water quality. Therefore, ensuring an appropriate DO

concentration during the biochemical reaction is the focus of the control system.
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4.4 Dissolved oxygen concentration problem statement

The ASWWTP mathematical model is used to study the design and operation of the
ASWWTP. It was established by IWA, and those models include: ASM 1, ASM 2,
ASM 2d and ASM 3 [33]. The ASM 1 employs one dimension to describe organic
matter degradation, nitrification, and denitrification processes, with specific details of
organic matter removal processes. Additionally, the ASM 2 is one dimension to
describe the microorganism growth and degradation, specific to the phosphorous
absorption and release process. Moreover, the ASM 2d is two-dimensional to describe
microorganism growth and degradation, specific to the more detailed denitrification
and phosphorus. Finally, the ASM 3 is two-dimension to describe all biochemical

reaction processes [164].

The state variables of the ASWWTP cannot be accurately monitored by a hard sensor.
These state variables involve a range of biochemical reactions occurring over time. each
interdependent and simultaneous in nature. Since we focus on the DO concentration as
the control output. The mathematical model of ASWWTP rewrites ASM2d and utilizes
mass balance to demonstrate the ASWWTP process, as depicted in the following
equation (3.3-1) ... (3.3-6). Figure 4-3 illustrates the architecture of the ASWWTP for

nutrient removal, incorporating a blower.
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Figure 4- 3 The architecture of ASWWTP for nutrient removal with a blower

The function ki, (Qg (t)) represents the oxygen transfer function derived from the
mathematical mode of the ASWWTP in equation (3.3-3). This oxygen transfer function

is dependent on the blower’s operating state, as demonstrated in [105]. Therefore, the

oxygen transfer function can be expressed as follows:

Kpa(t) =aQuj (t) +0 (4-1)

Where: « and s are constants known to represent oxygen transfer factors.

As discussed in [112, 155], a two-layer control system is employed with the objective
of ensuring that the DO concentration trajectory ( DO(t) ) tracks the reference DO

concentration trajectory (DO™ (t)). The upper layer controller computes the reference

airflow (Q™ (t)) necessary to achieve the desired reference DO concentration trajectory

air
(DO™ (t)). The lower controller utilizes the blower actuator to generate airflow (Q,, (t) ),

which directly affects the actual DO concentration trajectory ( DO(t) ) in the

biochemical reaction tank. As demonstrated in [19], a blower operation under ideal

conditions, the blower actuator can produce the airflow (Q

air

(t)) same to the reference
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airflow (Q™ (t)), thereby ensuring that the DO concentration trajectory ( DO(t) ) tracks
the reference DO concentration trajectory ( DO™(t) ). This guarantees that

microorganisms receive sufficient DO for growth and degradation. In our study, we

consider that the blower is unable to generate airflow (Q

air

(t)) equal to the reference
airflow (Q™ (t)), but can only produce airflow that exceeds the reference airflow

air

(Q.r (1) > Q' (t))-

The operation of ASWWTP is affected by input disturbances, such as influent flow rate
(Q,(t)), the substrate concentration in the influent (S, (t)) and dissolved oxygen
concentration in the fluent (DO, (t)). These disturbances are unknown, uncertain, and
unpredictable. Moreover, they are nonlinear dynamics. Therefore, to address these

issues, the control system must be capable of updating ASWWTP’s parameter online.

In our study, we assumed that the blower produces excessive airflow (Q,,(t) )
compared to reference airflow (Q. (t)). The control system is designed to filter out this
excess airflow while incorporating anti-disturbance capabilities and, moreover,

ensuring the system's operation is stable.

The equations (3.3-1) to (3.3-6) show that the dynamics of ASWWTP form a complex
nonlinear system. As demonstrated in various [21, 165, 166] simple feedback control
methodologies like PI control, nonlinear MPI control, and Intelligent-PID were used to

solve nutrient removal issues at the ASWWTP. However, these approaches generally
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produce unacceptable results. The MIMO quantitative robust controller-design
methodology implemented for nutrient removal at the ASWWTP with the additional
airflow control modules was described in the [167], but it proved to be extremely

complex.

The structure of the DO control system, assuming the existence of an ideal DO
concentration sensor, is illustrated in Figure 4-4. This ideal DO concentration is
estimated using adaptive control law, eliminating the need for respiration estimation.

This approach differs from that described in [168].

Qin 1 Sin’ Doin
Tracking f _
o W (t) | Aeration | Q'
« _Emor | DO [Qur(® Plant
PO 4 7| controller Filter » Control |—»
System
DO

Figure 4- 4 Structure of dissolved oxygen control system

Due to the characteristic of ASWWTP operation, there are some ASWWTP state
variables that cannot be measured by a hard sensor. Therefore, we utilize a DO
controller to update online these time-varying variables and use these plant parameters

to adjust the DO concentration trajectory of the output. The goal of the DMRAC with
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filter is to maintain a stable output DO concentration trajectory and tracking reference

DO trajectory (DO™ )while rejecting excess airflow and unknown disturbances.

4.5 Dissolved oxygen controller design with input constraints

The state-space model of an ASWWTP is described in equations (3.3-1) - (3.3-6), based
on a modified ASM 2d and mass balance. The mathematical model of the ASWWTP
was developed by IAWQ and tested. As previously mentioned, only the DO
concentration is considered the control output, which is a nonlinear and uncertain plant
parameter. The state variables X, (t), X (t), and S(t) are unmeasurable, while other
plant parameters such as Q,;, (t) ,Q, (t), and Q, (t)are detectable by a soft sensor. The

parameter DO can be estimated by an adaptive controller and updated online.

The first-order single input-output format is rewritten to derive a dynamic model for
DO, which includes three main elements: 1) the state variables; 2) the control input with
saturation constrain; and 3) the disturbance inputs. Furthermore, the design of the
DMRAC with input constraints will entail estimating an uncertain state variable, extra
air inflow, and unknown disturbances. This estimation mechanism will be continuously

updated online to accommodate unknown parameters.
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By substituting equations (3.3-5) and (3.3-7) into equation (3.3-3), the dynamic model

DO(t) is derived. The DMRAC with filter design is based on thisequation (4-5-1). The

resulting SISO model for dissolved oxygen concentration is as follows:

O ——pe+nPow S5l
+(aQy (1) + 5)(DO,, — DO()) (4.5-1)

The term D(t)DO, (t) in the state-space model is significantly smaller compared to other

state variables because of the dependency of the term D(t) on both Q, (t) and V,, as

illustrated in equations (3.3-6). Hence, the impact of D(t)DO, (t) can be neglected.

Rewriting equation (4.5-1) yields:

dDO _ 4 bo(t)—c, f (DO()) +b,Qu (1

dt (4.5-2)

+d, +D(t)DO,, ()
Where: a,(t), ¢, (t), b, (), and d are the SISO DO parameters.

Q,a+1)

HO=" 5

KX ()t SO
Y (K, +S(t))
DO(t)

(K, +5(1)

b, (t) = (DO, — DO(1)

d, = SDO,

c,(t)=

f(DO(L)) = (4.5-3)
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The parameter a, (t), dependent on the variable Q,(t) in equation (3.4-6), pertains to
the operating time scale of the upper layer’s control system. Compared to the time scale

of DO(t), a,(t) are varies slowly.

The parameter c(t) also varies slowly and is unknown due to its dependence on the
plant’s biological state variables X (t) and S(t), which exhibit slower variations in the

time scales compared to DO(t) [12, 19].

The time-varying of f(DO(t)) is determined by the time scale of po). K., isalso a

small constant relative to the time scale.

The parameter b (t) varies depending on the time scale of DO(t) in equation (3.4-3)

and the parameter «, which represents the oxygen transfer constant and is known in
equation (3.4-7). The plant parameter DO(t) has a faster varying time scale compared

to other plant state variables. Hence, the parameter b,U (t) is also the time scale of rapidly

changing, as discussed in [169].

The adaptive model references dynamics, when the adaptive controller’ output DO(t)

tracks the DO, ., (t) in a closed loop, as described in the following equation.

dDO
d—t’“f —=—a_DO_ ., (t)+b, DO™ (t) (4.5-4)
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Where: DO, ., represents the adaptive mode reference dynamic output, with parameters

a, and b being model reference constants. During the simulation experiment, we

assumed &, to be equal a small constant, denoted as b, .

By rearranging equation (4.5-2), the saturation input limitation of the DO(t) dynamic

of a single input-output model is as follows:

abo _ —a,(t)DO(t) —c, (t) f (DO(Y))

dt (4.5-5)

+b, (W (1) +d,

Where:W(t) represents assumed to be the saturation control input under constraints

(SCIC).
W (t) = saturation(Q,, (t)) (4.5-6)

and W (t) constraints are expressed as:

Qair . if Qair (1) > Qair (V)
W (t) =1 Qair (1), if  Qair (t) < Qair (1) < Qair (V) (4.5-7)
Qair ® if Qair (1) < Q& (V)
Where: Q;;, and Q, represent the lower and upper bounds of the actuator’s constant

limitation, respectively. If the input saturation condition is met, the tracking error of

filter n(t) is increases. The model reference adaptive control law with saturation input

is shown in equation (4.5-4). This motivates us to develop an adaptive control law
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explicitly considering the influence of the actuator’s saturation input nonlinearity, in

comparison with Chapter 3.

The dynamics of the filter tracking error are applied as follows:

n(t) = e(t) — A(t) (4.5-8)

Where: e(t) represents the differences between the control output DO(t) and the

adaptive model reference output DO, ., (t) with on-line updates.

e(t) = DO(t) - Dom.ref (t) (45'9)

The adaptive controller should be capable of rejecting constrained input and disturbance

input by defining the auxiliary signal as expressed.

91_y 1o

= (1)~ DA®) (4.5-10)

air

Where: @ is a small positive constant auxiliary parameter. The parameter AQ,,(t)

represents the difference between the control input Q

air

(t) under SCIC and W (t) .

The affine model reference adaptive control law with input constraint is applied as

follows:
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1 1
W(t) = b—(t)aDo (t)DO(t) +b—(t)af (t) £ (DO(1))

p p
1
+——a__.(t)DO™ (t)———d
b, (t) ™ b, (t) °

1
— m (D(t)( DO(t) - Dom.ref (t))

(4.5-11)

The model reference dynamic in equation (4.5-4) represents a linear time-varying

dynamic. The terms biaf (t) f (DO(t)) and bid” in (4.5-11) can achieve asymptotically

p p

cancellation of saturation input within the control system through the closed-loop
nonlinear dynamics and additive terms in (4.6-5). The control saturation input is
described by the last term in equation (4.6-11). The fourth term of equation (4.5-11) is
updated online with time-varying, and the parameters ay, (t) , a,(t),and a__. (t) are
updated online by the adaptive control law. The model reference dynamics are obtained
in the closed-loop for ideal parameters. The closed-loop equation (4.5-5) using equation

(4.5-11) can be written as:

dD_O:—(ap(t)—aDo (t)DO(t)

dt
~(c,(®) -2, ®) f(DO(1)) (4.5-12)
+a_,. ())DO™ (1)
—®(DO(t) - DO, (1))

and
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—(8,(t) ~apo () = -2,

-(c,()-4a;()=0
(4.5-13)
4. (H)=b,

~®(DO(t) - DO, (1)) = —De(t)

Where: 8,,(t), & (t)and a_ e (t) represent the ideal parameters of the adaptive model

reference.

The ideal parameters are obtained as follows:
8o (1) = -2, +a, (1)
a; (t)=c,(t) (4.5 -14)
8,00 =D,

The parameter adaptive laws that ensure the stability of a DMRAC system with a SISO
first-order dynamic system are derived in [166]. This SISO first order dynamic system
includes a linear unknown constant, known parameters, and a nonlinear additive
structure. The linear unknown constant remains constant over time. Using these
parameters adaptive laws implemented on equation (4.5-1), the parameters adaptive
laws of DMRAC control system in ASWWTP are represented by equations (4.5-15),

(4.5-16), and (4.5-17), as follows:

d% =—7,e(t)DO(t) (4.5-15)
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& 1 (DOW) (45-16)

da_ .
% =—y,e(t)DO™ (t) (4.5-17)

The constants 7, J,, and ¥, are small enough positive values that represent adaptive
gains. These adaptive gains are capable of adjusting the adaptive rate. In the closed-
loop adaptive control system, adjusting adaptive gain to change the adaptive rate to
match the time-vary variables during the ASWWTP process can prove the stability of
the adaptive control system. Figure 4-5 depicts the direct model reference adaptive

control with constraints on the control input ASWWTP.

DO
»| Reference Model mref
DO DMRAC Law W DO + e
—> And —> Plant ]
Filter

t 7:72:73
—

Parameters Parameter Adaptive
Block

Figure 4- 5 The structure of DMRAC with a filter

4.6 Stability analysis

The parameter adaptive laws (4.5-15), (4.5-16), and (4.5-17) are the online update

estimation parameter ap, (1), a, (t), and A e (t). The difference between estimation
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parameters and ideal parameters a5 (t), &, (t), a_ . (1) are defined as Aay, (t), Aa, (1),

and Aa_ . (t).

Ay (1) = aps (t) — 8o () (4.6-1)
Aa; (t)= a (t) - é-f (t) (4.6-2)
Ad . (1) =8 () —8,u (1) (4.6-3)

Consider the following Lyapunov function:
V(t) = L L 2 L 2 L 2 4.6-4
(t)—En (t)+§AaDo (t)+§Aaf (t)+EAaDom (t) (4.6-4)

Hence,

V) _ 1) (1) + (@00 (1) ~ B0 (1)) @no (1) — Ao (1) —
dt N
+(a, (-4, O)E, O -4, (t»yi (4.6:5)

+ (@ (1) =8 (1)) (@0 (t) —apo (1))
It follows from equations (4.5-8), (4.5-9), (4.5-4), and (4.5-12) that

40O _ (8, () -4 (1) DO)

dt
+(a; (1) -2, (1)) F (DO(1)) (4.6-6)
+ (aDoref (t) - éDoref (t)) Dom.ref (t)
—dn(t)
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By substituting equations (4.6-6), (4.5-15), (4.5-16), and (4.5-17) into equation (4.5-5)

yields:

v ]
= (4.6-7)

As time approaches infinity, the result of the Lyapunov function tends to zero. In
summary, when the Lyapunov function approaches zero, the filter tracking error tends
to zero as time approaches infinity. The parameter @ is a small positive constant, and

n’(t) is a positive variable.

The controller limit boundaries are defined by an auxiliary signal, denoted as A(t),
which represents the bounding error between the real DO output and DO model

reference output.
limit{e(t)-A(t)} <0 (4.6-8)

As time approaches infinity, the e(t) tends to zero. Auxiliary signals can either become

positive or negative as time goes to infinity. Now, let us consider the auxiliary signal

A(t) by following the Lyapunov function:
1.
Vi) =52 (4.6-9)
Hence, the derivative of the Lyapunov function is given by the following equation:

% = 2() A1) (4.6-10)
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By substituting equation (4.5-10) into equation (4.6-10)

dv ()

05 (0AQ, () - A AM® (4.6-11)

Assuming the term b (1)AQ,; (t) =AQ Plant (t)  (4.6-12), it follows from equations (4.6-

air

11) and (4.6-12) that

VO _rgo-drmelaetn @

The small positive constant auxiliary parameter @ has been mentioned previously.

Now, let us assume tha'[CI):%a0 (4.6-14), where @, is a small positive constant

parameter, and &, <0 (4.6-15). Substitute equation (4.6-14) into equation (4.6-13).

d\;t(t) -2V, (2, + AQJI'?”“ (t) (4.6-16)

air

The second term of equation (4.6-16), denoted by (%AQP'E‘”‘Z (t)), is bounded by the
square of AQ plant? (t). To determine the bound of the first term, we utilize the integral

air

(4.6-16).

V()=

S, -

0

AQu AQu™ Myoy 2w (4.6-17)
4a,

Where: V,,(t) is the initial value of the V,(t). As time approaches infinity and @,
becomes a sufficiently large positive value, the second term of (4.6-17) becomes equal

to zero, as shown below.
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V(1) = AQﬁL:t ®) (4.6-18)

It can be deduced from equation (4.6-9) and the constraint on V, (t) being negative or
zero, as follows:

2 0y = QU™ ()
VA=

1, AQE™(t) ]
2/1 (t) = ia, (4.6-19)

By rearrange equations (4.6-8) and (4.6-19) as follows:

e(t) < AQ;L: ®) (4.6-20)

If &, is large enough, the tracking error e(t) will tend to zero. Hence, the control
system will be asymptotically stable. Further detailed derivations are provided in

Appendix B.
Barbalat’s Lemma:

We apply Barbalat’s lemma to analysis the results of the Lyapunov function. The
conclusion states that under the following circumstances, a direct model reference
adaptive controller is capable of asymptotic trajectory tracking DO™ (t) . It is bounded
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by the ideal adaptive parameters and on-line updated parameters (
apo (t), &po (1), a5 (t), &5 (t), A gef (t),éDoref (t)), as follows: if 1) the parameters in the
adaptive control law are close enough to the set point in the initial condition, 2) the
adaptive rate parameters have small positive values, and 3) the saturation input is small,
then the parameters of the direct model reference adaptive controller are bounded, and

the control system is stable.

In the subsequent chapter, we will utilize MATLAB simulation results to illustrate the
characteristics of the direct model reference controller with input saturation, as

implemented in the ASWWTP operation.

4.7 Simulation results and discussion

In this section, we will utilize MATLAB simulation results to demonstrate the stability,
robustness, and constraint resistance of the direct model reference adaptive control with
filter when applied to the global variables of the blower-limited ASWWTP system. The

MATLAB simulation utilized real data as a reference in the [161].

The simulation of ASWWTP operation utilized the following initial conditions:
X(0)=15mg /1, S(0)=200mg/l, DO(0)=3mg/l, X (0)=18mg/l, DO,, =10mg/I >

DO, =10mg/1 , S,(0)=600mg/l , S, (0)=600mg/I D(0)=3, DO,(0)=05mg/l . The process
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parameters are listed below: Y =0.65, r =0.6, #=0.2, « =0.18, K,=05. The kinetic

parameters are as follows: ,  =0.15mg/l, K,=0.15mg/l, Ky, =2mg/l. The auxiliary

signal parameter is ®=06. The reference model parameters are: a8, =5 and b, =5.

The DO™ (t) are assumed to be piecewise constant. The s (t), D(t), and DO, (t)

time-varying disturbance inputs are represented in Figure 4-6, 4.7, and 4-8.
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Figure 4- 7 Dilution rate D(t)
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Figure 4- 8 Influent dissolved oxygen DO, (t)

During the ASWWTP operation with saturation input and without disturbance input,

the output DO(t) of DMRAC exhibits good performance in tracking the trajectory of
DO™ (t), as illustrated in Figure 4-9. Moreover, the output of DMRAC demonstrates
that the adaptive control output DO(t) can effectively, rapidly, and stably track the
trajectory of DO™ (t), indicating that the adaptive controller has good robustness to
disturbance inputs and capability to reject saturation inputs in the ASWWTP operation,

as illustrated in Figure 4-10.
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Figure 4- 9 DO(t) and DO™ (t) with saturation input and slow adaptive rates
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1,=0.2,7,=02, 7,=0.2 and auxiliary parameter a =-0.2
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Figure 4- 10 DO(t) and DO"™ (t) with saturation input and disturbances input

and slow adaptive rates 7, =0.2, 7, =0.2, 7, =0.2and auxiliary parameter a,=-0.2
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Figure 4- 11 DO(t) and DO™ (t) without disturbances input and with saturation

input, fast adaptive rates 7, =6, 7, =6, 7, =6 and auxiliary parameter a,=-0.2.
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The initial conditions of the ASWWTP remained consistent with those used previously.
The parameter DO™ (t) is consistent with the conditions in Figures 4-9 and 4-1-. The
gain of adaptive laws was considered as fast-varying variables (,, =6, y, =6, 7, =6).
Figure 4-11 indicates that the adaptive control output DO(t) is not tracking the
DO™ (t) trajectory. Hence, the DMRAC system of the closed-loop system is unstable.
Due to increasing the adaptive gain, there is an increase in the parameter adaptive laws,
and adaptive rate. Consequently, the adaptive rate becomes extremely fast to match the
time-varying parameter of the ASWWTP. Resulting in the auxiliary signal being unable
to filter the input saturation. Therefore, rendering the adaptive control parameters

unbounded by error.
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Figure 4- 12 DO(t) and DO™ (t) with saturation input, disturbance input, and with

fast adaptive rates y, =6, y, =6, y, =6 and auxiliary parameter a, =-0.2.
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In Figure 4-12, the response of the control output DO(t) tends towards infinity,
signifying that the adaptive control system becomes unstable in the presence of
saturation input, disturbance input, and a rapid adaptive control rate. It indicates that
the parameters of the adaptive control law are unable to update online under the
matched plant speed scale, leading to a decline in robustness. Hence, the adaptive

control parameters ay, (t) and a,(t) are not bound by the squared error, where the

error denotes the deviation between the real control output DO(t) and the trajectory of

the model reference output DO(t) .
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Figure 4- 13 DO(t) and DO™ (t) without disturbance input and with input

saturation, adaptive rates , =0.6,,=0.6,7,=0.6 and large auxiliary parameter & =-2

In figure 4-13, the response of the adaptive control output DO(t) is observed not to

track the trajectory of the model reference DO™ (t), indicating instability in the
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adaptive control system equipped with a filter, where it’s under a large auxiliary
parameter @, . This demonstrates that the saturation input exceeds the auxiliary
limitations, hence leading to instability in the control system, as previously analysed
for stability. Furthermore, this also indicates the insufficiency of the adaptive control

system’s robustness to accommodate large input saturation.
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Figure 4- 14 The initial conditions are very fast from the equilibrium point. DO(t)
without disturbance and with saturation input, slow adaptive rates
7,=0.2,7,=02, 7,=0.2 and auxiliary parameter d; = 0.2
The initial conditions X(0)=30mg/l , S(0)=960mg/l , and X, (0)=35mg/I ,
DO(0)=7mg /I are very far from the equilibrium point. The response of the adaptive

control output DO(t), as shown in Figure 4-14, indicates that the closed-loop control

system becomes unstable, which confirms the stability analysis in Chapter 4.6.
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4.8 Conclusion

This chapter addresses the dissolved oxygen concentration trajectory tracking issue to
achieve nutrient removal at the ASWWTP. Considering the existing architecture of
ASWWTP, the blower is operating under conditions of overproduction and excessive
air delivery. A dissolved oxygen concentration direct model reference adaptive control
system with a filtering function is designed based on limited ASWWTP parameters and
applied to the mathematical model of global ASWWTP parameters. The parameters of
the adaptive control system are adjusted according to the MATLAB simulation results.
The MATLAB simulation results prove that the control system can resist interference
while rejecting excess air inflow. At the same time, the stable and efficient operation of
the system is guaranteed. The MATLAB simulation results verify the stability of the

control system using the Lyapunov function.
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CHAPTER S5 Supervised Fuzzy Logic and
DDMRAC Two — Level for Nutrient Removal

at ASWWTP

5.1 Introduction

In practice, ASWWTP factories often prioritize saving construction space, minimizing
maintenance costs, and reducing energy consumption while maintaining stable and
efficient operations. As mentioned earlier, the settlement tank occupies a significant
amount of space and takes a long time to operate. Additionally, air supply represents
the highest cost in ASWWTP operations. To address these challenges, we use a single
air supplier and a single settlement tank in coordination with three biochemical tanks
arranged in series for ASWWTP operations. This setup effectively manages the large

volume of wastewater purification

Due to the varying inflow and outflow of biomass, substrate, dissolved oxygen, and
recycled biomass in each biochemical reaction tank, a Fuzzy Logic Decentralized
Direct Model Reference Adaptive Controller is designed and implemented in the
ASWWTP to rapidly adjust airflow into each bioreaction tank. This allows the real DO

concentration to closely follow the reference DO concentration trajectory. The

139



controller's stability is proven using the Lyapunov function. MATLAB simulation
results, based on real data, demonstrate that the ASWWTP operates efficiently and

stably, with the capability to reject unknown disturbances.

This study leverages the characteristics of fuzzy logic control and applies it to the
regulation of dissolved oxygen concentration in multiple bioreactors, ensuring that the
dissolved oxygen concentration in each bioreactor changes appropriately over time,
thereby achieving an efficient biochemical reaction rate. To enhance the efficacy of
fuzzy logic control in meeting the specific needs of wastewater purification plants, we

optimize its adaptability, accuracy, and robustness using Genetic Algorithms.

5.2 The architecture of ASWWTP with a blower and three

bioreactors in series

The ASWWTP consists of three biochemical reaction tanks in series, a settlement tank,
and a single blower, as illustrated in Figure 5-1. Wastewater from the collection and
filtration tanks flows into bioreaction tank 1, where it undergoes a series of biochemical
reactions with dissolved oxygen. The wastewater then flows into bioreaction tanks 2

and 3. The blower actuator supplies airflow to each bioreaction tank, acting as the
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control input. This ensures that microorganisms receive the necessary dissolved oxygen

for growth and degradation.

The reference DO concentration trajectory is provided by a pre-set reference airflow in
the upper layer of the overall control system [178]. The quantity and type of substances
in the inflow and outflow of each bioreaction tank vary. Finally, after the wastewater
completes its bioreaction with dissolved oxygen in bioreaction tank 3, it flows into the
sedimentation tank, where sludge is separated from clear water by gravity. The sludge
is divided into new sludge and old sludge. The new sludge is returned to bioreaction

tank 1, which helps maintain the balance and adaptability of the microbial community.

As discussed in [203], a certain amount of DO must be present in the discharged clean
water to maintain the balance of the natural ecosystem. Substrate and biomass
concentrations cannot be measured online with hard sensors [35]. The control of DO
concentration in the bioreaction tanks during ASWWTP operation has received

significant attention in the control community [1, 14, 176].
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Figure 5- 1 Architecture of ASWWTP with three bioreactors for nutrient removal

As [112, 113] discussed, the two-layer control system implements the DO
concentration trajectory ( DO(t) ) output by the lower-layer MPC controller to track the

reference DO concentration trajectory (DO, (t)) provided by the upper layer control

ref

ref
air

system. The pre-given Q. (t) set-point is obtained by calculating the inflow of

wastewater and sludge, and it is the input for the upper layer control system. The lower
layer control system optimizes the input - Q, (t), enable DO(t) to track the output
DO™ (t) of the upper layer control system. The MPI control system implemented in the

lower layer control system for optimizing Q

i (1) to ensure that DO(t) tracking the
DO™ (t), as demonstrated in [61]. In this chapter, we design and implement a Fuzzy
logic — DDMRAC system as the overall lower control system in the ASWWTP, which
consists of a single blower and sediment tank, and three bioreaction tanks in a series.

The Fuzzy logic -DDMRAC algorithm based on the DMRAC method [156], and fuzzy

logic rules.
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5.3 Nutrient removal process using single blower and three

bioreactors in ASWWTP

Sewage flows from the collection tank into bioreactor 1, and undergoes biochemical
reactions with the oxygen delivered by the blower actuator. The biochemical reaction
process includes: the growth of microorganisms and the decomposition of organic
matter. Next, it flows into bioreactor 2 and 3 in sequence to undergo biochemical
reactions. However, the sewage and air flowing into each bioreactor are different, and
the amount of air flowing into each biochemical reactor is based on the biomass
concentration in each biochemical reactor. The young sludge flows back only to
bioreaction tank 1. The microorganisms in all three bioreaction tanks require dissolved
oxygen, which is provided by a single blower, as illustrated in Figure 5-2. The detailed

process of wastewater flow and airflow injection is as follows:

1) The inflow of bioreaction tank. 1 includes wastewater influent flow rate (Q, (t)),
airflow ( Q,,,(t) ), DO concentration influent DO, (t) , and substrate
concentration (S, (t)) . The outflows of the bioreaction tank. 1 are X, (t), S(t),
and DO,(t), respectively. This process is the same as that of ASWWTP with a
single blower, bioreaction tank, and sediment tank.

2) The inflow of bioreaction tank. 2 is based on the outflow of bioreaction. 1
adding Q,.,(t). The outflows of the bioreaction tank. 2 are X,(t), S,(t), and

DO,(t), respectively. Additionally, the biomass concentration in bioreaction tank
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1 is higher than in bioreaction. 2 (X,(t) > X,(t) ), and substrate concentration in
bioreaction tank. 1 is lower than in bioreaction. 2 ( S(t) <S,(t)), as some
microorganisms have been degraded.

3) The inflow of bioreaction tank. 3 is based on the outflow of bioreaction. 2
adding Q,.(t) . The outflows of bioreaction. 3 are effluent flow rate (Q,, (t)),
recycled flow rate (Q,(t)), waste flow rate ( X,(t) ). As a large portion of
microorganisms has been degraded in bioreaction. 3, the substrate concentration
is highest, and the biomass concentration is lowest in this tank.

4) Finally, the inflow of sedimentation tank is the same as the outflow from
bioreaction tank 3. Clear water and sludge flow out from the bioreaction. 3,
respectively. The young sludge flows back to bioreaction 1, while the aged

sludge is discharged.

Influent Effluent

Qin‘Sin’DOin Xllsl’D [F XZ’SZ’DO_ X3|S3| D03 Qout

—»Bioreactor 1 »Bioreactor 2 »{Bioreactor 3 Settler

7y 7y C
Qr ' X r Qwa X r
Qair,l Qair.z Qain3
ref
Quir Aeration Control | Qair ()
System N

Figure 5- 2 Architecture of ASWWTP with Three Bioreactors in Series

As discussed in [77], the two-layer control system comprises an upper layer that
determines the reference DO concentration trajectory based on the pre-setpoint
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reference airflow. The lower layer control system optimizes the airflow to ensure that
the DO concentration tacks the reference DO concentration. The blower actuator is a
complex nonlinear system and ensuring that the airflow output by the blower actuator
is equal to the reference airflow is solved using an MPC control system as described in
[191]. In our study, we considered the design of a lower-level control system that
utilizes a two-layer fuzzy logic-DDMRAC system to determine the DO concentration
trajectory, ensuring that it tracks the reference DO concentration trajectory in each
bioreactor. This plant employs a single blower actuator to provide the required airflow
for three bioreactors. The decentralized DMRAC algorithm is based on the DMRAC

method [15].

As discussed in [63], the DO concentration is an important parameter for evaluating the
efficiency of wastewater purification in activated sludge treatment. The growth and
degradation of microorganisms in the bioreactor depends on the dissolved oxygen
concentration in the wastewater. At higher DO concentrations, the growth and activity
of microorganisms will be inhibited. At lower DO concentrations, the activity of
aerobic microorganisms will be inhibited, thereby systematically reducing the growth
and degradation of microorganisms. Therefore, the change trajectory of DO
concentration in the bioreactor is crucial to the wastewater purification rate during the

operation of ASWWTP.
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5.4 Control problem statement

The ASWWTP mathematical model can enhance understanding of any biochemical
process involving nutrient removal and biomass transfer. The mathematical model
family of ASWWTP is described by the IAWQ. The ASM 1 and ASM 2 utilizes the
time dimension to describe the ASWWTP process. ASM 2d describes the ASWWTP
process in both time and space dimensions. By extending ASM 1 and 2, it describes the

biological phosphorus removal process under anaerobic conditions in detail.

Since we only consider the DO concentration in each bioreaction tank as the control
output, the mathematical model in the state-space model of the structure of ASWWTP
is derived from the mass balance and rewriting the ASM 2d [182]. This mathematical

model encompasses ASWWTP variables, as depicted in equations (5.4-1) - (5.4-8).

d;i" = 1, ()X, (©) =D, ()X, + 72D, ®X, (1 (5.4-1)
Lo %0 p 015,00 +0,05,0 (5.4-2)

n

dD(')n - _ KO.nﬂn (t)xn (t)
dt Y,

n

- D, (t)1+7,)DO, (1) + B, () DO (1) (5.4-3)
+ a‘n(gair.n (t)(DOmax.n - D()n (t))

dX,
dt

= D;(t)(L+ 1) X5 (1) = D (D)(B + 1) X, (1) (5.4-4)
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_ S, (t) DO, ()
lumaXﬂ Ks.n + Sn (t) KDO.n + DOn (t)

4,(0) (5.4-5)

where

: V
Dn(t):\%v Vn Valn ’ }/1:%1 ﬂ:% (54'6)

And n=12,3, m=r,1,2, k=in,1 2.

Where: n, m, and k denote the sequence of sewage intake and discharge for each

bioreactor.

Xn(t) » Sp(®) » DOpaxn » Xrn(®) » Dn(t)  Sinn(t) » DOpn®) Yo s #n(t)  maxn » Ksn » Kpon
Qairn®, Kon + T+ Bn »Qinn® + Qoutn®)  Qrn(t) , Qualt) ,Van are biomass concentration,
substrate concentration, maximum dissolved oxygen concentration, recycled biomass
concentration, dilution rate, substrate concentration in the influent, dissolved oxygen
concentration in the influent, biomass yield factor, biomass growth rate, maximum
specific growth rate, affinity constant, saturation constant, aeration rate, model
constant, recycled sludge rate, removed sludge rate, influent flow rate, effluent flow

rate, recycled flow rate, waste flow rate and aerator volume.

In [170], itis demonstrated that the oxygen transfer function is dependent on the airflow
from the blower actuator and the sludge concentration measurement by the DO

controller. The respiration rate and sludge condition determine oxygen transfer, with
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function K__.(Q,, . (t)) representing the oxygen transfer. The OTF can be estimated using
time-varying respiration rates [83]. If the OTF has been estimated, there is no need to

calculate the respiration rate from the airflow rate during the biochemical reaction.

[105] demonstrated the following representation of the oxygen transfer function.
KLa.i (t) = anair.k (t) + 5m (54'7)

Where: «; and o,, represents known constants for oxygen transfer. The i, j, k , and
m corresponds to the number of bioreactors, where i=1,2,3, j=12,3, k=12,3,

and m=1, 2, 3.

Qair.max (t) < Qair.l(t) + Qair.z (t) + Qair.3 (t) (54'8)

Where: Qi nax (1) # Q. (), and n=1, 2, and 3, where n represents the number of

bioreactors,

The architecture of ASWWTP utilizes a single blower to serve as the three bioreaction
tanks. The amount of anoxic and aerobic zones in the wastewater within each
bioreaction tank fluctuates during ASWWTP operation. Therefore, using equations
(5.4-1) to (5.4-6), the dissolved oxygen concentration in each bioreactor is analysed
from a two-dimensional perspective. The dissolved oxygen is supported by the blower
actuator, as it is highly nonlinear dynamic. As discussed in [125], a two-layer control

system for the DO concentration trajectory tracks reference DO concentration trajectory.
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The output of the upper layer control system is reference DO centration trajectory,
determined by the input reference airflow, which is provided by a per-setpoint. By
optimized the airflow, the DO concentration trajectory tracks the reference DO
concentration trajectory. As discussed in [112], the lower layer control system utilizes
Fuzzy-MPI to ensure that the blower actuator output airflow equals the reference
airflow, thereby enabling the DO concentration trajectory to track the reference DO

concentration trajectory.

In this study, only the lower control system is considered. by optimizing the airflow in
each bioreaction tank, to ensure that the DO concentration trajectory in each bioreaction
tank tracks the reference DO concentration trajectory, and that each airflow matches
the corresponding reference airflow. Additionally, as demonstrated in [83], the airflow
equals the reference airflow. In our study, we assume that the blower actuator control

system has been designed, ensuring that the sum of the three airflows equals that total

3
reference airflow (3 Q,;(t) =total. QJ (t)).
i=1

As discussed in [97], internal and external disturbances during ASWWTP operation
can influence microorganism growth, leading to system collapse. In our ASWWTP
system, the unknown disturbance inputs with time varying in each bioreaction tank
include the influent flow rate (Q,,,,(t)), the substrate concentration in the influent

(Sin1,(t)) and the dissolved oxygen concentration in the fluent (DO, ,,(t)). One of
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the goals in designing the control system is to ensure its robustness against these

unknown disturbance inputs.

The [25] demonstrated that the control system of the blower actuator ensures the airflow
is equal to the reference airflow. Consequently, it can be inferred that each airflow in
ASWWTP equals its respective reference airflow under the assumption that the blower
actuator control system has been designed. The supervised fuzzy logic — DDMRAC
control system is designed and implemented in the architecture of ASWWTP for
nutrient removal. Additionally, an ideal DO concentration hard sensor is assumed to
exist in Figure 5-3. Therefore, it can use the adaptive control law to estimate the DO
concentration without the need to estimate ‘respiration’ to determine the DO

concentration.

As previously mentioned, the blower controller has been designed according to [113]
and [36] to obtain Q% (t)=Q,..(t). We assume that the Q,, . (1) =Q' (t) controller is

air.n air

already in place, as illustrated in Figure 5-3.
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Figure 5- 3 Structure of an Overall Control System with a Blower and Three Bioreactors

In Chapter 5, the two-layer dynamic control is employed for the DO, (t) trajectory. In

the sub-layer, the fuzzy supervised method addresses the distribution of air quantity to

each of the bioreactors, while in the lower layer, the decentralized DMRAC method

solves the DO, trajectory tracking problem at each of the bioreactors.

5.5 Two-layers controller design

In the ASWWTP, multiple input-outputs, disturbance inputs, and uncertain state
variables exist. Due to the complexity of the plant system, the designed controller must
be capable of simultaneously rejecting disturbance inputs and ensuring stability and

achieving highly efficient DO, trajectory tracking performance for each of the

bioreactors.

The DO, controller is a hierarchical, two-layer control system. The lower-layer

controller utilizes decentralized direct model reference adaptive control (DDMRAC),
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while the upper-layer controller employs supervised fuzzy logical control. It exhibits
strong robustness to the uncertainty of the controlled object through GA optimization.
Additionally, decentralized DMRAC can adjust adaptive rates and enables automatic
updating of control parameters for each individual bioreactor, leading to enhanced

system robustness and performance.

5.5.1 Decentralized DMRAC design

The dynamic of Do, in an input-output model is determined by rearranging the state
space model equations (5.4-1) to (5.4-6). The state variables X, , X, ,and S, are not
directly measurable online by a hard sensor due to the operational characteristics of the
ASWWTP. The model reference adaptive controller estimates the respiration rate using
an adaptive control law that is automatically updated online. This respiration rate is
integrated into a single term in the state variable input-output model. Therefore, the

oxygen transfer function is defined as shown in equation (5.4-7).

The Q,;,(t), Q,. (), Q.. (t), and DO,(t) are variables of the dynamic equation (5.4.-3)
for DO, (t), and these variables are unmeasurable online. They require an online update

through decentralized DMRA control. The first-order dynamics of DO, (t) an input-

output model is determined by both disturbance input and the state variable.
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By substituting equations (5.4-5) and (5.4-7) into equation (5.4-3), the term
D, (t)DO,, . (t) is considerably smaller than other plant parameters; it can be neglected
[134]. Finally, the dynamic of po,(t), as a first-order model of a single input-output,
and the design of the multiple DMRAC controller is based on equation (5.5.1-1), which

can be rewritten as follows:

dDd?” ==2,,(t) DO, (1), (1) f (DO, (1)

+ bp,n (t)Qair.n (t) +d p.n

(5.5.1-1)

Where: a,,(t), c,,(t), b,,(t), and d  represents the plant model parameters and

p.n

1
2y (0= 220
C (t) — KO.n xn (t) lumax.nSn (t)
- Y K., +S,(t)

n

DO, (t)
KDO.n + DOI’] (t)
bp.n (t) =, (Domax.n - Don (t))
d pn ﬂDOmax.n

f(DO, (1)) = (5.5.1-2)

Where: n=1, 2,3, and n represents the number of bioreactors.

The parameter d_ . is known and varies slowly over time. The dynamics of DO are fast

p.n
compared to the dynamics of biological state variables X (t) and S (t) [115, 171].

Conversely, the dynamics of the state variables X (t) and S,(t) are slow variations
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during biological response processes. Therefore, the parameter cp.n(t) is known to vary

slowly over time.

The parameters of ASWWTP operations at various time scales were presented in [19].
The time scale of plant variables Q, and Q, are determined by the sub-layer control
system, and their dynamics are slower compared to the time scale of DO, (t). The time
scales of Q,,(t), S,.(t), and X, (t) are slower in comparison to DO, (t). Therefore, the
plant parameter a,, (t) is identified as having slower variation and remains unknown,
as presented in [169]. The time scale of parameter b, (t) corresponds to the control
time scale of DO, (t), resulting in rapid changes. Since the oxygen transfer constant

K, (t) in equation (5.4-7) is known, the parameter bp.n(t) is also determined.

The model reference dynamics in each of the bioreactors are obtained through closed-
loop control. This can be guaranteed that the control output ( DO,(t) ) trajectory

effectively tracks the dynamic (DO_ . . (t)) trajectory, and therefore, the MRD equation

m.ref . j

reads:

dDOm.ref N

‘
e DO ref j (1) + by ;DO (t) (5.5.1-3)

Where: j=1,2,3,and ] represents the number of bioreactors. DO,_ . . (t) denotes the

m.ref.j

number of model reference outputs. The model reference adaptive control parameters
a,; and b ; are constants, and they can be selected by the designer. We selected a,;

and b, ; to be equal.
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The model reference adaptive control law for each of the bioreactors can be chosen as

following:

Qair.n (t) = aDO.n (t) Don (t) + af .n (t) f (Don (t))
5,D0

max.n

bp.n (t)

ref (551'4)
+ aDOrr‘ef (t) Don (t) -

Where: n=1,2,3, and n is the number of bioreactors and Q,; ,(t) <Q,, -

The MRD is a linear dynamic (5.5.1-3) that can cancel the second and fourth terms of
equation (5.5.1-1) in closed-loop, which can reduce the impact of the nonlinear and

additive terms in equation (5.5.1-1).

The adaptive control law parameters consist of &y, ,(t), a;,(t),and a (t). we

Doref )

assume the existence of ideal adaptive control law parameters. Therefore, the MRD

closed-loop system is expressed as follows:

dDO,
dt

= _(ap.n (t) - bp.n (t)aDO.n (t))
_(Cp.n (t)_bp.naf.n (t)) f (Don (t)) (551_5)
+b,,(t)a_ . (DO (t)

Where: n=1, 2,3, and nrepresents the number of bioreactors.

_(ap.n (t) - bp.n (t))éDO.n (t) =8, (5.5.1-6)
_(Cp.n (t) _bp.n (t)éfn (t)) =0 (5.5.1-7)
b, (D& ()=b,, (5.5.18)
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Where: ap,,(t), &, ,(t) and & . (t) are the ideal parameters. They can be achieved

Doref .

by rewriting equations (5.5.1-6), (5.5.1-7), and (5.5.1-8) as follows:

dpo, (1) = —_a”‘b”+zp)'” ® (5.5.1-9)
+ oy Cpn(D) )
a;,(t) = b,. (0 (5.5.1-10)
b
Ao (1) =10 (5.5.1-11)
o bp.n (t)

where: n=1,2,3, and n represents the number of bioreactors.

The parameter b, and by (t) are known, while b, being designer selected and
b, (t) updated according to equation (5.5.1-2). Therefore, the parameter &_ . (t) is
suitable for updating online from available data. Finally, the adaptive control law is
expressed as:

Quirn () = 850, (1) DO, (1) + 2, ,(t) T (DO, (1))

+ bm.n DOrZEf (t) _ é‘l Domax.n
by (1) by, (1)

(5.5.1-12)

Where: i=1,2,3, n=1,2,3 and i, n are the numbers of bioreactors. The adaptive

control law design is different from [15], it does not consider the parameter a_ . . (t).

The corresponding closed-loop dynamic is:

156



dDO,
dt

=—(a,,(t) =D, (D)an, (1)) DO, (1)
- (Cp.n (t) - bp.n (t)af n (t)) f (Don (t)) (55 1'13)

b
b, , () DO (t
+ p.n()bpln(t) h (0

Where: n=1,2,3. n is the number of bioreactors.

The parameters a,,(t) and ¢, (t) are unknown, while b, (t) is updated online based
on corresponding parameters adaptive law. Additionally, the aDo_n(t) and a, ,(t) are

updated by using available online data. These variables are relevant to both DO, (t) and

e.(t). The error dynamics can be written as follows:

e.(t) = DO, (t)— DO (5.5.1-14)

m.ref . j

Where: n=1,2,3, j=12,3, n and j represents the number of bioreactors.

The SISO DO, (t) first-order equation can be utilized to establish parameter adaptive
control laws, contributing to the stability of the DDMRAC controller. The SISO DO, (t)

includes the linear constants of uncertain state parameters. These parameters are not

time-varying, and d, in the last term of equation (5.5.1-1) is linear and known. The

p.n

parameter adaptive rates are derived by the parameter adaptive laws in equation (5.5.1-

1), which read:

da,
00— 18, 0DO, ) (5:5.1-15
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da,
dt

=7 20ne.2.25n (t) f (DO(t))

(5.5.1-16)

Where: n=1,2,3 and z=1,2,3, n and z are the number of bioreactors.

The adaptive gain parameters 7,..,; and %,..,, are sufficiently small and positive

constants. These gains are subsequently utilized to control the parameters of

decentralized adaptive rates (PDAS). The stability of the closed-loop system is

guaranteed by the PDAS, which adjusts the adaptive rate to rapidly respond to the

variable with time-varying responses during the ASWWTP process. The DDMRAC

structure for each of the aeration stations is depicted in Figure 5-4.

Qef.n Qair.max

P

Reference Model.n

A 4

DMRAC.n

A

Parameter

Plant.n

720”6.2.” ! 720”6.2.”

Parameter Adaptive
Block.n

Figure 5- 4 The DDMRAC Structure for Each of the Three Bioreactors

5.5.2 Supervised fuzzy logic controller design

The supervised fuzzy logic control design (SFLC) ensures that constraints of aeration

tank air capacity requirements are met (5.5.1-1), the structure of the SFLC is illustrated

in Figure 5-5. The supervised fuzzy controller allocates airflow to each of the
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bioreactors based on the magnitude of errors between DO, (t) and DO, . .(t). If a large

m.ref.n
error is detected during online updates, a substantial quantity of air should be delivered
to its bioreactor, otherwise, a minimal amount of air should be supplied. In the
operational state condition of the ASWWTP, it is assumed that the sum of inputs from

the three bioreactors must not exceed the quantity of air produced by the blower

( qupervisor (t) - Qgenerate.blower. max (t) ) The sum of fuzzy control OUtpUtS (Qgenerate.blower. max (t) )

air.i air air
te.bl X i
- enerate.nlower.max supervisor
generated by the blower remains constant, where Q% ®) :ZQaifi (t).
i=1

The soft switching method depends on fuzzy logic rules outlined in equations (5.5.2-

1), (5.5.2-2), (5.5.2-3), and (5.5.2-4), (5.5.2-5).
9 )
ZQaszjr?;ewlsor (t) < Qagiernerate.blower.max (t) (552_1)
i=1

Where: Q3P js generated by a supervised fuzzy logical control output signal and

air.i

generate.blower. max

0=12,3.(Q is the number of bioreactors. Q,; (t) is the amount of air

produced by the blower.

The fuzzy logic inputs W;(DO,; ..;(t)) are updated online based on adjustments to
DMRAC control law parameters, which represent multiple DMRAC real output DO
concentrations. The membership function is defined utilizing the real inflow air of
multiple DMRAC. In this case, both the sigmoid function and Gauss condition function

are used to limit boundaries, and they can be expressed as follows:
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1
PQuicinpuri (1) = T+ ey -0 (5.5.2-2)

eXp(_Qair.input.i (t) - Cl)2 /dlz)’ Ieft cure
P(Quirinpuri (1) =11 whenever ¢, <c, (5.5.2-3)

eXP(—Qyir s (1) —C,)* /d3); right cure
Where: @,C, and d are the parameters of the membership function used to define its

shape.

The input air to each bioreactor is determined based on the error between the actual
input of each DMRAC and the ideal input and the proportion of each error in the total

error.

The fuzzy logic rules are defined as follows:

q
1 If % <V (t) <1 and ZQair,input,i (t) < Qgiernerate.blower.max (t) :
i=1

Then Q3P (t) = Quipinpuei (1) - (5.5.2-4)

air.i.1

9
2.1f % <V(t) <1 and ZQail’.input,i (t) > QUerereteblover.mx ¢y .
i=1

superviosr 1 giernerate.blower.max t
Then Quia™ () =2 Q : ( )Qair.mput_i ®). (5.5.2-5)

ZQair.input.i (t)

q
3 If0<V (t) <1 and ZQair.inpm.i (t) < Qgie;nerate.blower.max (t) :
i=1

Then (g;:lréie.rl\/ioSr (t) = Qair.input.i (t) (552'6)
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q
4.1f 0 <V (t) <1and ZQair_input,i (t) > Qgiernerate.blower.max (t) :
i=1

Q aglylernerate blower.max (t)

ZQair.input.i (t)

Then stperviosr (t)

air.i.2 2 Qair.input.i (t) (552'7)

q
Where: q=1,2,3, ( is number of bioreactors. zeair.k (t) is the sum of errors
i=3

between each fuzzy logic output (Q57s™** (t)) and each DMRAC input (Qgp jnpuci (1) ).

Qgenerate.blower. max
air

(t) is the amount of air produced by a blower and

generate blower.max superwsor
a|r (t) Qalr i.n

The difference between each fuzzy logic output and each bioreactor input is

represented as follows:
superwoser air (t) Q;:er?rr\]/iosr (t) _ Qairlinpm.i (t) (5.5.2'8)

Where: QP (t) is the fuzzy logic output, i =1, 2, 3, i is the number of bioreactors,

air...n

superviosr superviosr

q
n=12, n isthe number of outputs with fuzzy rules. Qe (t) =ZQair.i.n (t) is

the desired optimal allocation state. Q,ipui(t) represents each DMRAC input,

i =1,2,3, | is the number of bioreactors.

I ol I
Vk (t) — eiupervmsr.alr (t) . (Z eiupewlosr.alr (t))—l (552_9)
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Where: k =1, 2,3, k is the number of bioreactors. V, () is never equal to zero. Fuzzy

control output:
] i bl
Fuzzyou’[pm (t) — Z Q;:Jr?ielrr:noser (t) — Qgiinerate. ower.max (t) (552_10)
i=3

Where: i =1, 2, 3, | is the number of bioreactors. n=1,2,3, 4, n represents the

number of fuzzy controller outputs.

The supervised controller can guarantee that the constraint in equation (5.5.2-1) is never
violated. It possesses the capability to enable the trajectory of DO, (t) to track the

trajectory of DO t) and accommodate minor fluctuations. Therefore, the

m.ref .n(

performance of the fuzzy controller perfectly meets our expectations. However, at the
specific operational state of the ASWWTP, it may not always be the case that all the
air produced by the blower will be fully distributed to the input of multiple DDMRAC
in the lower layer control system, as the designed fuzzy control rules. Hence, the
optimization of the fuzzy logic controller is necessary to improve and refine the logic
of air distribution. Further details on the optimization of the fuzzy logic control are

described in the following section.
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5.5.3 Supervise fuzzy logic control optimization by GA

The optimization of the supervised fuzzy logic control system facilitates the
implementation of more reasonable airflow quantities into each of the bioreactors.
Therefore, this two-layer control system can achieve an optimal state. On the other hand,
the upper layer supervised fuzzy logic control system guarantees a more equitable
distribution of airflow quantities for the lower layer MDMRAC control system. Various
optimization methods for the fuzzy logic control have been reviewed in [134]. In this
section, the genetic algorithm method is employed to optimize SFLC. This optimization
aims to achieve satisfactory performance, ensure stability of the control system, and
enhance anti-disturbance capabilities.

The process of the GA optimization is as follows: 1) Defining one chromosome group
based on the condition of fuzzy logic rules (fitness function); 2) coding individuals, 3)
Initializing the population with one chromosome; 4) Performing individual selection
using the Rank Selection method; 5) Conducting crossover operation; 6) Implementing
mutation operations; 7) Utilising the fitness function to assess individual performance
in the group; 8) Selecting the fittest individuals; 9) Repeating steps 4 through 8; 10)
Finally, establishing the optimal air quantity distribution logic, which is utilized as the
output of the fuzzy logic control.

Fitness function
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Defined one chromosome group entails not only incorporating the condition of fuzzy
logic rules but also ensuring control system stability and minimizing the error between
each DMRAC real output DO and ideal output DO. The fitness function can be defined
as follows:

fitness function=g4, - S+4, - E+p, - RT+14,FR (5.5.3-1)
Where: 14, 1,, I, 4, are the weight corresponding to each component.
The variable S represents the stability of the fuzzy logic control system, which is
employed to ensure the stability of the SFLC and two-layer control system. It can be

expressed as follows:

1 M
S= M Z (DOy rear out (t) = DOy it ur (t))z (5.5.3-2)

i=1

Where: M =1, 2,3, M represents the number of DMRAC controllers in the lower
layer control system. DO, ..;...(t) represents the lower layer DDMRAC real output
DO. DOy, iearou (1) represents the lower layer DDMRAC ideal output DO.

The variable E represents the ratio of the error to the total error between each DMRAC
output DO and the ideal output DO. This error is utilized to achieve a reasonable
oscillation; the error in each DMRAC’s real output tracking the ideal output trajectory
is denoted as DOy, eaout () ~ DOy igesion (1) . Therefore, the variable E can be

expressed as follows:

1 M
Error= M Z‘ DOM . real out (t) - DOM .ideal out (t)‘ (553'3)
i=1
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Where: M =1,2,3, M is the number of DMRAC controllers in the lower layer
control system.
The variable RT represents the response speed of the fuzzy logic control system. This

can be expressed as follows:

Response Speed= L (5.5.3-4)

RegulateOscillation (t)'TAdj ustmentTime (t)

Where: R (t) represents the percentage of the expected fuzzy logic control

RegulateOscillation

system output before stabilization. T, (t) represents the time between the set

djustmentTime

error of the control system output and the end of the control system output stabilization.

The regulated oscillation (R (t) ) depends on the FLCS system’s maximum

RegulateOscillation

output ( QX™™**™™™(t)) and the expected output (sum of MDDMRAC inputs)

q
(ZQair.input.i (t)), which can be expressed as follows:
i=1

q
(Qgiernerate.blower.max (t) _ Z Qairlmpm.i (t))
RegulateOscillation (t) = =L 100% (553'5)

(Zf: Qair.input.i (t))

R

The response speed depends on the regulation oscillation and settling time; if both
decrease, it means a faster response speed. Typically, in a control system, a faster
response time is desired for enhanced tracking performance and robustness. However,
it is essential to consider the comprehensive oscillation frequency of the control system,
as excessive oscillation can lead to instability and reduced reliability.

Fuzzy rules
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The fuzzy rules represent four rules of fuzzy logic control. They can be written as

follows:
Rit) = a( q . )+, ( q : )
1+ (Z Qair.input,i (t) _ Qgiernerate.blower.max (t)) 1+ Z (Vk (t) _ eliupervioser (t))
1 1
+ aa( . ) +a, (—_)
1+|(V, (1) _;zeiupervioser (®) 1+ |(Vk (t) 0)|
(5.5.3-6)

Where: oy, @,, @, and @, represent the weight of each rule condition.

q
1) The first part of equation (5.5.3-6) considers a constraint. When ZQair_mput_i (t) is

i=1

generate.blower.max

close to Qy (t), the value of first part one tends to 1; otherwise, it tends to 0.
q q .

Therefore’ ZQair.input.i (t) — Qgsnerate.blower.max (t) — ZQ;:JrF:ewloser (t) .
=1 i3

2) The second part of equation (5.5.3-6) calculates the proportion between € (t)

supervioser

q
and Zek (t) . if the difference between them is greater, the contribution is greater,
i=3

with a contribution value of 1; otherwise, it is 0. Furthermore, a larger difference
between them is expected. The &P (t) is indicated in the equation (5.5.2-8).

3) The third part of equation (5.5.3-6) calculates the difference between each
N g _
e; PO (1) and half of ) e¢™™"**'(t). A bigger difference between them is more
k=3

supervioser.air

expected. Which €, (t) represents the difference between each supervisor
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output and decentralized DMRAC input. If €™ " (t) is close to half of

supervioser

q
De (), the contribution is 1; otherwise, it is .
k=3

4) The last part of the equation (5.5.3-6) calculates the difference between each
eV (t) and 0, the smaller the difference between them, the batter.

The initial population is established using the initial parameters of each DMRAC in the
lower layer control system, with each bioreactor deployed with a DMRAC to adjust the
air inflow.

Individual selection

The Rank Selection method is utilized for individual selection. This method depends
on the ranking individuals to make decisions, without direct dependence on the fitness
function. In addition, it facilitates population diversity and offers greater stability
compared to other methods such as handicap selection and hill-climbing selection. 1)
Each individual (QXP"** (t)) is arranged from the first, ensuring that each individual
(Qurener (1)) js greater than one (QP™*'(t)+1). 2) The cumulative probability of

each individual is calculated, which is the sum of from the first individual (Q5*"*(t))

q |
to the current individual ( > QL™ (t), q is cumulative added quantity ) in the

i=1
chromosome group. This ensures that the current individual has a higher cumulative

probability, while the individuals ranked behind have lower cumulative probabilities.
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Therefore, the cumulative probability is utilized to calculate the probability of each

individual selection (IS), and it can be expressed as follows:

|S(i)=i+—2(i_1)
N N(N-1)

(5.5.3-7)
Where: | represents the number of individuals. N represents the size of the population.
The purpose of calculating individuals’ selection is to ensure the ranking order of
individuals in the population, as required by the selection operation in the GA
optimization.

Crossover operation and mutation operation

supervioser

According to the selection operation, a pair of individuals (Q,;";  (t)) is chosen. The

crossover position in the gene sequence (fitness function) is then utilized to generate a

supervioser

new generation of individuals (Q.;;  (t)). The crossover operation utilizes uniform

crossover (UC) randomly generating 0 or 1 for each location of individual QP> (t).

air.i
It compares parent 1 or 2 ( Q™™ (t)—1or QM*'(t)-2 ) with the random
individual Q™" (t) and then establishes the appropriate mutation probability to

maintain population diversity. Combined crossover and mutation operations to adjust

the location position of individuals according to cumulative probability. Finally, the

supervioser

new generation of individuals ( Q" (t)) is produced and placed into the new
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generation population, waiting for the selection operation. Therefore, crossover and
choose operations are repeated until the desired individuals ( Q"™ (t) ) are found.

The supervised fuzzy logic control is optimized by the GA, which involves adjusting
the parameter of the SFLC to achieve better global searching and decision-marking.

Furthermore, it can simultaneously optimize stability, response speed, and anti-

disturbance capability.

Blower
alr (t)
\ 4
New Fuzzy Logic Rules
Qarin " 1) Qi Qs (1)
Qair ®) Qair.i+1(t) Qair.i+2 (®)
A A 4 A
Bioreactor| Bioreactor Bioreactor
1 2 3

Figure 5- 5 The Structure of Airflow Distribute to Each Bioreactor
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5.6 Stability Analysis of Supervised Fuzzy Logic
Decentralized DMRAC System

5.6.1 Stability analysis of supervised fuzzy logic control

The air generated by the blower is distributed to the three bioreactors connected in
series on the lower layer using a supervised fuzzy logic controller functioning as a soft
distributor. It can determine the operation efficiency of each bioreactor. Therefore, the
stability of the upper layer supervised fuzzy logic control system is crucial, as it directly

impacts the stability of the lower layer control system and the overall control system.

The parameters of the supervised fuzzy logic control system may change over time due
to internal and external disturbances. In addition, even with an optimized control system,
there may be an accumulation of errors during long-term operation. Therefore,

conducting stability analysis of the SFLC is necessary.

supervioser

q
The online updates of SFLC outputs, represented by ZQai,.i (t), are provided by

i=1
the fuzzy logic rules as shown equations from (5.5.2-2) to (5.5.2-5). Additionally, the

values DO, (t) are updated online by parameter adaptive laws adjustments, which are

represented in equations from (5.5.1-9) to (5.5.1-11). The error between the SFLC real
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g _ q .
outputs Y QiFM™(t) and the ideal outputs Y Qifear(t) is equal to
i=1

i=1

Qiupenvised (t), and it can be expressed as follows:

sum.error.air.output

_ q _ q .
Qiimerror airapr 0 = 2L Q5 (1) = > Qi (©) (5.6.1-1)
= i1

q
The error between MDDMRAC real outputs ZDOn(t) and the MDDMRAC ideal

n=1

q
output Y DOy (t) is equal to DOy, ror (1), it can be written as follows:

n=1
q q
Dosum.error.n (t) = Z DOn (t) - Z Doideal,n (t) (561-2)
n=1 n=1

The stability analysis for the SFLC is conducted using the Lyapunov function. The

Lyapunov function is considered as follows:
V(1) = (Qimmersir ot () + (DO e (1) (5.6.1-3)
The equation (5.6.1-3) can be expressed as follows:
q ) q ) 2 q q 2
V= S0 - 3Q 0| +| $00,0-300,,,0] ©s10
Where: q=1, 2,3, and ( represents the number of bioreactors.

The derivative of V (t) (5.6.1-4) with respect to time can be rewritten as follows:
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4 .
d (Z Q;:Jr?iewloser (t ) )

d_V — 8V _I_ av d (DOSUI’TI.EI’I’OI’.H (t))
dt <~ aupervioser dt d(DO t dt
a(ZQaifi (t)) ( sum.error.n( ))
i=1
(5.6.1-5)
d supervioser
d(Q_ QI (1))
Where: —1=2 " represents the rate of change of the fuzzy logic control
q _
system state > QS (t)) over time. d(DOS”gt”“’f-”(t)) represents the rate of
i=1

change of the MDDMRAC control system state DO, ..., ,(t) over time.

According to the operation condition of the two-layer control system, the upper layer
fuzzy logic control output directs all the air quantity to become inputs for lower layer

MDDMRAC controllers, as indicated in equation (5.5.2-1). Therefore, the

9 .
d (X Qan 1)

is equal to 0.
dt

The equation (5.6.1-5) can be simplified as follows:

d_V — aV d (Dosum.error.n (t))
dt a(DOsum.error.n (t)) dt

(5.6.1-6)

The equation (5.6.1-6) represents the difference between the ideal outputs and the real

outputs of the lower layer MDDMRAC controllers.
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oV
The first part of the equation (5.6.1-6), represents the partial

a( Dosum.error.n (t))

derivative of the Lyapunov function V (t) with respect to the sum error of lower layer
MDDMRAC output DO, ......(t) . Additionally, this partial derivative describes the

rate of change of the Lyapunov function V (t) under the DO, ..., ,(t) direction.

d ( Dosum.error.n (t))

The second part of the equation (5.6.1-6), ot

represents the rate of

change of DO

umeror (1) OVEr time, and it also directly indicates the proximity of the

fuzzy logic control system to a stable state. Hence, let us consider the effects of

DO, rror n (t) ON the rate of change OL—\: of the Lyapunov function. From the equations

(5.6.1-5) and (5.6.1-6), it can be known as follows:

q q
Dosum.error.n (t) = Z DOn (t) - Z Doideal,n (t) (5.5.1-7)
n=1 n=1

Therefore,

q q
1) when ZDOn(t)—ZDOidealln(t)=0 , it implies that every output of
n=1 n=1

d (Dosum.error.n (t)) — O

MDDMRAC is an ideal DO output; thus dt

, and the

. . av . .
derivative of the Lyapunov function i 0 . Additionally, the SFLC system is
stable. Moreover, during the operation of the blower in the ASWWTP, the air

quantity generated by the blower is less or equal than the requirement of the

q q
three bioreactors; therefore, the Z DO, (t) is equal to Z DO, 1 (t) . Hence, the

n=1 n=1
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fuzzy logic control system is stable.
q q
2) When Z DO, (t) —Z DO, (1) >0, according to the fuzzy rules, at least one
n=1 n=1

output of the MDDMRAC deviates from the ideal output DO, resulting in the
real output DO of the adaptive controller not tracking the ideal output DO.

Hence, the multiple adaptive control system tends toward an unstable direction,

d (Dosum.error.n (t)) > O

leading to
8 dt

and the derivative of Lyapunov function

C:j_\t/ > 0. Based on the Lyapunov function theory, the fuzzy logic control system

is unstable.
q q
3) When Z DO, (t) - Z DO, - (t) <0, basis on the fuzzy logic rules, each output
n=1 n=1

DO of the multiple adaptive controllers is smaller than the ideal output DO,

resulting in the multiple adaptive control system tending toward a stable

d (Dosum.erl’or.n (t)) < 0 ’
dt

and the derivative of the

direction. This leads to
. _av . .
Lyapunov function E< 0. According to the Lyapunov function theory, the

parameters of the fuzzy logic control are bounded by the sum of error between
q
Z DO, (t) and Z DO, () . Therefore, the fuzzy logic control system is

n=1 n=1

stable.

The local stability analysis of the supervised fuzzy logic control, utilizing the Lyapunov

function, confirms the stability of the control system under the condition where
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9 9
ZDOn (t)—z DO, (t) <0. However, to ensure the stability requirements of the
n=1 n=1

global two-layer control system, further analysis of the stability of the lower layer

control system, which is the decentralized DMRAC system, is necessary.

5.6.2 Stability analysis of decentralized DMRAC system

Due to the adjustment of DO concentration in the ASWWTP operation employing a
two-layer control system, the stability of this two-layer control system depends not only
on the upper layer fuzzy control system but also on the lower layer adaptive control
system. The stability of the supervised fuzzy logic control system has been proven as
previously. Therefore, the stability of the lower layer DO decentralized DMRAC
control system will be analysed using the Lyapunov function.

Let us consider the Lyapunov function in the following equation:
12,1 200y, L 2
Vi) =282 (1) +5 Ado,"(0)+ 5 Aa (1) (5.6.2-1)

Where: i=1,2,3, k=123, n=1,2,3, i,k and n represent the numbers of
bioreactors.

The error dynamic €, (t) is represented as the disparity between the dissolved oxygen
dynamic DO, (t) and dissolved oxygen reference dynamic DO, . .(t), as illustrated in
equations (5.5.1-4). The ideal parameters A, ,(t) and Aa; (t) are estimated by the
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direct model reference adaptive control laws on-line and updated in equations (5.6.2-2)

and (5.6.2-3).

AaDO.n (t) = aDO.n (t) - éDO.n (t) (562'2)

Aay , (t) = af.n(t)_é‘f.n (t) (5.6.2-3)

Where: n=1, 2,3, and n is the number of bioreactors.

Therefore, the derivative of the Lyapunov function is given by the equation:

v, (1)
dt

1

= e, (1) €x(1) + (apo., (1) 8o, (1)) (@c0n (1) — doon (1))

1

zone.z.1

. . (5.6.2-4)
+(a; (1) -4, (D)@rn(t) —ara(t))

z0ne.z.2

Where: i=1,2,3, k=12,3,n=12,3, and z=12. i,k and n are the numbers of

bioreactors. z represents the numbers of gains.

It follows from (5.5.1-14), (5.5.1-3) and (5.5.1-5) that:

e (t) =—(a,, (t) =b, , (g, (1)) DO, (t)
- (cp.n - bp‘n (t)a, (1)) f (DO, (t)) (5.6.2-5)
+ a'm.n Dom.ref . (t)

Where: k=1,2,3, n=12,3, j=12,3 and k, n, j are the numbers of bioreactors.
Now, add and subtract the term &, DO, (t) on the right-hand side of equation (5.6.2-

5) as follows:

176



e(t) = -a, e(t) — ((a,, (1) =b, , (Dage, (1)) —a,,,)DO, 1)
- (Cp.n (t) - bp.n (t)af n (t)) f (DO| (t))

(5.6.2-6)

By substituting equations (5.5.1-6) and (5.5.1-7) into equation (5.6.2-6) yields:

€ (1) = ~,,8(t) + (8oo, (1)~ 8o, (D)., ()DO, () 562.7)
(@, (0=, (O, O F (DO, (1)

Applying equations (5.6.2-6), (5.5.1-15), and (5.5.1-16) into equation (5.6.2-1) yields:

v,

T_ am.nek (t)

Haoo s (1)~ B0 » 0)(e, (D, , 1)DO, 1) &, (DO, () ~dpo () ——)  (5.6.2-8)
(@, ,(0) -4, , (O)(e, O, (1) F (DO, 1) e, (1) (DO, (1) 4, , () ——)

Where: i=1,2,3, n=12,3 and k=1,2,3, z=12. i,n and K are the numbers of

bioreactors. z represents the number of adaptive gains.

The right-hand side of equation (5.6.2-8) involves a quadratic function of € (t). If
—a. . <0, then the condition of the right-hand side equation (5.6.2-8) is smaller than
dv, (t)

zero. The condition for 4 <0 toholdis proven in Appendix C. Therefore, equation

(5.6.2-8) can be considered as (%)2 being bound.
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Consider the stability of the Lyapunov function result employing Barbalat’s Lemma.

av, (t))

If V,(t) has a finite value as time goes to infinity, then (——==)° is bounded.

Hence av d( ) <0, as time goes to infinity.

Barbalat’s lemma can be applied to analysis the standard result of the Lyapunov
function. When the ideal and real system parameters a,,, (t), 4y, (t), &; ,(t) , and
&, ,(t) are bounded, the output of the decentralized adaptive control system is capable
of achieving asymptotic tracking of the model reference dissolved oxygen dynamics.
The establishment of these boundaries requires three conditions to be met: 1) The initial
condition in the ASWWTP dynamic must be sufficiently close to the equilibrium point.
2) The parameter adaptive laws (5.5.1-15) and (5.5.1-16) are also close enough to the
equilibrium. 3) The parameter adaptive rates },,,.,1 and 7,qe,, are small enough. The
simulation results utilizing real data will be employed to validate these three
requirements.

Under the rules of supervised fuzzy logic control, each bioreactor receives airflow that
is less than or equal to the ideal amount. Therefore, each bioreactor fails to satisfy the
saturation input condition. However, each bioreactor satisfies the three conditions listed
in Barbalat’s lemma results. Finally, although each bioreactor may not always achieve

perfect DO tracking performance during ASWWTP processes, it attains a balance
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between control system efficiency and energy consumption. Thus, ensuring the stable

operation of the purification system.

5.6.3 Analysis of the stability impact of feedback on two-layer control system

The two control systems can continue to operate only when the upper fuzzy logic
control system receives fast DO feedback from the lower DDMRAC control system. In
addition, if the lower control system cannot quickly adjust the output DO to track the
ideal output DO trajectory, or there is a large deviation, it may affect the stability of the
upper control system and even the stability of the global two-layer control system.

The two-layer control system is employed to regulate DO concentration during
bioreactor operation. The stability of both the lower-layer and upper-layer control
systems has been proven. The structure of this two-layer control system operates as a
closed-loop feedback control system. Let us now consider the impact of feedback on
the stability of this two-layer control system. The closed-loop transfer functions, as

defined by equations (5.6.1-1) and (5.6.2-1), are expressed as follows:

(stlljﬁ.e;/riz?'(.jair.output (t))2 + (Dosum.error.n (t))2

1

H(DO) = : 1 : 1 :
Eek (t)+ EAaDO.n (t)+ EAaf.n (t)

(5.6.3-1)
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The numerator is the upper layer SFLC control output, influenced by the lower layer
MDDMRAC controller. The denominator is the lower layer MDDMRAC control input,
which is influenced by the upper layer SFLC controller. Under the operational condition
of the SFLC control system, all air generated by the blower is provided to the input of
the lower layer MDDMRAC controller. Therefore, this closed-loop transfer function
(5.6.3-1) is an equality transfer function. Additionally, the relationship between inputs
and outputs is one-to-one, implying no amplification or reduction in the quantity of air.
Finally, this closed-loop feedback system produces an output of consistent amplitude
for all frequency input air quantities, without changing its phase.

The closed-loop feedback transfer function (5.6.3-1) can be rewritten as follows:

supervised 2 2
(qum.error.air.output (t)) + (Dosum.error.n (t)) -1 (563_2)

H (DO(t)) = supervise -
(qur?terrorl.jair.output (t))2 + (Dosum.error.n (t))z

The gain of this closed-loop transfer function is equal to 1, and it does not have poles.
The stability of the feedback cycle ensures that the system is stable and enhances the

robust stability of the two-layer control system against external disturbances.
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5.6.4 Global stability analysis of a two-layer control system

As mentioned before, in the stability analysis of a two-layer control system, the output
of the upper layer control system has a direct impact on the stability of the lower layer
control system because the input of the MDDMRAC control system depends on the
output of SFLC control system. In addition, the output of the lower-layer controller is
fed back to the input of the upper layer fuzzy control system. Therefore, the stability of
the upper layer control system is also affected by the output of the lower layer control

system.

9 q
The upper layer SFLC control system is stable at ZDOn (t)—z DO, () <0, as
n=1 n=1

indicated by the Lyapunov function (OI—V)2 <0. Moreover, the lower layer DDMRAC
dt

control system is stable, as evidenced by the Lyapunov function Z—\:SO, with the

adaptive control parameters bounded by ((jj—\t/)2 <0. Additionally, the feedback cycle

between the two-layer controller is stable. Therefore, this two-layer DO concentration

control system is stable when all the above conditions are met simultaneously. The

MATLAB simulation utilized real data based on the University of Poland [161].
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5.7 Simulation results and discussion

In this chapter, the MATLAB simulation utilizes the supervised fuzzy logic -
DDMRAC applied to the ASWWTP with global parameters to prove stability and
robustness. The controller is designed based on the limited ASWWTP parameters.
Subsequently, real data from a single blower and a single bioreactor provided by [161]
were used simulate the operational efficiency of the ASWWTP under various unknown
disturbances. The three bioreaction tank initially contained equal amount of wastewater.
The initial ASWWTP operation condition used in the simulation are X (0)=15mg/I,

S (0)=200mg /1, DO, (0)=3mg/1, X, (0)=18mg/I, DO =7mg/l, S, (0)=600mg/I,

D,(0)=3, DO, ,(0)=0.5mg/I. The process parameters are listed as follows: Y, =0.65,
r =06, =02, a =334m>, 5 =345h", K,,=05. The kinetic parameters are
Mo =0.15mg /1, K. =100mg/I, K,,,=2mg/l. The disturbance inputs S, (t), D, (t),

and DO, (t) change over time, as depicted in Figures 5-6, 5-7, and 5-8.

in.n
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=]
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& Sin(mg/l),

00|
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Time(h)

Figure 5- 6 Influent Substrate S, (t)
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Figure 5- 8 Influent Dissolved Oxygen DO, (t)

The reference model adaptive control parameters for each biological reaction station
were determined using parameters &, =2 and b, =2. The parameter DO, ;(t)
was assumed to be piecewise constant. Figure 5-9 demonstrates that this two layer
control system output DO, (t) can rapidly and stably track DO, .(t), indicating good
tracking performance and stability. Figure 5-10 demonstrate that this two layer control
system can reject disturbance inputs while maintaining good tracking performance of

output DO, (t) for DO, ;(t), further demonstrating the stability of the control system.
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, (t) under conditions of no

disturbance inputs and slow adaptive rates (7,, =0.5, 7,,=0.5), under Supervised

Fuzzy DDMRAC
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Figure 5- 10 The trajectories of DO, (t) and DO, . :(t) under conditions of

m.ref.j

disturbance inputs and slow adaptive rates (¥,, =0.5, 7,, =0.5), under Supervised
Fuzzy DDMRAC
Comparing the results shown in Figures 5-9 and 5-10 with those in Figures 5-11 and 5-
12 demonstrates that the DO, (t) trajectory can be rapidly tracked to the DO, .. (1)
trajectory under the supervised fuzzy logic control of GA optimization. In addition,
Figure 5-12 also shows that the DO, (t) trajectory has good tracking performance, and
in the presence of input disturbances. The trajectory of DO concentration further
confirms the stability of the two-layer control system. Therefore, we can conclude that

this two-layer control system is stable. Moreover, it can be ensured that the feedback
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loop in this two-layer control system is stable. These results demonstrate the feasibility
of a single blower supplying air to three bioreactors and the effectiveness of
optimization through GA in reducing energy consumption in the two-layer control

system for ASWWTP operation.
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Figure 5- 11 The trajectories of DO, (t) and DO, j (t) under conditions of no

disturbance inputs and slow adaptive rates (7,; =0.5, 7,,=0.5), under Supervised

Fuzzy DDMRAC Optimized by GA
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Figure 5- 12 The trajectories DO, (t) and DO, ; ;(t) under conditions of disturbance

inputs and slow adaptive rates (},, =0.9, 7,, =0.5), under Supervised Fuzzy

DDMRAC Optimized by GA

Subsequently, the initial operating conditions of Figure 5-13 are consistent with those

of Figure 5-12. Furthermore, using fast adaptive gain, DO,  ;(t) remains piecewise
constant. The response trajectory of DO, (t) is shown in Figure 5-13, indicating that the
closed-loop two-layer control system becomes unstable. This instability arises because
of long-term oscillations, causing the adaptive control system to exceed the expected

output trajectory DO, (t) of the underlying control system before reaching stability. In
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addition, due to the unstable output of the lower layer, the upper layer feedback fuzzy
control system becomes unstable, so that the global two-layer control system is unstable.

This validates the stability analysis presented in Chapter 5.6.
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Figure 5- 13 The response of DO, (t) becomes unstable under the conditions of no

disturbance inputs and fast adaptive rates (7,; =9, 7,, =9 ), under Supervised Fuzzy

DDMRAC optimized by GA

In the next experiment, the same initial system condition as before was utilized, but

plant operation involved a large input disturbance. Figure 5-14 demonstrates that the
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output DO, (t) trajectory of the two-layer control system is unstable to track the

reference model DO (t) trajectory due to large input disturbance. This occurs

m.ref .j
because the large disturbance input exceeds the robust boundary of the adaptive control,
causing the adaptive control law parameters to be unable to update online in a timely
manner. In this specific two-layer feedback control system, the output of the adaptive
control impacts the stability of the fuzzy logic control system. Therefore, the lower
layer adaptive control becomes unstable, leading to instability in the upper layer fuzzy
logic control. Finally, the two-layer control system becomes unstable during ASWWTP

operation when subjected to a large enough input disturbance.
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Figure 5- 14 The response of DO, (t) becomes unstable with large disturbance inputs
and slow adaptive rates (7,, =0.5, 7,, =0.5), under Supervised Fuzzy DDMRAC
Optimized by GA
At the initial conditions of ASWWTP, it was far from the predicted equilibrium point
X,(0)=30mg/I, S,(0)=860mg/l, X, (t)=35mg/l, DO,(0)=7mg/l . The corresponding
DO, (t) response is illustrated in Figure 5-15, indicating that the two-layer control
system is unstable. Due to the starting point of ASWWTP operation being far from the
predicted equilibrium point of the adaptive controller, the response of the adaptive
control system exhibits excessive oscillations, resulting in instability. Furthermore, due

to this two-layer feedback control system, if the lower layer DDMRAC control system
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is unstable, the upper layer fuzzy logic control system is also considered unstable.
Therefore, the output DO, (t) trajectory of the two-layer control system confirms the

stability analysis results presented in Chapter 5.6.
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Figure 5- 15 The initial operation state of the ASWWTP exhibits significant deviation

from the predicted equilibrium point. The dynamic of DO, (t) fail to track the

trajectory of DO, ;(t) , rendering the system unstable under conditions
characterized by the absence of disturbance inputs and slow adaption rates (¥,; =0.5,

7,, =0.9), utilizing Supervised Fuzzy DDMRAC optimized by GA
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5.8 Conclusions

This chapter addresses nutrient removal at the ASWWTP by solving the dissolved
oxygen concentration trajectory tracking issue. Considering the large volume of
wastewater, minimal construction, and minimal energy consumption, a new structure
of the ASWWTP is proposed. This structure is composed of three bioreactors with a
single blower and a single sedimental unit. The blower operates under the specific
conditions. The mathematical model of ASWWTP is formed by rewriting the ASM 2d

model based on the principles of mass balance and ion Kinetic energy conservation.

A dissolved oxygen concentration supervised fuzzy logic DMRAC system is designed
based on limited ASWWTP parameters and applied to the mathematical model of
global ASWWTP parameters. The control parameters are adjusted through MATLAB
simulations to meet design requirements, with the fuzzy logic optimized by a GA. The
MATLAB simulation results demonstrate ASWWTP’s ability to process large volumes
of wastewater efficiently, its stability, and its capability to resist disturbances. The
stability of the supervised fuzzy logic DMRAC system is further ensured using the

Lyapunov function.
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CHAPTER 6 CONCLUSION AND FUTURE
RESEARCH WORK

6.1 Conclusions

In this thesis, we address the nutrient removal in ASWWTP by solving the trajectory
tracking issue of dissolved oxygen concentration. We construct various ASWWTP
architectures tailored to specific wastewater volume treatment requirements and design
distinct types of adaptive control systems for different operational conditions of
ASWWTP. The objective is to achieve stability and efficiency in ASWWTP operation,
along with the ability to withstand disturbances. Each ASWWTP architecture’s
mathematical model is developed by rewriting the ASM 2d model, adhering to the
principles of mass balance and ion conservation of kinetic energy. According to
different wastewater treatment requirements, from the architecture, mathematical

model, and control system, it is classified as follows:

Firstly, we established an ASWWTP architecture consisting of a single bioreactor unit
with a single blower and a single settlement unit, with the blower operating under ideal
conditions. This configuration addresses the requirements for small wastewater volume

and minimized construction space. The mathematical model of the ASWWTP is
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developed by rewriting the ASM 2d model, based on the principles of mass balance and

ion Kinetic energy conservation.

Nutrient removal in ASWWTP is achieved by solving the trajectory tracking problem.
Designing this control system relies on limited ASWWTP parameters and is
implemented to global ASWWTP parameters. The adaptive control parameters are
adjusted using MATLAB simulations, ensuring the stability and high efficiency of the
ASWWTP, as well as its ability to resist disturbances. The stability of the DMRAC

system is further validated using the Lyapunov function.

Secondly, based on the existing ASWWTP architecture, we address the issue of the
blower overproducing and delivering excess air volume. A DO concentration DMRAC
system with a filter function is designed using limited ASWWTP parameters and
applied to the mathematical model of global ASWWTP parameters. The adaptive
control parameters are adjusted through MATLAB simulation to obtain the expected
control system requirements. The MATLAB simulation results show that the adaptive
control system can filter out excess air volume while maintaining the stability and good
efficiency of the ASWWTP and has anti-interference ability. The stability of the
DMRAC system with the filter function is further validated using the Lyapunov

function.
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Finally, a new architecture of ASWWTP has been established to handle the large
wastewater volumes while minimizing construction requirements. This architecture is
composed of three bioreactors with a single blower unit and a single sedimental unit.
The mathematical model of ASWWTP was developed by rewriting the ASM 2d model,

adhering to the principle of mass balance and conservation of ion Kinetic energy.

The supervised fuzzy logic direct model reference adaptive control system was
designed using limited ASWWTP parameters and applied to the mathematical model
of global ASSWTP parameters to ensure stability and high efficiency operational. The
adaptive control parameters were adjusted through MATLAB simulation, and the fuzzy
logic control system was further optimized using genetic algorithm to achieve the

optimal regulation of dissolved oxygen concentration.

The MATLAB simulation results proved the stability and efficiency of ASWWTP, as
well as its anti-interference ability. Additionally, the stability of the fuzzy logic
DMRAC system is further proven by analysing both global and local control system

using the Lyapunov function
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6.2 Future research work

Based on the several valuable experiments conducted in this thesis, further research on

activated sludge wastewater treatment plants can be summarized as bellows:

In Chapter 3, we studied the ideal state of the blower. But in further discussion, we will
consider the time delay of the blower in different switching cycles. This characteristic
is used to adjust the DO concentration in the bioreactor to solve the nutrient removal

problem of wastewater containing specific chemical elements in ASWWTP.

In Chapter 4, we focused on how to use a blower actuator to solve the problem of
nutrient removal in the ASWWTP by eliminating excess air. In the future we should

consider increasing the amount of wastewater to solve the excess air problem.

In chapter 5, we demonstrated the use of a single blower supplying oxygen to multiple
bioreactors arranged in series, confirming its high efficiency for nutrient removal.
Further investigation could consider the utilization of multiple blowers in series to
provide oxygen to the activated sludge across multiple bioreactors, thus enhancing the

efficacy of wastewater purification in the ASWWTP.
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APPENDIX A Mathematic Model of ASWWTP,
Derivation of The DMRAC Controller and Stability

Analysis

A mathematical model of the wastewater treatment plant.

Z_T = u(®X (t) — DY 1+D X +rD(0) X, (1) M
ds __ p®)X(@®) .
- ” D(®)(@+r)S(t) + D(t)S;, (t) 2
dDO  Kou(t)X(t)
Ty —D®)(A+r)DO(t)
+k_a (Qair (1))(DOpmax — DO(1)) + D(t) DO, (1) 3)
S = DOENX O - DOB+N X © 4)
~ S(t) _ DO(t)
#(U) = imax Ks+S(t) Kpo +DO(t) (5)
Where:
Qin Qr QW
Dt)=-~ r=—— fB=—-
V, ; Qin : Qin (6)

The function Kta(Qair s the oxygen transfer and depends on the aeration actuating

system and sludge conditions. It is assumed as:
kLa(t) = aQqjr () +5

Input-output model:
dDO _ Kou(t)X(t)

= - DOEDO)
H(@Quir (€)+8)(DOypax —~ DO(1)) + D(H)DO} (1 3
B0 - —pasnpom - 4
H(@Quir (©)+8)(DOpax ~DO(®)) + D(H)DO} (1) ™
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g = PO@MDO® — =2 wlt)

+HaQair ()+6)(DOmax —DO(t)) + D(t) DO, (1) (8)

dDO KoX(t)
Y

dDO KoX(t)

—5 = ~POANDO®) - =2 ()

H@Quir (1) +6)(DOmay — DO(1)) + D() DO, (1) (9)

5 = ~PO@nDOw) - u(t)

(@ Qair ()(DOmax — DOM))*+(6(DOmax —DO(1)) + DMDOK (M) (1)

dDO KoX (1)
Y

dDO Ko X (1)
Y

o ° —D(t)(1+r)DO(t) — u(t)

+Qsir ()(DOpax ~ DO())+8DOmae ~5DOM) + DODOW®M)  (17)

d'j—to — _D(1)(1+r)DO(t) — SDO(t) — 2 3(( ® 0
+aQyir (1)(DOpax — DO(t))+5DOpax + D(t) DO, (1) (12)
B0 - —Eo@mn+5)po -2 4
+aQir (1)(DOax — DO(1))+5DOpax + D(1) DOy, (1) (13)
Qin S(t) DO(t)
D t = t = .
Apply (14), (15) into (13)
Tat v, Y K, +5(t) Koo + DO(t)
+aQyir (t)(DOmax — DO(t))+0 DOy a5 + D(t) DO;y (1) (16)

The term P®DOn® s small it is neglected.
dDO — (an (1+r)+5) DO(t) Kox(t) ﬂmaxs(t) DO(t)
Tdt Y K +5(t) Kpo +DO(D)
+aQa,r(t)(DOmaX DO(t))+5 DOy a7
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The resulting input —output model reads:

dbo _ —a, (t)DO(t) —¢, (1) f (DO(L))

dt
+0p (1) Qqir (1) +6DOax

a, (), cp (1), by (1), d

where P are the model parameters and

ap(t) = Qin\El"'r) +5
KoX(t) #maxS(t)
Y (Ks+S(1)
DO(t)
(Kpo +DO(1))
by (t) = @(DOpmay — DO(L))
dy = DOpay

Cp(t) =

f(DO(Y)) =

The model reference dynamics equation as:

dDom,ref
dt

=~y DOpy ref (1) +bpy po'ef 1)

The affine model reference adaptive control law is applied as:
Qair (t) =apo (1) DO(t) + a5 (t) f (DO(1))

(t)DO ref t) _ 9DOmax

+ aDOref bp (t)

Closed-loop:

90O _ s, ()DO(t) ¢, (1 F (DO(H)

dt
+bp (t{apo (H)DO(t) +a¢ (t) f (DO(t))

ref oy 5Domax
+aDoref (t)DO™ (1) —bp (t) }+5Domax

Rewriting (22)

(18)

(19)

(20)

(21)

(22)
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O";_to ——a, (1)DO(t)—c, (1) F (DO(L))

+bp (t)apo (DO(L) +by (t)ag (t) f (DO(L))
SDOpax

+0DO0ax

+bp(D)a__rer ())DO"™ (1) by (1)
DO D (t) (23)

Rewriting (23)

dI(Ij)tO =-a, (t)DO(t) + by ()ape ()DO(t) —c, (1) f (DO(Y)) + by (H)ay (t) f (DO(L))
oDO,
+by (1)a__rer ()DO™F () by (t) X+ 5DO; g

Rewriting (24)

0
d% =—(ap(t)—bp (Dapo (1) DO(t) - (c, (1) —by (t)ag (1)) f (DO(t))
+bp (D2, rer (VDO™ (1) (25)
—(ap(t)—bp(H)apo (1)) = —ay (26)
—(cp () —by(Mag (1) =0 (27)
by (08t (1) =ty 28)
The ideal parameters can be obtained as
- t
apo () = amb+—ap()
t
ar ()= %Y
bp () (30)
b

2 ref (£) = m

Aporer by (1) (31)

The resulting control law reads:
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Qair (t) = apo (1) DO(Y) + a5 (t) f (DO(1))
n bb_m Doref (t)- 5EOmax
o (1) o (1) (32)

The corresponding closed-loop dynamics reads:

dDO

b —(ap () —bp (t)a po (1)) DO(t)

—(cp () =bp(H)as (1)) f (DO(Y))
by

(t)DO"™ (t)

+by (1)
b, (t) (33)

The sufficient data are DO(t) and e(t) where:

e(t)=DO(t) — DO, ref (1)

(34)
The adaptive control laws:
930 _ . etypo(t)
dt (35)
daf
— =—y,€(t) f(DO(t))
dt (36)

Stability analysis for the DMRAC
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1.

2.

V = e(O)-a,£(0)+ (30 (1) ~ 0o (1), (DO()
+(a, () -a, ()b, (1) f (DOV)

+(@gyw (D) =2, ()b, (H)DO™ (1)]

+ (0 (1) — 2o (D)(~,2DO(1)) — o (1)) =

1

+ (@, (1) —ay (D)(~7,ef (D)) — af(t»yi

+ (@ (0~ e (D)(~758D0™ ()~ (D) —
(1)

V =—a,€%(t) + (2o (t) — a0 (1))b, (1) DO(t)e(t)
+(a, (1) —a, ()b, (1) f (DO(D)e(t)

(@ () —a__. (O)b, ()DO™ (De(t)

+ (B0 (1) — o (1) (—4EDO) — ane (1) =

1

+(, (1) -, ())((~7,¢f (DOM) -2, (1) yi

@y ()~ 80w (D)(=7,6D0™ (1)~ a0 (D)

7(2)
V= 8,°() + (30 1) 2o ()3, () DO (—7,EDO() - 200 (1) 11}
+(a () -, (O}, (1) f (DOM)e(®)+((~7€f (DO(V)) —af(t))yiz}
(e (), (OHD, (1O (e +((7,2DO™ (0) 2, “))y%}

(3)
aDO (t) - a;o (t)
a, (t)-a, (t)

A (t) _aDO; (t) )
are bounded by ©

% is bounded by ¢
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3. 7172173 gre bounded by adaptive law

APPENDIX B Mathematic Model of ASWWTP,
Derivation of The DMRAC Controller with limited

Control Input and Stability Analysis

The DO dynamics described by following equation (1)

dDO__QW(1+r).DO(t)_KOX(t)‘ M S()  DO(t)
dt B Y (K,+5() (Kpo+DO@) (1)

a

+a(DOmax - DO(t)) Qair (t) + ﬂDOmax

Rewriting equation (1)

d([]l)—toz—ap .DO(t)—c, - f (DO®) +b,-Q,, (1) +d, @

Where

_Q,(+r)
YA
KXt SO)

PTTY K +S()

DO(t) ©)

(Kpo +DO(t))
b, = (DO, - DO(t)
d, = DO,

a

f(DO(t)) =

Assume V is saturation controller with constraint.
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V = Saturation(Q_;,) (4)

Q;r’Qair > Q;r
V = Qair
Q;r’Qair < Q;r

The DO dynamic with input saturation is described by applying (4) into (2).

dDO
— =% DO ¢, f(OW)+b, V +d, ©)

The AQ,, is the different between saturation limit and real signal. It is showing in

equation (6)

A(gair =V - Qair (6)

Set up the auxiliary signal is showing equation (7)

A=b -AQ, (t) — ®-A(t) (7)
Where @ is position constant.
The model reference is taken as:
DO, =—a_-DO, +b, -DO™ (7.1)
Error dynamic
e=DO-DO, 8)
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Filtered tracking error with input saturation constraint.

n=e—-A

Differentiating (8.1) with respect to time

n—e—A4

Applying D.O, Dbm ,i input equation (8.2)

Rewriting equation (9)

Rewriting equation (10)

n=e-1

- DO-DO,,— 1
=—a,-DO(t)~c, - f (DO(t)) +b, -V +d,
—~(-a,-DO,_(t)+b, -DO™ (t))

b, -AQ () + @-A(1)

air

n=e-1

= DO- DO, 1

=—a, -DO(t)-c, - f(DO®)+d,
+a,_-DO, (t)—b, -DO™ (t))
+h, -V ~b, - AQ,, (1) + ®-A(t)

(8.1)

(8.2)

©)

(10)
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Rewriting equation (11)

n=e-.

= DO-DO, - 4
=-a,-DO(t)-c, - f (DO(1)) +d,
+a,-DO, (t)—h,-DO™ (t))

+(V _AQair (t)) ’ bp + O ﬂ’(t)

n=e-1

- DO-DO, —
=—a,-DO(t)-c, - f (DO(t))+d,
+a, -DO, (t)-b, - DO™ (t))

+(V _AQair (t)) ’ bp + D ﬂ‘(t)

The term V —AQ,;, (t) isequal to Q,, (t) , from equation (6)

Rewriting equation (12)

Design control law

n=e-1

- DO-DO, -1
=-a,-DO(t)-c, - f(DO(t))+d,
+a,-DO, (t)-b, -DO™ (t))
+Qy (1) b, -+ @-A(t)

The control law is parameterised as

Q, = bi[a 0o DO(0) +a, - T (DO() +a_ . - DO™ (1) —d, ~D(DO(®) - DO, (1)] (15)

p

(11)

(12)

(13)
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We shall now that values of parameters a,,a;,a_ . exist so that closed-loop

DO re

system dynamics under the control law (15) with such indeed, apply (15) into to (5)

dDO 1
=8, DO()~¢, (DO() +b, -

p
[200-DO(t) +2, - f (DO(t)) +a,,. -DO™ () (15.1)

—d, ~®(DO(t) - DO, ()] +d,

dDO _
dt
—D-e

~(a, ~a5)-DO(M) (¢, ~2,) - f (DO®) +2,.. -DO™ (1) (15.2)

Assuming term (C,—a;) equal to zero by (15.2) gives C,=a; (15.a), from

a,—a po=2a, we have a p,=2a,—-4a,(15.b), the term a

0 is a known parameter and

DO ref

equal to model reference parameter b, .

For constant or slowly varying parameters in (2), the parameter adaptive laws can be

derived as in (Brdy.2005) and (Slotine and Li (1992)) to produce:

dag,
—%D0 __p .e.D

ot y,-e-DO
da 16
8 e 1(00) (16)
da f ref

tho =-y,-€-DO !

where

f(DO(t)) = _ bo® 17

(Koo +DO(1)
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Stability Analyses

For the stability analyses we used lyapunov function

V[ (1), Aage (1), Aa, (1), A8 (1) ]

2 2
— n_2 + Aa.DO2 + Aaf + AaDOref (18)
2 2-y 2y, 27,

Time-derivative of Lyapunov function

v [e(t),AaDo (t).Aa, (t),Aa . (t)}

. l . l . 1 .
=N-N+—-Adp, - Adpy+—- A8 -Aa;+—-Aa o -Ad

7 7 7
1 R . (19)
| s o CR)
=N-N+—+| 8po —8po |'| Apo~8po [t —| & —&; |-| A~ &
N V2

1 A . /.\
+—- aDOreY - aDoref : aDOreY - aDoref
73

The [AaDO (t), Aa, (t),Aa . (t)] are the error between ideal parameter and update

A

parameter. The ay,,a;,a,,. represent the ideal parameter. The ay,,a;,8 .«

represent update parameter. by rewriting the equation (15.a) (15.b)

A

a,-a, (19.2) a, =c, (19b), a_. =b,  (19.c)

A

Apo =
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The ideal parameters are constant. Therefore time-derivative of ideal parameters are

equal to 0. Substitute parameter adaptive control law into update parameters.

\} [e(t),AaDo (t), Aaf (t)’AaDO'S' :|

noneLida A +eAa, Aa +Aa

l'A ‘ ref
2 2 7, oot o (20)
=n~ﬁ+7£-[aDo—ago)-((—yi-e-DO)—0)+%~(af—z{fj-((—yz-e-f(DO)—O)
1 2

+i-(amm —aD;,Ef )((—yz -e-DO™ )—O)

The close-loop DO dynamic system filtered tracking error dynamic is with input
saturation system. The filtered tracking error dynamic is applying the control law (15)
into filtered tracking error dynamic (13).

n=e-1

= DO-DO, -4

=-a,--DO(t)—c, - f (DO() +d,
+a,-DO, (t)-b, DO™ (t))

(21)

X DO ref (t)

DO ref

+(bi[aDo-DO(t)+af £ (DO)(®)+a

—d, —®(DO-DO,)])-b, -+ B-A(t)
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n=e-1

- DO-DO,_- 1

=—-a,-DO(t)-c, - f(DO(t)) +d, (21.1)
+a, - DO, (t)—h, - DO™ (t))

+a o, DO(t) +a, - f (DO(1)) +a_ . -DO™ (t)

~d, ~®(DO() - DO, ())] -+ ®-A(1)

Rewriting equation (21.1)

n=e-A

=DO-DO,- A

=-a,-DO(t) +a,,DO(t) —c, - f (DO(M) +a, - f (DO(Y))  (22)
+d,

+a,-DO, (t)-b, -DO™ (t) +a__..
~d, ~®(DO-DO,)]-+ ®-A(t)

. DO ref

Rewriting equation (22)

n=e-.

= DO-DO, - 1

=-a,-DO(t)+a,,-DO—c, - f (DO(1)) +a, - f (DO(t))
+a,-DO, (t)—b, -DO™ (t)+a__. -DO™ (1)

—[DO(t) - DO, (1) - A(t)]-

(22)

Doref

The term (DO(t) - DO™ (t) - A(t)) is equal the analyses control system error.

Rewriting equation (22)
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n=e-1

= DO-DO,_ -1

=—a,-DO(t) +a,,-DO—c, - f (DO(1)) +a, - f (DO(t))
+a,-DO, () —b, -DO™ (t) +a, .. - DO™ (t)

-n-@

(23)

AN

Apply equations a;o =a,—a, (19.a) aAf =c, (19.b), a_ .. =D, (19.c) into equation

DO ref

(23)

n=e-1
= DO-DO, - 1
=(apo—2apo)-DO+(a; —a;)- f (DO(t)) (23.1)

@ —a_.)-DO™ (1)

0 ref

-n-o®

For the close-loop dynamic system with input saturation, apply error dynamic (23.1) to

the lyapunve function (20).

Y, [n(t), Aag, (t), Aa; (t)'AaDo’e’ J

. 1 . 1 . 1 .
=N-N+—- A8y, - Adpg+—-Aa, -Aa +—-Aa_ , -Aa .
" I8! V3

=n-( (aDO—aDAO)-DO(t)Jr(af—aAf)-f(DO(t))

A (24)
+a_ . -a_.)-D0™ (t)-e-®)

1 A 1 »
+7(am —aDoj-((—;/l-e-DO)—O)Jr}/—-(af —af)-((—yz e f (DO)—O)

1 2

A

s 007

Rewriting equation (24)
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\} [n(t), Aay, (t), Aa, (t)’AaDo“' ]

. 1 . 1 . 1 .
=M= Adgy - Adpy+ — A8, A +—+Ad_, -Ad_,
il 72 73

= (20— p0)€-DO(t)+ (3, —a, )-¢- f (DO()) (25)

a )-e-DO™ (t)-e-e-®

Doref - Doref

+(aDO —agoj-(—e- DO(t))(af “a, )-(—e- f(DO())

+(a

A

+(aDo,e, 8. j-(—e- DO™ (1))
Rewriting equation (25)

v [n(t), Aag, (t), Aa, (t) A J

Aa.

Dorel

nenetAa Ad - Aa, AL +--Aa (26)

N 2 3

=—@-n’

Doref

Summary result of lyapunov function with input saturation close-loop DO dynamic

system.

1. The result of lyapunov function iV =—®-n?. Itis showing that Y, progressive tend

to zero. So the system is stability.

Vv =—0d-n°>0=>n->0t—>©

2. The close-loop DO dynamic system with input saturation is need to find the
bounded of saturation for the system.
The @ is positive constant value, and the n? is positive value. We can limit the
error square to find the bounded of saturation. To find what limit of bounded of
saturation affect control system stability.

Limit{DO(t) - DO™ ()~ 1} <0,

The term {DO(t) — DO™ (t)} <0, ifit is have enough time.
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(DO(t)-DO™ (1)) >0, t—oo

So we need consider term —A , it is going to negative or positive value.
We used the lyapunov function to consider the value of term —A .

The lyapunov function is showing below.

V, = % A? (27)

The time-derivation of the lyapunve function.

V, =42 (28)
Apply the equation (7) into the equation (28)

VA = ﬂ,(bp 'AQair (t)_ (Dﬂ(t)) (29)

Rewriting the equation (29)
V,=4-b,-AQ,, (t)— A(t)-A(t)-© (30)

We assume term D - AQ,;, (t) is equal to AQ,; " (t), rewriting the equation (30)

V, = A-AQ, " (t)— A%(t)- @ (31

Rewriting the equation by using formula
(a- b)2 <0
a’-2ab+b*<0

2 2
abza +b
2

ab> a2yl
2 2

It is showing

V, = A-AQ, (t)— A2(t)- @

<2004 AT+ Z A0, ()

air

(32)
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The @ is positive constant value, we assume d)=%+ao, a,>0(33). The d, is

positive constant value.

Apply the equation (33) into the equation (32)

V, = 2-AQ,, () — AX(t)-®

2008 154145000, (349

1 2 2 1 2 1 *2
<. — . Z. Z.AOQ.
<= A=A O 2+ AT+ AQ, (1)
Rewriting the equation (34)

V, =1-AQ,," ()— A2(t)- @

s_m)'G+aoj+%'ﬂz(t)+§AQai,*2(t>

(36)
< A 8y A5 A+ AQu )
< _2\/) at % : AQair*2 (t)
Integral the Vﬁ
1 2
- AQair (t)
=2 5 ~(1—e’z'a°)+vl.0 g% (37)
Rewriting equation (37)
Vg — AQair*2 (t) +[v) 0+ AQair*2 (t) J . e*z'ao (38)
“aa T Taa
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If time going to infinity and Sy big enough, then term [VLOJ, AQair*z(t)j_e-z-ao is equal to

4-aq,

zero.
Rewriting equation (38)

A(Qair*2 (t)

V, = Sair

Now limit the V, is negative or zero.

Rewriting equation (39)

ﬁ,: AQair*z(t)
\j 2-a,

Apply equation (10) into the Limit{DO(t) - DO™ (t)- A} <0.

|DO(t) - DO™ (1)~ 4| <0
|DO(t) - DO™ (1) < 4

_ ref A(gair*2 (t)
|DO(t) - DO™ (1)| < “oa

(39)

(39.1)

(40)

(41)

Comment if a,bigger enough, the term |DO(t)— DO™ (t)| more going to zero. And

more stable.
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APPENDIX C Mathematic Model of The ASWWTP

and Derivation of The DDMRAC Controller

HQairl HQ ain HQ air
Qh’sjn’ X],S], XQ)SQ; XB)S:S;
DOjn DOI D02 D03 Qout
[ A Boreactor; [ ¥ Bbreactoro, [ X Bbreactory [ Setter E
Q D Xr Q Xr
D
= A0 X O =D O (1) X, £ - D) X, () (1)
ds t)- X, (t
S AORO ) @41)-5,0+00)-5,0 @
1

dDO, _ _ Koa -4 (t) - X, (t) _ ) ) )
e Y, D, (t)- (1+r) - DO, () + D, (t) - DO, (1) 3)

+kLa.l(Q air.l(t)) ' (Domax.l - Dol (t))

et 20,0 (1) X0~ D) X100 @
0=t L ) ©)

K, +S,(t) Ky, +DO(t)

With:
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) V
Dl(t):\% ) rler Vlva'l
a.l Qin s.l

The function k,(Q,; (t))is the oxygen transfer and depends on the aeration actuating

system and sludge conditions. It is assumed as:

KLa 1(t) = 21Qair.1(t) + 1 (6)
The resulting input-output model

dDO, _ Ky, -4(t)- X, (1)
T Y =D, (t)- (+r)- DO, (1) + D,(t) - DO, (1) @)

(4 Qyir 1 () +6,) - (DO, — DO,(1))

Substitute D,(t)and g (t) into (7)

Q _ . s® DO
Dl(t) = Va_l ) ,Ltl(t) = Hmax1 Ks_l + Sl(t) KDO.l + Dol(t)

Rewriting (7)

dDo, |, Q, Koy X, (t) S, (t) DO, (1)
Tl (=S (]: S5)-DO. (t) — oL 1/, . .
dt (va.l () +6)-DOW Y, ™K S0 Koo, + DO (8)

+D1 (t) ' DOin (t) + (al ’ (Domax.l - Dol(t) ' Qair.l(t)) + 51 ' Domax.l

As the term D,(t)- DO, (t) is small it is neglected.

dDO,  Q, Koz X, (1) S, (t) DO, (t)
T (i (1. S5)-DO, (1) — —9L 137, . .
dt (va.l () +2) DO Y, ™K+, Koo, + DO (9)

+(al ' (Domaxi - Dol (t) ' Qair.l(t)) + 51 ’ Domax.l

Rewriting (9)
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dDO,

= _ap.l(t) DO,(t) - Cp.l(t) f(DO,(1)) + bp,l(t)Qair.l(t) +d p.1 (10)

_Qin@+n)

a
p.1
Va.l

+o

Cop= KoaX1(t) Hmax151(t)
P i Kep+5(t)

bp.l = 01(DOpax.1 — DO (1))
d pl= 61DOpmax .1

Model Reference Dynamics equation as

dDom.ref A1

m =8y 100 ref 1(t) + bm.lDolrlef (t) (11)

The affine model reference adaptive control law is applied as

Quis (07850, (1DOL() +,, (0 F(DOL(0) + 8,5 (DO} (0~ % et (12)

Closing loop by (10)

dDO,
dt

= ~(85.(0) b, (0800, ()DO,(1) ~(¢,,(0) b, ., F(DO,M) (15
+B,,(Da,.. DO (1)

and

—(@,1 (1) =, 1 (t) Ape, ()= -2,
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~(,() by, a;, (1))=0

bp.l(t) aDolref (t)zbm.l

A

AN
where agg,(t), @4(t) and aDOlref are the ideal parameters.

As the values of b, ;and b, (t) are known the parameter aD;re, (t) can be determined

on-line from available data. The resulting control law reads:

Quir1(t) =250, (1) DO, (1) + 2, , () f (DO, (1))
+ & Dolref (t) - %
bp.l(t) bpl(t)

The corresponding closed-loop dynamics reads:

% - _(ap'l(t) - bp-l(t)aDo.l(t)) DOl ()
_ (Cp_l(t) - prlafAl(t)) f (Dol(t))
bm.l ref
+m&0%ADDq ()

The error between DO and DOm.ref,

el(t) = Dol(t) - Dom.ref 1 (t)

The parameter adaption laws.

daDol

dt = —77z0ne1.161 (1) DOy (1)
daf1
gt ~7z0ne1.261 (1) F (DO, (1))

(14)

(15)

(16)

(17)

(18)
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The three bioreactors in single input and output model

d[;to L=-a,,(t)DO,(t) ¢, (1) f (DO, (1) +b,,(1)Qy (D +d,: (1)

dI(Dth2 =-a,, (t)DO,(t) - Cp2 (t) £ (DO, (1)) + bp-2 (Quir, () +d p2 @)

d[(;?3 =—8,3 (t)DO,(t) - Coa (t) f (DO, (1)) + bp-3 ()Quirs(t) +d ps (3)

The resulting input-output model. Rewriting (1, 2, 3)
dDO, f
o (DO, (1) —c,,; () F(DO; (1)) +by; (OQyr (1) +d; (4)

_Qin@d+n) +5

api
P Va.i

o . = KoiXi(t) Hmax.iSi(t)
P K+ 5i()

bp i = @ (DOmay j — DG; (1))
d p.i = 5iDOmax i

Where
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i=1 2, 3

Model Reference Dynamics equation as

dI:)Om.ref.j _

f
at —8m, j DO ref . j (t) + by | DO;:e (t) ©)

Where

j=1 2, 3

The affine model reference adaptive control law is applied as

Que (1780, (1)DO, )+, (1) (DO, (1) + 2, (VDO () - > O(”Ea)x"k ©)

Where
k=1 2, 3.

Closing loop by (4)

T = (8 (0B, (D60, (DO, )~ (0, (0D, 2, () (DO, ) o

() DOy (t)

+b,,(t)a

DO
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Where

n=1 2, 3.
and

~(@,,(t)=b, (1) ago, (D)=—a,,
—(c,,(t) -, a; ,(£))=0

IRGENMOE

A

where ayg (1), a:.n(t) and & are the ideal parameters.

As the values of by and by (t)are known the parameter &__. (t) can be determined

on-line from available data. The resulting control law reads:

Quiri (1)=ap0,; (1)DO; (1) +a, ;(t) f (DO,(1))

+ bm.i Doiref (t) _ 5| Domax.i (8)

bp.i (t) bp.i (t)

Where i =1, 2, 3

The corresponding closed-loop dynamics reads:
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dDO;
L = _(ap.j t)- bp.j (t)aDO-i (®) Doj ©

dt
—(c,; (1) =b, ;a; ; (1) F (DO, (1)) (©)
b, ()" por 1)
> bp.j (t) !
Where j=1, 2, 3
The error between DO; and DOm.ref;
ek (t) = DO| (t) - Dom.ref . (t) (8)

Where k=1, 2, 3;i=1 2, 3;j=1 2, 3.

Adaptive control Law

daDon

at = ~720ne.2.18 (1) DG; (1) 9)
da fi

e ~7z0ne.2.28 (1) T (DG; (1)) (10)

Where. n=1, 2, 3:;z=1 2, 3:k=1 2, 3:i=1 2, 3.

The diagram of supervisor
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Supervisor — Cost Function

a_S
Control Control Control
System Svstem Svstem D03
Qafr‘l Qaf.'r.E Qafrj
h 4 h 4
DO Do DO.2 DO.3
4’ Plant.1 —’ Plant.2 —’ Plant.3 }

The purpose of supervisor function is to guarantee meting the constraint (12)

g :
2 QM ()< Q) (12)
i=1

where QPeVRr (t) js generated by supervisor.

air.i
max
Qair (t) is the current aeration system capacity limit.

(Max limit Q,;, (t) value for provide total 3 aeration zones)

| is the number of aeration zone,

Fuzzy rule :

225



LIE Y0, (S Q (),

Then  QiFT"™ (=Qui (V)

2. 16 V() isbig, and Q. () > Q™)

Then Qur(y=—ar O q
ZQair.i (t)

3. 1tV issmall,and 3°Q,,,0)>Q™() ,

i=1

Then Q;jrp.ie.zviosr (t):Qair.i (t)
Where the variable v (t) is defined as follow:

V=gt Y &)
= ()

Fuzzy blending is described as follow:

Z Ws (V(t)) . Q;:Jréf:‘vmsr (t)

err?ien/iosr (t) _s (14)

> w,(v()

Where n=1, 2, 3

DDMRAC Stability analysis
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Let us consider the Lyapunov function in the equation as follows.

1 1 1
Vi(®) =58 O+ Aapon” (O +5 Aap " (D)

where 1=123,k=123, n=123, i,k and n are the numbers of bioreactors.

Aapg n(t)=apon () —apon (1)

Aag p(t)=as n(t)—as n(t)

where n=1,2,3, and n is the number of bioreactors.

Hence, the derivative of the Lyapunov function is given by the equation:

—d\gt(t) =g, ()& (1) + (@po.n (t) —Apon )(@pon ) —apon (1)) , 1 :

+ (@500 &g nO)@p (1) ~Ap 0 (0) —

Yzone.z.2

€ t)= _(ap.n t)- bp.n (Ha DO.n ®) DO, (t)
—(Cpn(®) —bpr(®as n(1)) F (DO, (1)
+am.n Dom,ref.j (t)

1)

@)
(3)

(4)

()

Now add and subtract the term a,,,DO, (t) on the right-hand side of equation (5.6-4) as

follows:
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V = e(O)-a,£(0)+ (30 (1) ~ 0o (1), (DO()
+(a, () -a, ()b, (1) f (DOV)

+(@gyw (D) =2, ()b, (H)DO™ (1)]

+ (o0 (1) — g (D)(~,2DO(1)) — o (1)) =

+ (@, (1) —ay (D)(~7,ef (D)) — af(t»yi

+ (@ (0~ e (D)(~758D0™ ()~ (D) —
()

V =—a,€%(t) + (2o (t) — a0 (1))b, (1) DO(t)e(t)
+(a, (1) -a, ()b, (1) f (DO(D)e(t)

+ (@ (D -8, (), (DDO™ (Ve(V)

(800 () 200 (D)(7EDO() -2 (t»il

+ (3, (0)-a, (O)(~7.¢ (Do) - af(t))yiz
8y (), (O)(7,EDO™ (1) -, (t))y% o
V= 2,68 () (300 ()~ 0 ()M, () DOWEH(—7,EDO() ~ann () 711}

+(a; (1) -2, (OXb, O T (DOM)e®+((~7.ef (DOM)) -2, (1)) yi}

(@, (-2 ()b, ©)DO™ (De(t)+((~7,eDO™ (1) -4, . (t))yi}
(7)

& (t) =—apm ne(t) _{(ap.n (t)- bp.n (t)apon(t)) —anaDO; (1)
=(Cpn(®) —bpn®as (1) F(DO; (1)
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By substituting (5.5.1-6) and (5.5.1-7) into (5.5-6) yields:

& (t) = —am ne(t) + (apo.n (t) —apo n ())op n () DO; (1)

9
+(agn(t)—as n(t)bp,s (1) F(DO; (1)) ®©)
Applying (5.6-7), (5.5.1-15) and (5.5.1-16) into (5.6-4) yields:
dv:
\gt(t) = _am.nek2 0+
+(apo.n (t) —Apo.n (D){ex ()b () DOy (1) e () DO, (t) —apon (1) , : 1} (10)
+(f (1)~ & n (O)]e O)bpn (1) T (DO (1)) — e (t) f (DO, (1) — ¢ 5 (1) , 2}
zone.z.
vi® <0 (11)
dt
d?v (t
-0 (12)

Consider the stability of the Lyapunov function result employing Barbalat’s Lemma.

d2v; (1)

2 is bounded.
t

If V. (t) has a finite value, as time goes to infinity, then

dv; (t
Then % <0, as time going to infinity.

aDo (t) - a;o (t)
a, (1) -2, (t)

Ap e t)- aDO;\' (t) .
1. are bounded by €

2% is bounded by

3.70727% gre pounded by parameter adaptive law
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