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ABSTRACT 

The population growth correlates with an increase in the volume of wastewater 

generated through daily activities, exacerbating environmental issues. Therefore, 

countries have proposed stricter wastewater purification and discharge standards. 

Consequently, the control community is increasingly interested in researching the 

efficacy and discharge standards of wastewater treatment plants. This thesis proposes 

designing different architectures for activated sludge wastewater treatments to address 

various wastewater requirements. Additionally, it suggests designing and applying 

advanced control systems to enhance the efficiency of wastewater treatment and ensure 

compliance with emission quality standards. 

Various challenges are encountered during the design and operation of activated sludge 

wastewater treatment plants. The architecture of these plants must accommodate the 

required wastewater volume while considering space limitations for construction. 

Moreover, the designs must prioritize ease of maintenance and durability. 

Due to the complexity of activated sludge wastewater treatment plants, which are highly 

nonlinear systems with many unknown and time-varying plant parameters, designing 

control systems that adjust global plant parameters using local constraints to achieve 

efficient wastewater purification is challenging. 
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For small wastewater treatment requirements, a single aeration system architecture for 

activated sludge treatment was designed. An advanced adaptive control system was 

developed and applied to this architecture. The simulation results of the wastewater 

purification process were satisfactory. 

During the activated sludge wastewater treatment process, unexpected situations may 

arise that affect the quality of sewage purification and energy consumption. For instance, 

if the air supply exceeds the required amount in the aeration system, the discharged 

water quality may not meet the desired standard. To address this issue, a new adaptive 

control system was designed and applied in the sewage treatment of a single air aeration 

system. Experimental results demonstrated that the new adaptive control system is 

efficient in resolving this issue. 

For large wastewater treatment requirements, an aeration system with three settlement 

tanks was designed for the activated sludge process. A supervised decentralized 

adaptive control system was developed and applied to this architecture. The simulation 

results were satisfactory. 

The architecture of the activated sludge wastewater treatment plant was designed based 

on wastewater purification volume requirements. The activated sludge treatment 

mathematical model was based on mass balance and ion kinetic energy conservation. 
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The advanced adaptive control systems were designed using global plant parameters 

and local mathematical model limitations. 

The designed architecture of the activated sludge wastewater treatment plant, along 

with the corresponding adaptive control system, effectively addressed the wastewater 

treatment challenges mentioned. 
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Chapter 1 Introduction 

 

1.1 Background  

During the development of industrialization and urbanization, wastewater discharge 

and treatment have had an increasing impact on human life. Therefore, researchers are 

required to find the best ways to solve this issue. The activated sludge method for 

addressing wastewater discharges has garnered researchers' attention. Because the 

activated sludge wastewater treatment plant uses biological treatment approaches, it 

does not produce secondary pollutants and has a simple architecture. Moreover, a 

straightforward control system can be applied to achieve the goal of wastewater 

purification. 

Wastewater contains a large volume of metals, toxic microorganisms, and bacteria. The 

activated sludge wastewater purification method removes these harmful substances 

through the growth and development of microorganisms. There are corresponding 

purification structures and control systems to eliminate different harmful substances. 

The activated sludge wastewater treatment process involves the degradation of organic 

and inorganic matter by microorganisms, converting waste into carbon dioxide and 

biomass. The process is designed to purify wastewater. Organic matter is a compound 
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containing carbon and hydrogen, which provides energy and a carbon source for 

microorganisms. Nutrients such as nitrogen and phosphorus support the basic biomass 

of microorganisms and promote their degradation activity. 

In previous activated sludge wastewater industries, individual components were used 

to perform specific purification functions, such as primary filtration, aeration systems, 

and sedimentation components. During the development of wastewater purification 

technology, modular components have replaced individual components to complete the 

wastewater purification process, which can save construction space and time. Technical 

issues will be encountered in the process of modular design and application. For 

example, the modular structure must effectively respond to changes in wastewater 

volume and chemical composition through standardized industrial units while saving 

construction space to achieve the standard for discharging clean water after wastewater 

purification. 

The activated sludge wastewater treatment plant is widely used for city wastewater, 

domestic wastewater, and industrial wastewater. However, achieving a balance 

between saving building space, reducing energy consumption, and maintaining 

efficient purification without advanced control system applications remains a 

challenging issue. Therefore, the structural design of activated sludge wastewater 

treatment plants and the application of control systems continue to pose challenges. 
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1.1.1 Activated sludge wastewater treatment manufactory components 

The activated sludge wastewater treatment manufactory can be divided into three 

components depending on the function of the purification wastewater. The first 

component is a primary treatment plant, the second component is a secondary treatment 

plant, and the last component is a tertiary treatment plant, as shown in Figure 1-1. 

  

First treatment 

Plant 

Tertiary 

Wastewater

Treatment

Plant

Primary Wastewater

 Treatment 

Plant

Secondary Wastewater

Treatment 

Plant 

Sewage Inflow

Clean Water Flow Out

Sludge Flow OutSeparate Solid

Sewage Sewage

 

Figure 1- 1 The basic structure of activated sludge wastewater treatment plant 

The primary wastewater treatment equipment includes collection tanks and primary 

filtration tanks. In this stage, sewage is collected, and larger particles are filtered out 

using pipes and hydraulic devices. The main function of primary wastewater treatment 

is to filter and initially physically precipitate large particles of impurities. After this 

process, the wastewater flows into secondary treatment. 

The secondary treatment of activated sludge is to achieve the purpose of sewage 

purification by promoting the growth and degradation of microorganisms in sewage 
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through dissolved oxygen. The growth and degradation of organic microorganisms 

include microbial adsorption, oxygen ion replacement reactions, and oxidation 

reactions. Biochemical reactions within different microbial populations occur on 

varying time scales. 

Tertiary wastewater treatment uses gravity to settle the harmful substances of the 

flocculent to the bottom of the sedimentation tank. This sedimentation process is the 

process of separating the clean water and the sludge. The clean water is either 

discharged or further settled, while the new sludge is recycled, and the old sludge is 

discharged. 

Wastewater purification plants use integrated components and advanced control 

systems to address the constraints of construction area and purification efficiency. New 

components include miniaturized integrated aeration systems, variable frequency 

blowers, and integrated biochemical reaction tanks. The focus of this paper is integrated 

aeration systems and biochemical reaction tanks. In terms of control systems, advanced 

adaptive control systems will be used to adjust dissolved oxygen concentrations to solve 

efficient and stable sewage purification processes. Since the time scales of biochemical 

reactions are different and involve many unknown reaction parameters, merging or 

reorganizing these treatment stages poses challenges. Therefore, designing an efficient 

control system is a challenge. 
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1.1.2 Activated wastewater treatment purification advanced control system 

The basic principle of the activated sludge sewage treatment purification method is to 

use the replacement and oxidation of dissolved oxygen to support the growth of organic 

microorganisms and remove harmful substances. The biochemical reactions during 

microbial growth occur on different time scales; therefore, the concentration of 

dissolved oxygen is crucial and directly affects the efficiency of sewage purification. 

In earlier control systems, the concentration of dissolved oxygen was adjusted using 

only simple control logic due to the hardware constraints of the detection and 

purification systems. With advancements in automation and digitalization, modern 

control systems now integrate more advanced hardware and technologies. In this study, 

we introduce an adaptive control system based on artificial intelligence to enhance the 

efficiency of sewage treatment plants with various architectures while reducing energy 

consumption. 
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1.2 Motivations 

Wastewater contains harmful microorganisms, including nitrogen compounds, 

phosphorus compounds, heavy metals, bacteria, and viruses. Therefore, the ability and 

efficiency of sewage purification are crucial. 

Activated sludge wastewater treatment is an organic purification method that helps 

reduce secondary environmental pollution. Activated sludge wastewater purification 

removes harmful substances by utilizing the decomposition and degradation of 

microorganisms. Dissolved oxygen is an indispensable chemical substance in the 

growth of organic microorganisms. The concentration of dissolved oxygen serves not 

only as a criterion for assessing the efficiency of sewage purification but also as a 

measure of energy consumption. 

When the dissolved oxygen concentration is extremely high, it can accelerate the 

growth of microorganisms, but it can also inhibit microbial degradation. On the 

contrary, when the dissolved oxygen concentration is low, it will lead to a decrease in 

the rate of microbial oxidation reactions, resulting in excessive growth of algae and 

bacteria, thereby changing the structure of microorganisms in the natural environment. 

Therefore, the regulation of dissolved oxygen concentration is crucial. 

The structure and control system of the activated sludge wastewater treatment 

manufactory are both important factors that directly affect the efficiency of wastewater 
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purification. The size and number of aeration system components in a wastewater 

treatment plant can affect the distribution and transport efficiency of dissolved oxygen 

and even cause the collapse of the purification system. 

In addition, advanced control systems are essential to improve the balance between 

purification efficiency and energy consumption. The application of unstable control 

systems during the operation of the wastewater purification factory will lead to an 

increase in energy consumption during the purification process and even cause the 

collapse of the purification process. Therefore, advanced dissolved oxygen 

concentration control systems have attracted attention from the control community. 

Activated sludge wastewater treatment manufactories with typical architecture cannot 

efficiently purify various types and volumes of wastewater within a limited space. In 

this thesis, we integrate the second and third wastewater treatment components into one 

comprehensive purification functional component to solve the specific wastewater 

purification requirements. 

It is crucial to design a suitable activated sludge sewage treatment plant structure and 

advanced control system according to the sewage treatment requirements of different 

scales and chemical characteristics. Advanced control systems can help improve 

wastewater purification efficiency. In the activated sludge sewage purification process, 

there are many unknown parameters. These uncertain system parameters increase the 
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difficulty and stability of designing advanced control systems. Maintaining a suitable 

dissolved oxygen concentration in the aeration tank is the only way to increase the 

efficiency of organic matter degradation and the rate of nitrification. In addition, the 

advantage control system can effectively dissolve and regulate, prevent the occurrence 

of anaerobic bacteria, and inhibit the growth of filamentous bacteria. It can also enhance 

the responsiveness of the purification system to load fluctuations, thereby achieving 

efficient, stable operation and the anti-interference capabilities of activated sludge 

sewage purification. 

This study designs the structure and components of an activated sludge wastewater 

treatment plant based on different construction and wastewater volume constraints. 

Based on these constraints, an advanced adaptive control system is designed and 

implemented to achieve real-time adjustment of the blower. The control system ensures 

that the microorganisms receive the appropriate dissolved oxygen concentration during 

growth and degradation, thereby promoting an efficient and energy-saving wastewater 

purification process. 

1.3 Aims and objectives 

This study aims to address the requirements of building space limitations by designing 

the structure of a wastewater treatment facility and designing an advanced adaptive 

control system to achieve efficient and stable operation. The activated sludge 
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wastewater purification system must be able to cope with unpredictable external and 

internal disturbances while reducing energy consumption accordingly. 

According to the constraints of the sewage treatment plant, an active sewage treatment 

plant was built, and an advanced control system was designed and implemented. This 

enables real-time monitoring and regulation of dissolved oxygen concentration in the 

biochemical reaction tank. The purpose of the dissolved oxygen control system is to 

increase the degradation rate of microorganisms and improve the adsorption capacity 

of oxygen atoms by optimizing the proportion of dissolved oxygen in the biochemical 

reaction process. To meet the efficient nutrient removal. In addition, energy-saving 

requirements are achieved by accurately controlling the oxygen supply system. 

The objectives can be summarized as follows: 

1) Under the constraints of purifying a small amount of sewage and limited 

building area in the sewage treatment plant, an activated sludge sewage 

treatment plant is designed, composed of a biochemical reaction unit, a 

sedimentation unit, and an aeration unit. The sewage purification plant operates 

under the ideal conditions of the blower. Based on this new structure and 

operating state, a direct model reference adaptive control system is designed to 

adjust the dissolved oxygen concentration in the biochemical reaction tank. This 

control system needs to keep the dissolved oxygen concentration in the 
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biochemical reaction tank at an optimal level to support the degradation, 

decomposition, and precipitation processes of organic microorganisms, thereby 

achieving stable and efficient operation of the activated sludge sewage 

purification process. At the same time, it aims to achieve a balance between 

purification efficiency and energy consumption. 

2) According to the structure of the existing activated sludge sewage purification 

plant, we assume that the blower is working in an overloaded state, which leads 

to instability and even collapse of the sewage purification system. Therefore, it 

is necessary to design and implement a control system that can filter out excess 

air and adjust the dissolved oxygen concentration adaptively. When designing a 

new adaptive control system, its ability to filter out excess air and adjust the 

dissolved oxygen concentration must be considered to ensure that the 

decomposition, degradation, and precipitation of microorganisms remain in the 

best state. An adaptive control system should also have the ability to resist 

uncertain interference to achieve stable and efficient operation of the sewage 

purification process. 

3) Assume that the wastewater treatment manufactory needs to purify a large 

amount of wastewater while meeting the constraint of a small building area. To 

satisfy these two constraints, the structure of the activated sludge wastewater 

treatment manufactory is designed to be segmented, including three aeration 
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units and one sedimentation unit. It will use an air supplier to provide an 

appropriate proportion of dissolved oxygen concentration to the three aeration 

units in series to smoothly complete the wastewater purification process. Based 

on the structure of the wastewater purification manufactory, a supervised fuzzy 

logic direct model reference adaptive control system is designed and applied to 

adjust the dissolved oxygen concentration during the biochemical reaction 

process to meet the air supply needs of each aeration unit. This ensures that the 

microorganisms are always in the best active state, thereby improving the 

stability, adaptability, and purification rate of the wastewater purification 

process. 

 

 

1.4 Contributions 

The architecture of the activated sludge wastewater treatment manufactory was 

designed according to the building area restrictions and the requirements for the volume 

of wastewater to be purified. Through a detailed analysis of the biochemical 

decomposition and degradation processes of wastewater by activated sludge, an 

adaptive control system was designed and applied to achieve stable operation of the 

wastewater purification process in both time and spatial dimensions. 
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The ASWWTP purification process is a complex system with many uncertain 

manufacturing parameters, multiple time-scale parameters, and unmeasurable 

parameters throughout the entire process. The mathematical model of the ASWWTP is 

established based on mass balance and ion conservation of kinetic energy to simulate 

the entire wastewater purification process using disciplines such as fluid mechanics, 

biology, chemical engineering, and gravity. This mathematical model is used to 

describe the wastewater purification process under different building structures and 

operating conditions. By considering more wastewater purification process parameters 

in two-dimensional space, the accuracy and predictive ability of the mathematical 

model can be improved. Therefore, we can design an accurate and stable control system 

according to different manufacturing architectures and operating conditions 

According to the construction architecture and operating conditions of different 

wastewater purification manufactories, this study proposes an adaptive control system 

strategy based on real-time monitoring and prediction of wastewater purification 

process parameters, which are used to adjust the dissolved oxygen concentration in time 

and space as conditions vary. Different adaptive control systems are designed to adjust 

the dissolved oxygen concentration involved in biochemical reactions in two 

dimensions, thereby improving the stability and efficiency of wastewater purification. 

Since dissolved oxygen is the only catalyst that participates in chemical and biological 

reactions to remove pollutants from wastewater, the effectiveness, stability, and anti-
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interference ability of the adaptive control system are confirmed by MATLAB 

simulation. 

These adaptive control systems enable the detection and prediction of the wastewater 

purification process under different operating conditions in real time. Dynamic 

adjustment of the dissolved oxygen concentration in the aeration system allows 

microorganisms to grow in their optimal state, thereby improving the degradation rate 

of organic matter and achieving the stability, efficiency, and anti-interference 

capabilities of the wastewater purification manufactory while reducing the energy 

consumption of the wastewater purification plant's operation. 

 

1.5 Thesis outlines 

The content of each chapter can be summarized as follows: 

Chapter 2: The components and functions of each wastewater purification unit, as well 

as the energy consumption required by these components, are reviewed. Next, the 

biochemical reactions involved in the growth of microorganisms under different 

wastewater purification operating conditions are examined in detail. The catalytic effect 

of dissolved oxygen in the ASWWTP purification process and the effects of different 

dissolved oxygen concentrations on the decomposition, degradation, and precipitation 
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processes of organic matter at various time points are discussed. The description of 

biochemical reactions and physical phenomena involved in the wastewater purification 

process through mathematics is also reviewed. These mathematical models are all based 

on mass balance and ion conservation of kinetic energy. Finally, this chapter reviews 

the basic theories of adaptive control and fuzzy control, along with their optimization 

methods. 

Chapter 3: The architecture of the ASWWTP is designed based on the wastewater 

volume requirements, manufacturing area limitations, and stability. It is also necessary 

to consider the stability and purification efficiency of the control system, as well as the 

anti-interference requirements of its purification system. The manufactory architecture 

consists of a bioreactor unit, a blower, and a sedimentation unit. The blower is assumed 

to operate under ideal conditions. Subsequently, the mathematical model of the 

ASWWTP is established to describe the wastewater purification process. This 

mathematical model is based on the principles of mass balance and the conservation of 

ionic kinetic energy, and it is implemented by modifying the Activated Sludge Model 

2D. 

Based on the finite parameters derived from the mathematical model of the ASWWTP, 

a direct model reference adaptive control system for regulating dissolved oxygen 

concentration is designed. Subsequently, the global parameters of the ASWWTP are 

used to achieve a stable control state, and the adaptive controller parameters are 
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adjusted through MATLAB simulation to meet the design requirements of the control 

system. The simulation results confirm the stability, effectiveness, and anti-interference 

ability of the ASWWTP adaptive control system. The stability of the controller is 

further verified using the Lyapunov function. 

Chapter 4: In the existing ASWWTP manufactory architectures, we assume that the 

blower is overproducing and delivering an excess volume of air, which can lead to 

excessive energy consumption and may even cause the purification system to collapse. 

Considering the specific operating status of the ASWWTP, a direct model reference 

adaptive control system with a filtering function is designed. The adaptive control 

parameters are derived from the finite parameters of the wastewater purification process. 

The adaptive control system is then applied to the global parameter mathematical model 

of the ASWWTP to achieve a stable wastewater purification process. The parameters 

of the adaptive filtering control system are adjusted and verified through MATLAB 

simulation. The simulation results demonstrate the adaptive control system’s ability to 

filter excess air volume, as well as its stability and anti-interference capabilities. The 

stability of the adaptive control system is verified using the Lyapunov function. 

Chapter 5: In this chapter, a different ASWWTP manufactory architecture is designed 

compared to those in Chapters 3 and 4 to meet the constraints of large-scale wastewater 

treatment while minimizing building area usage. The mathematical model describing 
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the operation of the ASWWTP is formed by modifying the Activated Sludge Model 2D 

based on the principles of mass balance and the conservation of ionic kinetic energy. 

The supervised fuzzy logic - direct model reference adaptive controller design is based 

on the specific parameters of a limited ASWWTP. The control system is applied to the 

ASWWTP with global variable parameters. The adaptive control parameters are 

adjusted through MATLAB simulations to meet the controller design requirements, and 

the fuzzy logic is optimized through a genetic algorithm. The simulation results confirm 

that the control system can handle varying flows of wastewater, and it is stable, efficient, 

and possesses strong anti-interference capabilities. The stability of the two-layer control 

system is further confirmed by using the Lyapunov function. 

Chapter 6: The research is summarized, and future research topics are anticipated. 
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Chapter 2 Literature Review 

 

2.1 Overview of Activated Sludge Wastewater Treatment 

Plant and Application 

 

2.1.1 History of the development of activated sludge wastewater treatment Plant 

The activated sludge process is one of the wastewater purification methods. Its 

purification principle is to continuously introduce air into the wastewater so that 

microorganisms form sludge on suspended organic particles. The sludge contains 

microorganisms and bacteria. The activated sludge purification method was invented 

by Edward Arden and William Lockett in 1914 [1, 2]. With increasingly stringent 

wastewater purification and discharge standards, the sewage treatment method has 

evolved from a single method of continuously injecting air into wastewater to form 

flocs and then precipitating to form sludge to the current method of removing chemical 

pollutants. Now consider removing nutrients such as nitrogen and phosphorus to ensure 

that the discharged clean water will not be over eutrophic. Although the existing sludge 

treatment methods include the high negative pressure activated sludge method, delayed 
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gas explosion method, and activated sludge method, it is still a challenge for the design 

of control systems to maintain a stable and efficient purification process. 

 

2.1.2 Basic working principles of ASWWTPs  

Dissolved oxygen is an important factor that directly affects the efficiency and energy 

consumption of sewage purification. The concentration of dissolved oxygen determines 

the activity of microorganisms in the aeration tank. In addition, it is also the key to 

determining the degradation rate of organic microorganisms. The concentration of 

dissolved oxygen in the aeration tank should be maintained in a reasonable range of 2 

mg/l to 4 mg/l [3]. The mixed liquid will separate the sludge and clean water in the 

sedimentation tank. The separation process may take several hours to several days, 

depending on the different chemical components of the wastewater [4]. 

In the sewage purification process, the time and proportion of dissolved oxygen 

injection into the aeration tank are crucial. Therefore, the accuracy, response time, and 

robustness of dissolved oxygen concentration control have received attention. The 

control system needs to be able to detect and adjust the dissolved oxygen concentration 

in the aeration tank in real time [5]. It is crucial to monitor the fusion rate of dissolved 

oxygen and organic microorganisms in real time because the fusion rate is the key factor 

in adjusting the blower power [6]. The growth of organic microorganisms in the 
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activated sludge purification plant is closely related to the concentration of dissolved 

oxygen, and dissolved oxygen can determine the growth process of organic 

microorganisms. 

 

2.1.3 Types of ASWWTPs  

In the development of activated sludge sewage purification technology, sewage 

purification methods can be divided into traditional activated sludge methods, delayed 

aeration methods, sequencing batch reactor methods, and membrane bioreactor 

methods [7]. 

The traditional activated sludge method has the characteristics of strong fluidity and 

short aeration time. Compared with other sewage purification methods, only the 

traditional activated sludge purification method uses young sludge return flow, which 

uses the organic microorganisms contained in young sludge to help the growth rate of 

biological populations [8]. This sewage purification method is often used for municipal 

sewage treatment and industrial sewage with high pollutant concentrations. 

The delayed aeration sewage treatment method has the advantage of less sludge 

discharge. However, its aeration time is extremely long. Therefore, this sewage 

purification method is often used in small sewage purification projects in smaller 

communities [9]. 
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The sequencing batch wastewater purification method uses a single container to carry 

out aeration, sedimentation, drainage, sludge removal, and other processes in sequence. 

Although it has the advantage of a small footprint, it has the disadvantage of a long 

purification cycle. Therefore, it is suitable for treating sewage containing highly 

sensitive pollutants. 

The membrane bioreactor wastewater purification method adds membrane filtration to 

the traditional activated sludge method and uses biofilm to further filter the wastewater 

produced by the activated sludge method [10]. Because it can achieve higher water 

quality, but the purification cost is higher, it is usually used in treatment plants with 

strict purification standards. 

For this study, the traditional activated sludge method was selected to solve some 

limitations of wastewater purification. Although this method has advantages such as 

simple maintenance and low energy consumption that other methods do not have, it 

relies heavily on an efficient dissolved oxygen control system. Therefore, the design 

and application of the dissolved oxygen control system must meet strict requirements. 

 

2.1.4 Basic structure of ASWWTP 

The process of decomposition and degradation of organic microorganisms that occurs 

during sewage purification is an important procedure for sewage purification. The 
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process involves various biochemical reaction units and physical components, each of 

which has a specific role and is essential to ensure that sewage is properly treated and 

meets the required discharge standards. Sewage undergoes oxidation and displacement. 

Clean water is produced in the combined process. An activated sludge wastewater 

treatment plant consists of three main treatment units: Primary treatment unit: sewage 

collection tank and primary sedimentation tank. Secondary treatment unit: bioreactor, 

aeration station, and secondary sedimentation tank. Tertiary treatment unit: secondary 

sedimentation tank, clean water outflow, and sludge treatment facility [11, 12]. These 

units are shown in Figure 2-1. 
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Figure 2- 1 The architecture structure of ASWWTP 

 

The wastewater flows into the primary sedimentation tank. The primary sedimentation 

tank uses a screen to physically filter out impurities such as silt and oil. This step is to 

precipitate and remove large impurities, such as heavy metal particles. Next, the sewage 
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flows into the biochemical reaction tank. Next, organic microorganisms decompose 

harmful substances through redox reactions, thereby removing toxic and harmful 

substances from sewage. Finally, the clean water is separated from the sludge in the 

secondary sedimentation tank [13, 14]. 

The aeration station consists of a bioreactor and an air supply system. The bioreactor 

acts as a container for chemical reactions, while the air supply provides the necessary 

oxygen for biodegradation. In addition, the sedimentation tank uses gravity to separate 

clean water from sludge [15, 16]. Clean water is suspended above the tank, while sludge 

settles at the bottom of the tank. Afterwards, the clean water is discharged, while the 

sludge is concentrated, digested, and dried before being discharged into the 

environment. This thesis focuses on the working status of the aeration station to 

improve the purification efficiency of the ASWWTP. 

 

2.1.5 Limitation and challenges in ASWWTP 

There are some constraints in the construction and operation of sewage treatment plants. 

As described in [17], the increasing urban population and the reduction of available 

urban space limit the construction area of sewage treatment plants, which poses a 

challenge to the treatment capacity of sewage treatment plants. In addition, the 

composition of wastewater pollutants has become increasingly diverse, ranging from 
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single organic microorganisms to various chemical elements such as phosphorus and 

nitrogen, as described in [18]. Various internal and external interferences will be 

encountered in the sewage purification process, such as external temperature, humidity, 

and the coupling phenomenon of each microbial population inside, as described in the 

[19]. 

Traditional activated sludge wastewater treatment has the disadvantage of requiring a 

larger aeration system unit, unlike other activated sludge processes. This leads to high 

construction and maintenance costs, and in addition, it has special requirements for the 

control system [20]. The aeration system includes an aeration tank, a sedimentation 

tank, and a blower. This study aims to design an advanced adaptive control system for 

sewage treatment plants to enhance the efficiency and stability of the treatment process. 

In addition, building space limitations need to be considered when designing the 

structure of a sewage treatment plant. In addition, the design of the control system will 

consider energy consumption, focusing on the problem of balancing energy 

consumption and wastewater purification rate. 

According to the characteristics of the activated sludge method, the blower needs to 

continuously supply air to the biochemical reaction tank. This is because dissolved 

oxygen is an essential element for the decomposition and degradation of organic 

microorganisms [21]. The continuous oxygen supply system consumes a lot of energy, 

accounting for 50% to 70% of the total energy consumption. Although the traditional 
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activated sludge method can effectively remove organic microorganisms, it is difficult 

to balance energy consumption and purification efficiency. The use of advanced 

adaptive controllers to dynamically adjust the power of the oxygen supply system to 

obtain the optimal purification efficiency is described in detail in Chapter 3. 

In addition, the traditional sewage purification method also has the problem of sludge 

swelling, leading to a reduction in sedimentation rate when the dissolved oxygen 

concentration in the aeration tank is extremely low [22]. Moreover, if the dissolved 

oxygen concentration is extremely high, foaming problems will occur, resulting in the 

sludge not being able to settle quickly. Therefore, improving the dynamic adjustment 

ability of the dissolved oxygen control system is also a research focus. We will try to 

obtain the optimal online adjustment parameter capability by implementing monitoring 

and analysing system parameters. 

 

2.2 Key Components of Aeration Station:  Air Supplier Unit, 

Bioreaction Unit, and Sedimentation Unit 
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2.2.1 Air Supplier unit 

The principle of sewage purification is to utilize the growth of aerobic microorganisms 

to achieve the degradation of organic pollutants. These microorganisms require 

adequate oxygen for respiration and metabolism [23, 24]. Therefore, maintaining an 

optimal dissolved oxygen concentration is essential for enhancing the efficiency of the 

activity sludge system operation and achieving the desired standards for effluent water 

quality [25]. 

The air supply station provides sufficient air for aerobic microorganisms, ensuring their 

metabolism and reproduction processes. These microorganisms utilize organic matter 

in wastewater as a carbon and energy source, thereby facilitating the decomposition of 

organic pollutants into harmless carbon dioxide and water [26, 27]. Moreover, the air 

supply process also prevents anaerobic conditions under specific circumstances. In 

addition, when the diffuser introduces air into the water, it creates a stirring effect, 

promoting the uniform distribution of activated sludge in the biochemical reaction tank 

[28, 29]. This process effectively prevents sludge settling and clumping. 

Aeration methods can be divided into mechanical aeration, blower aeration, pure 

oxygen aeration, and surface aeration. Compared with other types, blower aeration can 

produce tiny bubbles through diffusers, thereby providing a larger gas-liquid contact 

surface area and promoting efficient oxygen transfer [30]. The blower can be controlled 

by an intelligent system to precisely adjust the air volume to meet different wastewater 
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treatment requirements and changes in wastewater capacity load, thereby reducing 

energy consumption [31]. 

 

2.2.2 Bioreaction unit 

Microbial metabolism refers to the degradation of organic and inorganic matter in the 

bioreactor. The bioreactor must be carefully considered when designing and 

constructing an ASWWTP facility. It requires less space than traditional treatment 

methods, and its operating conditions (such as dissolved oxygen, pH, and temperature) 

are easier to accurately control. The bioreaction tank is capable of treating various types 

and concentrations of wastewater. In addition, the activated sludge wastewater 

purification method is less dependent on chemical catalysts than other treatment 

methods [32, 33]. 

In wastewater, the microorganisms use dissolved oxygen to decompose organic matter 

into carbon dioxide and water, as well as new biomass. The anaerobic zone of the 

bioreactor refers to the specific microorganisms that carry out denitrification and 

biological phosphorus removal [34-36]. The bioreaction tank is the most important 

component of the ASWWTP. Wastewater, oxygen, and young sludge flow into the 

biochemical reaction tank. After that, mix the water flow into the settlement tank.  

There are four types of bioreactors: complete mixing reactor (CMR), plug flow reactor 

(PFR), sequencing batch reactor (SBR), and membrane bioreactor (MBR) [37-39]. The 
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SBR uses a staged approach to purify wastewater. Each stage of water inlet, 

biochemical reaction, and sedimentation operates independently. Precise control over 

the timing and operating conditions of each stage leads to efficient and accurate online 

updating of system parameters [40]. In our experiment, we chose SBR as the bioreactor. 

More details will be discussed later. 

 

2.2.3 Sedimentation unit 

Sedimentation systems are an integral component of the ASWWTP. The separation of 

liquids and solids takes hours or days, using gravity to concentrate the solid sludge. 

This process ensures that the clean water is free of toxic and hazardous substances. 

Depending on the clean water discharge requirements, secondary or tertiary 

sedimentation may be required [41]. 

According to the standards and process requirements for wastewater purification, there 

are four types of sedimentation systems: primary sedimentation tank, secondary 

sedimentation tank, final sedimentation tank, and advection sedimentation tank. In the 

sedimentation tank, the mixed liquid is separated into activated sludge and clear water 

by gravity [42]. Other sedimentation methods can be used according to different 

discharge requirements. In our study, a primary sedimentation device was used in 

Chapter 3. 
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Another function of the sedimentation tank is to separate new activated sludge from 

aged sludge. New activated sludge is circulated to the biochemical reaction tank to 

ensure that the biological treatment process is uninterrupted by the population of 

organic microorganisms. The speed of this cycle depends on various factors, as studied 

in [43]]. As described in [1, 2, 44], new sludge contains microbial populations that have 

adapted to the biochemical treatment environment, so increasing the return of young 

sludge can enhance the adaptability of the microbial community, accelerate microbial 

degradation, and improve the separation efficiency of liquids and solids. Finally, clean 

water and aged sludge are discharged, as shown in Figure 3. 

 

Clear Water
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Figure 2- 2 The settler process in the ASWWTP 

 

 

2.3 Challenges in Mathematical Modelling of ASWWTP 
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2.3.1 Nonlinear behaviour in biological and chemical processes 

The activated sludge wastewater purification process is a very complex and nonlinear 

system. Since the metabolism of microorganisms is nonlinear, the chemical reactions 

are also nonlinear in the microbial metabolism process [45, 46]. Furthermore, the 

metabolism and chemical reactions of these microorganisms occur on different time 

scales and exist in different spatial dimensions. 

As mentioned in [47], the growth rate of organic microorganisms in the metabolic 

process is nonlinear and will be affected by internal and external disturbances, including 

changes in dissolved oxygen concentration and temperature during microbial growth. 

As discussed in [48], the metabolic rate of microorganisms depends on the mixing rate 

of dissolved oxygen and organic microorganisms. In addition, there are coupled 

reactions between their parameters, so chemical reactions will also affect the growth of 

organic microorganisms in both temporal and spatial dimensions. Each microbial 

population has its own biological characteristics, resulting them to compete with each 

other during growth. This competition can either accelerate their growth or inhibit the 

growth of other populations in a short period of time, as mentioned in [49, 50]. When 

the external environment fluctuates greatly, the metabolic rate of microorganisms will 

fluctuate greatly. It is a nonlinear dynamic process, which is demonstrated in [51]. 



47 

 

As mentioned in [52], the sewage purification process involves many chemical 

reactions. According to the characteristics of each chemical reaction, the process and 

results of these chemical reactions will be affected by factors such as temperature and 

pollutant concentration. Therefore, these chemical reactions are highly nonlinear. In 

addition, according to the characteristics of each chemical reaction, the biochemical 

reactions of pollutants in different environments will be saturated and inhibited, as 

studied in [53, 54]. 

In addition, since the growth of microorganisms and chemical reactions are nonlinear, 

the impact of changes in the external environment on the sewage purification system is 

also nonlinear, which is a challenge for describing the sewage purification process using 

mathematical models, as studied in [55]. 

 

2.3.2 Operation of coupled processes and multivariable interactions 

There is a coupling phenomenon between the metabolism of organic microorganisms 

and biochemical reactions in the activated sludge purification process. As mentioned in 

[56], changes in any parameter between them will cause changes in other parameters, 

thereby directly changing and affecting the structure of microbial metabolic processes 

and chemical reactions through various pathways. Therefore, these coupling 

phenomena and the influence between parameters will lead to the enhancement of their 
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nonlinear characteristics and the complexity of dynamics. As demonstrated in [57], the 

activated sludge purification process cannot be described by a simple coupling method, 

and it is necessary to consider the influence of multiple factors on biochemical reactions. 

The activated sludge purification process also involves the phenomenon of mutual 

constraints between physical processes and microbial growth processes. As studied in 

[58], when oxygen enters the biochemical pool and merges with wastewater, the  

connect aera and time between oxygen ions and pollutant ions during the fusion process 

need to be considered because these factors directly affect the activity of organic 

microorganisms. As studied in [59], the amount of oxygen supplied and the cycle in the 

aeration tank will directly affect whether the microorganisms have enough dissolved 

oxygen to promote biochemical reactions. Therefore, when using mathematical models 

to describe the activated sludge purification process, it is necessary to consider the 

effects of multiple time scales and multiple variables on its growth process. 

Since the activated sludge purification system involves the growth and chemical 

reaction processes of various types of organic microorganisms, these processes are 

described by different time-scale parameters, growth state parameters, and required 

chemical reaction environment parameters, such as chemical, physical, biological, 

environmental, and mechanical parameters, as detailed in [60-62]. 
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Therefore, in the complex microbial growth and chemical reaction process, it is 

impossible to describe it with a mathematical model of a single feedback mechanism. 

Multiple mechanisms such as positive feedback and negative feedback need to be 

described at the same time, otherwise the predictability and accuracy of the 

mathematical model will decrease, resulting in a decrease in the performance of the 

subsequent control system, as described in [63]. 

 

2.3.3 Challenges of external disturbances and uncertainties to mathematical 

models 

The oxygen concentration and microbial concentration in organic matter in sewage 

affected by the pollution source and the external environment in the biochemical 

reaction tank. As described in [64, 65], when these parameters change, the 

concentration parameters of organic matter in the biochemical reaction tank will change 

nonlinearly, resulting in periodic changes in the organic load. In addition, these changes 

can also cause the microorganisms to become less active or anaerobic, resulting in a 

decrease in sewage purification capacity, as discussed in [66-68]. The changes in these 

parameters pose a challenge to the accuracy of the mathematical model. 

The changes in chemical composition and concentration fluctuations in sewage are 

based on the source of sewage and external interference [69]. The fluctuations and 
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changes in oxygen concentration and microbial concentration are nonlinear or periodic. 

The composition of factory emissions determines the composition of wastewater. 

Changes in the external natural environment determine the concentration of wastewater 

[70]. For example, excessive rainfall will cause the concentration of pollutants in 

sewage to decrease while high temperatures will cause the concentration of pollutants 

in sewage to increase. Pollutants in sewage include toxic chemical components, organic 

microorganisms, and metal components. Chemical composition and pollutant 

concentrations affect the growth of organic microbial populations in wastewater, and 

these effects can lead to reduced wastewater purification efficiency. The growth process 

of microorganisms is nonlinear. Organic microbial populations compete with each 

other during growth. This relationship is nonlinear, as studied in [71, 72]. 

As external environmental disturbance factors change, the chemical composition and 

concentration of pollutants in wastewater change over time, and this change is nonlinear 

[73]. Chemical components in wastewater, such as nitrogen, phosphorus, potassium, 

can affect the activity of organic matter in a short period of time, which is difficult to 

predict. Therefore, the requirement for the dynamic adjustment capability of 

mathematical models poses a huge challenge, as described in [74, 75]. 

Fluctuations in wastewater flow affect the amount of gas supplied to the bioreactor and 

the rate at which dissolved oxygen combines with organic matter. In addition, these 

fluctuation affects the residence time of dissolved oxygen and wastewater mixing in the 
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sedimentation tank. Furthermore, the effect on microbial growth is nonlinear, as 

mentioned in [76-78]. For example, when the wastewater flow rate fluctuations greatly, 

the oxygen supply system needs to respond quickly to provide a large amount of air. 

such a phenomenon affects the stability of the wastewater purification system. In 

addition, if the oxygen supply system responds extremely slowly, the oxygen supply 

system needs to respond quick to provide a small amount of air. Such a phenomenon 

will cause the sewage purification rate to drop rapidly, as discussed in [79]. 

2.3.4 High-dimensional models and model validation  

The mathematical model of activated sludge has the characteristics of multivariable, 

multi-time, and multi-space scales. It needs to calculate the input of multiple parameters 

at the same time, such as sewage inflow and outflow, sewage composition, oxygen 

content in sewage, input oxygen, concentration of organic microorganisms, 

concentration of each chemical element, concentration of sludge, clean water outflow, 

and return flow of young sludge [80, 81]. These variables are nonlinear, which greatly 

increases the computational complexity and the accuracy of the mathematical model. 

In addition, these variables exist on different temporal and spatial scales, including 

competition among local microbial populations, coupled chemical reactions during 

growth, and global fluid dynamics. These factors require mathematical models to be 
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calculated at different levels, which poses a challenge to the dynamic response and 

regulation capabilities of mathematical models. 

The accuracy of the mathematical model requires long-term data accumulation and 

repeated verification under different environments. Its debugging and optimization 

require continuous debugging of different parameters, such as microbial decomposition 

rate, microbial growth rate, organic microbial oxidation rate, nitrification rate, and 

denitrification rate [82, 83]. The debugging process requires multiple iterations to 

ensure the accuracy and predictability of the mathematical model. 

2.4 Role of Dissolved Oxygen in Wastewater Treatment 

Processes  

 

2.4.1 Importance of dissolved oxygen in biochemical reactions in ASWWTP 

Dissolved oxygen is an essential chemical element in the activated sludge process for 

sewage purification. It is essential for the chemical reaction process that removes 

harmful substances from the environment through biodegradation. Dissolved oxygen is 

a chemical element that promotes the growth and respiration of organic microorganisms, 

as described in [84, 85]. In addition, dissolved oxygen is an indispensable catalyst in 

the nitrification process. When the dissolved oxygen concentration is insufficient, 
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organic microorganisms will undergo anaerobic phenomena, which will lead to a 

decrease in the sewage purification rate, as described in [86]. 

The air supply provides oxygen while the microorganisms perform aerobic respiration. 

Microorganisms use the process of aerobic respiration to break down organic pollutants, 

converting them into carbon dioxide, water, and new cell material, as described in [87]. 

High concentrations of dissolved oxygen can increase the efficiency of microorganisms 

in breaking down organic matter. Conversely, low concentrations of dissolved oxygen 

can turn organic microorganisms into anaerobic microorganisms, as discussed in [88]. 

The chemical formulation for nitrification reaction can be expressed as follows: 

 

4 2 3 22 2NH O NO H O H+ − ++ → + +                                   (2.4.1-1) 

 

Where:  4NH +  represents ammonia nitrogen,  2O  represents oxygen, 3NO−  nitrate, 

2H O  represent water, and H +
represents hydron. 

Dissolved oxygen is an essential biochemical element in the processes of denitrification 

and biological phosphorus removal. Its concentration determines the efficiency of 

denitrification and phosphorus removal, as described in [89]. In the denitrification 

process, dissolved oxygen is a catalyst for nitrification. Nitrifying bacteria require a 



54 

 

high concentration of dissolved oxygen, usually maintained at 1.5-2.5 mg/l, as 

described in [90]. The chemical formulation for denitrification reaction is illustrated as 

follows [91]: 

 

3 2 2 2 22NO CH O H N CO H O− ++ + → + +                            (2.4.1-2) 

Where: 
3NO−  represents nitrate. 2CH O  represents formaldehyde, H +

 represents 

hydron. 2N  represents nitrogen, and 2CO  2H O  represents water. 

During the biochemical reaction of denitrification, the dissolved oxygen concentration 

must be maintained at a high level. As described in [92], nitrifying bacteria convert 

nitrogen into nitrogen gas during the denitrification process, thereby achieving the 

purpose of denitrification.  

Finally, in the biological phosphorus removal process, dissolved oxygen interacts with 

polyphosphate bacteria and absorbs phosphorus into polyphosphate bacteria, thereby 

achieving phosphorus removal, as described in [93]. Its chemical formula is: 

3 3

4 4(wastewater) (intracellular) (stored in PAO cells)PO PO− −−             (2.4.1-3) 

Where: 3

4PO −  is phosphorus, PAO is polyphosphate – accumulating organisms. 
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2.4.2 Dissolved oxygen’s role in nutrient removal and organic matter 

decomposition 

The percentage of the nutrient removal is a standard factor for evaluating wastewater 

discharge. Excessive nutrients remaining in the discharged water can promote the 

overgrowth of algae and other plants, leading to the phenomenon known as algal bloom. 

This disruption of the aquatic ecosystem balance can result in hypoxia in water bodies 

[94]. 

The term ‘nutrient’ refers to the organic carbon, nitrogen, and phosphorus, all of which 

require a series of oxygen-dependent biochemical reactions for removal. The removal 

of organic carbon is crucial to preventing the overgrowth of microorganisms, as carbon 

is a nutrient source for their growth and reproduction. Carbon is the basis for nitrogen 

and phosphorus removal. Therefore, maintaining carbon concentration is necessary in 

wastewater purification.  

First, the removal of organic carbon is divided into two categories: soluble carbon and 

insoluble carbon, both of which react biologically with dissolved oxygen [95, 96]. 

Through metabolic processes promoted by microorganisms, soluble carbon is degraded 

into biomass, carbon dioxide and water; insoluble carbon exists in suspended particles 

in wastewater. This form of carbon is degraded externally into soluble carbon, which is 

absorbed and utilized by microorganisms, further undergoing biological reactions and 
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purifying wastewater. These biochemical processes occur slower than the metabolism 

of soluble carbon. This is an important factor that needs to be considered when 

establishing mathematical models and designing control systems. Soluble carbon is 

oxidized to produce carbon dioxide and biomass, as shown in Figure 2-3. 
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Figure 2- 3 The function of DO in carbon removal 

Secondly, denitrification is essential to prevent eutrophication of water bodies, prevent 

excessive growth of aquatic plants such as algae, reduce odor and corrosion, and 

improve purification effects. Excessive nitrogen content in wastewater will produce 

ammonia gas, causing air pollution. Nitrogen content is one of the criteria for 

wastewater discharge purification. 

Denitrification chemical reactions include aerobic digestion reactions and anoxic 

denitrification reactions. In the aerobic denitrification process, soluble carbon and 

ammonium compounds react biochemically with dissolved oxygen to produce nitrite 

and biomass. At the same time, in the anoxic denitrification process, soluble carbon 
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reacts biochemically with nitrite to produce nitrogen gas and biomass, as shown in 

Figure 2-4. 
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Figure 2- 4 The function of DO in nitrogen removal 

Finally, excessive algae growth, algae death, or decomposition can cause water bodies 

to turn green and emit foul odors because of excessive phosphorus concentrations, 

which leads to a decrease in oxygen content in the water. Biological phosphorus 

removal consists of two steps: the first anaerobic reaction and the second aerobic 

reaction. 

Anaerobic reaction process: 

Carbon-based biomass in the wastewater reacts to form polyhydroxyalkanoates (PHA). 

Next, new biomass converts into polyphosphates (PP). 

Aerobic reaction process: 
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During the aerobic process, dissolved oxygen interacts biologically with PHA and 

soluble phosphates. After these processes, the soluble phosphates are produced, as 

shown in Figure 2-5. The biological nutrient removal model was designed by the 

International Association for Water Quality (IAWQ) [94]. 
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Figure 2- 5 The function of DO in phosphorous removal 

 

As described in [97], the nutrient removal process involves the mass transfer of 

nutrients. During The biochemical reactions of oxidation and degradation include the 

transfer of oxygen ions to organic matter and metals. The process produces gas and 

solid particles; the solid particles settle at the bottom of the primary sedimentation tank, 

while the gas and sludge are discharged simultaneously. In order to meet specific clean 

water discharge standards, the treated water from the primary sedimentation tank 

typically requires further treatment, such as membrane filtration or the addition of 
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chemical agents, before it can be discharged or reused [98]. The rate of biochemical 

reactions is related to the increased gas-liquid and liquid-solid contact areas and the 

oxygen consumption [99]. 

Oxygen is an essential chemical element in the wastewater purification process and 

directly affects the balance between wastewater purification efficiency and energy 

consumption, which usually tend to increase proportionally. Therefore, it is necessary 

to find the most economical and effective way to adjust the oxygen ratio in the 

wastewater purification process through a suitable control system. The appropriate ratio 

of dissolved oxygen concentration to wastewater mixing can enhance the efficiency of 

biochemical reactions [100]. In the biochemical nutrient removal process, each 

biochemical reaction occurs at a different rate, depending on the characteristics of each 

biochemical component [101]. The details of the oxygen transfer function are discussed 

in Chapters 3, 4, and 5. 

 

2.4.3 Influence of dissolved oxygen concentration on energy efficiency in 

wastewater treatment  

In the process of activated sludge wastewater purification, dissolved oxygen is a key 

factor that directly affects the biological growth of organic microorganisms and the 

efficiency of biochemical reactions. Dissolved oxygen is produced by the blower, 
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which consumes the most energy in the sewage purification process. This is because 

only in an environment with high concentrations of dissolved oxygen can the removal 

of organic microorganisms and nutrients be maintained efficiently. Maintaining a high 

concentration of dissolved oxygen requires blowers to continuously produce and output 

air to the biochemical reaction tank, so the blower requires a lot of energy to support its 

continuous operation. This is the most energy-consuming component in the wastewater 

purification process, as discussed in [102]. 

Although high concentrations of dissolved oxygen can ensure efficient sewage 

purification, considering energy consumption, sewage purification plants generally 

adjust dissolved oxygen concentrations within a reasonable range according to sewage 

discharge standards. As mentioned in [103], it is difficult to achieve a balance between 

energy consumption and purification efficiency because their direct relationship is 

nonlinear. As discussed in [104], in sewage purification plants with different sewage 

sources, reducing dissolved oxygen concentrations can improve denitrification 

efficiency and thus reduce energy consumption, which illustrates the feasibility of 

reducing dissolved oxygen. The mathematical model used to describe the sewage 

purification process has strict requirements. 
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2.4.4 Impact of dissolved oxygen control on system performance and stability 

As mentioned in [105], the activity of microorganisms depends on the concentration of 

dissolved oxygen. The dissolved oxygen concentration required by different microbial 

communities to maintain their high growth and high metabolic rates depends on 

different dissolved oxygen concentrations. In the wastewater purification process, 

efficient metabolism and reproduction of single or multiple microbial populations are 

not feasible. Due to the inhibition and inability of other microbial populations to grow, 

as discussed in [106, 107], maintaining a balance in the growth of each biological 

population is one of the key performance factors of the control system. 

The accuracy of the dissolved oxygen concentration control system directly affects the 

sewage purification rate because the decomposition rate of organic microorganisms and 

the efficiency of nitrogen and phosphorus removal depend on the dissolved oxygen 

concentration. In addition, the dissolved oxygen concentrations they require are 

different. As discussed in [108], dissolved oxygen has the effect of increasing the 

efficiency of microbial decomposition at high concentrations. However, at high 

concentrations of dissolved oxygen, the efficiency of denitrification decreases. 

Therefore, the performance and stability of the dissolved oxygen control system affect 

the quality of purified water. 
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As mentioned in [109], current sewage purification plants achieve a balance between 

efficient purification and energy consumption by utilizing adaptive control or artificial 

intelligence control systems to adjust the concentration of dissolved oxygen in real time. 

 

 

2.5 Challenges in Dissolved Oxygen Control System for 

ASWWTP 

2.5.1 Complexity of dissolved oxygen in nonlinear and environments 

As mentioned in [110], the flow of sewage from a sewage treatment plant will change 

due to the influence of the external environment, such as climate change and sewage 

sources. There are sudden and large fluctuations in sewage sources. Since the sewage 

flow is not constant for 24 hours, urban sewage sources are cyclical. As discussed in 

[111], when the sewage inflow increases or decreases in a short period of time, the 

demand for dissolved oxygen changes. If the dissolved oxygen control system cannot 

meet the urgent oxygenation demand, it will lead to a decrease in the degradation rate 

of organic microorganisms or the occurrence of anaerobic conditions. In this case, the 

requirement for predictability and robustness of the dissolved oxygen control system is 

a challenge. As studied in [112], the decomposition of organic microorganisms is 
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affected by multiple factors, leading to rapid growth or growth inhibition. Therefore, it 

poses a challenge to the accuracy of the control system. As described in [113], the 

decomposition of organic microorganisms is affected by a variety of factors, resulting 

in their rapid growth or growth inhibition. Therefore, the requirements for the control 

system are a challenge. 

As described in [114], the oxygen supply system is a nonlinear system. Because it needs 

to consider the amount of sewage flowing in, it also needs to consider the oxygen 

conversion efficiency. When the oxygen conversion efficiency is low, increasing the 

power of the blower does not directly increase the dissolved oxygen concentration 

because the ambient temperature of the chemical reaction must also be considered. The 

nonlinear nature of the oxygen supply system requires precise control of the dissolved 

oxygen levels, especially when sewage flow is high, as discussed in [115]. To ensure 

high dissolved oxygen levels that support microbial growth, blowers often provide extra 

air. However, this increases energy consumption significantly, as mentioned in [116]. 

The formula for calculating the oxygen transfer efficiency is: 

The oxygen transfer modelling in this context is based on the mass balance principle. 

The equation of oxygen mass transfer can be expressed as follows: 

(rate of oxygen transfer)=(mass transfer coefficient)

   (air-water surface area)  (concentration difference)




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Mathematical model for the oxygen mass transfer equation can be formulated as 

follows: 

( )a L satr K a DO DO= −                                     (2.3.5-2) 

Where: satDO and DO  represent the saturation of DO concentration and DO 

concentration, respectively, while LK  and a  are constants representing the air flow 

rate. 

Mathematical model for the nutrient mass transfer equation can be written as: 

( )L N NN K W ACF= −                                       (2.3.5-3) 

Where: N , LK  represents nutrient mass transfer flux and liquid film mass transfer 

coefficient. NW , NACF  represent nutrient concentration in the aqueous phase and 

nutrient concentration in activated sludge flocs. 

The dissolved oxygen required for the growth of microorganisms is nonlinear, as 

mentioned in [117]. According to research in [118], high concentrations of oxygen are 

beneficial for microbial growth, but they result in significant energy consumption. On 

the contrary, extremely low a concentration of oxygen is beneficial for energy 

consumption, but it can lead to incomplete decomposition of microorganisms, resulting 

in a reduced purification rate or the collapse of the control system. 
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As described in [119], the dissolved oxygen control system must be able to predict 

changes in organic microorganism concentrations due to the time delay in supplying 

the oxygen required by these microorganisms. 

 

2.5.2 Energy consumption and efficiency trade-offs in aeration  

As demonstrated in [120], according to the physical principles of sewage purification, 

to provide efficient sewage purification rates, the air supply system will continuously 

generate and supply air to microorganisms, even exceeding the amount of air required 

for microbial growth, so that they can have enough dissolved oxygen to grow. In this 

case, energy consumption is a heavy burden on sewage treatment plants, especially 

when wastewater treatment factories are under high load. As demonstrated in [121], 

excessive dissolved oxygen in the biochemical reaction tank does not accelerate the 

biochemical reaction rate. They can inhibit some biochemical reactions, like 

denitrification [122]. According to biological principles, organic microorganisms can 

only achieve the best growth rate under an appropriate percentage of dissolved oxygen 

conditions. Therefore, providing excessive dissolved oxygen to microorganisms to 

increase their growth rate is not possible, as it will inhibit their growth [123].  

In activated sludge wastewater purification plants, the air supply system is the 

component with the highest energy consumption, accounting for 50% to 70% of the 
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total energy consumption, as mentioned in [124]. To reduce energy consumption while 

ensuring high purification efficiency, it is necessary to adjust the percentage of 

dissolved oxygen in the biochemical reaction very accurately and quickly to strike a 

balance between energy consumption and high purification rate. However, due to the 

coupling phenomenon between microbial growth and chemical reactions, the balance 

between energy consumption and a high purification rate is a challenge for the control 

system [125]. 

As described in [126], the dissolved oxygen concentration standard in the biochemical 

reaction tank is determined by the sewage inflow, the clean water effluent standard, and 

the microbial concentration of the sewage treatment plant, all of which are time-varying 

and nonlinear. According to the principle of biochemical reaction, the dissolved oxygen 

concentration ranges from 1.5 to 2.0 mg/l. As shown in [127], reducing the power and 

energy consumption of the blower can help reduce the ineffective dissolved oxygen in 

the biochemical reaction tank. Ineffective dissolved oxygen refers to the dissolved 

oxygen that is unevenly distributed in the biochemical reaction tank. In addition, by 

real-time monitoring of the sewage inflow, the MPI-Fuzzy control system with strong 

predictive ability is used to predict and provide dissolved oxygen, which is then stirred 

in the biochemical reaction tank to make the dissolved oxygen evenly distributed in the 

biochemical reaction tank so that the dissolved oxygen is fully combined with organic 

microorganisms to obtain the best microbial growth rate, as described in [128]. 
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The dissolved oxygen concentration can be adjusted in the biochemical reaction tank 

by zoning, but the requirements for factory hardware are relatively high, as discussed 

in [129]. In addition, an intermittent blower can be used to generate and transport air to 

the biochemical reaction tank to provide the dissolved oxygen required by 

microorganisms and support the efficient growth of organic microorganisms, as 

mentioned in [130]. 

When balancing energy consumption and purification efficiency, it is necessary to 

consider not only the coupled response in the microbial demand for dissolved oxygen, 

but also the interfering factors that affect the sewage purification efficiency, such as 

weather, temperature, and rainfall, as discussed in [131]. 

 

2.5.3 Robustness and real-time control challenges  

As described in [132], during the sewage purification process, the concentration of 

dissolved oxygen is subject to unpredictable external disturbances. These disturbances 

have irreversible effects on the sewage composition and flow rate. In addition, it poses 

a challenge to the robustness of the control system. These disturbances include 

temperature, rainfall, and seasonal water quality changes. Temperature can affect the 

activity of organic microorganisms, which depends on the biological characteristics of 

different microorganisms. The activity criteria for each microbial population are 
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different, as described in [133]. Sewage inflow depends on industrial emission 

standards and rainfall, as mentioned in [134]. Seasonal changes are the factors affecting 

sewage flow. For example, during the rainy season, the concentration of organic 

microorganisms decreases, while in the dry season, it increases, as described in [135]. 

Based on the impact of these uncertainties on the sewage purification rate, these 

influences pose a challenge to the robustness of the dissolved oxygen control system. 

According to the principle of adaptive control, it can make real-time predictions and 

collect data based on external interference. Dissolve oxygen control parameters are 

adjusted in real time based on external disturbances, ensuring the stable operation of 

sewage purification. 

As described in [136], the need to monitor and adjust the operating parameters of 

activated sludge wastewater treatment plants in real time poses challenges to sensor 

performance and control system response speed. Sensor performance refers to the 

accuracy and reliability of detection, as well as the speed and error magnitude of data 

acquisition. The control system must handle data transmission delays and respond 

quickly to maintain effective operation. Therefore, advanced dissolved oxygen control 

systems are essential. As described in [137], an MPI controller is used to predict future 

wastewater treatment system parameters and adjust dissolved oxygen concentration to 

achieve efficient wastewater treatment. However, the results show that the accumulated 
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error of the MPI dissolved oxygen control system is unacceptable, which impairs the 

stability of the control system [138]. 

As described in [139], the dissolved oxygen control system has the ability to resist 

external environmental disturbances and changes in sewage load while achieving data 

optimization to improve purification efficiency and system stability. The design of the 

adaptive controller must consider the problem of regulating dissolved oxygen while 

also considering resistance to external and internal disturbances in the purification 

system; however, when the control parameters are adjusted quickly, the accumulated 

superposition errors will cause the control system to be unstable. Chapters 3, 4, and 5 

provide detailed solutions for various sewage purification plants. 

 

2.6 Advanced Control Strategies for Dissolved Oxygen in 

ASWWTP 

2.6.1 Traditional control methods: MPID and NMPC  

As discussed in [140], activated sludge wastewater treatment plants use an MPI control 

system to regulate dissolved oxygen concentration. However, this control system has 

insufficient regulation accuracy, slow response speed, and high computing ability 
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requirements. As described in [141], the MPI controller also has difficulty handling 

system delays and lacks adaptive capabilities. 

As described in [142], activated sludge wastewater treatment plants use NMPC control 

systems to regulate dissolved oxygen concentration. The predictive capability of the 

NMPC controller is limited, and it requires the mathematical model to be highly 

accurate. As mentioned in [143], NMPC is not suitable for regulating dissolved oxygen 

concentration because its calculation is very complicated, and its real-time adjustment 

capability is limited. It is unable to meet the requirements for real-time dissolved 

oxygen control. In addition, the robustness of NMPC control systems is limited, which 

reduces the ability to resist external and internal interference in the sewage treatment 

process. As described in [144], the high-frequency regulation actions of NMPC 

controllers in nonlinear sewage systems bring complexity and higher error rates. 

As mentioned in [145], activated sludge wastewater purification plants use fuzzy 

controllers to quickly adjust dissolved oxygen concentrations. However, fuzzy 

controllers rely heavily on engineers’ experience to formulate rules, so they are less 

efficient in dealing with emergencies. As described in [146], fuzzy controllers require 

too many rules to adjust dissolved oxygen concentrations, which requires high 

computing power. Although this type of controller does not require an accurate 

mathematical model, it is much more difficult to quantitatively analyse and adjust than 

PI and PID controllers, and optimization is still challenging [147]. 
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2.6.2 Adaptive control system: direct model reference adaptive control for 

ASWWTP - advantage and challenge  

As described in [148], DMRAC can monitor the parameters of the wastewater 

purification system in real time and dynamically adjust the control parameters to 

achieve an efficient purification process. It also has the advantage of fast response speed. 

In addition, compared with other controllers, its performance optimization is relatively 

simple. 

In addition, compared with PI and PIC controllers, it shows stronger robustness and 

adaptability in solving the problems of fluctuations in sewage inflow, pollutants, and 

dissolved oxygen concentration in sewage. Since DMRAC can quickly and 

dynamically adjust the parameters of dissolved oxygen, it can improve the efficiency 

of the sewage purification system and achieve a balance between sewage purification 

rate and energy consumption. 

The design and application of DMRAC in regulating dissolved oxygen concentration 

requires several key points: 1) The design of the control system relies on an accurate 

mathematical model that describes the activated sludge purification process. 2) In the 

activated sludge purification processes, the growth and biochemical reactions of 

organic microorganisms occur on multiple time scales. There are multiple coupling 

phenomena in the biochemical reactions, which increase the complexity of the 



72 

 

mathematical model. Therefore, it is a challenge to establish a reference model. 3) 

Errors will continue to accumulate in the operation of the long-term control system, 

which will cause the drift of the adaptive control parameters and cause the instability 

of the control system. Therefore, the long-term stability and efficient operation of the 

control system are challenges. 4) The optimization of the DMRAC control system is to 

continuously debug the initial parameters of the control system and the adaptive 

algorithm. This process is very complex, especially in sewage purification; there are 

many unknown system parameters, which are in multiple different time scales and 

spaces. 

Direct model reference adaptive control, which addresses complex, time-varying, and 

uncertain systems, demonstrates strong adaptability, as described in [169]. The 

controller is modified based on the guidance of a reference model. This method 

involves comparing the real output with the reference output and adjusting control 

parameters accordingly to make the controller output approach the reference output. 

This reference model represents the expected output under ideal conditions over time. 

In a first-order linear system, the DMRAC can be expressed as follows [149]： 

( 1) ( ) ( )p p p py k a y k b u k+ = +                               (2.6.1-1) 

Where: ( )u k is the system input, and ( )py k  is the system output. The pa  and pb  are 

system parameters. 
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Based on the expected real-time output ability of the system, the reference model 

provides the anticipated system response; this enables the controller to adjust the system 

input to make control output close to reference output [140]. Thus, the model reference 

equation can be expressed as： 

               ( 1) ( ) ( )m m m my k a y k b r k+ = +                             (2.6.1-2)       

Where: ( )r k  is the reference model input. ( )my k  is the reference model output. Both

ma  and mb  are reference model system parameters.  

The goal of direct model reference adaptive control is to adjust the system input ( ( )u k ), 

in order to make system output ( ( )py k )  converge  as close as to reference model output 

( ( )my k ). 

The structure of adaptive control can be expresses as: 

( ) ( ) ( )Tu k K K =                                                  (2.6.1-3) 

Where ( ) is adaptive parameter vectork , ( ) is the system state vectork . 

The update rule for adaptive parameters can be written as: 

( 1) ( ) ( ) ( )k k k e k  + = +                               (2.6.1-4) 

( ) ( ) ( )p me k y k y k= −                                        (2.6.1-5) 

Where:  is adaptive rate,   is error dynamic. e  
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The analysis of control stability is indispensable for ensuring the smooth operation of 

the system. Typically, stability analysis in DMRAC utilizes a Lyapunov function [150] 

and can be expressed as follows:  

21 1
( , )

2 2

TV e R e  = +                                    (2.6.1-6) 

( , ) ( ) ( )TV e R k e k  = −                                   (2.6.1-7) 

Where:  is small postive constant volumeR . 

To determine the stability or instability of the system, the stability condition is satisfied 

only when ( , )V e is less than or equal to zero, and both 0 = , and 0e = [12]. 

The DMRAC was designed and implemented based on the dissolved oxygen 

concentration requirements of the activated sludge wastewater treatment plant for 

nutrient removal. Various Multiple variations DMRAC designs were developed to meet 

different objectives, as detailed in Chapters 3.4 and 5. 

 

2.6.3 Two-level control for large-scale ASWWTP - advantage and challenge 

The ASWWTP structure adopts a segmented design to help understand and regulate the 

dissolved oxygen concentration. Each control unit is responsible for a different 

wastewater purification unit. The purpose of this control structure is to reduce the 
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burden on the central control unit, thereby improving the reliability and flexibility of 

the system. As described in [44], the two-level control strategy is also based on online 

updating of state variables, so it has powerful fault diagnosis and correction capabilities. 

The ASWWTP operation employs a hierarchical control system. The upper layer 

control system is responsible for overall system monitoring and optimization, while the 

lower layer control system is divided into four independent control systems for the 

wastewater purification unit [137], as depicted in Figure 2-6. 1) The inlet control system 

controls the flow rate of sewage according to the sewage load of ASWWTP. Ensure 

that the subsequent treatment process does not produce unnecessary overload. 2) The 

aeration control system is responsible for maintaining the appropriate concentration of 

dissolved oxygen to promote microorganism activity. It employs a dissolved oxygen 

sensor control system and a blower control system to adjust the aeration volume. 3) The 

sediment tank control system is responsible for monitoring the sludge interface and 

effluent quality and controlling the discharge sludge pump operation, ensuring that 

clear water and sludge are separated and discharged according to required standards. 4) 

The sludge concentration and dewatering control are applied if required. 
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Figure 2- 6 The hierarchical DO concentration control structure of ASWWTP 

As discussed in [139], a two-layer control system is used to regulate the dissolved 

oxygen concentration. In this two-layer control system, local controllers are used to 

adjust the dissolved oxygen concentration in each biochemical reaction tank separately, 

especially to solve the sudden demand for dissolved oxygen by microorganisms. The 

global controller is used to coordinate the aerator and multiple biochemical reaction 

tanks as a whole and optimize the long-term purification performance. Local and global 

parameters are on different time scales, so the coordination between them is more 

difficult. There is a time lag phenomenon when the two-layer control system adjusts 

the dissolved oxygen concentration. As described in [91], the two-layer control system 

can resist external interference in the local controller. Therefore, the robustness and 

anti-interference ability of the two-layer control system are acceptable. The two-layer 

control system can reasonably coordinate the coupling phenomenon of multiple 
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variables through the global controller, thereby improving the ability to dynamically 

adjust the load. 

Fast response between global controller and local controller is a difficult problem in 

two-level control systems. As discussed in [151], if the local control cannot respond 

quickly to sudden or uncertain disturbances, the global control system will be unstable, 

resulting in a decrease in the wastewater purification effect. The coordination between 

the two-level controllers plays a decisive role in the stability of the global control 

system. The local controller needs to respond quickly to the organic microbial growth 

and biochemical reactions, which are nonlinear dynamic changes. As discussed in [104], 

the local controller regulates the urgency and complexity of the parameters of the 

coupled phenomena, which are system parameters at multiple time scales and different 

spatial dimensions. 

This study considers using a two-layer controller to regulate dissolved oxygen 

concentration. The upper-level control system uses a fuzzy controller, while the lower-

level control system uses an adaptive controller. This two-layer controller can achieve 

stable and efficient nutrient removal. A detailed study is provided in Chapter 5. 
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2.7 Addressing Spaces and Capacity Constraints in 

ASWWTP 

 

2.7.1 Structural optimization of ASWWTP under space constraints 

As described in [105], the aeration and sedimentation tanks are arranged vertically and 

compactly to address space constraints. This design places high demands on the 

accuracy of the control system. According to [98], the sewage purification components 

are modularized, with their functions segmented and partitioned to minimize the plant's 

footprint, although this structure results in higher maintenance costs. As described in 

[99], integrating multiple functions into a single unit further reduces the plant's footprint, 

but it inhibits microorganism growth due to numerous coupling effects between 

microbial growth and biochemical reactions. 

In low-flow sewage systems, small biochemical reaction tanks are used to solve the 

limitations of small areas. However, it has the disadvantage of extending the 

purification time. A decentralized mass structure is used to solve the limitation of small 

amounts of sewage and effective area. In addition, an adaptive control system is used 

to adjust the dissolved oxygen concentration to reduce energy consumption without 

affecting the purification efficiency, which will be discussed in detail in Chapter 3. 
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2.7.2 Design of small-space ASWWTP for low-volume wastewater treatment 

As mentioned in [152], compact wastewater purification equipment can greatly reduce 

the use of pipelines, thus solving the problem of unnecessary energy consumption in 

the dissolved oxygen transfer process. However, this method leads to long purification 

times and low purification efficiency. As discussed in [153], the use of internal 

circulation in biochemical reactions can solve the problem of reducing the residence 

time of the mixed liquid in the sedimentation tank, but this method will lead to 

extremely complex control system design, increase sewage purification time, and 

increase maintenance costs. When treating small-flow sewage, the control system 

requires higher accuracy; otherwise, a lot of energy will be wasted to produce oxygen. 

Therefore, designing an efficient and stable control system is a challenge. 

Multiple biochemical reaction tanks and two-layer control systems are used to meet the 

limitations of construction space and flow. The concentration of dissolved oxygen is 

dynamically adjusted to achieve an efficient and stable sewage purification process, 

which is described in detail in Chapter 4. 

 

2.7.3 Design of small-space ASWWTP for high-volume wastewater treatment 

As discussed [97], a vertical multi-layer sewage treatment plant structure was designed 

to solve the space limitations of the sewage treatment plant. Due to the complex, time-
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varying biochemical reactions, the sewage purification efficiency is low. As discussed 

in [135], the integrated building structure is designed to solve the limitation of small 

space and large sewage flow in sewage treatment plants. However, its excessive energy 

consumption is unacceptable. Although the intelligent control system can realize the 

efficient purification process of large-flow sewage, this type of structure cannot respond 

quickly to sudden large load fluctuations. 

In cases of limited space and high sewage volume, the simple use of advanced 

purification device structures alone cannot achieve an efficient and stable purification 

process. It is also necessary to design a highly intelligent control system to adjust the 

dissolved oxygen concentration. In addition, the dissolved oxygen control system must 

have a fast response speed, be real-time adjustable, and have strong robustness. which 

is studied in detail in Chapter 5. 

 

2.8 Summary 

This chapter introduces the history, principles, types, limitations and challenges of 

activated sludge wastewater purification. It also introduces the key components of 

wastewater treatment plants, such as air supply, biological reaction ，  and 

sedimentation units. It focuses on the metabolic process of organic microorganisms and 

the series of chemical reactions involved in the wastewater purification process. 
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The challenges in building a mathematical model for the ASWWTP are introduced, 

such as the process of nutrient removal and the importance of oxygen in the purification 

process. The importance of the dissolved oxygen control system on the sewage 

purification rate and energy consumption is also explained. Finally, solutions to the 

constraints of building an activated sludge sewage purification plant and the dissolved 

oxygen control system are proposed, which are described in detail in Sections 3, 4， 

and 5. 

 

 

 

 

 

 

 

 



82 

 

CHAPTER 3 Direct Model Reference Adaptive 

Control of Nutrient Removal at ASWWTP 

An architecture of ASWWTP was established to address the need for small-scale 

sewage purification while reducing construction space and maintenance costs. 

According to this structure, a direct model reference adaptive control system is designed 

based on the limited parameters of the ASWWTP to achieve stable and efficient nutrient 

removal under its global parameters mathematical model. The operating conditions of 

the air supply system are assumed to be ideal. The mathematical model of ASWWTP 

is implemented by rewriting ASM 2d based on mass balance principles. The stability 

of the DMRAC is proven through the Lyapunov function. In addition, MATLAB 

simulations based on real data records demonstrated that the system was able to operate 

efficiently and stably while being able to resist disturbances. 

 

3.1 Introduction  

According to the previous introduction, the concentration of dissolved oxygen during 

the operation of ASWWTP can determine its operating efficiency and purification rate. 

In this chapter, we are developing the DMRAC system based on limited mathematical 

model parameters and applying it to the mathematical model of global parameters. To 
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achieve high efficiency of nutrient removal, therefore achieving a stable, effective, and 

disturbance-resistant wastewater purification process. 

The structure design of ASWWTP can efficiently purify small-scale wastewater while 

minimizing constructed space and maintenance costs. It consists of three treatment units: 

1) the wastewater collection unit, which is used for collecting wastewater and 

performing preliminary filtering; 2) the biological purification unit, which utilizes 

oxygen to convert the organic matter into harmless substances through degradation; and 

3) the primary sedimentation unit, which separates sludge and clear water. This chapter 

focuses on the growth and degradation processes within the microorganisms in units 2 

and 3, as illtreated in Figure 3-1. The wastewater collection treatment unit can be 

neglected due to its single function and lack of involvement in biochemical reactions 

for wastewater purification. 
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Figure 3- 1 The architecture of the ASWWTP 
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The ASWWTP operation involves multiple treatment units working together. Therefore, 

the ASWWTP operation control system involves multiple-layers control systems. The 

upper layer control system is delivering the wastewater into a bioreaction tank from the 

first collecting tank. Simultaneously, the lower layer control system provides 

predictions of the amount of air required for a series of biochemical reactions that vary 

over time. subsequently, the wastewater delivers into the primary settlement tank,  

 

3.2 Nutrients removal processes   

Wastewater flows into the biological reaction tank from the wastewater collection 

treatment unit, and air is introduced into the biological reaction tank by a blower, which 

is responsible for generating and delivering air. In addition, young sludge flows back 

from the settling back to the biological reaction tank. When wastewater, young sludge, 

and air flow into the bioreaction tank simultaneously, organic microorganisms are fed 

by oxygen and undergo a series of biochemical reactions to effectively purify the 

wastewater. These biochemical reactions include microbially adsorbed suspended 

solids, oxidation of organic matter, and oxygen replacement [154]. The ASWWTP 

operation involves two-hierarchical DO concentration control structures. The two-

hierarchical control system aims to ensure the DO concentration trajectory ( ( )DO t )  in 

the bioreaction tank tacks the reference DO concentration trajectory ( ( )refDO t ), based 
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on the airflow ( ( )airQ t ) provided in the lower layer, as described in [155]. The lower 

layer control system, through the blower actuator, provides ( )airQ t  to optimally control 

the ( )DO t  to track the ( )refDO t . The ( )refDO t of the upper control is derived from the 

pre-calculating set-points reference airflow ( ( )ref

airQ t ). The ( )ref

airQ t  is determined by the 

inflowing wastewater and young sludge.  

In our study, we focused on calculating the blower actuator’s airflow to ensure that the 

trajectory of the DO concentration trajectory tracks the reference DO concentration 

trajectory in the bioreaction tank. The reference airflow is regulated by the upper layer 

control system in an overall medium-level control structure [113]. The blower actuator 

is the control input in the lower layer control system. The DO concentration trajectory 

is discussed in [113], and it is part of the lower layer control system. In this chapter, we 

utilized DMRAC as the lower layer control system. This controller algorithm is derived 

from the DMRAC method [156]. Finally, the mixing wastewater flows into the 

settlement tank, as illustrated in Figure 3-2. 
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Figure 3- 2 The architecture of ASWWTP for nutrient removal 

The settlement tank uses gravity to separate sludge and clean water; this process may 

take hours or days, as discussed in [34]. The clean water flows out of pipes, waiting for 

use; if there are special discharge requirements, wastewater must undergo secondary 

sedimentation in tertiary wastewater treatment [107]. Solid particles and flocs settle to 

the bottom of the sedimentation tank by gravity, and the sludge at the bottom is divided 

into aged sludge and new sludge. New sludge flows back to the biochemical reactor to 

wait for the purification of activated sludge again. Aged sludge is discharged directly 

or discharged after being concentrated again according to the discharge standards. The 

organic matter in the young sludge assists microorganisms in ongoing degradation 

[179]. In this chapter, we assume that the settler is in an ideal state and, therefore, does 

not require stirring, in contrast to the approach presented in [180], as illustrated in 

Figure 3-3. 
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Figure 3- 3 The settlement tank processes 

At the biochemical reaction tank, a serial biochemical reaction occurs, involving 

oxygen consumption [43]. Therefore, following the mass balance principle, we can 

write an oxygen balance equation to describe the inflow and outflow matter from the 

bioreaction tank.  

In this chapter, we consider the amount of oxygen required to achieve optimal 

biochemical reactions on the left-hand side of the equation. unlike [11, 160].  

 

3.3 Control problem statement  

The state variables in the ASWWTP process cannot be directly detected and measured. 

A mathematical model that accurately describes the ASWWTP process is established 

to achieve precise real-time evaluation of purification system parameters in the DO 

control system and to predict future parameter changes during the estimation process. 

The mathematical model of ASWWTP describes the biological reaction process, 



88 

 

chemical reaction process, purification system state variable, and the rate of 

microorganism growth and chemical reaction rates [181].  

The architecture of ASWWTP is shown in Figure 3-2. The mathematical model of the 

ASWWTP can be derived by rewriting ASM 2d based on the mass balance principle. 

The state-space model, introduced in [182], can be written as follows: 

( ) ( ) ( )(1 ) ( ) ( )r

dX
t X t D t r X rD t X t

dt
= − + +                       (3.3-1) 

    
( ) ( )

( )(1 ) ( ) ( ) ( )in

dS t X t
D t r S t D t S t

dt Y


= − − + +                    (3.3-2) 

  
0

max

( ) ( )
( )(1 ) ( )

( ( ))( ( )) ( ) ( )L air in

K t X tdDO
D t r DO t

dt Y

K Q t DO DO t D t DO t


= − − +

+ − +

         (3.3-3)  

( )(1 ) ( ) ( )( ) ( )r
r

dX
D t r X t D t r X t

dt
= + − +                            (3.3-4) 

                                        max

( ) ( )
( )

( ) ( )s DO

S t DO t
t

K S t K DO t
 =

+ +
                            (3.3-5) 

where 

( ) in

a

Q
D t

V
= , r

in

Q
r

Q
= , W

in

Q

Q
 =                                   (3.3-6) 

( )X t , ( )S t , maxDO , ( )rX t , ( )D t , ( )inS t , ( )inDO t , Y , ( )t , max , sK , DOK , ( )airQ t , 

0K , r ,  , ( )inQ t , ( )outQ t , ( )rQ t , ( )wQ t , aV  are biomass concentration, substrate 

concentration, maximum dissolved oxygen concentration, recycled biomass 
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concentration, dilution rate, substrate concentration in the influent, dissolved oxygen 

concentration in the influent, biomass yield factor, biomass growth rate, maximum 

specific growth rate, affinity constant, saturation constant, aeration rate, model 

constant, recycled sludge rate, removed sludge rate, influent flow rate, effluent flow 

rate, recycled flow rate, waste flow rate and aerator volume. 

The oxygen transfer function (OTF) ( ( ))La airk Q t , presented in equation (3.3-3), is 

known to be nonlinear. The operation of the blower and the dissolved oxygen 

consumption by microorganisms over time contribute to this nonlinearity [105]. Under 

these conditions, the OTF can be written as follows: 

    ( ) ( )La airk t Q t = +                                           (3.3-7) 

Where:   and   are known constants for the oxygen transfer function. 

We only considered accurate output DO as control output. Therefore,  ASM 3 is not 

appropriate for describing this ASWWTP process, as it is modelled for specific 

treatment environments [157]. However, ASM 1 has been found to have limitations in 

adjusting the ASWWTP‘s parameter, as demonstrated in [158]. Furthermore, ASM 2 

has demonstrated low accuracy due to its one-dimensional nature; it is unable to 

consider both time and space, as described in [159].  
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Figure 3- 4 The architecture of ASWWTP with airflow actuator 

The architecture of the ASWWTP with a blower is depicted in Figure 3-4, where the 

blower is used for producing oxygen. The time scale of the blower operation differs 

from that of the bioreactor operation. The blower actuator state belongs to the lower 

layer control system and determines the airflow ( ( )airQ t ), while the bioreactor belongs 

to the upper layer control system and reference airflow ( ( )ref

airQ t ) [20]. Additionally, the 

state variables of the ASWWTP are on different time scales; it has been discussed in 

Chapter 2.4 and in [160].  

However, the design of the blower control system has been detailed in [36]. In this 

chapter, we ignore the discussion of the blower controller design. It is assumed that the 

ideal blower operation exists; hence, the blower control output is equal to the reference 

airflow, ( ) ( )ref

air airQ t Q t= , it has demonstrated in [83]. The ASWWTP disturbance 

inputs include influent flow rate inQ , substrate concentration inS , and dissolved oxygen 

concentration in the fluent inDO . Moreover, those disturbance inputs are time varying, 
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and the control output is DO concentration. The structure of the DO control system, 

assuming the existence of an ideal DO concentration sensor as shown in Figure 3-5, 

employs the DMRAC system to estimate the ideal DO concentration sensor using 

adaptive control laws. Therefore, respiration does not need to be estimated. This 

represents a different control method compared to that described in [83]. Our aim is to 

design a DMRAC control system where the output trajectory ( )DO t  can quickly and 

accurately follow the reference DO ( ( )refDO t ) trajectory, while also maintaining 

robust performance against interference. 

DO
Controller

Tracking 
error

Plant
Aeration 
Control
System

 

Figure 3- 5 The architecture of ASWWTP with aeration 

 

The equations (3.3-1), (3.3-2), (3.3-3), (3.3-4), and (3.3-5) represent the ASWWTP 

dynamics. It is characterized as a fourth-order nonlinear complex system with different 

time-scale dynamics models. The PI control system is unsuitable for implementation 

on a full range of process conditions, due to its uncertainty and varying. Moreover, it 

exhibits lower response times and large error dynamics [63]. Furthermore, being a 
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linear control system, it is unsuitable for this nonlinear ASWWTP system. As discussed 

in [3], the application of the MPC control system on the ASM 2d is extremely complex. 

This complexity arises from the ASM 2d being a two-dimensional mathematical model, 

which necessitates calculations at multiple points across both time and spatial 

dimensional [124]. Considering the features of the ASM 2d model, although it focuses 

on a single unit (bioreaction tank), it still involves multiple inputs existing that interact 

and must be considered together. Therefore, fuzzy logic control is unsuitable for this 

plant [113]. 

In this chapter, adaptive control is considered, which is different from the previous [12]. 

The design of the DMRAC is based on the SISO model of dissolved oxygen dynamics 

in equation 3.4-1, achieved through a reasonable arrangement of the state space model 

equations (3.3-1), (3.3-2), (3.3-3), and (3.3-4). The mathematical model of the 

ASWWTP has unmeasured state variables related to air quantity. We integrated those 

state variables into one term, which is respiration. The adaptive controller estimates the 

respiration rate, and it is updated by the adaptive control laws, which are set indirectly 

and automatically [83].  

Subsequently, design and implement a direct model reference adaptive control that 

applies to DO concentration dynamics at ASWWTP. Following implementation, 

validate the stability of the controller through simulation results and the application of 

a Lyapunov function.  
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3.4 Dissolved oxygen controller design 

The state space equation of the ASWWTP system has been described by equations (3.3-

1) … (3.3-4) and (3.3-5) in the previous section and contains highly nonlinear and 

unknown system state variables. While system state variables such as ( )rX t , ( )X t , and 

( )S t  are remain unmeasurable, other parameters such as  ( )inQ t  and ( )wQ t can be 

detected online. In addition, the dissolved oxygen dynamic model is formulated as a 

first-order SISO system. The dissolved oxygen dynamic trajectory is influenced by both 

state variables and disturbances. The stability and effectiveness of the DO dynamic 

controller depend on the global state parameters and disturbances of the wastewater 

purification process. The mathematical ASM 2d model of ASWWTP is relatively 

accurate compared to other models [161]. However, in the wastewater purification 

system, there are uncertain disturbance inputs and unpredictable system state variables. 

Therefore, the first order of the SISO DO dynamic equation is the basis for adaptive 

controller design. According to the online update characteristics of the adaptive control 

system, it can exploit robustness to handle these unknown system state variables and 

unknown disturbances. 

The DMRAC structure is represented in Figure 3-6. 
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Figure 3- 6 The structure of direct model reference adaptive control 

Starting with equation (3.3-3), the SISO model for DO concentration is constructed by 

substituting ( )t (3.3-7) with equation (3.3-5). The DMRAC design is based on the 

equation (3.4-1). The resulting input-output model is presented below: 

   
0

max

( )
( )(1 ) ( ) ( )

( ( ) )( ( )) ( ) ( )air in

K X tdDO
D t r DO t t

dt Y

Q t DO DO t D t DO t



 

= − + −

+ + − +

            (3.4-1) 

The fourth term in equation (3.4-1) represents the slowly varying component, indicating 

that the inflow rate of DO in the wastewater entering the biological reactor changes 

gradually. Consequently, the magnitude of the fourth term ( ) ( )inD t DO t  becomes 

extremely small and can be neglected. As a result, the SISO model for DO 

concentration is reformulated, and input is Qair (t) and output is DO(t), as follows:  

  
( ) ( ) ( ) ( ( ))

( ) ( )

p p

p air p

dDO
a t DO t c t f DO t

dt

b t Q t d

= − −

+ +

                           (3.4-2) 

Where: ( ), ( ), ( )p p pa t c t b t  and pd  are the model parameters and  
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
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
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=
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+

=
+

= −

=

                                      (3.4-3) 

The parameter 
pd consists of   and maxDO , both of which are known and exhibit 

slowly variations over time. Additionally, ( )X t  and ( )S t  represent internal dynamic 

biological state variables. When compared to the components of ( )DO t  [19, 115], 

these parameters are varying slowly. Hence, the parameter ( )pc t  is both slow-varying 

and unknown. The time scale associated with variables ( )rQ t  and ( )wQ t  are dependent 

on the upper layer control. In comparison to the time scale of  ( )DO t , these time scales 

are slow. The variables recycled flow rate ( ( )rQ t ) and waste flow rate ( ( )wQ t ) are 

associated with the operation time of the upper layer control system, and their time 

scales are the same as the time scales of disturbance inputs ( )inQ t , ( )inS t , and ( )inDO t . 

Moreover, the internal state variable DO has a faster time scale compared to the 

variables recycle flow rate and waste flow rate. Therefore, the parameter ( )pa t can be 

deemed a rapidly fluctuating yet known variable, as discussed in [124] and [160]. 

Finally, the parameter ( )pb t  is dependent on ( )DO t  and maxDO , however, they have 

the same time scale, as indicated by equation (3.4-3). Because the known oxygen 
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transfer constant, parameter ( )pb t  can be classified as a rapidly fluctuating and known 

variable. 

In the closed-loop to achieve the control output ( )DO t  trajectory fast and stable tracks 

the prescribed DO reference dynamics (
. ( )m refDO t ). The reference DO trajectory is 

derived from the reference air set by upper layer control [113]. The model reference 

dynamics (
. ( )m refDO t ) (MRD) equation can be written as: 

      
.

. ( ) ( )
m ref ref

m m ref m

dDO
a DO t b DO t

dt
= − +                           (3.4-4) 

Where: . ( )m refDO t  defines the model reference dynamic output ( )DO t  , and model 

reference parameters ma  and mb  are defined as constants determined by designer. 

Hence, m ma b= . 

As mentioned in [44], the expanded model reference adaptive control laws can be 

written as follows. 

max

( ) ( ) ( ) ( ) ( ( ))

( ) ( )
( )

ref

air DO f

ref

DO
p

Q t a t DO t a t f DO t

DO
a t DO t

b t



= +

+ −
                         (3.4-5) 

The equation (3.4-4), which represents the model reference dynamic (MRD), is linear. 

Additionally, in equation (3.4-5), the second and fourth terms can asymptotically cancel 

the effects of the nonlinear term and the additional term in (3.4-2) in a closed loop, 

respectively. 
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The parameters of the direct model reference adaptive control law (DMRACL) are 

denoted as ( )DOa t , ( )fa t , and ( )refDO
a t . When the MRD is in a closed loop, We assume 

that ideal parameters exist. The close-loop DMRAC control equation (3.4-1) is 

achieved by using equation (3.4-5), which leads to the derivation of equation (3.4-6): 

   

( ( ) ( ) ( )) ( )

( ( ) ( ) ( )) ( ( ))

( ) ( ) ( )ref

p p DO

p p f

ref

p DO

dDO
a t b t a t DO t

dt

c t b t a t f DO t

b t a t DO t

= − −

− −

+

                            (3.4-6) 

and  

 

               

ˆ( ( ) ( )) ( ))

ˆ( ( ) ( ) ( )) 0

ˆ( ) ( )ref

p p DO m

p p f

p mDO

a t b t a t a

c t b t a t

b t a t b

− − = −

− − =

=

                                    (3.4-7) 

 

The ideal parameter can be derived by rewriting equation (3.4-7), resulting in: 
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( )
ˆ ( )

( )

( )
ˆ ( )

( )

ˆ ( )
( )

ref

m p

DO

p

p

f

p

m

DO
p

a a t
a t

b t

c t
a t

b t

b
a t

b t

− +
=

=

=

                                       (3.4-8) 

Since the values of mb  and ( )pb t  are known, ˆ ( )refDO
a t  can be determined online using 

available data. The model reference adaptive control law can thus be reformulated as 

follows: 

                                   
max

( ) ( ) ( ) ( ) ( ( ))

( )
( ) ( )

air DO f

refm

p p

Q t a t DO t a t f DO t

b DO
DO t

b t b t



= +

+ −
                           (3.4-9) 

Unlike the [156], the MRAC control law does not include the adaptive control 

parameter ( )refDO
a t . The corresponding closed-loop SISO dynamic ( )DO t  by equation 

(3.4-9) can be rewritten as: 

( ( ) ( ) ( )) ( )

( ( ) ( ) ( )) ( ( ))

( ) ( )
( )

p p DO

p p f

refm
p

p

dDO
a t b t a t DO t

dt

c t b t a t f DO t

b
b t DO t

b t

= − −

− −

+

                      (3.4-10) 

The parameters ( )DOa t  and ( )fa t  in equation (3.4-8) can be determined on-line using 

parameter adaptive laws. However, system parameters ( )pa t  and ( )pc t  remain 
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unknown. Using parameter adaptive laws to calculate ( )DOa t  and ( )fa t  necessitates 

knowing the error dynamics between the ( )DO t  dynamic and the 
. ( )m refDO t . The 

dynamic of the error equation is presented below. 

.( ) ( ) ( )m refe t DO t DO t= −                                  (3.4-11) 

 

As discussed in [162], the parameter adaptive law that ensues the stability of the 

adaptive control system is derived. The adaptive control system is applied to the SISO 

dynamic system. This first-order dynamic system includes uncertain time-varying 

constants, nonlinear additive structure, and known parameters. By applying these 

parameter adaptive laws to equation (3.4-1), the parameter adaptive of DMRAC applied 

to the ASWWTP system can be obtained as follows:  

1 ( ) ( )DOda
e t DO t

dt
= −                                      (3.4-12) 

2 ( ) ( ( ))
fda

e t f DO t
dt

= −                                   (3.4-13) 

In equations (3.4-12) and (3.4-13), 1  and 2  represent adaptive gains parameters, both 

of which are small positive constants. These parameters can be used to adjust the rate 

of adaptive control. By adjusting these gains, the adaptive rate can be changed to rapidly 

respond to parameter changes during the operation of the ASWWTP. Therefore, the 
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adaptive rate must be coordinated with the rate of change of the ASWWTP parameters 

to ensure the stability of the closed-loop system. 

 

3.5 Stability analysis 

The on-line updates for estimated parameters ( )DOa t  and ( )fa t  are provided by the 

parameter adaptive laws. as shown in equations (3.4-12) and (3.4-13). Hence, the 

difference between the ideal adaptive law parameters and the estimated adaptive law 

parameters is represented by ( )DOa t  and ( )fa t , respectively.  

ˆ( ) ( ) ( )DO DO DOa t a t a t = −                                     (3.5-1) 

ˆ( ) ( ) ( )f f fa t a t a t = −                                         (3.5-2) 

The Lyapunov function is employed in the stability analysis of DMRAC. The Lyapunov 

function utilized in this analysis is presented below； 

2 2 21 1 1
( ) ( ) ( ) ( )

2 2 2
DO fV t e t a t a t= +  +                        (3.5-3) 

The equation (3.5-3) can be expanded as follows: 

    1

( ) 1
ˆ ˆ( ) ( ) ( ( ) ( ))( ( ) ( ))

ˆ ˆ( ( ) ( ))( ( ) ( ))

DO DODO DO

f ff f

dV t
e t e t a t a t a t a t

dt

a t a t a t a t


= + − −

+ − −

         (3.5-4) 
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The real dynamic ( )DO t in equation (3.4-1) and the model reference ( )refDO t in 

equation (3.4-10) are both substituted into equation (3.4-11) to derive the error 

dynamics. 

   

.

( ) ( ( ) ( ) ( )) ( )

( ( ) ( ) ( ) ( ( ))

( )

p p DO

p p f

m m ref

e t a t b t a t DO t

c t b t a t f DO t

a DO t

= − −

− −

+

                            (3.5-5) 

Additionally, the term ( )ma DO t  is added and subtracted on the right-hand side of 

equation (3.5-5) of the Lyapunov function as follows: 

    
( ) ( ) (( ( ) ( ) ( )) ) ( )

( ( ) ( ) ( )) ( ( ))

m p p DO m

p p f

e t a e t a t b t a t a DO t

c t b t a t f DO t

= − − − −

− −
               (3.5-6) 

By substituting equations (3.4-10) and (3.4-11) into equation (3.5-4) can be expressed 

as: 

        
ˆ( ) ( ) ( ( ) ( )) ( ) ( )

ˆ( ( ) ( )) ( ) ( ( ))

m DO DO p

f f p

e t a e t a t a t b t DO t

a t a t b t f DO t

= − + −

+ −
                   (3.5-7) 

By substituting equations (3.5-7), (3.4-12), and (3.4-13) into equation (3.5-4), it can be 

expressed as: 

2

1

2

( )
( )

1
ˆ ˆ( ( ) ( ))[ ( ) ( ) ( ) ( ) ( ) ( ) ]

1
ˆ ˆ( ( ) ( ))[ ( ) ( ) ( ( )) ( ) ( ( )) ( ) ]

m

DODO DO p

ff f p

dV t
a e t

dt

a t a t e t b t DO t e t DO t a t

a t a t e t b t f DO t e t f DO t a t





= −

+ − − −

+ − − −

      (3.5-8) 



102 

 

A quadratic function of the squared error constitutes the right-hand side of equation 

(3.5-8). From the equation (3.5-8), it can be easily determined that the 2( )e t  is positive 

and the 0ma−  . Therefore, the first term of the equation (3.5-8) is negative. Hence, 

the left-hand side of the equation (3.5-8) is negative for 
( )

0
dV t

dt
  to hold. The 

derivation is in Appendix A. By squaring equation (3.5-8), it is easily illustrated that 

2 ( )d V t

dt
  is bounded.  

Perform a stability analysis of the Lyapunov function result using Barbalat’s lemma.  

If the dynamics of the plant’s initial conditions and equations (3.4-12), (3.4-13) 

approach the equilibrium point, and the parameter adaptive rates 1  and 2  are chosen 

to be sufficiently small, then. 

1)The parameter adaptive rates are bounded by the model reference adaptive control 

law. 

2)Hence, the output ( )DO t of the direct model reference adaptive control can achieve 

asymptotic tracking of the model reference ( )refDO t , and the ideal parameters ˆ ( )DOa t  

and ˆ ( )fa t  remain bounded.  

3)The parameters ( )DOa t  and ( )fa t  of the parameter adaptive laws are bound by the 

squared error dynamics.  
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The stability analysis, employing the Lyapunov function and Barbalat’s lemma, easily 

proves that DMRAC is stable. MATLAB simulation results demonstrate that the 

stability of DMRAC is bounded by estimates of the model reference and adaptive gain. 

 

3.6 Simulation results and discussion  

This section presents the simulation results of DMRAC applied to the ASWWTP to 

control the dissolved oxygen dynamic. These results verify the stability and robustness  

of the DMRAC system using real data records [161].  

The initial plant state parameters are: (0) 15 /X mg l= , (0) 200 /S mg l= , 

(0) 3 /DO mg l= , (0) 18 /rX mg l= , max 10 /DO mg l= , (0) 600 /inS mg l= , (0) 3D = , 

(0) 0.5 /inDO mg l= . The plant process constant parameters are 33.34m −= ,    

13.54h −= ,
0 =0.5.K The kinetic parameters are: max 0.15 /mg l =  , 100 /sK mg l= , 

=2 /DOK mg l . The plant disturbance inputs are piecewise variable, as illustrated in 

Figure 3-7, 3-8 and 3-9. 
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Figure 3- 7 Influence substrate ( )inS t  

 

Figure 3- 8 Dilution rate ( )D t  

 

Figure 3- 9 Influent dissolved oxygen ( )inDO t  

The model reference parameters were 30ma =  and 30mb = . The ASWWTP 

mathematical model of global variables uses the ASM 2d. The model reference for 
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dissolved oxygen ( )refDO t  was taken piecewise constant. The results show that 

controlling the output DO concentration trajectory under the slow adaptive rates yields 

good tracking performance and stability, as demonstrated in Figure 3-10. Figure 3-11 

shows that under the slow adaptive rate, the control output DO concentration trajectory 

effectively suppresses the disturbance input and has good stability and tracking 

performance. 

 

Figure 3- 10 The dynamics trajectories of ( )DO t  and ( )refDO t  under conditions of no 

disturbance inputs and slow adaptive rates 
1 0.5 = , 

2 0.5 = . 

 

Figure 3- 11 The dynamics trajectories of ( )DO t  and ( )refDO t  under conditions of  

disturbance inputs and slow adaptive rates 
1 0.5 = , 

2 0.5 = . 
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The same initial conditions as in Figure 3-11 are used in Figure 3-12. and it uses some 

piecewise constant model reference, but the adaptive rates are faster than before, as 

indicated by 1 5 = , 2 5 = . The dissolved oxygen response tracking trajectory depicted 

in Figure 3-12 is unstable. The utilization of high adaptive rates reduces robustness and 

causes the adaptive parameters ( )DOa t , ( )fa t  to become unconstrained by the error 

dynamics. Consequently, the DMRAC output ( ( )DO t ) trajectory is unable to rapidly 

and stably track the reference ( ( )refDO t )trajectory. 

 

Figure 3- 12 Unstable ( )DO t  response with fast adaption rates 
1 5 = , 

2 5 = , and 

without disturbance inputs 

 

Figure 3- 13 Unstable ( )DO t  response with fast adaption rates 
1 5 = , 2 5 = , and with 

large disturbance inputs 
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Figure 3-13 uses the same initial condition and model reference as Figure 3-11, but with 

large disturbance inputs. The results clearly indicate that the closed-loop adaptive 

control system becomes unstable under such conditions. This instability is caused by 

the large unknown disturbance input and the excessive gain scheduling, leading to an 

unstable response of the adaptive control system. 

 

Figure 3- 14 The initial conditions of the ASWWTP are significantly distant from the 

equilibrium point, and the dynamics of ( )DO t  fail to track the trajectory of ( )refDO t , 

thus rendering the system unstable under conditions characterized by the absence of  

perturbation input and slow adaptive rates 
1 0.5 = , 

2 0.5 =  

The initial conditions of the ASWWTP are deliberately selected to be distant from the 

anticipated equilibrium point. The initial plant conditions are (0) 30 /X mg l= , 

(0) 960 /S mg l= , (0) 7 /rX mg l= , (0) 7 /DO mg l= . Results indicate that, despite 

employing slow adaptive rates, the ( )DO t  dynamic tracking trajectory performance of 

the control system output is unstable. This instability arises due to the excessively long 

convergence time of the adaptive control system and the time delay in the dynamics 



108 

 

response of the purification system. Therefore, the parameters of the adaptive control 

system are deemed invalid, as depicted in Figure 3-14. The simulation results validate 

the stability analysis presented in Chapter 3.5.    

 

3.7 Conclusions  

According to the requirements of small wastewater treatment volume and small 

available space, a new architecture of ASWWTP is designed, which consists of a 

bioreactor unit, a blower, and a sedimentation unit. The mathematical model is 

established by mass balance and rewriting ASM 2d. The mathematical model of the 

ASWWTP is based on the principle of mass balance and ion kinetic energy 

conservation and is formed by rewriting the ASM 2d model. 

A direct model reference adaptive control system is designed to adjust dissolved oxygen 

concentration in the ASWWTP system, utilizing limited ASWWTP parameters and 

applying it to the mathematical model of global ASWWTP parameters. The adaptive 

control parameters are adjusted through MATLAB simulation to meet design 

requirements. The MATLAB simulation results demonstrate the stability and 

effectiveness of the ASWWTP system, also demonstrating its resilience against 

disturbances. Stability of the control system is further verified using a Lyapunov 

function. 
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CHAPTER 4 Direct Model Reference Adaptive 

Control of Nutrient Removal at ASWWTP with 

Blower Constraint 

 

The architecture of the ASWWTP used in this chapter remains the same as in Chapter 

3. However, we assume that the ASWWTP operates under unknown disturbances. A 

blower supplies excessive air into the bioreactor to facilitate the growth and degradation 

of microorganisms. The DMRAC with filter design is based on the limited ASWWTP 

mathematical model parameters and is applied to the global parameter model of the 

ASWWTP. This control system ensures stable and efficient operation of the ASWWTP 

under disturbances while filtering out excess airflow. The mathematical model of the 

ASWWTP is developed based on mass balance and kinetic energy conservation 

principles, with modifications to the ASM2d model. MATLAB simulations, using real 

data, were performed to verify the performance of the DMRAC system [53]. 
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4.1 Introduction to ASWWTP operation with blower 

constraint 

In actual wastewater purification plant operations, it is often challenging to maintain 

the ideal ASWWTP operating state due to unpredictable disturbances. During the 

ASWWTP process, the system may encounter airflow overload conditions, leading to 

instability, which can be caused by a sudden influx of large amounts of air or failures 

in dissolved oxygen sensors. In this chapter, we focus on the issue of blowers generating 

and transferring excess air. 

As previously discussed in [193], a high concentration of DO in the bioreaction tank 

leads to a decrease in the degradation rate of microorganisms, a reduction in oxidative 

displacement rate, and the generation of oxidative by-products. Leading to the amounts 

of aerobic microorganisms decreasing and an increase in anaerobic microorganisms. 

Thus, an imbalance in microbial populations will affect the overall denitrification 

process. Moreover, the high DO concentration results in reduced nitrogen removal 

efficiency. 

The design and application of DMRAC with a filter aim to address the challenge of 

maintaining a suitable DO concentration to achieve stable and highly efficient 

ASWWTP operation when the ASWWTP system operates in an air overload state. The 

mathematical model of the ASWWTP rewrites ASM 2d based on the mass balance 
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principle. Demonstrating the stability and anti-disturbance performance of DMRAC 

with filter through Lyapunov function analysis and MATLAB simulation. 

 

4.2 The architecture of ASWWTP 

The architecture of the ASWWTP consists of both primary and secondary wastewater 

treatment components. In the primary wastewater treatment unit, large pollutant 

particles are collected and filtered. Next, the wastewater flows into the secondary 

wastewater treatment unit, which includes a bioreaction tank, sedimentation tank, and 

blower. The blower’s operating condition is crucial for the growth and degradation of 

microorganisms because it produces and delivers airflow into the bioreaction tank. The 

sedimentation tank separates the clear water from the sludge by gravity. The 

architecture of the ASWWTP is depicted in Figure 4-1. We consider the DO 

concentration trajectory, tracking the reference DO concentration trajectory in the 

bioreaction tank, which involves highly nonlinear dynamics. 



112 

 

Wastewater Settlme
nt

Biochemical
Tank

Secondary Wastewater
Treatment

Frist Wastewater
Treatment

Wastewater

Blower

Air

 

Figure 4- 1 The architecture of ASWWTP 

 

4.3 Aeration station processes  

After filtering out large particles, the wastewater flows into the bioreaction tank. In the 

biological reaction, wastewater, dissolved oxygen, and young sludge are mixed to 

initiate a biochemical process. Dissolved oxygen acts as a catalyst for microbial growth 

and degradation, while young sludge is maintained in the bioreaction tank to sustain the 

microbial population. After a series of biological reactions, the wastewater flows into 

the sedimentation tank, where clean water and sludge are separated by gravity. 

Dissolved oxygen is supplied by a blower, which serves as a control input, as shown in 

Figure 4-2. By adjusting the dissolved oxygen concentration, the level required for 

microbial growth and degradation in the bioreaction tank is achieved. Microorganisms 

carry out the removal process during the biochemical reaction. 
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As discussed in [19, 156], the purpose of the two-layer control system is adjust to DO 

concentration trajectory ( ( )DO t ) to track the reference DO concentration trajectory 

( ( )refDO t ) in the bioreaction tank. The upper control system determines ( )refDO t  based 

on the pre-established set-points reference airflow ( ( )ref

airQ t ). The lower layer control 

system output ( )DO t  is derived from the optimized airflow ( ( )airQ t ) to ensure that 

( )DO t trajectory to track ( )refDO t trajectory. The ( )ref

airQ t  is derived from the inflow of 

wastewater and young sludge in the biochemical reaction tank. In the blower operation 

with ideal conditions, the airflow equivalent to the reference airflow has been discussed 

in [126]. Additionally, in Chapter 3, when the output of the blower actuator matches 

the blower output, the DMRAC output allows the DO concentration trajectory to 

rapidly and stably track the reference DO concentration trajectory. Thus, the 

microorganisms in the biochemical reaction tank can obtain the required dissolved 

oxygen. The lower layer control system employing an MPC controller was 

demonstrated in [163]. Our study utilizes the DMRAC with a filter as the lower layer 

control system. This controller algorithm is based on the DMRAC method [156]. 
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Figure 4- 2 The architecture of nutrient removal with blower 

In our study, assume that the lower layer control system blower is unable to produce 

airflow that matches the reference airflow provided by the upper layer control system. 

In addition, we assume that the actual air volume exceeds the reference air volume, 

resulting in an excessively high DO concentration in the bioreactor. As described in the 

[51], high DO concentrations will reduce the degradation capacity of anaerobic 

microorganisms and have a negative impact on the denitrification reaction, thereby 

reducing the overall denitrification efficiency. On the contrary, aerobic microorganisms 

will settle, resulting in reduced water quality. Therefore, ensuring an appropriate DO 

concentration during the biochemical reaction is the focus of the control system. 
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4.4 Dissolved oxygen concentration problem statement  

The ASWWTP mathematical model is used to study the design and operation of the 

ASWWTP. It was established by IWA, and those models include: ASM 1, ASM 2, 

ASM 2d and ASM 3 [33]. The ASM 1 employs one dimension to describe organic 

matter degradation, nitrification, and denitrification processes, with specific details of 

organic matter removal processes. Additionally, the ASM 2 is one dimension to 

describe the microorganism growth and degradation, specific to the phosphorous 

absorption and release process. Moreover, the ASM 2d is two-dimensional to describe 

microorganism growth and degradation, specific to the more detailed denitrification 

and phosphorus. Finally, the ASM 3 is two-dimension to describe all biochemical 

reaction processes [164].  

The state variables of the ASWWTP cannot be accurately monitored by a hard sensor. 

These state variables involve a range of biochemical reactions occurring over time. each 

interdependent and simultaneous in nature. Since we focus on the DO concentration as 

the control output. The mathematical model of ASWWTP rewrites ASM2d and utilizes 

mass balance to demonstrate the ASWWTP process, as depicted in the following 

equation (3.3-1) … (3.3-6). Figure 4-3 illustrates the architecture of the ASWWTP for 

nutrient removal, incorporating a blower. 
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Figure 4- 3 The architecture of ASWWTP for nutrient removal with a blower 

The function ( ( ))La airk Q t  represents the oxygen transfer function derived from the 

mathematical mode of the ASWWTP in equation (3.3-3). This oxygen transfer function 

is dependent on the blower’s operating state, as demonstrated in [105]. Therefore, the 

oxygen transfer function can be expressed as follows: 

                         ( ) ( )La airk t Q t = +                                          (4-1) 

Where:   and   are constants known to represent oxygen transfer factors. 

As discussed in [112, 155], a two-layer control system is employed with the objective 

of ensuring that the DO concentration trajectory ( ( )DO t ) tracks the reference DO 

concentration trajectory ( ( )refDO t ). The upper layer controller computes the reference 

airflow ( ( )ref

airQ t ) necessary to achieve the desired reference DO concentration trajectory 

( ( )refDO t ). The lower controller utilizes the blower actuator to generate airflow ( ( )airQ t ), 

which directly affects the actual DO concentration trajectory ( ( )DO t ) in the 

biochemical reaction tank. As demonstrated in [19], a blower operation under ideal 

conditions, the blower actuator can produce the airflow ( ( )airQ t ) same to the reference 
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airflow ( ( )ref

airQ t ), thereby ensuring that the DO concentration trajectory ( ( )DO t ) tracks 

the reference DO concentration trajectory ( ( )refDO t ). This guarantees that 

microorganisms receive sufficient DO for growth and degradation. In our study, we 

consider that the blower is unable to generate airflow ( ( )airQ t ) equal to the reference 

airflow ( ( )ref

airQ t )，but can only produce airflow that exceeds the reference airflow 

( ( ) ( )ref

air airQ t Q t ).  

The operation of ASWWTP is affected by input disturbances, such as influent flow rate 

( ( )inQ t ), the substrate concentration in the influent ( ( )inS t ) and dissolved oxygen 

concentration in the fluent ( ( )inDO t ). These disturbances are unknown, uncertain, and 

unpredictable. Moreover, they are nonlinear dynamics. Therefore, to address these 

issues, the control system must be capable of updating ASWWTP’s parameter online.  

 In our study, we assumed that the blower produces excessive airflow ( ( )airQ t ) 

compared to reference airflow ( ( )ref

airQ t ). The control system is designed to filter out this 

excess airflow while incorporating anti-disturbance capabilities and, moreover, 

ensuring the system's operation is stable. 

The equations (3.3-1) to (3.3-6) show that the dynamics of ASWWTP form a complex 

nonlinear system. As demonstrated in various [21, 165, 166] simple feedback control 

methodologies like PI control, nonlinear MPI control, and Intelligent-PID were used to 

solve nutrient removal issues at the ASWWTP. However, these approaches generally 
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produce unacceptable results. The MIMO quantitative robust controller-design 

methodology implemented for nutrient removal at the ASWWTP with the additional 

airflow control modules was described in the [167], but it proved to be extremely 

complex. 

The structure of the DO control system, assuming the existence of an ideal DO 

concentration sensor, is illustrated in Figure 4-4. This ideal DO concentration is 

estimated using adaptive control law, eliminating the need for respiration estimation. 

This approach differs from that described in [168]. 

Plant
Aeration 

Control

System

DO

Controller

Tracking

Error
ref

airQ( )ref

airQ t

DO

refDO

, ,in in inQ S DO

Filter

( )W t

 

Figure 4- 4 Structure of dissolved oxygen control system 

Due to the characteristic of ASWWTP operation, there are some ASWWTP state 

variables that cannot be measured by a hard sensor. Therefore, we utilize a DO 

controller to update online these time-varying variables and use these plant parameters 

to adjust the DO concentration trajectory of the output. The goal of the DMRAC with 
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filter is to maintain a stable output DO concentration trajectory and tracking reference 

DO trajectory ( refDO )while rejecting excess airflow and unknown disturbances. 

 

4.5 Dissolved oxygen controller design with input constraints 

The state-space model of an ASWWTP is described in equations (3.3-1) - (3.3-6), based 

on a modified ASM 2d and mass balance. The mathematical model of the ASWWTP 

was developed by IAWQ and tested. As previously mentioned, only the DO 

concentration is considered the control output, which is a nonlinear and uncertain plant 

parameter. The state variables ( )rX t , ( )X t , and ( )S t  are unmeasurable, while other 

plant parameters such as ( )airQ t , ( )inQ t , and ( )WQ t are detectable by a soft sensor. The 

parameter DO can be estimated by an adaptive controller and updated online.  

The first-order single input-output format is rewritten to derive a dynamic model for 

DO, which includes three main elements: 1) the state variables; 2) the control input with 

saturation constrain; and 3) the disturbance inputs. Furthermore, the design of the 

DMRAC with input constraints will entail estimating an uncertain state variable, extra 

air inflow, and unknown disturbances. This estimation mechanism will be continuously 

updated online to accommodate unknown parameters.  
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By substituting equations (3.3-5) and (3.3-7) into equation (3.3-3), the dynamic model 

( )DO t is derived. The DMRAC with filter design is based on this equation (4-5-1). The 

resulting SISO model for dissolved oxygen concentration is as follows: 

  

0

max

( )
( )(1 ) ( ) ( )

( ( ) )( ( ))

( ) ( )

air

in

K X tdDO
D t r DO t t

dt Y

Q t DO DO t

D t DO t



 

= − + −

+ + −

+

                                (4.5-1) 

The term ( ) ( )inD t DO t  in the state-space model is significantly smaller compared to other 

state variables because of the dependency of the term ( )D t  on both ( )inQ t  and aV , as 

illustrated in equations (3.3-6). Hence, the impact of ( ) ( )inD t DO t can be neglected. 

Rewriting equation (4.5-1) yields: 

  
( ) ( ( )) ( )

( ) ( )

p p p air

p in

dDO
a DO t c f DO t b Q t

dt

d D t DO t

= − − +

+ +

                   (4.5-2) 

Where: ( ), ( ), ( )p p pa t c t b t , and pd  are the SISO DO parameters. 
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d DO








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=
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+

=
+

= −

=

                                           (4.5-3) 
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The parameter ( )pa t , dependent on the variable ( )inQ t  in equation (3.4-6), pertains to 

the operating time scale of the upper layer’s control system. Compared to the time scale 

of ( )DO t , ( )pa t  are varies slowly. 

The parameter ( )pc t  also varies slowly and is unknown due to its dependence on the 

plant’s biological state variables ( )X t  and ( )S t , which exhibit slower variations in the 

time scales compared to ( )DO t [12, 19]. 

The time-varying of ( ( ))f DO t is determined by the time scale of ( )DO t .  
DOK  is also a 

small constant relative to the time scale. 

The parameter ( )pb t  varies depending on the time scale of ( )DO t  in equation (3.4-3) 

and the parameter  , which represents the oxygen transfer constant and is known in 

equation (3.4-7). The plant parameter ( )DO t  has a faster varying time scale compared 

to other plant state variables. Hence, the parameter ( )pb t  is also the time scale of rapidly 

changing, as discussed in [169]. 

The adaptive model references dynamics, when the adaptive controller’ output ( )DO t  

tracks the . ( )m refDO t  in a closed loop, as described in the following equation. 

  .

. ( ) ( )
m ref ref

m m ref m

dDO
a DO t b DO t

dt
= − +                          (4.5-4) 
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Where:
.m refDO represents the adaptive mode reference dynamic output, with parameters 

ma and mb being model reference constants. During the simulation experiment, we 

assumed ma  to be equal a small constant, denoted as mb .  

By rearranging equation (4.5-2), the saturation input limitation of the ( )DO t  dynamic 

of a single input-output model is as follows:  

     
( ) ( ) ( ) ( ( ))

( ) ( )

p p

p p

dDO
a t DO t c t f DO t

dt

b t W t d

= − −

+ +

                             (4.5-5) 

Where: ( )W t  represents assumed to be the saturation control input under constraints 

(SCIC). 

    ( ) ( ( ))airW t saturation Q t=                                           (4.5-6) 

and ( )W t constraints are expressed as:   

( ), ( ) ( )

( ) ( ), ( ) ( ) ( )

( ) ( ) ( )

L L
air air air

L U
air air air air

U U
air air air

Q t if Q t Q t

W t Q t if Q t Q t Q t

Q t if Q t Q t

 



=  



，

                             (4.5-7) 

Where: 
L

airQ  and 
U

airQ  represent the lower and upper bounds of the actuator’s constant 

limitation, respectively. If the input saturation condition is met, the tracking error of 

filter ( )n t  is increases. The model reference adaptive control law with saturation input 

is shown in equation (4.5-4). This motivates us to develop an adaptive control law 
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explicitly considering the influence of the actuator’s saturation input nonlinearity, in 

comparison with Chapter 3. 

The dynamics of the filter tracking error are applied as follows: 

                            ( ) ( ) ( )n t e t t= −                                                   (4.5-8) 

Where: ( )e t  represents the differences between the control output ( )DO t  and the 

adaptive model reference output . ( )m refDO t  with on-line updates. 

       .( ) ( ) ( )m refe t DO t DO t= −                                           (4.5-9) 

The adaptive controller should be capable of rejecting constrained input and disturbance 

input by defining the auxiliary signal as expressed. 

             ( ) ( )p air

d
b Q t t

dt


=  −                                         (4.5-10) 

Where:  is a small positive constant auxiliary parameter. The parameter ( )airQ t   

represents the difference between the control input ( )airQ t under SCIC and ( )W t . 

The affine model reference adaptive control law with input constraint is applied as 

follows: 
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.

1 1
( ) ( ) ( ) ( ) ( ( ))

( ) ( )

1 1
( ) ( )

( ) ( )

1
( )( ( ) ( ))

( )

ref

DO f

p p

ref

pDO
p p

m ref

p

W t a t DO t a t f DO t
b t b t

a t DO t d
b t b t

t DO t DO t
b t

= +

+ −

−  −

                 (4.5-11) 

The model reference dynamic in equation (4.5-4) represents a linear time-varying 

dynamic. The terms 1
( ) ( ( ))f

p

a t f DO t
b

 and  1
p

p

d
b

 in (4.5-11) can achieve asymptotically 

cancellation of saturation input within the control system through the closed-loop 

nonlinear dynamics and additive terms in (4.6-5). The control saturation input is 

described by the last term in equation (4.6-11). The fourth term of equation (4.5-11) is 

updated online with time-varying, and the parameters ( )DOa t ,  ( )fa t , and  ( )refDO
a t  are 

updated online by the adaptive control law. The model reference dynamics are obtained 

in the closed-loop for ideal parameters. The closed-loop equation (4.5-5) using equation 

(4.5-11) can be written as: 

    

( ( ) ( )) ( )

( ( ) ( )) ( ( ))

( ) ( )

( ( ) ( ))

ref

p DO

p f

ref

DO

m

dDO
a t a t DO t

dt

c t a t f DO t

a t DO t

DO t DO t

= − −

− −

+

− −

                                (4.5-12) 

and  
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ˆ( ( ) ( ))

ˆ( ( ) ( )) 0

ˆ ( )

( ( ) ( )) ( )

ref

p DO m

p f

mDO

m

a t a t a

c t a t

a t b

DO t DO t e t

− − = −

− − =

=

− − = −

                          (4.5-13) 

Where: ˆ ( )DOa t , ˆ ( )fa t and ˆ ( )refDO
a t  represent the ideal parameters of the adaptive model 

reference. 

The ideal parameters are obtained as follows: 

                                                      

ˆ ( ) ( )

ˆ ( ) ( )

ˆ ( )ref

DO m p

f p

mDO

a t a a t

a t c t

a t b

= − +

=

=

                                             (4.5 -14) 

The parameter adaptive laws that ensure the stability of a DMRAC system with a SISO 

first-order dynamic system are derived in [166]. This SISO first order dynamic system 

includes a linear unknown constant, known parameters, and a nonlinear additive 

structure. The linear unknown constant remains constant over time. Using these 

parameters adaptive laws implemented on equation (4.5-1), the parameters adaptive 

laws of DMRAC control system in ASWWTP are represented by equations (4.5-15), 

(4.5-16), and (4.5-17), as follows:  

                               1 ( ) ( )DOda
e t DO t

dt
= −                                                 (4.5-15) 



126 

 

                     
2 ( ) ( ( ))

fda
e t f DO t

dt
= −                                           (4.5-16) 

                             
3 ( ) ( )

ref refDO
da

e t DO t
dt

= −                                         (4.5-17) 

The constants 1 , 2 , and 3  are small enough positive values that represent adaptive 

gains. These adaptive gains are capable of adjusting the adaptive rate. In the closed-

loop adaptive control system, adjusting adaptive gain to change the adaptive rate to 

match the time-vary variables during the ASWWTP process can prove the stability of 

the adaptive control system. Figure 4-5 depicts the direct model reference adaptive 

control with constraints on the control input ASWWTP. 

DMRAC Law
And

Filter

Reference Model

Plant

Parameter Adaptive
Block

Parameters

e+
DOW

.m refDO

refDO

1 2 3, ,  

 

Figure 4- 5 The structure of DMRAC with a filter 

 

4.6 Stability analysis  

The parameter adaptive laws (4.5-15), (4.5-16), and (4.5-17) are the online update 

estimation parameter ( )DOa t , ( )fa t , and ( )refDO
a t . The difference between estimation 
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parameters and ideal parameters ˆ ( )DOa t , ˆ ( )fa t , ˆ ( )refDO
a t  are defined as ( )DOa t , ( )fa t ,  

and ( )refDO
a t .  

      ˆ( ) ( ) ( )DO DO DOa t a t a t = −                                           (4.6-1) 

                           ˆ( ) ( ) ( )f f fa t a t a t = −                                               (4.6-2) 

          ˆ( ) ( ) ( )ref ref refDO DO DO
a t a t a t = −                                     (4.6-3) 

Consider the following Lyapunov function:  

  
2 2 2 21 1 1 1

( ) ( ) ( ) ( ) ( )
2 2 2 2

refDO f DO
V t n t a t a t a t= +  +  +          (4.6-4) 

Hence, 

1

2

( ) 1
ˆ ˆ( ) ( ) ( ( ) ( ))( ( ) ( ))

1
ˆ ˆ( ( ) ( ))( ( ) ( ))

ˆ ˆ( ( ) ( ))( ( ) ( ))ref ref
ref ref

DO DO DO DO

f f f f

DO DO
DO DO

dV t
n t n t a t a t a t a t

dt

a t a t a t a t

a t a t a t a t





= + − −

+ − −

+ − −

  (4.6-5) 

It follows from equations (4.5-8), (4.5-9), (4.5-4), and (4.5-12) that  

                           

.

( )
ˆ( ( ) ( )) ( )

ˆ( ( ) ( )) ( ( ))

ˆ( ( ) ( )) ( )

( )

ref ref

DO DO

f f

m refDO DO

dn t
a t a t DO t

dt

a t a t f DO t

a t a t DO t

n t

= −

+ −

+ −

−

                       (4.6-6) 
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By substituting equations (4.6-6), (4.5-15), (4.5-16), and (4.5-17) into equation (4.5-5) 

yields: 

                                                      
2( )
( )

dV t
n t

dt
= −                                                     (4.6-7) 

As time approaches infinity, the result of the Lyapunov function tends to zero. In 

summary, when the Lyapunov function approaches zero, the filter tracking error tends 

to zero as time approaches infinity. The parameter   is a small positive constant, and 

2( )n t  is a positive variable.  

The controller limit boundaries are defined by an auxiliary signal, denoted as ( )t ,  

which represents the bounding error between the real DO output and DO model 

reference output. 

                                                      lim ( ) ( ) 0it e t t−                                                (4.6-8) 

As time approaches infinity, the ( )e t  tends to zero. Auxiliary signals can either become 

positive or negative as time goes to infinity. Now, let us consider the auxiliary signal 

( )t  by following the Lyapunov function: 

                                                         
21

( ) ( )
2

V t t =                                              (4.6-9) 

Hence, the derivative of the Lyapunov function is given by the following equation: 

                                                             
( )

( ) ( )
dV t

t t
dt

  =                                                (4.6-10) 
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By substituting equation (4.5-10) into equation (4.6-10) 

                                   
( )

( ) ( ) ( ) ( ) ( )p air

dV t
t b t Q t t t

dt
  =  −                            (4.6-11) 

Assuming the term ( ) ( ) ( )plant

p air airb t Q t Q t =    (4.6-12), it follows from equations (4.6-

11) and (4.6-12) that  

                                 
22 2( ) 1 1

( ) ( ) ( )
2 2

plant

air

dV t
t t Q t

dt

  = −  + +                      (4.6-13) 

The small positive constant auxiliary parameter   has been mentioned previously. 

Now, let us assume that 0

1

2
a =  (4.6-14), where 0a  is a small positive constant 

parameter, and 0 0a   (4.6-15). Substitute equation (4.6-14) into equation (4.6-13). 

                  
2

0

( ) 1
2 ( ) ( )

2

plant

air

dV t
V t a Q t

dt


= − +                               (4.6-16)                       

The second term of equation (4.6-16), denoted by (
21
( )

2

plant

airQ t ), is bounded by the 

square of 
2

( )plant

airQ t . To determine the bound of the first term, we utilize the integral 

(4.6-16).  

  

2 2

02

.0

0 0

( ) ( )
( ) ( ( ) ) ( )

4 4

plant plant
aair airQ t Q t

V t V t e t
a a

 

− 
= + +              (4.6-17) 

Where: .0( )V t  is the initial value of the ( )V t . As time approaches infinity and 0a  

becomes a sufficiently large positive value, the second term of (4.6-17) becomes equal 

to zero, as shown below. 
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2

0

( )
( )

4

plant

airQ t
V t

a



=                                                      (4.6-18) 

It can be deduced from equation (4.6-9) and the constraint on ( )V t  being negative or 

zero, as follows:  

                                                    

2

2

2

2

0

2

0

0

( )
( )

4

( )1
( )

2 4

( )
( )

4

plant

air

plant

air

plant

air

Q t
V t

a

Q t
t

a

Q t
t

a








=


=


=

                                              (4.6-19) 

By rearrange equations (4.6-8) and (4.6-19) as follows: 

                                             

2

0

( )
( )

4

plant

airQ t
e t

a


                                                (4.6-20) 

If 0a  is large enough, the tracking error ( )e t  will tend to zero. Hence, the control 

system will be asymptotically stable. Further detailed derivations are provided in 

Appendix B. 

Barbalat’s Lemma:  

We apply Barbalat’s lemma to analysis the results of the Lyapunov function. The 

conclusion states that under the following circumstances, a direct model reference 

adaptive controller is capable of asymptotic trajectory tracking ( )refDO t . It is bounded 
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by the ideal adaptive parameters and on-line updated parameters ( 

ˆ ˆ ˆ( ), ( ), ( ), ( ) ( ), ( )ref refDO DO f f DO DO
a t a t a t a t a t a t， ), as follows: if 1) the parameters in the 

adaptive control law are close enough to the set point in the initial condition, 2) the 

adaptive rate parameters have small positive values, and 3) the saturation input is small, 

then the parameters of the direct model reference adaptive controller are bounded, and 

the control system is stable. 

In the subsequent chapter, we will utilize MATLAB simulation results to illustrate the 

characteristics of the direct model reference controller with input saturation, as 

implemented in the ASWWTP operation. 

 

4.7 Simulation results and discussion 

In this section, we will utilize MATLAB simulation results to demonstrate the stability, 

robustness, and constraint resistance of the direct model reference adaptive control with 

filter when applied to the global variables of the blower-limited ASWWTP system. The 

MATLAB simulation utilized real data as a reference in the [161]. 

The simulation of ASWWTP operation utilized the following initial conditions: 

(0) 15 /X mg l= , (0) 200 /S mg l= , (0) 3 /DO mg l= , (0) 18 /rX mg l= , 
max 10 /DO mg l= ，

max 10 /DO mg l= , (0) 600 /inS mg l= , (0) 600 /inS mg l=  (0) 3D = , (0) 0.5 /inDO mg l= . The process 
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parameters are listed below: 0.65Y = , 0.6r = , 0.2 = , 0.18 = , 
0 0.5K = . The kinetic 

parameters are as follows: 
max 0.15 /mg l = ,  0.15 /sK mg l= , 2 /DOK mg l= . The auxiliary 

signal parameter is 0.6 = . The reference model parameters are: 5ma =  and 5mb = . 

The ( )refDO t  are assumed to be piecewise constant. The ( )inS t , ( )D t , and ( )inDO t  

time-varying disturbance inputs are represented in Figure 4-6, 4.7, and 4-8. 

 

Figure 4- 6 Influent substrate ( )inS t  

 

Figure 4- 7 Dilution rate ( )D t  

0 1 2 3 4 5 6 7 8 9 10
200

250

300

350

400

450

500

Time(h)

S
in

(m
g
/l
)

0 1 2 3 4 5 6 7 8 9 10
2

2.5

3

3.5

4

4.5

5

Time(h)

D
(t

)



133 

 

 

Figure 4- 8 Influent dissolved oxygen ( )inDO t  

During the ASWWTP operation with saturation input and without disturbance input, 

the output ( )DO t  of DMRAC exhibits good performance in tracking the trajectory of 

( )refDO t , as illustrated in Figure 4-9. Moreover, the output of DMRAC demonstrates 

that the adaptive control output ( )DO t   can effectively, rapidly, and stably track the 

trajectory of ( )refDO t , indicating that the adaptive controller has good robustness to 

disturbance inputs and capability to reject saturation inputs in the ASWWTP operation, 

as illustrated in Figure 4-10. 

 

Figure 4- 9 ( )DO t  and ( )refDO t  with saturation input and slow adaptive rates 
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1 2 30.2, 0.2, 0.2  = = =  and auxiliary parameter  
0 0.2a = −  

 

Figure 4- 10 ( )DO t  and ( )refDO t  with saturation input and disturbances input 

and slow adaptive rates 1 2 30.2, 0.2, 0.2  = = = and auxiliary parameter 0 0.2a = −  

 

Figure 4- 11 ( )DO t  and ( )refDO t without disturbances input and with saturation 

input, fast adaptive rates 1 2 36, 6, 6  = = =  and auxiliary parameter 0 0.2a = − . 
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The initial conditions of the ASWWTP remained consistent with those used previously. 

The parameter ( )refDO t  is consistent with the conditions in Figures 4-9 and 4-1-. The 

gain of adaptive laws was considered as fast-varying variables (
1 2 36, 6, 6  = = = ). 

Figure 4-11 indicates that the adaptive control output ( )DO t  is not tracking the 

( )refDO t  trajectory. Hence, the DMRAC system of the closed-loop system is unstable. 

Due to increasing the adaptive gain, there is an increase in the parameter adaptive laws, 

and adaptive rate. Consequently, the adaptive rate becomes extremely fast to match the 

time-varying parameter of the ASWWTP. Resulting in the auxiliary signal being unable 

to filter the input saturation. Therefore, rendering the adaptive control parameters 

unbounded by error. 

 

 

Figure 4- 12 ( )DO t  and  ( )refDO t  with saturation input, disturbance input, and with 

fast adaptive rates 
1 2 36, 6, 6  = = =  and auxiliary parameter 

0 0.2a = − . 
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In Figure 4-12, the response of the control output ( )DO t tends towards infinity, 

signifying that the adaptive control system becomes unstable in the presence of 

saturation input, disturbance input, and a rapid adaptive control rate. It indicates that 

the parameters of the adaptive control law are unable to update online under the 

matched plant speed scale, leading to a decline in robustness. Hence, the adaptive 

control parameters ( )DOa t   and ( )fa t  are not bound by the squared error, where the 

error denotes the deviation between the real control output ( )DO t  and the trajectory of 

the model reference output ( )DO t .  

 

 

Figure 4- 13 ( )DO t  and ( )refDO t  without disturbance input and with input 

saturation, adaptive rates  
1 2 30.6, 0.6, 0.6  = = =   and large auxiliary parameter 0 2a = −  

In figure 4-13, the response of the adaptive control output ( )DO t  is observed not to 

track the trajectory of the model reference ( )refDO t , indicating instability in the 
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adaptive control system equipped with a filter, where it’s under a large auxiliary 

parameter 0a . This demonstrates that the saturation input exceeds the auxiliary 

limitations, hence leading to instability in the control system, as previously analysed 

for stability. Furthermore, this also indicates the insufficiency of the adaptive control 

system’s robustness to accommodate large input saturation.  

 

Figure 4- 14 The initial conditions are very fast from the equilibrium point.  ( )DO t   

without disturbance and with saturation input, slow adaptive rates   

1 2 30.2, 0.2, 0.2  = = =  and auxiliary parameter 0 0.2a =  

The initial conditions (0) 30 /X mg l= , (0) 960 /S mg l= , and (0) 35 /rX mg l= ,

(0) 7 /DO mg l=  are very far from the equilibrium point. The response of the adaptive 

control output ( )DO t ,  as shown in Figure 4-14, indicates that the closed-loop control 

system becomes unstable, which confirms the stability analysis in Chapter 4.6.    



138 

 

4.8 Conclusion  

This chapter addresses the dissolved oxygen concentration trajectory tracking issue to 

achieve nutrient removal at the ASWWTP. Considering the existing architecture of 

ASWWTP, the blower is operating under conditions of overproduction and excessive 

air delivery. A dissolved oxygen concentration direct model reference adaptive control 

system with a filtering function is designed based on limited ASWWTP parameters and 

applied to the mathematical model of global ASWWTP parameters. The parameters of 

the adaptive control system are adjusted according to the MATLAB simulation results. 

The MATLAB simulation results prove that the control system can resist interference 

while rejecting excess air inflow. At the same time, the stable and efficient operation of 

the system is guaranteed. The MATLAB simulation results verify the stability of the 

control system using the Lyapunov function. 
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CHAPTER 5 Supervised Fuzzy Logic and 

DDMRAC Two – Level for Nutrient Removal 

at ASWWTP  

 

5.1 Introduction  

In practice, ASWWTP factories often prioritize saving construction space, minimizing 

maintenance costs, and reducing energy consumption while maintaining stable and 

efficient operations. As mentioned earlier, the settlement tank occupies a significant 

amount of space and takes a long time to operate. Additionally, air supply represents 

the highest cost in ASWWTP operations. To address these challenges, we use a single 

air supplier and a single settlement tank in coordination with three biochemical tanks 

arranged in series for ASWWTP operations. This setup effectively manages the large 

volume of wastewater purification 

Due to the varying inflow and outflow of biomass, substrate, dissolved oxygen, and 

recycled biomass in each biochemical reaction tank, a Fuzzy Logic Decentralized 

Direct Model Reference Adaptive Controller is designed and implemented in the 

ASWWTP to rapidly adjust airflow into each bioreaction tank. This allows the real DO 

concentration to closely follow the reference DO concentration trajectory. The 
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controller's stability is proven using the Lyapunov function. MATLAB simulation 

results, based on real data, demonstrate that the ASWWTP operates efficiently and 

stably, with the capability to reject unknown disturbances. 

This study leverages the characteristics of fuzzy logic control and applies it to the 

regulation of dissolved oxygen concentration in multiple bioreactors, ensuring that the 

dissolved oxygen concentration in each bioreactor changes appropriately over time, 

thereby achieving an efficient biochemical reaction rate. To enhance the efficacy of 

fuzzy logic control in meeting the specific needs of wastewater purification plants, we 

optimize its adaptability, accuracy, and robustness using Genetic Algorithms.  

 

 

5.2 The architecture of ASWWTP with a blower and three 

bioreactors in series 

The ASWWTP consists of three biochemical reaction tanks in series, a settlement tank, 

and a single blower, as illustrated in Figure 5-1. Wastewater from the collection and 

filtration tanks flows into bioreaction tank 1, where it undergoes a series of biochemical 

reactions with dissolved oxygen. The wastewater then flows into bioreaction tanks 2 

and 3. The blower actuator supplies airflow to each bioreaction tank, acting as the 



141 

 

control input. This ensures that microorganisms receive the necessary dissolved oxygen 

for growth and degradation. 

The reference DO concentration trajectory is provided by a pre-set reference airflow in 

the upper layer of the overall control system [178]. The quantity and type of substances 

in the inflow and outflow of each bioreaction tank vary. Finally, after the wastewater 

completes its bioreaction with dissolved oxygen in bioreaction tank 3, it flows into the 

sedimentation tank, where sludge is separated from clear water by gravity. The sludge 

is divided into new sludge and old sludge. The new sludge is returned to bioreaction 

tank 1, which helps maintain the balance and adaptability of the microbial community. 

As discussed in [203], a certain amount of DO must be present in the discharged clean 

water to maintain the balance of the natural ecosystem. Substrate and biomass 

concentrations cannot be measured online with hard sensors [35]. The control of DO 

concentration in the bioreaction tanks during ASWWTP operation has received 

significant attention in the control community [1, 14, 176]. 
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Figure 5- 1 Architecture of ASWWTP with three bioreactors for nutrient removal 

As [112, 113] discussed, the two-layer control system implements the DO 

concentration trajectory ( ( )DO t ) output by the lower-layer MPC controller to track the 

reference DO concentration trajectory ( ( )refDO t ) provided by the upper layer control 

system. The pre-given ( )ref

airQ t  set-point is obtained by calculating the inflow of 

wastewater and sludge, and it is the input for the upper layer control system. The lower 

layer control system optimizes the input - ( )airQ t , enable ( )DO t  to track the output 

( )refDO t  of the upper layer control system. The MPI control system implemented in the 

lower layer control system for optimizing  ( )airQ t  to ensure that ( )DO t tracking the 

( )refDO t , as demonstrated in [61]. In this chapter, we design and implement a Fuzzy 

logic – DDMRAC system as the overall lower control system in the ASWWTP, which 

consists of a single blower and sediment tank, and three bioreaction tanks in a series. 

The Fuzzy logic -DDMRAC algorithm based on the DMRAC method [156], and fuzzy 

logic rules. 
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5.3 Nutrient removal process using single blower and three 

bioreactors in ASWWTP 

Sewage flows from the collection tank into bioreactor 1, and undergoes biochemical 

reactions with the oxygen delivered by the blower actuator. The biochemical reaction 

process includes: the growth of microorganisms and the decomposition of organic 

matter. Next, it flows into bioreactor 2 and 3 in sequence to undergo biochemical 

reactions. However, the sewage and air flowing into each bioreactor are different, and 

the amount of air flowing into each biochemical reactor is based on the biomass 

concentration in each biochemical reactor. The young sludge flows back only to 

bioreaction tank 1. The microorganisms in all three bioreaction tanks require dissolved 

oxygen, which is provided by a single blower, as illustrated in Figure 5-2. The detailed 

process of wastewater flow and airflow injection is as follows: 

1) The inflow of bioreaction tank. 1 includes wastewater influent flow rate ( ( )inQ t ), 

airflow ( .1( )airQ t  ), DO concentration influent ( )inDO t  , and substrate 

concentration ( ( )inS t ) . The outflows of the bioreaction tank. 1 are  1( )X t ,  1( )S t , 

and 1( )DO t , respectively. This process is the same as that of ASWWTP with a 

single blower, bioreaction tank, and sediment tank.  

2) The inflow of bioreaction tank. 2 is based on the outflow of bioreaction. 1 

adding .2( )aieQ t . The outflows of the bioreaction tank. 2 are 
2 ( )X t ,  2( )S t , and 

2( )DO t , respectively. Additionally, the biomass concentration in bioreaction tank 
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1 is higher than in bioreaction. 2 (
1 2( ) ( )X t X t ), and substrate concentration in 

bioreaction tank. 1 is lower than in bioreaction. 2 (
1 2( ) ( )S t S t  ), as some 

microorganisms have been degraded.  

3) The inflow of bioreaction tank. 3 is based on the outflow of bioreaction. 2 

adding .3( )aieQ t . The outflows of bioreaction. 3 are effluent flow rate ( ( )outQ t ), 

recycled flow rate ( ( )rQ t  ), waste flow rate ( ( )rX t  ). As a large portion of 

microorganisms has been degraded in bioreaction. 3, the substrate concentration 

is highest, and the biomass concentration is lowest in this tank. 

4) Finally, the inflow of sedimentation tank is the same as the outflow from 

bioreaction tank 3. Clear water and sludge flow out from the bioreaction. 3, 

respectively. The young sludge flows back to bioreaction 1, while the aged 

sludge is discharged. 

Influent Effluent

Bioreactor 1 Bioreactor 2 Bioreactor 3 Settler

Aeration Control

 System

, ,in in inQ S DO outQ
1 1 1, ,X S DO 2 2 2, ,X S DO 3 3 3, ,X S DO

,r rQ X ,w rQ X

( )ref

airQ t
airQ

.1airQ .2airQ
.3airQ

 

Figure 5- 2 Architecture of ASWWTP with Three Bioreactors in Series 

As discussed in [77], the two-layer control system comprises an upper layer that 

determines the reference DO concentration trajectory based on the pre-setpoint 
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reference airflow. The lower layer control system optimizes the airflow to ensure that 

the DO concentration tacks the reference DO concentration. The blower actuator is a 

complex nonlinear system and ensuring that the airflow output by the blower actuator 

is equal to the reference airflow is solved using an MPC control system as described in 

[191]. In our study, we considered the design of a lower-level control system that 

utilizes a two-layer fuzzy logic-DDMRAC system to determine the DO concentration 

trajectory, ensuring that it tracks the reference DO concentration trajectory in each 

bioreactor. This plant employs a single blower actuator to provide the required airflow 

for three bioreactors. The decentralized DMRAC algorithm is based on the DMRAC 

method [15]. 

As discussed in [63], the DO concentration is an important parameter for evaluating the 

efficiency of wastewater purification in activated sludge treatment. The growth and 

degradation of microorganisms in the bioreactor depends on the dissolved oxygen 

concentration in the wastewater. At higher DO concentrations, the growth and activity 

of microorganisms will be inhibited. At lower DO concentrations, the activity of 

aerobic microorganisms will be inhibited, thereby systematically reducing the growth 

and degradation of microorganisms. Therefore, the change trajectory of DO 

concentration in the bioreactor is crucial to the wastewater purification rate during the 

operation of ASWWTP. 
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5.4 Control problem statement  

The ASWWTP mathematical model can enhance understanding of any biochemical 

process involving nutrient removal and biomass transfer. The mathematical model 

family of ASWWTP is described by the IAWQ. The ASM 1 and ASM 2 utilizes the 

time dimension to describe the ASWWTP process. ASM 2d describes the ASWWTP 

process in both time and space dimensions. By extending ASM 1 and 2, it describes the 

biological phosphorus removal process under anaerobic conditions in detail. 

Since we only consider the DO concentration in each bioreaction tank as the control 

output, the mathematical model in the state-space model of the structure of ASWWTP 

is derived from the mass balance and rewriting the ASM 2d [182]. This mathematical 

model encompasses ASWWTP variables, as depicted in equations (5.4-1) - (5.4-8). 

                  1( ) ( ) ( ) ( ) ( )n
n n n n n m

dX
t X t D t X D t X t

dt
 = − +                          (5.4-1) 

                  
( ) ( )

( )(1 ) ( ) ( ) ( )n n n
n n n k

n

dS t X t
D t r S t D t S t

dt Y


= − − + +                 (5.4-2) 

    

0.

1

. max.

( ) ( )

( )(1 ) ( ) ( ) ( )

( )( ( ))

n n n n

n

n n n k

n air n n n

dDO K t X t

dt Y

D t DO t D t DO t

a Q t DO DO t





= −

− + +

+ −

                         (5.4-3) 

3 1 3 3 1( )(1 ) ( ) ( )( ) ( )r
r

dX
D t X t D t X t

dt
  = + − +                         (5.4-4) 
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max.

. .

( ) ( )
( )

( ) ( )

n n
n n

s n n DO n n

s t DO t
t

K S t K DO t
 =

+ +
                              (5.4-5) 

where  

.

( ) in
n

a n

Q
D t

V
= , 
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.

a n
n

S n

V
V

V
= , 1

r

in

Q

Q
 = , 

w

in

Q

Q
 =                       (5.4-6) 

And 1, 2, 3n = ， ,1, 2m r= ， ,1, 2k in= .  

Where: n , m , and k  denote the sequence of sewage intake and discharge for each 

bioreactor. 

( )nX t  , ( )nS t  , max.nDO  , . ( )r nX t  , ( )nD t  , . ( )in nS t  , . ( )in nDO t  , nY  , ( )n t  , max.n  , .s nK  , .DO nK  , 

. ( )air nQ t , 0.nK  , nr  , n  , . ( )in nQ t  , . ( )out nQ t  , . ( )r nQ t  , . ( )w nQ t  , .a nV  are biomass concentration, 

substrate concentration, maximum dissolved oxygen concentration, recycled biomass 

concentration, dilution rate, substrate concentration in the influent, dissolved oxygen 

concentration in the influent, biomass yield factor, biomass growth rate, maximum 

specific growth rate, affinity constant, saturation constant, aeration rate, model 

constant, recycled sludge rate, removed sludge rate, influent flow rate, effluent flow 

rate, recycled flow rate, waste flow rate and aerator volume. 

In [170], it is demonstrated that the oxygen transfer function is dependent on the airflow 

from the blower actuator and the sludge concentration measurement by the DO 

controller. The respiration rate and sludge condition determine oxygen transfer, with 
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function 
. . .( ( ))L a i air kK Q t  representing the oxygen transfer. The OTF can be estimated using 

time-varying respiration rates [83]. If the OTF has been estimated, there is no need to 

calculate the respiration rate from the airflow rate during the biochemical reaction. 

[105] demonstrated the following representation of the oxygen transfer function.  

  . .( ) ( )La i j air k mK t Q t = +                                   (5.4-7) 

Where: j  and m  represents known constants for oxygen transfer. The , ,i j k , and 

m corresponds to the number of bioreactors, where 1, 2, 3i = , 1, 2, 3j = , 1, 2, 3k = , 

and 1, 2, 3m = .  

           .max .1 .2 .3( ) ( ) ( ) ( )air air air airQ t Q t Q t Q t + +                      (5.4-8) 

Where: .max .( ) ( )air air nQ t Q t , and 1, 2, and 3n = , where n represents the number of 

bioreactors, 

The architecture of ASWWTP utilizes a single blower to serve as the three bioreaction 

tanks. The amount of anoxic and aerobic zones in the wastewater within each 

bioreaction tank fluctuates during ASWWTP operation. Therefore, using equations 

(5.4-1) to (5.4-6), the dissolved oxygen concentration in each bioreactor is analysed 

from a two-dimensional perspective. The dissolved oxygen is supported by the blower 

actuator, as it is highly nonlinear dynamic. As discussed in [125], a two-layer control 

system for the DO concentration trajectory tracks reference DO concentration trajectory. 
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The output of the upper layer control system is reference DO centration trajectory, 

determined by the input reference airflow, which is provided by a per-setpoint. By 

optimized the airflow, the DO concentration trajectory tracks the reference DO 

concentration trajectory. As discussed in [112], the lower layer control system utilizes 

Fuzzy-MPI to ensure that the blower actuator output airflow equals the reference 

airflow, thereby enabling the DO concentration trajectory to track the reference DO 

concentration trajectory. 

In this study, only the lower control system is considered. by optimizing the airflow in 

each bioreaction tank, to ensure that the DO concentration trajectory in each bioreaction 

tank tracks the reference DO concentration trajectory, and that each airflow matches 

the corresponding reference airflow. Additionally, as demonstrated in [83], the airflow 

equals the reference airflow. In our study, we assume that the blower actuator control 

system has been designed, ensuring that the sum of the three airflows equals that total 

reference airflow (
3

.

1

( ) . ( )ref

air i air

i

Q t total Q t
=

= ). 

As discussed in [97], internal and external disturbances during ASWWTP operation 

can influence microorganism growth, leading to system collapse. In our ASWWTP 

system, the unknown disturbance inputs with time varying in each bioreaction tank 

include the influent flow rate ( ,1,2 ( )inQ t ), the substrate concentration in the influent 

( ,1,2 ( )inS t ) and the dissolved oxygen concentration in the fluent ( ,1,2 ( )inDO t ). One of 
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the goals in designing the control system is to ensure its robustness against these 

unknown disturbance inputs. 

The [25] demonstrated that the control system of the blower actuator ensures the airflow 

is equal to the reference airflow. Consequently, it can be inferred that each airflow in 

ASWWTP equals its respective reference airflow under the assumption that the blower 

actuator control system has been designed. The supervised fuzzy logic – DDMRAC 

control system is designed and implemented in the architecture of ASWWTP for 

nutrient removal. Additionally, an ideal DO concentration hard sensor is assumed to 

exist in Figure 5-3. Therefore, it can use the adaptive control law to estimate the DO 

concentration without the need to estimate ‘respiration’ to determine the DO 

concentration. 

As previously mentioned, the blower controller has been designed according to [113] 

and [36] to obtain . .( ) ( )ref

air n air nQ t Q t= . We assume that the .max ( ) ( )ref

air airQ t Q t=  controller is 

already in place, as illustrated in Figure 5-3.  
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Figure 5- 3 Structure of an Overall Control System with a Blower and Three Bioreactors 

In Chapter 5, the two-layer dynamic control is employed for the ( )nDO t  trajectory. In 

the sub-layer, the fuzzy supervised method addresses the distribution of air quantity to 

each of the bioreactors, while in the lower layer, the decentralized DMRAC method 

solves the 
nDO  trajectory tracking problem at each of the bioreactors. 

 

5.5 Two-layers controller design   

In the ASWWTP, multiple input-outputs, disturbance inputs, and uncertain state 

variables exist. Due to the complexity of the plant system, the designed controller must 

be capable of simultaneously rejecting disturbance inputs and ensuring stability and 

achieving highly efficient 
nDO  trajectory tracking performance for each of the 

bioreactors.  

The nDO  controller is a hierarchical, two-layer control system. The lower-layer 

controller utilizes decentralized direct model reference adaptive control (DDMRAC), 
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while the upper-layer controller employs supervised fuzzy logical control. It exhibits 

strong robustness to the uncertainty of the controlled object through GA optimization. 

Additionally, decentralized DMRAC can adjust adaptive rates and enables automatic 

updating of control parameters for each individual bioreactor, leading to enhanced 

system robustness and performance. 

 

5.5.1 Decentralized DMRAC design 

The dynamic of 
nDO  in an input-output model is determined by rearranging the state 

space model equations (5.4-1) to (5.4-6). The state variables .r nX , .r nX , and nS  are not 

directly measurable online by a hard sensor due to the operational characteristics of the 

ASWWTP. The model reference adaptive controller estimates the respiration rate using 

an adaptive control law that is automatically updated online. This respiration rate is 

integrated into a single term in the state variable input-output model. Therefore, the 

oxygen transfer function is defined as shown in equation (5.4-7). 

The . ( )air nQ t , . ( )w nQ t , . ( )in nQ t , and ( )nDO t  are variables of the dynamic equation (5.4.-3) 

for ( )nDO t , and these variables are unmeasurable online. They require an online update 

through decentralized DMRA control. The first-order dynamics of ( )nDO t  an input-

output model is determined by both disturbance input and the state variable.  
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By substituting equations (5.4-5) and (5.4-7) into equation (5.4-3), the term 

.( ) ( )n in nD t DO t  is considerably smaller than other plant parameters; it can be neglected 

[134]. Finally, the dynamic of ( )nDO t , as a first-order model of a single input-output, 

and the design of the multiple DMRAC controller is based on equation (5.5.1-1), which 

can be rewritten as follows: 

  . .

. . .

( ) ( ) ( ) ( ( )

( ) ( )

n
p n n p n n

p n air n p n

dDO
a t DO t c t f DO t

dt

b t Q t d

= −  − 

+ +

                  (5.5.1-1) 

Where: . ( )p na t , . ( )p nc t , . ( )p nb t , and .p nd  represents the plant model parameters and  
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                          (5.5.1-2) 

Where: 1, 2, 3n = , and n  represents the number of bioreactors. 

The parameter .p nd  is known and varies slowly over time. The dynamics of DO are fast 

compared to the dynamics of biological state variables ( )nX t  and ( )nS t  [115, 171]. 

Conversely, the dynamics of the state variables ( )nX t  and ( )nS t  are slow variations 



154 

 

during biological response processes. Therefore, the parameter . ( )p nc t  is known to vary 

slowly over time. 

The parameters of ASWWTP operations at various time scales were presented in [19]. 

The time scale of  plant variables rQ and 
wQ are determined by the sub-layer control 

system, and their dynamics are  slower compared to the time scale of ( )nDO t . The time 

scales of 
. ( )in nQ t , 

. ( )in nS t , and 
. ( )r nX t  are slower in comparison to ( )nDO t . Therefore, the 

plant parameter . ( )p na t  is identified as having slower variation and remains unknown, 

as presented in [169]. The time scale of parameter . ( )p nb t  corresponds to the control 

time scale of ( )nDO t , resulting in rapid changes. Since the oxygen transfer constant 

. ( )La iK t  in equation (5.4-7) is known, the parameter . ( )p nb t  is also determined. 

The model reference dynamics in each of the bioreactors are obtained through closed-

loop control. This can be guaranteed that the control output ( ( )nDO t ) trajectory 

effectively tracks the dynamic (
. . ( )m ref jDO t ) trajectory, and therefore, the MRD equation 

reads: 

       . .
. . . .( ) ( )

m ref j ref
m j m ref j m j j

dDO
a DO t b DO t

dt
= − +             (5.5.1-3) 

Where: 1, 2, 3j = , and j  represents the number of bioreactors. . . ( )m ref jDO t  denotes the 

number of model reference outputs. The model reference adaptive control parameters 

.m ja  and .m jb  are constants, and they can be selected by the designer. We selected .m ja  

and .m jb  to be equal. 
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The model reference adaptive control law for each of the bioreactors can be chosen as 

following: 

  
. . .

max.

.

( ) ( ) ( ) ( ) ( ( ))

( ) ( )
( )

ref
n

air n DO n n f n n

ref k n
nDO

p n

Q t a t DO t a t f DO t

DO
a t DO t

b t



= +

+ −
               (5.5.1-4) 

Where: 1, 2, 3n = , and n  is the number of bioreactors and . max.( )air n nQ t Q . 

The MRD is a linear dynamic (5.5.1-3) that can cancel the second and fourth terms of 

equation (5.5.1-1) in closed-loop, which can reduce the impact of the nonlinear and 

additive terms in equation (5.5.1-1).  

The adaptive control law parameters consist of . ( )DO na t , . ( )f na t , and  
.

( )refDO n
a t . We 

assume the existence of ideal adaptive control law parameters. Therefore, the MRD 

closed-loop system is expressed as follows: 

. . .

. . .

. .

( ( ) ( ) ( ))

( ( ) ( )) ( ( ))

( ) ( ) ( )ref

n
p n p n DO n

p n p n f n n

ref

p n nDO n

dDO
a t b t a t

dt

c t b a t f DO t

b t a t DO t

= − −

− −

+

                  (5.5.1-5) 

Where: 1, 2, 3n = , and n represents the number of bioreactors. 

       . . . .
ˆ( ( ) ( )) ( )p n p n DO n m na t b t a t a− − = −                              (5.5.1-6) 

                                                           . . .
ˆ( ( ) ( ) ( )) 0p n p n f nc t b t a t− − =                                          (5.5.1-7) 

       . ..
ˆ( ) ( )refp n m nDO n

b t a t b=                                     (5.5.1-8) 
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Where: .
ˆ ( )DO na t , .

ˆ ( )f na t  and 
.

ˆ ( )refDO n
a t  are the ideal parameters. They can be achieved 

by rewriting equations (5.5.1-6), (5.5.1-7), and (5.5.1-8) as follows: 

. .

.

.

( )
ˆ ( )

( )

m n p n

DO n

p n

a a t
a t

b t

− +
=                                        (5.5.1-9) 

   .

.

.

( )
ˆ ( )

( )

p n

f n

p n

c t
a t

b t
=                                               (5.5.1-10) 

       .

.
.

ˆ ( )
( )

ref

m n

DO n
p n

b
a t

b t
=                                              (5.5.1-11) 

where: 1, 2, 3n = , and n  represents the number of bioreactors. 

The parameter .m nb  and . ( )p nb t  are known, while .m nb  being designer selected and 

. ( )p nb t  updated according to equation (5.5.1-2). Therefore, the parameter 
.

ˆ ( )refDO n
a t  is 

suitable for updating online from available data. Finally, the adaptive control law is 

expressed as: 

  

. . .

. max.

. .

( ) ( ) ( ) ( ) ( ( ))

( )

( ) ( )

air n DO n n f n n

ref

m n n i n

p n p n

Q t a t DO t a t f DO t

b DO t DO

b t b t



= +

+ −
                   (5.5.1-12) 

Where: 1, 2, 3i =    1, 2, 3n =  and ,i n are the numbers of bioreactors. The adaptive 

control law design is different from [15], it does not consider the parameter 
.

( )refDO n
a t . 

The corresponding closed-loop dynamic is: 
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. . .

. . .

.
.

.

( ( ) ( ) ( )) ( )

( ( ) ( ) ( )) ( ( ))

( ) ( )
( )

n
p n p n DO n n

p n p n f n n

refm n
p n n

p n

dDO
a t b t a t DO t

dt

c t b t a t f DO t

b
b t DO t

b t

= − −

− −

+

                 (5.5.1-13) 

Where: 1, 2, 3n = . n  is the number of bioreactors. 

The parameters . ( )p na t  and . ( )p nc t  are unknown, while . ( )p nb t  is updated online based 

on corresponding parameters adaptive law. Additionally, the . ( )DO na t and . ( )f na t are 

updated by using available online data. These variables are relevant to both ( )nDO t  and 

( )ne t . The error dynamics can be written as follows: 

. .( ) ( )n n m ref je t DO t DO= −                              (5.5.1-14) 

Where: 1, 2, 3n = , 1, 2, 3j = ， n  and j  represents the number of bioreactors. 

The SISO ( )nDO t  first-order equation can be utilized to establish parameter adaptive 

control laws, contributing to the stability of the DDMRAC controller. The SISO ( )nDO t  

includes the linear constants of uncertain state parameters. These parameters are not 

time-varying, and .p nd  in the last term of equation (5.5.1-1) is linear and known. The 

parameter adaptive rates are derived by the parameter adaptive laws in equation (5.5.1-

1), which read:  

. .1 ( ) ( )nDO

zone z n n

da
e t DO t

dt
= −                              (5.5.1-15) 
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. .2 ( ) ( ( ))nf

zone z n

da
e t f DO t

dt
= −                             (5.5.1-16) 

Where: 1, 2, 3n =  and 1, 2, 3z = , n  and z  are the number of bioreactors. 

The adaptive gain parameters . .1zone z  and . .2zone z  are sufficiently small and positive 

constants. These gains are subsequently utilized to control the parameters of 

decentralized adaptive rates (PDAS). The stability of the closed-loop system is 

guaranteed by the PDAS, which adjusts the adaptive rate to rapidly respond to the 

variable with time-varying responses during the ASWWTP process. The DDMRAC 

structure for each of the aeration stations is depicted in Figure 5-4. 

Plant.n

Reference Model.n

Parameter Adaptive 

Block.n

DMRAC.n

Parameter

. .mref nDO

nDO +
ne

.ref nQ .maxairQ

. . . .,zone z n zone z n 
 

Figure 5- 4 The DDMRAC Structure for Each of the Three Bioreactors 

 

5.5.2 Supervised fuzzy logic controller design 

The supervised fuzzy logic control design (SFLC) ensures that constraints of aeration 

tank air capacity requirements are met (5.5.1-1), the structure of the SFLC is illustrated 

in Figure 5-5. The supervised fuzzy controller allocates airflow to each of the 



159 

 

bioreactors based on the magnitude of errors between ( )nDO t  and 
. . ( )m ref nDO t . If a large 

error is detected during online updates, a substantial quantity of air should be delivered 

to its bioreactor, otherwise, a minimal amount of air should be supplied. In the 

operational state condition of the ASWWTP, it is assumed that the sum of inputs from 

the three bioreactors must not exceed the quantity of air produced by the blower 

(
supervisor generate.blower.max

. ( ) ( )air i airQ t Q t ). The sum of fuzzy control outputs (
generate.blower.max ( )airQ t ) 

generated by the blower remains constant, where 
generate.blower.max supervisor

.

1

( ) ( )
q

air air i

i

Q t Q t
=

= . 

The soft switching method depends on fuzzy logic rules outlined in equations (5.5.2-

1), (5.5.2-2), (5.5.2-3), and (5.5.2-4), (5.5.2-5). 

                                 
supervisor generate.blower.max

.

1

( ) ( )
q

air i air

i

Q t Q t
=

                     (5.5.2-1) 

Where: 
supervisor

.air iQ  is generated by a supervised fuzzy logical control output signal and

1, 2, 3q = . q   is the number of bioreactors. 
generate.blower.max ( )airQ t  is the amount of air 

produced by the blower. 

The fuzzy logic inputs 
. .( ( ))j air real iW DO t  are updated online based on adjustments to 

DMRAC control law parameters, which represent multiple DMRAC real output DO 

concentrations. The membership function is defined utilizing the real inflow air of 

multiple DMRAC. In this case, both the sigmoid function and Gauss condition function 

are used to limit boundaries, and they can be expressed as follows: 
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. .

. .

1
( ( ))

1 exp( ( ( ) )
air input i

air input i

Q t
a Q t c

 =
+ − −

                  (5.5.2-2) 

2 2

. . 1 1

. . 1 2

2 2

. . 2 2

exp( ( ) ) / );  left cure

( ( )) 1                                  whenever 

exp( ( ) ) / );  right cure

air input i

air input i

air input i

Q t c d

Q t c c

Q t c d



 − −


= 


− −

          (5.5.2-3) 

Where: ,a c , and d  are the parameters of the membership function used to define its 

shape. 

The input air to each bioreactor is determined based on the error between the actual 

input of each DMRAC and the ideal input and the proportion of each error in the total 

error. 

The fuzzy logic rules are defined as follows: 

1. If 
1

( ) 1
2

V t   and 
generate.blower.max

. .

1

( ) ( )
q

air input i air

i

Q t Q t
=

 ; 

    Then 
superviosr

. .1 . .( ) ( )air i air input iQ t Q t= .                                                          (5.5.2-4) 

2. If 
1

( ) 1
2

V t   and 
generate.blower.max

. .

1

( ) ( )
q

air input i air

i

Q t Q t
=

 ; 

    Then 
generate.blower.max

superviosr

. .2 . .

. .

1

( )1
( ) ( )

2
( )

air
air i air input iq

air input i

i

Q t
Q t Q t

Q t
=

= 


.                            (5.5.2-5) 

3. If 0 ( ) 1V t   and 
generate.blower.max

. .

1

( ) ( )
q

air input i air

i

Q t Q t
=

 ; 

   Then 
superviosr

. .1 . .( ) ( )air i air input iQ t Q t=             (5.5.2-6) 



161 

 

4. If 0 ( ) 1V t  and 
generate.blower.max

. .

1

( ) ( )
q

air input i air

i

Q t Q t
=

 : 

    Then 
generate.blower.max

superviosr

. .2 . .

. .

1

( )1
( ) ( )

2
( )

air
air i air input iq

air input i

i

Q t
Q t Q t

Q t
=

= 


                            (5.5.2-7) 

 

Where:  1, 2, 3q = , q  is number of bioreactors. .

3

( )
q

air k

i

e t
=

 is the sum of errors 

between each fuzzy logic output (
superviosr

. ( )air iQ t ) and each DMRAC input ( . . ( )air input iQ t ). 

generate.blower.max ( )airQ t is the amount of air produced by a blower and

generate.blower.max supervisor

. .

1

( ) ( )
q

air air i n

i

Q t Q t
=

= .  

The difference between each fuzzy logic output and each bioreactor input is 

represented as follows: 

supervioser. superviosr

. . . .( ) ( ) ( )air

k air i n air input ie t Q t Q t= −                              (5.5.2-8) 

Where: 
superviosr

. . ( )air i nQ t  is the fuzzy logic output, 1, 2, 3i = , i  is the number of bioreactors, 

1, 2n = ， n  is the number of outputs with fuzzy rules. 
superviosr superviosr

. . .

3

( ) ( )
q

air total air i n

i

Q t Q t
=

=  is 

the desired optimal allocation state. . . ( )air input iQ t  represents each DMRAC input, 

1, 2, 3i = , i  is the number of bioreactors. 

  
superviosr. superviosr. 1

3

( ) ( ) ( ( ))
q

air air

k k k

i

V t e t e t −

=

=                        (5.5.2-9) 
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Where: 1, 2, 3k = , k  is the number of bioreactors. ( )kV t  is never equal to zero.  Fuzzy 

control output:  

supervioser generate.blower.max

. .

3

( ) ( ) ( )
q

output air i n air

i

Fuzzy t Q t Q t
=

= =               (5.5.2-10) 

Where: 1, 2, 3i = , i  is the number of bioreactors. 1, 2, 3, 4n = , n  represents the 

number of fuzzy controller outputs. 

The supervised controller can guarantee that the constraint in equation (5.5.2-1) is never 

violated. It possesses the capability to enable the trajectory of  ( )nDO t  to track the 

trajectory of 
. . ( )m ref nDO t and accommodate minor fluctuations. Therefore, the 

performance of the fuzzy controller perfectly meets our expectations. However, at the 

specific operational state of the ASWWTP, it may not always be the case that all the 

air produced by the blower will be fully distributed to the input of multiple DDMRAC 

in the lower layer control system, as the designed fuzzy control rules. Hence, the 

optimization of the fuzzy logic controller is necessary to improve and refine the logic 

of air distribution. Further details on the optimization of the fuzzy logic control are 

described in the following section.  
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5.5.3 Supervise fuzzy logic control optimization by GA 

The optimization of the supervised fuzzy logic control system facilitates the 

implementation of more reasonable airflow quantities into each of the bioreactors. 

Therefore, this two-layer control system can achieve an optimal state. On the other hand, 

the upper layer supervised fuzzy logic control system guarantees a more equitable 

distribution of airflow quantities for the lower layer MDMRAC control system. Various 

optimization methods for the fuzzy logic control have been reviewed in [134]. In this 

section, the genetic algorithm method is employed to optimize SFLC. This optimization 

aims to achieve satisfactory performance, ensure stability of the control system, and 

enhance anti-disturbance capabilities. 

The process of the GA optimization is as follows: 1) Defining one chromosome group 

based on the condition of fuzzy logic rules (fitness function); 2) coding individuals, 3) 

Initializing the population with one chromosome; 4) Performing individual selection 

using the Rank Selection method; 5) Conducting crossover operation; 6) Implementing 

mutation operations; 7) Utilising the fitness function to assess individual performance 

in the group; 8) Selecting the fittest individuals; 9) Repeating steps 4 through 8; 10) 

Finally, establishing the optimal air quantity distribution logic, which is utilized as the 

output of the fuzzy logic control.  

Fitness function 
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Defined one chromosome group entails not only incorporating the condition of fuzzy 

logic rules but also ensuring control system stability and minimizing the error between 

each DMRAC real output DO and ideal output DO. The fitness function can be defined 

as follows: 

1 2 3 4fitness function= S+ E+ RT+ FR                          (5.5.3-1) 

Where: 1 2 3 4, , ,     are the weight corresponding to each component. 

The variable S represents the stability of the fuzzy logic control system, which is 

employed to ensure the stability of the SFLC and two-layer control system. It can be 

expressed as follows: 

2

. .

1

1
( ( ) ( ))

M

M real out M ideal out

i

S DO t DO t
M =

= −                      (5.5.3-2) 

Where: 1, 2, 3M = , M  represents the number of DMRAC controllers in the lower 

layer control system. . ( )M real outDO t  represents the lower layer DDMRAC real output 

DO. . ( )M ideal outDO t  represents the lower layer DDMRAC ideal output DO. 

The variable E represents the ratio of the error to the total error between each DMRAC 

output DO and the ideal output DO. This error is utilized to achieve a reasonable 

oscillation; the error in each DMRAC’s real output tracking the ideal output trajectory 

is denoted as . .( ) ( )M real out M ideal outDO t DO t−  . Therefore, the variable E can be 

expressed as follows: 

. .

1

1
Error= ( ) ( )

M

M real out M ideal out

i

DO t DO t
M =

−                  (5.5.3-3) 



165 

 

Where: 1, 2, 3M = , M  is the number of DMRAC controllers in the lower layer 

control system. 

The variable RT represents the response speed of the fuzzy logic control system. This 

can be expressed as follows: 

RegulateOscillation

1
Response Speed=

( ) ( )AdjustmentTimeR t T t
                   (5.5.3-4) 

Where: RegulateOscillation ( )R t  represents the percentage of the expected fuzzy logic control 

system output before stabilization.  ( )AdjustmentTimeT t  represents the time between the set 

error of the control system output and the end of the control system output stabilization.  

The regulated oscillation ( RegulateOscillation ( )R t  ) depends on the FLCS system’s maximum 

output (
generate.blower.max ( )airQ t ) and the expected output (sum of MDDMRAC inputs) 

( . .

1

( )
q

air input i

i

Q t
=

 ), which can be expressed as follows: 

generate.blower.max

. .

1
RegulateOscillation

. .

1

( ( ) ( ))

( ) 100%

( ( ))

q

air air input i

i

q

air input i

i

Q t Q t

R t

Q t

=

=

−

=



             (5.5.3-5) 

The response speed depends on the regulation oscillation and settling time; if both 

decrease, it means a faster response speed. Typically, in a control system, a faster 

response time is desired for enhanced tracking performance and robustness. However, 

it is essential to consider the comprehensive oscillation frequency of the control system, 

as excessive oscillation can lead to instability and reduced reliability.  

Fuzzy rules  
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The fuzzy rules represent four rules of fuzzy logic control. They can be written as 

follows: 

1 2

generate.blower.max sup
. .

1 3

3 4

sup

3

1 1
( ) ( ) ( )

1 ( ( ) ( )) 1 ( ( ) ( ))

1 1
( ) ( )

1 ( ( ) 0)1
1 ( ( ) ( ))

2

i q q
ervioser

air input i air k k
i k

q
ervioser k

k k

k

R t

Q t Q t V t e t

V t
V t e t

 

 

= =

=

= +

+ − + −

+ +
+ −

+ −

 



  

(5.5.3-6) 

Where: 1 2 3, ,   , and 4  represent the weight of each rule condition. 

1) The first part of equation (5.5.3-6) considers a constraint. When . .

1

( )
q

air input i

i

Q t
=

  is 

close to 
generate.blower.max ( )airQ t , the value of first part one tends to 1; otherwise, it tends to 0. 

Therefore, 
generate.blower.max supervioser

. . .

1 3

( ) ( ) ( )
q q

air input i air air i

i i

Q t Q t Q t
= =

= =  .  

2) The second part of equation (5.5.3-6) calculates the proportion between 
supervioser ( )ke t

and 
supervioser

3

( )
q

k

i

e t
=

 . if the difference between them is greater, the contribution is greater, 

with a contribution value of 1; otherwise, it is 0. Furthermore, a larger difference 

between them is expected. The 
supervioser ( )ke t  is indicated in the equation (5.5.2-8). 

3) The third part of equation (5.5.3-6) calculates the difference between each 

supervioser.air ( )ke t  and half of  
supervioser

3

( )
q

k

k

e t
=

 . A bigger difference between them is more 

expected. Which 
supervioser. ( )air

ke t  represents the difference between each supervisor 
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output and decentralized DMRAC input. If 
supervioser. ( )air

ke t  is close to half of 

supervioser

3

( )
q

k

k

e t
=

 , the contribution is 1; otherwise, it is 0. 

4) The last part of the equation (5.5.3-6) calculates the difference between each 

supervioser. ( )air

ke t  and 0, the smaller the difference between them, the batter. 

The initial population is established using the initial parameters of each DMRAC in the 

lower layer control system, with each bioreactor deployed with a DMRAC to adjust the 

air inflow.  

Individual selection 

The Rank Selection method is utilized for individual selection. This method depends 

on the ranking individuals to make decisions, without direct dependence on the fitness 

function. In addition, it facilitates population diversity and offers greater stability 

compared to other methods such as handicap selection and hill-climbing selection. 1) 

Each individual (
supervioser

. ( )air iQ t ) is arranged from the first, ensuring that each individual 

(
supervioser

. ( )air iQ t ) is greater than one (
supervioser

. ( ) 1air iQ t + ). 2) The cumulative probability of 

each individual is calculated, which is the sum of from the first individual (
supervioser

. ( )air iQ t ) 

to the current individual (
supervioser

.

1

( ),  is cumulative added quantity
q

air i

i

Q t q
=

 ) in the 

chromosome group. This ensures that the current individual has a higher cumulative 

probability, while the individuals ranked behind have lower cumulative probabilities. 
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Therefore, the cumulative probability is utilized to calculate the probability of each 

individual selection (IS), and it can be expressed as follows: 

 

      
1 2( 1)

( )
( 1)

i
IS i

N N N

−
= +

−
                                  (5.5.3-7) 

 

Where: i  represents the number of individuals. N represents the size of the population. 

The purpose of calculating individuals’ selection is to ensure the ranking order of 

individuals in the population, as required by the selection operation in the GA 

optimization.  

Crossover operation and mutation operation  

According to the selection operation, a pair of individuals (
supervioser

. ( )air iQ t ) is chosen. The 

crossover position in the gene sequence (fitness function) is then utilized to generate a 

new generation of individuals (
supervioser

. ( )air iQ t ). The crossover operation utilizes uniform 

crossover (UC) randomly generating 0 or 1 for each location of individual 
supervioser

. ( )air iQ t . 

It compares parent 1 or 2 (
supervioser

. ( ) 1air iQ t − or 
supervioser

. ( ) 2air iQ t −  ) with the random 

individual 
supervioser

. ( )air iQ t and then establishes the appropriate mutation probability to 

maintain population diversity. Combined crossover and mutation operations to adjust 

the location position of individuals according to cumulative probability. Finally, the 

new generation of individuals (
supervioser

. ( )air iQ t ) is produced and placed into the new 
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generation population, waiting for the selection operation. Therefore, crossover and 

choose operations are repeated until the desired individuals ( 
supervioser

. ( )air iQ t  ) are found.  

The supervised fuzzy logic control is optimized by the GA, which involves adjusting 

the parameter of the SFLC to achieve better global searching and decision-marking. 

Furthermore, it can simultaneously optimize stability, response speed, and anti-

disturbance capability.  

Blower

New Fuzzy Logic Rules

Bioreactor

1

Bioreactor

2

Bioreactor

3

max( )airQ t

sup
. . ( )erviosr

air i nQ t sup
. . 1

( )erviosr
air i n

Q t
+

sup
. . 2

( )erviosr
air i n

Q t
+

. ( )air iQ t
. 1

( )
air i

Q t
+ . 2

( )
air i

Q t
+

 

 

Figure 5- 5 The Structure of Airflow Distribute to Each Bioreactor 
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5.6 Stability Analysis of Supervised Fuzzy Logic 

Decentralized DMRAC System  

 

5.6.1 Stability analysis of supervised fuzzy logic control 

The air generated by the blower is distributed to the three bioreactors connected in 

series on the lower layer using a supervised fuzzy logic controller functioning as a soft 

distributor. It can determine the operation efficiency of each bioreactor. Therefore, the 

stability of the upper layer supervised fuzzy logic control system is crucial, as it directly 

impacts the stability of the lower layer control system and the overall control system. 

The parameters of the supervised fuzzy logic control system may change over time due 

to internal and external disturbances. In addition, even with an optimized control system, 

there may be an accumulation of errors during long-term operation. Therefore, 

conducting stability analysis of the SFLC is necessary.  

The online updates of SFLC outputs, represented by 
supervioser

.

1

( )
q

air i

i

Q t
=

 , are provided by 

the fuzzy logic rules as shown equations from (5.5.2-2) to (5.5.2-5). Additionally, the 

values ( )nDO t  are updated online by parameter adaptive laws adjustments, which are 

represented in equations from (5.5.1-9) to (5.5.1-11). The error between the SFLC real 
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outputs 
supervioser

.

1

( )
q

air i

i

Q t
=

  and the ideal outputs 
supervioser

. .

1

( )
q

air ideal i

i

Q t
=

  is equal to 

sup

. . . ( )ervised

sum error air outputQ t , and it can be expressed as follows: 

sup supervioser supervioser

. . . . . .

1 1

( ) ( ) ( )
q q

ervised

sum error air output air i air ideal i

i i

Q t Q t Q t
= =

= −               (5.6.1-1) 

The error between MDDMRAC real outputs 
1

( )
q

n

n

DO t
=

  and the MDDMRAC ideal 

output .

1

( )
q

ideal n

n

DO t
=

  is equal to . . ( )sum error nDO t , it can be written as follows: 

                     . . .

1 1

( ) ( ) ( )
q q

sum error n n ideal n

n n

DO t DO t DO t
= =

= −                    (5.6.1-2) 

The stability analysis for the SFLC is conducted using the Lyapunov function. The 

Lyapunov function is considered as follows: 

sup 2 2

. . . . .( ) ( ( )) ( ( ))ervised

sum error air output sum error nV t Q t DO t= +               (5.6.1-3) 

The equation (5.6.1-3) can be expressed as follows: 

2 2

supervioser supervioser

. . . .

1 1 1 1

( ) ( ) ( ) ( ) ( )
q q q q

air i air ideal i n ideal n

i i n n

V t Q t Q t DO t DO t
= = = =

   
= − + −   
   
       (5.6.1-4) 

Where: 1, 2, 3q = , and q  represents the number of bioreactors. 

The derivative of ( )V t  (5.6.1-4) with respect to time can be rewritten as follows:  
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supervioser

.

1 . .

supervioser . .
.

1

( ( ))
( ( ))

( ( ))
( ( ))

q

air i

i sum error n

q

sum error n
air i

i

d Q t
d DO tdV V V

dt dt DO t dt
Q t

=

=

 
= +







 

(5.6.1-5) 

Where: 

supervioser

.

1

( ( ))
q

air i

i

d Q t

dt

=


  represents the rate of change of the fuzzy logic control 

system state 
supervioser

.

1

( ))
q

air i

i

Q t
=

  over time. . .( ( ))sum error nd DO t

dt
 represents the rate of 

change of the MDDMRAC control system state . . ( )sum error nDO t  over time.  

According to the operation condition of the two-layer control system, the upper layer 

fuzzy logic control output directs all the air quantity to become inputs for lower layer 

MDDMRAC controllers, as indicated in equation (5.5.2-1). Therefore, the 

supervioser

.

1

( ( ))
q

air i

i

d Q t

dt

=


 is equal to 0. 

The equation (5.6.1-5) can be simplified as follows: 

. .

. .

( ( ))

( ( ))

sum error n

sum error n

d DO tdV V

dt DO t dt


=


                    (5.6.1-6) 

The equation (5.6.1-6) represents the difference between the ideal outputs and the real 

outputs of the lower layer MDDMRAC controllers.  
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The first part of the equation (5.6.1-6), 
. .( ( ))sum error n

V

DO t




 represents the partial 

derivative of the Lyapunov function ( )V t  with respect to the sum error of lower layer 

MDDMRAC output . . ( )sum error nDO t . Additionally, this partial derivative describes the 

rate of change of the Lyapunov function ( )V t  under the 
. . ( )sum error nDO t  direction.  

The second part of the equation (5.6.1-6), . .( ( ))sum error nd DO t

dt
 represents the rate of 

change of . . ( )sum error nDO t  over time, and it also directly indicates the proximity of the 

fuzzy logic control system to a stable state. Hence, let us consider the effects of 

. . ( )sum error nDO t  on the rate of change 
dV

dt
of the Lyapunov function. From the equations 

(5.6.1-5) and (5.6.1-6), it can be known as follows: 

. . .

1 1

( ) ( ) ( )
q q

sum error n n ideal n

n n

DO t DO t DO t
= =

= −                  (5.5.1-7) 

Therefore, 

1) when .

1 1

( ) ( ) 0
q q

n ideal n

n n

DO t DO t
= =

− =   , it implies that every output of 

MDDMRAC is an ideal DO output; thus . .( ( ))
0sum error nd DO t

dt
=  , and the 

derivative of the Lyapunov function 0
dV

dt
= . Additionally, the SFLC system is 

stable. Moreover, during the operation of the blower in the ASWWTP, the air 

quantity generated by the blower is less or equal than the requirement of the 

three bioreactors; therefore, the 
1

( )
q

n

n

DO t
=

  is equal to .

1

( )
q

ideal n

n

DO t
=

 . Hence, the 
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fuzzy logic control system is stable. 

2) When .

1 1

( ) ( ) 0
q q

n ideal n

n n

DO t DO t
= =

−   , according to the fuzzy rules, at least one 

output of the MDDMRAC deviates from the ideal output DO, resulting in the 

real output DO of the adaptive controller not tracking the ideal output DO. 

Hence, the multiple adaptive control system tends toward an unstable direction, 

leading to . .( ( ))
0sum error nd DO t

dt
  , and the derivative of Lyapunov function  

0
dV

dt
 . Based on the Lyapunov function theory, the fuzzy logic control system 

is unstable. 

3) When .

1 1

( ) ( ) 0
q q

n ideal n

n n

DO t DO t
= =

−   , basis on the fuzzy logic rules, each output 

DO of the multiple adaptive controllers is smaller than the ideal output DO, 

resulting in the multiple adaptive control system tending toward a stable 

direction. This leads to . .( ( ))
0sum error nd DO t

dt
  , and the derivative of the 

Lyapunov function 0
dV

dt
  . According to the Lyapunov function theory, the 

parameters of the fuzzy logic control are bounded by the sum of error between 

1

( )
q

n

n

DO t
=

   and .

1

( )
q

ideal n

n

DO t
=

  . Therefore, the fuzzy logic control system is 

stable. 

The local stability analysis of the supervised fuzzy logic control, utilizing the Lyapunov 

function, confirms the stability of the control system under the condition where 
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.

1 1

( ) ( ) 0
q q

n ideal n

n n

DO t DO t
= =

−   . However, to ensure the stability requirements of the 

global two-layer control system, further analysis of the stability of the lower layer 

control system, which is the decentralized DMRAC system, is necessary.  

 

5.6.2 Stability analysis of decentralized DMRAC system 

Due to the adjustment of DO concentration in the ASWWTP operation employing a 

two-layer control system, the stability of this two-layer control system depends not only 

on the upper layer fuzzy control system but also on the lower layer adaptive control 

system. The stability of the supervised fuzzy logic control system has been proven as 

previously. Therefore, the stability of the lower layer DO decentralized DMRAC 

control system will be analysed using the Lyapunov function.  

Let us consider the Lyapunov function in the following equation: 

 

2 2 2

. .

1 1 1
( ) ( ) ( ) ( )

2 2 2
i k DO n f nV t e t a t a t= +  +                        (5.6.2-1) 

 

Where: 1, 2, 3i = , 1, 2, 3k = , 1, 2, 3n = , ,i k  and n  represent the numbers of 

bioreactors. 

 

The error dynamic ( )ke t  is represented as the disparity between the dissolved oxygen 

dynamic ( )nDO t  and dissolved oxygen reference dynamic . . ( )m ref nDO t , as illustrated in 

equations (5.5.1-4). The ideal parameters . ( )DO na t  and . ( )f na t  are estimated by the 
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direct model reference adaptive control laws on-line and updated in equations (5.6.2-2) 

and (5.6.2-3).  

. . .
ˆ( ) ( ) ( )DO n DO n DO na t a t a t = −                                (5.6.2-2) 

   . . .
ˆ( ) ( ) ( )f n f n f na t a t a t = −                                  (5.6.2-3) 

 

Where: 1, 2, 3n = , and n  is the number of bioreactors. 

 

Therefore, the derivative of the Lyapunov function is given by the equation: 

 

  

. .. .

. .1

. .. .

. .2

( ) 1
ˆ ˆ( ) ( ) ( ( ) ( ))( ( ) ( ))

1
ˆ ˆ( ( ) ( ))( ( ) ( ))

i
k DO n DO nk DO n DO n

zone z

f n f nf n f n

zone z

dV t
e t e t a t a t a t a t

dt

a t a t a t a t





= + − −

+ − −

   (5.6.2-4) 

Where: 1, 2, 3i = , 1, 2, 3k = , 1, 2, 3n = , and 1, 2z = . ,i k and n  are the numbers of 

bioreactors. z  represents the numbers of gains. 

 

It follows from (5.5.1-14), (5.5.1-3) and (5.5.1-5) that: 

 

. . .

. . .

. . .

( ) ( ( ) ( ) ( )) ( )

( ( ) ( ) ( )) ( ( ))

( )

k p n p n DO n n

p n p n f n n

m n m ref j

e t a t b t a t DO t

c t b t a t f DO t

a DO t

= − −

− −

+

                     (5.6.2-5) 

Where: 1, 2, 3k = , 1, 2, 3n = , 1, 2, 3j =  and , ,k n j  are the numbers of bioreactors. 

Now, add and subtract the term . ( )m n na DO t  on the right-hand side of equation (5.6.2-

5) as follows: 



177 

 

 

. . . . .

. . .

( ) ( ) (( ( ) ( ) ( )) ) ( )

( ( ) ( ) ( )) ( ( ))

k m n p n p n DO n m n i

p n p n f n i

e t a e t a t b t a t a DO t

c t b t a t f DO t

= − − − −

− −
           (5.6.2-6) 

 

By substituting equations (5.5.1-6) and (5.5.1-7) into equation (5.6.2-6) yields: 

 

   . . . .

. . .

ˆ( ) ( ) ( ( ) ( )) ( ) ( )

ˆ( ( ) ( )) ( ) ( ( ))

k m n DO n DO n p n i

f n f n p n i

e t a e t a t a t b t DO t

a t a t b t f DO t

= − + −

+ −
                    (5.6.2-7) 

 

Applying equations (5.6.2-6), (5.5.1-15), and (5.5.1-16) into equation (5.6.2-1) yields: 

 

2

.

. . . .

. .1

. . . .

. .2

( )
( )

1
ˆ ˆ( ( ) ( ))( ( ) ( ) ( ) ( ) ( ) ( ) )

1
ˆ ˆ( ( ) ( ))( ( ) ( ) ( ( )) ( ) ( ( )) ( ) )

i
m n k

DO n DO n k p n n k n DO n

zone z

f n f n k p n n k n f n

zone z

dV t
a e t

dt

a t a t e t b t DO t e t DO t a t

a t a t e t b t f DO t e t f DO t a t





= −

+ − − −

+ − − −

(5.6.2-8) 

Where: 1, 2, 3i = , 1, 2, 3n =  and 1, 2, 3k = , 1, 2z = . ,i n  and k  are the numbers of 

bioreactors. z  represents the number of adaptive gains. 

 

The right-hand side of equation (5.6.2-8) involves a quadratic function of ( )ke t . If 

. 0m na−  , then the condition of the right-hand side equation (5.6.2-8) is smaller than 

zero. The condition for 
( )

0idV t

dt
  to hold is proven in Appendix C. Therefore, equation 

(5.6.2-8) can be considered as 
2( )

( )idV t

dt
 being bound.  
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Consider the stability of the Lyapunov function result employing Barbalat’s Lemma.  

 

If ( )iV t  has a finite value as time goes to infinity, then 2( )
( )idV t

dt
 is bounded.  

Hence 
( )

0idV t

dt
 , as time goes to infinity. 

 

Barbalat’s lemma can be applied to analysis the standard result of the Lyapunov 

function. When the ideal and real system parameters . . .
ˆ( ), ( ), ( )DO n DO n f na t a t a t , and 

.
ˆ ( )f na t  are bounded, the output of the decentralized adaptive control system is capable 

of achieving asymptotic tracking of the model reference dissolved oxygen dynamics. 

The establishment of these boundaries requires three conditions to be met: 1) The initial 

condition in the ASWWTP dynamic must be sufficiently close to the equilibrium point. 

2) The parameter adaptive laws (5.5.1-15) and (5.5.1-16) are also close enough to the 

equilibrium. 3) The parameter adaptive rates . .1zone z  and . .2zone z  are small enough. The 

simulation results utilizing real data will be employed to validate these three 

requirements.  

Under the rules of supervised fuzzy logic control, each bioreactor receives airflow that 

is less than or equal to the ideal amount. Therefore, each bioreactor fails to satisfy the 

saturation input condition. However, each bioreactor satisfies the three conditions listed 

in Barbalat’s lemma results. Finally, although each bioreactor may not always achieve 

perfect DO tracking performance during ASWWTP processes, it attains a balance 
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between control system efficiency and energy consumption. Thus, ensuring the stable 

operation of the purification system.  

 

5.6.3 Analysis of the stability impact of feedback on two-layer control system 

The two control systems can continue to operate only when the upper fuzzy logic 

control system receives fast DO feedback from the lower DDMRAC control system. In 

addition, if the lower control system cannot quickly adjust the output DO to track the 

ideal output DO trajectory, or there is a large deviation, it may affect the stability of the 

upper control system and even the stability of the global two-layer control system. 

The two-layer control system is employed to regulate DO concentration during 

bioreactor operation. The stability of both the lower-layer and upper-layer control 

systems has been proven. The structure of this two-layer control system operates as a 

closed-loop feedback control system. Let us now consider the impact of feedback on 

the stability of this two-layer control system. The closed-loop transfer functions, as 

defined by equations (5.6.1-1) and (5.6.2-1), are expressed as follows: 

 

sup 2 2

. . . . .

2 2 2

. .

( ( )) ( ( ))
( )

1 1 1
( ) ( ) ( )

2 2 2

ervised

sum error air output sum error n

k DO n f n

Q t DO t
H DO

e t a t a t

+
=

+  + 
              (5.6.3-1) 
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The numerator is the upper layer SFLC control output, influenced by the lower layer 

MDDMRAC controller. The denominator is the lower layer MDDMRAC control input, 

which is influenced by the upper layer SFLC controller. Under the operational condition 

of the SFLC control system, all air generated by the blower is provided to the input of 

the lower layer MDDMRAC controller. Therefore, this closed-loop transfer function 

(5.6.3-1) is an equality transfer function. Additionally, the relationship between inputs 

and outputs is one-to-one, implying no amplification or reduction in the quantity of air. 

Finally, this closed-loop feedback system produces an output of consistent amplitude 

for all frequency input air quantities, without changing its phase.  

The closed-loop feedback transfer function (5.6.3-1) can be rewritten as follows:  

 

sup 2 2

. . . . .

sup 2 2

. . . . .

( ( )) ( ( ))
( ( )) 1

( ( )) ( ( ))

ervised

sum error air output sum error n

ervised

sum error air output sum error n

Q t DO t
H DO t

Q t DO t

+
= =

+
            (5.6.3-2) 

 

The gain of this closed-loop transfer function is equal to 1, and it does not have poles. 

The stability of the feedback cycle ensures that the system is stable and enhances the 

robust stability of the two-layer control system against external disturbances. 
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5.6.4 Global stability analysis of a two-layer control system  

As mentioned before, in the stability analysis of a two-layer control system, the output 

of the upper layer control system has a direct impact on the stability of the lower layer 

control system because the input of the MDDMRAC control system depends on the 

output of SFLC control system. In addition, the output of the lower-layer controller is 

fed back to the input of the upper layer fuzzy control system. Therefore, the stability of 

the upper layer control system is also affected by the output of the lower layer control 

system.  

The upper layer SFLC control system is stable at .

1 1

( ) ( ) 0
q q

n ideal n

n n

DO t DO t
= =

−   , as 

indicated by the Lyapunov function 2( ) 0
dV

dt
 . Moreover, the lower layer DDMRAC 

control system is stable, as evidenced by the Lyapunov function 0
dV

dt
 , with the 

adaptive control parameters bounded by 
2( ) 0

dV

dt
 . Additionally, the feedback cycle 

between the two-layer controller is stable. Therefore, this two-layer DO concentration 

control system is stable when all the above conditions are met simultaneously. The 

MATLAB simulation utilized real data based on the University of Poland [161]. 
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5.7 Simulation results and discussion 

In this chapter, the MATLAB simulation utilizes the supervised fuzzy logic - 

DDMRAC applied to the ASWWTP with global parameters to prove stability and 

robustness. The controller is designed based on the limited ASWWTP parameters. 

Subsequently, real data from a single blower and a single bioreactor provided by [161] 

were used simulate the operational efficiency of the ASWWTP under various unknown 

disturbances. The three bioreaction tank initially contained equal amount of wastewater. 

The initial ASWWTP operation condition used in the simulation are (0) 15 /nX mg l= , 

(0) 200 /nS mg l= , (0) 3 /nDO mg l= , . (0) 18 /r nX mg l= , max. 7 /nDO mg l= , . (0) 600 /in nS mg l= , 

(0) 3nD = , . (0) 0.5 /in nDO mg l= . The process parameters are listed as follows: 0.65nY = , 

0.6nr = , 0.2n = , 
33.34na m−= , 

13.45n h −= , 0. 0.5nK = . The kinetic parameters are 

max. 0.15 /n mg l = , . 100 /s nK mg l= , . 2 /DO nK mg l= . The disturbance inputs . ( )in nS t , ( )nD t , 

and 
. ( )in nDO t  change over time, as depicted in Figures 5-6, 5-7, and 5-8.  

 

Figure 5- 6 Influent Substrate . ( )in nS t  
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Figure 5- 7 Dilution Rate ( )nD t  

 

Figure 5- 8 Influent Dissolved Oxygen . ( )in nDO t  

The reference model adaptive control parameters for each biological reaction station 

were determined using parameters . 2m na =  and . 2m nb = . The parameter . . ( )m ref jDO t  

was assumed to be piecewise constant. Figure 5-9 demonstrates that this two layer 

control system output ( )nDO t  can rapidly and stably track . ( )m nDO t , indicating good 

tracking performance and stability. Figure 5-10 demonstrate that this two layer control 

system can reject disturbance inputs while maintaining good tracking performance of 

output ( )nDO t  for . . ( )m ref jDO t , further demonstrating the stability of the control system. 
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Figure 5- 9 The trajectories of ( )nDO t  and 
. . ( )m ref jDO t  under conditions of no 

disturbance inputs and slow adaptive rates ( .1 0.5z = , .2 0.5z = ), under Supervised 

Fuzzy DDMRAC 
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Figure 5- 10 The trajectories of ( )nDO t  and . . ( )m ref jDO t  under conditions of 

disturbance inputs and slow adaptive rates ( .1 0.5z = , .2 0.5z = ),  under Supervised 

Fuzzy DDMRAC 

 

Comparing the results shown in Figures 5-9 and 5-10 with those in Figures 5-11 and 5-

12 demonstrates that the ( )nDO t  trajectory can be rapidly tracked to the . . ( )m ref jDO t  

trajectory under the supervised fuzzy logic control of GA optimization. In addition, 

Figure 5-12 also shows that the ( )nDO t  trajectory has good tracking performance, and 

in the presence of input disturbances. The trajectory of DO concentration further 

confirms the stability of the two-layer control system. Therefore, we can conclude that 

this two-layer control system is stable. Moreover, it can be ensured that the feedback 
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loop in this two-layer control system is stable. These results demonstrate the feasibility 

of a single blower supplying air to three bioreactors and the effectiveness of 

optimization through GA in reducing energy consumption in the two-layer control 

system for ASWWTP operation.  

 

Figure 5- 11 The trajectories of ( )nDO t  and . . ( )m ref jDO t  under conditions of no 

disturbance inputs and slow adaptive rates ( .1 0.5z = , .2 0.5z = ), under Supervised 

Fuzzy DDMRAC Optimized by GA 
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Figure 5- 12 The trajectories ( )nDO t  and . . ( )m ref jDO t  under conditions of disturbance 

inputs and slow adaptive rates  ( .1 0.5z = , .2 0.5z = ), under Supervised Fuzzy 

DDMRAC Optimized by GA 

 

Subsequently, the initial operating conditions of Figure 5-13 are consistent with those 

of Figure 5-12. Furthermore, using fast adaptive gain, . . ( )m ref jDO t  remains piecewise 

constant. The response trajectory of ( )nDO t  is shown in Figure 5-13, indicating that the 

closed-loop two-layer control system becomes unstable. This instability arises because 

of long-term oscillations, causing the adaptive control system to exceed the expected 

output trajectory ( )nDO t  of the underlying control system before reaching stability. In 
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addition, due to the unstable output of the lower layer, the upper layer feedback fuzzy 

control system becomes unstable, so that the global two-layer control system is unstable. 

This validates the stability analysis presented in Chapter 5.6. 

 

 

Figure 5- 13 The response of ( )nDO t  becomes unstable under the conditions of no 

disturbance inputs and fast adaptive rates ( .1 5z = , .2 5z =  ), under Supervised Fuzzy 

DDMRAC optimized by GA 

 

In the next experiment, the same initial system condition as before was utilized, but 

plant operation involved a large input disturbance. Figure 5-14 demonstrates that the 
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output ( )nDO t  trajectory of the two-layer control system is unstable to track the 

reference model . . ( )m ref jDO t  trajectory due to large input disturbance. This occurs 

because the large disturbance input exceeds the robust boundary of the adaptive control, 

causing the adaptive control law parameters to be unable to update online in a timely 

manner. In this specific two-layer feedback control system, the output of the adaptive 

control impacts the stability of the fuzzy logic control system. Therefore, the lower 

layer adaptive control becomes unstable, leading to instability in the upper layer fuzzy 

logic control. Finally, the two-layer control system becomes unstable during ASWWTP 

operation when subjected to a large enough input disturbance.    

 



190 

 

 

Figure 5- 14 The response of ( )nDO t  becomes unstable with large disturbance inputs 

and slow adaptive rates ( .1 0.5z = , .2 0.5z = ), under Supervised Fuzzy DDMRAC 

Optimized by GA 

 

At the initial conditions of ASWWTP, it was far from the predicted equilibrium point 

(0) 30 /nX mg l= , (0) 860 /nS mg l= , . ( ) 35 /r nX t mg l= , (0) 7 /nDO mg l= . The corresponding 

( )nDO t  response is illustrated in Figure 5-15, indicating that the two-layer control 

system is unstable. Due to the starting point of ASWWTP operation being far from the 

predicted equilibrium point of the adaptive controller, the response of the adaptive 

control system exhibits excessive oscillations, resulting in instability. Furthermore, due 

to this two-layer feedback control system, if the lower layer DDMRAC control system 
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is unstable, the upper layer fuzzy logic control system is also considered unstable. 

Therefore, the output ( )nDO t  trajectory of the two-layer control system confirms the 

stability analysis results presented in Chapter 5.6. 

 
Figure 5- 15 The initial operation state of the ASWWTP exhibits significant deviation 

from the predicted equilibrium point. The dynamic of ( )nDO t  fail to track the 

trajectory of . . ( )m ref jDO t  , rendering the system unstable under conditions 

characterized by the absence of disturbance inputs and slow adaption rates ( .1 0.5z = , 

.2 0.5z = ), utilizing Supervised Fuzzy DDMRAC optimized by GA 
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5.8 Conclusions  

This chapter addresses nutrient removal at the ASWWTP by solving the dissolved 

oxygen concentration trajectory tracking issue. Considering the large volume of 

wastewater, minimal construction, and minimal energy consumption, a new structure 

of the ASWWTP is proposed. This structure is composed of three bioreactors with a 

single blower and a single sedimental unit. The blower operates under the specific 

conditions. The mathematical model of ASWWTP is formed by rewriting the ASM 2d 

model based on the principles of mass balance and ion kinetic energy conservation. 

A dissolved oxygen concentration supervised fuzzy logic DMRAC system is designed 

based on limited ASWWTP parameters and applied to the mathematical model of 

global ASWWTP parameters. The control parameters are adjusted through MATLAB 

simulations to meet design requirements, with the fuzzy logic optimized by a GA.  The 

MATLAB simulation results demonstrate ASWWTP’s ability to process large volumes 

of wastewater efficiently, its stability, and its capability to resist disturbances. The 

stability of the supervised fuzzy logic DMRAC system is further ensured using the 

Lyapunov function. 
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CHAPTER 6 CONCLUSION AND FUTURE 

RESEARCH WORK 

 

6.1 Conclusions 

In this thesis, we address the nutrient removal in ASWWTP by solving the trajectory 

tracking issue of dissolved oxygen concentration. We construct various ASWWTP 

architectures tailored to specific wastewater volume treatment requirements and design 

distinct types of adaptive control systems for different operational conditions of 

ASWWTP. The objective is to achieve stability and efficiency in ASWWTP operation, 

along with the ability to withstand disturbances. Each ASWWTP architecture’s 

mathematical model is developed by rewriting the ASM 2d model, adhering to the 

principles of mass balance and ion conservation of kinetic energy. According to 

different wastewater treatment requirements, from the architecture, mathematical 

model, and control system, it is classified as follows: 

Firstly, we established an ASWWTP architecture consisting of a single bioreactor unit 

with a single blower and a single settlement unit, with the blower operating under ideal 

conditions. This configuration addresses the requirements for small wastewater volume 

and minimized construction space. The mathematical model of the ASWWTP is 
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developed by rewriting the ASM 2d model, based on the principles of mass balance and 

ion kinetic energy conservation. 

Nutrient removal in ASWWTP is achieved by solving the trajectory tracking problem. 

Designing this control system relies on limited ASWWTP parameters and is 

implemented to global ASWWTP parameters. The adaptive control parameters are 

adjusted using MATLAB simulations, ensuring the stability and high efficiency of the 

ASWWTP, as well as its ability to resist disturbances. The stability of the DMRAC 

system is further validated using the Lyapunov function. 

Secondly, based on the existing ASWWTP architecture, we address the issue of the 

blower overproducing and delivering excess air volume. A DO concentration DMRAC 

system with a filter function is designed using limited ASWWTP parameters and 

applied to the mathematical model of global ASWWTP parameters. The adaptive 

control parameters are adjusted through MATLAB simulation to obtain the expected 

control system requirements. The MATLAB simulation results show that the adaptive 

control system can filter out excess air volume while maintaining the stability and good 

efficiency of the ASWWTP and has anti-interference ability. The stability of the 

DMRAC system with the filter function is further validated using the Lyapunov 

function. 
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Finally, a new architecture of ASWWTP has been established to handle the large 

wastewater volumes while minimizing construction requirements. This architecture is 

composed of three bioreactors with a single blower unit and a single sedimental unit. 

The mathematical model of ASWWTP was developed by rewriting the ASM 2d model, 

adhering to the principle of mass balance and conservation of ion kinetic energy. 

The supervised fuzzy logic direct model reference adaptive control system was 

designed using limited ASWWTP parameters and applied to the mathematical model 

of global ASSWTP parameters to ensure stability and high efficiency operational. The 

adaptive control parameters were adjusted through MATLAB simulation, and the fuzzy 

logic control system was further optimized using genetic algorithm to achieve the 

optimal regulation of dissolved oxygen concentration. 

The MATLAB simulation results proved the stability and efficiency of ASWWTP, as 

well as its anti-interference ability. Additionally, the stability of the fuzzy logic 

DMRAC system is further proven by analysing both global and local control system 

using the Lyapunov function 
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6.2 Future research work 

Based on the several valuable experiments conducted in this thesis, further research on 

activated sludge wastewater treatment plants can be summarized as bellows: 

In Chapter 3, we studied the ideal state of the blower. But in further discussion, we will 

consider the time delay of the blower in different switching cycles. This characteristic 

is used to adjust the DO concentration in the bioreactor to solve the nutrient removal 

problem of wastewater containing specific chemical elements in ASWWTP. 

In Chapter 4, we focused on how to use a blower actuator to solve the problem of 

nutrient removal in the ASWWTP by eliminating excess air. In the future we should 

consider increasing the amount of wastewater to solve the excess air problem. 

In chapter 5, we demonstrated the use of a single blower supplying oxygen to multiple 

bioreactors arranged in series, confirming its high efficiency for nutrient removal. 

Further investigation could consider the utilization of multiple blowers in series to 

provide oxygen to the activated sludge across multiple bioreactors, thus enhancing the 

efficacy of wastewater purification in the ASWWTP. 
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APPENDIX A Mathematic Model of ASWWTP, 

Derivation of The DMRAC Controller and Stability 

Analysis 

 

A mathematical model of the wastewater treatment plant. 

(t) ( ) (t) + ( ) ( )r
dX

X t D r X rD t X t
dt

= − +( 1 ）
                             (1) 

 

( ) ( )
( )( + ) ( ) ( ) ( )in

dS t X t
D t r S t D t S t

dt Y


= − − +1

                        (2) 

 

0

max

( ) ( )
( )( + ) ( )

( ( ))( ( )) ( ) ( )La air in

K t X tdDO
D t r DO t

dt Y

k Q t DO DO t D t DO t


= − −

+ − +

1

                       (3) 

 
( )( + ) ( ) ( )( ) ( )r

r

dX
D t r X t D t r X t

dt
= − +1

                              (4) 

 
max

( ) ( )
( )

( ) ( )s DO

S t DO t
t

K S t K DO t
 = 

+ +                                  (5) 

Where: 

 
( ) in

a

Q
D t

V
=

; 

r

in

Q
r

Q
=

; 

w

in

Q

Q
 =

                                   (6) 

The function ( ( ))La airk Q t is the oxygen transfer and depends on the aeration actuating 

system and sludge conditions. It is assumed as: 

 

               
( ) ( )k t Q tLa air = +

  
 

Input-output model: 

       

0

max

( ) ( )
( )( + ) ( )

( ( )+ )( ( )) ( ) ( )air in

K t X tdDO
D t r DO t

dt Y

Q t DO DO t D t DO t
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                          (3) 
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( )( + ) ( ) ( )

( ( )+ )( ( )) ( ) ( )air in

K X tdDO
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Q t DO DO t D t DO t


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= − −

+ − +

1

                          (7) 
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( )( + ) ( ) ( )

( ( )+ )( ( )) ( ) ( )air in

K X tdDO
D t r DO t t

dt Y
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1

                        (8) 

 

       

0

max

( )
( )( + ) ( ) ( )

( ( )+ )( ( )) ( ) ( )air in

K X tdDO
D t r DO t t

dt Y

Q t DO DO t D t DO t



 

= − −

+ − +

1

                       (9) 

 

       

0

max max

( )
( )( + ) ( ) ( )

( ( )( ( )))+( ( ( ))) ( ) ( )air in

K X tdDO
D t r DO t t

dt Y

Q t DO DO t DO DO t D t DO t



 

= − −

+ − − +

1

  (10) 

 

0

max max

( )
( )( + ) ( ) ( )

( )( ( ))+ ( ) ( ) ( )air in

K X tdDO
D t r DO t t

dt Y

Q t DO DO t DO DO t D t DO t



  

= − −

+ − − +

1

       (11) 

  

0

max max

( )
( )( + ) ( ) ( ) ( )

( )( ( ))+ ( ) ( )air in

K X tdDO
D t r DO t DO t t

dt Y

Q t DO DO t DO D t DO t

 

 

= − − −

+ − +

1

               (12) 

 

0

max max

( )
( ( )( + )+ ) ( ) ( )

( )( ( ))+ ( ) ( )air in

K X tdDO
D t r DO t t

dt Y

Q t DO DO t DO D t DO t

 

 

= − −

+ − +

1

               (13) 

 

( ) in

a

Q
D t

V
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( ) ( )
( )

( ) ( )s DO

S t DO t
t

K S t K DO t
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Apply (14), (15) into (13) 

 

  

0 max

max max

( ) ( ) ( )
( ( + )+ ) ( )

( ) ( )
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a s DO
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Q K X t S tdDO DO t
r DO t

dt V Y K S t K DO t

Q t DO DO t DO D t DO t


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The term ( ) ( )inD t DO t  is small it is neglected. 
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The resulting input –output model reads: 

max

( ) ( ) ( ) ( ( ))

( ) ( )+

p p

p air

dDO
a t DO t c t f DO t

dt

b t Q t DO

= − −

+
                                   (18) 

where 
( ), ( ), ( ),p p p pa t c t b t d

 are the model parameters and  
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( + )
( ) +

( ) ( )
( )

( ( ))

( )
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a
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+
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                                      (19) 

The model reference dynamics equation as: 

 

             

,
. ( ) ( )

m ref ref
m m ref m

dDO
a DO t b DO t

dt
= − +

                        (20) 

 

The affine model reference adaptive control law is applied as: 
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Closed-loop: 
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Rewriting (22) 
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Rewriting (23) 

  

            

max
max

( ) ( ) ( ) ( ) ( ) ( ) ( ( )) ( ) ( ) ( ( ))

( ) ( ) ( ) ( ) +
( )

p p DO p p f

ref
p ref pDO

p

dDO
a t DO t b t a t DO t c t f DO t b t a t f DO t

dt

DO
b t a t DO t b t DO

b t




= − + − +

+ −

 (24) 

Rewriting (24) 
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The ideal parameters can be obtained as  
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The resulting control law reads: 
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max
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p p

Q t a t DO t a t f DO t

b DO
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
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The corresponding closed-loop dynamics reads: 

 

            

( ( ) ( ) ( )) ( )

          ( ( ) ( ) ( )) ( ( ))
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p

p
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The sufficient data are DO(t) and e(t) where: 

 

                    ,( )= ( ) ( )m refe t DO t DO t−
                                            (34) 

The adaptive control laws: 

 

                         
1 ( ) ( )DOda
e t DO t

dt
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Stability analysis for the DMRAC 
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3.  are bounded by adaptive law 

 

 

 

 

APPENDIX B Mathematic Model of ASWWTP, 

Derivation of The DMRAC Controller with limited 

Control Input and Stability Analysis 

The DO dynamics described by following equation (1) 

0 max

max max

(1 ) ( ) ( ) ( )
( )

(K ( )) ( ( ))

( ( ))Q ( )
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air

Q r K X t S tdDO DO t
DO t

dt V Y S t K DO t

DO DO t t DO
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 

+
= −  −  

+ +

+ − +

   (1) 

Rewriting equation (1) 
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dt
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                                       (3) 

Assume V is saturation controller with constraint.   

1 2 3, ,  
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(Q )airV Saturation=                                         (4) 

                              

,

,

air air air

air

air air air

Q Q Q

V Q

Q Q Q

+ +

− −

 


= 




 

The DO dynamic with input saturation is described by applying (4) into (2). 

( ) (DO(t))p p p p

dDO
a DO t c f b V d

dt
= −  −  +  +                  (5) 

The airQ is the different between saturation limit and real signal. It is showing in 

equation (6) 

=V - air airQ Q                                                  (6) 

Set up the auxiliary signal is showing equation (7) 

 = ( ) ( )p airb Q t t  −                                             (7) 

Where   is position constant. 

The model reference is taken as: 

= ref

m m m mDO a DO b DO−  +                                      (7.1) 

Error dynamic 

             me DO DO= −                                                   (8) 
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Filtered tracking error with input saturation constraint. 

            n e = −                                                     (8.1) 

Differentiating (8.1) with respect to time 

            n e = −                                                   (8.2) 

Applying mDO DO ， ，  input equation (8.2) 

= ( ) (DO(t))

( ) ( )

( ) ( )

m

p p p p

ref

m m m

p air

n e

DO DO

a DO t c f b V d

a DO t b DO t

b Q t t







= −

= − −

−  −  +  +

− −  + 

−  +  

（ ）

 

                        (9) 

Rewriting equation (9)  
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Rewriting equation (10) 
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+ −  +  

）

 

                             (11) 

Rewriting equation (11) 

= ( ) (DO(t))

( ) ( )

( ( )) ( )

m

p p p

ref

m m m

air p

n e

DO DO

a DO t c f d

a DO t b DO t

V Q t b t







= −

= − −

−  −  +

+  − 

+ −  +  

）

 

                               (12) 

The term ( )airV Q t−  is equal to ( )airQ t ， from equation (6) 

Rewriting equation (12)  

= ( ) (DO(t))

( ) ( )

( ) ( )

m

p p p

ref

m m m

air p

n e

DO DO

a DO t c f d

a DO t b DO t

Q t b t







= −

= − −

−  −  +

+  − 

+  +  

）

 

                                   (13) 

Design control law 

The control law is parameterised as  

( )
1

[ (t) (t) (t) ( (t) (t))]ref

ref

air DO f p mDO
p

Q a DO a f DO a DO d DO DO
b

=  +  +  − − −   (15)  
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We shall now that values of parameters , , refDO f DO
a a a  exist so that closed-loop 

system dynamics under the control law (15) with such indeed, apply (15) into to (5) 

( )

1
( ) (DO(t))

[ (t) (t) (t)

( (t) (t))]

ref

p p p

p

ref

DO f DO

p m p

dDO
a DO t c f b

dt b

a DO a f DO a DO

d DO DO d

= −  −  + 

 +  + 

− − − +

                        (15.1) 

( ) ( ) ( ) (DO(t)) (t)ref

ref

p DO p f DO

dDO
a a DO t c a f a DO

dt

e

= − −  − −  + 

− 

 (15.2) 

Assuming term ( )p fc a−  equal to zero by (15.2) gives p fc a= (15.a), from 

p DO ma a a− =  we have DO p ma a a= − (15.b), the term refDO
a  is a known parameter and 

equal to model reference parameter mb . 

For constant or slowly varying parameters in (2), the parameter adaptive laws can be 

derived as in (Brdy.2005) and (Slotine and Li (1992)) to produce: 

ref

DO
1

f
2

DO
3

d a

dt

d a
( )

dt

d a

dt

ref

e DO

e f DO

e DO







= −  

= −  

= −  

                                       (16) 

where  

( )
( ( ))

( ( ))DO

DO t
f DO t

K DO t
=

+
                                 (17) 
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Stability Analyses  

For the stability analyses we used lyapunov function  

( ) ( )
2222

1 2 3

( ), ( ), ,

2 2 2 2

ref

ref

DO f DO

fDO DO

V t a t a t a t

aaan

  

    


= + + +

  

                     (18) 

Time-derivative of Lyapunov function 

         

( ) ( )

1 2 3

1 2

3

( ), ( ), ,

1 1 1

1 1

1

ref

ref ref

ref ref ref

DO f DO

DO DO f f DO DO

DO DO DO DO f f f f

DO DO DO DO

V e t a t a t a t

n n a a a a a a

n n a a a a a a a a

a a a a

  

 



   



    

=  +   +   +  

   
      =  +  −  − +  −  −   

      
   

 
+  −  − 

 
ref

 
 
 
 

          (19) 

The ( ) ( )( ), , refDO f DO
a t a t a t      are the error between ideal parameter and update 

parameter. The , , refDO f DO
a a a
  

represent the ideal parameter. The , , refDO f DO
a a a  

represent update parameter. by rewriting the equation (15.a) (15.b) 

 

DO p ma a a


= −  (19.a) f pa c


=  (19.b), ref mDO
a b



=          (19.c) 
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The ideal parameters are constant. Therefore time-derivative of ideal parameters are 

equal to 0. Substitute parameter adaptive control law into update parameters. 

 

( )

( )( ) (( )( )

( )( )

1 2 3

1 2

1 2

2

3

( ), ( ), ,

1 1 1

1 1
0 0

1
0

ref

ref ref

ref ref

DO f DO

DO DO f f DO DO

DO DO f f

ref

DO DO

V e t a t a t a

n n a a a a a a

n n a a e DO a a e f DO

a a e DO

  

 
 




 



    

=  +   +   +  

   
=  +  −  −   − +  −  −   −   

   

 
+  −  −   − 

 

（20） 

The close-loop DO dynamic system filtered tracking error dynamic is with input 

saturation system. The filtered tracking error dynamic is applying the control law (15) 

into filtered tracking error dynamic (13). 

( )

= ( ) (DO(t))

( ) ( )

1
( [ (t) (t) (t)

( )]) ( )

ref

m

p p p

ref

m m m

ref

DO f DO
p

p m p

n e

DO DO

a DO t c f d

a DO t b DO t

a DO a f DO a DO
b

d DO DO b t







= −

= − −

−  −  +

+  −

+  +  + 

− − −  +  

）

 

             (21) 
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( )

= ( ) (DO(t))

( ) ( )

[ (t) (t) (t)

( (t) (t))] ( )

ref

m

p p p

ref

m m m

ref

DO f DO

p m

n e

DO DO

a DO t c f d

a DO t b DO t

a DO a f DO a DO

d DO DO t







= −

= − −

−  −  +

+  − 

+  +  + 

− − − +  

）

 

         (21.1)             

Rewriting equation (21.1) 

          ( )= ( ) (t) (DO(t)) (t)

( ) ( )

( )] ( )

ref

m

p DO p f

p

ref ref

m m m DO

p m

n e

DO DO

a DO t a DO c f a f DO

d

a DO t b DO t a DO

d DO DO t







= −

= − −

−  +  −  + 

+

+  −  + 

− − − +   

     （22） 

Rewriting equation (22) 

          ( )= ( ) (DO(t)) (t)

( ) ( ) (t)

[ (t) (t) ( )]

ref

m

p DO p f

ref ref

m m m DO

m

n e

DO DO

a DO t a DO c f a f DO

a DO t b DO t a DO

DO DO t







= −

= − −

−  +  −  + 

+  −  + 

− − − 

      (22) 

The term ( ( ) ( ) ( ))refDO t DO t t− −  is equal the analyses control system error. 

Rewriting equation (22) 
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( )= ( ) (DO(t)) (t)

( ) ( ) (t)ref

m

p DO p f

ref ref

m m m DO

n e

DO DO

a DO t a DO c f a f DO

a DO t b DO t a DO

n





= −

= − −

−  +  −  + 

+  −  + 

− 

     (23) 

Apply equations 
DO p ma a a


= −  (19.a) 
f pa c


=  (19.b), ref mDO
a b



=  (19.c) into equation 

(23) 

( )=( ) ( ) (t)

( ) (t)ref ref

m

DO DO f f

ref

DO DO

n e

DO DO

a a DO a a f DO

a a DO

n





 



= −

= − −

−  + − 

+ − 

− 

              (23.1) 

For the close-loop dynamic system with input saturation, apply error dynamic (23.1) to 

the lyapunve function (20). 

( )

( )

( )( )

1 2 3

1

1 2

n( ), ( ), ,

1 1 1

( ) ( )

( )

1 1
0

ref

ref ref

ref ref

DO f DO

DO DO f f DO DO

DO DO f f

ref

DO DO

DO DO f f

V t a t a t a

n n a a a a a a

n a a DO t a a f DO t

a a DO t e

a a e DO a a

  


 

 



 

    

=  +   +   +  

=  −  + − 

+ −  − 

   
+  −  −   − +  −    

   

（（ ） （ ）

（ ） ）

(( )( )

( )( )

2

2

3

0

1
0ref ref

ref

DO DO

e f DO

a a e DO








−   −

 
+  −  −   − 

 

 (24) 

Rewriting equation (24) 
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( )

( )

( )

1 2 3

n( ), ( ), ,

1 1 1

( ) ( )

( )

( ) (

ref

ref ref

ref ref

DO f DO

DO DO f f DO DO

DO DO f f

ref

DO DO

DO DO f f

V t a t a t a

n n a a a a a a

a a e DO t a a e f DO t

a a e DO t e e

a a e DO t a a e f DO

  

 



 

    

=  +   +   +  

= −   + −  

+ −   −  

   
+ −  −  −  −    
   

（ ） （ ）

（ ）

(( )

( )

)

( )ref ref

ref

DO DO

t

a a e DO t
 

+ −  −  
 

                   (25) 

Rewriting equation (25) 

( )

1 2 3

2

n( ), ( ), ,

1 1 1

ref

ref ref

DO f DO

DO DO f f DO DO

V t a t a t a

n n a a a a a a

n

  

    

=  +   +   +  

= −

                 (26) 

Summary result of lyapunov function with input saturation close-loop DO dynamic 

system. 

1. The result of lyapunov function is 2V n= −  . It is showing that V  progressive tend 

to zero. So the system is stability.  

2 0 0,V n n t= − →  → →  

2. The close-loop DO dynamic system with input saturation is need to find the 

bounded of saturation for the system. 

The is positive constant value, and the 2n  is positive value. We can limit the 

error square to find the bounded of saturation. To find what limit of bounded of 

saturation affect control system stability.  

Limit ( ) ( ) 0refDO t DO t − −  , 

The term  ( ) ( ) 0refDO t DO t−   , if it is have enough time.  
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                   ( )( ) ( ) 0refDO t DO t t− → →，  

So we need consider term − , it is going to negative or positive value. 

We used the lyapunov function to consider the value of term − . 

The lyapunov function is showing below. 

                  21

2
V =                                                  (27) 

The time-derivation of the lyapunve function. 

                  V  =                                                   (28) 

 

Apply the equation (7) into the equation (28) 

               
( ) ( )p airV b Q t t  =    （ — ）

                         (29) 

Rewriting the equation (29) 

        ( ) ( ) ( )p airV b Q t t t   =    —                      (30) 

 

We assume term ( )p airb Q t is equal to ( )airQ t , rewriting the equation （30） 

 

        
2( ) ( )airV Q t t  =  —                           （31） 

 

Rewriting the equation by using formula  

( )
2

2 2

2 2

2 2

0

2 0

2

1 1

2 2

a b

a ab b

a b
ab

ab a b

− 

− + 

+


  + 

 

It is showing  

2

2 2 2

( ) ( )

1 1
( ) + + ( )

2 2

air

air

V Q t t

t Q t

  

 





=  

   

— 

—
                    (32) 
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The   is positive constant value, we assume 
0 0

1
= 0

2
a a + ， (33).  The 0a  is 

positive constant value. 

Apply the equation (33) into the equation (32) 

       

2

2 2 2

0

2 2 2 2

0

( ) ( )

1 1 1
( ) + + ( )

2 2 2

1 1 1
( ) ( ) + + ( )

2 2 2

air

air

air

V Q t t

t a Q t

t t a Q t

  

 

  







=  

 
  +   

 

    

— 

—

— —

         (34) 

Rewriting the equation (34) 

      

2

2 2 2

0

2 2 2 2

0

2

0

( ) ( )

1 1 1
( ) + ( )+ ( )

2 2 2

1 1 1
( ) ( )+ ( )+ ( )

2 2 2

1
+ ( )

2

air

air

air

air

V Q t t

t a t Q t

t a t t Q t

V a Q t





 

 

  









=  

 
  +   

 

    

   

— 

—

— —

—2

        (36) 

Integral the V  

      ( )0 0

2

2 2

.0

0

1
( )

2 1
air

a a

Q t
V e V e

a
 



−  − 


=  − + 

2
                        (37) 

Rewriting equation (37) 

0

2 2
2

.0

0 0

( ) ( )
+ +

4 4

aair airQ t Q t
V V e

a a
 

 
−   

=  
  

                       (38) 
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If time going to infinity and 0a big enough, then term 0

2
2

.0

0

( )
+

4

aairQ t
V e

a



−  

 
 

 is equal to 

zero. 

Rewriting equation (38) 

                
2

0

( )

4

airQ t
V

a



=


                                            (39) 

Now limit the V  is negative or zero. 

                 
2

2

0

( )1

2 4

airQ t

a



 =


                                      (39.1) 

Rewriting equation (39) 

                 

2

0

( )

2

airQ t

a



=


                                         (40) 

Apply equation (10) into the Limit ( ) ( ) 0refDO t DO t − −  . 

           

2

0

( ) ( ) 0

( ) ( )

( )
( ) ( )

2

ref

ref

ref air

DO t DO t

DO t DO t

Q t
DO t DO t

a







− − 

− 


− 



                 (41) 

Comment if 0a bigger enough, the term ( ) ( )refDO t DO t−  more going to zero. And 

more stable. 
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APPENDIX C Mathematic Model of The ASWWTP 

and Derivation of The DDMRAC Controller 

 

B ioreactor 2 B ioreactor 3 S ettlerB ioreactor 1

Q in, S in, 
D O in

X 2, S 2, 
D O 2

X 1, S 1, 
D O 1

X 3, S 3, 
D O 3 Q out

Q w, X r

       Q air1      Q air2
     Q air3

Q r,  X r

 

 

 1
1 1 1 1 1 1 1 .1(t) ( ) (t) + ( ) ( )r

dX
X t D r X r D t X t

dt
=  −   +  ( 1 ）                     (1) 

1 1 1
1 1 1 1

1

( ) ( )
( ) ( + ) ( ) ( ) ( )in

dS t X t
D t r S t D t S t

dt Y

 
= − −   + 1                      (2) 

0.1 1 11
1 1 1 1

1

.1 .1 max.1 1

( ) ( )
( ) ( + ) ( ) ( ) ( )

( ( )) ( ( ))

in

La air

K t X tdDO
D t r DO t D t DO t

dt Y

k Q t DO DO t

 
= − −   + 

+  −

1
       (3) 

.1
3 1 3 3 1 .3( ) ( + ) ( ) ( ) ( )r

r

dX
D t r X t D t r X t

dt
=   −  1                              (4)    

1 1
1 max.1

.1 1 .1 1

( ) ( )
( )

( ) ( )s DO

S t DO t
t

K S t K DO t
 =  

+ +
                                      (5) 

With: 
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1

.1

( ) in

a

Q
D t

V
=  ,  1

r

in

Q
r

Q
=  ,   

.1
1

.1

a

s

V
V

V
=  

The function ( ( ))La airk Q t is the oxygen transfer and depends on the aeration actuating 

system and sludge conditions. It is assumed as: 

                    ( ) ( ).1 1 .1 1k t Q tLa air = +                                          (6) 

The resulting input-output model 

0.1 1 11
1 1 1 1

1

1 .1 1 max.1 1

( ) ( )
( ) ( + ) ( ) ( ) ( )

( ( ) ) ( ( ))

in

air

K t X tdDO
D t r DO t D t DO t

dt Y

Q t DO DO t



 

 
= − −   + 

+ +  −

1
          (7) 

Substitute 1( )D t and 1( )t into (7) 

1

.1

( ) in

a

Q
D t

V
= ,   1 1

1 max.1

.1 1 .1 1

( ) ( )
( )

( ) ( )s DO

S t DO t
t

K S t K DO t
 =  

+ +
 

Rewriting (7)  

0.1 11 1 1
1 1 1 max.1

.1 1 .1 1 .1 1

1 1 max.1 1 .1 1 max.1

( ) ( ) ( )
( ( + ) ) ( )

( ) ( )

( ) ( ) ( ( ( ) ( ))

in

a s DO

in air

Q K X tdDO S t DO t
r DO t

dt V Y K S t K DO t

D t DO t DO DO t Q t DO

 

 


= −  +  −   

+ +

+  +  −  + 

1
   (8) 

As the term 1( ) ( )inD t DO t is small it is neglected. 

0.1 11 1 1
1 1 1 max.1

.1 1 .1 1 .1 1

1 max.1 1 .1 1 max.1

( ) ( ) ( )
( ( + ) ) ( )

( ) ( )

( ( ( ) ( ))

in

a s DO

air

Q K X tdDO S t DO t
r DO t

dt V Y K S t K DO t

DO DO t Q t DO

 

 


= −  +  −   

+ +

+  −  + 

1
   (9) 

Rewriting (9) 
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1
.1 1 .1 1 .1 .1 .1( ) ( ) ( ) ( ( )) ( ) ( )p p p air p

dDO
a t DO t c t f DO t b t Q t d

dt
= − − + +        (10) 

1
.1 1

.1

(1 )
+in

p
a

Q r
a

V


+
=   

0.1 1 max.1 1
.1

1 .1 1

( ) ( )

( )
p

s

K X t S t
c

Y K S t


=

+
  

.1 1 max.1 1( ( ))pb DO DO t= −   

.1 1 max.1pd DO=   

Model Reference Dynamics equation as  

. .1
.1 . .1 .1 1( ) ( )

m ref ref
m m ref m

dDO
a DO t b DO t

dt
= − +                    (11) 

The affine model reference adaptive control law is applied as  

1

1 max.1
.1 .1 1 .1 1 1

.1

( )= ( ) ( ) ( ) ( ( )) ( ) ( )
( )

ref

ref

air DO f DO
p

DO
Q t a t DO t a t f DO t a t DO t

b t


+ + −   (12) 

 

Closing loop by (10) 

1

1
.1 .1 .1 1 .1 .1 .1 1

.1 1

( ( ) ( ) ( )) ( ) ( ( ) ( )) ( ( ))

( ) ( ) ( )ref

p p DO p p f

ref

p DO

dDO
a t b t a t DO t c t b a t f DO t

dt

b t a t DO t

= − − − −

+

   (13) 

and 

.1 .1 .1 .1( ( ) ( ) ( ))=p p DO ma t b t a t a


− − −  
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.1 .1 .1( ( ) ( ))=0p p fc t b a t


− −  

1
.1 .1( ) ( )=refp mDO

b t a t b


 

where .1( )DOa t


, .1( )fa t


and 
1
ref

DO
a



are the ideal parameters.  

As the values of .1mb and .1( )pb t are known the parameter 
1

( )ref
DO

a t


 can be determined 

on-line from available data. The resulting control law reads: 

.1 .1 1 .1 1

.1 1 max.1
1

.1 .1

( )= ( ) ( ) ( ) ( ( ))

( )
( ) ( )

air DO f

refm

p p

Q t a t DO t a t f DO t

b DO
DO t

b t b t



+

+ −
                   (14) 

The corresponding closed-loop dynamics reads: 

1
.1 .1 .1 1

.1 .1 .1 1

.1
.1 1

.1

( ( ) ( ) ( )) ( )

( ( ) ( )) ( ( ))

( ) ( )
( )

p p DO

p p f

refm
p

p

dDO
a t b t a t DO t

dt

c t b a t f DO t

b
b t DO t

b t

= − −

− −

+

                   (15) 

The error between DO1 and DOm.ref1 

                1 1 . .1( ) ( ) ( )m refe t DO t DO t= −                           (16) 

The parameter adaption laws. 

1
1.1 1 1( ) ( )

DO
zone

da
e t DO t

dt
= −                         (17) 

1
1.2 1 1( ) ( ( ))

f
zone

da
e t f DO t

dt
= −                        (18) 
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The three bioreactors in single input and output model  

1
.1 1 .1 1 .1 .1 .1( ) ( ) ( ) ( ( )) ( ) ( )p p p air p

dDO
a t DO t c t f DO t b t Q t d

dt
= − − + +         (1) 

2
.2 2 .2 2 .2 .2 .2( ) ( ) ( ) ( ( )) ( ) ( )p p p air p

dDO
a t DO t c t f DO t b t Q t d

dt
= − − + +        (2)  

3
.3 3 .3 3 .3 .3 .3( ) ( ) ( ) ( ( )) ( ) ( )p p p air p

dDO
a t DO t c t f DO t b t Q t d

dt
= − − + +     (3) 

 

The resulting input-output model. Rewriting (1, 2, 3)  

. . . . .( ) ( ) ( ) ( ( )) ( ) ( )i
p i i p i i p i air i p i

dDO
a t DO t c t f DO t b t Q t d

dt
= − − + +   (4) 

1
.

.

(1 )
+in

p i i
a i

Q r
a

V


+
=   

0. max.
.

.

( ) ( )

( )

i i i i
p i

i s i i

K X t S t
c

Y K S t


=

+
  

. max.( ( ))p i i i ib DO DO t= −   

. max.p i i id DO=   

Where  
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      1, 2, 3i =  

 

Model Reference Dynamics equation as  

. .
. . . .( ) ( )

m ref j ref
m j m ref j m j j

dDO
a DO t b DO t

dt
= − +                  (5) 

Where  

1, 2, 3j =  

 

The affine model reference adaptive control law is applied as  

max.
. . .

.

( )= ( ) ( ) ( ) ( ( )) ( ) ( )
( )

ref
k

ref k k
air k DO k k f k k kDO

p k

DO
Q t a t DO t a t f DO t a t DO t

b t


+ + −   (6) 

Where  

1, 2, 3k = . 

Closing loop by (4) 

. . . . . .

.

( ( ) ( ) ( )) ( ) ( ( ) ( )) ( ( ))

( ) ( ) ( )ref
n

n
p n p n DO n n p n p n f n n

ref

p n nDO

dDO
a t b t a t DO t c t b a t f DO t

dt

b t a t DO t

= − − − −

+

 (7) 
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Where  

1, 2, 3n = . 

and 

. . . .( ( ) ( ) ( ))=p n p n DO n m na t b t a t a


− − −  

. . .( ( ) ( ))=0p n p n f nc t b a t


− −  

. .( ) ( )=ref
n

p n m nDO
b t a t b



 

where . ( )DO na t


, 
. ( )f na t



and ref
nDO

a


are the ideal parameters.  

As the values of .m nb and . ( )p nb t are known the parameter ( )ref
nDO

a t


 can be determined 

on-line from available data. The resulting control law reads: 

      

. . .

. max.

. .

( )= ( ) ( ) ( ) ( ( ))

( )
( ) ( )

air i DO i i f i i

refm i i i
i

p i p i

Q t a t DO t a t f DO t

b DO
DO t

b t b t



+

+ −
                             (8) 

Where 1, 2, 3i =  

 

The corresponding closed-loop dynamics reads: 
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. . .

. . .

.

.

.

( ( ) ( ) ( )) ( )

( ( ) ( )) ( ( ))

( ) ( )
( )

j

p j p j DO j j

p j p j f j j

m j ref

p j j

p j

dDO
a t b t a t DO t

dt

c t b a t f DO t

b
b t DO t

b t

= − −

− −

+

                        (9) 

Where 1, 2, 3j =  

The error between DOi and DOm.refj 

. .( ) ( ) ( )k i m ref je t DO t DO t= −                             (8) 

Where 1, 2, 3k =  ; 1, 2, 3i =  ; 1, 2, 3j = . 

Adaptive control Law 

 . .1 ( ) ( )nDO
zone z k i

da
e t DO t

dt
= −                          (9)         

. .2 ( ) ( ( ))nf
zone z k i

da
e t f DO t

dt
= −                         (10) 

                 

Where. 1, 2, 3n =  ; 1, 2, 3z =  ; 1, 2, 3k =  ; 1, 2, 3i = . 

 

 

The diagram of supervisor  
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The purpose of supervisor function is to guarantee meting the constraint (12) 

sup max

.

1

( ) ( )
q

ervisor

air i air

i

Q t Q t
=

                           (12) 

 

where  
sup

. ( )ervisor

air iQ t is generated by supervisor. 

       
max ( )airQ t is the current aeration system capacity limit.  

(Max limit ( )airQ t value for provide total 3 aeration zones) 

        i  is the number of aeration zone,  

 

 Fuzzy rule ： 
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1. If 
max

.

1

( ) ( )
q

air i air

i

Q t Q t
=

 ,  

Then     
sup

. .1 .( )= ( )erviosr

air i air iQ t Q t        

2. If ( )V t  is big, and max

.

1

( ) ( )
q

air i air

i

Q t Q t
=

  

Then     
max

sup

. .2 .

.

1

( )
( )

( )

erviosr air
air i air iq

air i

i

Q t
Q t Q

Q t
=

= 


   

3. If ( )V t  is small, and   max

.

1

( ) ( )
q

air i air

i

Q t Q t
=

  ,  

Then    
sup

. .1 .( )= ( )erviosr

air i air iQ t Q t  

 

Where the variable ( )V t is defined as follow: 

1( ) ( ) ( )

3

q
V t e t e ti i

i

−=

=


                                (13) 

Fuzzy blending is described as follow: 

2
sup

. .
sup 1

. 2

1

( ( )) ( )

( )

( ( ))

erviosr

s air i n
erviosr s

air i

s

s

w v t Q t

Q t

w v t

=

=



=




                           (14) 

Where 1, 2, 3n =   

 

DDMRAC Stability analysis  
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Let us consider the Lyapunov function in the equation as follows. 

 

2 2 2
. .

1 1 1
( ) ( ) ( ) ( )

2 2 2
i k DO n f nV t e t a t a t= +  +                          (1) 

 

where  1,2,3i = , 1,2,3k = , 1,2,3n = , ,i k and n  are the numbers of bioreactors. 

 

. . .ˆ( )= ( ) ( )DO n DO n DO na t a t a t −                                           (2) 

   . . .ˆ( )= ( ) ( )f n f n f na t a t a t −                                                  (3) 

 

where 1,2,3n = , and n  is the number of bioreactors. 

 

Hence, the derivative of the Lyapunov function is given by the equation: 

 

. . . .
. .1

. . . .
. .2

( ) 1
ˆ ˆ( ) ( ) ( ( ) ( ))( ( ) ( ))

1
ˆ ˆ       ( ( ) ( ))( ( ) ( ))

i
k k DO n DO n DO n DO n

zone z

f n f n f n f n
zone z

dV t
e t e t a t a t a t a t

dt

a t a t a t a t





= + − −

+ − −

               (4) 

 

 

. . .

. . .

. , .

( ) ( ( ) ( ) ( )) ( )

         ( ( ) ( ) ( )) ( ( ))      

          + DO ( )

k p n p n DO n n

p n p n f n n

m n m ref j

e t a t b t a t DO t

c t b t a t f DO t

a t

= − −

− −                         (5) 

Now add and subtract the term . ( )m n na DO t  on the right-hand side of equation (5.6-4) as 

follows: 

 

 



   228 

    

    (6) 

 

   (7) 

 

 

(7) 

 

. . . . .

. . .

( ) ( ) {( ( ) ( ) ( )) } ( )

        ( ( ) ( ) ( )) (DO ( )) 

k m n p n p n DO n m n i

p n p n f n i

e t a e t a t b t a t a DO t

c t b t a t f t

= − − − −

− −
    (8) 

( )[ ( ) ( ( ) ( )) ( ) ( )

                          ( ( ) ( )) ( ) ( ( ))

                          ( ( ) ( )) ( ) ( )]

                          ( ( ) (

ref ref

m DO DO p

f f p

ref

pDO DO

DO DO

V e t a e t a t a t b t DO t

a t a t b t f DO t

a t a t b t DO t

a t a t

• 







= − + −

+ −

+ −

+ − 1

1

2

2

3

3

1
))(( ( )) ( ))

1
                          ( ( ) ( ))(( ( ( ))) ( ))

1
                          ( ( ) ( ))(( ( )) ( ))ref ref ref

DO

f f f

ref

DO DO DO

eDO t a t

a t a t ef DO t a t

a t a t eDO t a t












 

 

− −

+ − − −

+ − − −

2

1

= ( ) ( ( ) ( )) ( ) ( ) ( )

                    ( ( ) ( )) ( ) ( ( )) ( )

                    ( ( ) ( )) ( ) ( ) ( )

                    ( ( ) ( ))(( (

ref ref

m DO DO p

f f p

ref

pDO DO

DO DO

V a e t a t a t b t DO t e t

a t a t b t f DO t e t

a t a t b t DO t e t

a t a t eDO

• 







− + −

+ −

+ −

+ − −
1

2

2

3

3

1
)) ( ))

1
                    ( ( ) ( ))(( ( ( ))) ( ))

1
                   ( ( ) ( ))(( ( )) ( ))ref ref ref

DO

f f f

ref

DO DO DO

t a t

a t a t ef DO t a t

a t a t eDO t a t











 

 

−

+ − − −

+ − − −

2

1

1

2

2

1
= ( ) ( ( ) ( )){ ( ) ( ) ( )+(( ( )) ( )) }

1
                    ( ( ) ( )){ ( ) ( ( )) ( )+(( ( ( ))) ( )) }

                    ( ( ) ( )){ (ref ref

m DO DO p DO

f f p f

pDO DO

V a e t a t a t b t DO t e t eDO t a t

a t a t b t f DO t e t ef DO t a t

a t a t b t







•  

 



− + − − −

+ − − −

+ − 3

3

1
) ( ) ( )+(( ( )) ( )) }

                   

ref

ref ref

DO
DO t e t eDO t a t





− −
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By substituting (5.5.1-6) and (5.5.1-7) into (5.5-6) yields: 

 

. . . .

. . .

ˆ( ) ( ) ( ( ) ( )) ( ) ( )

ˆ        ( ( ) ( )) ( ) ( ( ))

k m n DO n DO n p n i

f n f n p n i

e t a e t a t a t b t DO t

a t a t b t f DO t

= − + −

+ −
                    (9) 

 

 

 

Applying (5.6-7), (5.5.1-15) and (5.5.1-16) into (5.6-4) yields: 

 

2
.

. . . .
. .1

. . . .
. .2

( )
( )

1
ˆ ˆ( ( ) ( )){ ( ) ( ) ( ) ( ) ( ) ( ) }

1
ˆ ˆ( ( ) ( )){ ( ) ( ) ( ( )) ( ) ( ( )) ( ) }

i
m n k

DO n DO n k p n n k n DO n
zone z

f n f n k p n n k n f n
zone z

dV t
a e t

dt

a t a t e t b t DO t e t DO t a t

a t a t e t b t f DO t e t f DO t a t





= − +

+ − − −

+ − − −

(10) 

 

( )
0idV t

dt
                                                   (11) 

 
2

2

( )
0id V t

dt
                                                 (12)                                             

 

Consider the stability of the Lyapunov function result employing Barbalat’s Lemma.  

 

If ( )iV t  has a finite value, as time goes to infinity, then 
2

2

( )id V t

dt
 is bounded.  

Then  
( )

0idV t

dt
 , as time going to infinity. 

 

1.  are bounded by                           

2. is bounded by                                           

3.  are bounded by parameter adaptive law 

( ) ( )

( ) ( )

( ) ( )ref ref

DO DO

f f

DO DO

a t a t

a t a t

a t a t







 
− 

 
− 

 
 −
  e

pb e

1 2 3, ,  
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