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ABSTRACT

A huge range of vitally important systems from social to biological and from economic to

technological can be represented as complex networks hence it is crucial to understand the

dynamics and structure of these networks. Many real-world interactions are also intrinsically

directed and hence best represented by directed networks. Directed networks admit unique

features such as the fact that the edges may align with a global direction. We use the recent

methodology of Trophic Analysis to show how the directional hierarchy in directed networks

affects the structure and dynamics on these networks. In this work, we review the range of

techniques used to quantify hierarchy in directed networks. We show how hierarchy relates

to the emergence of strongly connected components in real networks. We relate hierarchical

structure to the performance of directed Hopfield-like networks and the ability of a network

to be influenced by a small number of nodes. We further analyse how hierarchy can arise

in networks by studying a fitness-based generative model and how the properties of the

generative model relate to the structures measured via Trophic Analysis. This thesis furthers

our understanding of how the behaviour of directed networks relates to their hierarchical

organisation and global directionality.
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2 CHAPTER 1. INTRODUCTION

The world we inhabit is shaped by the interactions of large complex systems spanning a

vast range of fields and scales. From ecosystems to economies, the internet to infrastructure

and other diverse domains from social networks to brain networks. These systems are made

up of a large number of interacting elements where the complexity of studying them arises

from the irregular but structured interactions between the elements of the system. Such sys-

tems can be heterogeneous with varying importance and function of the individual elements.

Additionally, these systems may exhibit complex non-linear responses to stimuli and varying

amounts of feedback. Despite the diverse range of applications and scales many of these

systems share features and structures which can be illuminated by the field of network sci-

ence. In this framework, the system under investigation can be represented by a generic

mathematical object, such as a graph or network, allowing the behaviour of many diverse

complex systems to be understood by studying the structure and dynamics of these mathe-

matical objects.

In this work, inspired by the fact that many real-world complex systems with directed

interactions, such as food-webs, social or economic networks [5, 6, 7, 8], exhibit some degree

of linear hierarchy and global directionality, we study how hierarchy affects the structure of

a directed networks, how this type of structure can emerge and how this structure affects

dynamics on networks. In particular, we use the technique of Trophic Analysis [8], a technique

to measure hierarchy in networks, to study these phenomena and demonstrate its utility for

understanding directed complex networks.

1.1 Network Science

The field of modern network science, in which this thesis resides, emerged roughly around the

turn of the century. It is a distinct field in its own right, while being extremely interdisciplinary,

with applications being found and inspiration taken from across many disciplines of science

[9]. The field grew from a few key early results into a maturing field with institutes and groups

dedicated to network science research [9]. However, it is still relatively new on the scale of



1.1. NETWORK SCIENCE 3

scientific disciplines and it is interesting to note that the author of this thesis is approximately

the same age as the field of network science. One of the key breakthroughs of early network

science was to show how relatively simple network features were present in a wide array of

real-world systems and to highlight the consequences of these features for the dynamics of

these systems. Over the years, it has been shown that a huge number of scientific fields and

concepts can be studied via the language of network science [10, 9]. This can include food-

webs, economic and financial networks, social networks, the Internet, Wikipedia, artificial and

biological neural networks, metabolic networks, genetic networks, transportation networks,

infrastructure networks and many more possible examples.

The field of network science formed in the synthesis of already existing ideas from graph

theory, statistical physics, sociology and computer science. However, a key fact that allowed

it to emerge as a distinct field was the time period. More widespread computing resources

allowed more people to study large networks and analyse their structure, which is not practical

by hand for almost any real system. While the popular emergence of the internet allowed the

sharing of datasets and the structure of the web and early social networks provided new

objects to study and inspiration to study the structure of networks.

One of the foundational results of early network science was the concept of the small-

world network model [11], with the paper proposing it [11] having been cited tens of thousands

of times. This model of undirected networks expresses the idea that many complex networks

have local clustering but that the length of a path between any two nodes is significantly

less than the number of nodes in the network. This is something that is very commonly

observed in many diverse real-world systems such as in social networks through the “six-

degrees of sepeartion” phenomena. The idea, well known in popular culture, that any two

people are connected in a small number of steps relative to the potentially billions of users

of a social network. This effect can also be found in collaboration networks in both film and

science where the Bacon number measures the number of connections required to reach

the actor Kevin Bacon in film collaboration networks and the Erdős number which measures

the number of connections from the mathematician Paul Erdős in co-authorship networks.
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Again, despite the number of people involved in these systems being very large most people

in the system have a Bacon or Erdős number which is very low. Similarly, it is also possible

to traverse between any two Wikipedia pages in a small number of steps by clicking through

links present on the page due to this affect. The fact that a relatively simple observation [11]

explains phenomena observed in many diverse systems shows the goals and explanative

power of network science which motivates the continued growth of the field.

Another of the key observation made in the early years of modern network science was

the concept of the scale-free network [12]. Where again, the proposing paper has been cited

tens of thousands of times and highlights a relatively intuitive concept which was thought to

be present in many systems. However, there has been more recent doubts regarding the

ubiquity and universality of this phenomena [13, 14]. A scale-free network is defined as a

system where the degree of the nodes follows a power-law distribution [12]. This means that

the majority of nodes, by number have a small number of connections but there a few nodes

which have a very large number of connections, orders of magnitude greater than the modal

or median value. Even if in practice, some systems do not fit the mathematical definition [13,

14] it captures a key feature of network science, that in the systems of study there may be a

huge imbalance in the importance of certain nodes in the system. In online social networks,

there are users with millions more followers than a more standard user. In transport networks,

hub stations and airports have much more connections than smaller local sites. In citation

networks, a small number of papers receive a very high number of citations compared to

most other papers published. The wide range of importance individual elements of a system

can take is a key feature of network science. The importance of this feature to network

dynamics and stability is also something we frequently observe in everyday life, when news

or memes go viral after being shared by large accounts or an issue at a key train station

causes disruption across the network.

One of the most well studied and important problems in network science is determining

methods to find which nodes are the most important in these heterogeneous systems, known

as the centrality of a node. This could be a simple measure like the number of connections a
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node has, degree centrality, or take into account other aspects of the network structure [10].

For example, a node is likely to be more important if it is also connected to nodes which are

also important which is the idea behind Eigenvector centrality [10]. Many different centrality

measures exists [10] which serve a particular niche and quantify importance in a way suited

to an application. One of the most impactful discoveries related to network science was that

of PageRank centrality [10, 15]. This algorithm which has been now widely used in network

science was originally designed to rank websites. It was developed by the founders of Google

and helped in the creation of the search engine which has changed how we interact with the

world. This clearly demonstrates the impact and relationship that the networks have with the

modern world.

Another well known facet of network science is the concept of community structure. This

is the idea that a network can be decomposed into groups where the nodes in each group are

more densely connected within the same group compared to nodes outside of the group, with

early work on the concept again being cited thousands of times [16]. The study of the impact

of communities on network dynamics and algorithms to detect community structure has since

become widely studied field within network science [17]. Clearly, community structure is very

important to many aspect of network science and impacts on everyday life. How beliefs

propagate in society is shaped by the online communities in which people interact. While

how diseases spread is shaped by the community structure of the social networks that we

inhabit. Community detection algorithms can also reveal features of the nodes which relate

to the group formation answering questions related to sociology and inequality. Community

structure is again something which is very intuitive and can be observed in everyday life

across a range of settings.

1.1.1 Importance of Directed Interactions

Despite the widespread success of network science, directed networks are still an under-

studied area compared to undirected networks [18], with much of the research focusing on

generalising previous results on undirected networks to the directed case. Directed networks
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are an important field of network science as many real-world systems such as social net-

works, ecosystems, economic networks and many more feature intrinsically directed interac-

tions. There are several reasons which explain the relative understudy of directed networks

compared to the undirected case [18]. Many real-world systems may be well modelled by

undirected networks, hence if you work on these systems there is less motivation to con-

sider the directed case. As directed networks feature an asymmetric adjacency matrix some

calculations can become more difficult as the matrix has a complex spectrum. Notions of

connectivity become more difficult to describe in a directed network since there now distinct

values of in and out degrees. This makes it more difficult to quantify the importance of a

nodes. There is also the additional concept of strong and weak connectivity, when consid-

ering if there is a path between all the nodes in a network or not we need to consider if we

respect the directionality of the edges or not. Directed networks may feature components

which are reachable only in one direction, a concept which may complicate notions of dy-

namics, influence and stability. As such directed networks are more complex than a simple

of extension of an undirected network to an asymmetric adjacency matrix [18]. Directed net-

works have properties unique to the directed case such as varying levels of normality, how

close the adjacency matrix is to commuting with its transpose [18, 8, 19, 20]. In this thesis,

we study one such feature of directed networks. Principally that nodes in a directed network

may be given a local ranking corresponding to their position in the one-dimensional flow hi-

erarchy created by the fact that the edges align with some global directionality. To study this

phenomena we employ and study the technique of Trophic Analysis [8] which was originally

devised to study the directional organisation present in food-webs and study their stability [5].

1.2 Outline of Thesis

This thesis utilises the method of Trophic Analysis [8] which is used to to study the hierar-

chical organisation and global directionality present in many directed networks. In this work,

we present a series of results which use this methodology to study the structure and dy-



1.2. OUTLINE OF THESIS 7

namics of these systems, using the most recent definition of Trophic Analysis put forward in

[8]. This thesis is presented using the Alternative Thesis Format laid out in the University of

Birmingham regulations and as such papers are presented in the published form, leading to

duplication of some background sections.

In Chapter 2, we present a review of the different ways hierarchy has been understood and

quantified in the literature and introduce Trophic Analysis and the relevant background for this

work. This review provides the first summary of all the applications of Trophic Analysis as well

as highlighting the methodologies closely related to this technique. In addition, it highlights the

broad range of methods used to quantify local hierarchy across scientific disciplines as well

as detailing the global measures of network structure which relate to the Trophic Incoherence.

This review provides a high-level overview of the vast range of techniques which can be used

to quantify hierarchy in directed networks while also relating the idea of network hierarchy to

global organisation of the network, something which as far as we are aware was not present

in the recent literature at the time of the PhD. A standalone extended version of this review

is intended to be submitted to the arXiv pre-print server and for potential publication.

In chapter 3, we present the paper “Strong Connectivity in Real Directed Networks” [2],

which was written during my PhD. This work highlights how Trophic Analysis can be used to

analytically predict the emergence of large strongly connected components in real directed

networks. It demonstrates how a network being strongly connected implies that there should

be edges which do not follow the hierarchical ordering. This fact is then exploited to derive the

main result of the work and show that in some systems the strongly connected component

may rely on only a small number of edges. In the appendix, we demonstrate the importance

of the strongly connected component for various dynamics.

In chapter 4, we present the paper “Influence and Influenceability: Global Directionality

in Directed Complex Networks” [3] written during my PhD. In this work, we explore various

concepts related to network influence and relate them to Trophic Analysis. We show how

the ability to use hierarchy to influence the state of various dynamics by targeting a small

number of nodes at the bottom of the hierarchy depends on the global directional organisation
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of the network. This is shown for models of opinion and synchronisation. We further show

how hierarchy can be used to predict the most prevalent strategies in networks representing

generalised rock-paper-scissors games. We also show how many structural quantifiers of

network influence and spectral features can be understood via Trophic Analysis.

In chapter 5, we present the paper “Network hierarchy and pattern recovery in directed

sparse Hopfield networks ” [1]. This was the first paper written during during my PhD. This

work studied the dynamics of directed sparse Hopfield-like networks. This first work provided

the foundations which allowed the later insights of my PhD to be made. In this work, we show

how the pattern recovery performance of networks depend on the trophic incoherence and

the location in the hierarchy the pattern is presented at. The motivation for this work was the

observation that biological neural networks operate in an intermediate incoherence regime

between the layered architecture of deep neural networks and the incoherent structure of

a recurrent neural network based on a complete or random graph. We also highlight the

network features which lead to networks with higher pattern recovery performance at a given

trophic incoherence.

In chapter 6, we present the paper “Fitness-Based Growth of Directed Networks with

Hierarchy” [4]. This was the one of the last projects of my PhD and attempts to explain

the ubiquity of hierarchy in real systems using a simple generative model to explain this.

This model combines degree-based preferential attachment with interactions between node

fitness variables. In this work, we analyse the utility and limitations of using Trophic Analysis

to infer the properties of this model. As well as highlighting a range of features of this model,

in particular that the interplay of the different types of preferential attachment can lead to a

wide spectrum of networks structures with a wide range of global directionality. We also link

this work to the study of real systems and attempt to quantify under which conditions Trophic

Analysis can reveal underlying information about the properties of the nodes.

In chapter 7, we review the results presented in this thesis, discuss the progress made in

evolving our understanding of hierarchy in directed networks by this work and the common

themes explored in each of the chapters. We also give an outlook on general trends within
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network science and the explore the potential future development of Trophic Analysis.
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2.1 Introduction

In this review, we highlight the technique of Trophic Analysis, a technique which is used to

quantify the linear flow hierarchy and global directionality found in directed complex networks

as well as review the literature surrounding hierarchy and directionality in directed networks.

We review how the concept of hierarchy is understood in the networks literature. We give

an overview of the wide range of techniques and methodologies used to quantify hierarchy.

In particular, we highlight the techniques which are closely related to Trophic Analysis and

point out the connections between these methodologies. We list all the areas where Trophic

Analysis has been applied to highlight the array of applications for which hierarchy can be

a useful tool. Additionally, we briefly review the global network measures which have been

linked to Trophic Analysis and where they have been applied. In this review, we cannot hope

to cover in detail the vast array of ideas and concepts of hierarchy that have been used to

study complex networks. However, we hope to give some insight into the range of techniques

and approaches available and connections between methodologies. This review presents

the first time the applications of Trophic Analysis have been detailed in this way and presents

the most up to date list of applications of this technique as of mid 2024. It also provides a

starting point to understand the range of techniques used in this area which may be of use

to a researcher who begins working on network hierarchy.

2.1.1 Distinct Notions of Hierarchy

In network science and general usage “hierachy” and “directionality” can refer to many distinct

notions and ideas. In this work, we refer to hierarchy as a flow hierarchy. This means that the

hierarchical structure is derived from the fact that it may be possible to label the nodes such

that many of the edges generally point in the same direction in a one dimensional space. Then

how strict the hierarchy is can be related to how many of the edges point upwards a specific

distance in this space. This is a natural type of hierarchy for many systems. For example, in

a food-web where there is a clear flow of energy up the hierarchy from plants to herbivores
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to carnivores. Additionally, this kind of hierarchy is natural in supply chain networks, where

for example a rare earth metal goes into a processor which goes into a consumer electronic

device. There can however be many different facets and details of how a flow hierarchy is

understood, quantified and what types of networks are considered hierarchical [21]. However,

since early in the field of network science [22] “hierarchy” and “hierarchical” has also been

used to refer to different network features related to modular structure, clustering, the building

of a network from groups of smaller structures or other concepts related to degree [23]. Some

of these types of concepts may be referred to as “nested hierarchy” [24, 25, 26]. This kind of

organisation is important in varied applications and found in many undirected networks [22,

27]. This is a well used vocabulary and concept with various definitions and methodologies

which use the terminology of “hierarchy” to refer to various network features and structures

which are distinct from flow hierarchy [27, 28, 24, 29, 26, 30]. We will not discuss the details of

this type of hierarchy in this work, since we focus only on the type of flow hierarchy related to

ranking and directionality present only in directed networks. However, we note the unfortunate

overlap in terminology between the concepts, which can lead to confusion when searching the

literature. It was considered whether we should use a new set of terminology when discussing

Trophic Analysis but we feel the phrasing is too natural and has become too ubiquitous to

introduce new terminology.

2.2 Trophic Analysis

Trophic Analysis is a technique for measuring the flow hierarchy and global directionality

present in directed complex networks first proposed in [5] and redefined in [8] to be more

widely applicable. It is a method which pairs the calculation of local hierarchy, trophic level,

with a measure of global ordering, trophic incoherence. In the following, we present the

method and detail the wide range of areas where it has been applied. Trophic Analysis has

the key feature that the rankings are very explicitly tied to the global directionality parameter

which means that the local rankings are closely tied to a global understanding of the network
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structure. It is also designed to be interpretable and simple to calculate to promote its use in

applications.

In this work, we use the following convention to define the adjacency matrix which repre-

sents a directed unweighted complex network,

𝐴𝑖 𝑗 =


1 if there exists an edge 𝑖 → 𝑗 ,

0 otherwise .
. (2.1)

Each node 𝑖 then has an in-degree 𝑘 𝑖𝑛
𝑖

=
∑
𝑗 𝐴 𝑗𝑖 and an out-degree 𝑘𝑜𝑢𝑡

𝑖
=

∑
𝑗 𝐴𝑖 𝑗 .

Weighted networks can easily be defined by multiplying the value by the strength of the edge.

Aspects of Trophic Analysis are invariant to transposing the adjacency matrix, so some fea-

tures may be unchanged if the convention is altered. However, care must be taken with what

is considered the “bottom” and “top” of the hierarchy as this can flip. The problem of adja-

cency matrix convention is a general issue in directed networks and care must be taken with it

when comparing methodologies. Particular care should be taken when using real networks,

for example if you take a directed social network should the edges point towards people you

follow or be reversed to account for the direction that the information and content flow?

2.2.1 Original Definition

The original definition of Trophic Analysis was proposed in 2014 [5] in order to study ecosys-

tem stability and understand questions related to May’s paradox [31]. May’s paradox arose in

the 1970s when results from the mathematical study of random matrices suggested that as

a random matrix system grows in size it is expected that the leading eigenvalue of the matrix

should also grow rendering the ecosystem related to this matrix unstable, however this is not

what was observed in ecology with large ecosystems being more stable [5]. Trophic Coher-

ence provided a possible explanation to this question by arguing the ecosystems were stable

due to the fact that the interactions are not random and that the constraint that the ecosystems

are flow hierarchical systems, where most of the edges point in the same direction, leads to
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increased stability (in this specific framework). This paper provided the first insight (in terms

of the trophic analysis framework) that the hierarchical structure and directionality present in

real systems could have an impact on the stability, formation and dynamics of these systems.

It also proposed a two part measure: the local node position in the hierarchy, trophic level,

and the global measure of the hierarchical structure, trophic coherence.

The trophic level of a node, position in the hierarchy, was initially defined [5] as follows:

𝑠 𝑗 = 1 + 1
𝑘 in
𝑗

∑︁
𝑖 𝑗

𝐴𝑖 𝑗 𝑠𝑖 . (2.2)

Where the 2014 trophic level of a node, 𝑠𝑖, depends on the sum of the trophic level of its in-

neighbours weighted by in-degree plus a constant factor. This is how the concept of trophic

level is defined in ecology and where the name arises from. This is defined only when there

are basal nodes (nodes of zero in-degree) which are given trophic level equal to 1. This

makes sense for an ecological system as the basal nodes correspond to organisms such as

plants which do not consume other species and are at the bottom the food chain. However,

this limits the application of the method to only systems with basal nodes. This limitation

was a motivating factor in the formulation of a new definition [8]. The original global trophic

incoherence was measured using the incoherence parameter, 𝑞, [5] defined as

𝑞 =

√︄
1∑
𝑖 𝑗 𝐴𝑖 𝑗

∑︁
𝑖 𝑗

𝐴𝑖 𝑗 (𝑠 𝑗 − 𝑠𝑖)2 − 1. (2.3)

Where 𝑞 is the standard deviation of the trophic difference distribution and provides a measure

of the hierarchical organisation of a network. This can also be written as

𝑞 =

√︄
1∑
𝑖 𝑗 𝐴𝑖 𝑗

∑︁
𝑖 𝑗

𝐴𝑖 𝑗 (𝑠 𝑗 − 𝑠𝑖 − 1)2. (2.4)

by exploiting the result that the average of the level difference, 𝑠 𝑗 − 𝑠𝑖, between nodes in

a network in this definition of trophic level is always equal to 1 [5, 6, 18]. Writing it in this

form, equation 2.4 highlights the similarities between this definition and the updated definition
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which we cover in the next section. Being equal to zero when the level difference is exactly

+1 across every edge and growing when the value deviates from this. 𝑞 = 0 represents a

coherent network with a perfect layered hierarchical structure while for large values of 𝑞 it is

expected that the networks will have less hierarchical structure and more cycles and feedback

[6]. In this definition of Trophic Level assigning nodes to a level is equivalent to solving the

matrix equation

Λ′𝑠 = 𝑧′, (2.5)

where Λ′ = diag(𝑧′) − 𝐴 and 𝑧′
𝑖
= max(𝑘 in

𝑖
, 1) [18]. Λ′ is only invertible, leading to unique

solution, when there are basal nodes (nodes of in-degree zero) which is expected given the

constraints of this method [18]. The matrix formulation and its similarity to the updated formu-

lation which can handle basal nodes [8] show how the updated definition [8] can thought of

as a symmetrised version of the original definition and how the writing the original formulation

in this way prompted the discovery of the updated definition [8], section 2.2.2.

2.2.2 MacKay Definition of Trophic Analysis

Trophic Analysis was redefined in 2020 [8] to the current definition used in this work. This

new definition removes the constraint that basal nodes are required making it useful for more

systems. In this framework, Trophic Analysis is presented as an optimisation problem. Where

the local position of a node in the hierarchy trophic level, ℎ𝑖, comes from finding the set of

trophic levels which minimise equation 2.6, which when evaluated at the minimum value is

the global measure of directionality, the trophic incoherence, 𝐹. The expression for trophic

incoherence is given by as

𝐹 =

∑
𝑖 𝑗 𝐴𝑖 𝑗 (ℎ 𝑗 − ℎ𝑖 − 1)2∑

𝑖 𝑗 𝐴𝑖 𝑗
. (2.6)

As equation 2.6 is quadratic in the trophic level it can be minimised by taking the derivative

and solving a linear equation for the trophic level given by
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Λℎ = 𝑣. (2.7)

Where 𝑣 is the degree imbalance vector defined as 𝑣𝑖 = 𝑘 in
𝑖
− 𝑘out

𝑖
and Λ is defined as

Λ = diag(𝑢) − 𝐴 − 𝐴𝑇 (2.8)

with 𝑢 being the vector of the sum of the in and out degrees of each node, 𝑢𝑖 = 𝑘 in
𝑖
+ 𝑘out

𝑖
.

It should be noted with this approach that the matrix Λ is not invertible as it has a zero

eigenvalue and that the solution to equation 2.7 is invariant upon addition of a constant vector.

This can be resolved by setting the level of one of the nodes so that the equation can be solved

directly or by solving iteratively or via any other method that does not require computing

the inverse of Λ. Iteratively solving the equation is the preferred approach for large sparse

systems and allows Trophic Analysis to be a useful tool even when the networks are very

large. As the equation for the trophic levels, equation 2.7, is invariant upon addition of a

constant vector and adding a constant vector to ℎ does not change the incoherence, equation

2.6, a convention needs to be defined to select the solution. We choose to work in the

convention where the lowest trophic level in the network is set to zero by adding the constant

vector which achieves this.

The goal of minimising equation 2.6 is to select trophic levels so that the differences in

trophic level across an edge are exactly +1 as far as possible. This means that in a network

with perfect trophic hierarchy, 𝐹 = 0, the trophic levels are all integers where the trophic

differences between nodes are exactly +1. The would be observed in a graph with strict hier-

archy like a directed path. As cycles, or any other motif which contributes to the incoherence,

are introduced the network becomes more incoherent. Food-webs are generally very low

incoherence as they have few cycles and most edges point up in the same global direction

up the trophic hierarchy. A directed cycle will have 𝐹 = 1 and the same trophic level for every

node as there is no hierarchy which can be measured by this method.

The minimised value of equation 2.6, trophic incoherence, is bound between zero and
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one [8]. With real networks existing somewhere on this spectrum. Erdős–Rényi random

graphs are generally quite incoherent although the value depends on the sparsity of the

graph. These graphs are not maximally incoherent as the degree imbalance present creates

some structure which is measure by Trophic Analysis. Whereas graphs which are 𝐹 = 1

are balanced in terms of in and out degrees at each node [8]. It is also possible to speak in

terms of coherence measured with 1− 𝐹 instead of incoherence. So high coherence graphs

are low incoherence and high incoherent graphs are low coherence. Additionally, in this

definition of trophic analysis, using the standard unweighted form of trophic incoherence, the

mean level difference across edges in the network can be written as 𝑧 = 1−𝐹 [8]. This shows

how maximally directed networks have 𝐹 = 0 as the average level difference is exactly one

with any deviations from this leading to edge differences of a differing lengths in trophic level

space. Some works have chosen to quantify directionality in terms of “trophic directedness”

defined as
√

1 − 𝐹, [20].

2.2.3 Extension to Weighted Networks and Arbitrary Height Differences

The definition put forward in [8] was also extended to weighted networks with the option of

setting a different target height difference using a different definition of incoherence, 𝐹𝑤, given

by

𝐹𝑤 =

∑
𝑖 𝑗 𝑊𝑖 𝑗 (ℎ 𝑗 − ℎ𝑖 − 𝜏𝑖 𝑗 )2∑

𝑖 𝑗 𝑊𝑖 𝑗𝜏
2
𝑖 𝑗

. (2.9)

This leads to the same set of equations for trophic level, Λℎ = 𝑣, as previously apart from

with the vector 𝑢 being replaced with the sum of the weighted degrees and and the imbalance

vector being replaced by 𝑣 𝑗 =
∑
𝑗 𝑤𝑖 𝑗𝜏𝑖 𝑗−𝑤 𝑗𝑖𝜏𝑗𝑖 [8]. This definition is useful as it shows trophic

incoherence is not sensitive to transposing 𝐴 as this is equivalent to setting 𝜏𝑖 𝑗 = −1 for all

edges. The extension to weighted networks is useful for applications as it means Trophic

Analysis can be used when the systems is most appropriately represented by a weighted

network. Setting 𝜏𝑖 𝑗 to any positive constant value for all edges does not change the hierarchy
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which is found and merely has the affect of rescaling all the levels and differences. In this

work, and most work using Trophic Analysis, the choice is made that 𝜏𝑖 𝑗 = 1 for all edges

and that the target trophic difference is +1. There may be situations where another choice

is more appropriate reflecting some aspect of the system being studied but when looking at

generic networks the choice of +1 is simplest to work with.

2.2.4 Applications of Trophic Analysis

Trophic Analysis has been widely applied to study many different network phenomena and

we present a summary of the known applications of Trophic Analysis, broken down by the

definition used. The intuition behind the results found in the original definition of levels [5]

and general trends are expected to hold in the MacKay definition, however with the levels and

incoherence values rescaled. Some analytical results such as [6] transfer between definitions

very well and can be adapted to the MacKay definition [8].

Original Definition

The concept of Trophic Analysis, as with when it was conceived, has been useful to under-

stand the structure of ecological networks. It was used to study the concept of ‘niche-width’

in [32] and the prevalence of motifs in ecological networks in [33]. However, Trophic Analysis

has also been widely applied outside of ecology. It has been used to study various network

dynamics such as spreading processes [34], including in airport networks [35], and impact of

the structure of an organisation on how it can be influenced and controlled [7]. In [18] it was

highlighted how varying trophic structure affects the stability of majority vote type dynamics

leading to distinct behaviours depending on the trophic incoherence.

Trophic Analysis has also been used to analyse infrastructure networks and has been

used in the study of the resilience of both rail [36] and water networks [37]. It has also

been found to be a useful tool when studying socioeconomic bubbles [38], in particular when

studying the behaviour of Reddit discussions around meme stocks. Trophic Analysis was

also used to the global directionality present in directed networks which represent pollution
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spread [39]. Additionally, trophic coherence has also been used to quantify the stability of

regional economies [40].

Trophic Analysis has also been used to study general network structural properties such

as in [6] where it was shown that the spectral radius, the largest eigenvalue of the adjacency

matrix, could be written as a function of the trophic incoherence under certain assumptions

and approximations. This result holds well in large data-sets of real networks [6] and high-

lights the potential importance of the trophic incoherence as the spectral radius can be related

to the behaviour and stability of various network dynamics. This work was also extended to

the specific case of bipartite networks which arise in the study of production processes [41].

This technique has also been used to study neural network design [42] where artificial

neural networks were represented as Directed Acyclic Graphs (DAGs) and the relationship

between the trophic incoherence of the structure and the network performance as investi-

gated. It was also attempted to extend the original definition of trophic analysis to networks

without basal nodes by defining forward and backwards levels [43] which can be calculated

via the pseudo-inverse of a graph Laplacian, however this lacks the simpler definition of

trophic incoherence used in [8] and the equivalence with the approaches of [44, 45]. A useful

feature of the original variant of trophic level was demonstrated in [46] where it was shown that

the trophic levels in this definition, given the appropriate conditions hold, can be accurately

found using a low-rank approximation for the adjacency matrix.

MacKay definition

This definition is more recent at the time of writing, so has been much less widely applied than

the previous definition. However, it has still seen some usage and is hoped to be more widely

used in the future. In network science, it has been used to relate the directional structure to

the entropy production rate of several dynamical processes defined on networks [20]. In [20]

trophic incoherence was also related to the parameters of a network generative model based

on preferential attachment with a tunable probability of edge reciprocation. It has been used

to study societal systems, for example to study the structure of the United Nations Sustainable
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Development Goals (SDGs) [47, 48, 49]. In biological systems, it has been used to analyse

the behaviours of models of epilepsy on networks by providing insight into the impact of the

network structure on seizure dynamics [50]. While in [51] Trophic Analysis was used to study

the impact of depression treatments on the hierarchical structure of networks derived from

functional magnetic resonance imaging data. Additionally, it has been used to study the

hierarchy of historical network of Islamic scholars and to infer missing temporal information

associated with hadith transmission using the network hierarchy [52]. Trophic Analysis has

also been incorporated into attempts to evaluate linear hierarchical and periodic structures

in directed networks [53] by linking the measurement of these structures to the likelihood of

certain random graph models.

2.3 Methods Related to Trophic Analysis

As Trophic Analysis is a natural way to measure hierarchy and directionality in directed net-

works and the trophic incoherence penalty function can easily be minimised due to it being

quadratic, there are several independently proposed measure of network hierarchy which

are defined in similar ways and capture similar structures [8, 54]. For example, SpringRank

proposed in [44] which views the ranking problem as minimising the energy of a network of

directed springs. In addition to the method of Helmholtz-Hodge decomposition used in [45]

which is based on a large body of work linking this decomposition to least squares minimi-

sation based rankings. The fact that there are multiple similar techniques to understand this

structure in directed networks highlights the fact that it is important and many people are

interested in trying to understand the global directional organisation and hierarchy present.

Additionally, convergence of multiple research groups to similar methodologies makes sense

as the quadratic penalty term is simple to solve for and all the related methods rely on this

structure. A comparison between the ranking methodologies to Trophic Analysis, SpringRank

and Helmhotz-Hodge Decomposition can also be found in [54] and in Portuguese in the thesis

[55].
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2.3.1 SpringRank

The problem of minimising the Trophic Incoherence of a given network can also be interpreted

as minimising the energy of a network of directed springs. The methodology of SpringRank

comes directly from the observation that ranking of nodes can be achieved by minimising the

energy of some Hamiltonian representing a network of directed springs. SpingRank has a

very similar minimisation problem to that found in Trophic Analysis apart from that it is not

normalised in the same way and that a regularisation term may also be included to enforce

a unique solution by breaking the invariance of solutions of the minimisation problem to the

addition of constant vector. This is defined as

𝐹𝑠 =
1
2

∑︁
𝑖 𝑗

𝐴𝑖 𝑗 (ℎ′𝑗 − ℎ′𝑖 − 1)2 +
𝛼reg

2

∑︁
𝑗

ℎ′2𝑗 . (2.10)

Where 𝛼reg is a small regularisation parameter. In the original paper proposing SpringRank

[44] a different convention is used for the adjacency matrix so some terms are modified by

taking their transpose, also noted in [54]. This can be minimised and leads to an equation for

ranks in SpringRank, ℎ′, which is equivalent, depending on the adjacency matrix convention,

to the equation used for trophic level up to the regularisation term,

(Λ + 𝛼regI)ℎ′ = 𝑣. (2.11)

This can be solved in the same way as for the trophic level however without the need

to define a convention for the lowest level node as the regularisation term, which can also

be considered a Gaussian prior on the ranks, means the equation has a unique solution.

The regularisation term forces the levels to be centred around zero and can be thought of

as connecting all the nodes to weak springs with resting position at the origin whereas the

approach of adding a constant vector can be thought of as translating the whole network

of springs to the desired position. When the regularisation parameter is negligibly small we

should see the same structure as is found with Trophic Analysis up to convention for the

adjacency matrix and centring of the levels. The linear structure again makes the ranks
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simple to solve for and methodology applicable to large systems. One difference between

SpringRank and Trophic Analysis is that Trophic Analysis equally emphasises the levels and

incoherence parameter, using the normalised trophic 𝐹 to derive analytic results [8, 2], while

the Hamiltonian ground state energy is not used in this way in SpringRank as far as the author

is aware. However, the ground state energy per edge, which is similar in concept to 𝐹, is used

as part a statistical test to determine if the hierarchy is significant, see [44] for details.

Applications

SpringRank has been widely used to study the structure of academic hiring networks and the

hierarchical nature of interactions between academic institutions [56, 57, 58, 59] as well in

social settings like endorsement networks [60]. SpringRank has also been used to form a

ranking from pairwise comparisons of different approaches to network community detection

[61]. SpringRank has been extended by modifying the minimisation problem to create a

ranking mechanism designed for temporal networks where the current ranks take into account

how the nodes ranked at previous times [62]. This kind approach is useful for ranking systems

which change in time and this approach could be adapted and combined with an incoherence

like parameter which also measures how the directionality of the system changes with time.

Other changes to the SpringRank function have been proposed such as in [63] where the

minimisation problem was formulated as a Huber loss in order to be more robust to outliers in

the data and change the impact they have on the ranking which may be appropriate in some

settings.

2.3.2 Helmholtz-Hodge Decomposition

Trophic analysis is also very similar to a technique for analysing ‘circularity’ [45, 54] based on

Helmholtz-Hodge decomposition. Hodge Laplacians on graphs are a well studied field [64]

which cannot be adequately summarised here. The work of [45] is based on a large literature

of work which has linked to the problem of computing a ranking to Hodge decomposition, the

Hodge Laplacian and least squares minimisation [65, 66, 67, 68, 69, 70, 54].
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The equivalence between Trophic Analysis and Helmholtz-Hodge Decomposition [54] of

the type used in [45] is described in [8] which we restate here. Helmholtz-Hodge decomposi-

tion is the decomposition of a vector field into one part which is divergence free and another

part which can be written as a gradient. This is done by taking flows, 𝑓𝑖 𝑗 , and conductance

terms,𝑤𝑖 𝑗 , which take values depending on the way nodes 𝑖 and 𝑗 are connected. 𝑓 can then

be split into two parts 𝑓 = 𝑓 𝑃 + 𝑓 𝐶 . Where 𝑓 𝑃
𝑖 𝑗
= 𝑤𝑖 𝑗 (𝜙 𝑗 − 𝜙𝑖) and 𝑓 𝐶 can be balanced.

After some substitution, see [45], minimising the following

∑︁
𝑖 𝑗

𝑤−1
𝑖 𝑗 (( 𝑓𝑖 𝑗 − 𝑤𝑖 𝑗 (𝜙𝑖 − 𝜙 𝑗 ))2, (2.12)

allows the potential, 𝜙𝑖, to be solved for which is the version of rank or level in this methodol-

ogy.

The minimisation can be shown to be equivalent in form to trophic analysis extended to

weighted networks with arbitrary target heights [8], for non-normalised incoherence, with the

choices

ℎ𝑖 = −𝜙𝑖 (2.13)

and

𝜏𝑖 𝑗 =
𝑓𝑖 𝑗

𝑤𝑖 𝑗
. (2.14)

Where again we have the property that the minimised incoherence equivalent is invariant

upon setting 𝜏′
𝑖 𝑗
= −𝜏𝑖 𝑗 , the transposing of the adjacency matrix and the addition of a constant

vector to the level equivalents.

Helmholtz-Hodge decomposition, sometimes referred to as HodgeRank [71, 70], using

a broad range of notations and definitions has been widely used to study many systems. It

has been used to study economic networks [45], neural networks [72], social representation

theory [73, 71], to analyse economic time series in [74], to asses video quality from the

pairwise comparisons [70] and in [75] to study flows in bank transactions where the rankings

obtained were compared to the bow-tie structure found in directed networks. However, being
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such a large research area an exhaustive list of all areas where it has been applied as is

possible for Trophic Analysis is outside the scope of this work. In addition, variants have

been defined such as in [76] where HodgeRank is extended to deal with outliers when ranking

visual properties. The idea of extending HodgeRank using a variant of Huber Loss [76] has

also been seen in a SpringRank variant [63], highlighting the similarity of the techniques as a

similar extension was independently arrived upon. Many of the formulations of least squares

based rankings [77] share a strong similarity with the minimisation problem found in Trophic

Analysis and various works have studied the properties of least squares rankings and this

minimisation problem in detail [77, 78].

2.3.3 Others

Several other similar methodologies have also been detailed in the literature. One method-

ology which is equivalent to Trophic Analysis based on energy minimisation was proposed

in [79] as a tool for drawing and visualising directed graphs with hierarchical structure where

the levels would be used as the y-coordinate when drawing the graph. A different hierarchy

measure is proposed in [79] where the amount of hierarchy in the system is quantified by the

difference between the maximum and minimum level divided by the graph diameter, distance

between the two furthest apart nodes, which can be used to determine the appropriate graph

drawing framework [79].

A ranking method of similar methodology to SpringRank and Trophic Analysis was also

found independently in [80]. In this work, rankings were derived from a model of competing

nodes where ‘results’ of the interactions are normally distributed based on the rank difference

of the nodes. The maximum likelihood estimate of the ranks for this model then corresponds

to minimising the energy of a network of directed springs [80] which is again similar to the

other methods presented in this section.
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2.4 Other Approaches to Ranking Problems

The problem of finding a ranking of a set of elements to find hierarchy given some pairwise

comparisons or a network is a very well studied problem across as range of scientific dis-

ciplines and as such there is a very wide literature of techniques designed to find rankings

[81]. Some examples of historic discussion on how to construct a ranking from pairwise com-

parisons can be found in the early psychology literature [82] and the proposal of the widely

used Bradley-Terry-Luce model [83, 84] where ranks are constructed based on the idea that

the ranks can be used to compute the probability that an element of the system “wins” over

another during a pairwise comparison. The Bradley-Terry-Luce model and variants are still

very widely used and is one of the founding models in the field of ranking a set of pairwise

comparisons, it was compared to SpringRank in [44] and an overview of the many ways it

can be derived is given in [85].

The key difference between Trophic Analysis and much of the ranking literature is that

Trophic Analysis emphasises the trophic levels, ranks, in conjunction with the Trophic Inco-

herence which highlights how globally directed the network is which can be used to under-

stand how the ability to rank nodes relates to the global network properties [3, 2, 8] and how

important the hierarchy is to the system [4]. Another important thing to note, shown in [81, 44],

is that when a clear hierarchy exists then it can be picked out with many ranking techniques

and that the results correlate with each other [81]. So the choice of ranking methodology

may come down to performance, simplicity, interpretability and relationship to other networks

properties. For example, a reason why a method like SpingRank is successful is that it can

be extremely simply summarised as “the ranks correspond to the minimum energy state of

a network of directed springs” compared to other methods which may have more complex

implementation and interpretation.

Ranks can be constructed in a multitude of ways. In some early ranking literature they

where constructed from the difference in number of wins and loses, which is equivalent to

degree imbalance, [86]. This [86] makes sense for a system like a tournament where every

element interacts with every other but not in a sparse complex network.



2.4. OTHER APPROACHES TO RANKING PROBLEMS 27

There are a host of techniques found to solve the ranking problem that have been pro-

posed in the literature. There is the ranking methodology of [81] which employs Singular

Value Decomposition (SVD) as part of the ranking method. There is the technique of Se-

rialRank [87] based on serration methods. SyncRank relates the problem of ranking to the

problem of group synchronisation, over the group of planar rotations, SO(2), by mapping the

rank differences to angular differences [88]. Which then allows the construction of a hermi-

tian matrix from which an angular synchronisation problem can be expressed, solved and

mapped back to the ranking solution [88].

A set of rankings can also can found by using a Graph Neural Network (GNN) [89]. In

[89], a loss function is constructed which relates to minimising the number of upsets in the

ranking. This methodology [89] compares favourably to many other ranking methodologies.

However, in many of the test cases used to evaluate the GNN the second best performing

method according to the metric used is SpringRank, which highlights the good performance of

the computationally simpler and interpretable method which is equivalent to Trophic Analysis

and Helmholtz-Hodge decomposition.

There are also methods like PageRank [90, 15] which rank nodes by perceived “impor-

tance”. These are not designed to extract hierarchy in the same way as the other methods

described but they may also detect some aspects of hierarchical structure. Particularly as

PageRank is based on the behaviour of random walkers with random jumps which would ex-

plore the network hierarchy if it existed. Ranking methods which are based on random walks

such as Rank Centrality have also been proposed [91]. With random walk based methods

being further studied in [92] where a faster process was found along with a message passing

interpretation. Ranking can also be constructed by using the spectral properties of a variant

of the Laplacian matrix known as the dilation Laplacian [68]. The problem of finding a ranking

has also been viewed in the context of preference aggregation from different sources, such

as in [93] where a Multinomial Preference Model was used to aggregate preferences into a

consensus ranking.

There is also an element of the literature derived from ranking problems found in computer
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science which relates the problem of creating ranks from pairwise comparisons to the field

of matrix completion [94, 95, 96, 97, 98, 99], with a summary given in and references found

using the review of [81]. Matrix completion attempts to solve the following problem: given

a matrix with a mixture of observed and unobserved entries how can we use the observed

values to infer the unobserved entries. In terms of pairwise comparisons and ranking, this

would be: given a set of observed pairwise comparisons how can we predict the outcome

of the unobserved pairwise comparisons and from this work out the hierarchy of interaction

between the elements of the system. There are also ranking methods designed from ranking

players as they interact with each in games over time such as ELO in chess [100] or TrueSkill

in online video games [101].

2.4.1 Network Science Methods

There are also a large number of approaches to study and quantify hierarchy in networks

[102], with a summary of some given in [103]. Global reaching centrality [25] measures hi-

erarchy through the number of nodes which are reachable from a given node. This allows a

local measure of hierarchy, how large the out-component of each node is, and a global mea-

sure of hierarchy, an average of how much the out-component of each node differs from the

maximal possible value. It has been studied analytically in the case of random graphs [104].

It has been used to study the emergence of hierarchy in social settings [105, 106], hierar-

chy in metabolic networks [107], network robustness [108] and the structure of organisations

[109], with variations of this method used to study hierarchy in scientific publishing [110]. The

measure of global hierarchy based on reaching centrality works well in many cases. How-

ever, it can lead to examples of networks where what looks like a perfect global hierarchy is

not measured, examples given in [102].

The level of a node in the hierarchy can sometimes simply be measured as the distance

of a node from the “root” node, a node of zero in-degree at the bottom of the hierarchy as was

done in [111], where the importance of reverse edges to network dynamics was highlighted.

This type of approach is quite common, as in [112] hierarchy was also studied in various
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network models by defining hierarchy as distance from nodes of zero in-degree [112]. This

is similar to the idea of the original trophic level [5], although with a specific method to deal

with cycles [112]. These hierarchy measures also lend themselves to interpretation related

to network control as in [113] where the number of nodes of zero in-degree was related to

network control. Global directionality has also been studied in network science by simply

measuring the fraction edges which are unidirectional and the fraction which are bidirectional

[114], with the relationship between this quantity and the spectral properties of the adjacency

matrix was studied in [114].

Ranking can also be computed through a technique known as ‘agony’ [115, 116], originally

proposed in [117], where a penalty is only applied to edges which go backwards against

the ordering and there is no penalty for edges which go too far up in the hierarchy as in

trophic incoherence [8]. It allows a ranking to be computed and a global directionality to be

measured from the value of this penalty function [115]. However, the minimisation of the this

function can be computationally difficult. Depending on the form of the penalty function, it

may become equivalent to the Feedback Arc Set problem which is the problem of finding the

minimum number of edges which need to be removed to make a graph acyclic, which is NP-

hard [115, 118]. This kind of approach of trying to find a ranking by minimising the number

of connections which violate the ranking has been of interest to the literature for a long time

[119]. ‘Agony’ is a useful technique but the choice to not apply penalties to the forward edges,

as in Trophic Analysis or SpringRank, means the hierarchical structure it finds does not have

the idea of distinct ‘layers’ in the same way which may be important when the ranking of

the nodes represents a node characteristic where it is important that edges do not go too

far upwards. Additionally, since the minimisation function used in Trophic Analysis can be

differentiated the computation of the ranking is simple. Flow hierarchy has also been studied

by computing the fraction of edges which are not involved in a cycle [120] and by trying to

reorder the adjacency matrix so it is upper triangular [121].

Hierarchy can also be quantified by using the distribution of random walkers in a network

[122], where the position of nodes in the hierarchy is calculated using the stationary distribu-
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tion of the random walkers and the global hierarchy is measured by the coefficient of variation

(ratio of standard deviation and mean) of this distribution [122]. A three part measure of hi-

erarchy in networks was proposed in [21] where the space of hierarchies was defined using

measures of graph orderability, feedforwardness and treeness [21]. Directed networks have

also been studied with the ‘bow-tie’ framework where the network is viewed as being com-

posed of a giant in-component, giant strongly connected component, giant out-component

plus other smaller contributions [123] which can be extended further by concepts such as

“tendrils” and “tubes” [124]. Clearly these ideas are strongly tied to network hierarchy as

many of the measures of network hierarchy detect the features which contribute to this struc-

ture, for example “root” nodes or nodes with large out-components or nodes of low trophic

level would be expected to be in the giant in-component if it exists. ‘Bow-tie’ structure has

been linked with hierarchy via the Helmholtz-Hodge potential in transaction networks [45].

Hierarchy can also be measured and viewed as related to how the results of pairwise

comparisons can be predicted [125]. In [125] extensions of Bradley-Terry model are studied

and the hierarchical structure is understood by measuring the prevalence of complete up-

sets based on ‘luck’ that are not predicted by the hierarchy and the ‘depth of competition’

parameter which relates to the span of the skill range of a game. Additionally, in [125] the

accuracy of many hierarchy measures including SpringRank was tested on an edge direction

prediction task, on a variety of data-sets relative to the Bradley-Terry. It was found that the

best performing measure varied as the data-set changed but also that in terms of accuracy

the difference in the performances were relatively small [125]. This again highlights that if

a hierarchical features are present in a real system it may be adequately detected by many

methods. Hierarchy has further been linked to the idea of network control in [126] where the

position of a node in the hierarchy of a directed acyclic graph was linked to its ability to control

the system [126]. As directed acyclic graphs have no cycles they can be perfectly ordered,

which allows the connection to control made in [126], something which is more difficult to do

in the case where the network contains cycles. The problem of finding a ranking in a digraph

was shown to be relatable to continuous spin systems in [127] where system proprieties were
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computed using a belief propagation algorithm.

Hierarchy can also be measured by the approach of [128] where the network hierarchy

is inferred via an ordered stochastic block model. This Bayesian approach to infer hierarchy

has a number of advantages. It can measure the hierarchy at the same time as community

structure, so can be used to study both features simultaneously. As the approach is Bayesian

it allows the significance of the hierarchy to measured [128]. In addition, this approach can be

degree corrected meaning that it does not detect hierarchy which is caused by local degree

imbalance in unstructured random graphs as observed in Trophic Analysis and SpringRank

[128]. Furthermore, this method can be accessed through the popular graph-tool library

[129] lowering the barrier to entry of its usage. For the reasons listed above this is one of

methodology which we would most highly recommend be used in applications.

2.4.2 Fields with Distinct Notions of Ranking

There are some fields which may already have ingrained ideas of hierarchy, longstanding

terminology for this or specific features that should be taken into account when quantifying

the structure. For example in social networks, a ranking can be built which takes into account

that reciprocated and unreciprocated connections play different roles in social networks and

it is likely that unreciprocated edges point up in the ranking [130]. Of course, hierarchy is well

known in ecology as it is where Trophic Analysis takes inspiration from and where the phrase

“trophic level” meaning the ranking of a species in a food-web is well known. This relates to

the idea that species have a ‘niche profile’ and consume species in a set range below them

in this ‘niche’ space [131, 132, 32]. These concepts have a long history in ecology which

cannot be adequately covered in this work, see the introduction of [32] for a brief summary

and further reading.

Rankings and hierarchy also naturally occur in economics. In this field hierarchy can be

referred to as “upstreamness”, which is a scaled measurement of distance along an economic

flow. For example, in a production network where raw material inputs are at one end and

consumer products are at the other end of the scale [133]. Other measures for measuring
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ranking have also been described in economics such as SinkRank [134] which was proposed

to study the ranking in interbank payment networks by measuring distance from absorbing

nodes in Markov chains. This is strongly related to the many measures of hierarchy based

on weighted distance from sink or source nodes. The total number of research areas where

notions of a graph based hierarchy has been applied is vast and includes diverse fields such

as the study of Digital Twins [135]. Hierarchy could be applied to any area where directed

graphs are relevant and as such it is not possible to list all possible applications in this review.

2.4.3 Network Embedding Perspective and Magnetic Laplacian

Trophic Analysis can also be throughout of as embedding the nodes along a one-dimensional

axis with position determined by the minimisation of Trophic Incoherence. However, many

methods exists for determining a network embedding and many features of a network can

be illuminated by assigning the nodes a position in a given space. In particular, the network

geometry framework [136] has recently been extend to directed networks where reciprocity,

a quantity which is related to flow hierarchy, was studied in networks where the connection

probability is derived from the placement of a node in a circular topology. Similarly, directed

networks have also been studied by using complex phases to represent periodic circular

hierarchy via the proprieties of the Magnetic Laplacian [137, 53, 138]. There have been

multiple applications of this type of framework including as part of a GNN methodology [139],

to understand community structure [137, 138], to quantify periodic hierarchy [53] or as a

visualisation tool [140]. It has also been proposed that directed network structures could be

analysed using the Magnetic Laplacian framework in combination with a ranking method [54]

such as HodgeRank [54]. This could mean embedding the nodes in a two dimensional space

where node position is given in polar coordinates with the radial part derived from the flow

hierarchical ranking and the angular part derived from the Magnetic Laplacian [54] which can

capture more structure than either method alone.

Graph embedding is widely studied field with a wide range of approaches used [141], a

detailed discussion of which is outside the scope of this work. However, we highlight a small
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sample of various embedding approaches for directed graphs which have been put forward

and are designed to capture some elements of the directionality, asymmetry, and ordering

present in directed graphs [142, 143, 144, 145, 146]. Other recent work has demonstrated the

evolving ways the structures found in directed networks can be understood, such as in [147],

where renormalisation methods were extended to directed networks with varying reciprocity.

2.5 Global Quantities Related to Trophic Incoherence

In this section we detail the global quantities which have been related to Trophic Incoherence

and explain the network features they relate to. These connections are analytical approxima-

tions which hold in real networks. Highlighting this phenomena shows how trophic analysis

could be incorporated into the wider literature and shows how previous results could be in-

terpreted in terms of the network directionality.

2.5.1 Spectral Radius

One useful aspect of Trophic Analysis is the fact that the trophic incoherence can be linked

with the of spectral radius of unweighted networks, largest eigenvalue of the adjacency ma-

trix, via an analytical approximation [6, 8]. This eigenvalue, which is guaranteed to be real

and positive by the Perron–Frobenius theorem [148], can be related to many network prop-

erties and is important for network stability and robustness. The link to Trophic Incoherence

can be made [6] due to the fact that the spectrum of the adjacency matrix is related to the

number of cycles in a network [6, 8]. The fact that the spectral radius can be related to trophic

incoherence means that the large body of work which depends on the spectral radius could

be viewed in terms of the trophic incoherence.

Trophic Incoherence was related to the spectral properties of matrices when it was first

used to study ecosystem stability [5] however the first explicit analytical link between trophic

incoherence and spectral radius was made in [6] using the original definition of levels. In this

work [6] a loop parameter, 𝜏, was constructed which was a function of the trophic incoherence
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and branching factor, a network property which depends on the degree distribution. The sign

of the parameter 𝜏 was able to predict if the network was in a regime of a large or very small

number of cycles. Using this parameter it was possible to analytically estimate the spectral

radius of real networks using the branching factor and trophic coherence. In [8], this work

was modified and adapted to the MacKay definition of Trophic Analysis where it was shown

that the scaled spectral radius,

𝜌𝑠 =
𝜌

| |𝐴| |2
. (2.15)

Where 𝜌 is the largest eigenvalue of 𝐴, which is real and positive by the Perron–Frobenius

theorem, and | |𝐴| |2 is the 2-norm of 𝐴, equivalent to the largest eigenvalue of 𝐴𝑇 𝐴 [8], can

approximately be written as a function of the trophic incoherence,

𝜌𝑠 ≈ exp
(
1
2

(
1 − 1

𝐹

))
. (2.16)

This demonstrates how the global directionality as measured by Trophic Incoherence is

more than simply a measure of how easy it is to rank the nodes and is strongly related to

the structural properties of a directed network. The spectral radius is clearly very important.

If a dynamical system is defined using the adjacency matrix then the stability of that system

may depend on the spectral proprieties of 𝐴 and in particular the size of the largest eigen-

value [8]. For example, in ecology where the stability of a food web depends on the largest

eigenvalues of the Jacobin matrix which is related to the connectivity structure [5, 149]. The

logarithm of the spectral radius can represent a topological entropy [150] which is related to

the robustness of a network, as this entropy is correlated with the decay rate of fluctuations

[150]. Furthermore, it has been argued [150] that some biological networks may evolve in

ways which maximise this entropy. Topological entropy expressed in this way can also be

used in Symbolic Dynamics [151] to study the properties of dynamical systems which can

be represented as directed graphs. Network synchronisation is a well studied field [152] and

it has been shown that the critical coupling for synchronisation of a network of directed Ku-
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ramoto oscillators [153] depends on the inverse of the spectral radius. However, it has been

highlighted in [154] that in networks which are non-normal, a property related to trophic inco-

herence, standard techniques for studying stability and synchronisation such as the Master

Stability Function may fail [154]. The spectral radius is again important in the study of epi-

demics on networks [114] where the mean-field epidemic threshold for SIS models can also

be shown to be related to the inverse of the spectral radius [155]. This dependence of a

threshold on the inverse of the spectral radius is common in many dynamics [156]. The im-

portance of edges or sets of edges has also been inferred by the impact their removal has on

the value of the spectral radius [157, 158], something which could be understood by viewing

the removals as modifying the trophic incoherence and the fact that certain edges have a

different penalty to the trophic incoherence [8, 2]. Given that the spectral radius is such a

fundamental property of a matrix it appears in many diverse settings, for example being im-

portant in the weighted networks used in machine learning [159], we cannot give a complete

account into the possible systems it could be used to analyse. However, the results of [6, 8]

provide a possible reinterpretation of wide range of results in terms of networks hierarchy.

2.5.2 Non-normality

Directed networks with hierarchical structure can also be viewed as having non-normal ad-

jacency matrices [18, 8, 20]. A real non-normal matrix, such as the adjacency matrix of a

directed network, 𝐴, is one where the matrix does not commute with its transpose,

𝐴𝐴𝑇 ≠ 𝐴𝑇 𝐴. (2.17)

However how non-normal a real matrix is, how far 𝐴 is from commuting with its transpose, can

be quantified and related to the behaviour of the systems which depend on these matrices

[160]. Non-normality can affect many systems [160] including condensed matter physics,

machine learning, acoustics, the behaviour of numerical methods and fluid mechanics, [160,

161, 162, 163, 164].
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The concept of non-normality in networks was first linked to trophic coherence in [18].

Where it was observed that in the original definition of trophic coherence [5] it could be shown

using the loop exponent, 𝜏, which related trophic coherence to the expected number of cy-

cles in a network that coherent networks are also likely to be non-normal. Networks which

are more normal have a higher prevalence of reciprocal connections and are more similar to

undirected graphs while non-normal networks have few reciprocal connections and are much

more likely to have a strong hierarchical structure. When the MacKay definition of trophic in-

coherence was proposed in [8], it was also shown how non-normality could be approximately

linked analytically to this definition of Trophic Incoherence. When matrix normality is mea-

sured via the parameter, 𝜈, given by

𝜈 =

∑
𝑖 |𝜆𝑖 |2

| |𝐴| |2
𝐹

(2.18)

where | |𝐴| |𝐹 is the Frobenius norm of 𝐴 which can be written as | |𝐴| |𝐹 =

√︃
Σ𝑖 𝑗 |𝑎𝑖 𝑗 |2 and 𝜆𝑖 are

the complex eigenvalues of 𝐴. It was shown in [8] that this can approximately be expressed

in terms of trophic incoherence

𝜈 ≈ exp
(
1 − 1

𝐹

)
. (2.19)

This result makes use of several approximations but generally holds well in real networks

[8]. Additional results have backed up the correlation between normality and incoherence us-

ing related measures of non-normality [20] or measuring quantities related to non-normality

like the pseudospectral radius [3]. The relationship between network properties derived from

Trophic Incoherence and properties related to the network normality can however be non-liner

and complex [20] despite the relationships found in real networks [8] and generated networks

[20]. Examples can be found of small networks which break the trends seen, being incoher-

ent but non-normal in the unweighted case or coherent but normal in the weighted case [20].

These results [20] highlight that care must be taken and that the two metrics do measure dif-

ferent aspects of network structure, even if there is a strong approximate relationship between

them observed in real systems.
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The importance of non-normality in the study of directed networks has been shown by

recent work [165, 19, 38, 166, 167, 3, 168, 154, 20] where it has been highlighted how non-

normality can be linked to the behaviour of network dynamics. Additionally, similarly to how it

has been shown that coherent networks are common in nature [18, 8, 20] it has been found

that non-normality is also commonly found in real-world systems [19, 165, 8, 20] as would be

expected given the link between coherence and non-normality.

The links to normality and the spectral radius separates Trophic Analysis from a stan-

dalone ranking procedure and shows how local hierarchy is derived from the global organi-

sation of the network. It also motivates several branches of future work. Can other network

quantities be explicitly related to Trophic Analysis? While from the other side can phenomena

which involve non-normal networks or the spectral radius be studied using Trophic Analysis?

2.6 Discussion on Trophic Analysis and Literature

As can be inferred from the preceding sections, there are a large number of ways to char-

acterise hierarchy and directionality in directed networks. This demonstrates the importance

of these features in directed networks but also presents a difficulty for researchers. Given

the wide range of approaches, notations and terminology used for similar concepts, differing

aims of various methodologies and what is meant by “hierachy”. It is very difficult to pro-

vide answers to a question such as “What is the best method to understand hierarchy and

directionality?”. Since the answer to this question depends on many factors. What do you

consider when you mean hierarchy and directionality? What do you think the ranks or levels

you find will relate to? Do you want to quantify if the ranking is significant compared to a null

model or some other global measure? How interpretable should the methodology be and

what is the ease of explanation to people outside the field? What computational resources

do you have available and how many networks and what size do you need to study? How

widely used is the methodology and will it be understood by your audience? What level of

accuracy is required, how it is measured and does the improvement in accuracy gained merit



38 CHAPTER 2. LITERATURE REVIEW

the cost associated with changing framework? How much certainty do you have in the un-

derlying network data? As can be seen this is not a set of questions which have general

answers. An advantage will be held by methods which are easy to implement or alternatively

already implemented in easy to access software packages. Although, it is also true that in

many cases that if you consider ranking something very simple, like a directed path graph,

different methodologies will give the same answer or in real settings answers which are cor-

related with each other [81] so the impact of the methodology choice may be hidden by this

feature.

Additionally, there are various things that should be considered when ranking algorithms

are used in the real-world. It has been noted, particularly in social settings, [169] that there are

certain challenges with the application of ranking algorithms to real systems [169]. Network

ranking algorithms may be biased by certain features of the network architecture, the ranking

method may have variable usefulness as it is used in different domains while the optimal

methodology may also change [169]. Furthermore, in social settings if actors in a system

know that they are being measured with a ranking algorithm this may influence their behaviour

[169]. A discussion of some of the philosophical points which underpin the field of ranking

and specific considerations which should be taken into account when ranking sports teams

is given in [85]. There may also be situations where even though a ranking algorithm can be

applied it is more appropriate to focus on other simpler metrics which show the key features

of the data. This is the case in [170] where SpringRank [44] could potentially have been

applied to study a network of online dating interactions but other metrics were chosen to

better highlight interaction rates between groups and for the results to be understandable

to the widest possible audience. Additionally, a place in the ranking may not necessarily

directly relate to the skill or talent of the object being ranked and luck can play a role in where

an element in placed in the ranking [171].

In this work we cannot provide the answer on which methods to understand directionality

and hierarchy in directed networks is optimal in every potential setting but give some gen-

eral arguments about the utility and constraints of using Trophic Analysis to study directed
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networks.

2.6.1 Trophic Analysis

The benefits of Trophic Analysis comes from the connection between the local hierarchy,

trophic levels, and the global parameter, Trophic Incoherence as it explicitly connects the

existence of hierarchy to the global directionality. This separates it from the global measures

it can be linked to analytically, like the non-normality and spectral radius, which do not have

explicit local interpretations. Whilst the link to the global parameter aides the interpretation of

the hierarchy as it is easier to understand the importance of hierarchy to the system, which

would not be the case with a hierarchy measure alone. Trophic Analysis is also simple to

calculate requiring only the solution of a linear equation. Additionally, it links into the wider

literature by the range of methods which use similar formulations to understand hierarchy,

section 2.3. The fact the method is simple to calculate may aide its use in applications as the

barrier to entry and understanding the methodology is lower. As it is related to SpringRank it is

may be surmised that results found in terms of SpringRank can be likely expressed in terms

of Trophic Level and the performance metrics of SpringRank give an idea of how Trophic

Level would likely perform [89].

Caveats of Trophic Analysis

There are however certain situations which Trophic Analysis is not an appropriate tool and

other methods may need to be used. One difficulty with many of the hierarchy measures is

how to extend them to networks with negatives edge weights. The challenges of hierarchy

measurement in signed networks was discussed in [172]. However, in general it is not clear

how to extend a method like Trophic Analysis to cases where there are negative edge weights

such as in a network where negative edges represent inhibitory neurons. It is not clear how a

negative edge should be ranked and how it would contribute to the hierarchical structure in our

framework. There may be future work in studying how features of directed signed networks

like reciprocity or frustration [173] link to potential hierarchical structure if a suitable framework
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is constructed. In Trophic Analysis, it is assumed that edges represent one type of interactions

whereas in some real systems [174] hierarchy may come about as a results of multiple types

of edge interaction. For example, differing types of dominance or subordination interactions

in animal or social networks as was assumed in the framework of [174]. Another concept

which is not addressed by Trophic Analysis alone if the fact that hierarchy and community

structure can both be present simultaneously [175, 128]. This may need to be taken into

consideration when analysing the structure of some real-world systems, with the interplay

between the phenomena addressed in [175, 128].

There are also some views of directionality which mean that incoherence is not the ap-

propriate tool to measure it. If the view is taken that a graph which is acyclic is maximally

directional then trophic incoherence fails to fully capture this idea. As although all graphs

which are 𝐹 = 0 are acyclic it is possible to create acyclic graphs which are not minimally

incoherent. This can be done by having a graph which is acyclic but where the edges go up-

wards across multiple levels and hence large deviation from trophic difference +1. Another

caveat with Trophic Analysis is since 𝐹 roughly measures the average penalty per edge there

are many structures which can have the same 𝐹 yet be organised in very different ways. For

example, a homogeneous network where the edges which contribute to the incoherence are

equally distributed around the network behaves very differently a network where this is not

the case. An example of this type of structure is if you took a directed path graph and at the

end of the path placed an incoherent structure like a complete graph or a cycle. It is then

possible to get any value of 𝐹, apart from exactly zero or one when both components are fi-

nite, by varying the size of each component. Several consequences arise from this example,

one being that since 𝐹 acts like an average penalty it is possible that if the network is very

large and the deviations are inhomogeneous it can be very coherent but still have a sizeable

number of cycles or large spectral radius. 𝐹 is also invariant under transposing the network

so care needs to be taken with definitions which relate to which nodes are at the bottom and

top of the hierarchy and the direction that influence flows in the network.

Another facet of Trophic Analysis and associated methods to be aware of is that in some
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circumstances the trophic level [3] or SpringRank [128] may correlate with the degree imbal-

ance, difference of in and out degree of a node. This is most commonly found in directed

Erdős–Rényi random graphs. These are not maximally incoherent as although they are

formed without hierarchical structure the degree imbalance contributes to generating some

incoherence as it is a term in the equation for calculation of trophic level. This behaviour may

not be desired as in some interpretations of hierarchy it may be your view that a maximally

random structure like an Erdős–Rényi graph should also be maximally incoherent. However,

the view can also be taken that in some circumstances the degree imbalance is an important

feature which can contribute to the dynamics [3] so it makes sense for Trophic Analysis to

identify it. It can also be argued that 𝐹 = 1 are not expected to be formed randomly and that

a more complex formation rule is required to form the structures required to have balanced

degrees and form a completely incoherence structure with no ordering which can be found

by Trophic Analysis. Overall, the caveats associated with Trophic Analysis do not impact the

usefulness of it and related measures [44, 45] however they are something to be aware of.

2.7 Conclusion

In conclusion, we have presented the methodology Trophic Analysis which is used to study

the flow hierarchy and global directionality in directed networks. We have highlighted the

vast range of ways hierarchy and ranking can be understood and measured in the litera-

ture. We detailed the wide ranges of domains where Trophic Analysis has been applied and

described the other closely related methodologies. We have also highlighted how Trophic

Incoherence can be linked to various other network properties such as the spectral radius

and non-normality. We have also highlighted the equivalence between Trophic Analysis,

SpringRank and Helmholtz-Hodge Decomposition. The equivalence between these method-

ologies means that results found using one method would be expected to hold in another of

the methods. Additionally, these methods are relatively simple to compute and simple to in-

terpret as the rankings can be interpreted as minimising the energy of a network of directed
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springs.
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This chapter is based on

• Niall Rodgers, Peter Tiňo, and Samuel Johnson. “Strong connectivity in real directed

networks”. In: Proceedings of the National Academy of Sciences of the United States

of America 120.12 (2023). issn: 10916490. doi: 10.1073/pnas.2215752120

The supplementary information from this paper has been included in the appendix of

this thesis so all references to supplementary information or SI in this chapter refer to the

appendix of this work.

Relationship of Work to Thesis

This paper represents an important contribution of this thesis as it is where we apply Trophic

Analysis to study the structure of real directed networks and analytically link the information

captured via Trophic Analysis with structural properties of the network. Inspired by the work of

[8, 6] it shows how Trophic Analysis can be a used to reinterpret aspects of network structure

in terms of hierarchy. This work was conducted in the middle of my PhD and the second paper

produced. The insights gained when working on the dynamics of Hopfield-like networks,

chapter 5, were vitally important for making the connection between the hierarchical structure

and strong connectivity. This chapter also complements the results of the third paper of my

PhD, chapter 4, where we show that additional structural properties of networks are related to

the hierarchical structure. This work also marked the transition from using Python to Julia

for the computational part of this PhD which lead to speed improvements in the network

generative process which were useful throughout the whole thesis. This work highlights that

many distinct types of real networks exhibit hierarchical structure and the unique role that

edges which break the ordering play in the directed networks which provided the motivation

and initial ideas to start working on the final work of my PhD, chapter 6, on fitness-based

generative models of networks which give more control over this structure.

https://doi.org/10.1073/pnas.2215752120
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Abstract

In many real, directed networks, the strongly connected component of nodes which are mu-

tually reachable is very small. This does not fit with current theory, based on random graphs,

according to which strong connectivity depends on mean degree and degree-degree cor-

relations. And it has important implications for other properties of real networks and the

dynamical behaviour of many complex systems. We find that strong connectivity depends

crucially on the extent to which the network has an overall direction or hierarchical ordering

– a property measured by trophic coherence. Using percolation theory, we find the critical

point separating weakly and strongly connected regimes, and confirm our results on many

real-world networks, including ecological, neural, trade and social networks. We show that

the connectivity structure can be disrupted with minimal effort by a targeted attack on edges

which run counter to the overall direction. This means that many dynamical processes on

networks can depend significantly on a small fraction of edges

Significance Statement

Many real-world systems are connected in a complex directed network, such as food webs,

social or neural networks. Spreading and synchronisation processes often occur in such

systems, and understanding the percolation transition (formation of a giant connected com-

ponent) is key to controlling these dynamics. However, unlike in the undirected case, this

had not been understood in directed networks with realistic non-random architectures. We

provide a universal framework in which the percolation threshold for networks to be strongly

connected (every node to be able to reach every other) can be analytically predicted on any

real-world network, and verify this on a diverse data-set. This explains why many real, dense

networks are not strongly connected, in contrast to random-graph theory.
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3.1 Introduction

Understanding the connectivity structure of a directed network is crucial in many different

contexts. Can every node be reached in a communications network or one way street grid?

How will a disease spread or will a dynamical system be stable and resilient to perturba-

tion? Whether a network will be connected has been well studied in the case of undirected

networks through percolation theory, however, this is less well understood in directed net-

works, and hence real-world systems, which are often directed [176, 18]. We demonstrate

through understanding the global directionality and hierarchical organisation of directed net-

works through a method known as Trophic Analysis [8] that it is possible to construct a phase

diagram which predicts if real networks are strongly connected using only the average degree

and the incoherence parameter which measures the global directionality going beyond previ-

ous understanding based on directed random graphs [177]. The notion of global directional-

ity provided by trophic analysis enables us to talk meaningfully of “forward" and “backwards"

edges and gives us an insight into the directed network which is not possible without this. It

is the backward edges that break the overall hierarchical structure. This hierarchical struc-

ture can be found in almost all real-world networks, not just networks with obvious hierarchy

such as food webs where the hierarchy is number of steps from the nodes of zero in-degree

such as plants. Global directionality, Trophic Incoherence, has been linked to network non-

normality [8] which has been shown to be ubiquitous in real directed systems [19, 165]. We

use the insight that the strong connectivity is driven by edges which break the hierarchi-

cal ordering to apply percolation theory [178] to these “backwards” edges and an analytical

estimate of the number of such edges derived from the global directionality to analyse the

connectivity structure and predict the threshold for the emergence of a giant strongly con-

nected component. This provides an insight beyond degree [177] and explains why, even if

they have high mean degree, highly structured networks like food-webs often have very small

strongly connected components. We extend our understanding of strong connectivity to real

networks beyond previous results on directed random graphs [177] which do not capture the

complex structures of real-world systems. We demonstrate the role the “backwards” edges
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have in controlling the strong connectivity by conducting a targeted attack on these edges.

This removes the strongly connected component while maintaining the weak connectivity.

We show the vital role that strong connectivity plays in dynamics, in the supplementary in-

formation, by comparing the spread of an infection using SIS dynamics; synchronisation of

coupled Kuramoto Oscillators and how a new state establishes itself in the Majority Vote and

Voter Models before and after the targeted attack. These dynamics demonstrate the role of

hierarchy in the dynamics as the global directionality and “backwards” edges drive feedback

and how their removal creates an asymmetry the ability of nodes to interact with each other

dependent on their position in the hierarchy.

3.2 Background

Trophic Analysis is a technique which is used to calculate the global directionality and the

hierarchy in directed complex networks [8]. Complex networks are graphs which represent

real-world systems. Graphs are sets of vertices (nodes) and edges (links) which represent

connections between elements in the system. Graphs are topological objects as they do not

need to have a distance scale, they merely represent whether elements are connected. A

directed graph is one in which the connections between elements go in only one direction.

This is very common in real-world systems [18] which can be intrinsically directional like a

prey-predator food web interaction or following a profile on social media. In complex networks

it is common to represent a graph via an adjacency matrix. For a graph consisting of 𝑁 nodes

the adjacency matrix, 𝐴, is defined such that

𝐴𝑖 𝑗 =


1 if there exists an edge 𝑖 → 𝑗

0 otherwise
. (3.1)

As a result, the topology of the graph can be represented by the non-zero entries of this

matrix. This form is preferred for studying complex networks as it is convenient for com-

puter simulations, defining dynamical systems on the network, and network properties can
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easily be accessed from the properties of this matrix. In a directed graph this matrix is not

necessarily symmetric, 𝐴𝑖 𝑗 ≠ 𝐴 𝑗𝑖, since the interactions are only in one direction. Undi-

rected graphs always have symmetric adjacency matrices. Adjacency matrices can also be

weighted to capture the strength of an interaction. However, for simplicity we focus here on

the unweighted case. An undirected graph is connected if and only if for any pair of distinct

nodes there exists a path connecting them. In directed graphs the notion of connectivity is

more complex. A directed graph is weakly connected if there is a path between all pairs of

vertices when edge direction is ignored. A digraph is strongly connected if for every pair of

nodes 𝑖 and 𝑗 , there is a directed path from 𝑖 to 𝑗 and another from 𝑗 to 𝑖 (in other words,

every node is reachable from every other node).

It is common for real-world directed networks to be weakly connected, but many are not

strongly connected. In such cases, the extent to which a network approaches strong connec-

tivity can be quantified by the size of its largest strongly connected component (i.e. the largest

subgraph which is strongly connected). Later on, when we talk about predicting strong con-

nectivity in real networks from a classification problem perspective, we use the more general

definition of 𝛼-strong connectivity, which requires the largest strongly connected component

to be larger than 𝛼 times the number of nodes (0 < 𝛼 < 1). In our analysis, we set 𝛼 = 0.9.In

an undirected graph, each node has a degree, corresponding to the number of edges con-

nected to it. In a directed graph the in-degree of a node 𝑖 is the number of edges which

point to it 𝑘 𝑖𝑛
𝑖

=
∑
𝑗 𝐴 𝑗𝑖 and its out-degree is the number of edges pointing to other nodes,

𝑘𝑜𝑢𝑡
𝑖

=
∑
𝑗 𝐴𝑖 𝑗 . If the adjacency matrix is transposed the in- and out-degrees swap. 1

3.2.1 Trophic Analysis

Trophic Analysis first arose in the study of food webs [5]. The hierarchical organisation of the

network, as measured by a property called trophic coherence, was proposed as a solution

to May’s paradox regarding the stability of food webs [31]. The name arises from the trophic

1This is a point to take care with as many authors have opposite conventions for defining the adjacency
matrix. Note also that the mean in-degree is always equal to the mean out-degree, so we can refer simply to
the mean degree of a digraph.
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level of a species in ecology [179]. This definition relies on the existence of basal nodes,

that is, nodes with in-degree zero. A new definition was then proposed in [8] which removed

this constraint and made it applicable to any directed network. We follow the new definition

[8],although most previous work used the original convention [5]. Trophic Analysis has been

used to study many aspects of directed networks, including the structure of food webs [33];

spreading processes such as epidemics or signals in neural networks [34]; resilience of in-

frastructure networks [36, 37], control of organisations [7], and networks in economics and

finance [8].

Trophic Analysis is composed of two parts: the node level information, Trophic Level, and

the global information, Trophic Incoherence [8]. Trophic level gives a measure of where a

node sits in the hierarchy of a directed network. For example, in a food web plants would be

the low trophic level nodes and carnivores the high trophic level nodes, as energy flows up

the food web from low to high trophic level. This can however be generalised to any directed

network. Trophic levels are calculated by solving the 𝑁 × 𝑁 matrix equation given by

Λℎ = 𝑣, (3.2)

where ℎ is the vector of trophic levels and the “imbalance” vector is the difference between

in- and out-degrees: 𝑣 : 𝑖 = 𝑘 𝑖𝑛
𝑖
− 𝑘𝑜𝑢𝑡

𝑖
. Λ is the Laplacian matrix,

Λ = 𝑑𝑖𝑎𝑔(𝑢) − 𝐴 − 𝐴𝑇 , (3.3)

where 𝑢 is the sum of in- and out-degrees, 𝑢𝑖 = 𝑘 𝑖𝑛
𝑖
+ 𝑘𝑜𝑢𝑡

𝑖
, 𝐴 is the adjacency matrix and

𝐴𝑇 its transpose. These are all quantities which can be simply evaluated from the adjacency

matrix. Note that equation 3.2 cannot be solved by inverting Λ since this matrix is singular.

However, one can use other methods, such as LU decomposition, and for large networks the

equation can be solved iteratively. Moreover, equation 3.2 is invariant under the addition of a

constant vector to ℎ. We therefore follow the convention that the lowest level node takes the

value ℎ = 0 [8].
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Trophic Incoherence measures the global directionality of the network [8], based on the

distribution of level differences across edges. If the network is maximally coherent, the edges

only connect to nodes exactly one level above them and the network is perfectly hierarchical

and globally directed. If the network is highly incoherent then the edges connect without

respect to the levels and there is no global directionality. This is quantified via the trophic

incoherence parameter 𝐹 which is defined as

𝐹 =

∑
𝑖 𝑗 𝐴𝑖 𝑗 (ℎ 𝑗 − ℎ𝑖 − 1)2∑

𝑖 𝑗 𝐴𝑖 𝑗
. (3.4)

This equation measures, averaged over the system, the square of the deviation in level dif-

ference of destination to source vertex from 1 across the edges of the graph. This equation

is bound between 0 and 1 [8]. Networks with 𝐹 = 0 are perfectly coherent, they have distinct

integer levels in which all nodes are placed, and they are acyclic. When 𝐹 = 1 every node has

the same level and the network has no hierarchy. Examples of 𝐹 = 1 networks are directed

cycles. Networks which have 𝐹 = 1 are perfectly balanced (𝑘 𝑖𝑛
𝑖

= 𝑘𝑜𝑢𝑡
𝑖

for all nodes 𝑖), and

are therefore unlikely to come about from a fully random process. For example random graph

models such as the Erdős-Rényi model [180, 6] lead to networks where 𝐹 is around 0.95,

depending on sparsity. The trophic levels can be thought of as the set of values, ℎ, which

minimise 𝐹 [8] for a given 𝐴. This leads to equation 3.2. It is also possible, equivalently, to

speak in terms of Trophic Coherence, which can be defined as 1 − 𝐹. When we say “top

of the hierarchy” we mean the nodes with high trophic level, and when we use the phrase

“bottom of the hierarchy” we mean nodes of low trophic level.

The definition of ℎ as a measure of node hierarchy has been proposed independently

more than once. For example, SpringRank [44] uses a physical argument to arrive at the

same minimisation function as Trophic Analysis, but without the same quantification of the

global directionality [8]. It is also possible to use a Helmholtz-Hodge decomposition to con-

struct the idea of levels and “circularity” [45, 181], which leads to a different set of terms to

quantify hierarchy and directedness, and it can be shown that this method is equivalent to
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Trophic Analysis [8].

Generated Networks

When we require numerically generated networks to better sample the full range of Trophic

Incoherence and degrees we the use the same variant of the generalised preferential preying

model as [1], which was based on work from [34]. This model allows the Trophic Incoher-

ence of a generated network to be approximately controlled. This is done by a taking an

initial network structure and adding edges with a probability which is proportional to the level

difference between the nodes, in a way which is determined by a “temperature” parameter.

This probability is defined as

𝑃𝑖 𝑗 ∝ exp

[
−
( ℎ̃ 𝑗 − ℎ̃𝑖 − 1)2

2𝑇2
Gen

]
, (3.5)

where ℎ̃𝑖 is the temporary trophic level assigned during the generation. 𝑇𝐺𝑒𝑛 is the generation

temperature used to control the incoherence. At high 𝑇𝐺𝑒𝑛 edges are added without respect

to the level structure so it produces an incoherent network similar to a random graph, while at

low temperature the edges are only added when the level difference is near one, producing a

very coherent network. Details of how to efficiently sample the possible edges and generate

networks in this way can be found in [1].

3.3 Results

3.3.1 Fraction of Edges going against the Hierarchy

It is possible to analytically estimate the number of edges that go “backwards” – i.e. against

the hierarchy. We define a backwards edge as one where the difference between the trophic

level of the target vertex minus that of the source vertex is non-positive. As we go on to see,

these edges are important as they determine the strong connectivity of the network, because

they are needed to induce a path back down the hierarchy. This fraction of edges is useful in
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further calculation of strong connectivity.

The first part of this derivation is to assume that the edges follow an approximately Gaus-

sian distribution in trophic level differences [6], where the mean is the mean level difference,

𝑧, and the standard deviation is given by 𝑧𝜂 [8]. We assume that the level differences fol-

low a Gaussian distribution as this assumption was used to derive the results linking trophic

coherence to spectral radius [6], which also hold for the new definition of trophic levels and

coherence [8, 1]. In addition, we have observed that for many real networks (some exam-

ples given in the supplementary material) the distribution of level differences can be well

approximated by a Gaussian. Other formulations of hierarchy make similar assumptions, for

example when SpringRank was first introduced [44] it was assumed that the ranks followed

a Gaussian distribution, and shown that adding a quadratic regularisation term is equivalent

to a Gaussian prior on the ranks.

The mean level difference can be computed from the Trophic Incoherence,

𝑧 = 1 − 𝐹, (3.6)

which was derived in [8] by writing the function for Trophic Incoherence as function of the

mean and standard deviation of the level differences and then minimising it. The parameter

𝜂 which which is the standard deviation scaled by the mean trophic level difference can also

be expressed in terms of 𝐹 [8] by similarly writing 𝐹 as a function of the standard deviation

and mean level differences

𝜂 =

√︂
𝐹

1 − 𝐹 . (3.7)

Note that equations 3.6 and 3.7 hold for any digraph, and are not dependent on the assump-

tion of Gaussian differences.

Assuming that the edge level differences, 𝑥𝑖 𝑗 = ℎ 𝑗 − ℎ𝑖, follow a Gaussian distribution

leads to the probability distribution,

𝑝(𝑥𝑖 𝑗 ) =
1

𝑧𝜂
√

2𝜋
exp

[
−1

2

(
𝑥𝑖 𝑗 − 𝑧
𝑧𝜂

)2
]
. (3.8)
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The fraction of edges which do not go in the same direction as the hierarchy is the integral

of this distribution from negative infinity to 0. The cumulative distribution of a Gaussian is well

known and the result can be written in terms of the error function as

𝛽(𝐹) = 1
2

[
1 + erf

(
− 1
√

2

√︂
1 − 𝐹
𝐹

)]
, (3.9)

where we have substituted for 𝑧 and 𝜂 in terms of 𝐹. Hence, 𝛽(𝐹) can be regarded as the

expected fraction of backwards edges under the assumption of Gaussian-distributed trophic

differences. This equation can be understood by looking at the limiting cases where 𝐹 equals

1 or 0. When F approaches 1 the error function goes to zero and then half the edges go

against the “hierarchy", as every node approaches the same level and hence there is an

equal likelihood of going forwards or backwards. When 𝐹 = 0 the error function goes to

negative 1 so the expression cancels and no edges go backwards, which makes sense as

the network is fully coherent. Due to the fact that edges of level difference zero are counted

as backwards the approximation breaks down in the extreme case of a perfectly balanced

network such as a directed cycle or undirected graph, as all the edge differences are zero.

Hence the measurement labels all the edges as backwards, whereas the approximation limits

to half the edges going backwards.

This prediction holds well in real networks, as shown in figure 3.1, with some small de-

viations. This is likely because of the assumption that the distribution of edge differences is

Gaussian. The relationship between 𝐹 and the number of backwards edges looks almost

linear but the non-linearity at low 𝐹 is important: it is possible for a network without back-

wards edges not to be maximally coherent, since certain feed-forward motifs generate some

incoherence [8].

All the real networks used in this paper and the original sources can be found in the sup-

plementary information, for convenience we cite the online sources in the main text. This

includes all the networks used in [6], plus a sample of networks from [182]. This data set

includes metabolic networks, neural networks, trade networks, food webs and social net-
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works. The number of backwards edges could also provide a rough estimate of the upper

bound on the size of a feedback arc set, the number of edges which need to be removed

to make the graph acyclic [183]. The link between hierarchy breaking edges and a heuristic

to approximate the cycles has been made before [183] with different measures of the hier-

archical ordering, including PageRank [184], however these lack an analytical estimate of

the expected number of backwards edges. The probability of a path going backwards was

also used to derive various expressions in the “coherence ensemble” of random graphs [6].

However, none of these works established the link to strong connectivity and the emergence

of a giant strongly connected component, which follows.

Figure 3.1: Number of backwards edges in various real networks (symbols) and the predic-
tion of equation 3.9 (line), against trophic incoherence 𝐹. Data from [185] and [182] (original
sources in SI Appendix).
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3.3.2 Derivation of Strong Connectivity Critical Point and Phase Dia-

gram

It is possible to derive an estimate of the percolation transition threshold for the emergence

of a giant strongly connected component in directed networks using the insight gained from

the hierarchical structure. This can be done by observing that if the nodes in a network

are ordered in some way, then the edges which break that ordering by going ‘backwards’

are the important edges for strong connectivity. Adding more edges in the forward direction

will not make the network strongly connected if it is very strictly hierarchical, as they do not

provide a way to move back down the ordering towards the bottom of the network. In this

way, the growth of the strongly connected component in a directed network can be thought

of as a percolation process on the backwards edges, where the backwards edges connect

the layers of the network. This makes it possible to move back down the hierarchy, thereby

creating a giant strongly connected component.

This can be expressed using the framework for solving percolation problems set out in

[178]. This framework decomposes the percolation process to transitions between l-step

neighbourhoods, which in our case can be thought of as steps down the hierarchy. We

assume a weakly connected network when the backwards edges are removed, which is a

reasonable assumption for real networks as the fraction of backwards edges is usually small

and the networks are dense enough so that removal of the backwards edges does not result

in the network being disconnected. It is possible to find counter examples to this where the

network does become disconnected if the backwards edges are removed (see Appendix 3.6).

This, however, only occurs when the backwards edges are calculated once and trophic level

is not recalculated after each removal. This is proven in Appendix 3.6, where we also show

examples of the maintenance of weak connectivity in real networks, justifying this assumption.

We wish to find the percolation threshold for the network to be at least weakly connected by

only backwards edges, and hence have a giant strongly connected component.
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We define a directed subgraph, 𝐺 (𝑉, 𝐸𝐵), made up only of backwards edges, where the

trophic level difference is less than or equal to 0, of the larger graph 𝐻 (𝑉, 𝐸) containing all

the edges from which the trophic levels are calculated. Following the steps laid in out in [178],

we introduce the 𝑙-neighbourhood of a vertex, 𝑦. This is recursively defined as

N𝑙 (𝑦) =
⋃

𝑋∈𝑉 (N𝑙−1 (𝑋))
N1(𝑋), (3.10)

where 𝑉 (N𝑙−1(𝑋)) is the set of all of the vertices within the neighbourhood N𝑙−1(𝑋). This

neighbourhood can be thought of as the nodes reachable in within 𝑙 steps from vertex 𝑦, illus-

trated in more detail in [178]. The percolation transition can then be understood by analysing

the surfaces of these neighbourhoods, which can be defined as the vertex sets

𝑉𝑙 := 𝑉 (N𝑙 (𝑦)) \𝑉 (N𝑙−1(𝑦)). (3.11)

These are the nodes which lie exactly 𝑙 steps from the origin vertex, 𝑦. This origin vertex can

in general be any vertex, but in the case of backwards connectivity we choose the vertex with

the highest trophic level. Following the work of [178], the system is above the percolation

threshold if

lim
𝑙→∞
E[𝑜(𝑉𝑙)] > 0, (3.12)

where E[𝑥] is the expectation value of 𝑥, and 𝑜(𝑉𝑙) is the number of connected nodes on

the surface 𝑙. The expectation values are taken using draws from the “coherence ensem-

ble”, the set of all unweighted directed networks of fixed trophic coherence, size and degree

distribution, used in [6, 18, 8]. Equation 3.12 can be understood to mean that there is a gi-

ant connected component if the expectation value of a node being connected is greater than

zero as the surface size extends to infinity. This is analogous to the probability of a branching

process dying out as the number of steps tend to infinity.

One assumption for our specific case is that in the network of backwards edges the ex-

pected number of connected nodes in a surface is simply the number of connected nodes in
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the previous surface multiplied by the average number of backwards connections. This is

E[𝑜(𝑉𝑙+1)] = 𝛽⟨𝑘⟩E[𝑜(𝑉𝑙)], (3.13)

where ⟨𝑘⟩ is the mean total degree and 𝛽 is the fraction of edges which go backwards. This

equation can then be solved iteratively assuming that E[𝑜(𝑉0)] = 𝐶, where 𝐶 is some finite

constant representing the number of nodes at the top of the hierarchy. This leads to

E[𝑜(𝑉𝑙)] = (𝛽⟨𝑘⟩)𝑙𝐶. (3.14)

Taking the limit 𝑙 goes to infinity leads to the result

lim
𝑙→∞
E[𝑜(𝑉𝑙)] =



∞ if 𝛽⟨𝑘⟩ > 1

𝐶 if 𝛽⟨𝑘⟩ = 1

0 if 𝛽⟨𝑘⟩ < 1

. (3.15)

This means that we expect a giant strongly connected component when 𝛽⟨𝑘⟩ > 1, which

means that on average each node has at least one backwards connection. This can also be

written directly as a function of trophic incoherence using the expected value of 𝛽,

⟨𝑘⟩
2

[
1 + erf

(
− 1
√

2

√︂
1 − 𝐹
𝐹

)]
> 1. (3.16)

This estimate, which uses very little information about the network structure (only the

mean degree and trophic incoherence), works well for real networks, figures 3.2a and 3.2b.

This result shows how the understanding of hierarchy can allow insights into the connectivity

of directed networks. The result relies upon the ability to calculate the hierarchy for any di-

rected network, and the realisation that the backwards nodes shape connectivity and that their

number can be linked to the global directionality and analytically estimated. Other measures

of hierarchy would allow the number of “backwards” edges to be enumerated numerically but

lack the link to global directionality which gives the intuition behind these results.
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(a) Full Range of Real Networks (b) Closer View of Critical Point

Figure 3.2: Fraction of nodes in the largest strongly connected component against 𝛽⟨𝑘⟩ for
several real networks. The critical point, 𝛽⟨𝑘⟩ = 1, is indicated with a vertical line. The panel
on the right shows only the networks with 𝛽⟨𝑘⟩ ≤ 5. Data from [185, 182] (original sources
in SI Appendix).

The equation for the percolation threshold, under the Gaussian edge difference assump-

tion, in terms of F, equation 3.16, can be expressed as an equation for the critical incoherence.

This can be written as

𝐹𝑐 =

[
1 + 2

(
erf−1

(
2
⟨𝑘⟩ − 1

))2
]−1

. (3.17)

For a fixed ⟨𝑘⟩, if 𝐹 is greater than the predicted value, then we expect the network to be

strongly connected. This allows the existence of a giant strongly connected component of

a real network to be predicted based only on 𝐹 and the average degree. The accuracy of

this prediction for real networks is demonstrated in figure 3.3a, where the prediction of strong

connectivity is formulated as a classification problem. We assume that the positives in our

sample are the 𝛼-strongly connected networks which have a strongly connected component

of at least 90% of the network size, and the negatives are the networks which fall below this

value. The confusion matrix for this process reads as True Positive Rate 0.783, True Negative

Rate 0.906, False Negative Rate 0.217, False Positive Rate 0.09375. This is quite a good

classification rate as we note and demonstrate in figure 3.3a that all the errors lie close to the

transition line where we do not expect to be able to classify the networks with a high level of

accuracy into the two categories. We note, however, that the classification problem approach

is very sensitive to the difficulty of the data chosen. For example, if a data set were selected
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with very few networks in the intermediate region (say, a single network type, such as food

webs), then the results would improve without any change in the method. In our data set we

have 64 networks with a strongly connected component below 90% and 23 with a strongly

connected component larger than this.

The only regions where the prediction is less good is close to the boundary, however this

is not surprising as we are not taking account of any finite size effects or potentially hetero-

geneous degree distributions, and in particular how the backwards edges are distributed.

These results are broken down by network type in the supplementary information.

We can give further insight into the accuracy of the prediction by using numerically gener-

ated networks to better sample the parameter space and verify the results in a larger region.

This is shown in figure 3.3b. We take 1000 networks where 𝑁 = 500, generated as in [1],

where each node has at least in-degree 1 (which would make the trophic level impossible to

calculate in the original definition from ecology [5]), and then bin them by Trophic Incoherence

and average the size of the strongly connected component. This result agrees well with the

analytical prediction, with the networks well above the boundary being strongly connected

and a large component forming in the networks around the boundary as expected.

These results, which hold for both real and generated networks and are based on the

assumption of Gaussian edge differences, give a good insight into how global directionality

determines strong connectivity and the emergence of a giant strongly connected component.

Even for very large degree a network is still unlikely to be strongly connected if 𝐹 is low

enough, which demonstrates that more than just information on node degrees is needed for

estimating the connectivity of a directed network. Why some real networks lie close to the

transition line and properties of networks at this point may be a possible avenue for future

work.

The value of this analysis can be highlighted by comparing to the results obtained by

taking this real network data set and trying to predict the the emergence of a giant strongly

connected component without using the hierarchical structure. This can be roughly estimated

using results from [177, 6], where one wold expect the strongly connected component to grow
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(a) Real networks (b) Numerically generated networks.

Figure 3.3: Prediction of strong connectivity using the trophic incoherence (y-axis) and mean
degree (x-axis), based on the critical incoherence 𝐹𝑐 given by equation 3.17. Panel (a): Real
networks from [185, 182] (original sources in SI Appendix). Panel (b): 1000 Networks with
𝑁 = 500 generated numerically as in [1], with varying mean degrees and binned by trophic
incoherence. Error bars are one standard deviation.

very quickly and the percolation to occur when the branching factor is greater than 1,

⟨𝑘 in𝑘out⟩
⟨𝑘⟩ > 1. (3.18)

This is demonstrated in figure 3.4, which shows how many networks of very high branching

factor nevertheless have a small strongly connected component. The figure represents a

closer look at the critical point and networks of very high branching factor can be found in

the supplementary information. This demonstrates how the directional organisation is a vital

part of the connectivity structure of real networks. Understanding the interplay between global

directionality (trophic incoherence) and ordering (trophic level) provides an intuition greater

than each individual notion can.

For comparison we also repeat the same classification experiment using the branching

factor to predict if a network has a large strongly connected component. The confusion ma-

trix for this process is True Positive Rate 1.0, True Negative Rate 0.219, False Negative Rate

0.0, False Positive Rate, 0.781. This is expected as such a classification technique predicts

that almost every network apart from those of very small branching factor is strongly con-

nected, which explains the very high true positive rate, but also the very high rate of false
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Figure 3.4: Prediction of strong connectivity based on the branching factor for real networks.
Contrast with figure 3.2a, based on trophic coherence as presented here. Data from [185,
182] (original sources in SI Appendix).

positives. This further quantifies why in order to understand how strong connectivity arises

in real directed networks it is important to factor in the global directionality of the system.

3.3.3 Targeted Attacks on Backwards Edges

To demonstrate how the strong connectivity of a network depends on the edges which break

the hierarchy we can conduct a targeted attack on those edges and compare the degrada-

tion of the strongly connected component to that observed in a random attack. We remove

edges in order of their trophic difference, starting by removing the edges with the most neg-

ative trophic difference. This only takes into account the hierarchical organisation; it may be

possible to destroy the strongly connected component faster using a different method, for

example attacking bottleneck edges or specifically trying to target edges breaking the hier-

archy in different components of the network. However, when all the backwards edges are
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removed all cycles are destroyed and the strongly connected component is guaranteed to

vanish. This can be demonstrated in real networks, figure 3.5a, such as the connectome

of the worm C.Elegans. The point at which we estimate the “backwards” edges to vanish,

shown by the dashed line in figure 3.5a, is analytically estimated from equation 3.9 and pre-

dicts well the point at which the strongly connected component vanishes completely. We

compare the attack using backwards edges with two alternative attack strategies: (1) com-

pletely random edge attack, and (2) attack based on the edge degree imbalance differences,

(𝑘 𝑖𝑛
𝑗
− 𝑘𝑜𝑢𝑡

𝑗
) − (𝑘 𝑖𝑛

𝑖
− 𝑘𝑜𝑢𝑡

𝑖
). Here we attack the most negative of degree imbalance differences

as a proxy for trophic level. The intuition is that we roughly expect nodes of high in-degree

and low out-degree to be high level nodes and the inverse to be low level nodes. We ob-

served in the structured network of C.Elegans that the backwards edges attack strategy is

significantly better than the random attack. The imbalance strategy is better than random

but is less successful than the trophic level strategy as it does not encompass the range of

structural information captured in the trophic levels.

(a) C.Elegans connectome. (b) Erdős-Rényi graph. 𝑁 = 1000, ⟨𝑘⟩ = 10.

Figure 3.5: Size of the strongly connect component as edges are removed randomly, in order
of trophic level difference, and in order of degree imbalance difference, for real and Erdős-
Rényi networks (panels (a) and (b), respectively). The dashed vertical lines represent the
point beyond which no backwards edges are predicted by equation 3.9.

Similar results can be found for networks where there is no expectation of this kind of

organised structure, like a dense random graph. This is shown in figure 3.5b. The figure

shows that even in networks where there is little structure expected there still exists a degree

of directional organisation that can be exploited to break down the network, as demonstrated
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by the comparison of the backwards attack to the random attack.. The number of edges

needed to make the network acyclic and have no strongly connected component depends

on the total number of backwards edges, which is a function of the trophic incoherence and

the mean degree, as in the percolation transition above. This demonstrates that the strongly

connected component can be understood by focusing on the backwards edges, which was

the intuition that motivated the above derivation.

In the case of a random graph, because it lacks an overall hierarchical structure, the de-

gree imbalances act as a good proxy for trophic level. Hence, an attack on the imbalances

performs similarly to trophic level. A similar effect has been shown in [3], where the success

of different measures such as imbalance and PageRank were compared to trophic level, as

incoherence varied, in predicting strategy choice in generalised rock-paper-scissors dynam-

ics.

One important thing to note about this targeted attack is that it does not generally affect

the size of the weekly connected component until all the backwards edges are removed and

then it behaves in the same way as a random attack in most real-world cases. For more

detail see Appendix 3.6. This could be useful in situations where one wishes to attack the

strongly connected component without disrupting the weakly connected component, which

would happen if bottleneck edges were attacked, for example. This means that the back-

wards edges can act as an approximation for the feedback arc set [183]. Trophic level may

not perform as well as specialist methods at this task [183], but does provide an analytical

estimate of how many edges one would expect to need to remove in any large network, which

can be simply calculated from 𝐹. It also explains why certain networks are more difficult to

render acyclic based on where they lie on the phase diagram.

3.4 Discussion and Potential Applications

There are a wide range of network applications where percolation in networks has been

observed to be important [176]. We highlight a few areas where our work may be useful, but
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this is not necessarily exhaustive. Strong connectivity and percolation can play an important

role in city planning as networks of one-way streets must be strongly connected [186].

Trophic analysis can be useful for understanding spreading processes where the network

is directed and there is some ordering to the network structure, for instance in ecological

settings [187]. A real-world example of this is the spreading of crown-of-thorns starfish on

coral reefs [188, 189, 190]. These starfish are a pest which eat coral reefs and can damage

ecosystems. Outbreaks are governed by the spread of their larvae by the ocean currents.

This process is directed as the larvae move in the direction the ocean flows. This is the kind

of process Trophic Analysis could lend itself to as it could be used to understand the global

connectivity structure to see if the outbreak is likely to spread across the reef or in a directed

manner. It can be used to extend the existing analysis of a region’s vulnerability to outbreaks

or danger as a starting point beyond simply the size of the out- and in-components [188], by

factoring in where reefs sit in the network hierarchy determined by trophic level.

Our work could also relate to the growth of biological neural networks and formation of

a giant strongly connected component of cells [191, 192]. These neurons have previously

been grown in circumstances where there is limited hierarchical structure and the degree

distributions are well known. However, if the cells were exposed to a directed gradient, or in

a real-life system are more likely to grow in a particular direction, Trophic Analysis may play

a role in explaining this percolation threshold.

Our results may also partially explain the difference in percolation thresholds for dynami-

cal processes on directed networks [193] compared to the undirected case, due to the effect

of hierarchical ordering increasing the threshold for strong connectivity. This will be observed

even in random graphs, as trophic incoherence does not usually reach one. The percolation

of the strongly connected component and the direction of flow and spread of information may

also play a role in communication networks and control and decision making in organisations

[7].

In general, Trophic Analysis can be used to modify the dynamics by understanding the

hierarchical organisation and the effect of localised perturbations, as well highlighting the role
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of hierarchy breaking edges in driving strong connectivity, feedback and resilience in complex

systems. Trophic Analysis is also a useful metric due to the simplicity of the calculation and

its interpretability, as the notion of directionality and place in hierarchy is quite simple and

intuitive. This makes the method attractive to be employed in many settings as the barrier

to entry is relatively low, while still providing good intuition into the structure of a directed

network. Additionally, it provides motivation to focus on the intrinsic directional aspects of

real-world systems, which are understudied compared to the undirected case [18].

Our results for strong connectivity, though quite robust, are based on a very simple ap-

proximation of the percolation of backwards edges. So it may be possible to extend or repeat

this result with a different measure of hierarchy or more information about the degree distri-

bution, providing greater accuracy.

3.5 Conclusion

We have shown how, by using Trophic Analysis to study the hierarchical ordering and global

directionality of a directed network, it is possible to analytically estimate the number of “back-

wards” edges which break this ordering and predict the threshold for the network to be strongly

connected. From this a phase diagram of strong connectivity in terms of trophic incoherence

and mean degree can be derived which holds well for real directed networks. This shows

that strong connectivity in directed networks is driven by more than just the degrees, and that

hierarchy can play a significant role.

We highlight these results by conducting a targeted attack on “backwards” edges, reveal-

ing their crucial role in maintaining a strongly connected component. In the SI, we further

illustrate the importance of these edges by implementing several dynamics (voter model,

SIS and Kuramoto oscillators) where the behaviour is dictated by the strongly connected

component and the trophic level of the initiating node.
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3.6 Appendix:Removal of Backwards Edges and Weak Con-

nectivity

Figure 3.6: Lack of change in the size of the weakly connected component as the backwards
edges are removed from real networks [185] (original sources in SI Appendix).

Backwards edges are in general linked to cycles and reciprocal edges this means than in

general removing one backwards edge is unlikely to separate a network into distinct compo-

nents. This explains why the size of the weakly connected component is generally unaffected

when the backwards edges are removed in real networks, figure 3.6.

However, there are specific structures composed of interlocked cycles which can cause

the network to become disconnected if the trophic level is calculated only once and then

all the edges which are initially backwards are removed as shown by the example in figure

3.7 where the backwards edges are highlighted in red. This however is a specific case and

does not seem to be found when studying the connectivity of real networks. In addition if

the trophic levels were recalculated after the first edge was removed the second edge would

then become forwards. This leads to the property that if the trophic level is recalculated then

the network will not become disconnected. This is proved below.
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Figure 3.7: Example of network which is connected by two edges which go backwards in
Trophic level.

Given an initial graph G(V,E) at each step remove the edge which is most backwards in

trophic level and then recalculate the trophic level. Stopping when all the edge differences are

non-negative. In order to break the network into separate components via this method there

would require a situation where the graph has been separated into two disjoint components

joined by a single edge which upon removal would break the graph into disconnected pieces.

If the trophic levels are recalculated then it is never optimal for this edge to go backwards

in trophic level as the levels of one of the components can be modified by a constant which

will not change the global coherence apart from across the joining edge where it will become

positive. If the edge is backwards it is always possible to reduce incoherence in this way so

the configuration can not exist upon recalculation.
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This chapter is based on

• Niall Rodgers, Peter Tiňo, and Samuel Johnson. “Influence and influenceability: global

directionality in directed complex networks”. In: Royal Society Open Science 10.8 (Aug.

2023). issn: 2054-5703. doi: 10.1098/rsos.221380. url: https://royalsocietypublishing.

org/doi/10.1098/rsos.221380

Relationship of Work to Thesis

This chapter comprises the third paper written during my PhD [3], which was based on ideas

generated during the earlier projects. It uses the intuition gained through earlier work on

Hopfield-like networks, chapter 5, to highlight how hierarchical structure can affects many

different dynamics. As well as demonstrating how other structural features which could not be

covered in chapter 3 are also related to Trophic Analysis. This paper relies on the knowledge

gained in chapter 5 to be able to further generalise our understanding of Trophic Analysis to

more systems. It also provides many potential avenues of future work, as a more detailed

study of any of the dynamics covered in this work could form the basis of a future project.

This work relates to the chapter on fitness-based generative models, chapter 6, as one can

imagine that in real systems nodes which are influential over the state of the system may also

have some fitness variable or metadata associated with them which relates to this.

Abstract

Knowing which nodes are influential in a complex network and whether the network can be

influenced by a small subset of nodes is a key part of network analysis. However, many

traditional measures of importance focus on node level information without considering the

global network architecture. We use the method of Trophic Analysis to study directed net-

works and show that both ‘influence’ and ‘influenceability’ in directed networks depend on

the hierarchical structure and the global directionality, as measured by the trophic levels and

https://doi.org/10.1098/rsos.221380
https://royalsocietypublishing.org/doi/10.1098/rsos.221380
https://royalsocietypublishing.org/doi/10.1098/rsos.221380
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trophic coherence, respectively. We show that in directed networks trophic hierarchy can ex-

plain: the nodes that can reach the most others; where the eigenvector centrality localises;

which nodes shape the behaviour in opinion or oscillator dynamics; and which strategies will

be successful in generalised rock-paper-scissors games. We show, moreover, that these

phenomena are mediated by the global directionality. We also highlight other structural prop-

erties of real networks related to influenceability, such as the pseudospectra, which depend

on trophic coherence. These results apply to any directed network and the principles high-

lighted – that node hierarchy is essential for understanding network influence, mediated by

global directionality – are applicable to many real-world dynamics.
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4.1 Introduction

Influence in directed complex networks and the ability of the networks to be influenced is

vitally important in many real-world systems, for example the spreading of opinions and epi-

demics or the synchronisation of the brain in a seizure [194]. However, when we think of

what makes nodes influential, the answer is very disparate and depends on many factors.

This question has been of great interest to the network science community and well studied

in the case of undirected networks [195, 196]. However, in the directed case insight can be

gained by considering properties unique to directed networks. This is necessary as many

real-world systems are intrinsically directed and the influence of nodes is strongly tied to the

directionality of the edges [197]. Influence can be thought of as how well nodes control the

dynamics of a network, how measures of centrality are distributed across the network, how

many nodes can be reached from a set of nodes and how sensitive the network is to per-

turbations. We show that all of these properties can be understood and made intuitive by

considering the hierarchical ordering and global directionality of the network as measured

through the technique of Trophic Analysis [8, 1, 2].

When the nodes are easily ordered in a hierarchical fashion, as in a food-web, it is clear

that the network can be influenced by the nodes at the bottom of this hierarchy and conversely

it is very difficult to influence the network from the top of the hierarchy. When there is little hi-

erarchical structure, like in an Erdős-Rènyi random graph, this effect is damped and influence

over the network is more evenly distributed. This simple construction, detailed in the back-

ground, aides in the interpretation of control over network dynamics, spreading processes,

localisation of centrality measures and sensitivity to perturbations. Hierarchical ordering can

explain why nodes which locally look unimportant may be able to influence the entire net-

work. This framework may provide an interpretation to observations made about influence in

directed networks in a variety of literature settings such as the effect of heterogeneous cen-

trality and directionality in opinion formation in real networks [198], the influence of peripheral

nodes on dynamics of directed networks [193] or the asymmetry between paths up and down

the network hierarchy [199]. Trophic Analysis pairs a global measure of directionality with a
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local measure of hierarchy, making it different from a single centrality measure. This allows

an intuition surrounding the variability in the importance of a node’s position in the hierarchy

and how this affects its role in the network. This differs from previous results on the rela-

tionship between hierarchy and influence which do not feature this pairing of local and global

measures [200, 201]. The fact that centrality measures play different roles dependent on the

mesoscale structure of the network has been noted previously in the case of PageRank and

clustering [202].

This paper is organised as follows. We first introduce the background and explain the

principles underlying Trophic Analysis. We then introduce some dynamics and highlight how

global directionality can affect the influence and influenceability of these processes. These

are Majority Vote, Kuramoto oscillators, the Voter Model and the frequency of strategies in

Generalised Rock-Paper-Scissors games. We then include some results on the relationship

between structure and influence in real-world networks and how this can be shaped by hier-

archy. We demonstrate the relationship between hierarchy and eigenvector localisation, left

and right eigenvector correlation (with specific real-world examples), sensitivity to structural

perturbation through the pseudospectra and the size of the out-component of a node. The

real network data used in this paper, also used in [6, 2], is available at [185] and contains

food-webs, neural networks, social networks and more as well as the original sources of the

network data used. This shows how many diverse notions of influence can be investigated

in directed networks using Trophic Analysis and how in a wide range of systems the ability to

exploit hierarchy to influence a system depends on the global directional organisation.

4.2 Background

Real-world systems formed by many interacting elements can be represented using graphs.

These complex networks are sets of nodes or vertices representing the elements of the sys-

tem while the edges or links represent the interactions or connections between elements.

Many real-world systems such as social networks, food-webs, the internet and more have
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interactions which are intrinsically directional and may represent the influence a node has

over another [18]. This structure can be represented through a matrix, 𝐴, known as an adja-

cency matrix where the edges are represented by the non-zero entries of the matrix. For an

unweighted directed network of 𝑁 nodes this 𝑁 × 𝑁 matrix is defined as

𝐴𝑖 𝑗 =


1 if there exists an edge 𝑖 → 𝑗

0 otherwise
. (4.1)

In the case of directed networks this matrix is not symmetric, unlike the undirected case where

edges go in both directions and the matrix is symmetric. Each node 𝑖 then has an in-degree,

𝑘 𝑖𝑛
𝑖
=

∑
𝑗 𝐴 𝑗𝑖, and an out-degree, 𝑘𝑜𝑢𝑡

𝑖
=

∑
𝑗 𝐴𝑖 𝑗 . The matrix 𝐴 can also be weighted to show

the strength of interactions but here we focus on the simple unweighted case although it is

possible to use Trophic Analysis in the weighted regime [8].

4.2.1 Trophic Analysis

Trophic Analysis is a technique to quantify the global directionality inherent in real directed

networks [8], and is applicable to any directed network. Trophic Analysis was originally de-

rived from ecology [5] where the original definition linked hierarchy to weighted steps from

the basal nodes (vertices of in-degree zero), which is an intuitive way to view hierarchy but

cannot be generalised to any directed network without basal nodes like the definition used

here and in [8, 1, 52, 2]. Much of the previous work which applied trophic level and incoher-

ence used the previous definition [6, 5, 7, 33, 34]. This was successfully applied in a wide

variety of settings including infrastructure [36, 37], the structure of food webs [33], spreading

processes such as epidemics or neurons firing [34], and organisational structuring [7].

Trophic Analysis combines two parts: the node level local information, Trophic Level, and

a measure of the global network directionality, Trophic Incoherence. Trophic level is a node

level quantity which measures where a specific node sits in the network hierarchy. Trophic
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level is calculated by solving the 𝑁 × 𝑁 matrix equation, first proposed in [8], given by

Λℎ = 𝑣, (4.2)

where ℎ is the vector of trophic levels for each node and 𝑣 is the vector imbalance of the in

and out degree of each node, where each element is defined as 𝑣𝑖 = 𝑘 𝑖𝑛
𝑖
− 𝑘𝑜𝑢𝑡

𝑖
. Λ is the

Laplacian matrix:

Λ = 𝑑𝑖𝑎𝑔(𝑢) − 𝐴 − 𝐴𝑇 , (4.3)

where 𝑢 is the sum of the in and out degrees of each node, 𝑢𝑖 = 𝑘 𝑖𝑛
𝑖
+ 𝑘𝑜𝑢𝑡

𝑖
, and 𝐴𝑇 is the

transpose of the adjacency matrix, 𝐴. The solution of equation 4.2, which provides the trophic

levels of the nodes, is only defined up to a constant vector so we take the convention that the

lowest level node is set to trophic level zero. The Laplacian matrix is singular by definition,

yet a solution can be found either by choosing a node (say 𝑖 = 1) and setting its value (e.g.

ℎ1 = 0); or iteratively, which is convenient for very large networks [8].

In a balanced network, for instance a directed cycle, there is no hierarchical structure

so every node has the same level. This is due to the dependence of equation 4.2 on the

imbalance vector, 𝑣𝑖 = 𝑘 𝑖𝑛𝑖 − 𝑘𝑜𝑢𝑡𝑖
, which means that when the in and out-degrees of all nodes

are equal the right side of the equation goes to zero. In a network with a perfect hierarchy like

a directed line, the nodes are assigned integer levels with steps of one between connected

nodes. The level distributions of real networks are more complex and lie somewhere between

these extreme cases.

Trophic Incoherence is a global parameter which measures how well hierarchically or-

dered the network is. It is related to the amount of feedback in the system, and thus to

network properties such as the spectral radius, non-normality and strong connectivity [8, 2].

It is quantified via the trophic incoherence parameter 𝐹, which is defined as

𝐹 =

∑
𝑖 𝑗 𝐴𝑖 𝑗 (ℎ 𝑗 − ℎ𝑖 − 1)2∑

𝑖 𝑗 𝐴𝑖 𝑗
. (4.4)
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In [8], the authors begin with equation (4.4) (which is the original definition of trophic

incoherence [5]) and define the trophic levels, ℎ, as those which minimise 𝐹. Hence, the linear

form of equation (4.3) and dependence on the imbalance vector comes from the minimisation

of the quadratic function in equation 4.4.

Trophic Incoherence measures how far the mean square of the difference in trophic level,

ℎ calculated via equation 4.2, between start and end vertices of all the edges differs from one.

The equation for Trophic Level, equation 4.2, can be derived by minimising equation 4.4 with

respect to ℎ. The Trophic Incoherence takes values between 0 and 1 with real networks

found on a spectrum between these extreme values. Networks with a perfect hierarchy are

coherent and have 𝐹 = 0. When the network is balanced like a directed cycle then 𝐹 = 1. It

is also possible to speak in terms of coherence instead of incoherence by using the quantity

1 − 𝐹. When we talk about hierarchy we refer to the bottom of the hierarchy as nodes of

low trophic level and the top of the hierarchy as the nodes of high trophic level. In a directed

path the low trophic level nodes would be the start of the path and the high level nodes would

be near the end of the path. In a food-web the bottom nodes are plants and the top nodes

are apex predators. This, however, is just a convention and the notion of top and bottom

can be flipped by taking the transpose of the adjacency matrix (for example, when describing

hierarchies of information flow from nodes to nodes).

Using directionality and hierarchy to analyse the structure of directed networks in this

way is quite natural and as such alternative similar formulations exists which rank nodes and

measure the global directionality. SpingRank [44] views the ranking problem as minimising

the energy of a network of directed springs, leading to a similar minimisation problem as the

one used in Trophic Incoherence. However, these authors focus on the node level ranks

rather than the global directionality and add a regularisation term to remove the invariance

of their rank equation to addition of a constant vector. There is also a methodology based

on Helmholtz–Hodge decomposition for measuring “circularity” in directed networks [45, 181]

which has been shown to be equivalent to Trophic Analysis [8].
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4.2.2 Network Generation

In order to study how the properties of networks depend on their trophic structure it is nec-

essary to be able to numerically generate networks which span the full range of trophic in-

coherence, while keeping the number of nodes and edges fixed. We adapt the Generalised

Preferential Preying Model (GPPM) [34] in an identical way to [1] to the definition of trophic

level which does not require basal nodes (vertices of zero in-degree) and use that to generate

the networks we require. This works by generating an initial configuration of 𝑁 nodes and

a small number of random edges, calculating the initial trophic levels of this setup, adding

edges up to the required amount using a probability determined by the trophic level and a

temperature-like control parameter which can affect the spread of level differences. In order

to generate a network with no basal nodes the initial configuration is that each node has in-

degree one with the source vertex for that edge chosen uniformly at random from the other

nodes in the network. Once the initial trophic levels ℎ̃ are calculated via equation 4.2 then

new edges, up to the required amount, can be added with probability defined as

𝑃𝑖 𝑗 = exp

[
−
( ℎ̃ 𝑗 − ℎ̃𝑖 − 1)2

2𝑇Gen

]
, (4.5)

where 𝑃𝑖 𝑗 is the probability of connecting nodes i to j. The parameter 𝑇Gen controls this

process. When this parameter is small it is likely that edges connect only between nodes

where the level difference is 1 or near to it. When 𝑇Gen is very large then the edge-addition

probability goes towards 1 irrespective of the trophic level difference between the end and

start nodes.
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Figure 4.1: Relationship between Trophic Incoherence and generation temperature in the
model used in this work, where each of the 1000 points per network size represents a distinct
network generated by the model, with 𝑁 = 100, 𝑁 = 200 and 𝑁 = 500, ⟨𝑘⟩ = 20 and no
basal nodes. The generation temperature is logarithmically spaced between 10−2 and 102.
We also plot with a dashed line an analytical approximation, given by equation (4.7), for the
relationship between the Trophic Incoherence and Temperature.

The relationship between the generation temperature and the trophic incoherence is dis-

played in figure 4.1, which shows how the model can be used to create a sample of networks

of varying incoherence. In order to efficiently sample the whole spectrum of the trophic inco-

herence we use logarithmic spacing of 𝑇Gen throughout the paper, except for in the sections

on the generalised rock-paper-scissors games and the out-component analysis. In these two

sections we compare networks of low, intermediate and high trophic incoherence, for which

we selected the generation temperatures to be 0.02, 1 and 100, respectively. As shown in

figure 4.1 this picks out each of the broad regimes of the generative model; the low tempera-

ture regime of very coherent networks, the intermediate regime where we see more variability

with the temperature, and the high temperature regime of incoherent networks.

We also show in figure 4.1 how the behaviour of this model can be analytically approxi-

mated. In previous work on trophic analysis, where the ecological definition of trophic levels

was used, the trophic incoherence, 𝑞, was defined as the standard deviation of the trophic
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level differences spanned by edges [5]. Under this definition the mean trophic level is always

one, and a network is more incoherent the more heterogeneously trophic differences are dis-

tributed around this value. Given a set of trophic levels (by whichever definition), it is possible

to convert between the two measures of incoherence via the formula defined in [8],

𝐹 =
𝜂2

1 + 𝜂2 , (4.6)

where 𝜂 = 𝜎/𝜇, 𝜎 is the standard deviation of the level differences and 𝜇 is the mean level

difference. Hence, 𝜂 is the appropriate replacement for the incoherence parameter 𝑞 used

in [5, 6] and subsequent papers, when using the MacKay level definition [8]. If we assume

that the trophic level difference distribution across the edges in the generated networks is

distributed as in the edge addition probability, we can replace 𝜂2 with 𝑇Gen, if we assume

that iteration of the attachment probability given by equation (4.5) leads to an approximately

Gaussian distribution of trophic differences. The differences in trophic level has been found

roughly to follow a Gaussian distribution in real networks. Also, analytical results which hold

for real networks have been based on the assumption that the level difference distribution is

Gaussian [2]. The assumption that the trophic levels follow the same Gaussian as implied by

the edge addition probability leads to the approximation that

𝐹 ≈ 𝑇Gen
1 + 𝑇Gen

. (4.7)

As shown by figure 4.1 this fits quite well for the larger networks sizes. We plot the data with

a logarithmic scaling on the x-axis which allows the different regimes of low, intermediate and

high incoherence to be visualised and leads to the sigmoid shape. As writing = log10 𝑇Gen

leads to the alternative form

𝐹 ≈ 1
1 + 10−𝑎

(4.8)

which is equation of a sigmoid curve. This approximation fails at low temperatures for the

small very dense networks, 𝑁 = 100, as the generative model struggles to make networks
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which are very coherent at such a high edge density - it becomes difficult to place edges in

locations where the coherence is maximised. We note that at high 𝑇Gen we obtain 𝜂2 < 𝑇Gen,

however the approximation works fairly well thanks to the sigmoid function, which is close to

one for all large arguments. Hence, 𝜂2 and𝑇Gen are not directly equivalent, but relatable when

used to calculate 𝐹 in this way. Nevertheless, this approximation provides an illustration of

how the model works. Incoherence increases with temperature by augmenting the probability

that edges are placed with edge difference further from one.

Additional detail of how to efficiently generate these networks by more efficiently sampling

the space of edge addition probabilities so that each draw of a random number results in an

edge being added is given in [1]. All graph manipulations in this work were carried out using

Julia Package Graphs.jl [203].

4.3 Influence and Influenceability of Dynamics

In this section we present a wide range of dynamics and show how trophic level and incoher-

ence can be used to provide insight into disparate and unrelated processes. The idea is to

use simple dynamics to highlight the phenomena being picked out by trophic analysis. In this

case we define ‘Influence’ to mean the ability of a targeted perturbation or modification of the

nodes to affect the state of the system some time after it is applied. In each of the dynamics

we show how the nodes which can be regarded as ‘influential’ are the ones with low trophic

level – i.e. those at the bottom of the hierarchy. We also find that the ‘influenceability’ of the

whole network by the low trophic level nodes depends on the network’s trophic coherence.

The goal of this section is to highlight the broad range of dynamics to which trophic analysis

can be applied. In this section we use numerically generated networks only - as opposed

to the structural section where we provide results on numerically generated networks and

a data-set of real-world networks [185]. We generate networks numerically with the model

described above, which allows us to set the numbers of nodes and edges and to vary the

trophic coherence. We can also set the number of basal nodes (nodes with zero in-degree).
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The dynamics of basal nodes are not affected by the states of other nodes, since they have

no inputs. However, they are obvious candidates for nodes with a high influence on the whole

network, and this has been demonstrated in previous work [193, 18]. While basal nodes will

tend to have low trophic levels, trophic analysis is not needed in order to identify them. We

therefore fix the number of basal nodes in our generated networks to be zero, so as to high-

light the importance of trophic level even in networks where all nodes can be affected by the

rest of the system.

Our hypothesis is that the nodes at the lowest trophic levels (regardless of whether they

are basal nodes) are the most influential across a broad range of different dynamics. We

test this in the following way. We set up initial conditions such that all the nodes begin in

one state or frequency, except for a ‘perturbed fraction’ of nodes which start in a different

state or frequency. We choose the nodes with lowest trophic level for this perturbation, and

observe the subsequent dynamics of the system. Whenever the system evolves to the state

or frequency initially given to, say, only 5% of the nodes, we can conclude that: the network

is highly ‘influenceable’, and these are the most ‘influential’ nodes. We go on to find that

influenceability depends on trophic coherence, and influence is indeed determined by trophic

level, across several dynamics.

We present the results as scatter plots of individual networks, but also show the averages

and standard deviations of the sets of networks we generate. This allows the variability of

the dynamics for a small number of influential nodes to be visualised as well as showing the

general trend. For each of the dynamics we influence 5%, 20% and 40% of the nodes with

the lowest trophic level to show how varying the size of this set affects the influence and the

spread of the results.

4.3.1 Majority Vote

Majority vote dynamics is the first dynamics to be studied as it is very simple to define as well

as being widely used. This allows the primary focus to be on the network structure. Each

agent (node) in the model is given an ‘opinion’ and then updates their opinion such that they
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select the opinion held by the majority of their neighbours. This model is very simplistic yet

shares some properties with other common agent-based discrete dynamics widely used in

complex networks, such as the SIS epidemic model [204], the Hopfield neural network model

[1], the Ising model [205] and the Moran process from biology [206]. Each of these models

has additional details which separate it from the basic majority vote, but the dynamics is

governed by similar principles.

Majority Vote dynamics can be defined as a system where there are two opinions, denoted

as +1 and -1. An agent holds either of the two options and updates their state using an update

rule defined as

𝑆𝑖 (𝑡 + Δ𝑡) = sgn ©­«
𝑁∑︁
𝑗=1

𝐴 𝑗𝑖𝑆 𝑗 (𝑡)ª®¬ . (4.9)

The updates can be done asynchronously or in parallel and in this work we chose parallel

updates. This specific update rule is deterministic but it can be modified in a range of ways

to add stochastic behaviour to the system. Additionally, more than two possible states could

be added to model a larger number of opinions. An absorbing state is reached if all nodes

have the same opinion. However, it is also possible for the system to remain in a fixed point

or in a cycle involving nodes with different opinions. In practice, we allow the system to run

for a specified number of updates before recording the proportion of nodes in the +1 opinion.
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(a) Influence by 5% of nodes with lowest
Trophic Level.

(b) Influence by 20% of nodes with lowest
Trophic Level.

(c) Influence by 40% of nodes with lowest
Trophic Level.

Figure 4.2: Majority Vote Dynamics after 1000 updates when a specified fraction of nodes
are initially set to −1 with the rest of the nodes set to +1. This fraction is 5%, 20% and 40% in
panels (a), (b) and (c), respectively. The nodes set to −1 are those with lowest trophic level.
The average state of the system (the fraction in the +1 opinion) is shown against trophic
incoherence,with each point a distinct network generated by the model in section 4.2.2 with
𝑁 = 500 and ⟨𝑘⟩ = 5 and no basal nodes. Temperatures, 𝑇Gen, are logarithmically spaced
between 10−1 and 102 with 20 distinct temperatures used. At each temperature we generate
30 networks and compute the mean and standard deviation of this set with the mean plotted
with the red dashed line and the standard deviation shown with the shaded area.

The effectiveness of using trophic level to identify influential nodes is shown in figure 4.2.

When a small number of nodes at the bottom of the hierarchy (nodes with low trophic level) are

placed in the -1 opinion, most or all the rest of the nodes can evolve towards this state despite

the majority of the nodes being initialised in the +1 opinion. This scenario holds except when

the networks become too incoherent for the perturbed nodes to have a decisive influence.

Viewed as a function of trophic incoherence, there is a transition from an influenceable regime

(in which the low trophic level nodes dominate) to one which is less influenceable. Where this



84 CHAPTER 4. INFLUENCE AND INFLUENCEABILITY

transition occurs varies with the fraction of perturbed nodes. Moreover, for a given trophic

incoherence and perturbed fraction, some network realisations are highly influenceable and

others are not, suggesting that there are other relevant network properties to be determined.

This is the expected behaviour in networks of lower incoherence as there is less feed-

back and cycles so the majority opinion at the bottom of the network moves up through the

hierarchy, eventually changing the opinion of the whole system. In a network which is more

incoherent this does not happen, for two reasons: there are fewer nodes connected only to

the perturbed fraction; and there is more feedback (from directed cycles), which allows the

unperturbed nodes to reinforce their initial opinion.

The standard deviation of the points is largest at the incoherence which is between the two

regimes. When 40% of the nodes are perturbed, figure 4.2c, almost all nodes are influenced

by the low level nodes apart from in the most incoherent networks, which may remain in an

intermediate state. Similar behaviour is seen when 20% of nodes are perturbed, figure 4.2b,

although there is now a clearer regime of networks which are too incoherent to be influenced

by this fraction of nodes. When only 5% of nodes are perturbed, fig 4.2a, despite the number

of nodes being small, they are able to influence the state of many of the networks of low

coherence and the average state only increases as the incoherence becomes intermediate

and there are more cycles and feedback in the system. There are a few outlier points at low

incoherence. This is to be expected as we perturb such a small fraction of the nodes that

there may be features of the network which make it difficult for them to influence the system.

For example the number of edges which leave the set which is perturbed may be small or the

trophic levels may be organised in such a way that the small set does not fill the lowest level of

the network [1]. However, these simulations still demonstrate the usefulness of this method.

Indeed, in very coherent networks specific targeted influence can overcome an opinion held

by 95% of the network. This example provides perhaps the simplest demonstration of the

insight trophic analysis can give into network dynamics. This may have potential applications

in social networks and organisations, particularly in the promoting of cooperation in prisoner

dilemma-like games on networks [207].
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4.3.2 Synchronisation Phenomena and Kuramoto Oscillators

A very similar result to that observed in the discrete majority vote dynamics can be observed in

the frequency synchronisation of continuous Kuramoto oscillators, where the low level nodes

can influence the frequency of the whole system. The Kuramoto model is a well-known model

of synchronisation with a wide range of applications, from neuroscience to power grids [208,

209, 210, 211, 212]. We use NetworkDyanmics.jl [213] to solve the system of differential

equations used in our variant of the model. Each oscillator (node) 𝑖 has a phase, 𝜃𝑖, which

evolves according to the equation

𝑑𝜃𝑖

𝑑𝑡
= 𝜔𝑖 +

𝐾

𝑘 in
𝑖

𝑁∑︁
𝑗=1

𝐴 𝑗𝑖 sin (𝜃 𝑗 − 𝜃𝑖), (4.10)

where 𝐾 is the coupling constant, 𝑘 in
𝑖

is the in-degree of the node and 𝜔𝑖 is the natural

frequency of the node. We use the form normalised by in-degree so that the oscillators

update at similar rates regardless of the number of input nodes. For the system used we set

the coupling constant to 𝐾 = 20⟨𝑘⟩, which is well above the critical threshold for maintaining

frequency and phase synchronisation when the system is initialised at a single phase. This

equation could be modified by adding noise or delays to the updates to make the system

more realistic. However, we focus here on the simplest case. Phase Synchronisation can be

measured by the order parameter

𝑟 =
1
𝑁

���� 𝑁∑︁
𝑖=1

𝑒𝑖𝜃𝑖

����, (4.11)

which reaches one when all the oscillators share the same phase but is zero when the phases

are uniformly randomly distributed from 0 to 2𝜋. How the low trophic level nodes influence the

frequency in networks with varying trophic coherence is shown in figure 4.3, where a fraction

of the low trophic level nodes have natural frequency 𝜔 = −1 and the remainder have 𝜔 = +1.

Average frequency is measured by sampling differences in node phase during the latter half of

the simulation and dividing by the time differences, averaging over samples and nodes. Since
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we are interested in which frequency the nodes synchronise to, we set the initial condition so

that the nodes begin with the same phase and the dynamics are driven by the topology and

natural frequencies only, and not the varying initial conditions. The networks maintain phase

synchronisation, 𝑟 close to 1, and adequate frequency synchronisation, standard deviation of

node frequencies is generally very small and always less than 1 (equivalent to standard error

less than 0.045), as the simulation evolves due to the initial conditions and strong coupling.

Networks with low incoherence propagate the frequency of the low-level nodes through the

whole system and the network synchronises at that frequency. In networks of high trophic

incoherence the feedback from the higher level nodes back to the lower level nodes dilutes

this effect, so the final average frequency of the system is further from that at the low level

nodes and closer to that of the higher level nodes.
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(a) Influence by 5% of nodes with lowest
Trophic Level.

(b) Influence by 20% of nodes with lowest
Trophic Level.

(c) Influence by 40% of nodes with lowest
Trophic Level.

Figure 4.3: Kuramoto Model Dynamics after simulating for 20 time units when different frac-
tions of nodes, chosen by lowest Trophic Level, are given intrinsic frequency −1 while the rest
of the nodes are given intrinsic frequency +1; for varying Trophic Incoherence, where each
point is a distinct network generated by the model in section 4.2.2 with 𝑁 = 500, ⟨𝑘⟩ = 5 and
no basal nodes. Temperatures, 𝑇Gen, are logarithmically spaced between 10−1 and 102 with
20 distinct temperatures used. At each temperature we generate 30 networks and compute
the mean and standard deviation of this set, with the mean plotted with the red dashed line
and the standard deviation shown with the shaded area. The coupling constant, 𝐾 = 100, is
twenty times the average degree to ensure synchronisation. Nodes are initially synchronised
with phase 0.

This transition is different from the majority vote transition since both phase and frequency

are continuous, rather than the discrete states available to the majority vote dynamics. Ad-

ditionally, in this case we are permanently changing an intrinsic property of the nodes which

is maintained throughout the process, whereas previously the perturbation was to the initial

conditions. However, the fact that applying the same principle to two very different systems

results in qualitatively similar behaviour highlights the usefulness of Trophic Analysis as a tool.

When only 5% of the low level nodes are selected in the Kuramoto case, figure 4.3a, the trend
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is noisy and the standard deviation is large. However, even in this regime we see the trend of

the more coherent networks being more easily influenced by the low level nodes and only the

most incoherent networks resistant to this. When 20% of the low level nodes are set, figure

4.3b, the trend is much clearer. The most coherent networks are all very strongly influenced

by the low level nodes, and there is a clear transition as the network becomes more inco-

herent, with a lower standard deviation. When 40% of the nodes are perturbed, figure 4.3c,

the system is more strongly influenced by the low level nodes and the frequency is reduced

away from one, even in the most incoherent networks. In all cases, even at high incoherence

there are some networks which synchronise with the ‘influenced’ (low level) nodes.

The oscillators begin in a synchronised state, so we find similar results when the end

time of the simulation is varied. If a different oscillator function were used it may be possible

to exploit the network hierarchy to create more complex states. It has recently been shown

that oscillators on non-normal networks can lead to chimera states [214], and it is known that

non-normality is related to trophic coherence [18, 8].

4.3.3 Voter Model

A Voter model is another way to model opinion formation for which similar results around

influence and influenceability can be demonstrated. Similar to the majority vote dynamics

the agents can be given states of either +1 or -1 and updated according to an update rule.

However, instead of taking the majority opinion of the neighbours the agent can update its

state by choosing at random one of its incoming neighbours and adopting the selected state.

This model can be adapted, increased in complexity and then applied to study real voting

processes [215], economics [216] and chemistry [217, 218]. The model has two absorbing

states where all nodes share the same opinion (consensus). However, after a finite time the

system can find itself in an intermediate state which includes both opinions (and on a directed

network the absorbing states can be inaccessible).

Similar results to the previously obtained ones can be seen, where a new opinion intro-

duced at the lowest trophic level nodes spreads well in coherent networks but is less likely
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to establish itself in more incoherent networks. This is demonstrated in figure 4.4. In the low

incoherence networks the standard deviation is quite small and the ability of the low level

nodes to influence the system is clear. As we increase incoherence this is no longer always

the case and we pass through a region of higher variability as we transition to the incoherent

regime, where the dynamics cannot be as easily shaped by the low level nodes. When 40%

of the nodes are set to -1, figure 4.4c, almost all the networks flip to the minority state and

only a small number of very incoherent networks maintain the majority state. Very similar be-

haviour is found when 20% of the nodes are set to -1, figure 4.4b, with most of the networks

being easily influenced and only some of the high incoherence networks being resilient to the

perturbation. When only 5% are set to -1, figure 4.4a, we see the same trend but a smaller

fraction of the networks are influenced, with more networks being outliers from the trend.

In a similar way to the majority rule case, targeting a very small number of nodes makes it

more likely that an insufficient number of edges leave the perturbed set to influence the whole

network [1].

This section has shown how in different dynamical processes the nodes which can be

regarded as influential can be determined by using trophic levels, and the ability of the network

to be influenced is heavily shaped by the trophic coherence.
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(a) Influence by 5% of nodes with lowest
Trophic Level.

(b) Influence by 20% of nodes with lowest
Trophic Level.

(c) Influence by 40% of nodes with lowest
Trophic Level.

Figure 4.4: Voter Model Dynamics after 1000 updates when different fractions nodes, chosen
by lowest Trophic Level, are set to the initial condition−1 while the rest of the nodes are initially
+1; for varying Trophic Incoherence, where each point is a distinct network generated by the
model in section 4.2.2 with 𝑁 = 500, ⟨𝑘⟩ = 5 and no basal nodes. Temperatures, 𝑇Gen, are
logarithmically spaced between 10−1 and 102 with 20 distinct temperatures used. At each
temperature we generate 30 networks and compute the mean and standard deviation of this
set, with the mean plotted with the red dashed line and the standard deviation shown with
the shaded area.

4.3.4 Generalised Rock-Paper-Scissors Dynamics

We show that Trophic level can also be used as an analysis tool for the states of generalised

Rock-Paper-Scissors games where the interactions between strategies are defined by a com-

plex network. A standard Rock-Paper-Scissors game can be described with a directed cycle,

in which each strategy has an edge to the strategy it defeats. In this case, there is no overall

best choice of strategy thanks to the symmetry of the situation. This, however, may not be

the case when the strategies interact through a more complex “strategy network” which does
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not feature this cyclic structure (e.g. interactions between strategies and characters in video-

games or ecological interactions such as competition between bacteria [219], as shown in

figure 4.5). In such cases there may be strategies which perform better than others.

Figure 4.5: Example of a network of agents competing with each other through a complex
interaction topology where an edge represents that an agent type is dominant over another.
This is a network of bacteria competing through toxin warfare [219]. Each node represents a
type of bacteria (a strategy), which dominates over those types it has directed edges to, and
is dominated by those it receives edges from. Hence, the network represents the relationship
between bacteria rather than a spatial structure.

The interaction between individual agents can be defined on a spatial structure like a

lattice or by allowing every agent to interact with every other as in a complete graph. For

simplicity we allow all the agents to interact with each other and ignore spatial structure. This

setup shares many similarities with mean-field analysis of Lotka-Volterra systems, which have

been studied with respect to trophic levels and coherence in [5]. It has also been much more

widely studied in the regime of large random systems [220, 221]. Most studies on non-

random systems have looked at smaller systems, quite often with spatial aspects to them

[222]. There has been some work looking at networks of generalised Rock-Paper-Scissors

games but it mostly focuses on varying the strength of parameters rather than looking at large

varied structures. This work has mostly been numerical [223, 224, 225, 226, 227], with some

looking at the behaviour of smaller systems with weighted interactions and weaker species.

There has been some analytical work on Rock-Paper-Scissors-Lizard-Spock networks which
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have a more complex topology than the basic Rock-Paper-Scissors game [228].

The setup used here is a graph of 100 nodes representing the possible strategies. Then

1000 players per graph play each other at random with the interactions determined by the

strategy graph. The initial strategy of each node is randomly assigned from the set of 100

possible strategies. If an edge points from strategy 𝑖 to strategy 𝑗 then if a player playing

strategy 𝑗 meets a player playing strategy 𝑖 they will be beaten and switch from strategy 𝑖

to strategy 𝑗 . This definition could easily be flipped and then successful strategies would

be those of high trophic level. However, we use this convention to match the earlier results.

These dynamics can be quite complicated to analyse for several reasons. ‘Weaker’ strategies

may survive better than expected if the strategies that they are weak to are made extinct

before them. The presence of cycles and neutral interactions means that one strategy taking

over everywhere is not the norm and instead the system moves to a dynamic equilibrium

where many of the strategies coexist and “defensive alliances” are possible [219]. What

makes a strategy successful is a complex problem - it depends on the balance of how many

strategies it beats or is beaten by, as well as where those strategies fit into the global meta-

game. For example, it is better to be weak to a strategy which is overall not widely used

and then strong against a strategy which is widely played. In this setup a strategy which is

influential is one which becomes widely played. As a test for the ability of trophic level to

predict influence we compare the probability of a strategy being played with the trophic level

ranking of a node and then compare this to ranking by traditional centrality metrics such as

PageRank [184, 229].

The results are shown in figure 4.6 for networks with low, intermediate and high trophic

incoherence. We consider the following centralities: trophic level, PageRank, out-degree,

and imbalance (the difference between in-degree and out-degree). In the case of PageRank

and imbalance, we apply the centrality to the adjacency matrix such that influence should

correlate with a high out-degree, which may require transposing the matrix depending on

convention used. The higher the area under the curve for a given centrality, the better it

performs at identifying the most successful strategies.
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For the most coherent networks, the best predictor of influence is PageRank, closely

followed by trophic level, figure 4.6a. In these networks PageRank correlates with trophic

level but also reveals information about a node’s reach, and we hypothesise that both these

features contribute to a strategy’s success. For networks of intermediate incoherence both

trophic level and PageRank again are the best predictors of a strategy being successful, figure

4.6b, although imbalance is also now a good measure. However, this changes for networks

with high incoherence, where the imbalance between in- and out-degrees starts to matter

more than PageRank. Trophic level and the degree imbalance are now the best predictors,

with PageRank performing similarly to out-degree, figure 4.6c. This demonstrates how trophic

level is a good measure of influence as it compares well to the best centrality measure in each

case. It also highlights the utility of trophic coherence as a measure to understand network

structure, since it helps to explain why the best centrality measure depends on the network.

Similar results can be found for many standard network types like random graphs or scale-free

networks, where again trophic level is competitive with the best other centrality metrics. It is

noteworthy that trophic level is a good predictor of strategy success even in highly incoherent

networks. However, if the network were maximally incoherent (𝐹 = 1), all the nodes would

have the same trophic level and hence, according to this predictor, an equal probability of

success. This is the case, for instance, in the standard Rock-Paper-Scissors game.
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(a) Networks of low trophic incoherence (b) Networks of intermediate trophic incoher-
ence

(c) Networks of high trophic incoherence

Figure 4.6: Cumulative Distributions of probability of playing a strategy per player per game
per network by different centrality rankings and different mean incoherence over 1000 network
samples generated by the model in section 4.2.2 at fixed temperatures corresponding to low,
medium and high incoherence: 𝑇GEN = 0.02, 1 and 100, respectively. Each network has with
𝑁 = 100, ⟨𝑘⟩ = 5 and 1000 players playing a generalised Rock-Paper-Scissors game.

4.4 Influence and Influenceability of Structure

In this section we demonstrate how several topological notions of ‘influence’ and ‘influence-

ability’ based on the eigenvectors of the adjacency matrix can be understood and interpreted

by looking at the trophic structure of directed networks. This section provides an explanation

for the effect of trophic coherence on dynamics seen in the last section, and how networks

can be better understood through trophic analysis. In particular, we show why the impor-

tance of low trophic level nodes depends on the network’s trophic coherence. We provide

results for numerically generated networks to control for variations in size, as well as results

on a diverse data-set of real-world networks [185]. In real-world networks, such as the ones
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contained within our sample, there are a variety of network sizes, mean degrees and de-

gree distributions. However, we show in this section that the general trends hold in both the

numerically generated and real-world networks.

4.4.1 Localisation of Eigenvectors

One simple way to quantify influence in a network is eigenvector centrality, a widely used

centrality metric [10]. The eigenvector centrality score of a node is determined by the cen-

trality scores of its neighbours [10]. This makes sense as we assume that important nodes

also connect to other nodes of high importance. This can be shown to be equivalent to the

principal eigenvector of the adjacency matrix and provides one measure of the importance of

nodes in a network [10]. As we shall see, in trophically coherent networks the eigenvectors

are localised. This has many implications for the dynamics and affects the sensitivity of the

network to perturbation and being disrupted by a small subset of nodes. The localisation of

eigenvectors was first discovered in physics [230] where the phenomenon of electron local-

isation known as Anderson localisation was put forward. It has more recently been widely

studied in random matrices [231]. It has wide implications for the dynamics of both physical

systems and biological neural networks [232, 233, 234].

The localisation of the eigenvectors can be measured in a variety of ways and it is also

important to consider which nodes the eigenvectors localise around. As the ability to influence

a network depends on the distribution of the centrality and where the high centrality nodes

are in the network.

Inverse Participation Ratio

The inverse participation ratio measures the localisation of an eigenvector. It is defined for

the 𝑛th eigenvector as

IPR𝑛 =

∑𝑁
𝑖=1 |Ψ𝑛

𝑖
|4

(∑𝑁
𝑖=1 |Ψ𝑛

𝑖
|2)2

. (4.12)
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Where |Ψ𝑛
𝑖
| is the absolute value of each component of the 𝑛th eigenvector. This sum is max-

imised when all non-zero components are concentrated at one value and takes its minimum

value when the non-zero components are exactly equally distributed. In figure 4.7 we show,

for each network, the average 𝐼𝑃𝑅𝑛 over eigenvectors, 𝐼𝑃𝑅 = 𝑁−1 ∑
𝑛 𝐼𝑃𝑅𝑛. The localisa-

tion varies with Trophic Incoherence: it is large when the network is more coherent and the

eigenvalues are localised; it decreases when the network is more incoherent and the eigen-

vectors delocalise. Moreover, at low incoherence there is a higher variability in 𝐼𝑃𝑅 between

different networks.

(a) 1000 data points each representing a net-
work generated by the model in section 4.2.2
of 𝑁 = 500 nodes, ⟨𝑘⟩ = 20. Generation tem-
peratures are logarithmically spaced between
10−2 and 102.

(b) Real Networks- Taken from [185]. Each
point representing a single network.

Figure 4.7: Average Inverse Participation Ratio (IPR) of 𝐿2 normalised eigenvectors of the
adjacency matrix of real and generated networks for varying trophic incoherence

For numerically generated networks, 4.7a, the effect is very clear. The inverse partici-

pation also follows the same trend in a data-set of real world networks, figure 4.7b, which

includes food-webs, trade networks, neural and social networks [185]. However, the real net-

works vary in size, density and degree heterogeneity, and thus present a noisier picture. The

maximum localisation is also larger than in the numerically generated case. This helps to

explain why in the previous section we found that a small number of low trophic level nodes

can influence the dynamics when the network is more coherent, as this is the regime where

the eigenvectors localise and ‘influence’ is concentrated.
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Entropy of Eigenvectors

The entropy of an eigenvector is another way to measure localisation based on the information

about the system carried by the vector. It is defined for the 𝑛th eigenvector Φ𝑛 (normalised

so that the absolute values of the elements sum to 1) as

𝑆(Φ𝑛) = −1
ln 𝑁

𝑁∑︁
𝑖=1
|Φ𝑛

𝑖 | ln |Φ𝑛
𝑖 |. (4.13)

This is minimised when all the weight of the eigenvector is concentrated in one node, and

hence we know the most information about the system as all the importance is concentrated

in that node. The entropy is maximised when the weight of all nodes is equal and all nodes are

equivalent, so we have the least knowledge about the structure of the system. We normalise

by the maximum value, ln 𝑁 , so that that 0 ≤ 𝑆 ≤ 1 and we can compare networks of different

size. A network can be characterised by the average, 𝑆 = 𝑁−1 ∑
𝑛 𝑆(Φ𝑛) In figure 4.8 we show

𝑆 for networks of varying trophic incoherence.

(a) 1000 data points each representing a net-
work generated by the model in section 4.2.2
of 𝑁 = 500 nodes, ⟨𝑘⟩ = 20. Generation tem-
peratures are logarithmically spaced between
10−2 and 102.

(b) Real networks from [185]. Each point rep-
resents a single network.

Figure 4.8: Average entropy of 𝐿1 normalised eigenvectors of the adjacency matrix of real
and generated networks for varying trophic incoherence

The trend in the numerically generated networks, figure 4.8a, is very clear, with the entropy

of the very coherent networks being low and then increasing with incoherence. The real

networks, figure 4.8b, produce a similar trend to the numerically generated networks, but
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again the data is noisier because of the more varied structure of real systems. This again

is consistent with networks being sensitive to perturbations or attacks targeting the nodes

of low trophic level, but the degree of sensitivity depending on the trophic coherence of the

network.

4.4.2 Correlation Between Left and Right Eigenvectors

A node can be considered important if it is able to receive information from and input infor-

mation into the rest of the network. In directed networks the underlying hierarchy of trophic

levels may mean that the nodes which are able to reach the most nodes in the network and

the nodes which are reached by the most in the network are distinct groups. This is different

from the undirected case where a hub node can effectively do both. This can be understood

by looking at the correlation between the left and right principal eigenvectors. The left eigen-

vector can be thought of as a measure of the centrality of a node based on in-degree and its

ability to receive information, and the right eigenvector can be thought of as the ability to emit

information. This is just convention and transposing the adjacency matrix swaps these roles.

One way to understand this is to look at the scalar product between the eigenvector centrality,

given by the principal eigenvector of the adjacency matrix, and that of its transpose. Due to

the Perron–Frobenius theorem both of these eigenvectors are real and non-negative so the

multiplication of each element of the vector is real and non-negative. This is shown in figures

4.9a and 4.9b. We see that the correlation is small when the networks are coherent, as nodes

of high centrality do not overlap; while when the network does not have such a well-defined

hierarchical structure (i.e. it is more incoherent) there is a larger overlap, tending towards 1

as the eigenvectors are both normalised. This highlights the effects of hierarchy on the notion

of node importance and that hierarchy can induce an asymmetry in node behaviour.
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(a) 1000 data points each representing a net-
work generated by the model in section 4.2.2
of 𝑁 = 500 nodes, ⟨𝑘⟩ = 20. Generation tem-
peratures are logarithmically spaced between
10−2 and 102.

(b) Real networks from [185]. Each point rep-
resents a single network.

Figure 4.9: Correlation between left and right principal eigenvectors of the adjacency matrix
of generated (a) and real (b) networks for varying trophic incoherence. Eigenvectors are 𝐿2

normalised.

In the generated networks the correlation between the eigenvectors follows a smooth

trend whilst again in the case of real networks the overall correlation is reproduced but the

results are much more noisy. These results can also be viewed in terms of matrix normal-

ity, which measures how well the adjacency matrix commutes with its transpose. This has

previously been shown to be linked to trophic incoherence [18, 8]. However, the correlation

between right and left principal eigenvectors provides a more direct measure of whether the

influential nodes are also those that are influenceable.

Example Networks

The previous results on the localisation of the eigenvectors and the correlation between the

left and right eigenvectors, on both numerically generated and real-world networks, can be

better understood by looking at some specific network examples. In coherent networks with

a clear hierarchy of trophic levels, such as the Ythan estuary food web, figure 4.10a, the

left and right eigenvectors localise to different parts of the network hierarchy. The nodes

of large left eigenvector centrality are towards the top of the hierarchy while the nodes of

large right eigenvector centrality centre on the nodes of lower trophic level. This reflects
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the intuition around the localisation of eigenvectors and the difference between the left and

right eigenvectors, as well as what we know about food webs where energy flows from the

bottom to the top of the system. This phenomenon can also be observed in real networks of

intermediate coherence such as the connectome of the nematode C.Elegans, figure 4.10b.

In this network the localisation is less pronounced than in the food web due to the network

being more incoherent and having more feedback. There is, however, still clearly visible

localisation with the non-zero elements not being evenly distributed with respect to trophic

level, and the distribution of the non-zero elements of the left and right eigenvectors being

centred at different places in the hierarchy.

A non-trivial relationship between trophic level and the distribution of eigenvectors can

also be observed in some random graphs, figure 4.10c, where one would not expect there

to be much useful hierarchical structure to observe. In a random graph the left and right

eigenvectors are not as strongly localised and there are many non-zero elements shared by

both the left and right eigenvectors. However, there is a positive correlation between the left

eigenvector and trophic level, and a negative correlation between the right eigenvector and

trophic level. This implies that nodes which are the best at emitting information and reaching

the whole network are at the bottom of the hierarchy, nodes which receive information are at

the top and nodes which do both equally are in the middle. This agrees with the well-known

bow tie structure observed in directed networks [124].

There do, however, exist networks which break this trend. Figure 4.10d shows the Federal

Aviation Administration (FFA) preferred routes between airports. This network is directed, but

since it is an airport network it features hubs which are hubs of both in and out degree. Due

to the fact that certain airports are very important hubs in both senses, the left and right

eigenvector peaks overlap more than in previous real-world examples, as we can see in

4.10d. Thus, this kind of network is quite different from, say, a food web, which has an overall

directionality. The airport network is more coherent than a random graph (in part because

the degree imbalance is larger). However, the level distribution does stretch out beyond the

central peak to span a number of levels. This shows how trophic analysis can be used to
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identify structural features related to network function. In particular, it distinguishes clearly

between networks with a directional flow, like a food-web or neural network, and those lacking

this property, like the airport network.
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(a) Ythan Estuary Food Web with low incoher-
ence, 𝐹 = 0.097, [185]. Scalar product be-
tween left and right eigenvectors 0.003.
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(b) C.Elegans Connectome of intermediate in-
coherence, 𝐹 = 0.498, [185]. Scalar product
between left and right eigenvectors 0.278.
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(c) Random graph with 𝑁 = 1000, ⟨𝑘⟩ = 10
and high incoherence with 𝐹 = 0.902. Scalar
product between left and right eigenvectors
0.904.
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(d) FAA preferred routes between airports,
𝐹 = 0.637. Taken from [235]. Originally
sourced from [236]. Scalar product between
left and right eigenvectors 0.831.

Figure 4.10: Principal left and right eigenvectors (𝐿2 normalised) for four example networks,
with the trophic level of the nodes on the horizontal axis.

4.4.3 Pseudospectra and Pseudospectral Radius

A network can be influenced if it is sensitive to perturbations; in particular, if a disruption to

a small number of nodes leads to a large change in the behaviour of the system. This kind

of phenomenon can be linked to the non-normality of the adjacency matrix [160], i.e. how
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far it is from commuting with its transpose. Networks which are highly non-normal (a feature

that has been shown analytically to be related to low trophic incoherence [18, 8]) have the

property that their eigenvalues are extremely sensitive to perturbations [160]. This can be

impactful in many fields, such as fluid mechanics, acoustics, condensed matter physics and

construction of numerical methods [160, 237, 162, 163, 164].

The pseudospectrum of a matrix 𝐴 with eigenspectrum 𝜎(𝐴) is defined as

𝜎𝜖 (𝐴) = {𝜎(𝐴 + 𝐸) : | |𝐸 | | ≤ 𝜖} (4.14)

for some 𝜖 > 0 and 𝐸 a matrix of norm less than 𝜖 . It measures how the spectrum changes

subject to perturbations, and can be computed using the Julia package [238] based on

EigTool [239]. The pseudospectra has recently been shown to be important in complex net-

works and the stability of ecosystems [19].

One way to measure the sensitivity to perturbation is to compute the pseudospectral ra-

dius, the spectral radius of the perturbed matrix minus the original spectral radius, and divide

by the size of the perturbation. If this quantity is if of order 100 then the system is stable to

perturbations of that scale. The size of perturbation used can be very small. In the following

figures the perturbation is of order 10−3. The pseudospetral radius exhibits a transition as

trophic incoherence is varied for generated networks, figure 4.11a and 4.11b, being large for

networks of low incoherence and then decreasing as incoherence increases, as we would

expect.. A similar result can be found for real-world networks, figure 4.11c.
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(a) 1000 data points each representing a net-
work generated by the model in section 4.2.2
of 𝑁 = 100 nodes, ⟨𝑘⟩ = 20. Spectral per-
turbation size 10−3. Generation temperatures
are logarithmically spaced between 10−2 and
102.

(b) 1000 data points each representing a net-
work generated by the model in section 4.2.2
of 𝑁 = 500 nodes, ⟨𝑘⟩ = 20. Spectral per-
turbation size 10−3. Generation temperatures
are logarithmically spaced between 10−2 and
102.

(c) Real Networks- Taken from [185] and ex-
cluding genetic networks for run time. Each
point representing a single network. Spectral
perturbation size 10−3.

Figure 4.11: Pseudospectral Radii scaled by perturbation size with Trophic Incoherence for
numerically generated networks and real-world networks [185]

We again produce a similar trend for both the real and generated networks, with the real

network data appearing more noisy, as expected. As with the various dynamics described

above, the pseudospectral radius demonstrates an increased sensitivity to perturbations – in

this case structural – as networks become more coherent.
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4.4.4 Out-Components

Figure 4.12: Size of the Out-Components of nodes with their trophic level rescaled by the
maximum trophic level. Networks, generated by the model in section 4.2.2 at a single tem-
perature, of low, intermediate and high incoherence with 𝑁 = 1000 and ⟨𝑘⟩ = 10. And
𝑇GEN = 0.02, 1, 100 for the low, intermediate and high incoherence networks, respectively.

One way to understand the transition in influence of nodes with hierarchical ordering is to

look at the number of nodes which are reachable from a a given node – its ‘out component’

– and how that changes with the trophic level of the node, and with the trophic coherence of

the network. This is shown in figure 4.12.

When the network is very incoherent it is strongly connected and there is no heterogeneity

in the ability of one node to influence other nodes. When the incoherence is intermediate

there is still a large strongly connected component, however the nodes at the top of the

network are unable to influence the network as they lie outside this component. When the

network is very coherent and 𝐹 is close to zero, the strongly connected component is small

and the size of the node’s out-component is strongly linked to its trophic level. This leads to

an asymmetry in the network due to the hierarchy of trophic levels, where some nodes can

reach the whole network whereas others have a very small out-component. These results

are a simple representation since the precise size of the out-component can vary widely
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depending on the type of network and how cycles are distributed throughout it. However

the general principle that networks of low incoherence lead to an asymmetry in component

size is generally true due to the lack of feedback, and agrees with results from the literature

[199]. This is also in agreement with other work on Trophic Analysis and the intuition behind

it, which has analytically linked the emergence of a giant strongly connected component in a

network to its trophic properties [2].

4.5 Discussion and Conclusion

These results provide a different perspective on influence and influenceability in directed

complex networks by using the fact that directed networks have an underlying hierarchical

structure, unlike the undirected case. Thus, Trophic Analysis can give some insight into the

function of a complex system. It reveals the links between many network properties, and how

a node’s trophic level can determine its ability to influence the rest of network.

Trophic Analysis is based on a simple calculation, a linear equation dependent only on

the degrees and the adjacency matrix, and is straightforward to interpret. We hope that high-

lighting the diverse ways it can shed light on network function and structure might prompt its

use in future work. In particular, when applied to real-world networks for analysis of structural

features or understanding of dynamics, as we expect the phenomena we describe here to be

quite general and applicable to many real-world systems. Since the equation is linear it can

be solved for large real-world networks. Additionally, the results can be related to network

properties such as the spectral radius, non-normality or strong connectivity [8, 2]. In partic-

ular, networks of low trophic incoherence are highly non-normal. It has been shown recently

that non-normal networks are very common [19], that non-normality of the adjacency matrix

can have a large effect on the stability of a system [165], and it has been related to economic

bubbles [38].

The general principle that the influence of a node is a function of its position in a hierarchy

does not necessarily require the use of trophic levels to measure this and another metric



106 CHAPTER 4. INFLUENCE AND INFLUENCEABILITY

such as PageRank could provide a similar result. However, trophic analysis allows a local

measure of node importance to be related to trophic coherence, which gives a measure of

how important the hierarchy is expected to be to the system. This is useful when Trophic

Analysis is applied to real-world systems, such as when it has been used to investigate the

hierarchy in a network of Sustainable Development Goals [47, 48]. This paper highlights

how the importance of node-level measures of centrality (such as trophic level or PageRank)

depends strongly on how these measures are distributed amongst the nodes, as well as on

global network properties (trophic coherence) which may hinder or accentuate their effects.

Trophic Analysis can be a useful way to understand directed networks as it does not simply

rely on either the in or out degree. In a directed network the ability to influence or be influenced

may be of different relative importance depending on the dynamics, and it is possible that

no correlation (nor more complex statistical relationship) exists between in and out degree.

So nodes of importance in one measure may not be important in another. Trophic level

simplifies this as the low level nodes are good at emitting and have many nodes downstream

of them while nodes at the top of the network receive many paths from below. The interplay

between trophic levels and degree distributions is something that could have a large impact

on influence and will be the subject of future work. For example, a network could have a

scale free distribution in either in or out degrees or both, which may or not be correlated, or

bear some relationship to the trophic structure.

In conclusion, we have highlighted how there are many disparate ways to view influence

and influenceability in real-world and generated networks, such as the ability to shape vari-

ous discrete and continuous dynamics, the localisation of eigenvectors, the sensitivity of the

spectra to structural perturbations, or the distribution of out-components within networks. We

have shown that all these phenomena can be thought of in terms of the local placement of

nodes within the hierarchical structure of trophic levels, which is mediated by the global direc-

tionality given by trophic coherence. And we have described how this insight can be used to

understand many structural and dynamical processes in directed complex networks, which

we hope prompts the use of Trophic Analysis in the study of specific real-world systems.
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This chapter is based on

• Niall Rodgers, Peter Tiňo, and Samuel Johnson. “Network hierarchy and pattern recov-

ery in directed sparse Hopfield networks”. In: Physical Review E 105.6 (June 2022),

p. 064304. issn: 2470-0045. doi: 10 . 1103 / PhysRevE . 105 . 064304. url: https :

//link.aps.org/doi/10.1103/PhysRevE.105.064304

Relationship of Work to Thesis

This chapter comprises the first paper on my PhD [1]. This work applied Trophic Analysis to

study a specific type of system motivated by beliefs about the structure of biologically inspired

neural networks. This work gave me experience in understanding the behaviour of hierarchi-

cal networks and how this could be understood via Trophic Analysis. This knowledge gained

allowed the results of the rest of my PhD to be achieved. The features and phenomena ob-

served here around the ability of a small number of nodes to control the state in a network with

a strong hierarchical structure would also form the basis of our work on network influence,

chapter 4. This work also highlighted the issues with using Python during my PhD as the

training, dynamics and generation of the networks were all time consuming. Promoting the

move to Julia for the rest of the computational work and motivating the study of new gen-

erative process such as based on network fitness presented in chapter 6. We also observed

when working on this project the impact that the size of the strongly connected components

could have on the dynamics which motivated thinking about how this could be linked to the

hierarchy, chapter 3. It additionally links to the work on fitness-based generative models,

chapter 6, as in a biologically system there may be different types of nodes which have dif-

ferent connection rules and different underlying connection parameters which an extension

of the work in chapter 6 could capture.

https://doi.org/10.1103/PhysRevE.105.064304
https://link.aps.org/doi/10.1103/PhysRevE.105.064304
https://link.aps.org/doi/10.1103/PhysRevE.105.064304
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Abstract

Many real-world networks are directed, sparse and hierarchical, with a mixture of feed-forward

and feedback connections with respect to the hierarchy. Moreover, a small number of ‘master’

nodes are often able to drive the whole system. We study the dynamics of pattern presenta-

tion and recovery on sparse, directed, Hopfield-like neural networks using Trophic Analysis

to characterise their hierarchical structure. This is a recent method which quantifies the lo-

cal position of each node in a hierarchy (trophic level) as well as the global directionality of

the network (trophic coherence). We show that even in a recurrent network, the state of the

system can be controlled by a small subset of neurons which can be identified by their low

trophic levels. We also find that performance at the pattern recovery task can be significantly

improved by tuning the trophic coherence and other topological properties of the network.

This may explain the relatively sparse and coherent structures observed in the animal brain,

and provide insights for improving the architectures of artificial neural networks. Moreover,

we expect that the principles we demonstrate here, through numerical analysis, will be rele-

vant for a broad class of system whose underlying network structure is directed and sparse,

such as biological, social or financial networks.



110 CHAPTER 5. HIERARCHY IN DIRECTED HOPFIELD NETWORKS

5.1 Introduction

Models of the brain provided the original inspiration for the invention of artificial neural net-

works. However, biological neural networks have a much richer structure than their artificial

counterparts. In particular, they are not exclusively feed-forward like conventional deep net-

work architectures, yet there is a direction to information processing, unlike in recurrent net-

work models. For example, the neural network of the nematode C. Elegans [240, 11] – the

only animal nervous system to have been fully mapped at the level of neurons and synapses

– is quite sparse and displays a non-trivial mix of feed-forward and feedback connections,

as revealed by a recent technique from the field of complex networks called Trophic Analysis

[8]. What might explain this particular neural-network architecture? We address this question

by studying the relationship between trophic structure and the dynamics of a simple model

which we refer to as a Hopfield-like neural network.

Trophic Analysis, inspired by ecological networks, assigns to each node a ‘trophic level’,

which can be regarded as a position in a hierarchy; and measures the ‘trophic coherence’ of

the whole network, a property which indicates to what extent this hierarchy is well defined,

conferring to the network an overall directionality. In this work we take the convention that

the bottom of the hierarchy is where information enters the system, just as energy flows up

from plants in a food web. This may be different in other fields, for example in the study of

‘hierarchical trees’, but all definitions are equivalent up to relabelling ‘top’ and ‘bottom’ or by

reversing the edge directions. When the C.Elegans neural network is visualised so as to

show the trophic level of each neuron, as in figure 5.15 in the appendix, it is observed that

while most of the synapses are consistent with an overall direction, there are some which feed

back as in a recurrent architecture. In fact, when the trophic coherence is calculated, it lies

exactly half way between a maximally coherent (i.e. entirely feed-forward) network, and one

which is entirely incoherent (fully recurrent). Moreover, it has been shown previously that this

level of coherence amounts to a significant deviation from the kind of networks which arise

from random graph models such as Erdős–Rényi model. [180, 6].

How dynamics and hierarchy interact is demonstrated in this paper by performing a pat-
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tern recognition task (described in detail in the next section) on network architectures which

span a range of hierarchical structures. We find that trophic coherence is very strongly linked

to the ability to correctly recognise and display the pattern shown. Maximally coherent net-

works lack the feedback to store patterns, while maximally incoherent networks are unable

to change state when presented with fractions of new patterns. The optimal configuration is

intermediate coherence, a mixture of feed-forward and feed-back structure which is shared

with many biological systems. A similar result was reported in Ref. [18] for a system in which

elements followed majority rule dynamics where the stability of the C. Elegans neural network

was analysed using Trophic Analysis. We concentrate our study on synthetic networks in-

spired by this network which can be made dense enough to store multiple pattern states and

lack basal nodes (nodes with no in-degree) which would act as input to the system without

being influenced by it.

There are clear differences between the structures of biological neural networks and ar-

tificial, recurrent neural networks, such as standard implementations of the Hopfield model.

Biological networks are sparse, whereas the artificial versions are often based on complete

or very dense graphs. They are also directed, since chemical synapses have a pre- and

a post-synaptic neuron [241], while some models such as that of Hopfield tend to assume

symmetric synapses in order to avoid the possible periodic or chaotic behaviour associated

with asymmetric interactions [242] or to align with experimental data limited to the undirected

case [241].

And in nature there are a limited number of sensory neurons which receive information

directly from the outside world, a fact not usually replicated in Hopfield models. However, it

is possible to implement a Hopfield-like model on sparse, directed networks, and to present

stimuli only to a subset of neurons, as we go on to do here in order to investigate how dy-

namics is affected by modifying the trophic structure.

Feed-forward artificial neural networks, such as those used in deep learning, in these

respects resemble more closely the architectures of biological neural networks, at least in

the case of nature’s only fully mapped connectome, that of C. Elegans. The main difference
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is that deep neural networks tend to be maximally coherent, with each layer corresponding

to a distinct (integer) trophic level.

We show, through numerical analysis, that network hierarchy can be exploited in order to

use a small subset of neurons to drive the system, with how well a pattern is recovered being

strongly influenced by where in the hierarchy it is received. Hierarchical structure creates

heterogeneous dynamics with different parts of the network recovering patterns differently.

Additionally, we show that by preferentially adding edges to lower level nodes, pattern recov-

ery can be made more consistent. This has potential applications for how artificial neural

networks are designed [243, 244], as well as for controllability of dynamics on general di-

rected complex networks [245, 168, 246], which could range from biological neural networks

[247, 248], to ecosystems, economies [34] or the Internet [249]. In particular, Hopfield net-

works have recently been used to model Gene Regulatory Networks [250, 251]. We will

therefore use this model to highlight principles which may be of general application to any

system wired according to a directed network. This is the first work in which Trophic Analysis

has been applied to Hopfield-like networks which have been trained to store patterns.

5.2 Using Trophic Analysis to Quantify Network Hierarchy

Trophic Analysis is a method of quantifying the hierarchy of nodes and the global directionality

of a directed complex network, first introduced in 2014 [5], which is based on the ecological

concept of trophic level [252]. A directed network, or graph, can be represented via an adja-

cency matrix, defined as:

𝐴𝑖 𝑗 =


1 if there exists an edge 𝑖 → 𝑗

0 otherwise
. (5.1)

Unlike in undirected networks, this matrix is not necessarily symmetric, 𝐴𝑖 𝑗 ≠ 𝐴 𝑗𝑖. Directed

networks have the additional complexity of the notion of in- and out-degrees, where the in-

degree is the number of incoming edges a vertex receives and the out-degree is the number
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of edges leaving a vertex. In undirected networks the in- and out-degrees coincide. Directed

networks can also be weakly or strongly connected. Weakly connected means that there is a

path between all pairs of vertices if you ignore the edge directions, while strongly connected

means there is such a path respecting the edge directions. The networks studied in this work

are all weakly connected but may not be strongly connected.

Trophic Analysis was recently extended and redefined to cover more general networks

[8], removing the requirement that networks must have basal nodes (nodes with in-degree

0). This is the definition that will be used in this work. Trophic structure has been used to

study spreading processes in neural and epidemiological settings [34], infrastructure [36, 37]

and the structure of organisations [7]. Trophic Analysis is composed of two parts: the node

level information, trophic level, which describes where each node sits in the overall hierarchy

of a network; and the global information of how directed, or coherent, the overall network is.

The idea of trophic level arises from ecology where the lowest trophic level nodes represent

plants which sit at the bottom of the network hierarchy, and the highest trophic level nodes

are carnivores at the top of the food chain. Trophic level can be calculated for a network of

𝑁 nodes by solving the 𝑁 × 𝑁 matrix equation

Λℎ = 𝑣, (5.2)

where ℎ is the vector of trophic levels, 𝑣 is the imbalance of in-degree and out-degree of a

node, 𝑣𝑖 = 𝑘 𝑖𝑛𝑖 − 𝑘𝑜𝑢𝑡𝑖
, and Λ is the Laplacian matrix:

Λ = 𝑑𝑖𝑎𝑔(𝑢) − 𝐴 − 𝐴𝑇 . (5.3)

This depends on the sum of the in- and out- degrees of each node, 𝑢𝑖 = 𝑘 𝑖𝑛
𝑖
+ 𝑘𝑜𝑢𝑡

𝑖
, the

adjacency matrix, 𝐴, of the graph and its transpose, 𝐴𝑇 . This definition can also be extended

to cover weighted adjacency matrices [8]. The solutions to equation 5.2 can be modified by

adding a constant vector since Λ acting on a constant vector is zero. This allows the minimum

level to be set at zero by convention and fully coherent networks to have integer levels.



114 CHAPTER 5. HIERARCHY IN DIRECTED HOPFIELD NETWORKS

Trophic coherence is based upon the distribution of trophic levels of the nodes in a net-

work. How coherent or incoherent a network is can be described by the parameter

𝐹 =

∑
𝑖 𝑗 𝐴𝑖 𝑗 (ℎ 𝑗 − ℎ𝑖 − 1)2∑

𝑖 𝑗 𝐴𝑖 𝑗
. (5.4)

We call 𝐹 the trophic incoherence, such that when 𝐹 = 0 the network is completely coherent

and when 𝐹 = 1 it is completely incoherent. This depends on the levels of each node ℎ𝑖

and the entries of the adjacency matrix 𝐴𝑖 𝑗 . Loosely speaking, 𝐹 quantifies, per connection

in the graph, to what degree the connections 𝑖 → 𝑗 are not “one-step” connections in the

order of trophic levels, i.e. by how much (ℎ 𝑗 − ℎ𝑖) differs (in the mean square sense) from

1. In principle these could have positive weights but throughout this work we will take the

entries of the adjacency matrix to always be 0 or 1 to avoid confusion with the trained weights

associated with the neural network. A network for which 𝐹 = 0 is acyclic and completely

free from any feedback, with the amount of feedback and cycles growing as this parameter

increases to 1 [8]. This is reflected in results showing an increase in spectral radius and a

reduction in the deviation from normality of the adjacency matrix, how far the matrix is from

commuting with its transpose, as incoherence increases [6, 8].

Note that the levels ℎ, defined by Eq. (5.2), can be regarded as the argument which

minimises 𝐹, as given by Eq. (5.4) [8]. One can therefore think of the trophic levels of a

network as those which maximise its trophic coherence which relates to how it was derived

in [8].

5.3 Hopfield-Like Networks

The Hopfield Model is a recurrent neural network model which is very similar to the Ising

model studied in statistical physics [242]. The neurons can take binary states +1 or −1. Due

to similarity to the Ising model these neuron states are sometimes referred to as spins and

the order parameter measuring the state of the system can be referred to as a magnetisation.

A Hopfield network can store binary memories, or patterns, by setting the weights of connec-
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tions between neurons such that when an update rule is applied the system moves across

an energy landscape to its attractors, which correspond to the stored patterns. This system

can, in some cases, be studied via mean-field theory or other theoretical methods [253]. In

our case, however, due to the asymmetric connections and complex network topology, we

will use numerical simulations.

We want the system to update in such a way that it moves towards the minima in the

energy landscape defined by

𝐸 = −
∑︁
𝑖 𝑗

𝑤𝑖 𝑗 𝐴𝑖 𝑗 𝑠𝑖𝑠 𝑗 , (5.5)

where 𝑤𝑖 𝑗 is the coupling between neurons 𝑖 and 𝑗 , which may be positive or negative de-

pending on patterns stored. The states of the neurons take values 𝑠𝑖 = ±1 and 𝐴𝑖 𝑗 are the

elements of the adjacency matrix, as defined by Eq. (5.1). There are many possible update

rules which can achieve the desired behaviour, such as the Metropolis–Hastings algorithm

[254]. We use a sigmoid probability function such that

𝑠𝑖 (𝑡 + Δ𝑡) = −𝑠𝑖 (𝑡) (5.6)

with

probability =
1

1 + exp Δ𝐸
𝑇

, (5.7)

where Δ𝐸 is the energy change associated with flipping the neuron state and 𝑇 is a temper-

ature parameter which makes the system stochastic. To reduce complexity and uncertainty,

the results we present here are for a temperature very close to zero, 𝑇 = 10−5, so the dynam-

ics is essentially deterministic and equivalent to using the sign of the incoming field, the sum

of the states of the in-neighbours, as the update rule. The system can therefore be referred

to as Hopfield-like, or simply as a Hopfield network, which is generally taken to be deter-

ministic, as opposed to Boltzmann machines, which are stochastic [255]. However, even in

this regime the asymmetry in 𝐴 leads to a range of surprising behaviours not observed in

undirected networks [256].
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Updates to the system can be made in parallel or asynchronously. We use a parallel

update rule, which allows for complex behaviour such as limit cycles [245].

5.3.1 Training the Network

Setting the weights so that the attractors of the system correspond to the random binary

patterns we wish to store in the network is a key part of the process. The traditional method

of setting weights in a Hopfield network so that the network recalls the desired patterns is

Hebb’s rule [257]. This is often summarised as “neurons that fire together wire together”. That

is, if two neurons have the same state in a particular pattern the connection between them

is strengthened, and if they are in opposite states it is decreased. For learning 𝑃 patterns,

where for each pattern each neuron has a fixed state 𝜉 𝑝
𝑖
= ±1, the rule sets the weights as

𝑤𝑖 𝑗 =
1
𝑃

𝑃∑︁
𝑝=1

𝜉
𝑝

𝑖
𝜉
𝑝

𝑗
. (5.8)

This very simple rule works and can be used on any network topology. It has the benefit of

being a “one shot” rule in that it only requires one loop over the set of patterns to train the

network. However, it suffers from the fact that on a graph which is not complete the infor-

mation about the correlations between disconnected neurons is not used. We found during

initial tests that on very sparse directed networks the memory capacity of the network was

substantially reduced. This is very similar to the finding of Tanaka et al. [258] for undirected

networks. They remedy this issue by adopting an iterative version of Hebb’s rule based on

earlier work [259, 260] which was found to increase capacity substantially, with other sim-

ilar results noted in the literature [261]. For the remainder of this work we implement this

rule [258]. Both the original Hebb rule and the adapted version are local, in that synaptic

weights are updated using only information from the pre- and post-synaptic neurons – as

also happens, we believe, in the brain [262].

The iterative Hebb rule works to set the weights so that every pattern corresponds to a

local minima of the energy landscape where updates of the system stop. This condition can
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be expressed as

𝜉
𝑝

𝑖

(∑︁
𝑗

𝐴 𝑗𝑖𝑤 𝑗𝑖𝜉
𝑝

𝑗

)
≥ 𝛿 (5.9)

for all 𝑃 patterns and 𝑁 nodes, and 𝛿 a positive constant. This means that at each node,

for every pattern the polarities of the state and the incoming field are the same. As a result

it is always energetically unfavourable to flip the state at zero temperature so the system is

stable.

The iterative Hebb rule is laid out in detail in Algorithm 1.

Algorithm 1: Iterative Hebb Rule [258]
Set the initial weights 𝑤𝑖 𝑗 = 0 for all nodes 𝑖, 𝑗 .
Set the stop condition flag, flag = 0.
Set the step counter, steps = 0.
while flag = 0 and steps < stepsmax do

flag=1 ;
for p in range P do

for i in range N do
field = 0 ;
for j in range N do

field← field + 𝐴 𝑗𝑖𝑤 𝑗𝑖𝜉
𝑝

𝑗

end
if field × (𝜉 𝑝

𝑗
) < 𝛿 then

for q in range N do
𝑤𝑞𝑖 ← 𝑤𝑞𝑖 +

𝐴𝑞𝑖𝜉
𝑝
𝑞 𝜉

𝑝

𝑖

𝑁
;

flag = 0
end

end
end

end
steps← steps + 1

end

At each iteration the weights are updated by

𝑤 𝑗𝑖 ← 𝑤 𝑗𝑖 +
𝐴 𝑗𝑖𝜉

𝑝

𝑗
𝜉
𝑝

𝑖

𝑁
, (5.10)

until the required condition is met. For this study 𝛿 was always set at 1, but other values can

be used to change the stability of the patterns. If a stable solution of this set of inequalities
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exists it should always converge in a finite amount of time [259]. However, a solution does

not always exist for sparse, directed networks, so the algorithm needs to be terminated after

a chosen maximum number of iterations. Here we use 400 iterations. The patterns can still

be quite successfully stored and recovered if full convergence has not been achieved, as the

number of weights continually updated is small after only a few iterations.

Pattern recovery is measured with an order parameter, which we call magnetisation, and

is defined for each pattern 𝑝 as the scalar product of the state of the system and the pattern:

𝑚𝑝 =
1
𝑁

𝑁∑︁
𝑖=1

𝑠𝑖𝜉
𝑝

𝑖
. (5.11)

This is equivalent to the cosine of the angle between the state and the pattern. In this work

we study patterns which are random, independent and identically distributed. Correlation

between patterns and between patterns and the network topology may affect the performance

of the network in a wide variety of ways depending on the topology, sparsity and nature of

the correlation [258, 263], so this may be a potential avenue for future work.

5.4 Network Generation

To generate networks with a specified trophic coherence and fixed numbers of nodes and

edges, we use a variant of the Generalised Preferential Preying Model (GPPM) from Refs.

[33, 34], although the original work used a different definition of trophic level.

We generate networks such that each node has in-degree at least 1. One reason for

this is that if the network contains basal nodes (nodes with in-degree 0), one must choose

whether their states 𝑠 should remain constant, take random values at each time step, or act

as external inputs to the system. Moreover, it is known that basal (or source) nodes can drive

dynamics on directed networks in certain contexts [18, 193]; but, to the best of our knowledge,

we investigate here for the first time the importance of trophic level for dynamics on networks

without basal nodes.

The detailed steps of the generative process are laid out in appendix 5.7.2. In short, we
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randomly generate an initial configuration of 𝑁 nodes where each node has in-degree 1 and

then calculate the initial trophic level, ℎ̃, of this configuration. Then edges are added until the

specific number is reached where the probability of connecting node i to j is

𝑃𝑖 𝑗 = exp

[
−
( ℎ̃ 𝑗 − ℎ̃𝑖 − 1)2

2𝑇Gen

]
. (5.12)

Afterwards, the updated trophic levels, ℎ, are recalculated. With this method networks of any

incoherence can be generated by varying the control parameter 𝑇Gen, as demonstrated in

Fig. 5.14 in the appendix.

The networks generated via this method can act as an approximation to the hierarchical

structures seen in real-world systems. In Ref. [8] it was shown that many real-world networks

conform approximately to an analytical prediction for their scaled spectral radius, 𝜌𝑠, as a

function of the incoherence parameter, 𝐹. This relationship is

𝜌𝑠 = exp

[
(1 − 1

𝐹
)

2

]
, (5.13)

and can be derived from the ‘coherence ensemble’ of random graphs [6]. Here, 𝜌𝑠 is defined

such that it is scaled between 0 and 1 to compare networks of different sizes:

𝜌𝑠 =
𝜌

| |𝐴| |2
, (5.14)

where 𝜌 is the standard spectral radius of the adjacency matrix, and | |𝐴| |2 is the 2-norm of

𝐴 – that is, | |𝐴| |22 is the largest eigenvalue of 𝐴𝐴𝑇 . As we show in Fig. 5.1, the generated

networks we use in this work also have 𝜌𝑠 close to the value given by Eq. (5.13). This justifies

the assumption that the numerically generated networks reflect some of the characteristics

exhibited by real world networks.
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Figure 5.1: Scaled Spectral Radius of Generated Networks against trophic incoherence fol-
lowing the same analytic prediction as real networks as shown in Ref. [8]. The number of
nodes is always 𝑁 = 500, and the mean degree ⟨𝑘⟩ = 20.

5.5 Results

Firstly, as we impose the constraint that only a subset of neurons are presented the pattern

to make the setup more like real-world systems, we must decide which set of neurons are to

be shown the pattern and assess the effects of this choice. It was chosen that for this model

20% of the neurons would be set into a pattern state and then it would be measured how well

the system recovered the remainder of the pattern from this setup. The location of pattern

presentation is analogous to the initial conditions of a dynamical system where the question

would be which initial condition sends the system into the desired state given the constraint

of only controlling a small number of elements. To assess the effect of hierarchy on pattern

recovery, patterns were shown to the 20% of nodes with the lowest trophic level (at the bot-

tom of the hierarchy), highest trophic level (at the top of the hierarchy), and a random 20% of
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nodes. The results are shown in figure 5.2 for networks spanning a range of trophic coher-

ence. We plot the results for each individual network, rather than just the averages with error

bars, in order to highlight the breadth and distribution of network behaviour, which becomes

more apparent as we study sparser networks in section 5.5.1. These results demonstrate

the difference in dynamics depending on the part of the network shown the pattern. When

the pattern is shown to 20% of the nodes randomly this is not enough to move the system

into a new state, so the shown pattern is not recovered well across the whole range of trophic

coherence. It is only possible to extend down to networks of intermediate coherence at this

edge density with the generative method used. When the perturbation is made to the state

of the top 20% of nodes by trophic level, it has little effect on the state of the system. This is

because the perturbation cannot filter back down the system, so the top nodes do not drive

the dynamics. For sparse enough networks and high coherence, it is unlikely there will be any

paths from the highest trophic levels to other nodes further down. If the network is denser,

such paths may exist, but they will still be few compared with the number of paths form lower

levels to higher. Hence, information flow will always be predominantly form lower to higher

trophic levels in coherent networks.

The dynamics are more complex when patterns are presented to the lowest level nodes,

since we observe different behaviours when trophic incoherence is varied. For the most

incoherent networks, which are most similar to random graphs, the performance is on average

poorer as the system is more stable due to the amount of feedback in the system. By stability

we mean here the system’s resistance to changing state when a new pattern is presented.

At intermediate coherence, the network has an overall direction, so the perturbation at low

level nodes is transmitted through the hierarchical network structure and pattern recovery is

quite good even though only 20% of nodes are stimulated. This is behaviour that would not

be seen in a Hopfield model on a complete graph, nor on a random graph, since more than

half the nodes would need to be changed to a new pattern in order to change the state of the

system. These results demonstrate the variety of dynamics that can be induced by the more

complex, hierarchical networks as compared to a complete or random graph [264, 242, 265].
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Figure 5.2: Performance of 200 Networks with 𝑁 = 500, ⟨𝑘⟩ = 100 recovering 10 patterns
plotted against trophic incoherence. Showing patterns to different 20% sets of nodes.

When the constraint of a small number of input neurons is removed, the effect of hierar-

chy on the dynamics is less obvious. Figure 5.3 illustrates the case when the patterns are

shown to 60% of neurons. When this many neurons receive an input the distinction between

outcome of showing a pattern to a random 60% and the lowest level 60% is blurred, with

both being able to recover the pattern across a range of trophic coherence. This highlights

the impact of removing the constraint of a small number of inputs. When the inputs are large

the effect of trophic level is hidden as randomly chosen inputs can control the system. How-

ever, for the highest level nodes this is still not the case. Even at 60%, the higher level nodes

fail to influence the coherent networks, as the lowest level nodes still have more control over

the system and prevent the pattern from being modified. When the network is hierarchical,

perturbations can be both amplified or damped by the structure, something we don’t see in

either a complete or a random graph Hopfield network. This is again different behaviour than

what would be observed on a dense network with no internal structure, as 60% of neurons

being flipped would be enough to change the state to that of the new pattern in all cases.

This highlights the connection between the trophic level of a node and its ability to control the
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network: the high level nodes have much less ability to influence the system than those at a

low level. This difference remains at all levels of trophic coherence, but is most pronounced

for more coherent structures. In all examples the trophic incoherence does not actually reach

1, where all the nodes would have the same level. This is because this only happens in bal-

anced networks, such as a directed cycle, and the limit of our model is Erdős–Rényi random

graphs, which have incoherence around 0.95. It is interesting to note the graphs which are

random still have a slight hierarchical structure which can be revealed by the trophic levels.
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Figure 5.3: Performance of 200 Networks with 𝑁 = 500, ⟨𝑘⟩ = 100 recovering 10 patterns
plotted against trophic incoherence. Showing patterns to different 60% sets of nodes.

5.5.1 Sparser Networks

When the networks are made sparser – that is, the average degree ⟨𝑘⟩ is reduced from 100

to 20 – the results are broadly the same as on denser networks, but there is more variation

in the performance of different networks, even for similar trophic coherence. For networks of

this sparsity the whole range of coherence can be investigated, as there are no difficulties as-

sociated with generating the more coherent networks. For inputs to both randomly selected

and highest level nodes, the recovery is very poor, just as it was before. When it is the lowest
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level nodes which receive the input, behaviour depends on the trophic incoherence of the

network. For the networks with lowest incoherence, the performance is generally very poor.

This is due to the fact that these networks have very little feedback and small strongly con-

nected components, so the patterns are not well recovered. For the intermediate coherence

networks, performance is inconsistent. Some networks perform very well, with their struc-

ture being suited to controlling the system with only the low level nodes, while other networks

perform very badly. Finally, higher incoherence networks are again more likely to get stuck

in a pattern rather than to respond to the stimulus at the lowest level nodes, due to the high

amount of feedback in the system, and the maximum performance begins to decrease again.

Therefore, for sparser networks we find that the best performance is found at intermediate

coherence – although not all networks in this range are necessarily high performing.
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Figure 5.4: Performance of 200 Networks with trophic incoherence showing patterns to the
20% lowest (blue), highest (green) and random (orange) nodes by trophic level. 𝑁 = 500,
⟨𝑘⟩ = 20

The relationship between average degree and recovery of patterns is shown in figure 5.5,

where all networks have 500 nodes and are generated using 𝑇𝐺𝐸𝑁 = 1. The task cannot

be performed by the most sparse networks, as they all fail to store any patterns. At an aver-
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age degree of around 20, we reach the regime where some recovery is possible. For higher

density, recovery reaches an inconsistent regime, where performance varies greatly for net-

works of similar degree and trophic properties. This kind of regime is most interesting to study

since the dynamics have a lot of variability, and successful pattern recovery is possible but

not sure. Above an average degree of about 200, the structural features of the network are

lost as the network is too dense and it simply gets stuck in one state for the whole dynamics

and there is no ability to update when presented with a small number of inputs. Hence, figure

5.5 demonstrates that increasing the network density can make performance at a pattern

recovery task worse, which is counter to the general expectation for Hopfield networks where

higher connectivity improves performance [266, 265].

Figure 5.5: Performance of Networks of varying degree for fixed generation temperature,
𝑇GEN = 1, showing patterns to the 20% lowest nodes by trophic level. 𝑁 = 500. With the
average trend shown by the dashed red line and the standard deviation shown in the shaded
area.
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5.5.2 Comparison of Targeting Highest Degree Nodes

To validate our choice of nodes we compare our results to a targeted presentation of the

pattern to the 20% of nodes of highest out-degree, which one might assume form the subset

of nodes with greatest local influence on the system. This comparison is shown in figure 5.6,

which compares the influence of the nodes of high degree to the selection of nodes by their

local trophic properties. The set of nodes with highest degree do not influence the network to

the extent that the lowest level nodes do. However, they do perform better than a random set

of nodes, as expected, in both networks of average degree 20 and 100. In the networks of

average degree 100 (figure 5.6a), the lowest trophic level nodes are better than the highest

degree nodes when the network is more coherent and hierarchical, as in this case the system

is more strongly controlled by the low level nodes. When the networks are less hierarchical,

the influence of the high out-degree nodes becomes comparable to the influence of the low

level nodes. This highlights a crucial point: in a complex network, the “importance" of nodes

can be determined both by their degree-based centrality and by their relative position in the

hierarchy, depending on how trophically coherent the overall system is. In a very hierarchical

(i.e. coherent) network, even if a node has a high out-degree, the state of the system can

still be more controlled by lower out-degree nodes below it in the hierarchy. Our results, due

to the generative model, focus on networks where the degree distributions are not extremely

heterogeneous. The fact the in very hierarchical networks low level nodes control the state

of the nodes above them would still hold in a very heterogeneous network. However, degree

may be a more important factor if the out-degree of a few nodes were so large that they

directly affected much of the network. These network properties can interplay in a variety of

ways and may be the subject of future work.

5.5.3 Structural Properties of Networks Affecting Performance

We hypothesised that some network properties outwith trophic coherence could explain the

range and inconsistency of behaviour for sparse networks. One possible measure was the
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(b)

Figure 5.6: Distribution of Performance for Networks showing 10 patterns to lowest trophic
level, highest degree and random 20% of nodes. N = 500 (a) ⟨𝑘⟩ = 100, (b) ⟨𝑘⟩ = 20.

number of edges leaving the node set shown the pattern compared to the total number of

edges. When very few edges connect the nodes shown the pattern to the rest of the network,

it is unlikely for the pattern to be successfully recovered, as when the pattern is updated it

cannot be properly transmitted outside of the set shown the pattern. The results of this are

displayed in figure 5.7. This shows that there is a strong correlation (correlation coefficients

in the legend) between the edge ratio and performance, but it does not exactly determine

the behaviour of the system. However, it is very clear the worse performing networks have

very small values of this parameter, and it can be used to identify the failing networks, if not

precisely to select the very best networks.
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Figure 5.7: Relationship between network performance and the ratio between number of
edges leaving the set shown the pattern and total edges in the network. 𝑁 = 500, ⟨𝑘⟩ = 20.
Networks of Intermediate Incoherence.

Another factor which we thought may influence the performance was the distribution of

trophic levels amongst the nodes. In networks generated with the model used here (see

section 5.4), edges tend only to span a small difference in trophic level. We would therefore

like the level distribution to be peaked towards lower levels, so that more nodes have a lower

level and are more likely to be densely interconnected with the set of nodes shown the pattern.

This is shown in figure 5.8, where we sum the cumulative distribution of the number of nodes

of trophic level less than 𝛼ℎ𝑚𝑎𝑥, for 𝛼 in the range 0 to 1. This function is maximised when the

level distribution peaks towards lower level nodes, and so provides a good measure of where

the peak in trophic level lies, while being normalised so different networks can be compared.

It shows a similar profile to the result of figure 5.7, where the correlation is again strong but

does not precisely predict the performance of the network.

We therefore surmise that the performance of a network at this task depends on several

topological features, including but not limited to: trophic coherence, mean degree, mean

degree of the lowest level nodes, and trophic level distribution.
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Figure 5.8: Distribution of Performance of 200 Intermediate Incoherence Networks against
the integral from 0 to 1 over a parameter 𝛼 of the curve of number of nodes of trophic level
less than 𝛼ℎ𝑚𝑎𝑥. 𝑁 = 500, ⟨𝑘⟩ = 20. Networks of Intermediate Incoherence.

5.5.4 Time Series of Pattern Recovery in Sparse Network Components

In this section we review the time series of the dynamics of pattern recovery in a network with

average degree 20, and highlight some of the reasons for the inconsistency in performance

between similar networks. In all of the following example time series the pattern is presented

to the 20% of nodes with the lowest trophic level.

We find that the network structure can induce quite heterogeneous dynamics. This is

something that is not noticeable when the recovery is working well. Let us consider first the

case of a dense network, with mean degree 100, as shown in figure 5.9. In this time series

each colour represents the pattern which has been most recently presented to the network,

while the y-axis represents the order parameter corresponding to that pattern. For a well

performing network, the order parameter quickly returns near to 1 whenever a new pattern is

presented. This is the case for the network shown in figure 5.9. Due to the recovery being this

good, and the edge density being high, heterogeneous dynamics is not observed. Patterns

are recovered to the same extent in all parts of the network hierarchy, and additionally the

whole network is strongly connected, so there is no difference in dynamics inside or outside
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that component.
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Figure 5.9: Time Series of Pattern Order Parameter for average degree 100 network with 500
nodes storing 20 patterns. Where each colour represents the pattern most recently having
been shown to the network. At this edge density recovery is very consistent.

This is very different from the dynamics exhibited by the sparse network used in figure

5.10, which stores four patterns. This network is a specific example of a network which per-

forms reasonably well, but it should be borne in mind that many sparse networks fail very

badly. The dynamics are analysed by considering four different network components (sub-

graphs): the whole system; the largest strongly connected component; the bottom 20% of

the nodes by trophic level; and the top 20% of nodes by level. Noting that these components

are simply where the data was collected and the presentation location was unchanged. In

the full system, figure 5.10a, recovery is good for some patterns but fails badly for others.

The behaviour of each pattern is roughly consistent, and if a pattern fails or succeeds at

one presentation it will repeat the same behaviour at subsequent presentations. The order

parameter dips when a new pattern is presented, then moves to its new stable value. Ad-

ditionally, there are fluctuations around the stationary states and updates to the system do

not stop (i.e. some neurons continue to change state in subsequent time steps). This is

different to the dynamics inside the largest strongly connected component, 5.10b, where for

the fully recovered stable patterns updates stop and there are no fluctuations. This highlights

the stabilising effects of feedback associated with being strongly connected. Among the low

level nodes, figure 5.10c, for those patterns which are correctly recalled, the order parameter

goes to 1 when the new pattern is presented. However, if a pattern is not recovered by the low

level nodes then this precludes the possibility of that pattern being successfully transmitted
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(a) Full Pattern Order Parameter.
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(b) Strongly Connected Component.
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(c) Bottom 20% of nodes by trophic Level.
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(d) Top 20% of nodes by trophic level.

Figure 5.10: Time Series for different network components for average degree 20 network
with 500 nodes storing 4 patterns. Where each colour represents the pattern most recently
having been shown to the network.

through the network. This means that if a pattern is not recovered by the low level nodes,

figure 5.10c, then it will also fail to be recovered by the high level nodes 5.10d. Recovery

by the high level nodes is the least consistent, and fluctuates the most, since these nodes

are furthest from where the patterns are presented. In addition, the order parameter initially

drops to zero whenever a new pattern is presented as it is not shown to any of the nodes

contained in this set.

These results might be different if the network included basal nodes (those with no in-

neighbours), and would depend on what update rule we chose for these – e.g. maintain their

state indefinitely, update randomly, etc.

5.5.5 Search for Improvements to Network Structure

The results relating the distribution of trophic levels to neural-network performance open the

possibility of biasing the network generation process so that it preferentially leads to networks

with topology better suited to the task. A simple way to accomplish this is to generate the

networks in the same way as previously, but modify the probability of adding edges so that it

is biased towards adding edges to lower level nodes. This can be accomplished by modifying
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the probability of placing and edge so that

𝑃𝑖 𝑗 = exp

[
−
( ℎ̃ 𝑗 − ℎ̃𝑖 − 1)2

2𝑇Gen
+ 𝛾ℎ̃𝑖

]
, (5.15)

where the 𝛾ℎ̃𝑖 modification in the exponential acts to bias the distribution towards high or

low levels, depending on the sign of 𝛾. In what follows we choose 𝛾 = −0.5 in order to

add more edges to nodes with lower trophic level. One downside of this method is that it is

harder to control precisely the trophic incoherence of a network and to span the full range of

incoherence.

0.45 0.50 0.55 0.60 0.65 0.70 0.75

Trophic Incoherence

0.0

0.2

0.4

0.6

0.8

1.0

O
rd

e
r 

P
a
ra

m
e
te

r 
o
f 

S
h
o
w

n
 P

a
tt

e
rn

(a) Bias Towards Low Level Nodes. 𝛾 = −0.5
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(b) Bias towards High Level Nodes. 𝛾 = 0.5

Figure 5.11: Distribution of Performance for Biased Networks biased. N = 500 ⟨𝑘⟩ = 20.

The broad effects of biasing the network generation and performance are demonstrated in
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figure 5.11. This shows that when edges are more likely to connect to low level nodes, figure

5.11a, the very worse performing networks are essentially eliminated, and all the sparse

networks recall at least a fraction of the pattern. This biasing has no effect on performance

when presenting the pattern to the random or higher level nodes, as they still fail to force the

system to change state when the perturbation is applied to these nodes.

To demonstrate the importance of where feedback is placed in the hierarchy we change

the sign of the biasing factor and make it more likely that edges are added to the higher level

nodes, figure 5.11b. This creates networks which are not suited to the recovery task and

perform badly in all cases. This is due to the fact that the edges connecting to high level

nodes do not allow both for the pattern to be stable and for the information to be transmitted

across the system. One issue with biasing the network generative process is that it becomes

more difficult to control precisely the trophic coherence of the network, which is why the range

of trophic incoherence is restricted in figure 5.11.

The time series of pattern recovery for sparse biased networks clearly demonstrate how

this biasing procedure modifies the dynamics of the system. Pattern recovery across the

whole system, figure 5.12a, is very consistent compared to the unbiased networks (figure

5.4), which fully recover some patterns and fail to recover others. This time series is a rep-

resentative example of the behaviour seen in biased networks and comes from a single net-

work. The consistent level which they reach however is below 1 so the patterns are not fully

recovered and the recovery is not as high as the maximum seen in some specific unbiased

networks (figure 5.10). Whether this is better may depend on the context: remembering part

of every pattern so it can be identified may be preferable to recalling some patterns perfectly

but not recovering others at all. Additionally, for biased networks there are large fluctuations

and updates continue when the system has reached the new state. This can be explained by

looking at the dynamics inside the largest strongly connected component only, figure 5.12b.

In this component recovery is very consistent and all patterns are fully recovered, so the net-

work does much better when this component is larger. It also explains why, in the time series

for the dynamics of the full network, fluctuations around a stable point are observed, since
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updates to neuron states stop in the strongly connected component but continue outside of

it. The fact that the recovery is very good inside the largest strongly connected component

opens up the possibility of selectively generating networks which are both biased towards

lower level nodes, and have large strongly connected components.

0 1000 2000 3000 4000 5000 6000 7000

Time

0.0

0.2

0.4

0.6

0.8

1.0

F
u
ll
 P

a
tt

e
rn

 O
rd

e
r 

P
a
ra

m
e
te

r

(a) Order Parameter of Whole Network
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(b) Largest Strongly Connected Component Only

Figure 5.12: Time Series of Pattern Order Parameter calculated inside the different compo-
nents for average degree 20 network with 500 nodes storing 4 patterns. Generated with a
bias towards adding edges to lower level nodes. Where each colour represents the pattern
most recently having been shown to the network.

This is demonstrated in figure 5.13, which shows the performance of biased networks

where the largest strongly connected component comprises more than 60% of the nodes.

These networks are simply generated by repeating the generative process and discarding

networks which do not meet this requirement. The higher this threshold, the more inefficient

the process but the more likely we are to keep only highly performing networks. At at threshold

of 60% all very poorly performing networks are eliminated, and the recovery performance is

consistently around 0.6.

These results demonstrate that despite the variability in the dynamics of directed sparse

Hopfield networks, it is possible to generate structures which perform well consistently by

tuning a few parameters: 𝑇𝐺𝐸𝑁 to set the trophic coherence, 𝛾 to place edges preferentially
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at lower level nodes, and the threshold for the minimum size of the strongly connected com-

ponent.
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Figure 5.13: Performance of Low Level Biased Networks with average degree 20 and 500
nodes where the largest Strongly Connected Component contains at least 60% of the neu-
rons.

There are many possible ways to modify network structure to maintain performance and

we just give a small sample here. Biasing is limited by the fact it reduces the control of the

trophic structure and that strongly biasing may decrease the size of the strongly connect com-

ponent which is needed for recovery. The best way to improve network structure depends on

the constraints, on whether edges can be added or removed, and on how success is defined.

Biasing makes the recovery more consistent, but the performance of unbiased networks may

peak higher for certain networks and patterns, which may be preferred in some situations.

5.6 Discussion and Conclusion

We have shown that neural networks based on sparse, trophically coherent graphs have a

much wider range of possible behaviour than ones based on either fully random or complete
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graphs [264, 242, 265], where all nodes necessarily have very similar dynamical roles. This

symmetry is broken in a coherent network, as different nodes can have very different abilities

to affect the dynamics of the system. The interplay between trophic structure and dynamics

has already been observed across a range of systems in the literature [5, 34, 7]. It has also

been shown that the coherence of a network is linked to the non-normality of the adjacency

matrix [18, 8]. Non-normality in networks has in turn been linked to sensitivity to perturbations

and to the stability of the system across a wide range of dynamics [19, 267, 268, 154, 269],

which is consistent with our results that more coherent networks are more sensitive to targeted

perturbations and less stable.

The behaviour observed in the system studied here relies on two key facts: that the net-

works are sparse and that the sets of input nodes are small. If the networks are too dense

then hierarchical structure is destroyed and the asymmetry between nodes does not exist

(there is a limit to how coherent a dense network can be). Moreover, it is thanks to the net-

work’s trophic coherence that a small subset of nodes is able to drive the dynamics of the

whole system. Many real-world systems display both of these properties. Additionally, they

are often neither highly coherent nor incoherent, but have trophic coherence in the interme-

diate range which allows for a balance between stability and sensitivity to stimuli [8, 18, 6].

Therefore, we believe the principles studied here for the case of Hopfield-like neural networks

may be broadly applicably to a range of real-world systems. The limitations of these methods

are that since trophic incoherence is an average global network property it lacks the precise

detail to characterise fully the behaviour of the system in all cases. It is challenging to control

precisely both the trophic incoherence and another aspect of network structure, since one

may restrict the other, as with the biasing method. In future this work could be extended by

looking at a time series of patterns which are correlated with each other [263], patterns cor-

related with the structure, or networks with heterogeneous degree distributions and varying

in- and out-degree correlations.

In conclusion, we have demonstrated, through numerical analysis, that trophic structure

strongly shapes pattern recovery in directed Hopfield-like networks. In particular, on a sparse,
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directed network a small number of input neurons – which can be identified by their trophic

levels even in the absence of basal nodes – are able to drive the system in such a way that it

recovers patterns. This would not be possible on either a complete or fully random network,

which require at least about 50% of the nodes to receive the input in order to change state. In

order for such networks to recover patterns successfully, they must have the correct balance

between feedback and directionality – a feature which is determined by the trophic coherence.

However, we observed that setting the appropriate trophic coherence was not enough to

guarantee good performance. We found that by biasing the network generation process so

as to add edges preferentially to lower-level nodes, and then discarding networks with strongly

connected components below a minimum size, we could reliably produce architectures that

performed the task well.

5.7 Appendix

5.7.1 Software Tools Used

Various software packages were used manipulate the networks and perform the simulations.

The Python package Graph Tool [129] was used for some of the network manipulation. Net-

workx [270] was used for Network drawing and some network manipulation and analysis. The

Julia package LightGraphs.jl was used for the spectral radius results [271]. All the updating

and training of the Hopfield-like networks was done with the aid of the Cython package [272]

to convert Python Code to C as pure Python was found to be too slow to allow efficient study.

5.7.2 Network Generation

The detailed steps to the network generative process are as follows:

1. Create the 𝑁 nodes of the network and assign to each node one in-coming edge, in

each case from a randomly chosen other node. After this, each node has in-degree 1.
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Figure 5.14: An example of the distribution of trophic incoherence with temperature like pa-
rameter, 𝑇GEN in this generative model.

2. Compute the initial trophic levels, ℎ̃, using equation 5.2. This is best solved iteratively,

since this method is fast and works even is there are small disconnected components.

3. Add edges up to the desired edge number with probability dependent on the trophic

level difference between the nodes minus 1. The edge probability used was Gaussian

and defined as

𝑃𝑖 𝑗 = exp

[
−
( ℎ̃ 𝑗 − ℎ̃𝑖 − 1)2

2𝑇GEN

]
, (5.16)

where 𝑇GEN is a temperature-like parameter used to control how coherent the network

is: small 𝑇GEN generates networks which are highly coherent.

4. Recompute the trophic Levels, ℎ, including the newly added edges. Then compute the

incoherence parameter, 𝐹, of the generated network.

This method works best for reasonably sparse networks, since when the edge density is

too large it becomes difficult to find configurations of high trophic coherence, if they exist at

all. On the other hand, if the edge density is very low the resulting network may not be even

weakly connected. However, for a large range of densities it will encounter no issues. Due to

the stochastic nature of the method it is is not possible to predict precisely the incoherence

of a generated graph . For example 1000 networks generated with 500 nodes and 30 × 500
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edges, and temperature 𝑇𝐺𝐸𝑁 = 1.3, cluster around 𝐹 ≈ 0.59, with most networks in the

interval 𝐹 ∈ (0.56, 0.65). However this level of precision is sufficient for analysing general

regions of behaviour with no issues.

The third step can be quite computationally inefficient for large networks with many possi-

ble edges as the probabilities for adding an edge at most locations are very close to zero. This

can be improved by more efficiently sampling the probability distribution using the method

outlined below.

The goal of this sampling method is to set up the sampling so that each time a random

number is drawn it results in an edge. This avoids repeatedly drawing numbers for the ma-

jority of edges which are unlikely to be added. The steps are:

1. Label all the possible edges and probabilities with an integer 𝑙 and 𝑃𝑙 respectively.

2. Compute the sum of all these probabilities,

𝑆 =
∑︁
𝑙

𝑃𝑙 .

3. Draw a random number, 𝑟, between 0 and S.

4. Sum the probabilities one at a time until you reach the random number, 𝑟.

5. Add an edge at the space, 𝑙, corresponding to the probability 𝑃𝑙 which made the same

greater than 𝑟.

6. Set 𝑃𝑙 = 0 and repeat sets 2-6 until the required edge number is reached.

This method is much more efficient: the sums can be computed quickly as it avoids the

many repeated random number draws for every single missed edge that would otherwise

be necessary. It is possible to also create variants of this method by modifying the initial

structure to which subsequent edges are added; or to recast the model so as to start from a

dense network and prune edges with a similarly defined probability to generate networks of

the desired trophic incoherence.
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5.7.3 Connectome of C.Elegans plotted by trophic level

T
ro

p
h
ic

 in
c
o
h
e
re

n
c
e
 =

 0
.5

0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

Trophic Level
C

.
e
le
g
a
n
s

N
e
u
ra

l N
e
tw

o
rk

Figure 5.15: Illustration of the the real world connectome of C.Elegans shown which has in-
termediate incoherence with node height drawn using Trophic Level. Data from[185]. Drawn
with Networkx Graph Package [270].
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This chapter is based on

• Niall Rodgers, Peter Tiňo, and Samuel Johnson. “Fitness-Based Growth of Directed

Networks with Hierarchy”. In: Journal of Physics: Complexity (Aug. 2024). issn: 2632-

072X. doi: 10.1088/2632-072X/ad744e

Relationship of Work to Thesis

In this chapter we present the paper “Fitness-Based Growth of Directed Networks with Hi-

erarchy" [4] which attempts to explain the ubiquity of hierarchy in real directed networks by

highlighting how it can arise through fitness-based interactions. The work was motivated by

several factors that had arisen throughout my PhD. The other methods used for generating

networks in this thesis allow only limited control of the type of hierarchical structure which

emerges as well as being computationally inefficient. This prompted the idea to use fitness-

based methods to generate networks as this could allow control of the number of levels and

number of nodes per level using the fitness distribution. Fitness-based models could also

allow more control over the probability that edges break the hierarchy which was shown to be

important to the strongly connectivity in chapter 3 as well as providing a more realistic way

to generate networks as agents in a system may observe the properties of nodes but not be

aware of the entire network structure.

Additionally, it allowed us to understand the relationship between heterogeneous degree

distributions and the hierarchy measured with Trophic Analysis. The observation that hierar-

chy is common in many real-world systems justifies the importance of studying this property

in the other parts of the thesis so it made sense to study why it arises. This chapter also

rounds off the thesis by studying the generation of hierarchical network which complements

the study of structure and dynamics. The work of this chapter could form the basis of future

studies of how hierarchy affects various types of dynamics in the style of chapters 4 and 5

however with an improved generative method.

https://doi.org/10.1088/2632-072X/ad744e
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Abstract

Growing attention has been brought to the fact that many real directed networks exhibit hi-

erarchy and directionality as measured through techniques like Trophic Analysis and non-

normality. We propose a simple growing network model where the probability of connecting

to a node is defined by a preferential attachment mechanism based on degree and the dif-

ference in fitness between nodes. In particular, we show how mechanisms such as degree-

based preferential attachment and node fitness interactions can lead to the emergence of

the spectrum of hierarchy and directionality observed in real networks. In this work, we study

various features of this model relating to network hierarchy, as measured by Trophic Analysis.

This includes (I) how preferential attachment can lead to network hierarchy, (II) how scale-

free degree distributions and network hierarchy can coexist, (III) the correlation between node

fitness and trophic level, (IV) how the fitness parameters can predict trophic incoherence and

how the trophic level difference distribution compares to the fitness difference distribution, (V)

the relationship between trophic level and degree imbalance and the unique role of nodes

at the ends of the fitness hierarchy and (VI) how fitness interactions and degree-based pref-

erential attachment can interplay to generate networks of varying coherence and degree

distribution. We also provide an example of the intuition this work enables in the analysis of

a real historical network. This work provides insight into simple mechanisms which can give

rise to hierarchy in directed networks and quantifies the usefulness and limitations of using

Trophic Analysis as an analysis tool for real networks.
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6.1 Introduction

Complex networks are evolving systems and much of the research in network science has

been dedicated to finding models which explain how networks can be formed in such a way

which reproduces a certain property observed in real-world systems. Real directed networks

have properties which are unique to the directed case such as non-normality, global direction-

ality and hierarchical organisation of the nodes. It has been shown that networks which are

non-normal [165, 19, 20] or have a global directionality as measured by trophic incoherence

[8, 2, 3, 18, 20] are very common in real-world settings. We propose a generative model

based on the interactions between node fitness and degree-based preferential attachment

which explains this behaviour in real-world systems. We also show how the properties of

the fitness model can be linked to the structural features related to hierarchy and direction-

ality as measured by the technique of Trophic Analysis [8] which justifies its usefulness as

an analytical tool. Trophic Analysis is a method for studying directed networks which allows

the local position in the hierarchy, Trophic Level, and the global directionality, Trophic Inco-

herence, to be measured. It has been related to the spectral properties [6, 41, 8] and strong

connectivity in real directed networks [2]. As well as notions of network influence [3], directed

Hopfield networks [1], historical networks [52] as well as trade, social systems, and economic

networks [38, 48, 47] with additional equivalent formulations [8] also used [75].

We study a growing network model where the probability of connecting to a node is a

function of the fitness difference in combination with preferential attachment based on degree.

This idea builds on many models present in the literature which use node fitness as a way to

build networks.

The earliest models of complex network evolution based on fitness and preferential at-

tachment, which used connection probabilities based on the fitness of a node without inter-

action, allowed the previously observed scale-free network property to be better understood

[273]. For example, the Bianconi–Barabási model which combined node fitness with degree-

based attachment [273], where nodes with higher fitness are more likely to accrue more

connections. This provided a fitness-based extension to the earlier models highlighting the
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ubiquity of scale-free networks [12]. With later models also studying how the fitness distribu-

tion can translate into properties of the the degree distribution [274]. In this work we take a

similar approach but tackle the problem of network hierarchy and show how fitness models

allow the emergence of network hierarchy to be understood.

In previous work, networks of varying non-normality and trophic coherence have either

been created artificially using degree imbalances [165], using node arrival time and a reci-

procity parameter to create hierarchical structure [19, 20] or using static models [44], like

the variants of the generalised preferential preying model [1, 2, 3, 34] which is based on the

initial trophic level of the nodes of a seed network. However, these methods are not realistic

in that in a real systems networks grow over time, the possible structures are limited [19] or

individuals may not have access to the network properties and choose nodes to connect to

based only on fitness of the nodes they observe. Hence we demonstrate how the emergence

of wide range of hierarchical structures can be found in fitness-based growth models.

The range of possible phenomena that can be explained by fitness models increases

when one allows for interactions between the fitness of the connecting nodes. In order to in-

duce a hierarchy within the network we study models where the probability to attach depends

on the fitness differences between nodes with an offset. Fitness-based models without an

offset, which can be seen as a specific case of our model when this parameter is set to zero,

have been widely used to study a variety of phenomena. This includes models which create

scale-free networks with homophilly [275, 276, 277], used to study inequality [278, 279] and

spreading processes in social settings [280]. Fitness interactions have also been used to

study the interactions between countries in trade networks [281]. Models to study citation

networks can also be viewed as models based on fitness difference interactions as the time

of publication of a paper can be used as fitness and the decay in the citation probability with

time viewed as the interaction between fitness parameters as well as any other metrics based

on the success of the paper [282, 283, 284]. In some systems however, it makes sense to

try to connect to another node who has a different fitness to the parent node. For example,

in ecology an animal may as a first approximation be able to eat a smaller animal rather than
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connecting to a prey of the same size [285]. This leads to models describing ecosystem

formation based on the niche widths of species [285], which is closely related to one of the

cases our model captures.

A model of network formation based on fitness differences with an offset makes sense

in many settings in which hierarchy has been observed. The most obvious case is ecology,

where a species consumes a species which is just below it in the trophic hierarchy however

this may also make sense in other areas. In a network of trades between sports teams you

may want to buy players from a team which is below in the hierarchy and sell to teams above.

In trade networks there is a fitness hierarchy, known in economics as upstreamness, depend-

ing on how far along the chain of the processing a good is. For example, a company which

makes batteries may want to buy raw materials directly but a company making consumer

electronics wants to buy the batteries and does not buy the raw materials directly imposing

a hierarchy of transactions. Similar affects could also be seen in neural or communications

networks where connections want to be made into the next layer of the system and to re-

spect this ordering. Related phenomena may also arise in certain social settings, where the

reciprocity of interactions depends on the social status of the individuals [130].

6.2 Background

6.2.1 Hierarchy in Directed Networks

Hierarchy in directed networks can be quantified in many ways [25, 21] in terms of either

flow hierarchy or a nested hierarchy. In this work, we speak of hierarchy in terms of flow

hierarchy. That is the nodes can be ordered on a one dimensional axis via a method like

trophic analysis [8], SpringRank [44], an ordered stochastic block-model [128] or another

method so that edges point in the direction of the flow hierarchy as much as possible given

the constraints of the topology and ranking algorithm. This flow hierarchy can have many

effects on network structure and dynamics [18, 3, 2, 6, 5, 109] and understanding how it

is arises it vital for understanding complex systems. The hierarchy and directionality we
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use specifically describes a layered flow hierarchy, where edges point upwards a specified

distance on the one dimensional axis, which differs from some ideas of flow hierarchy where

it is not important how far up the direction the edges point.

Trophic Analysis

Trophic Analysis is a method which allows the study of linear hierarchy and global direction-

ality in directed networks [8]. It was originally conceived as a tool for networks science in [5]

where it was proposed as a solution to “May’s paradox” [31] in ecosystems. However this

original definition was constrained so that a network required nodes of zero in-degree and

that these nodes were always at the bottom of the hierarchy. An improved version of Trophic

Analysis which removed this constraint was proposed by MacKay et al. [8], which is the def-

inition we use in this work. Trophic Analysis is composed of two parts, the local measure of

where individual nodes sit in the hierarchy known as trophic level, and the global quantity,

trophic incoherence, which measures the global directionality of the network and how much

the edges point in the same direction with respect to the hierarchy.

In this work we studied unweighted directed complex networks represented by the an

𝑁 × 𝑁 adjacency matrix with the following convention,

𝐴𝑖 𝑗 =


1 if there exists an edge 𝑖 → 𝑗

0 otherwise
. (6.1)

Trophic Analysis can simply extend to the weighted case [8] but here we present the un-

weighted case for simplicity. Trophic Analysis can be formulated as an optimisation problem

where we want to select the optimal set of trophic levels for the nodes which minimises the

trophic incoherence. The trophic incoherence, 𝐹, is defined as

𝐹 =

∑
𝑖 𝑗 𝐴𝑖 𝑗 (ℎ 𝑗 − ℎ𝑖 − 1)2∑

𝑖 𝑗 𝐴𝑖 𝑗
. (6.2)

Equations 6.2 states that we wish to select trophic levels, ℎ𝑖 such that if there is an edge from
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node 𝑖 to 𝑗 then node 𝑗 has trophic level, ℎ 𝑗 , which is exactly one more than the trophic level

of node 𝑖, with any deviations from this incurring penalties in the square of the deviation. Due

to the structure of 𝐹 it can be minimised by simply taking the derivative with respect to the

trophic levels. This leads to the following linear equation for the vector of trophic levels

Λℎ = 𝑣, (6.3)

where 𝑣 is the degree imbalance vector defined as 𝑣𝑖 = 𝑘 in
𝑖
− 𝑘out

𝑖
and Λ is defined as

Λ = 𝑑𝑖𝑎𝑔(𝑢) − 𝐴 − 𝐴𝑇 , (6.4)

with 𝑢 being the vector of the sum of the in and out degrees of each node, 𝑢𝑖 = 𝑘 in
𝑖
+ 𝑘out

𝑖
.

As equation 6.3 is linear it can be solved relatively easily with a few caveats. The matrix Λ

cannot be inverted as it always has a zero eigenvalue. This issue can be resolved by fixing

the level for one of the nodes, [8], which can be done as equation 6.3 is invariant up to the

addition of a constant vector to ℎ, so the minimum value of ℎ can be rescaled to any value.

This relates to the fact 𝐹 only depends on the difference between the levels of nodes. Where

we refer to trophic incoherence, 𝐹, throughout this work we refer to equation 6.2 evaluated

using the value of ℎ which minimises it. We choose to work in the convention where the

minimum trophic level is set to zero. Another approach which can be taken is to solve for ℎ

iteratively using techniques of sparse linear algebra.

When the trophic level vector ℎ which minimises 𝐹 is substituted into 6.2 it acts of a

measure of how hierarchical the network is and it quantifies the global directionality of the

edges. This minimum value of 𝐹 is what we refer to as the incoherence of a network for the

remainder of this work. This value is bound between 0 and 1 [8]. With 𝐹 = 0 being attained

when the network has a perfect hierarchy like a directed path where the levels are integers

with steps of exactly +1 between nodes. While 𝐹 = 1 when the network is balanced (i.e. the

in-degree matches the out-degree for each node), so every node takes level ℎ𝑖 = 0 and there

is no hierarchy. Real networks exhibit a wide spectrum of trophic incoherence. Some, like
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food-webs which have a clear ordering of the edges, have low values of 𝐹; while networks

which have many reciprocal connections or cycles, like social networks or those with little

structure like Erdős-Rényi random graphs, have a higher 𝐹. Trophic Incoherence is linked to

other network structure features such as the spectral radius [6, 8], non-normality [18] or the

emergence of a strongly connected component [2].

The method of Trophic Analysis is closely related to several other ranking methods, SpringRank

[44] and a method for analysing ‘circularity’ [45] based on Helmholtz-Hodge decomposition.

The method of [45] has been shown to be equivalent to Trophic Analysis [8] however with

a different set of terminology. SpringRank [44] views the ranking problem as minimising the

energy of network of directed springs and devises a very similar function to minimise as 𝐹,

just with a different normalisation. However, some versions of SpringRank introduce a regu-

larisation term to remove the invariance of the ranks to the addition of a constant vector and

give the ranking equation a unique solution.

In [18, 8] it was proposed that there is a relationship between the non-normality of the

adjacency matrix and trophic incoherence. This was shown by measuring the normality in

[8, 20] and the pseudospectral radius, a property related to non-normality, in [3]. A matrix is

normal if

𝐴𝐴𝑇 = 𝐴𝑇 𝐴 (6.5)

and a non-normal matrix is one where the adjacency matrix does not commute with its trans-

pose [160]. It can be quantified the extent to which a matrix does not commute with it’s trans-

pose. For a example, a network with very few reciprocal edges is much more non-normal

than a network with many reciprocal connections with the extreme case being an undirected

graph where every edge is both bidirectional and 𝐴 is symmetric. This also shows why trophic

incoherence and normality can be related, as the fraction of reciprocal edges and cycles also

impacts the coherence and hierarchical structure of the network [20] (with some work on

non-normal networks referring to these networks as flow hierarchical [166]).

The fact that a matrix is non-normal can play a role in the stability of the dynamics and the

sensitivity of the spectra to perturbations [19, 160]. Matrix non-normality impacts many fields
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[160] including condensed matter physics, acoustics, the behaviour of numerical methods

and fluid mechanics [160, 237, 162, 163, 164]. Its importance as a framework to understand

directed networks has also been highlighted in network science [165, 19, 38, 166, 167, 3, 168,

20] where it has been linked to the behaviour of dynamics and the stability of complex sys-

tems. In addition, non-normality has been shown to be a very common phenomenon [19, 18,

8, 165, 20] present in many systems. In this work we propose a fitness-based model which,

by explaining the wide spectrum of trophic incoherence found in nature, also gives an expla-

nation as to the ubiquity of non-normal networks. However, we also note that the relationship

between non-normality and trophic incoherence proposed in [18, 8] is for a particular graph

ensemble, although it fits well with real network data. As such there are examples of specific

adjacency matrices where the relationship between trophic incoherence and matrix normal-

ity does not hold in the same way [20], particularly in the case of weighted networks. In [20]

small example network structures (some weighted) where this is the case are demonstrated,

however, a correlation between trophic and non-normality based measured of directionality

is still observed in the real-data used in [20].

6.2.2 Preferential Attachment and Fitness Models

Preferential attachment is one of the main paradigms of network science and the scale-free

property of networks has been of great interest to science since it was discovered, and it has

been analysed and interpreted in various ways [286]. The discovery that preferential attach-

ment based on degree can lead to scale-free networks was one of the great achievements

of early network science [12], and much of the field has been built on this work. Soon after-

wards, however, it was noted that nodes may not attach based on only the degree a node but

also based on the fitness of a node [273]. We base our study of degree-based preferential

attachment on the Directed Scale-Free Model (DSF) [287] which provides analytical expres-

sion for the power-law exponent in certain regimes in the directed case and highlights the

impact of varying the ratio of incoming and outgoing edges to the newly added nodes.

Preferential attachment models can however have some caveats associated with them.
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The initial conditions of the network can play a role and affect the equilibration time of the

model [288] or the scale-free effect may also be hidden by finite size affects in real systems

[289]. Additionally, node age can play a role in the dynamics of networks grown with degree-

based preferential attachment as the oldest nodes are most likely to gain the highest degree

as the system evolves [290]. This a natural place where fitness models can play a role as

in many systems, such as citations networks. This is not realistic as the number of citations

should decrease with the age of the work and the growth of the average number of citations

should not depend on the time frame sampled [290]. As such there are various methods to

modify preferential attachment to account for this such as adding a time varying fitness, an

ageing fitness parameter or a factor based on the age difference of the nodes [290, 291, 292,

283]. Additionally, given a real network the parameters that generated it may not be known

and there has been work on how the fitness and preferential attachment parameters can be

inferred from network growth data [293, 294].

It has been shown [295] that fitness interaction based preferential attachment and fitness

distributions can lead to scale-free networks in the case of symmetric interactions and undi-

rected networks, which helps to explain the ubiquity of the scale-free phenomenon [296].

Network models using fitness interactions have been further studied in [297] with work on

relating model properties to the degree distributions [298] and percolation in network models

based on fitness interactions [299]. However, this work differs from the model we propose as

we use a fitness offset to study the hierarchical nature of directed networks. Our model, in the

case on only interactions based on degree, is most closely related to [287]. Fitness based

preferential attachment models can also be used to model specific phenomena by coupling

the evolution of the network to dynamics taking place in the network [300].

Fitness based models without degree-based preferential attachment are also commonly

used in ecology, motivated by the concept of a niche axis [285]. However, it is also possi-

ble to make an attachment model which attaches based on the ratio of in and out degree

[301] designed to model food webs where you want to attach to nodes with high prey and low

predator numbers. Niche models have limitations and it has been proposed that a one di-
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mensional niche axis does not capture ecosystem complexity [302]. Moreover, existing niche

models fail to reproduce the trophic coherence of real food webs [5]. In this work, we use

a one-dimensional fitness as we wish to study linear hierarchy, but fitness distributed in a

different topological space could be an avenue of future work. In the study of social networks

there is also a class of model called latent space models where nodes connect based on the

distance between nodes in this space [303], which may be higher dimensional [304]. Our

fitness space could be interpreted as latent space model with several modifications, such as

the fact we use a growing network model with fixed edge number.

There has also been work on using degree-based preferential attachment based models

and edge reciprocity to create networks of varying non-normality [19]. In [19] a model is

introduced which uses Price’s model [305] as a base, to which they add an extra step to

control the non-normality. In this model of directed network formation, when new nodes are

introduced they connect into the existing network using degree-based preferential attachment

in such a way which would create a directed acyclic graph as nodes are ordered by arrival

time. However, there is an additional parameter which tunes the probability for the edge

added to be reciprocal. This can then tune the amount of hierarchy in the system by adding

edges which break the ordering. In [20], Trophic Incoherence and non-normality were used to

study the entropy production rate of various dynamics on networks and it was shown that this

parameter could be linked to Trophic Incoherence found in the generated networks [20]. An

extension of this model, with a modification to the placement probability of reciprocal edges

based on the the inverse of the out-degree, was used to study the emergence of “leader”

nodes (source/sink nodes depending on convention) [166] and their importance to dynamics

in networks which are non-normal and hierarchical, where the position in the hierarchy is

measured by steps from the “leader nodes”.

Non-normality is also created in networks with preferential attachment in [38] where the

impact on of non-normality and hierarchy on the behaviour of financial bubbles and meme

stocks was studied. In this model, they start with several top nodes and then introduce nodes

via preferential attachment in a similar way to [19, 166], but with the condition that probability
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for an edge to be reciprocal is a function of the trophic level of a node. This is explained

by the observation that in a Reddit discussion forum users with more popular comments are

less likely to reciprocally comment with a user replying to them [38]. However, this is not the

case in all work on non-normal networks, since these can also be created by starting from a

ring-like structure similar to that found in small-world network models and using edge weights

to induce non-normality which does not involve preferential attachment, as in [267]. Other

work growing network models with varying reciprocity includes [306], where a network growth

model was studied where the likelihood to reciprocate edges varies with different groups of

users in social networks, something which is observed in real-network data [306].

6.3 Fitness Difference Model

Figure 6.1: Schematic Diagram of the Generative model used.

In this work, we define a model of network formation where at each time step a new node

is introduced and 𝑚 edges are added to it, which connect to the other nodes dependant on

the fitness interaction and degree of the nodes. We define a probability, 𝑝𝑒, which is the

probability that the edge currently being added points to the new node (incoming edge). The

edge points out of the new node (outgoing edge) with probability 1 − 𝑝𝑒. We use the value



154 CHAPTER 6. FITNESS-BASED GROWING NETWORK MODELS

𝑝𝑒 = 0.5 unless otherwise stated so that the fraction of in and out edges are roughly similar

most of the time and the distributions of in- and out- degrees are the same. This model is

similar to the Directed Scale Free (DSF) model introduced in [287] apart from the fact that we

allow in the number of in- and out- edges to randomly fluctuate and that we add the fitness

interaction, as well as degree-based preferential attachment. Our model and the DSF model

[287] differ from previous work on models which lead to directed scale free networks [307]

in that the number of edges is known and fixed beforehand. We do not consider weighted

networks in this work, but our model could be extended to the case of weighted networks by

adding a mechanism to update the edge weights [308], which could be made a function of

fitness interactions.

A general way to formulate connection probability based on fitness is that edges connect

out of the new node 𝑖 with probability

Πout(𝑖, 𝑗) =
𝑚(𝑘 in

𝑗
) 𝑓 (𝛽 𝑗 , 𝛽𝑖)𝑔in(𝛽 𝑗 )∑

𝑞 𝑚(𝑘 in
𝑞 ) 𝑓 (𝛽𝑞, 𝛽𝑖)𝑔in(𝛽𝑞)

, (6.6)

where 𝛽 𝑗 is the fitness parameter of node 𝑗 which could be drawn from a fitness distribution

or calculated from a property of the network; 𝑚(·) is a function which represents how degree

is taken into account when selecting a node to attach; and 𝑓 (𝛽 𝑗 , 𝛽𝑖) is a function which

represents the interaction of the fitness of the two nodes which may attach and 𝑔in(𝛽 𝑗 ) is

function representing the contribution of the fitness of node 𝑗 to the probability of attachment.

With a similar equation and set of generic functions for edges incoming to the new node,

Πin( 𝑗 , 𝑖) =
𝑚(𝑘out

𝑗
) 𝑓 (𝛽𝑖, 𝛽 𝑗 )𝑔out(𝛽 𝑗 )∑

𝑞 𝑚(𝑘out
𝑞 ) 𝑓 (𝛽𝑖, 𝛽𝑞)𝑔out(𝛽𝑞)

. (6.7)

The probabilities could also be defined as the probability of connections into/out of the

network so in/out labels could be swapped [287]. Care must be taken with the convention

choice here.

We simplify to focus on the combination of degree-based preferential attachment, pa-

rameterised by 𝛼, and functions 𝑆(·) of fitness differences (which may be offset to create
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hierarchy):

Πout(𝑖, 𝑗) =
(𝑘 in

𝑗
)𝛼𝑆(𝛽 𝑗 − 𝛽𝑖)∑

𝑞 (𝑘 in
𝑞 )𝛼𝑆(𝛽𝑞 − 𝛽𝑖)

, (6.8)

Πin( 𝑗 , 𝑖) =
(𝑘out

𝑗
)𝛼𝑆(𝛽𝑖 − 𝛽 𝑗 )∑

𝑞 (𝑘out
𝑞 )𝛼𝑆(𝛽𝑖 − 𝛽𝑞)

. (6.9)

The function 𝑆(𝛽𝑖 − 𝛽 𝑗 ) can always be multiplied by a constant as this will not change the

behaviour of the model, as it will cancel in equations 6.8 and 6.9. This allows 𝑆(𝛽𝑖 − 𝛽 𝑗 ) to be

associated to a probability distribution if the normalisation constant is appropriately chosen.

This is not necessary but this is something we will do later in this work in order to characterise

the functions using standard features of probability distributions and to relate to the fitness

differences observed in the generated networks.

Many fitness based ideas can be expressed as specific cases of this general model if the

functions are selected to reproduce the desired behaviour. By setting the fitness function to

one for all inputs we create a variant of the generalised BA preferential attachment to directed

networks found in [287]. Directed variants of homophilly models, inspired by the scale-free

homophillic model [275, 276], can be created by setting the offset parameter to zero and

having the function 𝑆 representing the preferences of interaction between discrete groups

labelled by fitness,

𝑆(𝛽𝑖 − 𝛽 𝑗 ) = 1 − 𝐵𝑖 𝑗 , (6.10)

where 𝐵𝑖 𝑗 takes a value between 0 and 1 depending on the interactions between groups.

Models of this type have been used in the study of network inequality looking at the differing

experiences of groups within the network [278, 279]. It is also possible to produce variants

of homophilly models based on an exponentially decaying function to connect with fitness

difference [280], which have been used to study the spread of opinion on network constructed

with homophilly. This can be done be choosing

𝑆(𝛽 𝑗 − 𝛽𝑖) = exp (−𝑐 |𝛽 𝑗 − 𝛽𝑖 |), (6.11)
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where 𝛽 𝑗 is node fitness and then 𝑐 is a non-negative control parameter. Our model can also

link to the concepts used in the study of citation networks. By choosing the fitness of a node

to represent time of publication we can create a model very similar in concept to those used

in citation network analysis [284] by choosing a function which decays with the time between

the publication of the papers

𝑆(𝛽 𝑗 − 𝛽𝑖) = (𝑡 𝑗 − 𝑡𝑖)−𝑑 . (6.12)

Here we need to place extra restrictions on the model so that 𝑡 𝑗 is always greater than 𝑡𝑖 for

two connected nodes and we preserve causality.

An offset could quite naturally be included in this fitness function as it can be difficult to

cite a paper which is published very close to that date when your own is published. However,

most of the models used in the literature based on the interaction between the fitness of

nodes do not use an offset parameter, with exception being ecology. In ecology, it has been

assumed that organisms have a niche profile [309]. This mean that they consume species at

a certain fitness (approximated by body size) below their own level. For example, this could

be when 𝑆(𝛽 𝑗 − 𝛽𝑖) is a Gaussian in the fitness differences. This is

𝑆(𝛽 𝑗 − 𝛽𝑖) ∝ exp

[
−1

2

(
𝛽 𝑗 − 𝛽𝑖 − 𝜇 𝑓

𝜎 𝑓

)2
]
, (6.13)

which is very similar to the one used to model the niche width in ecology in the influential

paper where it was introduced [285].

In this work, we assume the fitness of each node is uniformly distributed between 0 and

10 but there is no reason why this restriction has to be in place and any range will work if

the parameters are modified accordingly. Node fitness could be distributed according to an

exponential, Gaussian or any other physically relevant distribution if that better reflects the

system being represented. A non-uniform distribution could be used to modify the degree

distribution, to modify the size of the community structures, to create variations in the edge

density across the fitness scale or to represent the time distribution of events. It has been

shown that using log-normally distributed fitness and a simpler attachment function based
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only on fitness can lead to power-law degree distributions [274], which is an example of the

range of possibility that could be induced by varied fitness distributions. As such we expect

a variety of complex effects could be observed by mixing various attachment functions with

non-trivial fitness distributions.

6.3.1 Fitness Functions Used

Many possible functions could be chosen to represent the interaction between the fitness

parameters of the nodes. In general, we need functions which are defined for positive and

negative fitness differences. However, in order to induce hierarchy and for simplicity we

choose functions that can be normalised to standard unimodal distributions and for mathe-

matical convenience have a well defined mean and standard deviation, apart from in some

specific cases which we use as examples. Any normalisation will cancel in the computation

of the edge addition probabilities, equations 6.8 and 6.9. However, we give the form nor-

malised to a probability density function associated with the functions where it is useful to

show that the input fitness function can reflect the empirically measured distribution of fit-

ness differences; and so that we can use the standard analytical expressions for mean, 𝜇,

and standard deviation, 𝜎, of the distributions.

The simplest function we use is a function which represents a Gaussian distribution

𝑆(𝛽 𝑗 − 𝛽𝑖) =
1√︃

2𝜋𝜎2
𝑓

exp

[
−1

2

(
𝛽 𝑗 − 𝛽𝑖 − 𝜇 𝑓

𝜎 𝑓

)2
]
, (6.14)

where the mean 𝜇 = 𝜇 𝑓 and standard deviation 𝜎 = 𝜎 𝑓 .

We also introduce the Laplace distribution, which has a more pronounced peak than a

Gaussian but decays more slowly (wider, longer tails)

𝑆(𝛽 𝑗 − 𝛽𝑖) =
1

2𝑏
exp

[
−

���� 𝛽 𝑗 − 𝛽𝑖 − 𝜇 𝑓𝑏

����] , (6.15)

where the mean 𝜇 = 𝜇 𝑓 and standard deviation 𝜎 =
√

2𝑏.
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The Laplace and Gaussian distributions can also be encompassed by the generalised nor-

mal distribution, which allows the exponent to be varied and distributions of different shapes

to be created. When the exponent 𝜈 is very large the distribution tends to a top-hat shape,

𝑆(𝛽 𝑗 − 𝛽𝑖) =
𝜈

2𝑏Γ( 1
𝜈
)

exp
[
−

���� 𝛽 𝑗 − 𝛽𝑖 − 𝜇 𝑓𝑏

����𝜈] , (6.16)

where the mean 𝜇 = 𝜇 𝑓 and standard deviation 𝜎 = 𝑏

√︂
Γ( 3

𝜈
)

Γ( 1
𝜈
) . With Γ(𝑥) being the standard

gamma function of 𝑥.

We also include distributions which can be skewed such as the Gumbel distribution that

can used to model extreme values such as the maximum of a sample (the form used here),

𝑆(𝛽 𝑗 − 𝛽𝑖) =
1
𝑏

exp
[
−

(
𝛽 𝑗 − 𝛽𝑖 − 𝜇 𝑓

𝑏
+ exp

(
−
𝛽 𝑗 − 𝛽𝑖 − 𝜇 𝑓

𝑏

))]
, (6.17)

where the mean 𝜇 = 𝜇 𝑓 +𝑏𝛾E with 𝛾E being the Euler–Mascheroni constant and the standard

deviation 𝜎 = 𝜋𝑏√
6
.

We further include the exponentially modified Gaussian distribution which reflects the

distribution of the sum of normally and exponentially distributed random variables and can

be skewed. This distribution is given by

𝑆(𝛽 𝑗 − 𝛽𝑖) =
𝜆

2
exp

[
−𝜆

2

(
−2(𝛽 𝑗 − 𝛽𝑖) + 𝜆𝜎2

𝑒 + 2𝜇 𝑓
)]

erfc

[
−(𝛽 𝑗 − 𝛽𝑖) + 𝜆𝜎2

𝑒 + 𝜇 𝑓√
2𝜎𝑒

]
, (6.18)

where the mean 𝜇 = 𝜇 𝑓 + 1
𝜆

and standard deviation 𝜎 =

√︃
𝜎2
𝑒 + 1

𝜆2 .

We also introduce several fitness functions, equations 6.19, 6.20 and 6.21, which do not

have a single peak and do not lead to the same kind of hierarchical structure which we use

when studying the distribution of trophic levels with fitness, section 6.4.5. Firstly, we introduce

the hyperbolic tangent function of the fitness differences which plateaus to a constant value
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for large positive fitness differences,

𝑆(𝛽 𝑗 − 𝛽𝑖) = 𝐶1

(
tanh

(
𝛽 𝑗 − 𝛽𝑖 − 𝑎

𝑇1

)
+ 1

)
, (6.19)

where 𝐶1 is an appropriate normalisation constant found by integrating over the fitness range

and 𝑇1 is a parameter which sets how sharp the transition in the hyperbolic tangent function

is with fitness difference.

We additionally include a fitness function where edges try to maximise the absolute value

of the fitness difference

𝑆(𝛽 𝑗 − 𝛽𝑖) = 𝐶2

���� 𝛽 𝑗 − 𝛽𝑖𝑇2

���� , (6.20)

where 𝐶2 is an appropriate normalisation constant found by integrating over the fitness range

and 𝑇2 is a scaling parameter to set the growth of the penalty.

Finally, we have a fitness interaction which is uniform which does not create any structure

based on fitness.

𝑆(𝛽 𝑗 − 𝛽𝑖) = constant, (6.21)

where 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 can be chosen as the inverse of the span of the fitness range if fitness

normalisation is required.

6.4 Results

6.4.1 Degree Distributions

Firstly, we study how the addition of the hierarchy affects the degree distribution of the net-

works compared to the preferential attachment without the imposition of hierarchy. This is

shown in figure 6.2. We plot the probability and cumulative degree distribution for networks

with 𝛼 = 1 and a Gaussian fitness function of various standard deviations and compare

to degree-based preferential attachment alone where the fitness function is constant. We

choose 𝛼 = 1 so we can plot our results against the analytical power law for the Directed
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Scale-Free (DSF) model [287] which our model is very similar to. This model generalises the

BA model to generate directed scale-free networks with fixed number of nodes and edges as

well as control of the number of in and out edges added with each new node. The degree

exponents for this model are a function of the ratio of in and out edges added. The mean-field

degree distribution in this model can be calculated by taking the continuous approximation

so that the evolution of the node degree [287] can be written as a set of differential equations,

given by

𝑑𝑘 in
𝑗

𝑑𝑡
= 𝑚in

𝑘 in
𝑗∑

𝑞 𝑘
in
𝑞

, (6.22)

𝑑𝑘out
𝑗

𝑑𝑡
= 𝑚out

𝑘out
𝑗∑

𝑞 𝑘
out
𝑞

. (6.23)

Which leads to degree probability distributions which can be approximated as [287]

𝑝(𝑘 in) ∼ (1 + 𝑚in
𝑚out
)𝑚
(1+ 𝑚in

𝑚out
)

in (𝑘 in)−(2+
𝑚in
𝑚out
)
,

𝑝(𝑘 in) ∼ (𝑘 in)−𝛾in
,

(6.24)

where the in-degree exponent 𝛾in = 2 + 𝑚in
𝑚out

and

𝑝(𝑘out) ∼ (1 + 𝑚out
𝑚in
)𝑚
(1+𝑚out

𝑚in
)

out (𝑘out)−(2+
𝑚out
𝑚in
)

𝑝(𝑘out) ∼ (𝑘out)−𝛾out
(6.25)

where the out-degree exponent 𝛾out = 2 + 𝑚out
𝑚in

, following the notation convention of [287].

In the case where the in and out degree of the added nodes are the same the exponent

reduces to the same value as in an undirected BA network, 𝛾out = 𝛾in = 3, and the power law

is the same for both in and out degree. This is the regime that we work in and the power-law

that we plot as we set the probability of an incoming or outgoing edge to be equal.

The main difference between our model and the DSF model, apart from the imposition of

a fitness function, [287] is that we do not fix the number of in and out edges added to the new
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nodes and instead add incoming or outgoing with a prescribed probability. So in the equation

for the power-law we replace the number of in and out edges added with the expected value

of their ratio. This is simply an approximation which works well enough when we add 𝑚 = 10

edges to each node but may fail when the number of edges added is lower or the edge type

probability is imbalanced, so there are relatively larger fluctuations about this ratio.

Despite the addition of the hierarchy, at standard deviations small enough to induce hi-

erarchy of the fitness functions, the power-law from the DSF model is quite well reproduced,

figure 6.2, in a similar way to when we only have degree-based preferential attachment and

no fitness, figures 6.2e and 6.2f. This makes sense as imposing the fitness hierarchy does

not change which nodes grow in popularity due to the preferential attachment, it merely re-

stricts the range of nodes which can be connected to it by splitting the network into different

fitness regions. This may lead to finite size affects being more pronounced, particularly in

the case of very strict fitness functions as the effective network seen by a node is reduced in

size even if the same power-law behaviour happens in that subset. An analytical argument

of why the hierarchical fitness functions have little impact of the power-law behaviour is given

in the next section, section 6.4.1. There is some difference in the behaviour of the tails of the

power-laws between the networks of stronger hierarchy. This may be due to fitness edge af-

fects which we explore further in section 6.4.1. When the hierarchy is very strict nodes at the

very top of the hierarchy have no other nodes above them to which a connection is preferred,

so will have very low out-degree and while connections from below are not penalised by the

fitness function leading to high degree imbalance. A very similar effect occurs at the bottom

of the fitness hierarchy with the sharp edge of the fitness distribution limiting the range of

connections available.
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(a) Degree Probability Distribution Functions.
Gaussian Function. Equation 6.14 𝜇 𝑓 = 1,
𝜎 𝑓 = 0.1.

(b) Degree Cumulative Distributions. Gaus-
sian Function. Equation 6.14 𝜇 𝑓 = 1, 𝜎 𝑓 =

0.1.

(c) Degree Probability Distributions. Gaus-
sian Function. Equation 6.14 𝜇 𝑓 = 1, 𝜎 𝑓 = 1.

(d) Degree Cumulative Distributions. Gaus-
sian Function. Equation 6.14 𝜇 𝑓 = 1, 𝜎 𝑓 = 1.

(e) Degree Probability Distributions. Prefer-
ential Attachment only. 𝑆(𝛽 𝑗 − 𝛽𝑖) = 1

(f) Degree Cumulative Distributions. Prefer-
ential Attachment Only. 𝑆(𝛽 𝑗 − 𝛽𝑖) = 1.

Figure 6.2: Degree distributions of networks with Fitness Functions and Preferential Attach-
ment. 𝑁 = 20000, 𝑚 = 10, 𝛼 = 1. Seed graph is a path of length 𝑚 = 10. Power-law for
derived from DSF model [287] in the case of equal probability of an edge being incoming or
outgoing to a new node, equations 6.24 and 6.25.

The numerical tests in figure 6.2 demonstrates that fitness hierarchy can coexist with a

scale-free degree distribution, which makes sense as these phenomena are both known to
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be features of real networks.

Mean-Field Analysis of Degree Distribution

We now conduct mean-field analysis to justify why the impact of the fitness function on the

formation of the power-law degree distribution is small by showing the mean-field calculation

approximately reduces to the same equations as found in the DSF model [287]. In the numer-

ical case, we used finite sized networks and a finite span of fitness values where it worked

well, however in order to conduct the mean-field analysis we need to make several assump-

tions regarding large networks sizes and range of fitness values which we detail below. This

difference means that the effects highlighted by the mean-field may exist outside the regime

of parameters where it can be conveniently calculated.

By taking a continuous approximation for the degree evolution of our model, as network

size tends to infinity, we can write a mean-field expression for evolution of the in-degree of a

node with fitness 𝛽 𝑗 as

𝑑𝑘 in
𝑗 ,𝛽 𝑗

𝑑𝑡
= 𝑚in

𝑘 in
𝑗

∫ 𝛽max
𝛽min

𝑑𝛽′ 𝑆(𝛽 𝑗 − 𝛽′ − 𝑎)𝜌(𝛽′)∑
𝑞 𝑘

in
𝑞

∫ 𝛽max
𝛽min

𝑑𝛽′′ 𝑆(𝛽𝑞 − 𝛽′′ − 𝑎)𝜌(𝛽′′)
, (6.26)

where 𝜌(𝛽) is the fitness density distribution. In this case, we write the fitness interaction

function as 𝑆(𝛽 𝑗 − 𝛽′ − 𝑎) to explicitly highlight the fact that we are using a non-zero fitness

offset, given by the parameter 𝑎, which can be accounted for in the change of variable re-

quired. We also select a fitness function which can be normalised to a probability distribution

so that it can be quantified via the standard deviation. A similar expression and for which the

following arguments hold identically can be constructed for the out-degree.

The expression given, equation 6.26, is very similar to the expression which arises in the

DSF model [287] apart form the addition of the integral involving the fitness. This may explain

why in some cases the DSF power-law exponent approximately holds when a hierarchical

ordering function is imposed. In the case of uniform fitness, 𝜌(𝛽) is a constant for all 𝛽. So
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this cancels leading to the expression,

𝑑𝑘 in
𝑗 ,𝛽 𝑗

𝑑𝑡
= 𝑚in

𝑘 in
𝑗

∫ 𝛽max
𝛽min

𝑑𝛽′ 𝑆(𝛽 𝑗 − 𝛽′ − 𝑎)∑
𝑞 𝑘

in
𝑞

∫ 𝛽max
𝛽min

𝑑𝛽′′ 𝑆(𝛽𝑞 − 𝛽′′ − 𝑎)
, (6.27)

which differs from the DSF equation only by the integrals of the form

𝐼 (𝛽 𝑗 ) =
∫ 𝛽max

𝛽min

𝑑𝛽′ 𝑆(𝛽 𝑗 − 𝛽′ − 𝑎). (6.28)

This integral can be analysed by making the change of variables 𝑥 = 𝛽 𝑗 − 𝛽′ − 𝑎, leading to

𝐼 = −
∫ 𝑥2

𝑥1

𝑑𝑥 𝑆(𝑥), (6.29)

where 𝑥1 = 𝛽 𝑗 − 𝛽min − 𝑎 and 𝑥2 = 𝛽 𝑗 − 𝛽max − 𝑎. 𝑥1 and 𝑥2 can be rewritten as multiples of

the standard deviation of the normalised function 𝑆(𝑥) and the limits reversed to absorb the

sign. This leads to

𝐼 =

∫ 𝜃1𝜎 𝑓

𝜃2𝜎 𝑓

𝑑𝑥 𝑆(𝑥), (6.30)

where

𝜃1 =
𝛽 𝑗 − 𝛽min − 𝑎

𝜎 𝑓
(6.31)

and

𝜃2 =
𝛽 𝑗 − 𝛽max − 𝑎

𝜎 𝑓
. (6.32)

Due to the steup, 𝜃2 is always negative as 𝛽 𝑗 ≤ 𝛽max.

We wish to argue that the integral, 𝐼, is approximately a constant for the majority of values

of 𝛽 𝑗 and hence will approximately cancel in the mean-field equations leading to the same

set of equations as in the DSF model with fitness [287]. This can be done by considering the

assumptions of the continuum approximation and the properties of the function, 𝑆(𝑥). One

of the assumptions of mean-field theory is that the network size, 𝑁 >> 0, as 𝑡 >> 0 as such

we can also assume that the network has many layers and there is a large number of trophic
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levels induced by a large range of uniformly distributed fitness values and that 𝛽max
𝜎 𝑓

>> 1. We

also assume that the mean-field theory only covers nodes in the bulk of the fitness range,

nodes which are far from either the maximum or the minimum of the fitness. This means we

can assume that 𝜃1 >> 1 and |𝜃2 | >> 1. As the fitness is uniformly distributed, the fraction

of nodes not in this regime is the number of nodes within 2𝑙 standard deviations of the fitness

endpoints at either 𝛽max or 𝛽min. This is given by

2𝑙
𝜎 𝑓

𝛽max − 𝛽min
= 2𝑙

𝜎 𝑓

𝛽max

1 − 𝛽min
𝛽max

, (6.33)

where 𝑙 is a finite positive parameter setting how close to the end points are nodes to be

neglected. When the fitness span and number of levels becomes very large, 𝛽max
𝜎 𝑓

>> 1, this

quantity becomes very small and the contribution from these nodes to the degree distribution

can be neglected. An alternative view of eq. (6.33) is that its LHS contains a ratio of the

fitness spread (expressed as the standard deviation 𝜎 𝑓 of the normalised fitness interaction

function 𝑆(𝑥)) and the 𝛽-value spread 𝛽max − 𝛽min. If the spread of 𝛽 values is much larger

than the fitness spread, the term (and hence the fraction of nodes not in the regime needed

for our approximation) becomes negligible.

If the function 𝑆(𝑥) is uni-modal with finite mean and the function decays quickly enough

for values away from the mean then as long as the fitness satisfies the constraints that 𝜃1 >>

1 and |𝜃2 | >> 1, the integral will give approximately the same value for any fitness 𝛽 𝑗 . This is

due to the fact that the tails of the distribution contribute very little to the value of the integral

as the fitness function goes to zero for large differences and we obtain the main contribution

from the peak of 𝑆(𝑥). Meaning that the integral can be cancelled in the mean field equations

and we return to the DSF case. This assumption works well if 𝑆(𝑥) is a Gaussian function for

example, as the contributions to the integral become small after a few standard deviations.

Some of examples of simple unnormalised unimodal functions, 𝑆(𝑥), are given in table 6.1,

where it can be seen that the integral value quickly approaches a constant when the values

of the limits move far away from zero.
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𝑺̃(𝒙)
∫ 𝜽1𝝈𝒇

𝜽2𝝈𝒇
𝒅𝒙 𝑺̃(𝒙)

∫ +∞

−∞
𝒅𝒙 𝑺̃(𝒙)

𝑒−|𝑥 | 2 − 𝑒(−𝜃1𝜎 𝑓 ) − 𝑒(−|𝜃2 |𝜎 𝑓 ) 2

𝑒−𝑥
2

√
𝜋

2 (erf (𝜃1𝜎 𝑓 ) + erf ( |𝜃2 |𝜎 𝑓 ))
√
𝜋

1
1+𝑥2 tan−1(𝜃1𝜎 𝑓 ) + tan−1( |𝜃2 |𝜎 𝑓 ) 𝜋

Table 6.1: Examples of functions that when chosen as 𝑆(𝑥) satisfy the required property of
converging to an approximate constant when integrated with the upper limit much greater
than zero and the lower limit much less than zero.

However, this can also be more rigorously quantified for a more general class of functions.

If we assume that function 𝑆(𝑥) is normalised such that it represents a probability density

function which gives the probability to observe a fitness difference, 𝑥, we can treat the analysis

of the tails of the integral, 𝐼, as the probability of observing large fitness differences. In figure

6.9 we show that for a variety of fitness functions the empirically measured fitness difference

distribution is well represented by the probability density, when 𝛼 = 0. 𝑆(𝑥) can be normalised

by any constant as it cancels in the edge addition probability as previously stated. We can

then use Chebyshev’s inequality, which states that for a random variable 𝑋 with mean 𝜇1

and standard deviation 𝜎1, the probability of making an observation 𝜅 times the standard

deviation away from the mean is

Pr( |𝑋 − 𝜇1 | ≥ 𝜅𝜎1) ≤
1
𝜅2 . (6.34)

This means fitness differences which are many standard deviations away from the mean

are very unlikely to be observed. If we assume the that integral, 𝐼, represents the integral over

the probability density function of observing certain fitness differences then modification of

the integral limits 𝜃1 and 𝜃2 when they are very large in absolute value is unlikely to impact the

value of the integral and hence 𝐼 can be said to be approximately constant for any fitness, 𝛽 𝑗 ,

far from the edge of the fitness range. An identical calculation can be done for the out-degree

simply with the function arguments and labelling of the degrees swapped. This argument is

simply an approximation to explain what we observe in the numerical data in particular we
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do not expect this argument to hold when the distribution of fitness is non-uniform, for model

parameters resulting in 𝑆(𝑥) not having the properties detailed above or for all possible values

of 𝛼. Even though this arguments is rough and approximate, as in the previous section, it

makes sense that imposing a hierarchy in this way should not affect the degree distribution,

aside form imposing finite size affects. Indeed, we do not impose any restriction on which

nodes grow in degree - instead of a single large network the system is now organised through

a linearly ordered fitness space where edges only connect within a specific region but degree-

based preferential attachment can occur as normal in that range.

Degree Imbalance and Trophic Level

It has been observed previously that in some situations trophic level correlates with degree

imbalance [2, 3] hence we investigated the relationship between trophic level and degree

imbalance when the networks are constructed with degree-based preferential attachment

and fitness interactions. When the network is highly coherent (i.e. the hierarchy is very

strong), figure 6.3a, the trophic level is not strongly related to the degree imbalance apart

from at the ends of the hierarchy. This is due to the uniform fitness and that position in the

hierarchy is strongly enforced by fitness. This shows that this kind of hierarchy is distinct

from hierarchy induced by degree imbalance. Nodes at the bottom of the hierarchy have no

nodes below them which favourably connect into them so they have a higher out-degree than

their in-degree while the nodes at the top of the hierarchy have nowhere to connect out to

meaning they have high degree imbalance. This highlights a key feature of systems which

display linear hierarchy - if the system is finite there will be “ends” which may have different

behaviour compared to a node which lies in the middle of the hierarchy. This also puts a

caveat on the results of the degree distribution mean-field and numerical tests as the analysis

fails to take into account this inhomogeneity in the system. When the network becomes more

incoherent, figure 6.3b, the trophic level starts to correlate more with the imbalance but we

still observe the same behaviour in the tails with less sharp peaks. As the network becomes

maximally incoherent for this variant of the model, standard deviation is much larger than the
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mean, shown in figure 6.3c, we see less sharp changes at the end of the distribution as the

hierarchy is less strict and a there is a large regime where the degree imbalance and trophic

level are correlated. This is a similar result to what would be found if the fitness function

was set to a constant and the hierarchical ordering, as measured by trophic level, was not

determined by fitness and a result of the degree imbalance in the system only. In the high

standard deviation regime, figure 6.3c, we also see the spread of the trophic levels shrink

and they do not span the full fitness regime as when the hierarchy was strongly enforced by

fitness, figure 6.3a.

(a) Degree Imbalance (in-degree minus out-
degree) with Trophic Level. Gaussian Function.
Equation 6.14 𝜇 𝑓 = 1, 𝜎 𝑓 = 0.1.

(b) Degree Imbalance (in-degree minus out-
degree) with Trophic Level. Gaussian Function.
Equation 6.14 𝜇 𝑓 = 1, 𝜎 𝑓 = 1.

(c) Degree Imbalance (in-degree minus out-
degree) with Trophic Level. Gaussian Function.
Equation 6.14 𝜇 𝑓 = 1, 𝜎 𝑓 = 1000.

Figure 6.3: Degree Imbalance with Trophic Level of evolving networks with Fitness Functions
and Preferential Attachment. 𝑁 = 20000, 𝑚 = 10. Seed graph is a path of length 𝑚 = 10.
Degree-based preferential attachment exponent set to one.
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6.4.2 Degree-based Preferential Attachment and Trophic Incoherence

Many networks can grow by simple degree-based preferential attachment and we investigate

how this mechanism relates to the varied trophic incoherence we observe in these systems.

This may also explain why we observe so many coherent and non-normal networks in nature

[165, 18, 8, 19, 20]. We do this by investigating the impact of the preferential attachment

exponent and the fraction of edges which go in and out of the newly added nodes on the

trophic coherence.

Attachment Exponent and Trophic Incoherence

Firstly, we look at the relationship between the Trophic Incoherence and the preferential at-

tachment exponent 𝛼 to investigate if preferential attachment alone can act as an explanation

for the appearance of coherent networks in nature. We take the fitness function 𝑆(𝛽 𝑗−𝛽𝑖) = 1

and then use attachment functions of the form

Πout(𝑖, 𝑗) ∝ (𝑘 in
𝑗 )𝛼, (6.35)

Πin( 𝑗 , 𝑖) ∝ (𝑘out
𝑗 )𝛼 . (6.36)

We also study the functions

Πout(𝑖, 𝑗) ∝ (𝑘 in
𝑗 + 𝛿)𝛼, (6.37)

Πin( 𝑗 , 𝑖) ∝ (𝑘out
𝑗 + 𝛿)𝛼, (6.38)

where 𝛿 is a small positive constant to allow the study of negative alpha.
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(a) Trophic Incoherence and Preferential Attach-
ment for positive exponent, 𝛼, which is evenly
spaced between 0 and 3.

(b) Trophic Incoherence and degree-based at-
tachment with a small positive constant added to
the degree, 𝛿 = 10−6, to allow negative expo-
nents. 𝛼 is evenly spaced between -3 and 3.

Figure 6.4: Variation of Trophic Incoherence with preferential attachment exponent in stan-
dard preferential attachment and with a negative exponent. 500 networks were generated for
each case with 1000 nodes and 5 edges added with each additional node. The seed network
is a path of length 5. Edges have a probability 0.5 of being added as an incoming or outgoing
edge of the newly added node.

Preferential attachment with varying exponent is shown in figure 6.4a. When 𝛼 = 1, this

leads to networks which are more coherent than an ER random graph but not as coherent

as a network which has a strong hierarchical ordering. In this case, much of the coherence

comes from the large degree imbalance caused by the scale-free uncorrelated in and out

degree distributions. This is expected as trophic level [3] and SpringRank [128] have both

been shown to be related to degree imbalance in some cases. As well as the fact that in the

extreme case a star graph with all edges pointing either in or outwards is completely coherent

with 𝐹 = 0.

When 𝛼 = 0, we get the same kind of incoherence you see in random graphs as there

is no preference for where the edges are added and no strong degree imbalance created.

When we send 𝛼 to be larger than one we reach the regime of super-linear preferential at-

tachment where a few nodes connect to all other nodes. This leads to lots of variability and

lack of control of the incoherence as the network structure is dominated by a few nodes.

Extremely high degree imbalance leads to very coherent networks as would be expected

tending towards the extreme of a star graph.
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This figure shows that preferential attachment can partially explain the emergence of

coherent networks in nature. Preferential attachment with intermediate values of 𝛼 leads

to networks which are more coherent than random graphs explaining some of the networks

we see in nature. Super-linear preferential attachment can lead to very coherent networks

however it does this while enforcing degree distributions which are dominated by only a few

nodes which is not the case in many real-world systems. It also comes with the additional

constraint that the coherence is difficult to control in this regime.

In the case where we use the small constant to send 𝛼 less than zero, figure 6.4b, when 𝛼

is negative the networks become more incoherent than uniform random attachment as edges

are added to the nodes with the smallest degree which leads to a network with more balanced

in and out degrees leading to higher incoherence. This is again expected as we tend closer

to the extreme case where the in degree equals the out degree for each vertex and we have

a network where 𝐹 = 1 [8].

In [104] it was also found that the behaviour of hierarchy, as measured by Reaching Cen-

trality, could also be affected by the changing the degree distribution of scale-free networks

with the size of the out-components of nodes, and Global Reaching Centrality being affected

as the exponent varied.

Ratio of In and Out Edges Added and Trophic Incoherence

Trophic Incoherence and hence all the effects that depend on it [3, 2, 8, 34, 6, 5] can also be

modified by varying the fraction of edges which attach into or out of the nodes as they are

introduced, this is shown in figure 6.5. This figure shows that when edges strictly go only into

or out of the newly added nodes this leads to networks which are very coherent at the ordering

of the node addition implicitly leads to a directionality as nodes only connect to nodes which

are younger or older (by node age). This explains why citation networks are very coherent

as you can only cite papers which exist as the time of writing, creating a time ordering in the

network. Figure 6.5 also shows how this process is symmetric about the point where the

in/out probabilities are equal and this is where the networks are maximally coherent for the
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model as edges are equally likely to connect in any direction in terms of node age. In the

cases where the fraction of edges added is between these extreme points we see that the

network has coherence determined by the size of the majority and minority direction split.

This behaviour can be interpreted by thinking about the age of nodes as a fitness parameter

where new nodes connect a certain fraction of their edges from new nodes to older or from

older nodes to the most recently added.

Figure 6.5: Variation of Trophic Incoherence with probability of new edges being attached
into and out of new nodes. 500 networks were generated with 1000 nodes and 10 edges
added with each additional node. The seed network is a path of length 10. Degree-based
preferential attachment parameter, 𝛼 = 1.

The combination of the effects highlighted may partially explain the range of trophic inco-

herence we see in real networks [8, 2]. Preferential attachment can lead to more coherence

than observed in random graphs due to the stronger degree imbalance which may be present

in some systems. While if new nodes join the network and have an unequal probability to

create incoming and outgoing edges this can lead to networks which are very coherent. For

example, in citation networks where the age of the node acts as an ordering, limiting the

range of connectivity structures available. The result in figure 6.5 agrees with the results

found in the models of network non-normality [19, 166, 38, 20] where varying the probabil-
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ity of reciprocal edges and hence varying the probability that edges go against the ordering

induced by the node arrival time modifies the non-normality and trophic incoherence.

6.4.3 Correlation of Fitness and Trophic Level

We also investigate how the trophic level of node can be used to approximate the value of the

fitness of a node in networks generated with only fitness interactions with varying success

depending on the trophic incoherence of the network, figure 6.6. This is a useful feature as it

highlights how the structural quantity trophic level relates to the node level fitness which was

involved in the network generation.

(a) Gaussian Function. Equation 6.14 𝜇 𝑓 = 1,
𝜎 𝑓 = 0.1 Pearson Correlation Coefficient approx-
imately 1.0.

(b) Gaussian Function. Equation 6.14 𝜇 𝑓 = 1,
𝜎 𝑓 = 1. Pearson Correlation Coefficient approx-
imately 0.978.

(c) Gaussian Function. Equation 6.14 𝜇 𝑓 = 1,
𝜎 𝑓 = 1000. Pearson Correlation Coefficient ap-
proximately 0.006.

Figure 6.6: N = 5000, Fitness is uniformly distributed between 0 and 10. Nodes are added
with 5 new edges. Seed graph is a path of length 5. Degree-based preferential attachment
exponent set to zero.
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In figure 6.6a, we see a clear correlation between fitness and trophic level for the Gaussian

networks of very low 𝐹 showing that in this regime the level can be a good proxy for fitness.

This is still maintained in figure 6.6b even as 𝐹 reaches more intermediate values however

with a broader spread of values at the same trophic level. This is due to that fact that as the

network becomes more incoherent the range of trophic levels decreases and the maximum

trophic level is now lower than the maximum of the fitness showing the hierarchy is less

pronounced. This effect continues into the very high 𝐹 regime, figure 6.6c, where there is

no correlation between level and fitness and trophic level is no longer a useful parameter to

predict the fitness and is likely be correlated with the degree imbalance [3, 128]. The level

distribution again shrinks to spanning a very small range highlighting again that the impact

of hierarchical structure is not very strong in this network. As the standard deviation is very

large relative to the mean of the fitness differences, the behaviour in figure 6.6c is similar to

the behaviour that would be found if the fitness function was a constant and the hierarchy

was determined by the degree imbalance as in an ER random graph.

We investigate this phenomena in more detail by measuring the Pearson correlation co-

efficient between fitness and level for different fitness functions in networks of varying trophic

incoherence, which we also plot in terms of the coefficient of variation (standard deviation

divided by the mean) of the normalised fitness functions, in figure 6.7. The correlation is very

good for coherent networks, which have clear hierarchical structure, but breaks down as the

networks become more incoherent. A similar trend can also be seen in the coefficient of

variation, figure 6.7. When this coefficient of variation is small, the standard deviation is less

than the mean, there is good correlation between node fitness and trophic level. However,

when the coefficient of variation is large, the mean is smaller than the standard deviation, the

relationship between fitness and level breaks down. For all the functions we have roughly

three regimes. When the coefficient of variation is much less than 1 then level acts as a

good proxy for fitness as the correlation coefficient is near one. When the correlation co-

efficient approximately on the order of 1, then we are in an intermediate regime where it is

some relationship between fitness and level but the correlation is weaker and then when the
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coefficient of variation is much larger than 1 the correlation between level and fitness breaks

down. This gives a guide as to how the underlying properties of the fitness distribution shape

the usefulness of trophic analysis as a network analysis tool.
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(a) Generalised Normal Variants. Equation 6.16
𝜇 𝑓 = 1, Parameter 𝑏 spaced from 10−1.5 to 102.

(b) Generalised Normal Variants.Equation 6.16
𝜇 𝑓 = 1, Parameter 𝑏 spaced from 10−1.5 to 102

(c) Gumbel. Equation 6.17 𝜇 𝑓 = 1, Parameter 𝑏
spaced between from 10−2 to 102.

(d) Gumbel. Equation 6.17 𝜇 𝑓 = 1, Parameter 𝑏
spaced between from 10−2 to 102.

(e) Exponentially Modified Gaussian. Equation
6.18 𝜇 𝑓 = 1, 𝜆 = 1. Parameter 𝜎𝑒, spaced be-
tween 10−2 to 101.5.

(f) Exponentially Modified Gaussian. Equation
6.18 𝜇 𝑓 = 1, 𝜆 = 1. Parameter 𝜎𝑒, spaced be-
tween 10−2 to 101.5.

Figure 6.7: Correlation between trophic levels and fitness for different fitness functions with
Trophic Incoherence and Coefficient of Variation. Networks are 𝑁 = 1000 with a starting
seed network which is a directed path of length 10. New nodes are added with 10 edges.
500 networks are generated for each case. Fitness is uniformly distributed between 0 and
10. Degree-based preferential attachment exponent set to zero.

The results in figure 6.7 extend the intuition found in [44] that calculated ranks in SpringRank



6.4. RESULTS 177

are well correlated with the synthetic ranks. However, we extend it to edges which are cre-

ated with non-Gaussian fitness difference functions, a growing network model with fixed edge

number and relate the correlation to 𝐹 which does not depend on knowing the parameters of

the generative process and can be calculated directly from network structure.

6.4.4 Degree Imbalance and Trophic Level Correlations

We also study the variation of the correlation between trophic level and degree imbalance

with trophic incoherence and coefficient of variations of the fitness functions for networks

generated with only fitness interactions. This allows us to understand the regimes in which

trophic analysis gives information which is separate to information gained by looking at the

degree imbalance and how trophic level relates to degree imbalance. This is shown in figure

6.8.
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(a) Generalised Normal Variants. Equation
6.16 𝜇 𝑓 = 1, Parameter 𝑏 spaced from 10−1.5

to 102.

(b) Generalised Normal Variants.Equation
6.16 𝜇 𝑓 = 1, Parameter 𝑏 spaced from 10−1.5

to 102

(c) Gumbel. Equation 6.17 𝜇 𝑓 = 1, Parameter
𝑏 spaced between from 10−2 to 102.

(d) Gumbel. Equation 6.17 𝜇 𝑓 = 1, Parameter
𝑏 spaced between from 10−2 to 102.

(e) Exponentially Modified Gaussian. Equa-
tion 6.18 𝜇 𝑓 = 1, 𝜆 = 1. Parameter 𝜎𝑒,
spaced between 10−2 to 101.5.

(f) Exponentially Modified Gaussian. Equa-
tion 6.18 𝜇 𝑓 = 1, 𝜆 = 1. Parameter 𝜎𝑒,
spaced between 10−2 to 101.5.

Figure 6.8: Correlation between trophic levels and degree imbalance (in-degree minus out-
degree) for different fitness functions with Trophic Incoherence and Coefficient of Variation.
Networks are 𝑁 = 1000 with a starting seed network which is a directed path of length 10.
New nodes are added with 10 edges. 500 networks are generated for each case. Fitness is
uniformly distributed between 0 and 10. Degree-based preferential attachment exponent set
to zero.

In figure 6.8 we see that for all fitness functions used when the incoherence or coefficient
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of variation is very high, a regime where there is little correlation between fitness and level, we

see a strong correlation between level and degree imbalance as this is the structural feature

which trophic level picks out. When the trophic incoherence and coefficient of variation are

low, a regime of high level fitness correlation, then the correlation between trophic level and

degree imbalance is weaker. However, they are not completely uncorrelated. This makes

sense as we expect nodes which sit at the ends of the fitness distribution, and have the

highest and lowest trophic levels, to have degree imbalances related to their position caused

by the sharp ends of the fitness hierarchy. As a result of there being no nodes above or below

respectively which are preferred by the attachment function. There is however some non-

monotonic behaviour in this regime where as the hierarchy becomes less strictly enforced the

correlation decreases as the sharp edge effects are less impactful. There is some variability

here between function choices depending how function behaves and how strictly it enforces

hierarchy when the control parameter is reduced to very small values. The results in figure

6.8 again highlight how 𝐹 is a useful tool to test if the hierarchy is likely to be impactful to a

system and the effects that the ends of the fitness distribution can have on the behaviour of

the system.

6.4.5 Trophic Level Differences Distributions

We also investigate the distribution of the trophic level and fitness differences for various

fitness functions in order to understand if the measured fitness differences reflect the input

fitness function and if the trophic level differences are reflective of the input fitness function.

This is shown in figure 6.9. For most of the fitness distributions the measured normalised

fitness distribution is very similar to the probability density function implied by the fitness func-

tion. This is useful as it shows that using this generative method preserves the structure of

the fitness function. The only cases where it fails are when the fitness function is a hyperbolic

tangent or uniform, figures 6.9f and 6.9h, where the very large fitness differences are rare,

as it is unlikely to pair the largest and smallest fitness together when randomly pairing nodes.

When networks are generated with a variety of non-Gaussian fitness distributions the
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trophic level difference distributions are all well approximated by a Gaussian probability dis-

tribution with parameters which can be directly calculated from 𝐹, shown in figure 6.9. This is

done using results from [8] that the trophic incoherence can be written in terms of the average

level difference, 𝜇, and the standard deviation of the level difference, 𝜎, as

𝐹 = 𝜎2 + 𝜇2 − 2𝜇 + 1. (6.39)

This is further analysed in [8] where it is shown that the expression for the average level

difference can be written as

𝜇 = 1 − 𝐹, (6.40)

which allows the standard deviation to be written as

𝜎 =
√
𝐹
√

1 − 𝐹. (6.41)

The good agreement between the level distribution and analytical Gaussian in figure 6.9

backs up arguments and assumptions in previous work [2, 6] that we expect the distribu-

tion of trophic level differences to be approximately Gaussian in real networks. However, it

also demonstrates a limitation of the trophic analysis approach as information about the fit-

ness distribution is lost in the calculation of the trophic level as all inputs are mapped to an

approximate Gaussian.
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(a) Gaussian. Equation 6.14
𝜇 𝑓 = 1, 𝜎 𝑓 =

1√
2
.

(b) Laplace. Equation 6.15 𝜇 𝑓 =

1, 𝑏 = 1
(c) Generalised Normal 𝜈 =

10.Equation 6.16 𝜇 𝑓 = 1, 𝑏 = 1,
𝜈 = 10.

(d) Gumbel. Equation 6.17 𝜇 𝑓 =

1, 𝑏 = 1.
(e) Exponentially Modified
Gaussian. Equation 6.18
𝜇 𝑓 = 1, 𝜎𝑒 = 1, 𝜆 = 1.

(f) Tanh. Equation 6.19 𝑎 = 1,
𝑇1 = 1.

(g) Absolute Value. Equation
6.20 𝑇2 = 1.

(h) Uniform. Equation 6.21 (i) Scale Free. 𝛼 = 1. Constant
fitness function.

Figure 6.9: Distributions of trophic level and fitness differences for different fitness functions,
parameters and functions given in individual figure captions. Networks have 𝑁 = 5000 nodes.
Fitness is uniformly distributed between 0 and 10. Nodes are added with 5 new edges. Seed
graph is a path of length 5. Degree-based preferential attachment exponent set to zero.

Potential Explanations for Gaussian Trophic Level Difference Distributions

The Gaussian distribution is one which arises in many different settings and as such there

are many ways for it to appear, so there are several possible explanations for the behaviour of

the trophic difference distribution. One possible argument is linked to the minimisation of the

squared penalty function and its Bayesian interpretation as it is well known that minimising a

squared loss function can be thought of as a Gaussian likelihood and that 𝐿2 regularisation
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can be interpreted as a zero mean Gaussian prior.

Consider a set of networks with a given set of 𝑁 nodes and a prescribed number of 𝐿

edges. Each network can be uniquely characterised by the corresponding 𝑁 × 𝑁 adjacency

matrix 𝐴 of 𝐿 non-zero elements, 𝐴𝑖 𝑗 = 1 if and only if there is an edge from node 𝑖 to node 𝑗 ,

otherwise 𝐴𝑖 𝑗 = 0. Given a vector Δℎ of trophic level differences over the 𝐿 edges, where Δℎ𝑒

is the trophic level of the destination node of an edge, 𝑒, minus the trophic level of the source

node of the edge. The trophic level differences distribution yields a likelihood over possible

edge topologies connecting the 𝑁 nodes, 𝑃(𝐴|Δℎ). Given a prior 𝑃(Δℎ) over possible trophic

level difference vectors, if we are supplied with a particular network with edge structure 𝐴,

the nodes will be expected to have trophic level differences Δℎ with posterior probability,

𝑃(Δℎ |𝐴) = 𝑃(𝐴|Δℎ)𝑃(Δℎ)
𝑃(𝐴) . (6.42)

Let us adopt a Gaussian likelihood model stating a preference for the trophic level differ-

ence of two nodes connected by an edge to differ by 1 (trophic level of the child larger than

that of the parent), modulated by a ‘tolerance’ scale parameter 𝜎Δ (standard deviation)

𝑃(𝐴|Δℎ) ∝
𝐿∏
𝑒=1

exp

[
−1

2

(
Δℎ𝑒 − 1
𝜎Δ

)2
]
, (6.43)

where each each label 𝑒 represent as an edge which goes from node 𝑖 to 𝑗 .

Under the assumption of flat prior over trophic level difference vectors Δℎ, the maximum

a-posteriori estimate of the level differences, given the network A, is equivalent to minimising

trophic incoherence, equation 6.2, since the log-likelihood (up to constant terms) reads

ln 𝑃(Δℎ |𝐴) = − 1
2𝜎2

Δ

𝐿∑︁
𝑒=1
(Δℎ𝑒 − 1)2 + constant (6.44)

= − 1
2𝜎2

Δ

∑︁
𝑖 𝑗

𝐴𝑖 𝑗 (ℎ 𝑗 − ℎ𝑖 − 1)2 + constant, (6.45)

using the fact that the adjacency matrix in this case is unweighted and it can be used to
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indicate the existence of an edge. By this construction, we show that the minimising of trophic

incoherence can be interpreted as maximising the likelihood under the assumption of the

Gaussian likelihood model for edge-based trophic differences, equation 6.43. Under the set

of assumptions made, this may explain why we observe trophic level difference distrubtions

which are well approximated by Gaussian distributions in this work and in real networks [2].

However, it is possible to come up with different generative models which lead to simi-

lar minimisation problem as a result of difference choices of likelihood functions and priors.

For example, in [44] it was shown that using a Poisson likelihood model, with the mean be-

ing a Gaussian function of the level differences multiplied by a sparsity control parameter, a

different generative model for levels (ranks) and no fixed edge number after certain assump-

tions (and discarding limiting terms) maximisation of the likelihood of this model is equivalent

to minimising the SpringRank Hamiltonian [44]. It is also argued in [44] that the ranks in

SpringRank are distributed as a multivariate Gaussian with variable noise levels. Addition-

ally, it can be shown that minimising trophic incoherence can be related to the likelihood of

another random graph model [53] which allows the relative importance of linear and periodic

hierarchy to be studied. It was also shown in the study of node ranking in [80] that the as-

sumption that each the rank of a node represents an average performance which is normally

distributed leads to the probability of a set of ‘results’. These are a set of edge directions

determined by competition between nodes imposed on an undirected graph of interactions,

and can be written as a likelihood function which is a Gaussian of the rank differences where

the maximisation leads to a minimisation of the energy of a network of directed springs [80],

which is similar in concept to SpringRank or Trophic Analysis.

Of course in real systems, if the differences in trophic level of nodes represents a real

physical quantity they could be well approximated as a Gaussian for various reason like the

central limit theorem, approximation of a binomial or the fact that the Gaussian distribution is

the maximum entropy distribution with specified mean and variance. However, what we show

here is that due to the form of 𝐹 its minimisation can be linked to a Gaussian likelihood model

which may partially explain why the analytical Gaussian derived from trophic incoherence fits
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the level difference distrubtion so well.

Figure 6.9 and the link of trophic analysis to Gaussian distributions shows that trophic

analysis may be less useful in situations where it is known the fitness differences are not

distributed as a Gaussian. As a result, it may be useful to cast the ranking problem in terms of

a different optimisation function which corresponds to a different specifically chosen likelihood

maximisation problem and create a generalised version of trophic analysis which is something

that we leave for future work.

The trophic level difference distribution also has some particular properties derived in [8].

The mean, 𝜇, is equal to 𝜇 = 1 − 𝐹, which means the mean is always between 0 and 1 and

the variance, 𝜎2 can be written as 𝜎2 = 𝜇(1 − 𝜇) which is very similar to the relationship

between the mean and the variance of a Bernoulli distribution. This also means the variance

is maximised when the mean level difference is 0.5. This makes sense as when the network is

fully coherent, 𝐹 = 0 all the level differences are +1 and then when the network is completely

incoherent, 𝐹 = 1 every node has exactly the same trophic level so the difference across all

edges is 0 and the variance is zero.

6.4.6 Relating Trophic Incoherence to Fitness Difference Distribution

We would like to be able to relate the trophic incoherence of the network, which is a structural

property, to the external parameters which make up the fitness function, which decides if

nodes are connected based on an external node fitness. If the fitness distribution is ºvery

tightly distributed around the mean and all the edges point upwards in fitness then it is likely

that the network will be very coherent. The standard deviation and the mean of the trophic

level difference distribution can both be expressed in terms of 𝐹 [8]. However, we cannot

directly match each of these structural properties to the fitness difference distribution as the

fitness distribution can be any scale, while the mean level difference is bound between 0 and

1 [8]. However, we can use the coefficient of variation, ratio of standard deviation and the

mean, to provide a measure of how coherent both the distribution of level differences is and

how coherent the distribution of fitness differences is. The coefficient of variation gives a
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measure of the size of the standard deviation relative to the mean and acts as an alternative

measure of coherence: when the network has 𝐹 = 0 the coefficient of variation is zero as

the mean is one and standard deviations is zero, and when 𝐹 = 1 the coefficient of variation

becomes infinite as the mean level difference is zero. The key thing about the coefficient of

variation is that it is a dimensionless quantity so it allows comparison between the trophic

level properties and the fitness properties of real-world systems which could be off any scale

and have fitness steps of any size.

By assuming the coefficient of variation of the trophic level distribution matches the coef-

ficient of variation of the distribution of fitness differences,

𝜎

𝜇
≈
𝜎 𝑓

𝜇 𝑓
, (6.46)

we can derive an expression for the Trophic Incoherence in terms of parameters of the fit-

ness distribution only. Where this approximation is made on the basis that even though the

trophic level difference distribution is on a different scale to the fitness difference distribution

the variability of the fitness difference distribution should affect the measured trophic inco-

herence and the coefficient of variation gives us a way to compare the distributions using a

dimensionless parameter.

Using results from [8] that the average trophic level difference is

𝜇 = 1 − 𝐹 (6.47)

and the standard deviation is given by

𝜎 =
√
𝐹
√

1 − 𝐹. (6.48)

This leads to the expression √︂
𝐹

1 − 𝐹 =
𝜎 𝑓

𝜇 𝑓
, (6.49)
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which can be rearranged to give the result

𝐹 =
𝜎2
𝑓

𝜎2
𝑓
+ 𝜇2

𝑓

. (6.50)

This can also can also be expressed directly in terms of the coefficient of variation as

𝐹 =
( 𝜎 𝑓

𝜇 𝑓
)2

( 𝜎 𝑓

𝜇 𝑓
)2 + 1

. (6.51)

This is a useful prediction as it allows the incoherence to be expressed as function of the

fitness distribution which is an external property imposed on the network and not a struc-

tural property like incoherence. The accuracy of this prediction, equation 6.50, is shown in

figure 6.10. This prediction works reasonably well, even for networks which are generated

with a non-Gaussian fitness functions, which shows how trophic incoherence depends on

how the tightly the network follows the defined fitness hierarchy. It fails slightly at very low

incoherence as the specific functions and finite networks may not generate networks of ex-

tremely low coherence as predicted by the approximation and similarly at high incoherence,

the generative model does not produce the balanced networks which correspond to maxi-

mally incoherent networks, instead producing variants of random graphs where the trophic

incoherence plateaus below 𝐹 = 1.
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(a) Gaussian. Equation 6.14 𝜇 𝑓 = 1, 𝜎 𝑓

spaced 10−2
√

2
and 102

√
2

(b) Laplace. Equation 6.15 𝜇 𝑓 = 1. Parame-
ter 𝑏 spaced between from 10−2 to 102.

(c) Generalised Normal 𝜈 = 10. Equation 6.16
𝜇 𝑓 = 1, 𝜈 = 10. Parameter 𝑏 spaced between
from 10−2 to 102.

(d) Generalised Normal 𝜈 = 0.5.Equation 6.16
𝜇 𝑓 = 1, 𝜈 = 0.5. Parameter 𝑏 spaced be-
tween from 10−2 to 102.

(e) Gumbel. Equation 6.17 𝜇 𝑓 = 1, Parameter
𝑏 spaced between from 10−2 to 102.

(f) Exponentially Modified Gaussian. Equa-
tion 6.18 𝜇 𝑓 = 1, 𝜆 = 1. Parameter 𝜎𝑒 spaced
between 10−2 to 101.5.

Figure 6.10: Trophic incoherence and analytical approximation of trophic incoherence based
on the mean and standard deviation of the fitness difference via equation 6.50. Each network
has 𝑁 = 1000 nodes. 10 edges are added with every new node with equal probability of
being an in or out edge of the new node. Seed graph is a path of length 10. Fitness uniformly
distributed between 0 and 10. Parameters and functions given in each sub-figure caption with
the spacing of all varied parameters being logarithmic. Degree-based preferential attachment
exponent set to zero.
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The relationship between trophic incoherence and the coefficient of variation follows a

sigmoid shaped curve when plotted on a logarithmic axis and can be thought of as three

distinct regions. Firstly, the sigmoid shape of the curves when plotting on a logarithmic axis,

figure 6.10 can be explained by equation 6.50 which can be reparameterised such that ( 𝜎 𝑓

𝜇 𝑓
) =

10𝑥. This leads to

𝐹 =
1

1 + 10−2𝑥 , (6.52)

which is a sigmoid curve in log coefficient of variation in fitness. When the coefficient of

variation of the network is much less than 1 we are in the region where we predict a very

coherent network with clear hierarchy, when the coefficient of variation is much larger than

1 we expect the network to be very incoherent and there to be little hierarchy determined by

fitness; and when the coefficient of variation is around the order of 1, we are in an intermediate

regime where moderate incoherence is expected and there is some hierarchy and ordering

but not as strict as in a very coherent network.

Moreover, the approximation also works for the more complicated functions like the Gum-

bel, figure 6.10e, and Exponentially Modified Gaussian 6.10f where the coefficient of variation

tends to a constant as the standard deviation grows large in the case of Gumbel and to con-

stant as the standard deviation becomes very small in the case of the exponentially modified

Gaussian. This figure demonstrate how measuring the trophic incoherence can give you

information about the parameters used to generate the network and information about the

fitness distribution, even if the actual distribution information is lost when the trophic levels

are calculated.

In this work, we have varied the coefficient of variation by modifying the standard deviation

but an alternative approach could modify the mean and fix the standard deviation instead.

However, care would need to taken with zero mean and it may be necessary to work with

the inverse of the coefficient of variation. This could link to other work on Trophic Analysis

where the trophic incoherence has been shown to equal to one minus the mean trophic level

difference [8].
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6.4.7 Interplay of Fitness Interactions and Degree-based Preferential

Attachment

The final way we can explain the ubiquity of coherent networks in nature as well as understand

the relationship between trophic level and fitness is to look at the interplay of degree-based

preferential attachment and connection based on fitness hierarchy. This is done by using an

addition probability which is formed by a Gaussian fitness interaction, of which we vary the

standard deviation, that we multiply by degree-based preferential attachment, where we vary

the attachment exponent.

We plot the changes in trophic incoherence and other network properties as networks

are generated with varying exponent, 𝛼, and coefficient of variation of the Gaussian fitness

function in figure 6.11. In figure 6.11a, we see that there are three distinct regimes. When

the coefficient of variation of fitness is small the networks are very coherent as the hierarchy

is strongly enforced by the fitness function. When the coefficient of variation of the fitness

function is high we have two behaviours. A smooth regime, where the incoherence increases

as 𝛼 gets closer to 0 and a regime where 𝛼 is greater than 1 and the preferential attachment

reaches the super-linear regime. In this region, the networks become more coherent but the

behaviour is much more variable as the networks are dominated by a few super-hubs. This

can be understood by looking at figure 6.11b which shows the standard deviation of the in-

degree distribution for the same sample of networks. The standard deviation in the degree

distribution grows large when 𝛼 > 1 and the coefficient of variation of the fitness function is

large. This is due to hubs with very large degree being formed by the strong degree-based

preferential attachment and this not being restricted by a fitness function which limits the

range of nodes which can be connected to. In figure 6.11c, we show how interplay of the

degree-based preferential attachment and fitness functions affect the correlation coefficient

of the trophic level and the fitness. The results show a similar trend to when the preferential

attachments is fixed, figure 6.7. With the correlation being very strong when the coefficient of

variation is low and network is coherent and the correlation being weak when the coefficient of
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variation is high and the network is incoherent. This shows that even with additional degree-

based preferential attachment contribution that the trophic level can be taken as a good proxy

for the network fitness, when the coefficient of variation of the fitness function is low. Figure

6.11c also demonstrates an interesting feature that the line separating the two regimes of high

and low correlation between fitness and level is diagonal, as when the preferential attachment

is weaker the correlation of fitness and level is maintained for fitness functions which are

less strict, while when the preferential attachment exponent is higher the correlation is more

quickly destroyed. A similar trend can also be seen if we take one of the quantities which is

related to trophic incoherence such as matrix normality [8, 20] which is measured following

the convention of [8], where normality, 𝑦, is measured by

𝑦 =

∑
𝑗 |𝜆 𝑗 |2

| |𝐴| |2
𝐹

. (6.53)

Here, 𝜆 𝑗 are the eigenvalues of the adjacency matrix and | |𝐴| |𝐹 is the Frobenius norm of the

matrix 𝐴 defined as | |𝐴| |𝐹 =

√︃∑
𝑖 𝑗 |𝐴𝑖 𝑗 |2. The full justification and explanation of this measure

are given in [8].

Figure 6.11d shows a similar trend in normality as 6.11a does for trophic incoherence.

This fits with the close relationship between non-normality and trophic coherence described

previously [18, 8].



6.4. RESULTS 191

(a) Trophic Incoherence (b) Standard Deviation of In-Degree

(c) Correlation of Fitness and level (d) Matrix Normality measured using convention
in [8], equation 6.53.

Figure 6.11: Impact of varying coefficient of variation of a Gaussian fitness function and
degree-based preferential attachment exponent on network properties. Each networks has
1000 nodes with 10 edges added with each new node with equal probability connecting in
or out of the newly added node. The seed graph is a path of length 10. Fitness is uniformly
distributed between zero and 10. We use a 50 by 50 grid of points with the preferential at-
tachment evenly spaced between 0 and 3 and the fitness standard deviations logarithmically
spaced between 10−1

√
2

and 102
√

2
. The mean fitness difference, 𝜇 𝑓 = 1, for all points.

The fact that a combination of these effects can lead to many different values of trophic

coherence suggests and explanation for why we observe non-trivial trophic coherence in

many real-world systems. It can also give us information about how the networks are formed

as the prevalence of large degree imbalance and its association with the trophic level can be

an indication as to whether the trophic coherence derives from an underlying fitness interac-

tion or strong degree-based preferential attachment. Figure 6.11c also shows how trophic

analysis can be useful as a tool to predict fitness variables as there is a good correlation be-

tween fitness and level in the low coefficient of variation regime even when the degree-based
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preferential attachment is strong.

6.4.8 Example Application to Historical Network of Ragusan Nobility

To highlight how our methods can be used to study real systems, we demonstrate with an

example of a real network. The family tree of the nobility from the Republic of Ragusa from

the 12th to the 16th century, data from [310] and converted using [311], with metadata which

roughly corresponds to node fitness which we compare to the quantities found via trophic

analysis. The Republic of Ragusa was a merchant republic located in Dubrovnik, Croatia

and ruled by a number of noble merchant families. We construct a network containing 5,999

people and draw 9315 edges from parent to child and making no distinction between males

and females in the network. We compute the trophic levels of the nodes in this network and

compare with the birth dates of the nodes for which this is known (3065 individuals). This is

shown in figure 6.12. Here we find a good correlation between the year in which someone

was born and their trophic level. This is to be expected as the year you are born can only

be a within a range after your patents birth, hence we expect trophic analysis of the network

to detect this structure. The size of each trophic level roughly corresponds to generation

of people which shows that trophic analysis is detecting some real features of the network.

There are some issues in the correlation around the mid 14th century however there are

several factors which could explain this. The structure of the nobility was changing between

the 12th and 14th centuries and was established by stature in 1332 [310] with no new families

accepted after this time. So the changing legal basis of who is included and recorded in the

nobility is likely to explain the lack of correlation at this time. This is also the time of the ‘Black

Death’ plague in Europe so we expect a loss of population to occur at that time.
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Figure 6.12: Known Birth Dates (3065 individuals) of Members of the Ragusan Nobility, [310],
against Trophic Level with Pearson correlation coefficient given in the legend.

We also note that for this network the data may be “missing not at random". This means

that the fact the birth dates for certain nodes is missing may be correlated with the time

period the node is from, events that were ongoing at that time or another property of the

node. In figure 6.13a, we present the differences in birth time for the parent-child pairs where

we have data for both parties. This constrains how much we can say definitively as this is

a small subset of the network data. We prune the data-set of obvious errors, making sure

that the differences are positive to preserve causality, that you are born after your parents,

as well as removing any differences outside what is biologically possible to exist (birth time

differences smaller than 10 and greater than 120). This data is also a mixture of the mother-

child and father-child differences which may be different for biological reasons and due to the

patriarchal society from which we draw the data. Based on this difference distribution, we

predict a Trophic incoherence of 𝐹 = 0.12 which makes sense. We predict a very coherent

network as edges are constrained to only go forward in time in this network. This is more

than the measured trophic incoherence of 𝐹 = 0.009. This is not surprising as there is a large

variation in birth difference between parent and child as well as the fact that the full network
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is sparse, the number of children and parents you can have is limited, and acyclic so it is not

surprising that 𝐹 is very low. The two values do not agree very closely but do imply the same

kind of regime where the network is very hierarchical and ordered which is what we expect

when analysing this network. Additionally, we do not know the birth year difference across

all nodes in the network as this data is missing for some pairs so the trophic incoherence is

being measured over a much larger samples so this may account for some of the differences

as the sample size could affect the ratio of mean and standard deviation for the birth year

differences.

(a) Birth Year difference between parent and
child in Ragusan Nobility Network [310]. Across
2442 edges where this is known for both nodes.

(b) Trophic level differences between nodes in
Ragusan Nobility Network [310] across the whole
network.

Figure 6.13: Comparison of trophic level differences and birth year differences in real histor-
ical network [310]

Additionally, Trophic level has been used to analyse another historical network of Islamic

scholars and infer missing data. [52]. Our work explains why this was possible and justifies

the assumption that trophic level could be used as a good approximation for the relevant

“fitness” parameter in that network. We also analyse the difference in death dates between

individuals and the relationship between degree imbalance and birth year in the network in

appendix 6.7.1, where we show how both of these are not useful factors for predicting the

network structure and how understanding the trophic structure shows that certain factors do

not contribute to the formation of a network. The study of this historical network is not meant to

unveil new information as the process of how family trees form is well understood. However,

we demonstrate how the technique of trophic analysis can be linked to node properties, used



6.5. DISCUSSION 195

to infer missing data and analyse network structure. We hope that techniques in this work

can be extend to study real-world systems which are not as well understood.

6.5 Discussion

In this work, a uniform fitness distribution was used as we wished to create the simplest

possible structures where the number of nodes are equally distributed across the fitness

spectrum. However, this need not be the case and many fitness distributions could be used.

If the fitness is thought to represent a property of a real system it may be more realistic if

this is a Pareto or Gaussian distribution for example. Modifying the fitness distribution may

impact the degree distribution and arrangement of levels which could be the subject of future

work. Changing the range of the fitness distribution and the size of the preferred fitness

difference will affect the maximum number of levels with the fitness density in a particular

regime translating into the number of nodes of a particular trophic level. The number of levels

and the fitness distance between them could reflect an underlying feature of a real system,

such as the “ depth of compettion” of a game or range of social status of individuals [125]. The

effects associated with the sharp end of the uniform distribution could also be mitigated by

having a distribution which decays of towards the maximum and minimum fitness; although, in

some circumstances, the fitness edge affects may be a realistic behaviour which is important

to the dynamics of the system. For example, consider a network of sports teams where edges

represent player transfers between teams. The top teams clearly have different dynamics as

there are no “better” teams for their players to move to compared to a team which buys players

from lower leagues but also sells to better teams. A similar effect can be imagined in food-

webs or production networks, where the nodes which consume the raw material or energy

input to the system behave differently to nodes in the bulk of the system. Related to this, it is

known that the presence of source/sink nodes [166] can be related to non-normality and that

nodes at the ends of the trophic hierarchy are important for influencing the network [3]. It is

also possible to have a fitness which is multi-dimensional, where different functions act on
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different fitness aspects. This could allow a mixing of heterophilic and homophilic behaviour

where a different interaction could be present in each fitness. Our model provides a natural

way to move between linear hierarchy and homophillic behaviour with a single fitness as the

difference parameter can be decreased to zero. Community structure could also be studied

through fitness functions and distributions as densely connected groups with few connections

between groups could be modelled. And in some systems there can be an interaction of the

hierarchical structure of the network with organisation of the network into communities [175,

128].

Another possible extension of this work would be to use a fitness space which is not

linear. For example, the node fitness could be an angle on a circle and used to study periodic

structures [53]. It may also be possible to link network hierarchy and fitness, linear or periodic,

to the field of network geometry which has recently been extend to the directed case [136]

where the topological features found in these models, such as reciprocity and the prevalence

of different types of directed cycle, may be analysed through various tools associated with

network hierarchy [53, 128, 44, 8, 20].

In this work, we present a model to explain how a simple fitness-based mechanism can

lead to a hierarchical network structure. However, it is also possible to view the emergence of

directed hierarchy as the result of dynamics taking place which alter the network structure [60,

109, 105]. Faculty hiring dynamics were studied in [57] where hierarchy steepness, fraction of

edges pointing up in rank, and other network measures were analysed as the institution hiring

preference functions were varied. This has also being studied in time varying endorsement

networks where the probability to endorse depends on the preference for endorsing up the

hierarchy and preference for endorsing nodes close in the hierarchy [60]. Hierarchy linked

dynamics can also take place in animal social interactions [312] with position in the hierarchy

affecting the behaviour of individuals. These works link to the kind of dynamics which could

be built into extensions of our growing fitness model where hierarchy can be mixed with other

interactions. As the network evolves in time, it may be possible to analyse the time evolution

of the network hierarchy either using standard trophic level or the recent reformulation of
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SpringRank for ranking in temporal networks [62]. Inspiration for creating a temporal network

could also be taken from the approach of [313] where the network structure updates according

to interaction between dynamic hidden variables assigned to each node. In the directed

hierarchical case, a model could be constructed where the fitness of a node varies over time

and edges are broken and formed as it moves through the hierarchy.

This work is also closely related to the study of non-normality [165, 19, 20] in networks

and provides a generative model to create networks with varying degrees of normality while

controlling how the levels are formed by varying the fitness distribution. It also provides a

justification for the ubiquity of non-normal networks by creating a model for them which does

not only depend on ordering by node arrival time and reciprocal edges [166, 38, 20]. The fact

that it was observed in a real network in [38] that the number of reciprocal edges varies with

level is something that could be built into the fitness function we use, showing the flexibility

of the model. The model we present also comes with the advantage that the number of

edges and nodes is fixed and that the model always generates connected networks which

may not be the case in some static fitness models. Due to the similarities between trophic

analysis and the study of non-normality it is hoped that trophic analysis and models of the

type presented in this work could be a useful tool to augment areas where non-normality is

being applied such as has been done in [20].

One of the key results of this work is that it provides some explanation of why coherent

networks are common in nature as they can arise by multiple mechanisms which act simulta-

neously. We have shown that coherence can be induced by the fraction of edges which go in

and out of newly introduced nodes, by the strong degree imbalance induced by degree-based

preferential attachment or by the node ordering induced by fitness interactions. These simple

effects could combine in many real-world systems to create the varied spectrum of trophic

incoherence observed in real networks [6, 8]. The general model we provide captures both

the hierarchy induced by time ordering as in citation networks and the niche-based hierarchy

studied in ecology.

This work also provides some insight into the utility and limitations of trophic analysis
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as a tool. We have shown that when incoherence is low trophic analysis can be taken as

good proxy for node level fitness and can be useful to infer some properties about the nodes.

However, when a network is very incoherent this is not the case and trophic level gives you

no information about the node fitness and simply correlates with degree imbalance. We also

show how trophic analysis does not fully capture the underlying fitness distribution as all the

trophic level differences are approximately mapped to Gaussian even when the underlying

fitness distribution is not a Gaussian. We do however show that trophic incoherence can be

used as a good proxy for estimating the scale of the coefficient of variation of the underlying

fitness distribution, if the network is built using a fitness hierarchy. Linking trophic analysis to

node fitness and the properties of the fitness distribution also allows the fitness properties to

be linked to the network properties which have been shown to be related to trophic structure

[8, 6, 5, 3, 2]. Another limitation of this work is that we assume that each edge represents

one type of interaction whereas in real systems the ranking of elements may depend on the

interplay between different types of edge interactions [174]. It is also true in some systems

that being at the top of the ranking may not represent some intrinsic skill or ability but could

just be related to luck [171]. For such systems, we could use a variant of our model where

some edges can be added without respect for fitness or hierarchy representing luck or intrinsic

variability in the system taking inspiration from the work of [125], where luck-based variability

was incorporated into their model of rankings based on pairwise comparisons.

In this work, we have also shown the interplay between trophic analysis and degree imbal-

ance. In some circumstances, this is useful as it has been shown that there is a relationship

between non-normality and degree imbalance and that both are prevalent in nature [165].

However, there may be situations where this degree imbalance just arises from randomness

like in an ER random graph and then trophic level simply correlates with this feature. This

may be useful in some cases if the degree imbalance is an important feature in your dynam-

ics however this is something to be aware of when using methods like Trophic Analysis or

SpringRank [44]. Alternative ranking methods exist which mitigate this affect based on the

stochastic block model [128]. This allows the statistical significance of the observed structure
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to be understood. The approach of [128] is very useful for understanding hierarchy and we

recommend that it is used when trying to understand the significance of ranks in an appli-

cation. In Trophic Analysis, the incoherence, 𝐹, can be used as a guide to understand the

importance of hierarchy to the system and we would argue that ranks should always be given

with a parameter like 𝐹 or another quantification of the importance of hierarchy like the nor-

mality or significance of the ranks [128]. A stochastic block model framework has also been

used to study the ability of “agony” to detect planted ranks [115]. 𝐹 and other parameters

which involves an average over the network structure do however have some limitations. For

example, if we used a fitness function which creates a very strict hierarchy in one fitness

region and no significant hierarchy in the other we lose the information about the fact that

the network has two distinct behaviours as 𝐹 takes a value based on the average across

both. This means that we also need to look at the distribution of levels to fully understand

the hierarchy in a network and the incoherence has an implicit assumption of the hierarchi-

cal behaviour being homogeneous across the system. Additionally, source/sink nodes which

always have non-zero degree imbalance play a unique role in the network [166] with their

number potentially affecting the dynamics.

Our results may also be affected by varying the sparsity of the networks used. If a net-

works is extremely dense, with the precise threshold depending on the fitness function and

expected number of levels implied by the fitness function, it may be impossible to build very

coherent networks as there are too many edges to have only edges which go up by exactly

one trophic level. Additionally, depending on the generative process, compared to dense net-

works, very sparse networks may have fewer cycles and more nodes of zero in or out-degree.

Hence these are generally more coherent, as there is more likely to exist an arrangement such

that the trophic level differences are close to one across all edges.

This work could also prompt further examination of the relationship between trophic anal-

ysis and models of ecological network formation, as has been studied using a previous defi-

nition of trophic level which required basal nodes and a network formation model which was

not based on fitness interactions [32]. Our work explains features like how the hierarchical ar-
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rangement and level structure change as the fitness mean and standard deviation are varied

[285]. Our model could also be extended in a similar way to in the probabilistic niche model

[131, 314]: we could assign the preferred fitness difference and fitness function standard

deviation to each node individually to account for the fact that in some systems, such as food

webs, different nodes may be able to interact over different fitness distances with different

standard deviations, which may change the structure of the network formed, depending on

the distributions of parameters chosen.

Trophic coherence has also been found to affect opinion dynamics in social network mod-

els [7]. These results could be linked to social network formation via the work of [130], where

it was shown that there is a hierarchical structure present in some social networks, due to

a phenomenon that edges going from lower to higher status individuals are less likely to be

reciprocated. This concept could be incorporated into a variant of our model with a reciprocity

parameter and analysed via Trophic Analysis.

6.6 Conclusion

In conclusion, we have presented a model of growing directed networks based on the prin-

ciple of assigning nodes fitness and the network being built from a mixture of degree-based

preferential attachment and fitness interactions. We have shown how these simple effects

can produce a wide range of values of trophic incoherence which may explain the ubiquity of

trophic coherence in real-world systems. We have shown how the properties of the networks,

as measured with trophic analysis, can be related to the properties of the fitness function used

in the generative model. In addition, we have shown how preferential attachment interacts

with the trophic structure of the network and how fitness hierarchy affects the degree distribu-

tion in networks generated with our model. We have provided a variety of possible extensions

and use cases of this model and other models of this type, in the hope that it can generate

ideas for more work on the interplay between network hierarchy and both the structure and

dynamics of directed networks.
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6.7 Appendix

6.7.1 Additional Analysis of Historical Network Data

We also extract from the historical network, [310], the death year of the individuals and the

difference in death year between individuals and their parents. The death years were found

to be related to the trophic level however the difference distribution predicts a different kind

of network structure than the one we observe. Showing that not all network metadata can be

used to understand the hierarchical nature of network formation.

In figure 6.14 we analyse the relationship between the trophic parameters and the other

data we have from this network which is the date of death of some of the individuals (3043).

There is a strong correlation between the year an individual dies, figure 6.14a, which makes

sense as we expect individuals who die later in time to be further along the family tree. How-

ever, the correlation is not as strong as in the case of birth times which makes sense when

we consider figure 6.14b. We see that the difference in death year (year of child death minus

year of parent death) can be negative which is not the case of the birth difference. Hence

https://github.com/nrodgers1/directed_networks_with_fitness_and_hierarchy
https://github.com/nrodgers1/directed_networks_with_fitness_and_hierarchy
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based on death differences you would not predict an acyclic and very coherent network as

seen in the real data so this rules this out as a generative mechanism for the network. Also,

it explains why the correlation between death times and trophic level is worse than the birth-

level correlation as there is much more variability in the difference in death times as it can be

negative and there is a large spike at zero which is not the case in the birth year difference.

We assume this is the affect of disease and high childbirth mortality in the historical era in

which this data is taken from. This highlights how trophic analysis can be used to understand

the parameters that contribute to network formation in a simple real-world example but we

hope this can be extended to more complex real world systems where the answers are less

obvious.

(a) Death Year against Trophic Level of nodes in
Ragusan Nobility Network [310] for 3043 nodes
where this is known.

(b) Death Time differences between nodes in Ra-
gusan Nobility Network [310] across the 3633
edges where the year is known for both nodes.

Figure 6.14: Comparison of trophic level differences and birth year differences in real histor-
ical network [310]

It can also be demonstrated, figure 6.15, that degree imbalance is not a useful metric

to predict birth year as you would expect in the low incoherence regime as there is little

correlation between the two quantities unlike was observed with trophic level. We also see

that as the network is a network of parent-child relationships the maximum degree imbalance

is two from having two parents and no children and the minimum is constrained by the number

of children someone can have minus two for their parents.
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Figure 6.15: Known Birth Date (3065 individuals) of Members of the Ragusan Nobility, [310],
against Degree Imbalance (in-degree minus out-degree) with Pearson correlation coefficient
given in the legend.
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7.1 Discussion of Work Presented

In this thesis, we have presented how Trophic Analysis can be used to understand various

features of real and generated directed networks. In this section, we review the common

threads and key findings of all work presented, with discussion of the individual works found

in the section they were presented.

Throughout this thesis, we have taken a consistent approach to understanding hierarchy

via Trophic Analysis. This approach has highlighted how Trophic Analysis can be used to

understand many features of networks related to hierarchy and highlights how the papers

presented can be viewed as a single body of work related to this methodology. All the re-

sults in this thesis draw on the same underlying fact that many real directed networks have

a hierarchical structure, as measured by Trophic Analysis, and that this hierarchy is impor-

tant for the dynamics and structural features of these systems. This work provides a well

rounded studied of hierarchy in directed networks as we looked at how it impacts dynamics

on networks, the structure of these networks and studied how networks with hierarchy can

be generated and simple rules that lead to their emergence. All the results are also consis-

tent with each other. Similar phenomena are observed in the work on Hopfield-like networks

[1] and when studying network influence [3] which make sense in the context of the results

found on the emergence of strongly connected components in [2]. While the results on fit-

ness based generative model [4] attempt to explain why the features observed arise in real

networks. This thesis furthers our understanding of how the hierarchical structure of directed

networks affects many aspects of their function, while also serving to promote this idea to the

wider network science community.

7.2 Outlook and Future Work

Having presented a study of Trophic Analysis and how it can be used study various phenom-

ena related to directed networks we now give an overview of potential extensions to this work.

In addition, we give an outlook of potential future developments and trends in the study of
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directed networks and general network science.

7.2.1 Outlook of Trophic Analysis

Since its inception in [5], Trophic Analysis has been utilised in many applications and the

unique features of directed networks have become increasingly commonly understood [18,

20, 8]. It is hoped that this trend continues with more systems and dynamics identified which

can be studied by analysis of their hierarchical structure. This could potentially span a huge

range of fields corresponding to any area where the object of study can be represented as a

directed graph. Work is currently ongoing on a potential paper, which I have contributed to-

wards, to extend the results of [6] linking the spectral radius of the adjacency matrix to trophic

incoherence using a “coherence ensemble” to the MacKay definition of Trophic Analysis and

to devise new algorithms to sample from this ensemble.

One of the key achievements of the original proposal of Trophic Coherence was relating it

to the longstanding May’s paradox in ecology [5]. Similarly, a key step which would improve

the visibility of the new version of Trophic Analysis [8] would be to find another system in

which considering the hierarchical structure provides insight and answers to a long-standing

question about the workings of a real-world phenomena. However, this is clearly not simple

and it would be a large research step to come up with such a system. There are still many

types of dynamics where Trophic Analysis could be applied and we would expect to see

similar behaviour to as found in the dynamics studied in this work. Selecting other types of

dynamics on which to perform a similar analysis and potentially running the dynamics on a

real network structure could be a fruitful avenue of further work. In this PhD, the possibility

of a data analysis based project surrounding the analysis a specific network dataset was

considered, however we did not have access to appropriate data, collaborators to provide it

or a clear research questions to answer. If this was the case in the future, it may also become

a fruitful area of research, as demonstrated in [51].

One of potential extensions of this work is to focus on temporal networks. This could be us-

ing an specific adaption of the Trophic Analysis framework in a similar way to how SpringRank
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was extended to temporal networks in [62] or it could be simply applying standard Trophic

Analysis to temporal data. In [62], a term is added to the minimisation problem which imbues

a cost to updating the ranking to something which is different to the ranking at the previous

temporal snapshot to smooth the changes in rankings over time as the network evolves, giv-

ing the rankings a dependence on the history of the network. In temporal networks, how the

hierarchical structure and global directionality change with time could be analysed as well

as the factors which lead to changes in this structure. In addition, a network could be setup

where the structure and dynamics are coupled to each other which results in the incoherence

of a network varying. For example, the network could be more likely to reorganise itself to

become more coherent and sensitive to perturbations if it has not recently changed state but

stabilise by adding more feedback if the state has changed recently. This type of approach

was something which was considered during my PhD but other projects took priority and we

had difficultly identifying real systems where this type of dynamics and evolution could take

place. However, if a system is identified in which the changes in hierarchical structure over

time are a key part of its behaviour Trophic Analysis or related methodologies could be a

useful tool to study it.

Modifying the objective function used in Trophic Analysis by adding extra terms or chang-

ing the norm used is another potential outlet of future work. A regularisation term was in-

cluded in the original definition of SpringRank [44] and there have been attempts to modify

SpringRank [63] and other related methods [76] to deal with outliers by expressing them as

a Huber Loss. During my PhD, some experimentation was conducted on changing the norm

used in the definition of Trophic Incoherence. We found that this may modify the levels found

by the algorithm as expected but we had no strong reason to give up on the current defini-

tion as it leads to a simple minimisation problem. If a justification was found to change the

minimisation problem related to the study of specific features, such as temporal evolution

[62], outliers [63, 76] or underlying fitness interactions [4], it may be an interesting avenue of

future work. However, for the purpose of this thesis the current definition worked as well as

required.
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Another useful facet of Trophic Analysis, has been the connection of Trophic Analysis

to various global network quantities such as the spectral radius [6, 8] and non-normality [8,

18, 20]. Future work could involving trying to analyse what other network quantities can

be related to Trophic Incoherence as was done in [3, 2]. As well trying to link the results

expressed in terms of Trophic Incoherence to the wider literature on non-normal networks

and the phenomena they exhibit. This has been begun by other groups such as in [20] where

both trophic analysis and non-normality were used to analyse dynamics on directed networks

and the features captured by each measure analysed. It may be possible to relate further

spectral properties of the adjacency matrix to the hierarchy and directionality of the network

it represents.

Additionally, work could be undertaken to relate Trophic Analysis to the other methods of

hierarchy present in the literature and to provide a unified view which brings together differing

views of hierarchy and ranking. The review conducted earlier in this thesis represents a start

of this process. It could be extended by comparing in more detail some of the many different

methodologies and their application to studying dynamics or real data and comparing their

mathematical formulation and properties. However, this is a very extensive task given the

range of techniques and approaches which may be considered. Any work of this nature

could further draw attention to the close relationship between Trophic Analysis and the related

methodologies [45, 44] describing the relationship between the different formulations and

interpretations in precise detail and linking to the very large literature which methods based

on Helmholtz-Hodge Decomposition draw on.

In chapter 2, we highlighted the myriad examples of how to study and measure hierarchy

in directed networks. Of course, in the future one of these methods could become the default

way for the network science community to view hierarchy which would change the develop-

ment of the field. For example, it may be possible that one of the methods related to Trophic

Analysis highlighted in chapter 2 such as SpringRank [44] or Hodge Decomposition [45] gain

in popularity much more than any of the others so that it becomes that standard way to refer

to this type of methodology, while the terminology contained within that method becomes the
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literature standard. On the other hand, this type of standardisation may not occur and there

will remain many different ways to describe hierarchy in the literature for a long time. One

particular methodology which may see lots of use in the future is [128] and potential future

work derived from this. The framework of [128] uses a modified stochastic block model to

measure the hierarchical structure. This allows quantification of the significance of the struc-

tures found and can separate out the correlations with degree imbalance observed in Trophic

Analysis. This framework is also available in the popular and well maintained graph-tool

library [129] which may aide in widespread adoption. We would recommend the development

of this framework [128] is followed as it allows analysis of the interplay between community

structure and hierarchy as well as being easily accessible for use in application and visualisa-

tion. Unfortunately, it seems like the clash in terminology between flow hierarchy and cluster

or modular hierarchy is a feature of the literature with both terminologies well established and

something that researchers will need to be aware of.

There may also be methods outwith the type of one-dimensional hierarchy used in this

work which may become widely used to quantify the structure of directed networks. For ex-

ample, the directed extensions of the network geometry framework [136]. Additionally, some

system may not be well represented by a one-dimensional linear hierarchy. There may be

systems which feature a periodic hierarchy [53] which could be studied using the Magnetic

Laplacian methods [53, 138, 140], also used to study community structure [137, 138]. In par-

ticular, a useful approach could be to measure simultaneously the flow and periodic hierarchy

[54] allowing the nodes to be embedded using two dimensional polar coordinates and more

of the network structure captured [54]. Another potential future avenue of work is applying

Trophic Analysis or a related methodology [172] to signed directed networks either by adapt-

ing the framework to deal with negative edges or by working on the absolute value of the

edges and then analysing the role that the negative edges play in the hierarchy. This could

link to recent work in directed networks which has analysed the amount of reciprocity and

frustration observed in signed directed networks [173]. It may also be the case that systems

exist with a range of nodes types and edge types which follow different hierarchical rules and
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patterns. As well as systems with large variations in how strictly the hierarchy is followed in

different parts of the network. It may be in future that specific methodologies can be devel-

oped to quantify these more complex structures. Trophic Analysis may capture some of this

information through the distribution of levels and edge differences but as the incoherence is

an average over the whole network this kind of local information can be lost. In future, it is

hoped there will be more widespread understanding on the prevalence and importance of

hierarchy and ranking in directed networks and it will be of great interest to see where this

type of methodology can be applied, the questions it can answer and the insight it can inspire.

7.2.2 Trends in Network Science

During the course of my studies, there was also significant developments within network

science and science more generally which may shape how research into complex systems

develops in the years to follow. One exciting and developing area of research not covered by

this thesis has been the field of higher-order networks [315, 316, 317] which has attracted

much interest in recent years and is the topic of numerous reviews [315, 316, 317]. The

networks covered in this work all feature pairwise interactions but in some real systems this

may not be adequate to fully describe them and higher-order interactions involving more

elements of the system may be required to fully capture their behaviour [317]. In the field of

higher-order networks this is done by representing the systems through either a hypergraph

or simplicial complex. Both of these approaches allow the representation of interactions

which are beyond pairwise and much work has gone into understanding dynamical process

on these systems [316, 317, 315]. Recent work has highlighted the interplay between higher-

order network structures, directed interactions and dynamics [318, 319, 320, 321] by using

various frameworks for the study of directed hypergraphs. Additionally, the work of [322]

has considered how higher-order Laplacians can be constructed to study directed simplicial

complexes. As the field of higher-order networks further develops it will be interesting to see

the insight this framework can give into real-world systems and the role directed interactions

may play in this framework. It will be also of great interest to see the future uses of the
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frameworks such as network geometry [136] or renormalisation methods [147] which were

extended to directed networks during the course of my PhD. Additionally, it will be of interest

to see how ideas around the low-rank nature of complex systems [323], using dimension

reduction based on singular value decomposition develop in future. Moreover, their may

be future scientific developments based on expanding areas of interdisciplinary research

such as linking complex networks and dynamical systems using Koopman Operators [324]

or research on quantum networks [325] linking network science and quantum physics, which

may include directed quantum networks [326].

During the course of my PhD, there has also been significant advances in AI and machine

learning applied to a vast range of topics in network science and beyond. In the middle of my

PhD, large language models entered the public consciousness and become easily accessible

with huge improvements made in the capabilities of generative AI. There has also been great

interest in how machine learning can be used to study complex dynamical systems such as

the data-driven approach to dynamical systems of [327]. To give some recent examples in

closer relation to this work, it was shown in [89] how a Graph Neural Networks (GNN) could

be used to rank elements in a directed networks and in [328] how a GNN framework can be

used to study the evolution of the structure of a network. Overall, it will be of great interest

to see in the years following this thesis how machine learning approaches interact with the

study of complex systems and network science, see [329] for a review and outlook on the

applications of AI to study complex networks. It will be of great interest to see how science

is affected in the years after my PhD by the rapid progress in AI which took place during the

course of it.

7.3 Conclusion

In conclusion, we have presented a detailed study of how Trophic Analysis can be used to

understand the properties of directed networks. We have shown how hierarchy can be used to

understand the emergence of strongly connected components, how it affects the performance
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of Hopfield-like networks and how it can be used to understand network influence. In addition,

we have shown how hierarchy can be created using preferential attachment models based

on node fitness interactions. We hope this thesis provides a basis for future work involving

directed networks and furthers our understanding of these systems.
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A.1 Level Distribution of Example Real Networks

(a) ER random graphs with 𝑁 = 1000 and ⟨𝑘⟩ =
10 (b) C.Elegans connectome [240]

(c) Ythan Estuary Food Web

(d) Arxiv CItaion Network of High energy Physics
with approx 35,000 nodes [330]. Downloaded
from [331].

Figure A.1: Level difference distributions of real networks of a variety of sizes and function
which can roughly be approximated as Gaussian’s.

We show the level difference distributions for a variety of real world networks, figure A.1.

The Gaussian approximation is calculated from using mean, 𝑧 and standard deviation 𝑧𝜂 as

defined in the main text and as in [8]. All the distributions are reasonably well approximated

by a Gaussian. The random graph, figure A.1a is well approximated even though it has no

hierarchical structure and so is the C.elegans connectome figure A.1b which has a more

complex structure. The approximation is not perfect for all networks for the small food web,

figure A.1b, as the network is very coherent the peak at one is larger than the Gaussian

predicts and the network is quite small so we expect fluctuations and noise. However the
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approximation works well on very large networks such as the Arxiv Higher Energy Physics

citation network.This network is very structured as more popular papers are cited more and

it has an ordering imposed by time as you can only cite papers written before you. However

the trophic level distribution is still well approximated by a Gaussian which depends only on

F.
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A.2 Importance of Attacks on Backwards Edges for Dy-

namical Processes

(a) Majority Vote Dynamics with Opinion Inertia
on ER random graphs with 𝑁 = 1000 and ⟨𝑘⟩ =
10 with 20% of most backwards edges targeted
or random edges targeted with different starting
locations in the hierarchy of with a fifth of nodes
taking a new opinion.

(b) Spread of infection with time in SIS model on
High School Social Network [332] with 20% of
most backwards or random edges targeted with
different starting locations in the hierarchy and an
initial infection in 5% of the students. 𝑝𝐼 = 0.2,
𝑝𝑅 = 0.1.

(c) Voter Model on Trade Network [333] with 33%
of most backwards or random edges targeted
with different starting locations in the hierarchy
and 5% of nodes taking the new state.

(d) Synchronisation of Continuous Kuramoto Os-
cillators on the C.Elegans connectome [240] with
20% of most backwards edges targeted and ran-
dom edges targeted starting from random phase
between zero and 2𝜋.

Figure A.2: Dynamics of Real-World Networks after targeted attack on Backwards edges and
Random Edge Attacks. All real-world data sets can be found at [185] or [333] for the trade
network.

Strong connectivity is very important for many real-world networks and their dynamics. For

illustrative purposes we demonstrate how a spreading process defined by a Susceptible-

Infected-Susceptible (SIS) model dynamics; Opinion formation governed by Majority Vote
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Dynamics; changes in states of nodes governed by the the Voter Model and Synchronisa-

tion of Continuous Kuramoto Oscillators all change after a targeted attack on the backwards

edges calculated using Trophic Analysis and random attack. These are all demonstrated in

figure A.2.

Majority vote is a very simple model of opinion formation which is demonstrated in figure

A.2a. Each agent in the model is given an opinion and then updates their opinion if the major-

ity of their neighbours have a different opinion. It is very simple but shares some similarities

with other discrete dynamics widely used in complex networks such as the SIS epidemic

model [204], Hopfield neural network model [1], the Ising model of magnetisation [205] and

the Moran process describing evolution of populations [206]. The simplest way to define ma-

jority vote dynamics is a system where there are two opinions denoted as +1 and -1. Each

agent holds either of the two options and updates their state according to the majority opinion

of their neighbours. In the case of a draw the new state can be randomly selected or remain

in the previous state. We choose to fix the system in the previous state to prevent random

opinions filtering through the system from the nodes with in-degree 0 when the backwards

edges are removed. This update rule can be written as

𝑆𝑖 (𝑡 + Δ𝑡) = sgn

(∑︁
𝑗

𝐴𝑖 𝑗𝑆 𝑗 (𝑡) + 𝛿𝑆𝑖 (𝑡)
)
. (A.1)

Where 𝛿 is a small positive constant less than one to account for balanced opinions. We

also update the state of the system in parallel. In this setup, for maximum simplicity, we

take an Erdős–Rényi random graph, with 𝑁 = 1000 and ⟨𝑘⟩ = 10, and give one fifth of the

nodes a new opinion, labelled -1, and observe how that opinion spreads over time. This

could represent a political belief or taking part in a social trend. Figure A.2a shows that

how the opinion forms depends on where in the hierarchy the opinion starts and how much

feedback there is in the system driven by the backwards edges. When the new opinion starts

at the bottom of the hierarchy and the backwards edges have been attacked it can spread

through the whole system and it becomes a majority opinion amongst the nodes. When the
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opinions starts at the bottom of the hierarchy after a random attack it can still slightly spread

up through the system but since there is still feedback in the system the affect of the new

opinion is damped so it quickly dies out. When the opinions starts at the top of the system

and the back edges have been attacked it can not propagate back down the system so the

new trend quickly dies out. When the opinions starts at the top of the system after a random

attack it is also quickly replaced by the opinion from the lower trophic level nodes. This also

demonstrates that hierarchical structure can be found and exploited even in networks like

random graphs where little structure is expected.

The SIS model, figure A.2b, is a simple spreading process which could be imagined to

represent in the simplest way the spreading of an infection which you can catch multiple times

and lack immunity like the common cold or sexually transmitted disease; the spreading of a

meme in a social network; selling in a trading network or activation in a neural network. In this

model each node can either be susceptible or infected. If a node is susceptible it becomes

infected if any of its in-neighbours are infected with probability 𝑝𝐼, at each time step. If a

node is infected it loses the infection and transitions to the susceptible state with probability

𝑝𝑅. There are many possible variations of this model however we use the simplest case for

demonstration [334]. Using parallel updates we start the system with 5% of the nodes infected

and the rest susceptible. This is shown in figure A.2b where the dynamics take place on a

High School Social Network. If random edges are removed the backwards edges remain

and then the infection can cycle round the network and the infection becomes endemic. If

the network is strongly connected the final state is not affected by where in the the network

the infection appears however the initial spread can be affected by where in the hierarchy it

starts. When the backwards edges are removed there is no strongly connected component to

maintain the infection so it eventually dies out. However the hierarchy induces an asymmetry

in the network. If the infection starts in the low trophic level nodes it can spread through

a large part of the network before it dies out so many nodes see the infection while if the

infection begins in the high level nodes it has nowhere to spread to so quickly dies out, figure

A.2b. This is very important to understand as each of these scenarios can have very different
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consequences depending on the nature of the spreading agent and the system in question.

A voter model, figure A.2c, is another simple model which can represent opinion formation

or general updating of states of the agents in a network [335]. We take two discrete states

labelled +1 and −1 and update the system in parallel such that at each time step a node

selects one of it’s in-neighbours at random and copies the state of the chosen neighbour.

This model is very simple however variants of this model can be used in modelling real voting

processes [215], economics [216] and chemistry [217, 218]. In our example dynamics we

simulate the simple voter model on a trade network. Where the new state can represent any

relevant binary change in the function of an entity for example if the agent suffers a delay

or shortage in production or begins selling off particular assets. We start the system with

5% of the nodes in the new state and destroy one third of the edges, more edges have to

be attacked due to the network being small and dense as well as quite incoherent. When

the perturbation is made to the high level nodes the new state can not take hold and the

system maintains it’s previous state, figure A.2c. However when the new state is introduced

to the low level nodes it can gain a foothold. When it is presented at the low level nodes after

a random attack it survives for some time before disappearing while after an attack on the

backwards edges the new state is able to overtake the entire system.

The Kuramoto model is a very important model of synchronisation [209] used in a wide

variety of setting in particular in Neuroscience [210, 211]. In figure A.2d we simulate Kuramoto

oscillators on the neural structure of the nematode C.Elegans after random and targeted

attack. It can be treated analytically in simple network topologies but in complex networks

the model must be solved numerically. We use NetworkDyanmics.jl [213] to solve the system

of differential equations used in our variant of the model. Each oscillator has a phase, 𝜃,

which evolves according to the equation

𝑑𝜃𝑖

𝑑𝑡
=
𝐾

𝑘 in
𝑖

𝑁∑︁
𝑗=1

𝐴 𝑗𝑖 sin (𝜃 𝑗 − 𝜃𝑖) + 𝜔𝑖 . (A.2)

Where 𝐾 is the coupling constant, 𝑘 in
𝑖

is the in-degree of node 𝑖 and𝜔𝑖 is the natural frequency
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of node 𝑖. We use the form normalised by in-degree so that the oscillators update at similar

rates even if they have many input nodes. 𝐾 is taken to be 50 to ensure synchronisation

and the natural frequency of each node is drawn from a normal distribution with mean 0

and standard deviation 1. The synchronisation of the oscillators is shown in figure A.2d and

measured by the order parameter

𝑟 =
1
𝑁
|
𝑁∑︁
𝑖=1

𝑒𝑖𝜃𝑖 |. (A.3)

This reaches 1 when all the oscillators are fully in phase. Starting from each oscillator having

an initial phase between 0 and 2𝜋 under a random attack the system is still able to synchro-

nise. However when the backwards edges are attacked the synchronisation is less strong,

A.2d, and the system is disrupted.

These results tie into existing literature on directionality, spreading [336] and epidemic

thresholds in directed networks [114]. Where the epidemic threshold can be considered a

function of the spectral radius and driven by the directionality as measured by the fraction of

bidirectional edges [114]. Our results are in agreement with this as a bidirectional edge pair

must count at least one edge where the trophic level difference is less than or equal to zero.

We extend the definition of directionality to make it more general and complete rather than

simply the fraction of edges which are bidirectional [114]. Our results can also be restated in

terms of the spectral radius of the adjacency matrix as there is an analytical estimate of the

spectral radius as a function of 𝐹 [8]. Similar results demonstrating the affect of directionality

and hierarchy on the performance of Hopfield-like neural networks can be found in [1]. The

results demonstrate the importance of the backwards edges to the system across a variety

of dynamics and scales which we expect to hold in a variety of other systems. However it

should be stressed that the importance of the backwards edges to dynamics depends on a

variety of factors. Firstly the impact of attacking the strongly connected component depends

on the initial size and distribution of that component as if the component is initially very small

destroying it may have little affect. Degree distribution can also interplay very strongly with

dynamics both in the sense that hub nodes of very high degree can play in important role in

controlling the dynamics and that directed networks can potentially have many nodes which
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have in-degree zero [193]. Nodes which have in-degree zero have no input from the system

so internally set their own state so can play a large role in controlling the system dependant

on their placement in the hierarchy, out-degree and the specifics of their internal dynamics.

In addition this could be repeated with another measure of the hierarchical ordering and

targeting of the backwards edges however you could not analytically estimate the number of

edges you would need to target before enumerating all the backwards edges and would also

lack the link to the global directionality.

A.3 Network Data-sets

The majority of the networks used in this study are stored at [185] where they were previously

used in the results surrounding the relationship between trophic structure and spectral radius

[6]. Information about the original sources of the networks as well as additional network

information about the structure can be found in the supplementary information of [6] or online

at [185].

We also supplement this data-set with some additional networks from [182], https://networks.

skewed.de/, in order to sample the parameter space as best as we could which are listed in

the table below. The links provide more detailed information about the network structure and

origin and the original source as listed in [182] is referenced in the last column.

https://networks.skewed.de/
https://networks.skewed.de/
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Network Name Retrieved From Source

FAA Preferred Routes
https://networks.skewed.de/net/faa_

routes
[236]

Dutch school friendships (all

6 connected networks)

https://networks.skewed.de/net/dutch_

school
[337]

Abu Sayyaf kidnappings
https://networks.skewed.de/net/

kidnappings
[338]

Papuan gift-giving
https://networks.skewed.de/net/moreno_

taro
[339]

Swingers and parties https://networks.skewed.de/net/swingers [340]

Email network (Uni. R-V,

Spain, 2003)
https://networks.skewed.de/net/uni_email [341]

Political blogs network https://networks.skewed.de/net/polblogs [342]

A.4 Strong Connectivity By Network Type

In the main text we give the result for predicting the strong connectivity for real networks

where all the networks of different types are shown in the same figure. Here we break down

the networks by the categories included in the data set [185, 6]. All the networks are collected

in different ways so there may be uncertainty associated with how well networks of each type

represent the underlying real world system.

Food-webs, figure A.3, are unlikely to be strongly connected as expected as they have

a very hierarchical structure as result of the interactions between species and the flow of

energy up the food chain. It is interesting to note that some food webs have high degrees

where previous work on random directed networks [177] would expect the network to be

strongly connected.

https://networks.skewed.de/net/faa_routes
https://networks.skewed.de/net/faa_routes
https://networks.skewed.de/net/dutch_school
https://networks.skewed.de/net/dutch_school
https://networks.skewed.de/net/kidnappings
https://networks.skewed.de/net/kidnappings
https://networks.skewed.de/net/moreno_taro
https://networks.skewed.de/net/moreno_taro
https://networks.skewed.de/net/swingers
https://networks.skewed.de/net/uni_email
https://networks.skewed.de/net/polblogs
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Figure A.3: Prediction of Strong Connectivity in Food webs from [185]

The genetic networks in our data set, figure A.4, are all very coherent and lack a strongly

connected component.

Figure A.4: Prediction of Strong Connectivity in Genetic Networks from [185]

The singular language network, figure A.5, is quite incoherent but lies close to the transi-

tion line.
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Figure A.5: Prediction of Strong Connectivity in Language Networks from [185]

The metabolic networks, A.6, all lie very close to the transition line and are very incoherent

so have a little global hierarchical structure but still enough to make our analysis relevant.

Figure A.6: Prediction of Strong Connectivity in Metabolic Networks from [185]

There is large variation in the neural network data set, figure A.7, this is due to the variety

of data types and methods employed in this field. This data includes the connectome of
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C.Elegans as well as functional brain networks for a variety of species.

Figure A.7: Prediction of Strong Connectivity in Neural Networks from [185]

The social network comprised of in-person friendships all lie close to the transition line,

figure A.8, between strong and weak connectivity. Again social networks are a type of real

network where you might initially expect there to be very little hierarchy and ordering.

Figure A.8: Prediction of Strong Connectivity in Social Networks from [185]
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The trade networks in our data set, figure A.9, are all in a similar region which is mostly

strongly connected but still exhibits some hierarchy.

Figure A.9: Prediction of Strong Connectivity in Trade Networks from [185]

A.5 Branching Factor for all Networks

The branching factor is shown for all the from [185] networks in figure A.10. Again it is clear

the the transition is missed when not considering the hierarchy and methods derived from

random graphs [177] are not enough to explain the behaviour of real networks.
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Figure A.10: Prediction of Strong Connectivity using the Branching Factor for Real Networks
[185].
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