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Abstract 

 

Members of the WASP protein family are direct activators of the arp2/3 complex, thereby 

regulating the nucleation of branched actin assemblies within the cell. Each sub-class 

possesses a unique N-terminal domain architecture allowing a division of labour between its 

members, each coupling different signal transduction pathways to the nucleation of specific 

actin structures 

 

WASH (WASP and SCAR homologue) is a newly identified member of the WASP protein 

family. Due to its disruption in Drosophila proving lethal (Linardopopoulou et al., 2007) little 

is know as to the functional role of WASH at the cellular level. Other than it is important in 

the development of multicellular organisms. Here we successfully disrupt WASH in the 

single celled amoebae Dictyostelium discoideum and discover a role for WASH in the 

endocytic pathway. 

 

WASH was shown to be essential for the trafficking of indigestible material through the 

endocytic pathway, with its disruption causing a complete bock in cellular defecation. This 

was shown to be due to a defect in lysosomal maturation into neutral post-lysosomes. Using 

fluorescently tagged fusion proteins we show that WASH recruitment coincides with removal 

of the Vacuolar H+ ATPase from lysosomal membranes, and suggests a possible role for 

WASH and actin in regulating the luminal pH of intracellular compartments. 
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1.1 The Actin Cytoskeleton 

 

The actin cytoskeleton collectively refers to all actin-based filaments found within eukaryotic 

cells. This filamentous network is an essential component of almost all eukaryotes, and 

recently an analogous structure has been discovered in prokaryotes (van den Ent et al., 2001) 

further emphasising the importance of these structures. In combination with accessory 

proteins actin filaments can form either branched arrays or parallel bundles. These structures 

can also be dynamic or transient with some structures disassembling moments after their 

formation, or some persisting for the lifetime of the cell. Cells utilise the actin cytoskeleton in 

a range of cellular processes as a means of providing structural rigidity, protrusive, or 

contractive forces. A traditional example is that of cellular motility, an event critical during 

development, immune response and wound healing. Filament elongation provides force for 

cellular protrusions (Miyata et al., 1999), whilst a branched cortical actin scaffold supplies 

rigidity to maintain cell shape. Along with myosin, actin filaments also create contractile 

forces for the retraction of the rear (Iwadate & Yumura, 2008).  

Other biological processes documented to utilise the actin cytoskeleton include endocytosis 

(Kaplan, 1977), exocytosis (Muallem et al., 1995), cytoplasmic streaming (Wehland et al., 

1978), vesicle propulsion (Taunton et al., 2000), cell-cell and cell-matrix adhesions 

(Vasioukhin et al., 2000), and cytokinesis (Carter, 1967) (Figure 1.1).  
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Figure 1.1: The actin cytoskeleton in eukaryotic cells

Depiction of filamentous actin structures within eukaryotic cells. Branched actin
structures are involved in phagocytosis, pinocytosis, membrane ruffles, lamellipodia
and serves unknown roles on golgi and membrane tubules. Bundled actin structures
are involved in forming stress fibres, spiky filopodia protrusions , and unknown roles
in the nucleus. Image adapted from Campellone & Welch (2010)
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1.2 Actin polymerisation 

 

Actin is a highly conserved 42KDa protein that is typically the most abundantly expressed 

protein within eukaryotic cells. In a concentration dependent manner, monomeric actin (G-

actin) can spontaneously self-assemble into helical filaments (F-actin). G-actin also contains 

an ATP binding cleft, and ATPase activity once incorporated into a filament. This supplies 

filaments with two forms of polarity, 1) structurally due to the head-to-tail orientation of 

monomers with the cleft exposed at one end but not the other, and 2) ATP-bound actin at 

newly formed polymerising tips (for a detailed review of filament formation see Pollard & 

Borisy, 2003). The polarity of the filament results in each end having varying kinetics, a fast 

and a slow growing end. The fast growing end, and the site of filament elongation in vivo, is 

known as the ‘barbed’ end. The slow growing end, and typically the site of filament 

depolymerisation in vivo is termed the ‘pointed’ end.  

 

In vitro experiments with purified actin have revealed that the rate limiting step in 

polymerisation is the initial formation of a stable actin trimer (nucleation). This is 

thermodynamically unfavourable because actin dimers are unstable and rapidly dissociate 

before the addition of the next monomer. However, once formed trimers are more stable 

allowing G-actin to be incorporated to elongate the filament (Pollard & Mooseker, 1981). In 

vivo spontaneous de novo formation of actin filaments is thought not to occur. Cells have 

evolved several mechanisms for overcoming the thermodynamically unfavourable step of 

actin nucleation in a regulated manner.  
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Recently a new group of actin nucleators have been identified. Spire was discovered in 

Drosophila and shown to be required for axis specification in oocytes and embryos during 

development (Quinlan et al., 2005). Cordon-Bleu was discovered as a brain enriched protein 

controlling neuronal morphology where its depletion by RNAi decreased neurite branch 

points (Ahuja et al., 2007). Finally, Leiomodin is a protein specific to skeletal and cardiac 

muscle and is thought to nucleate tropomyosin-decorated filaments in muscles (Chereau et al., 

2008).These proteins have all been shown to nucleate unbranched actin filaments in in vitro 

actin polymerisation assays (Quinlan et al., 2005; Ahuja et al., 2007; Chereau et al., 2008). 

They all contain three or more actin binding domains in tandem that may either form a long 

pitch polymer stabilising monomers in a head to tail arrangement (Quinlan et al., 2005), or 

arrange actin monomers in a short pitch trimer configuration forming a stable barbed end 

(Ahuja et al., 2007).  

 

Formins are a second class of actin nucleators that generate unbranched actin filaments. 

Although formins have attracted a great deal of research the mechanism by which they 

nucleate actin filaments is still not clear. All formins contain conserved formin homology 

domains, FH1 and FH2. These alone are sufficient for actin nucleation (Sagot et al., 2002), 

and this is dependent upon their ability to dimerise (Moseley et al., 2004). These structures 

however have no affinity for monomeric actin, but have high affinity for the barbed ends of 

filaments (Kovar et al., 2003). Formins are unique amongst actin nucleators in that they 

remain bound to the barbed end of the filament they nucleate and enhance the polymerisation 

rate whilst protecting the end from capping proteins (Zigmond et al., 2003; Kovar et al., 

2006). It has been proposed that formins nucleate actin by binding to transiently formed actin 

dimers and stabilising these making trimers more thermodynamically favourable (Pring et al., 
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2003). Formins have been reported to have roles at adhesion junctions (Kobielak et al., 2004), 

filopodia (Peng et al., 2003) and formation of the contractile ring (Chang et al., 1997). 

 

Finally, the first identified and best characterised of the actin nucleators is the Arp2/3 

complex. It is unique in its ability to generate branched actin structures and nucleates actin 

through structural mimicry of the barbed end of a filament. 

 

 

1.3 Arp2/3 complex 

 

The Arp2/3 complex was first discovered in Acanthamoeba by affinity chromatography with 

the actin binding protein profilin (Machesky et al., 1994). It consists of 7 subunits; ARPC1-

ARPC5, Arp2 and Arp3, each present in a single copy (Mullins et al, 1997). Arp2 and Arp3 

subunits are structurally similar to actin and are thought to simulate a stable actin dimer, 

requiring the addition of only a single monomer to mimic the ‘barbed’ end of a filament 

(Machesky et al., 1994; Mullins et al., 1997). In vitro the addition of the Arp2/3 complex with 

purified actin shows a minor increase in the rate of nucleation, however in the presence of a 

suitable activator it drastically increases the rate of actin nuclei formation (Higgs & Pollard, 

1999). Like actin, arp2 and arp3 possess ATP binding clefts (Kelleher et al., 1995) and 

ATPase activity (Dayel et al., 2001). The crystal structure of the arp2/3 complex has been 

solved both with and without bound nucleotides, and in both cases the spatial separation of 

the arp2 and arp3 subunits suggested that by the current model this was an inactive complex 

(Robinson et al., 2001; Nolen & Pollard, 2007). The binding of WASP, an Arp2/3 activator 
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(discussed in section 1.4.1), was shown to induce a conformational shift in the complex 

(Rodal et al., 2005) and this is thought to reposition the arp2 subunit into close proximity to 

arp3 stimulating its nucleation efficiency (Egile et al., 2005). To date a crystal structure of the 

active complex has not been solved. However, X-ray scattering experiments on purified 

arp2/3 complex bound with the activating domain from a WASP family protein supports this 

widely accepted model (Boczkowska et al., 2008) (Figure 1.2).  

 

The arp2/3 complex is unique amongst other known actin nucleators in its innate ability to 

generate branched actin structures. These are thought to be necessary to provide rigidity for 

further polymerisation and generation of protrusive force that could not be achieved by 

parallel arrangements (Mogilner & Oster., 1996). It has been localised to sites of 

phagocytosis, macropinocytosis, membrane protrusions and ruffles, intracellular vesicles, 

dynamic puncta in filopodia, invadopodia and adhesion junctions (Insall et al., 2001; Johnston 

et al., 2008; Yamaguchi et al., 2005; Kovacs et al., 2002 ), showing that it is a common 

component of the cells force generating machinery.  In electron micrographs the arp2/3 

complex could be seen at branch-points binding simultaneously to two filaments, one at its 

side and the other capping its ‘pointed’ end (Mullins et al., 1998). This was later confirmed 

by immunogold labelling with antibodies towards the complex (Svitkina & Borisy, 1999). 

This led Mullins et al., (1998) to propose the now widely accepted dendritic model of actin 

polymerisation. In this model the arp2/3 complex binds to the side of an existing filament 

(‘mother’ filament) and nucleates a new ‘daughter’ filament at a 70° angle. Figure 1.3 shows 

the dendritic nucleation model together with other components of the actin remodelling 

machinery (see Figure legend for description).   
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Figure 1.2:  Structure of the Arp2/3 complex.

Proposed model of activated Arp2/3 complex with bound actin at the barbed end of arp2.
Mother and daughter filaments are greyed out, and the position of the VCA domain peptide
is shown in its most likely position. Image taken from Boczkowska et al., (2008).
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Figure 1.3: Arp2/3 mediated dendritic nucleation model.

Illustration of the dendritic nucleation model proposed by Mullins et al., (1998) and the 
interaction of key components of the actin regulatory machinery. WASP family members 
are activated by GTPases in response to stimuli and localised to the cytosolic surface of 
membranes. Here they activate the Arp2/3 complex on the side of filaments. Profilin 
bound ATP is then incorporated at the barbed ends of uncapped filaments activating actins’ 
ATPase activity. Cofilin binds and severs old ADP-bound actin filaments adding to the pool 
of G-actin. Profilin binds to ADP-actin catalysing the exchange with ATP creating monomers 
for reinsertion  into the barbed end of actin filaments. Image taken from Pollard (2003).
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Observations that the rate of arp2/3 nucleation was dependent on the number of free barbed 

ends, and not on the length of actin filaments has also led to the less popular barbed end 

branching model (Pantaloni et al., 2000). In this model the arp2/3 complex binds to the 

barbed end of filaments nucleating two new filaments creating a Y branch. The dendritic 

model is much better supported by structural data. 

 

There are a number of factors that are thought to contribute towards the activity of the arp2/3 

complex. Binding of ATP in the nucleotide binding clefts of arp2 and arp3 are essential for 

nucleation (Goley et al., 2004). Although ATP hydrolysis is not required for nucleation it has 

been shown to be required for debranching, a process important for endocytosis in budding 

yeast (Clainche et al., 2003; Martin et al., 2006). Additionally, the binding to the side of 

filaments is also thought to induce conformational changes that stabilises the branch point and 

increases its nucleation activity (Rouiller et al., 2008).  

 

The first activator of the Arp2/3 complex to be identified was ActA from the bacterium 

Listeria monocytogenes (Kocks et al., 1992). Although this organism does not possess actin 

or the arp2/3 complex, it is an intracellular pathogen that utilises the hosts own actin 

machinery to drive internalisation and propulsion. ActA is tethered to the surface of the 

bacterium with a polarised distribution (Kocks et al., 1993). This protein then binds to the 

arp2/3 complex enhancing its nucleation ability 50 fold (Welch et al., 1998), and is therefore 

commonly referred to as a nucleation promoting factor (NPF) This generates a branched actin 

network on one side of the bacterium creating a comet tail of polymerising actin propelling 

the bacterium through the cytoplasm (Welch et al., 1998; Cameron et al., 2001). ActA is 
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thought to activate the Arp2/3 complex by mimicking a group of proteins present within the 

host cell belonging to the WASP family. These proteins are currently the best characterised 

activators of the Arp2/3 complex. 

 

1.4 WASP family proteins 

 

The WASP family are a group of proteins responsible for coupling signalling pathways to the 

activation of the arp2/3 complex. They all share a conserved C-terminal domain architecture, 

containing a polyproline rich region, one or more actin binding WH2 (V) domains, a 

connector (C) motif and terminate in a region rich in acidic residues (A). In vitro experiments 

have shown that this VCA domain alone is necessary and sufficient to activate the arp2/3 

complex (Machesky et al., 1999). The C and A regions contribute to binding of the arp2/3 

complex (Marchand et al., 2001). This interaction is mediated by a conserved tryptophan 

residue within the acidic region that interacts with ARPC1 (Pan et al., 2004), and its mutation 

was shown in vitro to reduce the efficiency of Arp2/3-dependent nucleation (Marchand et al., 

2001). The WH2 domain is a generic G-actin binding structure found in many actin regulating 

proteins (Paunola et al., 2002), and its location near the arp2/3 binding region is thought to 

guide the first actin monomer into position upon arp2/3 activation (Marchand et al., 2001).  

 

The domain architecture is more divergent amongst the N terminal region of WASP family 

proteins, causing them to be sub-grouped. For more than a decade it was thought that there 

were only two subgroups of the WASP-family, WASP and SCAR/WAVE proteins. Recently 

three new subgroups have been identified, WASH (Linardopoulou et al., 2007), WHAMM 
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(Campellone et al., 2008), and JMY (Zuchero et al., 2009).  WHAMM and JMY however are 

only present in vertebrates, whereas WASH has been identified in organisms in every branch 

of the eukaryotic tree, and found to be even more ubiquitous than WASP or SCAR (Veltman 

& Insall. 2010). Figure 1.4 shows the domain architecture of the 5 known sub-classes of 

WASP family proteins.  

 

It is the domains within N-terminal region of WASP family proteins that are thought to 

couple signalling and localisation signals to Arp2/3 activation. Therefore the different 

subgroups allow multiple Arp2/3 dependent actin structures to be regulated independently of 

each other, in response to different signalling cascades.  

 

	
  

	
  

1.4.1 WASP 

 

WASP was the first identified member of the WASP-family proteins. It was discovered in 

search of the causative mutation responsible for the X-linked hereditary disease Wiskott-

Aldrich Sydrome (WAS) (Derry et al., 1994), a disease characterised by thrombocytopenia, 

defects in T and B cell function and eczema (Ammann & Hong, 1989). In mammalian cells 

WASP was found to be expressed only in haematopoietic cell lines (Derry et al., 1994). It was 

later discovered that mammals possess another WASP protein that is more ubiquitously 

expressed and termed N-WASP (neuronal WASP) due to its enrichment within the brain 

(Mike et al., 1996). 
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Figure 1.4: Domain architecture of WASP family proteins.

WASP: WH1 (WASP homology 1), CRIB (Cdc42 and Rac interactive domain), WH2 (WASP
homology domain 2). SCAR: SHD (SCAR homology domain). WASH: WHD1 (WASH
homology domain 1), WHD2 (WASP homology domain 2). WHAMM: WMD (WHAMM
membrane interaction domain). JMY: L (actin monomer binding Linker)

WASP

SCAR

WASH

WHAMM

JMY
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WASP proteins contain a WH1 (WASP Homology 1) domain followed by a basic region, 

CRIB (Cdc42 and Rac interactin domain) domain, polyproline rich region and terminate in an 

Arp2/3 activating VCA domain. Purified WASP proteins, with the exception of the 

Drosophila and yeast homologuoes, are inactive in vitro due to an auto-inhibitory interaction 

between the VCA domain and the N-terminus of the protein (Kim et al., 2000; Liu et al., 

2009; Rodal et al., 3003). Binding of signalling molecules to regions within the N-terminus is 

thought to disrupt this inhibitory conformation freeing the VCA domain to activate the Arp2/3 

complex (Rohatgi et al., 2001). 

 

N-WASP was first discovered in a screen for proteins that interacts with the small GTPase, 

cdc42 (cell division cycle 42). When active cdc42 was microinjected into Swiss 3T3 cells it 

was found to induce the formation of filopodia (Nobes et al., 1995). N-WASP was thus 

suggested to mediate filopodia formation by activating the arp2/3 complex in response to 

binding with active cdc42 (Symons et al., 1996, Miki et al., 1998). Its role in filopodia 

formation remains unclear due to conflicting studies showing that disruption of N-WASP can 

reduce the number of filopodia (Martinez-quiles et al., 2001), whilst others report no defect 

(Lommel et al., 2001; Benesch et al., 2005). 

 

In knockout studies disruption of WASP in mice was shown to produce similar defects to 

human WAS patients, with defective chemotaxis of B-cells toward chemokines (Snapper et 

al., 1998; Westerberg et al., 2005). Disruption of N-WASP in mice and the single WASP 

homologue in Dictyostelium proved lethal (Snapper et al., 2001; Myers et al., 2005). 
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However, a conditional N-WASP mouse has been made and it was shown that cells with 

disrupted N-WASP have defects in EGF-receptor internalisation and actin assembly at sites of 

clathrin-coated pits (Benesch et al., 2005). This role is consistent with roles of the yeast 

WASP homologue (Las17/Bee1) that is essential for clathrin-mediated endocytosis (Naqvi et 

al., 1998). In contrast knockout studies of the single WASP homologue in Drosophila were 

viable, with only mild developmental abnormalities due to defects in cell-fate decisions. (Ben-

Yaacov et al., 2001). These defects could be recovered by expression of full length WASH 

but not a C terminally truncated form missing its VCA domain implying that it is the actin 

organising function of WASP that is important in controlling cell-fate (Tal et al., 2002).  

 

N-WASP has been found to localise to the leading edge of a variety of cell types (Bensenor et 

al., 2007; Kawamura et al., 2004; Le Clainche et al., 2007; Lorenz et al., 2004), and depletion 

of N-WASP in MDBK cells by siRNA was shown to disrupt cell migration (Bensenor et al., 

2007). However, this effect has not been seen with disruption of N-WASP in other cell types 

(Snapper et al., 2001., Innocenti et al., 2005; Rogers et al., 2003).  

 

N-WASP has also been shown to be essential for the formation of invadopodia (Mizutani et 

al., 2002). These are projections from metastatic cancer cells that are involved in matrix 

degredation and believed to be a contributing factor to the invasiveness of cells (Chen, 1989).  

 

Propulsion of internal structures within cells has also been attributed to WASP-dependent 

actin structures. Similar to Listeria, the intracellular pathogen Shigella utilises the hosts actin 
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polymerisation machinery to generate an asymmetric actin comet tail for cytoplasmic 

propulsion, however this pathogen requires the host’s N-WASP to activate the Arp2/3 

complex (Suzuki et al., 1998). A similar mechanism has been observed for vesicle propulsion 

in Xenopous extracts where WASP dependent polymerisation results in rocketing of 

endosomes and lysosomes (Taunton et al., 2000). 

 

 

1.4.2 SCAR/WAVE 

 

SCAR (suppressor of cAR) was first discovered in Dictyostelium in a screen for mutants that 

supressed the developmental defects caused by deletion of the cAMP receptor (Bear et al., 

1998). Homologues in mammalian cells were then simultaneously identified by two labs, one 

lab retaining the name from Dictyostelium (Machesky & Insall et al., 1998) and the other 

proposing the new name WAVE (WASP-family verprolin homology protein) (Miki et al., 

1998). Two further isoforms were later discovered revealing a total of 3 isoforms in 

mammalian cells (Suetsugu et al., 1999).  

 

Unlike WASPs, SCARs when purified were found to be active and also do not contain any 

known GTPase binding domains (Machesky et al., 1999), showing a different regulatory 

mechanism. It was shown that in vivo SCAR exists in a 350kDa complex with 4 other 

proteins; Nap125 (Nck-associate protein), PIR121 (p53-inducible mRNA), Abi2 (Abl 

interactor 2) and HSPC300) (Eden et al., 2002), and the disruption of any of these members 
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results is SCAR degradation (Kunda et al., 2003; Ibara et al., 2006). This suggested that these 

proteins may hold SCAR inactive and that the regulatory input for SCAR activation may 

reside on one of these proteins (Eden et la., 2002). Previous data showing that PIR121 and 

Rac interact (Kobayashi et al., 1998), and that activated Rac induces lamellipodia formation 

(Nobes et al., 1995) generated a model whereby SCAR orchestrates Arp2/3 dependent actin 

formation in lamellipodia in response to Rac activation (Miki et al., 1998; Eden et al., 2002). 

 

Genetic disruption of the single gene encoding SCAR in Dictyostelium generated small cells 

with defects in movement. Although this showed a role for SCAR in generating cellular 

protrusions, the presence of small protrusions demonstrated that it was not the only 

mechanism (Bear et al., 1998; Blagg et al., 2003). Deletion of SCAR in Drosophila however 

was lethal with development arresting during oogenesis. Mutations in alleles of SCAR also 

revealed a reduction in the quantity of cortical actin in these cells (Zallen et al., 2002). Of the 

three SCAR isoforms in mammalian cells SCAR1 and SCAR2 have been disrupted in mice. 

SCAR1 null mice have sensorimotor defects, reduced learning and memory and reduced 

viability (Dahl et al., 3003; Soderling et al., 2003). Removal of SCAR2 is lethal with embryos 

showing defects in angiogenesis, heart and brain development (Yamazaki et al., 2003; Yan et 

al., 2003) 

 

1.4.3 WASH 

 

WASH is the most widely distributed member of the WASP family among eukaryotes 

(Veltman & Insall, 2010). It was identified as a new sub-class of the WASP protein family 
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whilst investigating duplicated genes in the sub-telomeric regions of primate chromosomes 

(Linardopolou et al., 2007).  

 

The N terminal region of WASH members is conserved across all eukaryotes and contains 

two domains of unknown function, WHD1 (WASH homology domain 1) and WHD2 (WASH 

homology domain 2) (Linardopolou et al., 2007), although recently the WHD2 domain was 

shown to interact with tubulin (Gomez & Billadeau., 2009).  

 

In vivo WASH exists in a large multi-protein complex containing Strumpellin, VPEF, SWIP, 

CCDC53 and capZ (Jia et al., 2010; Derivery & Gautreau, 2010; Veltman et al., 2010). Little 

is known about these complex members other than VPEF has previously been described as a 

protein required for entry of the vaccinia virus in to HeLa cells (Huang et al., 2008), and 

Strumpellin when mutated was found to be the cause of a hereditary form of spastic 

paraplegia (Valdmanis et al., 2007). How this data fits in with current literature on WASH is 

unclear. Although little is known as to the regulation of WASH, due to its presence in a large 

complex parallels have been drawn between WASH and regulation of SCAR (Jia et al., 

2010). In addition, work in Drosophila suggests WASH may be activated downstream of Rho 

(Liu et al., 2007). 

 

Genetic disruption of WASH in Drosophila was lethal, with pupae failing to progress to 

adulthood (Linardopolou et al., 2007). A further study in which WASH expression levels 

were only reduced rather than completely disrupted discovered a role for WASH in ooplasmic 

streaming during Drosophila development, although the function of WASH in this role is 

unclear (Liu et al., 2009). Recently numerous reports have been published identifying roles 
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for WASH in the endocytic pathway of mammalian cells. WASH disruption by RNAi 

revealed defects in transferrin receptor recycling (Derivery et al., 2009), retromer-mediated 

CI-MPR trafficking back to the golgi (Gomez & Billadeau 2009) and altered endosome 

morphology with increased tubulation (Duleh et al 2010). WASH has also been documented 

to be involved in the invasive entry of Salmonella, with WASH localising to sites of 

internalisation, while RNAi depletion reduces uptake (Hanisch et al., 2010).   

 

In mammalian cells WASH was shown to localise predominantly to sorting and recycling 

endosomes and to a lesser extent with late endosomes and lysosomes. On these compartments 

It was seen to reside in spatially restricted puncta rather than being uniformly dispersed 

(Gomez & Billadeau et al., 2009; Derivery et al., 2009). Taken together these observations 

were suggested to show a role for WASH in vesicle scission (Gomez & Billadeau, 2009; 

Derivery et al., 2009). Authors argued that in cells where WASH had been depleted by RNAi, 

the increased tubulation observed suggested a role for WASH in resolving elongating tubules 

into carrier vesicles.  

 

 

1.4.4 WHAMM and JMY 

 
WHAMM and JMY are two of the newest identified members of the WASP-protein family, 

however they are restricted to vertebrates (Campellone et al., 2008; Zuchero et al., 2009). 

Both WHAMM and JMY have distinct N-terminal domains followed by a region predicted to 

form a coiled coil domain. In addition WHAMM contains an addition WH2 domain upstream 

of its VCA domain, whereas JMY contains 3 WH2 domains in total as well as an actin 
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binding linker. Interestingly this allows JMY to nucleate unbranched actin structures in the 

absence of the Arp2/3 complex (Zuchero et al., 2009).  

 

Campellone et al, (2008) showed WHAMM localisation to the cis-golgi and to 

tubulovesicular structures. Altering expression levels of WHAMM was found to disrupt the 

morphology of the golgi and disrupt traffic from the ER to the golgi.   

 

Zuchero et al., (2009) showed that JMY has a nuclear localisation in non-motile cells, but 

during motility its localisation shifts to the plasma membrane. Increasing and decreasing 

expression levels of JMY enhanced and decreased migration respectively. 

 

 

1.5 Vesicular compartmentalisation 

 

The cytoplasm of eukaryotic cells is densely packed with a diverse array of internal 

organelles. These are analogous to organs in higher multicellular organisms, acting as distinct 

subunits performing specialised functions. These membrane bound compartments allow 

cellular processes to be physically separated, for example restricting degradative proteases 

required for catabolism within lysosomes where they cannot degrade cytoplasmic enzymes 

that are essential for metabolism.  
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The endocytic and biosynthetic-secretory pathways are involved in trafficking of membrane 

and material throughout the cell. The endocytic pathway is involved in the internalisation of 

plasma-membrane and extracellular material. Membrane and receptors destined for return to 

the plasma membrane are sorted and trafficked separately from material destined for 

degradation in lysosomes. The biosynthetic pathway is responsible for the trafficking and 

post-translation modifications of newly synthesised transmembrane proteins or proteins 

destined for lysosomes, secretion or involved in post-translation modification within these 

compartments. Both pathways require transport of material between compartments whilst 

maintaining the unique identity and assortment of luminal enzymes of the compartments.  

 

Vesicle identity is maintained by an assortment of small GTPases (Arfs and Rabs), SNAREs 

and lipid modifications. These ensure specificity between vesicle-vesicle fusion events. 

Although it is the cytosolic surface of vesicles that contains the markers that allow the cell to 

distinguish vesicle identity, each compartment is also characterised by a distinct combination 

of luminal proteins and pH.  

 

1.5.1 pH and function 

 

The luminal pH of intracellular vesicles has been shown to be important for a range of cellular 

processes. Acidification of early endosomes causes release of ligands from internalised 

receptors, such as low density lipoprotein, insulin, and iron allowing the unoccupied receptors 

to be trafficked back to the plasma membrane (Dunn et al., 1989, Marshall et al., 1983;). By 
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the same mechanism the low pH in lysosomes causes hydrolytic enzymes to dissociate from 

the mannose-6-phosphate receptor allowing its return to the golgi, where it can again bind 

proteins destined for lysosomal compartments (Westcott et al., 1986). As material progresses 

through the endocytic and biosynthetic pathways each compartment is accompanied by a 

change in pH, typically a pH drop (Mellman et al., 1986, Yamashiro et al., 1984, Paroutis et 

al., 2004) (Figure 1.5). This is presumably to allow retrograde recycling of unoccupied 

receptors at each stage.  

 

Luminal pH has also been reported to play a role in budding. The formation of beta-COP 

coated carrier vesicles that transport material from early to late endosomes has been shown to 

be dependent on luminal pH (Gu & Gruenberg, 2000). These processes are fundamental for 

maintaining distinct vesicular compartments and controlled targeting of luminal contents. 

 

In addition to its importance in receptor trafficking and budding, regulation of pH is critical 

for biochemical activity within the lumen. The catalytic activity of enzymes is highly 

dependent upon pH. Therefore the activity of enzymes as they pass through the endocytic or 

secretory pathways will change, allowing two organelles with different luminal pH to undergo 

different biochemical reactions even when they contain the same complement of luminal 

proteins.  
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Figure 1.5: Luminal pH of intracellular vesicles.

Illustration of luminal pH of vesicular compartments of both the endocytic 
and biosynthetic secretory pathways. Image adapted from Demaurex (2002)
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1.5.2 pH regulation 

 

The luminal pH of each compartment is maintained within in a narrow range. Due to a neutral 

cytoplasm, producing acidic vesicles requires active transport of protons into the lumen. This 

is done by the evolutionary conserved V-ATPase (Vacuolar H+ ATPase) which is found on 

all compartments of the endocytic and biosynthetic pathways, except the ER and recycling 

endosome (Kim et al., 1998, Gagescu et al., 2000). Experiments with specific inhibitors 

towards the V-ATPase revealed that without continual proton pumping the acidic 

compartments neutralise therefore inferring that the membranes are proton ‘leaky’ (Demaurex 

et al., 1998). This has resulted in the ‘pump and leak’ model (reviewed in Demaurex, 2002) 

whereby vesicles reach a steady state pH when the rate of protons pumped into the lumen 

matches that of protons leaked. Although the V-ATPase is the primary mechanism for 

acidification it is not well understood what regulates the luminal pH with in a specific range. 

Mathematical models predict that endosomes containing only V-ATPase would have luminal 

pH values of 3 – 4 for endosomes of radius 0.1 -1 µm respectively (Rybak et al., 1997). As 

this is lower than the range observed in endocytic compartments it is largely thought that 

endosomal pH is adjusted by other mechanisms other than V-ATPase localisation.  

 

V-ATPase is electrogenic creating a high concentration of positively charged H+ ions inside 

the lumen. This creates an electrical potential across the membrane that limits V-ATPase 

activity and acidification. The presence of Na+, K+ ATPase is suggested to limit acidification 

of endosomes by increasing the concentration of positive ions in the lumen increasing the 

membrane potential (Fuchs et al., 1989). By the same reasoning it is also thought that the 
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ability of a vesicle to acidify is limited by the flow of counter-ions such as Cl-. An influx of 

Cl- through chloride channels would dissipate the membrane potential allowing a lower pH to 

be reached (van Dyke, 1983). This is a widely accepted model for regulation of luminal pH, 

however studies have also shown that membrane potential is not a factor in the acidification 

of the Golgi, casting doubt on the significance of these factors (Demaurex et al., 1998; 

Schapiro & Grinstein, 2000). 

 

Another mechanism that could regulate luminal pH is by regulating the rate of leaking 

protons. It was shown that the rate of proton leaking was highest in the ER and this rate 

decreased along the secretory pathway. This suggested that the rate of leaking can be and is 

modulated (Wu et al., 2000), possibly through voltage-gated proton channels or H+ 

antiporters (reviewed in Decoursey., 2003)  

 

There is however growing evidence that pH may be regulated by directly effecting V-ATPase 

localisation or activity. It was observed that recycling endosomes containing transferrin 

receptor were less acidic than early endosomes and this correlated with lack of V-ATPase on 

that compartment. The receptor was observed to have initially gone through an acidic 

compartment and thus the neutralisation of the recycling endosome may be due to changing 

the density of the V-ATPase within the membrane (Gagescu et al., 2002). Additionally, the 

V-ATPase is also suggested to dissociate into two components to disrupt activity (discussed 

in section 1.6.1). It has recently been reported that the ratio of these two components on 

membranes differs along the endocytic pathway, with a higher abundance of intact V-ATPase 

on later compartments (Lafourcade et al., 2008)  
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1.6 V-ATPase 

 
V-ATPase (Vacuolar H+ ATPase) is a highly conserved proton pump that is structurally and 

functionally similar to F-type ATPase (ATPsynthase). It is responsible for coupling ATP 

hydrolysis with the transport of protons across membranes. In addition to driving the 

acidification of intracellular vesicles, the proton gradient is used to drive transport of 

molecules across membranes such as K+, Na+, Ca+ and neurotransmitters by H+ anti-porters 

(Wieczorek et al., 1991; Onken & Putzenlechner, 1995; Moriyama et al., 1992). Although it 

is primarily associated with internal vesicles it has also been observed in some cases within 

the plasma membrane. In osteoclasts it is targeted to the membrane at sites of bone 

reabsorption, acidifying the extracellular space required for reabsorbtion (Blair et al., 1989). 

The intercalated cells of the distal tubule maintain the blood at a constant pH by either 

excreting acid into the urine when blood pH is too low (Karet et al., 1999), or reabsorbing 

acid from the urine when the blood pH is too high (Wagner et al., 2004). The clear cells in the 

vas deferens use membrane bound V-ATPase to acidify the extracellular space maintaining an 

acidic environment suitable for sperm maturation and storage, and cell types such as 

macrophages and neutrophils which occasionally encounter acidic environments may utilise 

plasma membrane V-ATPase to maintain a neutral cytosol (Brisseau et al., 1996). The 

localization of V-ATPase on the plasma membrane has also been seen on human breast 

cancer cell line MB-231 cells and thought to account for its invasiveness. 

 
	
  
The structure of the V-ATPase is closely related to that of both A and F type ATPases (Cross 

& Muller et al., 2004). It is composed of two complexes (Figure 1.6). The peripheral complex 

(V1) consists of 8 different proteins, A-H, many of which are present in multiple copies. The  
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Figure 1.6. Structure of the Vacuolar H+ ATPase

Image shows the intact structure of the V ATPase. Yellow and orange subunits 
A-H make up the cytosolic V1 domain. Gray and purple subunits a-e belong to 
the transmembrane domain. Upon ATP hydrolysis the V1 domain drives rotation of the 
central rotor (orange and purple. Protons enter the channel at the cytosolic face 
of the a subunit gaining acess to the glutamic acid residues upon rotation these 
transport protons the luminal channel in subunit a, completing the transport process. 
Image taken from Toei et al., (2010)
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transmembrane complex (V0) is a pore forming channel dependent upon the rotatory action of 

the V1 complex to drive the rotation of a proteolipid ring for proton translocation. It is 

composed of 6 different proteins (a, c, c’, c’’, d, and e) with the c subunit present in multiple 

copies.  

 

The V-ATPase is a rotatory pump coupling ATP hydrolysis dependent rotation to transport of 

protons across membranes (Imamura et al., 2003). A nucleotide binding site on the interface 

between Subunits A and B is the site of ATP hydrolysis. As this occurs it causes a 

conformational shift that drives the rotation of the stalks and the proteolipid ring (for a 

detailed review of V-ATPase mechanics see Nakanishi-Matsui et al., 2010). Within the a 

subunit of V0 there is believed to possess a pore that gives access to the concealed glutamic 

acid residues of the proteolipid ring. These residues can undergo reversible protonation during 

rotation facilitating the transport of the protons to the luminal space (Hirata et al., 1997) 

 

   

1.6.1 V-ATPase regulation 

	
  
Much of what is known about cellular regulation of the V-ATPase has come about from 

studies in yeast. Yeast have a unique trait in that unlike other organisms disrupting the V-

ATPase is not lethal providing they are grown in acidic conditions, making then an ideal 

system for disruptional based studies (Nelson & Nelson, 1990). There appears to be two  

mechanisms by which V ATPase can be directly regulated and these are 1)  adjusting 

coupling efficiency of ATP hydrolysis to proton translocation, and 2) reversible dissociation 

of V1 and V0 complexes. 
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In yeast it was noticed that the V-ATPase of the vacuole contained a much higher coupling 

efficiency than that of V-ATPase molecules within the Golgi (Kawasaki-Nishi et al., 2001). 

Interestingly mutations introduced into subunit d of V0 and subunit A of V1 have both been 

shown to increase the coupling efficiency of V-ATPase molecules (Owegi et al., 2006; Shao 

et al., 2003)  

	
  
	
  
 
Reversible dissociation is to date the best characterised mechanism for V-ATPase regulation. 

This process was first discovered in yeast upon glucose starvation (Kane, 1995) and also in 

the gut of insect larvae (Sumner et al., 1995). Upon dissociation the V1 complex becomes 

incapable of hydrolysing ATP, and V0 is impermeable to protons (Parra et al., 2000). Several 

studies have also shown that similar mechanisms may be taking place in mammalian cells, 

with glucose stimulating V-ATPase assembly in kidney cells (Sautin et al., 2005), and 

differences in the ratio of V1/V0 on compartments of the endocytic pathway suggests 

dissociation (Lafourcade et al., 2008). In yeast this process is thought to be an energy saving 

response to prevent ATP hydrolysis in response to low sugar levels (kane, 1995). A great deal 

is known about how this process is regulated in yeast, however a recent study has shown that 

when grown in neutral conditions the V-ATPase is resistant to dissociation (Diakov & Kane, 

2010). This raises questions as to how ubiquitous this regulatory mechanism is, and if it is a 

yeast specific response only feasible due to their ability to withstand V-ATPase disruption.  
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1.6.2 V-ATPase and actin 

 

The V-ATPase was first documented to interact with actin by Lee et al., in 1999 whilst 

studying V-ATPase localisation in osteoclasts. They showed that V-ATPase from mouse 

marrow or bovine kidney bound rabbit actin with a 0.05µM affinity. They also went on to 

confirm this interaction using electron microscopy of negatively stained samples showing V-

ATPase bound to F-actin filaments. In a disrupted complex the B subunit was shown to bind 

actin (Holliday et al., 2000), and this was later shown to be a direct interaction with a 

sequence bearing homology to profilin (chen et al., 2004). Alteration of the sequence to that 

of a homologue for Pyrococcus horikoshii that does not have an actin cytoskeleton was found 

to disrupt actin binding (Chen et al., 2004; Zuo et al., 2008). Disruption of the actin binding 

site in osteoclasts revealed it was an important interaction targeting of V-ATPase to ruffled 

membranes (Zuo et al., 2006). Interestingly it has also been observed in epididymis clear 

cells, involved in acidifying the extracellular space to maintain an environment for sperm 

maturation, that accumulation of V-ATPase at their plasma-membrane requires the 

depolymerisation of cortical F-actin suggesting that actin also has an inhibitory role in 

preventing plasma-membrane localisation (Beaulieu et al., 2005; Shum et al., 2010). 

 

Additionally the C subunit has also been shown to bind actin. The C subunit separates from 

both V1 and V0 after dissociation. The intact complex (V1/V0) was found to have a 2-3 fold 

higher affinity than just V1 alone (Vitavsk et al., 2003). Purified C subunits were later shown 

to bind both F-actin and G-actin with a dissociation constant of ~50nM (Vitavsk et al., 2005) 
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1.7 Dictyostelium discoideum 

 

Dictyostelium discoideum is natively a soil dwelling amoeba found feeding upon bacteria. It 

belongs to a class of ‘social amoeba’, named due to a survival technique by which upon 

starvation they group to form a multicellular fruiting body. It has been popular as a model 

organism for the study of cell motility due to its active lifestyle. During its growth phase it is 

independent, existing as a single cell migrating in search of food sources. When these are 

depleted a developmental program is engaged. Figure 1.7 shows the lifecycle of 

Dictyostelium. Upon starvation surrounding cells migrate together forming aggregates that are 

capable of undergoing differentiation. After aggregation motile slugs are formed that migrate 

toward heat, light and humidity. As they migrate cells differentiate into pre-stalk or pre-spore 

cells. After the slug has settled the culmination stage begins, where pre-stalk cells vacuolise 

lifting up the spores forming a fruiting body. 

 

 

1.7.1 As a model organism 

 

Dictyostelium discoideum is established as a model organism for the study of cell migration, 

and more recently gaining momentum in the areas of pathogenicity, autophagy, and vesicular 

trafficking. As an experimental system it benefits from being easily handled, genetically 

tractable, having a fully sequenced genome and that its growth phase is distinctly separated 

and independent from its developmental phase.   
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Figure 1.7: Development cycle of Dictyostelium discoideum

Image of the developmental cycle of Dictyostelium discoideum. Starting
from bottom right and moving clockwise. Cells aggregate to form a loose aggregate,
tight aggregate, tipped aggregate, an elongated structure called the finger, this topples
to form a migratory slug, and then progresses through stages of culmination from
the Mexican hat to a fully formed fruiting body. (Image is a scanning electron 
microphraph by Blanton & Grimson)
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Dictyostelium naturally feed on bacteria by phagocytosis. Several strains have been generated 

that can be grown in liquid medium within the laboratory (Sussman & Sussman, 1967), These 

have acquired several mutations (Williams et al., 1974), that confer an ability to take up 

nutrient rich medium by a process called macropinocytosis. This allows cells to be cultivated 

in defined medium in the absence of bacteria or particles, a trait historically beneficial for 

aiding biochemical experiments but more recently proving useful for live cell imaging.   

 

Genetically Dictyostelium are naturally found as haploids. This in combination with a method 

for transformation (Nellen et al., 1985) makes gene disruption a simple and rapid process. 

Additionally the genome has been sequenced and is freely available (Eichinger et al., 2005). 

Given the genetic strengths of Dictyostelium several methods have been developed to further 

utilise this organism.  

 

Although there are a number of selection markers for use in Dictyostelium such as Blasticidin, 

Hygromycin and G418, some are more effective than others at selecting gene disruptants, 

namely Blasticidin. The Cre-loxP recombination system used to create conditional gene 

disruptants in mice has been adapted for use in this system (Faix et al., 2004). This enables 

generation of multiple gene disruptants using the same selection marker. This works by using 

selection cassettes flanked by loxP recombination sites and contain downstream translational 

stop codons. After successful gene disruption transient expression of Cre recombinase causes 

a recombination event excising the selection cassette but leaving the stop codons in place. 

This selection cassette can then be re-used for further gene disruptions in that cell line. 
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Another tool for generating multiple disruptants is the use of a diploid system (King & Insall 

2003). If the desired disruptants already exist in different cell lines, providing each are 

resistant to a different selection when starved together they will fuse to form diploids at a 

frequency of 1 in 105 that can then be isolated by addition of both selections. This allows for 

specific mutants to be crossed. Providing each mutation resides on separate chromosomes 

these diploids can then be segregated back to haploids using microtubule disrupting drugs. 

Finally, libraries of Dictyostelium mutant strains can also be generated by the random 

insertion of a vector into the genome using restriction-enzyme-mediated integration (REMI) 

(Kuspa et al., 1994).   

 

Generation of mutants in Dictyostelium does not require cells to undergo development. This 

allows mutants to be generated whose homologous in multicellular organisms when disrupted 

would be lethal due to defective development. 

 

 

1.7.2 Endocytic pathway in Dictyostelium 

 

Dictyostelium is increasingly being utilised as a model system for the study of the endocytic 

pathway. It bears many similarities to that of its mammalian counterpart including 

mechanisms for uptake of membrane and material, early trafficking stages of acidic vesicles 

involving tabulation and vesiculation, formation of multi-vesicular bodies and lysosome 

biogenesis(Neuhaus et al., 2002; Marchetti et al., 2004). Additionally they also perform 
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lysosome secretion (Dimond et al., 1981), a process carried out by a number of specialised 

cell types such macrophages, T cells, and osteoclasts.  

Similarities between these systems are also emphasised by a shared susceptibility to 

pathogenic microorganisms, such as Legionella, that escape the antimicrobial environment of 

lysosomes by hijacking the hosts endocytic trafficking machinery (Solomon & Isberg., 2000).  

 

As single celled amoebae the emphasis of the endocytic pathway in Dictyostelium is the 

internalisation and trafficking of foreign material for nutrient uptake, and the expulsion of 

indigestible material. In Dictyostelium fluid and solid particles are engulfed by 

macropinocytosis and phagocytosis respectively. These two actin-dependent processes 

although morphologically similar (Hacker et al., 1997) have been shown to be regulated by 

different mechanisms (reviewed in Cardelli, 2001). Figure 1.8 shows key events that take 

place after internalisation by macropinocytosis. As the pathway is not linear, timings are a 

rough guide to the observed transit of fluid phase markers through the pathway.  

Newly internalised macropinosomes retain a residual actin-coat for ~1 minute (Maniak et al., 

1995). After this has disassembled, various endocytic vesicles fuse with the compartment 

delivering V-ATPase that acidifies the luminal space (Padh et al., 1991; Clarke et al., 2010). 

Membrane is then retrieved from this compartment in small carrier vesicles that return 

membrane back to the cell surface (Neuhaus & Soldati, 2000). These carrier vesicles were 

shown to selectively remove p25 from macropinosomes and return it to the plasma membrane 

similar to recycling endosomes in mammalian cells (Ravanel et al., 2001),. These small 

carrier vesicles have a high surface to volume ratio, causing removal of membrane from the 

macropinosome whilst leaving the majority of the luminal contents. The decreasing size of the 
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Figure 1.8: The endocytic pathway in Dictyostelium discoideum

Represetation of fission/fussion events throughout the endocytic pathway in Dictyostelium.
following macropinocytosis (1) Internalised macropinosome maintains a neutral pH and 
residual actin-coat for ~1 minute. (2) After the actin-coat is removed the vesicle begins to 
fuse with other endocytic compartments that deliver V ATPase to the membrane acidifying 
its lumen. (3) Carrier vesicles bud from this compartment selectively recycling transmembrane 
proteins and membrane back to the plasma-membrane. This compartment can also fragment 
intosmaller compartments. These compartments can also undergo homotypic fusion. (5) 
compartment looses ability to fuse with earlier compartments and receives a complement
of hydrolytic enzymes. (6) A seperate stage of lysosomal maturation containing a different
combination of hydrolytic enzymes. (7) Lysosomes that can undergo homotypic fusion and 
also neutralisation by removal of V ATPase by budding. (8) Post-lysosomal compartment
that is identified by neutral pH and presence of a persistent coat of filamentous actin.  (9)
Vesicle competent to fuse with the plasma membrane for exocytosis. Image adapted from 
Maniak 2003).
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 macropinosome drives the expulsion of water concentrating membrane impermeant material 

inside the lumen (Neuhaus et al., 2002). These vesicles are then capable of undergoing 

homotypic fusion, resulting in what has previously been termed a mixing compartment 

(Clarke et al., 2002). This presumably serves to concentrate the contents of numerous 

macropinosomes into a smaller number of dense vesicles. These vesicles then lose the ability 

to undergo fusion with earlier compartments (Clarke et al., 2002), and progress through a 

series of lysosomal stages each containing a specific profile of hydrolytic enzymes (Souza et 

al., 1997).   

 

Further progression through the endocytic pathway is accompanied by an increase in luminal 

pH forming a post-lysosomal compartment (Padh et al., 1993; Aubry et al., 1993). This is 

achieved through removal of the V-ATPase that is then recycled back to acidify newly formed 

macropinosomes (Nolta et al., 1994; Clarke et al., 2010). These compartments then persist in 

the cell for ~30 minutes before fusing with the plasma-membrane expelling its contents into 

the extracellular space. 

Post-lysosomes in Dictyostelium have been shown to be surrounded by a coat of filamentous 

actin and the Arp2/3 complex (Rauchenberger et al., 1997; Insall et al., 2001). Disruption of 

these actin coats by treatment with the actin depolymerising drug Latrunculin caused vesicles 

to aggregate into clusters and prevent further trafficking of endocytic markers (Drengk et al., 

2003). A unique approach was undertaken to specifically disrupt these actin-coats by creating 

a fusion between the actin depolymerising protein cofilin, and a previously identified marker 

of post-lysosomes vacuolin A (Drengk et al., 2003). The construct successfully targeted 

cofilin to post-lysosomes increasing the rate of actin depolymerisation resulting in clustering 
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of post-lysosomes but normal trafficking of endocytic markers. The authors argued that these 

actin coats act as a physical barrier preventing docking and fusion events with other endocytic 

markers. By a similar strategy the actin binding protein VASP was targeted to these 

compartments increasing the size and density of the actin coats (Schmauch et al., 2009). This 

was shown to sequester actin binding proteins to such an extent that phenotypes were 

observed resembling their individual knockouts. 

 

 

 

1.8 Aims of this work 

 

The aim in this study is to further characterise the cellular function of the newly identified 

member of the WASP protein family, WASH. I will achieve this by utilising Dictyostelium 

discoideum as a model organism as its genetics allow easy disruption of the single gene 

encoding WASH, and the functional separation of its growth and development cycle may 

yield more success than previous studies using Drosophila. 
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Chapter 2  

Materials and Methods 

All reagents/solutions were purchased from Sigma unless otherwise stated. 
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2.1 Cell culture 

 

2.1.1 Axenic 

Cells were grown axenically in HL-5 medium + Glucose (Formedium) at 22°C, either adhered 

to 10cm petri dishes or in suspension within shaken flasks rotating at 120rpm. For fluorescent 

imaging cells were transferred to glass-bottomed dishes and incubated in LoFlo medium 

(Formedium) for at least 2 hours prior to imaging, but not exceeding a 24 hour period.  

 

HL-5 medium (5 Litres):  Peptone 14g; Yeast extract 7g; Sodium phosphate (Na2HPO4) 

0.5g; Potassium phosphate (KH2PO4) 0.5g; Glucose 13.5g. 

LoFlo medium (1 Litre):  Glucose 11g; KH2PO4 0.68g; Casein Peptone 5g; NH4Cl 

26.8mg; MgCl2 37.1mg; CaCl2 1.1mg; FeCl3 8.11mg; Na2-

EDTA 4.84mg; ZnSO4 2.3mg; H3BO3 1.11mg; MnCl2.4H20 

0.51mg; CoCl2 0.17mg; CuSO5.5H20 0.15mg; 

(NH4)6MO7024.4H2O 0.1mg. 

 

2.1.2 Bacterial 

For bacterially grown cells Dictyostelium were cultivated on lawns of Klebsiella aerogenes on 

SM Agar plates and incubated in humidity chambers at 22°C. 

 

SM Agar medium (1L):  SMM agar (42g) [Formedium]; 20mM MES pH6.5 

*40ml SMM Agar per 10cm petri dish. 
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2.2 Electroporation 

 

Protocol adapted from Howard et al. (1988). DNA preparations were obtained from either 

mini/maxipreps (qiagen) or purified PCR fragments and placed in sterile ice-cold eppendorf 

tubes (extrachromosomal plasmids: 10µl at 0.1µg/µl; Genomic integration: 10µl at 2.5µg/µl). 

Cells were harvested during log phase, spun down and resuspended at a density of 4x107 

cells/ml in ice cold E-Buffer. 0.4ml of cell suspension was mixed with DNA and placed in an 

ice cold 2mm cuvette (Biorad). The cuvette was electroporated using a 3µF capacitor in series 

with a 5Ω resistor at a voltage of 1kV giving a time constant of roughly 0.6 milliseconds. The 

cuvette was immediately placed on ice for 10 minutes after electroporation followed by 

mixing with 2ul of healing solution in a 10cm petri dish for 15 minutes at room temperature. 

10mL of HL-5 medium was added and left for 24 hours before addition of an appropriate 

antibiotic selection.  

  

E-Buffer: 10mM Potassium phosphate pH6.1; 50 mM Sucrose. (Filter 

sterilised and stored frozen). 

Healing Solution:  100mM CaCl2; 100mM MgCl2. (Filter sterilised and stored 

frozen). 

Antibiotic Selections:  Blasticidin 10µg/ml. 

G418 10µg/ml. 

Hygromycin 50µg/ml. 
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2.3 Cloning of GFP and mRFP fusion constructs 

 

WASH was isolated by PCR from Ax3 genomic DNA using primers 

5’AGATCTAAAATGACAACTCAAATCTAT 3’ and 5’TCTAGATTATTCCCATTCAGAAGAATCGG 

TATCAG3’. WASH∆VCA, WASH∆A and WASH∆W471A were isolated by PCR from cDNA 

using Forward primer 5’GGATCCATGACAACTCAAATCTATCAGGTTCC3’ and reverse primers 

5’TCTAGATTAACTTGGTGGATTAAATGGTGGTGGAGC3’ (∆VCA),5’ATCTAGATTATTTCTTTGATT 

TTGATTGTTTTTTAGTTGATTTTG3’ (∆A) and 5’ATCTAGATTATTCTGCTTCAGAAGAATCGGTA 

TCAG3’ (W471A). vatB was isolated by PCR from cDNA whilst removing its stop codon 

using primers 5’GGATCCAAAATGGTTGGATTTGAAGATCATATCGC3’ and 5’TCTAGAGTTAGTTG 

AATCTACAGTACCC3’ and vatM from cDNA using primers 5’GGATCCATGAGCTTTTTAAGACC 

ATCCATTTGGAG3’ and 5’TCTAGATTATTCATCATCTTCAGAACCAGAAAGAATACG3’. For N 

terminal GFP constructs genes were inserted into pDM352. vatB and vatM were inserted into 

mRFP module vectors pDM413 and pDM411 respectively. Followed by digestion with 

NgoMIV and then inserted into a GFP-WASH construct with a pDM352 backbone.  

 

2.3 Cell line generation 

2.3.1 wshA Disruptants 

DNA constructs pMJC07 and pMJC57 were created by PCR from genomic DNA. Deletions 

to sequence and insertion of restriction enzymes sites was accomplished by a method utilizing 

four primers (Figure 2.1).   
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Primer A

Primer B

Primer C

Primer D

Primer A

Primer D

Primer E

Primer HPrimer F

Primer G

Primer E

Primer H

A

B

DNA

DNA

Deletion

Mutation

Figure 2.1: 4-primer PCR

Illustration of method to create deletions (A) and/or site directed mutations (B) into
DNA by using 4 primers. First two separate PCR reactions are carried out amplifying
unaltered DNA. Internal primers (B & C) or (F & G) are designed with 5’ sequences
that reverse compliment each other. Products from the first two PCR reactions are
purified and mixed for use as a template in a final PCR reaction containing the most
outward primers. The engineered sites on internal primers result in products annealing
and elongating introducing desired changes.
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pMJC07 was created by three separate PCR reactions (Figure 2.2). Primers 1 & 2 and Primers 

3 & 4 using genomic DNA, and primers 1 & 4 using a mixture of products from the previous 

two PCR reactions as a template: 

 

Primer 1:  5‘ TTCAACAATTTCTGCAAGAGTATCACATG 3’ 

Primer 2:  5‘ AGATCTGTCGACGTGTAGTCATCTTCACCACCATCACCAC 3’ 

Primer 3:  5‘ GTCGACAGATCTAGAGATTGGGTGACGCTCCAGTCACCG 3’ 

Primer 4:  5‘ TTATTCCCATTCAGAAGAATCGGTATCAG 3’ 

[BglII, SalI] 

 

This removed 29bp of coding sequence, and inserted BglII and SalI restriction sites for 

cloning purposes.  

pMJC57 was created by 3 separate PCR reactions (Figure 2.3). Primers 5 & 6 and primers 7 

& 8 using genomic DNA as a template, and primers 5 & 8 using a mixture of products from 

the previous 2 PCR reactions as a template: 

Primer 5:  5’ AACAGTACCATCAAAAACTACAACACCAGTTGC 3’   

Primer 6:  5’ GTCGACGATGATAGATCTAACTGGAACCTGATAGATTTGAGTTGTAAT 3’ 

Primer 7:  5’ AGATCTATCATCGTCGACAACCACCACCAGTTTCTGATGGAGGTGGCGG 3’ 

Primer 8:  5’ AACTAATTGTGGGGTTGCATTGATTACTGG 3’ 

[BglII, SalI, Start Codon point mutation] 

This removed 1344bp of wshA sequence, introduced a point mutation to augment the start 

codon and inserted BglII and SalI restriction sites for cloning purposes. 
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Genomic DNA

pMJC07

wshA

Primer 2

Primer 3

Primer 4
Primer 1

BamHI SalI
Blasticidin Resistance

Cassette

BglII | SalI

Figure 2.2: Creation of wshA disruption construct of pMJC07

Schematic representation of pMJC07 construction. Primers 1, 2, 3, 4 were used to clone
wshA by 4 primer PCR. Primers 2 and 3 inserted BglII and SalI restriction sites for cloning 
purposes whilst removing 29bp of coding sequence. PCR product was cloned into pCR 
BluntII Topo and the BSR cassette from pLPBLP was inserted into engineered BglII and SalI 
sites.

Primer 1 Primer 4

pCR BluntII Topo

45



Genomic DNA

Primer 5

DDB_G0292876 DDB_G0292972wshA

Primer 6
Primer 7

Primer 8

BamHI SalI
Blasticidin Resistance

Cassette

BglII | SalI

Figure 2.3: Creation of wshA disruption construct pMJC57

Schematic representation of pMJC57 construction. Genes flanking wshA were used as 
recombination arms. Primers 5, 6, 7, 8 were used to clone recombination arms by 4 primer
PCR and cloned into pCR BluntII Topo vector. Primers 6 and 7 engineered in BglII and SalI 
restriction sites for BSR cassette insertion whilst removing 1344bp of wshA. BSR cassette 
from pLPBLP was inserted into engineered sites.

Primer 5 Primer 8

pCR BluntII Topo

pMJC07
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The final PCR fragments for pMJC07 and pMJC57 were cloned into pCR BluntII Topo 

(Invitrogen). A floxed BSR cassette was digested from pLPBLP using BamHI and SalI 

enzymes, and inserted into both pMJC07 and pMJC57 at engineered BglII and SalI sites. 

pMJC57 was sequenced to ensure no unintentional mutations were introduced during cloning. 

Linearized constructs were electroporated into Ax2 cells, and 24 hours after transfection cells 

were cloned into 5 x 96 well plates with the addition of Blasticidin. Colonies resulting from 

electroporation with pMJC57 were screened by western blot. Colonies resulting from 

electroporation with pMJC07 were screened using the following primers: 

Forward:  5‘ AGATCTAAAATGACAACTCAAATCTAT 3’ 

Reverse: 5‘TTATTCCCATTCAGAAGAATCGGTATCAG 3’ 

 

2.3.2 Non-actin binding vatB Knockins 

 

pMJC87 and pMJC88 were created to alter the endogenous coding sequence of vatB. pMJC87 

was created as follows. PCR1 (primer 9 & 10: genomic DNA), PCR2 (primer 11 & 12: 

genomic DNA), PCR3 (primer 9 & 12: products from PCR1 & 2). Product from PCR3 was 

cloned into pCR BluntII Topo (Invitrogen) and the BSR cassette from pLBPLP excised by 

BamHI and SalI restriction digest was inserted into engineered BglII and SalI sites. PCR4 

(primers 9 & 12: product of PCR 3 with BSR cassette insertion), PCR 5 (primers 14 & 16: 

genomic DNA) PCR6 (primers 9 & 16, products from PCR 4 & PCR 5). Product from PCR 6 

was cloned into pCR BluntII Topo (Invitrogen). pMJC88 was construct in the same manner,  
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BglII | SalI

BamHI SalI

DDB0304668 vatB

Blasticidin Resistance
Cassette

Primer 9 Primer 10
Primer 11

Primer 12 or 13
Primer 14 or 15

Primer 16

Primer 16Primer 9

Genomic DNA

Figure 2.4: Creation of vatB alteration constructs pMJC87 and pMJC88

Schematic representation of construction of pMJC87 and pMJC88. Primers were used to
amplify DDB0304668 as upstream recombination arm, and promoter and vatB as downstream
recombination arm. BSR cassette was introduced at engineered BglII and SalI restriction sites.
Using 4 primer PCR alterations were introduced into the upstream recombination arm.
Primers 12 and 14 were used for pMJC87 and primers 13 and 15 were used for pMJC88.
Linearised plasmids were electroporated into wid type cells and screened for recombination by
PCR and verified by sequencing.
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however primer 12 was replaced by primer 13, and primer 14 replaced with primer 15 (Figure 

2.4). 

Primer 9:  5‘ AATCACACAAAATAGATCACCAAATCAATTGG 3’ 

Primer 10: 5‘ CCAGATCTAAAGTCGACCCTCAAACAATTTGTTGTTGTTGTTG 3’ 

Primer 11: 5‘ GGGTCGACTTTAGATCTGGTTTTCAAAATTTTGTATATATTG 3’ 

Primer 12: 5‘ TCCTTTACCTCCTTCAACAGATCCGAGTGGACCATTTACTGC 3’ 

Primer 13: 5‘ AGCACCACCAGCAACAATAACGAGTGGACC 3’ 

Primer 14: 5‘ GGATCTGTTGAAGGAGGTAAAGGATCTGAAATTGTAACTTTAAC 3’ 

Primer 15: 5‘ GTTGCTGGTGGTGCTGGTCCAAAATTCTCTGAA 3’ 

Primer 16: 5‘ TAATAGTTTTTTCAGTGATACGTTTGAGG 3’ 

Screen Fwd: 5‘ AATCACACAAAATAGATCACCAAATCAATTGG 3’ 

Screen Rev: 5‘ TCTAGATTAGTTAGTTGAATCTACAGTACCC 3

                     [BglII, SalI, Altered sequence] 

 

DNA was amplified from pMJC87 and pMJC88 and electroporation into Ax2 cells. After 24 

hours transfected cells were cloned into 5 x 96 well plates with the addition of Blasticidin. 

Colonies resulting from electroporation with pMJC07 were screened using the following 

primers: 
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Forward:  5‘ AATCACACAAAATAGATCACCAAATCAATTGG 3’ 

Reverse: 5’ TCTAGAGTTAGTTGAATCTACAGTACCC 3’ 

 

2.4 Dictyostelium Cell line preservation 

 

Generated cell lines were frozen and stored at -80°C; aliquots for long term storage were 

placed in liquid nitrogen. Cells were harvested from shaken cultures and suspended in a 50:50 

mix of sterile HL5/foetal calf serum at a density 108 cells/ml. Aliquots where placed into 

freezing vials containing an equal volume of HL5/foetal calf serum containing 20% (v/v) 

DMSO. Freezing vials were mixed gently and slowly cooled to -80°C in a cell freezer box. 

 

 

2.5 Western Blotting 

2.5.1 Sample preparation 

 

Harvested cells were washed and resuspended in KK2 buffer at a density of 1x107cells/ml. 

100µl of cell suspension was added to 900µl of boiling 1.1X Laemmli sample buffer. After 5 

minutes samples were removed from heat source and placed on ice. 
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Laemmli Sample buffer (4x): 125mM Tris-CL (pH8); 2% SDS; 20% Glycerol; 5% β-

mercaptoethanol; 0.004% Bromophenol Blue. 

 

 

2.5.2 Generating Blots 

 

Samples were run on NuPAGE® 10% Bis-Tris gels (Invitrogen, Cat No: NP0301BOX) in 1x 

NuPAGE® MOPS SDS running buffer (Invitrogen) at 150V for 50 minutes in an Invitrogen 

Xcell SureLock™ Novex Mini-Cell tank. Proteins were then transferred from the gel to 

methanol soaked PVDF Hybond-P membrane (Amersham) in transfer buffer for 2 hours at 

240mA using BioRad Mini-PROTEAN® Tetra Cell transfer apparatus. Membranes were then 

soaked in Ponceau S solution for 10 minutes followed by successive rounds of washes in 

TBST to confirm even protein loading. Blots were then blocked for at least one hour in TBST 

+ 5% powder milk (w/v).   

   

TBST (pH 7):   20mM Trizma base; 140mM NaCl; 1% Tween   

Transfer Buffer: 200mM Trizma base; 190mM Glycine; 1% SDS; 20% 

Methanol 
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2.5.3 Antibody generation  

 

Antibodies were created through BioGenes custom antibody service (www.biogenes.de/). 

Two peptide sequences from WASH were selected and independently used to raise antibodies 

in rabbits. One sequence resides in the WHD1 domain at the N terminus 

(FNTQENPYKKYSNT) and the other within the WHD2 domain of the C terminus 

(KADVGGDNGDGEGN). Antibodies were supplied with lyophilised peptide and this was 

used for affinity purification. Aliquots from the fourth and final bleed were used in affinity 

purification using a MicroLink® Peptide Coupling Kit (Pierce) according to manufacturer’s 

instructions. Antibodies were recovered from the peptide column by three separate acid wash 

elutions followed by neutralisation with 5µl 1M Tris (pH9). Eluents were assayed for protein 

content using PrecisionRed (cytoskeleton) and the ones with the highest titre were used for 

probing western blots. 

 

2.5.4 Probing blots 

 

Blots were probed with affinity purified peptide antibodies at a 1:5000 dilution in TBST for 1 

hour at room temperature. Following several rinses in TBST blots were probed with a 

secondary goat anti-Rabbit HRP antibody at a 1:10000 dilution in TBST for 1 hour at room 

temperature. After several rinses with TBST blots were incubated with MILLIPORE® 

Immobilon Western chemiluminescent HRP substrate for 5 minutes then imaged on a 

CHEMIgenius imaging system.  
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2.6 Immunofluorescence 

2.6.1 Picric Acid/Formaldehyde Fixation 

 

Cells were seeded onto coverslips (No:1.5) and given 30 minutes or longer to adhere. The 

cells were then fixed with picric acid as described in Humbel & Biegelmann (1992). In 

summary, cells were fixed with 2% (w/v) formaldehyde, 15% (v/v) concentrated picric acid, 

10mM piperazine-N,N’-bis2-ethanesulfuric acid (PIPES) pH6.5 for 15 minutes. Coverslips 

were washed in PBS prior to post-fixation for two minutes with 70% ethanol followed by 

sequential washes in PBS glycine.   

 

Fixative:  0.8g paraformaldehyde was added to 10ml dH2O; 3-4 drops of 1M NaOH was then 

added, and the solution was heated at 42°C with occasional mixing until dissolved. 

The volume was adjusted to 14ml with dH2O, and aliquots of 1.75ml were frozen. 

0.75ml saturated picric acid and 2.5ml 20mM PIPES was added to an aliquot of 

paraformaldehyde. The pH is adjusted to 6.5 using NaOH. 

PBS/Glycine: 100ml PBS and 0.75g glycine (made fresh each time). 

 

 

2.6.2 Staining 

Following fixation coverslips were incubated with 33nm TexasRed phalloidin (Invitrogen) in 

PBS to visualise cellular F-actin structures. Cells were rinsed by successive washes with PBS 

prior to mounting upon glass slides using Prolong Gold (Invitrogen).  
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2.7 Folate chemotaxis assay 

Observation of Dictyostelium cells migrating towards folate under a thin layer of agar was 

performed as previously described by Laevsky & Knecht (2001). Three troughs roughly 2mm 

wide were cut into SM agar. The central trough was filled with 0.1mM folic acid, which 

diffuses out forming a gradient between its neighbouring troughs. Cells harvested from log 

phase of growth were added to the troughs either side of the folic acid at a density of 

1x106cells/ml. Using a Nikon TE2000 inverted microscope phase-contrast time-lapse movies 

were taken of cells as they moved under the agar towards the folate stimulus. Cells were 

imaged within 8 hours of adding the folic acid. 

 

2.7.1 Cell speed quantification 

 

The mean speed of chemotaxing cells under agar was determined using the manual cell 

tracker plugin for ImageJ (ImageJ: http://rsb.info.nih.gov/ij/). Time-lapse images were taken 

every 30 seconds for a period of 20 minutes. The centroid of the cell was estimated by eye on 

each frame and the xy coordinates used for calculating cell speed.  
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2.8 Endocytosis/Exocytosis assays 

Rates of fluid phase uptake and exocytosis were assessed in Dictyostelium cells by 

fluorometrically measuring intracellular levels of FITC conjugated Dextran as described by 

Rivero & Maniak (2006). 

 

2.8.1 Endocytosis 

 

Dictyostelium cells were harvested from shaken culture during log phase of growth. Flasks 

containing 10 ml of culture at 1x106 cells/ml were placed on a rotary shaker at 120rpm. 200µl 

of culture was pelleted and measured for protein content using PrecisionRed (cytoskeleton). 

20mg of FITC-Dextran was added to flasks and 500µl samples were removed at each time 

point. Samples were pelleted and washed twice with ice cold KK2 buffer and finally pelleted 

and stored on ice until all time points had been collected. Samples were measured for FITC 

content by resuspending cell pellets in lysis buffer and measuring emission at 515nm with 

470nm excitation on a PTI fluorimeter. Results were normalised to protein content 

 

KK2 Buffer:    16mM KH2PO4; 4mM K2HPO4. 

Lysis Buffer: 50mM Na2HPO4; pH9.3 (adjusted with NaOH); 0.2% Triton 

X-100 (v/v). 
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2.8.2 Exocytosis 

 

10ml Shaken cultures at 1x106 cells/ml were incubated with HL5 medium containing 20mg 

FITC-dextran. Cultures were then pelleted and washed twice with HL5 medium and finally 

resuspened in 10ml of HL5 medium with FITC-dextran. Samples were collected and 

measured for FITC fluorescence as above. Values were normalised to the fluorescent value at 

time point 0.  

 

 

2.9 Growth rate assay 

 

Cultures were grown in shaken culture on a rotary shaker at 120rpm. Samples were 

periodically taken and analysed using a CASY® Technology Cell counter (Roche Innovatis) 

and the data exported using CASYexcell 2.2. To measure the effects of dextran on axenic 

growth cells were cultivated in HL-5 medium containing 20% (w/v) dextran (65 – 90 KDa). 

Growth was assessed over a period of 5 days in which cultures exceeding 2x106 cells/ml were 

diluted down to 1x105 cells/ml with fresh medium. 
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2.10 Post-Lysosome visualisation 

 

Visualisation of Dictyostelium post-lysosomes was performed utilising FITC and TRITC 

conjugated dextran as previously described by Rivero & Maniak (2006). Cells were seeded 

onto glass-bottomed dishes and incubated in LoFlo medium containing 4mg/ml FITC-Dextran 

and 40mg/ml TRITC-Dextran. After 60 minutes dishes were imaged on a Nikon A1 confocal 

microscope (FITC: excitation 488, emission 500-550. TRITC: excitation 561.4, emission 570-

620). Microscope settings were adjusted using wild type Ax2 cells so that a range of 

intracellular pH values could be visualised. These settings were not changed between 

subsequent cell types or dishes. Settings used were not sensitive enough to detect any WASH 

GFP fusions due to their low level of expression. This allowed these cell lines to still be used 

in this assay without the GFP signal interfering and yielding false positives. 

 

2.11 Pulse chase experiments 

 

Wild type Ax2 cells were briefly incubated in LoFlo medium containing 4mg/ml FITC for 

either 10 or 20 minutes. After the pulse period the dish was rinsed with two rounds of fresh 

LoFlo medium, and imaged on an Olympus widefield fluorescence microscope at low 

magnification (40x objective). LatrunculinA was added to the dish at a final concentration of 

2µM at various times during imaging. For washout experiments the dish was removed and 
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rinsed twice with fresh LoFlo medium and immediately returned to the microscope. Post-

lysosomes were quantified with ImageJ  using its built in Analyze Particles routine. 

 

2.12 Agarose Beads 

 

Microscopic agarose beads were made by placing 100µl of molten 1.5% agarose into 20ml of 

water saturated Butan-1-ol at 45°C. The mixture was placed in a sonicating water bath with 

ice and agitated by sonication and repetitive pipetting until the solution changed from 

transparent to opaque. The resulting beads underwent several rounds of washes in distilled 

water and finally passed through a 5µm filter. For fluorescent beads Oregon Green® 

conjugated dextran (Invitrogen) was added to molten agarose at 50°C before mixing with 

Butan-1-ol. 

 

 

2.13 Microscopy 

 

DIC and Phase Contrast microscopy were performed on an inverted Nikon ECLIPSE 

TE2000-E with a Retiga EXi (QImaging) camera. Timelapse data was captured using 

µManager 1.3 (www.micro-manager.org).  
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Fixed samples were imaged on a Olympus IX81 with a Coolsnap HQ2 (photometrics) camera 

captured using Velocity 5.1 (PerkinElmer). The microscope was fitted with a piezo z stage for 

acquiring z steps for deconvolution. The acquisition setup was assessed for spherical 

aberrations by measuring point spread functions (PSFs) using PS-Specktm microscope point 

source beads (Invitrogen). After determining there were no spherical aberrations samples 

were deconvolved with Volocity 5.1 using a calculated PSF.  

Widefield live cell fluorescent imaging was performed on a custom built Nikon ECLIPSE 

TE2000-U TIRF microscope. The CASCADEII (Photometrics) camera was fitted with a 

beam splitter for simultaneous imaging of GFP and mRFP. Time lapse movies were acquired 

using Metamorph (Molecular Devices). 

Confocal microscopy was performed on a Nikon ECLIPSE Ti using NIS-Eliments AR3.1 for 

acquisition.
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Chapter 3  
 

Identifying a role for WASH in the endocytic 

pathway of Dictyostelium discoideum 
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WASH was identified by Linardopoulou et al. (2007) and belongs to a novel subgroup of the 

WASP protein family widely conserved amongst eukaryotic organisms. In vitro work on 

purified proteins showed that WASH enhanced the nucleating activity of the Arp2/3 complex, 

a defining feature of WASP family proteins. However, their attempts to disrupt WASH in 

Drosophila yielded unviable larvae hindering further characterisation of its molecular role. 

The identification of a novel subgroup of the WASP protein family with no idea as to its 

cellular function raises a great deal of interest in the field of actin dynamics.   

 

 

3.1 Identification of gene encoding WASH in Dictyostelium  

 

Linardopoulou et al (2007) identified the human gene MGC520000 as a new subgroup of the 

WASP protein family and as a result renamed the coded protein WASH (WASP And SCAR 

Homologue). A BLAST search using the Drosophila WASH homologue was performed 

against the Dictyostelium genome with a single homologue being identified coding by the 

gene DDB_G0292878. In keeping with the naming convention of Dictyostelium genes, 

DDB_G0292878 will now be referred to as wshA. Figure 1.1 shows a sequence alignment of 

Dictyostelium WASH against homologues from other organisms, including Homo sapiens and 

the disrupted Drosophila homologue. 
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Figure 3.1: Alignment of WASH homologues.

Multiple sequence alignment of WASH homologues from Dictyostelium discoideum 
(Accession number: XP_629407), Entamoebae histolitica (Accession number: XP_656631), 
Homo sapiens (Accession number: NP_878908), Xenopous tropicalis (Accession number: 
NP_001016854) and Drosophila melanogaster (Accession number: NP_610739) using clustalW. 
Percentage Identity [I] and similarity [S] to the Dictyostelium homologue are as follows,
H. sapiens I: 24.3% S: 39.6%, E. histolitica I: 18.8% S:31.3%, X. tropicalis I: 24.8% S: 38.1%
D. melanogaster I: 22.3% S: 38.1%
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3.2 Generation of WASH null mutants 

 

To gain insight into the cellular function of WASH we set out to disrupt the single WASH 

homologue in Dictyostelium discoideum. Figure 3.2:A depicts the initial approach used to 

disrupt wshA. A DNA construct (pMJC07) was designed to insert a Blasticidin resistance 

(BSR) cassette half way into the genomic sequence of wshA by homologous recombination. 

In addition 29bp of coding sequence was removed to safeguard against genomic or mRNA 

rearrangements resulting in a full length wshA transcript. Wildtype Ax2 cells were transfected 

with pMJC07, from which 48 transformants were screened. Two successful recombinants 

(MC1 and MC2) were identified. Successful recombinants could be distinguished from 

random integrants by PCR of wshA from genomic DNA, yielding a product ~3kb compared to 

the parental 1.5kb  band (Figure 3.2:B). This increase is due to the successful insertion of the 

BSR cassette (~1.4kb) into the middle of the genomic wshA gene.   

To detect the presence of endogenous WASH, antibodies were raised against two different 

peptide sequences, one towards the N terminus and the other within the VCA domain of the C 

terminus (Figure 3.3:B). Both antibodies were affinity purified and used to probe Western 

blots of lysates from parental (Ax2) and MC1 cells (figure 3.3:A). Blots revealed the loss of a 

60kDa band from MC1 lysate with both N and C terminal antibodies. WASH is predicted to 

have a molecular weight of 51kDa, however, some factors such as post-translational 

modifications and residual secondary structure can cause proteins to run at higher molecular 

weights than predicted. As both antibodies are targeted to different epitopes the loss of the 

60KDa band in each blot likely represents the loss of full length WASH. 

An additional band was observed in blots of MC1 lysates when probed with the N terminal 

antibody (Figure 3.2:B). This additional band ran at ~26KDa, roughly 43% the size of full  
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Figure 3.2: Generation of wshA disruptant using pMJC07.

(A) Schematic representation of method for targeted disruption and of wshA using DNA construct
 pMJC07, and identification. pMJC07 has two regions of homology within wshA. If both result
in homologous recombination a Blasticidin resistance cassette will be introduced into the 
genomic sequence enabling selection by Blasticidin and identification by an increased size of
PCR product of the wshA gene. (B) DNA gel of wshA PCR products form parental and MC1
genomic DNA. An increase of ~1.3Kb in MC1 is consistent with successful insertion of the BSR
cassette, therefore disrupting WASH.
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Figure 3.3: Verifying disruption of WASH and antibody validation

(A) Western Blots of parental and MC1 lysates showing loss of a 60KDa band (red box) 
when probed with N or C terminal antibodies revealing loss of full length WASH in MC1
cells. Green box shows additional band in MC1 lysate ~43% the size of full length WASH. 
(B) WASH protein sequence depicting site of disruption by BSR cassette insertion, and 
binding sites of the N (blue) and C (orange) terminal antibodies. This shows that 40% of 
wshA coding sequence is upstream of BSR insertion site, and contains the epitope for the
N terminal antibody suggesting the upstream fragment is still being translated.
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length WASH. The coding sequence upstream of the BSR insertion site accounts for 41% of 

the full length sequence suggesting this region is still being translated.  

 

Concerns that the truncated protein expressed in MC1 cells may hinder interpretation of 

experimental results due to residual functionality required that a new cell line be created. Cell 

line MC4 was generated using the gene disruptant construct pMJC57 which utilises genes 

upstream (DDB_G0292876) and downstream (DDB_0292972) of wshA as recombination 

arms (Figure 3.4:A). This allowed removal of 86% of wshA sequence, and the engineering of 

a point mutation augmenting the start codon from ATG to ATT. Wild type Ax2 cells were 

transfected with pMJC57, from which 48 transformants were screened by western blot, 

identifying one successful recombinant (MC4). MC4 showed loss of a 60KDa band when 

probed with both N and C terminal antibodies showing the loss of full length WASH (Figure 

3.4:B). No truncated protein was observed. 

 

All future work and references to wshAnull indicates use of cell line MC4. It should be noted 

that all experiments in chapter 3 and section 4.1 and 4.3 were also performed using cell lines 

MC1 and MC2 yielding identical results. All references to parental cell lines indicate the use 

of wild type Ax2 cells. Cells where the constructs targeted to disrupt wshA had randomly 

integrated into the genome were briefly observed to display similar characteristic as wildtype 

Ax2 cells.
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Figure 3.4: Generation of wshA disruptant using pMJC57

(A) Schematic representation of method for targeted disruption of wshA using DNA 
construct pMJC57. Using genes flanking wshA as sites of homologous recombination
86% of wshA was removed, the start codon augmented and a Blasticidin resistence cassette 
inserted for selection. (B) Western blots of parental and MC4 lysate with N and C terminal 
antibodies showing the absence of a 60KDa band (red box) consistent with loss of full 
length WASH.
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3.3 Disruption of WASH does not hinder cell growth 

 

As disruption of WASH in Drosophila resulted in unviable larvae, the growth of wshAnull cells 

was assessed as a general indication of cell wellbeing. Laboratory cell strains are typically 

maintained in axenic culture, and when grown in suspension growth rate and cell size 

distribution are easily monitored. Shaken cultures were periodically measured using a CASY 

counter ensuring cultures stayed above 1 x 105 and below 5 x106 cells/ml. Changes in 

population density were used to calculate average generation times for parental and wshAnull 

cells. Measured results indicated a small change in growth rate after disruption of WASH, 

however this could not be substantiated with statistics and was not significantly different (p 

value = 0.13; t-test) (Figure 3.5A). 

 

Figure 3.5:B shows a representative cell size distribution from parental and wshAnull culture 

samples, as well as representative images of cells grown in shaken culture placed on glass-

bottomed dishes and imaged by DIC microscopy. No gross changes were observed in 

population distribution or cell morphology of spread cells. Given there were no significant 

changes in generation time or cell size, disruption of WASH appears to have little effect on 

cell growth or division.  
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Figure 3.5: Growth of Parental and wshAnull cells in axenic shaken culture

Showing no difference in growth between parental and wshAnull cells grown in suspension
shaken cultures. (A) Mean generation time calculated from growth curves of 3 independent 
experiments. Error bars represent standard error. No significant difference was seen (p = 0.13)
(B) Graphs showing a representative population size distribution from a typical sample. Inset 
is an image of a representative cell from that sample placed on a glass-bottomed dish and 
imaged with DIC microscopy. Scale bar is 10μm.
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3.4 wshAnull cells have defective growth on bacterial lawns 

 

Disruption of WASH in Dictyostelium proved not to be lethal yielding opportunities to assess 

its cellular function.  

 

During screening of wshA disruptants cells were seeded onto bacterial lawns as a way of 

ensuring that cell strains are clonal. During this process it was noticed that wshAnull cells 

showed a noticeable defect when grown upon bacterial lawns. Dictyostelium utilise a range of 

cellular processes when growing on bacteria lawns including phagocytosis, cytokinesis, and 

chemotaxis, all of which have previously been documented to utilise the actin cytoskeleton 

(See Introduction). Any of these if perturbed would be predicted to yield visual signs when 

cultivated on bacterial lawns. 

 

Dictyostelium were clonally seeded onto lawns of Klebsiella and incubated in humidity 

chambers at room temperature for 72 hours. Each cell seeded onto this lawn undergoes 

successive rounds of bacterial consumption, growth and division. As bacteria become scarce 

the cells migrate outward to locate and consume more bacteria. Over time this results in an 

expanding circular plaque as the bacteria are consumed. Figure 3.6 shows that at comparable 

time points wshAnull cells have noticeably smaller plaques than parental cells. Given wshAnull 

cells grew normally in axenic culture this indicated that disruption of WASH could be 

hindering either chemotaxis or phagocytosis. 
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Parent wshA null

Figure 3.6: Growth of parental and wshAnull cells on bacterial lawns

Parent and wshAnull cells were clonally seeded onto Klebsiella bacterial lawns. Images were
taken after 72 hours of incubation. This shows  that wshAnull cells producenoticably smaller 
plaques than wildtype cells at comparable time points.
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3.5 wshAnull cells have increased cellular motility  

 

It had previously been shown that disruption of SCAR in Dictyostelium also resulted in 

defects when grown upon a bacterial lawn (Pollitt & Insall 2008). SCAR is involved in 

generating actin in cellular protrusions, disruption of which results in reduced cellular motility 

(Blagg et al., 2003). Cell motility requires the concerted efforts of several actin dependent 

processes, such as cellular protrusion (Miyata et al., 1999) and myosin aided contraction 

(Iwadate & Yumura, 2008). Therefore the effect of WASH disruption on motility was 

measured. 

The migration of cells towards bacteria can be simulated in an optically favourable setting by 

observing axenic cells migrating under a layer of agarose towards folate. Using phase contrast 

time-lapse microscopy, chemotaxing cells were observed and cell speed was quantified 

(Figure 3.7). In this assay WASH was not required for cells to detect and migrate up the folate 

gradient (See supplementary movie 1 and 2). Interestingly however the disruption of WASH 

resulted in significantly faster migrating cells (p = 0.001; t-test). This is not a phenotype 

expected from disruption of actin machinery involved in cellular protrusions or retraction, and 

it is not clear how an increase in cell speed would yield a decrease in plaque size upon 

bacterial lawns. However, the phenotype of increased cell speed following gene disruption 

has been observed before with the disruption of RasS and gefB (Chubb et al., 2000). This 

previously demonstrated that wild type cells do not migrate at the fastest possible speed and 

that perturbing other processes can enhance migrational speed. This suggests that the 

increased speed may well be a secondary effect from the disruption of some other WASH 

related process. 
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Figure 3.7: Cell speed of Parental and wshAnull cells during folate chemotaxis.

Graph depicting quantified average cell speed of cells migrating under a layer of agarose
up a gradient of folate. wshAnull cells were shown to migrate significantly faster than that
of parental cells (p value = 0.001). Values represent the average cell speed calculated from 5
independent experiments, in which the centroid of 9 cells were tracked in each instance. 
Error bars represent standard error.
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During the course of measuring cellular motility several cytokinesis events were observed for 

both parental and wshAnull cells. Cytokinesis is also a process known to involve the actin 

cytoskeleton. Figure 3.7 shows still images from representative movies of cells dividing on 

glass-bottomed dishes under a layer of agar, however no gross defect was seen when 

comparing wshAnull cells to parental, visually confirming findings from axenic growth 

experiments. 

 

  

3.6 wshAnull cells have normal endocytosis 

 

In order to further determine the cause of the bacterial growth defect we looked at  

macropinocytosis and phagocytosis, both of which are actin-dependent processes required for 

the uptake of fluid and solid objects respectively. A defect in phagocytosis but not in 

endocytosis could explain the discrepancy between normal axenic growth rates yet a clear 

defect when cultured upon bacterial lawns.  

Phagocytosis was indirectly assessed by briefly incubating cells adhered to glass-bottomed 

dishes with S. cerevisiae. The yeast are relatively large creating a more challenging obstacle 

to uptake in comparison to bacteria, and also making them easily identifiable  after 

phagocytosis using DIC microscopy. Figure 3.9:A shows images of parental and wshAnull cells 

after 15 minutes incubation, showing wshAnull cells possessed a similar quantity of 

phagocytosed yeast particles. This indicated no major defect in phagocytosis. 

Macropinocytosis was quantitatively assessed by measuring the cellular accumulation of 

fluorescently conjugated dextran over time. Following the addition of FITC-dextran to the  
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Figure 3.8: Cytokinesis of Parental and wshAnull cells

Representative images of Parental and wshAnull cells undergoing cytokinesis on
glass-bottomed dishes under a layer of agarose. Shows no gross defect in wshAnull

cells ability to undergo cytokinesis. Scale bar shows 10μm.
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Figure 3.9: Endocytic uptake in parental and wshAnull cells.

(A) DIC Images of parental and wshAnull cells after a brief incubation (15 min) with
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S. cerevisiae, showing that wshAnull, like parental cells, can efficiently phagocytose solid
 objects. Arrows highlight some internalised yeast. Scale bars show 10μm. (B) Graph 
showing identical rates of fluid phase uptake in parental and wshAnullcells. Cells were 
grown in shaking culture and following addition of FITC-dextran monitored for intracellular 
fluorescence levels (ex:470, em: 515). Readings were normalised based on culture protein 
content prior to addition of FITC-dextran. Error bars represent standard error from triplicate 
experiments.
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medium of shaken cultures, samples were periodically taken and used to measure the cellular 

FITC levels using a fluorimeter (Excitation: 470nm; Emission 515nm). Figure 3.9:B shows 

accumulation of FITC-dextran in parental and wshAnull cells over time. Disruption of WASH 

showed no measurable difference in fluid-phase uptake. 

 

 

3.7 wshAnull cells have a defect in exocytosis 

 

Although no difference was seen in the rate of fluid phase uptake between parental and 

wshAnull cells, during the course of this experiment an unanticipated observation was made. 

Measuring the cellular accumulation of FITC-dextran only gives an accurate readout of 

endocytic uptake during the first 60 minutes. After this the earliest engulfed dextran will have 

traversed the endocytic pathway and begun to have been expelled. As the rate of exocytosis 

approaches that of endocytosis the cellular level of internalised FITC-dextran reaches 

equilibrium. Figure 3.10:A shows the fluid-phase uptake assay with extended time points. 

Interestingly, unlike the parental cell line that clearly shows a plateau after 90 minutes 

wshAnull cells continue to accumulate dextran at the same rate of endocytosis even at the last 

collected time point of 5 hours. This strongly suggests a defect in exocytosis of ingested 

material. 

 

To more directly confirm a defect in exocytosis shaken cultures were incubated for > 4 hours 

in HL-5 medium containing FITC-dextran to saturate the endocytic pathway. The growth 

medium was then replaced with HL-5 medium without FITC-dextran and the cellular level of 
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FITC was measured over time. Figure 3.10:B shows the level of cellular fluorescence (ex: 

470, em: 515) over time with fluorescence values normalised to the initial fluorescence level. 

It shows that parental cells after 1 hour have less than 50% of their initial fluorescence level, 

and by two hours ~20%. At comparable time points wshAnull cells have >90% with only a 

marginal drop even after 5 hours.  

 

To confirm that the loss of WASH was responsible for the observed defect in exocytosis, 

WASH was re-introduced into wshAnull cells. Two constructs were generated to express 

exogenous WASH. Both contained a GFP tag at their N terminus, one construct expressed full 

length WASH (GFP-WASH) and the other a truncation removing the arp2/3 activating VCA 

domain (GFP-WASH∆VCA). Figure 3.11 shows western blots from lysates of wshAnull cells 

expressing these constructs. Even protein loading was confirmed with Ponceau S solution 

during blotting and is also clearly visible by the nonspecific bands when probed with the N 

terminal antibody (Figure 3.11:A). Both N and C terminal antibodies were used to show that 

both constructs are successfully overexpressed in wshAnull cell, and the loss of the VCA 

domain in GFP-WASH∆VCA is confirmed by the presence of a band in the cell lysate only 

when probed with the N terminal antibody (Figure 3.11:B). 

 

The exocytosis defect in wshAnull cells is fully rescued by the over-expression of GFP-WASH 

(Figure 3.12). This confirms that exocytosis of dextran is dependent upon WASH, and that 

WASH can functionally tolerate an N terminal GFP fusion. Expression of GFP-WASH∆VCA 

failed to rescue the defect showing that the function of WASH in the endocytic pathway is 

dependent upon its ability to activate the arp2/3 complex (Figure 3.12). 
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Figure 3.10: Exocytosis of FITC-dextran in parental and wshAnull cells.

(A) Extended time course of macropinocytosis assay (see. Figure 3.9). Graph shows
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cellular accumulation of FITC-dextran over time. After 90 minutes parental cells begin
to plateau, whereas wshAnull cells continue to accumulate at the same rate, suggesting
a failure to exocytose dextran. (B) Graph showing rate of exocytosis. The endocytic pathway
of cells was loaded with FITC-Dextran. After its removal from the medium the cells were
measured for decreasing internal fluorescence (ex:470, em: 515) over time. wshAnull cells 
were drastically hindered in their ability to expel the dextran. Error bars represent standard
error.
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Figure 3.11: Expression levels of GFP-WASH  and GFP-WASHΔVCA  

Western blots of lysates from wshAnull cell lines expressing GFP-WASH or 
GFP-WASHΔVCA. (A) Blot probed with an antibody targeted towards the N terminus 
of WASH. Red box shows  overexpression of GFP-WASH, running at a larger size due 
to addition of GFP. Green box shows  overexpression of GFP-WASHΔVCA, with a 
smaller band due to removal of the VCA domain. (B) Blot probed with an antibody 
targeted towards the VCA domain of WASH. Red box shows overexpression of 
GFP-WASH, whilst the loss of a band in the GFP-WASHΔVCA lane shows that the 
expressed protein is lacking the VCA domain.
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Figure 3.12: GFP-WASH rescues exocytosis defect in wshAnull cells. 

wshAnull cells expressing GFP-WASH or GFP-WASHΔVCA were assessed to see
if either construct could compensate for loss of endogenous WASH. The endocytoic
pathway of cells was loaded with FITC-dextran, and following its removal from the
medium cells were monitored for decreasing intracellular fluorescence (ex: 470, 
em: 515). Expression of GFP-WASH [∆] rescued the defect in exocytosis where as
the expression of GFP-WASHΔVCA [▲] did not. This shows that exocytosis of 
dextran is WASH dependent and requires its arp2/3 activation domain. 
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3.8 Effect of defective exocytosis on growth rate 

 

A defect in exocytosis from the endocytic pathway provides a possible explanation regarding 

the discrepancy between the growth defect upon bacteria and normal axenic growth. 

Postulating that growth upon bacteria results in the consumption of a larger amount of 

indigestible material in comparison to axenic HL5 medium, and that in wshAnull cells this 

material accumulates hindering growth, cultures were grown in HL-5 medium containing 

indigestible 20% (w/v) dextran and observed for growth abnormalities (Figure 3.13:A). After 

4 days growth in shaken culture containing 20% dextran both parental and wshAnull cells 

showed a statistically significant increase in generation time (p= <0.05; T-test). However, the 

differences in these increases were much larger in wshAnull cells resulting in a doubling in 

generation time in comparison with only a 10% increase in parental cells (p value = 0.001; T-

test).  

 

We also noted that the presence of dextran had clear effects on whole cell and intracellular 

vesicle size. Figure 3.14:A shows the percentage cell size distribution of representative 

samples from cells after 4 days growth with or without dextran. Dextran has a clear effect in 

wshAnull cells, broadening the cell size distribution resulting in larger cells (Figure 3.14:A). 

This was not seen in parental cells, where the presence of dextran was surprisingly observed 

to result in a narrowing of the distribution indicating an increase in uniformity. This may have 

implications on tissue culture implying that the addition of dextran to axenic medium may 

help reduce cell variability. When these cells were observed spreading on a solid surface with 

DIC microscopy, wshAnull cells showed dramatically enlarged intracellular compartments not 

observed in parental cells under similar conditions, or in parental or wshAnull cells without 
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dextran (Figure 3.14). This demonstrates that failure to expel indigestible material can have 

secondary effects on growth, potentially due to the disruption of processes such as cytokinesis 

by an overcrowding of the cytoplasm with distended vesicles
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Figure 3.13: Effect of 20% dextran on generation time of parental and
 wshAnull cells.  

Cells were grown in shaking culture containing 20% dextran (w/v). After 4 days growth
 curves were used to calculate average generation times. Error bars represent standard 
error. (A) Graph showing generation times of parental and wshAnull cells grown with and 
without dextran. A statistically significant increase was observed with both cell lines. 
(B) Graph showing that the increase in generation time was significantly larger in wshAnull 
cells compared to parental.
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Figure 3.14: Effect of 20% dextran on cell morphology of  parental and 
wshAnull cells.  

Cells were grown in shaken culture containing 20% Dextran (w/v) for 4 days. (A) Shows
representative cell size distributions for parental and wshAnull cells grown with and without
20% Dextran. A visually noticeable difference was observed with wshAnull cells resulting in
a larger spread of cell sizes. (B) Still images of cells taken from cultures on day 4 and 
allowed to spread on glass-bottomed dishes. wshAnull cells when grown in dextran were
substantially bigger in size and contained enlarged vesicles. Scale bars show 10 μm.
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3.9 Conclusions 

 

The production of a viable WASH null cell line in Dictyostelium is a valuable tool for 

elucidating the cellular function of WASH. It removes doubts over residual expression levels 

continually troubling siRNA studies and questions of cell type specificity from multicellular 

organisms. However, care should be taken when generating knockout strains in Dictyostelium. 

It is common practice within the field to disrupt genes by inserting a selection cassette into the 

genomic coding sequence in the belief that the resulting transcript will be unstable and 

subsequently degraded. Expression of a truncated WASH protein in MC1 cells shows that this 

is not always the case. A default strategy should be the use of an upstream gene as a 

recombination arm allowing removal of the start codon and reducing the amount of upstream 

coding sequence of the targeted gene.   

 

Disruption of WASH was shown not to have any direct negative effects on endocytosis, 

cellular growth, cytokinesis or cell motility, but was shown to be essential for exocytosis of 

indigestible material from the endocytic pathway. This is an observation that has not been 

seen with any other members of the WASP protein family suggesting WASH is functionally 

distinct from, and whose loss cannot be compensated for by other members of the WASP 

family. Surprisingly a block in exocytosis is not lethal. The endocytic pathway functions to 

take up nutrients and involves the equivalent of internalising the entire plasma membrane 

every 4 - 10 minutes (Aguado-Velasco & Bretscher, 1999). As no change was seen in growth 

rate or cell size in the absence of dextran, membrane retrieval and degradative pathways of 
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the endocytic pathway must remain intact. For clarity, from this point on the defect in wshAnull 

cells will be referred to a defect in defecation, to distinguish it from other membrane fusion 

events that must still occur.  

 

Since this work was undertaken several papers have been published identifying roles for 

WASH in the endocytic pathway of mammalian cell lines. Knockdown experiments showed 

subtle defects in transferrin recycling (Derivery et al., 2009), retromer-mediated CI-MPR 

trafficking (Gomez & Billadeau, 2009) and enlargement and elongation of endosomes (Duleh 

& Welch, 2010). The observed defecation defect in wshAnull cells is not a direct measurement 

of the exocytosis process itself, but evidence of a defect somewhere along the endocytic 

pathway, suggesting an evolutionary functional conservation between Dictyostelium and 

mammalian WASH supporting its use as a model organism. 

 

Depletion of WASH also had an unexpected increase in the rate of cellular motility. WASP 

protein family members act as positive regulators of actin assembly, and it is not clear how 

disruption of which can result in increased motility. However, it has previously been reported 

that the disruption of either RasS or gefB results in increased cellular speed (Chubb et al., 

2000). In this study the authors argue that these proteins control the proportion of actin 

involved in macropinocytosis and motility, and there disruption results in more actin 

machinery available for motility processes. This showed that wild type cells do not already 

move at a maximum possible speed. Although disruption of WASH had no effect on fluid 

phase uptake, showing that the WASH specific defect is unrelated to RasS and gefB pathways, 

by a similar logic disruption of WASH may perturb other processes that clearly accelerates 

cellular motility.  
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Chapter 4  
 

 

 

WASH-dependent actin formation is essential for 

post-lysosome formation. 
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The actin cytoskeleton has previously been shown to interact with internal organelles. 

However, to date its role has primarily been associated with vesicle translocation by actin-

comet tail formation (Merrifield et al., 1999) actin cables for myosin aided movement 

(Aschenbrenner et al., 2003), or actin-coats as physical barriers to vesicle fusion (Drengk et 

al., 2003). The discovery of WASH as a nucleation promoting factor involved in the 

endocytic pathway of Dictyostelium could advance the understanding of the role of actin in 

vesicular trafficking. 

 

4.1 WASH is required for formation of actin-coats 

surrounding endocytic vesicles 

We previously showed that WASH was essential for trafficking of indigestible material 

through the endocytic pathway, and that this was dependent upon its VCA domain which is 

known to initiate actin nucleation through activation of the arp2/3 complex. To better 

understand the role of WASH-dependent actin in the endocytic pathway, F-actin structures in 

wshAnull and parental cells were compared for differences. Cells were fixed using 

formaldehyde and stained with fluorescently labelled phalloidin, which specifically binds and 

stabilises filamentous actin. Cells were then visualised using widefield fluorescence 

microscopy. Cells lacking WASH were seen to be completely devoid of internal spherical 

actin structures that appear to be actin-coats surrounding post-lysosomes, previously 

described by Rauchenberger et al., (1997). Although these actin-coats were observable by eye 

down the microscope, they were often dim and at times masked due to the blurred light from 

the much brighter signal of nearby cortical actin. Iterative deconvolution was used to improve 
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the visualisation of these structures. This process reassigns the convolved light back to its 

source mathematically, requiring multiple images focused at incremental Z positions for each 

field of view, and a calculated point spread function based on the emission wavelength of the 

fluorophore and the optics of the microscope. Figure 4.1:A shows deconvolved images of 

parental and wshAnull cells showing actin coated vesicles (arrows) that are lost upon WASH 

depletion. These were counted, excluding any spherical structures in contact with cortical 

actin as being macropinosomes. Parental cells contain on average 3-4 actin-coats per cell 

(Figure 4.1:B), but from rigorous quantification of 86 cells, and casually observing many 

more since, wshAnull cells were never observed to contain a single actin-coated vesicle.  

 

Exogenously expressing GFP-WASH in wshAnull cells was previously shown to rescue the 

defect in defecation, demonstrating that WASH was not hindered by the presence of an N 

terminal GFP tag. Therefore we fixed cells expressing GFP-WASH and GFP-WASH∆VCA 

to observe their cellular localisation. GFP-WASH rescued the loss of actin-coats in wshAnull 

cells and localised to the same vesicular compartments implying a direct role in its formation 

(Figure 4.2:A). This was also shown by the expression of GFP-WASH∆VCA. This construct 

did not rescue the loss of actin coats but its localisation was similar to GFP-WASH, showing 

that the vesicles that possess actin-coats in parental cells are still present, but their lack of 

actin-coats is due to the loss of WASH-dependent arp2/3 activation.  

 

This data shows that WASH is a nucleation promoting factor responsible for driving the 

formation of actin-coats around post-lysosomes in Dictyostelium. It has been the consensus 

that the domains within the N terminus of WASP family proteins control their localisation and  
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Figure 4.1: Visualising F-actin structures in parental and wshAnull  cells
after fixation

(A) Deconvolved images of fixed cells labelled with TexasRed-Phalloidin to visualise
F-actin. Actin-coats around intracellular vesicles (arrows) are absent from wshAnull cells.
Scale bar shows 5μm. (B) Mean number of actin-coated vesicles observed per cell. Values 
represent mean number of vesicles per cell. Error bars represent standard error from 3 
independently performed experiments.
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Figure 4.2: The VCA domain of WASH is required for actin-coat formation
around intracellular vesicles.

wshAnull cells expressing GFP-WASH or GFP-WASHΔVCA were fixed with formaldehyde
and stained with TexasRed-phalloidin to visualise F-actin. Magnified areas are also contrast
enhanced. (A) GFP-WASH rescues the loss of actin-coats and localises to the same
compartment. (B) GFP-WASHΔVCA failed to rescue the loss of actin coats whilst maintaining
a vesicular localisation, plus an increased nuclear accumulation in ~30% of cells. This shows 
the VCA domain of WASH is essential for its role in regulating actin-coat formation, as well
as regulating its nuclear accumulation. Scale bar shows 5 μm.
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regulation whilst the C terminal is the active region. Although this does primarily appear to be 

the case with WASH, shown by a C terminal truncation resulting in loss of function yet 

retention of vesicular localisation, it was noted that a sub-population of these cells showed a 

strong nuclear localisation (see Figure 4.2:B) suggesting the C terminus also has roles in the 

spatial distribution of WASH.  

 

4.2 WASH possesses a nuclear export signal in its C region 

 

The observation that removal of the VCA domain could at times result in the nuclear 

accumulation of GFP-WASH suggested the presence of a nuclear export signal (NES) within 

this region. Linardopoulou et al., (2007) suggested WASH may have possible roles in the 

nucleus due to conserved nuclear import and export signals with vertebrate WASH 

homologous. To confirm if Dictyostelium WASH contains a NES within its VCA domain 

cells expressing GFP-WASH were incubated with an inhibitor of nuclear export to see if its 

cellular localisation phenocopies that of the VCA truncated construct. Cells were treated with 

10ng/ml of Leptomycin B, a specific inhibitor of the nuclear export receptor CRM1 that when 

disrupted blocks nuclear export of proteins containing nuclear export signals. Figure 4.3 

shows the percentage of GFP-WASH or GFP-WASH∆VCA expressing cells showing nuclear 

accumulation, seen by fluorescence microscopy. It shows that deletion of the VCA domain 

resulted in 33% of cells showing nuclear accumulation in comparison to 0% with full length 

WASH. Leptomycin B treatment of cells expressing GFP-WASH phenocopied that of the 

VCA truncated construct, with 32% of cells showing nuclear accumulation. The amino acid 

sequence of WASH was analysed by NetNES (www.cbs.dtu.dk/services/NetNES/) for  
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Figure 4.3: Leptomycin B treatment of cells expressing GFP-WASH.

Cells expressing GFP-WASH and GFP-WASHΔVCA were observed for nuclear
accumulation by fluorescence microscopy. Values were calculated from multiple still
images showing what percentage of the population at any one time has strong nuclear
accumulation. 33% of cells expressing GFP-WASHΔVCA had nuclear accumulation in 
comparison to 0% with GFP-WASH. Treatment of GFP-WASH expressing cells with the
nuclear export inhibitor Leptomycin B resulted in 32% of cells showing nuclear
accumulation.
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putative nuclear export signals. Figure 4.4 shows a graphic representation of the nuclear 

export signal (NES) score for each amino acid in the WASH sequence. A nuclear export 

signal is predicted if this score is above a set threshold (green line). A nuclear export signal 

was predicted within the C motif of the VCA domain of Dictyostelium WASH, consistent 

with experimental data. To see if this was a conserved feature of the C motif other WASH 

homologues were also assessed for putative nuclear export signals. No nuclear export signals 

were predicted within the C regions, with the exception of S. mollendorffii, however it was 

common for this region to generate a nuclear export signal score just below the threshold for 

identification. The high frequency of this pattern would suggest that this could be a common 

trait of the C motif but the predictive software may be quite cautious in its predictions. Other 

WASP family members in Dictyostelium were also tested for predicted nuclear export signals 

in their C region showing a confirmed prediction for SCAR but not WASP (Figure 4.5).  

 

 

4.3 WASH is required for post-lysosome formation 

 

Actin-coats surrounding endocytic compartments have been described previously in 

Dictyostelium (Rauchenberger et al., 1997). They had been shown to form around late 

endocytic vesicles, called post-lysosomes that are characterised by a neutral pH (Padh et al., 

1993). Having identified WASH as the NPF responsible for actin-coat formation we set out to 

determine the consequences of its disruption on post-lysosomes. 
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Figure 4.4: Predicted nuclear export signal in WASH homologues

Graphs showing predicted nuclear export signals (NES) from multiple WASH 
homologues using NetNes. Red line shows NES score for each amin acid and 
green line shows threshold for predicted NES. Dashed box shows position of C 
region in each homologue. 
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Figure 4.5: Nuclear Export Signal prediction of Dictyostelium WASP 
family proteins

Graphs showing predicted nuclear export signals from the three WASP  family proteins in
Dictyostelium. Red line shows predicted nuclear export signal score, and the green lines
represents the threshold for prediction. Dashed box shows position of C motif in each 
protein. The nucear export properties of the WASH C motif are unique to WASH.

C domain

421-441

416-428

367-382

XP_629407

XP_638311

XP_628937

103



 
 

Compartments of the endocytic pathway in Dictyostelium can be visually distinguished based 

on their size, morphology, pH and luminal concentration of indigestible material when 

incubated in the presence of pH sensitive and insensitive dextrans. TRITC-dextran is pH 

insensitive and acts as a marker for fluorescently visualising the entire endocytic pathway, 

revealing the size and shape of endocytic compartments. The intensity of its fluorescent signal 

is dependent upon concentration. FITC-dextran is pH sensitive with its fluorescent signal 

decreasing with decreasing pH. Changes in the ratio between FITC and TRITC signal 

therefore indicate a relative pH change (Rivero & Maniak, 2006). 

Early macropinosomes are large and have varying morphology with similar pH and dextran 

concentration as the surrounding medium. As they mature the luminal pH drops and 

membrane retrieval results the compartment decreasing in size locally concentrating the 

dextran. These later fuse with other endocytic vesicles eventually resulting in large, highly 

concentrated spherical compartments. The last and most noticeable change is upon the 

formation of post-lysosomes, where the large highly concentrated compartments have a 

sudden increase in luminal pH (neutralisation).  

Figure 4.6 shows representative images of cells incubated in FITC and TRITC conjugated 

dextran for 1 hour and imaged by confocal microscopy. The red and green channels show 

TRITC and FITC emissions respectively. An overlay results in acidic vesicles appearing red 

whilst neutralised post-lysosomes look yellow or green. Disruption of WASH shows a 

complete loss of post-lysosomes that are clearly visible in parental cells (arrows). Cells 

lacking WASH still contained large concentrated acidic vesicles indicative of lysosomes. Like 

previously observed defects of defecation and loss of actin-coats, expression of GFP-WASH 

rescued the loss of post-lysosomes and this was dependent upon its VCA domain (Figure 4.6).   
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wshAnull [GFP-WASH] wshAnull [GFP-WASHΔVCA]

Figure 4.6: Visualisation of post-lysosomes in parental and wshAnull cells

Cells were loaded with FITC (pH sensitive) and TRITC (pH insensitive) conjugated
dextran to differentiate between acidic and neutral vesicles. Acidic vesicles appear
red due to the decreased FITC signal, whilst neutral vesicles are yellow or green (arrows).
wshAnull cells lack post-lysosomes that can be seen in parental cells, and this can be
rescued by expression of GFP-WASH but not GFP-WASHΔVCA. Scale bars show
10μm.
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In addition, two other GFP constructs were created to attempt to disrupt WASH function 

whilst retaining its NES within the C motif. Expression of GFP-WASH∆A where the acidic 

region was removed failed to rescue the appearance of post-lysosomes showing this region is 

essential for WASH function (Figure 4.7). Within the acidic region of WASP family proteins 

there is a conserved tryptophan. Experiments showed that mutation of this residue to alanine 

reduces the efficiency of arp2/3 binding activation in vitro (Marchand et al., 2001). The lack 

of function of the Drosophila WHAMM has also been attributed to its loss of its C terminal 

tryptophan (Liu et al., 2009). Expression of GFP-WASHW471A in wshAnull cells resulted in 

formation of neutral post-lysosomes. This data shows that WASH and the actin-coats it 

nucleates are responsible for the formation or maintenance of neutral post-lysosomes in 

Dictyostelium. This suggests two possibilities. Firstly, WASH-dependent actin may act as a 

physical barrier (Drengk et al., 2003) preventing re-acidification of post-lysosomes by fusion 

with acidic compartments, and its disruption prevents the cell from maintaining any neutral 

vesicles. Secondly, WASH dependent actin may have an earlier function in the endocytic 

pathway than previously thought, and its disruption blocks the initial formation of post-

lysosomes. The first hypothesis was tested using an actin depolymerizing drug, Latrunculin 

A. This drug binds to actin monomers depleting the pool of G-actin resulting in F-actin 

disassembly (Spector et al., 1982). To see if neutral post-lysosomes re-acidify without an 

actin-coat Latrunculin A was added to parental dishes 1 hour into the post-lysosome 

visualisation assay. After 15 minutes of treatment cells had rounded up indicative of 

disruption of cellular F-actin. In these cells post-lysosomes could still be seen (Figure 4.8). 

This suggests that actin-coats are not required to maintain a neutral pH.  This experiment 

however does not rule out that re-acidification may also be actin dependent, and would 

require a method to specifically disrupt WASH function on demand after the formation 
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Figure 4.7: Effect of an acidic region deletion or tryptophan point mutation
on WASH dependent post-lysosome formation

Vesicle neutralisation assay. Cells were loaded with FITC-dextran (pH sensitive) and
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TRITC-dextran (pH insensitive) to distinguish acidic and neutral vesicles. 
Post-lysosomes appear yellow (arrows) and are absent in wshAnull cells. Exogenous 
expression of WASHΔA failed to rescue the loss of post-lysosomes. Deletion of the 
conserved tryptophanin the acidic region to alanine (W471A) was capable of rescuing 
the phenotype showing that the acidic domain is essential for function whereas the 
conserved tryptophan is not. Scale bar shows 10μm.
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Pre-treatement 2μM Latrunculin A
(15 min)

Figure 4.8: Effect of latrunculin A on maintaining neutralised 
post-lysosomes

Cells were loaded with FITC (pH sensitive) and TRITC (pH insensitive) conjugated
dextran to differentiate between acidic and neutral vesicles. Acidic vesicles appear
red due to the decreased FITC signal, whilst neutral vesicles are yellow or green. 
Images show presence of neutral post-lysosomes after 1 hour of incubation in 
fluorescently labelled dextran and these remain even after treatment of cells with 
2μM latrunculin A. Scale bars show 10μm.

109



 
 

 

of post-lysosomes to conclusively rule this out. 

 

4.4 Actin is required for post-lysosome formation 

 

To test the hypothesis that actin-coats are important for post-lysosome formation, the effect of 

latrunculin A on lysosome neutralisation was assessed in parental (wshA+) cells. 

Two problems needed to be overcome to test this hypothesis. Firstly, treatment with 

latrunculin A disrupts all cellular F-actin structures indiscriminately. Some of these have 

earlier roles than WASH in the endocytic pathway, and disruption of these would prevent 

dextran markers reaching lysosomes. Therefore a pulse chase experiment was devised 

allowing cells to internalise dextran and traffic it unhindered prior to latrunculin A treatment. 

Secondly, this experiment required an accurate prediction of when lysosome neutralisation 

would occur, otherwise an absence of post-lysosomes following latrunculin A addition could 

not be credited to drug treatment with any degree of confidence. 

 

Cells were incubated in medium containing FITC-dextran for 20 minutes. Following 

replacement with non-fluorescent medium cells were monitored by fluorescence time-lapse 

microscopy for the appearance of FITC in post-lysosomes identified by a sudden increase in 

fluorescence signal. Cells were monitored at low magnification ensuring at least 30 cells were 

in the field of view. Figure 4.9 shows the number of FITC-dextran containing post-lysosomes 
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in the field of view during the course of imaging, with the x axis denoting time from the 

commencement of the pulse chase. It was observed that within a population there was a surge 

of post-lysosomes formed containing FITC-dextran  around ~40 minutes after the initial 

addition of FITC-dextran. It should be noted that this time is dependent upon the setup of the 

microscope and thresholds set during image processing, however from 3 repeats it was seen 

that this 40 minute onset was reproducible using identical parameters. The consistency of this 

observation provided a suitable target for the addition of Latrunculin A.  

We decided to add latrunculin A 36 minutes after commencement of the experiment giving 

several minutes for the drug to diffuse and sequester actin monomers prior to the predicted 

onset of lysosome neutralisation. Figure 4.9 shows that addition of latrunculin A at 36 

minutes was sufficient to block the formation of post-lysosomes. This block was also shown 

to be reversible by removal of latrunculin A, with neutralisation commencing after a short 

recovery period. Although the addition and removal of latrunculin A appears to have affected 

the rate of formation and their persistence within the cell, this can be attributed to an inability 

to completely remove all latrunculin A during washes. The initial onset of vesicle 

neutralisation is indicated on Figure 4.9 by red lines. It is of importance to note these points 

are offset by roughly the same time period as latrunculin A treatment. 
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Figure 4.9: Effect of latrunculin A on vesicle neutralisation 

Wildtype Ax2 cells were pulse chased with FITC-Dextran and its transit into neutralised
post-lysosomes was measured by time lapse microscopy. Graphs show representative
graphs from quantifying the number of post-lysosomes in the field of view during imaging, 
showing the appearance of post-lysosomes ~45 minutes after the commencement of the 
FITC-dextran pulse. Addition of 2μM Latrunculin A reversibly blocks the appearance of
post-lysosomes. Red lines indicate the commencement of vesicle neutralisation
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4.5 Conclusions 

 

This work shows that WASH is the NPF responsible for the formation of actin-coats around 

late endocytic vesicles in Dictyostelium. Previously the role of these actin-coats were largely 

unknown but were proposed to function as physical barriers to prevent vesicle tethering and 

fusion. This was due to studies in mammalian cells showing that cortical actin functions as a 

physical barrier and must first be locally disrupted for exocytosis (Muallem et al., 1995). 

Additionally, by increasing the rate of actin-coat depolymerisation in Dictyostelium Drengk et 

al., (2003) observed a clustering of post-lysosomes. Here we show that actin-coats function 

further upstream than previously thought with roles in post-lysosome formation. Actin-coats 

persist during the transit of post-lysosomes through the endocytic pathway, roughly 30 

minutes (Rauchenberger et al., 1997). As this coat remains for roughly 30 minutes after 

neutralization it could also serve a secondary function in preventing vesicle tethering and 

fusion as previously proposed (Drengk et al., 2003), and this may be required to maintain 

neutrality. 

 

The loss of actin-coats presumably accounts for the defect in defecation seen in wshAnull cells 

due to a block in vesicle maturation. Interestingly, it has been documented that actin 

associates with secretory granules from chromaffin cells of the adrenal medulla (Meyer & 

Burger, 1979). As the endocytic and biosynthetic pathways are similar in that both undergo 
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gradual acidification during trafficking, it could be possible that a late association of actin in 

both pathways is essential for neutralization prior to exocytosis. It is not yet clear why 

lysosomes require neutralization.  

 

Further study of these actin-coats would benefit from the generation of temperature sensitive 

WASH mutants. This would allow post-lysosomes to form followed by immediate WASH 

disruption, to investigate its role in vesicle fusion and neutralization that is currently hindered 

by the lack of post-lysosomes.  

 

It is fortunate that disruption of WASH in Dictyostelium produced viable cells with no 

obvious defects in growth, yet yields clear unambiguous phenotypes. This provides an ideal 

system for further investigating the regulatory mechanisms of WASH and elucidating the 

mechanistic details of its actions. This work makes a start by showing that in vivo the acidic 

region is essential for arp2/3 mediated actin nucleation, whereas the widely conserved 

tryptophan in the acidic domain is not. 
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Chapter 5 

WASH drives the neutralisation of lysosomes by the 

removal of the Vacuolar H+ ATPase. 
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The vacuolar H+ ATPase (V-ATPase) is an evolutionarily conserved enzyme that functions to 

acidify the lumen of intracellular organelles in eukaryotic cells. Several publications have 

documented relationships between the V-ATPase and the actin cytoskeleton, namely 

observations that subunits B and C bind filamentous actin (Vitavska et al., 2003; Chen et al., 

2004), and perturbing proteins that modulate the actin cytoskeleton have been noted to affect 

V-ATPase localisation (Beaulieu et al., 2005). Here we investigate the role of WASH in 

lysosome neutralisation as a potential regulator of V-ATPase trafficking. 

 

 

5.1 Lysosome neutralisation is caused by V-ATPase 

removal  

 

Because vesicular compartments are proton ‘leaky’ and the cytosol of cells is pH neutral, 

vesicle neutralisation can be a passive process requiring only the inhibition of acidification. 

This is demonstrated by the common use of V-ATPase inhibitors to force neutralisation of 

endocytic compartments. Therefore to further understand the process of lysosome 

neutralisation in Dictyostelium we monitored the sub-cellular localisation of V-ATPase during 

this event. 

 

The V-ATPase is composed of two sub-complexes, V1 and V0, each containing multiple 

subunits. We tagged the B subunit of V1 (vatB) at its C terminus with mRFP as a probe to 
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monitor V-ATPase localisation by fluorescence microscopy. The fusion protein localised to a 

wide range of vesicular compartments, including the contractile vacuole, consistent with the 

previous reports of V-ATPase distribution (Clarke et al., 2002). To aid the practicalities of 

tracking a single vesicle during its transit through the endocytic pathway cells were incubated 

with agarose microsize beads. Once engulfed the bead ensures the vesicle maintains a 

constant size and shape making it easily identifiable between time-lapse images, and in the 

case of large beads helping to keep it in the plane of focus. We discovered that by allowing 

molten agarose to set in a hydrophobic liquid whilst being continually agitated, microscopic 

agarose beads could be created within the lab. Being able to custom make beads allowed 

insertion of any desirable substance into the molten agarose before it set, such as Oregon 

Green conjugated dextran. Similar to FITC, Oregon green is a pH sensitive fluorophore that 

becomes less fluorescent with decreasing pH. As the bead prevents the cellular compartment 

from reducing in size the local concentration of fluorescent dextran remains fixed, therefore 

any change in fluorescent signal can be attributed to a change in luminal pH. 

 

Cells expressing vatB-mRFP were incubated with Oregon Green agarose beads to observe the 

localisation of V-ATPase during lysosome neutralisation. Figure 5.1 shows selected images 

from a time-lapse movie (supp. Movie 5) of cells having engulfed Oregon Green beads, and a 

graph showing the fluorescent intensity of a bead (arrow) during the course of the movie. It 

was repeatedly observed that removal of vatB from the membrane of phagosomes resulted in 

a constant elevated pH. This shows that late in the endocytic pathway lysosome neutralisation 

is caused by the removal of the V-ATPase proton pump. Interestingly, some phagocytosed 

beads showed oscillating pH changes that were not observed previously during fluid phase 

trafficking of FITC-dextran. It is possible that phagosomes and macropinosomes have  

117



0 min 5 min 13 min

14 min 23.5 min 41 min

45 min 60 min 75.5 min

0      10        20       30      40      50       60      70      80       90

Time (minutes)

25000   

20000   

15000   

10000   

5000   

0   

Fl
uo

re
sc

en
ce

 (A
.U

)

A

B
vatB vatB removed

118



Figure 5.1: Visualisation of vatB localisation and changes in 
luminal pH.

Ax2 cells expressing vatB-mRFP were fed agarose beads containing OregonGreen-
dextran. The fluorescence of the bead decreases with decreasing pH. (A) Stills from 
time-lapse movie showing removal of vatB from a tracked vesicle (arrowed) between 
40-45 minutes. Scale bars show 5μm. (B) Graph showing fluorescence of engulfed 
bead representing vesicular pH, showing oscillating changes with a vatB coat, but upon 
its removal is consistently bright indicating a neutral pH. 
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different pH dynamics due to size differences. However, with vatB present on the 

compartment, transient neutralisation is followed by acidification, suggesting sustained post-

lysosomal neutralisation requires V-ATPase removal. 

 

5.2 WASH recruitment coincides with V-ATPase removal 

 

WASH was previously shown to be required for lysosome neutralisation. Having shown that 

this process requires the removal of V-ATPase, the correlation between WASH recruitment 

and V-ATPase removal was assessed quantitatively. 

 

GFP-WASH and vatB-mRFP were co-expressed in wshAnull cells fed non-labelled agarose 

beads. It was noticed from observing numerous cells down the microscope that GFP-WASH 

and vatB-mRFP were mutually exclusive on internal organelles. Vesicles contained either a 

coat of GFP-WASH or vatB-mRFP, but never both. Vesicles progressed from a coat of vatB 

replaced by a WASH coat, consistent with acidification of early and WASH dependent 

neutralisation of late endocytic compartments. Confocal microscopy was used to quantify the 

levels of GFP-WASH and vatB-mRFP on phagosomes during their transit through the 

endocytic pathway. Figure 5.2:A shows selected images from a representative neutralisation 

event captured by time-lapse microscopy (supp. Movie 6). Doughnut shaped regions of 

interest were drawn around the periphery of the tracked phagosome in every frame and the 

average intensity was measured in each channel. Figure 5.2:B shows a graph of the 

normalised values obtained after background subtraction. It was found that GFP-WASH 
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recruitment coincides with the removal of vatB-mRFP. This data taken with previous findings 

that V-ATPase removal drives neutralisation, and neutralisation is dependent upon WASH, 

suggests that WASH recruitment has an active role in V-ATPase removal. 

 

Studies in yeast have shown the V-ATPase is inactivated by the dissociation of its V1 and V0 

sub-complexes (Kane, 1995). As vatB is a component of the cytosolic V1 sub-complex 

another subunit was cloned from the trans-membrane V0 complex (vatM) to observe if WASH 

recruitment causes neutralisation by dissociation of V1 and V0. A co-expression experiment 

showed that mRFP-vatM was removed from the vesicle upon recruitment of GFP-WASH in a 

similar manner as previously observed with vatB (Figure 5.3) (supp. movie 7). This suggests 

the V-ATPase is trafficked as a complete unit.  

 

As lysosome neutralisation is not a result of V-ATPase dissociation, and the V0 subcomplex is 

trans-membrane, we imaged WASH-dependent V-ATPase removal for signs of budding. 

mRFP-vatB and GFP-WASH were imaged using widefield microscopy for improved time 

resolution. Using the highest attainable magnification and resolution at our disposal (100x 

objective + 1.6x optivar, NA1.49) images of WASH-dependent V-ATPase removal were 

captured. Figure 5.4 shows stills taken from a successfully captured neutralisation event (sup. 

Movie 8). It shows that prior to WASH recruitment the V-ATPase coat is smooth and static. 

After WASH begins to accumulate on the compartment the V-ATPase coat becomes more 

dynamic, and what appears to be budding vesicles can be seen forming and detaching from 

the phagosome (arrows). Most areas of activity also possess WASH puncta. However, it is not  
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Figure 5.2: Vesicular localisation of GFP-WASH and vatB-mRFP

Cells expressing GFP-WASH and vatB-mRFP were fed agarose beads and imaged 
under a layer of agarose using confocal microscopy. (A) Selected images from time-lapse 
movie of a neutralisation event. Inset image shows magnification of bead used for 
quantification (arrow). (B) Quantification of GFP-WASH and vatB-mRFP . Donut shaped 
regions of interest were used to quantify average fluorescence intensity. Background 
fluorescence was subtracted from each value and then normalised.
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Figure 5.3: Vesicular localisation of GFP-WASH and mRFP-vatM

Cells expressing GFP-WASH and mRFP-vatM fed agarose beads and imaged under 
a layer of agarose using confocal microscopy. (A) Selected images from time-lapse 
movie of a neutralisation event. Inset image shows magnification of bead used for 
quantification (arrow). (B) Quantification of GFP-WASH and mRFP-vatM . Donut 
shaped regions of interest were used to quantify average fluorescence intensity. 
Background fluorescence was subtracted from each value and then normalised.
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Figure 5.4: High resolution widefield microscopy of GFP-WASH and vatB-mRFP
Dynamics.

Still images of a phagosome in a wshAnull cell expressing GFP-WASH and vatB-mRFP
captured by widefield microscopy. Arrows show regions of membrane activity.
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possible to completely rule out that these are smaller V-ATPase coated vesicles entering the 

field of view from either above or below this compartment. 

 

5.4 Enoxacin treatment does not prevent vesicle 

neutralisation. 

 

Previous reports show that the V-ATPase interacts directly with actin filaments. To date, both 

subunit B (Holliday et al., 2000) and C (Vitavska et al., 2005) of V1 have been shown to 

directly bind with filamentous actin. As the B subunit is present in three copies per V-ATPase 

complex, whereas the C subunit is found only once, this subunit accounts for the majority of 

the known actin binding sites. This actin binding site has been mapped to a stretch of 11 

amino acids near its N terminus (Chen et al., 2004) and a study in yeast has shown that this 

site can be altered and still yield a functional V-ATPase (Zuo et al., 2008). Figure 5.5 shows a 

sequence alignment of B subunit homologues from various species, highlighting the actin 

binding site. Recently a structural in silico screen identified enoxacin as a compound that 

disrupts the interaction between F-actin and subunit B (Ostrov et al., 2009). To test if the 

interaction between actin and subunit B is involved in the WASH-dependent removal of V-

ATPase from lysosomes, wild type Ax2 cells were incubated with enoxacin for 24 hour 

before and during assays for post-lysosome visualisation. Various concentrations were tested 

but even at the maximum attainable concentration of 100µM cells were still able to form post-

lysosomes (Figure 5.6). This suggests that the interaction between subunit B and actin does  
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Figure 5.5: Alignment of V ATPase B subunit homologues 

Multiple sequence alignment of B subunit homologues of the V ATPase. Red box shows
identified actin binding domain by Chen et al. (2004).
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Parent wshA null

+ 100μM Enoxacin

Figure 5.6: Effect of enoxacin on post-lysosome formation.

Vesicle neutralisation assay. Cells were loaded with FITC-dextran (pH sensitive) and
TRITC-dextran (pH insensitive) to distinguish acidic and neutral vesicles. Post-lysosomes
appear yellow (arrows) and are absent in wshAnull cells. Parental cells were incubated with
100μM enoxacin for 24 hours prior to and during the course of this assay. Enoxacin did not 
inhibit the formation of post-lysosomes. Scale bars show 10μm.
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not play an essential role in vesicle neutralisation, however there were no obvious controls to 

show that this interaction was truly being disrupted in Dictyostelium, and to what extent. 

 

5.5 Generation of vatB recombinants 

 

To conclusively determine the role of the actin binding site in subunit B a genetic approach 

was undertaken. As the B subunit is present in 3 copies per V-ATPase molecule simply 

expressing an altered exogenous copy would be inadequate, as endogenous subunits may 

incorporate into the same molecule retaining some actin binding domains. Therefore we took 

an approach to alter the endogenous coding sequence. Two different cell lines were created. 

One based on Chen et al. (2004) replacing the endogenous VILDNIRGPKF with 

GSVEGGKG (MC7). The other based on Zuo et al. (2008) replacing the endogenous LDNIR 

with VAGGA (MC9). 

Figure 5.7:A depicts how the endogenous sequence was augmented. DNA constructs were 

made to introduce a Blasticidin resistance cassette immediately after a gene upstream of vatB 

(DDB0304668) by homologous recombination. The downstream recombination arm included 

the sequence for vatB and its endogenous promotor. Recombination constructs pMJC87 and 

pMJC88 each contained different alterations to this actin binding site based on Chen et al 

(2004) and Zuo et al (2008) respectively. During insertion of the Blasticidin resistance 

cassette upstream of vatB providing homologous recombination happens downstream of this 

altered site it will be introduced into the genome. Wild type Ax2 cells were electroporated 

with either pMJC87 or pMJC88. After 24 hours transfected cells were plated into 5 x 96 well 
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plates in HL-5 medium containing Blasticidin. Transformants were screened for integration of 

the Blasticidin resistance cassette into the desired locus by PCR. Successful transformants 

could be identified by using a PCR primer to a site not present in the recombination construct 

to PCR the desired locus. An increase in the PCR product indicates the successful insertion of 

the BSR cassette upstream of vatB. Cell lines MC7 and MC9 were identified (Figure 

5.7:B+C) from transformants electroporated with pMJC87 and pMJC88 respectively. The 

vatB gene was then amplified by PCR using a C terminal primer not present in the 

recombination construct and this product was sequenced to confirm alteration of endogenous 

vatB.   

 

5.6 Actin binding site on subunit B is not essential for 

lysosomes neutralisation. 

 

Cell lines where the actin binding site on subunit B of the V-ATPase had been disrupted were 

assessed for their ability to form neutralised post-lysosomes. Figure 5.8 shows cells incubated 

in FITC and TRITC dextran for 1 hour and visualised by confocal microscopy. It shows that 

the actin binding site of subunit B is not essential for lysosome neutralisation as post 

lysosomes are clearly visible (arrows).  

However, the remaining actin binding site on subunit C may be enough to still yield a 

significant interaction. Given time the ability of the V-ATPase in these cells to bind to F-actin 

should be assessed in vitro. In addition, whilst trying to identify the site responsible for actin 

binding Chen et al., (2004) made two assertions that appear to be incorrect. Firstly the 
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Figure 5.7: Generation of non-actin binding vatB cell lines

(A) Schematic representation of method to disrupt endogenous vatB actin binding sites. 
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DDB0304668 and vatB by homologous recombination. Each construct had a specific 
alteration to the actin binding domain of vatB (orange box). Providing recombination 
occured downstrean of this site (site 3) the endogenous sequence will be altered during 
insertion of the Blasticidin resistance cassette. (B) and (C) DNA gels from PCR products 
using primers in DDB0304668 and vatB using genomic DNA from Blasticidin resistant 
transformants. (B) shows identification of MC9 obtained using pMJC88 and (C) shows 
identification of MC7 obtained using pMJC87 by an increase in product size. Both cell 
lines were later sequenced confirming alterations to actin binding sites.
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wshA null

MC9
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MC7

Figure 5.8: Visualisation of post-lysosomes in non-actin binding vatB
cell lines.

Post-lysosome visualisation assay where cells are loaded with FITC and TRITC 
dextran for 1 hour and imaged by confocal micrsocopy. Post lysosomes appear as 
bright yellow or green compartments (arrows) due to their neutral lumen. MC7 and 
MC9 cell lines both contained large neutralised post-lysosomes. Error bars show
10μm.
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proposed actin binding site was identified due to homology with profilin. Figure 5.9 shows 

the crystal structure of human profilin I (blue) bound to Dictyostelium actin (green). The 

residues suggested to be homologous between profilin and subunit B of the V-ATPase has 

been coloured red. None of these residues are involved with direct binding to actin. Chen et al 

(2004) also argued that replacement of this proposed actin  binding site on the human B 

subunit with the equivalent sequence from of P. horikoshii, an archea that lacks an actin 

cytoskeleton and therefore should not possess the actin binding site, was sufficient to abolish 

actin binding. Figure 5.5 shows a sequence alignment of B subunits in which we have 

included P. horikoshii. We find that with the exception of a single methionine the sequence of 

P. horikoshii is functionally similar to B subunits from a range of eukaryotes. Also, when 

constructing peptides for binding experiments, they replaced the methionine with glycine for 

cloning purposes, making their P. horikoshii more functionally similar to the valine present in 

eukaryotes. Had these replacements worked in Dictyostelium this would have been strong 

evidence for an interaction for actin and the V-ATPase, however with the apparent 

discrepancies this data only provides weak negative data due to concerns over the validity of 

this being a true actin binding site.  
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Figure 5.9: Binding of human profilin I to Dictyostelium actin.

Crystal structure of profilin I bound to actin, published by Baek et al., (2008). The 
structure was downloaded from the RCSB protein database (www.pdb.org) and viewed 
using Swiss-pdbviewer v4. Actin was coloured green and profilin I blue, with the region 
proposed to resemble homology with subunit B of the V ATPase highlight in red. This 
shows that the region does not contain any residues directly involved in the binding 
of profilin I with actin.
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5.7 Conclusions 

 

This work shows that lysosome neutralisation in Dictyostelium is caused by the removal of V-

ATPase from the lysosomal membrane, likely through selective budding. As of yet nothing is 

known as to why mature lysosomes require neutralising prior to exocytosis, although it may 

be to maintain a vesicular localisation of the V-ATPase preventing it from entering the plasma 

membrane during vesicle fusion. Clarke et al., (2010) has also noted what appears to be 

removal of vatM through budding whilst studying the process of premature exocytosis in 

Dictyostelium.  

Given that actin is implicated in clathrin-mediated endocytosis it is natural to presume that 

WASH is facilitating a similar role on internal organelles. However, if the actin cytoskeleton 

is an essential requirement for vesicle budding then it would be expected to be ubiquitously 

distributed on almost all intracellular vesicles. As this is not the case it would appear that the 

role of WASH-dependent actin has a more specialised function. The high avidity of the V-

ATPase for actin filaments suggests a possible explanation. When two molecules have a high 

affinity it would generally be expected that they show a reasonable level of colocalisation. 

Interestingly, actin and V-ATPase are almost entirely mutually exclusive throughout the 

endocytic pathway. V-ATPase starts to accumulate on macropinosomes just after the residual 

actin coat has been disassembled (Rauchenberger et al., 1997; Clarke et al., 2002), and its 

removal is dependent on, and occurs simultaneously with the generation of WASH-dependent 

actin. Taken together this suggests that it may be the interaction between V-ATPase and actin 
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that aids its removal. To test this hypothesis it is necessary to disrupt these interactions and 

observe the effect on V-ATPase trafficking. A start has been made by genetically disrupting a 

region in the B subunit previously published to be a site of F-actin binding. This disruption 

did not prevent neutralisation, however, this study is still incomplete. It remains necessary to 

further disrupt the actin binding site within the C subunit and assess if this V-ATPase 

complex is still functional, and incapable of binding actin.  
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Chapter 6 

Final conclusions and future perspectives  
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6.1 The role of WASH in Dictyostelium discoideum 

 

The actin cytoskeleton is a collection of filamentous structures involved in generating 

protrusive and contractive forces, rigid scaffolds and manipulation of cellular membranes. It 

has long been known to be essential for a variety of processes requiring changes in cell 

morphology, such as cell motility, cytokinesis and endocytosis. Recently it has become clear 

that the actin cytoskeleton serves broader functions within the cell. These include vesicle 

propulsion and aiding fission of budding vesicles. This work identifies a new role for actin in 

the endocytic pathway in controlling vesicle identity and maturation. 

 

Genetically disrupting WASH in Dictyostelium has allowed us to identify it as the NPF 

responsible for the formation of actin-coats around late endocytic compartments. These actin-

coats were shown to be essential for the formation of neutralised post-lysosomes, and that 

disruption of this process resulted in an inability to exocytose material from the endocytic 

pathway. This presumably is a disruption in a vesicle maturation pathway were by V-ATPase 

must be removed prior to exocytosis preventing the proton pump from entering the plasma 

membrane. During live cell imaging of fluorescent fusion proteins it was noticed that WASH 

first appeared in punctate patches, and a large proportion of the V-ATPase was removed 

before it had attained a full coat of WASH. Observing that the transmembrane domain of the 

V-ATPase was removed simultaneously with WASH recruitment suggested that this process 

was driven by budding, and this was also observed during high speed acquisition with 

widefield microscopy.  
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Due to the essential role of actin in clathrin-mediated endocytosis in yeast (Ayscough et al 

1997) it is natural to presume that WASH-dependent actin is performing a similar role in 

scission of budding vesicles on endosomal compartments; as proposed by Derivery et al., 

(2009). However, here we propose an alternative mechanism.  

 

The role of actin in clathrin-mediated endocytosis has recently been shown to facilitate the 

invagination of the plasma-membrane against turgor pressure in yeast (Aghamohammadzadeh 

& Ayscough, 2009). By decreasing turgor pressure clathrin-mediated endocytosis became less 

dependent upon actin, showing that actin is not essential for budding or scission but merely 

serves to provide force for difficult to deform membranes. Budding of intracellular vesicles is 

more favourable due to the lack of turgor pressure and an already positive membrane 

curvature. It is also a common event on almost all compartments of the endocytic and 

biosynthetic pathways, and given actin is not equally ubiquitous on all these it suggests it too 

is not essential for budding on internal compartments. We suggest that the defects observed in 

Dictyostelium and mammalian cells are not due to the inability to bud vesicles and that 

WASH-dependent actin has a specific and antagonistic role in regulating the localisation of 

V-ATPase, providing a facilitative role in targeting it to sites of budding. This is based on the 

observation that although V-ATPase has a high avidity for filamentous actin (Chen et al., 

2004; Vitavska et al., 2005; Zuo et al., 2008), its location is mutually exclusive with actin 

throughout the endocytic pathway in Dictyostelium. V-ATPase is only incorporated into 

newly formed macropinosomes after disassembly of a residual actin coat (Rauchenberger et 

al., 1997; Clarke et al., 2002) and is then removed at a later stage in a WASH and actin 

dependent manner. There have also been several reports that disruption of the actin 
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cytoskeleton can result in altered localisation of the V-ATPase (Beauileu et al., 2005; Shum et 

al., 2010) 

 

Figure 6.1 depicts our proposed model. WASH arrives in punctate patches on acidic vesicles 

generating localised patches of actin assembly. V-ATPase molecules that are freely diffusible 

within the membrane are sequestered in these patches due to their avidity for actin. These 

regions may then be targeted as sites of budding that may or may not be facilitated by force 

generated by actin polymerisation, allowing selective and efficient removal of V-ATPase 

from the membrane. The actin-coat may then persist as a barrier for exocytosis as previously 

proposed (Drengk et al., 2003) or serve to prevent re-acidification. This vesicle can then be 

exocytosed without causing V-ATPase incorporation into the plasma-membrane. 

 

 

6.2 WASH in Dictyostelium and Mammalian cells 

 

Here we report a different localisation of WASH in Dictyostelium to that previously published 

in mammalian cells. By colocalisation with a range of endocytic markers Derivery et al., 

(2009) showed WASH to be present on a range of endocytic compartments. It was shown to 

be more abundant on early sorting and recycling endosomes and less so on late endosomes 

and lysosomes. This is in contrast to the recruitment of WASH to late endocytic 

compartments in Dictyostelium. 
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Figure 6.1: Model of WASH-mediated lysosome neutralization

(a) WASH appears on acidic vesicles in discrete puncta.. (b) WASH patches generate actin patches that sequester freely diffusible 
V-ATPase. (C) These V-ATPase dense regions may then be targeted as sites of budding by currently unknown mechanisms to efficiently 
remove V-ATPase from the vesicle causing it to neutralise. (d) Actin coat remains potentially to prevent fussion with other compartments 
of the plasma membrane. (e) WASH is removed prior to exocytosis and the compartment fuses with the plasma membrane.
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Depletion of WASH by RNAi revealed defects in trafficking of the transferrin receptor, the 

retromer-dependent transport of CI-MPR back to the golgi, and EGF transport to late 

endosomes (Derivery et al., 2009; Gomez & Billadeau, 2009; Duleh & Welch, 2010). An 

increase in tubulation of these compartments was also observed (Duleh & Welch, 2010) as 

was a punctate localisation of WASH (Derivery et al., 2009; Gomez & Billadeau, 2009). It 

was proposed that WASH is required for nucleating actin on these compartments driving 

scission of vesicles, and its disruption therefore results in tubulated structures and trafficking 

defects due the inability to generate transport vesicles.  

 

It is interesting that WASH becomes less abundant on compartments along the endocytic 

pathway in mammalian cells, which is also accompanied by increasing acidity. Figure 6.2 

depicts the localisation of WASH on the endocytic pathway in mammalian cells showing the 

luminal pH of each compartment. Given the data obtained from this work we suggest an 

alternative interpretation of the mammalian data set. WASH could be regulating the density of 

V-ATPase on endocytic compartments by driving V-ATPase removal. The punctate nature of 

WASH on these compartments would allow V-ATPase to be inserted in actin clear regions 

and selectively removed at WASH patches. As WASH becomes less prominent on late 

endocytic vesicles a higher V-ATPase density can be achieved by a reduction in its removal, 

and result in a lower luminal pH. In this case depleting WASH would be expected to disrupt 

the gradual pH drops between compartments necessary for receptor trafficking consistent with 

the trafficking defects observed. Regarding vesicle morphology it has been shown that 

treatment of cells with the V-ATPase inhibitor Bafilomycin resulted in tubulation of 

endocytic vesicles (D’Arrigo et al., 1997). Although this drug causes neutralisation of  
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Figure 6.2: Distribution of WASH on the endocytic pathway in mammalian
cells

Illustration taken from Derivery et al., (2009) showing the distribution of WASH on
compartments based on colocalisation with the illustrated markers. Image was modified
to show luminal pH to illustrate that correlation between decreasing WASH and increasing

acidity. 
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compartments, rather than the increased acidity we are proposing, it demonstrates that 

maintaining the correct luminal pH is important for endosome morphology. This hypothesis is 

further supported by work on transferrin receptor recycling. After internalisation the 

transferrin receptor passes briefly through an acidic compartment before entering a more 

neutral structure. Purification of this compartment revealed the lack of V-ATPase (Gagescu et 

al., 2000), showing that luminal pH can be regulated by adjusting the amount of V-ATPase 

within the membrane.  

 

 

6.3 Future perspectives 

 

As WASH was only recently discovered little is known regarding its regulation or function. 

What is known about its regulation is inferred from similarities with another member of the 

WASP protein family, SCAR (Jia et al., 2010), and regarding its function little is known 

beyond it having a role in the endocytic pathway. This work presents an advance in the 

understanding of WASH function, and opens up future possibilities for understanding its 

regulation. 

 

Dictyostelium may prove to be an ideal model organism for the further study of WASH. In 

addition to its generic advantages of being genetically tractable and easily handled, the 
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differences between the endocytic pathway in Dictyostelium and mammals may prove 

advantageous. Interpretation of disruption studies in mammalian cells could be complicated 

by secondary effects from disrupting early trafficking events, such as growth, receptor 

recycling and signalling pathways. The role of WASH late in the endocytic pathway in 

Dictyostelium has allowed its disruption with little effect on cell viability in laboratory culture 

medium.  

 

It is fortunate that disruption of WASH yielded viable cells and at the same times such clear 

and currently unique phenotypes. All subunits of the WASH complex identified by Derivery 

et al (2009) have been identified in Dictyostelium (Veltman et al., 2010), suggesting 

conservation of its regulation. By screening REMI generated mutant libraries for cells with 

normal growth yet defects in exocytosis, further key players in WASH regulation can be 

identified. 

 

This work could impact on several other previously unconnected areas of research. A great 

deal of work on the interaction of V-ATPase with the actin cytoskeleton has been focused in 

specialised cells that accumulate V-ATPase at the plasma membrane, such as osteoclasts and 

epididymal clear cells (Zuo et al., 2006; Shum et al., 2010). As this work suggests the 

interaction may be essential in preventing its accumulation at the plasma membrane rather 

than targeting it there, this work provides a fresh perspective. 
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Additionally, the biosynthetic secretory pathway is also accompanied by gradual drops in 

luminal pH between compartments. This results in secretory vesicles being acidic and densely 

covered in V-ATPase. It has previously been documented that secretory granules from 

chromaffin cells of the adrenal medulla are surrounded by a dense web of actin filaments 

(Meyer & Burger, 1979). In light of new data this suggests that a similar actin-dependent 

mechanism for V-ATPase removal may be functioning in the secretory pathway, and by a 

similar mechanism observed in Dictyostelium these coats may be required for exocytosis 

rather than acting as an inhibitor. 

 

In summary, WASH in Dictyostelium is required for successful transit of material through the 

endocytic pathway by facilitating the removal of V-ATPase from lysosomes. This provides 

new insights into the role of WASH in mammalian cells and may provide a newly identified 

mechanism by which the pH of the endosomal lumen may be regulated.  
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