DOCTORAL THESIS

Developments to established dose-finding
methodologies for application in trials with

complex and innovative designs

Author: Supervisors:
Amit PATEL Prof. Lucinda BILLINGHAM

Dr. Kristian BROCK

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

Institute of Cancer and Genomic Sciences
College of Medical and Dental Sciences
University of Birmingham

September 22, 2024


https://uk.linkedin.com/in/amit-patel-0b718111b
https://www.birmingham.ac.uk/staff/profiles/cancer-genomic/billingham-lucinda.aspx
https://www.kristianbrock.com/
https://www.birmingham.ac.uk/research/cancer-genomics/index.aspx
https://www.birmingham.ac.uk/university/colleges/mds/index.aspx
https://www.birmingham.ac.uk/index.aspx

UNIVERSITYOF
BIRMINGHAM

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.






iii

Abstract

Developments to established dose-finding methodologies for application

in trials with complex and innovative designs

by Amit PATEL

The results and decisions made in early phase clinical trials play an important
role in the drug development process. Failure to make correct or accurate de-
cisions may result in further unwarranted clinical research and may also cause
potential future harm to patients.

This thesis explores methodologies used in dose-finding trials, specifically
looking at the implementation of these methods and how they can be extended
to answer different questions and assist with decision-making.

Firstly we detail our experiences implementing a novel methodology for a
dose-finding trial where monotonic ordering is not possible. We then present
an extension to a seamless adaptive phase I/1II trial design which aims to con-
duct dose-finding and replace the need for a randomised phase II trial.

We also present two extensions to dose transition pathways, a visualisation
tool to aid designing and decision making in early phase trials. The first looks
at how they can be applied to more complex time-to-event methodologies and
the second looks at how the same concept can be applied to single-arm phase
II trials.

Throughout this thesis we include exemplar trials and showcase our meth-
ods being motivated or implemented into clinical trials conducted by the Can-

cer Research UK Clinical Trials Unit at the University of Birmingham.
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Chapter 1

Introduction

1.1 Aims of this thesis

Early phase clinical trials are essential in the drug development process as they
provide key information about new interventions which can be used in later-
phase testing. Therefore, it is important that the decisions made and conclu-
sions reached in the early phase setting are correct or as accurate as possible.
Failure to do so could lead to a waste of resources in pursuing unnecessary
further research and could potentially negatively impact patients well-being.
This thesis aims to explore methodologies used in early phase dose-finding
trials. We look specifically at the implementation of novel methods as well as
how they can be extended for use in complex and innovative designs.

In this chapter, we begin with a brief introduction of clinical trials and also
provide a summary of the underlying methodology used within this thesis

specific to early phase trials. A description of each chapter is then provided.

1.2 Clinical trials

Clinical trials are often a time-consuming and costly process [1]. It can take

10-20 years to get a new drug from inception to regulatory approval [2], [3].



2 Chapter 1. Introduction

Any new treatments that come to market must be thoroughly tested and ex-
amined, to make sure not only that they are safe but also effective and better
than treatments currently in use.

The clinical trial process is split into multiple stages, commonly referred to
as phases. Each phase has a different objective and builds upon knowledge
and data collected in the previous phases [4]. Phase I trials aim to determine
the safety of a treatment. This typically takes the form of a dose-finding study
that aims to find a safe and tolerable dose that can be taken forward for further
testing [5]. Phase II trials aim to determine if a treatment works or if there is
some signal of efficacy. This is usually done with a single arm design i.e. a sam-
ple of patients is given the experimental treatment [6]. However, some Phase
II trials can be RCTs (Randomised Controlled Trials), where the new treatment
is compared with a treatment already in use or a placebo [7]. Finally, Phase III
trials aim to establish the efficaciousness of an experimental treatment. Nor-
mally, this is done by comparing the new treatment against the standard of
care. Results from Phase III clinical trials can then go on to influence clinical
practice [8].

We usually consider Phase I and single arm Phase II trials to be early phase
trials, then randomized Phase II and Phase III trials as late phase trials. How-
ever, there is no definitive boundary between early and late phase trials. Phases

are determined by their intention and not by their design.

1.3 Introduction to early phase trials

For Phase I trials the main aim is to establish a dose, commonly referred to
as the maximum tolerated dose (MTD), which can then be taken forward into
later phase testing. Normally these may be considered first-in-human trials as

Phase I is typically the point at which a drug would first be tested in healthy
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human volunteers. However, in the oncology setting this is generally not the
case. Often times, due to the nature of the treatments, such as chemotherapy or
radiotherapy, they may be considered too toxic to give to healthy individuals
so are rather tested in patients with the specific disease of interest [9].

Traditionally these trials adopted algorithm-based approaches. Here pre-
determined rules were used during the trial to allocate patients to dose-levels
and select the MTD. An example of this would be the 3+3 design [10], where
patients were recruited in cohorts of three and dependent on the outcomes ob-
served in each cohort a specific decision on the next investigative dose would
be made. There were many criticisms of these approaches as they resulted in
the sub-optimal treatment of patients, poor operating characteristics and a rec-
ommended dose or MTD that has limited interpretation as a dose yielding a
specific target toxicity [11], [12].

This gave rise to the continual reassessment method (CRM) which was first
introduced by O’Quigley et al. [13] in 1990. This methodology was developed
as an approach to meet ethical requirements and use models to reasonably
approximate the true probability of toxicity around the dose close to some pre-
defined target toxicity. In their paper, O'Quigley et al. [13] demonstrate the
CRM’s superiority over various algorithm based designs via simulations. The
main advantage of the CRM is that it is able to make use of all accumulated
data whereas designs such as the 3+3 make decisions and recommendations
based on data from the most recent cohort of patients. In the case of the 3+3
design, escalation continues until at least two patients in a cohort of three or
six experience a DLT. More explicitly, the MTD is the dose level below the dose
at which >33% of patients experience a DLT [14].

With the CRM debuting over 30 years ago in the literature and multiple
papers over the subsequent years confirming its advantages over rule-based

designs you would expect model-based approaches for dose-finding trials to
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become the norm however, this is not the case. A study by Rogatko et al.
[15] published in 2007 looked into the translation of effective statistical designs
into phase I trials for new anticancer therapies. Between 1991 and 2006 they
searched for abstracts and categorised them as either clinical dose-finding tri-
als or statistical methodology for dose-escalation trials. They found 1235 clin-
ical trials and 90 methodological papers. Of those 1235 trials only 20 (1.6%)
used statistical methodology, the remaining papers used various rule-based
designs. A later review by Chiuzan et al. [16] looked at the number of phase
I oncology articles published between 2008 and 2014. Out of the 1712 dose-
finding trials 1591 (92.9%) used rule-based designs.

Based on these reviews we can see that the uptake of more efficient model-
based designs such as the CRM has been slow and limited. There are prob-
ably a number of factors which cause this, such as lack of resources, access
and understanding. There exists some guidance in the literature by Wages et
al. [17] and Wheeler et al. [18] as well as practical examples from Mozgunov
et al.[19]. The main issue is that implementation of these designs usually re-
quire the input of a statistician, more specifically one who is familiar with such
approaches. They also need to be able to implement and conduct the trial
with software available, for designs such as the CRM there are multiple op-
tions available such as the R packages dfcrm [20], escalation [21] and trialr
[22]. However, for more complex and innovative designs, software may not be
readily accessible and implementation may be difficult.

Phase II trials build upon the work of early Phase I trials. Here the focus
shifts away from toxicity and looks more towards efficacy of these new treat-
ments at the dose-levels previously determined in phase I trials [23]. The key
purpose of phase II trials is to see if a new treatment or intervention works and
establish if there is an efficacy signal. More specifically they aim to determine

if there is a sufficient level of efficacy to warrant further research in for example
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a Phase III setting [24].

An example of an early Phase II trial design would be a single arm trial.
Eligible patients come into the trial and all of them will be allocated to the new
treatment. Once they have completed their treatment period we would then
assess the effectiveness of that treatment using some measure of success. Look-
ing at the outcome of success in each patient, the success rate or proportion of
success can then be determined. In the single arm setting, this success rate is
then compared to some benchmark, which is determined from either historical
data or clinical experience.

One approach to analysing a trial like this is Bayesian and utilises a Beta-
Binomial conjugate analysis to estimate a response rate for a binary outcome.
This is a fairly straight-forward analysis and can be found in most Bayesian
text books, one example of which is by Lee [25]. Whilst this may be somewhat
simplistic from a mathematical standpoint, clinicians may be less familiar with
Bayesian approaches in general compared to frequentist methods. However,
there is still value in using these methods to analyse trials as they can often
be more efficient especially with smaller sizes [26], which is often the case in
an early phase setting and they allow for greater flexibility in terms of practi-
cal considerations such as cohort sizes. Using a Bayesian approach allows for
decisions to be made based on probabilities from a posterior distribution [27].
Which can be a more intuitive way to understand the treatment effect given
observed data.

These types of analyses also better facilitate other complex and innovative
designs such as platform/basket/umbrella trials where multiple biomarkers
or treatments may be under investigation. The Bayesian approach will allow
for information borrowing across any different arms in the trial, which is par-

ticularly useful when working with restricted resources [28].
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Generally speaking, early phase trials work with less resources (i.e less pa-
tients, time, money), so it would be advantageous to use designs which are
more efficient with the data collected, the majority of which would require
a statistician familiar with these methods to implement. Clinicians may also
push for designs that are easier to follow so either a algorithm-based approach
in a Phase I or a frequentist approach for a Phase II trial. Clinicians may also
not be familiar with these complex designs and how they work.

As developments occur in the medical field, e.g. introducing new interven-
tions, trials may subsequently become more complex. This complexity arises
because the assumptions made by current methodologies may no longer hold
true. For example molecular targeted agents and certain biological therapies
may not operate under the assumption that as dose increases efficacy increases.
Additionally, the questions that trials aim to answer can also become more in-
tricate due to various factors, including the disease setting under investigation
and the type of treatment involved. Consequently, it is essential to address
these challenges as they arise to ensure the optimal utilisation of our data and
to make accurate decisions.

Whilst the development of new methodologies is necessary to facilitate bet-
ter research, practical considerations also need to be made. The ease at which
a new methodology can be implemented is important. Whilst a new method
may be fantastic and solve a lot of issues, if researchers cannot easily imple-
ment it either through software or replicable code then the method will ulti-
mately have little impact in the real world. Similarly, communication of new
methods is also important. A summary of each chapter is provided in the next

section, where we address different aspects of this further.
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1.4 Chapters in this thesis

In Chapter 2, we detail our experiences implementing a novel methodology
into the design of an early phase dose-finding trial in head and neck cancer.
This trial, ADePT-DDR run by the University of Birmingham (UoB) Cancer
Research Clinical UK Trials Unit (CRCTU), uses the partial ordering time-to-
event continual reassessment method (PO-TITE-CRM) design [29]. The PO-
TITE-CRM design was introduced in 2013 as an extension to the TITE-CRM de-
sign, itself an extension of the original continual reassessment method (CRM),
a model-based approach to dose-finding trials. Despite the publication of this
novel dose-escalation design its implementation appears to be rare, as high-
lighted in the reviews by Rogatko et al. [15] and Chiuzan et al. [16]. The
CRM operates under the monotonicity assumption which assumes that as the
dosage of drug increases so does the probability of toxicity. The PO-TITE-CRM
was developed to address scenarios where the ability to fully order the doses
based on increasing toxicity is missing. Multiple iterations of simulations were
utilised to determine the optimal parameterisation of the design. Simulation
results from the optimal parameterisation show the operating characteristics of
the design perform well across a variety of scenarios. We present an overview
of the design methodology and its application in this trial scenario.

The focus of Chapter 3 is on an extension to a seamless Phase I/1I design.
This design by Wages and Tait [30] uses adaptive randomisation to conduct its
dose-finding. We aimed to extend this design to include a control comparator
arm by leveraging the design’s adaptive randomisation mechanism. Typically
these types of seamless design utilise both toxicity and efficacy outcomes to
select a dose for later phase testing. Our motivation was to take this one step
further and develop a seamless Phase I/1I design that would allow for a direct

comparison of the selected dose to a control arm. We present the modification
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we make to the design and detail how altering specific parameters impacts
the allocation of patients to the control arm within the design. Simulations
were then conducted to investigate the operating characteristics under certain
specifications. Further simulation work is then used to compare our modified
design with the original Wages and Tait design to ascertain if performance is
impacted by our modification. Additionally, this control arm allows us to con-
duct power calculations comparing efficacy rates between patients allocated
to the optimal dose and those in the control arm. These calculations give an
insight into how our design would perform as a standard Phase II trial.

Decision-making is an important component of dose-finding trials. For
non-statisticians, understanding the reason why certain decisions are being
made from a model-based approach such as the CRM could be confusing or
unintuitive compared to a 3+3 for example. In order to bridge that gap, Yap
et al. developed a novel visualisation tool called dose transition pathways
(DTPs) [31]. Our work in Chapter 4, explores the use of DTPs in a time-to-
event (TITE) setting. TITE methodology, in a dose-finding context, allows
decisions to be made at earlier time points based on partially observed data
from patients currently in a trial. This leads to the number of outcomes being
more complicated for a single cohort of patients in a dose-finding trial. This
in turn further complicates DTPs which aim to effectively summarise the dif-
ferent dose-decisions that can be made based on all possible outcomes. Our
work aims to reap the benefits of DTPs in a TITE setting. We detail what those
benefits are and the challenges in presenting DTPs for TITE methodology. Us-
ing informative examples we demonstrate what these are and why they occur
as well as potential solutions for how DTPs can still be incorporated for trials
utilising this methodology.

In Chapter 5, we introduce efficacy transition pathways (ETPs) which are

a new visualisation tool inspired by DTPs for use in Phase II trials. The idea
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of visualising outcomes and decisions for dose-finding trials is a useful one,
not only during the conduct of a trial but in its initial design stages as well.
Through the development of three different trials at CRCTU it became appar-
ent that a similar tool would be beneficial for Phase II trials. These trials, whilst
not conducting dose-finding, aimed to assess efficacy and included multiple
interim analyses at which different decisions could be made. We describe how
ETPs are constructed and work, by providing examples from trials which in-
spired the idea behind ETPs. One of the success of DTPs was its ease of imple-
mentation through available software like the R package escalation by Brock
[21]. In order to facilitate the same ease of use for ETPs we developed a R
function along with a web based application to automatically generate these
plots. In the chapter we detail how the application works to construct ETPs
and additional features that we added so it could be used as an educational
tool.

To end, Chapter 6, provides an overarching summary of the topics and

ideas discussed in this thesis.
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Chapter 2

Implementing the PO-TITE-CRM
trial design into ADePT-DDR

This chapter contains work that has previously been published [32]. In this
work I was responsible for the writing, analysis, conduct of simulations and

generation of figures and tables used in this thesis.

2.1 Introduction

Worldwide there are approximately 600,000 new cases of Head and Neck Squa-
mous Cell Carcinoma (HNSCC) each year [33]. Of which, 12,000 occur in the
UK with the most common forms of treatment being surgery, radiotherapy
and/or chemotherapy [34]. Radiotherapy is essential for the treatment of can-
cer. It has been estimated that more than 40% of patients will receive radiother-
apy at some point in their treatment [35]. However, despite recent advance-
ments in radiation techniques and the use of concomitant chemoradiotherapy,
patients with solid tumours such as head and neck cancer have suboptimal
cure rates [34], [36]. For those with advanced HNSCC primary radiotherapy
with concurrent chemotherapy is often offered but, it has not been shown to

improve survival in patients aged over 70 compared to radiotherapy alone
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[37]. Therefore, any strategy to improve the efficacy of radiotherapy without
increasing toxicity would have a significant impact on patient outcomes.

DNA damage repair (DDR) inhibition is a potential technique which could
be utilised as it potentiates the therapeutic effects of ionising radiation in can-
cer cells [38]. Combining radiotherapy with DDR inhibition could improve
clinical outcomes for these patients [39].

The ADePT-DDR trial ! is a platform trial which aims to evaluate the safety
and efficacy of different DDR agents, or different immunotherapy agents and /or
DDR and immunotherapy combinations, together with radiotherapy in pa-
tients with HNSCC. The initial component of this trial is a single-arm dose-
finding trial investigating the ataxia telangiectasis and Rad3-related (ATR) in-
hibitor AZD6738 in combination with radiotherapy. ATR inhibitors not only
stop DNA repair but impair the mechanism that allows for repairs to take
place. Preclinical models have shown this double blocking to be effective in
killing cancer cells [40].

In Chapter 1 we discussed model and algorithm-based dose-finding trial
designs. Due to the historical use of rule-based designs [15], [16], the majority
of the terminology used to describe them, and the ambiguity they raise, have
been inherited by modern designs such as the CRM. The MTD in the context of
a CRM is not the ‘maximum’” dose patients could tolerate but rather a dose in
which there would be an acceptable target probability of a DLT occurring. For
example, if the target is set at 25% the MTD would be the dose at which there is
a 25% probability of experiencing a DLT. Rather than using the term MTD, the
dose to be found will be referred to as the target dose (TD%%, where the %’s
are replaced by the target probability), i.e. TD25 would be the dose expected

to be toxic in 25% of patients.

! Accelerating the Development and implementation of Personalised Treatments of DNA
Damage Response agents and radiotherapy +/- immunotherapy for head and neck squamous
cell cancer
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The investigation of multiple-agent treatments, where the monotonicity as-
sumption may not hold, is increasing in early phase trials. Finding the TD in
combinations of treatments, compared to single-agents, presents methodolog-
ical challenges. Each drug individually may obey the monotonicity assump-
tion; we can refer to this as the doses being fully ordered. However, when
multiple treatments are combined, the ordering of doses in terms of toxicity
may not be fully apparent or may only be partially defined. An order may be
identified for a subset of the doses which would result in a partial order. With-
out a full ordering it is uncertain which dose should be chosen in decisions of
escalation and de-escalation and ultimately as the TD. This issue is not exclu-
sively reserved for trials with multiple-agents. The monotonicity assumption
may not hold for certain drugs in single-agent studies leading to partial orders
of dose toxicity. For example, when dose and frequency of administration vary
between dose levels. It requires that probability of toxicity always increases -
staying the same is not enough. At high enough doses, this assumption is al-
most surely violated for all interventions when the event probability reaches
its maximum. Thus, even when total ordering is possible, the monotonicity
assumption could be violated [41]. Issues of partial ordering can occur in sce-
narios where multiple parameters of the treatment schedule are altered for
each dose level. For example, either dose or treatment duration could be in-
creased and even if patients receive an equal dose it would remain unclear as
to if prolonged exposure to a lower dose is more toxic than short exposure to
a higher dose, which implies a partial ordering of toxicity probabilities.

Further methodological challenges revolve around the issue of late-onset
toxicities. Typically, early phase trials implement a short window to observe
DLTs. This works well in situations where toxicities are likely to occur rapidly
after treatment. However, this is not optimal for treatments that could cause

late-onset toxicities such as radiotherapy. The aim with ADePT-DDR would be



14 Chapter 2. Implementing the PO-TITE-CRM trial design into ADePT-DDR

to incorporate a larger observation window to account for potential late-onset
toxicities whilst also minimising the trial duration.

Cheung and Chappel [42] introduced an extension to the CRM to deal with
the issues of treatments that may cause late-onset toxicity. This design referred
to as the time-to-event CRM (TITE-CRM), uses a weighted dose-response model
to incorporate the time it takes for a DLT to occur in a patient. There have
also been published trial designs to deal with the issues that arise from inves-
tigating combinations of treatments. Thall et al. [43] proposed an adaptive
two-stage Bayesian design which utilises a parametric model of toxicity as a
function of two doses. Yin and Yuan [44] present a Bayesian design that uses
a copula regression model to evaluate the joint toxicity probabilities of com-
bined drugs. The continual reassessment method for partial orders (PO-CRM)
developed by Wages et al. [45] extends the CRM design by relaxing the as-
sumption of monotonicity and by modelling different potential orders. Figure
2.1 shows a simple example of partial ordering where the order of two out of
the four dose levels are unknown.

Wages et al. [29], [45] further developed their work on the PO-CRM to
deal with late-onset toxicities by implementing a TITE component. This trial
design, referred to as the time-to-event continual reassessment method in the
presence of partial orders (PO-TITE-CRM) by the authors, was chosen to be
used in ADePT-DDR. A search of PubMed, conducted on the 25th of July 2020,
found six articles that had cited the PO-TITE-CRM design by Wages et al. [29].
Of these six articles non actually implement the design into a trial. The follow-
ing paragraphs provide more details.

Five of these papers were methodological in nature, two of which only in-
clude the PO-TITE-CRM design in a brief introduction to current methodology

before going on to present new Bayesian trial designs [46], [47]. The other three
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FIGURE 2.1: Example dose levels to illustrate partial ordering.

Dose 2

A

Dose 1 ? Dose 4

Dose 3

Probability of Toxicity

papers were authored by Wages. The first of which details practical considera-
tions and specifications for the PO-CRM design, the TITE variant is only cited
as the source of an example which is being used [48]. One paper presents an
R package "‘pocrm’ [49], [50]. The package is only capable of analysing the PO-
CRM design. The TITE variant is only referenced here as it illustrates the issue
of partial ordering. The last methodological paper by Wages et al. [51] presents
three different methods for phase I studies of drug combinations one of which
is the PO-CRM however, PO-TITE-CRM is only mentioned as an extension to
this design. A key message in this paper is the fact that novel methodologies
are constantly emerging but are rarely implemented in practice.

The last paper is a protocol paper for a phase I/1I study, OLA-TMZ-RTE-01
[52]. The phase I component of the study aims to determine the recommended
phase II dose (RP2D) of olaparib combined with a standard schedule of ra-

diotherapy and temozolomide (TMZ) as first line treatment for patients with
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unresectable glioblastoma (GBM). The treatment schedule is divided into a ra-
diotherapy and maintenance period. They propose to conduct two sequential
dose-escalations of seven different olaparib dose-levels. Patients in the first
escalation will be allocated to a dose level of olaparib for 10 weeks including
radiotherapy for six weeks with TMZ given each day during radiotherapy and
then for six cycles four weeks post radiotherapy during the maintenance pe-
riod. They state the MTD1 will be determined using a TITE-CRM. Patients
in the second escalation olaparib at the MTD1 during the radiotherapy period
along with the same schedule of radiotherapy and TMZ. Those patients will
then be allocated to one of the seven dose levels of olaparib during the main-
tenance period. Again, it is stated that the MTD2 will be determined using
TITE-CRM modelling. The RP2D is the MTD1 and MTD2 during the radio-
therapy and maintenance period respectively. Even though a combination of
treatments is being investigated only olaparib is being escalated and doses for
other treatments are fixed for all patients. Furthermore, the dose-levels for ola-
parib increase consistently in either amount or duration meaning there are no
issues of partial ordering which would warrant the use of PO-TITE-CRM. The
authors reference the TITE-CRM methodology with two papers. One of them
being the paper detailing the PO-TITE-CRM design and the other being a pa-
per by Huang and Kuan [53] which proposes an adaptive weight function that
incorporates cyclical data of treatment into the TITE-CRM. It is unclear as to
why the PO-TITE-CRM is cited as its methodology is not mentioned anywhere
in methods.

An updated PubMed search conducted on the 20th July 2024 yielded an
additional three papers. One of which was by van Werkhoven et al. [54] which
details practical guidelines on running TITE-CRM trials providing some ex-
amples however no guidance is provided for PO-TITE-CRM trials specifically.
Another paper published by Brown el at. [55] provides a road map to help
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improve the design of phase I radiotherapy trials. Here PO-TITE-CRM is rec-
ommended as a methodology for dealing with dose-escalation of dual agents.
The final paper [32] is a published form of the work in this chapter which doc-
uments our experience implementing this design.

We also conducted a search for papers that cited the original PO-CRM de-
sign paper by Wages et al. [45]. This was also conducted on the 20th July 2024
and yielded 77 results. The abstracts for all the papers were reviewed and we
found four papers that discussed the implementation of PO-CRM methodol-
ogy into trials (one of the papers is the published version of this chapter [32].).
The remaining 73 papers were methodological in nature.

The first paper was by Walker et al. [56] and presents the results of an
adaptive phase I trial. The trial aimed to identify if high-dose nitazoxanide
is safe and well tolerated in healthy individuals also if it can reach and main-
tain antiviral concentrations predicted to be sufficient to prevent maturation of
the SARS-CoV-2 spike protein. The paper primarily focused on presenting the
results but does include details in the methods section and supplementary ma-
terials about the design of the trial and parameters used in the PO-CRM model.
The trial included three different dosing schedules and there was uncertainty
around the order with respect to toxicity which led to the use of PO-CRM.

Another of the three papers was by Mozgunov et al. [19]. This paper de-
tails their experience implementing the PO-CRM design. They provide a walk-
through on how their design was implemented along with simulations and
comparisons to other methods.

The final paper was also a results paper by Millard et al. [57] and it should
be noted that Nolan Wages is also listed as a co-author for this paper. This trial
was investigating a combination of entinostat and capecitabine in patients with
HER-2 negative metastatic breast cancer. There were two doses of each drug

under consideration leading to four different combinations/dose-levels. The
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main focus of the paper were the results of the trial and there were limited
details around the choice of the design and how it was parametrised.

It should be noted all of these papers were published after our work was
conducted. So, we were unable to reference them or use them to help inform
the choices made for our trial and design.

This is just a brief review of the current literature but it seems that the PO-
TITE-CRM and PO-CRM have rarely been used or discussed since its incep-
tion.

This chapter provides novel insight into the methodology of PO-TITE-CRM
through application in a real-world scenario. Section 2.2 will detail how the
PO-TITE-CRM works. Section 2.3 discusses the justification for implementing
the design into the ADePT-DDR trial and our experiences doing so. Section 2.4
explores other alternative designs which could have been implemented and as-
sess how they perform in comparison to the PO-TITE-CRM. We provide some

discussion in Section 2.5.

2.2 The PO-TITE-CRM design

Wages et al. [29] introduced the PO-TITE-CRM design which builds directly
upon the PO-CRM design by incorporating a TITE component into the dose-
toxicity model. The aim of which is to determine the target dose for combina-
tions of drugs where the monotonicity assumption does not hold, in a setting

where late-onset toxicities are possible.

TABLE 2.1: Example of drug combinations for a trial investigat-
ing two agents.

Drug combinations
Agent dq dr dj dy ds dg
A (mg/day) 025 05 1.0 025 05 1.0
B (mg/day) 10 10 10 15 15 15
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To help understand partial ordering, consider an example of an early phase
trial investigating the combination of two agents. Drug A which consists of
three doses (0.25, 0.5, 1.0 mg/day) and drug B which consists of two doses
(1.0, 1.5 mg/day), for a total of six drug combinations dy, ..., d¢ (Table 2.1).
For each drug independently we assume they have a monotonic dose-toxicity
curve however, the ordering of toxicity probabilities for some of the treatment
combinations is unknown. Specifically, we can say d; is less toxic than d; as
the dose of drug A increased whilst the dose of drug B stayed the same. This
is also the case for d, and ds. So, d; can always be considered less toxic than d;
which is always less toxic than d3. The same can be said for doses ds, d5 and d,
these three doses are can also all be considered more toxic than d; as well.The
order between d4 and ds in comparison to d3 is not known because the dose
of drug A decreases whilst the dose of drug B increases. Similarly the order
between d, and d,4 is unknown. Also, we can say that dg is the always the most
toxic dose. Assessing all these potential order toxicity relationships leaves five

possible orderings.
1. di —dy — d3 — dy — ds — dg
2. dy > dy > dy — dz — ds — dg
3. d1 —>dy —dy — ds — ds — dg
4. d1 —dy = dp = ds — ds — dg
5.d1 —dy —dy = ds — ds — dg

Using the notation of Wages et al. [29], [45], let M denote the number of
possible orders and Y be an indicator of a toxicity event. Then for a trial inves-
tigating k combinations, dy,...,dk, the dose for the jth patient, X;, j = 1,...,n can

be thought of as random x; € (dy, ..., dy). For a specific ordering m, m = 1, ..., M
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the toxicity probability R(d;) is modelled by
R(di) = <pm(d,-,w,/3) = ZUle(di, ﬁ) i= 1,...,k,' m = 1,...,M (2.1)

for a weighted dose-toxicity model ¢,,(d;, w, ) where B € (—o0,0). The
weight, w as defined by Cheung and Chappel [42], is a function of the time-to-
event of each patient and is incorporated linearly with the dose-toxicity model
¢ so that 0 < w < 1. Each patient is followed for a fixed amount of time T. Let

U; represent the time-to-toxicity of patient j. Then foru < T,
P(U; < u) = P(U; < ull; < T)P(U; < T) = w(; T)n(di, ). (22)

For simplicity we will refer to the weight function w(u; T) as w. The weight
function will have to be decided upon by the trials team. Dependent on the
scenario, a simple linear function or a more complex adaptive weights function
could be utilised. There are also several working dose models which could be
used for . Wages et al. [29] present their design with the power parameter

model given by
P (di, B) = B i =1, m=1,.., M. (2.3)

Here 0 < a1 < ... < ayy < 1 are the prior estimates of toxicity probabilities,
or skeleton, for each potential ordering. Furthermore, prior probabilities are
assigned to each order M to account for any prior information regarding the
plausibility of each model such that, p(m) = {p(1), ..., p(M) }, where p(m) >
0 and )}, p(m) = 1. When all orders are equally likely or there is no prior
information available on possible orderings the prior is discretely uniform and
would be p(m) = 1/M.

A Bayesian framework is used and a prior probability distribution g(p) is
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assigned to the parameter 8. The ordering with the largest prior probability
is selected as the starting ordering. In the scenario where all priors are equal
an ordering is selected at random, subsequently a starting dose is also chosen.
After j patients have been entered into the trial data is collected in the form of
Qj = {x1,y1, - X, y]-}. A weighted likelihood for the parameter f8 is used to
establish running probabilities of toxicity for each treatment combination. The

weighted likelihood under ordering m, is given by

]

m(BIQYy) =T T (x1, w01, B){1 — (1, 70y, p) IV (2.4)

I=1

which can be used to generate a summary value ij for each ordering. With
the likelihood and the data (), the posterior density for  can be calculated

using

Lu(Bl0)g(B)
JsLu(BI10)(B)dp

This can then be used to establish posterior probabilities of the orderings given

fu(BICY) =

(2.5)

the data as

m) [ Ln(B10Y)g(B)dp
zm L p(m) [ Ln(BIO)3 (B) A

We select the single ordering, h, with the largest posterior probability along

t(m|QY) =

(2.6)

with its associated working model y;,(d;, B) and generate toxicity probabili-
ties for each dose level. Once the jth patient has been included the posterior

probability of DLT can be calculated for d; so that

R(d;) = yy(d;, Brj); B = /ﬁﬁfh(ﬁmj)dﬁ- (2.7)
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In turn, the dose level x; € {dy, ..., dy } assigned to the (j+1)th patient is the

dose, d;, which minimises

A(R(d;),0) = |R(d;) — 8], i=1,...k (2.8)

where 0 is the target toxicity rate. Similarly, once all patients have been re-
cruited and observed and the trial ends, the target dose (TD0) is the dose, d;,

which minimises (2.8).

2.3 PO-TITE-CRM in ADePT-DDR

The decision to implement PO-TITE-CRM into ADePT-DDR was made by Piers
Gaunt (PG) after discussions with other statisticians Kristian Brock (KB) and
Daniel Slade (DS), as well as the chief investigator and other co-investigators.
The design was chosen as the toxicity probabilities of the dose levels were not
monotonically increasing which restricts the use of most early phase designs
such as the CRM. Additionally, the design also handles late-onset toxicities
which would be an issue in ADePT-DDR due to the treatment involving ra-
diotherapy. The availability of software to conduct the trial was also a factor
that was considered. The R package ‘pocrm’ [49] only provides a means for im-
plementing the PO-CRM design but the easy accessibility to this code meant
that it could be extended to include the TITE component.

The intended use of this design is for dose-finding in combinations of ther-
apies, as this is the source of the partial ordering issue. ADePT-DDR however,
is a unique implementation of the design as even though it involves a com-
bination of therapies (radiotherapy and AZD6738) the dose of radiotherapy is
fixed and dose-finding is only planned for AZD6738. PO-TITE-CRM is still ap-

plicable in this case as the design includes combinations of dose and duration
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for AZD6738 which are partially ordered.

We detailed the design as presented by the authors. However, for our im-
plementation we opted to utilise a two-stage likelihood based approach. In-
vestigators wanted to start at a lower dose for safety reasons but still wanted
to be able to escalate quickly in the scenario where no DLTs were observed.
Implementing an initial design would allow us to do that. The "‘pocrm” pack-
age also allowed for this option which helped when we developed our own
code to implement this approach.

A two-stage PO-TITE-CRM will be used to find the TD25 of AZD6738.
This will be determined by dose-limiting toxicities evaluated by Common Ter-
minology Criteria for Adverse Events (CTCAE) v5.0 and Radiation Therapy
Oncology Group (RTOG) late toxicity score. The binary DLT events are pre-
defined by a variety of grade 3-4 adverse events notably, haematological, car-
diovascular and gastrointestinal /hepatic toxicities as well as significant non-
haematological events and specific treatment-related toxicities. DLTs will be
monitored for the duration of treatment (seven weeks) and throughout the
follow-up period. The total follow-up period post treatment is 52 weeks, so
patients will spend a total of 59 weeks in the trial.

A maximum of 60 patients will be recruited for the dose-finding aspect
of this trial and up to 20 patients as controls. Controls will be utilised to
make comparisons for secondary outcomes such as survival and efficacy. Con-
trol patients will only be receiving radiotherapy, the dose of which is fixed
at 70Gy/35E. Cohorts of three patients will be recruited and assigned to dose
levels chosen by the PO-TITE-CRM. Controls will be recruited in the interim
period between the recruitment of the third patient in a cohort and the com-

pletion of the minimum follow-up period.
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2.3.1 Partial ordering in practice

Each patient entered into ADePT-DDR will receive fixed dose radiation, to-
talling 70 Gy in 35 fractions over seven weeks. For the dose-finding aspect we
investigate six doses of AZD6738 detailed in Table 2.2. Treatment dose and du-
ration to be selected for dose level 3 will be determined based on a combination
of data observed, adverse events and compliance. The issue of partial ordering
is illustrated in Figure 2.2 inspired from plots by Wages et al. [29]. The doses
to be used in this trial are detailed in their appropriate box. It is clear that dose
levels 2a and 2b would be considered more toxic than dose level 1 due to the
increase in treatment duration and treatment dose respectively. When compar-
ing 2a and 2b it is unknown whether the increase in dose or duration will be

more toxic. Hence there are two possible orderings for ADePT-DDR.
1. d_l%do%dl—)dza%de%dg

2. d_1 —dy— dy — dyy — dpy — d3

TABLE 2.2: ADePT-DDR dose-levels and duration of treatment

for AZD6738.
Dose AZD6738 Daily Weeks Duration Radiotherapy
Level dose (mg BD) (days)
-1 20 1 5 70Gy/ 35F
0 20 1&4 10 70Gy/ 35F
1 40 1&4 10 70Gy/ 35F
2a 40 1,2,4&5 20 70Gy/ 35F
2b 80 1&4 10 70Gy/ 35F
3 120 1&4 10 70Gy/ 35F
80 1,2,4&5 20 70 Gy/ 35F

It should be noted that our definition of orderings is assuming that total
dose is the key driver in terms of probability of toxicity. If we were to relax this
assumption it could be possible that dose-level 3 at 120 mg for 10 days (1200
mg total) could be considered less toxic than 2a 40 mg for 20 days (800 mg
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FIGURE 2.2: ADePT-DDR dose levels across dose and duration.
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10 days
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10 days 20 days
Dose Level -1 Dose Level 0
20 20 mg BD 20 mg BD
5 days 10 days
5 10 15 20

Treatment duration (days)

total). In this instance prolonged exposure to the treatment may be more toxic
even though the total overall dose is lower. This would introduce a third or-
dering (d_1 — do — di — dpp — d3 — da,). However, since we are operating
under the assumption that more overall dose increases probability of toxicity
we will only consider the two orderings listed above.

Traditionally, dose-finding trials for combinations would select dose levels



26 Chapter 2. Implementing the PO-TITE-CRM trial design into ADePT-DDR

to form a ‘path’ through the dose combination space such that each subsequent
dose level was logically more toxic. This avoids the issue of partial ordering
but means doses of interest or effective dose combinations may be missed or
not investigated. Specifically, for ADePT-DDR this allows two ‘paths’ from
dose level 1 extending to 2a and 2b. In terms of dose level 3 only one of the
doses in that tier will be investigated, it was unclear as to which dose level
would be best due to a lack of historical data. Even though dose level 3 is not
yet specified in terms of modelling and simulations it was treated as singu-
lar dose. This was done as clinicians thought that it would be unlikely that
we would reach these doses and that the probability of toxicity between them
would be similar.

Preliminary designs of the trial included only five dose levels and planned
to use dose level 0 as the starting dose. During the trial design phase it was
decided a new lower dose (dose level -1) would be introduced to allow for
de-escalation if the initial dose was found to be too toxic. Dose escalation/de-
escalation for subsequent cohorts would be determined from the two-stage
PO-TITE-CRM. A two-stage design allows for escalation according to a pre-
defined escalation scheme. The first stage dictates that if no DLT’s are observed
in the current cohort the dose allocated to the next cohort is the following dose
in the escalation scheme. Dose levels continue to be incremented in this fashion
until the first DLT is observed. In stage two, dose levels are determined by the
PO-TITE-CRM.

Typically CRM designs begin by testing the first patient, or cohort, at the
prior guess of TD or at a lower dose to be safe. However, clinicians may have
safety concerns beginning the trial at higher dose levels as well as escalating
to higher dose levels without testing lower ones. Investigators in ADePT-DDR
expressed similar concerns as such a two-stage design was adopted. The es-

calation scheme used in stage one of ADePT-DDR will follow that of the first
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ordering (d_1 — do — dy — dp, — dpp — d3). If patients in the first cohort
(assigned to dose level 0) do not experience a DLT the next cohort will be al-
located to dose level 1 and then if no DLTs are observed again the third cohort
will be allocated to dose level 2a and so on and so forth. The dose escalation
scheme was determined based on the prior probabilities of toxicity generated
for each dose level.

Information elicited from the investigators helped generate prior probabil-
ities of toxicity for each dose level. They believed that dose level 2b would
be the TD25 with 2a being less toxic. This was used in conjunction with the
getprior function from the dfcrm R package [20] which yielded priors of 0.012,
0.036, 0.084, 0.157, 0.25 and 0.355 for dose levels -1, 0, 1, 2a, 2b and 3 respec-
tively. The half-width of the indifference interval was set at 0.05. The indiffer-
ence interval is an interval in which the toxicity probability of the selected dose
will eventually fall. Prior probabilities are also required for the plausibility of
each model and even though the clinicians think that 2b will be more toxic
than 2a there is no clear evidence and still a lot of uncertainty. As such it is
sensible to assume a plausibility probability of 0.5 for each ordering, implying

both orders are equally likely to be the true ordering of these dose levels.

2.3.2 The TITE component

The observation window for this trial will be up to a year post-treatment as
the combination of radiotherapy with AZD6738 is anticipated to cause late-
onset toxicity. The Acute DLT observation period is 12 weeks (84 days) post
radiotherapy end with a minimum of 8 weeks (56 days) for the last patient of
each cohort. However, patients will continuously be monitored for occurrence

of DLT for at least 12 weeks (84 days), i.e. at least 12 weeks (84 days) from
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the end of radiotherapy. The full window will last for 52 weeks (365 days)
post-treatment.

The TITE component incorporates a weighting contribution for each pa-
tient dependent on how long that patient has been evaluable in the study. This
allows a patient to be evaluated once they have been observed for the min-
imum DLT period of 8 weeks (56 days). The weighting at this point is 60%
rising to 80% at 12 weeks (84 days). A patient will not contribute fully to the
model until they have completed 52 weeks (365 days) follow up (or have ex-
perienced a DLT at any stage in which case they will be weighted as a whole
contribution). Linear weighting functions will be employed for any patient
with a length of follow up between these three time points. One weight func-
tion to calculate weights between 8-12 weeks and another for weights between
12-52 weeks. For the weighting function w(u; t1, tp, t3) where u is the time-to-
toxicity of patient j and t4, to, t3 is the time period with values 8, 12 and 52

respectively. Then for t; < u <3

max(0, min(u, ty) — ty) max(0,u — tp)

ZU(M; tq, 1o, t3) =06+02 + 0.2

29
th —f t3 — b @9)

All patients will have a minimum weight of 60% as that is the prescribed
weighting to the minimum follow up period before dose escalation/de-escalation
decisions can be made. For each additional week the patient is observed, with-
out a DLT occurring, between weeks 8 and 12 their weighting increases by
5%. Similarly for each week between 12 and 52 weeks, without a DLT, weight-
ing increases by 0.5%. Figure 2.3 illustrates the weight function and how the
weight changes for patients dependent on how long they have been followed-
up.

The TITE-CRM originally presented by Cheung and Chappel [42] did not
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FIGURE 2.3: Weights of patients who have not experienced a DLT
across the observation window.
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incorporate a minimum follow-up period and their design allowed for the con-
tinual recruitment of patients whenever they became available. There are some
practical considerations which make this infeasible in ADePT-DDR. The model
would need to be run each time a new patient entered the study which re-
quires statistical input hence the introduction of cohorts. Clinicians may also
have safety concerns if we see rapid recruitment at the start of the trial and the
model keeps escalating so we impose a minimum follow-up period. Initially
this was set at 12 weeks (at 80% weighting) however, statisticians AP and PG
pointed out that dose escalation/de-escalation decisions would have to take
place 19 weeks (7 weeks treatment and 12 weeks follow-up) after recruitment
of the third patient in the cohort. Dependent on the recruitment rates this could
extend the duration of the trial and negates the benefits of using a TITE design.
The investigators also agreed this was too long and settled on lowering this pe-
riod to 8 weeks (at 60% weighting) whilst also including the original 12 week

weighting of 80%.
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2.3.3 Stopping rules

A practical modification was included to allow for early stopping of the trial if
there is sufficient evidence that the TD has been reached. Sufficient evidence
is achieved once 15 patients (five cohorts) have been treated at the same dose
level and the model allocates that dose level again to a sixth cohort. This rule
evolved from the original designs of the trial which involved 30 patients with
a dose expansion cohort to ensure at least 15 patients were treated at the TD.

Initial simulations highlighted the inadequacy of these design parameters
as operating characteristics for various scenarios were poor, specifically in
terms of correct TD selection. Clinicians explained the inclusion of the dose
expansion cohort was to ensure the dose-finding aspect of the trial did not
take a large amount of time whilst also allowing safety to be assessed at the
TD. In order to ensure that a reasonable amount of patients would be treated
at the TD, the trial would not take longer than necessary and operating charac-
teristics improved, the sample size was increase and this rule was introduced.

A rule was also implemented to allow for early termination of the trial
in the case of excess toxicity at the lowest dose. If the probability of DLT at
the lowest dose is higher than 0.35 with a probability of 80% and has been
tested, the trials safety committee will be alerted and will recommend if the
trial should be stopped. As the trial starts at dose level 0, which is not the
lowest dose, it is possible for the trial to recommend terminating without ever
allocating patients to the lowest dose level. As such it was decided early termi-
nation would only occur once at least 3 patients (1 cohort) have been allocated
dose level -1.

An approximate estimate of the variance was calculated using methodol-
ogy presented by O’Quigley and Shen [58]. The observed information matrix

is obtained by taking the second derivative of the likelihood (eq. 2.4) which is
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then used to calculate the variance v( ﬁj), for estimate §; which becomes more
accurate with larger sample sizes. After each cohort, we sample from a nor-
mal distribution with parameters based on the estimate of §; and its variance.
These samples are then plugged into our dose-toxicity model to ascertain the
probability of toxicity at the lowest dose. The trial will be recommended to

stop if it breaks the rule based on the criteria above.

2.3.4 Example trial run

To demonstrate how the trial will work in practice we present an example trial
run. Patients will be recruited in cohorts of three. After each cohort a dose will
be recommended based on our design and the subsequent cohort of patients
will be given that dose. This process is then repeated until the stopping rules
are triggered. In our example here we observe no DLTs to begin with allowing
us to follow the initial escalation scheme up to dose-level 3. At this point we
begin to observe DLTs and thus begin to use the model to recommend dose-
levels unti we stop for consensus.

Table 2.3 shows model outputs after each cohorts specifically, the estimated
probability of toxicity or DLT rate at each dose and the estimated posterior
probability of each ordering. Order 1 refers to the order assuming 2b is more
toxic than 2a and order 2 assumes 2a is more toxic than 2b. For the first initial
four cohorts we see that there are no model outputs. This is because the model
was not fit in these instances as no DLTs were observed. You can see the initial
escalation scheme was followed. Meaning after cohort 1 received dose-level
0 cohort 2 received dose-level 1, cohort 3 received dose-level 2a and cohort 4
received dose-level 2b.

For cohort 5 we see that one patient in this cohort observed a DLT. Based

on the model outputs in this scenario the estimated probability of toxicity at
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TABLE 2.3: Summary of model outputs for our example trial run.

Estimated DLT rate Order prob
Cohort Dose DLT -1 0 1 2a 2b 3 1 2 Recommended Dose

1 0 0 1

2 1 0 2a
3 2a 0 2b
4 2b 0 3

5 3 1 0 0 001 0.04 0.09 017 050 0.50 3

6 3 3 0.01 0.03 0.08 015 024 035 050 0.50 2b
7 2b 2 0.02 0.06 012 021 031 042 066 0.34 2a
8 2a 0 0.02 0.05 010 018 028 039 073 0.27 2b
9 2b 0* 002 0.06 012 020 030 041 055 045 2a
10 2a 0 0.02 0.04 010 018 027 038 062 0.38 2b
11 2b 0 0.01 0.03 0.08 015 024 034 057 043 2b
12 2b 0 0.01 0.03 0.07 013 022 032 051 049 2b

* No DLTs in this cohort, but the previous cohort had a late onset DLT.

dose-level 3is 0.17. As this is closes to our TD25 this becomes the dose that is
recommended for cohort 6. We can also look at the estimates of probability for
the orders, here both are at 0.5 indicating both orders are still equally likely. In
cohort 6 a further three patients are recruited to dose-level 3 and we observe
DLTs in all three patients. Overall, now there have been 4/6 DLTs at dose-level
3. Based on the model output here dose-level 2b with an estimated DLT rate
of 0.24 is closest to the TD25 and is recommended for the next cohort. The
posterior probability for the orders still indicate each order is equally likely.

Now at cohort 7, patients are allocated to dose-level 2b. Here two DLTs are
observed. The model recommends dose-level 2a. We can see the estimated
probability of the orders suggests order 1 is more likely, which is indicative
after having observed multiple toxicities at higher doses. Cohort 8 at dose-
level 2a observes no toxicities which leads to the recommendation of going
back to dose-level 2b. Here the estimated DLT rate here is 0.28 which is closer
to the TD25 compared to any of the other doses. For the order probabilities we
see again order 1 is still more likely.

Cohort 9 recruits patients to dose-level 2b and observes no DLTs however,
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one patient from the previous cohort (cohort 8 dose-level 2a) has now expe-
rienced a late-onset DLT after the minimum follow-up period. Incorporating
this new cohort data as well as the new DLT data for the previous cohort gives
a model recommendation of going back to dose-level 2a. The exact estimated
DLT rates for 2a and 2b were 0.2036 and 0.3037 respectively, 2a was narrowly
the closest to dose-level 2b hence why it was recommended. The DLT at 2a
also impacted the probabilities for each ordering. These still indicated 1 was
more likely but they are much closer now.

Going forward no more DLTs were observed and we can see the model
keeps recommending dose-level 2b. Cohort 12 is the fifth cohort to treat pa-
tients at dose-level 2b, after observing no DLTs the model once again recom-
mends dose-level 2b. This then triggers our consensus stopping rule as 15
patients have been treated a the same dose which is then recommended again.
In this example dose-level 2b, with an estimated DLT rate of 0.22, is our TD25.

Probabilities for the orders are now 0.51 and 0.49 for 1 and 2 respectively,
meaning order 1 is slightly more likely. Overall dose-level 2a observed DLTs in
1/9 patients and dose-level 2b observed DLTs in 2/15 patients. In the data we
observed there was no observable difference overall between the two doses.
Earlier on in the trial the probabilities of the order fluctuated as more DLTs
were observed. With potentially more data again this would change and keep
updating.

An additional point to consider is that at each dose decision or when the
model is fit patients will have different weights based on the time spent in the
trial without a DLT. For this example we assigned patients weights based on
the weight function and the minimum follow-up period required. Figure 2.4
visualises the data that was used for the model output after each cohort. The
shape of the points represent whether or not a patient had a DLT, the dose is

represented by colour and the weight each patient had is represented by the
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transparency of the point. Later patients in a cohort tend to have less weight as
they would have been recruited later, this is represented by the fainter points
on the plot. For each subsequent cohort these points then become darker as
patients gain more weight in the model after having been observed for a longer
period of time. Patients with DLTs are always at full weight.

Figure 2.5 shows an overall summary of the DLTs in each patient at each
dose-level and shows how the doses change over time. One patient at dose-
level 2a who had their DLT after the initial monitoring period which did not
affect the recommendation for the next dose-level but for the cohorts thereafter.

FIGURE 2.4: Plot of data included for each dose decision at each
cohort.
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FIGURE 2.5: Plot of dose decisions throughout the example trial.
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2.3.5 Operating characteristics

Simulations were continually utilised during the design process of the trial to
assess how various changes impact the overall performance. These changes
to design features such as the sample size, weight function and stopping rules
helped inform decisions which led to the design specified in the previous sec-
tion.

Functions from pocrm package in R [49], [50] were modified in order to
perform simulations and conduct the trial. The majority of work involved
integrating the TITE component and the stopping rules into the code. In stan-
dard CRM designs a binary outcome for toxicity is generated for each patient
based on a pre-specified true DLT rates for the dose they are assigned. Adding
the TITE component means the time the toxicity occurs also has to be gener-
ated, the simulation must also track this time and incorporate this information
into the PO-TITE-CRM model when it needs to make dose allocation decisions

for the next cohort. We defined multiple scenarios to reflect various real life
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possibilities in order to assess the design’s performance.

Standard scenarios to run involve adjusting the true DLT rates to reflect
each dose being the TD25. For each of these we calculate the probability of
selecting each dose as the TD25. It would be expected the dose with the highest
probability of being selected has its true DLT rate set at 25% to match the target
rate. A high probability of selection for the correct dose implies the design
works well in the specified scenario. Additional characteristics such as the
average number of patients at each dose level are also investigated. This can be
used to look at how many patients may potentially be allocated to a toxic dose.
It is also necessary to consider performance when all doses are too toxic, here
we would want the design to recommend stopping early. Usually the true DLT
rates used to define these scenarios abide by the monotonicity assumption.
Due to the partial ordering we consider scenarios in which the true DLT rates
follow both orders. However, as ADePT-DDR only has two orders we explored
all scenarios for each ordering.

We simulated 10000 trials for each scenario using the finalised design de-
tailed in section 2.3. Simulations were based on the assumption that the trial
would recruit one patient per month. The occurrence of DLT’s were randomly
generated for patients in each cohort using a Bernoulli distribution with the
probability set at the true DLT rate for the cohorts assigned dose level in the
specific scenario. For patients who had a DLT occur, the time at which the
DLT occurred was randomly generated using a uniform distribution which
spanned the start of treatment to the end of follow-up. The simulations pre-
sented in Tables 2.4 and 2.5 took approximately 5 hours and 53 minutes to run.
It is recommended by Morris et al. [59] to detail the Monte Carlo standard error
in order to quantify the simulations uncertainty. In the case of a 50% selection

probability the Monte Carlo standard error estimated by 10000 simulations is

v/0.5 x 0.5/10000 = 0.5%. This implies that differences of 1% can be deemed
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as significant.

Table 2.4 details simulations for eight scenarios to test the performance of
the PO-TITE-CRM design using true DLT rates which reflect the first ordering.
We analyse scenarios where each dose is the TD25 (scenarios 1-6) and when all
doses are too toxic (scenario 8). Additionally, we also investigate performance
under conditions where the probability of DLT is fairly similar between doses
(scenario 7). This is a notoriously difficult circumstance for CRM designs to
deal with as the limited number of patients and events at each dose make it
hard to accurately estimate toxicity probabilities if they are similar. Simulation
results for ordering 2 are shown in Table 2.5 where dose level 2a is considered
more toxic than 2b. This is achieved by altering the true DLT rates so 2b has a
lower probability of DLT compared to 2a.

Ideally we want the probability of selection for the dose allocated at TD25
to be as high as possible and greater than other dose levels. For scenarios
1-7 the TD25 is highlighted in bold along with results from the simulations.
However, for scenario 8 where all doses are too toxic we expect the trial to
terminate early, here ‘stop” should be selected and its associated probability of
stopping is shown in bold.

In scenarios 1 - 6 (Table 2.4), this design correctly selects the TD25 with
probabilities between 43% and 78%, under the assumption 2b is more toxic
than 2a. Likewise, for the ordering where 2a is more toxic than 2b, scenarios
9-14 (Table 2.5) have probabilities between 43% and 78% of correctly selecting
the TD25. Correct selection probabilities are generally higher when the TD25
is at the first and last dose levels compared to dose levels 2a and 2b. However,
these dose levels are still chosen with the highest probability as the TD25 in
their given scenarios. For scenarios 7 and 15, the probabilities of toxicity are
equally spaced, approximately 5% apart. This is a relatively difficult scenario

for dose-finding studies to handle. The probability of selecting the TD25 is 28%
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TABLE 2.4: Operating Characteristics of the two-stage PO-TITE-

CRM (with true DLT rates that imply 2b is more toxic than 2a)

based on 10000 simulated trials. Definitions: DLT: Dose-limiting
toxicity. P(select): Probability of selecting a dose as the TD25.

Dose Levels
-1 0 1 2a 2b 3  Stop

Scenario Prior DLT 0.01 0.04 0.08 016 025 0.35
True DLT rate 025 04 045 05 055 0.6
. P(select) 068 018 005 0.01 0 0 0.08
L1b25> e % of patients 9 32 20 6 3 0
Mean number of patients 10.17 846 533 167 0.69 0.07
True DLT rate 012 025 04 045 05 055
. P(select) 023 051 02 003 002 O 0.01
2:Th25 @0 % of patients 17 35 29 11 6 1
Mean number of patients 524 1048 875 34 183 026
True DLT rate 009 012 025 04 045 05
. P(select) 0.02 02 055 014 0.09 0.01 <0.01
s 1bn el % of patients 4 20 34 23 16 3
Mean number of patients 1.22 6.41 1097 723 514 1.02
True DLT rate 006 009 012 025 04 045
. P(select) 0 0.02 022 048 023 005 <001
4 1D @2a % of patients 1 12 20 31 25 11
Mean number of patients 047 3.88 6.74 1043 82 35
True DLT rate 003 006 009 012 025 04
. P(select) 0 0 002 03 043 025 0
5: TD25 @2b % of patients 1 10 12 24 28 25
Mean number of patients 025 336 415 817 933 833
True DLT rate 0.01 0.03 0.06 0.09 012 025
. P(select) 0 0 0 0.09 0.13 0.78 0
6: Th25 @3 % of patients 0 10 11 18 18 42
Mean number of patients 0.1 313 349 546 56 13.14
True DLT rate 005 01 015 02 025 03
! . P(select) 0 003 012 031 028 026 <0.01
7: Equal steps in DLT rate % of patients 2 13 18 26 23 19
Mean number of patients 055 4.03 572 832 7.15 596
True DLT rate 05 06 065 07 075 08
. . P(select) 0.26 0 0 0 0 0 0.74
8: All toxic % of patients 56 26 15 2 0 0

Mean number of patients 9.05 427 24 037 004 0

and 32% for orderings 1 and 2 respectively and even if the performance is poor
the correct dose is still likely to be selected. In scenarios 8 and 16, where all the
doses are too toxic, the design very seldom allocates patients higher than the
tirst three doses and there is a high chance (74% and 73% respectively) that the
trial will recommend early stopping.

Additionally, we assess designs based on how doses are allocated to pa-

tients. Designs may correctly select the TD however, this could be undesirable
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TABLE 2.5: Operating Characteristics of the two-stage PO-TITE-

CRM (with true DLT rates that imply 2a is more toxic than 2b)

based on 10000 simulated trials. Definitions: DLT: Dose-limiting
toxicity. P(select): Probability of selecting a dose as the TD25.

Dose Levels
-1 0 1 2a  2b 3 Stop

Scenario Prior DLT 0.01 0.04 0.08 016 025 035
True DLT rate 025 04 045 055 05 0.6
. g P(select) 067 019 005 0 001 0 0.08
9: b2 @l % of patients 39 32 20 6 8 0
Mean number of patients 10.19 843 527 16 0.68 0.07
True DLT rate 012 025 04 05 045 055
i P(select) 023 052 02 002 002 O 0.01
10: TD25 @0 % of patients 18 36 29 11 6 1
Mean number of patients 524 10.64 882 316 185 0.24
True DLT rate 009 012 025 045 04 05
. P(select) 002 02 055 009 014 001 <0.01
11: Tb25 @1 % of patients 4 20 34 21 17 g
Mean number of patients 1.16 643 11.07 6.83 56 1.07
True DLT rate 006 009 012 025 015 045
. P(select) 0 0.01 008 044 033 014 <0.01
12:TD25 @2a % of patients 1 11 16 30 24 18
Mean number of patients 048 3.78 524 101 79 6.07
True DLT rate 0.03 0.06 0.09 035 025 04
. P(select) 0 0 0.15 0.31 043 0.11 0
13: TD25 @2b % of patients 1 11 18 30 28 14
Mean number of patients  0.25 3.5 59 982 914 4.54
True DLT rate 001 003 0.06 012 0.09 025
. P(select) 0 0 0 013 0.09 0.78 0
14:TD25 @3 % of patients 0 10 11 19 16 43
Mean number of patients 0.1 ~ 3.13 351 588 506 13.13
True DLT rate 005 01 015 025 02 03
. . P(select) 0 0.02 012 032 027 026 <0.01
15: Equal steps in DLT rate % of patients 2 13 19 27 22 18
Mean number of patients 0.54 4.02 593 856 6.89 575
True DLT rate 05 06 065 075 07 08
. . P(select) 0.27 0 0 0 0 0 0.73
16: All toxic % of patients 56 27 15 2 0 0

Mean number of patients 9.01 428 239 038 005 0

and unethical if the majority of patients are over-dosed at the more toxic dose
levels. The average number and the percentage of patients at each dose level,
for each scenario, is recorded in Tables 2.4 and 2.5.

The percentage of patients treated at the TD25 ranges between 23% and
43% for each scenario under both orderings. The design also allocates the most
patients on average to the TD25 apart from in scenario 7. In this case more pa-

tients were allocated to the next lowest dose, we have already discussed the
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difficulties of this scenario so this characteristic is not too concerning. The
mean number of patients recruited for scenarios 1-6 is 26, 30, 32, 33, 34 and
31 respectively. Similarly for scenarios 9-14 its 26, 30, 32, 34, 33 and 31. Even
though we allow for up to 60 patients the majority of trials terminate early
based on the pre-defined rules for selecting the TD25. This information is pre-
sented in Table 2.6 which also shows how often the max sample size is reached
from the 10000 trials for each scenario.

TABLE 2.6: Summary of simulated patient numbers for each sce-

nario.
Scenario Max no. of patients % max reached Mean no. of patients
1: TD25 @-1 60 0.21 26.38
2: TD25 @0 60 0.08 29.97
3: TD25 @1 60 0.05 32.01
4: TD25 @2a 60 0.12 33.22
5: TD25 @2b 60 0.06 33.60
6: TD25 @3 60 0.02 30.92
7: Equal steps 60 0.01 31.74
8: All toxic 54 0.01 16.14
9: TD25 @-1 60 0.17 26.24
10: TD25 @0 60 0.11 29.95
11: TD25 @1 60 0.06 32.15
12: TD25 @2a 60 0.07 33.56
13: TD25 @2b 60 0.03 33.16
14: TD25 @3 60 0.08 30.81
15: Equal steps 60 0.02 31.69
16: All toxic 51 0.01 16.11

Overall, the simulation results show the specification of this design per-
forms relatively well in a number of scenarios. We have shown there is a high
probability of the trial stopping early if all dose-levels are too toxic. We have
also shown the design behaves in an appropriate manner when there is a lack
of disparity between dose-levels in terms of toxicity. Finally, we have demon-

strated that regardless of the ordering we observe the PO-TITE-CRM has a
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high probability of selecting the correct dose. There are a number of limita-
tions to the operating characteristics presented here which are due to the spec-
ification of the simulations and trial design. Section 2.4 explores and discusses

these limitations in more detail.

2.4 Exploring other designs

The operating characteristics presented in section 2.3.5 provide an insight into
how the trial design operates and its effectiveness at selecting the TD25. How-
ever, several factors impact the results seen here. These factors can be grouped
into two main categories, limitations with the simulations performed or the
trial design.

To simulate various scenarios the true DLT rates are adjusted to reflect the
TD25 being at different dose levels. There is no formal process to select these
values as such their selection is fairly arbitrary. We set one dose level as the
TD25 with lower and higher dose levels set at lower and higher DLT rates
respectively. Figure 2.6 illustrates the dose levels for scenarios in Table 2.4
where dose level 2b is more toxic than 2a. The DLT rates cover some possible
scenarios and account for a range of plausible values. However, these true DLT
rates may not accurately reflect what we observe once the trial begins. Also,
the relationship between the rates and the dose levels may not be similar to
what we use in the simulations. Multiple other scenarios could be investigated
but it would still be impossible to account for all possible variations which may
occur. Hence when evaluating the performance of a design it is important to
note the scenario in which it is being evaluated and whether or not the design
performs as expected and to an adequate level. For ADePT-DDR, the design

produces reasonable operating characteristics under each scenario.
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FIGURE 2.6: True DLT rates used for each of the scenarios where
dose level 2b is more toxic than 2a. The dotted red line represents
the target dlt rate of 25% (TD25).
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The original methodological papers by Wages et al. [29], [45] only provide
simulations for their examples using true DLT rates that are monotonically in-
creasing which represented one of their possible orderings. Initially, in ADePT-
DDR we followed suit and only produced simulations under a monotonically
increasing DLT rate (order where 2b is more toxic than 2a, Table 2.4). How-
ever, as we are unclear on the ordering of 2a and 2b there is a possibility that
2b is less toxic. So those initial simulations would not provide an accurate as-
sessment of the design in that circumstance. This was the main motivation for
running scenarios in Table 2.5, in which we see the design performs at a similar
level regardless of the partial ordering. ADePT-DDR is a simple case of partial
ordering as there are only two possible orderings and six dose-levels. For trials

with higher numbers of orderings or dose-levels the number of scenarios that
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would have to be evaluated would increase which may be infeasible. Here it
may be more beneficial to choose a handful of scenarios from multiple differ-
ent orderings to cover a wider range of possible outcomes for the trial to assess
the design.

There are various features in this trial design that impact how it performs.
The partial ordering caused by dose levels 2a and 2b adds complexity to de-
sign. If one of these dose-levels were to be removed or a normal ordering was
assumed a standard TITE-CRM design could be used instead. However, this
would take away from what the trial is trying to discover. This trial also has
a long follow-up period due to potential late-onset toxicities and in turn, will
have a long duration. The TITE component will allow for the duration to be a
lot shorter than it would be otherwise. TITE-CRM designs allow for patients to
be recruited sequentially and allocated a dose based on available information
from patients already in the trial. The design for ADePT-DDR uses cohorts
of three and a minimum follow-up period. The dose-escalation decisions will
only be made every third patient after a specific amount of time. This is done
for safety and practicality reasons but means that some patients may not be
able to enter the trial and it also loses some of the benefits of the TITE-CRM.
We also have a sample size of 60 patients but include a stopping rule for when
a consensus is reached which means we often do not recruit the maximum
sample size. Further simulations were produced to investigate how these fea-
tures affected the trial. Tables 2.7 and 2.8 compares selection probabilities as
well as duration measured in months from the ADePT-DDR trial design with
five alternative designs based on the two different orderings. Figures 2.7 and
2.8 visualise the result from each of these tables respectively. 10000 trials were

simulated for each scenario which took 62 hours and 22 minutes to complete.

1. TITE-CRM design. This design assumes that partial ordering does not
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exist and that dose-level 2b is more toxic than 2a. A TITE-CRM is used
instead of a PO-TITE-CRM. All other stopping rules and details remain

the same.

2. PO (Partial Ordering design). This design removes the TITE component
and uses a PO-CRM as detailed by [45]. This requires the removal of
the minimum follow-up period so all dose allocation decisions are made
once all 3 patients in a cohort have been observed for the full follow-up

period of one year. All other stopping rules and details remain the same.

3. N = 30. This design uses a fixed sample size of 30 patients and removes
the stopping rule for reaching consensus. The analysis is still conducted
using the PO-TITE-CRM. All other stopping rules and details remain the

same.

4. N = 60. This design uses a fixed sample size of 60 patients and removes
the stopping rule for reaching consensus. The analysis is still conducted
using the PO-TITE-CRM. All other stopping rules and details remain the

same.

5. CS = 1. This design uses a cohort size (CS) of one. All other stopping

rules remain the same.

The TITE-CRM performs comparably to our original design for certain sce-
narios, specifically where 2a is assumed less toxic than 2b (Table 2.4). Com-
pared to the PO-TITE design we see increases in probability selection for sce-
narios 4 and 5 where the target dose is at 2a and 2b respectively. This increase
in performance can be attributed to the fact that the partial ordering no longer
exists as we have assumed an ordering. The lower selection probabilities for
the PO-TITE-CRM can be seen as the price to pay for the uncertainty of not
knowing the order of 2a and 2b. However, the TITE-CRM underperforms in
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TABLE 2.7: Selection probabilities of the TD25 and expected trial

duration (in months) for the PO-TITE, TITE and PO-CRM de-

signs as well as modified PO-TITE-CRM designs for scenarios

1-8 (where 2b is considered more toxic than 2a) based on 10000
simulated trials.

Dose Levels
-1 0 1 2a  2b 3 Stop Duration Mean N

Scenario CRM details Prior DLT 0.01 0.04 0.08 0.16 025 0.35

True DLT rate 025 04 045 05 055 0.6
PO-TITE P(select) 0.68 0.18 0.05 001 O 0 0.08 57.61 26.38
TITE P(select) 07 021 0.05 001 O 0 0.03 59.55 27.46
1: TD25 @-1 PO P(select) 0.59 0.18 0.04 001 O 0 019 132.19 22.11
N =30 P(select) 0.67 0.19 0.05 0.01 O 0 008 60.02 27.72
N =60 P(select) 078 0.12 0.01 O 0 0 0.09 106.61 53.62
CS=1 P(select) 0.63 0.17 0.04 0.01 0.01 0 0.15 87.62 22.44
True DLT rate 0.12 025 04 045 05 0.55
PO-TITE P(select) 023 051 02 003 002 0 0.01 64.06 29.97
TITE P(select) 022 054 02 004 001 O 63.5 29.65
2: TD25 @0 PO P(select) 02 054 021 002 001 O 002 16353 27.79
N =30 P(select) 023 05 021 003 002 0 0.01 63.26 29.52
N =60 P(select) 0.15 0.69 0.14 001 O 0 0.01 116.29 59
CS=1 P(select) 025 046 0.19 0.03 0.02 0.01 0.04 10541 27.59
True DLT rate 0.09 0.12 025 04 045 0.5
PO-TITE P(select) 0.02 02 055 014 0.09 0.01 67.74 32.01
TITE P(select) 001 02 054 02 004 O 64.44 30.18
3. TD25 @1 PO P(select) 0.02 0.16 059 0.14 0.07 0.01 178.12 30.43
N =30 P(select) 0.01 0.19 052 0.15 0.12 0.01 64.04 29.96
N =60 P(select) 0 014 07 01 006 0 117.89 59.89
Cs=1 P(select) 0.05 0.18 0.51 0.14 0.09 0.02 0.01 114.18 30.13
True DLT rate 0.06 0.09 0.12 025 04 045
PO-TITE P(select) 0 002 022 048 0.23 0.05 69.91 33.22
TITE P(select) 0 0.02 021 056 0.18 0.03 66.99 31.59
4: TD25 @2a PO P(select) 0 002 022 049 022 0.05 189.69 32.52
N =30 P(select) 0 001 022 045 0.27 0.05 64.1 29.99
N =60 P(select) 0 0 018 0.64 0.18 0.01 118.01 59.96
cs=1 P(select) 0.03 0.02 022 045 0.2 0.08 113.77 30.01
True DLT rate 0.03 0.06 0.09 0.12 025 04
PO-TITE P(select) 0 0 002 03 043 0.25 70.6 33.6
TITE P(select) 0 0 002 022 056 0.19 68.34 32.34
5. TD25 @2b PO P(select) 0 0 003 026 044 027 194.41 33.38
N =30 P(select) 0 0 003 03 043 0.24 64.11 29.99
N =60 P(select) 0 0 0 024 061 0.14 118.08 59.99
CS=1 P(select) 001 0 002 026 04 03 110.26 29
True DLT rate 0.01 0.03 0.06 0.09 0.12 0.25
PO-TITE P(select) 0 0 0 009 013 0.78 65.78 30.92
TITE P(select) 0 0 0 003 023 0.73 65.6 30.82
6: TD25 @3 PO P(select) 0 0 0 008 012 0.8 183.48 31.4
N =30 P(select) 0 0 0 0.1 014 0.75 64.12 30
N =60 P(select) 0 0 0 006 01 0.8 118.09 60
cs=1 P(select) 001 ©0 0 006 01 0.83 92.92 23.98
True DLT rate 0.05 0.1 0.15 02 025 0.3
PO-TITE P(select) 0 003 012 0.31 0.28 0.26 67.25 31.74
TITE P(select) 0 003 014 03 032 021 65.22 30.61
7: Equal steps PO P(select) 0.01 0.03 0.14 03 027 025 186.6 31.96
N =30 P(select) 0 002 012 03 03 025 64.07 29.97
N =60 P(select) 0 0 007 033 035 0.25 118.04 59.97
CS=1 P(select) 0.03 0.02 0.09 024 023 0.39 101.81 26.55
True DLTrate 05 06 0.65 0.7 075 0.8
PO-TITE P(select) 026 0 0 0 0 0 074 39.19 16.14
TITE P(select) 037 0 0 0 0 0 063 44.65 19.17
8: All toxic PO P(select) 013 0 0 0 0 0 0.86 70.38 10.92
N =30 P(select) 023 0 0 0 0 0 077 41.35 17.34
N =60 P(select) 013 0 0 0 0 0 087 47.35 20.68
cs=1 P(select) 033 0 0 0 0 0 067 46.43 10.51
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TABLE 2.8: Selection probabilities of the TD25 and expected trial

duration (in months) for the PO-TITE, TITE and PO-CRM de-

signs as well as modified PO-TITE-CRM designs for scenarios

9-16 (where 2a is considered more toxic than 2b) based on 10000
simulated trials.

Dose Levels
-1 0 1 2a  2b 3 Stop Duration Mean N
Scenario CRM details Prior DLT 0.01 0.04 0.08 0.16 0.25 0.35

True DLT rate 025 04 045 055 05 0.6
PO-TITE P(select) 0.67 019 005 0 001 O 0.08 57.35 26.23
TITE P(select) 0.7 021 005 O 0 0 0.03 59.34 27.34
9: TD25 @-1 PO P(select) 058 017 004 0 0 0 02 13146 2198
N =30 P(select) 0.68 018 004 0 0.01 0 0.09 59.85 27.62
N =60 P(select) 0.78 0.13 0.01 0 0 0 0.09 106.5 53.56
Cs=1 P(select) 062 016 005 0 001 O 0.15 87.6 2243
True DLT rate 0.12 025 04 0.5 045 0.55
PO-TITE P(select) 0.23 052 0.2 0.02 0.02 0 0.01 64.02 29.95
TITE P(select) 021 056 0.19 0.02 001 O 63.57 29.69
10: TD25 @0 PO P(select) 02 054 02 001 002 0 002 16306  27.7
N =30 P(select) 024 051 02 0.02 003 O 0.01 63.35 29.57
N =60 P(select) 015 0.7 013 0 0.01 0 0.01 116.22 58.96
CS=1 P(select) 0.25 047 0.19 0.02 0.03 0.01 0.04 105.04 27.49
True DLT rate 0.09 0.12 025 045 04 0.5
PO-TITE P(select) 0.02 0.2 055 0.09 0.14 0.01 68 32.15
TITE P(select) 0.01 022 058 014 004 O 64.86 30.41
11: TD25 @1 PO P(select) 003 017 059 009 012 0.01 17768 3035
N =30 P(select) 0.02 02 051 01 016 0.01 64.03 29.95
N =60 P(select) 0 014 071 0.05 0.1 0 117.88 59.88
CS=1 P(select) 0.05 0.17 053 0.09 0.13 0.02 0.01 113.98 30.07
True DLT rate 0.06 0.09 0.12 0.25 0.15 045
PO-TITE P(select) 0 001 0.08 044 033 0.14 70.52 33.56
TITE P(select) 0 002 014 026 045 0.14 67.23 31.73
12: TD25 @2a PO P(select) 001 002 009 045 028 0.15 19442 3338
N =30 P(select) 0 001 008 042 035 0.14 64.09 29.98
N =60 P(select) 0 0 0.03 0.57 0.33 0.07 117.98 59.94
CS=1 P(select) 0.02 0.01 0.07 04 032 0.18 113.02 29.8
True DLT rate 0.03 0.06 0.09 035 025 04
PO-TITE P(select) 0 0 015 031 043 0.11 69.8 33.16
TITE P(select) 0 001 026 036 0.28 0.1 65.95 31.02
. PO P(select) 0 0.01 0.14 034 043 0.1 190.68 32.7
13: TD25 @2b N =30 P(select) 0 0 015 03 044 011 64.12 30
N =60 P(select) 0 0 0.1 029 0.57 0.04 118.07 59.99
Cs=1 P(select) 002 0 014 027 04 017 112.27 29.58
True DLT rate 0.01 0.03 0.06 0.12 0.09 0.25
PO-TITE P(select) 0 0 0 013 0.09 0.78 65.58 30.81
TITE P(select) 0 0 0 004 021 074 65.66 30.86
14: TD25 @3 PO P(select) 0 0 0 013 007 08 183.9 31.47
N =30 P(select) 0 0 0 013 0.11 0.75 64.12 30
N =60 P(select) 0 0 0 0.09 0.06 0.85 118.09 60
Cs=1 P(select) 0.01 0 0 0.1 0.07 0.82 93.1 24.03
True DLTrate 0.05 0.1 015 025 02 0.3
PO-TITE P(select) 0 0.02 0.12 032 027 0.26 67.17 31.69
TITE P(se%ect) 0 003 019 027 028 0.24 65.01 30.49
. PO P(select) 0 003 016 032 0.26 0.23 186.35 31.92
15: Equalsteps "7, P(select) 0 002 013 03 029 025 64.1 29.99
N =60 P(select) 0 0 007 036 031 0.25 117.97 59.94
CsS=1 P(select) 0.03 0.02 0.09 023 023 04 102.22 26.67
True DLTrate 05 06 0.65 075 0.7 0.8
PO-TITE P(select) 027 0 0 0 0 0 0.73 39.14 16.11
TITE P(select) 037 0 0 0 0 0 0.63 44.23 18.94
16: All toxic PO Piselect) 013 0 0 0 0 0 08 6979 1081
N =30 P(select) 023 0 0 0 0 0 0.77 41.18 17.24
N =60 P(select) 013 0 0 0 0 0 0.87 47.29 20.64
Cs=1 P(select) 033 0 0 0 0 0 0.67 45.76 10.31
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FIGURE 2.7: Plot of the simulation results presented in Table 2.7
detailing selection probabilities for multiple designs across sce-
narios 1-8 (where 2b is considered more toxic than 2a).
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FIGURE 2.8: Plot of the simulation results presented in Table 2.8
detailing selection probabilities for multiple designs across sce-
narios 9-16 (where 2a is considered more toxic than 2b).
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scenarios 9-16 where 2a is assumed more toxic than 2b. Specifically, scenarios
12 and 13 where it fails to identify the TD25 the majority of the time. This is
also explored by Abbas et al. [60].

The PO-CRM design without a TITE component also performs similarly
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except for scenarios 1, 8, 9 and 16 where the trial stops more regularly for
excess toxicity at the lowest dose. This would be because patients complete
the full follow-up window before the next dose allocation decision is made.
In a TITE setting a new cohort could be recruited before patients in previous
cohorts experience a DLT. The main difference between these designs is the
trial duration. Without the TITE component the trial duration is significantly
longer, with the average length ranging from 70 to 195 months compared to
39 to 71 months for PO-TITE-CRM. In scenario 1 TITE-CRM duration is longer
than the PO-TITE-CRM design this can be attributed to the lower chance of
stopping early. If the trial is stopping early less it has more chance of going on
for longer thus increasing the duration.

The design with a fixed sample size of 30 is comparable to our design with
the sample size of 60 and the consensus stopping rule. With a sample size of
30 selection probabilities are only 2-5% lower. For the design with 60 patients,
we see much improved operating characteristics with selection probabilities
ranging from 31% to 85% for the various scenarios. Even though our original
design specifies a sample size of 60 we rarely ever reach it as we often stop for
consensus hence why this design performs better. The trade-off here is trial du-
ration. Recruitment and follow-up under the constraints of these simulations
will take much longer compared to our specification which is not ideal for an
early-phase trial. Originally our design had a fixed sample size of 30 but as the
clinicians wanted a dose expansion cohort we opted to use the consensus rule
to ensure a minimum number of patients would be treated at the TD25.

For the design with cohort size of one, we see somewhat comparable per-
formance to that of the PO-TITE-CRM design. The design performs similarly
for scenarios where the TD25 is at the lowest or highest dose level but under-

performs for the more complex scenarios in terms of selection probabilities.
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This discrepancy in performance may be related to how the simulations re-
cruit patients into the trial and the large DLT follow-up period, meaning more
frequent dose allocation decisions are being made each with less available in-
formation. This also leads to the no cohorts design having a longer duration.
Patients entered into the trial in cohorts of three will not have to wait the full

minimum follow-up period between patients within the cohort.

2.5 Discussion

The PO-CRM and PO-TITE-CRM designs offer solutions to the issue of partial
ordering where the order of the treatments is only partially known. The orig-
inal methodology details that this issue commonly arises in trials of multiple
agents, where each drug individually may follow the monotonicity assump-
tion but when combined at certain dose levels this may not hold. This issue
is typically dealt with either by fixing the dose of one of the agents and esca-
lating the other or escalating both agents simultaneously. This means certain
drug combinations that are clinically relevant may not be investigated or even
considered.

Here we have shown that these issues can also arise in other situations.
Even though the ADePT-DDR trial uses multiple agents, the issue of partial
ordering occurs in this case due to the varying treatment dose and schedule for
one of its agents AZD6738. Implementing the PO-TITE-CRM design allowed
us to deal with this issue effectively. There may be other factors or variables in
single-agent dose-finding trials that would lead to the issue of partial ordering
and would warrant the use of either PO-CRM or PO-TITE-CRM. The issue of
dose scheduling and partial ordering is further explored by Wages et al. [61]

where they propose further methods for dealing with this issue.
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The limited literature review that was conducted highlighted that this may
be the first instance of the PO-TITE-CRM design being applied. It is important
to note that although this methodology takes into account all the various or-
derings, the main aim is to identify the TD and does not attempt to identify the
order that is more correct.

Compared to other CRM-based designs only a few additional pieces of in-
formation are required to implement the PO-CRM design. More important is
the number of toxicity orderings and prior probabilities for the orders. Depen-
dent on how many dose combinations are available it may not be feasible to
investigate all combinations and all orderings. Careful thought and considera-
tion should be given to the combinations and orderings selected which would
require input from all relevant investigators. In terms of priors for orderings if
no prior information is available, all orders should be treated as equally likely
to occur. Extending this design to the PO-TITE-CRM requires a fit-for-purpose
weight function and is applied similarly to the TITE-CRM methodology. There
is an R package available with functions that can be used to run and simu-
late a PO-CRM trial. These functions were extended to included weighted
dose-toxicity models as described in this chapter to implement PO-TITE-CRM
into ADePT-DDR. The lack of available software for PO-TITE-CRM specifically
may be one of the reasons for its lack of use.

In terms of ADePT-DDR, dose combinations were decided upon by the clin-
ical investigators. The issue of partial ordering was due to the dose-levels 2a
and 2b, as such this methodology was employed to deal with that scenario.
This is a very simple example of partial ordering as we only have two possible
orderings and six dose levels. The necessity of implementing this methodol-
ogy was discussed and whether or not adopting an easier solution by simply
altering the dose levels would have been better. Ultimately, the dose levels se-

lected by the clinicians were deemed the most relevant with the TD25 likely to



2.5. Discussion 51

be one of these doses.

Simulations and operating characteristics were the main tools used to as-
sess the design’s performance as well as help understand the impact of sample
size and stopping rules. This was an iterative process that involved running
multiple iterations of simulations under various scenarios until the design was
finalised. A key point is that scenarios from simulations should account for
each of the possible orderings. ADePT-DDR only has two orderings, we ran
scenarios for both. For a trial with a greater number of orderings, this may
be unfeasible but at least some scenarios should be assessed to ensure the de-
sign is behaving as expected. Overall, the design operating characteristics per-
formed reasonably well even in difficult scenarios.

One limitation of the simulations is how the time-to-event data is gener-
ated. The time of DLTs is sampled from a uniform distribution U(0,413),
where the time of the DLT can occur at any time between the patient beginning
treatment and the end of follow-up (413 days). Using this uniform distribution
implies that a DLT has an equal probability of occurring at any time-point in
the observation window. This may not be an accurate representation of what
happens in the actual trial. Similar comments can be made about the accrual
rate used in the simulations. Here we specified the recruitment of one patient
per month which is in no way guaranteed for the actual trial. Wages et al. [29],
when presenting this methodology investigated four different applications of
the PO-TITE-CRM which used different models to enroll patients and allocate
DLTs. Results across these four applications were comparable.

The simulations are also able to instantaneously determine dose-levels for
incoming cohorts with all available information. This does not fully reflect
the process in which dose-escalation decisions would be made during the ac-
tual running of the trial. The analysis would require a data snapshot and time

would have to be spent cleaning the data and determining the next dose-level.
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This would mean any data from the point of the snapshot would not be in-
cluded in any dose escalation/de-escalation decisions.

Similarly, there may also be limitations with some of the design choices
made concerning cohort size and sample size. These were investigated along-
side a variety of other trial designs that could have been implemented. This
was done to validate the choices we made with the design and highlight the
differences in operating characteristics due to the varying assumptions and
components in the designs. The standard PO-CRM had a much longer average
duration due to the lack of TITE component whereas a standard TITE-CRM
overall performs better but assumes the ordering of toxicity is known.

Here we have detailed the issue of partial ordering with a time-to-event
component. We discuss how we implemented the trial design, in what we be-
lieve is the first real-world application of this specific design. A large amount
of simulation work is required to assess the performance of the design. This
is often an iterative process to refine decisions that were made and often re-
quires input from both clinical and statistical investigators. We recommend
running several varied scenarios for each potential ordering that will be inves-
tigated. Finally, we also compared the implementation of PO-TITE-CRM to
various other designs and showed it performs relatively well given all of the

methodological and practical challenges.
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Chapter 3

Extension to a Phase I/II trial design

3.1 Introduction

In Chapters 1 and 2 we discuss the main aim of a Phase I is to establish the max-
imum tolerated dose (MTD) for a treatment under investigation. Model-based
designs such as the continual reassessment method (CRM) [13] operate with
dose selection and escalation decisions being determined by the occurrence of
toxicities. These designs also operate under the cytotoxic assumption which
assumes the most toxic dose is also the most efficacious. Subsequent Phase
II trials aim to assess the efficacy of the treatment at the recommended dose
(MTD). Usually, these two phases are conducted independently of each other
and as such, the ability to share information across the phases is somewhat
lost.

For treatments like chemotherapy which kills all cells including cancer cells
[62], the cytotoxic assumption is valid. However, the emergence of modern
treatments such as immunotherapy and molecular targeted agents challenges
this paradigm. Immunotherapy is a form of treatment that utilises the body’s
immune system to fight cancer [63]. Molecular targeted agents (MTA) work
by interfering with specific molecules responsible for the growth, spread, and

progression of cancer [64]. The monotonic assumption of dose-efficacy may
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not hold for these new types of treatments. Furthermore, these treatments,
in general, are less toxic than traditional cytotoxic agents such as chemother-
apy therefore it is possible the most efficacious dose may occur at a dose-level
below the MTD [65]. This produces some methodological challenges for dose-
finding trials. Instead of trying to identify the MTD, the goal would be to de-
termine the optimal biological dose (OBD). Depending on the aims of the trial
and the design implemented the definition of the OBD may vary. The OBD
could be a dose that provides the maximum probability of efficacy with the
probability of toxicity being less than a pre-defined target value, or the dose
that has a beneficial trade-off between toxicity and efficacy. To determine an
optimal dose both toxicity and efficacy outcomes need to be considered and
this leads to a need for joint phase I/1I trial designs.

Here we will briefly explore some of these designs. This is not an extensive
review of the literature but just an illustration of these types of trial design.

Braun [66] proposed the bivariate continual reassessment method (bCRM),
an extension to the CRM which incorporates competing outcomes for both tox-
icity and disease progression. The design models the probabilities of toxicity
and progression independently, it is suggested that either empiric, logistic, or
hyperbolic tangent functions are used dependent on their biological plausibil-
ity. Both outcomes are then combined into a joint distribution which is used to
estimate posterior means based on priors and observed data.

Thall & Cook [67] developed EffTox, a Bayesian adaptive dose-finding trial
based on trade-offs between the probabilities of toxicity and efficacy. Marginal
probabilities of efficacy and toxicity at each dose are modelled and used with
utility contours to determine the desirability of each dose based on posterior
probabilities of efficacy and toxicity [68].

Zhou et al. [69] introduced a Utility-based Bayesian Optimal Interval (U-
BOIN) phase I/1I design to identify the OBD. This design is an extension of
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the Bayesian optimal interval (BOIN) design for phase I trials developed by Liu
and Yuan [46]. U-BOIN jointly models toxicity and efficacy with a multinomial-
Dirichlet model and uses a utility function to measure the dose risk-benefit
trade-off. The design consists of two seamless stages. Firstly, in stage I the
BOIN design is used to explore the dose levels and determine a set of admissi-
ble doses and collect preliminary efficacy data. In stage II, posterior estimates
of utility for each dose are continuously updated after each cohort using toxi-
city and efficacy data from both stages.

Zhang et al. [70] introduced the trivariate CRM (TriCRM) design. The de-
sign considers patients to have one of three possible outcomes: no efficacy and
toxicity, efficacy without toxicity, and toxicity. These outcomes are then mod-
elled using a continuation-ratio model. A Bayesian approach and dose-finding
algorithm are then used to identify the OBD similar to the CRM.

Anathakrishnan et al. [71] produced extensions to the modified Toxicity
Probability Interval (mTPI) design by Ji & Wang [72] and Toxicity Equivalent
Range (TEQR) design by Blanchard & Longmate [73] to include efficacy out-
comes. In both designs, isotonic regression is applied to the observed DLT
rates at the end of the trial. Dependent on the shapes of the dose-response
curves and the underlying response rates, isotonic regression is applied to the
observed response rates or the differences in observed response rates to deter-
mine the optimal dose.

Riviere et al. [74] developed a Bayesian dose-finding design for MTA. The
design works on the premise that for MTA efficacy initially increases with dose
then eventually plateaus. They use a logistic model with a plateau parameter
to capture the dose-level at which plateaus begin in the dose-efficacy relation-
ship. A weighted likelihood approach is also used to accommodate for any
potential late-onset toxicities. This methodology incorporates adaptive ran-

domisation to allocate patients to the dose-level closest to the likely plateau
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point.

Mozgunov et al. [75] discuss randomised dose-escalation designs for drug
combination trials with immunotherapy. Here they investigate the use of a
4 parameter EMAX model with a randomisation scheme. The use of a four
parameter model allows for toxicity risk at the standard of care to be modelled
independently, modelling a plateau at a particular level and a steep increase in
toxicity.

This chapter revolves around the seamless phase I/1I dose-finding adaptive
design by Wages and Tait [30], which we will refer to as the WT design. This
design models toxicity and efficacy independently. To model the probability
of efficacy, a set of possible efficacy skeletons are considered which would cor-
respond to plausible dose-efficacy relationships. For the class of dose-efficacy
models, a single parameter model is used similar to the empiric model of the
CRM. The authors recommend that (2n — 1) efficacy skeletons are specified
where 7 is the number of doses being investigated. Toxicity is modelled us-
ing a CRM approach with an empiric model that requires a skeleton for toxic-
ity. The dose-finding operates in two stages the adaptive randomisation (AR)
phase and the maximisation phase. In the AR phase patients are adaptively
randomised amongst a set of tolerable doses (determined by the CRM toxicity
model), where probabilities of randomisation to each dose are proportional to
their posterior probabilities of efficacy. A pre-defined number of patients enter
the AR phase and once recruitment has been completed we move to the max-
imisation phase. In this phase, patients are allocated to the dose in the tolerable
set which maximises the probability of efficacy.

The incorporation of an AR phase early on into the trial is beneficial since
there may be a lack of data to rely on decisions made by the maximisation of
efficacy probabilities. Also, there may be doses that have not been tested and

randomisation allows for information to be collected from these. It also helps



3.2. The Wages and Tait design 57

avoid getting stuck repeatedly recruiting to the same dose and allows for a
more broad understanding of the dose-efficacy and toxicity relationships. One
extension that we propose is the inclusion of randomisation to a control arm
in the design. This would provide a set of patients who receive standard of
care to act as controls and allow for comparisons to be made with outcomes
from patients receiving the OBD. There is also the added benefit of being able
to include standard of care into the models to get a better understanding of the
dose-efficacy and toxicity relationships.

Section 3.2, details the statistical aspects of the WT design and how it works.
We introduce our extension to the design to include randomisation to control
in Section 3.3. Section 3.4 evaluates the performance of the new design with
a simulation study. Section 3.5 explores how efficient our design would be at

performing an efficacy test. Finally, we finish with a discussion in Section 3.6.

3.2 The Wages and Tait design

In this section, we detail the Wages and Tait design. Here we have used slightly
different notation than first introduced in Chapter 2, this was to ensure that
the design we present here is as specified in the original paper [30] and also to
make it simpler when cross referencing with available code. A set of I doses
under investigation can be denoted as 2 = {dy, ..., d;}. For each patient j en-
tered into the trial they are allocated to a dose-level and joint outcomes for tox-
icity and efficacy are measured. The dose for the jth patient, X;, j = 1, ...n can
be thought of as random, taking values x; € 2. Let Y; and Z; be the random
variables for binary toxicity and efficacy events respectively. For an individual
patient j, toxicity and efficacy outcomes can take values y;,z; € {0,1} where 0

indicates an event did not happen and 1 indicates that it did.
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Wages and Tait [30] utilise the CRM approach of O’Quigley et al. [13] to
model toxicity. A univariate Bayesian method is used which begins by as-
suming a monotonically increasing dose-toxicity curve. The DLT probabilities,
rir(d;), are modelled at each dose level i where i = 1, ..., I. The power model is

specifically used by Wages and Tait in this design given by

F(d;, ) = p"P. (3.1)

A working model or skeleton containing the prior beliefs of toxicity at each
dose-level is required in the form 0 < p; < .. < p; < 1. For the single
parameter in the power model B we assume it has a prior distribution g(p).
After the inclusion of j subjects into the trial, we have data in the form of (}; =
{(x1,¥1,21), - (x,¥;,2zj) }- The toxicity data can be used with Equation 3.1 to
give the likelihood for

j
L(BIYy) = ﬂ{ (1, )} {1 = F(x, )} 70, (32)

the posterior density for B can be calculated using

L(B|O)g(B)

P(BIOY) = (3.3)
! f L(B |Q] g(B)dp
This can then be used to establish the posterior mean of
5= | BP(BIOY)a. 64

Using ,3]- estimates of DLT probabilities at each dose level can be obtained

via

Ar(dy) = F(dy By) = ", (3.5)
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For a specific maximum acceptable toxicity rate, ¢ a set of acceptable or

admissible doses can be declared as follows

Jij = {dz . ﬁT(dz) < q')T;i = 1,..., I} (36)

To model efficacy, a Bayesian approach is taken similar to how toxicity was
modelled but rather than using a singular working model a class of working
models is considered. They use a class of skeletons that correspond to vari-
ous dose-efficacy relationships. These relationships might be monotonically
increasing (as the dose-levels increase efficacy increases), unimodal (initially
increasing then decreasing) or plateau (initially increase then level off). As a
guide, it is suggested that (2I — 1) working models should be specified. The
probability of an efficacious response at dose d; is denoted as 7t (d;). The pri-
mary aim of the trial is to identify the optimal dose from doses considered safe

d, € 2 which is defined such that

mg(dh) < ... < mg(do) > ... 2> me(d)). (3.7)

Let K denote the number of efficacy skeletons being used. Then for each
skeleton k we have 0 < gy < ... < g < 1 and for a particular skeleton k; k =

1,..., K the true probability of efficacious response 7t (d;) at d; is modelled by

me(di) = Pr(Z; = 1|d;) ~ Gy(d;, 0) = g7 (3.8)

As with the modelling of toxicity the power model is used again. Similarly
as with B a prior distribution /() is assumed for 6. For both the toxicity and
efficacy models a Normal prior is used as first suggested by O’Quigley and
Shen [58] such that 8,6 ~ N(0,1.34). Additionally for the modelling of efficacy

prior information regarding the plausibility of each model is taken into account
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using a weight function v(k) = {v(1),...,v(K)}, where v(k) > 0 and where
Y« v(k) = 1. If no information is available a discrete uniform distribution can
be specified for v(k). After j patients have been included and observed in the

study we have efficacy data from (); and the likelihood model under k is given

by

L(O/€Y) = [T{Gx(x1,0)}7 {1 — Ge(x, )}, 39)
=1

the posterior density is

_ L(0]Q))h(9)
P(8|QY) = ff°ooL(9|(])j)h(9)d6’ (3.10)

and under skeleton k the posterior mean is given by

By = /mep(emj)de. (3.11)

This information can be used to establish posterior model probabilities

v(k) [, Le(0]Q)h(0)d6
Yhoy v(k) [, L(6]Q)h(6)d6

The posterior model probabilities are then used to determine which skele-

w(k|Q) =

(3.12)

ton will be selected to model the dose-efficacy relationship. Each time a new
patient is to be entered into the study and a dose-escalation decision needs
to be a made, the skeleton k* with the largest posterior probability is selected

such that

k* =arg m}izxw(km]-). (3.13)

After determining the best skeleton and calculating the posterior mean of ¢

estimates of efficacy probabilities are then generated for each dose.
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fe(di) = G (di, O (3.14)

Dose-finding is conducted in two stages. The first stage begins with the
adaptive randomisation (AR) phase. Here the next dose is randomly selected
from the set of admissible doses determined by the CRM toxicity model. Ran-
domisation probabilities for each dose are proportional to 7i¢(d;) so that doses
with higher estimated efficacy are more likely to be assigned to patients. For

doses in &7 their adaptive randomisation probability R; is

o Fed)
' L HE(di)

The AR phase lasts for a subset of jr patients such that jr < |, where ] is the

(3.15)

total number of patients to be entered into the trial. Wages and Tait suggest as
a general rule of thumb to allocate 50% of patients to both stages. It was shown
that this approach works well in a variety of scenarios. However, this can be
easily be adapted to suit individual trials.

Once the AR phase has been completed the design switches to the second
stage called the maximisation phase. Here the next dose is the dose from the
admissible set with the highest estimated probability of efficacy. For a dose-
escalation decision that needs to be made in the maximisation phase for the
(j + 1)th patient the dose x;j, is selected from the admissible set of doses %7

with the highest estimated efficacy probability 7 (d;) i.e.

Xj1 = arg max At (d;) (3.16)
HSK /i

The design also incorporates stopping rules for safety and futility. The

safety rule stops the trial if too much toxicity is observed at the lowest dose
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level. This rule is applied throughout the trial for each dose-escalation deci-
sion. Exact binomial 95% confidence intervals are calculated for the lowest
dose. The lower bound of the interval is then compared to the acceptable tox-
icity rate ¢r. If the lower bound interval is greater than the acceptable rate
it can be said that the treatment is too toxic to warrant further investigation.
Patients need to have been observed at the lowest dose for this rule to trigger,
if there is no data available at the lowest dose the binomial confidence interval
is effectively 0.

The futility rule stops the trial if there are too few observed efficacy events.
This rule only comes into play during the maximisation phase. This rule uses
a similar method to the stopping rule by utilising binomial 95% confidence in-
tervals. During the maximisation phase, the dose with the highest probability
of efficacy is selected. At this point, the 95% binomial confidence interval is
calculated for the current dose and if the upper bound is less than the futility
threshold ¢r the trial is stopped as the treatment is inefficacious at all doses.
Although 95% confidence intervals are used by Wages and Tait these can be

altered accordingly.

3.3 RtC-WT: An extension to the Wages and Tait de-
sign

In this section, we introduce our proposed extension to the Wages and Tait
(WT) design named Randomisation to Control Wages and Tait (RtC-WT). As
the name states, the design will allow investigators to utilise the WT design
with the ability to recruit patients to a control arm/dose-level. This idea was
initially conceived by Kristian Brock (KB) whilst working on the design of a

new dose-finding trial.
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3.3.1 The Rationale for Incorporating Randomisation to Con-

trol

Typically, seamless phase I/1I trial designs perform the tasks of phase I and
phase II trials. However, they do not replace the need for randomised phase II
trials entirely where preliminary efficacy data is collected on an experimental
treatment versus control to determine the need for a larger phase IlI study [76].
This is our main motivation for introducing RtC-WT. By introducing the ability
to randomise to control in the Wages and Tait method we can achieve similar
objectives to randomised phase II studies.

An example of where this design may be beneficial is in the investigation
of a standard of care treatment in combination with an experimental treat-
ment. The standard of care treatment could be included as the control dose
and should have a well-understood toxicity and efficacy profile which could
be incorporated into the toxicity and efficacy skeletons. Further dose levels
would also receive standard of care along with increasing levels of the experi-
mental treatment, here the interaction between the two treatments in terms of
toxicity and efficacy could be investigated and an OBD could be found using
the RtC-WT design.

As a seamless phase I/II design WT is relatively simple and effective. The
familiarity of using a CRM design to model toxicity and naturally extending
that methodology to model efficacy with multiple working models means the
design is not particularly difficult to implement. The mathematics behind the
design is also not too intense so extensive computation will not be necessary.
Given some effort, this design could be implemented in a variety of program-
ming languages although Brock offers easy implementation of this design in
his R package escalation [21]. Considering all these factors, extensions to this

design can easily be executed without too many obstacles.
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The WT design can be considered fairly unique due to its use of adaptive
randomisation. Whilst adaptive randomisation is not the core focus of the de-
sign it is still a distinguishing factor that could be leveraged to help investiga-
tors answer questions other designs are unable to. Specifically, the randomi-
sation allows for more dose-levels to be explored and perhaps obtain a better
understanding of the dose-toxicity and efficacy relationships.

Conceptually the WT design could include a control arm without any mod-
ification to the design. All that this would require is the addition of a new
dose-level at which patients receive control treatment/standard of care. This
would need to be implemented as the lowest dose-level as dose-levels still
need to obey the monotonicity assumption for toxicity. The issue with taking
this approach is that the design is unlikely to allocate patients to the control
dose-level. Even though adaptive randomisation is being used the randomi-
sation probabilities are based on estimates of efficacy probabilities and control
patients may be unexpected to have an efficacious event. This is a desirable
characteristic when investigating treatments as we do not want to allocate too
many patients to inefficacious doses. However, if the aim is to establish a co-
hort of patients as controls to facilitate comparisons to the OBD this is not an
optimal characteristic.

There is another approach that could also be used to include a control
arm rather than our proposed design RtC-WT. A two-arm randomised design
could be used where patients are allocated to either a control arm or a dose-
finding arm. Those patients allocated in the dose-finding arm will then be a
part of the WT design (see Figure 3.1). This approach maintains many of the
traditional qualities of a two-arm randomised trial. The number of patients in
each arm can be specified this way and we guarantee a minimum number of
patients in our control arm. Also, the characteristics of patients in both arms

are likely to be similar which would be beneficial when making comparisons
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FIGURE 3.1: Flowchart of how a two arm randomised dose-
finding design would operate using the Wages and Tait design.
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between the two arms. A downside of this method is that the data for con-
trol patients are no longer included in the modelling process. Whilst control
patients may still be observed for efficacious and toxic events these will not

be included in the modelling. As such the ability to make inferences on the
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dose-toxicity and efficacy relationships in reference to a control/ standard of
care dose is lost.

Both of these approaches have their merit but also have flaws as well. RtC-
WT is somewhat of a middle ground that aims to recruit patients to a control
dose and include the control patients” data in the modelling process all whilst
maintaining reasonable operating characteristics. We detail RtC-WT in Section

3.3.2 and explore the operating characteristics of this design in Section 3.4.

3.3.2 Design of the Proposed Extension RtC-WT

With this extension, much of the Wages and Tait design stays the same. The
modification only impacts the adaptive randomisation (AR) phase and requires
some additional specifications at the start of the trial. Firstly, we set the lowest
dose-level dy to be the control dose-level. This dose-level should be included
in the working models for efficacy and toxicity and should be treated like any
other dose-level. Even if toxicity and efficacy events are expected to be non-
existent for control, their corresponding skeleton values must be non-zero. In-
vestigators also need to consider a randomisation probability ¢r for the control
dose. During the AR phase, ¢r represents the probability of selecting the con-
trol dose as the next dose level. The probability of randomisation R; for other
dose in 7 is scaled accordingly such that the Yo Ri = 1. The adaptive

randomisation probabilities can now be expressed as

Ry = ¢r, (3.17)

i=2,..,1L (3.18)
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Compared to Equation 3.15 the adaptive randomisation probability is fixed
to ¢r at the lowest dose (the control dose) and for all other dose levels in the
admissible set 7 a scaled randomisation probability is calculated. By fixing
the probability for the control dose we guarantee a greater chance of patients
being allocated to this dose-level. Although estimates of efficacy at the control
dose-level 7tg(d1) do not directly impact its associated randomisation proba-
bility, the efficacy data that generated the estimate is still included in the effi-
cacy modelling and impacts probabilities for the remaining dose-levels. Also,
by scaling the remaining probabilities of dose-levels in the admissible set we
ensure that those doses with high estimates of efficacy maintain their propor-
tional advantage of selection over the other non-control doses.

Some adjustments were made to the stopping rule for safety. The WT
design assesses the lower bound of the 95% binomial confidence interval of
DLT rate for the lowest dose to determine whether or not the trial should be
stopped. However, with the RtC-WT design since the lowest dose is the con-
trol, it makes little sense to surmise treatment is toxic here since none of the
patients on control would have received the experimental treatment. It is also
likely the trial would never recommend stopping even if the treatment is toxic
since patients on control are unlikely to experience excess toxic events. The
RtC-WT design stops for safety by checking for excess toxicity at the second-
lowest dose-level (the first treatment dose-level).

Once the AR phase ends, dose-levels are no longer selected by adaptive
randomisation. At this point, it will be difficult for patients to be recruited
to the control dose since recommended doses will be based on those with the
greatest estimates of efficacy. As such it is important to consider the values
set for both your randomisation probability for control ¢r and the size of the
AR phase jgr. Wages and Tait simply suggest a 50:50 split between both the

AR phase and the maximisation phase and show relatively good performance
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at this level. However, for RtC-WT the AR phase is the main component and
more thought should be given here. In the next section, we explore multi-
ple combinations to better understand how these choices impact the operating
characteristics of the design. We also compare RtC-WT to the two alternative
designs mentioned in section 3.3.1 via simulations and the inspection of op-
erating characteristics specifically, the selection probabilities of the OBD and

patient allocation numbers at each dose-level.

3.4 Evaluation and exploration of the extension via
simulations

In this section, we evaluate the performance of RtC-WT in comparison to the
two alternative designs mentioned in Section 3.3.1. We also explore the im-
pact of changing the probability of randomisation to control and the number
of patients included in the adaptive randomisation phase. These will both be
assessed via simulation and inspection of their operating characteristics. To
facilitate simulations, a generic trial example will be utilised along with a vari-
ety of scenarios. Code for the original Wages and Tait design was provided to
us by Nolan Wages. We then altered this code to work for our new modified

design RtC-WT.

3.4.1 Design Specification

Here we detail the design specifications for RtC-WT that we will be using
throughout this section. We assume five dose-levels, where the lowest dose is
considered to be the control dose-level. The maximum sample size of the trial
is set at 60 with patients recruited in cohorts of three and the first cohort start-

ing at dose-level two (the first treatment dose-level). The pre-specified toxicity
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upper bound and efficacy lower bound are set at ¢7 = 0.35 and ¢ = 0.50
respectively. Toxicity and efficacy skeletons, p; and g; respectively, are pre-
sented in Table 3.1. In terms of efficacy relationships monotonic, unimodal
and plateau skeletons were all used. We assume that each of the seven efficacy

skeletons is equally likely and set v(k) = 1.

TABLE 3.1: Toxicity and efficacy skeletons for RtC-WT in the ex-
ample trial.

Dose-levels

1 2 3 4 5

pi 0.1 015 0.25 035 045
di 03 06 07 06 05
di3 03 05 06 07 06
Jia 03 04 05 06 07
gis 03 05 06 07 07
Ji6 03 06 07 07 07
Giz 03 07 07 07 07

Skeleton

For the control dose, we have set our prior beliefs for the probability of
toxicity at 10% and the probability of efficacy at 30%. These values can be
altered if there is reason to believe that the control dose may have higher or
lower probabilities of toxicity and efficacy.

Wages and Tait recommend (21 — 1) efficacy skeletons be used which in this
example would be nine, however, we have only considered seven. As there
are only four active doses and we are assuming we understand the control
dose in terms of toxicity and probability then seven different skeletons fits in
the Wages and Tait’s recommendation. As we are investigating control plus
some experimental treatment it is implausible to have scenarios where efficacy
falls as dose increases. So, we have removed the two efficacy skeletons with
dose-efficacy relationships that suggest the lowest dose would be the most
efficacious. For completeness, the first extra skeleton would be unimodal with

the highest efficacy occurring at dose-level one (i.e. 0.7, 0.6, 0.5, 0.4, 0.3 for
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dose-levels 1-5) and the second skeleton would be a plateau relationship with
the plateau beginning at dose-level one (i.e. 0.7, 0.7, 0.7, 0.7, 0.7 for dose-levels
1-5).

We also include the same stopping rules for safety and futility with the
safety rule assessing toxicity at dose-level two. A rule will also be imple-
mented to prevent the skipping of untried doses when escalating. This rule
does not apply when de-escalating.

The two parameters we have left to specify are the fixed adaptive randomi-
sation probability for control ¢r and the number of patients included in the
adaptive randomisation phase jr. In Section 3.3.2 we briefly discussed the im-
portance of giving thought when setting these values. This is due to the fact
they are the main factors driving how RtC-WT works compared to the stan-
dard WT design. For example, one could set the AR phase to last for the whole
trial and keep a relatively low probability to randomise to control. Alterna-
tively, the AR phase can be set for half the patients in the trial and double
the probability of randomisation could be used. These two approaches could
allocate the same number of patients in the control arm but have different op-
erating characteristics. It could be hypothesised that by setting the AR phase
for the whole trial you miss out on the maximisation phase where patients
are allocated to the estimated most efficacious dose which could yield slightly
worse operating characteristics. We explore different combinations of these

parameters in the next section.

3.4.2 Impact of AR phase size and probability of randomisa-

tion to control on RtC-WT

The effect of adjusting the probability of randomising to control ¢r is fairly

intuitive, as the probability increases the percentage chance that patients are
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allocated to the control dose-level also increases. However, this is only in iso-
lation without considering the size of the AR phase. Increasing the AR phase
would also mean more patients are likely allocated to the control dose-level
since the randomisation only occurs in the AR phase. The interest lies within
the interaction of both of these components and their impacts on operating
characteristics. To gain a better understanding of this impact on RtC-WT we
consider multiple combinations.

We look at two different probabilities for randomisation to control, ¢g = 0.2
and ¢r = 0.33 i.e. 20% and 33% probability of patients being allocated to the
control dose-level during the AR phase of the trial. We also consider varying
AR phase sizes, specifically jr = 0,15,30,45,60 essentially looking at when
the AR phase lasts 0%, 25%, 50%, 75% and 100% of the trial. The inclusion
of setting the AR phase as 0 is somewhat counter-intuitive since the trial will
just be run using the maximisation phase where the most efficacious doses are
allocated. As such it is unlikely that the control dose-level would ever be the
most efficacious specifically in our scenario here. However, its inclusion will
serve as a benchmark as the design most likely to achieve optimal performance
in terms of locating the OBD since there will be no randomisation and the
estimated most efficacious dose will always be the one being tested. Similarly,
by setting the AR phase at 60 we limit some of the designs features by never
entering the maximisation phase to select dose levels based on efficacy. Also,
the stopping rule for futility does not come into play. Although, many more
combinations could be explored this set provide a good basis for us to gain a
better understanding of how RtC-WT works. It also helps us understand how
best to optimise RtC-WT for comparisons with alternative designs later on.

To compare these different combinations we use simulations covering a
wide range of scenarios. For each scenario, we simulate 10000 trials each con-

sisting of 60 patients recruited in cohorts of three. Patient outcomes for toxicity
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and efficacy are randomly sampled using true toxicity and true efficacy prob-
abilities, these are assumed to be independent of each other. Dose-allocation
decisions are made after each cohort of patients and then the subsequent co-
hort is allocated the recommended dose. The trial could also be stopped if the
recruitment target is reached or if any of the stopping rules are triggered. The
rest of the design specification is as defined in Section 3.4.1.

The true toxicity and efficacy probabilities are manipulated to produce each
scenario for the simulations. Table 3.2 shows a summary of the scenarios that
will be used. We look at a combination of five different efficacy curves with
three toxicity curves giving 15 scenarios altogether. The five dose-efficacy re-
lationships we consider are; monotonically increasing, unimodal (at dose level
3), plateau (starting at dose level 3), monotonically decreasing and finally no
efficacy. For toxicity we look at scenarios where all doses are tolerable, all doses
are toxic and a scenario where only higher doses (dose-levels 4 and 5) are toxic.
We also list which doses would be considered the OBD under the designs spec-
ification along with which doses would be good for each of the scenarios. The
OBD in this context would be the dose which maximises efficacy whilst not
breaching the toxicity limit. Good doses are those which are considered safe
(probability of toxicity < 35%) and efficacious (probability of efficacy > 50%).
For scenarios that are too toxic/lack efficacy, we would expect the trial to stop
early, here we have labelled the OBD as being the probability of stopping and
good doses as the probability of stopping and selecting dose-level 1, the con-
trol dose. Whilst allocating patients to dose-level 1 in these scenarios is not
necessarily a bad thing it would likely mean more patients are exposed to the
toxic/inefficacious doses which is not optimal, hence the distinction.

Operating characteristics for the scenarios under investigation are given in

Table 3.3. The table provides the following operating characteristics:
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P(OBD) - Probability of selecting the OBD

P(Good) - Probability of selecting a good dose

N(OBD) - Mean number of patients treated at the OBD

N(Good) - Mean number of patients treated at good doses

N(Control) - Mean number of patients treated at the control dose (dose-

level 1)

These are provided for each scenario under the 10 different parameterisa-
tions of ¢r and jr. For certain scenarios, where the ideal outcome would be to
stop early, N(OBD) is left blank as patients are not allocated to a specific dose.
Also, for these scenarios N(Good) and N(Control) are the same as the only
good dose patients can be allocated to is the control. Then for scenarios where
there is only one good dose-level that would be the OBD as well so P(OBD)
and P(Good) would be the same as would N(OBD) and N(Good).
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TABLE 3.2: Summary of the efficacy and toxicity curves used in
each scenario.
Scenario | 1 2 3 4 5 | Description OBD Good Dose
] tox 01 02 025 0.3 0.35 ] All doses tolerable 5 3.5
eff {03 04 05 0.6 0.7 | Monotone increasing
tox {01 045 05 055 0.6 | Too toxic
2 eff |03 04 05 06 0.7 | Monotone increasing Stop Stop/Control
5 tox 0.1 025 0.35 0.45 0.55 | High doses toxic 3 3
eff {03 04 05 06 0.7 | Monotone increasing
4 toX 01 02 025 0.3 0.35 ] All doses tolerable 3 3.4
eff {03 04 07 05 04 | Unimodal
tox {01 045 0.5 055 0.6 | Too toxic
> off |03 04 07 05 04 |Unimodal Stop  Stop/Control
¢ tox 0.1 025 035 0.45 0.55 | High doses toxic 3 3
eff {03 04 07 05 04 | Unimodal
5 tox 01 02 025 0.3 0.35 ] All doses tolerable 3 3.5
eff |03 04 06 0.6 0.6 |Plateau
tox |01 045 05 055 0.6 | Too toxic
8 off |03 04 06 06 06 |Plateau Stop  Stop/Control
g tox 0.1 025 0.35 0.45 0.55 | High doses toxic 3 3
eff |03 04 06 0.6 0.6 |Plateau
10 tox 01 02 025 0.3 0.35 ]| All doses tolerable 5 04
eff |03 07 06 05 04 | Monotone decreasing
tox {01 045 0.5 055 0.6 | Too toxic
1 eff |03 07 06 05 04 | Monotone decreasing Stop  Stop/Control
1p tox 0.1 025 035 045 0.55 | High doses toxic 5 2.3
eff 103 07 06 05 04 | Monotone decreasing
tox {01 02 025 03 035 | All doses tolerable
13 e |03 03 03 03 03 | NoEfficacy Stop  Stop/Control
tox |01 045 05 055 0.6 | Too toxic
4 e |03 03 03 03 03 | NoEfficacy Stop  Stop/Control
tox | 0.1 025 0.35 045 0.55 | High doses toxic
15 e |03 03 03 03 03 |NoEfficacy Stop  Stop/Control
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TABLE 3.3: Operating characteristics for multiple combinations of AR phase size and

probabilities for randomisation to control. Probability of selecting the OBD or good

dose levels, mean number of patients treated at those dose levels and at the control
dose after 10000 simulations.

Scenario ¢r jr  OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)

0 5 3-5 0.05 0.60 2.8 32.1 12
15 5 3-5 0.05 0.65 2.7 32 3.6
02 30 5 3-5 0.05 0.71 2.2 31.1 6.4
45 5 3-5 0.05 0.76 1.5 27.5 9.4
60 5 3-5 0.04 0.80 1.1 22.9 124
! 0 5 3-5 0.05 0.60 2.8 321 1.2
15 5 3-5 0.07 0.67 3.1 32.6 49
0.33 30 5 3-5 0.06 0.75 2.2 30.4 9.8
45 5 3-5 0.05 0.79 1.3 25.5 14.7
60 5 3-5 0.03 0.82 0.8 19.4 19.6
0 stop stop/1 0.81 0.85 - 10.1 10.1
15  stop stop/1 0.80 0.85 - 11 11
02 30 stop stop/1 0.77 0.81 - 13.2 13.2
45  stop stop/1 0.72 0.75 - 15.6 15.6
60 stop stop/1 0.41 0.50 - 17.9 17.9
? 0 stop stop/1 0.81 0.85 - 10.1 10.1
15  stop stop/1 0.77 0.83 - 114 114
033 30 stop stop/1 0.75 0.79 - 14 14
45  stop stop/1 0.67 0.70 - 17.6 17.6
60 stop stop/1 0.38 0.42 - 20.7 20.7
0 3 3 0.25 0.25 15.5 15.5 2.6
15 3 3 0.31 0.31 16.8 16.8 47
02 30 3 3 0.35 0.35 16.8 16.8 7.5
45 3 3 0.42 0.42 15.5 155 10.4
60 3 3 0.48 0.48 12.7 12.7 13.3
’ 0 3 3 0.25 0.25 15.5 15.5 2.6
15 3 3 0.32 0.32 17.2 17.2 5.8
0.33 30 3 3 0.39 0.39 17.3 17.3 10.4
45 3 3 0.46 0.46 15.2 15.2 15.2
60 3 3 0.52 0.52 115 11.5 20.1




76 Chapter 3. Extension to a Phase 1/1I trial design
TABLE 3.3: Operating characteristics (continued)
Scenario ¢r jr  OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)
0 3 3-4 0.69 0.75 323 37.2 1.3
15 3 34 0.69 0.76 30.3 35.5 35
02 30 3 3-4 0.71 0.81 26.4 32.3 6.5
45 3 34 0.73 0.83 21.6 27.4 9.5
60 3 3-4 0.71 0.83 16 21.7 12.4
! 0 3 34 0.69 0.75 32.3 37.2 1.3
15 3 34 0.69 0.77 29.5 35.1 5
033 30 3 3-4 0.70 0.81 24.8 31 9.9
45 3 3-4 0.70 0.84 19.7 25.4 14.7
60 3 3-4 0.68 0.83 13.7 18.5 19.5
0 stop stop/1 0.81 0.86 - 10.1 10.1
15 stop stop/1 0.79 0.84 - 11.1 11.1
02 30 stop stop/1 0.77 0.82 - 13.1 13.1
45  stop stop/1 0.71 0.75 - 15.6 15.6
60 stop stop/1 0.41 0.49 - 17.9 17.9
’ 0 stop stop/1 0.81 0.86 - 10.1 10.1
15 stop stop/1 0.78 0.83 - 11.3 11.3
033 30 stop stop/1 0.75 0.78 - 14.1 14.1
45  stop stop/1 0.67 0.70 - 17.6 17.6
60 stop stop/1 0.38 0.43 - 20.8 20.8
0 3 3 0.37 0.37 21.2 21.2 2.6
15 3 3 0.41 0.41 21.3 21.3 4.5
02 30 3 3 0.45 0.45 19.6 19.6 7.5
45 3 3 0.50 0.50 17.1 17.1 10.4
60 3 3 0.54 0.54 12.8 12.8 134
¢ 0 3 3 0.37 0.37 21.2 21.2 2.6
15 3 3 0.42 0.42 21.4 21.4 5.8
0.33 30 3 3 0.50 0.50 20.3 20.3 10.4
45 3 3 0.55 0.55 16.6 16.6 15.1
60 3 3 0.59 0.59 11.5 11.5 20.1
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TABLE 3.3: Operating characteristics (continued)
Scenario ¢r jr OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)
0 3 3-5 0.48 0.70 239 35.6 1.3
15 3 3-5 0.50 0.73 23.7 35 35
02 30 3 3-5 0.52 0.78 21.8 324 6.4
45 3 3-5 0.56 0.81 19.3 27.9 94
60 3 3-5 0.57 0.82 15.8 225 12.5
’ 0 3 3-5 0.48 0.70 23.9 35.6 1.3
15 3 3-5 0.49 0.75 22.7 35.1 5
0.33 30 3 3-5 0.51 0.80 20.8 31.6 9.7
45 3 3-5 0.55 0.84 17.7 26 14.7
60 3 3-5 0.56 0.84 13.7 19.6 19.5
0 stop stop/1 0.81 0.85 - 10.2 10.2
15 stop stop/1 0.79 0.84 - 111 11.1
02 30 stop stop/1 0.77 0.81 - 13.2 13.2
45  stop stop/1 0.71 0.76 - 15.6 15.6
60 stop stop/1 0.41 0.50 - 17.9 17.9
° 0 stop stop/1 0.81 0.85 - 10.2 10.2
15 stop stop/1 0.78 0.82 - 11.3 11.3
033 30 stop stop/1 0.75 0.79 - 14 14
45  stop stop/1 0.69 0.71 - 17.4 17.4
60 stop stop/1 0.38 0.43 - 20.8 20.8
0 3 3 0.34 0.34 18.6 18.6 2.6
15 3 3 0.36 0.36 19.2 19.2 4.6
02 30 3 3 0.42 0.42 18.3 18.3 7.5
45 3 3 0.45 0.45 16.3 16.3 10.3
60 3 3 0.50 0.50 12.9 12.9 13.3
’ 0 3 3 0.34 0.34 18.6 18.6 2.6
15 3 3 0.38 0.38 19.7 19.7 5.9
033 30 3 3 0.45 0.45 18.6 18.6 10.4
45 3 3 0.52 0.52 159 159 15.2
60 3 3 0.56 0.56 11.5 11.5 20.1
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TABLE 3.3: Operating characteristics (continued)
Scenario ¢r jr  OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)
0 2 2-4 0.77 0.97 451 57.1 1.3
15 2 2-4 0.79 0.97 41.8 55.3 35
02 30 2 2-4 0.79 0.98 37.2 52.5 6.5
45 2 2-4 0.79 0.99 322 49.6 94
60 2 2-4 0.80 0.99 26.4 46.4 12.3
10 0 2 2-4 0.77 0.97 45.1 57.1 1.3
15 2 2-4 0.77 0.97 40.1 53.6 5
033 30 2 2-4 0.76 0.98 34.6 49.1 9.8
45 2 2-4 0.76 0.99 28.4 443 14.7
60 2 2-4 0.78 0.99 22.3 39.2 19.6
0 stop stop/1 0.65 0.74 - 11.7 11.7
15  stop stop/1 0.65 0.72 - 12.3 12.3
02 30 stop stop/1 0.62 0.69 - 13.8 13.8
45  stop stop/1 0.57 0.63 - 15.7 15.7
60 stop stop/1 0.41 0.49 - 17.9 17.9
! 0 stop stop/1 0.65 0.74 - 11.7 11.7
15 stop stop/1 0.64 0.72 - 12.5 12.5
033 30 stop stop/1 0.60 0.67 - 14.7 14.7
45  stop stop/1 0.52 0.56 - 17.7 17.7
60 stop stop/1 0.38 0.42 - 20.9 20.9
0 2 2-3 0.83 0.92 47.3 53.7 27
15 2 2-3 0.83 0.93 43.6 51.8 4.7
02 30 2 2-3 0.82 0.95 39.7 49.3 74
45 2 2-3 0.84 0.96 359 46.4 10.4
60 2 2-3 0.85 0.97 31.7 43.5 13.2
2 0 2 2-3 0.83 0.92 47.3 53.7 27
15 2 2-3 0.81 0.94 419 50.7 5.9
0.33 30 2 2-3 0.80 0.95 36.6 46.3 104
45 2 2-3 0.81 0.96 31.7 41.8 15.3
60 2 2-3 0.82 0.97 26 36.8 20
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TABLE 3.3: Operating characteristics (continued)
Scenario ¢r jr OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)

0 stop stop/1 0.82 0.82 - 12 12

15  stop stop/1 0.78 0.78 - 3.5 35

02 30 stop stop/1 0.70 0.70 - 6.5 6.5

45  stop stop/1 0.57 0.57 - 9.5 9.5

60 stop stop/1 0.01 0.01 - 124 124

13 0 stop stop/1 0.82 0.82 - 12 12
15 stop stop/1 0.76 0.76 - 49 49

033 30 stop stop/1 0.68 0.68 - 9.7 9.7
45  stop stop/1 0.54 0.54 - 14.7 14.7

60 stop stop/1 0.01 0.01 - 19.6 19.6

0 stop stop/1 0.96 0.97 - 8.3 8.3

15 stop stop/1 0.95 0.96 - 9.6 9.6

02 30 stop stop/1 0.94 0.95 - 124 124

45  stop stop/1 0.92 0.93 - 15.5 15.5
60 stop stop/1 0.42 0.50 - 17.7 17.7

H 0 stop stop/1 0.96 0.97 - 8.3 8.3
15 stop stop/1 0.95 0.96 - 9.9 9.9

033 30 stop stop/1 0.93 0.94 - 13.5 13.5

45  stop stop/1 0.89 0.90 - 17.3 17.3

60 stop stop/1 0.38 0.43 - 20.8 20.8

0 stop stop/1 0.89 0.89 - 2.3 2.3

15 stop stop/1 0.87 0.87 - 4.5 4.5

02 30 stop stop/1 0.82 0.82 - 7.3 7.3
45  stop stop/1 0.73 0.73 - 10.4 10.4
60 stop stop/1 0.02 0.03 - 13.4 134

® 0 stop stop/1 0.89 0.89 - 2.3 2.3
15  stop stop/1 0.86 0.86 - 5.7 5.7
033 30 stop stop/1 0.80 0.80 - 10.3 10.3
45  stop stop/1 0.69 0.70 - 15.2 15.2

60 stop stop/1 0.02 0.03 - 20.1 20.1




80 Chapter 3. Extension to a Phase 1/1I trial design

For scenario 1 it is relatively simple to select an admissible dose since all
doses are tolerable and efficacy increases monotonically. The difficulty is lo-
cating the OBD. All of these combinations fail to identify the OBD (dose-level
5) more than 7% of the time. Whereas the probability of selecting a good dose
is between 60 and 82%. As the size of the AR phase increases from 0 to 60 so
do the selection probabilities for a good dose, going from 60% to 80% and 60%
to 82% for randomisation probabilities of 0.2 and 0.33 respectively. It should
be noted that the two designs with no AR phase are identical since the ran-
domisation probabilities are never used. In terms of the number of patients
treated we see more patients in the control arm as AR phase size and randomi-
sation probability increase. This is expected since if you increase the amount of
time available for cohorts to be randomised or the probability in which that is
done, more patients will be recruited to control. By increasing the probability
of randomising to control we can also see that fewer patients are being treated
at good doses at higher AR sizes. Also, the ¢r figure does not guarantee that
exact percentage of patients in the control dose will be allocated to control but
for this scenario, it appears to be somewhat accurate.

Scenario 2 has no OBD as all treatment doses are considered toxic. For most
of the combinations, stopping occurs 67-81% of the time and including alloca-
tion to the control arm we see this increase to 70-85%. Slightly concerning is
the case where the AR phase lasts the whole trial. Here stopping is less fre-
quent at 50% and 42% for probabilities of randomisation to control of ¢g = 0.2
and ¢r = 0.33 respectively. To understand why this was occurring we inves-
tigated the failure mechanism in individual simulation runs. We found that
the design was stopping appropriately for excess toxicity. However, due to
setting the AR phase at 60 the maximisation phase never starts and thus the
stopping rule for futility never triggers. This is why this parametrisation per-

forms worse comparatively. Even though this scenario is to check for excess
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toxicity the true efficacy rates used in this scenario could also potentially trig-
ger the futility rule as they are set at 40% and 50% for dose-levels 2 and 3. To
confirm this we ran some of the parametrisations where the AR size is less
than 60 using a design without the futility rule and observed similar stopping
rates of 40% in this scenario. This indicates that overall our design is not that
great at stopping for potential toxicities. This could be improved by utilising
different stopping criteria. We also observe this difference in scenarios 5, 8, 11
and 14 where we should also be stopping for excess toxicity. The results for
jr = 60 in these scenarios could be interpreted as our baseline for stopping for
excess toxicity and the increase stopping in other parametrisations represent
how often the futility rule is triggered.

In scenario 3, the treatment is toxic at high doses and ineffective at lower
doses meaning only one dose can be considered good or the OBD. This is a
difficult scenario since only one of the five dose-levels is suitable to allocate
patients to. The selection probabilities range from 25% to 52%. We see as jr
increases selection probabilities also increase. As those designs with smaller
AR phases go into the maximisation phase they would be selecting dose-levels
based on those in the admissible set with higher efficacy. Since the doses with
higher efficacy also have a high toxicity rate there is a chance early on in the
trial this is not detected resulting in toxicities at the higher dose-levels causing
the trial to stop early. This could be a reason why the designs with the larger
AR phase perform better as doses would be randomly selected. This means
there is more chance for the lower dose-levels to be chosen and since those are
not toxic and the futility rule does not kick in until the maximisation phase
there is a higher chance that the OBD can be found.

Scenarios 4-6 look at a unimodal dose-efficacy relationship where efficacy
peaks at dose-level 3, with the three same dose-toxicity relationships as be-

fore: tolerable, toxic and toxic at high doses for each scenario respectively.
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Firstly, in scenario 4 we see good performance from all the parametrisations
with the probability of selecting the OBD ranging between 68% and 73% and
the probability of selecting a good dose ranging from 75% to 84%. We also see
an appropriate amount of patients in the control arm for each of our parameter
combinations. An important characteristic of this design to note is the ratio of
patients allocated to the control arm compared to the OBD or the good doses.
For the higher randomisation probability and maximum AR phase, we can see
close to a 1:1 (18.5 at good dose levels to 19.5 at control) allocation between
patients treated at control and the best doses. For ¢r = 0.2, and jr = 45 we can
see close to a 2:1 allocation between those treated at the OBD (21.6) and those
treated at the control (9.5).

Scenario 5 is where treatment is too toxic. Like scenario 2 we see high prob-
abilities of stopping 67%-81% and even higher probabilities for stopping and
including patients in the control arm (P(Good)) 70%-86%. Similarly, the de-
sign with an AR phase of 60 performs poorly here and the number of patients
allocated to the control is also comparable.

Scenario 6 only has one good dose to select, making it similar to scenario 3
except with a unimodal efficacy curve. Here, selection probabilities are slightly
better ranging from 37%-59%. In this scenario, we also observe that the larger
the AR phase the greater the selection probability of the OBD. The unimodal
efficacy curve means that the dose we want to select is also the dose with the
highest efficacy making it easier for the model to pick out.

A plateau relationship where dose-efficacy stops increasing after dose 3 is
looked at in scenarios 7-9 with the three different toxicity curves. In scenario 7
the probability of selecting the OBD ranges from 48%-56%, with the probability
of selecting a good dose ranging from 70-84%. In this instance, we see quite a
bit of discrepancy going from selecting the OBD to selecting the good doses in

terms of the selection probabilities being much higher for good doses. Here we
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have three doses with the same efficacy level, two of which only have a slight
increase in toxicity, which is still below the pre-specified target level. This can
also be seen in the number of patients being treated at the good dose versus at
the OBD. Scenario 8 exhibits the same behaviour as the other toxic scenarios
2 and 5. Then with scenario 9, the designs also behave similarly to scenarios
3 and 6 where higher dose-levels are too toxic. Selection probabilities range
from 34% to 56% with the designs with higher AR phases performing better.

For scenarios 10-12 we look at a monotone decreasing efficacy curve where
dose-level 2 is the most efficacious for each of the toxicity curves. In scenario
10 we see very high probabilities of selecting the OBD (76%-80%) with the
probability of selecting a good dose being 97% or higher. We can also see that
in terms of the numbers treated at the OBD and the good doses as these values
are relatively high compared to other scenarios. As the OBD is one of the
lower dose-levels it makes it relatively easy for the model to select since it
is more likely that patients will be allocated there early on into recruitment.
Once the maximisation phase starts there would be a lot of efficacy data for
that dose and it would be favoured by the model. Even in the cases with larger
AR phases, the adaptive randomisation probabilities are still scaled based on
efficacy, so it would be more likely they would be allocated to dose-level 2 as
well.

In terms of stopping early if the dose-levels are too toxic for this efficacy
curve (scenario 11), performance appears to be worse compared to other too-
toxic scenarios (scenarios 2,5,8 and 14). Even so, we still see the same patterns
where when the AR phase is 60, the same size as the trial stopping is relatively
even worse. Ignoring those designs the stopping probability ranges from 52%-
65%, adding in the percentage of patients allocated to the control arm this in-
creases to 56%-74%. One reason why this may be worse is due to the very high

efficacy rates early on and the toxicity rate only being slightly above our target
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rate by 5%. Early on into the trial, that 5% would be difficult for the model
to detect but the high efficacy rate is likely to lead to more events so the trial
would be less likely to stop until it went to higher dose-levels. Additionally,
as the efficacy rates are so high as well for early doses the futility rule is less
likely to be triggered meaning less stopping overall compared to other toxic
scenarios.

Typically, the scenarios where the higher doses are more toxic have been
the most difficult for the design to deal with. However for scenario 12, with
the monotone decreasing efficacy curve we see probabilities of selecting the
OBD range from 80%-85%. This is even higher than the selection probabilities
in scenario 10. However, when we look at the probabilities of selecting good
doses (92%-97%), whilst still very high it is still slightly less than in scenario 10
where there was one more dose that could be considered good.

Finally, the last efficacy curve we look at is one where no efficacy is appar-
ent, so efficacy stays at the same level as the control dose. Ideally, in all these
scenarios (13-15) we would stop for lack of efficacy. One thing to point out is
that the rule for stopping for futility only triggers in the maximisation phase.
So, for the designs where jr = 60 stopping for lack of efficacy will not occur.
For scenario 13 we have doses that are all tolerable and can see stopping prob-
abilities ranging from 54% to 82%. The only reason to stop in this scenario
is for lack of efficacy and so those designs with larger AR phases will not be
able to do this until later on into the trial meaning they are less likely to stop
as reflected in the stopping probabilities. In terms of selecting the good dose,
this is identical to selecting the OBD. So, in this scenario, the control dose is
seldom selected as the OBD, even though patients are still being allocated to
that dose-level. As stated for an AR phase size of 60 the trial ca not be stopped

for futility, so the probability of stopping is due to toxicity. In scenario 14, all
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the dose-levels are toxic, here we have very high stopping rates between 89%-
96% except in the case when the AR phase is 60. Scenario 15, where only the
higher doses are too toxic stops most of the time as well given a reasonable AR
phase between 69% and 89% of the time. Again, very rarely is the control dose
selected as the OBD.

Table 3.4 provides a summary of the selection probabilities of the OBD and
good doses respectively for all 15 scenarios and 10 parameter combinations.
The mean provides a rudimentary glance across the 15 scenarios of how well it
selects the OBD / good dose-levels. The standard deviation is a representation
of the variability of performance across the different designs. The lower the
standard deviation the more homogenous the performance. These statistics
have been calculated for all scenarios and then for "Non-Stopping” scenarios,
which are just the scenarios where stopping early for toxicity /futility is not the
ideal outcome i.e. scenarios 1,3,4,6,7,9,10 and 12.

The means for selecting a good dose are about 10% higher and appear to be
slightly less variable. This is to be expected as when selecting the good dose-
levels we are allowing for a wider range of doses to be included. There appear
to be limited differences between the various parameterisations, except for in
the case of when jr = 60 where its performance is poor in scenarios that require
stopping. There are only 1-2 percentage points difference in the mean selection
of the OBD and good dose-levels for the various designs.

In general, these scenarios show us that there are some issues with cer-
tain specifications of ¢r and jr in some of the scenarios presented. Specifi-
cally, in the case of stopping for toxicity, having the AR phase being the same
as the sample size causes some issues. However, as we investigated this is
largely due to the stopping criteria we applied and as such the design may
perform better under a different stopping rule. For the randomisation prob-

abilities, performance was mostly similar between the two values we chose.
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TABLE 3.4: Probabilities of selecting the OBD and good dose lev-
els for multiple combinations of AR phase size and probabilities
for randomisation to control, plus summary statistics.

Selection probabilities: Scenarios 1-15 All scenarios  Non Stopping
¢or 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean StDev Mean StDev

Selection probabilities for the OBD
0 005 081 025 0.69 081 037 048 081 034 077 065 083 0.82 096 089 063 027 047 027
15 0.05 0.80 031 0.69 079 041 050 079 036 0.79 065 0.83 078 095 087 064 025 049 026
020 30 005 077 035 071 077 045 052 077 042 079 062 082 070 094 082 063 023 051 026
45 0.05 072 042 073 071 050 056 071 045 079 057 0.84 057 092 073 062 021 054 026
60 0.04 041 048 071 041 054 057 041 050 080 041 085 0.01 042 002 044 026 056 025

0 005 081 025 069 081 037 048 081 034 077 0.65 0.83 082 096 089 063 027 047 027
15 0.07 077 032 0.69 078 042 049 078 038 077 0.64 0.81 076 095 086 063 024 049 025
0.33 30 006 075 039 070 075 050 051 075 045 0.76 060 080 0.68 093 080 063 022 052 024
45 0.05 0.67 046 0.70 0.67 055 055 0.69 052 076 052 0.81 054 0.89 069 060 020 055 024
60 0.03 038 052 0.68 038 059 056 038 056 078 038 082 001 038 0.02 043 026 057 024

Selection probabilities for good dose-levels
0 060 085 025 075 0.86 037 070 085 034 097 074 092 082 097 089 073 023 061 027
15 065 0.85 031 0.76 0.84 041 073 084 036 097 072 093 078 096 087 073 021 064 026
020 30 071 081 035 0.81 082 045 078 0.81 042 098 0.69 095 0.70 095 0.82 0.74 0.19 0.68 0.25
45 076 075 042 083 075 050 0.81 0.76 045 0.99 0.63 096 057 093 073 072 018 071 023
60 0.80 050 048 0.83 049 054 0.82 050 050 099 049 097 0.01 050 0.03 0.56 0.29 0.74 0.21

0 060 085 025 075 086 037 070 085 034 097 074 092 082 097 089 073 023 061 0.27
15 0.67 0.83 032 077 083 042 075 082 038 097 072 094 076 096 086 073 021 0.65 0.25
0.33 30 075 079 039 0.81 078 050 0.80 0.79 045 098 0.67 095 0.68 094 080 074 018 0.70 0.23
45 079 070 046 0.84 070 055 084 071 052 099 056 096 054 090 070 072 017 074 0.21
60 082 042 052 0.83 043 059 084 043 056 099 042 097 001 043 0.03 055 030 0.76 0.18

Many of the discrepancies in the scenarios were due to the size of the AR
phase. Seemingly, performance was generally unaffected by the percentage
of patients being randomised to control but rather the amount of time spent
being randomised. In terms of patient numbers at the control dose, we see
on average a similar number to what would be expected i.e. for ¢g = 0.2
and jr = 45 you would expect 9 control patients (20% of 45) our simulations
yielded values ranging from 9.4 to 15.6 across the 15 scenarios.

When we look at the mean of the non-stopping scenarios there appears
to be a monotonic increase in the selection of both the OBD and good doses.
As we increase the size of the AR phase we are more likely to make a correct
decision. There is also a similar pattern when we increase the probability of
randomising to control. So, accuracy appears to increase as more adaptive
randomisation is allowed to take place in the design. This may not ethically be
the best as we would want to prioritise giving patients the most efficacious and
tolerable dose. However, by allowing for more adaptive randomisation we

increase the probability of spreading out patients across the doses and gaining
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more information about all of the dose-levels which appears to make the final
selection more accurate. The uncertainty around the probability of efficacy at
each dose is reflected in our randomisation probabilities. Which is a positive
from an ethical perspective since patients are more likely to be allocated to
the more efficacious treatment and at wose would be given control. The main
caveat to this is that when we consider all scenarios the same relationship is
not observed and this is mainly due to the futility stopping rule.

Based on these simulations it would be best to use an AR phase sized be-
tween 25% and 75% of the total sample size and a randomisation to control
probability that will produce the desired number of control patients. This can
be determined by dividing the desired number of controls by the size of the
AR phase. For example, say our AR size is 30 patients and we want 15 con-
trols the probability of randomising to control ¢ should be set to 0.5 (15/30).
However, it may be beneficial to investigate various values of ¢r as there does
appear to be some trade-off in terms of performance and the number of pa-

tients recruited to the control dose.

3.4.3 Example trial run

To further demonstrate how the design works we provide a illustrative exam-
ple of a single trial run. Here we will use the same design as specified in the
previous section. Specifically we will be using the design with an AR phase
size of 30 and an adaptive randomisation probability of 0.33. All other pa-
rameters and priors are as defined previously. In practice the trial will recruit
patients in cohorts of three, they will then be given treatment and observed.
After the observation period has been collected we will update the model with
the data that has been observed and determine the dose to be recommended

for the next cohort.
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Toxicity and efficacy events are treated as binary variables, so for each pa-
tient there are four different potential outcomes. We will use a specific notation
to denote each of these outcomes. A patient can experience a toxicity event (T),
a efficacy event (E), both a toxicity and efficacy event (B) or neither a toxicity
or efficacy event (N). To reference the outcomes for a specific cohort we label
them with the dose-level of that cohort. For example a cohort at dose-level
4, where 1 patient had a toxicity, 1 patient experienced a toxicity and efficacy
event and 1 patient had neither would be presented as 4TBN. It should be
noted the order of the outcomes does not matter either, 4TBN is equivalent to
4BTN, 4BNT, etc.

For our example trial run we start at dose-level 2. Overall we will recruit 60
patients, unless the model recommends stopping early. The adaptive randomi-
sation phase will last for 30 patients (10 cohorts). The results for our observed
outcomes are shown in Table 3.5. Here for each cohort we show the estimated
probabilities from the model for toxicity and efficacy at each dose-level, we
also present the randomisation probabilities as well which indicate the proba-
bility of randomly allocating the next cohort to the next dose-level. The table
also shows what the recommended and optimal dose is after each cohort.

For the first cohort we see 2EEN, so two patients had efficacy events and
one patient has neither. Based on this data the model shows that all doses are
considered safe as the probability of toxicity is less than 0.35 for all five doses.
Looking at the estimated probability of efficacy we can see that dose-level 2
has the highest probability at 0.68. This implies that the optimal dose would
be dose-level 2 as it has the highest estimated efficacy probability and is within
the admissible safe set of doses. However, the recommended dose is dose-level
3. This is because the recommended dose in the AR phase is selected randomly
based on the randomisation probabilities. As dose-level 2 has the highest ef-

ticacy probability we can see its randomisation probability is also the highest
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TABLE 3.5: Summary of model outputs during the adaptive ran-
domisation phase for our example trial run.

Estimated probabilities

Cohort Dose Outcome 1 2 3 4 5 Recommended  Optimal
tox 0.06 0.09 014 019 0.26

1 2 EEN eff 034 068 059 05 042 3 2
rand. 033 021 0.18 0.15 0.13
tox 002 0.04 007 011 0.17

2 3 EEE eff 051 074 08 0.74 0.67 3 3
rand. 033 0.17 0.18 0.17 0.15
tox 0.02 0.04 007 011 017

3 3 EEE eff 051 074 08 0.74 0.67 4 3
rand. 033 0.17 0.18 0.17 0.15
tox 0.01 0.01 0.03 0.05 0.09

4 4 ENN eff 044 069 077 0.69 0.61 1 3
rand. 033 017 019 0.17 0.15
tox 0.01 0.01 0.03 0.05 0.09

5 1 NNN eff 0.32 0.6 0.7 0.6 0.5 2 3
rand. 033 017 0.19 0.17 0.14
tox 0 0.01 0.02 0.05 0.08

6 2 ENN eff 027 056 066 056 046 4 3
rand. 033 017 02 0.17 0.14
tox 0.01 0.03 0.06 012 0.19

7 4 ENT eff 023 053 064 053 042 1 3
rand. 033 017 02 017 0.13
tox 0.01 0.03 006 011 0.18

8 1 ENN eff 025 054 065 054 044 5 3
rand. 033 017 02 017 0.14
tox 0.03 0.05 0.1 0.17 0.26

9 5 ETT eff 024 053 064 053 043 1 3
rand. 033 017 02 017 0.13
tox 003 005 01 017 025

10 1 ENN eff 025 055 0.65 055 044 3 3
rand. 033 017 02 0.17 0.14
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apart from dose-level 1 which is fixed at 0.33. Here there is still a chance to
recommend the other doses as there randomisation probabilities are non zero.
It is important to note if we were to run the model again with the exact same
data, the estimated toxicity, efficacy and randomisation probabilities and op-
timal dose would all be the same but the recommended dose could be any of
the five doses.

Continuing this example as the model recommended dose-level 3 after the
first cohort the second cohort is recruited and assigned dose-level 3. In this
example all 3 patients experience an efficacy event. When this is put into the
model, dose-level 3 is determined to be the optimal dose. The recommended
dose in this case is also dose-level 3. We see it has the highest estimated efficacy
and therefore also has the highest randomisation probability outside of the
control dose. As the efficacy probabilities are similar for the dose-levels 2-5 the
randomisation probabilities are also similar (0.15-0.18). So, the model could
have easily recommended any of the other dose-levels.

This process is repeated for the whole AR phase. After observing each
cohort we can see from cohort 2 onwards the optimal dose is considered to be
dose-level 3. This is due to the dose having the highest estimated efficacy prob-
ability whilst remaining in the admissible set of doses in terms of safety based
on the estimated toxicity probability. Even though the optimal dose is consid-
ered to be dose-level 3 we see after most of the cohorts the recommended dose
is usually a different dose. This is because the recommended dose is being ran-
domly allocated and as there have been limited toxicities in this example all of
the doses are considered safe and have a chance of being allocated to. In this
example we see that all of the dose-levels have been allocated patients at some
point during this AR phase.

As 10 cohorts of three patients have now been recruited we have reached

the 30 patient limit for the AR phase. Moving into the maximisation phase



3.4. Evaluation and exploration of the extension via simulations 91

TABLE 3.6: Summary of model outputs during the maximisation
phase for our example trial run.

Estimated probabilities

Cohort Dose Outcome 1 2 3 4 5  Recommended/Optimal

tox 0.02 004 009 015 024
1 3 EEN eff 025 055 065 055 044 3

tox 0.04 0.07 014 023 032
12 3 BBE eff 028 057 068 057 047 3

tox 0.05 008 016 025 034
13 3 BEE eff 03 059 069 059 049 3

tox 0.06 009 017 026 036
14 3 EET eff 03 059 069 059 049 3

tox 006 01 018 028 037
15 3 ENT eff 027 057 067 057 047 3

tox 0.07 011 019 029 0.39
16 3 BEE eff 029 059 069 059 049 3

tox 0.09 013 022 032 042
17 3 BET eff 029 059 069 059 049 3

tox 0.09 014 023 033 043
18 3 BNN eff 027 057 067 057 047 3

tox 008 0.13 022 031 041
19 3 EEN eff 027 057 067 057 047 3

tox 008 012 021 03 04
20 3 ENN eff 025 055 066 055 045 3

doses are no longer randomly allocated and instead the optimal dose is now
the dose that is recommended. From cohort 10 in Table 3.5 we can see the opti-
mal dose is dose-level 3 and there would be the dose recommended for cohort
11. Table 3.6 provides a summary of the model outputs for the next 10 cohorts
based on specific outcomes. Thee adaptive randomisation probabilities are no
longer presented as they are not required to allocate patients and as the opti-
mal dose is now always the recommended dose these can be considered the
same.

In maximisation phase we can see after each cohort the decision remains
unchanged an the recommended/optimal dose is always dose-level 3. This
is because that dose has the highest estimated probability of efficacy. Whilst

doses 4 and 5 are still within the admissible set of doses in terms of probability
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of toxicity the estimated efficacy is not as high compared to dose-level 3. If
perhaps we were to observe fewer efficacy events in some of the cohorts this
may change and the model may consider moving to a higher or lower dose.
Also in terms of toxicity whilst some patients do start to experience toxicity
events there is not enough for the model to consider dose-level 3 no longer
safe and move to a lower dose.

For example we see in cohorts 12 and 13 outcomes of BBE and BEE respec-
tively so all six of those patients had an efficacy event and three also had an
efficacy event. This causes the estimated probability of toxicity to go from 0.09
after evaluating outcomes for cohort 11 to 0.16 after cohort 13. Similarly, the
estimated efficacy goes from 0.65 to 0.68. For future cohorts there would need
to be a difference in the outcomes observed in order for the model to recom-
mend a different dose as up to this point there has been data collected on 39
patients, with 15 who have been treated at dose-level 3.

After the final cohort has been observed the model still recommends dose-
level 3 so that would be declared as the OBD. Table 3.7 shows a summary of
the number of patients treated at each dose-level along with the number of
efficacy and toxicity events and the percentage of patients in each dose-level
who experienced an event. The majority of patients end up being allocated
to dose-level 3 as this was continually defined as the optimal dose during the
maximisation phase.

Overall, our design seems to work as intended. During the AR phase mul-
tiple different doses were allocated to cohorts of patients along with the control
dose (dose-level 1). It is possible that just by chance during the AR phase you
may end up selecting the same dose over and over again and not allocate pa-
tients to other doses. So we could include additional rules to mitigate against
this. Ultimately the impact on performance of the design may be limited as

a range of doses could still be explored during the maximisation phase. Here
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TABLE 3.7: Number and percentage of events for our example
trial run by dose-level.

N (%)
Dose No. of patients  Toxicity Efficacy
1 9 0 (0%) 2 (22.22%)
2 6 0(0%) 3(50%)
3 36 9 (25%) 26 (72.22%)
4 6 1(16.67%)  2(33.33%)
5 3 2(66.67%) 1 (33.33%)

the outcomes observed could cause the estimated probabilities of efficacy and

toxicity to change and thus give a different dose recommendations.

3.4.4 Comparison of RtC-WT against Alternative Designs

The simulations presented in Section 3.4.2 were about exploring the impact of
varying the parameters controlling the randomisation in RtC-WT. In this sec-
tion we investigate two alternative trial approaches which could be used to
achieve the same aims as RtC-WT, that is to conduct a dose-finding study lo-
cating the ODB whilst recruiting patients to a control arm. Simulations will be
conducted for these two alternatives across a variety of scenarios and operat-
ing characteristics will be compared against those for RtC-WT.

The first alternative approach would be just to use a standard Wages and
Tait design and include the lowest dose-level as control. We will refer to this
approach as the standard Wages and Tait (WT). Technically this design does
not aim to recruit control patients but by including it as a dose-level there is
still a probability during the AR phase that this occurs. Either way, this will be
a good comparator for RtC-WT as we will be able to directly compare how our
extension impacts performance compared to a traditional Wages and Tait de-
sign. Theoretically, since the standard Wages and Tait design will not be forced

to allocate patients to the control dose-level you would expect more patients
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to be allocated at the experimental treatment dose-levels leading to more data
on efficacy and toxicity relationships making it easier to locate the ODB. The
differences in performance between these two designs could be considered as
the cost of including a control dose.

The second design uses a two-arm randomised approach. Patients once re-
cruited are randomised to either a control arm or a dose-finding study arm.
The dose-finding study arm will use the method of Wages and Tait to identify
an OBD. We will refer to this method as the two-arm approach. One of the ben-
efits of this approach is that it is fairly simplistic. This could be considered a
straightforward way of including a control arm into complex designs without
having to deal with any mathematics. For example, the EffTox design could
be used for the dose-finding arm, and due to the two-arm approach, we now
have a cohort of control patients without building that methodology directly
into the design. For the dose-finding study, any methodology could be used
here to locate an OBD, however, we selected WT to provide more comparisons
for RtC-WT. Since the randomisation occurs upfront a guaranteed number of
patients can be expected in the control arm, which may be a desirable char-
acteristic of this design. It is important to note in our simulations here that
we will not consider any data from the patients in the control arm to have an
impact on the dose-finding study arm. Both arms can be considered indepen-
dent for our simulations. In terms of comparisons to RtC-WT, this design will
allow us to see if it is worth including the control patients directly in the dose-
tinding aspect of the design and if there is any benefit in terms of operating
characteristics.

For RtC-WT we will be using the same design specification as detailed in
Section 3.4.1. In terms of parameters for the number of patients in the AR phase
and the probability of randomising to control these will be set at jg = 30 and

¢$r = 0.33 respectively. These values were selected based on the work done
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in the previous section. This combination of parameters seemed to perform
consistently across all the scenarios explored. The standard Wages and Tait
approach will also be using the same specification except for the fixed proba-
bility of randomisation to control.

For the two-arm approach, patients are being randomised first. Looking at
the RtC-WT design we have specified a sample size of 60, an AR phase size of
30 and a probability of randomising to control at 33%. Here we would expect
roughly ten patients to be allocated to the control arm (33% of 30), looking at
Table 3.3 for this combination we see on average we achieve around 9-10 pa-
tients at the control dose-level in non-toxic scenarios. To mimic this behaviour
for the two-arm approach we would need to specify a randomisation ratio up-
front. Based on the parameters set for RtC-WT this can be done generally using

the formula:

J

1: — —
PRr]r

1, (3.19)

where | is the maximum sample size. Alternatively, if the number of control
patients desired is known the denominator can be replaced by that number.
In this scenario, using the equation above we obtain a randomisation ratio of
approximately 1:5. This would lead to 10 patients in the control arm and 50 in
the dose-finding arm. As we are using cohorts of 3 it would be preferable to
have the sample size of the dose-finding study be divisible by 3. Therefore we
set the desired number of control patients as 9, leaving 51 for the dose-finding
study.

The specifications for the dose-finding study in the two-arm approach will
be somewhat similar as well. Here there will only be four dose levels (no con-
trol dose-level) i.e doses 2-5 in Section 3.4.1. We also adjust the toxicity and

efficacy skeletons accordingly in Table 3.1 as well by removing the values from
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dose-level 1. Since there is no control dose-level in the design we will just be
using approximately 50% of the patients in the AR phase, as recommended by
Wages and Tait. As there will be 51 patients in the dose-finding study we set
the AR phase to 24, slightly less than 50% as we are using cohorts of three and
51 patients can not be evenly split up between the two phases. Each design has
an effective total sample size of 60 patients, however the allocation of patients
to the specific dose-finding portion of the Two-Arm design differs slightly. All
other design specifications remain the same such as the stopping rules and the
pre-specified toxicity upper bound and lower bound. We summarise the three

designs being compared in Table 3.8.

TABLE 3.8: Summary of the three designs being compared.

Design | Specification Benefits Flaws Assumptions
5 Doses . .
N =60 Guaranteed patients recruited A
RIC-WT | Cohort size = 3 to the control dose. Performance may suffer. The lowest dose level is a
Able to compare control to Extra complexity in the design. control dose.

ARssize (jr) = 30 experimental doses.

¢r =0.33

5 Doses Simple to implement.

N =60 P P : Patients not guaranteed at the Control dose treated in the same
WT . Able to compare control .

Cohort size = 3 control dose. was as an experimental dose.

AR size (jg) = 30 to experimental doses.

4 Doses

N =51 Simpler to implement.
Two-Arm | 9 control patients Exact number of control
Cohort size =3 patients is known.
ARssize (jr) =24

Recruit dose-finding and control
Cannot include the control dose patients separately.
when modelling toxicity and efficacy = Allocation ratio is based on the
number of control patients desired.

To compare these different approaches simulations will be used covering
the same 15 scenarios as in section 3.4.2. For each scenario, we simulate 10000
trials using the designs mentioned above. Table 3.9 shows the operating char-
acteristics comparing the three designs. Table 3.10 provides summary statis-
tics of the operating characteristics. The mean and standard deviation of the
selction probabilities are calculated for all scenarios and also all scenarios ex-

cluding those where stopping is the best option (non stopping).
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TABLE 3.9: Operating characteristics for alternative designs. Probability of selecting
the best or good dose levels as the OBD, mean number of patients treated at those
dose levels and at the control dose after 10000 simulations.

Scenario Design OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)
RtC-WT 5 3-5 0.06 0.75 22 30.4 9.8
1 WT 5 3-5 0.05 0.72 2.1 31.8 6.6
Two-Arm 5 3-5 0.04 0.61 1.8 25.5 9
RtC-WT  stop stop/1 0.75 0.79 - 14 14
2 WT stop stop/1 0.76 0.80 - 13.9 13.9
Two-Arm  stop stop 0.75 0.75 - - 9
RtC-WT 3 3 0.39 0.39 17.3 17.3 104
3 WT 3 3 0.37 0.37 17.7 17.7 8.4
Two-Arm 3 3 0.26 0.26 12.6 12.6 9
RtC-WT 3 3-4 0.70 0.81 24.8 31 9.9
4 WT 3 3-4 0.73 0.81 27.6 33.5 6.6
Two-Arm 3 3-4 0.72 0.76 24 28.1 9
RtC-WT  stop stop/1 0.75 0.78 - 14.1 14.1
5 WT stop stop/1 0.76 0.80 - 13.9 13.9
Two-Arm  stop stop 0.75 0.75 - - 9
RtC-WT 3 3 0.50 0.50 20.3 20.3 10.4
6 WT 3 3 0.48 0.48 21.2 21.2 8.4
Two-Arm 3 3 0.38 0.38 15.9 15.9 9
RtC-WT 3 3-5 0.51 0.80 20.8 31.6 9.7
7 WT 3 3-5 0.54 0.79 22.8 33.4 6.8
Two-Arm 3 3-5 0.52 0.71 19.5 27.8 9
RtC-WT  stop stop/1 0.75 0.79 - 14 14
8 WT stop stop/1 0.75 0.79 - 13.9 13.9
Two-Arm  stop stop 0.76 0.76 - - 9
RtC-WT 3 3 0.45 0.45 18.6 18.6 104
9 WT 3 3 0.43 0.43 194 194 8.4
Two-Arm 3 3 0.34 0.34 14.2 14.2 9
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TABLE 3.9: Operating characteristics (continued)

Scenario Design OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)

RtC-WT 2 2-4 0.76 0.98 34.6 49.1 9.8
10 WT 2 2-4 0.78 0.98 36.4 52.2 6.7
Two-Arm 2 2-4 0.83 0.99 37.1 50.2 9
RtC-WT  stop stop/1 0.60 0.67 - 14.7 14.7
11 WT stop stop/1 0.60 0.67 - 14.3 14.3
Two-Arm  stop stop 0.53 0.53 - - 9
RtC-WT 2 2-3 0.80 0.95 36.6 46.3 10.4
12 WT 2 2-3 0.82 0.95 38.5 48.5 8.3
Two-Arm 2 2-3 0.90 0.97 41.2 48.6 9
RtC-WT  stop stop/1 0.68 0.68 - 9.7 9.7
13 WT stop stop/1 0.71 0.71 - 6.3 6.3
Two-Arm  stop stop 0.68 0.68 - - 9
RtC-WT  stop stop/1 0.93 0.94 - 13.5 13.5
14 WT stop stop/1 0.94 0.95 - 13.2 13.2
Two-Arm  stop stop 0.95 0.95 - - 9
RtC-WT  stop stop/1 0.80 0.80 - 10.3 10.3
15 WT stop stop/1 0.82 0.82 - 8.1 8.1
Two-Arm  stop stop 0.81 0.81 - - 9

TABLE 3.10: Selection probabilities and summary statistics for
multiple designs.

Selection probabilities: Scenarios 1-15 All scenarios  Non Stopping
Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean StDev Mean StDev

Selection probabilities for the OBD
RtC-WT 0.06 075 039 070 0.75 050 051 075 045 0.76 0.60 0.80 0.68 093 0.80 0.63 022 052 024
WT 005 076 037 073 076 048 0.54 075 043 078 0.60 0.82 071 094 082 064 023 053 026
Two-Arm 0.04 075 026 072 0.75 038 052 076 034 0.83 053 090 0.68 095 081 062 026 050 030
Selection probabilities for good dose-levels
RtC-WT 075 079 039 081 0.78 050 0.80 079 045 098 0.67 095 0.68 094 080 074 018 070 023
WT 072 080 037 081 080 048 079 079 043 098 067 095 071 095 0.82 074 019 069 024
Two-Arm 0.61 075 026 076 0.75 038 071 076 034 099 053 097 068 095 0.81 0.68 022 063 028

To compare the Two-Arm design with the others, we still consider there to
be five dose-levels, with the first dose-level being a separate arm and dose-

levels 2-5 comprising the dose-finding arm. Also, since the two arms can be
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considered independent in scenarios where stopping is preferred, this would
only stop the dose-finding arm so patients at dose-level 1, the control arm, can
still be recruited.

Across most scenarios RtC-WT and WT designs outperform the Two-Arm
approach in terms of selection of the OBD if only by a few percentage points.
Since the Two-Arm approach is essentially the same as the standard WT de-
sign but with fewer patients, it is expected to be slightly inferior as with most
dose-finding studies a higher number of patients yield better operating char-
acteristics. However, with the RtC-WT design actively recruiting to the control
dose there should be an equal number of patients receiving control and treat-
ment dose-levels to equate to similar operating characteristics. There appears
to be some added benefit in terms of modelling for including control as a dose-
level rather than using the Two-Arm approach when it comes to selecting the
OBD. It should be mentioned that the differences in selection of the OBD are
only slight between 1% and 8%. In terms of MC error, which was discussed
in Chapter 2, Section 2.3.5, a slight difference of 1% can still be interpreted as
significant. Also, the Two-Arm approach manages to allocate more patients
to the OBD in certain scenarios (10 and 12) which is the monotone decreasing
efficacy curve. In these scenarios having fewer dose-levels is an advantage as
the earlier dose-levels are the most optimal making selection easier. It should
be mentioned that an alternative specification of the Two-Arm approach may
lead to better performance overall. In scenarios where stopping early would
be ideal all three designs seem to behave similarly and have relatively compa-
rable operating characteristics.

The performance of the RtC-WT and WT design is quite similar across all
the scenarios. The key differences between RtC-WT and WT can be seen in
the number of patients recruited to the control dose-level. The WT design re-

cruits fewer patients here as expected since the randomisation probability is
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not fixed. This usually results in more patients being allocated to the OBD.
RtC-WT would experience situations where it would allocate a cohort to the
control dose-level but the standard WT in the same situation would be able to
randomise between the efficacious doses. This advantage however does not
consistently yield better selection probabilities. Generally, we can say the WT
design is not ideal if a trial aims to recruit control patients whilst conducting
a dose-finding study. However, in the case where the control dose has high
enough efficacy, the WT design can successfully still randomise patients there
as can be seen in these simulations. It is possible under a different parametrisa-
tion, perhaps a design with a larger adaptive randomisation phase those num-
bers of control patients would be higher, although this may negatively impact
performance. Overall, we can see the trade-off between allowing for this re-
cruitment to control and overall performance. Based on these simulations and

scenarios it seems RtC-WT performs relatively well.

3.5 Efficiency of an efficacy test

Typically seamless Phase I /Il adaptive trial designs, such as the Wages and Tait
design, allow us to conduct dose-finding whilst considering both toxicity and
efficacy outcomes. However, they cannot often make comparisons between
experimental treatment and placebo/control which would typically occur in a
randomised Phase II setting. Our design, RtC-WT, takes these seamless Phase
I/1I designs one step further by incorporating a control arm which allows us
to make these comparisons.

Trials that use an efficacy outcome investigating multiple doses along with
a control dose will usually include a test of differences between the selected
dose and control. If RtC-WT would be implemented in an actual trial it would

be plausible to conduct an efficacy test between the control arm and eventual
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OBD. A two proportions test [77] could be utilised which would simply com-
pare the proportion of efficacy events in the control arm with the proportion of
efficacy events at the OBD. However, dependent on the exact circumstance of
that trial and the data observed the efficiency of the efficacy test may vary. To
evaluate RtC-WT and the efficiency of conducting this test we can use our pre-
vious simulation results and calculate the power that each specific trial would
generate.

We will utilise simulation results from the design in Section 3.4.4. For each
relevant scenario and individual trial run, we will take the number of patients
treated at the control dose and the number of patients treated at the OBD to
conduct power calculations. These results will then be aggregated and sum-
marised.

Power calculations will be done for a two-sided hypothesis test of the dif-
ference between two independent proportions using the effect size. These
methods are detailed by Cohen [78]. The proportions are compared by looking
at their difference which is calculated from transformed values of the propor-
tions in both groups.

Let P; and P, represent the proportions for the two arms then the effect size

is represented by the difference h:

h= 1 — 2 (3.20)

where

W = 2arcsine(\/P,),e = 1,2. (3.21)
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To calculate the power we need to specify the effect size. Cohen [78] sug-
gests using 0.2, 0.5 and 0.8 as effect sizes and indicated these could be in-
terpreted as small, medium and large effects respectively. Our example de-
sign has an efficacy rate specified in the control arm of 30% and an efficacy
lower bound of 50% which informs the futility stopping rule. From this, we
could say the proportion of patients we expect to have an efficacy event in the
control arm is 0.3 and a minimum of 0.5 in the OBD. Plugging these values
into the equations above gives an effect size of 0.41 which we also investi-
gate. For our calculations we considered multiple null hypotheses of Hy : h =
0.2,0.41,0.5,0.8 and the alternative hypothesis of H; : h # 0.2,0.41,0.5,0.8 re-
spectively. The type I error rate was set at 10%.

Table 3.11 lists the effect sizes used for the power calculations. For each
effect size, the power (1 - the type Il error probability) was calculated. It should
be noted that the value of the effect size does not directly match values in
the differences in the proportions. For example proportions of 0.21 and 0.1
will give an effect size of 0.3 but so will proportions of 0.55 and 0.44. In our
simulations, we have set the efficacy rate in the control arm at 30% so here it
is reasonable to assume that on average the proportion in the control arm will
be similar. We can then calculate, using our effect size, what we would expect
the proportion in the OBD arm to be.

TABLE 3.11: List of effect sizes used in power calculations.

Effect Size | Popp Pcontrot  PoBD — Pcontrol
0.2 0.395 0.3 0.095
0.41 0.5 0.3 0.2
0.5 0.544 0.3 0.244
0.8 0.689 0.3 0.389

For scenarios where stopping was the optimal outcome, we did not calcu-
late power. In these scenarios, we would not want to reach this stage as either

the treatment was found to be ineffective or too toxic. Similarly, power was
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also not calculated in individual trial runs where stopping occurred in other
scenarios. There were a small number of runs in which either no patients were
recruited to the control dose or the OBD was declared as a dose that had not
treated any patients. In both of these instances, power could not be calculated
as the number of patients for either the control or OBD arm is 0.

Table 3.12 details the power calculations which are based on the results of
10000 simulations for each scenario. For each effect size, the average power is
presented. In some instances, this average is not across the 10000 simulated
trials but a smaller number due to either stopping rules or insufficient patient
numbers. For reference, we also present the total number of trials in which

power is calculated for each scenario.

TABLE 3.12: Mean power achieved across multiple scenarios for
different assumptions of effect size.

Effect Sizes - Mean Power (sd)

Scenario 0.2 0.41 0.5 0.8 N
1 0.15(0.02) 0.28 (0.07) 0.36 (0.09) 0.64 (0.14) 8445
3 0.15(0.02) 0.3(0.07) 0.38(0.09) 0.67 (0.14) 7096
4 0.15(0.02) 0.29 (0.07) 0.37(0.09) 0.66 (0.14) 8771
6 0.15(0.02) 0.3(0.07) 0.38(0.09) 0.68 (0.14) 7490
7 0.15(0.02) 0.28 (0.06) 0.36 (0.09) 0.64 (0.14) 8777
9 0.15(0.02) 0.3(0.07) 0.38(0.09) 0.67(0.14) 7358
10 0.15(0.02) 0.3(0.07) 0.39(0.09) 0.68 (0.14) 9556
12 0.15(0.02) 0.31(0.07) 0.4(0.1) 0.7 (0.14) 9391

We can see for the effect sizes 0.2, 0.41 and 0.5 power is relatively low rang-
ing from 0.15 to 0.4 depending on the scenario. For a large effect size, the
average power is a bit higher ranging from 0.64 to 0.7. The higher the power
the lower the probability of committing a type II error wherein the hypothesis
test fails to reject a false null hypothesis. Our design appears to have some-
what reasonable power to detect larger differences in the proportions of effi-

cacy events in the control and OBD arm. Altering the parameters of our design
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could lead to results that gives us a higher power but we would also need to
evaluate how those parameters impacted the dose-finding aspect of the design.

The main way to increase the power would be to increase the sample size
specifically by having more patients in the control and OBD arm. Increasing
the total sample size of the trial would not always achieve this goal as the
extra patients could potentially be recruited into other dose-levels. One way
around this would be to utilise an idea like a dose expansion cohort. Once the
OBD has been established recruitment could continue and patients could be
randomised to either the control arm or the OBD to better power any efficacy
comparisons. Alternatively, a two-stage approach could be used where the
first stage consists of dose-finding which is then built upon in a subsequent

stage to compare efficacy more efficiently.

3.6 Discussion

In this chapter, we proposed RtC-WT, an extension to the seamless Phase I/1I
Wages & Tait trial design to allow for the ability to randomise patients to a
control dose. The main motivation was to add a control arm as a dose level
to achieve similar objectives as a randomised phase II study whilst maintain-
ing efficiency in the dose-finding process. We examined the impact of various
combinations of the AR phase size and the probability of randomising to con-
trol. We then compared RtC-WT to alternative approaches. We also assessed
the impact of different efficacy skeletons and assumptions we made about the
control dose on the operating characteristics of the design. In summary, we
found that RtC-WT maintains reasonable operating characteristics when ran-
domising patients to a control dose, although this depends on the parametri-

sation of the design.
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When examining the various combinations of AR phase sizes and randomi-
sation to control probabilities we consistently saw several issues with the ex-
treme values of AR phase sizes. For instance, when the AR phase lasts the
whole trial the design had some issues regarding stopping for excess toxicity.
There were also problems generally with the design when attempting to stop
for futility. It may be necessary to employ alternative stopping rules to achieve
acceptable probabilities of stopping in certain scenarios. Also, when there was
no AR phase the design had issues locating the OBD. This led to the recom-
mendation of using 25-75% of the trial size as the AR phase as these were the
values we investigated.

In terms of randomisation probabilities, we looked at two different possi-
bilities in conjunction with the various AR phase sizes. There are practically
countless combinations that could have been investigated and different com-
binations may have led to alternative conclusions. What can be said however
is that in a practical clinical trial setting, thought should be given as to how
many control patients the investigators want to recruit and then use that to
determine the optimal sample size and AR phase size. For example, if 20 con-
trol patients are desired from a maximum sample size of 60 a randomisation
to control probability of 0.66 for an AR phase size of 30 could be used or a 0.5
randomisation provability with an AR size of 40. Also, here it may be unfea-
sible to look at every combination but a sample should be investigated to see
how it impacts the design.

Furthermore, the scenarios we presented in our simulations are again only
a small handful of all possible scenarios that could be investigated. The scenar-
ios we chose represent a variety of dose-efficacy curves which may be plausible
in this trial setting. Another limitation of the simulations is how toxicity and
efficacy data were generated. We have assumed that both of these events are

independent but in a practical scenario, this may not be the case. A patient
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may withdraw from the trial after having a toxicity, meaning no efficacy data
can be observed for that individual. Further work could be done to look at the
impact of sampling dependent toxicity and efficacy data.

Additionally, the model does not aim to balance toxicity against efficacy or
consider a trade-off between the two like some designs do for example EffTox.
The Wages and Tait design and the RtC-WT select doses from a subset of tol-
erable doses based on the probability of efficacy. This guarantees that the dose
chosen will be safe but there may be a slightly less effective dose which is a lot
less toxic which may be more appropriate or could be considered optimal. Ad-
ditional scenarios could be investigated that look into how this balance works
and those results could be contrasted against designs like EffTox that are de-
signed with those relationships in mind.

To our knowledge, there are no other phase I/1I designs that share the same
aims as RtC-WT as such it is difficult to make comparisons with alternative
approaches. We opted to compare our design against an easy-to-implement
two-arm method. Although our design outperformed the two-arm approach
in the scenarios presented we did not optimise the design of the dose-finding
arm. Usually specifying a design for a dose-finding study is an iterative pro-
cess in which certain parameters are tweaked to produce optimal operating
characteristics. As such a more optimised two-arm approach could yield bet-
ter performance than RtC-WT. The same could be said for the RtC-WT design
and there could exist a better combination of parameters for the example trial
we presented.

For all our simulations and when comparing designs, we used the same
exemplar trial. This involved a control dose that had a known toxicity and
efficacy profile. The probability of observing an efficacious event at this dose
was specified at 30%. Even though this is relatively high when comparing our

design directly to a standard Wages and Tait design we saw an increase in the
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number of patients at the control dose and no real loss in terms of performance.
This shows our design achieves what was intended as well as the fact that the
standard Wages and Tait design can perform a similar job if the efficacy rates of
the control dose are high enough. One caveat to this however is that we have
just looked at one example trial and these conclusions may vary for a trial
in which the control dose is not quite as efficacious. Further work could be
done comparing these designs using different trials with different underlying
assumptions.

If choosing between these two designs to be implemented into an actual
trial there may be multiple things to consider. Whilst the RtC-WT and WT
perform similarly in these simulations, in practice this may not be the case.
The RtC-WT may be a more flexible option. For example, in the case where
it is assumed that the control dose would have a relatively high probability
of efficacy, simulations would show several patients being recruited to that
dose; however, if in the actual trial the efficacy rate at the control dose is much
lower than anticipated you would end up with fewer patients at that dose
than the initial simulations would suggest. With the RtC-Wt this would not
be the case since the probability to randomise to the control dose is fixed up
front and would remain constant throughout a variety of scenarios as we have
demonstrated.

There may also be many practical considerations to accommodate when
considering implementing RtC-WT into an actual trial. For example, the adap-
tive randomisation component may require validation from multiple statis-
ticians every time the probabilities are updated. In the case of RtC-WT this
would need to be done for each cohort. As statisticians are a rare resource in
most trial units this may be a limitation to using the design. It could be said
however in the case of Wages and Tait and other dose-finding trials which use

adaptive randomisation that patients are not being adaptively randomised but
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rather the dose-levels are. This distinction may circumvent the need to have
the randomisation probabilities validated. Typically, in normal dose-finding
studies, patients who enter the trial later on are more likely to receive the
higher dose-levels dependent on whatever escalation occurred so far. With
RtC-WT and Wages and Tait method in general patients will be able to receive
any of the admissible doses with probabilities scaled to the most efficacious
doses.

It should be noted that the inclusion of a control dose depends on the def-
inition of efficacy and toxicity events. It should be possible to measure the
efficacy and toxicity events in the control arm. For example, the standard of
care may aim to treat the underlying symptoms of a condition whereas the
treatment aims to reduce some biological measure that the standard of care
does not impact. This is more of a practical concern to determine if RtC-WT
is a suitable design for a trial since during the modelling phase if no toxic or
efficacy events are observed for the control this should not be an issue.

We also explored how efficient our design would be when conducting effi-
cacy tests. The power for detecting large differences in the effect size ranged
from 64-70%. Most Phase II trials would strive to achieve higher power and
may be able to detect smaller differences. Further work could be done by
building upon this design to achieve this same goal. One other limitation is
that whilst we have used some form of randomisation it is not entirely similar
to randomisation that may occur in a Phase II setting. So, it may be possible
when using RtC-WT there is an imbalance in key patient characteristics when
comparing the control and OBD doses.

A recent development by Yan et al. [79] suggested three alternative strate-
gies of adaptive randomisation for the Wages and Tait design. They showed
that their final recommended strategy achieved better accuracy when select-

ing the OBD as well as allocating more patients to that dose-level as well. The
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strategy works by gradually excluding efficacy skeletons as data is collected.
RtC-WT could be improved further by the incorporation of this alternative
adaptive randomisation method as we have already shown its effectiveness in
comparison to the traditional Wages and Tait design.

In the paper by Mozgunov et al. [75] they compare the use of a 4 parame-
ter EMAX model with a CRM one parameter model, a two parameter logistic
model with and without randomisation. It was found that the four parame-
ter model with the inclusion of randomisation out performed the alternative
approaches in terms of identification of the optimal dose combination. It was
also shown that the two parameter logistic models performed relatively well
and out performed the one parameter model. For the RtC-WT design one lim-
itation is we only investigated use of one parameter models for toxicity and
efficacy. Based on the work by Mozgunov et al. [75] the use of a two param-
eter model may yield better performance from our design as it would be able
to model the probability of toxicity at the control dose and the experimental
doses separately. Based on the randomisation in our design patients would be
allocated to doses around two points the control dose and OBD. Thus, more
flexible models may be more appropriate. Considering our aims were to in-
vestigate the adaptive randomisation component of the WT design to see if it
could be leveraged to include a control arm optimisation of this design could
be apart of further research specifically investigating the benefit of using dif-
ferent models.

Whilst relatively simplistic, our modification allowed for the inclusion of
a control dose-level to the Wages and Tait method without compromising op-
erating characteristics. We presented results from multiple simulations show-

ing good performance, especially in non-monotonic efficacy scenarios. Further
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work could be done to consider a wider range of design specifications and sce-
narios. We utilised a relatively simple trial scenario and made a lot of assump-

tions that may not necessarily be applicable in a real-world trial setting.
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Chapter 4

Extending Dose Transition

Pathways for use in TITE-CRMs

41 Introduction

Dose transition pathways (DTPs), were developed as a tool by Yap et al. [31] in
order to address some of the issues around understanding and implementing
complex and innovative designs. DTPs can be considered a tool primarily
for dose-finding trials where the primary objective is to determine an MTD (or
TD%% at a specific target toxicity level) which is determined by the occurrence
of DLTs recorded as a binary variable. The purpose of DTPs is to aid the design
and analysis of these types of trials. This is done by projecting in advance the
dose-escalation decisions for future cohorts based on the different potential
data that may accrue. It can also be used as a calibration tool during the design
stage of a trial to ascertain how the model behaves under certain outcomes and
modify its specifications if necessary. These projections can then be visualised
and help illustrate how the model operates and communicate possible future
decisions that may be made.

In the paper by Yap et al. [31], DTPs are introduced through their illustra-

tive use in a trial with a CRM design. They discuss that the idea of DTPs can
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be extended to other model-based designs such as the TITE-CRM and phase
I/1I designs that consider efficacy and toxicity. DTPs are produced based on
the different potential outcome data that will be collected and for both of these
possible extensions, the outcome data is more complex which makes produc-
ing DTPs for these designs slightly more challenging. Specifically, for the TITE-
CRM additional data is needed depending on if the patient is to be fully or
partially weighted. So, if the patient has not experienced a DLT they will be
partially weighted in the model based on the time they have spent in the trial.
This makes mapping out dose-escalation decisions difficult since we are no
longer dealing with a simple binary variable of DLT/no DLT.

In this chapter, we aim to explore the potential of extending DTPs for use
in TITE-CRMs. We start by providing an example of a DTP for a simple CRM
design to better understand what they are and how they can be used. We then
look at some of the issues with extending DTPs to TITE-CRMs and present

possible solutions for how they may be overcome.

4.2 Dose Transition Pathways

To explore how DTPs can be extended for use in TITE-CRMs we first look at
how they would be used for a simple CRM trial. This will involve looking
at how CRM designs are implemented and analysed and how DTPs can be
incorporated into these processes.

When implementing a CRM design multiple parameters need to be consid-
ered and specified. These are the number of doses, target toxicity level, dose-
toxicity model, dose-toxicity skeleton, method of inference, decision rules, sam-
ple size, cohort size, safety modifications, and stopping rules [18]. This usu-

ally requires input from multiple stakeholders such as the statistician, clinician
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and trial management team. Typically, once these parameters have been spec-
ified, simulations can be run for various clinically relevant scenarios to obtain
operating characteristics for the specified CRM design. At this point, these re-
sults can be reassessed and the specifications of the CRM can be updated. This
whole process can be repeated iteratively until an acceptable design is reached.

Even after multiple rounds of simulations, there is still the risk that a sta-
tistically optimal design may not be optimal in practice. This could be due to
the scenarios used in simulations not being representative of what is observed
during the running of the trial. This may also occur when model recommenda-
tions are deemed clinically unacceptable resulting in dose-escalation decisions
recommended by the model being ignored or overruled. Whilst dose recom-
mendations from the model should be used as guidance, if its recommenda-
tions are constantly being ignored it undermines the model and brings into
question its specification. DTPs can be used to avoid this from occurring and
can help calibrate the model. They provide insight during the design stages
of the trial into what recommendations the model will make under the range
of potential outcomes. This will help clinicians as well as statisticians better
understand how the model works and calibrate it accordingly so clinically rea-
sonable decisions are being made.

DTPs can also be utilised during the analysis of a trial. In a 343 trial just by
knowing the rules of the design we already know what dose-escalation deci-
sion will be made for all possible outcomes of one cohort. If zero out of three
patients (0/3) experience a DLT we escalate to the next highest dose; if one
out of three patients (1/3) experiences a DLT we recruit a further 3 patients to
the same dose-level; and if two out of three (2/3) patients experience a DLT
we de-escalate to a lower dose or stop the trial if already at the lowest dose.

This can be done and computed without a statistician. On the other hand, we
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have designs such as the CRM where this is not as simple since the next recom-
mended dose will be based on the accrued data. Here DTPs can be utilised to
present this information by analysing all possible outcomes and summarising
the dose recommendations these lead to.

The number of pathways can be calculated using the number of cohorts
(x) and the number of patients in each cohort (). Here, the total sample size
is xy and the number of pathways is (y + 1)*. So, for a trial recruiting 10
cohorts of 3 patients the number of pathways would be over 1 million ([3 +
1]'% = 1,048, 576). There may be fewer pathways based on any stopping rules
which causes the trial to stop early. Presenting this many pathways is difficult
and may also be unintuitive. Yap et al. [31] suggest using the first group of
cohorts to help facilitate discussion with investigators during the design stage
of the trial. DTPs can also be updated during dose-escalation phases as well by
incorporating the accrued data and then projecting pathways for subsequent
cohorts. In the next section, section 4.2.1 we provide a generic trial example to

show how DTPs can be implemented.

4.2.1 Example trial to illustrate DTPs

Consider an early phase trial aiming to determine the TD25 of a single agent;
Table 4.1 details all the parameters we need to set up the CRM design. First, we
specify the clinical parameters; there will be 5 dose levels (dy, ... ,ds), the trial
will start at dose-level 2 (d>), the target sample size will be 30 patients, patients
will be recruited in cohorts of 3 (10 cohorts overall) and the target DLT rate
will be 25% (TD25). A single-stage CRM will be used with a power model to
model the dose-toxicity curve, Bayesian estimation methods will also be used.
Prior estimates for the DLT rates are specified as 0.04, 0.08, 0.16, 0.25 and 0.35

for dose-levels 1-5 respectively, this assumes dose-level 4 (d4) will be the TD25.
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TABLE 4.1: Specification of parameters for an example CRM trial.

Parameter Value

Number of dose-levels 5

Starting dose-level 2

Sample size 30

Cohort size 3

Target DLT rate 25%
Dose-toxicity model Power model
Dose-toxicity skeleton | 0.04, 0.08, 0.16, 0.25, 0.35
Method of inference Bayesian

We assume the prior distribution for the slope parameter in the power
model will be normally distributed with a mean of 0 and variance of 1.34.
These values are based on work by O’Quigley and Shen [58] that proposed a
suitable prior distribution would be a normal distribution with a mean of 0
and a sufficiently large variance. They go on to use a variance of 1.34 which
was adopted by others. As this example is for only illustrative purposes and
given its simplicity we feel these are adequate choices. Wheeler et al [18] also
discuss choices of prior parameters when designing a dose-finding study. Ob-
viously, in a real trial scenario more thought should be given to the selection
of all parameters.

Most of the parameter specifications made here are for simplicity. In prac-
tice, these specifications should have either a clinical or statistical rationale
behind them based on the context of the trial. Once an initial set of these pa-
rameters have been selected, simulations are conducted to assess the operating
characteristics of the design under various scenarios. At this point, DTPs can
also be generated.

For reference we have conducted a small simulation study to evaluate our
example CRM. 10000 trials were simulated under six different scenarios, 5
where each of the dose-levels is the TD25 and a sixth where all doses are too

toxic. The results for the simulations are presented in Table 4.2 and they show
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the selection probabilities for each dose across each scenario.

TABLE 4.2: Selection probabilities from 10000 simulated trials un-
der various scenarios for the example CRM.

Dose Levels

1 2 3 4 5 Stop

Scenario Prior DLT 0.04 0.08 0.16 0.25 0.35

True DLTrate 025 035 045 0.55 0.65
1:TD25 @1
P(Select) 0.68 027 005 0 0 O

True DLT rate 0.15 0.25 0.35 045 0.55
2:TD25 @2
P(Select) 022 048 026 004 O 0

True DLTrate 0.1 0.15 0.25 035 0.45
3:TD25 @3
P(Select) 0.02 021 048 0.24 0.04 0

True DLT rate 0.05 0.1 0.15 0.25 0.35
4:TD25 @4
P(Select) 0 0.03 025 047 0.25 0

True DLT rate 0.01 0.05 0.1 0.15 0.25
5:TD25 @5
P(Select) 0 0 0.04 0.26 0.71 0

True DLTrate 0.5 0.55 0.65 0.75 0.85
6:All toxic
P(Select) 1 0 0 0 0 0

4.2.2 Using DTPs to calibrate the CRM

Since we have specified a sample size of 30 and cohort size of three that means
we will have 10 cohorts and therefore 1,048,576 pathways ([3 +1]'° = 1,048, 576).
Patients in each cohort are considered to either experience a toxic event (T) or
have no toxic event (N). For the first cohort of three patients, there are four

possible outcomes: all patients in the cohort experience no toxicity (NNN), one
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patient experiences a toxic event (NNT), two patients experience a toxic event
(NTT) or all three patients experience a toxic event (TTT). For the subsequent
cohort, the same set of four outcomes can be observed but in combination with
the previous cohort, this creates 16 different outcomes for the first two cohorts
(six patients). This process is then continued for each cohort creating exponen-
tially more pathways.

Given the impracticalities of presenting and summarising all these path-
ways, we can instead present the pathways of the first three cohorts. In this
case, there are only 64 potential pathways ([3 + 1] = 64). Table 4.3 lists all the
pathways for the first three cohorts of patients. Similarly, we can also represent
these pathways visually using either a node plot (Figure 4.1, generated using
the R package escalation [21]) or a flow plot which was originally used to vi-
sualise the pathways when DTPs were first introduced. These have also been
produced (Figure 4.2, generated using the R package dtpcrm [80]) but due to
limitations with the software they only show the pathways for the first two

cohorts.
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TABLE 4.3: Initial DTP for the first three cohorts of our example

CRM.
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FIGURE 4.1: Initial DTP node plot for the first three cohorts of
our example CRM.

From Table 4.3, looking at pathways 33-64, we can see that if there are two
or more toxicities in the first cohort the CRM will always de-escalate the dose
and if there are one or more toxicities in the next two cohorts it will stay at
dose-level 1. We can also see from pathways 17-32 that if we observe a toxicity
event in the first cohort we will stay at the same dose-level for the next cohort.
If no toxicities occur we escalate straight to the highest dose.

Figure 4.1 also shows the same information. The central node represents

the starting dose and first cohort, from here we have 4 branches showing the



120  Chapter 4. Extending Dose Transition Pathways for use in TITE-CRMs

FIGURE 4.2: Flow plot of the initial DTP for the first two cohorts
of our example CRM.
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various outcomes and which dose-level is allocated to the next cohort. In the
case where each patient in the first cohort experience a DLT (TTT), we see that
subsequent cohorts are all allocated to dose-level 1 regardless of their out-
comes. Similarly, when two patients from the first cohort experience DLTs
(NTT) all resulting branches show that dose-level 1 would be selected except
in one case where no further DLTs occur and the CRM would escalate back to
the starting dose. When one DLT occurs in the first cohort (NNT), we remain at
the same dose-level. Looking at these branches if one or more DLTs are experi-
enced in the next cohorts the dose-level is de-escalated, there is only potential
for escalation in the scenario where no further DLTs occur. For the case when
no DLTs occur (NNN) we see the dose for the second cohort escalated to dose-
level 5. At this point, if the second cohort experiences 3 DLTs the CRM will

de-escalate to dose-level 2. If there are only 2 DLTs the CRM goes to dose-level
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3 and one or fewer DLTs and the next cohort will remain at dose-level 5. The
flow plot, Figure 4.2, only shows outcomes up to the third cohort but can be
interpreted similarly to the node plot.

In combination with operating characteristics from simulations, DTPs can
be used to facilitate discussions to see if the CRM can be better calibrated and
how it allocates doses. In our example here there may be a few things that
would concern clinicians, the first being that we skip doses when escalating
and the second that in the cases where lots of toxicity occurs recruitment con-
tinues. To remedy this we can include a rule to not skip untried doses and add
a safety rule to stop the trial if too many toxicities occur at the lowest dose.

In a Bayesian setting, an appropriate method to stop early would be to test
the posterior distribution for the probability of toxicity. For our example here
we will stop if there is at least a 90% probability that the toxicity rate is 10%
greater than the target level at the lowest dose. This can be expressed as P(true
DLT rate at d; > 0.25+ 0.1 | observed data and prior information ) > 0.9.
With the addition of these two rules we now have a modified CRM design.
Again, for reference, updated simulations are provided in Table 4.4. The same
scenarios as presented in Table 4.2 were used to evaluate this new modified

CRM.
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TABLE 4.4: Updated selection probabilities from 10000 simulated
trials under various scenarios for the example CRM with addi-
tional rules.

Dose Levels

1 2 3 4 5 Stop

Scenario Prior DLT 0.04 0.08 0.16 0.25 0.35

True DLT rate 0.25 0.35 045 0.55 0.65
1:TD25 @1
P(Select) 066 026 0.05 0 0 0.02

True DLT rate 0.15 025 035 045 0.55
2:TD25 @2
P(Select) 023 047 025 004 O 0

True DLTrate 0.1 0.15 0.25 035 045
3:TD25 @3
P(Select) 0.03 0.21 048 024 0.04 0

True DLT rate 0.05 0.1 0.15 0.25 0.35
4:TD25 @4
P(Select) 0 003 025 046 026 O

True DLT rate 0.01 0.05 0.1 0.15 0.25
5:TD25 @5
P(Select) 0 0 004 026 071 0

True DLTrate 0.5 055 0.65 0.75 0.85
6:All toxic
P(Select) 034 0 0 0 0 0.66

So, now along with our new simulation results DTPs can also be updated.
Table 4.5 shows the pathways for the first three cohorts. The node and flow
plots were also updated, Figures 4.3 and 4.4 respectively. Since we included
a rule to stop in the case of excess toxicity we see several pathways terminate
early so overall there are fewer pathways compared to the initial set that was
produced. Here we see six different branches where it recommended that the

trial stop early (pathways 32, 44, 45, 53, 54, 55 Table 4.5). This can also be seen
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in Figure 4.3, we can also see three of these nodes recommend stopping before
recruiting a third cohort. Using the flow plot, in Figure 4.4, we can see that
stopping is suggested when five out of the first six patients experience a DLT.
Also, escalation of doses no longer skips dose-levels. With these new rules,
we observe that if there are no DLTs in the first cohort the dose for the next
cohort is dose-level 3 and not 5. We still observe that one toxicity in the first
cohort leads to recruiting the next cohort at that same dose-level and with two
or more toxicities de-escalation occurs.

FIGURE 4.3: Updated DTP node plot for the first three cohorts of
our example CRM with additional rules.
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TABLE 4.5: Updated DTPs for the first three cohorts of our exam-
ple CRM with additional rules.

Cohort 1 Cohort 2 Cohort 3 Cohort 4
Pathway Dose Outcomes Dose Outcomes Dose Outcomes Dose
1 2 NNN 3 NNN 4 NNN 5
2 2 NNN 3 NNN 4 NNT 5
3 2 NNN 3 NNN 4 NTT 4
4 2 NNN 3 NNN 4 TTT 3
5 2 NNN 3 NNT 3 NNN 4
6 2 NNN 3 NNT 3 NNT 3
7 2 NNN 3 NNT 3 NTT 2
8 2 NNN 3 NNT 3 TTT 1
9 2 NNN 3 NTT 2 NNN 3
10 2 NNN 3 NTT 2 NNT 2
11 2 NNN 3 NTT 2 NTT 1
12 2 NNN 3 NTT 2 TTT 1
13 2 NNN 3 TTT 1 NNN 2
14 2 NNN 3 TTT 1 NNT 1
15 2 NNN 3 TTT 1 NTT 1
16 2 NNN 3 TTT 1 TTT 1
17 2 NNT 2 NNN 3 NNN 4
18 2 NNT 2 NNN 3 NNT 3
19 2 NNT 2 NNN 3 NTT 2
20 2 NNT 2 NNN 3 TTT 1
21 2 NNT 2 NNT 1 NNN 2
22 2 NNT 2 NNT 1 NNT 1
23 2 NNT 2 NNT 1 NTT 1
24 2 NNT 2 NNT 1 TTT 1
25 2 NNT 2 NTT 1 NNN 1
26 2 NNT 2 NTT 1 NNT 1
27 2 NNT 2 NTT 1 NTT 1
28 2 NNT 2 NTT 1 TTT 1
29 2 NNT 2 TTT 1 NNN 1
30 2 NNT 2 TTT 1 NNT 1
31 2 NNT 2 TTT 1 NTT 1
32 2 NNT 2 TTT 1 TTT STOP
33 2 NTT 1 NNN 1 NNN 2
34 2 NTT 1 NNN 1 NNT 1
35 2 NTT 1 NNN 1 NTT 1
36 2 NTT 1 NNN 1 TTT 1
37 2 NTT 1 NNT 1 NNN 1
38 2 NTT 1 NNT 1 NNT 1
39 2 NTT 1 NNT 1 NTT 1
40 2 NTT 1 NNT 1 TTT 1
41 2 NTT 1 NTT 1 NNN 1
42 2 NTT 1 NTT 1 NNT 1
43 2 NTT 1 NTT 1 NTT 1
44 2 NTT 1 NTT 1 TTT STOP
45 2 NTT 1 TTT STOP NA STOP
46 2 TTT 1 NNN 1 NNN 1
47 2 TTT 1 NNN 1 NNT 1
48 2 TTT 1 NNN 1 NTT 1
49 2 TTT 1 NNN 1 TTT 1
50 2 TTT 1 NNT 1 NNN 1
51 2 TTT 1 NNT 1 NNT 1
52 2 TTT 1 NNT 1 NTT 1
53 2 TTT 1 NNT 1 TTT STOP
54 2 TTT 1 NTT STOP NA STOP
55 2 TTT 1 TTT STOP NA STOP

At this stage, further discussions could be held about the updated DTPs
and simulations. Here there may be more subtle points to discuss such as the
parameters of the stopping rule. Dependent on the clinical rationale investiga-
tors may be inclined to impose either looser or stricter stopping rules. In our
example, this can be done by altering the threshold values in our test of the
posterior distribution of the probability of toxicity at the lowest dose.

We also see in pathway 2 that an escalation occurs after observing a toxicity
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FIGURE 4.4: Flow plot of the updated DTP for the first two co-
horts of our example CRM with additional rules.
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event in the previous cohort. This shows our design to be incoherent. A CRM
design is considered coherent if escalation only occurs when the previous co-
hort experiences no DLTs and de-escalation only occurs when a DLT has been
observed in the previous cohort. This property limits the risk of unnecessar-
ily exposing patients to toxic doses whilst also ensuring patients get treated
at a reasonable dose within the safety limit [81]. This became an issue due to
the rule we enforced not to skip doses in escalation, the previous design with-
out this rule was coherent. Further rules could be added to ensure the design
remains coherent such that escalation will only take place if the previous co-
hort experience no DLTs likewise, de-escalation will only occur if the previous
cohort did experience DLTs.

We have mentioned how DTPs can be used in conjunction with operating

characteristics from simulations to assist with the design of a trial. There is
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a further added benefit that probabilistic inference can be used with DTPs to
ascertain exact operating characteristics of a design. This work was developed
by Brock [21] as part of the escalation package which he referred to as crys-
tallised dose-paths. As we do with simulations for a specific scenario, if we
specify an assumed truth about the toxicity probabilities at each dose we can
calculate the likelihood of each dose-path according to that truth. From this we
can then determine the probability of recommending each dose or stopping the
trial. The benefits of calculating operating characteristics this way is that it can
potentially be quicker than simulations. This is specifically true for smaller
trials where if we were to run 10000 iterations for a trial with five cohorts of
three patients that would require 50000 model fits. Whereas with crystallised
dose-paths models only have to be fit once at each node which in this exam-
ple corresponds to 1365 model fits. The first cohort has four outcomes NNN,
NNT, NTT and TTT which requires four model fits. These four nodes each
then have four outcomes representing outcomes for the second cohort which
leads to 16 additional model fits. So, for each subsequent cohort the number
of model fits increases exponentially based on the number of outcomes that
can be observed. Even in instances where it may not be more efficient to pro-
duce these crystallised dose-paths they have the added benefit of not suffering
from Monte Carlo error. There is no uncertainty associated with these exact
probabilities but rather about which path will be taken based on outcomes ob-
served. There are some inherent advantages that mean in practice it may be a
better option to use dose-paths over simulations.

Here we have highlighted how DTPs can be utilised during the initial stages
of setting up a trial. Due to our example, some changes could be implemented
into our suggested design to improve it. However, this was to illustrate what
the pathways look like and how they can be used to facilitate discussions with

the relevant clinicians and the trials team. Although we just looked at DTPs
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any changes being made to the design should also take into account operating
characteristics from simulations or from crystallised dose-paths. CRM designs
may not be intuitively understood by clinicians but DTPs should help make
them more accessible. Next, we will look at how DTPs can be used during a

trial.

4.2.3 Using DTPs during a trial

Dependent on the size of the dose-finding trial it will often be infeasible to
present all the different pathways. In our example with 10 cohorts of 3 patients
there are approximately 1 million different pathways. As the trial progresses
we observe outcomes for each patient and thus the number of pathways is
reduced. This makes it possible to present DTPs for future cohorts of patients
once we have accrued the outcome data of previous cohorts.

DTP’s main use in the design stage is allowing you to see how the model
behaves with certain data generated by the earlier cohorts and we can see if
escalation and stopping are occurring as expected. We can then also commu-
nicate more effectively with clinicians and investigators about what our design
is doing. So, once a dose-finding trial has been designed, we can continue us-
ing DTPs whilst we are accruing data to project in advance dose decisions that
may occur. This has the potential to alleviate some of the burden place on a
statistician during a trial. for example clinicians may be interested in under-
standing what future dose decisions may be if a certain number of DLTs were
to be observed and rather than having the statistician run the models DTPs
generated ahead of time could be used. Additionally, the time between the re-
cruitment of cohorts could also be reduced if the next recommended dose is the
same dose regardless of the outcomes observed in the current cohort. It also

allows the statistician to check that the model is still escalating and stopping as
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expected. Although it may be more difficult to make changes to the design of
the trial once it is underway and typically this isn’t usually done unless there
are extenuating circumstances.

To see how this would work in practice we will use the same example as
specified in Section 4.2.1 along with the stopping rule we introduced in Sec-
tion 4.2.2. Essentially, the same design that was used to produce the DTPs in
Table 4.5 and Figure 4.3. Consider a trial where we observe outcomes for the
first three cohorts of patients that match pathway 6 in Table 4.5. That implies
the first cohort of patients is recruited to dose-level 2 and no toxicities are ob-
served, cohort 2 is allocated to dose-level 3 where one toxicity is observed,
then cohort 3 is allocated to dose-level 3 where again only one toxicity is ob-
served and that leads the model recommending dose-level 3 for cohort 4. To
refer to previous cohorts’ outcomes we will use the nomenclature introduced
by Brock [68]. Outcomes for patients, either toxicity (T) or no toxicity (N) are
strung behind a numeric dose-level. For instance, 2TTN denotes a cohort of
three patients that were allocated to dose-level 2, two of whom experienced
toxicity and one who did not. In our example, using pathway 6 from Table
4.5, these outcomes can be denoted as 2NNN 3NNT 3NNT. In this scenario we
are unsure about the toxicity of dose-level 3 as we have seen toxicities in two
separate cohorts, however, this is mainly due to only having recruited three
cohorts. If we consider this our new starting point we can produce new DTPs
based on the observed data at that time.

Table 4.6 shows the new set of DTPs following previous outcomes (2NNN
3NNT 3NNT), these are also visualised in Figure 4.5. For each pathway, co-
hort 4 patients start at dose-level 3 as this is the model recommendation based
on the previously observed outcomes. We have 64 pathways again which in-
dicates that regardless of how many toxicities are observed the trial does not

recommend stopping. In pathway 64 three patients have a toxicity event at
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dose-level 3 and then six have toxicities at dose-level 1. This does not neces-
sarily mean that the stopping rule is not working as intended rather due to the
non-toxicities observed in the first three cohorts there would need to be more
toxicity events before the rule we specified is triggered. This could be inves-
tigated further by looking at the DTPs following the outcomes of pathway 64
(i.e 2NNN 3NNT 3NNT 3TTT 1TTT 1TTT).

It can also be seen if there are two in cohort 4 (pathways 33-48) we de-
escalate to dose-level 2 and if there are three (pathways 49-64) we de-escalate
to dose-level 1. If one toxicity occurs we stay at dose-level 3 (pathways 17-
32). If no toxicities are observed we escalate to dose-level 4 (pathways 1-16).
There are also only four pathways where we end up at a higher dose in cohort
7 (pathways 1, 2, 5 and 17). Given the data we have already observed and if
another toxicity occurs in cohort 4 there would need to be two cohorts of no

toxicities before escalation can take place (pathway 17).
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TABLE 4.6: DTPs for three additional cohorts after observing out-

comes for the first three cohorts.
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FIGURE 4.5: Node plot of three additional cohorts after observing
outcomes for the first three cohorts.

Once cohort 7 is reached in the trial the DTPs can be updated again using
the observed outcomes of whichever pathway occurred. These will show the
potential pathways up to the 10th cohort, which is the maximum sample size in
our example, and will also detail the final dose recommendation. Throughout
the trial the DTPs allow us to map out what doses are recommended until the
final decision.

DTPs can also work with non-uniform cohorts. So far our examples have
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been fairly simple however, in practice there may be complications with run-
ning a dose-finding trial. For instance, there may be issues with recruitment
leading to long time periods between the evaluation of cohorts and dose deci-
sions. This may be due to a number of factors such as a lack of recruiting sites,
underestimation of the prevalence of disease in the patient population, or a
global pandemic. One solution to this may be to reduce the cohort size and
make dose decisions earlier. Model-based designs are fairly flexible at dealing
with issues like these as the model could just be updated after fewer patients
instead. As these considerations may not have been made in the design stages
of the trial, DTPs could be used as a way to evaluate any changes to cohort
sizes that are made during the trial.

We will recreate the DTPs presented earlier in this section except we will
now use varying cohort sizes. These DTPs will use the same previously spec-
ified outcomes of 2NNN 3NNT 3NNT. DTPs will be calculated assuming the
next three cohorts (cohorts 4,5 and 6) will only be able to recruit 2, 1 and 2
patients respectively. Table 4.7 lists the different pathways and they are also

visualised in Figure 4.6.
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TABLE 4.7: DTPs for three additional cohorts with varying cohort
sizes after observing outcomes for the first three cohorts.

Cohort 4 Cohort 5 Cohort 6 Cohort 7
Pathway Dose Outcomes Dose Outcomes Dose Outcomes Dose

1 3 NN 3 N 4 NN 4
2 3 NN 3 N 4 NN 4
3 3 NN 3 N 4 NT 3
4 3 NN 3 N 4 NT 3
5) 3 NN 3 N 4 TT 3
6 3 NN 3 N 4 T 3
7 3 NN 3 T 3 NN 3
8 3 NN 3 T 3 NN 3
9 3 NN 3 T 3 NT 2
10 3 NN 3 T 3 NT 2
11 3 NN 3 T 3 T 2
12 3 NN 3 T 3 TT 2
13 3 NT 3 N 3 NN 3
14 3 NT 3 N 3 NN 3
15 3 NT 3 N 3 NT 2
16 3 NT 3 N 3 NT 2
17 3 NT 3 N 3 TT 2
18 3 NT 3 N 3 TT 2
19 3 NT 3 T 2 NN 2
20 3 NT 3 T 2 NN 2
21 3 NT 3 T 2 NT 2
22 3 NT 3 T 2 NT 2
23 3 NT 3 T 2 TT 1
24 3 NT 3 T 2 T 1
25 3 TT 2 N 2 NN 2
26 3 TT 2 N 2 NN 2
27 3 T 2 N 2 NT 2
28 3 TT 2 N 2 NT 2
29 3 1T 2 N 2 T 1
30 3 TT 2 N 2 T 1
31 3 TT 2 T 1 NN 2
32 3 1T 2 T 1 NN 2
33 3 TT 2 T 1 NT 1
34 3 T 2 T 1 NT 1
35 3 1T 2 T 1 T 1
36 3 TT 2 T 1 TT 1

These DTPs can be interpreted in the same way as before but now just cor-
respond to a different number of patients. Where the recommended dose is
set at dose-level 3 for cohort 5 we can consider these pathways equivalent to
those presented earlier in Table 4.6 for cohort 4. As in both of these scenarios
3 patients would have been treated at dose-level 3. For instance pathways 1-6
and their recommended dose for cohort 6 in Table 4.7 are equivalent to path-
ways 1-16 and its recommended dose for cohort 5 in Table 4.6, This is because

in both instances 3 patients have been treated at the same dose-level and all
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FIGURE 4.6: Node plot of three additional cohorts with varying
cohort sizes after observing outcomes for the first three cohorts.
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have the same outcome. Of course, this does not always hold as a dose deci-
sion made on less data may lead to a different dose decision and hence create
a different pathway. In the scenarios where two patients experience a DLT the
model de-escalates and since there is not a third patient at that dose-level 3 the

following pathways will all differ from those presented previously.
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We have established how DTPs can be used during the design and calibra-
tion of a trial but also whilst it is running. They have the ability to communi-
cate dose decisions effectively. They also help alleviate some of the potential
mystery behind model-based designs where clinicians and non-statisticians in-
volved in trials may not appreciate how dose decisions are being made by a
model such as the CRM. Additionally, they can also be used to assess any mod-
ifications that need to be implemented due to practical or logistical issues. It
is clear DTPs are a valuable tool to incorporate in any dose-finding trial and
with the escalation package by Brock [21] they are very easy to implement,
only requiring a few lines of code.

Yap et al. [31] briefly discuss the idea of implementing DTPs in TITE-CRMs.
However, limited advice or guidance was provided regarding the problems
statisticians may face when trying to do this and there were no examples to
refer to. In the next section, we explore the possibility of extending DTPs to
work in TITE-CRMs using an illustrative example. We also discuss potential

limitations and issues faced when attempting this.

4.3 TITE-DTPs

One reason why DTPs are effective is due to the simplicity of the outcomes be-
ing presented. With a CRM these outcomes are either toxicity (T) or no toxicity
(N). Similarly, with a design like Wages and Tait or EffTox, outcomes are either
toxicity (T), efficacy (E), both toxicity and efficacy (B) or neither (N). Whilst the
number of outcomes contributes to the number of potential pathways, other
aspects of the trial also go into determining this such as cohort size and the
number of cohorts.

However, when we move to the TITE setting the problem becomes more

complex. TITE methodology works by using the idea of a partial tolerance
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event. At the time of analysis for a dose decision, patients without a toxicity
event who have not completed their evaluation period can be considered as
having a partial tolerance. These patients can then be weighted according to
how much of the evaluation period they have completed and be included in
the model. If the patient completes the evaluation period without having a
toxicity, they have tolerated treatment and are fully weighted. This means they
can be analysed and included in the model as is normally done in a standard
CRM design. If a patient experiences a toxicity at any time point they are also
fully weighted.

With TITE-DTPs we still maintain the issues from normal DTPs. The num-
ber of cohorts and the cohort sizes determines the number of pathways that
are produced, but now the outcome is also more complex. More specifically,
just considering DTPs for a standard CRM design, patients would have either
a toxicity or no toxicity whereas now in the TITE setting we also have to ac-
count for the time each patient has spent in the trial. This problem could also
be extended depending on how much precision is used in the measurement of
time.

To explore the problem further we will use an illustrative example. Con-
sider the example trial we presented in Section 4.2.1, except now we include
a TITE component with a 35-day evaluation period. The TITE-CRM can use
all the same parameters and specifications we chose for the CRM trial. When
setting up a time-to-event trial we also need to specify a weight function. This
function determines how patients with partial tolerances will be weighted in
the TITE-CRM model. For this example, we will use a linear weight function
where patients are weighted as a proportion of the time they have completed
in the evaluation period. So, a patient who has completed 20 days would have

a weight of 0.571 (i.e. 20 + 35). The original CRM design used cohorts of three
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however, due to the complexity of TITE-DTPs we will begin by looking at co-
horts of one and two patients. For similar reasoning, we will also only detail

pathways for the first cohort.

4.3.1 Cohort of one patient

First we will just look at a cohort of one patient, i.e the first patient recruited
into the trial. There are 36 possible outcomes for this patient. The simplest
pathway to consider is what happens when this patient has a toxicity, as the
timing of the toxicity does not impact how the patient is weighted. In this
scenario, the recommended dose for the next patient according to the TITE-
CRM model would be dose-level 1. So, if we see toxicity at any time point we
de-escalate.

Now in the scenario where no toxicity is observed, there are 35 different
possible outcomes. Either it is day one and the patient has no toxicity, or it is
day two, or day three, all the way up to no toxicity at day 35. Here we can
tit the TITE-CRM model for each different outcome and see what the model
will recommend as the next dose. Where the patient has between 1-19 days of
follow-up the model recommends dose-level 4, anything greater than 19 and
the model recommends dose-level 5.

After calculating all possible outcomes we can produce a TITE-DTP for this
cohort (Table 4.8). As previously specified the first patient starts at dose-level 2,
and as there are 36 possible outcomes there are 36 pathways to the next cohort.

We also extend the nomenclature of Brock et al. [68] to express the different
outcomes; here the number in brackets represents the amount of follow-up or
observation period the patient has completed. So, N(14) indicates at 14 days
the patient has had a partial tolerance event and the corresponding recom-

mended dose for that pathway is dose-level 4. To summarise a large group of
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these outcomes we may include inequalities in the notation as well; N(<14)
would refer to all the outcomes where the patient had 14 days of follow-up or

less. Similarly, N(>14) would indicate 14 days or more.
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TABLE 4.8: TITE-DTP for a cohort of one.

Cohort 1 Cohort 2
Pathway Dose Outcomes Dose

1 2 T 1
2 2 N(1) 4
3 2 N(2) 4
4 2 N(3) 4
5 2 N(4) 4
6 2 N(5) 4
7 2 N(6) 4
8 2 N(7) 4
9 2 N(8) 4
10 2 N(9) 4
11 2 N(10) 4
12 2 N(11) 4
13 2 N(12) 4
14 2 N(13) 4
15 2 N(14) 4
16 2 N(15) 4
17 2 N(16) 4
18 2 N(17) 4
19 2 N(18) 4
20 2 N(19) 4
21 2 N(20) 5
22 2 N(21) 5
23 2 N(22) 5
24 2 N(23) 5
25 2 N(24) 5
26 2 N(25) 5
27 2 N(26) 5
28 2 N(27) 5
29 2 N(28) 5
30 2 N(29) 5
31 2 N(30) 5
32 2 N(31) 5
33 2 N(32) 5
34 2 N(33) 5
35 2 N(34) 5
36 2 N 5
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DTPs presented earlier in this chapter have been able to convey a lot of in-
formation. Previously with 64 pathways, we were able to specify all the possi-
ble outcomes and dose recommendations up to the 4th cohort of three patients.
Whereas in the TITE setting, we have 36 just for one cohort of one patient. One
way to improve on this would be to more succinctly summarise the TITE-DTP
by aggregating the pathways which lead to the same recommendations (Table

4.9).

TABLE 4.9: Summary of TITE-DTP for a cohort of one.

Cohort 1 Cohort 2

No. of Pathways Dose Outcome Follow-up  Dose

1 2 T 1

19 1-19 4
2 N

16 20-35 5

Whilst we can still apply the concept of DTPs to TITE-CRMs we can see
even with just one patient and one cohort there are a lot of possible outcomes
we have to look at. Also, we have used a small observation period of only 5
weeks. If a larger observation period were to be used the number of pathways
would increase exponentially. In the next section, we explore how adding in

an extra patient affects these TITE-DTPs.

4.3.2 Cohort of two patients

Now we consider a cohort of two patients who start at dose-level 2. As before
we will consider this the first cohort of patients and only calculate pathways
for the next cohort. Here there are a greater number of potential outcomes.
There are three potential scenarios either both patients could have a toxicity,

one of the patients could have a toxicity and one could not and finally both
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patients could have no toxicity. Within the two options where patients could
potentially have no toxicity, there are multiple outcomes depending on how
much follow-up time is observed. The different scenarios and the associated

number of outcomes are:

e TT -1 outcome
e NT - 35 outcomes

¢ NN - 630 outcomes

So, for a cohort of two patients with a follow-up period of 35 days, there are
666 possible pathways. The simplest of these is if both patients have a toxicity.
Here both patients are fully weighted and when put into the model the dose
recommendation is dose-level 1.

If one patient has a toxicity and the other one does not there will be 35
different outcomes. One patient has a toxicity and the other has a partial toler-
ance event on day one, day two, day three, all the way till day 35 where they
have fully tolerated the dose (i.e. N(1)T, N(2)T, N(3)T, ..., N(34)T, NT). These
outcomes are just an extension of the pathways in Section 4.3.1 for one cohort
of one patient, except now when we model these we include an extra patient
in the model who experienced a toxicity. Table 4.10 presents the pathways for
this scenario. Here we can see, regardless of how much follow-up time the

patient with no toxicity has, the model will always recommend de-escalating.
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TABLE 4.10: TITE-DTP for a cohort of two for scenario 2NT.

Cohort 1 Cohort 2
Pathway Dose Outcomes Dose
1 2 NO)T 1
2 2 N@2)T 1
3 2 N@3)T 1
4 2 N@)T 1
5 2 N@GB)T 1
6 2 N(6)T 1
7 2 N7)T 1
8 2 N@)T 1
9 2 NOT 1
10 2 N(10)T 1
11 2 N@ADT 1
12 2 N@12)T 1
13 2 N(13)T 1
14 2 N14)T 1
15 2 N(@15)T 1
16 2 N(@16)T 1
17 2 N@A7)T 1
18 2 N(18)T 1
19 2 NO19)T 1
20 2 NQ0)T 1
21 2 NQDT 1
22 2 N(22)T 1
23 2 N(23)T 1
24 2 N24)T 1
25 2 N(25)T 1
26 2 N(26)T 1
27 2 NQ/T 1
28 2 N@28)T 1
29 2 NQ2)T 1
30 2 N@3O)T 1
31 2 N@G)T 1
32 2 N(32)T 1
33 2 N@33)T 1
34 2 N34T 1
35 2 NT 1

The most complicated scenario is when both patients have no toxicity. The

number of outcomes for this scenario can be calculated using the combinations
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with replacement formula where n represents the number of follow-up days

and r represents the number of patients:

(n+r—1)!

C(n+r—1,r)zm

(4.1)

Here we have to consider every combination of follow-up days both pa-
tients could have completed. We only consider unique combinations of days
for example, N(21)N(34) would indicate one patient had been observed for 21
days and the other for 34 days, this would be the same as N(34)N(21) and so
would only require one pathway.

For our example with two patients and an observation window of 35 days,
we get 630 different combinations, hence the 630 pathways. Trying to show
all these pathways in a table as we did before would be infeasible and hard
to interpret so instead we just present the aggregate dose recommendations in

Table 4.11.

TABLE 4.11: Summary of pathways for a cohort of two for sce-
nario 2NN.

Combined no. of Follow-up Days

Recommend Dose No. of Pathways Minimum Maximum
4 102 2 21
5 528 20 70

We can see out of the 630 pathways, 102 recommend dose 4 for the next
cohort and 528 recommend dose 5. Dose-level 4 is recommended when the
combined follow-up between patients is between 2 and 21 days and dose-level
5 is recommended when the combined number of follow-up days is between
20 and 70. This presents another challenge with TITE-DTPs, as there is some
overlap in dose recommendations depending on how much combined follow-

up patients have. So, if the combined follow-up between the two patients in
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the cohort is 20 or 21 days they could potentially be allocated to either dose-
level 4 or 5 and the way that decision is made is dependent on the split in
follow-up between the two patients. This problem is also visualised in Fig-
ure 4.7. The red lines indicate the combined follow-up time between both pa-
tients of 19 and 22 days respectively. Anything greater than 22 days combined
follow-up and the model recommends dose-level 5, anything less than 19 and
the recommendation is dose-level 4. In between those two time points there is
some discrepancy with the model selecting to escalate higher, to dose-level 5,
with less data i.e. combined follow-up time of 20 days. Table 4.12 provides a

breakdown of these specific combinations.

FIGURE 4.7: Plot illustrating combined-follow up and overlap of
dose recommendations for a cohort of two patients for scenario
NN.
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TABLE 4.12: Different dose recommendations with overlapping

combined follow-up times.

Follow-up Posterior Estimates
Patient 1 Patient2 Combined Dose Recommendation B Variance
1 20 21 5 0.1606 1.2024
2 19 21 5 0.1579 1.2063
3 18 21 5 0.1555 1.2097
4 17 21 5 0.1534 1.2127
5 16 21 5 0.1516 1.2153
6 15 21 5 0.1501 1.2174
7 14 21 4 0.1489 1.2191
8 13 21 4 0.1480 1.2204
9 12 21 4 0.1474 1.2212
10 11 21 4 0.1471 1.2216
1 19 20 5 0.1520 1.2110
2 18 20 5 0.1495 1.2146
3 17 20 4 0.1473 1.2178
4 16 20 4 0.1453 1.2205
5 15 20 4 0.1437 1.2228
6 14 20 4 0.1424 1.2247
7 13 20 4 0.1414 1.2261
8 12 20 4 0.1406 1.2272
9 11 20 4 0.1402 1.2278
10 10 20 4 0.1400 1.2280

In the case where one patient has 14 days or less of follow-up, the model

recommends dose-level 4, similarly, if one patient has at least 18 days of follow

up the model recommends dose-level 5. Then when one patient has follow-up

times of 15, 16 or 17 the model requires the second patient to have enough
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follow-up to make the combined total of 21 days in order to recommend dose-
level 5. So, there exists some threshold whereby the model is happy to esca-
late further if a single patient has enough follow-up (in this case 18 days) and
some critical range where the model will only escalate further if a minimum
combined follow-up threshold is met (here this is between 15-17 days for one
patient with the threshold being 21 days).

This could perhaps be similar to an incoherent CRM design, which esca-
lates after observing a toxicity, except here we escalate after an inadequate
amount of follow-up. It should also be noted that in practice rules may be
employed to stop the trial skipping untried doses or skipping multiple doses
which is what is being recommended in this case. However, that does not
mean that this issue would still not occur even when selecting between two
more appropriate dose-levels.

This issue was examined further by assessing the posterior estimates of
our model parameter 8 and the variance, from the power model used within
our TITE-CRM, for each of these different follow-up combinations. Table 4.12
shows these values. What can be seen is that there is a specific value of B
at which point the dose-decision changes from dose-level 4 to 5. The skele-
ton is used with the power model and the estimate of B to generate posterior
probabilities of toxicity for each dose. The dose-level then closest to our target
of 25% is then selected as the recommended dose. So, there must exist some
value of B at which dose-level 5 now becomes the dose closest to our target.
From Table 4.12 we can see that a B value less than or equal to 0.1489 leads to
a dose-recommendation of 4 and a value of 0.1495 or higher leads to a dose
recommendation of 5. More specifically, we evaluated values between 0 and 1
up to four decimal places to see exactly where this boundary occurs and found
that a B value of 0.1492 or lower leads to dose-level 4 and 0.1493 and higher

leads to dose-level 5.
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In Figure 4.8 for each possible combination of follow-up from 2 to 70 days
we plotted the estimated value of § as a single point. Specific combinations
of combined follow-up times are represented by only one point on the plot as
there is only once combination which leads to that combined follow-up time.
For example combined follow-up time of two days only occurs in the scenario
where both patients have one day of follow-up. For other combinations there
are multiple ways to achieve that so we can see multiple points in these in-
stances. For example, 35 days can be achieved with one patient having 20 and
the other 15, or 13 and 22, or 31 and 4 so for these combinations we can see
multiple points on the plot. The red line indicates that critical value of 0.1492
and we can see that any combination of follow-up on or before that line rec-
ommends dose-level 4 and any above it recommends dose-level 5.

Figure 4.9 focuses specifically on a combined follow-up time of 20 and 21
days and shows how these two combinations of days are the only ones which
cross the boundary where the dose decision changes. Each point on the plot
is labelled with the individual days of follow-up for both patients. This is a
zoomed in snapshot of Figure 4.8 highlighting the combined follow-up times
of 20 and 21 days.

Intuitively, since we are using a linear weight function, we would expect
each day of follow-up to be weighted the same across each patient. That is to
say if we observe 20 days of follow-up with no toxicity the model should make
the same recommendation regardless of if that is 20 patients with only one day
of follow-up each or only one patient with 20 days of follow-up. Clearly, that is
not the case here. When we look back at dose transition pathways for a cohort
of one (Table 4.8) for N(20) and N(21) the model recommends dose-level 5. So,
when two patients have a combined (i.e total) follow-up time of 20 or 21 days
the dose recommendation could potentially be lower than if just one patient

had the same amount of follow-up.
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FIGURE 4.8: Plot illustrating how the posterior estimate of f and
dose recommendation change based on combined follow-up for
two patients.
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FIGURE 4.9: Plot illustrating how the posterior estimate of f and
dose recommendation change based on combined follow-up of
20 and 21 days for two patients.
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In order to explore why this discrepancy exists we look into how the TITE-

CRM works. For reference the TITE-CRM was originally introduced by Che-

ung and Chappel [42]. A further detailed description of the TITE-CRM is also
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provided by Cheung [81]. We also detail the TITE-CRM design in the pres-
ence of partial orders in Chapter 2 (Section 2.2). The TITE-CRM makes use of
a weighted likelihood for the model parameter B, this is given by the equation

below:

Lu(Blw) H{waz, VP — w;F(x;, B)} Y (4.2)

where F(x;, B) is our dose toxicity model, Y; is a toxicity indicator for each
patient and w; is the weight associated for the observation of each patient.
When there are no toxicities i.e. Y; = 0 the first part of the likelihood for-
mula (w;F(x;, B)Y) is reduced to 1 and we are left with 1 — w;F(x;, B)'~Yi. At
each dose-level F(x;, B) will remain fixed and is only affected by the weight w;.
This value is different for each patient depending on how long they have been
observed in the trial. Then the likelihood is calculated by multiplying these
terms for each patient together. This leads us to the root of the issue. As each
w; is independent for each patient and each of these terms is then multiplied
together there is no linear relationship between the combined follow-up times
for patients at the same dose-level. So, we will get different likelihood esti-
mates which leads to different estimates of the p parameter which ultimately
leads to different dose decisions as illustrated in our example.

This was shown in Figure 4.8, where all combinations of follow-up times
yielded different values of . For example, a combined total follow-up of 20
days where one patient has 2 days and the other has 18 equates to weights
of & and £ for each patient respectively (this is based on our linear weight
function and observation window of 35 days). For the same combined total
follow-up of 20 days but split where one patient has 3 days and the other has
17 leads to weights of - 3 and Z. These two different combinations of weights

when entered into the likelihood formula would yield different results. The
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plot also shows this occurs at every combination. However, in most instances
the different values of p for the same overall combined follow-up time would
either be all above or below the critical value we discovered so as such would
not change the dose decision.

When using a linear weight function we cannot say that each day in each
patient at the same dose-level is worth the same amount. Essentially, the sum
of follow-up time between patients at the same dose-level cannot be thought
of as the same. 10 days of follow-up in one patient and 10 days in another is
not the same as 20 days in one patient or 19 days in one patient and one in
another. This is mainly due to how the likelihood is calculated. We can still
say that weighting is linear in individual patients, due to the linear weight
function we use, this just does not apply across patients.

So far we have split up the presentation of the pathways dependent on
the scenario as there are too many to tabulate and present at once. Table 4.13
attempts to summarise all the different pathways for a cohort of two patients.
However, due to the issue with the NN scenario, it is difficult to adequately
summarise the combined follow-up required for the different dose decisions.
Here we have opted to show the exact minimum and maximum combined
follow-up that leads to different dose-recommendations. We then add in extra
rows to provide a specific breakdown of how many days individual patients
need.

From these values you can still determine the minimum and maximum that
guarantee a specific dose as well. For a combined follow-up of 20 days where
one patient has 17 days or less of follow-up the recommendation is dose-level
4 and for the same combination but with one patient with 18 days or more
follow-up the recommendation is dose-level 5. This may be confusing at first
as if you assume a combined follow-up of 20 days with one patient only having

two days you would say that is less than 17 so the dose-recommendation is 4.



4.3. TITE-DTPs 151

However, if one patient has two days and the combination is 20 that implies the
other patient has 18 days of follow-up so we should use the recommendation
from the N(>18) row which is dose-level 5.

This table could be simplified just by including the overlap in the follow-up
column but this would lose out on the granular detail. So, for the outcome NN
we could say a follow-up of 2-21 leads to dose-level 4 and a follow-up of 20-70
leads to dose-level 5. An asterisk or some text could accompany the table to

perhaps explain the overlap or add more details.

TABLE 4.13: Summary of TITE-DTP for a cohort of two.

Cohort 1 Cohort 2

No. of Pathways Dose Outcome Follow-up  Dose

1 2 TT 1
35 2 NT 1-35 1
90 2-19 4
8 20 N(<17) 4
4 21 N(<14) 4
2 NN
2 20 N(>18) 5
6 21 N(>15) 5
520 22-70 5

As with classic DTPs we can also visually show these pathways. Figure 4.10
shows a summary of the pathways as a node plot. Rather than present each
possible pathway as we do with normal DTPs here we just present the same
summary that is shown in Table 4.13. Inside each node is the dose-level. The
arrows show each possible outcome and it’s associated dose-decision. Each ar-
row is labelled with the specific outcome and the combined amount of follow-

up time which leads to the specific recommendation.
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FIGURE 4.10: TITE-DTP Node plot for a cohort of two patients.
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An alternative presentation of the pathways is provided in Figure 4.11. This
plot shows a summary of the pathways in a similar manner to the flow plots
of DTPs. It shows how the dose decision changes with the combined amount
of follow-up time. Each box is labelled with the specific cohort it is referring
to. The number in brackets corresponds to the dose-level and the combined
follow-up times required to reach that decision are also listed below the dose-
level. Additionally, each box is coloured based on the dose-level that is being
recommended for the subsequent cohort. In the case where the boxes are too
small we have just contained some relevant details about the specific outcome
that leads to that recommendation.

For this plot it is important to note that follow-up time is only relevant to
outcomes of no toxicity (N). So, for TT the outcome is not dependent on follow-

up time. However, for NT the outcomes could change based on the amount of
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follow-up time the patient who experienced no toxicity (N) has. This is why
TT, NT and NN have different sized boxes as the total combined follow-up for
each is different. Neither of these plots capture how many pathways these out-
comes represent but this information could easily be added as required. This
should be done with caution as we said before this could be slightly mislead-
ing as the number of pathways does not indicate that one outcome is more
likely than another.

Just by adding an extra patient to a cohort of one the number of pathways
we have has increased almost 20-fold. We have also discovered when looking
at specific combinations of partial tolerance events there are some inconsis-
tencies with the way the TITE-CRM is recommending dose-levels. Finally, for

completeness, we attempt producing TITE-DTPs for a cohort of 3 patients.
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FIGURE 4.11: TITE-DTP Flow plot for a cohort of two patients.
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4.3.3 Cohort of three patients

Consider instead we have a cohort of 3 patients starting at dose-level 2. Here
we will explore all the possible pathways for the first cohort. With 3 patients
there are four possible scenarios, the number of possible outcomes relating to

each scenario is listed below:

TTT - 1 outcome

NTT - 35 outcomes

NNT - 630 outcomes

NNN - 7770 outcomes

In total for just the first cohort of three patients, there are 8436 pathways.
The first three scenarios listed here are just extensions of what has been pre-
viously presented. When all 3 patients have a toxicity, these can just be en-
tered into the model as fully weighted patients and the model recommends
de-escalating to dose-level 1.

The NTT scenario is the same as the cohorts of two NT scenario except now
there is an extra patient in the cohort who also has a toxicity. Table 4.14 shows
the pathways for this scenario. Regardless of the number of follow-up days
the patient with no toxicity has the model will always recommend dose-level

1 if the other two patients in the cohort have toxicities.
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TABLE 4.14: TITE-DTP for a cohort of three for scenario 2NTT.

Cohort 1 Cohort 2
Pathway Dose Outcomes Dose

1 2 N(TT 1
2 2 N@2)TT 1
3 2 N@)TT 1
4 2 N@)TT 1
5 2 N@GB)TT 1
6 2 N(6)TT 1
7 2 N7)TT 1
8 2 N@)TT 1
9 2 NOTT 1
10 2 N(10)TT 1
11 2 NADTT 1
12 2 N@12)TT 1
13 2 N(13)TT 1
14 2 N(14)TT 1
15 2 N@15)TT 1
16 2 N@16)TT 1
17 2 N(@17)TT 1
18 2 N@18)TT 1
19 2 N19)TT 1
20 2 NQO)TT 1
21 2 NQDTT 1
22 2 NQ22)TT 1
23 2 N@23)TT 1
24 2 N(4)TT 1
25 2 N(25)TT 1
26 2 NQ26)TT 1
27 2 NQ/TT 1
28 2 N@28)TT 1
29 2 NQ2Y)TT 1
30 2 N@GBO)TT 1
31 2 NGD)TT 1
32 2 N(32)TT 1
33 2 N@33)TT 1
34 2 N@G4)TT 1
35 2 NTT 1

Similarly, the NNT scenario is an extension of the NN scenario for a cohort

of two patients. We add an extra patient who experiences a toxicity and fit
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the same models and observe the outcomes. Table 4.15 shows a summary of
the 630 possible pathways. We can see that the majority of the time the model
recommends de-escalating. However, there are six pathways where the model
recommends staying at the same dose, dose-level 2. This is when the combined
follow-up time from the two patients who do not have a toxicity is between 67
and 70 days. We also no longer have that inconsistency issue that we saw
before where different dose decisions were being made on the same amount
of follow-up time dependent on the split of days between patients. Here the
TITE DTP is more clear and a combined follow-up time of 66 days or less leads

to de-escalation otherwise the next dose should be recruited at the same dose-

level.
TABLE 4.15: Summary of pathways for a cohort of three for sce-
nario 2NNT.
Combined no. of Follow-up Days
Recommend Dose No. of Pathways Minimum Maximum
1 624 2 66
2 6 67 70

When an additional patient is added to the cohort, the most complicated
scenario is when all patients in the cohort experience no toxicity. With 3 pa-
tients and 35 days follow-up, 7770 different possible combinations of follow-up
days can be observed. The results from fitting all these models are presented
in Table 4.16. In this scenario, if the combined number of follow-up between
the three patients is between 3 and 23 days the model will recommend dose-
level 4 and if it is above 22 dose-level 5 will be recommended. Again we see
the same problem as before with a cohort of two patients for the NN scenario.
There appears to be some overlap in dose decisions for certain combinations of

follow-up days between the three patients. Anything between 20 and 21 days
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may result in either a recommendation of dose-level 4 or 5 depending on the
split of follow-up time between the three patients. Figure 4.12 also provides a
3D illustration of these pathways with each dot representing a different deci-
sion, and the colour corresponding to the dose recommended. A dark blue dot
indicates dose-level 4 and light blue is dose-level 5. This is just for illustration
purposes and due to its complexity it would not be suitable way to communi-
cate these results.

TABLE 4.16: Summary of pathways for a cohort of three for sce-
nario 2NNN.

Combined no. of Follow-up Days

Recommend Dose No. of Pathways Minimum Maximum

4 265 3 21
5 7505 20 105
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FIGURE 4.12: Dose recommendations for a cohort of three pa-
tients for scenario 2NNN.
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In this example, there are 70 different pathways where the combined follow-
up between the three patients is 20-21 days. By examining these pathways
specifically we can define the different thresholds that are needed to make dif-
ferent decisions. Out of the 70 pathways dose-level 5 is recommended in only
9 of those instances (Table 4.17). Of those only one is for a combined total
follow-up of 20 days and the other 8 have a combined total follow-up of 21
days. So, if one of the three patients has a minimum of 18 days of follow-up
then the model will recommend dose-level 5. This is why the minimum com-
bined days of follow-up is 20 to recommend dose-level 5 in Table 4.16 as one
patient will have 18 days and the other two will have one day each. In the case

where the combined follow-up is 21 days, the model will only recommend
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dose-level 5 if one of the three patients has a minimum of 15 days and other

has a minimum of 4.

TABLE 4.17: Follow-up combinations totalling 20 or 21 days lead-
ing to dose-level 5.

Follow-up Posterior Estimates
Patient1 Patient2 Patient3 Combined Dose Recommendation B Variance
1 1 19 21 5 0.1578 1.2064
1 2 18 21 5 0.1553 1.2100
1 3 17 21 5 0.1531 1.2131
1 4 16 21 5 0.1512 1.2158
1 5 15 21 5 0.1496 1.2181
2 2 17 21 5 0.1530 1.2133
2 3 16 21 5 0.1510 1.2161
2 4 15 21 5 0.1493 1.2185
1 1 18 20 5 0.1494 1.2147

We have not shown all 70 pathways but we observe the 8 estimate in each
of these cases leading to a dose recommendation of 5 is above 0.1493. This is
the same threshold we saw in the scenario of 2 patients with NN outcomes.
Similarly, all of the combinations with B estimate of 0.1492 or less resulted in
a dose-recommendation of dose-level 4. As before we can also visualise this
issue with Figures 4.13 and 4.14. These plots show the 8 estimates for each pos-
sible total follow-up combination and more specifically the combinations for a
total of 20 and 21 days. Figure 4.14 labels each point to show the individual
follow-up of each of the patients. Here we see the same pattern before as with
the 2NN scenario. A minimum number of days is needed in a specific patient
in order to obtain an estimate of 8 which is high enough to warrant escalation
to the highest dose. We can see when the follow-up time is split more evenly
between the patients the estimates of  are lower. This also supports our find-

ings earlier where we surmised that weightings between patients at the same



4.3. TITE-DTPs 161

dose-level are not entirely equivalent due to how the likelihood is calculated.

FIGURE 4.13: Plot illustrating how the posterior estimate of f and
dose recommendation change based on combined follow-up for
three patients.
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It is important to note that the threshold of the g estimate which causes
the change in dose-recommendation should remain constant throughout the
trial. This threshold can be thought of as the the values of  required to make
a dose-recommendation picking between doses 4 and 5. This is what we have
observed in our two examples of 2NN and 2NNN outcomes respectively. This
is due to the way in which we determine the recommended dose for the next
patient. The next dose is recommended based on minimising the following

equation:

|F(dy,B) — 6l k=1i,---,5 (4.3)

Here dj represents each dose-level 1 to 5 and 0 is our TD25. The dose with
the probability of toxicity closest to our target of 25% will be selected as our
next recommended dose. This probability is determined by our estimate of .
What we see in our example is that when B is less than 0.1492 dose-level 4 is
the closest in probability to our target level and when it is 0.1493 or higher it is
dose-level 5. We did not observe any values of S between 0.1492 and 0.1493 but
there must exist some asymptotic value at which the decision changes. This
boundary cannot be explicitly defined as its based on the absolute minimum
difference which could theoretically be infinitesimally small.

You would also expect there to be similar boundaries/thresholds when
choosing between any two other adjoining dose-levels. There should exist a
value of B at which dose-level 1 would be recommended over dose-level 2 and
vice versa. Similarly, for dose-levels 2 and 3 and then 3 and 4. Whilst we may
be able to identify these boundary values of  we cannot know what combina-
tion of patients, weights and dose-levels will lead us there. In our example for
the cohort of two (2NN) and three (2NNN) in both instances we see that at a

combined follow-up of 20 and 21 days our dose-decision changes. However,
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if we were to change all of the patients or just one of the patients dose-levels
the combined follow-up of where the decision changes may be different. This
goes back to equation 4.2. At a different dose-level the value of F(x;, f) will
differ leading to a different likelihood and estimate of the f parameter. At
lower dose-levels we would expect the combination of follow-up days to rec-
ommend the same dose to be higher and lower for higher dose-levels. So the
amount of follow-up time required to recommend dose-level 5 would increase
as you decrease dose-level.

Table 4.18 combines all the different scenarios and creates a summary ta-
ble of the TITE-DTPs for a cohort of three. As before we have used a similar
notation to express each possible pathway. There is some additional complex-
ity due to there being three patients instead of two and this can be seen in
the pathways for the NNN outcome where the combined follow-up time is 21
days.

These can be interpreted as follows. If there are no toxicities in the three
patients and their combined follow-up time is 21 days the recommended dose
will be dose level-4, if one of those patients has a follow-up time of less then
or equal to 14 days (21 N(<14)), or if one of the patients has a follow-up time
of less than or equal to 15 days and another patient has less than or equal to 3
days (21 N(<15)N(<3)). This constitutes 29 different pathways. The scenario
with N(<15)N(<3) is included as the cut-off in this scenario is not dependent
on a specific amount of follow-up in one patient but in two. In the scenario
where patients have 15, 3 and 3 days of follow-up respectively the dose rec-
ommendation is 4 but a combination of (15, 4, 2) or (15, 5, 1) leads to a dose
recommendation of 5. This can also be seen in the next row of the table where
if the combined follow-up is 21 days a dose recommendation of 5 is made if
one patient has at least 16 days of follow-up or one patient has at least 15 with

another having at least 4. Looking back at Figure 4.14 we can see this exact
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change by looking at the points around the line representing the threshold
value of B.

Looking at the number of pathways can be quite misleading as from this
table it would seem that a large number of them would end up recommending
dose-level 5 however, this scenario might not be the most likely depending on
what the underlying toxicity is of the dose-level. A higher number of pathways
does not correlate to that outcome being more likely it just indicates that it is
more complex. Therefore, extra care should be taken when interpreting TITE-
DTPs.

Figures 4.15 and 4.16 visualise the TITE-DTP as we did for a cohort of two
patients using a node plot and flow plot respectively. Due to the additional
patient and the potential for more outcomes we can see these figures are some-

what more complicated.

TABLE 4.18: Summary of TITE-DTP for a cohort of three.

Cohort 1 Cohort 2
No. of Pathways Dose Outcome Follow-up Dose

1 2 TTT 1
35 2 NTT 1-35 1
624 2-66 1
6 2 NNT 67-70 2
204 3-19 4
32 20 N(<£17) 4
1 20 N(>18) 5
29 2 NNN ) N<1g) | N(<15)N(<3) 4
8 21 N(>16) | N(>15)N(>4) 5
7496 22-105 5
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FIGURE 4.15: TITE-DTP Node plot for a cohort of two patients.
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FIGURE 4.16: TITE-DTP Flow plot for a cohort of two patients.
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In section 4.2.2, we introduced a simple trial example and produced DTPs
(Table 4.3). The pathways for cohort 1 in that table are the full information
equivalent of the TITE-DTPs in Table 4.18. As the same trial example was used
to produce both of these pathways the only difference is for one of them we
have allowed the ability to use partial information in the form of the TITE-
CRM and introduce a follow-up period of 35 days. In Table 4.3 pathways 1-16
indicate NNN which is equivalent to Table 4.18 outcome of NNN when the
follow-up is max for each patient i.e. 105 days of combined follow-up. In
both sets of pathways we can see the recommended dose for cohort 2 is dose-
level 5. The outcome where all three patients have a toxicity is exactly the
same for both the DTP and TITE-DTP. For the outcome of NTT we can see
the recommended dose for cohort 2 is the same in both pathways, this implies
allowing for partial information does not change the recommendation for this
cohort. When we come to compare NNT we can see that allowing for partial
information does have a slightly different impact on dose recommendations. If
the cohort is evaluated when there are two partial tolerances with the number
of combined follow-up days being 66 or lower the model recommends dose-
level 1. Contrast this to when we have full information (each patient has 35
days of follow-up with no toxicity or just the CRM version of the DTP, Table
4.3) and the recommended dose is 2. TITE-DTPs also allow you to compare
your design to one with full information i.e the CRM equivalent of a TITE-
CRM and allow you to evaluate the length of the follow-up period and see

how the dose decisions change as you move through it.

4.4 Alternative weight functions

In this section we explore how TITE-DTPs are impacted by the use of different

weight functions. Previously, in Section 4.3, we used a TITE-CRM with a linear
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weight function. We will use the same design as specified previously with the
only change being the use of different weight functions. Here we investigate
two different weight functions which we will refer to as Weight 1 and Weight 2
respectively. The formula for Weight 1 is given in equation 4.4 and the formula
for Weight 2 is given in equation 4.5. Here, x represents the number of days

patients would have spent in the trial without observing a DLT.

flx)=1—e () (4.4)

(4.5)

These weight functions represent two different curves. Weight 1 is a curve
which increases from 0 to 1 rather quickly. This means a patient would gain
more weight in a short amount of time during the start of the observation win-
dow. Weight 2 is a curve that increases more slowly over the start of the win-
dow and then increases rapidly. This means that patients would have to be
observed for a large majority of the window before they are weighted more
highly in the model. These two curves are presented in Figure 4.17 along with
the linear weight function for reference.

Weight 1 may be used in scenarios where we expect DLTs to occur very
early on into a window. So here if patients pass that initial period we may
want to weight them more highly in the model. Weight 2 is more conservative
to begin with and may be used in scenarios where we want to wait for a large
part of the observation window to pass before we start assigning more weight
to patients. To give more context Table 4.19 provides a summary of what the
specific weights would be for every 5 days without DLT for the three different

weight functions.
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FIGURE 4.17: Plot of weight values for different weight functions.
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TABLE 4.19: Summary of weight values for different weight func-
tions.

Weight functions

Time (Days) Linear Weight1 Weight2

0 0.00 0.00 0.00
5 0.14 0.40 0.00
10 0.29 0.87 0.01
15 0.43 0.99 0.10
20 0.57 1.00 0.43
25 0.71 1.00 0.88
30 0.86 1.00 1.00
35 1.00 1.00 1.00

To evaluate TITE-DTPs with these new weight functions we will look specif-
ically at a cohort of two patients with 2NN outcomes (two patients at dose-
level 2 who don’t experience a DLT). In Section 4.3.3, where we explored TITE-

DTPs for cohorts of three, we saw this was just a more complicated version
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of the cohorts of two TITE-DTPs. For simplicity, we will just investigate the
different weight functions for cohorts of two. We will only consider the NN
outcomes as the NT and TT outcomes are unaffected by changing the weight
function.

In the TT scenario, both patients are given full weighting regardless of how
much time they have spent in the trial as they have both experienced a DLT.
This would lead to the model recommending to de-escalate to dose-level 1.
Neither of the new weight functions would have an impact in this scenario.

The NT scenario, is where one patient has a DLT and the other does not.
Here, there are 35 different outcomes, these were all presented in Table 4.10.
The results here imply regardless of what weight the patient without the DLT
has the model will always recommend dose-level 1. We could apply our new
weight functions here but the results would still be the same. It should be
noted this only applies to our specific example due to how we have parametrised
the TITE-CRM design. There may exist a design which has different priors, tar-
get toxicity rates, number of doses etc. which would make a different dose de-
cision based on different weights. However, this is not the case for our design
so we will only investigate the NN scenario. Sections 4.4.1 and 4.4.2 investigate

this scenario using Weight 1 and Weight 2 respectively.

4.41 Weight function 1 in the NN scenario

In the NN scenario there are 630 possible pathways. We consider every unique
possible combination of follow-up days both patients could have completed.
A summary of the dose recommendations are presented in Table 4.20. Here
we can see the majority of pathways recommend dose 5. However, the same
issue occurs where there is some overlap with the recommendation when the

combined follow-up time is 8 days.
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TABLE 4.20: Summary of pathways for scenario 2NN with
Weight 1.

Combined no. of Follow-up Days

Recommend Dose No. of Pathways Minimum Maximum
4 14 2 8
5 616 8 70

Table 4.21 provides a breakdown of the specific instances where the com-
bined follow-up time is 8 days. We can see in the case where one patient has
a follow-up time of 6 days or more the dose recommendation is dose-level 5.
As before we also see that these dose decisions match the boundary values we
discovered before where all § estimates above 0.1493 lead to dose-level 5 and
estimates below 0.1492 lead to dose-level 4.

TABLE 4.21: Follow-up combinations totalling 8 days for sce-
nario NN using Weight 1.

Follow-up Posterior Estimates

Patient1 Patient2 Combined Dose Recommendation Beta Variance

1 7 8 5 0.1775 1.1845
2 6 8 5 0.1557 1.2092
3 5 8 4 0.1415 1.2255
4 4 8 4 0.1365 1.2311

To illustrate this further we plot the estimated value of § for each possible
combination in figure 4.18. Here we see only for the combination of 8 days do
the points cross the boundary resulting in the different dose recommendations.

Figure 4.19 shows the same but only for combinations of 7, 8 and 9 days.
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FIGURE 4.18: Plot illustrating how the posterior estimate of f and
dose recommendation change based on combined follow-up for
two patients with Weight 1.
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FIGURE 4.19: Plot illustrating how the posterior estimate of
and dose recommendation change based on combined follow-up
of 20 and 21 days for two patients with Weight 1.
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Compared to the scenario with the linear weight function we still observe

that for specific combinations of combined follow-up time the dose recommen-

dation could change based on how much follow-up time an individual patient

has. The effect of this specific weight function has made it so we observe this at
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a lower amount of combined follow-up time. Using the linear weight function
this occurred at 20 and 21 days. This makes sense since with Weight 1 we are
allocating more weight to patients earlier on compared to the linear function.
The point at which the model recommends dose 5 is now based on a lower
amount of follow-up time than under the linear function.

For this scenario under Weight 1 we are still able to construct a TITE-DTP,
which is presented in Table 4.22. Now we can clearly see that if the combined
follow-up time is greater than 9 the model would always recommend dose 5.
Here it is only under the specific scenario where the combined follow-up time

is exactly 8 where different doses can be recommended.

TABLE 4.22: Summary of TITE-DTP for scenario NN under
Weight 1.

Cohort 1 Cohort 2

No. of Pathways Dose Outcome Follow-up  Dose

1 2 TT 1
35 2 NT 1-35 1
12 2-7 4
2 8 N(<5) 4

2 NN
2 8 N(>6) 5
614 9-70 5

4.4.2 Weight function 2 in the NN scenario

Now we will consider the scenario NN using Weight 2. As before there are
630 possible pathways and a summary of the dose recommendations is given
in Table 4.23. There are 217 pathways that recommend dose 4 and these have
combined follow-up time ranging from 2 to 37. Then there are 413 pathways

that recommend dose 5 with combined follow-up times ranging from 23-70.
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With this weight function when the combined follow-up time between the two
patients is 23 and 37 the dose recommendation will depend on the specific
combination that has been observed.

TABLE 4.23: Summary of pathways for scenario 2NN with
Weight 2.

Combined no. of Follow-up Days

Recommend Dose No. of Pathways Minimum Maximum
4 217 2 37
5 413 23 70

There are 220 pathways where the combined follow-up time is between 23
and 37 days. Of the 220 pathways 124 lead to recommending dose level 4 and
96 to recommending dose level 5. We investigate the 8 estimates for all of these
combinations and present them in Figure 4.20. The same boundary as before
is observed where 8 estimates above 0.1493 lead to dose-level 5 and estimates
below 0.1492 lead to dose-level 4. Compared to the linear weight function this
only occured in 20 pathways where the combined follow-up time was 20 or 21
days.

As this weight function allocates less weight, compared to the linear weight
function, to patients earlier on in the trial we see a larger amount of combined
follow-up time needed to change the dose recommendation. This is why we
see a wide range of combined follow-up times where the dose recommenda-
tion could be either 4 or 5. Under this specific weight function there may be one
patient who has sufficiently high follow-up time such that the model would
recommend the higher dose compared to if two patients had a similar amount
of follow-up time but over a shorter time period.

Specifically, we have one pathway where the combined follow-up time is

23 days with one patient having 22 days and the other having just one day
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FIGURE 4.20: Plot illustrating how the posterior estimate of f and
dose recommendation change based on combined follow-up for
two patients with Weight 2.
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which leads to a dose recommendation of 5. In this instance the weight for the
patient with 22 days of follow-up is 0.63 and the weight for the patient with
1 day is 8.8 x 10~°. Another pathway is when the combined follow-up time
is 37 days with 18 days observed for one patient and 19 days for the other.
This corresponds to weights of 0.26 and 0.34 respectively. Even though there
are 14 more days of follow-up without DLT the dose recommended is lower.
This is not incorrect mathematically and the TITE-CRM model is behaving as
expected. This is just a consequence of the weight function we have specified.

With this weight function it is difficult to specify the TITE-DTP with the
same amount of granularity as we have done before. This is mainly because
we have 220 pathways and there is no way to succinctly summarise them in a
meaningful manner. Previously where the dose decision was different for the
same amount of combined follow-up time we were able to present two state-
ments to indicate how the recommendation changes based on specific follow-

up in a specific patient (See Table 4.22 where 8 N(<5) leads to dose 4 and 8
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N(>6) leads to dose 5). With this weight function there are 15 different combi-
nations where this issue occurs and so we would have to specify 30 statements
to show specifically when the dose recommendation changes based on follow-
up times for one of the patients in the cohort.

Table 4.24 presents the TITE-DTP under this weight function. Here we have
had to simplify what is presented when the combined follow-up time can lead
to differing recommendations. Overall, we can still see if the combined follow-
up time is 22 days or less the recommendations is always dose 4 and likewise

if it is 38 days and above the recommended dose is 5.

TABLE 4.24: Summary of TITE-DTP for scenario NN under

Weight 2.
Cohort 1 Cohort 2
No. of Pathways Dose Outcome Follow-up Dose
1 2 TT 1
35 2 NT 1-35 1
121 2-22 4
220 2 NN 23-37 4/5%
289 38-70 5

" Depends on the specific amount of follow-up time for each patient.

4.5 Discussion

Dose transition pathways as a tool were developed to improve communica-
tion and understanding of model-based designs. Often clinicians may not feel
comfortable with having a model select doses when compared to the standard
approach of a traditional and easy to follow rule-based design [82]. DTPs try

to bridge this gap and make these model-based designs more approachable.
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They do this by summarising model recommendations based on possible out-
comes into simple pathways of dose decisions. They also can be used by the
statistician to help calibrate the model and any design specifications. In par-
ticular, this helps with implementing stopping rules and investigating how
escalation occurs. There is also a potential operational upside where DTPs can
aid the running of a trial. By looking ahead there may be instances where re-
gardless of any outcomes observed on the trial the dose-level will not change.
In scenarios like this the need for a statistician may be lessened.

DTPs can also be implemented as a visualisation tool to help visualise all
the pathways in advance. This may have benefits in terms of raising any immi-
nent safety concerns if certain pathways are followed. They can also be used
throughout a trial’s life cycle at safety committee meetings to discuss potential
doses for future cohorts of patients. They are also very adaptive and are able
to handle many challenging circumstances such as a change in cohort size or a
patient receiving an incorrect dose. If these circumstances were to occur new
DTPs could simply be calculated to account for any trial deviations. Although
this is not an exclusive feature of DTPs, they are only capable of handling these
scenarios because they can be accounted for in model-based designs like the
CRM.

A lot of this chapter focused on providing examples of how DTPs could be
implemented specifically for a CRM design. However, the concept can easily
be applied to many other model-based dose-finding trial designs such as BOIN
and EffTox and even the 3+3. Implementation of these DTPs is relatively sim-
ple as well with the escalation package by Brock [21]. It should be noted, as
mentioned above, some of the flexibility of DTPs is due to the underlying de-
signs that are used to make them. So, some challenges may be found when

producing DTPs for certain types of trial designs.
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It is clear that the inclusion and use of DTPs is a net positive for dose-
tinding trials, not just in their design but also during the running of the trial.
This is also reflected in guidance that is being published relating to the con-
duct and reporting of trials. Statistical Analysis Plan (SAP) guidelines pro-
duced by Gamble et al. [83] in 2011 were extended by Homer et al. [84] in 2022
to provide guidance for early phase trials. The authors here advocate for the
use of DTPs where appropriate when producing SAPs for dose-finding trials.
The DEFINE study [85] aimed to extend the SPIRIT (Standard Protocol Items:
Recommendations for Interventional Trials) 2013 statement [86] and the CON-
SORT (CONsolidated Standards Of Reporting Trials) 2010 statement [87] for
use in early phase dose-finding trials. This led to the development of SPIRIT-
DEFINE [88] and CONSORT-DEFINE [89]. Whilst SPIRIT-DEFINE explicitly
include DTPs in their checklist they are not included in CONSORT-DEFINE.
This makes sense as DTPs are more of a tool during the design and conduct of
a trial and therefore more relevant to include in protocols. However, in scenar-
ios where a dose-finding trial is stopped early, for issues other than safety, the
reporting of these trials could also include DTPs to report what the potential
results of the trial may have been.

In the discussion section of the Yap et al. [31] paper which first introduces
the idea, there is some mention of applying DTPs to TITE-CRMs. They men-
tion the problems with patients having either partial or full tolerance and how
DTPs may differ depending on how much follow-up time they achieve. One
recommendation they gave was to produce the CRM equivalent DTPs. This
would be useful during design stages to assess whether dose decisions change
with full or partial information.

Our work agrees with what Yap et al. [31] originally theorised. Extending
DTPs to a TITE-CRM is problematic. Firstly, due to the idea of partial toler-

ances, trying to account for every possibility and time point a patient has not



4.5. Discussion 179

had a toxicity is an exponentially increasing problem. The complexity of DTPs
is intrinsically linked to patients with partial tolerances as to fully build out the
TITE-DTP you need to calculate every possible time point at which that patient
could be observed. Then also for cohorts of more than one patient, considering
the outcome where both patients experience a partial tolerance exponentially
increases the number of pathways. We demonstrated that by showing the dif-
ferent potential DTPs for cohorts of patients from sizes one to two to three and
how the number of pathways kept increasing with each iteration.

We also found the TITE-CRM to have some issues when recommending
doses. In some instances, different dose decisions were being made based on
the split of follow-up time between patients for the same overall combined
follow-up time. So, in our examples and TITE-DTPs for a cohort of two or
three patients we saw different recommendations when the combined amount
of follow-up time between the three patients was 20 and 21 days dependent on
how those were split between the patients. We have shown this is dependent
on the model parameter and that different combinations of follow-up times
produce different estimates of the parameter due to the likelihood function.
The model parameter 8 can take any real value. As such there are specific
boundaries or thresholds that exist at which the dose-decision will change de-
pendent on the value of 8. However, trying to strictly define these as a specific
value is difficult as the way a dose is selected is based on the smallest differ-
ence between the estimated probability of toxicity at that dose and the target
toxicity level. This difference can be infinitesimally small and as that tends
to zero the value of B which leads to that small difference tends to a specific
boundary/threshold value. However, we can define a two values for § at each
adjoining dose-level to say a value above will result in the higher dose being
recommended and a value below the other value will mean the lower dose is

recommended.
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Understanding this exact boundary is not paramount as in a practical set-
ting due to the observation window or the number of patients you have you
may not get close to that specific value of B where the dose decision changes.
As with our examples where values of f below 0.1492 resulted in a dose-
recommendation of dose-level 4 and any value above 0.1493 resulted in dose-
level 5 being recommended. We saw this corresponded with combined follow-
up times between 20 and 21 days. Understanding the exact combination of
follow-up days for patients that lead to a dose decision is important to help us
construct the TITE-DTPs. This is another advantage of DTPs in a TITE setting
as they allow us to see exactly what amount of data we need to observe for
specific decisions to be made. This may be helpful in practice when it comes to
timing analyses for dose-decisions as it may be beneficial to observe patients
for a few extra days in order to escalate to a higher doses. Whilst this may be
a rare occurrence in an actual trial it will still be beneficial to be aware that his
problem could arise and develop a plan ahead of time to deal with it.

It is also important to note that this inconsistency may change how we in-
tuitively interpret patients weighting in a TITE-CRM, specifically with a linear
weight function. Through our examples we have shown that follow-up time
between patients at the same dose-levels is not equally weighted. We saw that
for the same combination of or total follow-up time different dose recommen-
dations were made based on the split of follow-up time between the patients.
Even in instances where different dose-recommendations were not made we
still saw different estimates of p for different combinations of the same total.
Even with the linear weights it is the non-linearity of the weights that causes
this problem. An extensive review of the literature has not been conducted
however we do not think that this issue with the TITE-CRM has been high-
lighted previously, this may also extend to other methodology which imple-

ments a TITE component.
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We also investigated the use of alternative weight functions. Here we still
observed under certain combinations of follow-up times between patients dif-
ferent dose recommendations could be made. Compared to a linear weight
function having a weight function that gives more weight early resulted in
fewer pathways being impacted by this. by attributing more weight to the
patients early on they contribute more to the model which may result in a
different dose decision. For a weight function which allocates more weight
later into the observation window there are a lot more pathways for a wider
range of combined follow-up times where different decisions could be made.
In our example one pathway escalated to a higher dose even thought there
were 14 less total days of combined follow-up compared to another pathway.
Whilst this is not necessarily incorrect it helps us better understand the impact
of weight functions in TITE-CRMs. For example there could be a medical con-
text where it is more meaningful to have a single patient go 4 weeks without
a DLT compared to two patients going 2 weeks without one. In this scenario
you may want to allocate more weight to the patient at 4 weeks. TITE-DTPs
are possible with different weight functions but may be more difficult to con-
struct. They could still be a useful tool in helping understand weight functions
and when a specific dose decision would be made for a specific amount of
time/weight.

Further work may be done to explore this issue and the idea of TITE-DTPs.
Here we have only looked at a relatively simple example using a TITE-CRM
with a power model. We could also investigate more weight functions such as
the adaptive weight function presented by Cheung and Chappel [42], Huang
and Kuan [53], or Braun [90]. Our example design was not a modified TITE-
CRM so we did not make use of any stopping rules or rules about skipping
doses. Changes to any of the specifications or the inclusion of these rules

would alter the results we produced. It is also possible that this issue may
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be less apparent in the early stages of a modified TITE-CRM example. If a rule
was included to avoid skipping doses the initial set of doses the TITE-CRM
could explore would be restricted. However at a certain point once multiple
dose-levels had been tested the issue may reappear.

Additionally, the observation window of 35 days that we selected was also
fairly arbitrary and as discussed previously any significant increase in this
value will drastically increase the number of pathways that need to be calcu-
lated. We only looked at patients at the start of the trial all of whom received
the same dose-level. An additional approach would be to look at the pathways
halfway through the trial assuming previous patients had been fully observed
so we would not have to consider multiple pathways from that data. Looking
into a more complex example and multiple scenarios to see if TITE-DTPs still
behave as we have described would be beneficial to validate the work we have
already done as well as highlight any different features that may emerge such
as the inconsistency with weighting that we found.

The examples of TITE-DTPs we provided were for only one cohort as well.
Obviously, this becomes more and more difficult to deal with as we add in
extra patients and cohorts. It is also not as trivial as just presenting a sum-
mary table as we did for the first cohort as well. Any additional cohort will
have to take into account not only partial tolerance events from the new co-
hort but would have to consider every remaining possible partial tolerance
event from a previous cohort. Consider one pathway from a cohort of three,
N(B1)N(23)N(9), all patients here experienced a partial tolerance and as their
combined follow-up time adds up to 63 days we can see from the TITE-DTP
in Table 4.18 the dose recommendation would be dose-level 5. If we were to
then recruit cohort 2 to dose-level 5 and attempt to produce more pathways
we would need to check combinations for each possible amount of remaining

follow-up time for the patients in the previous cohort as well as the full 35 days
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for each of the three new patients. So, this can essentially be thought of as a
cohort of six, where some patients already have some data available. Equation
4.1 can then be used to give us a rough estimate of how many combinations
need to be considered. For a cohort of 6 patients with 35 days of follow-up,
the number of combinations is 1 x 10*!. Now since we already have some
data a few of these combinations are redundant but that is still an astronomi-
cal amount of pathways. For context the universe is approximated to be 13.7
billion years old [91] which roughly converts to 4.3 x 10'7 seconds i.e. there
are more possible combinations than there are seconds that have passed since
the beginning of time.

The TITE-CRM was originally designed to work without the use of cohorts.
The idea was that patients could be recruited into the trial continually and they
would be allocated a dose-level based on data from patients already in the
trial. As those patients already in the trial may not have completed their DLT
observation window they would be partially weighted using the idea of them
having achieved a partial tolerance. As recruitment to a clinical trial may not
be consistent or predictable this made it possible to not pause recruitment in
a dose-finding trial which would typically be done whilst a cohort was being
observed for DLTs. However, in a practical setting and with guidance from
regulators it may not always be possible to run trials in this manner. In order
to make a dose-decision data may have to be source verified and cleaned. A re-
port and analysis will have to be produced and used to make a dose-decision
which is then discussed with an independent committee. This process may
take weeks and recruitment may have to be paused to allow for this to occur
before the next patient is recruited. Werkhoven et al. [54] provide a full discus-
sion on the practicalities of running a TITE-CRM and the challenges it raises.
However, the TITE-CRM still remains useful as we can have long observation

windows to monitor late-onset toxicities and still make dose-decisions whilst
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observing patients (Like we have done in Chapter 2 for the ADePT-DDR trial).
As such TITE-DTPs can still be a useful tool.

One way in which TITE-DTPs could work with multiple cohorts would be
if previous cohorts were completed and had full information. That data could
go directly into the model and you would not need to consider any previous
partial tolerances. When a dose decision for cohort 2 is made on partial in-
formation from cohort 1, TITE-DTPs could be created showing outcomes for
cohort 3 that assume cohort 1 has full information. In practice, this may very
much be the case as well depending on factors such as recruitment time and
the follow-up period.

The way DTPs are calculated the outcomes are specified and then entered
into the model and then the recommended dose based on those is extracted.
Those values are then used to construct the DTPs. That means for each out-
come we have to specify an individual model. So, earlier in the chapter when
there were 64 pathways 64 models were fitted and in the example of TITE-
DTPs for a cohort of 3 we had 8436. As you increase the cohort size and the
number of patients or the number of follow-up days in the trial, the num-
ber of pathways increases hence the number of models required to compute
the DTP increase and the more models required the more computing time is
needed. One way around this may be to stop computing once a dose-decision
threshold is reached. This specifically relates to any outcomes where a partial
tolerance occurs. In the TITE-DTP example for the NNN outcome, we see any-
thing after 27 days of combined follow-up recommends dose-level 5, We could
incorporate a rule into our code that checks after each combination of follow-
up days if the recommended dose changes and remains the same across every
permutation of follow-up time across the patients DTPs would stop being cal-
culated and you can assume the recommended dose will be the same. That is

to say in this scenario for every combination of the three patients” follow-up
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time that adds up to 27 the model recommends dose-level 5 so we can assume
that for any additional follow-up time the model will make the same recom-
mendation as that is the maximum dose. This could cut down computing time
on thousands of additional pathways depending on the scenario and context.

An alternative method of producing TITE-DTPs may be to use patients’
weight as a reference instead of their follow-up time. Even though weight is
a function of follow-up time it might make presenting the TITE-DTPs simpler.
A set of weights could be specified and pathways for those could be calculated
instead. So rather than calculating pathways for N(1), N(2), ..., N(34), N you
just calculate pathways when a patient is at 25%, 50%, 75% and 100% weight-
ing. The issue with this is in order to make it interpretable you would have
to back-transform the weighting. So in our example with a 35 day follow-up
period and a linear weight function weightings of 25%, 50%, 75% and 100%
would correspond to 8.75, 17.5, 26.25, and 35 days respectively. This might not
be intuitive but it is one way to reduce the number of potential pathways. For
cohorts of two or more where multiple patients are experiencing partial toler-
ance rather than looking at every possible combination you could just look at
specific weightings. For example what is the pathway when both patients are
at 50% weight, or perhaps when one is at 75% and the other at 25%.

As Yap et al. [31] suggested perhaps the easiest approach is just to assume
that full tolerance will be achieved and calculate DTPs from that viewpoint.
So treat the trial like a CRM and give full weighting to all the patients. This
could be used as an alternative and a way to compare dose decisions made on
partial information versus full information. This comparison was also made
in our example and we saw how some decisions may change with only partial
information. During the design stage of a trial, this may be useful in help-
ing determine the length of any potential observation window and how dose

decisions may change during it.
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Overall it is possible to produce TITE-DTPs but it very much depends on
the number of days that patients can have a partial tolerance. It also depends
on the size of the cohort you are evaluating. There are also some practical
suggestions for how TITE-DTPs could be used during a trials design as well
as it is running. Based on all these factors it appears problematic to produce
TITE-DTPs for more than one cohort at a time and this will only be feasible
during a trial if you can assume complete information on previous cohorts.
Ultimately TITE-DTPs are still able to achieve the same aims as DTP except its
ability to look ahead is a lot less.

Statisticians should attempt to produce them wherever possible. They can
be used to project the pathways for the first cohort of patients. This will help
provide insight into the specific amount of follow-up that is required for cer-
tain dose decisions to be made. They can also be used to help calibrate the
weight function as well. It could also be beneficial to produce DTPs for the
CRM in this instance as a starting point and then work on implementing TITE-
DTPs. However, if the scenario or trial parameters mean the TITE-DTPs is too

complicated they may be more of a hindrance than a benefit.
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Chapter 5

Efficacy Transition Pathways

5.1 Introduction

In Phase II trials we are often attempting to determine whether or not a new
treatment or intervention works and establish if there is an efficacy signal.
More specifically we aim to determine if there is sufficient level of evidence
to warrant further research in a Phase III setting [92]. In addition to assessing
efficacy there is also opportunity to further explore the toxicity profile of the
treatment. Compared to Phase I trials, Phase II trials are typically conducted
using a larger sample size [93]. Generally speaking Phase Il trials should be ef-
ficient and quick such that we can progress to Phase III as quickly as possible
or drop any ineffective treatments.

The output from a Phase II trial should be either a ‘GO’ or 'No GO’ deci-
sion i.e should we or should we not proceed to later phase testing based on the
data observed in this trial. One of the more important aspects of these trials is
that we do not want to make any incorrect decisions and if there is an effec-
tive treatment that is being investigated we want to make sure that it is taken
forward into Phase III. As such it is important that we try to make correct de-
cisions in Phase II trials. Failure to do so could result in potentially beneficial

treatments being rejected or bad treatments being investigated further, which
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could negatively impact patients and waste a lot of time and money [94].

However, Phase II trials still face some issues which may make this chal-
lenging. Whilst it is the case that Phase II trials are typically larger than Phase
I trials, there are still some instances in which we would be dealing with small
sample sizes, such as, in a rare disease setting. In these instances we may em-
ploy single arm Phase II trial designs along with Bayesian methods to make
better use of the data we are able to collect.

Furthermore, we may also be interested in taking a look at some safety
data and check that there is sufficient signal of efficacy to warrant continuing
the trial. This may take the form of interim analyses and can be thought of in a
similar manner to dose decisions in dose-finding trials. Rather than assessing
the data and selecting a dose, we are assessing if the trial should continue or
not, stopping for either futility in terms of efficacy or safety reasons.

Whilst these designs may be simple to implement they also suffer from sim-
ilar drawbacks as certain dose-finding methodologies, that have previously
been discussed. There may be some issues parametrising these designs e.g. se-
lecting adequate decision rules. Any Bayesian approaches may be less famil-
iar than traditional frequentist approaches that are more commonly used [95],
such as the Simon’s two-stage design [96]. Clinicians and non-statisticians may
struggle to understand why certain decisions are being made during interim
and final analyses.

In order to solve some of these issues Lucinda Billingham (LB) developed
the idea of Efficacy Transition Pathways (ETPs), a novel visualisation tool to
aid the design and interpretation of these types of designs. ETPs are an exten-
sion on the concept of Dose Transition Pathways (DTPs). Here they help map
out and visualise the different decisions that can be made at interim and final
analyses based on different observed outcomes in a similar manner as how

DTPs present different dose-decisions that can be made for each cohort.
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In this chapter we will detail how ETPs are constructed as well as how they
may be used in practice. In addition we present motivating examples where
ETPs have been actively implemented and used in clinical trials. The primary
aim of this chapter is to develop software to facilitate the implementation of

ETPs in order to make them as accessible and as DTPs.

5.2 Efficacy Transition Pathways

ETPs were primarily designed for use in single arm Phase II trials using Bayesian
methods where the data is being looked at and assessed frequently. Typically
a trial like this, at least in an oncology setting, will have a short-term binary
outcome either success or failure, response or no response as its primary out-
come.

One approach for these sorts of trials is to use a Beta-Binomial conjugate
analysis to estimate a response rate for the binary outcome. Posterior proba-
bilities can be used to inform decision-making and predictive probabilities can
be used during interim analyses in a similar manner. Any decisions made will
be done using pre-specified decision rules.

In order to demonstrate how ETPs are constructed and used we will look at
the design process for a trial using a Beta-Binomial conjugate analysis. When
implementing a design like this we need to consider a number of factors such
as: the total sample size, the number and timing of any interim analyses, and
decision criteria for interim and final analyses. Then, much like with a dose-
finding trial, simulations can be conducted to obtain operating characteristics
of the design. In addition we can also calculate the number of responses re-
quired at each analysis to continue the trial. This is also an iterative process so
the design and decision rules can then be tweaked until an acceptable design

is reached.
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ETPs can be utilised during this process as they are able to present the de-
cisions that will be made based on the current design specification and the
potential outcomes that can be observed for each analysis time point. As the
design process for a trial involves multiple stakeholders it may not be easy to
understand why or when certain decisions are being made. By mapping this
all out in a single plot it may be easier to visualise.

For example, based on whatever the current specification is, it may be the
case that in the first interim analysis 2 /5 patients require a response to continue
the trial. Once the clinicians see this they may feel its too strict and would only
think about stopping if there are no responses or alternatively they may want
to remove this interim analysis and decide to only look at the data once 10
patients have been recruited. This is far more intuitive then trying to explain
these concepts and using different boundaries for predictive probabilities. This
could then be used to facilitate further discussions about the design specifica-
tion and if decision rules need to be more or less lenient.

ETPs much like DTPs could also be used throughout the trial as well. So,
based on how many responses have already been observed you can easily fig-
ure out how many responses would be required for the next cohort of patients
to obtain a ‘GO’ decision. Once the ETPs are produced all future decisions
based on the number of responses can also be seen. So, this has the benefit of
not requiring a statistician to run an analysis to calculate the specific number
of responses that are required for a ‘GO” or 'No GO’ decision. Whilst, ETPs
should not replace the need for a statistician and they should still be involved
with all the analyses they act as a tool that can help monitor the progress of a
trial and can be referred to throughout the trials life cycle. In the next sections

we provide an example trial to show how ETPs are constructed and utilised.
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5.2.1 Illustrative example to showcase a Beta-Binomial design

Consider a Phase II trial where the objective is to evaluate the efficacy of some
new treatment. This will be evaluated using an outcome measure of response.
Patients can either be considered a responder or a non-responder. Consider
this is in a rare disease setting so patient numbers are limited and as such we
will be using a single-arm design. The treatment effect will be the response
rate which will be estimated using a Beta-Binomial conjugate model. We will
require a sufficient level of evidence that the there is adequate treatment effect
to warrant further research in a Phase III trial. Here, we will be utilising a
decision space with two outcomes: GO or No GO. However, this approach can
be adapted for more complex scenarios, such as the Lalonde framework [97]
which implements a Go/Pause/Stop decision structure.

The Beta-Binomial conjugate model is described by Lee [25]. Consider a pa-
rameter of interest 0 that represents some treatment effect. More specifically,
for binomial data in a single arm Phase II clinical trial, lets say the parameter
8 is the probability of response in a number of patients following a some new
treatment. Each patient can experience either a response or no response, with
the same probability of response and each patient being independent from
each other. For a fixed sample size with n patients and number of responses

(y) we have:

Y ~ Binomial(n, 0) (5.1)

So, y is from a binomial distribution which produces the following likeli-

hood:

L(6) = P(y|6) = (Z) 0V (1—0)"Y (y=0,1,...,n) (5.2)
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If the prior for 0 is from a Beta distribution such that

P(6) = Beta(a, b) (5.3)

then the posterior distribution is also from a Beta distribution and can be

expressed as

P(0ly) = Beta(a+y,b+n—y) (5.4)

To avoid confusion with the prior we willleta =a+yand B =b+n—y

which gives

P(0]y) = Beta(w, B) (5.5)

Bayesian inference can then be used for estimation and decision making.
Features such as the mean and variance of the treatment effect § can be esti-
mated from the posterior distribution given in equation 5.5. For the posterior

distribution of 6 ~ Beta(a, ) the mean, variance and mode are.

E[0) = ; (5.6)

_ ap
Var[0] = T PRt BT (5.7)
mode[0] = #;1_2 (5.8)

The proofs for these formula are relatively simple and can be found in [98].
We can also establish credible intervals or make other probability statements

in a similar manner.
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We can also establish credible intervals or make other probability state-
ments in a similar manner. Then pre-specified rules based on these direct
probabilities from the posterior can be used for decision making purposes. For

example, if

P(6 > cly) > g then GO else No GO (5.9)

where c is some target level of treatment effect and g is some threshold of
sufficient evidence.

For our example we specify a minimally informative Beta(1,1) prior. This
represents a 50% response rate from a group of two patients. Data will also
need to be collected from patients recording if they had a response or not.
This in turn is combined with the prior distribution to generate a posterior
distribution for the treatment effect.

We will also specify the following decision rule will also be used P(6 >
30%) > 0.9. So, if there is a greater than 90% chance that the true response rate
is at least 30% this will be considered sufficient evidence to warrant a ‘GO’
decision. This criteria is just for illustrative purposes, in practice both clinical
and statistical considerations should be made for specifying these parameters.
In a rare disease setting there may not be many effective treatments so target-
ing a low level of treatment effect could still be considered an improvement
for patients. Depending on the scenario it may also be appropriate to require
a high level of evidence that the treatment is effective. There may be a heavy
treatment burden on patients with multiple hospital visits or negative side ef-
fects and so clinicians may want a higher amount of certainty that the targeted
level of treatment is reached to trigger a ‘GO’ decision. For this example trial
we will set our sample size at 30 patients.

We will also include interim analyses after every five patients to evaluate
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whether or not the trial should be stopped for futility. To do this we will use
the predictive probability of success (PPoS).

Consider for a fixed sample of size n patients an interim analysis that will
be conducted after n;,; patients, such that n;,; < n. Again, the parameter of
interest, treatment effect or response rate will be represented by 6. Let the

number of responses x among the n;,,; patients follow a binomial distribution:

X ~ Binomial(n;,,;,6) (5.10)

Let Z be the number of responses in the remaining m patients, where m =
n — ;. When Z = i, where i = 1,...,,m, the posterior distribution can be

expressed as

P(0|x,Z=i)=Beta(a+x+z,b+n—x—2z) (5.11)

Where a and b are parameters from the Beta prior distribution, see equation
5.3.

Suppose we have a decision rule where a GO decision is made if the pos-
terior probability of 6 exceeds some pre-specified target treatment effect/ re-
sponse rate ¢ with a probability greater than some threshold g (as defined in
equation 5.9).

The predictive probability of success (PPoS) can be calculated as follows.
Let B; = P(0 > c|x,Z = i) and I; = I(B; > gq) be an indicator variable taking a

value of 1, if the criteria B; > g is satisfied or 0 otherwise. Then we have
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PPoS = E{I[P(6 > c|x,Z) > q]|x}

= / P(6 > c|x,Z) > q]dP(Z|x)

:Z{)p( = ilx)I[P(0 > c|x, Z = i) > q]

(5.12)
m
= Z I(B; > q)
f:
Where P(Z = i|x) is the probability of observing Z responses in m patients

based on a beta probability distribution with parameters a + x and b + n;,; — x.

This can be calculated from the probability mass function

' m\ Beta(a +x+z,b+ njy +m — x — i)
Z: , ’b . — —

f( ilm,a+x,b+njy — x) (z) Beta(a + x,b + 1y — x)

_ (m\Beta(a+x+zb+n—x—i

\z Beta(a + x,b + iy — x)

(5.13)
The Beta functions can be further simplified or alternatively expressed us-

ing the gamma function. Note I'(k) = (k — 1)!

Ia+x+2)T(b+n—x—2)

f(Z:l):Z'(mm! 5 T(a+b+n)
' Fa+ x)T(b 4 e — )
I(a+b+n)
B [(m+1) Fla+x+z)T(b+n—x—2z) a—+b+njy,
CTE+1D)T(m—z+1) T(a+b+n) T(a+ x)T(b+ njy — x)

(5.14)
The process to calculate the PPoS starts with the quantity B; which repre-
sents the probability that the response rate is greater than some target c given

X responses in 1;,; patients and assuming i future responses in the remaining
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m patients. The quantity B; is then compared to our probability threshold g
which provides a value for the indicator variable I; and informs us if the trial
would result in a GO decision at the end of the trial dependent on the data
observed and the value of Z = i. The indicators I; are then weighted by the
probability P(Z = i) and summed to give the PPoS.

PPoS is then interpreted and used to make decisions at interim analyses.
Low values of PPoS suggest there is a low probability of achieving a GO de-
cision at the final analysis based on the data accrued so far. Similarly, a high
PPoS suggests the opposite and that the trial would likely be a success based
on the current data. An interim decision rule can then be implemented around
values of PPoS to recommend stopping the trial early for either efficacy or fu-

tility. To stop for futility a the following rule could be imposed

PPoS <t then STOP for futility (5.15)

Where t is some PPoS acceptable probability threshold. Values of ¢ range
from 0 to 1 but would typically be small. For example a value of 0.2 may be
used to indicate if there is a less than 20% chance that the response rate at the
end of the trial will be greater than ¢ with some probability g then the trial
should stop early.

For our example trial we will specify a PPoS acceptable probability thresh-
old where if PPoS < 0.05 then we should stop the trial for futility. This implies
we would stop the trial if there is a less than 5% chance that the response rate
at the end of the trial will be greater than 30% with a probability of 0.9 i.e a
less than 5% chance that the trial would reach a GO decision or be considered
a success.

Table 5.1 details the minimum number of responses required under this

design at each analysis time point. For the final analysis, once 30 patients
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have been recruited, a minimum of 13 responses must be observed in order to
have a GO decision. We can also see what the minimum number of responses

required are for each interim analysis.

TABLE 5.1: Specification of parameters for the example Beta-
Binomial trial.

Analysis | Minimum No. Responses for GO Decision
N=5 1
N =10 2
N=15 3
N =20 7
N =25 9
N =230 13

Most of the specifications we have made here along with our decision rules
are fairly arbitrary. In practice decision rules should be decided before the trial
starts. This is typically done via the evaluation of simulations and looking at
the minimum number of responses required for GO decisions. Multiple sce-
narios corresponding to different true response rates can be investigated. The
probability of making a correct decision can then be calculated. This represents
the power of our design. For scenarios with low true response rates (relative
to the target response rate) we want the probability of making a No GO deci-
sion to be high. Similarly, for scenarios with high true response rates we want
the probability of making a GO decision to be high. The decision rule parame-
ters, the target response rate and probability threshold can then be adjusted to
ensure the design is making appropriate decisions in these scenarios.

Simulations for this example trial are shown in Table 5.2. There are five
different scenarios where we vary the true response rate. For each scenario we
simulate 10000 trials. for each individual trial run we sample responses from
patients using the underlying true response rate and determine if the criteria
are met to pass the interim analyses and final analysis decision criteria. The

table records the probability in each scenario of there being a ‘GO’ decision. In
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scenarios where the true response rate is low (10% and 20%) we have almost
no chance of a GO decision. As our decision criteria targets a response rate
of 30% if the actual response rate was also 30% a ‘GO’ decision would be the
desired outcome. However, the simulations show with the current design this
does not often occur. For higher true response rates the design does perform
slightly better in reaching ‘GO’ decisions with probabilities of 0.414 and 0.796
for 40% and 50% respectively.

TABLE 5.2: Simulations for example Beta-Binomial design.

True response rate Probability of ‘GO’ decision

10% 0.000
20% 0.003
30% 0.078
40% 0.414
50% 0.796

Simulations are always an important aspect of the design process however,
they may not convey what is most meaningful for other collaborators when
assessing the merits of each iterative design specification. This is where ETPs
can be used to try and bridge that gap by offering a way to visually represent
key information and decisions that are made with these types of designs. In
the next section we detail how an ETP is constructed using the example trial

design specified here.

5.2.2 Constructing Efficacy Transition Pathways

At each interim analysis PPoS is calculated based on the number of responses
observed thus far and evaluated to see if it meets the decision criteria. There-

fore there will be a minimum number of responses that have to be observed in
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order to continue recruitment. This is similar to how we can calculate the num-
ber of responses required at the end of the trial to warrant a GO decision. The
minimum number of responses required at each interim and the final analysis
depends on the decision criteria that is specified.

Intuitively, it is easier to understand that three responses have to be ob-
served from 15 patients rather than a PPoS < 0.05 is needed. Through discus-
sions with clinicians we can then calibrate our decision criteria based on these
interpretations. We may want to be more strict or lenient at our interim. If
the clinicians would be happy to continue recruitment after seeing only two
responses we could lower the PPoS threshold, likewise if they wanted to be
confident and only continue if six responses were observed we would increase
the PPoS threshold. Similarly, this can also be done for the final analysis deci-
sion criteria. The acceptable probability level or target response rate could be
adjusted so a specific minimum number of responses observed achieves a GO
decision. Any changes made should be assessed by simulations as drastically
changing the decision criteria could have a negative impact on performance.

As more interim analyses are added to a design, it may be more compli-
cated to keep track of the specific number of responses required for ‘GO’ deci-
sions at each interim. A solution for this is ETPs. In our example trial we have
a maximum sample size of 30 patients with interim analyses planned after ev-
ery five patients. This results in a total of six analyses, one final analysis and
five interims. The decision criteria at the end of the trial requires the treatment
effect to be greater than 30% with a probability of 0.9 and to pass the interim
analyses we require the PPoS to be greater than 0.05.

To construct an ETP we produce individual cells which contain key infor-
mation about a specific outcome i.e. a certain amount of responses. If we
consider our first interim at five patients, at that point there are six different

possible outcomes that can be observed. Either one, two, three, four or all five
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of the patients had a response or none of them did. For each possible outcome
we can then calculate the PPoS as well as the Bayesian estimate of the response
rate and an associated credible interval. Figure 5.1 shows what this cell would
look like.

FIGURE 5.1: ETP cell plot for 0 responses in 5 patients.

o e ———— —— —— — —

0 Number of responses
0.025 Predicted Probability of Success
11% Bayesian estimate of response rate

(0%—-46%) 95% two sided credible interval

The number at the top indicates the outcome for the cell, in this case the
number of responses which is 0. The second row shows the PPoS in this sce-
nario, the third row showing the Bayesian posterior estimate of response rate
and the last row shows the 95% credible interval. For O responses the PPoS is
0.025 which is less than our threshold so the decision here would be to stop.
This is represented by the red dashed line. From this one cell we are able to
see what the decision would be at the interim analysis time point if this is the
outcome that is observed. We are also able to see specifically what the PPoS
and estimated response rate would be as well. The choice was made to present
probabilities with decimals and any estimates of response rates with percent-
ages. This was so the two could easily be differentiated.

Cells are generated for each possible outcome at each interim time point.

Figure 5.2 shows the cell for two responses in five patients. Here we can see
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the PPoS is 0.501 which is greater than our threshold so the decision would
be made to continue recruitment. This is indicated by the green dashed line.
As we put each cell together we can then clearly see the minimum number of

responses required to continue recruiting.

FIGURE 5.2: ETP cell plot for 2 responses in 5 patients.

2 Number of responses
0.501 Predicted Probability of Success
42% Bayesian estimate of response rate

(12%—-78%)) 95% two sided credible interval

This process is then repeated for each interim analysis. So, the next analy-
sis would be at 10 patients. Here we would generate 11 cells for all the dif-
ferent possible outcomes (no response, one response, two responses, ..., 10
responses). The same would then be done for the analysis at 15, 20 and 25
patients.

For the final analysis the presentation of the cells is slightly different. Here
we are no longer interested in PPoS as no more patients will be recruited and
rather we can just evaluate if the trial has met the decision criteria. So, in each
cell rather than present PPoS, the posterior probability that the response rate is
greater than our target rate is presented instead. Figures 5.3 and 5.4 show the
cells for 10 responses and 14 responses out of 30 patients respectively. In this
example our g is set at 0.9 so if the posterior probability is greater than that we

have a GO decision.
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We opted to present the PPoS and posterior probability as decimals. This
was done to avoid these values being confused with estimated treatment ef-
fect. It may be easy for a non-statistician to see a posterior probability of 0.976
and interpret it as the treatment having a 97.6% response rate. These are also
presented to three significant figures. This was done as in some instances the
posterior probability was shown to be the same value for adjacent cells which
could also cause some confusion. When constructing ETPs the presentation
of these values and the cells in general can be altered to suit the needs of the
users.

FIGURE 5.3: ETP cell plot for 10 responses in 30 patients.

10 Number of responses
0.688 Posterior Probability
34% Bayesian estimate of response rate

(19%-51%) 95% two sided credible interval

The efficacy transition pathway is then constructed by grouping each cell
for each interim analysis and then stacking those group of cells together. For
our example trial the ETP is shown in Figure 5.5. Each row of cells in the
ETP represents each interim analysis with the final row representing the final
analysis. One adaptation made with the cells is that the confidence interval is
presented across the bottom two rows in each cell just to make the figure easier

to read and more scalable.
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FIGURE 5.4: ETP cell plot for 14 responses in 30 patients.

14 Number of responses
0.976 Posterior Probability
47% Bayesian estimate of response rate

(30%-64%)) 95% two sided credible interval

From this figure what can clearly be seen is when we do or do not have a
GO decision. At each interim of 5, 10, 15, 20, 25 patients we can see that the
minimum number of responses for a GO decisionis 1, 2, 4, 7 and 9 respectively.
Also, for the final analysis a minimum of 13 responses is required. We can
also read down the figure to gauge an idea of how many additional responses
would be required in future analyses to warrant a GO decision. For instance if
you observed five responses in your first cohort of five patients, that is enough
observed data to continue passing the interim decision criteria until the fourth
interim analysis in which case you would need an additional two responses.
This can easily be seen by reformatting the ETP to be aligned to the left so the
same number of responses are stacked on top of each other for each cohort.
This is illustrated in Figure 5.6.

In addition to the easy visualisation of the number of responses required
to achieve a GO decision, we can also see the estimates of the treatment effect
for each potential outcome and each analysis time point. This is useful for
interpreting the results for the final analysis (the bottom row of the ETP plot).

Right away from interpreting the cell for the minimum number of responses



204 Chapter 5. Etficacy Transition Pathways

(13/30) for a GO decision we can see the estimated response rate would be 44%
with a probability of 0.95 that the true response rate is between 27% and 61%. It
is important to remember the original decision rule for the final analysis which
for any GO decision implies there is a greater than 0.9 probability that the
response rate is greater than 30%. This can then be used to facilitate discussions
with the clinicians to deem if this is an acceptable level of evidence to warrant
further research or potentially bring into practice, based on previous studies,
current treatments or their experience. We can then adjust our design and

decision rules accordingly, which we discuss in the next section.
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5.2.3 Updating decision criteria based on Efficacy Transition

Pathways

Having seen the ETP we created for our example trial, suppose we want to
modify our decision criteria such that a GO decision at the final analysis re-
quires only nine patients to achieve a response. Compared to the initial deci-
sion criteria, which required 13 responses, we may want to consider lowering
this due to the treatment options available for these patients may not being
very effective. Obviously there may be many reasons why we would want to
increase or decrease this requirement and this would depend on the context
and background of each individual trial.

By looking directly at the ETP Figures 5.5 or 5.6 we can see that nine re-
sponses out of 30 patients has a posterior probability of 0.542. So, based of
the initial decision rule of P(6 > 30%) > 0.9, this implies that the probability
that the response rate is greater than or equal to 30% is 0.542. Therefore, if we
wanted to make this a GO decision we would change our decision criteria such
that our acceptable level of probability was something smaller than that poste-
rior probability. For example, a new decision rule could be P(6 > 30%) > 0.5.
This would mean that nine responses out of 30 patients would now be a GO
decision. This is another benefit of ETPs, we can quickly ascertain how we
would need to change our decision criteria to be in order for a specific mini-
mum number of responses to be a GO decision.

Given the ETPs observed in the previous section and the simulations shown
in Table 5.2 we will implement this new decision rule to see how it impacts
our design. We provide updated simulations in Table 5.3. Here we can see that
there is now an increase in probability of making a ‘GO’ decision if the true

response rates are low (10% and 20%) however these are still relatively small.
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Compared to before there is now higher probabilities of making a correct deci-

sion when the true response rates are above 30%.

TABLE 5.3: Simulations for example Beta-Binomial design with
new decision rule.

True response rate  Probability of GO decision

10% 0.001
20% 0.126
30% 0.558
40% 0.892
50% 0.988

We can then also update our ETPs. In Figure 5.7 we can see for the final
analysis (the bottom row of the plot) GO decisions start from nine responses.
It is important to note the content of these cells have not changed. The esti-
mates of response rates and credible intervals are still the same. This is because
we fundamentally have not made any changes to the design, just the criteria
for which we are making decisions. Changes in these estimates would only
be triggered if we were to change the total sample size or prior. Additionally
the posterior probabilities are also consistent with the previous ETP, this is be-
cause we have not altered the targeted response rate in our decision criteria.
This value is still showing the probability that the treatment has a response
rate greater than 30%. These values would only differ if our target response
rate was set as something else. For the rest of the cells showing previous co-
horts and the interim analyses we can see the minimum number of responses
required for a GO decision is now 0, 1, 3, 4 and 6 for each interim analysis re-

spectively. Also, note how the PPoS is different compared to the last ETP. This



5.2. Eftficacy Transition Pathways 209

is because PPoS takes into account the final decision rule we are using. Any
change to that rule will impact PPoS calculations.

By altering our decision rule like this we ensure that if we observe the de-
sired number of responses, in this case nine, the trial would be a success. We
did this by just changing g, the acceptable probability level. However, it should
be noted that this can also be achieved by changing both c (the target response
rate) and 4. These values can both be manipulated so we still maintain the
same practical decision making. This is important to note as whilst clinicians
may find it more intuitive to specify decision rules based on a minimum num-
ber of responses there are different ways in which that can be achieved.

Table 5.4 details the posterior probability that the estimated response rate
is greater than four different target response rates given we observe nine re-
sponses out of 30 patients. If our target response rate is 10% and we observe
nine responses the posterior probability is 0.999 so then our decision rule can
be specified as if P(6 > 10%) > 0.95. Here our value of g just has to take a
value lower than the posterior probability but we should be careful to make
sure it is not low enough such that observing 8 responses also becomes a GO
decision. Similar statements can also be made about the other target response
rates presented in the table. The associated decision criteria for those response
rates are also presented.

TABLE 5.4: Examples of different decision criteria.

Posterior Probability for 9 Responses | ¢ q
P(6 > 10%) = 0.999 10% | 0.95
P(0 > 20%) = 0.926 20% | 0.90
P(0 > 30%) = 0.542 30% | 0.50
P(0 > 40%) = 0.143 40% | 0.10

This is also shown in Figure 5.8. Here there are four curves each represent-
ing the posterior probability that the estimated response rate is greater than

the target response rates of 10%, 20%, 30% and 40% for all possible number
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of responses. The dashed vertical line represents the minimum number of re-
sponses we would require for a GO decision and where this crosses with each
curve is the posterior probability that the treatment effect is greater than those
target response rates and should be used to inform our values of 4. By adding
in more curves for different target response rates or moving the dashed like
for a different number of minimum responses we can determine appropriate
values for our decision criteria.

FIGURE 5.8: Changes in posterior probability for decision crite-
ria.
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Here we have shown how ETPs are constructed and how they change and
react to modifications in our decision rules. There are several other factors
which can impact an ETP such as the prior used in the Beta-Binomial con-
jugate analysis as well as the timing of each interim analysis and the overall
sample size of the trial. Changes to the prior will have an impact on all of the

calculations as it is used to generate the posterior distribution on which all of

the other calculations are based upon. Adding more interim analyses would
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add more rows to the plot and changing the sample size of the trial alters the
number of cells in each row.

Overall ETPs can be a useful tool during the design stages of a trial as we
can experiment with different decision rules and see what practical effect it has
on the trial in terms of the number of responses that need to be observed for
a GO decision. They can be used to facilitate discussions with non-statistical
experts involved in the design of the trial. Much like dose transition pathways
in a dose-finding trial they can also provide some transparency as to what
decisions will be made and when they would be made.

A single ETP also provides us with the ability to see how multiple differ-
ent decision rules may change the outcome for a trial. If just the acceptable
probability levels for the PPoS and final analysis, t and g, are changing in the
decision rule the impact of those changes should be apparent just by compar-
ing the PPoS and posterior probability without the need of generating a new
ETP like we have in our example.

Whilst the calculations needed to produce these plots can be simple, con-
structing the plots can be challenging. To overcome this issue and make ETPs
easily accessible and producible, we developed a web based application to
generate ETPs. All the ETPs shown in this chapter were generated using this
application.

In the next sections we detail trials that have been designed using ETPs.
These served as further motivation for development of the application to pro-
duce ETPs. We then go on to detail how the app was developed and how it

works.
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5.3 Implementation of ETPs

With the development of any new methodology or novel tool such as ETPs
there will be some barriers that will impede its use. One of those barriers will
be the difficulty of implementing the methodology. If the intention of some
newly developed methodology is for it be applied in a practical setting, when
presented it should be accompanied by appropriate software or code such that
the target audience are able to implement it with minimal effort. Otherwise the
new methodology may remain purely theoretical and would rely on others to
come up with a solution for its implementation.

To overcome this barrier for ETPs we developed a R function to produce
these plots given the input of key details such as the decision criteria, sample
size and cohort size. We then used this function and built a web application
around it. Rather than just offering code to implement ETPs a web app makes
implementation even easier as it does not require knowledge or experience
with a specific piece of stats software such as R, STATA or SAS.

Another barrier that limits the rate at which new methodology is imple-
mented is a lack of awareness or familiarity with the methodology. Specifically,
with clinical trials that often involve a multidisciplinary team it is unrealistic to
expect clinicians or trial management to be up to date with the latest statistical
innovations. Some statisticians may not be familiar with the latest methodol-
ogy if it is not primarily an area they specialise in. As a result, newer methods
may be overlooked even if it would be beneficial to implement. Even if statisti-
cians are aware of new methodology, the struggle may then become explaining
the methodology to non-statisticians and convincing them it will be beneficial
to use.

Inherently ETPs as a tool were created to help better explain the analysis

that is done in these phase II trials as well as the decisions that are made. They
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exist more as a tool to help promote the underlying Bayesian methodology.
Therefore ETPs may be simple to implement and explain to non-statisticians.
Instead the issue may come from a lack of understanding of a Beta-Binomial
conjugate analysis, predictive probabilities or the background methodology
behind the ETPs.

To address this within our web application we included detailed informa-
tion about ETPs as well as a breakdown of the methodology behind them.
This was done through text and images in combination with custom built in-
teractive tools that illustrates how these trials are run in a practical setting.
These additional explanations and features were built in to make understand-
ing ETPs easier, especially for those with a non stats background. These sec-
tions can also be used as a teaching tool to help educate those who are working
on trials but not familiar with this methodology.

Lucinda Billingham (LB) as the visionary behind ETPs had began imple-
menting them in a number of different trial designs despite these barriers.
Some of these trials were being designed as umbrella, basket or platform trials
and involved multiple arms. Here analyses and decisions were being made in
each arm independently so ETPs were employed to help design these trials.

This leads to more issues where during the design stages of a trial multiple
ETPs may need to be generated. If changes were made to specific decision cri-
teria the ETP would need to be updated so you could communicate how those
changes would affect the outcome of the trial. This is then further compounded
with the complex trial designs where there may different criteria dependent on
the arms in the trial.

Prior to the development of the app ETPs were being constructed by hand
which was a time consuming endeavour. In Appendix A we detail three trials
that were designed by the Cancer Research UK Clinical Trials Unit (CRCTU)

at the University of Birmingham and show how ETPs have previously been



5.4. Development of a web application for ETPs 215

implemented.

5.4 Development of a web application for ETPs

R shiny [99] is a tool available in R to facilitate the production of interactive
web applications (apps). It allows R users to create useful and accessible tools
that would otherwise be out of reach of non R users without requiring any
programming or statistical knowledge. In the context of medical statistics the
usefulness of these types of apps is also acknowledged by funding bodies such
as the NIHR (National Institute for Health and Care Research). They have
awarded grants which in part helped the development of apps relating to net-
work meta-analysis [100] and meta-analyses of diagnostic test accuracy studies
[101], [102].

Even without funding there have been apps that have been developed to
help address issues around the implementation of early phase and adaptive
designs. For example, there is a whole suite of software and shiny applications
made available by the MD Anderson Cancer Centre [103] to help implement
methodology they have developed. Wheeler et al. [104] produced the A plus
B app to produce operating characteristics for A+B trial designs [105]. There is
also the MoDEsT app created by Pallmann et al. [106] for designing and con-
ducting single-agent dose-finding trials. Grayling and Wason [107] developed
an app to aid the implementation of multi-arm clinical trial designs. These are
just a few examples of shiny apps already available, all of which aim to make
certain methodologies more accessible and is something we also wanted to do
for ETPs.

Initially we produced a R function that was able to create ETPs. Then us-
ing R shiny an application was built which utilised this function to produce

ETPs. Whilst the R function makes implementing ETPs a lot easier, the R shiny
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app offers an even better solution. Firstly, it does not require any previous
knowledge of a specific statistical package so any statistician should be able
to use the application with ease. This also applies for non-statisticians and an
application would make ETPs more accessible.

R shiny also has the ability to make graphs interactive. Whilst ETPs pro-
duce a lot of information they are static in nature. As such a change in pa-
rameters or design characteristics means that a separate ETP would need to
be produced. With R shiny a interface allows for these changes to be easily
made and the plots automatically be updated. Additionally, elements of inter-
activity can also be included in an application. In the application by clicking
on a specific cell of the ETP we produce additional plots which give the user
more details than they would otherwise get with just a single ETP. The ETPs
presented in Sections 5.2.2 and 5.2.3 were all produced in a few clicks using
this app.

In our app we have a specific page which is labelled "plot builder" that will
generate ETPs. This page is split into two sections. The section on the left can
be considered as the input and the section on the right is the output. There
are three tabs in the input section and each one deals with a separate set of
input parameters. The prior parameters tab allows the user to specify priors
that are being used in the beta-binomial conjugate analysis and also produces
a plot of the corresponding beta distribution. The app can be accessed at the
following link - https:/ /amit-patel.shinyapps.io/beta-binomialapp/. A video
demonstrating the key features of the app is also available on YouTube through
this link - https:/ /www.youtube.com/watch?v=vfVzwBDp9-E.

The design parameters tab allows the user to specify the details of their trial
and all the relevant information required to produce an ETP. This includes the
number of cohorts and the size of each cohort, this assumes that an interim

analysis will be performed once each cohort has been recruited. Details also
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need to be inputted regarding the decision criteria at both the interim analysis
and final analysis stage. As these design parameters are input the output in the
right hand side section named "Decision Rules” also updates. Here the decision
criteria based on the inputs are presented to the user in a mathematical format.
There is also text to explain what each of the rules mean so the users can ensure
they have inputted the correct details. The interpretation will also be useful for
non statisticians and provide some understanding of the decision criteria and
what it means.

The final input tab is for parameters corresponding to the visualisation of
the plot. These correspond to arguments within the R function which allow the
user to adjust how the ETPs look. There is the ability to change the alignment
of the ETP such that the cells are either centred or left aligned. There is also an
option to change the size of the text in the ETP. As ETPs can become more and
more complicated depending on the design of the trial the text may become
over crowded so would need to be adjusted, which is what this option allows
for. There is also the option to turn the legend on and off.

In the output section the tab labelled "Efficacy Transition Pathway" con-
tains the ETP which is generated based on all the inputs from the input section
(prior, design and plot parameters). The user can clearly see what the ETP
for their given design would look like. From here the user also has the abil-
ity to download the ETP in multiple formats. Any changes made to the input
parameters will result in the ETP being updated. This allows for the user to
easily and quickly make tweaks to the trial design and see how the decisions
made would change. They can also easily save/download all versions of the
ETPs they make to compare across the different designs.

There is also an added layer of interactivity that was incorporated into the
app. By clicking on an individual cell in the ETP additional information and

plots will be generated. Once a cell has been clicked on a line of text will appear
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below the ETP which provides specific details about what each of the numbers
in the cell represent. Additionally, there will also be a plot of the individual cell
with added text to explain what each number in the cell represents. This will
allow users to investigate and further explore individual cells. This is specif-
ically useful in scenarios where the ETP may be large and contain many cells
and some may not be clear on the ETP. Additionally, a posterior distribution
plot is also generated when a user clicks on a specific cell. This will allow the
user to see at the specific analysis time point what the posterior distribution of
the treatment effect looks like given a specific number of responses. The plot
also includes key statistics as well as the specified credible intervals. This plot
is produced for all cells, even those at the interim analysis, whilst these may
not be the final posterior distribution it provides a visualisation of the treat-
ment effect at that interim analysis which can than either be compared to other
time points or changes in the number of responses.

The final tab here presents the data that is used to generate the ETP plot.
Each cells data is included in a row and contains results from the PPoS and
posterior probability calculations. There is also some functionality within the
app that so that the data can be ordered by specific columns or searched. Ad-
ditionally, this dataset can also be downloaded. This allows users to take the
key data and calculations for use outside of the app. Users can also take the
data and use it to create their own ETP as well. Whilst the primary objective
of the app is to produce the ETP it also serves as a quick calculator for PPoS.
Which is a useful feature in its own right as users could specify there design
and download the data and use the PPoS values in their SAPs, protocols, grant
applications etc.

The way in which the app works is that all the parameters for the Beta-
Binomial trial design and inputs for the ETP are stored. They are then fed into

the R function which outputs the data table. Based on the data the function
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will produce the required number of cells which are then plotted on a carte-
sian plane. Then each of the values which make up the individual cells are
plotted at fixed y coordinates. The interactive element works by registering
the coordinates of where the user clicks on the ETP plot. Then it finds the co-
ordinates of the centre of the nearest cell in a specific margin and extracts the
data for that cell. That extracted data is then used to create the additional el-
ements like the text explaining that cell, the enhanced individual cell plot and

the specific posterior distribution plot.

5.4.1 Additional Features of the App

We have shown how the app allows for easy creation of ETPs so anyone fa-
miliar with the methodology and an internet contention is just a few clicks
away from being able to produce these plots. The other issue we mentioned
earlier with the introduction of new methodology is lack of awareness or fa-
miliarity. In order to address this we built additional pages in the app that
act as an educational resource which provide all the prerequisite knowledge
required to understand ETPs. These pages cover all the material covered in
this chapter. Starting from the basics of Phase II trials, Bayesian statistics, Beta-
Binomial conjugate analyses and PPoS. The traditional way to explain new
concepts would usually be through some combination of text and images and
whilst we employ these to introduce more of the simpler elements of ETPs, R
shiny gives us the ability to incorporate some level of interactivity within the
material.

The navigation bar on the right hand side of the app can be used to nav-

igate through the various pages. The "Introduction" tab contains two pages.
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The first is an introduction to clinical trials which contains background infor-
mation on the phases of clinical trials and then goes into more detail specifi-
cally about Phase II single-arm trials. This also serves to provide some set-up
and context about when a beta-binomial conjugate analysis might be used.The
second page is about Bayesian analysis, which is used to introduce Bayes’ the-
orem and concepts like priors and likelihood. Whilst both of these pages are
not fully detailed or insightful renditions of the topics, they do provide the
basic information required to use the app and create ETPs. Additionally, the
content on these pages should be accessible for almost anybody regardless of
their experience with clinical trials or statistics.

The next tab in the navigation bar is labelled "Beta-Binomial Designs" which
is also split into two further pages. The first page is about the basics of a Beta-
Binomial conjugate analysis. Here we have a brief introduction to conjugate
models and more specifically a Beta-Binomial analysis. To illustrate how it
works we use some interactive elements. We start by splitting the conjugate
model into its three main components the prior probability distribution, the
likelihood and the posterior probability distribution. In each of these sections
we detail what these components are how they are presented mathematically
and how they can be interpreted. Additionally, in each section we also include
a visual representation of each component along with the ability to modify the
plots. All of these plots between each of the sections interact with each other.
So, for the prior section we default by showing a Beta(1,1) prior distribution.
The likelihood plot shows the likelihood function which is default set to 8 re-
sponses from 15 patients. Finally, the posterior section shows the posterior
probability distribution based on the prior and likelihood sections, the default
here is a Beta(9, 8) based on a Beta(1,1) prior and having 8 responses for 15 pa-
tients. Additionally, we also introduce the idea of decision criteria in the pos-

terior probability section and on the plot we visualise the cut-off for a GO/No
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GO decision. The default decision criteria specified here is P(6 > 40%) > 0.8
which based on the other defaults results in a GO decision. As well as all of
these plots interacting with each other we have specified controls such that the
user can change any of the parameters, data or decision rules used to generate
these plots. Changes to any of these inputs results in all the corresponding
plots being updated. As such the user can experiment and investigate the af-
fect of changing any of the default specifications. For clarity, we include text
statements on the interpretation that can be made from the posterior which
also update automatically based on the details specified.

The second page in this tab allows the user to run a practice trial using
a Beta-Binomial conjugate analysis. The previous page shows the mechanics
of how the design works but that is based on knowing the final number of
patients and responses. The top left box has multiple tabs containing the in-
structions, decision criteria and controls that are being used. For consistency
we use the same decision criteria and priors as before. We also specify a true
response rate, defaulted at 50% which is the response rate we sample patients
from. Again, All of these specifications can be changed by the user. Using
the "Add patient" tab the user has the option to add or remove patients from
the trial. A slider between 1-10 allows the user to select how many patients
they want to add and then by clicking the add patients button they can add
that many patients, this can then be repeated many times. Once patients are
added you will see a plot in the top right box that shows a circle for each pa-
tient, coloured green or red to indicate if they had a response or no response
respectively. Patients responses are determined based on the true response
rate specified earlier. The bottom left box will also produce a plot showing the
posterior distribution based on the number of patients added and the number
of responses. The plot has a checkbox option to display the decision criteria

which will show whether or not based on the data generated and decision rule
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if there would be a GO decision. Then the bottom right box gives statements on
the interpretation of the posterior probability distribution and decision rules in
the "Analysis" tab. The "Summary Estimates" tab then provides summary esti-
mates from the posterior with the option of including these in the plot.

This page was developed as more of a demonstration tool which can be
used to illustrate how decisions we make may end up being incorrect based
on data we observe or the timing of the decision. Users have the ability to add
multiple sets of patients in the form of cohorts and can see what the decision or
results from the trial would be based on the data they generate. As it is based
on a true response rate of 50% they may get lucky and get enough responses
from 10 patients to make a GO decision but if they were to re-run this they
may get a different number of responses and hence a different result. Users
then can see the affect of adding more patients or changing the decision rules
or the true response rate.

Finally, we have an "App Details" tab which contains two pages. The first
one includes a list of references with external links to more material on topics
covered by the app. We also, reference the R packages that were used to make
the app and link to their respective CRAN pages. We also have a page for
version history which details what was added, changed or updated for each
version of the app. A link to the code used to create the app is also hosted on
GitHub and linked for users to see.

All of these additional features allow us to utilise this app as an effective
teaching tool as well. There is some evidence that suggests the use of apps
helps students learn more effectively [108]. R shiny allows us to develop these
custom features without any relevant knowledge of languages such as Java or

HTML.
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5.5 Discussion

In this chapter we introduced the idea of Efficacy Transition Pathways. These
were initially thought of as an extension to Dose Transition Pathways which
are used as a visualisation tool to communicate decisions made in dose-finding
trials. ETPs act in a similar manner and serve as a tool to better illustrate and
communicate decisions made in single arm Phase II trials that utilise a Beta-
Binomial conjugate analysis. We detail the basics of these analyses and how
posterior probability of success can be used to make decisions during a trial at
the interim analysis stage. Just like in dose-finding, depending on the number
of outcomes we observe, i.e. number of responses, we can know ahead of
time the decisions that will be made. Depending on the complexity of the
design and decision rules the number of different scenarios can be difficult to
comprehend. So, ETPs help visualise these scenarios. These can be beneficial
for not only statisticians but other investigators involved with the design and
conduct of the study.

ETPs consist of an array of cells for each cohort in a trial, with each cell
containing key information pertinent to a specific number of responses being
observed in the total cohort size. Constructing ETPs requires numerous cal-
culations to be run including determining PPoS as well as Bayesian estimates
and credible intervals from the posterior distribution. These then need to be
evaluated against the decision criteria to determine what the outcome of the
trial would be based on the data that cell represents. All this then needs to be
constructed into a larger image with multiple cells. A benefit of this approach
is that the cells can be tailored to include information or other details that is felt
relevant to portray. However, this whole process can be time consuming espe-
cially during the design stages of a trial where specifications and decision rules

may constantly be changed and iterated upon. This was further illustrated in
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the three examples we gave of trials where ETPs had been implemented and
used. Each of these trials could be considered as using complex and innova-
tive designs which involve multiple treatment arms with various time-points
for analyses and different decision rules. Throughout the design of these tri-
als multiple different ETPs were having to be produced in order to facilitate
discussions and showcase the design of the trials.

This is one of the issues with ETPs that motivated us to create an app and
some software that would automatically produce these plots. The other moti-
vation came from issues surrounding the introduction of new methodologies.
Often times when a new methodology or tool is introduced it takes a long
amount of time before it gets picked up and used by those other then the orig-
inal creators of the methodology. This is often due to multiple factors such as
lack of awareness about the new methodology or lack of useable code or rele-
vant materials. From the perspective of statisticians working on and applying
methodology, keeping up-to-date with all the latest innovations is often un-
feasible. Similarly, if you do come across a new methodology where there is
access to code, trying to implement the methods become a time-consuming
task so we may default to standard or typical practice even if it is sub-optimal.
Additionally, they may also need to take on the role of explaining the new
methodology to non-statisticians involved in the oversight and management
of the trial. This burden should fall on those developing the methodology if
they want it to be used more frequently. In order to facilitate this for ETPs
we created a simple R function along with a shiny app to make ETPs more
accessible and easy to explain.

The primary feature of the app is to produce ETPs, we achieve this by hav-
ing a simple to use interface which allows users to produce ETPs just by click-
ing a few buttons. What should be stated here is that currently there is limited

flexibility with adjusting the ETPs. For example, the current app and function
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only allows for fixed cohort sizes and one set of decision rules. If you are work-
ing in a rare disease setting, recruitment may be fragmented so your trial may
employ flexible cohort sizes and as such ETPs do not allow for that but could
easily be modified to have a different number of cells on each row for each
cohort. Similarly, you may want to consider multiple decision rules or have
more complicated rules during your interim analyses. For example, if your
PPoS is between a specific range say 5% and 15% you may want to consider
stopping but if it is definitely less than that you would want to stop and if its
more you would want to continue. Whilst not technically difficult to account
for that in our code or function, these are more niche scenarios that may not
be too common. As such the basic functionality of the app can still be used to
investigate these things. Future versions of the code and app will be updated
to allow for more of these options.

The app also serves the secondary feature of acting as an educational tool.
We include materials and features which will show people what ETPs are and
how they are used as well as the very basic concepts and ideas in a beta-
binomial conjugate analysis. This makes uses of R shiny interactivity features
and is a different method to introduce people to a new methodology compared
to something just like a publication. There exists resources such as the PANDA
toolkit [109] which aim to educate trialists on adaptive and novel designs how-
ever as of yet they do not cover early phase trials. As such our app could be
considered an introduction to some of these ideas and could also be expanded
in the future to cover other adaptive designs in early phase trials.

The material and content included, in our app, has been produced and re-
viewed by statisticians and we feel it should be widely accessible. As such we
may pilot using the app for teaching purposes and show the contents to people
of a non-statistical background to determine if it is appropriate. Some of the

features such as the page that lets you run a practice clinical trial may be best
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utilised by a statistician trying to explain decision-making concepts in these
trials. By having control over the true objective response rate you can show
how by having small numbers you are prone to making the wrong decisions
or if you have strict decisions rules you may need a lot of patients to obtain
GO decision.

Away from ETPs, additions could be made to the app to add additional
features such as options to run simulations. The 'run a clinical trial” page is
essentially manually running one iteration of a simulation. This would also
be an additional draw to use the app. Whilst simulations for a Beta-Binomial
conjugate analysis are not difficult to run by having an app or a tool that does
these for you could be beneficial. R shiny could be utilised to automatically
produce graphics and summary tables then the design parameters that you
specify could also feed in to produce ETPs, this could all then be summarised
on the web page and printed off as a pdf. This may make it so more users are
inclined to use the app and thus ETPs.

Our implementation of ETPs can also be extended to cover a larger outcome
space. Currently we only consider GO or No GO outcomes, but it is possible
to have an indeterminate outcome or a result in-between good and bad. In
this instance there may not be enough evidence to declare the treatment a suc-
cess but also not enough evidence to definitively say the treatment does not
work. In order to account for these different outcomes we would need to pro-
vide additional decisions rules. The Lalonde framework [97], is an example of
this which employs three different rules for each of their Go/Pause/Stop cri-
teria. The flexibility of ETPs means that they could still be used in these more
complex scenarios with multiple decision rules. This could be achieved just by
using more colours to represent more outcomes.

Overall, we believe ETPs to be an effective tool in detailing decision-making

for these types of trials. We have shown that with ETPs they can be used to
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help iterate on the design of the trial and communicate the decision making
with non-statisticians. To avoid many of the pitfalls of new methodology that
never gets used, we have created code and an app which is publicly available
that will easily produce these plots and act as an educational tool and thereby

benefit the clinical trial research community.
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Chapter 6

Summary and Conclusions

Throughout this thesis, we have explored various methods relating to early
phase trials and dose-finding methodologies and investigated how they could
be applied in practical contexts through illustrative examples and real clinical
trials. In this concluding chapter, we summarise our key points.

We began in Chapter 2 by detailing the innovative PO-TITE-CRM design
[29], [45] and our experiences implementing the design, which we believe is
the first application of its kind. Partial ordering was originally hypothesised
for use in investigations of escalation in combination of multiple-agents. De-
pending on the doses selected, it is possible in these scenarios the monotonic-
ity assumption no longer holds. However our implementation, whilst also in
a trial investigating combination treatment, observed partial ordering due to
the dosing schedule of one of the treatments. This highlights the fact that this
issue can also arise in multiple settings and more generally, methodology can
still be implemented in scenarios outside of its original purview.

We showcased the performance of the design via simulations and then con-
trasted that with potential alternative designs. Even with the additional com-
plexity of the design the operating characteristics were comparable across the
variety of alternative options. The caveat was that some of those alternatives

would have to make concessions and assumptions about the dose-levels we
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were investigating. Without this methodology answering the relevant clinical
question of the trial would become difficult. The doses selected for investi-
gation were deemed clinically relevant and if we could not resolve the issue
around the uncertainty of the order of the doses different doses would have
had to been selected.

Whilst for the development of a new drug typically the maximum toler-
ated dose (MTD) is of interest, for repurposed treatments or combination treat-
ments there may be additional interest in also understanding the optimal dos-
ing schedule. Whilst this was not one of the main aims of the ADePT-DDR
trial, it was of interest. An understanding of the best dosing schedule would
then feed into the decision for what the final dose (dose-level 3) would even-
tually become based on the aggregate data.

If biologically plausible that the same overall dose administered across a
shorter duration is more or less toxic when administered over a longer dura-
tion then time window for administration may be more important to consider
than overall dose. For example, if it is understood that 400mg of a specific drug
over five days is more toxic than 400mg over 20 days, it does not always fol-
low then that by increasing the overall dose we may be increasing toxicity. So,
401mg over 20 days may still be less toxic than 400mg over five. Obviously this
is an extreme example but it could still be clinically relevant in some areas and
maybe either warrant further research. The partial ordering approach is one
way to solve this issue but their could potentially be more efficient methods.

As the problem and issue of partial ordering is fairly unique there are not
many approaches to dealing with it or accounts of practical applications. This
may not be surprising considering it was only introduced in 2013 and it still
shows there is somewhat of a lag between methodology being developed and
implemented. One barrier we experienced was the limited availability of soft-

ware. Along with the original methodology Nolan et al. [49], [50] developed
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R functions for the implementation of the PO-CRM but not its time-to-event
counterpart. However, having this as a basis to work from was crucial in our
success at implementing the design. I further developed the existing code to
incorporate the TITE element which still took a bit of time given the available
code. From an academic perspective finding the resources in terms of time and
statistical expertise may also be another barrier especially during initial design
stages of a trial where there is limited funding.

Our work also has the added benefit of validating the original PO-TITE-
CRM design and confirming the results found in that paper. Whilst we did not
directly replicate the exact work presented there we have reached similar con-
clusions. Hopefully, our account and experiences implementing this method-
ology will help others to do the same. We have shared this work through a
poster presentation at ICTMC 2022 [110] and also with a publication currently
in pre-print. The ADePT-DDR trial opened in August 2021 and is currently
recruiting to its third cohort of patients. Due to practical and logistical issues
some aspects of the design have been altered however, the underlying method-
ology used in the trial still remains the same.

In Chapter 3 we explored the development of our own methodology which
is specifically an extension we made to the Wages and Tait design [30]. This de-
sign is considered an adaptive or seamless phase I/II design as it uses both tox-
icity and efficacy outcomes to obtain an optimal biological dose (OBD). How-
ever, just by including efficacy outcomes does not mean we fully eradicate the
need to conduct a randomised phase II study. We sought, through our design
modification, to address this and have a trial design capable of conducting
dose-finding and making direct comparisons to a control arm.

By leveraging the adaptive randomisation mechanism we were able to force
the design to allocate patients to a control arm. We demonstrated through sim-

ulations that the design worked as intended. A reasonable rate of selection for
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the OBD or "good" dose-levels was achieved along with allocating a sufficient
number of patients to a control arm. By contrasting our design to potential
alternatives we also showed there is minimal loss in terms of efficiency when
using this modification. However, when it came to comparing the control arm
to the OBD our results showed that we would be extremely underpowered
unless there was a particularly large effect size. In order to improve this we
would need to increase the overall sample size of the study or add expansion
cohorts for both the OBD dose and control dose.

We identify that the most common situation in which it would be appropri-
ate to implement this design is when investigating a new treatment in combi-
nation with some form of standard of care. Here there should be some under-
standing on the efficacy and toxicity profile of the standard of care treatment
and this design would allow you to assess if there are any benefits to adding
a new intervention to that standard of care. An additional limitation of this
work is that we only explored this design modification using one exemplar
trial. Therefore, our results and overall conclusions of the design may have
slight variations under a different example.

There may also be issues with this design that we have not considered and
would only become apparent when implementing the design. Simulations
showed adequate allocation of patients to the control arm however, in prac-
tice we only run the trial once not 10,000 times so perhaps by chance we could
end up with very few or limited patients in the control arm. So, we may want
to consider changing our fixed rate of randomisation to control to also be adap-
tive dependent on the number of patients already in the control arm. Similarly,
more work could be done to look at different randomisation mechanisms to al-
locate dose-levels.

Overall it may still be more efficient to set up a trial in this manner rather

than having an independent phase I trial into an independent phase II trial.
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This may be the future of trial designs where they are fully seamless and
adaptive going through all the phases aiming to answer multiple questions
with multiple decision points. You could imagine using our RtC-WT design to
determine an OBD then potentially expand recruitment to confirm if there is
enough of an efficacy signal to prompt a ‘GO’ decision for a fully randomised
phase III trial. If this was all incorporated into one trial you could save re-
sources in terms of time and money. There may also be efficiency gains in
directly borrowing information from patients within the same trial from pre-
vious phases.

This work was motivated by a few potential trials being designed at the
University of Birmingham’s Cancer Research UK Clinical Trials Unit. Unfor-
tunately, none of those trials came to fruition due to other circumstances, so
the methodology itself is yet to be implemented.

Chapter 4 looked at applying dose transition pathways (DTPs) to trials us-
ing time-to-event dose-finding methodology. The original paper by Yap et al.
[31] touches on the issue of applying DTPs to designs like the TITE-CRM. The
authors briefly discussed that projected DTPs can differ dependent on how in-
formation was available for each dose decision and that it would be difficult
to map out decisions in advance. Our work looked into this issue deeper to
detail the exact issues and to see if there were any potential solutions.

This work was also partly motivated by the ADePT-DDR trial as well. Due
to the PO-TITE-CRM methodology and the long observation periods there was
interest in mapping out decisions ahead of time to facilitate faster decision
making and better communicate the decision that would be made through-
out the trial. It quickly became apparent due to the length of the observation
window (52 weeks post treatment) this would be unfeasible.

Here we present the idea of introducing categories of combined follow-up
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time for patients in the same cohort at the same dose-level. By grouping to-
gether the follow-up times of each patient in a cohort we can then apply the
TITE-CRM model for each combination of time in order to figure out what the
dose decisions would be for each. Based on this we could then see how much
information or combined follow-up was required to make specific dose deci-
sions. During this process we made an interesting observation that depending
on how the combined follow-up time was split between patients a different
dose-decision could be made. We clarified that this was due to the way in
which the likelihood was calculated and that, at least for a linear weight func-
tion, patients weights are linear at the individual level but not at the cohort
level. This could be a potential area for further research by investigating how
the likelihood calculation is impacted by different weight functions and what
impact that has on the dose recommendations being made.

The other main issue in presenting TITE-DTPs comes from the number of
possible outcomes that need to be mapped out. Even in our simple example
of just a five-week observation window, mapping out all the potential varia-
tions of outcomes for six patients results in more outcomes then seconds since
the universe began. Our suggested solution to this was to limit the pathways
that were presented just to be for the next cohort assuming you had all the
available data for all previous cohorts. This still does not help for trials with
much longer observation windows. In these scenarios it would be suggested
that outcomes be limited to plausible scenarios. For instance it is unlikely that
you would recruit a cohort on one day and need to immediately make a dose-
decision for a new patient on the next day. So, the number of outcomes could
be simplified to just look at combined follow-up times which were appropriate
or more realistic. Though, if the observation window is long enough this still

may not be sufficient in reducing the number of outcomes.
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Anecdotally speaking DTPs appear to be one of best tools for communicat-
ing methodology in early phase trials. Especially when it comes to presenting
the different decisions that can be made during a trial. I have received com-
pliments from presenting DTPs whether it be patient representatives or inde-
pendent clinicians sitting on data monitoring committees or representatives
from pharma partners when setting up a trial. So, it would seem beneficial to
try and extend DTPs or the concept of them for presenting decisions as far as
possible in trials.

Staying with that idea, Chapter 5 introduces efficacy transition pathways
(ETPs), a visualisation tool inspired by DTPs but for use in some types of more
complex phase II trials. Much like DTPs they aim to better illustrate and com-
municate decisions made in these types of trials. We detail how ETPs can be
constructed and how they can be used to assist during the running of a trial
and the development of the trials design and stopping rules.

Through three motivating illustrative example trials (see Apendix A) we
detailed how they have already begun to be implemented and used in practice.
All three trials present ETPs in a similar manner however they illustrate the
potential applications in different settings. What became apparent from these
implementations is that whilst theoretically simple to produce, ETPs were of-
ten time consuming to put together. The calculations required for presentation
in the ETPs could be automated by constructing the plot could become labo-
rious if other elements of the trial design were altered. This motivated us to
develop software in order to allow for automatic generation of ETPs.

We began by developing a simple function in R that could generate these
plots. Around that we built a web based application using shiny. The app
makes producing these plots even easier as it does not require the user to be
familiar with any particular software package. All the inputs required for the

function are presented in the app through various widgets. From the app there
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is the ability to download the ETP as an image. Additionally the user can also
download a copy of the data used to generate the ETP. Other benefits of the app
also allow us to include some interactivity with the ETP. By clicking on the plot
the user can see additional information for the specific cell they clicked on. A
larger version of the cell is produced, which is useful in cases where the ETP is
rather large with lots of cells. A posterior distribution is also plotted based on
the data in that cell showing other key information like credible intervals and
the decision criteria.

We also developed additional pages on the app to introduce some of the
fundamentals required to understand ETPs. This is done mainly through text
and images. However, we include interactive elements to explain the basics
of beta-binomial conjugate analyses. Users can interact and specify different
priors, likelihoods and decision rules and see how interpretations from the
posterior distribution change accordingly. There is also the facility to simu-
late a practice trial so users can get an idea of how a trial designed in this way
could work. All this additional content was incorporated in a way that is hope-
tully approachable by people with limited knowledge on these topics. We still
envisage that these pages could be used by statisticians as well to also help
explain these concepts to others.

Even though the tools such as DTPs and ETPs are beneficial in and of them-
selves, having the ability to automatically produce them by clicking a few
buttons could further enhance how they are used. During discussions with
clinicians you could easily demonstrate how changes to the design or deci-
sion criteria would affect the decisions made through the ETPs. The added
layer of interactivity through the app could also assist the statistician in better
communicating the changes that are being suggested. By developing all these
materials and making them easily accessible we hope it makes ETP simple to

implement where appropriate.
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Further research for work presented in this thesis would revolve around ex-
tending the methodologies presented in each of the chapters and investigating
more practical applications. For the ADePT-DDR trial we designed work could
be done to investigate, develop or extend alternative methodologies and com-
pare how they perform. For our extension to the Wages and Tait design future
work should look into the use of models with multiple parameters and differ-
ent adaptive randomisation methods as these have been shown to yield better
performance. TITE-DTPs could be explored further by investigating the use
of different weight functions in more detail. Additionally, it would be benefi-
cial to gain experience into how TITE-DTPs work in practice by implementing
them into trials that are in development or ongoing. These case studies would
provide information on how we could further improve TITE-DTPs, For ETPs
further work can be done to improve functionality within the app to allow
for more features such as running simulations. ETPs and the app could also
be developed to work with other designs rather than just the Beta-Binomial
design.

All the work presented in this thesis was motivated by the development of
clinical trials at the University of Birmingham’s Cancer Research UK Clinical
Trials Unit. Novel methods are generally speaking very useful and valuable.
In the context of dose-finding methodologies they can often times provide so-
lutions to complex clinical questions without compromising efficiency or in
some cases improve on it. Furthermore, the development of appropriate soft-
ware and tools to facilitate decision making are equally important in advanc-

ing the implementation of these novel methods.
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Appendix A

Examples implementing ETPs

The following sections contain examples of clinical trials that have implemented
Efficacy Transition Pathways (ETPs). All of these trials were designed by statis-
ticians at the Cancer Research UK Clinical Trials Unit (CRCTU) at the Univer-

sity of Birmingham.

A.1 MonoGerm

This trial was designed by Lucinda Billingham (LB) and Laura Kirton (LK).
What is presented here is the design that was used as part of a grant application
which has since been accepted. The trial is currently in the process of being set-
up so may be subject to some design changes before it is open.

MonoGerm ! is a Phase II trial investigating, in parallel, two single-agent
chemotherapies (carboplatin or vinblastine) as monotherapy prior to standard
of care radiotherapy in patients with intracranial germinoma. This trial utilises

a Bayesian approach for analysis and decision making. A “flip-flop” approach

1A phase II trial of carboplatin or vinblastine monotherapy induction prior to radiotherapy
for patients with intracranial germinoma
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is used for recruitment [111]. Essentially, recruitment will begin to the carbo-
platin arm then once three patients have been recruited and considered evalu-
able for an interim analysis recruitment flips to the vinblastine arm. This pro-
cess is then repeated by switching recruitment back and forth between the two
arms till recruitment is complete.

Typically intracranial germinoma is chemosensitive but it requires radio-
therapy for a cure. This mainly affects a paediatric population. For patients
with localised disease, standard of care involves three-drug chemotherapy
consisting of ifosfamide, carboplatin and etoposide followed by subsequent
radiotherapy. Treatment involving multiple chemotherapies allows for reduc-
tion in radiotherapy doses and fields. However, there is still an increased bur-
den of treatment on patients which can cause both short and long-term harm.
This can lead to patients experiencing multiple toxicities such as diabetes in-
sipidus, myelosuppression, vomiting/diarrhoea, electrolyte disturbances, re-
nal impairment, and elevation of liver enzymes.

The aim of the trial is to evaluate whether a single-agent chemotherapy
(carboplatin or vinblastine) is non-inferior to the standard of care multi-drug
chemotherapy for inducing complete response (CR), and is associated with
reduced harm and improved quality of life. The primary outcome measure
will be CR based on MRI scans at 6 and 12 weeks.

The trial will consist of two arms, one arm for carboplatin and one for vin-
blastine. There will be 36 patients recruited in total, 18 per arm. Patients will be
enrolled in cohorts of three to each treatment-arm by the flip-flop design. This
is illustrated in Figure A.1. Recruitment begins in the carboplatin arm and then
once three patients have been recruited recruitment is paused and then begins
in the vinblastine arm. Whilst recruitment is paused in the carboplatin arm an
interim analysis will be performed for that first cohort. Here primary outcome

data and key safety data will be assessed. Once recruitment to the first cohort
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of the vinblastine arm is complete and the interim analysis for the first cohort
of carboplatin patients is done, recruitment can begin for the second cohort in
the carboplatin arm and the interim analysis for the first cohort of vinblastine
patients can be conducted. This process is then repeated for the subsequent
cohorts. This design allows for continuous enrolment and monitoring of the

primary outcome.

FIGURE A.1: Flip-flop recruitment design in the MonoGerm trial.

< | Carboplatin Carboplatin Carboplatin Carboplatin Carboplatin Carboplatin
g Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Cohort 6 N=18
-‘é N=3 N=3 N=3 N=3 N=3 N=3
3
e
o Vinblastine Vinblastine Vinblastine Vinblastine Vinblastine Vinblastine
g Cohort 1 Cohort 2 Cohort 3 Cohort 4 Cohort 5 Cohort 6 N=18
o N=3 N=3 N=3 N=3 N=3 N=3
TIME >

A Bayesian approach is implemented to assess the true CR rates. Specifi-
cally, the experimental monotherapies will need to demonstrate non-inferiority
to the standard of care by a clinically acceptable margin. Based on previous
data it was determined that the minimum CR rate with standard of care is
30%. This value was taken as the non-inferiority margin. So, if the treatments
have a CR rate > 30% they will be considered non-inferior.

CR rates for each treatment arm will be established from the posterior prob-
ability distribution generated using a beta-binomial conjugate analysis. A min-
imally informative Beta(1,1) prior will be used in combination with the data
observed during the trial to produce the posterior. In terms of decision mak-

ing the following rule for the final analysis was specified:

P(CR > 30%) > 0.8 (A1)

That is to say that if there is a high probability (> 0.8) that the true CR rate
is > 30% there will be a GO decision, which in the context of this trial means

the treatment arm would be deemed non-inferior. The minimum number of
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observed CRs out of the 18 patients needed to warrant a GO decision is seven.
If seven responses are observed the median Bayesian estimate of the CR rate
would be 40% with a 0.82 probability that the true CR rate is > 30%.

Stopping rules have also been implemented. At each interim analysis the
predicted probability of success (PPoS) will be calculated. This is the proba-
bility that a GO decision would be made at the final analysis based on current
data that has been accrued. Here the stopping rule is such that if the PPoS is
less than 0.01 we would recommend stopping recruitment to that arm.

It is important to note that whilst the trial has two arms it is not designed
with the intention of making comparisons between the two treatments. Rather
the trial aims to find if there is enough evidence that one of these treatments
provides a sufficient response rate to warrant a GO decision.

LK produced ETPs throughout the design of this trial. Figure A.2 shows the
ETP for the design specified here. The ETPs produced here helped determine
what data we wanted to present as well as how we structure the data in each
of the cells. Here each cell shows the number of responses, the PPoS or the
posterior probability that the response rate is > 30%, the Bayesian estimate of
CR rate and a lower one-sided 80% credible interval.

Calculations for these plots were conducted in STATA and the ETP was pro-
duced in Microsoft PowerPoint. One benefit of this approach is that the ETP
can be easily customised and labelled. However, this meant that any changes
in the design that affected the decision-making resulted in the ETP having to
be updated manually. As a tool the ETP is effective at illustrating a final design
but without the ability to easily generate them during the design of a trial they
somewhat lose their purpose. This served as further motivation to produce

some code or a tool that would allow for ETPs to be automatically created.
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A.2 Glo-BNHL

This trial was designed by Lucinda Billingham (LB) with the assistance of
Shanna Maycock (SM). During initial stages of the design Grace Holt (GH)
also assisted with the implementation of ETPs. This trial is currently still in
set-up so specific details of the trial may be subject to change.

The Glo-BNHL ? study is a platform trial that aims to investigate the safety
and effectiveness of novel treatments in children, adolescents and young adults
with relapsed and/or refractory B-cell non-Hodgkin Lymphoma (r/r BNHL).
This trial is an international collaboration and hopes to generate substantial
evidence that could change practice in this rare cancer population.

Inclusion of novel agents into the platform will be determined by an in-
ternational Trial Steering Committee (TSC). Currently the platform consists of
three separate treatment arms, each focusing on a different novel agent in a
distinct group of patients. Each treatment arm will be treated independently
which allows for them to be analysed separately. There may also be separate
eligibility criteria for each arm. Patients will be enrolled into any arm where
they are eligible. The three arms that will be available at the start of the trial

are as follows:

¢ Treatment Arm I: Bispecific Antibody (BsAb)

¢ Treatment Arm II: Antibody-Drug Conjugate (ADC) with standard

chemotherapy

¢ Treatment Arm III: Chimeric Antigen Receptor (CAR) T-cells

This trial utilises an adaptive Bayesian design, which enables GO/No GO

decisions specific to the distinct populations in each treatment arm. The Bayesian

2A Global Study of Novel Agents in Paediatric and Adolescent Relapsed and Refractory
B-cell Non-Hodgkin Lymphoma



A.2. Glo-BNHL 245

approach has many benefits here as it facilitates decision making with small
sample sizes. Decisions will be made based on the estimate of the probability
that a novel agent is clinically effective. The specific criteria will vary between
each treatment arm. This design and approach also allows for continuous eval-
uation of each novel agent. Treatment arms may be removed if the treatment
is shown to be ineffective based on the trial data. Additionally, treatment arms
may also be added or amended in the future if recommended by the TSC.

Treatment arm I aims to estimate the clinical efficacy of BsAb treatment in
patients with r/r BNHL in first (only one prior line of therapy) or subsequent
relapse (more than one prior line of therapy). Due to this treatment arm I is
split into two groups, Ia and Ib for patients with one relapse or more than one
relapse respectively. These two subsequent arms will be recruited into and
analysed separately. In terms of treatment these patients will receive odronex-
tamab given as an intravenous infusion weekly for 12 weeks, then every two
weeks until nine months, and every four weeks thereafter until progression or
for a maximum of two years. The outcome measure for patients in treatment
arms la and Ib is the occurrence of an objective response (OR) i.e. complete
response (CR) or partial response (PR) after 12 weeks of treatment assessed
by Independent Central Review. However, for interim analyses local response
assessments will be used.

Treatment arm II aims to estimate the clinical efficacy of ADC treatment
with modified R-ICE (rituximab, ifosphamide, carboplatin, etoposide and dex-
amethasone) chemotherapy in patients with r/r B-NHL in first or subsequent
relapse. Patients will receive loncastuximab tesirine given as a 30 minute in-
travenous infusion with each cycle of modified R-ICE for a maximum of three
cycles. Here the outcome measure is occurrence of CR within a maximum of
three cycles of treatment.

Treatment arm III aims to estimate the efficacy of CAR T-cell therapy inr/r
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B-NHL patients who have CAR T-cell product available. The specific treat-
ments patients will receive is yet to be defined. The outcome measure is the
occurrence of OR following CAR T-cell infusion.

Each treatment arm and subsequent treatment arm (i.e. Ia and Ib) will aim
torecruit 15 evaluable patients during the initial stage. Once this recruitment is
complete a transition analysis is performed leading to three possible outcomes.
If the analysis results in a No GO decision recruitment to that treatment arm
will stop. If the analysis result is a GO decision there are two options either
there is sufficient evidence to change practice so the trial will stop recruiting
or this will trigger an expansion stage in which a further 15 patients will be
recruited. Following the expansion stage a confirmatory analysis will be con-
ducted on all 30 evaluable patients.

Interim analyses will be conducted after every three patients during the
initial stage and after every five patients during the expansion stage. There
will also be the option to stop recruitment to a treatment arm based on the
data observed in the interim analysis. Figure A.3 shows a flowchart of the
decision making process for each arm in the trial.

A beta-binomial conjugate analysis will be conducted for each treatment
arm. Observed trial data will be combined with a minimally informative Beta(1,1)
prior to produce a posterior probability distribution for the treatment effect 6,
which represents either the OR/CR rate dependent on treatment arm. The pos-
terior probability distribution is then used to inform decision making. GO/No
Go decision criteria are specified separately for each treatment arm.

For treatment arm la the decision criteria at the transition analysis is P(6 >
40%) > 0.8. So, if the true OR rate was greater than 40% with a probability
of at least 0.8 based on the data collected in the trial there would be a GO
decision. This corresponds to observing at least eight responses out of 15. For

the confirmatory analysis a GO decision is made if P(6 > 40%) > 0.95. At the
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FIGURE A.3: Flowchart of the decision making process in Glo-
BNHL.
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final analysis we would need the probability that the true OR rate was greater
than 40% to be at least 0.95. Here a GO decision would only be made if 17 out
of 30 patients had an OR. Table A.1 details the criteria for each treatment arm
which can be interpreted in a similar manner.

TABLE A.1: Summary of decision criteria for Glo-BNHL.

Transition Analysis Confirmatory Analysis
Treatment Arm Decision Criteria Min No. Responses for GO Decision Criteria Min No. Responses for GO
Ia P(6 >40%) > 0.8 8/15 P(6 >40%) > 0.95 17/30
Ib P(6 >10%) > 0.8 3/15 P(6 >10%) > 0.95 6/30
I P(6 >20%) > 0.8 5/15 P(6 >20%) > 0.95 10/30
I P(6 >10%) > 0.8 3/15 P(6 >10%) > 0.95 6/30

For the interim analyses there are separate stopping rules. These are the
same across the treatment arms but differ in the initial stage compared to the
expansion stage. During the initial stage, the predicted probability of success
at the transition analysis (PPoSt) is calculated and decisions are made based

on the following criteria:
1. PPoSt < 0.01 - recommend stopping for futility
2. 0.01 < PPoSt < 0.05 - consider stopping for futility
3. 0.05 < PPoSt < 0.15 - consider whether sufficient benefit in continuing
4. PPoSt > 0.15 - recommend continuing

So, if the probability of success at the transition analysis is less than 1% the
recommendation would be to stop recruitment to the treatment arm and if it
was greater than or equal to 15% the recommendation would be to continue
recruitment. If PPoSt is between 1-5% or 5-15% stopping should be also be
considered for either futility or if there sufficient benefit in continuing respec-
tively.

At the expansion stage, the predicted probability of success at the confir-
matory analysis is used (PPoSc). If this is below 10% (PPoSc < 0.1) the recom-

mendation would be to stop recruitment to that treatment arm due to futility.



A.2. Glo-BNHL 249

It should be noted that these decision rules are only recommendations and the
independent data monitoring committee (DMC) will make decisions based on
not only primary outcomes but secondary outcomes, recruitment and safety
data.

For this trial ETPs were produced separately for each treatment arm and
for each stage. This resulted in eight ETPs, one for the initial stage showing
the outcome of the transition analysis and one for the expansion stage show-
ing the outcome of the confirmatory analysis for each treatment arm (Ia, Ib,
II, III). ETPs were utilised throughout the design of the trial with initial ver-
sions originally created by GH using STATA and Microsoft PowerPoint. These
were then further developed by SM who performed calculations in R but still
utilised PowerPoint to create the ETPs. Figure A.4 and A.5 shows the ETPs for
the initial and expansion stage of treatment arm Ia respectively. These ETPs
created by SM helped us determine how our function and app visually pre-
sented ETPs and we utilised a similar colour scheme.

Similar to MonoGerm the process of creating these ETPs in PowerPoint can
be time consuming. This is even more of an issue in the Glo-BNHL study due
to the multiple treatment arms and stages. Additionally, this trial highlighted
another issue when you have multiple statisticians working on a trial who use
different software packages. In this case it would mean work would have to
be recreated in R and STATA to conduct the calculations required for ETPs.
This served as further motivation for the development of an application which
requires no specific stats software knowledge. As statisticians would easily be
able to recreate ETPs. SM went on to further extend the function we developed

to automatically generate ETPs specific to Glo-BNHL.
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A.3 DETERMINE

DETERMINE ° is a trial that was also designed by Lucinda Billingham (LB).
It is an umbrella-basket platform trial with multiple treatment arms running
in parallel. The trial aims to evaluate the efficacy of targeted therapies in rare
cancers with actionable genomic alterations, including common cancers with
rare actionable alterations. This trial is currently open to recruitment and may
be expanded in the future as more drugs are bought onto the platform.

DETERMINE will recruit patients of all ages including, paediatric, TYA
(teenage and young adult) and adults, who have rare tumours that contain
an actionable genetic alteration that can be targeted therapeutically. The ge-
netic alteration must have been identified previously from a tissue biopsy or
ctDNA (circulating tumour DNA). Patients will then be stratified into molec-
ular groups based on their tumour profile and allocated to the most suitable
treatment arm by the Molecular Tumour Board (MTB). The umbrella part of
the design consists of multiple non-randomised treatment arms, each evalu-
ation a licensed targeted anti-cancer drug or drug combination in a specific
molecularly-defined group of patients. Each molecularly-defined group al-
located to a specific treatment arm will contain multiple baskets of different
tumour types, age groups and molecular subtypes. This is visualised in Figure
A6.

A main trial cohort of 30 evaluable patients will be recruited into each treat-
ment arm. This will include patients with different tumour types, ages and
molecular subtypes. If specific subgroups within this main cohort are expe-
riencing significant benefit from treatment sub-cohorts will be formed to in-
vestigate treatment effectiveness in these subgroups. It is possible for each

treatment arm to have multiple sub-cohorts and they can recruit in parallel to

3Determining Extended Therapeutic indications for Existing drugs in Rare Molecularly-
defined Indications using a National Evaluation platform trial
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FIGURE A.6: Umbrella-basket platform trial design in DETER-
MINE.
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the main cohort. Each sub-cohort will be subject to the same statistical analy-
sis and will also aim to recruit 30 patients. Currently there are five treatment

arms, details of these are provided in Table A 2.

TABLE A.2: Current treatment arms in DETERMINE

Treatment| IMP(s) Molecular Grouping Route and Formu-
Arm lation

1 Alectinib ALK gene fusion positive solid tumours Oral capsules

2 Atezolizumab Solid tumours with high tumour mutational | Intravenous (IV)

burden (TMB) or microsatellite instability-high | infusion
(MSI-high) or proven constitutional mismatch
repair deficiency (CMMRD) disposition

3 Entrectinib NTRK or ROS1 gene fusion positive solid tu- | Oral capsules;

mours Dosing  depends
on body surface
area (BSA)
4 Trastuzumab  in | Solid tumours with HER2 amplification or mu- | IV infusion
combination with | tations
pertuzumab
5 Vemurafenib  in | Solid tumours with BRAF V600 mutations Oral; 960 mg
combination with tablets
cobimetinib

Co-primary outcomes of objective response (OR) and durable clinical ben-

efit (DCB) will be used to assess efficacy of the treatment in each of the cohorts
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in each molecular grouping. These are both classified as binary variables. OR
is defined dependent on specific disease criteria. DCB is defined as the absence
of disease progression for at least 24 weeks from the start of trial treatment, this
will also be measured based on disease specific criteria. Patients will receive
treatment based on the license schedule for the drug in their treatment arm.
Patients continue treatment until either they reach progressive disease (PD),
unacceptable adverse events or withdraw from the trial.

All outcomes in each treatment arm, cohort and sub cohort will be anal-
ysed using a Beta-Binomial conjugate analysis. Posterior probability distribu-
tions for OR and DCB will be generated using minimally informative priors,
Beta(0.1,0.9) and data that is collected on the trial. However decision making
will be done using the BOP-2 design [112], [113]. This design makes GO or No
GO decisions by assessing posterior probabilities for a set of outcomes, which
are optimised to either maximise power or minimise the number of patients.
The design also allows for the control of type I and type II error rates. In DE-
TERMINE, for each co-primary outcome, a rate of 10% or less would represent
a treatment effect that is not clinically relevant and a rate of 30% would rep-
resent a clinically meaningful treatment effect. These can be thought of as a
null and alternative hypothesis. The use of this design was made possible due
to the development of web applications by the authors at the MD Anderson
Cancer Centre [103].

Interim analyses will be conducted throughout the trial, however formal
decision making will first be conducted after 10 evaluable patients have been
recruited and then every 5 patients from that time-point in each cohort/sub-
cohort. If probability that both the true OR and DCB rates are lower than the
critical threshold of 10% the trial would recommend stopping. The design is
optimised to minimise the type II error i.e. to minimise the probability of not

rejecting the null hypothesis when treatment is effective. This is done whilst
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controlling the type I error rate at 0.1. Under the BOP-2 design this provides
the following stopping boundaries of 0/10, <1/15, <2/20, <3/25 at each of
the planned analyses at 10, 15, 20 and 25 patients. For the final analysis at 30
patients there would be a GO decision if >6/30 patients had either a OR or
DCB.

The ETPs we have shown so far all have been based on a Beta-Binomial
conjugate analysis with decisions made using PPoS and the posterior distri-
bution. However, they can also be utilised here. LB created the ETP shown
in Figure A.7. Here we can see each cell still pertains to a specific number of
responses out of a certain number of patients. Bayesian estimates, credible in-
tervals and posterior probabilities of the treatment effect being greater than our
null and alternative hypothesis. The cells have then been colour coded based
on the decision criteria elicited from the BOP-2 design. This trial also shows
that ETPs are a flexible tool that can also be applied to trials not explicitly using

a Beta-Binomial conjugate analysis for decision making.
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Appendix B

Code

This section contains code which was used as part of this thesis. Code has
been separated by chapter and labelled as appropriate. All code and docu-
mentation relating to this thesis can be found online at the following link -

https:/ /github.com/A-mit-Patel /PhD

B.1 TITE-PO-CRM in ADePT-DDR chapter code

The following code is the function that is used to conduct a dose recommen-

dation for TITE-POCRM in ADePT-DDR.

## Background ----

# This function is to facilitate the use of the TITE-PO
-CRM methodology for

# dose-finding trials. This 2s an altered version of
the pocrm.imp function

# from the pocrm package.

## Parameters ----

# prior.s - 4 matriz of wvalues corresponding to the

possible orderings


https://github.com/A-mit-Patel/PhD
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# of the tozxzicity probabilities from the
skeleton

# prior.o - 4 wvector of prior prbabilites for the
ordering. (Must sum up to

# 1 and be the same length as the number

of possible orders)

# target - The target DLT rate

# dlt - Vector of patient outcomes indicating
1f pattient exzperienced a

# DLT (1 dndicates DLT, 0 <ndicates no
DLT)

# dose - A wvector of dose-levels assigned to
patients (Length of dose

# must be the same as the length of toz)

# weight - 4 wvector of weights for each patient.
Wetghts must take wvalues

# between 0 and 1 (Length of weigh must
be the same as length of

# tox and dose)

# stop.low - Recommend stopping the trial if
tozicetty s too high at lowest

# dose (TRUE/FALSE default <s FALSE)

# stop.target - DLT rate required to trigger stopping
rule. Must be specified 2f
# stop.low == TRUE (Must be higher than

target)
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# stop.conf - Confidence level to trigger stopping

rule. Must be specified if

## Packages ----

# These packages aren’t require to run this function
but contain helpful

# functions which will facilitate the use of this
function. getprior in the

# dfcrm pacakge to obtain a skeleton and getwm from
pocrm to obtain the matric

# of skeleton walues (prior.s)

library(dfcrm)

library (pocrm)

tite.pocrm <- function(prior.s,
prior.o,
target ,
dlt,
dose,
weight,
stop.low = FALSE,
stop.target = NA,

stop.conf = NA)

# Empty wector to store estimates
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pred <- rep(0, nrow(prior.s))

# Empty wvector to store likeltihood

1lik <- rep(0, nrow(prior.s))

# n 15 the number of patients

n <- length(dlt)

# Loop through each order
for (k in 1:nrow(prior.s)) A
# Apply skeleton wvalues to patients doses

beta <- prior.s([k,][dose]

# Likelihood calculation
11 <- function(a) {
la <- 0
# Loop through each patient
for (i in 1:n) {
la <- la + dlt[i] * a * log(weight[il*betalil])
+

(1-d1t[i]) #* log((1 -weight[ilx*betal[i]l~a))

la

# Estimates for each order



B.1.

pred[k] <- optimize(f = 11, interval = c(0, 500),
maximum = T)$maximum
# Likelihood for each order

1ik[k] <- 11(pred[k])

# Postertior probabilities of each order

pord <- (exp(lik) * prior.o)/sum(exp(lik) * prior.o)

# Select order with greatest posterior

ord <- which.is.max(round(pord,7))

# Estimate of the model parameter from the selected
order

bhat <- pred[ord]

# Updated estimates of the tozicity probabilities

rpred <- prior.s[ord, ]-bhat

# Select dose level closest to the target

next.lev <- which.is.max(-(abs(rpred - target)))

# Obtain the current dose level

current.lev <- tail(dose, n = 1)

# Calculation of the inverse wvariance
beta <- prior.sl[ord,][dosel
inverse.var <- 0

for (i in 1:n) A

TITE-PO-CRM in ADePT-DDR chapter code 261
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inverse.var <- inverse.var + ((1-dlt[i])*(weight[il]
*betal[i] “bhat)*(log((weight [i]l*betali]))) ~2)/

(1-((weight[i]l*betal[i]l~bhat))) "2

inverse.var <- ifelse(inverse.var == 0, 0, 1/inverse.

var)

# If stopping rule 18 true check tozicity at lowest
dose

if (stop.low == TRUE)({

# Sample to check if lowest dose too toxic

samp <- rnorm{(n = 100000, mean = bhat, sd = sqrt(
inverse.var))

tox.low <- prior.slord, 1]~ samp

prob.tox.low <- mean(tox.low > stop.target)

if (prob.tox.low > stop.conf){

next.lev <- "stop"

# 95/ Confidence Intervals

crit <- gqnorm(0.975)
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ptox.L <- prior.slord,]~(bhat + crit*sqrt(inverse.var
))
ptox.U <- prior.slord,]~(bhat - crit*sqrt(inverse.var

))

# Output
out <- list(ord.prob = round(pord,3),
order .est = ord,

b.est = round(bhat, 3),

ptox.est rpred,

dose .rec next.lev,

ptox.U ptox.U,

ptox.L ptox.L,
post.var = 1/inverse.var,

se = sqrt((inverse.var~2)/n))

The code below is for various functions that were used to run the simula-

tions in Chapter 2.

# Simulation function for PO-TITE-CRHNs
titepocrm_sim <- function (r, alpha, prior.o, x0, stop,
n, theta, nsim,
tox.range, cohort, obswin,
minfu, win2, recrate,

mtd.lim, tox.lim, tox.cert)

start_time <- Sys.time ()
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sim <- siml <- apred <- 1lik <- pord <- ord <- ahat <-
rpred <- next.lev <- nl <- N <- NULL
d <- ncol(alpha)
s <- nrow(alpha)
if (msim > 1) |
lpocrm <- function(r, alpha, prior.o, x0, stop, n,
theta) {
if (is.vector (alpha))
alpha = t(as.matrix(alpha))
nord.tox = nrow(alpha)
mprior.tox = prior.o
# Function for calculating the likelihood
bcrml <- function(a, pl, y, w) {
lik = 0
for (j in 1:1length(y)) {
lik = 1ik + y[j] * a * log(wljl*p1[jl) +
(1 - y[j1) * log((l - wljlx*pi[jl-a))
}
return(lik)
}
# specifies the number of doses
ncomb = ncol(alpha)
# Inttialise empty vectors for use later on
# y (number of dlt’s per dose), npts(number of
patients per dose)

y = npts = ptox.hat = numeric(ncomb)
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# The dose level to be selected (add 1 to
indicate position to stop)

comb.select = numeric(ncomb )

# Starting dose taken from first element of the
dose escalation scheme

comb.curr = xO0[1]

stoprule = 0

stop.count <- 0

# Specifies the dose escelation scheme

stagel <- c(x0, rep(ncol(alpha), n - length(x0)))

# Counter for the number of cohorts

cohort.count <- 1

# Empty wectors to store dose recived and <f dlt
was observed

duration <- dose <- dlt <- dlt_time <- fu <- tox
<- weights <- vector ()

# Time to recruit new patients

rectime <- obswin/recrate

while (length (tox) < n){

# Takes draws from a binomial distribution to
determine 1f patients in the cohort had a
tozxic outcome

cohort_tox <- stats::rbinom(n = cohort, size =
1, prob = rl[comb.curr])

# Dummy wvariable to store DLT which will be

updated once the time for DLT has passed
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cohort_dlt <- rep(0, cohort)

# Patients in the same cohort recieve the same
dose

cohort_comb <- rep(comb.curr, cohort)

# Follow up time based on the time taken to
recruit a patient

# First patient assumed to be recruited
wtnstantly

# Add the min fu time to indicate when analysts

15 done

cohort_fu <- (rectimex(cohort-1)) - (rectime *
0:(cohort - 1)) + minfu

# Time of DLT 1s recorded and set to be at any
time during the obswin

cohort_dlt_time <- vector ()

for (i in 1:cohort) A
if (cohort_tox[i] == 0){

cohort_dlt_time[i] <- NA

}
else {

cohort_dlt_timel[i] <- runif (1,0, obswin)

}

# Stores the time DLT occurs for mnew cohort
dlt_time <- c(dlt_time, cohort_dlt_time)

# Stores new cohorts tozicity

tox <- c(tox, cohort_tox)



B.1. TITE-PO-CRM in ADePT-DDR chapter code 267

# Stores dose level for each new cohort
dose <- c(dose, cohort_comb)
# Store dummy dlt for new cohort
dlt <- c(dlt, cohort_dlt)
# Add on follow up time and recruitment time
for previous cohorts
fu <- fu + (rectime*(cohort-1)) + minfu
#duration <- duration + (cohort * rectime) +
minfu
# store new cohorts follow up time
fu <- c(fu, cohort_fu)
#duration <- c(duration, cohort_fu)
# Loop through all the patients who will have a
DLT
for(i in 1:length(fu)){
if (tox[i] == 1){
# If the follow up time 25 greater than the
time the dlt was determined to occur
if (fulil >= dlt_time[i]){
# Change the follow up time to the obswin
to indicate the dlt has now happened
fuli] <- obswin
# As the dlt has happened it should now
be stored for calculation in the
likelthood

dit[i] <- 1
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fu <- pmin(fu, obswin)
# Calculated wetghts where the min fu accounts
for 607 and is 80/ by window 2
for (i in 1:1length(fu)) {
weights[i] <- 0.6 +
0.2x(min(win2 - minfu, fuli]l-minfu)/(win2 -
minfu))+ 0.2+ (max(fulil- win2, 0)/(
obswin-win2))
}
# These wvalues are used to calculate patient

allocation and JDLT

ylcomb.curr] = y[comb.curr] + sum(cohort_tox)
npts [comb.curr] = nptsl[comb.curr] + cohort
if (sum(dlt) == length(dlt)) {
comb.curr <- ifelse(comb.curr == 1, comb.curr
comb.curr - 1)
}
else if (sum(dlt) == 0) {
comb.curr <- ifelse(comb.curr == ncomb, comb.
curr,

stagel [cohort.count + 1])
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else {

break

# Stopping rule ends stage 1 when the same dose
25 recommended to a sizth cohort. As this
follows the escalation scheme only stops
when the mazxz dose @s prescribed to sizth
cohort.
if (sum(dose == comb.curr) == mtd.lim ){

break

cohort.count <- cohort.count +1

while (length(dlt) <= n) A

if (sum(dlt) == 0 ) {
stop = 0
break

}

else {

like.tox = est.tox = rep(0, nord.tox)
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for (k in 1l:nord.tox) {
beta <- alphalk,][dose[l:length(dose)]]
est.tox[k] <- optimize(f = bcrml, interval
= ¢(0,500),

pl = beta, y = dlt,

w = weights,
maximum = T)$maximum
like.tox[k] <- optimize(f = bcrml, interval

= ¢(0,500),
pl = beta, y = dlt,
w = weights,
maximum = T)$

objective

postprob.tox = (exp(like.tox) * mprior.tox)/

sum(exp(like.tox) * mprior.tox)

if (nord.tox > 1) {

mtox.sel = which.is.max(round(postprob.tox
,8))
}
else {
mtox.sel =1
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ptox.hat = alphalmtox.sel, ]~"est.tox[mtox.sel
]
loss = abs(ptox.hat - theta)
comb.curr = which.is.max(round(-loss,8))
# obtain the last dose level from the data
last.lev <- tail(dose, n = 1)
if (comb.curr %in’% dose | comb.curr < last.
lev){
# If the next recommended levl has already
been tested or i1s lower than
# the current dose level than recommend
next level

comb.curr <- comb.curr

}

else {
comb.curr <- max(dose) + 1

}

if (nptsl[comb.curr] == stop) {
stoprule <- 0
break

}

# Calculate asymptotic wariance
beta <- alphal[mtox.sel,][dose]

inverse.var <- 0

for (i in 1:length(dlt)) {
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inverse.var <- inverse.var + ((1-dl1t[i])*(
weights[il*betali]l~est.tox[mtox.sel]l)*(
log((weights[il*betali]))) ~2)/ (1-((
weights[il*betal[i]l~est.tox[mtox.sell)))

~2

post.alpha.mean <- est.tox[mtox.sell
post.alpha.var <- ifelse(inverse.var == 0, 0
, 1/inverse.var)
post.alpha.samp <- rnorm(n = 100000, mean =
post.alpha.mean,
sd = sqrt(post.alpha
.var))
post.prob.tox.samp <- alphal[mtox.sel,1] post.
alpha.samp
prob.too.toxic <- mean(post.prob.tox.samp >

tox.lim)

if (is.na(prob.too.toxic)) {

prob.too.toxic <- 1
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# stopping rule for when lowest dose ©s too
torxtic AND lowest dose has been tested ptoz
.hat[1] > 0.5 & 1 Jin/ dose

#

# stopping rule i1f dose is being recommended

for a xzth time

if (length(dlt) == n |(prob.too.toxic > tox.
cert) & 1 %inY% dose | sum (dose == comb.
curr) == mtd.lim) {

stoprule = 0

# once all patients recruited calculate
likelihoods at maz weight
like.tox = est.tox = rep(0, nord.tox)

for (k in 1:nord.tox) {

#set all the wetights at 1

weights <- rep(1, length(tox))

#ensures that all those predicted to have
tozic event s included in dlit data

# as we are assuming full follow up once
the last patients are recruited

dlt <- tox

beta <- alphalk,][dose[l:1length(dose)]]

est.tox[k] <- optimize(f = bcrml,

interval = ¢(0,500),
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pl = beta, y = tox

, W = weights,
maximum = T)$
maximum

like.tox[k] <- optimize(f = bcrml,
interval = ¢(0,500),
pl = beta, y =
tox, w =
weights,
maximum = T)$

objective

postprob.tox = (exp(like.tox) * mprior.tox)

/sum(exp(like.tox) * mprior.tox)

if (nord.tox > 1) {

mtox.sel = which.is.max(round(postprob.
tox ,8))
}
else A
mtox.sel = 1
}

ptox.hat = alphal[mtox.sel, ]-est.tox[mtox.
sel]

loss = abs(ptox.hat - theta)
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comb.curr = which.is.max(round(-loss,8))

# obtain the last dose level from the data
last.lev <- tail(dose, n = 1)
if (comb.curr %in% dose | comb.curr < last.
lev){
# If the next recommended levl has
already been tested or is lower than
# the current dose level than recommend
next level
comb.curr <- comb.curr
}
else {

comb.curr <- max(dose) + 1

# Calculate asymptotic wariance
beta <- alphalmtox.sel,][dose]

inverse.var <- 0

for (i in 1:1length(tox)) {
inverse.var <- inverse.var + ((1-tox[i
1) *(weights[i]l*betal[i]l~est.tox[mtox.
sel])*(log((weights[il*betalil))) ~2)
/(1-((weights[i]*betal[i]l~est.tox[

mtox.sell]))) "2
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post.alpha.mean <- est.tox[mtox.sell]
post.alpha.var <- ifelse(inverse.var ==
0, 0 , 1/inverse.var)
post.alpha.samp <- rnorm(n = 100000, mean
= post.alpha.mean,
sd = sqrt(post.
alpha.var))
post.prob.tox.samp <- alphal[mtox.sel,1]"
post.alpha.samp
prob.too.toxic <- mean(post.prob.tox.samp

> tox.1lim)

if (is.na(prob.too.toxic)) {

prob.too.toxic <- 1

break

else {
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# Takes draws from a binomial distribution
to determine +if patients in the cohort
had a toxic outcome

cohort_tox <- stats::rbinom(n = cohort,
size = 1, prob = r[comb.curr])

cohort_dlt <- rep(0, cohort)

# Patients in the same cohort recieve the
same dose

cohort_comb <- rep(comb.curr, cohort)

# Follow up time based on the time taken to

recruit a patient

# First patient assumed to be recruited
instantly

# Add the min fu time to indicate when
analysis 1s done

cohort_fu <- (rectimex*(cohort-1))-(rectime
* 0:(cohort - 1))+minfu

# Time of DLT 1s recorded and set between
the time the patient has been followed
up and the remaining observation window

cohort_dlt_time <- vector ()

for (i in 1:cohort) {
if (cohort_tox[i] == 0){

cohort_dlt_time[1] <- NA

else {
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cohort_dlt_timel[i] <- runif (1,0, obswin

)

b
# Stores the time DLT occurs for new cohort
dlt_time <- c(dlt_time, cohort_dlt_time)
# Stores new cohorts tozicity
tox <- c(tox, cohort_tox)
# Stores dose level for each new cohort
dose <- c(dose, cohort_comb)
# Store dummy dlt for new cohort
dlt <- c(dlt, cohort_dlt)
# Add on follow up time and recruitment

time for previous cohorts
fu <- fu + (rectime*(cohort-1)) + minfu
#duration <- duration + (cohort * rectime)

+ minfu
# store new cohorts follow up time
fu <- c(fu, cohort_fu)
#duration <- c(duration, cohort_fu)
for(i in 1:length(fu)){

if (tox[i] == 1){

if (fuli] >= dlt_time[i]){
fuli]l <- obswin

dit[i] <- 1
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fu <- pmin(fu, obswin)
# Calculated weights where the min fu
accounts for 60/ and 80) by win2
for (i in 1:length(fu)) {
weights[i] <- 0.6 +
0.2x(min(win2 - minfu, fulil-minfu)/(
win2 - minfu))+ 0.2*%(max(fulil- win2

, 0)/(obswin-win?2))

}
ylcomb.curr] = y[comb.curr] + sum(cohort_
tox)
npts [comb.curr] = npts[comb.curr] + cohort
}
}
}
if (stoprule == 0) {

if ('exists("prob.too.toxic")){prob.too.toxic
<- 0}

if ((prob.too.toxic > tox.cert)& 1 %in¥% dose){
stop.count <- 1

}

else {
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comb.select[comb.curr] = comb.select[comb.

curr] + 1

# Calculate the duration of the trial

num_cohorts <- length(tox) / cohort

duration <- cohort_ful[l] + (rectimex(cohort-1) +

minfu) * (num_cohorts-1) + (obswin - minfu)
return(list (MTD.selection = comb.select, tox.data
=y’
patient.allocation = npts, duration =

duration,

stop = stop.count))

}

lpocrm.sim <- function(nsim) {
ncomb = length(r)
y <- npts <- matrix(nrow = nsim, ncol = ncomb)
comb.select <- matrix(nrow = nsim, ncol = ncomb )

duration <- stop.count <- trialsize <- rep (0, nsim)
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nstop = 0

for (i in 1:nsim) {

}

#print (i)
result <- lpocrm(r, alpha, prior.o, x0, stop, n,
theta)

comb.select[i, ] = result$MTID.selection

y[i, ] = result$tox.data

npts[i, ] = result$patient.allocation

trialsize[i] = sum(result$patient.allocation)

duration[i] = result$duration # convert duration
to months

stop.count[i] = result$stop

return(list (true.prob = r,

time = Sys.time() - start_time,

MTD.selection = round(colMeans (comb.
select) ,2),

patient.allocation = 100* round(
colMeans (npts) /mean(trialsize) ,2),

percent .DLT = sum(colMeans (y))/mean(
trialsize),

months = 12*mean(duration) /365,

stop = mean(stop.count),

max.n.count = length(trialsizel
trialsize == max(trialsize)]),

summary.trialsize = summary(trialsize),

mean.n = mean(trialsize),
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mean.n.perdose = colMeans (npts),

acceptable = sum(colMeans (comb.select) [
which (round (abs(r - theta), 2) <=
tox.range)])))

+

if (nsim == 1) {

twostgcrm(r, x0, stop, n, theta)
}
else {

lpocrm.sim(nsim)

# Simulation function for PO-CRHNs
pocrm_sim <- function (r, alpha, prior.o, x0, stop, n,
theta, nsim,
tox.range, cohort,

mtd.lim, tox.lim, tox.cert)

start_time <- Sys.time ()

sim <- siml <- apred <- 1lik <- pord <- ord <- ahat <-
rpred <- next.lev <- nl <- N <- NULL

d <- ncol(alpha)

s <- nrow(alpha)

if (nsim > 1) {
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lpocrm <- function(r, alpha, prior.o, x0, stop, n,
theta) {
if (is.vector (alpha))
alpha = t(as.matrix(alpha))
nord.tox = nrow(alpha)

mprior.tox = prior.o

bcrml <- function(a, pl, y, n) {
1ik = 0
for (j in 1:length(p1l)) A
lik = 1ik + y[j] * a * log(p1[jl1) + (n[jI1 -
yLil)
*
log
(1

pll
jl°

a))
}

return(lik)

# specifies the number of doses
ncomb = ncol(alpha)

# Inttialise empty wvectors for use later on
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# y (number of dlt’s per dose), npts(number of
patients per dose)

y = npts = ptox.hat = numeric(ncomb)

# The dose level to be selected (add 1 to
indicate position to stop)

comb.select = numeric(ncomb)

# Starting dose taken from first element of the
dose escalation scheme

comb.curr = x0[1]

stoprule = 0

# Specifies the dose escelation scheme

stagel <- c¢(x0, rep(ncol(alpha), n - length(x0)))

# Counter for the number of cohorts

cohort.count <- 1

# Empty wectors to store dose recived and <f dlt
was observed

dose <- dlt <- dlt_time <- fu <- tox <- weights
<- vector ()

# Time to recruit new patients

#rectime <- obswin/recrate

while (length(dlt) < n){

# Takes draws from a binomial distribution to
determine <f patients 1in the cohort had a
tozic outcome

cohort_tox <- stats::rbinom(n = cohort, size =

1, prob = rlcomb.curr])
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# Dummy wvariable to store DLT which will be
updated once the time for DLT has
passed

cohort_dlt <- cohort_tox

# Pattents imn the same cohort recieve the same
dose

cohort_comb <- rep(comb.curr, cohort)

# Stores new cohorts toxicity

tox <- c(tox, cohort_tox)

# Stores dose level for each new cohort
dose <- c(dose, cohort_comb)

# Store dummy dlt for new cohort

dlt <- c¢(dlt, cohort_dlt)

ylcomb.curr] = y[comb.curr]l] + sum(cohort_tox)
npts [comb.curr] = npts[comb.curr] + cohort
if (sum(dlt) == length(dlt)) {
comb.curr <- ifelse(comb.curr == 1, comb.curr
comb.curr - 1)
}
else if (sum(dlt) == 0) {
comb.curr <- ifelse(comb.curr == ncomb, comb.

curr,
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stagel [cohort.count + 1])

else {

break

# Stopping rule ends stage 1 when the same dose
18 recommended to a sizth cohort. As this
follows the escalation scheme only stops
when the mar dose ©1s prescribed to stizth
cohort.
if (sum(dose == comb.curr) == mtd.lim ){

break

cohort.count <- cohort.count +1

while (length(dlt) <= n) {

if (sum(dlt) == 0 ) {
stop = O
break

}

else {
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= est.tox = rep(0, nord.tox)

like.tox =

for (k in 1:nord.tox) {
= bcrml, interval

est.tox[k] <- optimize (f

= ¢(0,100),
pl = alphalk, 1, y =

y, n = npts,
maximum = T)$maximum
= bcrml, interval

like.tox[k] <- optimize(f

= ¢ (0,100),
pl = alphalk, 1, y
=y, n = npts,
maximum = T)$
objective

postprob.tox (exp(like.tox) * mprior.tox)/

sum(exp(like.tox) * mprior.tox)

if (nord.tox > 1) {
which.is.max (round (postprob.tox

mtox.sel

,8))
+

else {

mtox.sel = 1
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ptox.hat = alphalmtox.sel, ]-est.tox[mtox.sel
]

loss = abs(ptox.hat - theta)

comb.curr = which.is.max(round(-loss,8))

# obtain the last dose level from the data

last.lev <- tail(dose, n = 1)
if (comb.curr %in% dose | comb.curr < last.
lev){

# If the next recommended levl has already
been tested or ts lower than
# the current dose level than recommend
next level
comb.curr <- comb.curr
}
else {

comb.curr <- max(dose) + 1

if (nptsl[comb.curr] == stop) {
stoprule <- 0
break
}
# Calculate asymptotic wariance
beta <- alphalmtox.sel,][dose]
inverse.var <- 0

for (i in 1:1length(dlt)) {
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inverse.var <- inverse.var + ((1-dlt[z1])*(
betali]~est.tox[mtox.sel])*(log((betali
1)))~2)/(1-((betali]l~est.tox[mtox.sell]))

)2

post.alpha.mean <- est.tox[mtox.sell]
post.alpha.var <- 1/inverse.var
post.alpha.samp <- rnorm(n = 100000, mean =
post.alpha.mean,
sd = sqrt(post.alpha
.var))
post.prob.tox.samp <- alpha[mtox.sel,l1] post.
alpha.samp
prob.too.toxic <- mean(post.prob.tox.samp >

tox.lim)

if (is.na(prob.too.toxic)) {

prob.too.toxic <- 1

H*:

stopping rule for when lowest dose is too
torxtic AND lowest dose has been tested ptoz

.hat[1] > 0.5 & 1 /Jin/ dose

+*

stopping rule if dose is being recommended

for a xzth time
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if (length(dlt) == n |(prob.too.toxic > tox.
cert) & 1 %in% dose | sum (dose == comb.
curr) == mtd.lim) {

stoprule = 0

break

else {

# Takes draws from a binomial distribution
to determine 4if patients in the cohort
had a tozic outcome

cohort_tox <- stats::rbinom(n = cohort,
size = 1, prob = r[comb.curr])

cohort_dlt <- rep(0, cohort)

# Patients in the same cohort recieve the
same dose

cohort_comb <- rep(comb.curr, cohort)

# Stores mnew cohorts tozicity

tox <- c(tox, cohort_tox)

# Stores dose level for each new cohort
dose <- c(dose, cohort_comb)

# Store dummy dlt for new cohort

dlt <- c(dlt, cohort_dlt)
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ylcomb.curr] = y[comb.curr] + sum(cohort_
tox)
npts [comb.curr] = npts[comb.curr] + cohort
}
}
}
if (stoprule == 0) {
if (lexists("prob.too.toxic")){prob.too.toxic
<- 0%}
if ((prob.too.toxic > tox.cert)& 1 %in% dose){
#comb.select[ncomb+1] <- 1
}
else {
comb.select [comb.curr] = comb.select[comb.
curr] + 1
}
}

stop.count <- 0
if ((prob.too.toxic > tox.cert) & 1 %in% dose){

stop.count <- 1

duration <- 474 + 504*((length(tox)-1)/3)

return(list (MTD.selection = comb.select, tox.data

:y,



292 Appendix B. Code

patient.allocation = npts, stop =
stop.count,

duration = duration))

}
lpocrm.sim <- function(nsim) {
ncomb = length(r)
y <- npts <- matrix(nrow = nsim, ncol = ncomb)
comb.select <- matrix(nrow = nsim, ncol = ncomb)
duration <- stop.count <- trialsize <- rep (0, nsim)
nstop = 0
for (i in 1:nsim) {
print (i)
result <- lpocrm(r, alpha, prior.o, x0, stop, n,
theta)
comb.select[i, ] = result$MTD.selection
y[i, ] = result$tox.data
npts[i, ] = result$patient.allocation
trialsize[i] = sum(result$patient.allocation)
stop.count[i] = result$stop
duration[i] = result$duration
}

return(list (true.prob = r,
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+

if (nsim

1)

time = Sys.time()- start_time,

MTD.selection = round(colMeans (comb.
select) ,2),

patient.allocation = 100%* round (
colMeans (npts)/mean(trialsize) ,2),

percent .DLT = sum(colMeans (y))/mean(
trialsize),

stop = mean(stop.count),

months 12*mean (duration) /365,

mean.n mean(trialsize),

mean.n.perdose = colMeans (npts),

acceptable = sum(colMeans (comb.select) [

which(round (abs(r - theta), 2) <=

tox.range)])))

{

twostgcrm(r, x0, stop, n, theta)

+

else {

lpocrm.sim(nsim)

# Simulation function for two-stage TITE-CRM

applied_titecrmts_sim_v2 <- function (true_tox, prior,

target,

max_sample_size,
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num_sims, win2,
cohort = 1,
obswin, minfu,

recrate, initdes,
n.mtd,

dose_func =
applied_

titecrm, ...)

iterations <- list()
start_time <- Sys.time ()

for (s in 1:num_sims) {

stop <- FALSE
stop_reason <- NULL

rectime <- obswin/recrate

level <- initdes[1]

stagel <- c(initdes, rep(length(prior), max_sample_
size - length(initdes)))

duration <- dose <- dlt <- dlt_time <- fu <- tox <-
weights <- vector ()

# Counter for the number of cohorts

cohort.count <- 1

# specifies the number of doses

ncomb <- length(true_tox)

while (length(tox) < max_sample_size) {
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# Takes draws from a binomial distribution to
determine 1f patients in the cohort had a
tozxic outcome

cohort_tox <- stats::rbinom(n = cohort, size = 1,
prob = true_tox[levell)

# Dummy wvariable to store DLT which will be
updated once the time for DLT has
passed

cohort_dlt <- rep(0, cohort)

# Patients in the same cohort recieve the same
dose

cohort_level <- rep(level, cohort)

# Follow up time based on the time taken to
recruit a patient

# First patient assumed to be recruited instantly

# Add the min fu time to indicate when analyscs
1S done

cohort_fu <- (rectimex*(cohort-1)) - (rectime *
0:(cohort - 1)) + minfu

# Time of DLT 4s recorded and set to be at any
time during the obswin

cohort_dlt_time <- vector ()

for (i in 1:cohort) {

if (cohort_tox[i] == 0){

cohort_dlt_time[i] <- NA

else {
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cohort_dlt_time[i] <- runif (1,0, obswin)

}

# Stores the time DLT occurs for new cohort

dlt_time <- c(dlt_time, cohort_dlt_time)

# Stores mnew cohorts tozxicity

tox <- c(tox, cohort_tox)

# Stores dose level for each new cohort

dose <- c(dose, cohort_level)

# Store dummy dlt for new cohort

dlt <- c(dlt, cohort_dlt)

# Add on follow up time and recruitment time for
previous cohorts

fu <- fu + (rectimex(cohort-1)) + minfu

#duration <- duration + (cohort *x rectime) +
minfu

# store mew cohorts follow up time

fu <- c(fu, cohort_fu)

#duration <- c(duration, cohort_fu)

# Loop through all the patients who will have a
DLT

for(k in 1:length(fu)){
if (tox[k]l == 1){

# If the follow up time 18 greater than the
time the dlt was determimed to occur

if (fulk] >= dlt_timel[k]){
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# Change the follow up time to the obswin
to indicate the dlt has now happened

fulk] <- obswin

# As the dlt has happened <t should now be
stored for calculation wn the likelihood

dlt[k] <- 1

fu <- pmin(fu, obswin)
# Calculated weights where the min fu accounts
for 60/ and is 80/ bywindow 2
for (a in 1:length(fu)) {
weights[a]l <- 0.6 +
0.2%(min(win2 - minfu, fulal-minfu)/(win2 -
minfu))+

0.2+ (max (fulal- win2, 0)/(obswin-win2))

if (sum(dlt) == length(dlt)) {
level <- ifelse(level == 1, level,
level - 1)
}
else if (sum(dlt) == 0) {

level <- ifelse(level == ncomb, level,
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stagel [cohort.count + 1])

else {

break

# Stopping rule ends stage 1 when the same dose
18 recommended to a sixzth cohort. 4s this
follows the escalation scheme only stops when
the mazx dose 1s prescribed to sizth cohort.

if (sum(dose == level) == n.mtd ){

break

cohort.count <- cohort.count +1

while ( !stop & length(tox) <= max_sample_size) {
if (length(dlt) == max_sample_size & sum(dlt) ==
0 ) {
stop = TRUE
break
}
elsed{
x <- dose_func(prior = prior, target = target,

weights = weights,
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tox = dlt, level = dose,
followup = fu, obswin =
obswin ,
)

fdose <- level <- x$mtd

stop <- ifelse(is.null(x$stop), FALSE, x$stop)

stop_reason <- x$§stop_reason

if (length(dlt) == max_sample_size | stop ==
TRUE ){
x <- dose_func(prior = prior, target = target
, tox = tox,

level = dose, followup = rep(

obswin, length(tox)),
obswin = obswin, weights = rep

(1, length(tox)),

)

fdose <- x$mtd
stop <- ifelse(is.null(x$stop), FALSE, x$stop
)

stop_reason <- x$stop_reason

break

elsed{
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cohort_tox stats::

1,

cohort_dlt <- rep(0,

cohort_1level

cohort_fu

rectime x

cohort_dlt_time <-
for (j in 1:cohort)

if (cohort_tox[j]

rep(level,

(rectime * (cohort

rbinom(n = cohort, size =
prob = true_tox[
levell])
cohort) ##
cohort)

1)) - (

(0:¢(

cohort

1)

minfu

cQ)

{
0){

cohort_dlt_time[j] <- NA
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else {

cohort_dlt_time[j] <- runif (1,0, obswin)

}

# cohort_fulcohort_tox == 1] <- obswin

# Stores the time DLT occurs for new cohort
dlt_time <- c(dlt_time, cohort_dlt_time) ##
# Store dummy dlt for new cohort

dlt <- c(dlt, cohort_dlt) ##

tox <- c(tox, cohort_tox)

dose <- c(dose, cohort_level)

fu <- fu + (rectimex*(cohort-1)) + minfu

fu <- c(fu, cohort_fu)

#duration <- duration + (cohort * rectime) +

minfu

for (1 in 1:length(tox)) {
if(tox[1] == 1 & full]l] >= dlt_time[1]){
full]l] <- obswin

dit[1] <- 1

}

fu <- pmin(fu, obswin)

for (b in 1:length(fu)) {

weights[b] <- 0.6 +



302 Appendix B. Code

0.2*(min(win2 - minfu, fulbl-minfu)/(win2
- minfu))+
0.2%x(max (fulbl- win2, 0)/(obswin-win2))
}

cohort.count <- cohort.count+1

print (s)

num_cohorts <- length(tox) / cohort

duration <- cohort_ful[l] + (rectimex(cohort-1) +
minfu) * (cohort.count-1) +(obswin - minfu)

iterations[[s]] <- 1list(tox = tox, level = dose,

mtd = fdose,

stop = stop, stop_reason

stop_reason,

duration = duration,
cohorts = cohort.count)
}
dose_selections = sapply(iterations, function(x) x$
mtd)
doses_given = unlist(sapply(iterations, function(x) x

$level))
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duration = sapply(iterations, function(x) x$duration)
summary = list(true_tox = true_tox, prior = prior,
target = target,
max_sample_size = max_sample_size,
initdes = initdes,
months = 12*mean(duration) /365,
time = Sys.time()- start_time,
num_sims = num_sims, cohort = cohort,
prob_stop = table(substr(unlist(sapply
(iterations, function(x)
x$stop_reason)), 1, 15))/num_sims,
mtd = sapply(1l:length(prior),
function (d)
sum(dose_selections == d, na.rm =

TRUE) /num_sims) ,

doses_given = sapply(l:length(prior),
function (d)
sum (doses_given == d, na.rm = TRUE)/
num_sims), prob_dose_given =

sapply (1:1length(prior),
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return(list (summary = summary, iterations =

iterations))

# Stmulations for nmo cohorts and removal of minimum
followup
# Not used
titepocrm_sim_nomin <- function (r, alpha, prior.o, x0,
stop, n, theta, nsim,
tox.range, cohort, obswin,
minfu, win2, recrate,

mtd.lim, tox.lim, tox.cert)

sim <- siml <- apred <- 1lik <- pord <- ord <- ahat <-
rpred <- next.lev <- nl <- N <- NULL

d <- ncol(alpha)

s <- nrow(alpha)

if (msim > 1) {

lpocrm <- function(r, alpha, prior.o, x0, stop, n,
theta) {
if (is.vector(alpha))
alpha = t(as.matrix(alpha))

nord.tox = nrow(alpha)
mprior.tox = prior.o

# Function for calculating the likelihood
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bcrml <- function(a, pl, y, w) {
lik = 0
for (j in 1:1length(y)) {
lik = 1ik + y[j] * a * log(wljl*pl[jl) +
(1 - y[j1) * log((1 - wljl*pi[jl-a))
}
return(lik)
+
# specifies the number of doses
ncomb = ncol(alpha)
# Inttialise empty wvectors for use later on
# y (number of dlt’s per dose), npts(number of
patients per dose)
y = npts = ptox.hat = numeric(ncomb)
# The dose level to be selected (add 1 to
indicate position to stop)
comb.select = numeric(ncomb )
# Starting dose taken from first element of the
dose escalation scheme
comb.curr = x0[1]
stoprule = 0
stop.count <- 0
# Specifies the dose escelation scheme
stagel <- c(x0, rep(ncol(alpha), n - length(x0)))
# Counter for the number of cohorts

cohort.count <- 1
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# Empty wvectors to store dose recived and <f dlt
was observed

duration <- dose <- dlt <- dlt_time <- fu <- tox
<- weights <- vector ()

# Time to recruit new patients

rectime <- obswin/recrate

while (length (tox) < n){

# Takes draws from a binomial distridbution to
determine 1f patients in the cohort had a
toxic outcome

cohort_tox <- stats::rbinom(n = cohort, size =
1, prob = rl[comb.curr])

# Dummy wvariable to store DLT which will be
updated once the time for DLT has passed

cohort_dlt <- rep(0, cohort)

# Patients in the same cohort recieve the same
dose

cohort_comb <- rep(comb.curr, cohort)

# Follow up time based on the time taken to
recruit a patient

# First patient assumed to be recruited
instantly

# Add the min fu time to indicate when analysts

28 done
cohort_fu <- (rectimex(cohort-1)) - (rectime *

0:(cohort - 1)) + rectime
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# Tame of DLT 4is recorded and set to be at any
time during the obswin
cohort_dlt_time <- vector ()
for (i in 1:cohort) A
if (cohort_tox[i] == 0){
cohort_dlt_time[i] <- NA
}
else {

cohort_dlt_timel[i] <- runif (1,0, obswin)

}

# Stores the time DLT occurs for mnew cohort

dlt_time <- c(dlt_time, cohort_dlt_time)

# Stores new cohorts toxicety

tox <- c(tox, cohort_tox)

# Stores dose level for each new cohort

dose <- c(dose, cohort_comb)

# Store dummy dlt for new cohort

dlt <- c(dlt, cohort_dlt)

# Add on follow up time and recruitment time
for previous cohorts

fu <- fu + (cohort * rectime)

#duration <- duration + (cohort * rectime) +
minfu

# store mew cohorts follow up time

fu <- c(fu, cohort_fu)

#duration <- c(duration, cohort_fu)
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# Loop through all the patients who will have a
DLT
for(i in 1:1length(fu)){
if (tox[i] == 1){
# If the follow up time 1s greater than the
time the dlt was determined to occur
if (fuli] >= dlt_time[i]){
# Change the follow up time to the obswin
to indicate the dlt has now happened
ful[i] <- obswin
# As the dlt has happened it should now
be stored for calculation in the
likelihood

dit[i] <- 1

fu <- pmin(fu, obswin)
# Calculated wetghts where the min fu accounts
for 60 and is 80 by window 2
for (i in 1:length(fu)) {
weights[i] <- 0.6*x(min(fulil] ,minfu)/minfu) +
0.2*max ((min(win2 - minfu, fulil-minfu)/(
win2 - minfu)) ,0)+
0.2xmax ((max(fulil- win2, 0)/(obswin-win2))

,0)
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}

# These wvalues are used to calculate patient

allocation and JDLT

ylcomb.curr] = y[comb.curr] + sum(cohort_tox)
npts [comb.curr] = npts[comb.curr] + cohort
if (sum(dlt) == length(dlt)) {
comb.curr <- ifelse(comb.curr == 1, comb.curr
comb.curr - 1)
}
else if (sum(dlt) == 0) A
comb.curr <- ifelse(comb.curr == ncomb, comb.
curr ,

stagel [cohort.count + 1])

else {

break

# Stopping rule ends stage 1 when the same dose
25 recommended to a sizth cohort. As this
follows the escalation scheme only stops
when the maxr dose ©1s prescribed to sizth
cohort.

if (sum(dose == comb.curr) == mtd.lim ){
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break

cohort.count <- cohort.count +1

while (length(dlt) <= n) A

if (sum(dlt) == 0 ) {
stop = 0
break
}
else A
like.tox = est.tox = rep(0, nord.tox)

for (k in 1:nord.tox) {
beta <- alphalk,][dose[l:1length(dose)]]
est.tox[k] <- optimize(f = bcrml, interval
= ¢(0,500),
pl = beta, y = dlt,
w = weights,
maximum = T)$maximum
like.tox[k] <- optimize(f = bcrml, interval
= ¢(0,500),
pl = beta, y = dlt,

w = weights,
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maximum = T)$

objective

postprob.tox = (exp(like.tox) * mprior.tox)/

sum(exp(like.tox) * mprior.tox)

if (nord.tox > 1) {

mtox.sel = which.is.max(round(postprob.tox
,8))
}
else {
mtox.sel = 1
}

ptox.hat = alphalmtox.sel, ]-est.tox[mtox.sel
]

loss = abs(ptox.hat - theta)

comb.curr = which.is.max(round(-1loss,8))

# obtain the last dose level from the data

last.lev <- tail(dose, n = 1)

if (comb.curr %in’% dose | comb.curr < last.
lev){
# If the next recommended levl has already

been tested or ts lower than

# the current dose level than recommend

next level



B.1. TITE-PO-CRM in ADePT-DDR chapter code 313

comb.curr <- comb.curr

}

else {
comb.curr <- max(dose) + 1

}

if (npts[comb.curr] == stop) {
stoprule <- 0
break

}

# Calculate asymptotic wvartance
beta <- alphalmtox.sel,][dose]

inverse.var <- 0

for (i in 1:1length(dlt)) {
inverse.var <- inverse.var + ((1-dlt[i])*(
weights [il*betal[il~est.tox[mtox.sel]l)*(
log ((weights [il*betal[il))) ~2)/ (1-((
weights[il*betal[il~est.tox[mtox.sell)))

=2

post.alpha.mean <- est.tox[mtox.sell]

post.alpha.var <- ifelse(inverse.var == 0, O
, 1/inverse.var)

post.alpha.samp <- rnorm(n = 100000, mean =

post.alpha.mean,
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sd = sqrt(post.alpha
.var))
post.prob.tox.samp <- alphal[mtox.sel,1] post.
alpha.samp
prob.too.toxic <- mean(post.prob.tox.samp >

tox.lim)

if (is.na(prob.too.toxic)) A

prob.too.toxic <- 1

# stopping rule for when lowest dose is too
tozic AND lowest dose has been tested ptoz
.hat[1] > 0.5 & 1 J<n/ dose

#

# stopping rule i1f dose %1s being recommended

for a zth time

if (length(dlt) == n |(prob.too.toxic > tox.
cert) & 1 %inY dose | sum(dose == comb.
curr) == mtd.lim) {

stoprule = 0

# once all patients recruited calculate

likelihoods at max weight
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like.tox = est.tox = rep(0, nord.tox)

for (k in 1l:nord.tox) {

#set all the wetights at 1

weights <- rep(1l, length(tox))

#ensures that all those predicted to have
tozic event s included in dlit data

# as we are assuming full follow up once
the last patients are recruited

dlt <- tox

beta <- alphalk,][dosel[l:1length(dose)]]

est.tox[k] <- optimize(f = bcrml,
interval = ¢(0,500),

pl = beta, y = tox

, W = weights,
maximum = T)$
maximum

like.tox[k] <- optimize(f = bcrml,
interval = ¢(0,500),
pl = beta, y =
tox, w =
weights,
maximum = T)$§

objective
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postprob.tox = (exp(like.tox) * mprior.tox)

/sum(exp(like.tox) * mprior.tox)

if (nord.tox > 1) {

mtox.sel = which.is.max(round(postprob.
tox ,8))
}
else A
mtox.sel = 1
}

ptox.hat = alpha[mtox.sel, ]-est.tox[mtox.
sell
loss = abs(ptox.hat - theta)

comb.curr = which.is.max(round(-loss,8))

# obtain the last dose level from the data
last.lev <- tail(dose, n = 1)
if (comb.curr %in% dose | comb.curr < last.
lev){
# If the next recommended levl has
already been tested or ts lower than
# the current dose level than recommend
next level

comb.curr <- comb.curr

else {
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comb.curr <- max(dose) + 1

# Calculate asymptotic wariance
beta <- alphalmtox.sel,][dose]

inverse.var <- 0

for (i in 1:length(tox)) A
inverse.var <- inverse.var + ((1-tox[i])=*
(weights[il*betal[il~est.tox[mtox.sell)
*(log ((weights[il*betal[il))) ~2)/(1-((
weights[il*betal[i]l~est.tox[mtox.sell))

) "2

post.alpha.mean <- est.tox[mtox.sell

post.alpha.var <- ifelse(inverse.var == 0,
0 , 1/inverse.var)
post.alpha.samp <- rnorm(n = 100000, mean =

post.alpha.mean,
sd = sqrt(post.
alpha.var))
post.prob.tox.samp <- alphal[mtox.sel,1]"
post.alpha.samp
prob.too.toxic <- mean(post.prob.tox.samp >

tox.1lim)



318

Appendix B. Code

if (is.na(prob.too.toxic)) A

prob.too.toxic <- 1

break

else {

# Takes draws from a binomial distribution
to determine if patients in the cohort
had a tozic outcome

cohort_tox <- stats::rbinom(n = cohort,
size = 1, prob = rl[comb.curr])

cohort_dlt <- rep(0, cohort)

# Patients in the same cohort rectieve the
same dose

cohort_comb <- rep(comb.curr, cohort)

# Follow up time based on the time taken to

recruit a patient

# First patient assumed to be recruited
wnstantly

# Add the min fu time to indicate when

analysis s done
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cohort_fu <- (rectimex(cohort-1))-(rectime
* 0:(cohort - 1)) +rectime
# Tame of DLT is recorded and set between
the time the patient has been followed
up and the remaining observation window
cohort_dlt_time <- vector ()
for (i in 1:cohort) {
if (cohort_tox[i] == 0){
cohort_dlt_time[i] <- NA
}
else {
cohort_dlt_time[i] <- runif (1,0, obswin

)

}

# Stores the time DLT occurs for mnew cohort

dlt_time <- c(dlt_time, cohort_dlt_time)

# Stores new cohorts tozicity

tox <- c(tox, cohort_tox)

# Stores dose level for each new cohort

dose <- c(dose, cohort_comb)

# Store dummy dlt for new cohort

dlt <- c(dlt, cohort_dlt)

# Add on follow up time and recruttment
time for previous cohorts

fu <- fu + (cohort * rectime)
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#duration <- duration + (cohort * rectime)

+ minfu
# store mnew cohorts follow up time
fu <- c(fu, cohort_fu)
#duration <- c(duration, cohort_fu)
for(i in 1:1length(fu)){

if (tox[i]l == 1){

if (fuli] >= dlt_time[i]){
fuli]l <- obswin

dit[i] <- 1

fu <- pmin(fu, obswin)
# Calculated weights where the min fu
accounts for 60/ and 80/ by win2
for (i in 1:1length(fu)) {
weights[i] <- 0.6*(min(fulil],minfu)/minfu
) +
0.2*max ((min(win2 - minfu, fuli]-minfu)
/(win2 - minfu)) ,0)+
0.2xmax ((max(fulil- win2, 0)/(obswin-

win2)) ,0)
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ylcomb.curr] = y[comb.curr] + sum(cohort_
tox)
npts [comb.curr] = npts[comb.curr] + cohort
}
}
}
if (stoprule == 0) {
if (lexists("prob.too.toxic")){prob.too.toxic
<- 0%}
if ((prob.too.toxic > tox.cert)& 1 %in% dose){
stop.count <- 1
}
else {
comb.select [comb.curr] = comb.select[comb.
curr] + 1
}
}

# Calculate the duration of the trial

num_cohorts <- length(tox) / cohort
duration <- cohort_full]l] + (rectimex(cohort)) *x (
num_cohorts-1) + (obswin)

return(list (MTD.selection = comb.select, tox.data

:y,
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patient.allocation = npts, duration =
duration,

stop = stop.count))

}
lpocrm.sim <- function(nsim) {
ncomb = length(r)
y <- npts <- matrix(nrow = nsim, ncol = ncomb)
comb.select <- matrix(nrow = nsim, ncol = ncomb )
duration <- stop.count <- trialsize <- rep (0, nsim)
nstop = 0
for (i in 1:nsim) {
#print (i)
result <- lpocrm(r, alpha, prior.o, x0, stop, n,
theta)
comb.select[i, ] = result$MTD.selection

y[i, ] = result$tox.data

npts[i, ] = result$patient.allocation
trialsize[i] = sum(result$patient.allocation)
duration[i] = result$duration # convert duration

to months
stop.count[i] = result$stop
}
return(list (true.prob = r,
MTD.selection = round(colMeans (comb.

select) ,2),
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patient.allocation = 100* round(
colMeans (npts)/mean(trialsize) ,2),

percent .DLT = sum(colMeans (y))/mean (
trialsize),

months = 12*mean(duration) /365,

stop mean (stop.count),
mean.n = mean(trialsize),
mean.n.perdose = colMeans (npts),
acceptable = sum(colMeans (comb.select) [
which(round (abs(r - theta), 2) <=
tox.range)])))
}
if (nsim == 1) {
twostgcrm(r, x0, stop, n, theta)
}

else {

lpocrm.sim(nsim)

B.2 Extension to Phase I/II design chapter code

The code below is for various functions that were used to run the simulations

in Chapter 3.

###install required R packages
library(binom)

library (nnet)
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library (dfcrm)
# pwr calcs
library (pwr)

library (matrixStats)

# Wretten by KB to split out method calculation and

simulation
post.tox <- function(a, p, y, n) {

s2=1.34

lik=1

for(j in 1:length(p)){
pj=pljl**exp(a)
lik=1ik*pj~y[jl*(1-pj)~(nljl-y[jl);

}

return(lik*exp(-0.5%a*xa/s2));

# the posterior mean of ptoz
posttoxf <- function(a, p, y, n, j) {

pljl~(exp(a))*post.tox(a, p, y, n);

post.eff <- function(b, q, z, n) {
s2=1.34
lik=1
for(j in 1:1length(q)){

qj=qljl**exp(b)
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lik=1ik*qj~z[jI*(1-qj) " (nljl-z[j1);
}

return(lik*exp (-0.5%b*xb/s2)) ;

# the posterior mean of peff
postefff <- function(b, q, z, n, j) {

qljl~(exp(b))*post.eff(b, q, z, n);

wages.tait = function(y, z, n, p.skel, q.skel, n.ar,
comb.curr = NULL,

mprior.tox = NULL, mprior.eff =
NULL,

safety.confidence = 0.95,
futility.confidence = 0.95,

check.tox.at.dose.level,

lowest .is.placebo = FALSE,

placebo.rand.prob = NULL) {

# y, number of tozxicity events at each dose
# z, number of efficacy events at each dose

# n, number of patients allocated to each dose

H*:

p.skel, tozxicity skeleton(s) as wvector or matric

RS

q.skel, efficacy skeleton(s) as wector or matriz
# n.ar, the number of patients to use in the adaptive

randomisation stage
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# comb.curr, deprecated, ignored

# mprior.tox, prior for each tozicity ordering

# mprior.eff, prior for each efficacy ordering

# safety.confidence ts the J CI to construct when
checking whether lowest dose

# 1s too tozic

# futelity.confidence is the ) CI to construct when
checking whether current

# dose 1s too tozic

# check.toz.at.dose.level is the index of the dose on
which design
# should invoke the logic to detect excess toxicity
In the majority of
# cases this will be dose-level 1. If you have a
trivial lowest dose ("d=0")
# so that tozicity 1s nearly wmpossible, you will
want to check for exzcess
# tox at dose 2 instead (lest you short-circuit the
early stopping criteria)

# Thts ©s KB’s embellishment.

# lowest.is.placebo %2s an indicator to identify if
the lowest dose 11s set to

# be a control/placebo dose

RS

placebo.rand.prob <s the probability of allocating
to the placebo/control

# dose lewvel
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comb.curr = NULL

if(is.vector(p.skel)) p.skel t(as.matrix(p.skel));

if(is.vector(q.skel)) q.skel t(as.matrix(q.skel));

ncomb = ncol(p.skel); # number of doses or

combinations

ptox.hat = numeric(ncomb); # estimate of tozictity
prob
peff.hat = numeric(ncomb); # estimate of efficacy

prob

nord.tox nrow (p.skel);
if (is.null (mprior.tox))
mprior.tox = rep(l / nord.tox, nord.tox)

nord.eff = nrow(q.skel);

if (is.null (mprior.eff))

mprior.eff rep(1 / nord.eff, nord.eff)

marginal.tox rep(0, nord.tox);
for(k in 1:nord.tox) {
marginal.tox[k] = integrate(post.tox, lower=-Inf,
upper=Inf, p=p.skellk,],
y=y, n=n)$value;
}

postprob.tox = (marginal.tox * mprior.tox) / sum(

marginal.tox * mprior.tox);
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marginal .eff = rep(0, nord.eff);
for(k in 1l:nord.eff) {
marginal .eff[k] = integrate(post.eff,lower=-Inf,
upper=Inf, q=q.skellk,],
z=z, n=n)$value;
}
postprob.eff = (marginal.eff * mprior.eff) / sum(

marginal .eff * mprior.eff);

# toxicity model selection, tdentify the model with
the highest posterior prob

if (nord.tox > 1) {

mtox.sel = which.is.max(postprob.tox);
}
else A

mtox.sel = 1;
}

# efficacy model selection, identify the model with
the highest postertor prob

if (nord.eff > 1){

meff.sel = which.is.max(postprob.eff);
}
else {

meff.sel = 1;
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# calculate posterior mean of tozicity probability at
each combo
for(j in 1:ncomb){
ptox.hat[j] = integrate(posttoxf, lower=-Inf, upper
=Inf, p.skel[mtox.sel,],
y, n, j)$value / marginal.

tox[mtox.sell;

# calculate postertor mean of efficacy probadbility at
each combo
for(j in 1:ncomb){
peff . hat[j] = integrate(postefff, lower=-Inf, upper
=Inf, q.skel[meff.sel,],
z, n, j)$value / marginal.

eff [meff.sell;

# determine set of safe doses based on tozicity
aset = which(ptox.hat <= tul)
if (length (aset)==0) {

aset = which.min(ptox.hat)

peff.hat.aset = rep(0, ncomb)

peff.hat.aset[aset] = peff.hat[aset]
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# deterimine randomisation probabilities based on

efficacy

ar.prob = peff.hat.aset / sum(peff.hat.aset)

if(lowest.is.placebo == TRUE){
ar.prob = c(placebo.rand.prob,
ar .prob[-1]*x(l1-placebo.rand.prob)/sum(

ar.prob[-1]))

if (length(aset) == 1) {
# The best and recommended dose can only be this
comb.best <- aset
comb.curr <- aset
}
else {
# The best dose 1s always that in admissible set
with mazimal Pr(Eff)
comb.best <- which.max(peff.hat.aset)
# In AR stage, sample current dose from admissible
doses with weighted prob;
# After AR stage, current dose i1s best dose
ifelse(sum(n) < n.ar,
comb.curr <- sample(l:ncomb, 1, prob=ar.prob
)

comb.curr <- comb.best)
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max .dose.given <- max(seq(l, ncomb)[n > 0])
if (comb.curr > max.dose.given + 1) {
# Recommending dose above mazimum given, So prevent
skipping

comb.curr <- max.dose.given + 1

skipping_prevented = TRUE
} else {
skipping_prevented = FALSE

#u##nn#ssy Stopping rules
stop = O

tox.dl check.tox.at.dose.level

safety = binom.confint(y[tox.dl], n[tox.dl], conf.

level = safety.confidence,
methods="exact")$lower
if (safety > tul){

stop = 1

if (sum(n) > n.ar){
# We are not in the AR phase, so stopping for
futility 25 used.
futility = binom.confint(z[comb.curr], nlcomb.curr

] s
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conf.level = futility.
confidence,
methods = "exact")$upper
if (nlcomb.curr] > 0 & futility < ell){
# Recommended dose has been given,; upper efficacy

estimate 28 below limit

# stop = 2 # KB - surely an error? The stop
value 15 added below to a previous value
# so i1t should only be 0 or 1? Maybe the logic NW
wanted was ">0 => stop".

stop =1
h

else {

futility = NULL

return(list (

# marginal. tocz marginal. toz,

ToxBayesFactor postprob.tox,

ProbTox = ptox.hat,

ToxSkeleton = mtox.sel,

# marginal.eff marginal.eff,

EffBayesFactor postprob.eff,
EffSkeleton = meff.sel,

ProbEff = peff.hat,
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AdaptiveRandProb =
RecommendedDose = ¢
OptimalDose = comb.
DoselToxLowerBound
LowestActiveDoseTox

RecommendedDoseEffU

ar .prob,

omb.curr,

best ,

= safety,

LowerBound = safety,

pperBound = futility,

AdmissibleSet = aset,

Stop = stop,
SkippingPrevented =
Note = "The_paramet

misnomer.

skipping_prevented,

er  DoselToxLowerBound is_ a.

uuuuUse LowestActiveDoseToxLowerBound, instead."

))

###Load the function

‘bpocrm’

wt.sim.one <- function(pO, q0, p.skel, q.skel, tul, ell

3

cohortsize, ncohort,

start.comb, n.ar, mprior.tox =

NULL, mprior.eff = NULL,
safety.confidence = 0.95,

futility.confidence = 0.95,
check.tox.at.dose.level,

lowest .is.placebo = FALSE,

placebo.rand.prob = NULL) {
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# p0, true tozictty probabilities

# q0, true efficacy probabilities

# p.skel, tozicity skeleton(s)

# q.skel, efficacy skeleton(s)

# tul, tozicity wupper limit

# ell, efficacy lower limit

# cohortsize, obvtous

# ncohort, number of cohorts

# start.comb, starting dose-level

# n.ar, number of patients in adaptive randomisation
stage

# mprior.tox, Prior weights to tozxicity models,
uniform +f omitted

# mprior.eff, Prior weights to efficacy models,
uniform tf omitted

# safety.confidence ts the ) CI to construct when
checking whether lowest dose

# 1s too tozxic

# futelity.confidence is the J CI to construct when
checking whether current

# dose 1s too tozic

# check.toxz.at.dose.level is the index of the dose on

which design
# should <nvoke the logic to detect excess tozicity

In the majority of
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# cases this will be dose-level 1. If you have a
trivial lowest dose ("d=0")
# so that tozicity 11s nearly wmpossible, you will
want to check for exzcess
# tox at dose 2 instead (lest you short-circuit the
early stopping criteria)

# Thts ©s KB’s embellishment.

# 4f a single ordering 415 inputed as a vector,
convert it to a matric

if(is.vector(p.skel)) p.skel = t(as.matrix(p.skel));

# 2f a single ordering s inputed as a wvector,
convert it to a matric

if(is.vector(q.skel)) q.skel = t(as.matrix(q.skel));

###% run a trial

ncomb = ncol(p.skel); # number of combos

y rep(0, ncomb); # number of tozicity/responses at

each dose lewvel

z = rep(0, ncomb); # number of efficacy at each
dose lewvel

n = rep(0, ncomb); # number of treated patients at
each dose level

comb.curr = start.comb; # current dose level

ptox.hat = numeric(ncomb); # estimate of tozictity

prob



336 Appendix B. Code

peff.hat = numeric(ncomb); # estimate of efficacy
prob
comb.select = rep(0, ncomb); # a vector of indicators

for dose selection

stop = 0; # indicate if trial stops early

tox.skel rep(0, nrow(p.skel))

eff.skel

rep(0, nrow(q.skel))

for(i in 1:ncohort)

# generate data for a new cohort of patients

ylcomb.curr] = y[comb.curr] + rbinom(l, cohortsize,
pOlcomb.currl) ;

z[lcomb.curr] = z[comb.curr] + rbinom(l, cohortsize,
q0 [comb . curr]);

nlcomb.curr] = nlcomb.curr] + cohortsize;

# TODO (...something - but what?!)

cohort.update = wages.tait(y, z, n, p.skel, q.skel,

n.ar,
comb.curr = comb.curr,
mprior.tox = mprior.tox,
mprior .eff = mprior.
eff,

safety.confidence =

safety.confidence,
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futility.confidence =
futility.confidence,
check.tox.at.dose.level
= check.tox.at.dose.
level,
lowest .is.placebo =
lowest .is.placebo,
placebo.rand.prob =
placebo.rand.prob
)
# cat(’ToxSkel ’, cohort.update$TozxSkeleton, ’\n’)

# cat(’EffSkel’, cohort.update$EffSkeleton, ’\n’)

stop = cohort.update$Stop

comb.curr = cohort.update$RecommendedDose
tox.skel[cohort.update$ToxSkeleton] = tox.skell
cohort .update$ToxSkeleton] +1
eff.skel[cohort.update$EffSkeleton] = eff.skell
cohort .update$EffSkeleton] +1
if (stop > 0)
break
}
if (stop == 0){
comb.select[comb.curr] = comb.select[comb.curr] +

1,
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# cat(’FinalToxzSkel’, cohort.update$ToxSkeleton, ’\n
7)

# cat (’FinalEffSkel ’, cohort.update$EffSkeleton, ’\n
7)

return(list (comb.select = comb.select, tox.data = y,

eff.data = z,

pt.allocation = n, stop = stop,

ToxSkel = tox.skel, FinalToxSkel = cohort
.update$ToxSkeleton,
EffSkel = eff.skel, FinalEffSkel = cohort

.update$EffSkeleton))
}

# Nolan originally called this bpocrm

bpocrm = wt.sim.one

###Load the function ’bpocrm.sim’
wt.sim <- function(p0, q0, p.skel, q.skel, tul, ell,
cohortsize, ncohort,
start.comb, n.ar, ntrial,
mprior.tox = NULL, mprior.eff = NULL
safety.confidence = 0.95, futility.

confidence = 0.95,
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check.tox.at.dose.level,

verbose = TRUE, really.verbose =
FALSE,

full_output = TRUE,

lowest .is.placebo = FALSE, placebo.
rand.prob = NULL,

effect.sizes = NULL) {

p0, true toxicity probabilities

q0, true efficacy probabilities

p.skel, toxtcity skeleton(s)

q.skel, efficacy skeleton(s)

tul, tozictty wupper limit

ell, efficacy lower limit

cohortsize, obvious

ncohort, number of cohorts

start.comb, starting dose-level

n.ar, number of patients in adaptive randomisation
stage

ntrial, number of trials to simulate
mprior.tox, Prior weights to toxzicity models,
uniform +f omitted

mprior.eff, Prior weights to efficacy models,
uniform tf omitted

safety.confidence %s the J CI to construct when
checking whether lowest dose

28 too tozxic
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# futility.confidence is the [ CI to construct when
checking whether current
# dose 1s too tozic
# check.tox.at.dose.level ©1s the index of the dose on
which design
# should tnvoke the logic to detect excess tozicity
In the majority of
# cases this wtll be dose-level 1. If you have a
trivial lowest dose ("d=0")
# so that tozxzicity ts mnearly imposstible, you will
want to check for excess
# tox at dose 2 instead (lest you short-circuit the
early stopping criteria)
# This 1s KB’s embellishment.

StartTime = Sys.time ()

# 2f a single ordering s inputed as a wvector,
convert i1t to a matric

if (is.vector(p.skel)) p.skel = t(as.matrix(p.skel));

# 2f a single ordering s inputed as a wvector,
convert i1t to a matric

if(is.vector(q.skel)) q.skel = t(as.matrix(q.skel));

ncomb = length(p0)
comb.select <-y <-z <-n <- matrix(nrow = ntrial, ncol

= ncomb)
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tox.skel <- matrix(nrow = ntrial, ncol
)
final.tox.skel <- rep(0, nrow(p.skel))

print (final.tox.skel)

eff.skel <- matrix(nrow = ntrial, ncol
)

final.eff.skel <- rep(0, nrow(q.skel))

nstop = 0

h <- effect.sizes

npower <- matrix(nrow = ntrial, ncol = length(h))

for(i in 1:ntrial){

nrow (p.skel)

nrow(q.skel)

if (verbose & i %% floor(mtrial / 10) == 0) print(i)

result <- bpocrm(pO, 90, p.skel, q.skel, tul, ell,

cohortsize, ncohort,

start.comb, n.ar, mprior.tox =
mprior.tox,

mprior.eff = mprior.eff,

safety.confidence = safety.
confidence,

futility.confidence = futility.
confidence,

check.tox.at.dose.level = check.
tox.at.dose.level,

lowest .is.placebo = lowest.is.

placebo,
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placebo.rand.prob = placebo.rand.
prob)

if (result$stop == 0) {

comb.select[i,] result$comb.select
} else {

comb.select[i,] = 0

}

y[i, ] <- result$tox.data

z[i, ] <- result$eff.data

nli, ] <- result$pt.allocation

tox.skel[i, ] <- result$ToxSkel

final.tox.skel[result$FinalToxSkel] <- fimnal.tox.
skel[result$FinalToxSkel]+1

eff.skel[i, ] <- result$EffSkel

final.eff.skel[result$FinalEffSkel] <- final.eff.
skel[result$FinalEffSkel]+1

nstop <- nstop + result$stop

= 0 & result$comb.select[1] !'= 1){

if (result$stop
if (result$pt.allocation[1] > 0 &
result$pt.allocation[result$comb.select == 1]

>0 ) A

for (j in 1:1length(h)) {
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npower [i,j] <- pwr.2p2n.test(h = h[j], nl =
result$pt.allocation[1],
n2 = result$pt.
allocationl[
result$comb.
select == 1],
sig.level = 0.1)

$power

if (really.verbose) A{
cat ("Truey tox probability: ", round(p0,3), sep="_LLu
o', "\n");
cat ("Trueeff probability:. ", round(q0,3), sep=",.Lu
o, "\n");
cat ("selectionypercentage: ", formatC(colMeans (comb
.select)*100, digits=1,

format="£f"),

Sep=”uuuu”

s u\nn);
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cat ("number jof toxicities:yuuu", formatC(colMeans (y
), digits=1, format="f"),

Iluuuull, Il\nll);

sep=
cat ("number of yresponses: ", formatC(colMeans (z)
, digits=1, format="f"),
sep="vuuu", "\n") ;

cat ("number of ,patients treated: uuuu", formatC(

colMeans (n), digits=1,

Il\nll) ;
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cat ("percentageyofstop:uuu", nstop/ntrial*x100, "\
n");

}

# Return object

1 <- list(
TrueTox = pO,
TrueEff = qO0,
ToxSkel = p.skel,
EffSkel = qg.skel,
TUL = tul,
ELL = ell,
NumSims = ntrial,
NumPatients = cohortsize * ncohort,
CohortSize = cohortsize,
NumCohorts = ncohort,
SizeARPhase = n.ar,
SafetyConfidence = safety.confidence,
FutilityConfidence = futility.confidence,
TreatedAtDose = round(colMeans(n), 1),
ToxAtDose = round(colMeans(y), 1),
EffAtDose = round(colMeans(z), 1),
ProbSelect = round(colMeans (comb.select), 4),
NStop = nstop,
ProbStop = nstop / ntrial,
EffectSizes = h,
PowerMean = round(colMeans (npower, na.rm = T), 4),
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PowerSD = round(colSds (npower, na.rm = T), 4),
NPower = sum(!is.na(npower[,1])),
CohortToxSkel = tox.skel,

ProbFinalToxSkel = final.tox.skel / ntrial,
CohortEffSkel = eff.skel,

ProbFinalEffSkel = final.eff.skel / ntrial,

SimulationTime = Sys.time()- StartTime

# Full output includes patients
if (full_output) {
1$FullTreatedAtDose = n

1$FullToxAtDose

y
1$FullEffAtDose

z
1$FullRecommendation = comb.select
1$FullPower = npower

# 1$FullStopTrial = stop_trial

return(l)

b
# Nolan originally called this bpocrm.sim

bpocrm.sim = wt.sim

B.3 TITE-DTP chapter code

The code below was used to generate the DTPs used as examples in Chapter 4.
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library (dfcrm)
library(escalation)
library (dplyr)
library(kableExtra)
library(dtpcrm)
library (tidyr)
library(diagram)
library(DiagrammeRsvg)

library(rsvg)

# Set-up

skeleton <- getprior(target 0.25, nu =4, nlevel =5,
halfwidth = 0.05)

target <- 0.25

model <- get_dfcrm(skeleton

)

skeleton, target = target

paths <- model %>%

get_dose_paths (cohort_sizes = ¢(3,3,3), next_dose =2)

#DTPs

spread_paths(as_tibble (paths)) %>%

select (00 = ’outcomes0’, dO0 = ’next_dosel’,
0ol = ’outcomesl’, dl1 = ’next_dosel’,
02 = ’outcomes?2’, d2 = ’next_dose2’,
03 = ’outcomes3’, d3 = ’next_dose3’) %>%
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print (n=100)

# Node plot

graph_paths (paths, RColorBrewer_palette = ’Setl’) %>%
export_svg () %>%
charToRaw %>%
rsvg_pdf (°C:/Users/Amit/Documents/GitHub/PhD/Thesis/

Figures/TITE-DTP-InitialExampleDTPNode.pdf’)

# Code for the LaTeX table

spread_paths (as_tibble (paths)) %>%

select (00 = ’outcomes0’, dO0 = ’next_dose0’,
ol = ’outcomesl’, dl1 = ’next_dosel’,
02 = ’outcomes?2’, d2 = ’next_dose2’,
03 = ’outcomes3’, d3 = ’next_dose3’) %>%

print (n=100) %>%
data.frame () %>%

mutate (00 = 1:64) %>%

kable(’latex’, booktabs = T, linesep = "", align = "c
"
col .names = c(’Pathway’, ’Dose’, ’0Outcomes’, ’
Dose’, ’Outcomes’, ’Dose’,
’OQutcomes’, ’Dose’),
caption = ’\\label{tab_tite-dtp:

InitialDTPExample}Initial ;DTP_ for the_ firsty

three cohorts of our ,example CRM.’

) h>%h
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kable_styling(latex_options = c("striped", "HOLD_
position", "scale_down"),
position = "center", font_size = 8) %>%
add_header_above(c(’’, ’Cohorty 1’ = 2, ’Cohort 2’ =
2, ’Cohort,,3° = 2,
>Cohorty4’ = 1)) %>

cat ()

# Check wusing dtpcrm
calculate_dtps (2, cohort_sizes = c(3, 3, 3), dose_func
= applied_crm,
prior = skeleton, target =

target, no_skip_esc = FALSE)

# matches results form escalation

# DIP flow diagram

calculate_dtps (2, cohort_sizes = ¢(3, 3, 3), dose_func

= applied_crm,

prior = skeleton, target = target, no_

skip_esc = FALSE) %>Y%

dtpflow ()

RERBERAR BB ERRBR BB R BB R B R R BB BB B R R R R BB R R B REBR BB B R B R ER R
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# DTPs wtth stopping rules

modell <- get_dfcrm(skeleton = skeleton, target =
target) %>%
dont_skip_doses(when_escalating = TRUE) ¥%>%
stop_when_too_toxic(dose = 1, tox_threshold = 0.35,

confidence = 0.9)

paths <- modell %>%

get_dose_paths (cohort_sizes = ¢(3,3,3), next_dose =2)

#DTPs

spread_paths (as_tibble (paths)) %>%

select (00 = ’outcomes0’, dO0 = ’next_dosel’,
ol = ’outcomesl’, dl1 = ’next_dosel’,
02 = ’outcomes?2’, d2 = ’next_dose2’,
03 = ’outcomes3’, d3 = ’next_dose3’) %>%
print (n=100)
# Node plot
graph_paths (paths, RColorBrewer_palette = ’Setl’) U%>%

export_svg () %>%
charToRaw %>%
rsvg_pdf (°C:/Users/Amit/Documents/GitHub/PhD/Thesis/

Figures/TITE-DTP-UpdatedExampleDTPNode.pdf’)

# Code for the LaTeX table
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spread_paths (as_tibble (paths)) %>%

select (00 = ’outcomes0’, d0 = ’next_dosel’,
ol = ’outcomesl’, di1 = ’next_dosel’,
02 = ’outcomes?2’, d2 = ’next_dose2’,
03 = ’outcomes3’, d3 = ’next_dose3’) %>%

print (n=100) %>%
data.frame () %>%

mutate (00 = 1:55) %>%

replace_na(list(d2 = °>STOP’, d3 = ’STOP’)) %>%
kable(’latex’, booktabs = T, linesep = "", align = "c
"
col .names = c(’Pathway’, ’Dose’, ’0Outcomes’, ’
Dose’, ’0Outcomes’, ’Dose’,
’Outcomes’, ’Dose’),
caption = ’\\label{tab_tite-dtp:

UpdatedDTPExample}Updated DTPs for the first
uthree  cohorts of jour ,example CRM with,
additional rules.’
) h>h
kable_styling(latex_options = c("striped", "HOLD_
position", "scale_down"),
position = "center", font_size = 4) %>}
add_header_above(c(’’, ’Cohort, 1’ = 2, ’Cohort 2’ =
2, ’Cohort 3’ = 2,
*Cohort 4’ = 1)) %>%

cat ()
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# Check wusing dtpcrm

stop_func <- function(x) A

x = stop_for_excess_toxicity_empiric(x, tox_lim =

0.35, prob_cert = 0.90,

dose = 1, nsamps
= 10000)
}
calculate_dtps (2, cohort_sizes = ¢(3, 3, 3), dose_func
= applied_crm,
prior = skeleton, target = target, stop_

func = stop_func,

global_coherent_esc = FALSE)

# matches results form escalation

# DIP flow diagram

calculate_dtps (2, cohort_sizes = c¢(3, 3, 3), dose_func
= applied_crm,
prior = skeleton, target = target, stop_
func = stop_func,

global _coherent_esc = FALSE) %>Y%
dtpflow ()

prior <- ¢(0.05, 0.10, 0.20, 0.35, 0.50, 0.70)

target <- 0.2



B.3. TITE-DTP chapter code 353

level <- ¢(2, 2, 2, 3, 3, 3, 4, 4, 4)
y <- c(0, 0, 0, 0, 0, O, O, O, 1)
foo <- crm(skeleton, target, y, level)

summary (foo)

x0 <- ¢(2,2,2,3,3,3,4,4,4,rep(5,24)) # initial design
foo <- cohere(skeleton,target,bx0)

foo$message

R RS E RS EE RS E ey

# DIPs with stopping rules for next 3 cohorts after 2

NNN 3NNTNNT

model2 <- get_dfcrm(skeleton = skeleton, target =
target) %>%
dont_skip_doses(when_escalating = TRUE) ¥%>%
stop_when_too_toxic(dose = 1, tox_threshold = 0.35,

confidence = 0.9)

paths <- model2 %>%
get_dose_paths (cohort_sizes = ¢(3,3,3),

previous_outcomes = ’2NNN_ 3NNTNNT?’)

#DTPs

spread_paths (as_tibble (paths)) %>%
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select (00 = ’outcomes0’, dO0 = ’next_dosel’,
ol = ’outcomesl’, dl1 = ’next_dosel’,
02 = ’outcomes?2’, d2 = ’next_dose2’,
03 = ’outcomes3’, d3 = ’next_dose3’) %>%
print (n=100)
# Node plot
graph_paths (paths, RColorBrewer_palette = ’Setl’) U%>%

export_svg () %>%
charToRaw %>%
rsvg_pdf (°C:/Users/Amit/Documents/GitHub/PhD/Thesis/

Figures/TITE-DTP-UsingDuringTrialDTPNode .pdf’)

# Code for the LaTeX table

spread_paths (as_tibble (paths)) %>%

select (00 = ’outcomes0’, d0 = ’next_dosel’,
ol = ’outcomesl’, dl1 = ’next_dosel’,
02 = ’outcomes?2’, d2 = ’next_dose2’,
03 = ’outcomesl3’, d3 = ’next_dose3’) %>%

print (n=100) %>%

data.frame () %>%

mutate (00 = 1:64) %>%

#replace_na(list (d2 = ’STOP’, d3 = ’STOP’)) }>/

kable(’latex’, booktabs = T, linesep = "", align = "c

"
b

col .names = c(’Pathway’, ’Dose’, ’0Outcomes’, ’

Dose’, ’Outcomes’, ’Dose’,
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’Outcomes’, ’Dose’),
caption = ’\\label{tab_tite-dtp:
UsingDuringTrialDTPs4 -7}DTPs_ for three
additional cohortsafter observing outcomes
for,the_ first ,three,cohorts.’
) h>h
kable_styling(latex_options = c("striped", "HOLD_
position", "scale_down"),
position = "center", font_size = 4) %>}
add_header_above(c(’’, ’Cohort, 4’ = 2, ’Cohort, b’ =
2, ’Cohort 6’ = 2,
»Cohort 7’ = 1)) %>%

cat ()

# non uniform cohorts
paths <- model2 %>%
get_dose_paths(cohort_sizes = ¢(2,1,2),

previous_outcomes = ’2NNN_ 3NNTNNT?)

graph_paths (paths, RColorBrewer_palette = ’Setl’) ¥%>%
export_svg () %>%
charToRaw %>%
rsvg_pdf (°C:/Users/Amit/Documents/GitHub/PhD/Thesis/

Figures/TITE-DTP-NonUniformDTPNode .pdf’)

# Code for the LaTeX table

spread_paths (as_tibble (paths)) %>%
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select (00 = ’outcomes0’, dO0 = ’next_dosel’,
ol = ’outcomesl’, dl1 = ’next_dosel’,
02 = ’outcomes?2’, d2 = ’next_dose2’,
03 = ’outcomesl3’, d3 = ’next_dose3’) %>%

print (n=100) %>%
data.frame () %>%
mutate (00 = 1:36) %>%

#replace_ma(list (d2 = ’STOP’, d3 = ’STOP’)) J>)

kable(’latex’, booktabs = T, linesep = "", align = "c
"
col.names = c(’Pathway’, ’Dose’, ’Outcomes’, ’
Dose’, ’Outcomes’, ’Dose’,
’Outcomes’, ’Dose’),
caption = ’\\label{tab_tite-dtp:NonUniformDTPs4

-7}DTPs for, ,three,jadditional cohorts with,
varying, cohort sizes after observing
outcomes for ,the, first, three cohorts.’
) %>
kable_styling(latex_options = c("striped", "HOLD_
position", "scale_down"),
position = "center", font_size = 4) %>%
add_header_above (c(’’, ’Cohort_ 4’ = 2, ’Cohort 5’ =
2, Cohort 6’ = 2,
’Cohort 7’ = 1)) %>%

cat ()
The code below was used to generate the TITE-DTPs in Chapter 4.

library (dfcrm)
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library(dplyr)
library(tidyr)
library (ggplot2)
library(kableExtra)
library(gtools)
library(rgl)
library(magick)
library(ggrepel)

library (ggpubr)

skeleton <- getprior(target = 0.25, nu =4, nlevel =5,
halfwidth = 0.05)

target <- 0.25

obswin <- 35

#

REBABA BB B R A RA BB R BB AR R R R B R B R R B R B R B R BB AR AR B AR AR R R H AR H A

# Cohorts of 1
# T

level <- 2

tox <- 1

followup <- 35

mod <- titecrm(prior = skeleton, target = target, tox =
tox, level = level,
obswin = obswin, scheme = ’linear’,

followup = followup)

mod$mtd
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# N

level <- 2

tox <- 0

followup <- 1:obswin

results <- data.frame(’0Observed’ = followup, ’Rec’ =
rep(0,obswin))

for (i in 1:obswin) {

followup <- 1

mod <- titecrm(prior = skeleton, target = target, tox
= tox, level = level,
obswin = obswin, scheme = ’linear’,

followup = followup)

results$Rec[i] <- mod$mtd

DTP_cl <- results %>%

mutate( Dose = 2,
Pathway = 0Observed + 1,
Outcome = paste0O(’N’,’(’, Observed, ’)’),
Outcome = if_else(Outcome == ’N(35)’, °’N’,

Outcome)) %>%
select (Pathway, Dose, Outcome, Rec) %>%
add_row(Pathway = 1, Dose = 2, Outcome = ’T’, Rec =
1) %>%

arrange (Pathway)
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DTP_c1 %>%

kable(’latex’, booktabs = T, linesep = "", align = "c
n
col.names = c(’Pathway’, ’Dose’, ’Outcomes
> Dose’),
caption = ’\\label{tab_tite-dtp:TITEDTP_cl

JTITE-DTP_ for,a,cohortof 1.2) %>%

kable_styling(latex_options = c("striped", "HOLD_
position", "scale_down"),
position = "center", font_size = 5) %>%
add_header_above(c(’’, ’Cohort 1’ = 2, ’Cohort 2’ =
1) w>h
cat ()

RERBEB BB BB B AR B AR RB R B R B R R BB R BB R R BB R B R AR R R B R B R B R RR S

# Cohorts of 2
## TT

level <- c(2,2)
tox <- c(1,1)

followup <- ¢ (35,35)

mod <- titecrm(prior = skeleton, target = target, tox =
tox, level = level,
obswin = obswin, scheme = ’linear’,

followup = followup)

mod$mtd
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## NT

level <- c(2,2)

tox <- c(1,0)

followupcombo <- cbind(rep(obswin, obswin), 1:obswin)

results <- data.frame (’0Observed’ = 1:o0obswin, ’Rec’ =
rep(0,obswin))

for (i in 1:obswin) {

followup <- followupcombol[i,]

mod <- titecrm(prior = skeleton, target = target, tox
= tox, level = level,
obswin = obswin, scheme = ’linear’,

followup = followup)

results$Rec[i] <- mod$mtd

DTP_c2NT <- results %>%

mutate( Dose = 2,
Pathway = 0Observed,
Outcome = pasteO(’N’,’(’, Observed, ’)’, ’T?)
Outcome = if_else(Outcome == ’N(35)T’, °’NT?’,

Outcome)) %>%
select (Pathway, Dose, Outcome, Rec) %>%

arrange (Pathway)

DTP_c2NT %>Y%
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kable(’latex’, booktabs = T, linesep = "", align = "c
"
col.names = c(’Pathway’, ’Dose’, ’Outcomes’, ’
Dose’),
caption = ’\\label{tab_tite-dtp:TITEDTP_c2NT}

TITE-DTP_,for a,cohort of 2, ,for,scenario NT.”’

) %>
kable_styling(latex_options = c("striped", "HOLD_
position", "scale_down"),
position = "center", font_size = 5) %>%
add_header_above(c(’’, ’Cohort 1’ = 2, ’Cohort 2’ =
1)) w>h
cat ()
¥ NN

level <- ¢ (2,2)

tox <- c(0,0)

combos <- combinations(n = 35, r = 2, repeats.allowed =
T, v = 1:35)
pos <- cbind(rep(0,nrow(combos)))
results <- pos[, rep(l, each=length(tox)+1)]
for (i in 1:nrow(combos)) {
followup <- as.numeric (combos[i,])
weights <- followup / obswin
mod <- titecrm(prior = skeleton, target = target, tox

= tox, level = level,
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obswin = obswin, weights = weights)

for (j in 1:ncol(results)) {
results[,jl[i] <- followupl[jl

results[,ncol (results)][i] <- mod$mtd

results <- data.frame(results)

colnames (results) <- c(’Patientl’, ’Patient2’, ’Rec?’)

results %>% mutate(TotalFollow = Patientl+Patient2) %>Y%
group_by(Rec) %>%
summarise(n = n(), min = min(TotalFollow), max = max(

TotalFollow))

results %>% mutate(TotalFollow = Patientl+Patient2) %>%
filter (TotalFollow == 20 | TotalFollow == 21) %>%
select (Patientl, Patient2, TotalFollow, Rec) %>%
arrange (desc(TotalFollow)) %>%

kable(’latex’, booktabs = T, linesep = "", align = "c

1]
2

col .names = c(’Patient_ 1’, ’Patient 2’, ’

Combined Follow-up’, ’Dose_ Recommendation’),
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caption = ’\\label{tab_tite-dtp:TITEDTP_
c2NNprob}Different dose, recommendations with
uoverlapping,combinded follow-up,times.’)
h>h
kable_styling(latex_options = c("striped", "HOLD_

position"),

position = "center", font_size = 11)
h>%
add_header_above (c(’Follow-up’ = 2, '’ = 2)) %>%

cat ()

# calculate exact numbe rof pathways for each specific

outcome

results <- results %>Y%

mutate (TF = Patientl + Patient?2)

results Y%>Y%
filter (TF <= 19) %>%

nrow ()

results Y%>Y
filter (TF >= 22) %>Y%

nrow ()

results Y%>%

filter (TF

20 & Patient?2 <= 17) %>Y%
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nrow ()

results Y%>%

filter (TF

20 & Patient2

nrow ()

results %>%

filter (TF 21 & Patient?2

nrow ()

results %>%

filter (TF

21 & Patient?2

nrow ()

# To produce a plot need to

>= 18) %>%
<= 14) %>%
>= 15) %>%

run on all possibdble

combinations not just untique

level <- ¢(2,2)
tox <- c¢(0,0)

combos <- 1:o0obswin

combos <- expand.grid(combos,

combos)

pos <- cbind(rep(0,nrow(combos)))

results <- pos[, rep(l, each=length(tox)+1)]

for (i in 1:nrow(combos)) {

followup <- as.numeric(combos[i,])

weights <- followup / obswin
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mod <- titecrm(prior = skeleton, target = target, tox
= tox, level = level,
obswin = obswin, weights = weights)
for (j in 1:ncol(results)) A
results[,jl[i] <- followupl[j]
results[,ncol (results)][i] <- mod$mtd
}
}
results <- data.frame(results)
colnames (results) <- c(’Patientl’, ’Patient2’, ’Rec?’)

results %>%
ggplot (aes(x = Patientl, y = Patient2, fill = as.
factor (Rec))) +
geom_tile () +
scale_fill_brewer (palette = ’Paired’) +

theme_bw () +

geom_abline(intercept = 19, slope = -1, col = ’red’
linetype = ’dashed’) +

geom_abline(intercept = 22, slope = -1, col = ’red’
linetype = ’dashed’) +

theme (panel.border = element_blank (), panel.grid.

major = element_blank(),
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panel.grid.minor = element_blank(),
axis.line = element_line(colour = "black")) +
labs(fill = ’Recommended Dose’, x = ’Patient 1,

follow-upy,(Days)’,

y = ’Patient 2, follow-up,(Days)’)+

scale_x_continuous (breaks seq(0, 60, by = 05),

expand = c(0, 0))+

scale_y_continuous (breaks = seq(0, 60, by = 05),

expand = c(0, 0))
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# cohorts of 3

# TTT

level <- ¢c(2,2,2)
tox <- c(1,1,1)

followup <- ¢(35,35,35)

mod <- titecrm(prior = skeleton, target = target, tox =
tox, level = level,
obswin = obswin, scheme = ’linear’,

followup = followup)

mod$mtd

# NTT
level <- ¢(2,2,2)

tox <- c¢(1,1,0)
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followupcombo <- cbind(rep(obswin, obswin) ,rep(obswin,
obswin), 1:obswin)
results <- data.frame(’0Observed’ = 1:obswin, ’Rec’ =
rep(0,obswin))
for (i in 1:obswin) {

followup <- followupcombo[i,]

mod <- titecrm(prior = skeleton, target = target, tox
= tox, level = level,
obswin = obswin, scheme = ’linear’,

followup = followup)

results$Rec[i] <- mod$mtd

DTP_c3NTT <- results %>%

mutate( Dose = 2,
Pathway = 0Observed,
Outcome = paste0(’N’,’(’, Observed, ’)’, ’TT’
),
Outcome = if_else(Outcome == ’N(35)TT’, ’NTT’

, Outcome)) %>%
select (Pathway, Dose, Outcome, Rec) %>%

arrange (Pathway)

DTP_c3NTT %>Y%

kable(’latex’, booktabs = T, linesep = "", align = "¢

n
b
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col.names = c(’Pathway’, ’Dose’, ’Outcomes’, ’
Dose’),
caption = ’\\label{tab_tite-dtp:TITEDTP_c3NTT}

TITE-DTP_ ,for a_,cohort of three for, scenario

NTT.?) %>%
kable_styling(latex_options = c("striped", "HOLD_
position", "scale_down"),
position = "center", font_size = 5) %>%
add_header_above(c(’’, ’Cohort 1’ = 2, ’Cohort 2’ =
1)) w>h
cat ()
#% NNT

level <- ¢(2,2,2)
tox <- ¢(1,0,0)
combos <- combinations(n = 35, r = 2, repeats.allowed =
T, v = 1:35)
combos <- cbind (35, combos)
pos <- cbind(rep(0,nrow(combos)))
results <- pos[, rep(l, each=length(tox)+1)]
for (i in 1:nrow(combos)) {
followup <- as.numeric (combos[i,])
weights <- followup / obswin

mod <- titecrm(prior = skeleton, target = target, tox

= tox, level = level,

obswin = obswin, weights = weights)
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for (j in 1:ncol(results)) {
results[,jl[i] <- followupl[j]

results[,ncol(results)][i] <- mod$mtd

results <- data.frame(results)
colnames (results) <- c(’Patientl’, ’Patient2’, °’

Patient3’, ’Rec?’)

results %>% mutate(TotalFollow = Patient2+Patient3) %>%
group_by (Rec) %>%
summarise(n = n(), min = min(TotalFollow), max = max(

TotalFollow))

results %>% mutate(TotalFollow Patient2+Patient3) %>Y%

View ()

# NNVN

level <- ¢(2,2,2)

tox <- ¢(0,0,0)

combos <- combinations(n = 35, r = 3, repeats.allowed =

T, v = 1:35)

pos <- cbind(rep(0,nrow(combos)))
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results <- pos[, rep(l, each=length(tox)+1)]

for (i in 1l:nrow(combos)) {

if(i == 1)A{
start.time <- Sys.time ()
print(start.time)

}

if (i == nrow(combos)){
end.time <- Sys.time()
print (end.time)

}

followup <- as.numeric(combos[i,])

weights <- followup / obswin

mod <- titecrm(prior = skeleton, target = target, tox
= tox, level = level,
obswin = obswin, weights = weights)

for (j in 1:ncol(results)) {
results[,jl[i] <- followupl[j]

results[,ncol(results)][i] <- mod$mtd

results <- data.frame(results)
colnames (results) <- c(’Patientl’, ’Patient2’,’Patient3

> >Rec?’)
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results %>% group_by(Rec) %>%

summarise (n=n())

results %>% mutate(TotalFollow = Patientl+Patient2+
Patient3) %>%
group_by (Rec) %>%
summarise(n = n(), min = min(TotalFollow), max = max(

TotalFollow))

results %>%
mutate (TotalFollow = Patientl+Patient2+Patient3) %>%
filter (TotalFollow %in% c(24,25,26)) %>%
group_by (Rec) %>%
summarise(n = n())

#filter (Patient3 == 15)

# Need to run all combinations for the plot
level <- ¢c(2,2,2)

tox <- ¢(0,0,0)

combos <- 1:0bswin

combos <- expand.grid(combos, combos, combos)

pos <- cbind(rep(0,nrow(combos)))

results <- pos[, rep(l, each=length(tox)+1)]
for (i in 1l:nrow(combos)) {

DA

if(i =

start.time <- Sys.time ()
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print (start.time)
}
if (i == nrow(combos)){
end.time <- Sys.time ()
print (end.time)
}
followup <- as.numeric(combos[i,])

weights <- followup / obswin

mod <- titecrm(prior = skeleton, target = target, tox
= tox, level = level,
obswin = obswin, weights = weights)

for (j in 1:ncol(results)) {
results[,jl[i] <- followupl[jl

results[,ncol (results)][i] <- mod$mtd

}

results <- data.frame(results)

colnames (results) <- c(’Patientl’, ’Patient2’,’Patient3
> 2Rec?’)

plot3d(x = results$Patientl, y = results$Patient2, z =

results$Patient3,

col = as.factor(results$Rec), xlab = ’Patient 1,
follow-up’,
ylab = ’Patient 2, ,follow-up’, zlab = ’Patient 3,

follow-up?’)
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rgl.postscript ("c3NNN", "pdf")
outputFile = sub(".gif$","",outputFile)
movie3dd (spin3d (axis=c(0,0,1), rpm=5), duration=12, dir=

getwd (), movie="c3NNN")
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# Investigating combinations

# With a combined follow-up of 20 2, 18 leads to 5 but
3, 17 leads to 4

# With a combined follow-up of 21 6, 15 leads to & bdbut
7, 14 leads to {4

level <- c(2,2)

tox <- c¢(0,0)

followup <- c(2, 18)

weights <- followup / obswin

modl <- titecrm(prior = skeleton, target = target, tox
= tox, level = level,
obswin = obswin, weights = weights)

followup <- c(3, 17)

weights <- followup / obswin

mod2 <- titecrm(prior = skeleton, target target, tox
= tox, level = level,

obswin = obswin, weights = weights)
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# Re run analysis but record estimates and wvariance
level <- c(2,2)

tox <- c¢(0,0)

combos <- combinations(n = 35, r = 2, repeats.allowed =
T, v = 1:35)
pos <- cbind(rep(0,nrow(combos)))
results <- pos[, rep(l, each=length(tox)+3)]
for (i in 1:nrow(combos)) {
followup <- as.numeric(combos[i,])

weights <- followup / obswin

mod <- titecrm(prior = skeleton, target = target, tox
= tox, level = level,
obswin = obswin, weights = weights)

for (j in 1:ncol(results)) {
results[,jl[i] <- followupl[j]
results[,3][1] <- mod$mtd
results[,4][i] <- mod$estimate

results[,5][i] <- mod$post.var

# Renmame data frame

results <- data.frame(results)
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colnames (results) <- c(’Patientl’, ’Patient2’, ’Rec’, °

Est?’, ’Var?’)

# Check matches previous results

results %>% mutate(TotalFollow = Patientl+Patient2) %>%
group_by (Rec) %>%
summarise(n = n(), min = min(TotalFollow), max = max(

TotalFollow))

# Create table with beta estimate and wvartance included
results %>% mutate(TotalFollow = Patientl+Patient?2,

Est = Est %>% round(4),

Var = Var %>% round(4)) %>%
filter(TotalFollow == 20 | TotalFollow == 21) ¥%>%
select (Patientl, Patient2, TotalFollow, Rec, Est, Var

) %>%h
arrange (desc(TotalFollow)) %>%

kable(’latex’, booktabs = T, linesep = "", align = "c

1]
b

col .names = c(’Patient1’, ’Patient 2’, ’
Combined’, ’Dose_ Recommendation’,
’Beta’, ’Variance’),
caption = ’\\label{tab_tite-dtp:TITEDTP_
c2NNprob}Different dose recommendations with
uoverlapping, ,combined follow-upytimes.’) %>%
kable_styling(latex_options = c("striped", "HOLD_

position"),
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position = "center", font_size = 11)
5>%
add_header_above (c(’Follow-up’ = 3, '’ =1, °
Posterior Estimates’ = 2)) %>%

cat ()

# Overall plot
results %>% mutate(TotalFollow = Patientl+Patient2) %>%
ggplot (aes(x = TotalFollow, y = Est, col = factor(Rec
))) +
geom_point () +
geom_hline (yintercept = 0.149, col = "red", linetype

= "longdash") +

labs(x = "Combined_ Total Follow-up", y = expression(
Posterior ~ Estimate ~ beta),
col = "Recommended  Dose")+

scale_color_manual (values = c("#994d1a","#1a6699") )+

scale_x_continuous (breaks seq(0, 70, 5))+
theme_bw () +

theme (legend.position = "bottom")

# Plot for 20 & 21 days
results %>% mutate(TotalFollow = Patientl+Patient2) %>%
filter(TotalFollow == 20 | TotalFollow == 21) %>%
ggplot (aes(x = factor(TotalFollow), y = Est, col =
factor (Rec))) +

geom_point () +
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geom_hline(yintercept = 0.149, col = "red", linetype
= "longdash") +
geom_text_repel (mapping = aes(label = pasteO("(",
Patientl, ", ", Patient2, ")")),
show.legend = FALSE)+
labs(x = "Combined_ Total Follow-up", y = expression(

Posterior Estimate ~ beta),

col = "Recommended Dose")+
scale_color_manual(values = c("#994d1la","#1a6699"))+
theme_bw () +

theme (legend.position = "bottom")

skeleton
beta <- seq(0,1, 0.0001)
df <- data.frame(beta, rec = rep(NA, times = length(
beta)))
for (i in 1:length(beta)) {
ptox <- skeleton~exp(betalil)
if (all(ptox <= target)) {
df$rec[i] <- length(skeleton)
}
else if (all(ptox >= target)) {
df$rec[i] <- 1
}
else {

df$rec[i] <- order(abs(ptox - target)) [1]
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+

df %>% group_by(rec) %>%

summarise (min min(beta) %>% round(4),

max max (beta) %>% round(4))

#0.1492 -> 4, 0.1493 ->5

RERRAARRRRRHRRRRRRRAA AR R RR R R R R A S
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level <- ¢c(2,2,2)

tox <- ¢(0,0,0)

combos <- combinations(n = 35, r = 3, repeats.allowed =
T, v = 1:35)

pos <- cbind(rep(0,nrow(combos)))

results <- pos[, rep(l, each=length(tox)+3)]

for (i in 1l:nrow(combos)) {

if(i == 1){

start.time <- Sys.time ()
print(start.time)

}

if (i == nrow(combos)){
end.time <- Sys.time ()

print (end.time)
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}
followup <- as.numeric(combosl[i,])

weights <- followup / obswin

mod <- titecrm(prior = skeleton, target = target, tox
= tox, level = level,
obswin = obswin, weights = weights)

for (j in 1l:ncol(results)) {
results[,jl[i] <- followupl[j]
results[,4]1[i] <- mod$mtd
results[,5][i] <- mod$estimate

results[,6]1[i] <- mod$post.var

results <- data.frame(results)

colnames (results) <- c(’Patientl’, ’Patient2’,’Patient3
> J2Rec’, ’Est’, ’Var’)

results %>% group_by(Rec) %>%

summarise (n=n())

results %>% mutate(TotalFollow = Patientl+Patient2+
Patient3) %>%

group_by (Rec) %>%
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summarise(n = n(), min = min(TotalFollow), max = max(

TotalFollow))

results %>%

mutate (TotalFollow = Patientl+Patient2+Patient3) Y%>%

filter (TotalFollow %in% c(20,21)) %>%

group_by(Rec) %>%

summarise(n = n())

results Y%>%

mutate (TotalFollow

Patientl1+Patient2+Patient3) ¥%>Y%

filter (TotalFollow %in% c(20,21)) %>%

arrange (Est)

# Create table with beta estimate and wvariance 2ncluded

for 9 pathways

results %>%

mutate (TotalFollow = Patientl+Patient2+

Patient3,

Est = Est %>% round(4),

Var = Var %>% round(4)) %>%
filter (TotalFollow %in% c¢(20,21) & Rec == 5) %>%

select (Patientl, Patient2, Patient3, TotalFollow, Rec

, Est,

Var) %>%

arrange (desc (TotalFollow)) %>%

kable(’latex’, booktabs = T, linesep = "", align = "c

1]
2
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col.names = c(’Patient1’, ’Patient 2’, ’
Patient ;3’, ’Combined’, ’Dose Recommendation
b
>Beta’, ’Variance’),
caption = ’\\label{tab_tite-dtp:TITEDTP_

c3NNNprob}Follow-up,combinations totalling,

20,0r,21,,days;leading, ,to,dose-1evel;5.7) %>%

kable_styling(latex_options = c("striped", "HOLD_
position", "scale_down"),
position = "center", font_size = 11)
h>%

add _header_above (c(’Follow-up’ = 4, >, =1, ?
Posterior_ Estimates’ = 2)) %>%

cat ()

# Overall plot
results %>% mutate(TotalFollow = Patientl+Patient2+
Patient3) %>Y%

ggplot (aes(x = TotalFollow, y = Est, col = factor(Rec

))) o+
geom_point(size = 0.5) +
geom_hline(yintercept = 0.1492, col = "red", linetype

= "longdash") +

labs(x = "Combined Total Follow-up", y = expression(
Posterior ~ Estimate ~ beta),
col = "Recommended Dose")+

scale_color_manual (values = c("#994d1a","#1a6699") )+
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scale_x_continuous (breaks = seq(0, 105, 5))+
theme _bw () +

theme (legend.position = "bottom")

# Plot for 20 & 21 days

results %>% mutate(TotalFollow = Patientl+Patient2+
Patient3) %>%
filter(TotalFollow == 20 | TotalFollow == 21) %>%
ggplot (aes(x = factor(TotalFollow), y = Est, col =

factor (Rec))) +
geom_point () +
geom_hline (yintercept = 0.1492, col = "red", linetype
= "longdash") +

geom_text_repel (mapping = aes(label = pasteO("(",

Patientl, ",,",
Patient?2
) II,|_|
"
Patient3
, "
)),
show.legend = FALSE, max.overlaps =
Inf)+
labs(x = "Combined_ Total Follow-up", y = expression(
Posterior ~ Estimate ~ beta),
col = "Recommended Dose")+

scale_color_manual (values = c("#994d1a","#1a6699") )+
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theme _bw () +

theme (legend.position = "bottom")

# Calculate DTP
results <- results %>Y%

mutate (TF = Patientl + Patient2+ Patient3)

results Y%>Y
filter (TF <= 19) %>%

nrow ()
results Y%>%
filter (TF >= 22) %>Y%

nrow ()

results Y%>%

filter (TF 20 & Patient3 <= 17)

results %>%

filter (TF

20 & Patient3 >= 18)

results %>%

filter (TF == 21 & ((Patient3 <= 15 & Patient2 <=3)

Patient3 <= 14))

results Y%>%
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filter (TF == 21 & ((Patient3 >= 15 & Patient2 >=4) |

Patient3 >= 16))

B.4 ETP chapter code

The code below was used to run the simulations shown in Chapter 5.

# Operating Charactertistics - Beta-Binomial Posterior

# prob_true = underlying true probabilty of response
# mpat = number of patients
# prior_par = wvector of parameters for beta(a,b) prior

distribution

# crit_rate = required repsonse rate to be greater than
e.g. 0.1
# accept_prob = probability required to be greater than

the required response rate with e.g. 0.8

# nsims = number of simulations

PPOS <- function(n2, apost, bpost, obj.resp.rate,
accept.prob)
# If remaining number of patients is 0 don’t need to
calculate PPoS
if (n2 == 0){

PPOS = NA
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}
elsed
Pr2 <- sapply(0:n2,
function(i) (gamma(apost+bpost)*gamma
(n2+1) xgamma (i+apost) *
gamma (n2-i+bpost)) /
(gamma (apost)*gamma (bpost) *gamma (i
+1) *gamma (n2-i+1) *

gamma (n2+apost+bpost)) )

B <- sapply(0:n2, function(i) 1-pbeta(obj.resp.rate

, apost+i, bpost+n2-i))

temp <- cbind (Pr2, B) %>%
data.frame () %>%
mutate (GO = if_else(B > accept.prob, 1, 0),
PPP = Pr2x*G0)
PPOS = sum(temp$PPP)
}

return (PP0OS)

oc_betabinom <- function(prob_true, npat, prior_par = ¢
(0.5,0.5), crit_rate, accept_prob = 0.8, nsims, nint
) o

prob <- c(rep(0, nsims))
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ppc <- npat/(nint+1)
cohorts <- npat/ppc
a0 <- prior_par[1]

b0 <- prior_par[2]

for(i in 1:nsims) {

data <- replicate(npat, rbinom(1l,1,prob_true))

post_prob <- pbeta(crit_rate, shapel = (prior_par
[1] + sum(data)),
shape2 = (prior_par[2] + npat -
sum(data)),

lower.tail = FALSE)

ifelse(post_prob >= accept_prob, prob[i] <- 1, prob

[i] <- 0)

for(j in 1:nint) {
n <- ppC*]
r <- datal[l:n]
ppos <- PP0S(n2 = npat-n, apost = a0 + sum(r),
bpost = b0 + n - sum(r),
obj.resp.rate = crit_rate,

accept.prob = accept_prob)

if (ppos < 0.05){

prob[i] <- 0



B.4. ETP chapter code 387

break

Acceptance_Rate <- (sum(prob) / (msims)) * 100

return(Acceptance_Rate)

The function below was created to produce ETPs.

## Required packages: ----
library (ggplot2)

library(tidyverse)

## Parameters: ----
# cohort.stze - number of patients in each cohort

(cohort size)

# cohorts - number of cohorts

# obj.resp.rate - target objective response rate
(0-1)

# accept.prodb - acceptably probadbility level to

make a go/mo go decision

# at final analysis (0-1)

# ppos.accept.prob - acceptadbly probability level for
PPoS go/no go decision at

# snterim (0-1)
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# prior - vector of parameters for beta(a,b)
prior distribution,
# default <s a beta(1,1) which <s

entered as c(1,1)

# cred.int.side - specify either a "two.stded" or "
one.stded " credible

# tnterval

# cred.int. level - specify credible interval level e.

g. 957 (0.95)

# align - specify the alignment of the plot
options are either "left"”

# or "centre',

# size - changes stze of the text on the

plot default <5 b

# legend.off - turn off the legend on the plot
default %8s on == FALSE
# output.data - function well return key data

along with the plot, default

# 18 off == FALSE

# werbose.data - returns data with additional
columns wtth z,y coordinates for

# plotting, default 4s off == FALSE

# Function: ----
etp <- function(cohort.size,
cohorts,

obj.resp.rate,
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accept.prob,

ppos.accept.prob,

prior = c(1,1),

cred.int.side = c("two.sided", '"one.
sided"),

cred.int.level = 0.95,

align = c("centre", "left"),

size = 5,

legend.off = FALSE,

output .data = FALSE,

verbose.data = FALSE){

# Calculate total sample size
N <- cohort.sizex*cohorts

# Extract prior parameters

a0 <- prior[1]

b0 <- prior[2]

# Function to calculate PPoS
PPOS <- function(n2, apost, bpost, obj.resp.rate,
accept.prob){
# If remaining number of patients 41s 0 don’t need
to calculate PPoS
if (n2 == 0){

PPOS = NA

else{
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Pr2 <- sapply(0:n2,
function(i) (gamma (apost+bpost)*
gamma (n2+1) *gamma (i+apost) *
gamma (n2-i+bpost)) /
(gamma (apost)*gamma (bpost) *gamma (
i+1) *gamma (n2-i+1) *

gamma (n2+apost+bpost)) )

B <- sapply(0:n2, function(i) 1-pbeta(obj.resp.

rate, apost+i, bpost+n2-i))

temp <- cbind(Pr2, B) %>%
data.frame () %>%
mutate (GO = if_else(B > accept.prob, 1, 0),
PPP = Pr2xG0)
PPO0S = sum(temp$PPP)
}

return (PP0OS)

# Generate data frame with all the data required for
the etp plot
df <- data.frame(
# produces a wvector of responses for each
cumulative cohort
r = rep(0:(cohort.sizexcohorts), rev(c(rep(l:

cohorts, each = cohort.size),
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group_by(r) %>%

mutate (

# produces y co-ords for plot

y = cohorts-row_number (),

cohorts))))

h>%h

# generic weighting for size of each rectangle on

the plot

w = rep(1l,

length(r)),

# Establish the specific cohort each row belongs

to

Cohor

# Different fonts for the plot

bolditalic = rep(’bold.italic’,

bold

itali

# For each cohort nl

2

nil

n2

t

C

n2

Cohort * cohort.size,

N

1+y,

rep(’italic’,

nl,

rep(’bold’,

length(r)),

how many left to recruit

length(r)),

length(r)),

how may patients with data

# At interim parameters for probability

calculations

apost

bpost

a0 + r,

b0 + ni

r,

# Labels to identify what probadbility needs

calculating and analysis stage
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Prob_label = if_else(Cohort == cohorts, °’PP’, °’
PP0S?),
Analysis = if_else(Cohort == cohorts, °’Final’, °?

Interim?’),
# Calculates estimates
Estimate = signif (gbeta(p = 0.5, shapel = apost,
shape2 = bpost)*100, 2),
# Calculate two-sided credible interval
LB = signif (gbeta(p = 0 + (l-cred.int.level)/2,
shapel = apost,
shape2 = bpost)*100, 2) ,
UB = signif(gbeta(p = 1 - (l1-cred.int.level)/2,
shapel = apost,
shape2 = bpost)*100, 2) ,
# Calculate one-sided credible interval
0SB = signif (gbeta(p = 1-cred.int.level, shapel =
apost, shape2 = bpost)*100,
2)
) %>
# Ungroup and do probability calcs for each row
ungroup () %>%
rowwise () %>%
mutate (
# Calculate PPoS
Prob = PP0S(n2 = n2, apost = apost, bpost = bpost
, obj.resp.rate,

accept.prob),
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# If N4 means that 1ts the final cohort so need
posterior prob
Prob = if_else(is.na(Prob),
round (pbeta(q = obj.resp.rate,
shapel = apost,
shape2 = bpost, lower.
tail = F), 7),
Prob),
Prob = round(Prob,3),

# Determine what the decision outcome would be

Decision = case_when(Cohort == cohorts & Prob >=
accept.prob ~ ’G0’,
Cohort == cohorts & Prob <
accept.prob = ’No,GO0°’,
Cohort !'= cohorts & Prob >=
ppos.accept.prob ~ G0’,
Cohort !'= cohorts & Prob <
ppos.accept.prob © ’No,GO
7)’
DecRules = factor(paste(Decision, Analysis, sep =
",
levels = c¢ ("GO, Final", "No_,GO,
Final", "GO, Interim",

"No,GO_,Interim"))

# Produce z coords based on alignment
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if (align == "centre") {
df <- df %>%
mutate(x = ifelse(y < cohorts, r+(cohorts-y)*(

cohort.size/2), r),

xmin = x - w/2,
xmax = x + w/2)

}

if (align == "left"){

df <- df %>%
mutate(x = r +0.5,

xmin = r + w - 1,
xmax = r + w )

}

# Code to generate plot
plot <-
ggplot (df , aes(xmin = xmin, xmax = xmax, ymin = y,
ymax = y + 1)) +
# plot rectangles for each response in each cohort
geom_rect (aes( colour = DecRules , 1ty = DecRules),
fill= "white",
size = 1) +
# reverse the y azis
scale_y_reverse () +

scale_color_manual ("Decision Rules",
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values = c("dark, green", "red",
"dark,green", "red"),
labels = c(bquote(P(theta >= .(
obj.resp.rate*x100) ~ ’%’) >=
. (accept.
prob)
Go),
bquote (P(theta >= .(
obj.resp.ratex100)
T k) <
. (accept.
prob) ~
:No,,Go ),
bquote (PPoS>= . (ppos.
accept.prob) ~ ’:
Go’),
bquote (PPoS< . (ppos.
accept.prob) ~ ’:
No,Go?)),

drop = FALSE)+

scale_linetype_manual ("Decision Rules",

values c(1,1,2,2),

labels = c(bquote(P(theta >=

.(obj.resp.ratex100) ~ 9%’

) >=
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. (accept.
prob)
:Go),
bquote (P(theta >=
.(obj.resp.rate
*100) 7 %) <
. (accept.
prob)
~ 2 No
uGo?),
bquote (PPoS>= . (
ppos.accept.
prob) ~ ’:Go’),
bquote (PPoS< . (
ppos.accept.
prob) ~ ?:No_Go
),

drop = FALSE)+

theme (axis.line=element_blank () ,axis.text.x=element
_blank (),
axis.text.y=element_blank () ,axis.ticks=
element _blank (),
axis.title.x=element_blank (),
axis.title.y=element_blank (),
panel.background=element_blank (),

panel.border=element_blank (),
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panel.grid.major=element_blank (),
panel.grid.minor=element_blank (),
plot.background=element_blank (),

legend.spacing = unit(0.00, ’cm’))

if (cred.int.side == "one.sided"){
plot <- plot +
geom_text (aes(label=r, x = x , y = y+0.2,

fontface = bolditalic),

size size, colour = °*#313639°)+

df %>% filter (Prob_1label

geom_text (data
PPOS’),
aes (label=Prob, x = x, y = y +0.4,
fontface = bold),

colour = ’blue’, size = size)+

geom_text (data = df %>% filter (Prob_label
PP’),
aes(label=Prob, x = x, y =y +0.4,
fontface = bold),

colour = ’black’, size = size)+

geom_text (aes(label=paste0(Estimate, ’%’), x =
X, y =y +0.6),

size = size) +
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geom_text (aes(label = paste0(’(’, 0SB,’%’, ?)7)

, X =X, y=y9y + 0.8 ,

fontface = italic), size = size)
data <- df %>Y%
mutate (CrI = paste(’(’, 0SB,’%’, ’)’, sep = ’7)
)
}
if (cred.int.side == "two.sided"){

plot <- plot +
geom_text (aes(label=r, x = x , y = y+0.1,
fontface = bolditalic),

size = size, colour = ’#313639°)+

I

Il

I
-

geom_text (data df %>% filter (Prob_label
PP0S ),
aes(label=Prob, x = x, y =y +0.3,
fontface = bold),

colour = ’blue’, size = size)+

geom_text (data = df %>% filter(Prob_label >PP’
),
aes(label=Prob, x = x, y =y +0.3,
fontface = bold),

colour = ’black’, size = size)+
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geom_text (aes (label=pasteO(Estimate, ’%’), x = x,
y =y +0.5),
size = size) +
geom_text (aes(label = paste0(’(’, LB,’%’), x = x,
y =y + 07,
fontface = italic), size = size) +

geom_text (aes (label = paste0O(UB,’%’,’)’), x = X,

y =y + 0.9,

fontface = italic), size = size)
data <- df %>%
mutate (CrI = paste(’(’,LB,’%’, ’u-u’, UB, ’%’, )
>, sep = 7))

if (isTRUE(legend.off)) {
plot <- plot +

theme (legend.position="none")

if (isTRUE (verbose.data)){
data <- data %>%
select (Cohort, n = nl, r, Analysis, Prob,
Estimate, CrI, Decision,
X, Xxmin, xmax, y, apost, bpost, LB, UB,
0SB) %>%

arrange (Cohort, r)
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}
elseq
data <- data %>%
select (Cohort, n = nl, r, Analysis, Prob,
Estimate, CrI, Decision) %>%
arrange (Cohort, r)
}

if (isTRUE (output.data)){

return (list (ETP = plot, Data = data))

elsed{

plot
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