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Abstract
Developments to established dose-finding methodologies for application

in trials with complex and innovative designs

by Amit PATEL

The results and decisions made in early phase clinical trials play an important

role in the drug development process. Failure to make correct or accurate de-

cisions may result in further unwarranted clinical research and may also cause

potential future harm to patients.

This thesis explores methodologies used in dose-finding trials, specifically

looking at the implementation of these methods and how they can be extended

to answer different questions and assist with decision-making.

Firstly we detail our experiences implementing a novel methodology for a

dose-finding trial where monotonic ordering is not possible. We then present

an extension to a seamless adaptive phase I/II trial design which aims to con-

duct dose-finding and replace the need for a randomised phase II trial.

We also present two extensions to dose transition pathways, a visualisation

tool to aid designing and decision making in early phase trials. The first looks

at how they can be applied to more complex time-to-event methodologies and

the second looks at how the same concept can be applied to single-arm phase

II trials.

Throughout this thesis we include exemplar trials and showcase our meth-

ods being motivated or implemented into clinical trials conducted by the Can-

cer Research UK Clinical Trials Unit at the University of Birmingham.





v

Acknowledgements
This research was only made possible thanks to the support and input from

key individuals.

Firstly, I would like to express my sincere gratitude to my supervisors, Lu-

cinda Billingham and Kristian Brock. The time they have dedicated to review,

develop and feedback on this thesis is immensely appreciated. Their constant

support and commitment have profoundly impacted not only this research but

also my personal and professional growth. I am truly grateful for the opportu-

nity to work with and learn from such amazing statisticians and individuals.

A special thank you to the co-chief investigators of the ADePT-DDR trial,

Hisham Mehanna and Anthony Kong, for allowing me to conduct research

using their trial. I would like to also thank Daniel Slade for his contributions

and teachings in helping me develop the code and the design for this trial. I

thank Piers Gaunt as lead statistician of ADePT-DDR, not only for his support

working on the trial but also for the encouragement to pursue this PhD.

I thank Shanna Maycock and Laura Kirton for reviewing and providing

comments on the beta-binomial app. I thank Victoria Homer and Charlotte

Gaskell for their support as colleagues, answering all my rogue questions and

providing invaluable feedback. I would like to express my gratitude to my

colleagues at the University of Birmingham Cancer Research UK Clinical Trials

Unit, particularly those within the Biostatistics team. Without all of their hard

work and dedication, I would not have had the opportunity to undertake this

PhD.

Finally, I would like to thank my parents, without whom it is likely I would

not have made it this far. This work is as much mine as it is theirs.





vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1

1.1 Aims of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Clinical trials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Introduction to early phase trials . . . . . . . . . . . . . . . . . . 2

1.4 Chapters in this thesis . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Implementing the PO-TITE-CRM trial design into ADePT-DDR 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 The PO-TITE-CRM design . . . . . . . . . . . . . . . . . . . . . . 18

2.3 PO-TITE-CRM in ADePT-DDR . . . . . . . . . . . . . . . . . . . 22

2.3.1 Partial ordering in practice . . . . . . . . . . . . . . . . . 24

2.3.2 The TITE component . . . . . . . . . . . . . . . . . . . . . 27

2.3.3 Stopping rules . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.4 Example trial run . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.5 Operating characteristics . . . . . . . . . . . . . . . . . . 35

2.4 Exploring other designs . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Extension to a Phase I/II trial design 53



viii

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 The Wages and Tait design . . . . . . . . . . . . . . . . . . . . . . 57

3.3 RtC-WT: An extension to the Wages and Tait design . . . . . . . 62

3.3.1 The Rationale for Incorporating Randomisation to Control 63

3.3.2 Design of the Proposed Extension RtC-WT . . . . . . . . 66

3.4 Evaluation and exploration of the extension via simulations . . 68

3.4.1 Design Specification . . . . . . . . . . . . . . . . . . . . . 68

3.4.2 Impact of AR phase size and probability of randomisa-

tion to control on RtC-WT . . . . . . . . . . . . . . . . . . 70

3.4.3 Example trial run . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.4 Comparison of RtC-WT against Alternative Designs . . 93

3.5 Efficiency of an efficacy test . . . . . . . . . . . . . . . . . . . . . 100

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4 Extending Dose Transition Pathways for use in TITE-CRMs 111

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2 Dose Transition Pathways . . . . . . . . . . . . . . . . . . . . . . 112

4.2.1 Example trial to illustrate DTPs . . . . . . . . . . . . . . . 114

4.2.2 Using DTPs to calibrate the CRM . . . . . . . . . . . . . . 116

4.2.3 Using DTPs during a trial . . . . . . . . . . . . . . . . . . 127

4.3 TITE-DTPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.3.1 Cohort of one patient . . . . . . . . . . . . . . . . . . . . . 137

4.3.2 Cohort of two patients . . . . . . . . . . . . . . . . . . . . 140

4.3.3 Cohort of three patients . . . . . . . . . . . . . . . . . . . 155

4.4 Alternative weight functions . . . . . . . . . . . . . . . . . . . . 167

4.4.1 Weight function 1 in the NN scenario . . . . . . . . . . . 170

4.4.2 Weight function 2 in the NN scenario . . . . . . . . . . . 173

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176



ix

5 Efficacy Transition Pathways 187

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.2 Efficacy Transition Pathways . . . . . . . . . . . . . . . . . . . . 189

5.2.1 Illustrative example to showcase a Beta-Binomial design 191

5.2.2 Constructing Efficacy Transition Pathways . . . . . . . . 198

5.2.3 Updating decision criteria based on Efficacy Transition

Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

5.3 Implementation of ETPs . . . . . . . . . . . . . . . . . . . . . . . 213

5.4 Development of a web application for ETPs . . . . . . . . . . . . 215

5.4.1 Additional Features of the App . . . . . . . . . . . . . . . 219

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6 Summary and Conclusions 229

A Examples implementing ETPs 239

A.1 MonoGerm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

A.2 Glo-BNHL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

A.3 DETERMINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

B Code 257

B.1 TITE-PO-CRM in ADePT-DDR chapter code . . . . . . . . . . . 257

B.2 Extension to Phase I/II design chapter code . . . . . . . . . . . . 323

B.3 TITE-DTP chapter code . . . . . . . . . . . . . . . . . . . . . . . . 346

B.4 ETP chapter code . . . . . . . . . . . . . . . . . . . . . . . . . . . 384

Bibliography 401





xi

List of Figures

2.1 Example dose levels to illustrate partial ordering. . . . . . . . . 15

2.2 ADePT-DDR dose levels across dose and duration. . . . . . . . . 25

2.3 Weight function across the follow-up period. . . . . . . . . . . . 29

2.4 Plot of data included for each dose decision at each cohort. . . . 34

2.5 Plot of dose decisions throughout the example trial. . . . . . . . 35

2.6 Illustration of true DLT rates used in simulations. . . . . . . . . 42

2.7 Plot of simulations comparing designs for ordering 1. . . . . . . 47

2.8 Plot of simulations comparing designs for ordering 2. . . . . . . 47

3.1 Flowchart of a two arm randomised dose-finding trial. . . . . . 65

4.1 Initial DTP node plot. . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.2 Initial DTP flow plot. . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.3 Updated DTP node plot. . . . . . . . . . . . . . . . . . . . . . . . 123

4.4 Updated DTP flow plot. . . . . . . . . . . . . . . . . . . . . . . . 125

4.5 DTP node plot for three additional cohorts. . . . . . . . . . . . . 131

4.6 DTP node plot for three additional various sized cohorts. . . . . 134

4.7 Combined follow-up and dose decisions for a cohort of two. . . 144

4.8 Changes in β based on combined follow-up for two patients. . . 148

4.9 Changes in β based on combined follow-up of 20 and 21 days

for two patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.10 TITE-DTP Node plot for a cohort of two patients. . . . . . . . . 152

4.11 TITE-DTP Flow plot for a cohort of two patients. . . . . . . . . . 154



xii

4.12 Dose recommendations for a cohort of three patients for sce-

nario 2NNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

4.13 Changes in β based on combined follow-up for three patients. . 161

4.14 Changes in β based on combined follow-up of 20 and 21 days

for three patients. . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

4.15 TITE-DTP Node plot for a cohort of two patients. . . . . . . . . 165

4.16 TITE-DTP Flow plot for a cohort of two patients. . . . . . . . . . 166

4.17 Plot of weight values for different weight functions. . . . . . . . 169

4.18 Changes in β based on combined follow-up for two patients

with Weight 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

4.19 Changes in β based on combined follow-up of 7/8/9 days for

two patients with Weight 1. . . . . . . . . . . . . . . . . . . . . . 172

4.20 Changes in β based on combined follow-up for two patients

with Weight 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

5.1 ETP cell plot for 0 responses in 5 patients. . . . . . . . . . . . . . 200

5.2 ETP cell plot for 2 responses in 5 patients. . . . . . . . . . . . . . 201

5.3 ETP cell plot for 10 responses in 30 patients. . . . . . . . . . . . . 202

5.4 ETP cell plot for 14 responses in 30 patients. . . . . . . . . . . . . 203

5.5 Example of a constructed ETP. . . . . . . . . . . . . . . . . . . . . 205

5.6 A left aligned version of the constructed ETP. . . . . . . . . . . . 206

5.7 ETP with updated final decision rule. . . . . . . . . . . . . . . . 210

5.8 Changes in posterior probability for decision criteria. . . . . . . 211

A.1 Flip-flop recruitment design in the MonoGerm trial. . . . . . . . 241

A.2 ETP for the MonoGerm trial. . . . . . . . . . . . . . . . . . . . . . 243

A.3 Flowchart of the decision making process in Glo-BNHL. . . . . 247

A.4 ETP for the initial stage of treatment arm Ia in Glo-BNHL. . . . 250

A.5 ETP for the expansion stage of treatment arm Ia in Glo-BNHL. . 251



xiii

A.6 Umbrella-basket platform trial design in DETERMINE. . . . . . 253

A.7 ETP for the DETERMINE trial. . . . . . . . . . . . . . . . . . . . 256





xv

List of Tables

2.1 Example drug combinations with two agents. . . . . . . . . . . . 18

2.2 ADePT-DDR dose-levels. . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Summary of model outputs for our example trial run. . . . . . . 32

2.4 Operating Characteristics for ordering 1. . . . . . . . . . . . . . . 38

2.5 Operating Characteristics for ordering 2. . . . . . . . . . . . . . . 39

2.6 Summary of simulated patient numbers for each scenario. . . . 40

2.7 Alternative designs selection probabilities for ordering 1. . . . . 45

2.8 Alternative designs selection probabilities for ordering 2. . . . . 46

3.1 Toxicity and efficacy skeletons for RtC-WT in the example trial. 69

3.2 Summary of the efficacy and toxicity curves used in each scenario. 74

3.3 Operating characteristics for multiple combinations of parame-

ters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Summary of operating characteristics of multiple combinations

and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.5 Summary of model outputs during the adaptive randomisation

phase for our example trial run. . . . . . . . . . . . . . . . . . . . 89

3.6 Summary of model outputs during the maximisation phase for

our example trial run. . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.7 Number and percentage of events for our example trial run by

dose-level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8 Summary of the three designs being compared. . . . . . . . . . 96



xvi

3.9 Operating characteristics comparing multiple designs. . . . . . 97

3.10 Selection probabilities and summary statistics for multiple de-

signs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.11 List of effect sizes used in power calculations. . . . . . . . . . . . 102

3.12 Mean power achieved across multiple scenarios for different as-

sumptions of effect size. . . . . . . . . . . . . . . . . . . . . . . . 103

4.1 Specification of parameters for an example CRM trial. . . . . . 115

4.2 Selection probabilities from 10000 simulated trials under vari-

ous scenarios for the example CRM. . . . . . . . . . . . . . . . . 116

4.3 Initial DTP for the first three cohorts of our example CRM. . . . 118

4.4 Updated selection probabilities from 10000 simulated trials un-

der various scenarios for the example CRM with additional rules. 122

4.5 Updated DTPs for the first three cohorts of our example CRM

with additional rules. . . . . . . . . . . . . . . . . . . . . . . . . . 124

4.6 DTPs for three additional cohorts after observing outcomes for

the first three cohorts. . . . . . . . . . . . . . . . . . . . . . . . . . 130

4.7 DTPs for three additional cohorts with varying cohort sizes after

observing outcomes for the first three cohorts. . . . . . . . . . . 133

4.8 TITE-DTP for a cohort of one. . . . . . . . . . . . . . . . . . . . . 139

4.9 Summary of TITE-DTP for a cohort of one. . . . . . . . . . . . . 140

4.10 TITE-DTP for a cohort of two for scenario 2NT. . . . . . . . . . . 142

4.11 Summary of pathways for a cohort of two for scenario 2NN. . . 143

4.12 Different dose recommendations with overlapping combined follow-

up times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.13 Summary of TITE-DTP for a cohort of two. . . . . . . . . . . . . 151

4.14 TITE-DTP for a cohort of three for scenario 2NTT. . . . . . . . . 156

4.15 Summary of pathways for a cohort of three for scenario 2NNT. 157



xvii

4.16 Summary of pathways for a cohort of three for scenario 2NNN. 158

4.17 Follow-up combinations totalling 20 or 21 days leading to dose-

level 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4.18 Summary of TITE-DTP for a cohort of three. . . . . . . . . . . . 164

4.19 Summary of weight values for different weight functions. . . . . 169

4.20 Summary of pathways for scenario 2NN with Weight 1. . . . . . 171

4.21 Follow-up combinations totalling 8 days for scenario NN using

Weight 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

4.22 Summary of TITE-DTP for scenario NN under Weight 1. . . . . 173

4.23 Summary of pathways for scenario 2NN with Weight 2. . . . . . 174

4.24 Summary of TITE-DTP for scenario NN under Weight 2. . . . . 176

5.1 Specification of parameters for the example Beta-Binomial trial. 197

5.2 Simulations for example Beta-Binomial design. . . . . . . . . . . 198

5.3 Simulations for example Beta-Binomial design with new deci-

sion rule. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.4 Examples of different decision criteria. . . . . . . . . . . . . . . . 209

A.1 Summary of decision criteria for Glo-BNHL. . . . . . . . . . . . 248

A.2 Current treatment arms in DETERMINE . . . . . . . . . . . . . . 253





1

Chapter 1

Introduction

1.1 Aims of this thesis

Early phase clinical trials are essential in the drug development process as they

provide key information about new interventions which can be used in later-

phase testing. Therefore, it is important that the decisions made and conclu-

sions reached in the early phase setting are correct or as accurate as possible.

Failure to do so could lead to a waste of resources in pursuing unnecessary

further research and could potentially negatively impact patients well-being.

This thesis aims to explore methodologies used in early phase dose-finding

trials. We look specifically at the implementation of novel methods as well as

how they can be extended for use in complex and innovative designs.

In this chapter, we begin with a brief introduction of clinical trials and also

provide a summary of the underlying methodology used within this thesis

specific to early phase trials. A description of each chapter is then provided.

1.2 Clinical trials

Clinical trials are often a time-consuming and costly process [1]. It can take

10-20 years to get a new drug from inception to regulatory approval [2], [3].
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Any new treatments that come to market must be thoroughly tested and ex-

amined, to make sure not only that they are safe but also effective and better

than treatments currently in use.

The clinical trial process is split into multiple stages, commonly referred to

as phases. Each phase has a different objective and builds upon knowledge

and data collected in the previous phases [4]. Phase I trials aim to determine

the safety of a treatment. This typically takes the form of a dose-finding study

that aims to find a safe and tolerable dose that can be taken forward for further

testing [5]. Phase II trials aim to determine if a treatment works or if there is

some signal of efficacy. This is usually done with a single arm design i.e. a sam-

ple of patients is given the experimental treatment [6]. However, some Phase

II trials can be RCTs (Randomised Controlled Trials), where the new treatment

is compared with a treatment already in use or a placebo [7]. Finally, Phase III

trials aim to establish the efficaciousness of an experimental treatment. Nor-

mally, this is done by comparing the new treatment against the standard of

care. Results from Phase III clinical trials can then go on to influence clinical

practice [8].

We usually consider Phase I and single arm Phase II trials to be early phase

trials, then randomized Phase II and Phase III trials as late phase trials. How-

ever, there is no definitive boundary between early and late phase trials. Phases

are determined by their intention and not by their design.

1.3 Introduction to early phase trials

For Phase I trials the main aim is to establish a dose, commonly referred to

as the maximum tolerated dose (MTD), which can then be taken forward into

later phase testing. Normally these may be considered first-in-human trials as

Phase I is typically the point at which a drug would first be tested in healthy
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human volunteers. However, in the oncology setting this is generally not the

case. Often times, due to the nature of the treatments, such as chemotherapy or

radiotherapy, they may be considered too toxic to give to healthy individuals

so are rather tested in patients with the specific disease of interest [9].

Traditionally these trials adopted algorithm-based approaches. Here pre-

determined rules were used during the trial to allocate patients to dose-levels

and select the MTD. An example of this would be the 3+3 design [10], where

patients were recruited in cohorts of three and dependent on the outcomes ob-

served in each cohort a specific decision on the next investigative dose would

be made. There were many criticisms of these approaches as they resulted in

the sub-optimal treatment of patients, poor operating characteristics and a rec-

ommended dose or MTD that has limited interpretation as a dose yielding a

specific target toxicity [11], [12].

This gave rise to the continual reassessment method (CRM) which was first

introduced by O’Quigley et al. [13] in 1990. This methodology was developed

as an approach to meet ethical requirements and use models to reasonably

approximate the true probability of toxicity around the dose close to some pre-

defined target toxicity. In their paper, O’Quigley et al. [13] demonstrate the

CRM’s superiority over various algorithm based designs via simulations. The

main advantage of the CRM is that it is able to make use of all accumulated

data whereas designs such as the 3+3 make decisions and recommendations

based on data from the most recent cohort of patients. In the case of the 3+3

design, escalation continues until at least two patients in a cohort of three or

six experience a DLT. More explicitly, the MTD is the dose level below the dose

at which ≥33% of patients experience a DLT [14].

With the CRM debuting over 30 years ago in the literature and multiple

papers over the subsequent years confirming its advantages over rule-based

designs you would expect model-based approaches for dose-finding trials to
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become the norm however, this is not the case. A study by Rogatko et al.

[15] published in 2007 looked into the translation of effective statistical designs

into phase I trials for new anticancer therapies. Between 1991 and 2006 they

searched for abstracts and categorised them as either clinical dose-finding tri-

als or statistical methodology for dose-escalation trials. They found 1235 clin-

ical trials and 90 methodological papers. Of those 1235 trials only 20 (1.6%)

used statistical methodology, the remaining papers used various rule-based

designs. A later review by Chiuzan et al. [16] looked at the number of phase

I oncology articles published between 2008 and 2014. Out of the 1712 dose-

finding trials 1591 (92.9%) used rule-based designs.

Based on these reviews we can see that the uptake of more efficient model-

based designs such as the CRM has been slow and limited. There are prob-

ably a number of factors which cause this, such as lack of resources, access

and understanding. There exists some guidance in the literature by Wages et

al. [17] and Wheeler et al. [18] as well as practical examples from Mozgunov

et al.[19]. The main issue is that implementation of these designs usually re-

quire the input of a statistician, more specifically one who is familiar with such

approaches. They also need to be able to implement and conduct the trial

with software available, for designs such as the CRM there are multiple op-

tions available such as the R packages dfcrm [20], escalation [21] and trialr

[22]. However, for more complex and innovative designs, software may not be

readily accessible and implementation may be difficult.

Phase II trials build upon the work of early Phase I trials. Here the focus

shifts away from toxicity and looks more towards efficacy of these new treat-

ments at the dose-levels previously determined in phase I trials [23]. The key

purpose of phase II trials is to see if a new treatment or intervention works and

establish if there is an efficacy signal. More specifically they aim to determine

if there is a sufficient level of efficacy to warrant further research in for example
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a Phase III setting [24].

An example of an early Phase II trial design would be a single arm trial.

Eligible patients come into the trial and all of them will be allocated to the new

treatment. Once they have completed their treatment period we would then

assess the effectiveness of that treatment using some measure of success. Look-

ing at the outcome of success in each patient, the success rate or proportion of

success can then be determined. In the single arm setting, this success rate is

then compared to some benchmark, which is determined from either historical

data or clinical experience.

One approach to analysing a trial like this is Bayesian and utilises a Beta-

Binomial conjugate analysis to estimate a response rate for a binary outcome.

This is a fairly straight-forward analysis and can be found in most Bayesian

text books, one example of which is by Lee [25]. Whilst this may be somewhat

simplistic from a mathematical standpoint, clinicians may be less familiar with

Bayesian approaches in general compared to frequentist methods. However,

there is still value in using these methods to analyse trials as they can often

be more efficient especially with smaller sizes [26], which is often the case in

an early phase setting and they allow for greater flexibility in terms of practi-

cal considerations such as cohort sizes. Using a Bayesian approach allows for

decisions to be made based on probabilities from a posterior distribution [27].

Which can be a more intuitive way to understand the treatment effect given

observed data.

These types of analyses also better facilitate other complex and innovative

designs such as platform/basket/umbrella trials where multiple biomarkers

or treatments may be under investigation. The Bayesian approach will allow

for information borrowing across any different arms in the trial, which is par-

ticularly useful when working with restricted resources [28].
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Generally speaking, early phase trials work with less resources (i.e less pa-

tients, time, money), so it would be advantageous to use designs which are

more efficient with the data collected, the majority of which would require

a statistician familiar with these methods to implement. Clinicians may also

push for designs that are easier to follow so either a algorithm-based approach

in a Phase I or a frequentist approach for a Phase II trial. Clinicians may also

not be familiar with these complex designs and how they work.

As developments occur in the medical field, e.g. introducing new interven-

tions, trials may subsequently become more complex. This complexity arises

because the assumptions made by current methodologies may no longer hold

true. For example molecular targeted agents and certain biological therapies

may not operate under the assumption that as dose increases efficacy increases.

Additionally, the questions that trials aim to answer can also become more in-

tricate due to various factors, including the disease setting under investigation

and the type of treatment involved. Consequently, it is essential to address

these challenges as they arise to ensure the optimal utilisation of our data and

to make accurate decisions.

Whilst the development of new methodologies is necessary to facilitate bet-

ter research, practical considerations also need to be made. The ease at which

a new methodology can be implemented is important. Whilst a new method

may be fantastic and solve a lot of issues, if researchers cannot easily imple-

ment it either through software or replicable code then the method will ulti-

mately have little impact in the real world. Similarly, communication of new

methods is also important. A summary of each chapter is provided in the next

section, where we address different aspects of this further.
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1.4 Chapters in this thesis

In Chapter 2, we detail our experiences implementing a novel methodology

into the design of an early phase dose-finding trial in head and neck cancer.

This trial, ADePT-DDR run by the University of Birmingham (UoB) Cancer

Research Clinical UK Trials Unit (CRCTU), uses the partial ordering time-to-

event continual reassessment method (PO-TITE-CRM) design [29]. The PO-

TITE-CRM design was introduced in 2013 as an extension to the TITE-CRM de-

sign, itself an extension of the original continual reassessment method (CRM),

a model-based approach to dose-finding trials. Despite the publication of this

novel dose-escalation design its implementation appears to be rare, as high-

lighted in the reviews by Rogatko et al. [15] and Chiuzan et al. [16]. The

CRM operates under the monotonicity assumption which assumes that as the

dosage of drug increases so does the probability of toxicity. The PO-TITE-CRM

was developed to address scenarios where the ability to fully order the doses

based on increasing toxicity is missing. Multiple iterations of simulations were

utilised to determine the optimal parameterisation of the design. Simulation

results from the optimal parameterisation show the operating characteristics of

the design perform well across a variety of scenarios. We present an overview

of the design methodology and its application in this trial scenario.

The focus of Chapter 3 is on an extension to a seamless Phase I/II design.

This design by Wages and Tait [30] uses adaptive randomisation to conduct its

dose-finding. We aimed to extend this design to include a control comparator

arm by leveraging the design’s adaptive randomisation mechanism. Typically

these types of seamless design utilise both toxicity and efficacy outcomes to

select a dose for later phase testing. Our motivation was to take this one step

further and develop a seamless Phase I/II design that would allow for a direct

comparison of the selected dose to a control arm. We present the modification
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we make to the design and detail how altering specific parameters impacts

the allocation of patients to the control arm within the design. Simulations

were then conducted to investigate the operating characteristics under certain

specifications. Further simulation work is then used to compare our modified

design with the original Wages and Tait design to ascertain if performance is

impacted by our modification. Additionally, this control arm allows us to con-

duct power calculations comparing efficacy rates between patients allocated

to the optimal dose and those in the control arm. These calculations give an

insight into how our design would perform as a standard Phase II trial.

Decision-making is an important component of dose-finding trials. For

non-statisticians, understanding the reason why certain decisions are being

made from a model-based approach such as the CRM could be confusing or

unintuitive compared to a 3+3 for example. In order to bridge that gap, Yap

et al. developed a novel visualisation tool called dose transition pathways

(DTPs) [31]. Our work in Chapter 4, explores the use of DTPs in a time-to-

event (TITE) setting. TITE methodology, in a dose-finding context, allows

decisions to be made at earlier time points based on partially observed data

from patients currently in a trial. This leads to the number of outcomes being

more complicated for a single cohort of patients in a dose-finding trial. This

in turn further complicates DTPs which aim to effectively summarise the dif-

ferent dose-decisions that can be made based on all possible outcomes. Our

work aims to reap the benefits of DTPs in a TITE setting. We detail what those

benefits are and the challenges in presenting DTPs for TITE methodology. Us-

ing informative examples we demonstrate what these are and why they occur

as well as potential solutions for how DTPs can still be incorporated for trials

utilising this methodology.

In Chapter 5, we introduce efficacy transition pathways (ETPs) which are

a new visualisation tool inspired by DTPs for use in Phase II trials. The idea
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of visualising outcomes and decisions for dose-finding trials is a useful one,

not only during the conduct of a trial but in its initial design stages as well.

Through the development of three different trials at CRCTU it became appar-

ent that a similar tool would be beneficial for Phase II trials. These trials, whilst

not conducting dose-finding, aimed to assess efficacy and included multiple

interim analyses at which different decisions could be made. We describe how

ETPs are constructed and work, by providing examples from trials which in-

spired the idea behind ETPs. One of the success of DTPs was its ease of imple-

mentation through available software like the R package escalation by Brock

[21]. In order to facilitate the same ease of use for ETPs we developed a R

function along with a web based application to automatically generate these

plots. In the chapter we detail how the application works to construct ETPs

and additional features that we added so it could be used as an educational

tool.

To end, Chapter 6, provides an overarching summary of the topics and

ideas discussed in this thesis.
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Chapter 2

Implementing the PO-TITE-CRM

trial design into ADePT-DDR

This chapter contains work that has previously been published [32]. In this

work I was responsible for the writing, analysis, conduct of simulations and

generation of figures and tables used in this thesis.

2.1 Introduction

Worldwide there are approximately 600,000 new cases of Head and Neck Squa-

mous Cell Carcinoma (HNSCC) each year [33]. Of which, 12,000 occur in the

UK with the most common forms of treatment being surgery, radiotherapy

and/or chemotherapy [34]. Radiotherapy is essential for the treatment of can-

cer. It has been estimated that more than 40% of patients will receive radiother-

apy at some point in their treatment [35]. However, despite recent advance-

ments in radiation techniques and the use of concomitant chemoradiotherapy,

patients with solid tumours such as head and neck cancer have suboptimal

cure rates [34], [36]. For those with advanced HNSCC primary radiotherapy

with concurrent chemotherapy is often offered but, it has not been shown to

improve survival in patients aged over 70 compared to radiotherapy alone
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[37]. Therefore, any strategy to improve the efficacy of radiotherapy without

increasing toxicity would have a significant impact on patient outcomes.

DNA damage repair (DDR) inhibition is a potential technique which could

be utilised as it potentiates the therapeutic effects of ionising radiation in can-

cer cells [38]. Combining radiotherapy with DDR inhibition could improve

clinical outcomes for these patients [39].

The ADePT-DDR trial 1 is a platform trial which aims to evaluate the safety

and efficacy of different DDR agents, or different immunotherapy agents and/or

DDR and immunotherapy combinations, together with radiotherapy in pa-

tients with HNSCC. The initial component of this trial is a single-arm dose-

finding trial investigating the ataxia telangiectasis and Rad3-related (ATR) in-

hibitor AZD6738 in combination with radiotherapy. ATR inhibitors not only

stop DNA repair but impair the mechanism that allows for repairs to take

place. Preclinical models have shown this double blocking to be effective in

killing cancer cells [40].

In Chapter 1 we discussed model and algorithm-based dose-finding trial

designs. Due to the historical use of rule-based designs [15], [16], the majority

of the terminology used to describe them, and the ambiguity they raise, have

been inherited by modern designs such as the CRM. The MTD in the context of

a CRM is not the ’maximum’ dose patients could tolerate but rather a dose in

which there would be an acceptable target probability of a DLT occurring. For

example, if the target is set at 25% the MTD would be the dose at which there is

a 25% probability of experiencing a DLT. Rather than using the term MTD, the

dose to be found will be referred to as the target dose (TD%%, where the %’s

are replaced by the target probability), i.e. TD25 would be the dose expected

to be toxic in 25% of patients.

1Accelerating the Development and implementation of Personalised Treatments of DNA
Damage Response agents and radiotherapy +/- immunotherapy for head and neck squamous
cell cancer
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The investigation of multiple-agent treatments, where the monotonicity as-

sumption may not hold, is increasing in early phase trials. Finding the TD in

combinations of treatments, compared to single-agents, presents methodolog-

ical challenges. Each drug individually may obey the monotonicity assump-

tion; we can refer to this as the doses being fully ordered. However, when

multiple treatments are combined, the ordering of doses in terms of toxicity

may not be fully apparent or may only be partially defined. An order may be

identified for a subset of the doses which would result in a partial order. With-

out a full ordering it is uncertain which dose should be chosen in decisions of

escalation and de-escalation and ultimately as the TD. This issue is not exclu-

sively reserved for trials with multiple-agents. The monotonicity assumption

may not hold for certain drugs in single-agent studies leading to partial orders

of dose toxicity. For example, when dose and frequency of administration vary

between dose levels. It requires that probability of toxicity always increases -

staying the same is not enough. At high enough doses, this assumption is al-

most surely violated for all interventions when the event probability reaches

its maximum. Thus, even when total ordering is possible, the monotonicity

assumption could be violated [41]. Issues of partial ordering can occur in sce-

narios where multiple parameters of the treatment schedule are altered for

each dose level. For example, either dose or treatment duration could be in-

creased and even if patients receive an equal dose it would remain unclear as

to if prolonged exposure to a lower dose is more toxic than short exposure to

a higher dose, which implies a partial ordering of toxicity probabilities.

Further methodological challenges revolve around the issue of late-onset

toxicities. Typically, early phase trials implement a short window to observe

DLTs. This works well in situations where toxicities are likely to occur rapidly

after treatment. However, this is not optimal for treatments that could cause

late-onset toxicities such as radiotherapy. The aim with ADePT-DDR would be
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to incorporate a larger observation window to account for potential late-onset

toxicities whilst also minimising the trial duration.

Cheung and Chappel [42] introduced an extension to the CRM to deal with

the issues of treatments that may cause late-onset toxicity. This design referred

to as the time-to-event CRM (TITE-CRM), uses a weighted dose-response model

to incorporate the time it takes for a DLT to occur in a patient. There have

also been published trial designs to deal with the issues that arise from inves-

tigating combinations of treatments. Thall et al. [43] proposed an adaptive

two-stage Bayesian design which utilises a parametric model of toxicity as a

function of two doses. Yin and Yuan [44] present a Bayesian design that uses

a copula regression model to evaluate the joint toxicity probabilities of com-

bined drugs. The continual reassessment method for partial orders (PO-CRM)

developed by Wages et al. [45] extends the CRM design by relaxing the as-

sumption of monotonicity and by modelling different potential orders. Figure

2.1 shows a simple example of partial ordering where the order of two out of

the four dose levels are unknown.

Wages et al. [29], [45] further developed their work on the PO-CRM to

deal with late-onset toxicities by implementing a TITE component. This trial

design, referred to as the time-to-event continual reassessment method in the

presence of partial orders (PO-TITE-CRM) by the authors, was chosen to be

used in ADePT-DDR. A search of PubMed, conducted on the 25th of July 2020,

found six articles that had cited the PO-TITE-CRM design by Wages et al. [29].

Of these six articles non actually implement the design into a trial. The follow-

ing paragraphs provide more details.

Five of these papers were methodological in nature, two of which only in-

clude the PO-TITE-CRM design in a brief introduction to current methodology

before going on to present new Bayesian trial designs [46], [47]. The other three
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FIGURE 2.1: Example dose levels to illustrate partial ordering.
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papers were authored by Wages. The first of which details practical considera-

tions and specifications for the PO-CRM design, the TITE variant is only cited

as the source of an example which is being used [48]. One paper presents an

R package ’pocrm’ [49], [50]. The package is only capable of analysing the PO-

CRM design. The TITE variant is only referenced here as it illustrates the issue

of partial ordering. The last methodological paper by Wages et al. [51] presents

three different methods for phase I studies of drug combinations one of which

is the PO-CRM however, PO-TITE-CRM is only mentioned as an extension to

this design. A key message in this paper is the fact that novel methodologies

are constantly emerging but are rarely implemented in practice.

The last paper is a protocol paper for a phase I/II study, OLA-TMZ-RTE-01

[52]. The phase I component of the study aims to determine the recommended

phase II dose (RP2D) of olaparib combined with a standard schedule of ra-

diotherapy and temozolomide (TMZ) as first line treatment for patients with
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unresectable glioblastoma (GBM). The treatment schedule is divided into a ra-

diotherapy and maintenance period. They propose to conduct two sequential

dose-escalations of seven different olaparib dose-levels. Patients in the first

escalation will be allocated to a dose level of olaparib for 10 weeks including

radiotherapy for six weeks with TMZ given each day during radiotherapy and

then for six cycles four weeks post radiotherapy during the maintenance pe-

riod. They state the MTD1 will be determined using a TITE-CRM. Patients

in the second escalation olaparib at the MTD1 during the radiotherapy period

along with the same schedule of radiotherapy and TMZ. Those patients will

then be allocated to one of the seven dose levels of olaparib during the main-

tenance period. Again, it is stated that the MTD2 will be determined using

TITE-CRM modelling. The RP2D is the MTD1 and MTD2 during the radio-

therapy and maintenance period respectively. Even though a combination of

treatments is being investigated only olaparib is being escalated and doses for

other treatments are fixed for all patients. Furthermore, the dose-levels for ola-

parib increase consistently in either amount or duration meaning there are no

issues of partial ordering which would warrant the use of PO-TITE-CRM. The

authors reference the TITE-CRM methodology with two papers. One of them

being the paper detailing the PO-TITE-CRM design and the other being a pa-

per by Huang and Kuan [53] which proposes an adaptive weight function that

incorporates cyclical data of treatment into the TITE-CRM. It is unclear as to

why the PO-TITE-CRM is cited as its methodology is not mentioned anywhere

in methods.

An updated PubMed search conducted on the 20th July 2024 yielded an

additional three papers. One of which was by van Werkhoven et al. [54] which

details practical guidelines on running TITE-CRM trials providing some ex-

amples however no guidance is provided for PO-TITE-CRM trials specifically.

Another paper published by Brown el at. [55] provides a road map to help
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improve the design of phase I radiotherapy trials. Here PO-TITE-CRM is rec-

ommended as a methodology for dealing with dose-escalation of dual agents.

The final paper [32] is a published form of the work in this chapter which doc-

uments our experience implementing this design.

We also conducted a search for papers that cited the original PO-CRM de-

sign paper by Wages et al. [45]. This was also conducted on the 20th July 2024

and yielded 77 results. The abstracts for all the papers were reviewed and we

found four papers that discussed the implementation of PO-CRM methodol-

ogy into trials (one of the papers is the published version of this chapter [32].).

The remaining 73 papers were methodological in nature.

The first paper was by Walker et al. [56] and presents the results of an

adaptive phase I trial. The trial aimed to identify if high-dose nitazoxanide

is safe and well tolerated in healthy individuals also if it can reach and main-

tain antiviral concentrations predicted to be sufficient to prevent maturation of

the SARS-CoV-2 spike protein. The paper primarily focused on presenting the

results but does include details in the methods section and supplementary ma-

terials about the design of the trial and parameters used in the PO-CRM model.

The trial included three different dosing schedules and there was uncertainty

around the order with respect to toxicity which led to the use of PO-CRM.

Another of the three papers was by Mozgunov et al. [19]. This paper de-

tails their experience implementing the PO-CRM design. They provide a walk-

through on how their design was implemented along with simulations and

comparisons to other methods.

The final paper was also a results paper by Millard et al. [57] and it should

be noted that Nolan Wages is also listed as a co-author for this paper. This trial

was investigating a combination of entinostat and capecitabine in patients with

HER-2 negative metastatic breast cancer. There were two doses of each drug

under consideration leading to four different combinations/dose-levels. The
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main focus of the paper were the results of the trial and there were limited

details around the choice of the design and how it was parametrised.

It should be noted all of these papers were published after our work was

conducted. So, we were unable to reference them or use them to help inform

the choices made for our trial and design.

This is just a brief review of the current literature but it seems that the PO-

TITE-CRM and PO-CRM have rarely been used or discussed since its incep-

tion.

This chapter provides novel insight into the methodology of PO-TITE-CRM

through application in a real-world scenario. Section 2.2 will detail how the

PO-TITE-CRM works. Section 2.3 discusses the justification for implementing

the design into the ADePT-DDR trial and our experiences doing so. Section 2.4

explores other alternative designs which could have been implemented and as-

sess how they perform in comparison to the PO-TITE-CRM. We provide some

discussion in Section 2.5.

2.2 The PO-TITE-CRM design

Wages et al. [29] introduced the PO-TITE-CRM design which builds directly

upon the PO-CRM design by incorporating a TITE component into the dose-

toxicity model. The aim of which is to determine the target dose for combina-

tions of drugs where the monotonicity assumption does not hold, in a setting

where late-onset toxicities are possible.

TABLE 2.1: Example of drug combinations for a trial investigat-
ing two agents.

Drug combinations
Agent d1 d2 d3 d4 d5 d6
A (mg/day) 0.25 0.5 1.0 0.25 0.5 1.0
B (mg/day) 1.0 1.0 1.0 1.5 1.5 1.5
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To help understand partial ordering, consider an example of an early phase

trial investigating the combination of two agents. Drug A which consists of

three doses (0.25, 0.5, 1.0 mg/day) and drug B which consists of two doses

(1.0, 1.5 mg/day), for a total of six drug combinations d1, ..., d6 (Table 2.1).

For each drug independently we assume they have a monotonic dose-toxicity

curve however, the ordering of toxicity probabilities for some of the treatment

combinations is unknown. Specifically, we can say d1 is less toxic than d2 as

the dose of drug A increased whilst the dose of drug B stayed the same. This

is also the case for d2 and d3. So, d1 can always be considered less toxic than d2

which is always less toxic than d3. The same can be said for doses d4, d5 and d6,

these three doses are can also all be considered more toxic than d1 as well.The

order between d4 and d5 in comparison to d3 is not known because the dose

of drug A decreases whilst the dose of drug B increases. Similarly the order

between d2 and d4 is unknown. Also, we can say that d6 is the always the most

toxic dose. Assessing all these potential order toxicity relationships leaves five

possible orderings.

1. d1 → d2 → d3 → d4 → d5 → d6

2. d1 → d2 → d4 → d3 → d5 → d6

3. d1 → d2 → d4 → d5 → d3 → d6

4. d1 → d4 → d2 → d3 → d5 → d6

5. d1 → d4 → d2 → d5 → d3 → d6

Using the notation of Wages et al. [29], [45], let M denote the number of

possible orders and Y be an indicator of a toxicity event. Then for a trial inves-

tigating k combinations, d1,...,dk, the dose for the jth patient, Xj, j = 1,...,n can

be thought of as random xj ∈ (d1, ..., dk). For a specific ordering m, m = 1, ..., M
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the toxicity probability R(di) is modelled by

R(di) = ϕm(di, w, β) = wψm(di, β) i = 1, ..., k; m = 1, ..., M (2.1)

for a weighted dose-toxicity model ϕm(di, w, β) where β ∈ (−∞, ∞). The

weight, w as defined by Cheung and Chappel [42], is a function of the time-to-

event of each patient and is incorporated linearly with the dose-toxicity model

ψ so that 0 ≤ w ≤ 1. Each patient is followed for a fixed amount of time T. Let

Uj represent the time-to-toxicity of patient j. Then for u ≤ T,

P(Uj ≤ u) = P(Uj ≤ u|Uj ≤ T)P(Uj ≤ T) ≡ w(u; T)ψm(di, β). (2.2)

For simplicity we will refer to the weight function w(u; T) as w. The weight

function will have to be decided upon by the trials team. Dependent on the

scenario, a simple linear function or a more complex adaptive weights function

could be utilised. There are also several working dose models which could be

used for ψ. Wages et al. [29] present their design with the power parameter

model given by

ψm(di, β) = α
exp(β)
mi i = 1, ..., k; m = 1, ..., M. (2.3)

Here 0 < αm1 < ... < αmk < 1 are the prior estimates of toxicity probabilities,

or skeleton, for each potential ordering. Furthermore, prior probabilities are

assigned to each order M to account for any prior information regarding the

plausibility of each model such that, p(m) = {p(1), ..., p(M)}, where p(m) ≥

0 and ∑m p(m) = 1. When all orders are equally likely or there is no prior

information available on possible orderings the prior is discretely uniform and

would be p(m) = 1/M.

A Bayesian framework is used and a prior probability distribution g(β) is
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assigned to the parameter β. The ordering with the largest prior probability

is selected as the starting ordering. In the scenario where all priors are equal

an ordering is selected at random, subsequently a starting dose is also chosen.

After j patients have been entered into the trial data is collected in the form of

Ωj = {x1, y1, ..., xj, yj}. A weighted likelihood for the parameter β is used to

establish running probabilities of toxicity for each treatment combination. The

weighted likelihood under ordering m, is given by

L̃m(β|Ωj) =
j

∏
l=1

ϕ
yl
m(xl, wl, β){1 − ϕm(xl, wl, β)}(1−yl) (2.4)

which can be used to generate a summary value β̂mj for each ordering. With

the likelihood and the data Ωj, the posterior density for β can be calculated

using

f̃m(β|Ωj) =
L̃m(β|Ωj)g(β)∫

β L̃m(β|Ωj)g(β)dβ
(2.5)

This can then be used to establish posterior probabilities of the orderings given

the data as

π̃(m|Ωj) =
p(m)

∫
β L̃m(β|Ωj)g(β)dβ

∑M
m=1 p(m)

∫
β L̃m(β|Ωj)g(β)dβ

. (2.6)

We select the single ordering, h, with the largest posterior probability along

with its associated working model ψh(di, β) and generate toxicity probabili-

ties for each dose level. Once the jth patient has been included the posterior

probability of DLT can be calculated for di so that

R̂(di) = ψh(di, β̂hj); β̂h =
∫

β
β f̃h(β|Ωj)dβ. (2.7)
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In turn, the dose level xj ∈ {d1, ..., dk} assigned to the (j+1)th patient is the

dose, di, which minimises

△(R̂(di), θ) = |R̂(di)− θ|, i = 1, ..., k (2.8)

where θ is the target toxicity rate. Similarly, once all patients have been re-

cruited and observed and the trial ends, the target dose (TDθ) is the dose, di,

which minimises (2.8).

2.3 PO-TITE-CRM in ADePT-DDR

The decision to implement PO-TITE-CRM into ADePT-DDR was made by Piers

Gaunt (PG) after discussions with other statisticians Kristian Brock (KB) and

Daniel Slade (DS), as well as the chief investigator and other co-investigators.

The design was chosen as the toxicity probabilities of the dose levels were not

monotonically increasing which restricts the use of most early phase designs

such as the CRM. Additionally, the design also handles late-onset toxicities

which would be an issue in ADePT-DDR due to the treatment involving ra-

diotherapy. The availability of software to conduct the trial was also a factor

that was considered. The R package ’pocrm’ [49] only provides a means for im-

plementing the PO-CRM design but the easy accessibility to this code meant

that it could be extended to include the TITE component.

The intended use of this design is for dose-finding in combinations of ther-

apies, as this is the source of the partial ordering issue. ADePT-DDR however,

is a unique implementation of the design as even though it involves a com-

bination of therapies (radiotherapy and AZD6738) the dose of radiotherapy is

fixed and dose-finding is only planned for AZD6738. PO-TITE-CRM is still ap-

plicable in this case as the design includes combinations of dose and duration



2.3. PO-TITE-CRM in ADePT-DDR 23

for AZD6738 which are partially ordered.

We detailed the design as presented by the authors. However, for our im-

plementation we opted to utilise a two-stage likelihood based approach. In-

vestigators wanted to start at a lower dose for safety reasons but still wanted

to be able to escalate quickly in the scenario where no DLTs were observed.

Implementing an initial design would allow us to do that. The ’pocrm’ pack-

age also allowed for this option which helped when we developed our own

code to implement this approach.

A two-stage PO-TITE-CRM will be used to find the TD25 of AZD6738.

This will be determined by dose-limiting toxicities evaluated by Common Ter-

minology Criteria for Adverse Events (CTCAE) v5.0 and Radiation Therapy

Oncology Group (RTOG) late toxicity score. The binary DLT events are pre-

defined by a variety of grade 3-4 adverse events notably, haematological, car-

diovascular and gastrointestinal/hepatic toxicities as well as significant non-

haematological events and specific treatment-related toxicities. DLTs will be

monitored for the duration of treatment (seven weeks) and throughout the

follow-up period. The total follow-up period post treatment is 52 weeks, so

patients will spend a total of 59 weeks in the trial.

A maximum of 60 patients will be recruited for the dose-finding aspect

of this trial and up to 20 patients as controls. Controls will be utilised to

make comparisons for secondary outcomes such as survival and efficacy. Con-

trol patients will only be receiving radiotherapy, the dose of which is fixed

at 70Gy/35F. Cohorts of three patients will be recruited and assigned to dose

levels chosen by the PO-TITE-CRM. Controls will be recruited in the interim

period between the recruitment of the third patient in a cohort and the com-

pletion of the minimum follow-up period.



24 Chapter 2. Implementing the PO-TITE-CRM trial design into ADePT-DDR

2.3.1 Partial ordering in practice

Each patient entered into ADePT-DDR will receive fixed dose radiation, to-

talling 70 Gy in 35 fractions over seven weeks. For the dose-finding aspect we

investigate six doses of AZD6738 detailed in Table 2.2. Treatment dose and du-

ration to be selected for dose level 3 will be determined based on a combination

of data observed, adverse events and compliance. The issue of partial ordering

is illustrated in Figure 2.2 inspired from plots by Wages et al. [29]. The doses

to be used in this trial are detailed in their appropriate box. It is clear that dose

levels 2a and 2b would be considered more toxic than dose level 1 due to the

increase in treatment duration and treatment dose respectively. When compar-

ing 2a and 2b it is unknown whether the increase in dose or duration will be

more toxic. Hence there are two possible orderings for ADePT-DDR.

1. d−1 → d0 → d1 → d2a → d2b → d3

2. d−1 → d0 → d1 → d2b → d2a → d3

TABLE 2.2: ADePT-DDR dose-levels and duration of treatment
for AZD6738.

Dose
Level

AZD6738 Daily
dose (mg BD)

Weeks Duration
(days)

Radiotherapy

-1 20 1 5 70 Gy/ 35 F
0 20 1&4 10 70 Gy/ 35 F
1 40 1&4 10 70 Gy/ 35 F
2a 40 1,2,4&5 20 70 Gy/ 35 F
2b 80 1&4 10 70 Gy/ 35 F

3 120 1&4 10 70 Gy/ 35 F
80 1,2,4&5 20 70 Gy/ 35 F

It should be noted that our definition of orderings is assuming that total

dose is the key driver in terms of probability of toxicity. If we were to relax this

assumption it could be possible that dose-level 3 at 120 mg for 10 days (1200

mg total) could be considered less toxic than 2a 40 mg for 20 days (800 mg
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FIGURE 2.2: ADePT-DDR dose levels across dose and duration.
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total). In this instance prolonged exposure to the treatment may be more toxic

even though the total overall dose is lower. This would introduce a third or-

dering (d−1 → d0 → d1 → d2b → d3 → d2a). However, since we are operating

under the assumption that more overall dose increases probability of toxicity

we will only consider the two orderings listed above.

Traditionally, dose-finding trials for combinations would select dose levels
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to form a ’path’ through the dose combination space such that each subsequent

dose level was logically more toxic. This avoids the issue of partial ordering

but means doses of interest or effective dose combinations may be missed or

not investigated. Specifically, for ADePT-DDR this allows two ’paths’ from

dose level 1 extending to 2a and 2b. In terms of dose level 3 only one of the

doses in that tier will be investigated, it was unclear as to which dose level

would be best due to a lack of historical data. Even though dose level 3 is not

yet specified in terms of modelling and simulations it was treated as singu-

lar dose. This was done as clinicians thought that it would be unlikely that

we would reach these doses and that the probability of toxicity between them

would be similar.

Preliminary designs of the trial included only five dose levels and planned

to use dose level 0 as the starting dose. During the trial design phase it was

decided a new lower dose (dose level -1) would be introduced to allow for

de-escalation if the initial dose was found to be too toxic. Dose escalation/de-

escalation for subsequent cohorts would be determined from the two-stage

PO-TITE-CRM. A two-stage design allows for escalation according to a pre-

defined escalation scheme. The first stage dictates that if no DLT’s are observed

in the current cohort the dose allocated to the next cohort is the following dose

in the escalation scheme. Dose levels continue to be incremented in this fashion

until the first DLT is observed. In stage two, dose levels are determined by the

PO-TITE-CRM.

Typically CRM designs begin by testing the first patient, or cohort, at the

prior guess of TD or at a lower dose to be safe. However, clinicians may have

safety concerns beginning the trial at higher dose levels as well as escalating

to higher dose levels without testing lower ones. Investigators in ADePT-DDR

expressed similar concerns as such a two-stage design was adopted. The es-

calation scheme used in stage one of ADePT-DDR will follow that of the first
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ordering (d−1 → d0 → d1 → d2a → d2b → d3). If patients in the first cohort

(assigned to dose level 0) do not experience a DLT the next cohort will be al-

located to dose level 1 and then if no DLTs are observed again the third cohort

will be allocated to dose level 2a and so on and so forth. The dose escalation

scheme was determined based on the prior probabilities of toxicity generated

for each dose level.

Information elicited from the investigators helped generate prior probabil-

ities of toxicity for each dose level. They believed that dose level 2b would

be the TD25 with 2a being less toxic. This was used in conjunction with the

getprior function from the dfcrm R package [20] which yielded priors of 0.012,

0.036, 0.084, 0.157, 0.25 and 0.355 for dose levels -1, 0, 1, 2a, 2b and 3 respec-

tively. The half-width of the indifference interval was set at 0.05. The indiffer-

ence interval is an interval in which the toxicity probability of the selected dose

will eventually fall. Prior probabilities are also required for the plausibility of

each model and even though the clinicians think that 2b will be more toxic

than 2a there is no clear evidence and still a lot of uncertainty. As such it is

sensible to assume a plausibility probability of 0.5 for each ordering, implying

both orders are equally likely to be the true ordering of these dose levels.

2.3.2 The TITE component

The observation window for this trial will be up to a year post-treatment as

the combination of radiotherapy with AZD6738 is anticipated to cause late-

onset toxicity. The Acute DLT observation period is 12 weeks (84 days) post

radiotherapy end with a minimum of 8 weeks (56 days) for the last patient of

each cohort. However, patients will continuously be monitored for occurrence

of DLT for at least 12 weeks (84 days), i.e. at least 12 weeks (84 days) from
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the end of radiotherapy. The full window will last for 52 weeks (365 days)

post-treatment.

The TITE component incorporates a weighting contribution for each pa-

tient dependent on how long that patient has been evaluable in the study. This

allows a patient to be evaluated once they have been observed for the min-

imum DLT period of 8 weeks (56 days). The weighting at this point is 60%

rising to 80% at 12 weeks (84 days). A patient will not contribute fully to the

model until they have completed 52 weeks (365 days) follow up (or have ex-

perienced a DLT at any stage in which case they will be weighted as a whole

contribution). Linear weighting functions will be employed for any patient

with a length of follow up between these three time points. One weight func-

tion to calculate weights between 8-12 weeks and another for weights between

12-52 weeks. For the weighting function w(u; t1, t2, t3) where u is the time-to-

toxicity of patient j and t1, t2, t3 is the time period with values 8, 12 and 52

respectively. Then for t1 ≤ u ≤ t3

w(u; t1, t2, t3) = 0.6 + 0.2
max(0, min(u, t2)− t1)

t2 − t1
+ 0.2

max(0, u − t2)

t3 − t2
. (2.9)

All patients will have a minimum weight of 60% as that is the prescribed

weighting to the minimum follow up period before dose escalation/de-escalation

decisions can be made. For each additional week the patient is observed, with-

out a DLT occurring, between weeks 8 and 12 their weighting increases by

5%. Similarly for each week between 12 and 52 weeks, without a DLT, weight-

ing increases by 0.5%. Figure 2.3 illustrates the weight function and how the

weight changes for patients dependent on how long they have been followed-

up.

The TITE-CRM originally presented by Cheung and Chappel [42] did not
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FIGURE 2.3: Weights of patients who have not experienced a DLT
across the observation window.

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Weeks

W
ei

gh
t  

Long−term Follow−up (44 weeks)
Minimum Follow−up (8 Weeks)
Treatment Period (7 Weeks)

incorporate a minimum follow-up period and their design allowed for the con-

tinual recruitment of patients whenever they became available. There are some

practical considerations which make this infeasible in ADePT-DDR. The model

would need to be run each time a new patient entered the study which re-

quires statistical input hence the introduction of cohorts. Clinicians may also

have safety concerns if we see rapid recruitment at the start of the trial and the

model keeps escalating so we impose a minimum follow-up period. Initially

this was set at 12 weeks (at 80% weighting) however, statisticians AP and PG

pointed out that dose escalation/de-escalation decisions would have to take

place 19 weeks (7 weeks treatment and 12 weeks follow-up) after recruitment

of the third patient in the cohort. Dependent on the recruitment rates this could

extend the duration of the trial and negates the benefits of using a TITE design.

The investigators also agreed this was too long and settled on lowering this pe-

riod to 8 weeks (at 60% weighting) whilst also including the original 12 week

weighting of 80%.
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2.3.3 Stopping rules

A practical modification was included to allow for early stopping of the trial if

there is sufficient evidence that the TD has been reached. Sufficient evidence

is achieved once 15 patients (five cohorts) have been treated at the same dose

level and the model allocates that dose level again to a sixth cohort. This rule

evolved from the original designs of the trial which involved 30 patients with

a dose expansion cohort to ensure at least 15 patients were treated at the TD.

Initial simulations highlighted the inadequacy of these design parameters

as operating characteristics for various scenarios were poor, specifically in

terms of correct TD selection. Clinicians explained the inclusion of the dose

expansion cohort was to ensure the dose-finding aspect of the trial did not

take a large amount of time whilst also allowing safety to be assessed at the

TD. In order to ensure that a reasonable amount of patients would be treated

at the TD, the trial would not take longer than necessary and operating charac-

teristics improved, the sample size was increase and this rule was introduced.

A rule was also implemented to allow for early termination of the trial

in the case of excess toxicity at the lowest dose. If the probability of DLT at

the lowest dose is higher than 0.35 with a probability of 80% and has been

tested, the trials safety committee will be alerted and will recommend if the

trial should be stopped. As the trial starts at dose level 0, which is not the

lowest dose, it is possible for the trial to recommend terminating without ever

allocating patients to the lowest dose level. As such it was decided early termi-

nation would only occur once at least 3 patients (1 cohort) have been allocated

dose level -1.

An approximate estimate of the variance was calculated using methodol-

ogy presented by O’Quigley and Shen [58]. The observed information matrix

is obtained by taking the second derivative of the likelihood (eq. 2.4) which is
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then used to calculate the variance v(β̂ j), for estimate β j which becomes more

accurate with larger sample sizes. After each cohort, we sample from a nor-

mal distribution with parameters based on the estimate of β j and its variance.

These samples are then plugged into our dose-toxicity model to ascertain the

probability of toxicity at the lowest dose. The trial will be recommended to

stop if it breaks the rule based on the criteria above.

2.3.4 Example trial run

To demonstrate how the trial will work in practice we present an example trial

run. Patients will be recruited in cohorts of three. After each cohort a dose will

be recommended based on our design and the subsequent cohort of patients

will be given that dose. This process is then repeated until the stopping rules

are triggered. In our example here we observe no DLTs to begin with allowing

us to follow the initial escalation scheme up to dose-level 3. At this point we

begin to observe DLTs and thus begin to use the model to recommend dose-

levels unti we stop for consensus.

Table 2.3 shows model outputs after each cohorts specifically, the estimated

probability of toxicity or DLT rate at each dose and the estimated posterior

probability of each ordering. Order 1 refers to the order assuming 2b is more

toxic than 2a and order 2 assumes 2a is more toxic than 2b. For the first initial

four cohorts we see that there are no model outputs. This is because the model

was not fit in these instances as no DLTs were observed. You can see the initial

escalation scheme was followed. Meaning after cohort 1 received dose-level

0 cohort 2 received dose-level 1, cohort 3 received dose-level 2a and cohort 4

received dose-level 2b.

For cohort 5 we see that one patient in this cohort observed a DLT. Based

on the model outputs in this scenario the estimated probability of toxicity at
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TABLE 2.3: Summary of model outputs for our example trial run.

Estimated DLT rate Order prob

Cohort Dose DLT -1 0 1 2a 2b 3 1 2 Recommended Dose

1 0 0 1
2 1 0 2a
3 2a 0 2b
4 2b 0 3
5 3 1 0 0 0.01 0.04 0.09 0.17 0.50 0.50 3
6 3 3 0.01 0.03 0.08 0.15 0.24 0.35 0.50 0.50 2b
7 2b 2 0.02 0.06 0.12 0.21 0.31 0.42 0.66 0.34 2a
8 2a 0 0.02 0.05 0.10 0.18 0.28 0.39 0.73 0.27 2b
9 2b 0* 0.02 0.06 0.12 0.20 0.30 0.41 0.55 0.45 2a

10 2a 0 0.02 0.04 0.10 0.18 0.27 0.38 0.62 0.38 2b
11 2b 0 0.01 0.03 0.08 0.15 0.24 0.34 0.57 0.43 2b
12 2b 0 0.01 0.03 0.07 0.13 0.22 0.32 0.51 0.49 2b

* No DLTs in this cohort, but the previous cohort had a late onset DLT.

dose-level 3 is 0.17. As this is closes to our TD25 this becomes the dose that is

recommended for cohort 6. We can also look at the estimates of probability for

the orders, here both are at 0.5 indicating both orders are still equally likely. In

cohort 6 a further three patients are recruited to dose-level 3 and we observe

DLTs in all three patients. Overall, now there have been 4/6 DLTs at dose-level

3. Based on the model output here dose-level 2b with an estimated DLT rate

of 0.24 is closest to the TD25 and is recommended for the next cohort. The

posterior probability for the orders still indicate each order is equally likely.

Now at cohort 7, patients are allocated to dose-level 2b. Here two DLTs are

observed. The model recommends dose-level 2a. We can see the estimated

probability of the orders suggests order 1 is more likely, which is indicative

after having observed multiple toxicities at higher doses. Cohort 8 at dose-

level 2a observes no toxicities which leads to the recommendation of going

back to dose-level 2b. Here the estimated DLT rate here is 0.28 which is closer

to the TD25 compared to any of the other doses. For the order probabilities we

see again order 1 is still more likely.

Cohort 9 recruits patients to dose-level 2b and observes no DLTs however,
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one patient from the previous cohort (cohort 8 dose-level 2a) has now expe-

rienced a late-onset DLT after the minimum follow-up period. Incorporating

this new cohort data as well as the new DLT data for the previous cohort gives

a model recommendation of going back to dose-level 2a. The exact estimated

DLT rates for 2a and 2b were 0.2036 and 0.3037 respectively, 2a was narrowly

the closest to dose-level 2b hence why it was recommended. The DLT at 2a

also impacted the probabilities for each ordering. These still indicated 1 was

more likely but they are much closer now.

Going forward no more DLTs were observed and we can see the model

keeps recommending dose-level 2b. Cohort 12 is the fifth cohort to treat pa-

tients at dose-level 2b, after observing no DLTs the model once again recom-

mends dose-level 2b. This then triggers our consensus stopping rule as 15

patients have been treated a the same dose which is then recommended again.

In this example dose-level 2b, with an estimated DLT rate of 0.22, is our TD25.

Probabilities for the orders are now 0.51 and 0.49 for 1 and 2 respectively,

meaning order 1 is slightly more likely. Overall dose-level 2a observed DLTs in

1/9 patients and dose-level 2b observed DLTs in 2/15 patients. In the data we

observed there was no observable difference overall between the two doses.

Earlier on in the trial the probabilities of the order fluctuated as more DLTs

were observed. With potentially more data again this would change and keep

updating.

An additional point to consider is that at each dose decision or when the

model is fit patients will have different weights based on the time spent in the

trial without a DLT. For this example we assigned patients weights based on

the weight function and the minimum follow-up period required. Figure 2.4

visualises the data that was used for the model output after each cohort. The

shape of the points represent whether or not a patient had a DLT, the dose is

represented by colour and the weight each patient had is represented by the
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transparency of the point. Later patients in a cohort tend to have less weight as

they would have been recruited later, this is represented by the fainter points

on the plot. For each subsequent cohort these points then become darker as

patients gain more weight in the model after having been observed for a longer

period of time. Patients with DLTs are always at full weight.

Figure 2.5 shows an overall summary of the DLTs in each patient at each

dose-level and shows how the doses change over time. One patient at dose-

level 2a who had their DLT after the initial monitoring period which did not

affect the recommendation for the next dose-level but for the cohorts thereafter.

FIGURE 2.4: Plot of data included for each dose decision at each
cohort.
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FIGURE 2.5: Plot of dose decisions throughout the example trial.
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2.3.5 Operating characteristics

Simulations were continually utilised during the design process of the trial to

assess how various changes impact the overall performance. These changes

to design features such as the sample size, weight function and stopping rules

helped inform decisions which led to the design specified in the previous sec-

tion.

Functions from pocrm package in R [49], [50] were modified in order to

perform simulations and conduct the trial. The majority of work involved

integrating the TITE component and the stopping rules into the code. In stan-

dard CRM designs a binary outcome for toxicity is generated for each patient

based on a pre-specified true DLT rates for the dose they are assigned. Adding

the TITE component means the time the toxicity occurs also has to be gener-

ated, the simulation must also track this time and incorporate this information

into the PO-TITE-CRM model when it needs to make dose allocation decisions

for the next cohort. We defined multiple scenarios to reflect various real life



36 Chapter 2. Implementing the PO-TITE-CRM trial design into ADePT-DDR

possibilities in order to assess the design’s performance.

Standard scenarios to run involve adjusting the true DLT rates to reflect

each dose being the TD25. For each of these we calculate the probability of

selecting each dose as the TD25. It would be expected the dose with the highest

probability of being selected has its true DLT rate set at 25% to match the target

rate. A high probability of selection for the correct dose implies the design

works well in the specified scenario. Additional characteristics such as the

average number of patients at each dose level are also investigated. This can be

used to look at how many patients may potentially be allocated to a toxic dose.

It is also necessary to consider performance when all doses are too toxic, here

we would want the design to recommend stopping early. Usually the true DLT

rates used to define these scenarios abide by the monotonicity assumption.

Due to the partial ordering we consider scenarios in which the true DLT rates

follow both orders. However, as ADePT-DDR only has two orders we explored

all scenarios for each ordering.

We simulated 10000 trials for each scenario using the finalised design de-

tailed in section 2.3. Simulations were based on the assumption that the trial

would recruit one patient per month. The occurrence of DLT’s were randomly

generated for patients in each cohort using a Bernoulli distribution with the

probability set at the true DLT rate for the cohorts assigned dose level in the

specific scenario. For patients who had a DLT occur, the time at which the

DLT occurred was randomly generated using a uniform distribution which

spanned the start of treatment to the end of follow-up. The simulations pre-

sented in Tables 2.4 and 2.5 took approximately 5 hours and 53 minutes to run.

It is recommended by Morris et al. [59] to detail the Monte Carlo standard error

in order to quantify the simulations uncertainty. In the case of a 50% selection

probability the Monte Carlo standard error estimated by 10000 simulations is
√

0.5 × 0.5/10000 = 0.5%. This implies that differences of 1% can be deemed
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as significant.

Table 2.4 details simulations for eight scenarios to test the performance of

the PO-TITE-CRM design using true DLT rates which reflect the first ordering.

We analyse scenarios where each dose is the TD25 (scenarios 1-6) and when all

doses are too toxic (scenario 8). Additionally, we also investigate performance

under conditions where the probability of DLT is fairly similar between doses

(scenario 7). This is a notoriously difficult circumstance for CRM designs to

deal with as the limited number of patients and events at each dose make it

hard to accurately estimate toxicity probabilities if they are similar. Simulation

results for ordering 2 are shown in Table 2.5 where dose level 2a is considered

more toxic than 2b. This is achieved by altering the true DLT rates so 2b has a

lower probability of DLT compared to 2a.

Ideally we want the probability of selection for the dose allocated at TD25

to be as high as possible and greater than other dose levels. For scenarios

1-7 the TD25 is highlighted in bold along with results from the simulations.

However, for scenario 8 where all doses are too toxic we expect the trial to

terminate early, here ’stop’ should be selected and its associated probability of

stopping is shown in bold.

In scenarios 1 - 6 (Table 2.4), this design correctly selects the TD25 with

probabilities between 43% and 78%, under the assumption 2b is more toxic

than 2a. Likewise, for the ordering where 2a is more toxic than 2b, scenarios

9-14 (Table 2.5) have probabilities between 43% and 78% of correctly selecting

the TD25. Correct selection probabilities are generally higher when the TD25

is at the first and last dose levels compared to dose levels 2a and 2b. However,

these dose levels are still chosen with the highest probability as the TD25 in

their given scenarios. For scenarios 7 and 15, the probabilities of toxicity are

equally spaced, approximately 5% apart. This is a relatively difficult scenario

for dose-finding studies to handle. The probability of selecting the TD25 is 28%
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TABLE 2.4: Operating Characteristics of the two-stage PO-TITE-
CRM (with true DLT rates that imply 2b is more toxic than 2a)
based on 10000 simulated trials. Definitions: DLT: Dose-limiting

toxicity. P(select): Probability of selecting a dose as the TD25.

Dose Levels

-1 0 1 2a 2b 3 Stop

Scenario Prior DLT 0.01 0.04 0.08 0.16 0.25 0.35

True DLT rate 0.25 0.4 0.45 0.5 0.55 0.6
P(select) 0.68 0.18 0.05 0.01 0 0 0.08

% of patients 39 32 20 6 3 01: TD25 @-1

Mean number of patients 10.17 8.46 5.33 1.67 0.69 0.07

True DLT rate 0.12 0.25 0.4 0.45 0.5 0.55
P(select) 0.23 0.51 0.2 0.03 0.02 0 0.01

% of patients 17 35 29 11 6 12: TD25 @0

Mean number of patients 5.24 10.48 8.75 3.4 1.83 0.26

True DLT rate 0.09 0.12 0.25 0.4 0.45 0.5
P(select) 0.02 0.2 0.55 0.14 0.09 0.01 <0.01

% of patients 4 20 34 23 16 33: TD25 @1

Mean number of patients 1.22 6.41 10.97 7.23 5.14 1.02

True DLT rate 0.06 0.09 0.12 0.25 0.4 0.45
P(select) 0 0.02 0.22 0.48 0.23 0.05 <0.01

% of patients 1 12 20 31 25 114: TD25 @2a

Mean number of patients 0.47 3.88 6.74 10.43 8.2 3.5

True DLT rate 0.03 0.06 0.09 0.12 0.25 0.4
P(select) 0 0 0.02 0.3 0.43 0.25 0

% of patients 1 10 12 24 28 255: TD25 @2b

Mean number of patients 0.25 3.36 4.15 8.17 9.33 8.33

True DLT rate 0.01 0.03 0.06 0.09 0.12 0.25
P(select) 0 0 0 0.09 0.13 0.78 0

% of patients 0 10 11 18 18 426: TD25 @3

Mean number of patients 0.1 3.13 3.49 5.46 5.6 13.14

True DLT rate 0.05 0.1 0.15 0.2 0.25 0.3
P(select) 0 0.03 0.12 0.31 0.28 0.26 <0.01

% of patients 2 13 18 26 23 197: Equal steps in DLT rate

Mean number of patients 0.55 4.03 5.72 8.32 7.15 5.96

True DLT rate 0.5 0.6 0.65 0.7 0.75 0.8
P(select) 0.26 0 0 0 0 0 0.74

% of patients 56 26 15 2 0 08: All toxic

Mean number of patients 9.05 4.27 2.4 0.37 0.04 0

and 32% for orderings 1 and 2 respectively and even if the performance is poor

the correct dose is still likely to be selected. In scenarios 8 and 16, where all the

doses are too toxic, the design very seldom allocates patients higher than the

first three doses and there is a high chance (74% and 73% respectively) that the

trial will recommend early stopping.

Additionally, we assess designs based on how doses are allocated to pa-

tients. Designs may correctly select the TD however, this could be undesirable
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TABLE 2.5: Operating Characteristics of the two-stage PO-TITE-
CRM (with true DLT rates that imply 2a is more toxic than 2b)
based on 10000 simulated trials. Definitions: DLT: Dose-limiting

toxicity. P(select): Probability of selecting a dose as the TD25.

Dose Levels

-1 0 1 2a 2b 3 Stop

Scenario Prior DLT 0.01 0.04 0.08 0.16 0.25 0.35

True DLT rate 0.25 0.4 0.45 0.55 0.5 0.6
P(select) 0.67 0.19 0.05 0 0.01 0 0.08

% of patients 39 32 20 6 3 09: TD25 @-1

Mean number of patients 10.19 8.43 5.27 1.6 0.68 0.07

True DLT rate 0.12 0.25 0.4 0.5 0.45 0.55
P(select) 0.23 0.52 0.2 0.02 0.02 0 0.01

% of patients 18 36 29 11 6 110: TD25 @0

Mean number of patients 5.24 10.64 8.82 3.16 1.85 0.24

True DLT rate 0.09 0.12 0.25 0.45 0.4 0.5
P(select) 0.02 0.2 0.55 0.09 0.14 0.01 <0.01

% of patients 4 20 34 21 17 311: TD25 @1

Mean number of patients 1.16 6.43 11.07 6.83 5.6 1.07

True DLT rate 0.06 0.09 0.12 0.25 0.15 0.45
P(select) 0 0.01 0.08 0.44 0.33 0.14 <0.01

% of patients 1 11 16 30 24 1812: TD25 @2a

Mean number of patients 0.48 3.78 5.24 10.1 7.9 6.07

True DLT rate 0.03 0.06 0.09 0.35 0.25 0.4
P(select) 0 0 0.15 0.31 0.43 0.11 0

% of patients 1 11 18 30 28 1413: TD25 @2b

Mean number of patients 0.25 3.5 5.9 9.82 9.14 4.54

True DLT rate 0.01 0.03 0.06 0.12 0.09 0.25
P(select) 0 0 0 0.13 0.09 0.78 0

% of patients 0 10 11 19 16 4314: TD25 @3

Mean number of patients 0.1 3.13 3.51 5.88 5.06 13.13

True DLT rate 0.05 0.1 0.15 0.25 0.2 0.3
P(select) 0 0.02 0.12 0.32 0.27 0.26 <0.01

% of patients 2 13 19 27 22 1815: Equal steps in DLT rate

Mean number of patients 0.54 4.02 5.93 8.56 6.89 5.75

True DLT rate 0.5 0.6 0.65 0.75 0.7 0.8
P(select) 0.27 0 0 0 0 0 0.73

% of patients 56 27 15 2 0 016: All toxic

Mean number of patients 9.01 4.28 2.39 0.38 0.05 0

and unethical if the majority of patients are over-dosed at the more toxic dose

levels. The average number and the percentage of patients at each dose level,

for each scenario, is recorded in Tables 2.4 and 2.5.

The percentage of patients treated at the TD25 ranges between 23% and

43% for each scenario under both orderings. The design also allocates the most

patients on average to the TD25 apart from in scenario 7. In this case more pa-

tients were allocated to the next lowest dose, we have already discussed the



40 Chapter 2. Implementing the PO-TITE-CRM trial design into ADePT-DDR

difficulties of this scenario so this characteristic is not too concerning. The

mean number of patients recruited for scenarios 1-6 is 26, 30, 32, 33, 34 and

31 respectively. Similarly for scenarios 9-14 its 26, 30, 32, 34, 33 and 31. Even

though we allow for up to 60 patients the majority of trials terminate early

based on the pre-defined rules for selecting the TD25. This information is pre-

sented in Table 2.6 which also shows how often the max sample size is reached

from the 10000 trials for each scenario.

TABLE 2.6: Summary of simulated patient numbers for each sce-
nario.

Scenario Max no. of patients % max reached Mean no. of patients

1: TD25 @-1 60 0.21 26.38
2: TD25 @0 60 0.08 29.97
3: TD25 @1 60 0.05 32.01

4: TD25 @2a 60 0.12 33.22
5: TD25 @2b 60 0.06 33.60
6: TD25 @3 60 0.02 30.92

7: Equal steps 60 0.01 31.74
8: All toxic 54 0.01 16.14
9: TD25 @-1 60 0.17 26.24
10: TD25 @0 60 0.11 29.95
11: TD25 @1 60 0.06 32.15

12: TD25 @2a 60 0.07 33.56
13: TD25 @2b 60 0.03 33.16
14: TD25 @3 60 0.08 30.81

15: Equal steps 60 0.02 31.69
16: All toxic 51 0.01 16.11

Overall, the simulation results show the specification of this design per-

forms relatively well in a number of scenarios. We have shown there is a high

probability of the trial stopping early if all dose-levels are too toxic. We have

also shown the design behaves in an appropriate manner when there is a lack

of disparity between dose-levels in terms of toxicity. Finally, we have demon-

strated that regardless of the ordering we observe the PO-TITE-CRM has a



2.4. Exploring other designs 41

high probability of selecting the correct dose. There are a number of limita-

tions to the operating characteristics presented here which are due to the spec-

ification of the simulations and trial design. Section 2.4 explores and discusses

these limitations in more detail.

2.4 Exploring other designs

The operating characteristics presented in section 2.3.5 provide an insight into

how the trial design operates and its effectiveness at selecting the TD25. How-

ever, several factors impact the results seen here. These factors can be grouped

into two main categories, limitations with the simulations performed or the

trial design.

To simulate various scenarios the true DLT rates are adjusted to reflect the

TD25 being at different dose levels. There is no formal process to select these

values as such their selection is fairly arbitrary. We set one dose level as the

TD25 with lower and higher dose levels set at lower and higher DLT rates

respectively. Figure 2.6 illustrates the dose levels for scenarios in Table 2.4

where dose level 2b is more toxic than 2a. The DLT rates cover some possible

scenarios and account for a range of plausible values. However, these true DLT

rates may not accurately reflect what we observe once the trial begins. Also,

the relationship between the rates and the dose levels may not be similar to

what we use in the simulations. Multiple other scenarios could be investigated

but it would still be impossible to account for all possible variations which may

occur. Hence when evaluating the performance of a design it is important to

note the scenario in which it is being evaluated and whether or not the design

performs as expected and to an adequate level. For ADePT-DDR, the design

produces reasonable operating characteristics under each scenario.
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FIGURE 2.6: True DLT rates used for each of the scenarios where
dose level 2b is more toxic than 2a. The dotted red line represents

the target dlt rate of 25% (TD25).
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True DLT rates across scenarios used for simulations

The original methodological papers by Wages et al. [29], [45] only provide

simulations for their examples using true DLT rates that are monotonically in-

creasing which represented one of their possible orderings. Initially, in ADePT-

DDR we followed suit and only produced simulations under a monotonically

increasing DLT rate (order where 2b is more toxic than 2a, Table 2.4). How-

ever, as we are unclear on the ordering of 2a and 2b there is a possibility that

2b is less toxic. So those initial simulations would not provide an accurate as-

sessment of the design in that circumstance. This was the main motivation for

running scenarios in Table 2.5, in which we see the design performs at a similar

level regardless of the partial ordering. ADePT-DDR is a simple case of partial

ordering as there are only two possible orderings and six dose-levels. For trials

with higher numbers of orderings or dose-levels the number of scenarios that
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would have to be evaluated would increase which may be infeasible. Here it

may be more beneficial to choose a handful of scenarios from multiple differ-

ent orderings to cover a wider range of possible outcomes for the trial to assess

the design.

There are various features in this trial design that impact how it performs.

The partial ordering caused by dose levels 2a and 2b adds complexity to de-

sign. If one of these dose-levels were to be removed or a normal ordering was

assumed a standard TITE-CRM design could be used instead. However, this

would take away from what the trial is trying to discover. This trial also has

a long follow-up period due to potential late-onset toxicities and in turn, will

have a long duration. The TITE component will allow for the duration to be a

lot shorter than it would be otherwise. TITE-CRM designs allow for patients to

be recruited sequentially and allocated a dose based on available information

from patients already in the trial. The design for ADePT-DDR uses cohorts

of three and a minimum follow-up period. The dose-escalation decisions will

only be made every third patient after a specific amount of time. This is done

for safety and practicality reasons but means that some patients may not be

able to enter the trial and it also loses some of the benefits of the TITE-CRM.

We also have a sample size of 60 patients but include a stopping rule for when

a consensus is reached which means we often do not recruit the maximum

sample size. Further simulations were produced to investigate how these fea-

tures affected the trial. Tables 2.7 and 2.8 compares selection probabilities as

well as duration measured in months from the ADePT-DDR trial design with

five alternative designs based on the two different orderings. Figures 2.7 and

2.8 visualise the result from each of these tables respectively. 10000 trials were

simulated for each scenario which took 62 hours and 22 minutes to complete.

1. TITE-CRM design. This design assumes that partial ordering does not
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exist and that dose-level 2b is more toxic than 2a. A TITE-CRM is used

instead of a PO-TITE-CRM. All other stopping rules and details remain

the same.

2. PO (Partial Ordering design). This design removes the TITE component

and uses a PO-CRM as detailed by [45]. This requires the removal of

the minimum follow-up period so all dose allocation decisions are made

once all 3 patients in a cohort have been observed for the full follow-up

period of one year. All other stopping rules and details remain the same.

3. N = 30. This design uses a fixed sample size of 30 patients and removes

the stopping rule for reaching consensus. The analysis is still conducted

using the PO-TITE-CRM. All other stopping rules and details remain the

same.

4. N = 60. This design uses a fixed sample size of 60 patients and removes

the stopping rule for reaching consensus. The analysis is still conducted

using the PO-TITE-CRM. All other stopping rules and details remain the

same.

5. CS = 1. This design uses a cohort size (CS) of one. All other stopping

rules remain the same.

The TITE-CRM performs comparably to our original design for certain sce-

narios, specifically where 2a is assumed less toxic than 2b (Table 2.4). Com-

pared to the PO-TITE design we see increases in probability selection for sce-

narios 4 and 5 where the target dose is at 2a and 2b respectively. This increase

in performance can be attributed to the fact that the partial ordering no longer

exists as we have assumed an ordering. The lower selection probabilities for

the PO-TITE-CRM can be seen as the price to pay for the uncertainty of not

knowing the order of 2a and 2b. However, the TITE-CRM underperforms in
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TABLE 2.7: Selection probabilities of the TD25 and expected trial
duration (in months) for the PO-TITE, TITE and PO-CRM de-
signs as well as modified PO-TITE-CRM designs for scenarios
1-8 (where 2b is considered more toxic than 2a) based on 10000

simulated trials.

Dose Levels
-1 0 1 2a 2b 3 Stop Duration Mean N

Scenario CRM details Prior DLT 0.01 0.04 0.08 0.16 0.25 0.35
True DLT rate 0.25 0.4 0.45 0.5 0.55 0.6

PO-TITE P(select) 0.68 0.18 0.05 0.01 0 0 0.08 57.61 26.38
TITE P(select) 0.7 0.21 0.05 0.01 0 0 0.03 59.55 27.46
PO P(select) 0.59 0.18 0.04 0.01 0 0 0.19 132.19 22.11

N = 30 P(select) 0.67 0.19 0.05 0.01 0 0 0.08 60.02 27.72
N = 60 P(select) 0.78 0.12 0.01 0 0 0 0.09 106.61 53.62

1: TD25 @-1

CS = 1 P(select) 0.63 0.17 0.04 0.01 0.01 0 0.15 87.62 22.44
True DLT rate 0.12 0.25 0.4 0.45 0.5 0.55

PO-TITE P(select) 0.23 0.51 0.2 0.03 0.02 0 0.01 64.06 29.97
TITE P(select) 0.22 0.54 0.2 0.04 0.01 0 63.5 29.65
PO P(select) 0.2 0.54 0.21 0.02 0.01 0 0.02 163.53 27.79

N = 30 P(select) 0.23 0.5 0.21 0.03 0.02 0 0.01 63.26 29.52
N = 60 P(select) 0.15 0.69 0.14 0.01 0 0 0.01 116.29 59

2: TD25 @0

CS = 1 P(select) 0.25 0.46 0.19 0.03 0.02 0.01 0.04 105.41 27.59
True DLT rate 0.09 0.12 0.25 0.4 0.45 0.5

PO-TITE P(select) 0.02 0.2 0.55 0.14 0.09 0.01 67.74 32.01
TITE P(select) 0.01 0.2 0.54 0.2 0.04 0 64.44 30.18
PO P(select) 0.02 0.16 0.59 0.14 0.07 0.01 178.12 30.43

N = 30 P(select) 0.01 0.19 0.52 0.15 0.12 0.01 64.04 29.96
N = 60 P(select) 0 0.14 0.7 0.1 0.06 0 117.89 59.89

3: TD25 @1

CS = 1 P(select) 0.05 0.18 0.51 0.14 0.09 0.02 0.01 114.18 30.13
True DLT rate 0.06 0.09 0.12 0.25 0.4 0.45

PO-TITE P(select) 0 0.02 0.22 0.48 0.23 0.05 69.91 33.22
TITE P(select) 0 0.02 0.21 0.56 0.18 0.03 66.99 31.59
PO P(select) 0 0.02 0.22 0.49 0.22 0.05 189.69 32.52

N = 30 P(select) 0 0.01 0.22 0.45 0.27 0.05 64.1 29.99
N = 60 P(select) 0 0 0.18 0.64 0.18 0.01 118.01 59.96

4: TD25 @2a

CS = 1 P(select) 0.03 0.02 0.22 0.45 0.2 0.08 113.77 30.01
True DLT rate 0.03 0.06 0.09 0.12 0.25 0.4

PO-TITE P(select) 0 0 0.02 0.3 0.43 0.25 70.6 33.6
TITE P(select) 0 0 0.02 0.22 0.56 0.19 68.34 32.34
PO P(select) 0 0 0.03 0.26 0.44 0.27 194.41 33.38

N = 30 P(select) 0 0 0.03 0.3 0.43 0.24 64.11 29.99
N = 60 P(select) 0 0 0 0.24 0.61 0.14 118.08 59.99

5: TD25 @2b

CS = 1 P(select) 0.01 0 0.02 0.26 0.4 0.3 110.26 29
True DLT rate 0.01 0.03 0.06 0.09 0.12 0.25

PO-TITE P(select) 0 0 0 0.09 0.13 0.78 65.78 30.92
TITE P(select) 0 0 0 0.03 0.23 0.73 65.6 30.82
PO P(select) 0 0 0 0.08 0.12 0.8 183.48 31.4

N = 30 P(select) 0 0 0 0.1 0.14 0.75 64.12 30
N = 60 P(select) 0 0 0 0.06 0.1 0.85 118.09 60

6: TD25 @3

CS = 1 P(select) 0.01 0 0 0.06 0.1 0.83 92.92 23.98
True DLT rate 0.05 0.1 0.15 0.2 0.25 0.3

PO-TITE P(select) 0 0.03 0.12 0.31 0.28 0.26 67.25 31.74
TITE P(select) 0 0.03 0.14 0.3 0.32 0.21 65.22 30.61
PO P(select) 0.01 0.03 0.14 0.3 0.27 0.25 186.6 31.96

N = 30 P(select) 0 0.02 0.12 0.3 0.3 0.25 64.07 29.97
N = 60 P(select) 0 0 0.07 0.33 0.35 0.25 118.04 59.97

7: Equal steps

CS = 1 P(select) 0.03 0.02 0.09 0.24 0.23 0.39 101.81 26.55
True DLT rate 0.5 0.6 0.65 0.7 0.75 0.8

PO-TITE P(select) 0.26 0 0 0 0 0 0.74 39.19 16.14
TITE P(select) 0.37 0 0 0 0 0 0.63 44.65 19.17
PO P(select) 0.13 0 0 0 0 0 0.86 70.38 10.92

N = 30 P(select) 0.23 0 0 0 0 0 0.77 41.35 17.34
N = 60 P(select) 0.13 0 0 0 0 0 0.87 47.35 20.68

8: All toxic

CS = 1 P(select) 0.33 0 0 0 0 0 0.67 46.43 10.51
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TABLE 2.8: Selection probabilities of the TD25 and expected trial
duration (in months) for the PO-TITE, TITE and PO-CRM de-
signs as well as modified PO-TITE-CRM designs for scenarios
9-16 (where 2a is considered more toxic than 2b) based on 10000

simulated trials.

Dose Levels
-1 0 1 2a 2b 3 Stop Duration Mean N

Scenario CRM details Prior DLT 0.01 0.04 0.08 0.16 0.25 0.35
True DLT rate 0.25 0.4 0.45 0.55 0.5 0.6

PO-TITE P(select) 0.67 0.19 0.05 0 0.01 0 0.08 57.35 26.23
TITE P(select) 0.7 0.21 0.05 0 0 0 0.03 59.34 27.34
PO P(select) 0.58 0.17 0.04 0 0 0 0.2 131.46 21.98

N = 30 P(select) 0.68 0.18 0.04 0 0.01 0 0.09 59.85 27.62
N = 60 P(select) 0.78 0.13 0.01 0 0 0 0.09 106.5 53.56

9: TD25 @-1

CS = 1 P(select) 0.62 0.16 0.05 0 0.01 0 0.15 87.6 22.43
True DLT rate 0.12 0.25 0.4 0.5 0.45 0.55

PO-TITE P(select) 0.23 0.52 0.2 0.02 0.02 0 0.01 64.02 29.95
TITE P(select) 0.21 0.56 0.19 0.02 0.01 0 63.57 29.69
PO P(select) 0.2 0.54 0.2 0.01 0.02 0 0.02 163.06 27.7

N = 30 P(select) 0.24 0.51 0.2 0.02 0.03 0 0.01 63.35 29.57
N = 60 P(select) 0.15 0.7 0.13 0 0.01 0 0.01 116.22 58.96

10: TD25 @0

CS = 1 P(select) 0.25 0.47 0.19 0.02 0.03 0.01 0.04 105.04 27.49
True DLT rate 0.09 0.12 0.25 0.45 0.4 0.5

PO-TITE P(select) 0.02 0.2 0.55 0.09 0.14 0.01 68 32.15
TITE P(select) 0.01 0.22 0.58 0.14 0.04 0 64.86 30.41
PO P(select) 0.03 0.17 0.59 0.09 0.12 0.01 177.68 30.35

N = 30 P(select) 0.02 0.2 0.51 0.1 0.16 0.01 64.03 29.95
N = 60 P(select) 0 0.14 0.71 0.05 0.1 0 117.88 59.88

11: TD25 @1

CS = 1 P(select) 0.05 0.17 0.53 0.09 0.13 0.02 0.01 113.98 30.07
True DLT rate 0.06 0.09 0.12 0.25 0.15 0.45

PO-TITE P(select) 0 0.01 0.08 0.44 0.33 0.14 70.52 33.56
TITE P(select) 0 0.02 0.14 0.26 0.45 0.14 67.23 31.73
PO P(select) 0.01 0.02 0.09 0.45 0.28 0.15 194.42 33.38

N = 30 P(select) 0 0.01 0.08 0.42 0.35 0.14 64.09 29.98
N = 60 P(select) 0 0 0.03 0.57 0.33 0.07 117.98 59.94

12: TD25 @2a

CS = 1 P(select) 0.02 0.01 0.07 0.4 0.32 0.18 113.02 29.8
True DLT rate 0.03 0.06 0.09 0.35 0.25 0.4

PO-TITE P(select) 0 0 0.15 0.31 0.43 0.11 69.8 33.16
TITE P(select) 0 0.01 0.26 0.36 0.28 0.1 65.95 31.02
PO P(select) 0 0.01 0.14 0.34 0.43 0.1 190.68 32.7

N = 30 P(select) 0 0 0.15 0.3 0.44 0.11 64.12 30
N = 60 P(select) 0 0 0.1 0.29 0.57 0.04 118.07 59.99

13: TD25 @2b

CS = 1 P(select) 0.02 0 0.14 0.27 0.4 0.17 112.27 29.58
True DLT rate 0.01 0.03 0.06 0.12 0.09 0.25

PO-TITE P(select) 0 0 0 0.13 0.09 0.78 65.58 30.81
TITE P(select) 0 0 0 0.04 0.21 0.74 65.66 30.86
PO P(select) 0 0 0 0.13 0.07 0.8 183.9 31.47

N = 30 P(select) 0 0 0 0.13 0.11 0.75 64.12 30
N = 60 P(select) 0 0 0 0.09 0.06 0.85 118.09 60

14: TD25 @3

CS = 1 P(select) 0.01 0 0 0.1 0.07 0.82 93.1 24.03
True DLT rate 0.05 0.1 0.15 0.25 0.2 0.3

PO-TITE P(select) 0 0.02 0.12 0.32 0.27 0.26 67.17 31.69
TITE P(select) 0 0.03 0.19 0.27 0.28 0.24 65.01 30.49
PO P(select) 0 0.03 0.16 0.32 0.26 0.23 186.35 31.92

N = 30 P(select) 0 0.02 0.13 0.3 0.29 0.25 64.1 29.99
N = 60 P(select) 0 0 0.07 0.36 0.31 0.25 117.97 59.94

15: Equal steps

CS = 1 P(select) 0.03 0.02 0.09 0.23 0.23 0.4 102.22 26.67
True DLT rate 0.5 0.6 0.65 0.75 0.7 0.8

PO-TITE P(select) 0.27 0 0 0 0 0 0.73 39.14 16.11
TITE P(select) 0.37 0 0 0 0 0 0.63 44.23 18.94
PO P(select) 0.13 0 0 0 0 0 0.87 69.79 10.81

N = 30 P(select) 0.23 0 0 0 0 0 0.77 41.18 17.24
N = 60 P(select) 0.13 0 0 0 0 0 0.87 47.29 20.64

16: All toxic

CS = 1 P(select) 0.33 0 0 0 0 0 0.67 45.76 10.31
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FIGURE 2.7: Plot of the simulation results presented in Table 2.7
detailing selection probabilities for multiple designs across sce-

narios 1-8 (where 2b is considered more toxic than 2a).
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FIGURE 2.8: Plot of the simulation results presented in Table 2.8
detailing selection probabilities for multiple designs across sce-

narios 9-16 (where 2a is considered more toxic than 2b).
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scenarios 9-16 where 2a is assumed more toxic than 2b. Specifically, scenarios

12 and 13 where it fails to identify the TD25 the majority of the time. This is

also explored by Abbas et al. [60].

The PO-CRM design without a TITE component also performs similarly
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except for scenarios 1, 8, 9 and 16 where the trial stops more regularly for

excess toxicity at the lowest dose. This would be because patients complete

the full follow-up window before the next dose allocation decision is made.

In a TITE setting a new cohort could be recruited before patients in previous

cohorts experience a DLT. The main difference between these designs is the

trial duration. Without the TITE component the trial duration is significantly

longer, with the average length ranging from 70 to 195 months compared to

39 to 71 months for PO-TITE-CRM. In scenario 1 TITE-CRM duration is longer

than the PO-TITE-CRM design this can be attributed to the lower chance of

stopping early. If the trial is stopping early less it has more chance of going on

for longer thus increasing the duration.

The design with a fixed sample size of 30 is comparable to our design with

the sample size of 60 and the consensus stopping rule. With a sample size of

30 selection probabilities are only 2-5% lower. For the design with 60 patients,

we see much improved operating characteristics with selection probabilities

ranging from 31% to 85% for the various scenarios. Even though our original

design specifies a sample size of 60 we rarely ever reach it as we often stop for

consensus hence why this design performs better. The trade-off here is trial du-

ration. Recruitment and follow-up under the constraints of these simulations

will take much longer compared to our specification which is not ideal for an

early-phase trial. Originally our design had a fixed sample size of 30 but as the

clinicians wanted a dose expansion cohort we opted to use the consensus rule

to ensure a minimum number of patients would be treated at the TD25.

For the design with cohort size of one, we see somewhat comparable per-

formance to that of the PO-TITE-CRM design. The design performs similarly

for scenarios where the TD25 is at the lowest or highest dose level but under-

performs for the more complex scenarios in terms of selection probabilities.
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This discrepancy in performance may be related to how the simulations re-

cruit patients into the trial and the large DLT follow-up period, meaning more

frequent dose allocation decisions are being made each with less available in-

formation. This also leads to the no cohorts design having a longer duration.

Patients entered into the trial in cohorts of three will not have to wait the full

minimum follow-up period between patients within the cohort.

2.5 Discussion

The PO-CRM and PO-TITE-CRM designs offer solutions to the issue of partial

ordering where the order of the treatments is only partially known. The orig-

inal methodology details that this issue commonly arises in trials of multiple

agents, where each drug individually may follow the monotonicity assump-

tion but when combined at certain dose levels this may not hold. This issue

is typically dealt with either by fixing the dose of one of the agents and esca-

lating the other or escalating both agents simultaneously. This means certain

drug combinations that are clinically relevant may not be investigated or even

considered.

Here we have shown that these issues can also arise in other situations.

Even though the ADePT-DDR trial uses multiple agents, the issue of partial

ordering occurs in this case due to the varying treatment dose and schedule for

one of its agents AZD6738. Implementing the PO-TITE-CRM design allowed

us to deal with this issue effectively. There may be other factors or variables in

single-agent dose-finding trials that would lead to the issue of partial ordering

and would warrant the use of either PO-CRM or PO-TITE-CRM. The issue of

dose scheduling and partial ordering is further explored by Wages et al. [61]

where they propose further methods for dealing with this issue.
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The limited literature review that was conducted highlighted that this may

be the first instance of the PO-TITE-CRM design being applied. It is important

to note that although this methodology takes into account all the various or-

derings, the main aim is to identify the TD and does not attempt to identify the

order that is more correct.

Compared to other CRM-based designs only a few additional pieces of in-

formation are required to implement the PO-CRM design. More important is

the number of toxicity orderings and prior probabilities for the orders. Depen-

dent on how many dose combinations are available it may not be feasible to

investigate all combinations and all orderings. Careful thought and considera-

tion should be given to the combinations and orderings selected which would

require input from all relevant investigators. In terms of priors for orderings if

no prior information is available, all orders should be treated as equally likely

to occur. Extending this design to the PO-TITE-CRM requires a fit-for-purpose

weight function and is applied similarly to the TITE-CRM methodology. There

is an R package available with functions that can be used to run and simu-

late a PO-CRM trial. These functions were extended to included weighted

dose-toxicity models as described in this chapter to implement PO-TITE-CRM

into ADePT-DDR. The lack of available software for PO-TITE-CRM specifically

may be one of the reasons for its lack of use.

In terms of ADePT-DDR, dose combinations were decided upon by the clin-

ical investigators. The issue of partial ordering was due to the dose-levels 2a

and 2b, as such this methodology was employed to deal with that scenario.

This is a very simple example of partial ordering as we only have two possible

orderings and six dose levels. The necessity of implementing this methodol-

ogy was discussed and whether or not adopting an easier solution by simply

altering the dose levels would have been better. Ultimately, the dose levels se-

lected by the clinicians were deemed the most relevant with the TD25 likely to
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be one of these doses.

Simulations and operating characteristics were the main tools used to as-

sess the design’s performance as well as help understand the impact of sample

size and stopping rules. This was an iterative process that involved running

multiple iterations of simulations under various scenarios until the design was

finalised. A key point is that scenarios from simulations should account for

each of the possible orderings. ADePT-DDR only has two orderings, we ran

scenarios for both. For a trial with a greater number of orderings, this may

be unfeasible but at least some scenarios should be assessed to ensure the de-

sign is behaving as expected. Overall, the design operating characteristics per-

formed reasonably well even in difficult scenarios.

One limitation of the simulations is how the time-to-event data is gener-

ated. The time of DLTs is sampled from a uniform distribution U(0, 413),

where the time of the DLT can occur at any time between the patient beginning

treatment and the end of follow-up (413 days). Using this uniform distribution

implies that a DLT has an equal probability of occurring at any time-point in

the observation window. This may not be an accurate representation of what

happens in the actual trial. Similar comments can be made about the accrual

rate used in the simulations. Here we specified the recruitment of one patient

per month which is in no way guaranteed for the actual trial. Wages et al. [29],

when presenting this methodology investigated four different applications of

the PO-TITE-CRM which used different models to enroll patients and allocate

DLTs. Results across these four applications were comparable.

The simulations are also able to instantaneously determine dose-levels for

incoming cohorts with all available information. This does not fully reflect

the process in which dose-escalation decisions would be made during the ac-

tual running of the trial. The analysis would require a data snapshot and time

would have to be spent cleaning the data and determining the next dose-level.
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This would mean any data from the point of the snapshot would not be in-

cluded in any dose escalation/de-escalation decisions.

Similarly, there may also be limitations with some of the design choices

made concerning cohort size and sample size. These were investigated along-

side a variety of other trial designs that could have been implemented. This

was done to validate the choices we made with the design and highlight the

differences in operating characteristics due to the varying assumptions and

components in the designs. The standard PO-CRM had a much longer average

duration due to the lack of TITE component whereas a standard TITE-CRM

overall performs better but assumes the ordering of toxicity is known.

Here we have detailed the issue of partial ordering with a time-to-event

component. We discuss how we implemented the trial design, in what we be-

lieve is the first real-world application of this specific design. A large amount

of simulation work is required to assess the performance of the design. This

is often an iterative process to refine decisions that were made and often re-

quires input from both clinical and statistical investigators. We recommend

running several varied scenarios for each potential ordering that will be inves-

tigated. Finally, we also compared the implementation of PO-TITE-CRM to

various other designs and showed it performs relatively well given all of the

methodological and practical challenges.
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Chapter 3

Extension to a Phase I/II trial design

3.1 Introduction

In Chapters 1 and 2 we discuss the main aim of a Phase I is to establish the max-

imum tolerated dose (MTD) for a treatment under investigation. Model-based

designs such as the continual reassessment method (CRM) [13] operate with

dose selection and escalation decisions being determined by the occurrence of

toxicities. These designs also operate under the cytotoxic assumption which

assumes the most toxic dose is also the most efficacious. Subsequent Phase

II trials aim to assess the efficacy of the treatment at the recommended dose

(MTD). Usually, these two phases are conducted independently of each other

and as such, the ability to share information across the phases is somewhat

lost.

For treatments like chemotherapy which kills all cells including cancer cells

[62], the cytotoxic assumption is valid. However, the emergence of modern

treatments such as immunotherapy and molecular targeted agents challenges

this paradigm. Immunotherapy is a form of treatment that utilises the body’s

immune system to fight cancer [63]. Molecular targeted agents (MTA) work

by interfering with specific molecules responsible for the growth, spread, and

progression of cancer [64]. The monotonic assumption of dose-efficacy may
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not hold for these new types of treatments. Furthermore, these treatments,

in general, are less toxic than traditional cytotoxic agents such as chemother-

apy therefore it is possible the most efficacious dose may occur at a dose-level

below the MTD [65]. This produces some methodological challenges for dose-

finding trials. Instead of trying to identify the MTD, the goal would be to de-

termine the optimal biological dose (OBD). Depending on the aims of the trial

and the design implemented the definition of the OBD may vary. The OBD

could be a dose that provides the maximum probability of efficacy with the

probability of toxicity being less than a pre-defined target value, or the dose

that has a beneficial trade-off between toxicity and efficacy. To determine an

optimal dose both toxicity and efficacy outcomes need to be considered and

this leads to a need for joint phase I/II trial designs.

Here we will briefly explore some of these designs. This is not an extensive

review of the literature but just an illustration of these types of trial design.

Braun [66] proposed the bivariate continual reassessment method (bCRM),

an extension to the CRM which incorporates competing outcomes for both tox-

icity and disease progression. The design models the probabilities of toxicity

and progression independently, it is suggested that either empiric, logistic, or

hyperbolic tangent functions are used dependent on their biological plausibil-

ity. Both outcomes are then combined into a joint distribution which is used to

estimate posterior means based on priors and observed data.

Thall & Cook [67] developed EffTox, a Bayesian adaptive dose-finding trial

based on trade-offs between the probabilities of toxicity and efficacy. Marginal

probabilities of efficacy and toxicity at each dose are modelled and used with

utility contours to determine the desirability of each dose based on posterior

probabilities of efficacy and toxicity [68].

Zhou et al. [69] introduced a Utility-based Bayesian Optimal Interval (U-

BOIN) phase I/II design to identify the OBD. This design is an extension of
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the Bayesian optimal interval (BOIN) design for phase I trials developed by Liu

and Yuan [46]. U-BOIN jointly models toxicity and efficacy with a multinomial-

Dirichlet model and uses a utility function to measure the dose risk-benefit

trade-off. The design consists of two seamless stages. Firstly, in stage I the

BOIN design is used to explore the dose levels and determine a set of admissi-

ble doses and collect preliminary efficacy data. In stage II, posterior estimates

of utility for each dose are continuously updated after each cohort using toxi-

city and efficacy data from both stages.

Zhang et al. [70] introduced the trivariate CRM (TriCRM) design. The de-

sign considers patients to have one of three possible outcomes: no efficacy and

toxicity, efficacy without toxicity, and toxicity. These outcomes are then mod-

elled using a continuation-ratio model. A Bayesian approach and dose-finding

algorithm are then used to identify the OBD similar to the CRM.

Anathakrishnan et al. [71] produced extensions to the modified Toxicity

Probability Interval (mTPI) design by Ji & Wang [72] and Toxicity Equivalent

Range (TEQR) design by Blanchard & Longmate [73] to include efficacy out-

comes. In both designs, isotonic regression is applied to the observed DLT

rates at the end of the trial. Dependent on the shapes of the dose-response

curves and the underlying response rates, isotonic regression is applied to the

observed response rates or the differences in observed response rates to deter-

mine the optimal dose.

Riviere et al. [74] developed a Bayesian dose-finding design for MTA. The

design works on the premise that for MTA efficacy initially increases with dose

then eventually plateaus. They use a logistic model with a plateau parameter

to capture the dose-level at which plateaus begin in the dose-efficacy relation-

ship. A weighted likelihood approach is also used to accommodate for any

potential late-onset toxicities. This methodology incorporates adaptive ran-

domisation to allocate patients to the dose-level closest to the likely plateau
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point.

Mozgunov et al. [75] discuss randomised dose-escalation designs for drug

combination trials with immunotherapy. Here they investigate the use of a

4 parameter EMAX model with a randomisation scheme. The use of a four

parameter model allows for toxicity risk at the standard of care to be modelled

independently, modelling a plateau at a particular level and a steep increase in

toxicity.

This chapter revolves around the seamless phase I/II dose-finding adaptive

design by Wages and Tait [30], which we will refer to as the WT design. This

design models toxicity and efficacy independently. To model the probability

of efficacy, a set of possible efficacy skeletons are considered which would cor-

respond to plausible dose-efficacy relationships. For the class of dose-efficacy

models, a single parameter model is used similar to the empiric model of the

CRM. The authors recommend that (2n − 1) efficacy skeletons are specified

where n is the number of doses being investigated. Toxicity is modelled us-

ing a CRM approach with an empiric model that requires a skeleton for toxic-

ity. The dose-finding operates in two stages the adaptive randomisation (AR)

phase and the maximisation phase. In the AR phase patients are adaptively

randomised amongst a set of tolerable doses (determined by the CRM toxicity

model), where probabilities of randomisation to each dose are proportional to

their posterior probabilities of efficacy. A pre-defined number of patients enter

the AR phase and once recruitment has been completed we move to the max-

imisation phase. In this phase, patients are allocated to the dose in the tolerable

set which maximises the probability of efficacy.

The incorporation of an AR phase early on into the trial is beneficial since

there may be a lack of data to rely on decisions made by the maximisation of

efficacy probabilities. Also, there may be doses that have not been tested and

randomisation allows for information to be collected from these. It also helps
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avoid getting stuck repeatedly recruiting to the same dose and allows for a

more broad understanding of the dose-efficacy and toxicity relationships. One

extension that we propose is the inclusion of randomisation to a control arm

in the design. This would provide a set of patients who receive standard of

care to act as controls and allow for comparisons to be made with outcomes

from patients receiving the OBD. There is also the added benefit of being able

to include standard of care into the models to get a better understanding of the

dose-efficacy and toxicity relationships.

Section 3.2, details the statistical aspects of the WT design and how it works.

We introduce our extension to the design to include randomisation to control

in Section 3.3. Section 3.4 evaluates the performance of the new design with

a simulation study. Section 3.5 explores how efficient our design would be at

performing an efficacy test. Finally, we finish with a discussion in Section 3.6.

3.2 The Wages and Tait design

In this section, we detail the Wages and Tait design. Here we have used slightly

different notation than first introduced in Chapter 2, this was to ensure that

the design we present here is as specified in the original paper [30] and also to

make it simpler when cross referencing with available code. A set of I doses

under investigation can be denoted as D = {d1, ..., di}. For each patient j en-

tered into the trial they are allocated to a dose-level and joint outcomes for tox-

icity and efficacy are measured. The dose for the jth patient, Xj, j = 1, ...n can

be thought of as random, taking values xj ∈ D . Let Yj and Zj be the random

variables for binary toxicity and efficacy events respectively. For an individual

patient j, toxicity and efficacy outcomes can take values yj, zj ∈ {0, 1} where 0

indicates an event did not happen and 1 indicates that it did.
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Wages and Tait [30] utilise the CRM approach of O’Quigley et al. [13] to

model toxicity. A univariate Bayesian method is used which begins by as-

suming a monotonically increasing dose-toxicity curve. The DLT probabilities,

πT(di), are modelled at each dose level i where i = 1, ..., I. The power model is

specifically used by Wages and Tait in this design given by

F(di, β) = pexp(β)
i . (3.1)

A working model or skeleton containing the prior beliefs of toxicity at each

dose-level is required in the form 0 < p1 < ... < pI < 1. For the single

parameter in the power model β we assume it has a prior distribution g(β).

After the inclusion of j subjects into the trial, we have data in the form of Ωj =

{(x1, y1, z1), ..., (xj, yj, zj)}. The toxicity data can be used with Equation 3.1 to

give the likelihood for β

L(β|Ωj) =
j

∏
l=1

{F(xl, β)}yl{1 − F(xl, β)}1−yl , (3.2)

the posterior density for β can be calculated using

P(β|Ωj) =
L(β|Ωj)g(β)∫ ∞

−∞ L(β|Ωj)g(β)dβ
. (3.3)

This can then be used to establish the posterior mean of β

β̂ j =
∫ ∞

−∞
βP(β|Ωj)dβ. (3.4)

Using β̂ j estimates of DLT probabilities at each dose level can be obtained

via

π̂T(di) = F(di, β̂ j) = p
exp(β̂ j)

i . (3.5)
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For a specific maximum acceptable toxicity rate, ϕT a set of acceptable or

admissible doses can be declared as follows

Aj = {di : π̂T(di) ≤ ϕT; i = 1, ..., I}. (3.6)

To model efficacy, a Bayesian approach is taken similar to how toxicity was

modelled but rather than using a singular working model a class of working

models is considered. They use a class of skeletons that correspond to vari-

ous dose-efficacy relationships. These relationships might be monotonically

increasing (as the dose-levels increase efficacy increases), unimodal (initially

increasing then decreasing) or plateau (initially increase then level off). As a

guide, it is suggested that (2I − 1) working models should be specified. The

probability of an efficacious response at dose di is denoted as πE(di). The pri-

mary aim of the trial is to identify the optimal dose from doses considered safe

dv ∈ D which is defined such that

πE(d1) ≤ ... ≤ πE(dv) ≥ ... ≥ πE(dI). (3.7)

Let K denote the number of efficacy skeletons being used. Then for each

skeleton k we have 0 < q1k < ... < qIk < 1 and for a particular skeleton k; k =

1, ..., K the true probability of efficacious response πE(di) at di is modelled by

πE(di) = Pr(Zj = 1|di) ≈ Gk(di, θ) = qexp(θ)
ik . (3.8)

As with the modelling of toxicity the power model is used again. Similarly

as with β a prior distribution h(θ) is assumed for θ. For both the toxicity and

efficacy models a Normal prior is used as first suggested by O’Quigley and

Shen [58] such that β, θ ∼ N(0, 1.34). Additionally for the modelling of efficacy

prior information regarding the plausibility of each model is taken into account
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using a weight function υ(k) = {υ(1), ..., υ(K)}, where υ(k) ≥ 0 and where

∑k υ(k) = 1. If no information is available a discrete uniform distribution can

be specified for υ(k). After j patients have been included and observed in the

study we have efficacy data from Ωj and the likelihood model under k is given

by

L(θ|Ωj) =
j

∏
l=1

{Gk(xl, θ)}zl{1 − Gk(xl, θ)}1−zl , (3.9)

the posterior density is

P(θ|Ωj) =
L(θ|Ωj)h(θ)∫ ∞

−∞ L(θ|Ωj)h(θ)dθ
, (3.10)

and under skeleton k the posterior mean is given by

θ̂jk =
∫ ∞

−∞
θP(θ|Ωj)dθ. (3.11)

This information can be used to establish posterior model probabilities

w(k|Ωj) =
υ(k)

∫ ∞
−∞ Lk(θ|Ωj)h(θ)dθ

∑K
k=1 υ(k)

∫ ∞
−∞ Lk(θ|Ωj)h(θ)dθ

. (3.12)

The posterior model probabilities are then used to determine which skele-

ton will be selected to model the dose-efficacy relationship. Each time a new

patient is to be entered into the study and a dose-escalation decision needs

to be a made, the skeleton k∗ with the largest posterior probability is selected

such that

k∗ = arg max
k

w(k|Ωj). (3.13)

After determining the best skeleton and calculating the posterior mean of θ

estimates of efficacy probabilities are then generated for each dose.
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π̂E(di) = Gk∗(di, θ̂jk∗) (3.14)

Dose-finding is conducted in two stages. The first stage begins with the

adaptive randomisation (AR) phase. Here the next dose is randomly selected

from the set of admissible doses determined by the CRM toxicity model. Ran-

domisation probabilities for each dose are proportional to π̂E(di) so that doses

with higher estimated efficacy are more likely to be assigned to patients. For

doses in Aj their adaptive randomisation probability Ri is

Ri =
π̂E(di)

∑di∈Aj
π̂E(di)

. (3.15)

The AR phase lasts for a subset of jR patients such that jR ≤ J, where J is the

total number of patients to be entered into the trial. Wages and Tait suggest as

a general rule of thumb to allocate 50% of patients to both stages. It was shown

that this approach works well in a variety of scenarios. However, this can be

easily be adapted to suit individual trials.

Once the AR phase has been completed the design switches to the second

stage called the maximisation phase. Here the next dose is the dose from the

admissible set with the highest estimated probability of efficacy. For a dose-

escalation decision that needs to be made in the maximisation phase for the

(j + 1)th patient the dose xj+1 is selected from the admissible set of doses Aj

with the highest estimated efficacy probability π̂E(di) i.e.

xj+1 = arg max
di∈Aj

π̂E(di) (3.16)

The design also incorporates stopping rules for safety and futility. The

safety rule stops the trial if too much toxicity is observed at the lowest dose
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level. This rule is applied throughout the trial for each dose-escalation deci-

sion. Exact binomial 95% confidence intervals are calculated for the lowest

dose. The lower bound of the interval is then compared to the acceptable tox-

icity rate ϕT. If the lower bound interval is greater than the acceptable rate

it can be said that the treatment is too toxic to warrant further investigation.

Patients need to have been observed at the lowest dose for this rule to trigger,

if there is no data available at the lowest dose the binomial confidence interval

is effectively 0.

The futility rule stops the trial if there are too few observed efficacy events.

This rule only comes into play during the maximisation phase. This rule uses

a similar method to the stopping rule by utilising binomial 95% confidence in-

tervals. During the maximisation phase, the dose with the highest probability

of efficacy is selected. At this point, the 95% binomial confidence interval is

calculated for the current dose and if the upper bound is less than the futility

threshold ϕE the trial is stopped as the treatment is inefficacious at all doses.

Although 95% confidence intervals are used by Wages and Tait these can be

altered accordingly.

3.3 RtC-WT: An extension to the Wages and Tait de-

sign

In this section, we introduce our proposed extension to the Wages and Tait

(WT) design named Randomisation to Control Wages and Tait (RtC-WT). As

the name states, the design will allow investigators to utilise the WT design

with the ability to recruit patients to a control arm/dose-level. This idea was

initially conceived by Kristian Brock (KB) whilst working on the design of a

new dose-finding trial.
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3.3.1 The Rationale for Incorporating Randomisation to Con-

trol

Typically, seamless phase I/II trial designs perform the tasks of phase I and

phase II trials. However, they do not replace the need for randomised phase II

trials entirely where preliminary efficacy data is collected on an experimental

treatment versus control to determine the need for a larger phase III study [76].

This is our main motivation for introducing RtC-WT. By introducing the ability

to randomise to control in the Wages and Tait method we can achieve similar

objectives to randomised phase II studies.

An example of where this design may be beneficial is in the investigation

of a standard of care treatment in combination with an experimental treat-

ment. The standard of care treatment could be included as the control dose

and should have a well-understood toxicity and efficacy profile which could

be incorporated into the toxicity and efficacy skeletons. Further dose levels

would also receive standard of care along with increasing levels of the experi-

mental treatment, here the interaction between the two treatments in terms of

toxicity and efficacy could be investigated and an OBD could be found using

the RtC-WT design.

As a seamless phase I/II design WT is relatively simple and effective. The

familiarity of using a CRM design to model toxicity and naturally extending

that methodology to model efficacy with multiple working models means the

design is not particularly difficult to implement. The mathematics behind the

design is also not too intense so extensive computation will not be necessary.

Given some effort, this design could be implemented in a variety of program-

ming languages although Brock offers easy implementation of this design in

his R package escalation [21]. Considering all these factors, extensions to this

design can easily be executed without too many obstacles.
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The WT design can be considered fairly unique due to its use of adaptive

randomisation. Whilst adaptive randomisation is not the core focus of the de-

sign it is still a distinguishing factor that could be leveraged to help investiga-

tors answer questions other designs are unable to. Specifically, the randomi-

sation allows for more dose-levels to be explored and perhaps obtain a better

understanding of the dose-toxicity and efficacy relationships.

Conceptually the WT design could include a control arm without any mod-

ification to the design. All that this would require is the addition of a new

dose-level at which patients receive control treatment/standard of care. This

would need to be implemented as the lowest dose-level as dose-levels still

need to obey the monotonicity assumption for toxicity. The issue with taking

this approach is that the design is unlikely to allocate patients to the control

dose-level. Even though adaptive randomisation is being used the randomi-

sation probabilities are based on estimates of efficacy probabilities and control

patients may be unexpected to have an efficacious event. This is a desirable

characteristic when investigating treatments as we do not want to allocate too

many patients to inefficacious doses. However, if the aim is to establish a co-

hort of patients as controls to facilitate comparisons to the OBD this is not an

optimal characteristic.

There is another approach that could also be used to include a control

arm rather than our proposed design RtC-WT. A two-arm randomised design

could be used where patients are allocated to either a control arm or a dose-

finding arm. Those patients allocated in the dose-finding arm will then be a

part of the WT design (see Figure 3.1). This approach maintains many of the

traditional qualities of a two-arm randomised trial. The number of patients in

each arm can be specified this way and we guarantee a minimum number of

patients in our control arm. Also, the characteristics of patients in both arms

are likely to be similar which would be beneficial when making comparisons



3.3. RtC-WT: An extension to the Wages and Tait design 65

FIGURE 3.1: Flowchart of how a two arm randomised dose-
finding design would operate using the Wages and Tait design.
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between the two arms. A downside of this method is that the data for con-

trol patients are no longer included in the modelling process. Whilst control

patients may still be observed for efficacious and toxic events these will not

be included in the modelling. As such the ability to make inferences on the
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dose-toxicity and efficacy relationships in reference to a control/ standard of

care dose is lost.

Both of these approaches have their merit but also have flaws as well. RtC-

WT is somewhat of a middle ground that aims to recruit patients to a control

dose and include the control patients’ data in the modelling process all whilst

maintaining reasonable operating characteristics. We detail RtC-WT in Section

3.3.2 and explore the operating characteristics of this design in Section 3.4.

3.3.2 Design of the Proposed Extension RtC-WT

With this extension, much of the Wages and Tait design stays the same. The

modification only impacts the adaptive randomisation (AR) phase and requires

some additional specifications at the start of the trial. Firstly, we set the lowest

dose-level d1 to be the control dose-level. This dose-level should be included

in the working models for efficacy and toxicity and should be treated like any

other dose-level. Even if toxicity and efficacy events are expected to be non-

existent for control, their corresponding skeleton values must be non-zero. In-

vestigators also need to consider a randomisation probability ϕR for the control

dose. During the AR phase, ϕR represents the probability of selecting the con-

trol dose as the next dose level. The probability of randomisation Ri for other

dose in Aj is scaled accordingly such that the ∑di∈Aj
Ri = 1. The adaptive

randomisation probabilities can now be expressed as

R1 = ϕR, (3.17)

Ri = (1 − ϕR)
π̂E(di)

∑di∈Aj
π̂E(di)

, i = 2, ..., I. (3.18)
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Compared to Equation 3.15 the adaptive randomisation probability is fixed

to ϕR at the lowest dose (the control dose) and for all other dose levels in the

admissible set Aj a scaled randomisation probability is calculated. By fixing

the probability for the control dose we guarantee a greater chance of patients

being allocated to this dose-level. Although estimates of efficacy at the control

dose-level π̂E(d1) do not directly impact its associated randomisation proba-

bility, the efficacy data that generated the estimate is still included in the effi-

cacy modelling and impacts probabilities for the remaining dose-levels. Also,

by scaling the remaining probabilities of dose-levels in the admissible set we

ensure that those doses with high estimates of efficacy maintain their propor-

tional advantage of selection over the other non-control doses.

Some adjustments were made to the stopping rule for safety. The WT

design assesses the lower bound of the 95% binomial confidence interval of

DLT rate for the lowest dose to determine whether or not the trial should be

stopped. However, with the RtC-WT design since the lowest dose is the con-

trol, it makes little sense to surmise treatment is toxic here since none of the

patients on control would have received the experimental treatment. It is also

likely the trial would never recommend stopping even if the treatment is toxic

since patients on control are unlikely to experience excess toxic events. The

RtC-WT design stops for safety by checking for excess toxicity at the second-

lowest dose-level (the first treatment dose-level).

Once the AR phase ends, dose-levels are no longer selected by adaptive

randomisation. At this point, it will be difficult for patients to be recruited

to the control dose since recommended doses will be based on those with the

greatest estimates of efficacy. As such it is important to consider the values

set for both your randomisation probability for control ϕR and the size of the

AR phase jR. Wages and Tait simply suggest a 50:50 split between both the

AR phase and the maximisation phase and show relatively good performance



68 Chapter 3. Extension to a Phase I/II trial design

at this level. However, for RtC-WT the AR phase is the main component and

more thought should be given here. In the next section, we explore multi-

ple combinations to better understand how these choices impact the operating

characteristics of the design. We also compare RtC-WT to the two alternative

designs mentioned in section 3.3.1 via simulations and the inspection of op-

erating characteristics specifically, the selection probabilities of the OBD and

patient allocation numbers at each dose-level.

3.4 Evaluation and exploration of the extension via

simulations

In this section, we evaluate the performance of RtC-WT in comparison to the

two alternative designs mentioned in Section 3.3.1. We also explore the im-

pact of changing the probability of randomisation to control and the number

of patients included in the adaptive randomisation phase. These will both be

assessed via simulation and inspection of their operating characteristics. To

facilitate simulations, a generic trial example will be utilised along with a vari-

ety of scenarios. Code for the original Wages and Tait design was provided to

us by Nolan Wages. We then altered this code to work for our new modified

design RtC-WT.

3.4.1 Design Specification

Here we detail the design specifications for RtC-WT that we will be using

throughout this section. We assume five dose-levels, where the lowest dose is

considered to be the control dose-level. The maximum sample size of the trial

is set at 60 with patients recruited in cohorts of three and the first cohort start-

ing at dose-level two (the first treatment dose-level). The pre-specified toxicity
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upper bound and efficacy lower bound are set at ϕT = 0.35 and ϕE = 0.50

respectively. Toxicity and efficacy skeletons, pi and qi respectively, are pre-

sented in Table 3.1. In terms of efficacy relationships monotonic, unimodal

and plateau skeletons were all used. We assume that each of the seven efficacy

skeletons is equally likely and set υ(k) = 1
7 .

TABLE 3.1: Toxicity and efficacy skeletons for RtC-WT in the ex-
ample trial.

Skeleton Dose-levels
1 2 3 4 5

pi 0.1 0.15 0.25 0.35 0.45
qi1 0.3 0.7 0.6 0.5 0.4
qi2 0.3 0.6 0.7 0.6 0.5
qi3 0.3 0.5 0.6 0.7 0.6
qi4 0.3 0.4 0.5 0.6 0.7
qi5 0.3 0.5 0.6 0.7 0.7
qi6 0.3 0.6 0.7 0.7 0.7
qi7 0.3 0.7 0.7 0.7 0.7

For the control dose, we have set our prior beliefs for the probability of

toxicity at 10% and the probability of efficacy at 30%. These values can be

altered if there is reason to believe that the control dose may have higher or

lower probabilities of toxicity and efficacy.

Wages and Tait recommend (2I − 1) efficacy skeletons be used which in this

example would be nine, however, we have only considered seven. As there

are only four active doses and we are assuming we understand the control

dose in terms of toxicity and probability then seven different skeletons fits in

the Wages and Tait’s recommendation. As we are investigating control plus

some experimental treatment it is implausible to have scenarios where efficacy

falls as dose increases. So, we have removed the two efficacy skeletons with

dose-efficacy relationships that suggest the lowest dose would be the most

efficacious. For completeness, the first extra skeleton would be unimodal with

the highest efficacy occurring at dose-level one (i.e. 0.7, 0.6, 0.5, 0.4, 0.3 for
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dose-levels 1-5) and the second skeleton would be a plateau relationship with

the plateau beginning at dose-level one (i.e. 0.7, 0.7, 0.7, 0.7, 0.7 for dose-levels

1-5).

We also include the same stopping rules for safety and futility with the

safety rule assessing toxicity at dose-level two. A rule will also be imple-

mented to prevent the skipping of untried doses when escalating. This rule

does not apply when de-escalating.

The two parameters we have left to specify are the fixed adaptive randomi-

sation probability for control ϕR and the number of patients included in the

adaptive randomisation phase jR. In Section 3.3.2 we briefly discussed the im-

portance of giving thought when setting these values. This is due to the fact

they are the main factors driving how RtC-WT works compared to the stan-

dard WT design. For example, one could set the AR phase to last for the whole

trial and keep a relatively low probability to randomise to control. Alterna-

tively, the AR phase can be set for half the patients in the trial and double

the probability of randomisation could be used. These two approaches could

allocate the same number of patients in the control arm but have different op-

erating characteristics. It could be hypothesised that by setting the AR phase

for the whole trial you miss out on the maximisation phase where patients

are allocated to the estimated most efficacious dose which could yield slightly

worse operating characteristics. We explore different combinations of these

parameters in the next section.

3.4.2 Impact of AR phase size and probability of randomisa-

tion to control on RtC-WT

The effect of adjusting the probability of randomising to control ϕR is fairly

intuitive, as the probability increases the percentage chance that patients are
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allocated to the control dose-level also increases. However, this is only in iso-

lation without considering the size of the AR phase. Increasing the AR phase

would also mean more patients are likely allocated to the control dose-level

since the randomisation only occurs in the AR phase. The interest lies within

the interaction of both of these components and their impacts on operating

characteristics. To gain a better understanding of this impact on RtC-WT we

consider multiple combinations.

We look at two different probabilities for randomisation to control, ϕR = 0.2

and ϕR = 0.33 i.e. 20% and 33% probability of patients being allocated to the

control dose-level during the AR phase of the trial. We also consider varying

AR phase sizes, specifically jR = 0, 15, 30, 45, 60 essentially looking at when

the AR phase lasts 0%, 25%, 50%, 75% and 100% of the trial. The inclusion

of setting the AR phase as 0 is somewhat counter-intuitive since the trial will

just be run using the maximisation phase where the most efficacious doses are

allocated. As such it is unlikely that the control dose-level would ever be the

most efficacious specifically in our scenario here. However, its inclusion will

serve as a benchmark as the design most likely to achieve optimal performance

in terms of locating the OBD since there will be no randomisation and the

estimated most efficacious dose will always be the one being tested. Similarly,

by setting the AR phase at 60 we limit some of the designs features by never

entering the maximisation phase to select dose levels based on efficacy. Also,

the stopping rule for futility does not come into play. Although, many more

combinations could be explored this set provide a good basis for us to gain a

better understanding of how RtC-WT works. It also helps us understand how

best to optimise RtC-WT for comparisons with alternative designs later on.

To compare these different combinations we use simulations covering a

wide range of scenarios. For each scenario, we simulate 10000 trials each con-

sisting of 60 patients recruited in cohorts of three. Patient outcomes for toxicity
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and efficacy are randomly sampled using true toxicity and true efficacy prob-

abilities, these are assumed to be independent of each other. Dose-allocation

decisions are made after each cohort of patients and then the subsequent co-

hort is allocated the recommended dose. The trial could also be stopped if the

recruitment target is reached or if any of the stopping rules are triggered. The

rest of the design specification is as defined in Section 3.4.1.

The true toxicity and efficacy probabilities are manipulated to produce each

scenario for the simulations. Table 3.2 shows a summary of the scenarios that

will be used. We look at a combination of five different efficacy curves with

three toxicity curves giving 15 scenarios altogether. The five dose-efficacy re-

lationships we consider are; monotonically increasing, unimodal (at dose level

3), plateau (starting at dose level 3), monotonically decreasing and finally no

efficacy. For toxicity we look at scenarios where all doses are tolerable, all doses

are toxic and a scenario where only higher doses (dose-levels 4 and 5) are toxic.

We also list which doses would be considered the OBD under the designs spec-

ification along with which doses would be good for each of the scenarios. The

OBD in this context would be the dose which maximises efficacy whilst not

breaching the toxicity limit. Good doses are those which are considered safe

(probability of toxicity ≤ 35%) and efficacious (probability of efficacy ≥ 50%).

For scenarios that are too toxic/lack efficacy, we would expect the trial to stop

early, here we have labelled the OBD as being the probability of stopping and

good doses as the probability of stopping and selecting dose-level 1, the con-

trol dose. Whilst allocating patients to dose-level 1 in these scenarios is not

necessarily a bad thing it would likely mean more patients are exposed to the

toxic/inefficacious doses which is not optimal, hence the distinction.

Operating characteristics for the scenarios under investigation are given in

Table 3.3. The table provides the following operating characteristics:
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• P(OBD) - Probability of selecting the OBD

• P(Good) - Probability of selecting a good dose

• N(OBD) - Mean number of patients treated at the OBD

• N(Good) - Mean number of patients treated at good doses

• N(Control) - Mean number of patients treated at the control dose (dose-

level 1)

These are provided for each scenario under the 10 different parameterisa-

tions of ϕR and jR. For certain scenarios, where the ideal outcome would be to

stop early, N(OBD) is left blank as patients are not allocated to a specific dose.

Also, for these scenarios N(Good) and N(Control) are the same as the only

good dose patients can be allocated to is the control. Then for scenarios where

there is only one good dose-level that would be the OBD as well so P(OBD)

and P(Good) would be the same as would N(OBD) and N(Good).
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TABLE 3.2: Summary of the efficacy and toxicity curves used in
each scenario.

Scenario 1 2 3 4 5 Description OBD Good Dose

1 tox 0.1 0.2 0.25 0.3 0.35 All doses tolerable 5 3-5eff 0.3 0.4 0.5 0.6 0.7 Monotone increasing

2 tox 0.1 0.45 0.5 0.55 0.6 Too toxic Stop Stop/Controleff 0.3 0.4 0.5 0.6 0.7 Monotone increasing

3 tox 0.1 0.25 0.35 0.45 0.55 High doses toxic 3 3eff 0.3 0.4 0.5 0.6 0.7 Monotone increasing

4 tox 0.1 0.2 0.25 0.3 0.35 All doses tolerable 3 3-4eff 0.3 0.4 0.7 0.5 0.4 Unimodal

5 tox 0.1 0.45 0.5 0.55 0.6 Too toxic Stop Stop/Controleff 0.3 0.4 0.7 0.5 0.4 Unimodal

6 tox 0.1 0.25 0.35 0.45 0.55 High doses toxic 3 3eff 0.3 0.4 0.7 0.5 0.4 Unimodal

7 tox 0.1 0.2 0.25 0.3 0.35 All doses tolerable 3 3-5eff 0.3 0.4 0.6 0.6 0.6 Plateau

8 tox 0.1 0.45 0.5 0.55 0.6 Too toxic Stop Stop/Controleff 0.3 0.4 0.6 0.6 0.6 Plateau

9 tox 0.1 0.25 0.35 0.45 0.55 High doses toxic 3 3eff 0.3 0.4 0.6 0.6 0.6 Plateau

10 tox 0.1 0.2 0.25 0.3 0.35 All doses tolerable 2 2-4eff 0.3 0.7 0.6 0.5 0.4 Monotone decreasing

11 tox 0.1 0.45 0.5 0.55 0.6 Too toxic Stop Stop/Controleff 0.3 0.7 0.6 0.5 0.4 Monotone decreasing

12 tox 0.1 0.25 0.35 0.45 0.55 High doses toxic 2 2-3eff 0.3 0.7 0.6 0.5 0.4 Monotone decreasing

13 tox 0.1 0.2 0.25 0.3 0.35 All doses tolerable Stop Stop/Controleff 0.3 0.3 0.3 0.3 0.3 No Efficacy

14 tox 0.1 0.45 0.5 0.55 0.6 Too toxic Stop Stop/Controleff 0.3 0.3 0.3 0.3 0.3 No Efficacy

15 tox 0.1 0.25 0.35 0.45 0.55 High doses toxic Stop Stop/Controleff 0.3 0.3 0.3 0.3 0.3 No Efficacy



3.4. Evaluation and exploration of the extension via simulations 75

TABLE 3.3: Operating characteristics for multiple combinations of AR phase size and
probabilities for randomisation to control. Probability of selecting the OBD or good
dose levels, mean number of patients treated at those dose levels and at the control

dose after 10000 simulations.

Scenario ϕR jR OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)

0 5 3-5 0.05 0.60 2.8 32.1 1.2

15 5 3-5 0.05 0.65 2.7 32 3.6

30 5 3-5 0.05 0.71 2.2 31.1 6.4

45 5 3-5 0.05 0.76 1.5 27.5 9.4

0.2

60 5 3-5 0.04 0.80 1.1 22.9 12.4

0 5 3-5 0.05 0.60 2.8 32.1 1.2

15 5 3-5 0.07 0.67 3.1 32.6 4.9

30 5 3-5 0.06 0.75 2.2 30.4 9.8

45 5 3-5 0.05 0.79 1.3 25.5 14.7

1

0.33

60 5 3-5 0.03 0.82 0.8 19.4 19.6

0 stop stop/1 0.81 0.85 - 10.1 10.1

15 stop stop/1 0.80 0.85 - 11 11

30 stop stop/1 0.77 0.81 - 13.2 13.2

45 stop stop/1 0.72 0.75 - 15.6 15.6

0.2

60 stop stop/1 0.41 0.50 - 17.9 17.9

0 stop stop/1 0.81 0.85 - 10.1 10.1

15 stop stop/1 0.77 0.83 - 11.4 11.4

30 stop stop/1 0.75 0.79 - 14 14

45 stop stop/1 0.67 0.70 - 17.6 17.6

2

0.33

60 stop stop/1 0.38 0.42 - 20.7 20.7

0 3 3 0.25 0.25 15.5 15.5 2.6

15 3 3 0.31 0.31 16.8 16.8 4.7

30 3 3 0.35 0.35 16.8 16.8 7.5

45 3 3 0.42 0.42 15.5 15.5 10.4

0.2

60 3 3 0.48 0.48 12.7 12.7 13.3

0 3 3 0.25 0.25 15.5 15.5 2.6

15 3 3 0.32 0.32 17.2 17.2 5.8

30 3 3 0.39 0.39 17.3 17.3 10.4

45 3 3 0.46 0.46 15.2 15.2 15.2

3

0.33

60 3 3 0.52 0.52 11.5 11.5 20.1
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TABLE 3.3: Operating characteristics (continued)

Scenario ϕR jR OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)

0 3 3-4 0.69 0.75 32.3 37.2 1.3

15 3 3-4 0.69 0.76 30.3 35.5 3.5

30 3 3-4 0.71 0.81 26.4 32.3 6.5

45 3 3-4 0.73 0.83 21.6 27.4 9.5

0.2

60 3 3-4 0.71 0.83 16 21.7 12.4

0 3 3-4 0.69 0.75 32.3 37.2 1.3

15 3 3-4 0.69 0.77 29.5 35.1 5

30 3 3-4 0.70 0.81 24.8 31 9.9

45 3 3-4 0.70 0.84 19.7 25.4 14.7

4

0.33

60 3 3-4 0.68 0.83 13.7 18.5 19.5

0 stop stop/1 0.81 0.86 - 10.1 10.1

15 stop stop/1 0.79 0.84 - 11.1 11.1

30 stop stop/1 0.77 0.82 - 13.1 13.1

45 stop stop/1 0.71 0.75 - 15.6 15.6

0.2

60 stop stop/1 0.41 0.49 - 17.9 17.9

0 stop stop/1 0.81 0.86 - 10.1 10.1

15 stop stop/1 0.78 0.83 - 11.3 11.3

30 stop stop/1 0.75 0.78 - 14.1 14.1

45 stop stop/1 0.67 0.70 - 17.6 17.6

5

0.33

60 stop stop/1 0.38 0.43 - 20.8 20.8

0 3 3 0.37 0.37 21.2 21.2 2.6

15 3 3 0.41 0.41 21.3 21.3 4.5

30 3 3 0.45 0.45 19.6 19.6 7.5

45 3 3 0.50 0.50 17.1 17.1 10.4

0.2

60 3 3 0.54 0.54 12.8 12.8 13.4

0 3 3 0.37 0.37 21.2 21.2 2.6

15 3 3 0.42 0.42 21.4 21.4 5.8

30 3 3 0.50 0.50 20.3 20.3 10.4

45 3 3 0.55 0.55 16.6 16.6 15.1

6

0.33

60 3 3 0.59 0.59 11.5 11.5 20.1
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TABLE 3.3: Operating characteristics (continued)

Scenario ϕR jR OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)

0 3 3-5 0.48 0.70 23.9 35.6 1.3

15 3 3-5 0.50 0.73 23.7 35 3.5

30 3 3-5 0.52 0.78 21.8 32.4 6.4

45 3 3-5 0.56 0.81 19.3 27.9 9.4

0.2

60 3 3-5 0.57 0.82 15.8 22.5 12.5

0 3 3-5 0.48 0.70 23.9 35.6 1.3

15 3 3-5 0.49 0.75 22.7 35.1 5

30 3 3-5 0.51 0.80 20.8 31.6 9.7

45 3 3-5 0.55 0.84 17.7 26 14.7

7

0.33

60 3 3-5 0.56 0.84 13.7 19.6 19.5

0 stop stop/1 0.81 0.85 - 10.2 10.2

15 stop stop/1 0.79 0.84 - 11.1 11.1

30 stop stop/1 0.77 0.81 - 13.2 13.2

45 stop stop/1 0.71 0.76 - 15.6 15.6

0.2

60 stop stop/1 0.41 0.50 - 17.9 17.9

0 stop stop/1 0.81 0.85 - 10.2 10.2

15 stop stop/1 0.78 0.82 - 11.3 11.3

30 stop stop/1 0.75 0.79 - 14 14

45 stop stop/1 0.69 0.71 - 17.4 17.4

8

0.33

60 stop stop/1 0.38 0.43 - 20.8 20.8

0 3 3 0.34 0.34 18.6 18.6 2.6

15 3 3 0.36 0.36 19.2 19.2 4.6

30 3 3 0.42 0.42 18.3 18.3 7.5

45 3 3 0.45 0.45 16.3 16.3 10.3

0.2

60 3 3 0.50 0.50 12.9 12.9 13.3

0 3 3 0.34 0.34 18.6 18.6 2.6

15 3 3 0.38 0.38 19.7 19.7 5.9

30 3 3 0.45 0.45 18.6 18.6 10.4

45 3 3 0.52 0.52 15.9 15.9 15.2

9

0.33

60 3 3 0.56 0.56 11.5 11.5 20.1
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TABLE 3.3: Operating characteristics (continued)

Scenario ϕR jR OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)

0 2 2-4 0.77 0.97 45.1 57.1 1.3

15 2 2-4 0.79 0.97 41.8 55.3 3.5

30 2 2-4 0.79 0.98 37.2 52.5 6.5

45 2 2-4 0.79 0.99 32.2 49.6 9.4

0.2

60 2 2-4 0.80 0.99 26.4 46.4 12.3

0 2 2-4 0.77 0.97 45.1 57.1 1.3

15 2 2-4 0.77 0.97 40.1 53.6 5

30 2 2-4 0.76 0.98 34.6 49.1 9.8

45 2 2-4 0.76 0.99 28.4 44.3 14.7

10

0.33

60 2 2-4 0.78 0.99 22.3 39.2 19.6

0 stop stop/1 0.65 0.74 - 11.7 11.7

15 stop stop/1 0.65 0.72 - 12.3 12.3

30 stop stop/1 0.62 0.69 - 13.8 13.8

45 stop stop/1 0.57 0.63 - 15.7 15.7

0.2

60 stop stop/1 0.41 0.49 - 17.9 17.9

0 stop stop/1 0.65 0.74 - 11.7 11.7

15 stop stop/1 0.64 0.72 - 12.5 12.5

30 stop stop/1 0.60 0.67 - 14.7 14.7

45 stop stop/1 0.52 0.56 - 17.7 17.7

11

0.33

60 stop stop/1 0.38 0.42 - 20.9 20.9

0 2 2-3 0.83 0.92 47.3 53.7 2.7

15 2 2-3 0.83 0.93 43.6 51.8 4.7

30 2 2-3 0.82 0.95 39.7 49.3 7.4

45 2 2-3 0.84 0.96 35.9 46.4 10.4

0.2

60 2 2-3 0.85 0.97 31.7 43.5 13.2

0 2 2-3 0.83 0.92 47.3 53.7 2.7

15 2 2-3 0.81 0.94 41.9 50.7 5.9

30 2 2-3 0.80 0.95 36.6 46.3 10.4

45 2 2-3 0.81 0.96 31.7 41.8 15.3

12

0.33

60 2 2-3 0.82 0.97 26 36.8 20
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TABLE 3.3: Operating characteristics (continued)

Scenario ϕR jR OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)

0 stop stop/1 0.82 0.82 - 1.2 1.2

15 stop stop/1 0.78 0.78 - 3.5 3.5

30 stop stop/1 0.70 0.70 - 6.5 6.5

45 stop stop/1 0.57 0.57 - 9.5 9.5

0.2

60 stop stop/1 0.01 0.01 - 12.4 12.4

0 stop stop/1 0.82 0.82 - 1.2 1.2

15 stop stop/1 0.76 0.76 - 4.9 4.9

30 stop stop/1 0.68 0.68 - 9.7 9.7

45 stop stop/1 0.54 0.54 - 14.7 14.7

13

0.33

60 stop stop/1 0.01 0.01 - 19.6 19.6

0 stop stop/1 0.96 0.97 - 8.3 8.3

15 stop stop/1 0.95 0.96 - 9.6 9.6

30 stop stop/1 0.94 0.95 - 12.4 12.4

45 stop stop/1 0.92 0.93 - 15.5 15.5

0.2

60 stop stop/1 0.42 0.50 - 17.7 17.7

0 stop stop/1 0.96 0.97 - 8.3 8.3

15 stop stop/1 0.95 0.96 - 9.9 9.9

30 stop stop/1 0.93 0.94 - 13.5 13.5

45 stop stop/1 0.89 0.90 - 17.3 17.3

14

0.33

60 stop stop/1 0.38 0.43 - 20.8 20.8

0 stop stop/1 0.89 0.89 - 2.3 2.3

15 stop stop/1 0.87 0.87 - 4.5 4.5

30 stop stop/1 0.82 0.82 - 7.3 7.3

45 stop stop/1 0.73 0.73 - 10.4 10.4

0.2

60 stop stop/1 0.02 0.03 - 13.4 13.4

0 stop stop/1 0.89 0.89 - 2.3 2.3

15 stop stop/1 0.86 0.86 - 5.7 5.7

30 stop stop/1 0.80 0.80 - 10.3 10.3

45 stop stop/1 0.69 0.70 - 15.2 15.2

15

0.33

60 stop stop/1 0.02 0.03 - 20.1 20.1
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For scenario 1 it is relatively simple to select an admissible dose since all

doses are tolerable and efficacy increases monotonically. The difficulty is lo-

cating the OBD. All of these combinations fail to identify the OBD (dose-level

5) more than 7% of the time. Whereas the probability of selecting a good dose

is between 60 and 82%. As the size of the AR phase increases from 0 to 60 so

do the selection probabilities for a good dose, going from 60% to 80% and 60%

to 82% for randomisation probabilities of 0.2 and 0.33 respectively. It should

be noted that the two designs with no AR phase are identical since the ran-

domisation probabilities are never used. In terms of the number of patients

treated we see more patients in the control arm as AR phase size and randomi-

sation probability increase. This is expected since if you increase the amount of

time available for cohorts to be randomised or the probability in which that is

done, more patients will be recruited to control. By increasing the probability

of randomising to control we can also see that fewer patients are being treated

at good doses at higher AR sizes. Also, the ϕR figure does not guarantee that

exact percentage of patients in the control dose will be allocated to control but

for this scenario, it appears to be somewhat accurate.

Scenario 2 has no OBD as all treatment doses are considered toxic. For most

of the combinations, stopping occurs 67-81% of the time and including alloca-

tion to the control arm we see this increase to 70-85%. Slightly concerning is

the case where the AR phase lasts the whole trial. Here stopping is less fre-

quent at 50% and 42% for probabilities of randomisation to control of ϕR = 0.2

and ϕR = 0.33 respectively. To understand why this was occurring we inves-

tigated the failure mechanism in individual simulation runs. We found that

the design was stopping appropriately for excess toxicity. However, due to

setting the AR phase at 60 the maximisation phase never starts and thus the

stopping rule for futility never triggers. This is why this parametrisation per-

forms worse comparatively. Even though this scenario is to check for excess
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toxicity the true efficacy rates used in this scenario could also potentially trig-

ger the futility rule as they are set at 40% and 50% for dose-levels 2 and 3. To

confirm this we ran some of the parametrisations where the AR size is less

than 60 using a design without the futility rule and observed similar stopping

rates of 40% in this scenario. This indicates that overall our design is not that

great at stopping for potential toxicities. This could be improved by utilising

different stopping criteria. We also observe this difference in scenarios 5, 8, 11

and 14 where we should also be stopping for excess toxicity. The results for

jR = 60 in these scenarios could be interpreted as our baseline for stopping for

excess toxicity and the increase stopping in other parametrisations represent

how often the futility rule is triggered.

In scenario 3, the treatment is toxic at high doses and ineffective at lower

doses meaning only one dose can be considered good or the OBD. This is a

difficult scenario since only one of the five dose-levels is suitable to allocate

patients to. The selection probabilities range from 25% to 52%. We see as jR

increases selection probabilities also increase. As those designs with smaller

AR phases go into the maximisation phase they would be selecting dose-levels

based on those in the admissible set with higher efficacy. Since the doses with

higher efficacy also have a high toxicity rate there is a chance early on in the

trial this is not detected resulting in toxicities at the higher dose-levels causing

the trial to stop early. This could be a reason why the designs with the larger

AR phase perform better as doses would be randomly selected. This means

there is more chance for the lower dose-levels to be chosen and since those are

not toxic and the futility rule does not kick in until the maximisation phase

there is a higher chance that the OBD can be found.

Scenarios 4-6 look at a unimodal dose-efficacy relationship where efficacy

peaks at dose-level 3, with the three same dose-toxicity relationships as be-

fore: tolerable, toxic and toxic at high doses for each scenario respectively.
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Firstly, in scenario 4 we see good performance from all the parametrisations

with the probability of selecting the OBD ranging between 68% and 73% and

the probability of selecting a good dose ranging from 75% to 84%. We also see

an appropriate amount of patients in the control arm for each of our parameter

combinations. An important characteristic of this design to note is the ratio of

patients allocated to the control arm compared to the OBD or the good doses.

For the higher randomisation probability and maximum AR phase, we can see

close to a 1:1 (18.5 at good dose levels to 19.5 at control) allocation between

patients treated at control and the best doses. For ϕR = 0.2, and jR = 45 we can

see close to a 2:1 allocation between those treated at the OBD (21.6) and those

treated at the control (9.5).

Scenario 5 is where treatment is too toxic. Like scenario 2 we see high prob-

abilities of stopping 67%-81% and even higher probabilities for stopping and

including patients in the control arm (P(Good)) 70%-86%. Similarly, the de-

sign with an AR phase of 60 performs poorly here and the number of patients

allocated to the control is also comparable.

Scenario 6 only has one good dose to select, making it similar to scenario 3

except with a unimodal efficacy curve. Here, selection probabilities are slightly

better ranging from 37%-59%. In this scenario, we also observe that the larger

the AR phase the greater the selection probability of the OBD. The unimodal

efficacy curve means that the dose we want to select is also the dose with the

highest efficacy making it easier for the model to pick out.

A plateau relationship where dose-efficacy stops increasing after dose 3 is

looked at in scenarios 7-9 with the three different toxicity curves. In scenario 7

the probability of selecting the OBD ranges from 48%-56%, with the probability

of selecting a good dose ranging from 70-84%. In this instance, we see quite a

bit of discrepancy going from selecting the OBD to selecting the good doses in

terms of the selection probabilities being much higher for good doses. Here we
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have three doses with the same efficacy level, two of which only have a slight

increase in toxicity, which is still below the pre-specified target level. This can

also be seen in the number of patients being treated at the good dose versus at

the OBD. Scenario 8 exhibits the same behaviour as the other toxic scenarios

2 and 5. Then with scenario 9, the designs also behave similarly to scenarios

3 and 6 where higher dose-levels are too toxic. Selection probabilities range

from 34% to 56% with the designs with higher AR phases performing better.

For scenarios 10-12 we look at a monotone decreasing efficacy curve where

dose-level 2 is the most efficacious for each of the toxicity curves. In scenario

10 we see very high probabilities of selecting the OBD (76%-80%) with the

probability of selecting a good dose being 97% or higher. We can also see that

in terms of the numbers treated at the OBD and the good doses as these values

are relatively high compared to other scenarios. As the OBD is one of the

lower dose-levels it makes it relatively easy for the model to select since it

is more likely that patients will be allocated there early on into recruitment.

Once the maximisation phase starts there would be a lot of efficacy data for

that dose and it would be favoured by the model. Even in the cases with larger

AR phases, the adaptive randomisation probabilities are still scaled based on

efficacy, so it would be more likely they would be allocated to dose-level 2 as

well.

In terms of stopping early if the dose-levels are too toxic for this efficacy

curve (scenario 11), performance appears to be worse compared to other too-

toxic scenarios (scenarios 2,5,8 and 14). Even so, we still see the same patterns

where when the AR phase is 60, the same size as the trial stopping is relatively

even worse. Ignoring those designs the stopping probability ranges from 52%-

65%, adding in the percentage of patients allocated to the control arm this in-

creases to 56%-74%. One reason why this may be worse is due to the very high

efficacy rates early on and the toxicity rate only being slightly above our target
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rate by 5%. Early on into the trial, that 5% would be difficult for the model

to detect but the high efficacy rate is likely to lead to more events so the trial

would be less likely to stop until it went to higher dose-levels. Additionally,

as the efficacy rates are so high as well for early doses the futility rule is less

likely to be triggered meaning less stopping overall compared to other toxic

scenarios.

Typically, the scenarios where the higher doses are more toxic have been

the most difficult for the design to deal with. However for scenario 12, with

the monotone decreasing efficacy curve we see probabilities of selecting the

OBD range from 80%-85%. This is even higher than the selection probabilities

in scenario 10. However, when we look at the probabilities of selecting good

doses (92%-97%), whilst still very high it is still slightly less than in scenario 10

where there was one more dose that could be considered good.

Finally, the last efficacy curve we look at is one where no efficacy is appar-

ent, so efficacy stays at the same level as the control dose. Ideally, in all these

scenarios (13-15) we would stop for lack of efficacy. One thing to point out is

that the rule for stopping for futility only triggers in the maximisation phase.

So, for the designs where jR = 60 stopping for lack of efficacy will not occur.

For scenario 13 we have doses that are all tolerable and can see stopping prob-

abilities ranging from 54% to 82%. The only reason to stop in this scenario

is for lack of efficacy and so those designs with larger AR phases will not be

able to do this until later on into the trial meaning they are less likely to stop

as reflected in the stopping probabilities. In terms of selecting the good dose,

this is identical to selecting the OBD. So, in this scenario, the control dose is

seldom selected as the OBD, even though patients are still being allocated to

that dose-level. As stated for an AR phase size of 60 the trial ca not be stopped

for futility, so the probability of stopping is due to toxicity. In scenario 14, all
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the dose-levels are toxic, here we have very high stopping rates between 89%-

96% except in the case when the AR phase is 60. Scenario 15, where only the

higher doses are too toxic stops most of the time as well given a reasonable AR

phase between 69% and 89% of the time. Again, very rarely is the control dose

selected as the OBD.

Table 3.4 provides a summary of the selection probabilities of the OBD and

good doses respectively for all 15 scenarios and 10 parameter combinations.

The mean provides a rudimentary glance across the 15 scenarios of how well it

selects the OBD / good dose-levels. The standard deviation is a representation

of the variability of performance across the different designs. The lower the

standard deviation the more homogenous the performance. These statistics

have been calculated for all scenarios and then for ’Non-Stopping’ scenarios,

which are just the scenarios where stopping early for toxicity/futility is not the

ideal outcome i.e. scenarios 1,3,4,6,7,9,10 and 12.

The means for selecting a good dose are about 10% higher and appear to be

slightly less variable. This is to be expected as when selecting the good dose-

levels we are allowing for a wider range of doses to be included. There appear

to be limited differences between the various parameterisations, except for in

the case of when jR = 60 where its performance is poor in scenarios that require

stopping. There are only 1-2 percentage points difference in the mean selection

of the OBD and good dose-levels for the various designs.

In general, these scenarios show us that there are some issues with cer-

tain specifications of ϕR and jR in some of the scenarios presented. Specifi-

cally, in the case of stopping for toxicity, having the AR phase being the same

as the sample size causes some issues. However, as we investigated this is

largely due to the stopping criteria we applied and as such the design may

perform better under a different stopping rule. For the randomisation prob-

abilities, performance was mostly similar between the two values we chose.
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TABLE 3.4: Probabilities of selecting the OBD and good dose lev-
els for multiple combinations of AR phase size and probabilities

for randomisation to control, plus summary statistics.

Selection probabilities: Scenarios 1-15 All scenarios Non Stopping

ϕR jR 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean StDev Mean StDev

Selection probabilities for the OBD
0 0.05 0.81 0.25 0.69 0.81 0.37 0.48 0.81 0.34 0.77 0.65 0.83 0.82 0.96 0.89 0.63 0.27 0.47 0.27
15 0.05 0.80 0.31 0.69 0.79 0.41 0.50 0.79 0.36 0.79 0.65 0.83 0.78 0.95 0.87 0.64 0.25 0.49 0.26
30 0.05 0.77 0.35 0.71 0.77 0.45 0.52 0.77 0.42 0.79 0.62 0.82 0.70 0.94 0.82 0.63 0.23 0.51 0.26
45 0.05 0.72 0.42 0.73 0.71 0.50 0.56 0.71 0.45 0.79 0.57 0.84 0.57 0.92 0.73 0.62 0.21 0.54 0.26

0.20

60 0.04 0.41 0.48 0.71 0.41 0.54 0.57 0.41 0.50 0.80 0.41 0.85 0.01 0.42 0.02 0.44 0.26 0.56 0.25

0 0.05 0.81 0.25 0.69 0.81 0.37 0.48 0.81 0.34 0.77 0.65 0.83 0.82 0.96 0.89 0.63 0.27 0.47 0.27
15 0.07 0.77 0.32 0.69 0.78 0.42 0.49 0.78 0.38 0.77 0.64 0.81 0.76 0.95 0.86 0.63 0.24 0.49 0.25
30 0.06 0.75 0.39 0.70 0.75 0.50 0.51 0.75 0.45 0.76 0.60 0.80 0.68 0.93 0.80 0.63 0.22 0.52 0.24
45 0.05 0.67 0.46 0.70 0.67 0.55 0.55 0.69 0.52 0.76 0.52 0.81 0.54 0.89 0.69 0.60 0.20 0.55 0.24

0.33

60 0.03 0.38 0.52 0.68 0.38 0.59 0.56 0.38 0.56 0.78 0.38 0.82 0.01 0.38 0.02 0.43 0.26 0.57 0.24

Selection probabilities for good dose-levels
0 0.60 0.85 0.25 0.75 0.86 0.37 0.70 0.85 0.34 0.97 0.74 0.92 0.82 0.97 0.89 0.73 0.23 0.61 0.27
15 0.65 0.85 0.31 0.76 0.84 0.41 0.73 0.84 0.36 0.97 0.72 0.93 0.78 0.96 0.87 0.73 0.21 0.64 0.26
30 0.71 0.81 0.35 0.81 0.82 0.45 0.78 0.81 0.42 0.98 0.69 0.95 0.70 0.95 0.82 0.74 0.19 0.68 0.25
45 0.76 0.75 0.42 0.83 0.75 0.50 0.81 0.76 0.45 0.99 0.63 0.96 0.57 0.93 0.73 0.72 0.18 0.71 0.23

0.20

60 0.80 0.50 0.48 0.83 0.49 0.54 0.82 0.50 0.50 0.99 0.49 0.97 0.01 0.50 0.03 0.56 0.29 0.74 0.21

0 0.60 0.85 0.25 0.75 0.86 0.37 0.70 0.85 0.34 0.97 0.74 0.92 0.82 0.97 0.89 0.73 0.23 0.61 0.27
15 0.67 0.83 0.32 0.77 0.83 0.42 0.75 0.82 0.38 0.97 0.72 0.94 0.76 0.96 0.86 0.73 0.21 0.65 0.25
30 0.75 0.79 0.39 0.81 0.78 0.50 0.80 0.79 0.45 0.98 0.67 0.95 0.68 0.94 0.80 0.74 0.18 0.70 0.23
45 0.79 0.70 0.46 0.84 0.70 0.55 0.84 0.71 0.52 0.99 0.56 0.96 0.54 0.90 0.70 0.72 0.17 0.74 0.21

0.33

60 0.82 0.42 0.52 0.83 0.43 0.59 0.84 0.43 0.56 0.99 0.42 0.97 0.01 0.43 0.03 0.55 0.30 0.76 0.18

Many of the discrepancies in the scenarios were due to the size of the AR

phase. Seemingly, performance was generally unaffected by the percentage

of patients being randomised to control but rather the amount of time spent

being randomised. In terms of patient numbers at the control dose, we see

on average a similar number to what would be expected i.e. for ϕR = 0.2

and jR = 45 you would expect 9 control patients (20% of 45) our simulations

yielded values ranging from 9.4 to 15.6 across the 15 scenarios.

When we look at the mean of the non-stopping scenarios there appears

to be a monotonic increase in the selection of both the OBD and good doses.

As we increase the size of the AR phase we are more likely to make a correct

decision. There is also a similar pattern when we increase the probability of

randomising to control. So, accuracy appears to increase as more adaptive

randomisation is allowed to take place in the design. This may not ethically be

the best as we would want to prioritise giving patients the most efficacious and

tolerable dose. However, by allowing for more adaptive randomisation we

increase the probability of spreading out patients across the doses and gaining
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more information about all of the dose-levels which appears to make the final

selection more accurate. The uncertainty around the probability of efficacy at

each dose is reflected in our randomisation probabilities. Which is a positive

from an ethical perspective since patients are more likely to be allocated to

the more efficacious treatment and at wose would be given control. The main

caveat to this is that when we consider all scenarios the same relationship is

not observed and this is mainly due to the futility stopping rule.

Based on these simulations it would be best to use an AR phase sized be-

tween 25% and 75% of the total sample size and a randomisation to control

probability that will produce the desired number of control patients. This can

be determined by dividing the desired number of controls by the size of the

AR phase. For example, say our AR size is 30 patients and we want 15 con-

trols the probability of randomising to control ϕR should be set to 0.5 (15/30).

However, it may be beneficial to investigate various values of ϕR as there does

appear to be some trade-off in terms of performance and the number of pa-

tients recruited to the control dose.

3.4.3 Example trial run

To further demonstrate how the design works we provide a illustrative exam-

ple of a single trial run. Here we will use the same design as specified in the

previous section. Specifically we will be using the design with an AR phase

size of 30 and an adaptive randomisation probability of 0.33. All other pa-

rameters and priors are as defined previously. In practice the trial will recruit

patients in cohorts of three, they will then be given treatment and observed.

After the observation period has been collected we will update the model with

the data that has been observed and determine the dose to be recommended

for the next cohort.
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Toxicity and efficacy events are treated as binary variables, so for each pa-

tient there are four different potential outcomes. We will use a specific notation

to denote each of these outcomes. A patient can experience a toxicity event (T),

a efficacy event (E), both a toxicity and efficacy event (B) or neither a toxicity

or efficacy event (N). To reference the outcomes for a specific cohort we label

them with the dose-level of that cohort. For example a cohort at dose-level

4, where 1 patient had a toxicity, 1 patient experienced a toxicity and efficacy

event and 1 patient had neither would be presented as 4TBN. It should be

noted the order of the outcomes does not matter either, 4TBN is equivalent to

4BTN, 4BNT, etc.

For our example trial run we start at dose-level 2. Overall we will recruit 60

patients, unless the model recommends stopping early. The adaptive randomi-

sation phase will last for 30 patients (10 cohorts). The results for our observed

outcomes are shown in Table 3.5. Here for each cohort we show the estimated

probabilities from the model for toxicity and efficacy at each dose-level, we

also present the randomisation probabilities as well which indicate the proba-

bility of randomly allocating the next cohort to the next dose-level. The table

also shows what the recommended and optimal dose is after each cohort.

For the first cohort we see 2EEN, so two patients had efficacy events and

one patient has neither. Based on this data the model shows that all doses are

considered safe as the probability of toxicity is less than 0.35 for all five doses.

Looking at the estimated probability of efficacy we can see that dose-level 2

has the highest probability at 0.68. This implies that the optimal dose would

be dose-level 2 as it has the highest estimated efficacy probability and is within

the admissible safe set of doses. However, the recommended dose is dose-level

3. This is because the recommended dose in the AR phase is selected randomly

based on the randomisation probabilities. As dose-level 2 has the highest ef-

ficacy probability we can see its randomisation probability is also the highest
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TABLE 3.5: Summary of model outputs during the adaptive ran-
domisation phase for our example trial run.

Estimated probabilities

Cohort Dose Outcome 1 2 3 4 5 Recommended Optimal

tox 0.06 0.09 0.14 0.19 0.26
eff 0.34 0.68 0.59 0.5 0.421 2 EEN

rand. 0.33 0.21 0.18 0.15 0.13
3 2

tox 0.02 0.04 0.07 0.11 0.17
eff 0.51 0.74 0.8 0.74 0.672 3 EEE

rand. 0.33 0.17 0.18 0.17 0.15
3 3

tox 0.02 0.04 0.07 0.11 0.17
eff 0.51 0.74 0.8 0.74 0.673 3 EEE

rand. 0.33 0.17 0.18 0.17 0.15
4 3

tox 0.01 0.01 0.03 0.05 0.09
eff 0.44 0.69 0.77 0.69 0.614 4 ENN

rand. 0.33 0.17 0.19 0.17 0.15
1 3

tox 0.01 0.01 0.03 0.05 0.09
eff 0.32 0.6 0.7 0.6 0.55 1 NNN

rand. 0.33 0.17 0.19 0.17 0.14
2 3

tox 0 0.01 0.02 0.05 0.08
eff 0.27 0.56 0.66 0.56 0.466 2 ENN

rand. 0.33 0.17 0.2 0.17 0.14
4 3

tox 0.01 0.03 0.06 0.12 0.19
eff 0.23 0.53 0.64 0.53 0.427 4 ENT

rand. 0.33 0.17 0.2 0.17 0.13
1 3

tox 0.01 0.03 0.06 0.11 0.18
eff 0.25 0.54 0.65 0.54 0.448 1 ENN

rand. 0.33 0.17 0.2 0.17 0.14
5 3

tox 0.03 0.05 0.1 0.17 0.26
eff 0.24 0.53 0.64 0.53 0.439 5 ETT

rand. 0.33 0.17 0.2 0.17 0.13
1 3

tox 0.03 0.05 0.1 0.17 0.25
eff 0.25 0.55 0.65 0.55 0.4410 1 ENN

rand. 0.33 0.17 0.2 0.17 0.14
3 3



90 Chapter 3. Extension to a Phase I/II trial design

apart from dose-level 1 which is fixed at 0.33. Here there is still a chance to

recommend the other doses as there randomisation probabilities are non zero.

It is important to note if we were to run the model again with the exact same

data, the estimated toxicity, efficacy and randomisation probabilities and op-

timal dose would all be the same but the recommended dose could be any of

the five doses.

Continuing this example as the model recommended dose-level 3 after the

first cohort the second cohort is recruited and assigned dose-level 3. In this

example all 3 patients experience an efficacy event. When this is put into the

model, dose-level 3 is determined to be the optimal dose. The recommended

dose in this case is also dose-level 3. We see it has the highest estimated efficacy

and therefore also has the highest randomisation probability outside of the

control dose. As the efficacy probabilities are similar for the dose-levels 2-5 the

randomisation probabilities are also similar (0.15-0.18). So, the model could

have easily recommended any of the other dose-levels.

This process is repeated for the whole AR phase. After observing each

cohort we can see from cohort 2 onwards the optimal dose is considered to be

dose-level 3. This is due to the dose having the highest estimated efficacy prob-

ability whilst remaining in the admissible set of doses in terms of safety based

on the estimated toxicity probability. Even though the optimal dose is consid-

ered to be dose-level 3 we see after most of the cohorts the recommended dose

is usually a different dose. This is because the recommended dose is being ran-

domly allocated and as there have been limited toxicities in this example all of

the doses are considered safe and have a chance of being allocated to. In this

example we see that all of the dose-levels have been allocated patients at some

point during this AR phase.

As 10 cohorts of three patients have now been recruited we have reached

the 30 patient limit for the AR phase. Moving into the maximisation phase
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TABLE 3.6: Summary of model outputs during the maximisation
phase for our example trial run.

Estimated probabilities

Cohort Dose Outcome 1 2 3 4 5 Recommended/Optimal

tox 0.02 0.04 0.09 0.15 0.2411 3 EEN eff 0.25 0.55 0.65 0.55 0.44 3

tox 0.04 0.07 0.14 0.23 0.3212 3 BBE eff 0.28 0.57 0.68 0.57 0.47 3

tox 0.05 0.08 0.16 0.25 0.3413 3 BEE eff 0.3 0.59 0.69 0.59 0.49 3

tox 0.06 0.09 0.17 0.26 0.3614 3 EET eff 0.3 0.59 0.69 0.59 0.49 3

tox 0.06 0.1 0.18 0.28 0.3715 3 ENT eff 0.27 0.57 0.67 0.57 0.47 3

tox 0.07 0.11 0.19 0.29 0.3916 3 BEE eff 0.29 0.59 0.69 0.59 0.49 3

tox 0.09 0.13 0.22 0.32 0.4217 3 BET eff 0.29 0.59 0.69 0.59 0.49 3

tox 0.09 0.14 0.23 0.33 0.4318 3 BNN eff 0.27 0.57 0.67 0.57 0.47 3

tox 0.08 0.13 0.22 0.31 0.4119 3 EEN eff 0.27 0.57 0.67 0.57 0.47 3

tox 0.08 0.12 0.21 0.3 0.420 3 ENN eff 0.25 0.55 0.66 0.55 0.45 3

doses are no longer randomly allocated and instead the optimal dose is now

the dose that is recommended. From cohort 10 in Table 3.5 we can see the opti-

mal dose is dose-level 3 and there would be the dose recommended for cohort

11. Table 3.6 provides a summary of the model outputs for the next 10 cohorts

based on specific outcomes. Thee adaptive randomisation probabilities are no

longer presented as they are not required to allocate patients and as the opti-

mal dose is now always the recommended dose these can be considered the

same.

In maximisation phase we can see after each cohort the decision remains

unchanged an the recommended/optimal dose is always dose-level 3. This

is because that dose has the highest estimated probability of efficacy. Whilst

doses 4 and 5 are still within the admissible set of doses in terms of probability
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of toxicity the estimated efficacy is not as high compared to dose-level 3. If

perhaps we were to observe fewer efficacy events in some of the cohorts this

may change and the model may consider moving to a higher or lower dose.

Also in terms of toxicity whilst some patients do start to experience toxicity

events there is not enough for the model to consider dose-level 3 no longer

safe and move to a lower dose.

For example we see in cohorts 12 and 13 outcomes of BBE and BEE respec-

tively so all six of those patients had an efficacy event and three also had an

efficacy event. This causes the estimated probability of toxicity to go from 0.09

after evaluating outcomes for cohort 11 to 0.16 after cohort 13. Similarly, the

estimated efficacy goes from 0.65 to 0.68. For future cohorts there would need

to be a difference in the outcomes observed in order for the model to recom-

mend a different dose as up to this point there has been data collected on 39

patients, with 15 who have been treated at dose-level 3.

After the final cohort has been observed the model still recommends dose-

level 3 so that would be declared as the OBD. Table 3.7 shows a summary of

the number of patients treated at each dose-level along with the number of

efficacy and toxicity events and the percentage of patients in each dose-level

who experienced an event. The majority of patients end up being allocated

to dose-level 3 as this was continually defined as the optimal dose during the

maximisation phase.

Overall, our design seems to work as intended. During the AR phase mul-

tiple different doses were allocated to cohorts of patients along with the control

dose (dose-level 1). It is possible that just by chance during the AR phase you

may end up selecting the same dose over and over again and not allocate pa-

tients to other doses. So we could include additional rules to mitigate against

this. Ultimately the impact on performance of the design may be limited as

a range of doses could still be explored during the maximisation phase. Here
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TABLE 3.7: Number and percentage of events for our example
trial run by dose-level.

N (%)

Dose No. of patients Toxicity Efficacy

1 9 0 (0%) 2 (22.22%)
2 6 0(0%) 3(50%)
3 36 9 (25%) 26 (72.22%)
4 6 1(16.67%) 2(33.33%)
5 3 2 (66.67%) 1 (33.33%)

the outcomes observed could cause the estimated probabilities of efficacy and

toxicity to change and thus give a different dose recommendations.

3.4.4 Comparison of RtC-WT against Alternative Designs

The simulations presented in Section 3.4.2 were about exploring the impact of

varying the parameters controlling the randomisation in RtC-WT. In this sec-

tion we investigate two alternative trial approaches which could be used to

achieve the same aims as RtC-WT, that is to conduct a dose-finding study lo-

cating the ODB whilst recruiting patients to a control arm. Simulations will be

conducted for these two alternatives across a variety of scenarios and operat-

ing characteristics will be compared against those for RtC-WT.

The first alternative approach would be just to use a standard Wages and

Tait design and include the lowest dose-level as control. We will refer to this

approach as the standard Wages and Tait (WT). Technically this design does

not aim to recruit control patients but by including it as a dose-level there is

still a probability during the AR phase that this occurs. Either way, this will be

a good comparator for RtC-WT as we will be able to directly compare how our

extension impacts performance compared to a traditional Wages and Tait de-

sign. Theoretically, since the standard Wages and Tait design will not be forced

to allocate patients to the control dose-level you would expect more patients
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to be allocated at the experimental treatment dose-levels leading to more data

on efficacy and toxicity relationships making it easier to locate the ODB. The

differences in performance between these two designs could be considered as

the cost of including a control dose.

The second design uses a two-arm randomised approach. Patients once re-

cruited are randomised to either a control arm or a dose-finding study arm.

The dose-finding study arm will use the method of Wages and Tait to identify

an OBD. We will refer to this method as the two-arm approach. One of the ben-

efits of this approach is that it is fairly simplistic. This could be considered a

straightforward way of including a control arm into complex designs without

having to deal with any mathematics. For example, the EffTox design could

be used for the dose-finding arm, and due to the two-arm approach, we now

have a cohort of control patients without building that methodology directly

into the design. For the dose-finding study, any methodology could be used

here to locate an OBD, however, we selected WT to provide more comparisons

for RtC-WT. Since the randomisation occurs upfront a guaranteed number of

patients can be expected in the control arm, which may be a desirable char-

acteristic of this design. It is important to note in our simulations here that

we will not consider any data from the patients in the control arm to have an

impact on the dose-finding study arm. Both arms can be considered indepen-

dent for our simulations. In terms of comparisons to RtC-WT, this design will

allow us to see if it is worth including the control patients directly in the dose-

finding aspect of the design and if there is any benefit in terms of operating

characteristics.

For RtC-WT we will be using the same design specification as detailed in

Section 3.4.1. In terms of parameters for the number of patients in the AR phase

and the probability of randomising to control these will be set at jR = 30 and

ϕR = 0.33 respectively. These values were selected based on the work done
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in the previous section. This combination of parameters seemed to perform

consistently across all the scenarios explored. The standard Wages and Tait

approach will also be using the same specification except for the fixed proba-

bility of randomisation to control.

For the two-arm approach, patients are being randomised first. Looking at

the RtC-WT design we have specified a sample size of 60, an AR phase size of

30 and a probability of randomising to control at 33%. Here we would expect

roughly ten patients to be allocated to the control arm (33% of 30), looking at

Table 3.3 for this combination we see on average we achieve around 9-10 pa-

tients at the control dose-level in non-toxic scenarios. To mimic this behaviour

for the two-arm approach we would need to specify a randomisation ratio up-

front. Based on the parameters set for RtC-WT this can be done generally using

the formula:

1 :
J

ϕR jr
− 1, (3.19)

where J is the maximum sample size. Alternatively, if the number of control

patients desired is known the denominator can be replaced by that number.

In this scenario, using the equation above we obtain a randomisation ratio of

approximately 1:5. This would lead to 10 patients in the control arm and 50 in

the dose-finding arm. As we are using cohorts of 3 it would be preferable to

have the sample size of the dose-finding study be divisible by 3. Therefore we

set the desired number of control patients as 9, leaving 51 for the dose-finding

study.

The specifications for the dose-finding study in the two-arm approach will

be somewhat similar as well. Here there will only be four dose levels (no con-

trol dose-level) i.e doses 2-5 in Section 3.4.1. We also adjust the toxicity and

efficacy skeletons accordingly in Table 3.1 as well by removing the values from
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dose-level 1. Since there is no control dose-level in the design we will just be

using approximately 50% of the patients in the AR phase, as recommended by

Wages and Tait. As there will be 51 patients in the dose-finding study we set

the AR phase to 24, slightly less than 50% as we are using cohorts of three and

51 patients can not be evenly split up between the two phases. Each design has

an effective total sample size of 60 patients, however the allocation of patients

to the specific dose-finding portion of the Two-Arm design differs slightly. All

other design specifications remain the same such as the stopping rules and the

pre-specified toxicity upper bound and lower bound. We summarise the three

designs being compared in Table 3.8.

TABLE 3.8: Summary of the three designs being compared.

Design Specification Benefits Flaws Assumptions

RtC-WT

5 Doses
N = 60
Cohort size = 3
AR size (jR) = 30
ϕR = 0.33

Guaranteed patients recruited
to the control dose.
Able to compare control to
experimental doses.

Performance may suffer.
Extra complexity in the design.

The lowest dose level is a
control dose.

WT

5 Doses
N = 60
Cohort size = 3
AR size (jR) = 30

Simple to implement.
Able to compare control
to experimental doses.

Patients not guaranteed at the
control dose.

Control dose treated in the same
was as an experimental dose.

Two-Arm

4 Doses
N = 51
9 control patients
Cohort size = 3
AR size (jR) = 24

Simpler to implement.
Exact number of control
patients is known.

Cannot include the control dose
when modelling toxicity and efficacy

Recruit dose-finding and control
patients separately.
Allocation ratio is based on the
number of control patients desired.

To compare these different approaches simulations will be used covering

the same 15 scenarios as in section 3.4.2. For each scenario, we simulate 10000

trials using the designs mentioned above. Table 3.9 shows the operating char-

acteristics comparing the three designs. Table 3.10 provides summary statis-

tics of the operating characteristics. The mean and standard deviation of the

selction probabilities are calculated for all scenarios and also all scenarios ex-

cluding those where stopping is the best option (non stopping).
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TABLE 3.9: Operating characteristics for alternative designs. Probability of selecting
the best or good dose levels as the OBD, mean number of patients treated at those

dose levels and at the control dose after 10000 simulations.

Scenario Design OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)

RtC-WT 5 3-5 0.06 0.75 2.2 30.4 9.8

WT 5 3-5 0.05 0.72 2.1 31.8 6.61

Two-Arm 5 3-5 0.04 0.61 1.8 25.5 9

RtC-WT stop stop/1 0.75 0.79 - 14 14

WT stop stop/1 0.76 0.80 - 13.9 13.92

Two-Arm stop stop 0.75 0.75 - - 9

RtC-WT 3 3 0.39 0.39 17.3 17.3 10.4

WT 3 3 0.37 0.37 17.7 17.7 8.43

Two-Arm 3 3 0.26 0.26 12.6 12.6 9

RtC-WT 3 3-4 0.70 0.81 24.8 31 9.9

WT 3 3-4 0.73 0.81 27.6 33.5 6.64

Two-Arm 3 3-4 0.72 0.76 24 28.1 9

RtC-WT stop stop/1 0.75 0.78 - 14.1 14.1

WT stop stop/1 0.76 0.80 - 13.9 13.95

Two-Arm stop stop 0.75 0.75 - - 9

RtC-WT 3 3 0.50 0.50 20.3 20.3 10.4

WT 3 3 0.48 0.48 21.2 21.2 8.46

Two-Arm 3 3 0.38 0.38 15.9 15.9 9

RtC-WT 3 3-5 0.51 0.80 20.8 31.6 9.7

WT 3 3-5 0.54 0.79 22.8 33.4 6.87

Two-Arm 3 3-5 0.52 0.71 19.5 27.8 9

RtC-WT stop stop/1 0.75 0.79 - 14 14

WT stop stop/1 0.75 0.79 - 13.9 13.98

Two-Arm stop stop 0.76 0.76 - - 9

RtC-WT 3 3 0.45 0.45 18.6 18.6 10.4

WT 3 3 0.43 0.43 19.4 19.4 8.49

Two-Arm 3 3 0.34 0.34 14.2 14.2 9
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TABLE 3.9: Operating characteristics (continued)

Scenario Design OBD Good Doses P(OBD) P(Good) N(OBD) N(Good) N(Control)

RtC-WT 2 2-4 0.76 0.98 34.6 49.1 9.8

WT 2 2-4 0.78 0.98 36.4 52.2 6.710

Two-Arm 2 2-4 0.83 0.99 37.1 50.2 9

RtC-WT stop stop/1 0.60 0.67 - 14.7 14.7

WT stop stop/1 0.60 0.67 - 14.3 14.311

Two-Arm stop stop 0.53 0.53 - - 9

RtC-WT 2 2-3 0.80 0.95 36.6 46.3 10.4

WT 2 2-3 0.82 0.95 38.5 48.5 8.312

Two-Arm 2 2-3 0.90 0.97 41.2 48.6 9

RtC-WT stop stop/1 0.68 0.68 - 9.7 9.7

WT stop stop/1 0.71 0.71 - 6.3 6.313

Two-Arm stop stop 0.68 0.68 - - 9

RtC-WT stop stop/1 0.93 0.94 - 13.5 13.5

WT stop stop/1 0.94 0.95 - 13.2 13.214

Two-Arm stop stop 0.95 0.95 - - 9

RtC-WT stop stop/1 0.80 0.80 - 10.3 10.3

WT stop stop/1 0.82 0.82 - 8.1 8.115

Two-Arm stop stop 0.81 0.81 - - 9

TABLE 3.10: Selection probabilities and summary statistics for
multiple designs.

Selection probabilities: Scenarios 1-15 All scenarios Non Stopping

Design 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean StDev Mean StDev

Selection probabilities for the OBD
RtC-WT 0.06 0.75 0.39 0.70 0.75 0.50 0.51 0.75 0.45 0.76 0.60 0.80 0.68 0.93 0.80 0.63 0.22 0.52 0.24

WT 0.05 0.76 0.37 0.73 0.76 0.48 0.54 0.75 0.43 0.78 0.60 0.82 0.71 0.94 0.82 0.64 0.23 0.53 0.26
Two-Arm 0.04 0.75 0.26 0.72 0.75 0.38 0.52 0.76 0.34 0.83 0.53 0.90 0.68 0.95 0.81 0.62 0.26 0.50 0.30

Selection probabilities for good dose-levels
RtC-WT 0.75 0.79 0.39 0.81 0.78 0.50 0.80 0.79 0.45 0.98 0.67 0.95 0.68 0.94 0.80 0.74 0.18 0.70 0.23

WT 0.72 0.80 0.37 0.81 0.80 0.48 0.79 0.79 0.43 0.98 0.67 0.95 0.71 0.95 0.82 0.74 0.19 0.69 0.24
Two-Arm 0.61 0.75 0.26 0.76 0.75 0.38 0.71 0.76 0.34 0.99 0.53 0.97 0.68 0.95 0.81 0.68 0.22 0.63 0.28

To compare the Two-Arm design with the others, we still consider there to

be five dose-levels, with the first dose-level being a separate arm and dose-

levels 2-5 comprising the dose-finding arm. Also, since the two arms can be



3.4. Evaluation and exploration of the extension via simulations 99

considered independent in scenarios where stopping is preferred, this would

only stop the dose-finding arm so patients at dose-level 1, the control arm, can

still be recruited.

Across most scenarios RtC-WT and WT designs outperform the Two-Arm

approach in terms of selection of the OBD if only by a few percentage points.

Since the Two-Arm approach is essentially the same as the standard WT de-

sign but with fewer patients, it is expected to be slightly inferior as with most

dose-finding studies a higher number of patients yield better operating char-

acteristics. However, with the RtC-WT design actively recruiting to the control

dose there should be an equal number of patients receiving control and treat-

ment dose-levels to equate to similar operating characteristics. There appears

to be some added benefit in terms of modelling for including control as a dose-

level rather than using the Two-Arm approach when it comes to selecting the

OBD. It should be mentioned that the differences in selection of the OBD are

only slight between 1% and 8%. In terms of MC error, which was discussed

in Chapter 2, Section 2.3.5, a slight difference of 1% can still be interpreted as

significant. Also, the Two-Arm approach manages to allocate more patients

to the OBD in certain scenarios (10 and 12) which is the monotone decreasing

efficacy curve. In these scenarios having fewer dose-levels is an advantage as

the earlier dose-levels are the most optimal making selection easier. It should

be mentioned that an alternative specification of the Two-Arm approach may

lead to better performance overall. In scenarios where stopping early would

be ideal all three designs seem to behave similarly and have relatively compa-

rable operating characteristics.

The performance of the RtC-WT and WT design is quite similar across all

the scenarios. The key differences between RtC-WT and WT can be seen in

the number of patients recruited to the control dose-level. The WT design re-

cruits fewer patients here as expected since the randomisation probability is
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not fixed. This usually results in more patients being allocated to the OBD.

RtC-WT would experience situations where it would allocate a cohort to the

control dose-level but the standard WT in the same situation would be able to

randomise between the efficacious doses. This advantage however does not

consistently yield better selection probabilities. Generally, we can say the WT

design is not ideal if a trial aims to recruit control patients whilst conducting

a dose-finding study. However, in the case where the control dose has high

enough efficacy, the WT design can successfully still randomise patients there

as can be seen in these simulations. It is possible under a different parametrisa-

tion, perhaps a design with a larger adaptive randomisation phase those num-

bers of control patients would be higher, although this may negatively impact

performance. Overall, we can see the trade-off between allowing for this re-

cruitment to control and overall performance. Based on these simulations and

scenarios it seems RtC-WT performs relatively well.

3.5 Efficiency of an efficacy test

Typically seamless Phase I/II adaptive trial designs, such as the Wages and Tait

design, allow us to conduct dose-finding whilst considering both toxicity and

efficacy outcomes. However, they cannot often make comparisons between

experimental treatment and placebo/control which would typically occur in a

randomised Phase II setting. Our design, RtC-WT, takes these seamless Phase

I/II designs one step further by incorporating a control arm which allows us

to make these comparisons.

Trials that use an efficacy outcome investigating multiple doses along with

a control dose will usually include a test of differences between the selected

dose and control. If RtC-WT would be implemented in an actual trial it would

be plausible to conduct an efficacy test between the control arm and eventual



3.5. Efficiency of an efficacy test 101

OBD. A two proportions test [77] could be utilised which would simply com-

pare the proportion of efficacy events in the control arm with the proportion of

efficacy events at the OBD. However, dependent on the exact circumstance of

that trial and the data observed the efficiency of the efficacy test may vary. To

evaluate RtC-WT and the efficiency of conducting this test we can use our pre-

vious simulation results and calculate the power that each specific trial would

generate.

We will utilise simulation results from the design in Section 3.4.4. For each

relevant scenario and individual trial run, we will take the number of patients

treated at the control dose and the number of patients treated at the OBD to

conduct power calculations. These results will then be aggregated and sum-

marised.

Power calculations will be done for a two-sided hypothesis test of the dif-

ference between two independent proportions using the effect size. These

methods are detailed by Cohen [78]. The proportions are compared by looking

at their difference which is calculated from transformed values of the propor-

tions in both groups.

Let P1 and P2 represent the proportions for the two arms then the effect size

is represented by the difference h:

h = ψ1 − ψ2 (3.20)

where

ψe = 2arcsine(
√

Pe), e = 1, 2. (3.21)
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To calculate the power we need to specify the effect size. Cohen [78] sug-

gests using 0.2, 0.5 and 0.8 as effect sizes and indicated these could be in-

terpreted as small, medium and large effects respectively. Our example de-

sign has an efficacy rate specified in the control arm of 30% and an efficacy

lower bound of 50% which informs the futility stopping rule. From this, we

could say the proportion of patients we expect to have an efficacy event in the

control arm is 0.3 and a minimum of 0.5 in the OBD. Plugging these values

into the equations above gives an effect size of 0.41 which we also investi-

gate. For our calculations we considered multiple null hypotheses of H0 : h =

0.2, 0.41, 0.5, 0.8 and the alternative hypothesis of H1 : h ̸= 0.2, 0.41, 0.5, 0.8 re-

spectively. The type I error rate was set at 10%.

Table 3.11 lists the effect sizes used for the power calculations. For each

effect size, the power (1 - the type II error probability) was calculated. It should

be noted that the value of the effect size does not directly match values in

the differences in the proportions. For example proportions of 0.21 and 0.1

will give an effect size of 0.3 but so will proportions of 0.55 and 0.44. In our

simulations, we have set the efficacy rate in the control arm at 30% so here it

is reasonable to assume that on average the proportion in the control arm will

be similar. We can then calculate, using our effect size, what we would expect

the proportion in the OBD arm to be.

TABLE 3.11: List of effect sizes used in power calculations.

Effect Size POBD PControl POBD − PControl
0.2 0.395 0.3 0.095
0.41 0.5 0.3 0.2
0.5 0.544 0.3 0.244
0.8 0.689 0.3 0.389

For scenarios where stopping was the optimal outcome, we did not calcu-

late power. In these scenarios, we would not want to reach this stage as either

the treatment was found to be ineffective or too toxic. Similarly, power was
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also not calculated in individual trial runs where stopping occurred in other

scenarios. There were a small number of runs in which either no patients were

recruited to the control dose or the OBD was declared as a dose that had not

treated any patients. In both of these instances, power could not be calculated

as the number of patients for either the control or OBD arm is 0.

Table 3.12 details the power calculations which are based on the results of

10000 simulations for each scenario. For each effect size, the average power is

presented. In some instances, this average is not across the 10000 simulated

trials but a smaller number due to either stopping rules or insufficient patient

numbers. For reference, we also present the total number of trials in which

power is calculated for each scenario.

TABLE 3.12: Mean power achieved across multiple scenarios for
different assumptions of effect size.

Effect Sizes - Mean Power (sd)

Scenario 0.2 0.41 0.5 0.8 N

1 0.15 (0.02) 0.28 (0.07) 0.36 (0.09) 0.64 (0.14) 8445
3 0.15 (0.02) 0.3 (0.07) 0.38 (0.09) 0.67 (0.14) 7096
4 0.15 (0.02) 0.29 (0.07) 0.37 (0.09) 0.66 (0.14) 8771
6 0.15 (0.02) 0.3 (0.07) 0.38 (0.09) 0.68 (0.14) 7490
7 0.15 (0.02) 0.28 (0.06) 0.36 (0.09) 0.64 (0.14) 8777
9 0.15 (0.02) 0.3 (0.07) 0.38 (0.09) 0.67 (0.14) 7358

10 0.15 (0.02) 0.3 (0.07) 0.39 (0.09) 0.68 (0.14) 9556
12 0.15 (0.02) 0.31 (0.07) 0.4 (0.1) 0.7 (0.14) 9391

We can see for the effect sizes 0.2, 0.41 and 0.5 power is relatively low rang-

ing from 0.15 to 0.4 depending on the scenario. For a large effect size, the

average power is a bit higher ranging from 0.64 to 0.7. The higher the power

the lower the probability of committing a type II error wherein the hypothesis

test fails to reject a false null hypothesis. Our design appears to have some-

what reasonable power to detect larger differences in the proportions of effi-

cacy events in the control and OBD arm. Altering the parameters of our design
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could lead to results that gives us a higher power but we would also need to

evaluate how those parameters impacted the dose-finding aspect of the design.

The main way to increase the power would be to increase the sample size

specifically by having more patients in the control and OBD arm. Increasing

the total sample size of the trial would not always achieve this goal as the

extra patients could potentially be recruited into other dose-levels. One way

around this would be to utilise an idea like a dose expansion cohort. Once the

OBD has been established recruitment could continue and patients could be

randomised to either the control arm or the OBD to better power any efficacy

comparisons. Alternatively, a two-stage approach could be used where the

first stage consists of dose-finding which is then built upon in a subsequent

stage to compare efficacy more efficiently.

3.6 Discussion

In this chapter, we proposed RtC-WT, an extension to the seamless Phase I/II

Wages & Tait trial design to allow for the ability to randomise patients to a

control dose. The main motivation was to add a control arm as a dose level

to achieve similar objectives as a randomised phase II study whilst maintain-

ing efficiency in the dose-finding process. We examined the impact of various

combinations of the AR phase size and the probability of randomising to con-

trol. We then compared RtC-WT to alternative approaches. We also assessed

the impact of different efficacy skeletons and assumptions we made about the

control dose on the operating characteristics of the design. In summary, we

found that RtC-WT maintains reasonable operating characteristics when ran-

domising patients to a control dose, although this depends on the parametri-

sation of the design.
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When examining the various combinations of AR phase sizes and randomi-

sation to control probabilities we consistently saw several issues with the ex-

treme values of AR phase sizes. For instance, when the AR phase lasts the

whole trial the design had some issues regarding stopping for excess toxicity.

There were also problems generally with the design when attempting to stop

for futility. It may be necessary to employ alternative stopping rules to achieve

acceptable probabilities of stopping in certain scenarios. Also, when there was

no AR phase the design had issues locating the OBD. This led to the recom-

mendation of using 25-75% of the trial size as the AR phase as these were the

values we investigated.

In terms of randomisation probabilities, we looked at two different possi-

bilities in conjunction with the various AR phase sizes. There are practically

countless combinations that could have been investigated and different com-

binations may have led to alternative conclusions. What can be said however

is that in a practical clinical trial setting, thought should be given as to how

many control patients the investigators want to recruit and then use that to

determine the optimal sample size and AR phase size. For example, if 20 con-

trol patients are desired from a maximum sample size of 60 a randomisation

to control probability of 0.66 for an AR phase size of 30 could be used or a 0.5

randomisation provability with an AR size of 40. Also, here it may be unfea-

sible to look at every combination but a sample should be investigated to see

how it impacts the design.

Furthermore, the scenarios we presented in our simulations are again only

a small handful of all possible scenarios that could be investigated. The scenar-

ios we chose represent a variety of dose-efficacy curves which may be plausible

in this trial setting. Another limitation of the simulations is how toxicity and

efficacy data were generated. We have assumed that both of these events are

independent but in a practical scenario, this may not be the case. A patient
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may withdraw from the trial after having a toxicity, meaning no efficacy data

can be observed for that individual. Further work could be done to look at the

impact of sampling dependent toxicity and efficacy data.

Additionally, the model does not aim to balance toxicity against efficacy or

consider a trade-off between the two like some designs do for example EffTox.

The Wages and Tait design and the RtC-WT select doses from a subset of tol-

erable doses based on the probability of efficacy. This guarantees that the dose

chosen will be safe but there may be a slightly less effective dose which is a lot

less toxic which may be more appropriate or could be considered optimal. Ad-

ditional scenarios could be investigated that look into how this balance works

and those results could be contrasted against designs like EffTox that are de-

signed with those relationships in mind.

To our knowledge, there are no other phase I/II designs that share the same

aims as RtC-WT as such it is difficult to make comparisons with alternative

approaches. We opted to compare our design against an easy-to-implement

two-arm method. Although our design outperformed the two-arm approach

in the scenarios presented we did not optimise the design of the dose-finding

arm. Usually specifying a design for a dose-finding study is an iterative pro-

cess in which certain parameters are tweaked to produce optimal operating

characteristics. As such a more optimised two-arm approach could yield bet-

ter performance than RtC-WT. The same could be said for the RtC-WT design

and there could exist a better combination of parameters for the example trial

we presented.

For all our simulations and when comparing designs, we used the same

exemplar trial. This involved a control dose that had a known toxicity and

efficacy profile. The probability of observing an efficacious event at this dose

was specified at 30%. Even though this is relatively high when comparing our

design directly to a standard Wages and Tait design we saw an increase in the
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number of patients at the control dose and no real loss in terms of performance.

This shows our design achieves what was intended as well as the fact that the

standard Wages and Tait design can perform a similar job if the efficacy rates of

the control dose are high enough. One caveat to this however is that we have

just looked at one example trial and these conclusions may vary for a trial

in which the control dose is not quite as efficacious. Further work could be

done comparing these designs using different trials with different underlying

assumptions.

If choosing between these two designs to be implemented into an actual

trial there may be multiple things to consider. Whilst the RtC-WT and WT

perform similarly in these simulations, in practice this may not be the case.

The RtC-WT may be a more flexible option. For example, in the case where

it is assumed that the control dose would have a relatively high probability

of efficacy, simulations would show several patients being recruited to that

dose; however, if in the actual trial the efficacy rate at the control dose is much

lower than anticipated you would end up with fewer patients at that dose

than the initial simulations would suggest. With the RtC-Wt this would not

be the case since the probability to randomise to the control dose is fixed up

front and would remain constant throughout a variety of scenarios as we have

demonstrated.

There may also be many practical considerations to accommodate when

considering implementing RtC-WT into an actual trial. For example, the adap-

tive randomisation component may require validation from multiple statis-

ticians every time the probabilities are updated. In the case of RtC-WT this

would need to be done for each cohort. As statisticians are a rare resource in

most trial units this may be a limitation to using the design. It could be said

however in the case of Wages and Tait and other dose-finding trials which use

adaptive randomisation that patients are not being adaptively randomised but
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rather the dose-levels are. This distinction may circumvent the need to have

the randomisation probabilities validated. Typically, in normal dose-finding

studies, patients who enter the trial later on are more likely to receive the

higher dose-levels dependent on whatever escalation occurred so far. With

RtC-WT and Wages and Tait method in general patients will be able to receive

any of the admissible doses with probabilities scaled to the most efficacious

doses.

It should be noted that the inclusion of a control dose depends on the def-

inition of efficacy and toxicity events. It should be possible to measure the

efficacy and toxicity events in the control arm. For example, the standard of

care may aim to treat the underlying symptoms of a condition whereas the

treatment aims to reduce some biological measure that the standard of care

does not impact. This is more of a practical concern to determine if RtC-WT

is a suitable design for a trial since during the modelling phase if no toxic or

efficacy events are observed for the control this should not be an issue.

We also explored how efficient our design would be when conducting effi-

cacy tests. The power for detecting large differences in the effect size ranged

from 64-70%. Most Phase II trials would strive to achieve higher power and

may be able to detect smaller differences. Further work could be done by

building upon this design to achieve this same goal. One other limitation is

that whilst we have used some form of randomisation it is not entirely similar

to randomisation that may occur in a Phase II setting. So, it may be possible

when using RtC-WT there is an imbalance in key patient characteristics when

comparing the control and OBD doses.

A recent development by Yan et al. [79] suggested three alternative strate-

gies of adaptive randomisation for the Wages and Tait design. They showed

that their final recommended strategy achieved better accuracy when select-

ing the OBD as well as allocating more patients to that dose-level as well. The



3.6. Discussion 109

strategy works by gradually excluding efficacy skeletons as data is collected.

RtC-WT could be improved further by the incorporation of this alternative

adaptive randomisation method as we have already shown its effectiveness in

comparison to the traditional Wages and Tait design.

In the paper by Mozgunov et al. [75] they compare the use of a 4 parame-

ter EMAX model with a CRM one parameter model, a two parameter logistic

model with and without randomisation. It was found that the four parame-

ter model with the inclusion of randomisation out performed the alternative

approaches in terms of identification of the optimal dose combination. It was

also shown that the two parameter logistic models performed relatively well

and out performed the one parameter model. For the RtC-WT design one lim-

itation is we only investigated use of one parameter models for toxicity and

efficacy. Based on the work by Mozgunov et al. [75] the use of a two param-

eter model may yield better performance from our design as it would be able

to model the probability of toxicity at the control dose and the experimental

doses separately. Based on the randomisation in our design patients would be

allocated to doses around two points the control dose and OBD. Thus, more

flexible models may be more appropriate. Considering our aims were to in-

vestigate the adaptive randomisation component of the WT design to see if it

could be leveraged to include a control arm optimisation of this design could

be apart of further research specifically investigating the benefit of using dif-

ferent models.

Whilst relatively simplistic, our modification allowed for the inclusion of

a control dose-level to the Wages and Tait method without compromising op-

erating characteristics. We presented results from multiple simulations show-

ing good performance, especially in non-monotonic efficacy scenarios. Further
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work could be done to consider a wider range of design specifications and sce-

narios. We utilised a relatively simple trial scenario and made a lot of assump-

tions that may not necessarily be applicable in a real-world trial setting.



111

Chapter 4

Extending Dose Transition

Pathways for use in TITE-CRMs

4.1 Introduction

Dose transition pathways (DTPs), were developed as a tool by Yap et al. [31] in

order to address some of the issues around understanding and implementing

complex and innovative designs. DTPs can be considered a tool primarily

for dose-finding trials where the primary objective is to determine an MTD (or

TD%% at a specific target toxicity level) which is determined by the occurrence

of DLTs recorded as a binary variable. The purpose of DTPs is to aid the design

and analysis of these types of trials. This is done by projecting in advance the

dose-escalation decisions for future cohorts based on the different potential

data that may accrue. It can also be used as a calibration tool during the design

stage of a trial to ascertain how the model behaves under certain outcomes and

modify its specifications if necessary. These projections can then be visualised

and help illustrate how the model operates and communicate possible future

decisions that may be made.

In the paper by Yap et al. [31], DTPs are introduced through their illustra-

tive use in a trial with a CRM design. They discuss that the idea of DTPs can
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be extended to other model-based designs such as the TITE-CRM and phase

I/II designs that consider efficacy and toxicity. DTPs are produced based on

the different potential outcome data that will be collected and for both of these

possible extensions, the outcome data is more complex which makes produc-

ing DTPs for these designs slightly more challenging. Specifically, for the TITE-

CRM additional data is needed depending on if the patient is to be fully or

partially weighted. So, if the patient has not experienced a DLT they will be

partially weighted in the model based on the time they have spent in the trial.

This makes mapping out dose-escalation decisions difficult since we are no

longer dealing with a simple binary variable of DLT/no DLT.

In this chapter, we aim to explore the potential of extending DTPs for use

in TITE-CRMs. We start by providing an example of a DTP for a simple CRM

design to better understand what they are and how they can be used. We then

look at some of the issues with extending DTPs to TITE-CRMs and present

possible solutions for how they may be overcome.

4.2 Dose Transition Pathways

To explore how DTPs can be extended for use in TITE-CRMs we first look at

how they would be used for a simple CRM trial. This will involve looking

at how CRM designs are implemented and analysed and how DTPs can be

incorporated into these processes.

When implementing a CRM design multiple parameters need to be consid-

ered and specified. These are the number of doses, target toxicity level, dose-

toxicity model, dose-toxicity skeleton, method of inference, decision rules, sam-

ple size, cohort size, safety modifications, and stopping rules [18]. This usu-

ally requires input from multiple stakeholders such as the statistician, clinician
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and trial management team. Typically, once these parameters have been spec-

ified, simulations can be run for various clinically relevant scenarios to obtain

operating characteristics for the specified CRM design. At this point, these re-

sults can be reassessed and the specifications of the CRM can be updated. This

whole process can be repeated iteratively until an acceptable design is reached.

Even after multiple rounds of simulations, there is still the risk that a sta-

tistically optimal design may not be optimal in practice. This could be due to

the scenarios used in simulations not being representative of what is observed

during the running of the trial. This may also occur when model recommenda-

tions are deemed clinically unacceptable resulting in dose-escalation decisions

recommended by the model being ignored or overruled. Whilst dose recom-

mendations from the model should be used as guidance, if its recommenda-

tions are constantly being ignored it undermines the model and brings into

question its specification. DTPs can be used to avoid this from occurring and

can help calibrate the model. They provide insight during the design stages

of the trial into what recommendations the model will make under the range

of potential outcomes. This will help clinicians as well as statisticians better

understand how the model works and calibrate it accordingly so clinically rea-

sonable decisions are being made.

DTPs can also be utilised during the analysis of a trial. In a 3+3 trial just by

knowing the rules of the design we already know what dose-escalation deci-

sion will be made for all possible outcomes of one cohort. If zero out of three

patients (0/3) experience a DLT we escalate to the next highest dose; if one

out of three patients (1/3) experiences a DLT we recruit a further 3 patients to

the same dose-level; and if two out of three (2/3) patients experience a DLT

we de-escalate to a lower dose or stop the trial if already at the lowest dose.

This can be done and computed without a statistician. On the other hand, we
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have designs such as the CRM where this is not as simple since the next recom-

mended dose will be based on the accrued data. Here DTPs can be utilised to

present this information by analysing all possible outcomes and summarising

the dose recommendations these lead to.

The number of pathways can be calculated using the number of cohorts

(x) and the number of patients in each cohort (y). Here, the total sample size

is xy and the number of pathways is (y + 1)x. So, for a trial recruiting 10

cohorts of 3 patients the number of pathways would be over 1 million ([3 +

1]10 = 1, 048, 576). There may be fewer pathways based on any stopping rules

which causes the trial to stop early. Presenting this many pathways is difficult

and may also be unintuitive. Yap et al. [31] suggest using the first group of

cohorts to help facilitate discussion with investigators during the design stage

of the trial. DTPs can also be updated during dose-escalation phases as well by

incorporating the accrued data and then projecting pathways for subsequent

cohorts. In the next section, section 4.2.1 we provide a generic trial example to

show how DTPs can be implemented.

4.2.1 Example trial to illustrate DTPs

Consider an early phase trial aiming to determine the TD25 of a single agent;

Table 4.1 details all the parameters we need to set up the CRM design. First, we

specify the clinical parameters; there will be 5 dose levels (d1, ... ,d5), the trial

will start at dose-level 2 (d2), the target sample size will be 30 patients, patients

will be recruited in cohorts of 3 (10 cohorts overall) and the target DLT rate

will be 25% (TD25). A single-stage CRM will be used with a power model to

model the dose-toxicity curve, Bayesian estimation methods will also be used.

Prior estimates for the DLT rates are specified as 0.04, 0.08, 0.16, 0.25 and 0.35

for dose-levels 1-5 respectively, this assumes dose-level 4 (d4) will be the TD25.
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TABLE 4.1: Specification of parameters for an example CRM trial.

Parameter Value
Number of dose-levels 5
Starting dose-level 2
Sample size 30
Cohort size 3
Target DLT rate 25%
Dose-toxicity model Power model
Dose-toxicity skeleton 0.04, 0.08, 0.16, 0.25, 0.35
Method of inference Bayesian

We assume the prior distribution for the slope parameter in the power

model will be normally distributed with a mean of 0 and variance of 1.34.

These values are based on work by O’Quigley and Shen [58] that proposed a

suitable prior distribution would be a normal distribution with a mean of 0

and a sufficiently large variance. They go on to use a variance of 1.34 which

was adopted by others. As this example is for only illustrative purposes and

given its simplicity we feel these are adequate choices. Wheeler et al [18] also

discuss choices of prior parameters when designing a dose-finding study. Ob-

viously, in a real trial scenario more thought should be given to the selection

of all parameters.

Most of the parameter specifications made here are for simplicity. In prac-

tice, these specifications should have either a clinical or statistical rationale

behind them based on the context of the trial. Once an initial set of these pa-

rameters have been selected, simulations are conducted to assess the operating

characteristics of the design under various scenarios. At this point, DTPs can

also be generated.

For reference we have conducted a small simulation study to evaluate our

example CRM. 10000 trials were simulated under six different scenarios, 5

where each of the dose-levels is the TD25 and a sixth where all doses are too

toxic. The results for the simulations are presented in Table 4.2 and they show
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the selection probabilities for each dose across each scenario.

TABLE 4.2: Selection probabilities from 10000 simulated trials un-
der various scenarios for the example CRM.

Dose Levels

1 2 3 4 5 Stop

Scenario Prior DLT 0.04 0.08 0.16 0.25 0.35

True DLT rate 0.25 0.35 0.45 0.55 0.65
1:TD25 @1

P(Select) 0.68 0.27 0.05 0 0 0

True DLT rate 0.15 0.25 0.35 0.45 0.55
2:TD25 @2

P(Select) 0.22 0.48 0.26 0.04 0 0

True DLT rate 0.1 0.15 0.25 0.35 0.45
3:TD25 @3

P(Select) 0.02 0.21 0.48 0.24 0.04 0

True DLT rate 0.05 0.1 0.15 0.25 0.35
4:TD25 @4

P(Select) 0 0.03 0.25 0.47 0.25 0

True DLT rate 0.01 0.05 0.1 0.15 0.25
5:TD25 @5

P(Select) 0 0 0.04 0.26 0.71 0

True DLT rate 0.5 0.55 0.65 0.75 0.85
6:All toxic

P(Select) 1 0 0 0 0 0

4.2.2 Using DTPs to calibrate the CRM

Since we have specified a sample size of 30 and cohort size of three that means

we will have 10 cohorts and therefore 1,048,576 pathways ([3+ 1]10 = 1, 048, 576).

Patients in each cohort are considered to either experience a toxic event (T) or

have no toxic event (N). For the first cohort of three patients, there are four

possible outcomes: all patients in the cohort experience no toxicity (NNN), one
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patient experiences a toxic event (NNT), two patients experience a toxic event

(NTT) or all three patients experience a toxic event (TTT). For the subsequent

cohort, the same set of four outcomes can be observed but in combination with

the previous cohort, this creates 16 different outcomes for the first two cohorts

(six patients). This process is then continued for each cohort creating exponen-

tially more pathways.

Given the impracticalities of presenting and summarising all these path-

ways, we can instead present the pathways of the first three cohorts. In this

case, there are only 64 potential pathways ([3 + 1]3 = 64). Table 4.3 lists all the

pathways for the first three cohorts of patients. Similarly, we can also represent

these pathways visually using either a node plot (Figure 4.1, generated using

the R package escalation [21]) or a flow plot which was originally used to vi-

sualise the pathways when DTPs were first introduced. These have also been

produced (Figure 4.2, generated using the R package dtpcrm [80]) but due to

limitations with the software they only show the pathways for the first two

cohorts.
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TABLE 4.3: Initial DTP for the first three cohorts of our example
CRM.

Cohort 1 Cohort 2 Cohort 3 Cohort 4

Pathway Dose Outcomes Dose Outcomes Dose Outcomes Dose

1 2 NNN 5 NNN 5 NNN 5
2 2 NNN 5 NNN 5 NNT 5
3 2 NNN 5 NNN 5 NTT 4
4 2 NNN 5 NNN 5 TTT 3
5 2 NNN 5 NNT 5 NNN 5
6 2 NNN 5 NNT 5 NNT 4
7 2 NNN 5 NNT 5 NTT 3
8 2 NNN 5 NNT 5 TTT 2
9 2 NNN 5 NTT 3 NNN 4
10 2 NNN 5 NTT 3 NNT 3
11 2 NNN 5 NTT 3 NTT 2
12 2 NNN 5 NTT 3 TTT 1
13 2 NNN 5 TTT 2 NNN 3
14 2 NNN 5 TTT 2 NNT 2
15 2 NNN 5 TTT 2 NTT 1
16 2 NNN 5 TTT 2 TTT 1
17 2 NNT 2 NNN 3 NNN 4
18 2 NNT 2 NNN 3 NNT 3
19 2 NNT 2 NNN 3 NTT 2
20 2 NNT 2 NNN 3 TTT 1
21 2 NNT 2 NNT 1 NNN 2
22 2 NNT 2 NNT 1 NNT 1
23 2 NNT 2 NNT 1 NTT 1
24 2 NNT 2 NNT 1 TTT 1
25 2 NNT 2 NTT 1 NNN 1
26 2 NNT 2 NTT 1 NNT 1
27 2 NNT 2 NTT 1 NTT 1
28 2 NNT 2 NTT 1 TTT 1
29 2 NNT 2 TTT 1 NNN 1
30 2 NNT 2 TTT 1 NNT 1
31 2 NNT 2 TTT 1 NTT 1
32 2 NNT 2 TTT 1 TTT 1
33 2 NTT 1 NNN 1 NNN 2
34 2 NTT 1 NNN 1 NNT 1
35 2 NTT 1 NNN 1 NTT 1
36 2 NTT 1 NNN 1 TTT 1
37 2 NTT 1 NNT 1 NNN 1
38 2 NTT 1 NNT 1 NNT 1
39 2 NTT 1 NNT 1 NTT 1
40 2 NTT 1 NNT 1 TTT 1
41 2 NTT 1 NTT 1 NNN 1
42 2 NTT 1 NTT 1 NNT 1
43 2 NTT 1 NTT 1 NTT 1
44 2 NTT 1 NTT 1 TTT 1
45 2 NTT 1 TTT 1 NNN 1
46 2 NTT 1 TTT 1 NNT 1
47 2 NTT 1 TTT 1 NTT 1
48 2 NTT 1 TTT 1 TTT 1
49 2 TTT 1 NNN 1 NNN 1
50 2 TTT 1 NNN 1 NNT 1
51 2 TTT 1 NNN 1 NTT 1
52 2 TTT 1 NNN 1 TTT 1
53 2 TTT 1 NNT 1 NNN 1
54 2 TTT 1 NNT 1 NNT 1
55 2 TTT 1 NNT 1 NTT 1
56 2 TTT 1 NNT 1 TTT 1
57 2 TTT 1 NTT 1 NNN 1
58 2 TTT 1 NTT 1 NNT 1
59 2 TTT 1 NTT 1 NTT 1
60 2 TTT 1 NTT 1 TTT 1
61 2 TTT 1 TTT 1 NNN 1
62 2 TTT 1 TTT 1 NNT 1
63 2 TTT 1 TTT 1 NTT 1
64 2 TTT 1 TTT 1 TTT 1
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FIGURE 4.1: Initial DTP node plot for the first three cohorts of
our example CRM.
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From Table 4.3, looking at pathways 33-64, we can see that if there are two

or more toxicities in the first cohort the CRM will always de-escalate the dose

and if there are one or more toxicities in the next two cohorts it will stay at

dose-level 1. We can also see from pathways 17-32 that if we observe a toxicity

event in the first cohort we will stay at the same dose-level for the next cohort.

If no toxicities occur we escalate straight to the highest dose.

Figure 4.1 also shows the same information. The central node represents

the starting dose and first cohort, from here we have 4 branches showing the



120 Chapter 4. Extending Dose Transition Pathways for use in TITE-CRMs

FIGURE 4.2: Flow plot of the initial DTP for the first two cohorts
of our example CRM.
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various outcomes and which dose-level is allocated to the next cohort. In the

case where each patient in the first cohort experience a DLT (TTT), we see that

subsequent cohorts are all allocated to dose-level 1 regardless of their out-

comes. Similarly, when two patients from the first cohort experience DLTs

(NTT) all resulting branches show that dose-level 1 would be selected except

in one case where no further DLTs occur and the CRM would escalate back to

the starting dose. When one DLT occurs in the first cohort (NNT), we remain at

the same dose-level. Looking at these branches if one or more DLTs are experi-

enced in the next cohorts the dose-level is de-escalated, there is only potential

for escalation in the scenario where no further DLTs occur. For the case when

no DLTs occur (NNN) we see the dose for the second cohort escalated to dose-

level 5. At this point, if the second cohort experiences 3 DLTs the CRM will

de-escalate to dose-level 2. If there are only 2 DLTs the CRM goes to dose-level
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3 and one or fewer DLTs and the next cohort will remain at dose-level 5. The

flow plot, Figure 4.2, only shows outcomes up to the third cohort but can be

interpreted similarly to the node plot.

In combination with operating characteristics from simulations, DTPs can

be used to facilitate discussions to see if the CRM can be better calibrated and

how it allocates doses. In our example here there may be a few things that

would concern clinicians, the first being that we skip doses when escalating

and the second that in the cases where lots of toxicity occurs recruitment con-

tinues. To remedy this we can include a rule to not skip untried doses and add

a safety rule to stop the trial if too many toxicities occur at the lowest dose.

In a Bayesian setting, an appropriate method to stop early would be to test

the posterior distribution for the probability of toxicity. For our example here

we will stop if there is at least a 90% probability that the toxicity rate is 10%

greater than the target level at the lowest dose. This can be expressed as P(true

DLT rate at d1 > 0.25 + 0.1 | observed data and prior information ) > 0.9.

With the addition of these two rules we now have a modified CRM design.

Again, for reference, updated simulations are provided in Table 4.4. The same

scenarios as presented in Table 4.2 were used to evaluate this new modified

CRM.
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TABLE 4.4: Updated selection probabilities from 10000 simulated
trials under various scenarios for the example CRM with addi-

tional rules.

Dose Levels

1 2 3 4 5 Stop

Scenario Prior DLT 0.04 0.08 0.16 0.25 0.35

True DLT rate 0.25 0.35 0.45 0.55 0.65
1:TD25 @1

P(Select) 0.66 0.26 0.05 0 0 0.02

True DLT rate 0.15 0.25 0.35 0.45 0.55
2:TD25 @2

P(Select) 0.23 0.47 0.25 0.04 0 0

True DLT rate 0.1 0.15 0.25 0.35 0.45
3:TD25 @3

P(Select) 0.03 0.21 0.48 0.24 0.04 0

True DLT rate 0.05 0.1 0.15 0.25 0.35
4:TD25 @4

P(Select) 0 0.03 0.25 0.46 0.26 0

True DLT rate 0.01 0.05 0.1 0.15 0.25
5:TD25 @5

P(Select) 0 0 0.04 0.26 0.71 0

True DLT rate 0.5 0.55 0.65 0.75 0.85
6:All toxic

P(Select) 0.34 0 0 0 0 0.66

So, now along with our new simulation results DTPs can also be updated.

Table 4.5 shows the pathways for the first three cohorts. The node and flow

plots were also updated, Figures 4.3 and 4.4 respectively. Since we included

a rule to stop in the case of excess toxicity we see several pathways terminate

early so overall there are fewer pathways compared to the initial set that was

produced. Here we see six different branches where it recommended that the

trial stop early (pathways 32, 44, 45, 53, 54, 55 Table 4.5). This can also be seen
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in Figure 4.3, we can also see three of these nodes recommend stopping before

recruiting a third cohort. Using the flow plot, in Figure 4.4, we can see that

stopping is suggested when five out of the first six patients experience a DLT.

Also, escalation of doses no longer skips dose-levels. With these new rules,

we observe that if there are no DLTs in the first cohort the dose for the next

cohort is dose-level 3 and not 5. We still observe that one toxicity in the first

cohort leads to recruiting the next cohort at that same dose-level and with two

or more toxicities de-escalation occurs.

FIGURE 4.3: Updated DTP node plot for the first three cohorts of
our example CRM with additional rules.
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TABLE 4.5: Updated DTPs for the first three cohorts of our exam-
ple CRM with additional rules.

Cohort 1 Cohort 2 Cohort 3 Cohort 4

Pathway Dose Outcomes Dose Outcomes Dose Outcomes Dose

1 2 NNN 3 NNN 4 NNN 5
2 2 NNN 3 NNN 4 NNT 5
3 2 NNN 3 NNN 4 NTT 4
4 2 NNN 3 NNN 4 TTT 3
5 2 NNN 3 NNT 3 NNN 4
6 2 NNN 3 NNT 3 NNT 3
7 2 NNN 3 NNT 3 NTT 2
8 2 NNN 3 NNT 3 TTT 1
9 2 NNN 3 NTT 2 NNN 3
10 2 NNN 3 NTT 2 NNT 2
11 2 NNN 3 NTT 2 NTT 1
12 2 NNN 3 NTT 2 TTT 1
13 2 NNN 3 TTT 1 NNN 2
14 2 NNN 3 TTT 1 NNT 1
15 2 NNN 3 TTT 1 NTT 1
16 2 NNN 3 TTT 1 TTT 1
17 2 NNT 2 NNN 3 NNN 4
18 2 NNT 2 NNN 3 NNT 3
19 2 NNT 2 NNN 3 NTT 2
20 2 NNT 2 NNN 3 TTT 1
21 2 NNT 2 NNT 1 NNN 2
22 2 NNT 2 NNT 1 NNT 1
23 2 NNT 2 NNT 1 NTT 1
24 2 NNT 2 NNT 1 TTT 1
25 2 NNT 2 NTT 1 NNN 1
26 2 NNT 2 NTT 1 NNT 1
27 2 NNT 2 NTT 1 NTT 1
28 2 NNT 2 NTT 1 TTT 1
29 2 NNT 2 TTT 1 NNN 1
30 2 NNT 2 TTT 1 NNT 1
31 2 NNT 2 TTT 1 NTT 1
32 2 NNT 2 TTT 1 TTT STOP
33 2 NTT 1 NNN 1 NNN 2
34 2 NTT 1 NNN 1 NNT 1
35 2 NTT 1 NNN 1 NTT 1
36 2 NTT 1 NNN 1 TTT 1
37 2 NTT 1 NNT 1 NNN 1
38 2 NTT 1 NNT 1 NNT 1
39 2 NTT 1 NNT 1 NTT 1
40 2 NTT 1 NNT 1 TTT 1
41 2 NTT 1 NTT 1 NNN 1
42 2 NTT 1 NTT 1 NNT 1
43 2 NTT 1 NTT 1 NTT 1
44 2 NTT 1 NTT 1 TTT STOP
45 2 NTT 1 TTT STOP NA STOP
46 2 TTT 1 NNN 1 NNN 1
47 2 TTT 1 NNN 1 NNT 1
48 2 TTT 1 NNN 1 NTT 1
49 2 TTT 1 NNN 1 TTT 1
50 2 TTT 1 NNT 1 NNN 1
51 2 TTT 1 NNT 1 NNT 1
52 2 TTT 1 NNT 1 NTT 1
53 2 TTT 1 NNT 1 TTT STOP
54 2 TTT 1 NTT STOP NA STOP
55 2 TTT 1 TTT STOP NA STOP

At this stage, further discussions could be held about the updated DTPs

and simulations. Here there may be more subtle points to discuss such as the

parameters of the stopping rule. Dependent on the clinical rationale investiga-

tors may be inclined to impose either looser or stricter stopping rules. In our

example, this can be done by altering the threshold values in our test of the

posterior distribution of the probability of toxicity at the lowest dose.

We also see in pathway 2 that an escalation occurs after observing a toxicity
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FIGURE 4.4: Flow plot of the updated DTP for the first two co-
horts of our example CRM with additional rules.
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event in the previous cohort. This shows our design to be incoherent. A CRM

design is considered coherent if escalation only occurs when the previous co-

hort experiences no DLTs and de-escalation only occurs when a DLT has been

observed in the previous cohort. This property limits the risk of unnecessar-

ily exposing patients to toxic doses whilst also ensuring patients get treated

at a reasonable dose within the safety limit [81]. This became an issue due to

the rule we enforced not to skip doses in escalation, the previous design with-

out this rule was coherent. Further rules could be added to ensure the design

remains coherent such that escalation will only take place if the previous co-

hort experience no DLTs likewise, de-escalation will only occur if the previous

cohort did experience DLTs.

We have mentioned how DTPs can be used in conjunction with operating

characteristics from simulations to assist with the design of a trial. There is
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a further added benefit that probabilistic inference can be used with DTPs to

ascertain exact operating characteristics of a design. This work was developed

by Brock [21] as part of the escalation package which he referred to as crys-

tallised dose-paths. As we do with simulations for a specific scenario, if we

specify an assumed truth about the toxicity probabilities at each dose we can

calculate the likelihood of each dose-path according to that truth. From this we

can then determine the probability of recommending each dose or stopping the

trial. The benefits of calculating operating characteristics this way is that it can

potentially be quicker than simulations. This is specifically true for smaller

trials where if we were to run 10000 iterations for a trial with five cohorts of

three patients that would require 50000 model fits. Whereas with crystallised

dose-paths models only have to be fit once at each node which in this exam-

ple corresponds to 1365 model fits. The first cohort has four outcomes NNN,

NNT, NTT and TTT which requires four model fits. These four nodes each

then have four outcomes representing outcomes for the second cohort which

leads to 16 additional model fits. So, for each subsequent cohort the number

of model fits increases exponentially based on the number of outcomes that

can be observed. Even in instances where it may not be more efficient to pro-

duce these crystallised dose-paths they have the added benefit of not suffering

from Monte Carlo error. There is no uncertainty associated with these exact

probabilities but rather about which path will be taken based on outcomes ob-

served. There are some inherent advantages that mean in practice it may be a

better option to use dose-paths over simulations.

Here we have highlighted how DTPs can be utilised during the initial stages

of setting up a trial. Due to our example, some changes could be implemented

into our suggested design to improve it. However, this was to illustrate what

the pathways look like and how they can be used to facilitate discussions with

the relevant clinicians and the trials team. Although we just looked at DTPs
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any changes being made to the design should also take into account operating

characteristics from simulations or from crystallised dose-paths. CRM designs

may not be intuitively understood by clinicians but DTPs should help make

them more accessible. Next, we will look at how DTPs can be used during a

trial.

4.2.3 Using DTPs during a trial

Dependent on the size of the dose-finding trial it will often be infeasible to

present all the different pathways. In our example with 10 cohorts of 3 patients

there are approximately 1 million different pathways. As the trial progresses

we observe outcomes for each patient and thus the number of pathways is

reduced. This makes it possible to present DTPs for future cohorts of patients

once we have accrued the outcome data of previous cohorts.

DTP’s main use in the design stage is allowing you to see how the model

behaves with certain data generated by the earlier cohorts and we can see if

escalation and stopping are occurring as expected. We can then also commu-

nicate more effectively with clinicians and investigators about what our design

is doing. So, once a dose-finding trial has been designed, we can continue us-

ing DTPs whilst we are accruing data to project in advance dose decisions that

may occur. This has the potential to alleviate some of the burden place on a

statistician during a trial. for example clinicians may be interested in under-

standing what future dose decisions may be if a certain number of DLTs were

to be observed and rather than having the statistician run the models DTPs

generated ahead of time could be used. Additionally, the time between the re-

cruitment of cohorts could also be reduced if the next recommended dose is the

same dose regardless of the outcomes observed in the current cohort. It also

allows the statistician to check that the model is still escalating and stopping as
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expected. Although it may be more difficult to make changes to the design of

the trial once it is underway and typically this isn’t usually done unless there

are extenuating circumstances.

To see how this would work in practice we will use the same example as

specified in Section 4.2.1 along with the stopping rule we introduced in Sec-

tion 4.2.2. Essentially, the same design that was used to produce the DTPs in

Table 4.5 and Figure 4.3. Consider a trial where we observe outcomes for the

first three cohorts of patients that match pathway 6 in Table 4.5. That implies

the first cohort of patients is recruited to dose-level 2 and no toxicities are ob-

served, cohort 2 is allocated to dose-level 3 where one toxicity is observed,

then cohort 3 is allocated to dose-level 3 where again only one toxicity is ob-

served and that leads the model recommending dose-level 3 for cohort 4. To

refer to previous cohorts’ outcomes we will use the nomenclature introduced

by Brock [68]. Outcomes for patients, either toxicity (T) or no toxicity (N) are

strung behind a numeric dose-level. For instance, 2TTN denotes a cohort of

three patients that were allocated to dose-level 2, two of whom experienced

toxicity and one who did not. In our example, using pathway 6 from Table

4.5, these outcomes can be denoted as 2NNN 3NNT 3NNT. In this scenario we

are unsure about the toxicity of dose-level 3 as we have seen toxicities in two

separate cohorts, however, this is mainly due to only having recruited three

cohorts. If we consider this our new starting point we can produce new DTPs

based on the observed data at that time.

Table 4.6 shows the new set of DTPs following previous outcomes (2NNN

3NNT 3NNT), these are also visualised in Figure 4.5. For each pathway, co-

hort 4 patients start at dose-level 3 as this is the model recommendation based

on the previously observed outcomes. We have 64 pathways again which in-

dicates that regardless of how many toxicities are observed the trial does not

recommend stopping. In pathway 64 three patients have a toxicity event at
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dose-level 3 and then six have toxicities at dose-level 1. This does not neces-

sarily mean that the stopping rule is not working as intended rather due to the

non-toxicities observed in the first three cohorts there would need to be more

toxicity events before the rule we specified is triggered. This could be inves-

tigated further by looking at the DTPs following the outcomes of pathway 64

(i.e 2NNN 3NNT 3NNT 3TTT 1TTT 1TTT).

It can also be seen if there are two in cohort 4 (pathways 33-48) we de-

escalate to dose-level 2 and if there are three (pathways 49-64) we de-escalate

to dose-level 1. If one toxicity occurs we stay at dose-level 3 (pathways 17-

32). If no toxicities are observed we escalate to dose-level 4 (pathways 1-16).

There are also only four pathways where we end up at a higher dose in cohort

7 (pathways 1, 2, 5 and 17). Given the data we have already observed and if

another toxicity occurs in cohort 4 there would need to be two cohorts of no

toxicities before escalation can take place (pathway 17).
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TABLE 4.6: DTPs for three additional cohorts after observing out-
comes for the first three cohorts.

Cohort 4 Cohort 5 Cohort 6 Cohort 7

Pathway Dose Outcomes Dose Outcomes Dose Outcomes Dose

1 3 NNN 4 NNN 4 NNN 5
2 3 NNN 4 NNN 4 NNT 4
3 3 NNN 4 NNN 4 NTT 3
4 3 NNN 4 NNN 4 TTT 3
5 3 NNN 4 NNT 4 NNN 4
6 3 NNN 4 NNT 4 NNT 3
7 3 NNN 4 NNT 4 NTT 3
8 3 NNN 4 NNT 4 TTT 3
9 3 NNN 4 NTT 3 NNN 3
10 3 NNN 4 NTT 3 NNT 3
11 3 NNN 4 NTT 3 NTT 2
12 3 NNN 4 NTT 3 TTT 2
13 3 NNN 4 TTT 2 NNN 3
14 3 NNN 4 TTT 2 NNT 2
15 3 NNN 4 TTT 2 NTT 2
16 3 NNN 4 TTT 2 TTT 1
17 3 NNT 3 NNN 3 NNN 4
18 3 NNT 3 NNN 3 NNT 3
19 3 NNT 3 NNN 3 NTT 3
20 3 NNT 3 NNN 3 TTT 2
21 3 NNT 3 NNT 3 NNN 3
22 3 NNT 3 NNT 3 NNT 3
23 3 NNT 3 NNT 3 NTT 2
24 3 NNT 3 NNT 3 TTT 2
25 3 NNT 3 NTT 2 NNN 3
26 3 NNT 3 NTT 2 NNT 2
27 3 NNT 3 NTT 2 NTT 1
28 3 NNT 3 NTT 2 TTT 1
29 3 NNT 3 TTT 2 NNN 2
30 3 NNT 3 TTT 2 NNT 1
31 3 NNT 3 TTT 2 NTT 1
32 3 NNT 3 TTT 2 TTT 1
33 3 NTT 2 NNN 3 NNN 3
34 3 NTT 2 NNN 3 NNT 3
35 3 NTT 2 NNN 3 NTT 2
36 3 NTT 2 NNN 3 TTT 2
37 3 NTT 2 NNT 2 NNN 2
38 3 NTT 2 NNT 2 NNT 2
39 3 NTT 2 NNT 2 NTT 1
40 3 NTT 2 NNT 2 TTT 1
41 3 NTT 2 NTT 1 NNN 2
42 3 NTT 2 NTT 1 NNT 1
43 3 NTT 2 NTT 1 NTT 1
44 3 NTT 2 NTT 1 TTT 1
45 3 NTT 2 TTT 1 NNN 1
46 3 NTT 2 TTT 1 NNT 1
47 3 NTT 2 TTT 1 NTT 1
48 3 NTT 2 TTT 1 TTT 1
49 3 TTT 1 NNN 2 NNN 2
50 3 TTT 1 NNN 2 NNT 2
51 3 TTT 1 NNN 2 NTT 1
52 3 TTT 1 NNN 2 TTT 1
53 3 TTT 1 NNT 1 NNN 2
54 3 TTT 1 NNT 1 NNT 1
55 3 TTT 1 NNT 1 NTT 1
56 3 TTT 1 NNT 1 TTT 1
57 3 TTT 1 NTT 1 NNN 1
58 3 TTT 1 NTT 1 NNT 1
59 3 TTT 1 NTT 1 NTT 1
60 3 TTT 1 NTT 1 TTT 1
61 3 TTT 1 TTT 1 NNN 1
62 3 TTT 1 TTT 1 NNT 1
63 3 TTT 1 TTT 1 NTT 1
64 3 TTT 1 TTT 1 TTT 1
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FIGURE 4.5: Node plot of three additional cohorts after observing
outcomes for the first three cohorts.
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Once cohort 7 is reached in the trial the DTPs can be updated again using

the observed outcomes of whichever pathway occurred. These will show the

potential pathways up to the 10th cohort, which is the maximum sample size in

our example, and will also detail the final dose recommendation. Throughout

the trial the DTPs allow us to map out what doses are recommended until the

final decision.

DTPs can also work with non-uniform cohorts. So far our examples have
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been fairly simple however, in practice there may be complications with run-

ning a dose-finding trial. For instance, there may be issues with recruitment

leading to long time periods between the evaluation of cohorts and dose deci-

sions. This may be due to a number of factors such as a lack of recruiting sites,

underestimation of the prevalence of disease in the patient population, or a

global pandemic. One solution to this may be to reduce the cohort size and

make dose decisions earlier. Model-based designs are fairly flexible at dealing

with issues like these as the model could just be updated after fewer patients

instead. As these considerations may not have been made in the design stages

of the trial, DTPs could be used as a way to evaluate any changes to cohort

sizes that are made during the trial.

We will recreate the DTPs presented earlier in this section except we will

now use varying cohort sizes. These DTPs will use the same previously spec-

ified outcomes of 2NNN 3NNT 3NNT. DTPs will be calculated assuming the

next three cohorts (cohorts 4,5 and 6) will only be able to recruit 2, 1 and 2

patients respectively. Table 4.7 lists the different pathways and they are also

visualised in Figure 4.6.



4.2. Dose Transition Pathways 133

TABLE 4.7: DTPs for three additional cohorts with varying cohort
sizes after observing outcomes for the first three cohorts.

Cohort 4 Cohort 5 Cohort 6 Cohort 7

Pathway Dose Outcomes Dose Outcomes Dose Outcomes Dose

1 3 NN 3 N 4 NN 4
2 3 NN 3 N 4 NN 4
3 3 NN 3 N 4 NT 3
4 3 NN 3 N 4 NT 3
5 3 NN 3 N 4 TT 3
6 3 NN 3 N 4 TT 3
7 3 NN 3 T 3 NN 3
8 3 NN 3 T 3 NN 3
9 3 NN 3 T 3 NT 2
10 3 NN 3 T 3 NT 2
11 3 NN 3 T 3 TT 2
12 3 NN 3 T 3 TT 2
13 3 NT 3 N 3 NN 3
14 3 NT 3 N 3 NN 3
15 3 NT 3 N 3 NT 2
16 3 NT 3 N 3 NT 2
17 3 NT 3 N 3 TT 2
18 3 NT 3 N 3 TT 2
19 3 NT 3 T 2 NN 2
20 3 NT 3 T 2 NN 2
21 3 NT 3 T 2 NT 2
22 3 NT 3 T 2 NT 2
23 3 NT 3 T 2 TT 1
24 3 NT 3 T 2 TT 1
25 3 TT 2 N 2 NN 2
26 3 TT 2 N 2 NN 2
27 3 TT 2 N 2 NT 2
28 3 TT 2 N 2 NT 2
29 3 TT 2 N 2 TT 1
30 3 TT 2 N 2 TT 1
31 3 TT 2 T 1 NN 2
32 3 TT 2 T 1 NN 2
33 3 TT 2 T 1 NT 1
34 3 TT 2 T 1 NT 1
35 3 TT 2 T 1 TT 1
36 3 TT 2 T 1 TT 1

These DTPs can be interpreted in the same way as before but now just cor-

respond to a different number of patients. Where the recommended dose is

set at dose-level 3 for cohort 5 we can consider these pathways equivalent to

those presented earlier in Table 4.6 for cohort 4. As in both of these scenarios

3 patients would have been treated at dose-level 3. For instance pathways 1-6

and their recommended dose for cohort 6 in Table 4.7 are equivalent to path-

ways 1-16 and its recommended dose for cohort 5 in Table 4.6, This is because

in both instances 3 patients have been treated at the same dose-level and all
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FIGURE 4.6: Node plot of three additional cohorts with varying
cohort sizes after observing outcomes for the first three cohorts.
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have the same outcome. Of course, this does not always hold as a dose deci-

sion made on less data may lead to a different dose decision and hence create

a different pathway. In the scenarios where two patients experience a DLT the

model de-escalates and since there is not a third patient at that dose-level 3 the

following pathways will all differ from those presented previously.
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We have established how DTPs can be used during the design and calibra-

tion of a trial but also whilst it is running. They have the ability to communi-

cate dose decisions effectively. They also help alleviate some of the potential

mystery behind model-based designs where clinicians and non-statisticians in-

volved in trials may not appreciate how dose decisions are being made by a

model such as the CRM. Additionally, they can also be used to assess any mod-

ifications that need to be implemented due to practical or logistical issues. It

is clear DTPs are a valuable tool to incorporate in any dose-finding trial and

with the escalation package by Brock [21] they are very easy to implement,

only requiring a few lines of code.

Yap et al. [31] briefly discuss the idea of implementing DTPs in TITE-CRMs.

However, limited advice or guidance was provided regarding the problems

statisticians may face when trying to do this and there were no examples to

refer to. In the next section, we explore the possibility of extending DTPs to

work in TITE-CRMs using an illustrative example. We also discuss potential

limitations and issues faced when attempting this.

4.3 TITE-DTPs

One reason why DTPs are effective is due to the simplicity of the outcomes be-

ing presented. With a CRM these outcomes are either toxicity (T) or no toxicity

(N). Similarly, with a design like Wages and Tait or EffTox, outcomes are either

toxicity (T), efficacy (E), both toxicity and efficacy (B) or neither (N). Whilst the

number of outcomes contributes to the number of potential pathways, other

aspects of the trial also go into determining this such as cohort size and the

number of cohorts.

However, when we move to the TITE setting the problem becomes more

complex. TITE methodology works by using the idea of a partial tolerance
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event. At the time of analysis for a dose decision, patients without a toxicity

event who have not completed their evaluation period can be considered as

having a partial tolerance. These patients can then be weighted according to

how much of the evaluation period they have completed and be included in

the model. If the patient completes the evaluation period without having a

toxicity, they have tolerated treatment and are fully weighted. This means they

can be analysed and included in the model as is normally done in a standard

CRM design. If a patient experiences a toxicity at any time point they are also

fully weighted.

With TITE-DTPs we still maintain the issues from normal DTPs. The num-

ber of cohorts and the cohort sizes determines the number of pathways that

are produced, but now the outcome is also more complex. More specifically,

just considering DTPs for a standard CRM design, patients would have either

a toxicity or no toxicity whereas now in the TITE setting we also have to ac-

count for the time each patient has spent in the trial. This problem could also

be extended depending on how much precision is used in the measurement of

time.

To explore the problem further we will use an illustrative example. Con-

sider the example trial we presented in Section 4.2.1, except now we include

a TITE component with a 35-day evaluation period. The TITE-CRM can use

all the same parameters and specifications we chose for the CRM trial. When

setting up a time-to-event trial we also need to specify a weight function. This

function determines how patients with partial tolerances will be weighted in

the TITE-CRM model. For this example, we will use a linear weight function

where patients are weighted as a proportion of the time they have completed

in the evaluation period. So, a patient who has completed 20 days would have

a weight of 0.571 (i.e. 20 ÷ 35). The original CRM design used cohorts of three
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however, due to the complexity of TITE-DTPs we will begin by looking at co-

horts of one and two patients. For similar reasoning, we will also only detail

pathways for the first cohort.

4.3.1 Cohort of one patient

First we will just look at a cohort of one patient, i.e the first patient recruited

into the trial. There are 36 possible outcomes for this patient. The simplest

pathway to consider is what happens when this patient has a toxicity, as the

timing of the toxicity does not impact how the patient is weighted. In this

scenario, the recommended dose for the next patient according to the TITE-

CRM model would be dose-level 1. So, if we see toxicity at any time point we

de-escalate.

Now in the scenario where no toxicity is observed, there are 35 different

possible outcomes. Either it is day one and the patient has no toxicity, or it is

day two, or day three, all the way up to no toxicity at day 35. Here we can

fit the TITE-CRM model for each different outcome and see what the model

will recommend as the next dose. Where the patient has between 1-19 days of

follow-up the model recommends dose-level 4, anything greater than 19 and

the model recommends dose-level 5.

After calculating all possible outcomes we can produce a TITE-DTP for this

cohort (Table 4.8). As previously specified the first patient starts at dose-level 2,

and as there are 36 possible outcomes there are 36 pathways to the next cohort.

We also extend the nomenclature of Brock et al. [68] to express the different

outcomes; here the number in brackets represents the amount of follow-up or

observation period the patient has completed. So, N(14) indicates at 14 days

the patient has had a partial tolerance event and the corresponding recom-

mended dose for that pathway is dose-level 4. To summarise a large group of
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these outcomes we may include inequalities in the notation as well; N(≤14)

would refer to all the outcomes where the patient had 14 days of follow-up or

less. Similarly, N(≥14) would indicate 14 days or more.
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TABLE 4.8: TITE-DTP for a cohort of one.

Cohort 1 Cohort 2

Pathway Dose Outcomes Dose

1 2 T 1
2 2 N(1) 4
3 2 N(2) 4
4 2 N(3) 4
5 2 N(4) 4
6 2 N(5) 4
7 2 N(6) 4
8 2 N(7) 4
9 2 N(8) 4
10 2 N(9) 4
11 2 N(10) 4
12 2 N(11) 4
13 2 N(12) 4
14 2 N(13) 4
15 2 N(14) 4
16 2 N(15) 4
17 2 N(16) 4
18 2 N(17) 4
19 2 N(18) 4
20 2 N(19) 4
21 2 N(20) 5
22 2 N(21) 5
23 2 N(22) 5
24 2 N(23) 5
25 2 N(24) 5
26 2 N(25) 5
27 2 N(26) 5
28 2 N(27) 5
29 2 N(28) 5
30 2 N(29) 5
31 2 N(30) 5
32 2 N(31) 5
33 2 N(32) 5
34 2 N(33) 5
35 2 N(34) 5
36 2 N 5
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DTPs presented earlier in this chapter have been able to convey a lot of in-

formation. Previously with 64 pathways, we were able to specify all the possi-

ble outcomes and dose recommendations up to the 4th cohort of three patients.

Whereas in the TITE setting, we have 36 just for one cohort of one patient. One

way to improve on this would be to more succinctly summarise the TITE-DTP

by aggregating the pathways which lead to the same recommendations (Table

4.9).

TABLE 4.9: Summary of TITE-DTP for a cohort of one.

Cohort 1 Cohort 2

No. of Pathways Dose Outcome Follow-up Dose

1 2 T 1

19
2 N

1-19 4

16 20-35 5

Whilst we can still apply the concept of DTPs to TITE-CRMs we can see

even with just one patient and one cohort there are a lot of possible outcomes

we have to look at. Also, we have used a small observation period of only 5

weeks. If a larger observation period were to be used the number of pathways

would increase exponentially. In the next section, we explore how adding in

an extra patient affects these TITE-DTPs.

4.3.2 Cohort of two patients

Now we consider a cohort of two patients who start at dose-level 2. As before

we will consider this the first cohort of patients and only calculate pathways

for the next cohort. Here there are a greater number of potential outcomes.

There are three potential scenarios either both patients could have a toxicity,

one of the patients could have a toxicity and one could not and finally both
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patients could have no toxicity. Within the two options where patients could

potentially have no toxicity, there are multiple outcomes depending on how

much follow-up time is observed. The different scenarios and the associated

number of outcomes are:

• TT - 1 outcome

• NT - 35 outcomes

• NN - 630 outcomes

So, for a cohort of two patients with a follow-up period of 35 days, there are

666 possible pathways. The simplest of these is if both patients have a toxicity.

Here both patients are fully weighted and when put into the model the dose

recommendation is dose-level 1.

If one patient has a toxicity and the other one does not there will be 35

different outcomes. One patient has a toxicity and the other has a partial toler-

ance event on day one, day two, day three, all the way till day 35 where they

have fully tolerated the dose (i.e. N(1)T, N(2)T, N(3)T, ..., N(34)T, NT). These

outcomes are just an extension of the pathways in Section 4.3.1 for one cohort

of one patient, except now when we model these we include an extra patient

in the model who experienced a toxicity. Table 4.10 presents the pathways for

this scenario. Here we can see, regardless of how much follow-up time the

patient with no toxicity has, the model will always recommend de-escalating.



142 Chapter 4. Extending Dose Transition Pathways for use in TITE-CRMs

TABLE 4.10: TITE-DTP for a cohort of two for scenario 2NT.

Cohort 1 Cohort 2

Pathway Dose Outcomes Dose

1 2 N(1)T 1
2 2 N(2)T 1
3 2 N(3)T 1
4 2 N(4)T 1
5 2 N(5)T 1
6 2 N(6)T 1
7 2 N(7)T 1
8 2 N(8)T 1
9 2 N(9)T 1

10 2 N(10)T 1
11 2 N(11)T 1
12 2 N(12)T 1
13 2 N(13)T 1
14 2 N(14)T 1
15 2 N(15)T 1
16 2 N(16)T 1
17 2 N(17)T 1
18 2 N(18)T 1
19 2 N(19)T 1
20 2 N(20)T 1
21 2 N(21)T 1
22 2 N(22)T 1
23 2 N(23)T 1
24 2 N(24)T 1
25 2 N(25)T 1
26 2 N(26)T 1
27 2 N(27)T 1
28 2 N(28)T 1
29 2 N(29)T 1
30 2 N(30)T 1
31 2 N(31)T 1
32 2 N(32)T 1
33 2 N(33)T 1
34 2 N(34)T 1
35 2 NT 1

The most complicated scenario is when both patients have no toxicity. The

number of outcomes for this scenario can be calculated using the combinations
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with replacement formula where n represents the number of follow-up days

and r represents the number of patients:

C(n + r − 1, r) =
(n + r − 1)!
r!(n − 1)!

(4.1)

Here we have to consider every combination of follow-up days both pa-

tients could have completed. We only consider unique combinations of days

for example, N(21)N(34) would indicate one patient had been observed for 21

days and the other for 34 days, this would be the same as N(34)N(21) and so

would only require one pathway.

For our example with two patients and an observation window of 35 days,

we get 630 different combinations, hence the 630 pathways. Trying to show

all these pathways in a table as we did before would be infeasible and hard

to interpret so instead we just present the aggregate dose recommendations in

Table 4.11.

TABLE 4.11: Summary of pathways for a cohort of two for sce-
nario 2NN.

Combined no. of Follow-up Days

Recommend Dose No. of Pathways Minimum Maximum

4 102 2 21

5 528 20 70

We can see out of the 630 pathways, 102 recommend dose 4 for the next

cohort and 528 recommend dose 5. Dose-level 4 is recommended when the

combined follow-up between patients is between 2 and 21 days and dose-level

5 is recommended when the combined number of follow-up days is between

20 and 70. This presents another challenge with TITE-DTPs, as there is some

overlap in dose recommendations depending on how much combined follow-

up patients have. So, if the combined follow-up between the two patients in
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the cohort is 20 or 21 days they could potentially be allocated to either dose-

level 4 or 5 and the way that decision is made is dependent on the split in

follow-up between the two patients. This problem is also visualised in Fig-

ure 4.7. The red lines indicate the combined follow-up time between both pa-

tients of 19 and 22 days respectively. Anything greater than 22 days combined

follow-up and the model recommends dose-level 5, anything less than 19 and

the recommendation is dose-level 4. In between those two time points there is

some discrepancy with the model selecting to escalate higher, to dose-level 5,

with less data i.e. combined follow-up time of 20 days. Table 4.12 provides a

breakdown of these specific combinations.

FIGURE 4.7: Plot illustrating combined-follow up and overlap of
dose recommendations for a cohort of two patients for scenario

NN.
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TABLE 4.12: Different dose recommendations with overlapping
combined follow-up times.

Follow-up Posterior Estimates

Patient 1 Patient 2 Combined Dose Recommendation β Variance

1 20 21 5 0.1606 1.2024

2 19 21 5 0.1579 1.2063

3 18 21 5 0.1555 1.2097

4 17 21 5 0.1534 1.2127

5 16 21 5 0.1516 1.2153

6 15 21 5 0.1501 1.2174

7 14 21 4 0.1489 1.2191

8 13 21 4 0.1480 1.2204

9 12 21 4 0.1474 1.2212

10 11 21 4 0.1471 1.2216

1 19 20 5 0.1520 1.2110

2 18 20 5 0.1495 1.2146

3 17 20 4 0.1473 1.2178

4 16 20 4 0.1453 1.2205

5 15 20 4 0.1437 1.2228

6 14 20 4 0.1424 1.2247

7 13 20 4 0.1414 1.2261

8 12 20 4 0.1406 1.2272

9 11 20 4 0.1402 1.2278

10 10 20 4 0.1400 1.2280

In the case where one patient has 14 days or less of follow-up, the model

recommends dose-level 4, similarly, if one patient has at least 18 days of follow

up the model recommends dose-level 5. Then when one patient has follow-up

times of 15, 16 or 17 the model requires the second patient to have enough
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follow-up to make the combined total of 21 days in order to recommend dose-

level 5. So, there exists some threshold whereby the model is happy to esca-

late further if a single patient has enough follow-up (in this case 18 days) and

some critical range where the model will only escalate further if a minimum

combined follow-up threshold is met (here this is between 15-17 days for one

patient with the threshold being 21 days).

This could perhaps be similar to an incoherent CRM design, which esca-

lates after observing a toxicity, except here we escalate after an inadequate

amount of follow-up. It should also be noted that in practice rules may be

employed to stop the trial skipping untried doses or skipping multiple doses

which is what is being recommended in this case. However, that does not

mean that this issue would still not occur even when selecting between two

more appropriate dose-levels.

This issue was examined further by assessing the posterior estimates of

our model parameter β and the variance, from the power model used within

our TITE-CRM, for each of these different follow-up combinations. Table 4.12

shows these values. What can be seen is that there is a specific value of β

at which point the dose-decision changes from dose-level 4 to 5. The skele-

ton is used with the power model and the estimate of β to generate posterior

probabilities of toxicity for each dose. The dose-level then closest to our target

of 25% is then selected as the recommended dose. So, there must exist some

value of β at which dose-level 5 now becomes the dose closest to our target.

From Table 4.12 we can see that a β value less than or equal to 0.1489 leads to

a dose-recommendation of 4 and a value of 0.1495 or higher leads to a dose

recommendation of 5. More specifically, we evaluated values between 0 and 1

up to four decimal places to see exactly where this boundary occurs and found

that a β value of 0.1492 or lower leads to dose-level 4 and 0.1493 and higher

leads to dose-level 5.
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In Figure 4.8 for each possible combination of follow-up from 2 to 70 days

we plotted the estimated value of β as a single point. Specific combinations

of combined follow-up times are represented by only one point on the plot as

there is only once combination which leads to that combined follow-up time.

For example combined follow-up time of two days only occurs in the scenario

where both patients have one day of follow-up. For other combinations there

are multiple ways to achieve that so we can see multiple points in these in-

stances. For example, 35 days can be achieved with one patient having 20 and

the other 15, or 13 and 22, or 31 and 4 so for these combinations we can see

multiple points on the plot. The red line indicates that critical value of 0.1492

and we can see that any combination of follow-up on or before that line rec-

ommends dose-level 4 and any above it recommends dose-level 5.

Figure 4.9 focuses specifically on a combined follow-up time of 20 and 21

days and shows how these two combinations of days are the only ones which

cross the boundary where the dose decision changes. Each point on the plot

is labelled with the individual days of follow-up for both patients. This is a

zoomed in snapshot of Figure 4.8 highlighting the combined follow-up times

of 20 and 21 days.

Intuitively, since we are using a linear weight function, we would expect

each day of follow-up to be weighted the same across each patient. That is to

say if we observe 20 days of follow-up with no toxicity the model should make

the same recommendation regardless of if that is 20 patients with only one day

of follow-up each or only one patient with 20 days of follow-up. Clearly, that is

not the case here. When we look back at dose transition pathways for a cohort

of one (Table 4.8) for N(20) and N(21) the model recommends dose-level 5. So,

when two patients have a combined (i.e total) follow-up time of 20 or 21 days

the dose recommendation could potentially be lower than if just one patient

had the same amount of follow-up.
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FIGURE 4.8: Plot illustrating how the posterior estimate of β and
dose recommendation change based on combined follow-up for

two patients.
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FIGURE 4.9: Plot illustrating how the posterior estimate of β and
dose recommendation change based on combined follow-up of

20 and 21 days for two patients.
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In order to explore why this discrepancy exists we look into how the TITE-

CRM works. For reference the TITE-CRM was originally introduced by Che-

ung and Chappel [42]. A further detailed description of the TITE-CRM is also
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provided by Cheung [81]. We also detail the TITE-CRM design in the pres-

ence of partial orders in Chapter 2 (Section 2.2). The TITE-CRM makes use of

a weighted likelihood for the model parameter β, this is given by the equation

below:

Ln(β|w) =
n

∏
i=1

{wiF(xi, β)}Yi{1 − wiF(xi, β)}1−Yi (4.2)

where F(xi, β) is our dose toxicity model, Yi is a toxicity indicator for each

patient and wi is the weight associated for the observation of each patient.

When there are no toxicities i.e. Yi = 0 the first part of the likelihood for-

mula (wiF(xi, β)Yi) is reduced to 1 and we are left with 1 − wiF(xi, β)1−Yi . At

each dose-level F(xi, β) will remain fixed and is only affected by the weight wi.

This value is different for each patient depending on how long they have been

observed in the trial. Then the likelihood is calculated by multiplying these

terms for each patient together. This leads us to the root of the issue. As each

wi is independent for each patient and each of these terms is then multiplied

together there is no linear relationship between the combined follow-up times

for patients at the same dose-level. So, we will get different likelihood esti-

mates which leads to different estimates of the β parameter which ultimately

leads to different dose decisions as illustrated in our example.

This was shown in Figure 4.8, where all combinations of follow-up times

yielded different values of β. For example, a combined total follow-up of 20

days where one patient has 2 days and the other has 18 equates to weights

of 2
35 and 18

35 for each patient respectively (this is based on our linear weight

function and observation window of 35 days). For the same combined total

follow-up of 20 days but split where one patient has 3 days and the other has

17 leads to weights of 3
35 and 17

35 . These two different combinations of weights

when entered into the likelihood formula would yield different results. The
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plot also shows this occurs at every combination. However, in most instances

the different values of β for the same overall combined follow-up time would

either be all above or below the critical value we discovered so as such would

not change the dose decision.

When using a linear weight function we cannot say that each day in each

patient at the same dose-level is worth the same amount. Essentially, the sum

of follow-up time between patients at the same dose-level cannot be thought

of as the same. 10 days of follow-up in one patient and 10 days in another is

not the same as 20 days in one patient or 19 days in one patient and one in

another. This is mainly due to how the likelihood is calculated. We can still

say that weighting is linear in individual patients, due to the linear weight

function we use, this just does not apply across patients.

So far we have split up the presentation of the pathways dependent on

the scenario as there are too many to tabulate and present at once. Table 4.13

attempts to summarise all the different pathways for a cohort of two patients.

However, due to the issue with the NN scenario, it is difficult to adequately

summarise the combined follow-up required for the different dose decisions.

Here we have opted to show the exact minimum and maximum combined

follow-up that leads to different dose-recommendations. We then add in extra

rows to provide a specific breakdown of how many days individual patients

need.

From these values you can still determine the minimum and maximum that

guarantee a specific dose as well. For a combined follow-up of 20 days where

one patient has 17 days or less of follow-up the recommendation is dose-level

4 and for the same combination but with one patient with 18 days or more

follow-up the recommendation is dose-level 5. This may be confusing at first

as if you assume a combined follow-up of 20 days with one patient only having

two days you would say that is less than 17 so the dose-recommendation is 4.
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However, if one patient has two days and the combination is 20 that implies the

other patient has 18 days of follow-up so we should use the recommendation

from the N(≥18) row which is dose-level 5.

This table could be simplified just by including the overlap in the follow-up

column but this would lose out on the granular detail. So, for the outcome NN

we could say a follow-up of 2-21 leads to dose-level 4 and a follow-up of 20-70

leads to dose-level 5. An asterisk or some text could accompany the table to

perhaps explain the overlap or add more details.

TABLE 4.13: Summary of TITE-DTP for a cohort of two.

Cohort 1 Cohort 2

No. of Pathways Dose Outcome Follow-up Dose

1 2 TT 1

35 2 NT 1-35 1

90

2 NN

2-19 4

8 20 N(≤17) 4

4 21 N(≤14) 4

2 20 N(≥18) 5

6 21 N(≥15) 5

520 22-70 5

As with classic DTPs we can also visually show these pathways. Figure 4.10

shows a summary of the pathways as a node plot. Rather than present each

possible pathway as we do with normal DTPs here we just present the same

summary that is shown in Table 4.13. Inside each node is the dose-level. The

arrows show each possible outcome and it’s associated dose-decision. Each ar-

row is labelled with the specific outcome and the combined amount of follow-

up time which leads to the specific recommendation.
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FIGURE 4.10: TITE-DTP Node plot for a cohort of two patients.
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An alternative presentation of the pathways is provided in Figure 4.11. This

plot shows a summary of the pathways in a similar manner to the flow plots

of DTPs. It shows how the dose decision changes with the combined amount

of follow-up time. Each box is labelled with the specific cohort it is referring

to. The number in brackets corresponds to the dose-level and the combined

follow-up times required to reach that decision are also listed below the dose-

level. Additionally, each box is coloured based on the dose-level that is being

recommended for the subsequent cohort. In the case where the boxes are too

small we have just contained some relevant details about the specific outcome

that leads to that recommendation.

For this plot it is important to note that follow-up time is only relevant to

outcomes of no toxicity (N). So, for TT the outcome is not dependent on follow-

up time. However, for NT the outcomes could change based on the amount of
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follow-up time the patient who experienced no toxicity (N) has. This is why

TT, NT and NN have different sized boxes as the total combined follow-up for

each is different. Neither of these plots capture how many pathways these out-

comes represent but this information could easily be added as required. This

should be done with caution as we said before this could be slightly mislead-

ing as the number of pathways does not indicate that one outcome is more

likely than another.

Just by adding an extra patient to a cohort of one the number of pathways

we have has increased almost 20-fold. We have also discovered when looking

at specific combinations of partial tolerance events there are some inconsis-

tencies with the way the TITE-CRM is recommending dose-levels. Finally, for

completeness, we attempt producing TITE-DTPs for a cohort of 3 patients.
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FIGURE 4.11: TITE-DTP Flow plot for a cohort of two patients.
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4.3.3 Cohort of three patients

Consider instead we have a cohort of 3 patients starting at dose-level 2. Here

we will explore all the possible pathways for the first cohort. With 3 patients

there are four possible scenarios, the number of possible outcomes relating to

each scenario is listed below:

• TTT - 1 outcome

• NTT - 35 outcomes

• NNT - 630 outcomes

• NNN - 7770 outcomes

In total for just the first cohort of three patients, there are 8436 pathways.

The first three scenarios listed here are just extensions of what has been pre-

viously presented. When all 3 patients have a toxicity, these can just be en-

tered into the model as fully weighted patients and the model recommends

de-escalating to dose-level 1.

The NTT scenario is the same as the cohorts of two NT scenario except now

there is an extra patient in the cohort who also has a toxicity. Table 4.14 shows

the pathways for this scenario. Regardless of the number of follow-up days

the patient with no toxicity has the model will always recommend dose-level

1 if the other two patients in the cohort have toxicities.
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TABLE 4.14: TITE-DTP for a cohort of three for scenario 2NTT.

Cohort 1 Cohort 2

Pathway Dose Outcomes Dose

1 2 N(1)TT 1
2 2 N(2)TT 1
3 2 N(3)TT 1
4 2 N(4)TT 1
5 2 N(5)TT 1
6 2 N(6)TT 1
7 2 N(7)TT 1
8 2 N(8)TT 1
9 2 N(9)TT 1

10 2 N(10)TT 1
11 2 N(11)TT 1
12 2 N(12)TT 1
13 2 N(13)TT 1
14 2 N(14)TT 1
15 2 N(15)TT 1
16 2 N(16)TT 1
17 2 N(17)TT 1
18 2 N(18)TT 1
19 2 N(19)TT 1
20 2 N(20)TT 1
21 2 N(21)TT 1
22 2 N(22)TT 1
23 2 N(23)TT 1
24 2 N(24)TT 1
25 2 N(25)TT 1
26 2 N(26)TT 1
27 2 N(27)TT 1
28 2 N(28)TT 1
29 2 N(29)TT 1
30 2 N(30)TT 1
31 2 N(31)TT 1
32 2 N(32)TT 1
33 2 N(33)TT 1
34 2 N(34)TT 1
35 2 NTT 1

Similarly, the NNT scenario is an extension of the NN scenario for a cohort

of two patients. We add an extra patient who experiences a toxicity and fit
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the same models and observe the outcomes. Table 4.15 shows a summary of

the 630 possible pathways. We can see that the majority of the time the model

recommends de-escalating. However, there are six pathways where the model

recommends staying at the same dose, dose-level 2. This is when the combined

follow-up time from the two patients who do not have a toxicity is between 67

and 70 days. We also no longer have that inconsistency issue that we saw

before where different dose decisions were being made on the same amount

of follow-up time dependent on the split of days between patients. Here the

TITE DTP is more clear and a combined follow-up time of 66 days or less leads

to de-escalation otherwise the next dose should be recruited at the same dose-

level.

TABLE 4.15: Summary of pathways for a cohort of three for sce-
nario 2NNT.

Combined no. of Follow-up Days

Recommend Dose No. of Pathways Minimum Maximum

1 624 2 66

2 6 67 70

When an additional patient is added to the cohort, the most complicated

scenario is when all patients in the cohort experience no toxicity. With 3 pa-

tients and 35 days follow-up, 7770 different possible combinations of follow-up

days can be observed. The results from fitting all these models are presented

in Table 4.16. In this scenario, if the combined number of follow-up between

the three patients is between 3 and 23 days the model will recommend dose-

level 4 and if it is above 22 dose-level 5 will be recommended. Again we see

the same problem as before with a cohort of two patients for the NN scenario.

There appears to be some overlap in dose decisions for certain combinations of

follow-up days between the three patients. Anything between 20 and 21 days
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may result in either a recommendation of dose-level 4 or 5 depending on the

split of follow-up time between the three patients. Figure 4.12 also provides a

3D illustration of these pathways with each dot representing a different deci-

sion, and the colour corresponding to the dose recommended. A dark blue dot

indicates dose-level 4 and light blue is dose-level 5. This is just for illustration

purposes and due to its complexity it would not be suitable way to communi-

cate these results.

TABLE 4.16: Summary of pathways for a cohort of three for sce-
nario 2NNN.

Combined no. of Follow-up Days

Recommend Dose No. of Pathways Minimum Maximum

4 265 3 21

5 7505 20 105
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FIGURE 4.12: Dose recommendations for a cohort of three pa-
tients for scenario 2NNN.

In this example, there are 70 different pathways where the combined follow-

up between the three patients is 20-21 days. By examining these pathways

specifically we can define the different thresholds that are needed to make dif-

ferent decisions. Out of the 70 pathways dose-level 5 is recommended in only

9 of those instances (Table 4.17). Of those only one is for a combined total

follow-up of 20 days and the other 8 have a combined total follow-up of 21

days. So, if one of the three patients has a minimum of 18 days of follow-up

then the model will recommend dose-level 5. This is why the minimum com-

bined days of follow-up is 20 to recommend dose-level 5 in Table 4.16 as one

patient will have 18 days and the other two will have one day each. In the case

where the combined follow-up is 21 days, the model will only recommend
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dose-level 5 if one of the three patients has a minimum of 15 days and other

has a minimum of 4.

TABLE 4.17: Follow-up combinations totalling 20 or 21 days lead-
ing to dose-level 5.

Follow-up Posterior Estimates

Patient 1 Patient 2 Patient 3 Combined Dose Recommendation β Variance

1 1 19 21 5 0.1578 1.2064

1 2 18 21 5 0.1553 1.2100

1 3 17 21 5 0.1531 1.2131

1 4 16 21 5 0.1512 1.2158

1 5 15 21 5 0.1496 1.2181

2 2 17 21 5 0.1530 1.2133

2 3 16 21 5 0.1510 1.2161

2 4 15 21 5 0.1493 1.2185

1 1 18 20 5 0.1494 1.2147

We have not shown all 70 pathways but we observe the β estimate in each

of these cases leading to a dose recommendation of 5 is above 0.1493. This is

the same threshold we saw in the scenario of 2 patients with NN outcomes.

Similarly, all of the combinations with β estimate of 0.1492 or less resulted in

a dose-recommendation of dose-level 4. As before we can also visualise this

issue with Figures 4.13 and 4.14. These plots show the β estimates for each pos-

sible total follow-up combination and more specifically the combinations for a

total of 20 and 21 days. Figure 4.14 labels each point to show the individual

follow-up of each of the patients. Here we see the same pattern before as with

the 2NN scenario. A minimum number of days is needed in a specific patient

in order to obtain an estimate of β which is high enough to warrant escalation

to the highest dose. We can see when the follow-up time is split more evenly

between the patients the estimates of β are lower. This also supports our find-

ings earlier where we surmised that weightings between patients at the same
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dose-level are not entirely equivalent due to how the likelihood is calculated.

FIGURE 4.13: Plot illustrating how the posterior estimate of β and
dose recommendation change based on combined follow-up for

three patients.

0.0

0.2

0.4

0.6

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105
Combined Total Follow−up

P
os

te
rio

r E
st

im
at

e 
β

Recommended Dose 4 5

FIGURE 4.14: Plot illustrating how the posterior estimate of β
and dose recommendation change based on combined follow-up

of 20 and 21 days for three patients.
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It is important to note that the threshold of the β estimate which causes

the change in dose-recommendation should remain constant throughout the

trial. This threshold can be thought of as the the values of β required to make

a dose-recommendation picking between doses 4 and 5. This is what we have

observed in our two examples of 2NN and 2NNN outcomes respectively. This

is due to the way in which we determine the recommended dose for the next

patient. The next dose is recommended based on minimising the following

equation:

|F(dk, β)− θ| k = i, · · · , 5 (4.3)

Here dk represents each dose-level 1 to 5 and θ is our TD25. The dose with

the probability of toxicity closest to our target of 25% will be selected as our

next recommended dose. This probability is determined by our estimate of β.

What we see in our example is that when β is less than 0.1492 dose-level 4 is

the closest in probability to our target level and when it is 0.1493 or higher it is

dose-level 5. We did not observe any values of β between 0.1492 and 0.1493 but

there must exist some asymptotic value at which the decision changes. This

boundary cannot be explicitly defined as its based on the absolute minimum

difference which could theoretically be infinitesimally small.

You would also expect there to be similar boundaries/thresholds when

choosing between any two other adjoining dose-levels. There should exist a

value of β at which dose-level 1 would be recommended over dose-level 2 and

vice versa. Similarly, for dose-levels 2 and 3 and then 3 and 4. Whilst we may

be able to identify these boundary values of β we cannot know what combina-

tion of patients, weights and dose-levels will lead us there. In our example for

the cohort of two (2NN) and three (2NNN) in both instances we see that at a

combined follow-up of 20 and 21 days our dose-decision changes. However,
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if we were to change all of the patients or just one of the patients dose-levels

the combined follow-up of where the decision changes may be different. This

goes back to equation 4.2. At a different dose-level the value of F(xi, β) will

differ leading to a different likelihood and estimate of the β parameter. At

lower dose-levels we would expect the combination of follow-up days to rec-

ommend the same dose to be higher and lower for higher dose-levels. So the

amount of follow-up time required to recommend dose-level 5 would increase

as you decrease dose-level.

Table 4.18 combines all the different scenarios and creates a summary ta-

ble of the TITE-DTPs for a cohort of three. As before we have used a similar

notation to express each possible pathway. There is some additional complex-

ity due to there being three patients instead of two and this can be seen in

the pathways for the NNN outcome where the combined follow-up time is 21

days.

These can be interpreted as follows. If there are no toxicities in the three

patients and their combined follow-up time is 21 days the recommended dose

will be dose level-4, if one of those patients has a follow-up time of less then

or equal to 14 days (21 N(≤14)), or if one of the patients has a follow-up time

of less than or equal to 15 days and another patient has less than or equal to 3

days (21 N(≤15)N(≤3)). This constitutes 29 different pathways. The scenario

with N(≤15)N(≤3) is included as the cut-off in this scenario is not dependent

on a specific amount of follow-up in one patient but in two. In the scenario

where patients have 15, 3 and 3 days of follow-up respectively the dose rec-

ommendation is 4 but a combination of (15, 4, 2) or (15, 5, 1) leads to a dose

recommendation of 5. This can also be seen in the next row of the table where

if the combined follow-up is 21 days a dose recommendation of 5 is made if

one patient has at least 16 days of follow-up or one patient has at least 15 with

another having at least 4. Looking back at Figure 4.14 we can see this exact
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change by looking at the points around the line representing the threshold

value of β.

Looking at the number of pathways can be quite misleading as from this

table it would seem that a large number of them would end up recommending

dose-level 5 however, this scenario might not be the most likely depending on

what the underlying toxicity is of the dose-level. A higher number of pathways

does not correlate to that outcome being more likely it just indicates that it is

more complex. Therefore, extra care should be taken when interpreting TITE-

DTPs.

Figures 4.15 and 4.16 visualise the TITE-DTP as we did for a cohort of two

patients using a node plot and flow plot respectively. Due to the additional

patient and the potential for more outcomes we can see these figures are some-

what more complicated.

TABLE 4.18: Summary of TITE-DTP for a cohort of three.

Cohort 1 Cohort 2

No. of Pathways Dose Outcome Follow-up Dose
1 2 TTT 1

35 2 NTT 1-35 1
624 2 NNT 2-66 1
6 67-70 2

204

2 NNN

3-19 4
32 20 N(≤17) 4
1 20 N(≥18) 5

29 21 N(≤14) | N(≤15)N(≤3) 4
8 21 N(≥16) | N(≥15)N(≥4) 5

7496 22-105 5
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FIGURE 4.15: TITE-DTP Node plot for a cohort of two patients.

2

1

1

4

2

4

5

5

5

TTT

NTT
1-35

NNT
67-70

NNN
3-19

NNN
21 N(≤14) | N(≤15)N(≤3)NNN

20 N(≥18)

NNN
21 N(≥16) | N(≥15)N(≥3)

NNN
22-105

1

NNT
2-66

4

NNN
20 N(≤17)



166 Chapter 4. Extending Dose Transition Pathways for use in TITE-CRMs

FIGURE 4.16: TITE-DTP Flow plot for a cohort of two patients.
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In section 4.2.2, we introduced a simple trial example and produced DTPs

(Table 4.3). The pathways for cohort 1 in that table are the full information

equivalent of the TITE-DTPs in Table 4.18. As the same trial example was used

to produce both of these pathways the only difference is for one of them we

have allowed the ability to use partial information in the form of the TITE-

CRM and introduce a follow-up period of 35 days. In Table 4.3 pathways 1-16

indicate NNN which is equivalent to Table 4.18 outcome of NNN when the

follow-up is max for each patient i.e. 105 days of combined follow-up. In

both sets of pathways we can see the recommended dose for cohort 2 is dose-

level 5. The outcome where all three patients have a toxicity is exactly the

same for both the DTP and TITE-DTP. For the outcome of NTT we can see

the recommended dose for cohort 2 is the same in both pathways, this implies

allowing for partial information does not change the recommendation for this

cohort. When we come to compare NNT we can see that allowing for partial

information does have a slightly different impact on dose recommendations. If

the cohort is evaluated when there are two partial tolerances with the number

of combined follow-up days being 66 or lower the model recommends dose-

level 1. Contrast this to when we have full information (each patient has 35

days of follow-up with no toxicity or just the CRM version of the DTP, Table

4.3) and the recommended dose is 2. TITE-DTPs also allow you to compare

your design to one with full information i.e the CRM equivalent of a TITE-

CRM and allow you to evaluate the length of the follow-up period and see

how the dose decisions change as you move through it.

4.4 Alternative weight functions

In this section we explore how TITE-DTPs are impacted by the use of different

weight functions. Previously, in Section 4.3, we used a TITE-CRM with a linear
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weight function. We will use the same design as specified previously with the

only change being the use of different weight functions. Here we investigate

two different weight functions which we will refer to as Weight 1 and Weight 2

respectively. The formula for Weight 1 is given in equation 4.4 and the formula

for Weight 2 is given in equation 4.5. Here, x represents the number of days

patients would have spent in the trial without observing a DLT.

f (x) = 1 − e−( x
7 )

2
(4.4)

f (x) = 1 − e−( x
22 )

6
(4.5)

These weight functions represent two different curves. Weight 1 is a curve

which increases from 0 to 1 rather quickly. This means a patient would gain

more weight in a short amount of time during the start of the observation win-

dow. Weight 2 is a curve that increases more slowly over the start of the win-

dow and then increases rapidly. This means that patients would have to be

observed for a large majority of the window before they are weighted more

highly in the model. These two curves are presented in Figure 4.17 along with

the linear weight function for reference.

Weight 1 may be used in scenarios where we expect DLTs to occur very

early on into a window. So here if patients pass that initial period we may

want to weight them more highly in the model. Weight 2 is more conservative

to begin with and may be used in scenarios where we want to wait for a large

part of the observation window to pass before we start assigning more weight

to patients. To give more context Table 4.19 provides a summary of what the

specific weights would be for every 5 days without DLT for the three different

weight functions.
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FIGURE 4.17: Plot of weight values for different weight functions.
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TABLE 4.19: Summary of weight values for different weight func-
tions.

Weight functions

Time (Days) Linear Weight 1 Weight 2

0 0.00 0.00 0.00

5 0.14 0.40 0.00

10 0.29 0.87 0.01

15 0.43 0.99 0.10

20 0.57 1.00 0.43

25 0.71 1.00 0.88

30 0.86 1.00 1.00

35 1.00 1.00 1.00

To evaluate TITE-DTPs with these new weight functions we will look specif-

ically at a cohort of two patients with 2NN outcomes (two patients at dose-

level 2 who don’t experience a DLT). In Section 4.3.3, where we explored TITE-

DTPs for cohorts of three, we saw this was just a more complicated version
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of the cohorts of two TITE-DTPs. For simplicity, we will just investigate the

different weight functions for cohorts of two. We will only consider the NN

outcomes as the NT and TT outcomes are unaffected by changing the weight

function.

In the TT scenario, both patients are given full weighting regardless of how

much time they have spent in the trial as they have both experienced a DLT.

This would lead to the model recommending to de-escalate to dose-level 1.

Neither of the new weight functions would have an impact in this scenario.

The NT scenario, is where one patient has a DLT and the other does not.

Here, there are 35 different outcomes, these were all presented in Table 4.10.

The results here imply regardless of what weight the patient without the DLT

has the model will always recommend dose-level 1. We could apply our new

weight functions here but the results would still be the same. It should be

noted this only applies to our specific example due to how we have parametrised

the TITE-CRM design. There may exist a design which has different priors, tar-

get toxicity rates, number of doses etc. which would make a different dose de-

cision based on different weights. However, this is not the case for our design

so we will only investigate the NN scenario. Sections 4.4.1 and 4.4.2 investigate

this scenario using Weight 1 and Weight 2 respectively.

4.4.1 Weight function 1 in the NN scenario

In the NN scenario there are 630 possible pathways. We consider every unique

possible combination of follow-up days both patients could have completed.

A summary of the dose recommendations are presented in Table 4.20. Here

we can see the majority of pathways recommend dose 5. However, the same

issue occurs where there is some overlap with the recommendation when the

combined follow-up time is 8 days.
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TABLE 4.20: Summary of pathways for scenario 2NN with
Weight 1.

Combined no. of Follow-up Days

Recommend Dose No. of Pathways Minimum Maximum

4 14 2 8

5 616 8 70

Table 4.21 provides a breakdown of the specific instances where the com-

bined follow-up time is 8 days. We can see in the case where one patient has

a follow-up time of 6 days or more the dose recommendation is dose-level 5.

As before we also see that these dose decisions match the boundary values we

discovered before where all β estimates above 0.1493 lead to dose-level 5 and

estimates below 0.1492 lead to dose-level 4.

TABLE 4.21: Follow-up combinations totalling 8 days for sce-
nario NN using Weight 1.

Follow-up Posterior Estimates

Patient 1 Patient 2 Combined Dose Recommendation Beta Variance

1 7 8 5 0.1775 1.1845

2 6 8 5 0.1557 1.2092

3 5 8 4 0.1415 1.2255

4 4 8 4 0.1365 1.2311

To illustrate this further we plot the estimated value of β for each possible

combination in figure 4.18. Here we see only for the combination of 8 days do

the points cross the boundary resulting in the different dose recommendations.

Figure 4.19 shows the same but only for combinations of 7, 8 and 9 days.
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FIGURE 4.18: Plot illustrating how the posterior estimate of β and
dose recommendation change based on combined follow-up for

two patients with Weight 1.
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FIGURE 4.19: Plot illustrating how the posterior estimate of β
and dose recommendation change based on combined follow-up

of 20 and 21 days for two patients with Weight 1.
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Compared to the scenario with the linear weight function we still observe

that for specific combinations of combined follow-up time the dose recommen-

dation could change based on how much follow-up time an individual patient

has. The effect of this specific weight function has made it so we observe this at
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a lower amount of combined follow-up time. Using the linear weight function

this occurred at 20 and 21 days. This makes sense since with Weight 1 we are

allocating more weight to patients earlier on compared to the linear function.

The point at which the model recommends dose 5 is now based on a lower

amount of follow-up time than under the linear function.

For this scenario under Weight 1 we are still able to construct a TITE-DTP,

which is presented in Table 4.22. Now we can clearly see that if the combined

follow-up time is greater than 9 the model would always recommend dose 5.

Here it is only under the specific scenario where the combined follow-up time

is exactly 8 where different doses can be recommended.

TABLE 4.22: Summary of TITE-DTP for scenario NN under
Weight 1.

Cohort 1 Cohort 2

No. of Pathways Dose Outcome Follow-up Dose

1 2 TT 1

35 2 NT 1-35 1

12

2 NN

2-7 4

2 8 N(≤5) 4

2 8 N(≥6) 5

614 9-70 5

4.4.2 Weight function 2 in the NN scenario

Now we will consider the scenario NN using Weight 2. As before there are

630 possible pathways and a summary of the dose recommendations is given

in Table 4.23. There are 217 pathways that recommend dose 4 and these have

combined follow-up time ranging from 2 to 37. Then there are 413 pathways

that recommend dose 5 with combined follow-up times ranging from 23-70.
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With this weight function when the combined follow-up time between the two

patients is 23 and 37 the dose recommendation will depend on the specific

combination that has been observed.

TABLE 4.23: Summary of pathways for scenario 2NN with
Weight 2.

Combined no. of Follow-up Days

Recommend Dose No. of Pathways Minimum Maximum

4 217 2 37

5 413 23 70

There are 220 pathways where the combined follow-up time is between 23

and 37 days. Of the 220 pathways 124 lead to recommending dose level 4 and

96 to recommending dose level 5. We investigate the β estimates for all of these

combinations and present them in Figure 4.20. The same boundary as before

is observed where β estimates above 0.1493 lead to dose-level 5 and estimates

below 0.1492 lead to dose-level 4. Compared to the linear weight function this

only occured in 20 pathways where the combined follow-up time was 20 or 21

days.

As this weight function allocates less weight, compared to the linear weight

function, to patients earlier on in the trial we see a larger amount of combined

follow-up time needed to change the dose recommendation. This is why we

see a wide range of combined follow-up times where the dose recommenda-

tion could be either 4 or 5. Under this specific weight function there may be one

patient who has sufficiently high follow-up time such that the model would

recommend the higher dose compared to if two patients had a similar amount

of follow-up time but over a shorter time period.

Specifically, we have one pathway where the combined follow-up time is

23 days with one patient having 22 days and the other having just one day
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FIGURE 4.20: Plot illustrating how the posterior estimate of β and
dose recommendation change based on combined follow-up for

two patients with Weight 2.
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which leads to a dose recommendation of 5. In this instance the weight for the

patient with 22 days of follow-up is 0.63 and the weight for the patient with

1 day is 8.8 × 10−9. Another pathway is when the combined follow-up time

is 37 days with 18 days observed for one patient and 19 days for the other.

This corresponds to weights of 0.26 and 0.34 respectively. Even though there

are 14 more days of follow-up without DLT the dose recommended is lower.

This is not incorrect mathematically and the TITE-CRM model is behaving as

expected. This is just a consequence of the weight function we have specified.

With this weight function it is difficult to specify the TITE-DTP with the

same amount of granularity as we have done before. This is mainly because

we have 220 pathways and there is no way to succinctly summarise them in a

meaningful manner. Previously where the dose decision was different for the

same amount of combined follow-up time we were able to present two state-

ments to indicate how the recommendation changes based on specific follow-

up in a specific patient (See Table 4.22 where 8 N(≤5) leads to dose 4 and 8
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N(≥6) leads to dose 5). With this weight function there are 15 different combi-

nations where this issue occurs and so we would have to specify 30 statements

to show specifically when the dose recommendation changes based on follow-

up times for one of the patients in the cohort.

Table 4.24 presents the TITE-DTP under this weight function. Here we have

had to simplify what is presented when the combined follow-up time can lead

to differing recommendations. Overall, we can still see if the combined follow-

up time is 22 days or less the recommendations is always dose 4 and likewise

if it is 38 days and above the recommended dose is 5.

TABLE 4.24: Summary of TITE-DTP for scenario NN under
Weight 2.

Cohort 1 Cohort 2

No. of Pathways Dose Outcome Follow-up Dose

1 2 TT 1

35 2 NT 1-35 1

121

2 NN

2-22 4

220 23-37 4/5*

289 38-70 5

* Depends on the specific amount of follow-up time for each patient.

4.5 Discussion

Dose transition pathways as a tool were developed to improve communica-

tion and understanding of model-based designs. Often clinicians may not feel

comfortable with having a model select doses when compared to the standard

approach of a traditional and easy to follow rule-based design [82]. DTPs try

to bridge this gap and make these model-based designs more approachable.
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They do this by summarising model recommendations based on possible out-

comes into simple pathways of dose decisions. They also can be used by the

statistician to help calibrate the model and any design specifications. In par-

ticular, this helps with implementing stopping rules and investigating how

escalation occurs. There is also a potential operational upside where DTPs can

aid the running of a trial. By looking ahead there may be instances where re-

gardless of any outcomes observed on the trial the dose-level will not change.

In scenarios like this the need for a statistician may be lessened.

DTPs can also be implemented as a visualisation tool to help visualise all

the pathways in advance. This may have benefits in terms of raising any immi-

nent safety concerns if certain pathways are followed. They can also be used

throughout a trial’s life cycle at safety committee meetings to discuss potential

doses for future cohorts of patients. They are also very adaptive and are able

to handle many challenging circumstances such as a change in cohort size or a

patient receiving an incorrect dose. If these circumstances were to occur new

DTPs could simply be calculated to account for any trial deviations. Although

this is not an exclusive feature of DTPs, they are only capable of handling these

scenarios because they can be accounted for in model-based designs like the

CRM.

A lot of this chapter focused on providing examples of how DTPs could be

implemented specifically for a CRM design. However, the concept can easily

be applied to many other model-based dose-finding trial designs such as BOIN

and EffTox and even the 3+3. Implementation of these DTPs is relatively sim-

ple as well with the escalation package by Brock [21]. It should be noted, as

mentioned above, some of the flexibility of DTPs is due to the underlying de-

signs that are used to make them. So, some challenges may be found when

producing DTPs for certain types of trial designs.
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It is clear that the inclusion and use of DTPs is a net positive for dose-

finding trials, not just in their design but also during the running of the trial.

This is also reflected in guidance that is being published relating to the con-

duct and reporting of trials. Statistical Analysis Plan (SAP) guidelines pro-

duced by Gamble et al. [83] in 2011 were extended by Homer et al. [84] in 2022

to provide guidance for early phase trials. The authors here advocate for the

use of DTPs where appropriate when producing SAPs for dose-finding trials.

The DEFINE study [85] aimed to extend the SPIRIT (Standard Protocol Items:

Recommendations for Interventional Trials) 2013 statement [86] and the CON-

SORT (CONsolidated Standards Of Reporting Trials) 2010 statement [87] for

use in early phase dose-finding trials. This led to the development of SPIRIT-

DEFINE [88] and CONSORT-DEFINE [89]. Whilst SPIRIT-DEFINE explicitly

include DTPs in their checklist they are not included in CONSORT-DEFINE.

This makes sense as DTPs are more of a tool during the design and conduct of

a trial and therefore more relevant to include in protocols. However, in scenar-

ios where a dose-finding trial is stopped early, for issues other than safety, the

reporting of these trials could also include DTPs to report what the potential

results of the trial may have been.

In the discussion section of the Yap et al. [31] paper which first introduces

the idea, there is some mention of applying DTPs to TITE-CRMs. They men-

tion the problems with patients having either partial or full tolerance and how

DTPs may differ depending on how much follow-up time they achieve. One

recommendation they gave was to produce the CRM equivalent DTPs. This

would be useful during design stages to assess whether dose decisions change

with full or partial information.

Our work agrees with what Yap et al. [31] originally theorised. Extending

DTPs to a TITE-CRM is problematic. Firstly, due to the idea of partial toler-

ances, trying to account for every possibility and time point a patient has not
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had a toxicity is an exponentially increasing problem. The complexity of DTPs

is intrinsically linked to patients with partial tolerances as to fully build out the

TITE-DTP you need to calculate every possible time point at which that patient

could be observed. Then also for cohorts of more than one patient, considering

the outcome where both patients experience a partial tolerance exponentially

increases the number of pathways. We demonstrated that by showing the dif-

ferent potential DTPs for cohorts of patients from sizes one to two to three and

how the number of pathways kept increasing with each iteration.

We also found the TITE-CRM to have some issues when recommending

doses. In some instances, different dose decisions were being made based on

the split of follow-up time between patients for the same overall combined

follow-up time. So, in our examples and TITE-DTPs for a cohort of two or

three patients we saw different recommendations when the combined amount

of follow-up time between the three patients was 20 and 21 days dependent on

how those were split between the patients. We have shown this is dependent

on the model parameter and that different combinations of follow-up times

produce different estimates of the parameter due to the likelihood function.

The model parameter β can take any real value. As such there are specific

boundaries or thresholds that exist at which the dose-decision will change de-

pendent on the value of β. However, trying to strictly define these as a specific

value is difficult as the way a dose is selected is based on the smallest differ-

ence between the estimated probability of toxicity at that dose and the target

toxicity level. This difference can be infinitesimally small and as that tends

to zero the value of β which leads to that small difference tends to a specific

boundary/threshold value. However, we can define a two values for β at each

adjoining dose-level to say a value above will result in the higher dose being

recommended and a value below the other value will mean the lower dose is

recommended.
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Understanding this exact boundary is not paramount as in a practical set-

ting due to the observation window or the number of patients you have you

may not get close to that specific value of β where the dose decision changes.

As with our examples where values of β below 0.1492 resulted in a dose-

recommendation of dose-level 4 and any value above 0.1493 resulted in dose-

level 5 being recommended. We saw this corresponded with combined follow-

up times between 20 and 21 days. Understanding the exact combination of

follow-up days for patients that lead to a dose decision is important to help us

construct the TITE-DTPs. This is another advantage of DTPs in a TITE setting

as they allow us to see exactly what amount of data we need to observe for

specific decisions to be made. This may be helpful in practice when it comes to

timing analyses for dose-decisions as it may be beneficial to observe patients

for a few extra days in order to escalate to a higher doses. Whilst this may be

a rare occurrence in an actual trial it will still be beneficial to be aware that his

problem could arise and develop a plan ahead of time to deal with it.

It is also important to note that this inconsistency may change how we in-

tuitively interpret patients weighting in a TITE-CRM, specifically with a linear

weight function. Through our examples we have shown that follow-up time

between patients at the same dose-levels is not equally weighted. We saw that

for the same combination of or total follow-up time different dose recommen-

dations were made based on the split of follow-up time between the patients.

Even in instances where different dose-recommendations were not made we

still saw different estimates of β for different combinations of the same total.

Even with the linear weights it is the non-linearity of the weights that causes

this problem. An extensive review of the literature has not been conducted

however we do not think that this issue with the TITE-CRM has been high-

lighted previously, this may also extend to other methodology which imple-

ments a TITE component.
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We also investigated the use of alternative weight functions. Here we still

observed under certain combinations of follow-up times between patients dif-

ferent dose recommendations could be made. Compared to a linear weight

function having a weight function that gives more weight early resulted in

fewer pathways being impacted by this. by attributing more weight to the

patients early on they contribute more to the model which may result in a

different dose decision. For a weight function which allocates more weight

later into the observation window there are a lot more pathways for a wider

range of combined follow-up times where different decisions could be made.

In our example one pathway escalated to a higher dose even thought there

were 14 less total days of combined follow-up compared to another pathway.

Whilst this is not necessarily incorrect it helps us better understand the impact

of weight functions in TITE-CRMs. For example there could be a medical con-

text where it is more meaningful to have a single patient go 4 weeks without

a DLT compared to two patients going 2 weeks without one. In this scenario

you may want to allocate more weight to the patient at 4 weeks. TITE-DTPs

are possible with different weight functions but may be more difficult to con-

struct. They could still be a useful tool in helping understand weight functions

and when a specific dose decision would be made for a specific amount of

time/weight.

Further work may be done to explore this issue and the idea of TITE-DTPs.

Here we have only looked at a relatively simple example using a TITE-CRM

with a power model. We could also investigate more weight functions such as

the adaptive weight function presented by Cheung and Chappel [42], Huang

and Kuan [53], or Braun [90]. Our example design was not a modified TITE-

CRM so we did not make use of any stopping rules or rules about skipping

doses. Changes to any of the specifications or the inclusion of these rules

would alter the results we produced. It is also possible that this issue may
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be less apparent in the early stages of a modified TITE-CRM example. If a rule

was included to avoid skipping doses the initial set of doses the TITE-CRM

could explore would be restricted. However at a certain point once multiple

dose-levels had been tested the issue may reappear.

Additionally, the observation window of 35 days that we selected was also

fairly arbitrary and as discussed previously any significant increase in this

value will drastically increase the number of pathways that need to be calcu-

lated. We only looked at patients at the start of the trial all of whom received

the same dose-level. An additional approach would be to look at the pathways

halfway through the trial assuming previous patients had been fully observed

so we would not have to consider multiple pathways from that data. Looking

into a more complex example and multiple scenarios to see if TITE-DTPs still

behave as we have described would be beneficial to validate the work we have

already done as well as highlight any different features that may emerge such

as the inconsistency with weighting that we found.

The examples of TITE-DTPs we provided were for only one cohort as well.

Obviously, this becomes more and more difficult to deal with as we add in

extra patients and cohorts. It is also not as trivial as just presenting a sum-

mary table as we did for the first cohort as well. Any additional cohort will

have to take into account not only partial tolerance events from the new co-

hort but would have to consider every remaining possible partial tolerance

event from a previous cohort. Consider one pathway from a cohort of three,

N(31)N(23)N(9), all patients here experienced a partial tolerance and as their

combined follow-up time adds up to 63 days we can see from the TITE-DTP

in Table 4.18 the dose recommendation would be dose-level 5. If we were to

then recruit cohort 2 to dose-level 5 and attempt to produce more pathways

we would need to check combinations for each possible amount of remaining

follow-up time for the patients in the previous cohort as well as the full 35 days
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for each of the three new patients. So, this can essentially be thought of as a

cohort of six, where some patients already have some data available. Equation

4.1 can then be used to give us a rough estimate of how many combinations

need to be considered. For a cohort of 6 patients with 35 days of follow-up,

the number of combinations is 1 × 1041. Now since we already have some

data a few of these combinations are redundant but that is still an astronomi-

cal amount of pathways. For context the universe is approximated to be 13.7

billion years old [91] which roughly converts to 4.3 × 1017 seconds i.e. there

are more possible combinations than there are seconds that have passed since

the beginning of time.

The TITE-CRM was originally designed to work without the use of cohorts.

The idea was that patients could be recruited into the trial continually and they

would be allocated a dose-level based on data from patients already in the

trial. As those patients already in the trial may not have completed their DLT

observation window they would be partially weighted using the idea of them

having achieved a partial tolerance. As recruitment to a clinical trial may not

be consistent or predictable this made it possible to not pause recruitment in

a dose-finding trial which would typically be done whilst a cohort was being

observed for DLTs. However, in a practical setting and with guidance from

regulators it may not always be possible to run trials in this manner. In order

to make a dose-decision data may have to be source verified and cleaned. A re-

port and analysis will have to be produced and used to make a dose-decision

which is then discussed with an independent committee. This process may

take weeks and recruitment may have to be paused to allow for this to occur

before the next patient is recruited. Werkhoven et al. [54] provide a full discus-

sion on the practicalities of running a TITE-CRM and the challenges it raises.

However, the TITE-CRM still remains useful as we can have long observation

windows to monitor late-onset toxicities and still make dose-decisions whilst
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observing patients (Like we have done in Chapter 2 for the ADePT-DDR trial).

As such TITE-DTPs can still be a useful tool.

One way in which TITE-DTPs could work with multiple cohorts would be

if previous cohorts were completed and had full information. That data could

go directly into the model and you would not need to consider any previous

partial tolerances. When a dose decision for cohort 2 is made on partial in-

formation from cohort 1, TITE-DTPs could be created showing outcomes for

cohort 3 that assume cohort 1 has full information. In practice, this may very

much be the case as well depending on factors such as recruitment time and

the follow-up period.

The way DTPs are calculated the outcomes are specified and then entered

into the model and then the recommended dose based on those is extracted.

Those values are then used to construct the DTPs. That means for each out-

come we have to specify an individual model. So, earlier in the chapter when

there were 64 pathways 64 models were fitted and in the example of TITE-

DTPs for a cohort of 3 we had 8436. As you increase the cohort size and the

number of patients or the number of follow-up days in the trial, the num-

ber of pathways increases hence the number of models required to compute

the DTP increase and the more models required the more computing time is

needed. One way around this may be to stop computing once a dose-decision

threshold is reached. This specifically relates to any outcomes where a partial

tolerance occurs. In the TITE-DTP example for the NNN outcome, we see any-

thing after 27 days of combined follow-up recommends dose-level 5, We could

incorporate a rule into our code that checks after each combination of follow-

up days if the recommended dose changes and remains the same across every

permutation of follow-up time across the patients DTPs would stop being cal-

culated and you can assume the recommended dose will be the same. That is

to say in this scenario for every combination of the three patients’ follow-up
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time that adds up to 27 the model recommends dose-level 5 so we can assume

that for any additional follow-up time the model will make the same recom-

mendation as that is the maximum dose. This could cut down computing time

on thousands of additional pathways depending on the scenario and context.

An alternative method of producing TITE-DTPs may be to use patients’

weight as a reference instead of their follow-up time. Even though weight is

a function of follow-up time it might make presenting the TITE-DTPs simpler.

A set of weights could be specified and pathways for those could be calculated

instead. So rather than calculating pathways for N(1), N(2), ..., N(34), N you

just calculate pathways when a patient is at 25%, 50%, 75% and 100% weight-

ing. The issue with this is in order to make it interpretable you would have

to back-transform the weighting. So in our example with a 35 day follow-up

period and a linear weight function weightings of 25%, 50%, 75% and 100%

would correspond to 8.75, 17.5, 26.25, and 35 days respectively. This might not

be intuitive but it is one way to reduce the number of potential pathways. For

cohorts of two or more where multiple patients are experiencing partial toler-

ance rather than looking at every possible combination you could just look at

specific weightings. For example what is the pathway when both patients are

at 50% weight, or perhaps when one is at 75% and the other at 25%.

As Yap et al. [31] suggested perhaps the easiest approach is just to assume

that full tolerance will be achieved and calculate DTPs from that viewpoint.

So treat the trial like a CRM and give full weighting to all the patients. This

could be used as an alternative and a way to compare dose decisions made on

partial information versus full information. This comparison was also made

in our example and we saw how some decisions may change with only partial

information. During the design stage of a trial, this may be useful in help-

ing determine the length of any potential observation window and how dose

decisions may change during it.
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Overall it is possible to produce TITE-DTPs but it very much depends on

the number of days that patients can have a partial tolerance. It also depends

on the size of the cohort you are evaluating. There are also some practical

suggestions for how TITE-DTPs could be used during a trials design as well

as it is running. Based on all these factors it appears problematic to produce

TITE-DTPs for more than one cohort at a time and this will only be feasible

during a trial if you can assume complete information on previous cohorts.

Ultimately TITE-DTPs are still able to achieve the same aims as DTP except its

ability to look ahead is a lot less.

Statisticians should attempt to produce them wherever possible. They can

be used to project the pathways for the first cohort of patients. This will help

provide insight into the specific amount of follow-up that is required for cer-

tain dose decisions to be made. They can also be used to help calibrate the

weight function as well. It could also be beneficial to produce DTPs for the

CRM in this instance as a starting point and then work on implementing TITE-

DTPs. However, if the scenario or trial parameters mean the TITE-DTPs is too

complicated they may be more of a hindrance than a benefit.
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Chapter 5

Efficacy Transition Pathways

5.1 Introduction

In Phase II trials we are often attempting to determine whether or not a new

treatment or intervention works and establish if there is an efficacy signal.

More specifically we aim to determine if there is sufficient level of evidence

to warrant further research in a Phase III setting [92]. In addition to assessing

efficacy there is also opportunity to further explore the toxicity profile of the

treatment. Compared to Phase I trials, Phase II trials are typically conducted

using a larger sample size [93]. Generally speaking Phase II trials should be ef-

ficient and quick such that we can progress to Phase III as quickly as possible

or drop any ineffective treatments.

The output from a Phase II trial should be either a ’GO’ or ’No GO’ deci-

sion i.e should we or should we not proceed to later phase testing based on the

data observed in this trial. One of the more important aspects of these trials is

that we do not want to make any incorrect decisions and if there is an effec-

tive treatment that is being investigated we want to make sure that it is taken

forward into Phase III. As such it is important that we try to make correct de-

cisions in Phase II trials. Failure to do so could result in potentially beneficial

treatments being rejected or bad treatments being investigated further, which
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could negatively impact patients and waste a lot of time and money [94].

However, Phase II trials still face some issues which may make this chal-

lenging. Whilst it is the case that Phase II trials are typically larger than Phase

I trials, there are still some instances in which we would be dealing with small

sample sizes, such as, in a rare disease setting. In these instances we may em-

ploy single arm Phase II trial designs along with Bayesian methods to make

better use of the data we are able to collect.

Furthermore, we may also be interested in taking a look at some safety

data and check that there is sufficient signal of efficacy to warrant continuing

the trial. This may take the form of interim analyses and can be thought of in a

similar manner to dose decisions in dose-finding trials. Rather than assessing

the data and selecting a dose, we are assessing if the trial should continue or

not, stopping for either futility in terms of efficacy or safety reasons.

Whilst these designs may be simple to implement they also suffer from sim-

ilar drawbacks as certain dose-finding methodologies, that have previously

been discussed. There may be some issues parametrising these designs e.g. se-

lecting adequate decision rules. Any Bayesian approaches may be less famil-

iar than traditional frequentist approaches that are more commonly used [95],

such as the Simon’s two-stage design [96]. Clinicians and non-statisticians may

struggle to understand why certain decisions are being made during interim

and final analyses.

In order to solve some of these issues Lucinda Billingham (LB) developed

the idea of Efficacy Transition Pathways (ETPs), a novel visualisation tool to

aid the design and interpretation of these types of designs. ETPs are an exten-

sion on the concept of Dose Transition Pathways (DTPs). Here they help map

out and visualise the different decisions that can be made at interim and final

analyses based on different observed outcomes in a similar manner as how

DTPs present different dose-decisions that can be made for each cohort.
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In this chapter we will detail how ETPs are constructed as well as how they

may be used in practice. In addition we present motivating examples where

ETPs have been actively implemented and used in clinical trials. The primary

aim of this chapter is to develop software to facilitate the implementation of

ETPs in order to make them as accessible and as DTPs.

5.2 Efficacy Transition Pathways

ETPs were primarily designed for use in single arm Phase II trials using Bayesian

methods where the data is being looked at and assessed frequently. Typically

a trial like this, at least in an oncology setting, will have a short-term binary

outcome either success or failure, response or no response as its primary out-

come.

One approach for these sorts of trials is to use a Beta-Binomial conjugate

analysis to estimate a response rate for the binary outcome. Posterior proba-

bilities can be used to inform decision-making and predictive probabilities can

be used during interim analyses in a similar manner. Any decisions made will

be done using pre-specified decision rules.

In order to demonstrate how ETPs are constructed and used we will look at

the design process for a trial using a Beta-Binomial conjugate analysis. When

implementing a design like this we need to consider a number of factors such

as: the total sample size, the number and timing of any interim analyses, and

decision criteria for interim and final analyses. Then, much like with a dose-

finding trial, simulations can be conducted to obtain operating characteristics

of the design. In addition we can also calculate the number of responses re-

quired at each analysis to continue the trial. This is also an iterative process so

the design and decision rules can then be tweaked until an acceptable design

is reached.
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ETPs can be utilised during this process as they are able to present the de-

cisions that will be made based on the current design specification and the

potential outcomes that can be observed for each analysis time point. As the

design process for a trial involves multiple stakeholders it may not be easy to

understand why or when certain decisions are being made. By mapping this

all out in a single plot it may be easier to visualise.

For example, based on whatever the current specification is, it may be the

case that in the first interim analysis 2/5 patients require a response to continue

the trial. Once the clinicians see this they may feel its too strict and would only

think about stopping if there are no responses or alternatively they may want

to remove this interim analysis and decide to only look at the data once 10

patients have been recruited. This is far more intuitive then trying to explain

these concepts and using different boundaries for predictive probabilities. This

could then be used to facilitate further discussions about the design specifica-

tion and if decision rules need to be more or less lenient.

ETPs much like DTPs could also be used throughout the trial as well. So,

based on how many responses have already been observed you can easily fig-

ure out how many responses would be required for the next cohort of patients

to obtain a ’GO’ decision. Once the ETPs are produced all future decisions

based on the number of responses can also be seen. So, this has the benefit of

not requiring a statistician to run an analysis to calculate the specific number

of responses that are required for a ’GO’ or ’No GO’ decision. Whilst, ETPs

should not replace the need for a statistician and they should still be involved

with all the analyses they act as a tool that can help monitor the progress of a

trial and can be referred to throughout the trials life cycle. In the next sections

we provide an example trial to show how ETPs are constructed and utilised.
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5.2.1 Illustrative example to showcase a Beta-Binomial design

Consider a Phase II trial where the objective is to evaluate the efficacy of some

new treatment. This will be evaluated using an outcome measure of response.

Patients can either be considered a responder or a non-responder. Consider

this is in a rare disease setting so patient numbers are limited and as such we

will be using a single-arm design. The treatment effect will be the response

rate which will be estimated using a Beta-Binomial conjugate model. We will

require a sufficient level of evidence that the there is adequate treatment effect

to warrant further research in a Phase III trial. Here, we will be utilising a

decision space with two outcomes: GO or No GO. However, this approach can

be adapted for more complex scenarios, such as the Lalonde framework [97]

which implements a Go/Pause/Stop decision structure.

The Beta-Binomial conjugate model is described by Lee [25]. Consider a pa-

rameter of interest θ that represents some treatment effect. More specifically,

for binomial data in a single arm Phase II clinical trial, lets say the parameter

θ is the probability of response in a number of patients following a some new

treatment. Each patient can experience either a response or no response, with

the same probability of response and each patient being independent from

each other. For a fixed sample size with n patients and number of responses

(y) we have:

Y ∼ Binomial(n, θ) (5.1)

So, y is from a binomial distribution which produces the following likeli-

hood:

L(θ) = P(y|θ) =
(

n
y

)
θy(1 − θ)n−y (y = 0, 1, . . . , n) (5.2)
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If the prior for θ is from a Beta distribution such that

P(θ) = Beta(a, b) (5.3)

then the posterior distribution is also from a Beta distribution and can be

expressed as

P(θ|y) = Beta(a + y, b + n − y) (5.4)

To avoid confusion with the prior we will let α = a + y and β = b + n − y

which gives

P(θ|y) = Beta(α, β) (5.5)

Bayesian inference can then be used for estimation and decision making.

Features such as the mean and variance of the treatment effect θ can be esti-

mated from the posterior distribution given in equation 5.5. For the posterior

distribution of θ ∼ Beta(α, β) the mean, variance and mode are.

E[θ] =
α

α + β
(5.6)

Var[θ] =
αβ

(α + β)2(α + β + 1)
(5.7)

mode[θ] =
α − 1

α + β − 2
(5.8)

The proofs for these formula are relatively simple and can be found in [98].

We can also establish credible intervals or make other probability statements

in a similar manner.
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We can also establish credible intervals or make other probability state-

ments in a similar manner. Then pre-specified rules based on these direct

probabilities from the posterior can be used for decision making purposes. For

example, if

P(θ > c|y) ≥ q then GO else No GO (5.9)

where c is some target level of treatment effect and q is some threshold of

sufficient evidence.

For our example we specify a minimally informative Beta(1,1) prior. This

represents a 50% response rate from a group of two patients. Data will also

need to be collected from patients recording if they had a response or not.

This in turn is combined with the prior distribution to generate a posterior

distribution for the treatment effect.

We will also specify the following decision rule will also be used P(θ ≥

30%) ≥ 0.9. So, if there is a greater than 90% chance that the true response rate

is at least 30% this will be considered sufficient evidence to warrant a ’GO’

decision. This criteria is just for illustrative purposes, in practice both clinical

and statistical considerations should be made for specifying these parameters.

In a rare disease setting there may not be many effective treatments so target-

ing a low level of treatment effect could still be considered an improvement

for patients. Depending on the scenario it may also be appropriate to require

a high level of evidence that the treatment is effective. There may be a heavy

treatment burden on patients with multiple hospital visits or negative side ef-

fects and so clinicians may want a higher amount of certainty that the targeted

level of treatment is reached to trigger a ’GO’ decision. For this example trial

we will set our sample size at 30 patients.

We will also include interim analyses after every five patients to evaluate
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whether or not the trial should be stopped for futility. To do this we will use

the predictive probability of success (PPoS).

Consider for a fixed sample of size n patients an interim analysis that will

be conducted after nint patients, such that nint < n. Again, the parameter of

interest, treatment effect or response rate will be represented by θ. Let the

number of responses x among the nint patients follow a binomial distribution:

X ∼ Binomial(nint, θ) (5.10)

Let Z be the number of responses in the remaining m patients, where m =

n − nint. When Z = i, where i = 1, ..., m, the posterior distribution can be

expressed as

P(θ|x, Z = i) = Beta(a + x + z, b + n − x − z) (5.11)

Where a and b are parameters from the Beta prior distribution, see equation

5.3.

Suppose we have a decision rule where a GO decision is made if the pos-

terior probability of θ exceeds some pre-specified target treatment effect/ re-

sponse rate c with a probability greater than some threshold q (as defined in

equation 5.9).

The predictive probability of success (PPoS) can be calculated as follows.

Let Bi = P(θ > c|x, Z = i) and Ii = I(Bi ≥ q) be an indicator variable taking a

value of 1, if the criteria Bi ≥ q is satisfied or 0 otherwise. Then we have
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PPoS = E{I[P(θ > c|x, Z) ≥ q]|x}

=
∫

I[P(θ > c|x, Z) ≥ q]dP(Z|x)

=
m

∑
i=0

P(Z = i|x)I[P(θ > c|x, Z = i) ≥ q]

=
m

∑
i=0

P(Z = i|x)I(Bi ≥ q)

=
m

∑
i=0

P(Z = i|x)Ii

(5.12)

Where P(Z = i|x) is the probability of observing Z responses in m patients

based on a beta probability distribution with parameters a+ x and b+ nint − x.

This can be calculated from the probability mass function

f (Z = i|m, a + x, b + nint − x) =
(

m
z

)
Beta(a + x + z, b + nint + m − x − i)

Beta(a + x, b + nint − x)

=

(
m
z

)
Beta(a + x + z, b + n − x − i)

Beta(a + x, b + nint − x)
(5.13)

The Beta functions can be further simplified or alternatively expressed us-

ing the gamma function. Note Γ(k) = (k − 1)!

f (Z = i) =
m!

z!(m − z)!

Γ(a + x + z)Γ(b + n − x − z)

Γ(a + b + n)

Γ(a + x)Γ(b + nint − x)

Γ(a + b + n)

=
Γ(m + 1)

Γ(z + 1)Γ(m − z + 1)
Γ(a + x + z)Γ(b + n − x − z)

Γ(a + b + n)
a + b + nint

Γ(a + x)Γ(b + nint − x)
(5.14)

The process to calculate the PPoS starts with the quantity Bi which repre-

sents the probability that the response rate is greater than some target c given

x responses in nint patients and assuming i future responses in the remaining
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m patients. The quantity Bi is then compared to our probability threshold q

which provides a value for the indicator variable Ii and informs us if the trial

would result in a GO decision at the end of the trial dependent on the data

observed and the value of Z = i. The indicators Ii are then weighted by the

probability P(Z = i) and summed to give the PPoS.

PPoS is then interpreted and used to make decisions at interim analyses.

Low values of PPoS suggest there is a low probability of achieving a GO de-

cision at the final analysis based on the data accrued so far. Similarly, a high

PPoS suggests the opposite and that the trial would likely be a success based

on the current data. An interim decision rule can then be implemented around

values of PPoS to recommend stopping the trial early for either efficacy or fu-

tility. To stop for futility a the following rule could be imposed

PPoS < t then STOP for futility (5.15)

Where t is some PPoS acceptable probability threshold. Values of t range

from 0 to 1 but would typically be small. For example a value of 0.2 may be

used to indicate if there is a less than 20% chance that the response rate at the

end of the trial will be greater than c with some probability q then the trial

should stop early.

For our example trial we will specify a PPoS acceptable probability thresh-

old where if PPoS < 0.05 then we should stop the trial for futility. This implies

we would stop the trial if there is a less than 5% chance that the response rate

at the end of the trial will be greater than 30% with a probability of 0.9 i.e a

less than 5% chance that the trial would reach a GO decision or be considered

a success.

Table 5.1 details the minimum number of responses required under this

design at each analysis time point. For the final analysis, once 30 patients
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have been recruited, a minimum of 13 responses must be observed in order to

have a GO decision. We can also see what the minimum number of responses

required are for each interim analysis.

TABLE 5.1: Specification of parameters for the example Beta-
Binomial trial.

Analysis Minimum No. Responses for GO Decision
N = 5 1
N = 10 2
N = 15 3
N = 20 7
N = 25 9
N = 30 13

Most of the specifications we have made here along with our decision rules

are fairly arbitrary. In practice decision rules should be decided before the trial

starts. This is typically done via the evaluation of simulations and looking at

the minimum number of responses required for GO decisions. Multiple sce-

narios corresponding to different true response rates can be investigated. The

probability of making a correct decision can then be calculated. This represents

the power of our design. For scenarios with low true response rates (relative

to the target response rate) we want the probability of making a No GO deci-

sion to be high. Similarly, for scenarios with high true response rates we want

the probability of making a GO decision to be high. The decision rule parame-

ters, the target response rate and probability threshold can then be adjusted to

ensure the design is making appropriate decisions in these scenarios.

Simulations for this example trial are shown in Table 5.2. There are five

different scenarios where we vary the true response rate. For each scenario we

simulate 10000 trials. for each individual trial run we sample responses from

patients using the underlying true response rate and determine if the criteria

are met to pass the interim analyses and final analysis decision criteria. The

table records the probability in each scenario of there being a ’GO’ decision. In
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scenarios where the true response rate is low (10% and 20%) we have almost

no chance of a GO decision. As our decision criteria targets a response rate

of 30% if the actual response rate was also 30% a ’GO’ decision would be the

desired outcome. However, the simulations show with the current design this

does not often occur. For higher true response rates the design does perform

slightly better in reaching ’GO’ decisions with probabilities of 0.414 and 0.796

for 40% and 50% respectively.

TABLE 5.2: Simulations for example Beta-Binomial design.

True response rate Probability of ’GO’ decision

10% 0.000

20% 0.003

30% 0.078

40% 0.414

50% 0.796

Simulations are always an important aspect of the design process however,

they may not convey what is most meaningful for other collaborators when

assessing the merits of each iterative design specification. This is where ETPs

can be used to try and bridge that gap by offering a way to visually represent

key information and decisions that are made with these types of designs. In

the next section we detail how an ETP is constructed using the example trial

design specified here.

5.2.2 Constructing Efficacy Transition Pathways

At each interim analysis PPoS is calculated based on the number of responses

observed thus far and evaluated to see if it meets the decision criteria. There-

fore there will be a minimum number of responses that have to be observed in
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order to continue recruitment. This is similar to how we can calculate the num-

ber of responses required at the end of the trial to warrant a GO decision. The

minimum number of responses required at each interim and the final analysis

depends on the decision criteria that is specified.

Intuitively, it is easier to understand that three responses have to be ob-

served from 15 patients rather than a PPoS ≤ 0.05 is needed. Through discus-

sions with clinicians we can then calibrate our decision criteria based on these

interpretations. We may want to be more strict or lenient at our interim. If

the clinicians would be happy to continue recruitment after seeing only two

responses we could lower the PPoS threshold, likewise if they wanted to be

confident and only continue if six responses were observed we would increase

the PPoS threshold. Similarly, this can also be done for the final analysis deci-

sion criteria. The acceptable probability level or target response rate could be

adjusted so a specific minimum number of responses observed achieves a GO

decision. Any changes made should be assessed by simulations as drastically

changing the decision criteria could have a negative impact on performance.

As more interim analyses are added to a design, it may be more compli-

cated to keep track of the specific number of responses required for ’GO’ deci-

sions at each interim. A solution for this is ETPs. In our example trial we have

a maximum sample size of 30 patients with interim analyses planned after ev-

ery five patients. This results in a total of six analyses, one final analysis and

five interims. The decision criteria at the end of the trial requires the treatment

effect to be greater than 30% with a probability of 0.9 and to pass the interim

analyses we require the PPoS to be greater than 0.05.

To construct an ETP we produce individual cells which contain key infor-

mation about a specific outcome i.e. a certain amount of responses. If we

consider our first interim at five patients, at that point there are six different

possible outcomes that can be observed. Either one, two, three, four or all five
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of the patients had a response or none of them did. For each possible outcome

we can then calculate the PPoS as well as the Bayesian estimate of the response

rate and an associated credible interval. Figure 5.1 shows what this cell would

look like.

FIGURE 5.1: ETP cell plot for 0 responses in 5 patients.

0 Number of responses

0.025 Predicted Probability of Success

11% Bayesian estimate of response rate

(0%−46%) 95% two sided credible interval

The number at the top indicates the outcome for the cell, in this case the

number of responses which is 0. The second row shows the PPoS in this sce-

nario, the third row showing the Bayesian posterior estimate of response rate

and the last row shows the 95% credible interval. For 0 responses the PPoS is

0.025 which is less than our threshold so the decision here would be to stop.

This is represented by the red dashed line. From this one cell we are able to

see what the decision would be at the interim analysis time point if this is the

outcome that is observed. We are also able to see specifically what the PPoS

and estimated response rate would be as well. The choice was made to present

probabilities with decimals and any estimates of response rates with percent-

ages. This was so the two could easily be differentiated.

Cells are generated for each possible outcome at each interim time point.

Figure 5.2 shows the cell for two responses in five patients. Here we can see
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the PPoS is 0.501 which is greater than our threshold so the decision would

be made to continue recruitment. This is indicated by the green dashed line.

As we put each cell together we can then clearly see the minimum number of

responses required to continue recruiting.

FIGURE 5.2: ETP cell plot for 2 responses in 5 patients.

2 Number of responses

0.501 Predicted Probability of Success

42% Bayesian estimate of response rate

(12%−78%) 95% two sided credible interval

This process is then repeated for each interim analysis. So, the next analy-

sis would be at 10 patients. Here we would generate 11 cells for all the dif-

ferent possible outcomes (no response, one response, two responses, ..., 10

responses). The same would then be done for the analysis at 15, 20 and 25

patients.

For the final analysis the presentation of the cells is slightly different. Here

we are no longer interested in PPoS as no more patients will be recruited and

rather we can just evaluate if the trial has met the decision criteria. So, in each

cell rather than present PPoS, the posterior probability that the response rate is

greater than our target rate is presented instead. Figures 5.3 and 5.4 show the

cells for 10 responses and 14 responses out of 30 patients respectively. In this

example our q is set at 0.9 so if the posterior probability is greater than that we

have a GO decision.
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We opted to present the PPoS and posterior probability as decimals. This

was done to avoid these values being confused with estimated treatment ef-

fect. It may be easy for a non-statistician to see a posterior probability of 0.976

and interpret it as the treatment having a 97.6% response rate. These are also

presented to three significant figures. This was done as in some instances the

posterior probability was shown to be the same value for adjacent cells which

could also cause some confusion. When constructing ETPs the presentation

of these values and the cells in general can be altered to suit the needs of the

users.

FIGURE 5.3: ETP cell plot for 10 responses in 30 patients.

10 Number of responses

0.688 Posterior Probability

34% Bayesian estimate of response rate

(19%−51%) 95% two sided credible interval

The efficacy transition pathway is then constructed by grouping each cell

for each interim analysis and then stacking those group of cells together. For

our example trial the ETP is shown in Figure 5.5. Each row of cells in the

ETP represents each interim analysis with the final row representing the final

analysis. One adaptation made with the cells is that the confidence interval is

presented across the bottom two rows in each cell just to make the figure easier

to read and more scalable.
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FIGURE 5.4: ETP cell plot for 14 responses in 30 patients.

14 Number of responses

0.976 Posterior Probability

47% Bayesian estimate of response rate

(30%−64%) 95% two sided credible interval

From this figure what can clearly be seen is when we do or do not have a

GO decision. At each interim of 5, 10, 15, 20, 25 patients we can see that the

minimum number of responses for a GO decision is 1, 2, 4, 7 and 9 respectively.

Also, for the final analysis a minimum of 13 responses is required. We can

also read down the figure to gauge an idea of how many additional responses

would be required in future analyses to warrant a GO decision. For instance if

you observed five responses in your first cohort of five patients, that is enough

observed data to continue passing the interim decision criteria until the fourth

interim analysis in which case you would need an additional two responses.

This can easily be seen by reformatting the ETP to be aligned to the left so the

same number of responses are stacked on top of each other for each cohort.

This is illustrated in Figure 5.6.

In addition to the easy visualisation of the number of responses required

to achieve a GO decision, we can also see the estimates of the treatment effect

for each potential outcome and each analysis time point. This is useful for

interpreting the results for the final analysis (the bottom row of the ETP plot).

Right away from interpreting the cell for the minimum number of responses
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(13/30) for a GO decision we can see the estimated response rate would be 44%

with a probability of 0.95 that the true response rate is between 27% and 61%. It

is important to remember the original decision rule for the final analysis which

for any GO decision implies there is a greater than 0.9 probability that the

response rate is greater than 30%. This can then be used to facilitate discussions

with the clinicians to deem if this is an acceptable level of evidence to warrant

further research or potentially bring into practice, based on previous studies,

current treatments or their experience. We can then adjust our design and

decision rules accordingly, which we discuss in the next section.
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5.2.3 Updating decision criteria based on Efficacy Transition

Pathways

Having seen the ETP we created for our example trial, suppose we want to

modify our decision criteria such that a GO decision at the final analysis re-

quires only nine patients to achieve a response. Compared to the initial deci-

sion criteria, which required 13 responses, we may want to consider lowering

this due to the treatment options available for these patients may not being

very effective. Obviously there may be many reasons why we would want to

increase or decrease this requirement and this would depend on the context

and background of each individual trial.

By looking directly at the ETP Figures 5.5 or 5.6 we can see that nine re-

sponses out of 30 patients has a posterior probability of 0.542. So, based of

the initial decision rule of P(θ ≥ 30%) ≥ 0.9, this implies that the probability

that the response rate is greater than or equal to 30% is 0.542. Therefore, if we

wanted to make this a GO decision we would change our decision criteria such

that our acceptable level of probability was something smaller than that poste-

rior probability. For example, a new decision rule could be P(θ ≥ 30%) ≥ 0.5.

This would mean that nine responses out of 30 patients would now be a GO

decision. This is another benefit of ETPs, we can quickly ascertain how we

would need to change our decision criteria to be in order for a specific mini-

mum number of responses to be a GO decision.

Given the ETPs observed in the previous section and the simulations shown

in Table 5.2 we will implement this new decision rule to see how it impacts

our design. We provide updated simulations in Table 5.3. Here we can see that

there is now an increase in probability of making a ’GO’ decision if the true

response rates are low (10% and 20%) however these are still relatively small.
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Compared to before there is now higher probabilities of making a correct deci-

sion when the true response rates are above 30%.

TABLE 5.3: Simulations for example Beta-Binomial design with
new decision rule.

True response rate Probability of GO decision

10% 0.001

20% 0.126

30% 0.558

40% 0.892

50% 0.988

We can then also update our ETPs. In Figure 5.7 we can see for the final

analysis (the bottom row of the plot) GO decisions start from nine responses.

It is important to note the content of these cells have not changed. The esti-

mates of response rates and credible intervals are still the same. This is because

we fundamentally have not made any changes to the design, just the criteria

for which we are making decisions. Changes in these estimates would only

be triggered if we were to change the total sample size or prior. Additionally

the posterior probabilities are also consistent with the previous ETP, this is be-

cause we have not altered the targeted response rate in our decision criteria.

This value is still showing the probability that the treatment has a response

rate greater than 30%. These values would only differ if our target response

rate was set as something else. For the rest of the cells showing previous co-

horts and the interim analyses we can see the minimum number of responses

required for a GO decision is now 0, 1, 3, 4 and 6 for each interim analysis re-

spectively. Also, note how the PPoS is different compared to the last ETP. This
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is because PPoS takes into account the final decision rule we are using. Any

change to that rule will impact PPoS calculations.

By altering our decision rule like this we ensure that if we observe the de-

sired number of responses, in this case nine, the trial would be a success. We

did this by just changing q, the acceptable probability level. However, it should

be noted that this can also be achieved by changing both c (the target response

rate) and q. These values can both be manipulated so we still maintain the

same practical decision making. This is important to note as whilst clinicians

may find it more intuitive to specify decision rules based on a minimum num-

ber of responses there are different ways in which that can be achieved.

Table 5.4 details the posterior probability that the estimated response rate

is greater than four different target response rates given we observe nine re-

sponses out of 30 patients. If our target response rate is 10% and we observe

nine responses the posterior probability is 0.999 so then our decision rule can

be specified as if P(θ ≥ 10%) ≥ 0.95. Here our value of q just has to take a

value lower than the posterior probability but we should be careful to make

sure it is not low enough such that observing 8 responses also becomes a GO

decision. Similar statements can also be made about the other target response

rates presented in the table. The associated decision criteria for those response

rates are also presented.

TABLE 5.4: Examples of different decision criteria.

Posterior Probability for 9 Responses c q
P(θ ≥ 10%) = 0.999 10% 0.95
P(θ ≥ 20%) = 0.926 20% 0.90
P(θ ≥ 30%) = 0.542 30% 0.50
P(θ ≥ 40%) = 0.143 40% 0.10

This is also shown in Figure 5.8. Here there are four curves each represent-

ing the posterior probability that the estimated response rate is greater than

the target response rates of 10%, 20%, 30% and 40% for all possible number
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of responses. The dashed vertical line represents the minimum number of re-

sponses we would require for a GO decision and where this crosses with each

curve is the posterior probability that the treatment effect is greater than those

target response rates and should be used to inform our values of q. By adding

in more curves for different target response rates or moving the dashed like

for a different number of minimum responses we can determine appropriate

values for our decision criteria.

FIGURE 5.8: Changes in posterior probability for decision crite-
ria.
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Here we have shown how ETPs are constructed and how they change and

react to modifications in our decision rules. There are several other factors

which can impact an ETP such as the prior used in the Beta-Binomial con-

jugate analysis as well as the timing of each interim analysis and the overall

sample size of the trial. Changes to the prior will have an impact on all of the

calculations as it is used to generate the posterior distribution on which all of

the other calculations are based upon. Adding more interim analyses would
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add more rows to the plot and changing the sample size of the trial alters the

number of cells in each row.

Overall ETPs can be a useful tool during the design stages of a trial as we

can experiment with different decision rules and see what practical effect it has

on the trial in terms of the number of responses that need to be observed for

a GO decision. They can be used to facilitate discussions with non-statistical

experts involved in the design of the trial. Much like dose transition pathways

in a dose-finding trial they can also provide some transparency as to what

decisions will be made and when they would be made.

A single ETP also provides us with the ability to see how multiple differ-

ent decision rules may change the outcome for a trial. If just the acceptable

probability levels for the PPoS and final analysis, t and q, are changing in the

decision rule the impact of those changes should be apparent just by compar-

ing the PPoS and posterior probability without the need of generating a new

ETP like we have in our example.

Whilst the calculations needed to produce these plots can be simple, con-

structing the plots can be challenging. To overcome this issue and make ETPs

easily accessible and producible, we developed a web based application to

generate ETPs. All the ETPs shown in this chapter were generated using this

application.

In the next sections we detail trials that have been designed using ETPs.

These served as further motivation for development of the application to pro-

duce ETPs. We then go on to detail how the app was developed and how it

works.
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5.3 Implementation of ETPs

With the development of any new methodology or novel tool such as ETPs

there will be some barriers that will impede its use. One of those barriers will

be the difficulty of implementing the methodology. If the intention of some

newly developed methodology is for it be applied in a practical setting, when

presented it should be accompanied by appropriate software or code such that

the target audience are able to implement it with minimal effort. Otherwise the

new methodology may remain purely theoretical and would rely on others to

come up with a solution for its implementation.

To overcome this barrier for ETPs we developed a R function to produce

these plots given the input of key details such as the decision criteria, sample

size and cohort size. We then used this function and built a web application

around it. Rather than just offering code to implement ETPs a web app makes

implementation even easier as it does not require knowledge or experience

with a specific piece of stats software such as R, STATA or SAS.

Another barrier that limits the rate at which new methodology is imple-

mented is a lack of awareness or familiarity with the methodology. Specifically,

with clinical trials that often involve a multidisciplinary team it is unrealistic to

expect clinicians or trial management to be up to date with the latest statistical

innovations. Some statisticians may not be familiar with the latest methodol-

ogy if it is not primarily an area they specialise in. As a result, newer methods

may be overlooked even if it would be beneficial to implement. Even if statisti-

cians are aware of new methodology, the struggle may then become explaining

the methodology to non-statisticians and convincing them it will be beneficial

to use.

Inherently ETPs as a tool were created to help better explain the analysis

that is done in these phase II trials as well as the decisions that are made. They
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exist more as a tool to help promote the underlying Bayesian methodology.

Therefore ETPs may be simple to implement and explain to non-statisticians.

Instead the issue may come from a lack of understanding of a Beta-Binomial

conjugate analysis, predictive probabilities or the background methodology

behind the ETPs.

To address this within our web application we included detailed informa-

tion about ETPs as well as a breakdown of the methodology behind them.

This was done through text and images in combination with custom built in-

teractive tools that illustrates how these trials are run in a practical setting.

These additional explanations and features were built in to make understand-

ing ETPs easier, especially for those with a non stats background. These sec-

tions can also be used as a teaching tool to help educate those who are working

on trials but not familiar with this methodology.

Lucinda Billingham (LB) as the visionary behind ETPs had began imple-

menting them in a number of different trial designs despite these barriers.

Some of these trials were being designed as umbrella, basket or platform trials

and involved multiple arms. Here analyses and decisions were being made in

each arm independently so ETPs were employed to help design these trials.

This leads to more issues where during the design stages of a trial multiple

ETPs may need to be generated. If changes were made to specific decision cri-

teria the ETP would need to be updated so you could communicate how those

changes would affect the outcome of the trial. This is then further compounded

with the complex trial designs where there may different criteria dependent on

the arms in the trial.

Prior to the development of the app ETPs were being constructed by hand

which was a time consuming endeavour. In Appendix A we detail three trials

that were designed by the Cancer Research UK Clinical Trials Unit (CRCTU)

at the University of Birmingham and show how ETPs have previously been
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implemented.

5.4 Development of a web application for ETPs

R shiny [99] is a tool available in R to facilitate the production of interactive

web applications (apps). It allows R users to create useful and accessible tools

that would otherwise be out of reach of non R users without requiring any

programming or statistical knowledge. In the context of medical statistics the

usefulness of these types of apps is also acknowledged by funding bodies such

as the NIHR (National Institute for Health and Care Research). They have

awarded grants which in part helped the development of apps relating to net-

work meta-analysis [100] and meta-analyses of diagnostic test accuracy studies

[101], [102].

Even without funding there have been apps that have been developed to

help address issues around the implementation of early phase and adaptive

designs. For example, there is a whole suite of software and shiny applications

made available by the MD Anderson Cancer Centre [103] to help implement

methodology they have developed. Wheeler et al. [104] produced the A plus

B app to produce operating characteristics for A+B trial designs [105]. There is

also the MoDEsT app created by Pallmann et al. [106] for designing and con-

ducting single-agent dose-finding trials. Grayling and Wason [107] developed

an app to aid the implementation of multi-arm clinical trial designs. These are

just a few examples of shiny apps already available, all of which aim to make

certain methodologies more accessible and is something we also wanted to do

for ETPs.

Initially we produced a R function that was able to create ETPs. Then us-

ing R shiny an application was built which utilised this function to produce

ETPs. Whilst the R function makes implementing ETPs a lot easier, the R shiny
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app offers an even better solution. Firstly, it does not require any previous

knowledge of a specific statistical package so any statistician should be able

to use the application with ease. This also applies for non-statisticians and an

application would make ETPs more accessible.

R shiny also has the ability to make graphs interactive. Whilst ETPs pro-

duce a lot of information they are static in nature. As such a change in pa-

rameters or design characteristics means that a separate ETP would need to

be produced. With R shiny a interface allows for these changes to be easily

made and the plots automatically be updated. Additionally, elements of inter-

activity can also be included in an application. In the application by clicking

on a specific cell of the ETP we produce additional plots which give the user

more details than they would otherwise get with just a single ETP. The ETPs

presented in Sections 5.2.2 and 5.2.3 were all produced in a few clicks using

this app.

In our app we have a specific page which is labelled "plot builder" that will

generate ETPs. This page is split into two sections. The section on the left can

be considered as the input and the section on the right is the output. There

are three tabs in the input section and each one deals with a separate set of

input parameters. The prior parameters tab allows the user to specify priors

that are being used in the beta-binomial conjugate analysis and also produces

a plot of the corresponding beta distribution. The app can be accessed at the

following link - https://amit-patel.shinyapps.io/beta-binomialapp/. A video

demonstrating the key features of the app is also available on YouTube through

this link - https://www.youtube.com/watch?v=vfVzwBDp9-E.

The design parameters tab allows the user to specify the details of their trial

and all the relevant information required to produce an ETP. This includes the

number of cohorts and the size of each cohort, this assumes that an interim

analysis will be performed once each cohort has been recruited. Details also

 https://amit-patel.shinyapps.io/beta-binomialapp/
 https://www.youtube.com/watch?v=vfVzwBDp9-E
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need to be inputted regarding the decision criteria at both the interim analysis

and final analysis stage. As these design parameters are input the output in the

right hand side section named ’Decision Rules’ also updates. Here the decision

criteria based on the inputs are presented to the user in a mathematical format.

There is also text to explain what each of the rules mean so the users can ensure

they have inputted the correct details. The interpretation will also be useful for

non statisticians and provide some understanding of the decision criteria and

what it means.

The final input tab is for parameters corresponding to the visualisation of

the plot. These correspond to arguments within the R function which allow the

user to adjust how the ETPs look. There is the ability to change the alignment

of the ETP such that the cells are either centred or left aligned. There is also an

option to change the size of the text in the ETP. As ETPs can become more and

more complicated depending on the design of the trial the text may become

over crowded so would need to be adjusted, which is what this option allows

for. There is also the option to turn the legend on and off.

In the output section the tab labelled "Efficacy Transition Pathway" con-

tains the ETP which is generated based on all the inputs from the input section

(prior, design and plot parameters). The user can clearly see what the ETP

for their given design would look like. From here the user also has the abil-

ity to download the ETP in multiple formats. Any changes made to the input

parameters will result in the ETP being updated. This allows for the user to

easily and quickly make tweaks to the trial design and see how the decisions

made would change. They can also easily save/download all versions of the

ETPs they make to compare across the different designs.

There is also an added layer of interactivity that was incorporated into the

app. By clicking on an individual cell in the ETP additional information and

plots will be generated. Once a cell has been clicked on a line of text will appear
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below the ETP which provides specific details about what each of the numbers

in the cell represent. Additionally, there will also be a plot of the individual cell

with added text to explain what each number in the cell represents. This will

allow users to investigate and further explore individual cells. This is specif-

ically useful in scenarios where the ETP may be large and contain many cells

and some may not be clear on the ETP. Additionally, a posterior distribution

plot is also generated when a user clicks on a specific cell. This will allow the

user to see at the specific analysis time point what the posterior distribution of

the treatment effect looks like given a specific number of responses. The plot

also includes key statistics as well as the specified credible intervals. This plot

is produced for all cells, even those at the interim analysis, whilst these may

not be the final posterior distribution it provides a visualisation of the treat-

ment effect at that interim analysis which can than either be compared to other

time points or changes in the number of responses.

The final tab here presents the data that is used to generate the ETP plot.

Each cells data is included in a row and contains results from the PPoS and

posterior probability calculations. There is also some functionality within the

app that so that the data can be ordered by specific columns or searched. Ad-

ditionally, this dataset can also be downloaded. This allows users to take the

key data and calculations for use outside of the app. Users can also take the

data and use it to create their own ETP as well. Whilst the primary objective

of the app is to produce the ETP it also serves as a quick calculator for PPoS.

Which is a useful feature in its own right as users could specify there design

and download the data and use the PPoS values in their SAPs, protocols, grant

applications etc.

The way in which the app works is that all the parameters for the Beta-

Binomial trial design and inputs for the ETP are stored. They are then fed into

the R function which outputs the data table. Based on the data the function
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will produce the required number of cells which are then plotted on a carte-

sian plane. Then each of the values which make up the individual cells are

plotted at fixed y coordinates. The interactive element works by registering

the coordinates of where the user clicks on the ETP plot. Then it finds the co-

ordinates of the centre of the nearest cell in a specific margin and extracts the

data for that cell. That extracted data is then used to create the additional el-

ements like the text explaining that cell, the enhanced individual cell plot and

the specific posterior distribution plot.

5.4.1 Additional Features of the App

We have shown how the app allows for easy creation of ETPs so anyone fa-

miliar with the methodology and an internet contention is just a few clicks

away from being able to produce these plots. The other issue we mentioned

earlier with the introduction of new methodology is lack of awareness or fa-

miliarity. In order to address this we built additional pages in the app that

act as an educational resource which provide all the prerequisite knowledge

required to understand ETPs. These pages cover all the material covered in

this chapter. Starting from the basics of Phase II trials, Bayesian statistics, Beta-

Binomial conjugate analyses and PPoS. The traditional way to explain new

concepts would usually be through some combination of text and images and

whilst we employ these to introduce more of the simpler elements of ETPs, R

shiny gives us the ability to incorporate some level of interactivity within the

material.

The navigation bar on the right hand side of the app can be used to nav-

igate through the various pages. The "Introduction" tab contains two pages.
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The first is an introduction to clinical trials which contains background infor-

mation on the phases of clinical trials and then goes into more detail specifi-

cally about Phase II single-arm trials. This also serves to provide some set-up

and context about when a beta-binomial conjugate analysis might be used.The

second page is about Bayesian analysis, which is used to introduce Bayes’ the-

orem and concepts like priors and likelihood. Whilst both of these pages are

not fully detailed or insightful renditions of the topics, they do provide the

basic information required to use the app and create ETPs. Additionally, the

content on these pages should be accessible for almost anybody regardless of

their experience with clinical trials or statistics.

The next tab in the navigation bar is labelled "Beta-Binomial Designs" which

is also split into two further pages. The first page is about the basics of a Beta-

Binomial conjugate analysis. Here we have a brief introduction to conjugate

models and more specifically a Beta-Binomial analysis. To illustrate how it

works we use some interactive elements. We start by splitting the conjugate

model into its three main components the prior probability distribution, the

likelihood and the posterior probability distribution. In each of these sections

we detail what these components are how they are presented mathematically

and how they can be interpreted. Additionally, in each section we also include

a visual representation of each component along with the ability to modify the

plots. All of these plots between each of the sections interact with each other.

So, for the prior section we default by showing a Beta(1,1) prior distribution.

The likelihood plot shows the likelihood function which is default set to 8 re-

sponses from 15 patients. Finally, the posterior section shows the posterior

probability distribution based on the prior and likelihood sections, the default

here is a Beta(9, 8) based on a Beta(1,1) prior and having 8 responses for 15 pa-

tients. Additionally, we also introduce the idea of decision criteria in the pos-

terior probability section and on the plot we visualise the cut-off for a GO/No
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GO decision. The default decision criteria specified here is P(θ ≥ 40%) ≥ 0.8

which based on the other defaults results in a GO decision. As well as all of

these plots interacting with each other we have specified controls such that the

user can change any of the parameters, data or decision rules used to generate

these plots. Changes to any of these inputs results in all the corresponding

plots being updated. As such the user can experiment and investigate the af-

fect of changing any of the default specifications. For clarity, we include text

statements on the interpretation that can be made from the posterior which

also update automatically based on the details specified.

The second page in this tab allows the user to run a practice trial using

a Beta-Binomial conjugate analysis. The previous page shows the mechanics

of how the design works but that is based on knowing the final number of

patients and responses. The top left box has multiple tabs containing the in-

structions, decision criteria and controls that are being used. For consistency

we use the same decision criteria and priors as before. We also specify a true

response rate, defaulted at 50% which is the response rate we sample patients

from. Again, All of these specifications can be changed by the user. Using

the "Add patient" tab the user has the option to add or remove patients from

the trial. A slider between 1-10 allows the user to select how many patients

they want to add and then by clicking the add patients button they can add

that many patients, this can then be repeated many times. Once patients are

added you will see a plot in the top right box that shows a circle for each pa-

tient, coloured green or red to indicate if they had a response or no response

respectively. Patients responses are determined based on the true response

rate specified earlier. The bottom left box will also produce a plot showing the

posterior distribution based on the number of patients added and the number

of responses. The plot has a checkbox option to display the decision criteria

which will show whether or not based on the data generated and decision rule
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if there would be a GO decision. Then the bottom right box gives statements on

the interpretation of the posterior probability distribution and decision rules in

the "Analysis" tab. The "Summary Estimates" tab then provides summary esti-

mates from the posterior with the option of including these in the plot.

This page was developed as more of a demonstration tool which can be

used to illustrate how decisions we make may end up being incorrect based

on data we observe or the timing of the decision. Users have the ability to add

multiple sets of patients in the form of cohorts and can see what the decision or

results from the trial would be based on the data they generate. As it is based

on a true response rate of 50% they may get lucky and get enough responses

from 10 patients to make a GO decision but if they were to re-run this they

may get a different number of responses and hence a different result. Users

then can see the affect of adding more patients or changing the decision rules

or the true response rate.

Finally, we have an "App Details" tab which contains two pages. The first

one includes a list of references with external links to more material on topics

covered by the app. We also, reference the R packages that were used to make

the app and link to their respective CRAN pages. We also have a page for

version history which details what was added, changed or updated for each

version of the app. A link to the code used to create the app is also hosted on

GitHub and linked for users to see.

All of these additional features allow us to utilise this app as an effective

teaching tool as well. There is some evidence that suggests the use of apps

helps students learn more effectively [108]. R shiny allows us to develop these

custom features without any relevant knowledge of languages such as Java or

HTML.
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5.5 Discussion

In this chapter we introduced the idea of Efficacy Transition Pathways. These

were initially thought of as an extension to Dose Transition Pathways which

are used as a visualisation tool to communicate decisions made in dose-finding

trials. ETPs act in a similar manner and serve as a tool to better illustrate and

communicate decisions made in single arm Phase II trials that utilise a Beta-

Binomial conjugate analysis. We detail the basics of these analyses and how

posterior probability of success can be used to make decisions during a trial at

the interim analysis stage. Just like in dose-finding, depending on the number

of outcomes we observe, i.e. number of responses, we can know ahead of

time the decisions that will be made. Depending on the complexity of the

design and decision rules the number of different scenarios can be difficult to

comprehend. So, ETPs help visualise these scenarios. These can be beneficial

for not only statisticians but other investigators involved with the design and

conduct of the study.

ETPs consist of an array of cells for each cohort in a trial, with each cell

containing key information pertinent to a specific number of responses being

observed in the total cohort size. Constructing ETPs requires numerous cal-

culations to be run including determining PPoS as well as Bayesian estimates

and credible intervals from the posterior distribution. These then need to be

evaluated against the decision criteria to determine what the outcome of the

trial would be based on the data that cell represents. All this then needs to be

constructed into a larger image with multiple cells. A benefit of this approach

is that the cells can be tailored to include information or other details that is felt

relevant to portray. However, this whole process can be time consuming espe-

cially during the design stages of a trial where specifications and decision rules

may constantly be changed and iterated upon. This was further illustrated in



224 Chapter 5. Efficacy Transition Pathways

the three examples we gave of trials where ETPs had been implemented and

used. Each of these trials could be considered as using complex and innova-

tive designs which involve multiple treatment arms with various time-points

for analyses and different decision rules. Throughout the design of these tri-

als multiple different ETPs were having to be produced in order to facilitate

discussions and showcase the design of the trials.

This is one of the issues with ETPs that motivated us to create an app and

some software that would automatically produce these plots. The other moti-

vation came from issues surrounding the introduction of new methodologies.

Often times when a new methodology or tool is introduced it takes a long

amount of time before it gets picked up and used by those other then the orig-

inal creators of the methodology. This is often due to multiple factors such as

lack of awareness about the new methodology or lack of useable code or rele-

vant materials. From the perspective of statisticians working on and applying

methodology, keeping up-to-date with all the latest innovations is often un-

feasible. Similarly, if you do come across a new methodology where there is

access to code, trying to implement the methods become a time-consuming

task so we may default to standard or typical practice even if it is sub-optimal.

Additionally, they may also need to take on the role of explaining the new

methodology to non-statisticians involved in the oversight and management

of the trial. This burden should fall on those developing the methodology if

they want it to be used more frequently. In order to facilitate this for ETPs

we created a simple R function along with a shiny app to make ETPs more

accessible and easy to explain.

The primary feature of the app is to produce ETPs, we achieve this by hav-

ing a simple to use interface which allows users to produce ETPs just by click-

ing a few buttons. What should be stated here is that currently there is limited

flexibility with adjusting the ETPs. For example, the current app and function
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only allows for fixed cohort sizes and one set of decision rules. If you are work-

ing in a rare disease setting, recruitment may be fragmented so your trial may

employ flexible cohort sizes and as such ETPs do not allow for that but could

easily be modified to have a different number of cells on each row for each

cohort. Similarly, you may want to consider multiple decision rules or have

more complicated rules during your interim analyses. For example, if your

PPoS is between a specific range say 5% and 15% you may want to consider

stopping but if it is definitely less than that you would want to stop and if its

more you would want to continue. Whilst not technically difficult to account

for that in our code or function, these are more niche scenarios that may not

be too common. As such the basic functionality of the app can still be used to

investigate these things. Future versions of the code and app will be updated

to allow for more of these options.

The app also serves the secondary feature of acting as an educational tool.

We include materials and features which will show people what ETPs are and

how they are used as well as the very basic concepts and ideas in a beta-

binomial conjugate analysis. This makes uses of R shiny interactivity features

and is a different method to introduce people to a new methodology compared

to something just like a publication. There exists resources such as the PANDA

toolkit [109] which aim to educate trialists on adaptive and novel designs how-

ever as of yet they do not cover early phase trials. As such our app could be

considered an introduction to some of these ideas and could also be expanded

in the future to cover other adaptive designs in early phase trials.

The material and content included, in our app, has been produced and re-

viewed by statisticians and we feel it should be widely accessible. As such we

may pilot using the app for teaching purposes and show the contents to people

of a non-statistical background to determine if it is appropriate. Some of the

features such as the page that lets you run a practice clinical trial may be best
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utilised by a statistician trying to explain decision-making concepts in these

trials. By having control over the true objective response rate you can show

how by having small numbers you are prone to making the wrong decisions

or if you have strict decisions rules you may need a lot of patients to obtain

GO decision.

Away from ETPs, additions could be made to the app to add additional

features such as options to run simulations. The ’run a clinical trial’ page is

essentially manually running one iteration of a simulation. This would also

be an additional draw to use the app. Whilst simulations for a Beta-Binomial

conjugate analysis are not difficult to run by having an app or a tool that does

these for you could be beneficial. R shiny could be utilised to automatically

produce graphics and summary tables then the design parameters that you

specify could also feed in to produce ETPs, this could all then be summarised

on the web page and printed off as a pdf. This may make it so more users are

inclined to use the app and thus ETPs.

Our implementation of ETPs can also be extended to cover a larger outcome

space. Currently we only consider GO or No GO outcomes, but it is possible

to have an indeterminate outcome or a result in-between good and bad. In

this instance there may not be enough evidence to declare the treatment a suc-

cess but also not enough evidence to definitively say the treatment does not

work. In order to account for these different outcomes we would need to pro-

vide additional decisions rules. The Lalonde framework [97], is an example of

this which employs three different rules for each of their Go/Pause/Stop cri-

teria. The flexibility of ETPs means that they could still be used in these more

complex scenarios with multiple decision rules. This could be achieved just by

using more colours to represent more outcomes.

Overall, we believe ETPs to be an effective tool in detailing decision-making

for these types of trials. We have shown that with ETPs they can be used to
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help iterate on the design of the trial and communicate the decision making

with non-statisticians. To avoid many of the pitfalls of new methodology that

never gets used, we have created code and an app which is publicly available

that will easily produce these plots and act as an educational tool and thereby

benefit the clinical trial research community.
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Chapter 6

Summary and Conclusions

Throughout this thesis, we have explored various methods relating to early

phase trials and dose-finding methodologies and investigated how they could

be applied in practical contexts through illustrative examples and real clinical

trials. In this concluding chapter, we summarise our key points.

We began in Chapter 2 by detailing the innovative PO-TITE-CRM design

[29], [45] and our experiences implementing the design, which we believe is

the first application of its kind. Partial ordering was originally hypothesised

for use in investigations of escalation in combination of multiple-agents. De-

pending on the doses selected, it is possible in these scenarios the monotonic-

ity assumption no longer holds. However our implementation, whilst also in

a trial investigating combination treatment, observed partial ordering due to

the dosing schedule of one of the treatments. This highlights the fact that this

issue can also arise in multiple settings and more generally, methodology can

still be implemented in scenarios outside of its original purview.

We showcased the performance of the design via simulations and then con-

trasted that with potential alternative designs. Even with the additional com-

plexity of the design the operating characteristics were comparable across the

variety of alternative options. The caveat was that some of those alternatives

would have to make concessions and assumptions about the dose-levels we
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were investigating. Without this methodology answering the relevant clinical

question of the trial would become difficult. The doses selected for investi-

gation were deemed clinically relevant and if we could not resolve the issue

around the uncertainty of the order of the doses different doses would have

had to been selected.

Whilst for the development of a new drug typically the maximum toler-

ated dose (MTD) is of interest, for repurposed treatments or combination treat-

ments there may be additional interest in also understanding the optimal dos-

ing schedule. Whilst this was not one of the main aims of the ADePT-DDR

trial, it was of interest. An understanding of the best dosing schedule would

then feed into the decision for what the final dose (dose-level 3) would even-

tually become based on the aggregate data.

If biologically plausible that the same overall dose administered across a

shorter duration is more or less toxic when administered over a longer dura-

tion then time window for administration may be more important to consider

than overall dose. For example, if it is understood that 400mg of a specific drug

over five days is more toxic than 400mg over 20 days, it does not always fol-

low then that by increasing the overall dose we may be increasing toxicity. So,

401mg over 20 days may still be less toxic than 400mg over five. Obviously this

is an extreme example but it could still be clinically relevant in some areas and

maybe either warrant further research. The partial ordering approach is one

way to solve this issue but their could potentially be more efficient methods.

As the problem and issue of partial ordering is fairly unique there are not

many approaches to dealing with it or accounts of practical applications. This

may not be surprising considering it was only introduced in 2013 and it still

shows there is somewhat of a lag between methodology being developed and

implemented. One barrier we experienced was the limited availability of soft-

ware. Along with the original methodology Nolan et al. [49], [50] developed
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R functions for the implementation of the PO-CRM but not its time-to-event

counterpart. However, having this as a basis to work from was crucial in our

success at implementing the design. I further developed the existing code to

incorporate the TITE element which still took a bit of time given the available

code. From an academic perspective finding the resources in terms of time and

statistical expertise may also be another barrier especially during initial design

stages of a trial where there is limited funding.

Our work also has the added benefit of validating the original PO-TITE-

CRM design and confirming the results found in that paper. Whilst we did not

directly replicate the exact work presented there we have reached similar con-

clusions. Hopefully, our account and experiences implementing this method-

ology will help others to do the same. We have shared this work through a

poster presentation at ICTMC 2022 [110] and also with a publication currently

in pre-print. The ADePT-DDR trial opened in August 2021 and is currently

recruiting to its third cohort of patients. Due to practical and logistical issues

some aspects of the design have been altered however, the underlying method-

ology used in the trial still remains the same.

In Chapter 3 we explored the development of our own methodology which

is specifically an extension we made to the Wages and Tait design [30]. This de-

sign is considered an adaptive or seamless phase I/II design as it uses both tox-

icity and efficacy outcomes to obtain an optimal biological dose (OBD). How-

ever, just by including efficacy outcomes does not mean we fully eradicate the

need to conduct a randomised phase II study. We sought, through our design

modification, to address this and have a trial design capable of conducting

dose-finding and making direct comparisons to a control arm.

By leveraging the adaptive randomisation mechanism we were able to force

the design to allocate patients to a control arm. We demonstrated through sim-

ulations that the design worked as intended. A reasonable rate of selection for
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the OBD or "good" dose-levels was achieved along with allocating a sufficient

number of patients to a control arm. By contrasting our design to potential

alternatives we also showed there is minimal loss in terms of efficiency when

using this modification. However, when it came to comparing the control arm

to the OBD our results showed that we would be extremely underpowered

unless there was a particularly large effect size. In order to improve this we

would need to increase the overall sample size of the study or add expansion

cohorts for both the OBD dose and control dose.

We identify that the most common situation in which it would be appropri-

ate to implement this design is when investigating a new treatment in combi-

nation with some form of standard of care. Here there should be some under-

standing on the efficacy and toxicity profile of the standard of care treatment

and this design would allow you to assess if there are any benefits to adding

a new intervention to that standard of care. An additional limitation of this

work is that we only explored this design modification using one exemplar

trial. Therefore, our results and overall conclusions of the design may have

slight variations under a different example.

There may also be issues with this design that we have not considered and

would only become apparent when implementing the design. Simulations

showed adequate allocation of patients to the control arm however, in prac-

tice we only run the trial once not 10,000 times so perhaps by chance we could

end up with very few or limited patients in the control arm. So, we may want

to consider changing our fixed rate of randomisation to control to also be adap-

tive dependent on the number of patients already in the control arm. Similarly,

more work could be done to look at different randomisation mechanisms to al-

locate dose-levels.

Overall it may still be more efficient to set up a trial in this manner rather

than having an independent phase I trial into an independent phase II trial.
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This may be the future of trial designs where they are fully seamless and

adaptive going through all the phases aiming to answer multiple questions

with multiple decision points. You could imagine using our RtC-WT design to

determine an OBD then potentially expand recruitment to confirm if there is

enough of an efficacy signal to prompt a ’GO’ decision for a fully randomised

phase III trial. If this was all incorporated into one trial you could save re-

sources in terms of time and money. There may also be efficiency gains in

directly borrowing information from patients within the same trial from pre-

vious phases.

This work was motivated by a few potential trials being designed at the

University of Birmingham’s Cancer Research UK Clinical Trials Unit. Unfor-

tunately, none of those trials came to fruition due to other circumstances, so

the methodology itself is yet to be implemented.

Chapter 4 looked at applying dose transition pathways (DTPs) to trials us-

ing time-to-event dose-finding methodology. The original paper by Yap et al.

[31] touches on the issue of applying DTPs to designs like the TITE-CRM. The

authors briefly discussed that projected DTPs can differ dependent on how in-

formation was available for each dose decision and that it would be difficult

to map out decisions in advance. Our work looked into this issue deeper to

detail the exact issues and to see if there were any potential solutions.

This work was also partly motivated by the ADePT-DDR trial as well. Due

to the PO-TITE-CRM methodology and the long observation periods there was

interest in mapping out decisions ahead of time to facilitate faster decision

making and better communicate the decision that would be made through-

out the trial. It quickly became apparent due to the length of the observation

window (52 weeks post treatment) this would be unfeasible.

Here we present the idea of introducing categories of combined follow-up
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time for patients in the same cohort at the same dose-level. By grouping to-

gether the follow-up times of each patient in a cohort we can then apply the

TITE-CRM model for each combination of time in order to figure out what the

dose decisions would be for each. Based on this we could then see how much

information or combined follow-up was required to make specific dose deci-

sions. During this process we made an interesting observation that depending

on how the combined follow-up time was split between patients a different

dose-decision could be made. We clarified that this was due to the way in

which the likelihood was calculated and that, at least for a linear weight func-

tion, patients weights are linear at the individual level but not at the cohort

level. This could be a potential area for further research by investigating how

the likelihood calculation is impacted by different weight functions and what

impact that has on the dose recommendations being made.

The other main issue in presenting TITE-DTPs comes from the number of

possible outcomes that need to be mapped out. Even in our simple example

of just a five-week observation window, mapping out all the potential varia-

tions of outcomes for six patients results in more outcomes then seconds since

the universe began. Our suggested solution to this was to limit the pathways

that were presented just to be for the next cohort assuming you had all the

available data for all previous cohorts. This still does not help for trials with

much longer observation windows. In these scenarios it would be suggested

that outcomes be limited to plausible scenarios. For instance it is unlikely that

you would recruit a cohort on one day and need to immediately make a dose-

decision for a new patient on the next day. So, the number of outcomes could

be simplified to just look at combined follow-up times which were appropriate

or more realistic. Though, if the observation window is long enough this still

may not be sufficient in reducing the number of outcomes.
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Anecdotally speaking DTPs appear to be one of best tools for communicat-

ing methodology in early phase trials. Especially when it comes to presenting

the different decisions that can be made during a trial. I have received com-

pliments from presenting DTPs whether it be patient representatives or inde-

pendent clinicians sitting on data monitoring committees or representatives

from pharma partners when setting up a trial. So, it would seem beneficial to

try and extend DTPs or the concept of them for presenting decisions as far as

possible in trials.

Staying with that idea, Chapter 5 introduces efficacy transition pathways

(ETPs), a visualisation tool inspired by DTPs but for use in some types of more

complex phase II trials. Much like DTPs they aim to better illustrate and com-

municate decisions made in these types of trials. We detail how ETPs can be

constructed and how they can be used to assist during the running of a trial

and the development of the trials design and stopping rules.

Through three motivating illustrative example trials (see Apendix A) we

detailed how they have already begun to be implemented and used in practice.

All three trials present ETPs in a similar manner however they illustrate the

potential applications in different settings. What became apparent from these

implementations is that whilst theoretically simple to produce, ETPs were of-

ten time consuming to put together. The calculations required for presentation

in the ETPs could be automated by constructing the plot could become labo-

rious if other elements of the trial design were altered. This motivated us to

develop software in order to allow for automatic generation of ETPs.

We began by developing a simple function in R that could generate these

plots. Around that we built a web based application using shiny. The app

makes producing these plots even easier as it does not require the user to be

familiar with any particular software package. All the inputs required for the

function are presented in the app through various widgets. From the app there
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is the ability to download the ETP as an image. Additionally the user can also

download a copy of the data used to generate the ETP. Other benefits of the app

also allow us to include some interactivity with the ETP. By clicking on the plot

the user can see additional information for the specific cell they clicked on. A

larger version of the cell is produced, which is useful in cases where the ETP is

rather large with lots of cells. A posterior distribution is also plotted based on

the data in that cell showing other key information like credible intervals and

the decision criteria.

We also developed additional pages on the app to introduce some of the

fundamentals required to understand ETPs. This is done mainly through text

and images. However, we include interactive elements to explain the basics

of beta-binomial conjugate analyses. Users can interact and specify different

priors, likelihoods and decision rules and see how interpretations from the

posterior distribution change accordingly. There is also the facility to simu-

late a practice trial so users can get an idea of how a trial designed in this way

could work. All this additional content was incorporated in a way that is hope-

fully approachable by people with limited knowledge on these topics. We still

envisage that these pages could be used by statisticians as well to also help

explain these concepts to others.

Even though the tools such as DTPs and ETPs are beneficial in and of them-

selves, having the ability to automatically produce them by clicking a few

buttons could further enhance how they are used. During discussions with

clinicians you could easily demonstrate how changes to the design or deci-

sion criteria would affect the decisions made through the ETPs. The added

layer of interactivity through the app could also assist the statistician in better

communicating the changes that are being suggested. By developing all these

materials and making them easily accessible we hope it makes ETP simple to

implement where appropriate.
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Further research for work presented in this thesis would revolve around ex-

tending the methodologies presented in each of the chapters and investigating

more practical applications. For the ADePT-DDR trial we designed work could

be done to investigate, develop or extend alternative methodologies and com-

pare how they perform. For our extension to the Wages and Tait design future

work should look into the use of models with multiple parameters and differ-

ent adaptive randomisation methods as these have been shown to yield better

performance. TITE-DTPs could be explored further by investigating the use

of different weight functions in more detail. Additionally, it would be benefi-

cial to gain experience into how TITE-DTPs work in practice by implementing

them into trials that are in development or ongoing. These case studies would

provide information on how we could further improve TITE-DTPs, For ETPs

further work can be done to improve functionality within the app to allow

for more features such as running simulations. ETPs and the app could also

be developed to work with other designs rather than just the Beta-Binomial

design.

All the work presented in this thesis was motivated by the development of

clinical trials at the University of Birmingham’s Cancer Research UK Clinical

Trials Unit. Novel methods are generally speaking very useful and valuable.

In the context of dose-finding methodologies they can often times provide so-

lutions to complex clinical questions without compromising efficiency or in

some cases improve on it. Furthermore, the development of appropriate soft-

ware and tools to facilitate decision making are equally important in advanc-

ing the implementation of these novel methods.
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Appendix A

Examples implementing ETPs

The following sections contain examples of clinical trials that have implemented

Efficacy Transition Pathways (ETPs). All of these trials were designed by statis-

ticians at the Cancer Research UK Clinical Trials Unit (CRCTU) at the Univer-

sity of Birmingham.

A.1 MonoGerm

This trial was designed by Lucinda Billingham (LB) and Laura Kirton (LK).

What is presented here is the design that was used as part of a grant application

which has since been accepted. The trial is currently in the process of being set-

up so may be subject to some design changes before it is open.

MonoGerm 1 is a Phase II trial investigating, in parallel, two single-agent

chemotherapies (carboplatin or vinblastine) as monotherapy prior to standard

of care radiotherapy in patients with intracranial germinoma. This trial utilises

a Bayesian approach for analysis and decision making. A ’flip-flop’ approach

1A phase II trial of carboplatin or vinblastine monotherapy induction prior to radiotherapy
for patients with intracranial germinoma
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is used for recruitment [111]. Essentially, recruitment will begin to the carbo-

platin arm then once three patients have been recruited and considered evalu-

able for an interim analysis recruitment flips to the vinblastine arm. This pro-

cess is then repeated by switching recruitment back and forth between the two

arms till recruitment is complete.

Typically intracranial germinoma is chemosensitive but it requires radio-

therapy for a cure. This mainly affects a paediatric population. For patients

with localised disease, standard of care involves three-drug chemotherapy

consisting of ifosfamide, carboplatin and etoposide followed by subsequent

radiotherapy. Treatment involving multiple chemotherapies allows for reduc-

tion in radiotherapy doses and fields. However, there is still an increased bur-

den of treatment on patients which can cause both short and long-term harm.

This can lead to patients experiencing multiple toxicities such as diabetes in-

sipidus, myelosuppression, vomiting/diarrhoea, electrolyte disturbances, re-

nal impairment, and elevation of liver enzymes.

The aim of the trial is to evaluate whether a single-agent chemotherapy

(carboplatin or vinblastine) is non-inferior to the standard of care multi-drug

chemotherapy for inducing complete response (CR), and is associated with

reduced harm and improved quality of life. The primary outcome measure

will be CR based on MRI scans at 6 and 12 weeks.

The trial will consist of two arms, one arm for carboplatin and one for vin-

blastine. There will be 36 patients recruited in total, 18 per arm. Patients will be

enrolled in cohorts of three to each treatment-arm by the flip-flop design. This

is illustrated in Figure A.1. Recruitment begins in the carboplatin arm and then

once three patients have been recruited recruitment is paused and then begins

in the vinblastine arm. Whilst recruitment is paused in the carboplatin arm an

interim analysis will be performed for that first cohort. Here primary outcome

data and key safety data will be assessed. Once recruitment to the first cohort
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of the vinblastine arm is complete and the interim analysis for the first cohort

of carboplatin patients is done, recruitment can begin for the second cohort in

the carboplatin arm and the interim analysis for the first cohort of vinblastine

patients can be conducted. This process is then repeated for the subsequent

cohorts. This design allows for continuous enrolment and monitoring of the

primary outcome.

FIGURE A.1: Flip-flop recruitment design in the MonoGerm trial.
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A Bayesian approach is implemented to assess the true CR rates. Specifi-

cally, the experimental monotherapies will need to demonstrate non-inferiority

to the standard of care by a clinically acceptable margin. Based on previous

data it was determined that the minimum CR rate with standard of care is

30%. This value was taken as the non-inferiority margin. So, if the treatments

have a CR rate ≥ 30% they will be considered non-inferior.

CR rates for each treatment arm will be established from the posterior prob-

ability distribution generated using a beta-binomial conjugate analysis. A min-

imally informative Beta(1,1) prior will be used in combination with the data

observed during the trial to produce the posterior. In terms of decision mak-

ing the following rule for the final analysis was specified:

P(CR ≥ 30%) ≥ 0.8 (A.1)

That is to say that if there is a high probability (≥ 0.8) that the true CR rate

is ≥ 30% there will be a GO decision, which in the context of this trial means

the treatment arm would be deemed non-inferior. The minimum number of
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observed CRs out of the 18 patients needed to warrant a GO decision is seven.

If seven responses are observed the median Bayesian estimate of the CR rate

would be 40% with a 0.82 probability that the true CR rate is ≥ 30%.

Stopping rules have also been implemented. At each interim analysis the

predicted probability of success (PPoS) will be calculated. This is the proba-

bility that a GO decision would be made at the final analysis based on current

data that has been accrued. Here the stopping rule is such that if the PPoS is

less than 0.01 we would recommend stopping recruitment to that arm.

It is important to note that whilst the trial has two arms it is not designed

with the intention of making comparisons between the two treatments. Rather

the trial aims to find if there is enough evidence that one of these treatments

provides a sufficient response rate to warrant a GO decision.

LK produced ETPs throughout the design of this trial. Figure A.2 shows the

ETP for the design specified here. The ETPs produced here helped determine

what data we wanted to present as well as how we structure the data in each

of the cells. Here each cell shows the number of responses, the PPoS or the

posterior probability that the response rate is ≥ 30%, the Bayesian estimate of

CR rate and a lower one-sided 80% credible interval.

Calculations for these plots were conducted in STATA and the ETP was pro-

duced in Microsoft PowerPoint. One benefit of this approach is that the ETP

can be easily customised and labelled. However, this meant that any changes

in the design that affected the decision-making resulted in the ETP having to

be updated manually. As a tool the ETP is effective at illustrating a final design

but without the ability to easily generate them during the design of a trial they

somewhat lose their purpose. This served as further motivation to produce

some code or a tool that would allow for ETPs to be automatically created.
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A.2 Glo-BNHL

This trial was designed by Lucinda Billingham (LB) with the assistance of

Shanna Maycock (SM). During initial stages of the design Grace Holt (GH)

also assisted with the implementation of ETPs. This trial is currently still in

set-up so specific details of the trial may be subject to change.

The Glo-BNHL 2 study is a platform trial that aims to investigate the safety

and effectiveness of novel treatments in children, adolescents and young adults

with relapsed and/or refractory B-cell non-Hodgkin Lymphoma (r/r BNHL).

This trial is an international collaboration and hopes to generate substantial

evidence that could change practice in this rare cancer population.

Inclusion of novel agents into the platform will be determined by an in-

ternational Trial Steering Committee (TSC). Currently the platform consists of

three separate treatment arms, each focusing on a different novel agent in a

distinct group of patients. Each treatment arm will be treated independently

which allows for them to be analysed separately. There may also be separate

eligibility criteria for each arm. Patients will be enrolled into any arm where

they are eligible. The three arms that will be available at the start of the trial

are as follows:

• Treatment Arm I: Bispecific Antibody (BsAb)

• Treatment Arm II: Antibody-Drug Conjugate (ADC) with standard

chemotherapy

• Treatment Arm III: Chimeric Antigen Receptor (CAR) T-cells

This trial utilises an adaptive Bayesian design, which enables GO/No GO

decisions specific to the distinct populations in each treatment arm. The Bayesian

2A Global Study of Novel Agents in Paediatric and Adolescent Relapsed and Refractory
B-cell Non-Hodgkin Lymphoma
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approach has many benefits here as it facilitates decision making with small

sample sizes. Decisions will be made based on the estimate of the probability

that a novel agent is clinically effective. The specific criteria will vary between

each treatment arm. This design and approach also allows for continuous eval-

uation of each novel agent. Treatment arms may be removed if the treatment

is shown to be ineffective based on the trial data. Additionally, treatment arms

may also be added or amended in the future if recommended by the TSC.

Treatment arm I aims to estimate the clinical efficacy of BsAb treatment in

patients with r/r BNHL in first (only one prior line of therapy) or subsequent

relapse (more than one prior line of therapy). Due to this treatment arm I is

split into two groups, Ia and Ib for patients with one relapse or more than one

relapse respectively. These two subsequent arms will be recruited into and

analysed separately. In terms of treatment these patients will receive odronex-

tamab given as an intravenous infusion weekly for 12 weeks, then every two

weeks until nine months, and every four weeks thereafter until progression or

for a maximum of two years. The outcome measure for patients in treatment

arms Ia and Ib is the occurrence of an objective response (OR) i.e. complete

response (CR) or partial response (PR) after 12 weeks of treatment assessed

by Independent Central Review. However, for interim analyses local response

assessments will be used.

Treatment arm II aims to estimate the clinical efficacy of ADC treatment

with modified R-ICE (rituximab, ifosphamide, carboplatin, etoposide and dex-

amethasone) chemotherapy in patients with r/r B-NHL in first or subsequent

relapse. Patients will receive loncastuximab tesirine given as a 30 minute in-

travenous infusion with each cycle of modified R-ICE for a maximum of three

cycles. Here the outcome measure is occurrence of CR within a maximum of

three cycles of treatment.

Treatment arm III aims to estimate the efficacy of CAR T-cell therapy in r/r
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B-NHL patients who have CAR T-cell product available. The specific treat-

ments patients will receive is yet to be defined. The outcome measure is the

occurrence of OR following CAR T-cell infusion.

Each treatment arm and subsequent treatment arm (i.e. Ia and Ib) will aim

to recruit 15 evaluable patients during the initial stage. Once this recruitment is

complete a transition analysis is performed leading to three possible outcomes.

If the analysis results in a No GO decision recruitment to that treatment arm

will stop. If the analysis result is a GO decision there are two options either

there is sufficient evidence to change practice so the trial will stop recruiting

or this will trigger an expansion stage in which a further 15 patients will be

recruited. Following the expansion stage a confirmatory analysis will be con-

ducted on all 30 evaluable patients.

Interim analyses will be conducted after every three patients during the

initial stage and after every five patients during the expansion stage. There

will also be the option to stop recruitment to a treatment arm based on the

data observed in the interim analysis. Figure A.3 shows a flowchart of the

decision making process for each arm in the trial.

A beta-binomial conjugate analysis will be conducted for each treatment

arm. Observed trial data will be combined with a minimally informative Beta(1,1)

prior to produce a posterior probability distribution for the treatment effect θ,

which represents either the OR/CR rate dependent on treatment arm. The pos-

terior probability distribution is then used to inform decision making. GO/No

Go decision criteria are specified separately for each treatment arm.

For treatment arm Ia the decision criteria at the transition analysis is P(θ >

40%) ≥ 0.8. So, if the true OR rate was greater than 40% with a probability

of at least 0.8 based on the data collected in the trial there would be a GO

decision. This corresponds to observing at least eight responses out of 15. For

the confirmatory analysis a GO decision is made if P(θ > 40%) ≥ 0.95. At the
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FIGURE A.3: Flowchart of the decision making process in Glo-
BNHL.
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final analysis we would need the probability that the true OR rate was greater

than 40% to be at least 0.95. Here a GO decision would only be made if 17 out

of 30 patients had an OR. Table A.1 details the criteria for each treatment arm

which can be interpreted in a similar manner.

TABLE A.1: Summary of decision criteria for Glo-BNHL.

Transition Analysis Confirmatory Analysis
Treatment Arm Decision Criteria Min No. Responses for GO Decision Criteria Min No. Responses for GO

Ia P(θ >40%) ≥ 0.8 8/15 P(θ >40%) ≥ 0.95 17/30
Ib P(θ >10%) ≥ 0.8 3/15 P(θ >10%) ≥ 0.95 6/30
II P(θ >20%) ≥ 0.8 5/15 P(θ >20%) ≥ 0.95 10/30
III P(θ >10%) ≥ 0.8 3/15 P(θ >10%) ≥ 0.95 6/30

For the interim analyses there are separate stopping rules. These are the

same across the treatment arms but differ in the initial stage compared to the

expansion stage. During the initial stage, the predicted probability of success

at the transition analysis (PPoSt) is calculated and decisions are made based

on the following criteria:

1. PPoSt < 0.01 - recommend stopping for futility

2. 0.01 ≤ PPoSt < 0.05 - consider stopping for futility

3. 0.05 ≤ PPoSt < 0.15 - consider whether sufficient benefit in continuing

4. PPoSt ≥ 0.15 - recommend continuing

So, if the probability of success at the transition analysis is less than 1% the

recommendation would be to stop recruitment to the treatment arm and if it

was greater than or equal to 15% the recommendation would be to continue

recruitment. If PPoSt is between 1-5% or 5-15% stopping should be also be

considered for either futility or if there sufficient benefit in continuing respec-

tively.

At the expansion stage, the predicted probability of success at the confir-

matory analysis is used (PPoSc). If this is below 10% (PPoSc < 0.1) the recom-

mendation would be to stop recruitment to that treatment arm due to futility.
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It should be noted that these decision rules are only recommendations and the

independent data monitoring committee (DMC) will make decisions based on

not only primary outcomes but secondary outcomes, recruitment and safety

data.

For this trial ETPs were produced separately for each treatment arm and

for each stage. This resulted in eight ETPs, one for the initial stage showing

the outcome of the transition analysis and one for the expansion stage show-

ing the outcome of the confirmatory analysis for each treatment arm (Ia, Ib,

II, III). ETPs were utilised throughout the design of the trial with initial ver-

sions originally created by GH using STATA and Microsoft PowerPoint. These

were then further developed by SM who performed calculations in R but still

utilised PowerPoint to create the ETPs. Figure A.4 and A.5 shows the ETPs for

the initial and expansion stage of treatment arm Ia respectively. These ETPs

created by SM helped us determine how our function and app visually pre-

sented ETPs and we utilised a similar colour scheme.

Similar to MonoGerm the process of creating these ETPs in PowerPoint can

be time consuming. This is even more of an issue in the Glo-BNHL study due

to the multiple treatment arms and stages. Additionally, this trial highlighted

another issue when you have multiple statisticians working on a trial who use

different software packages. In this case it would mean work would have to

be recreated in R and STATA to conduct the calculations required for ETPs.

This served as further motivation for the development of an application which

requires no specific stats software knowledge. As statisticians would easily be

able to recreate ETPs. SM went on to further extend the function we developed

to automatically generate ETPs specific to Glo-BNHL.
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A.3 DETERMINE

DETERMINE 3 is a trial that was also designed by Lucinda Billingham (LB).

It is an umbrella-basket platform trial with multiple treatment arms running

in parallel. The trial aims to evaluate the efficacy of targeted therapies in rare

cancers with actionable genomic alterations, including common cancers with

rare actionable alterations. This trial is currently open to recruitment and may

be expanded in the future as more drugs are bought onto the platform.

DETERMINE will recruit patients of all ages including, paediatric, TYA

(teenage and young adult) and adults, who have rare tumours that contain

an actionable genetic alteration that can be targeted therapeutically. The ge-

netic alteration must have been identified previously from a tissue biopsy or

ctDNA (circulating tumour DNA). Patients will then be stratified into molec-

ular groups based on their tumour profile and allocated to the most suitable

treatment arm by the Molecular Tumour Board (MTB). The umbrella part of

the design consists of multiple non-randomised treatment arms, each evalu-

ation a licensed targeted anti-cancer drug or drug combination in a specific

molecularly-defined group of patients. Each molecularly-defined group al-

located to a specific treatment arm will contain multiple baskets of different

tumour types, age groups and molecular subtypes. This is visualised in Figure

A.6.

A main trial cohort of 30 evaluable patients will be recruited into each treat-

ment arm. This will include patients with different tumour types, ages and

molecular subtypes. If specific subgroups within this main cohort are expe-

riencing significant benefit from treatment sub-cohorts will be formed to in-

vestigate treatment effectiveness in these subgroups. It is possible for each

treatment arm to have multiple sub-cohorts and they can recruit in parallel to

3Determining Extended Therapeutic indications for Existing drugs in Rare Molecularly-
defined Indications using a National Evaluation platform trial
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FIGURE A.6: Umbrella-basket platform trial design in DETER-
MINE.
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the main cohort. Each sub-cohort will be subject to the same statistical analy-

sis and will also aim to recruit 30 patients. Currently there are five treatment

arms, details of these are provided in Table A.2.

TABLE A.2: Current treatment arms in DETERMINE

Treatment
Arm

IMP(s) Molecular Grouping Route and Formu-
lation

1 Alectinib ALK gene fusion positive solid tumours Oral capsules
2 Atezolizumab Solid tumours with high tumour mutational

burden (TMB) or microsatellite instability-high
(MSI-high) or proven constitutional mismatch
repair deficiency (CMMRD) disposition

Intravenous (IV)
infusion

3 Entrectinib NTRK or ROS1 gene fusion positive solid tu-
mours

Oral capsules;
Dosing depends
on body surface
area (BSA)

4 Trastuzumab in
combination with
pertuzumab

Solid tumours with HER2 amplification or mu-
tations

IV infusion

5 Vemurafenib in
combination with
cobimetinib

Solid tumours with BRAF V600 mutations Oral; 960 mg
tablets

Co-primary outcomes of objective response (OR) and durable clinical ben-

efit (DCB) will be used to assess efficacy of the treatment in each of the cohorts
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in each molecular grouping. These are both classified as binary variables. OR

is defined dependent on specific disease criteria. DCB is defined as the absence

of disease progression for at least 24 weeks from the start of trial treatment, this

will also be measured based on disease specific criteria. Patients will receive

treatment based on the license schedule for the drug in their treatment arm.

Patients continue treatment until either they reach progressive disease (PD),

unacceptable adverse events or withdraw from the trial.

All outcomes in each treatment arm, cohort and sub cohort will be anal-

ysed using a Beta-Binomial conjugate analysis. Posterior probability distribu-

tions for OR and DCB will be generated using minimally informative priors,

Beta(0.1,0.9) and data that is collected on the trial. However decision making

will be done using the BOP-2 design [112], [113]. This design makes GO or No

GO decisions by assessing posterior probabilities for a set of outcomes, which

are optimised to either maximise power or minimise the number of patients.

The design also allows for the control of type I and type II error rates. In DE-

TERMINE, for each co-primary outcome, a rate of 10% or less would represent

a treatment effect that is not clinically relevant and a rate of 30% would rep-

resent a clinically meaningful treatment effect. These can be thought of as a

null and alternative hypothesis. The use of this design was made possible due

to the development of web applications by the authors at the MD Anderson

Cancer Centre [103].

Interim analyses will be conducted throughout the trial, however formal

decision making will first be conducted after 10 evaluable patients have been

recruited and then every 5 patients from that time-point in each cohort/sub-

cohort. If probability that both the true OR and DCB rates are lower than the

critical threshold of 10% the trial would recommend stopping. The design is

optimised to minimise the type II error i.e. to minimise the probability of not

rejecting the null hypothesis when treatment is effective. This is done whilst
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controlling the type I error rate at 0.1. Under the BOP-2 design this provides

the following stopping boundaries of 0/10, ≤1/15, ≤2/20, ≤3/25 at each of

the planned analyses at 10, 15, 20 and 25 patients. For the final analysis at 30

patients there would be a GO decision if ≥6/30 patients had either a OR or

DCB.

The ETPs we have shown so far all have been based on a Beta-Binomial

conjugate analysis with decisions made using PPoS and the posterior distri-

bution. However, they can also be utilised here. LB created the ETP shown

in Figure A.7. Here we can see each cell still pertains to a specific number of

responses out of a certain number of patients. Bayesian estimates, credible in-

tervals and posterior probabilities of the treatment effect being greater than our

null and alternative hypothesis. The cells have then been colour coded based

on the decision criteria elicited from the BOP-2 design. This trial also shows

that ETPs are a flexible tool that can also be applied to trials not explicitly using

a Beta-Binomial conjugate analysis for decision making.
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Appendix B

Code

This section contains code which was used as part of this thesis. Code has

been separated by chapter and labelled as appropriate. All code and docu-

mentation relating to this thesis can be found online at the following link -

https://github.com/A-mit-Patel/PhD

B.1 TITE-PO-CRM in ADePT-DDR chapter code

The following code is the function that is used to conduct a dose recommen-

dation for TITE-POCRM in ADePT-DDR.

## Background ----

# This function is to facilitate the use of the TITE -PO

-CRM methodology for

# dose -finding trials. This is an altered version of

the pocrm.imp function

# from the pocrm package.

## Parameters ----

# prior.s - A matrix of values corresponding to the

possible orderings

https://github.com/A-mit-Patel/PhD
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# of the toxicity probabilities from the

skeleton

# prior.o - A vector of prior prbabilites for the

ordering. (Must sum up to

# 1 and be the same length as the number

of possible orders)

# target - The target DLT rate

# dlt - Vector of patient outcomes indicating

if patient experienced a

# DLT (1 indicates DLT , 0 indicates no

DLT)

# dose - A vector of dose -levels assigned to

patients (Length of dose

# must be the same as the length of tox)

# weight - A vector of weights for each patient.

Weights must take values

# between 0 and 1 (Length of weigh must

be the same as length of

# tox and dose)

# stop.low - Recommend stopping the trial if

toxicity is too high at lowest

# dose (TRUE/FALSE default is FALSE)

# stop.target - DLT rate required to trigger stopping

rule. Must be specified if

# stop.low == TRUE (Must be higher than

target)
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# stop.conf - Confidence level to trigger stopping

rule. Must be specified if

# stop.low == TRUE

## Packages ----

# These packages aren 't require to run this function

but contain helpful

# functions which will facilitate the use of this

function. getprior in the

# dfcrm pacakge to obtain a skeleton and getwm from

pocrm to obtain the matrix

# of skeleton values (prior.s)

library(dfcrm)

library(pocrm)

tite.pocrm <- function(prior.s,

prior.o,

target ,

dlt ,

dose ,

weight ,

stop.low = FALSE ,

stop.target = NA ,

stop.conf = NA)

{

# Empty vector to store estimates
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pred <- rep(0, nrow(prior.s))

# Empty vector to store likelihood

lik <- rep(0, nrow(prior.s))

# n is the number of patients

n <- length(dlt)

# Loop through each order

for (k in 1:nrow(prior.s)) {

# Apply skeleton values to patients doses

beta <- prior.s[k,][ dose]

# Likelihood calculation

ll <- function(a) {

la <- 0

# Loop through each patient

for (i in 1:n) {

la <- la + dlt[i] * a * log(weight[i]*beta[i])

+

(1-dlt[i]) * log ((1 -weight[i]*beta[i]^a))

}

la

}

# Estimates for each order
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pred[k] <- optimize(f = ll, interval = c(0, 500),

maximum = T)$maximum

# Likelihood for each order

lik[k] <- ll(pred[k])

}

# Posterior probabilities of each order

pord <- (exp(lik) * prior.o)/sum(exp(lik) * prior.o)

# Select order with greatest posterior

ord <- which.is.max(round(pord ,7))

# Estimate of the model parameter from the selected

order

bhat <- pred[ord]

# Updated estimates of the toxicity probabilities

rpred <- prior.s[ord , ]^bhat

# Select dose level closest to the target

next.lev <- which.is.max(-(abs(rpred - target)))

# Obtain the current dose level

current.lev <- tail(dose , n = 1)

# Calculation of the inverse variance

beta <- prior.s[ord ,][ dose]

inverse.var <- 0

for (i in 1:n) {



262 Appendix B. Code

inverse.var <- inverse.var + ((1-dlt[i])*(weight[i]

*beta[i]^bhat)*(log(( weight[i]*beta[i])))^2)/

(1-(( weight[i]*beta[i]^bhat)))^2

}

inverse.var <- ifelse(inverse.var == 0, 0, 1/inverse.

var)

# If stopping rule is true check toxicity at lowest

dose

if (stop.low == TRUE){

# Sample to check if lowest dose too toxic

samp <- rnorm(n = 100000 , mean = bhat , sd = sqrt(

inverse.var))

tox.low <- prior.s[ord , 1]^ samp

prob.tox.low <- mean(tox.low > stop.target)

if(prob.tox.low > stop.conf){

next.lev <- "stop"

}

}

# 95% Confidence Intervals

crit <- qnorm (0.975)
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ptox.L <- prior.s[ord ,]^( bhat + crit*sqrt(inverse.var

))

ptox.U <- prior.s[ord ,]^( bhat - crit*sqrt(inverse.var

))

# Output

out <- list(ord.prob = round(pord ,3),

order.est = ord ,

b.est = round(bhat , 3),

ptox.est = rpred ,

dose.rec = next.lev ,

ptox.U = ptox.U,

ptox.L = ptox.L,

post.var = 1/inverse.var ,

se = sqrt(( inverse.var^2)/n))

}

The code below is for various functions that were used to run the simula-

tions in Chapter 2.

# Simulation function for PO-TITE -CRMs

titepocrm_sim <- function (r, alpha , prior.o, x0, stop ,

n, theta , nsim ,

tox.range , cohort , obswin ,

minfu , win2 , recrate ,

mtd.lim , tox.lim , tox.cert)

{

start_time <- Sys.time()



264 Appendix B. Code

sim <- sim1 <- apred <- lik <- pord <- ord <- ahat <-

rpred <- next.lev <- n1 <- N <- NULL

d <- ncol(alpha)

s <- nrow(alpha)

if (nsim > 1) {

lpocrm <- function(r, alpha , prior.o, x0 , stop , n,

theta) {

if (is.vector(alpha))

alpha = t(as.matrix(alpha))

nord.tox = nrow(alpha)

mprior.tox = prior.o

# Function for calculating the likelihood

bcrml <- function(a, p1, y, w) {

lik = 0

for (j in 1: length(y)) {

lik = lik + y[j] * a * log(w[j]*p1[j]) +

(1 - y[j]) * log ((1 - w[j]*p1[j]^a))

}

return(lik)

}

# specifies the number of doses

ncomb = ncol(alpha)

# Initialise empty vectors for use later on

# y (number of dlt 's per dose), npts(number of

patients per dose)

y = npts = ptox.hat = numeric(ncomb)
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# The dose level to be selected (add 1 to

indicate position to stop)

comb.select = numeric(ncomb )

# Starting dose taken from first element of the

dose escalation scheme

comb.curr = x0[1]

stoprule = 0

stop.count <- 0

# Specifies the dose escelation scheme

stage1 <- c(x0 , rep(ncol(alpha), n - length(x0)))

# Counter for the number of cohorts

cohort.count <- 1

# Empty vectors to store dose recived and if dlt

was observed

duration <- dose <- dlt <- dlt_time <- fu <- tox

<- weights <- vector ()

# Time to recruit new patients

rectime <- obswin/recrate

while(length(tox) < n){

# Takes draws from a binomial distribution to

determine if patients in the cohort had a

toxic outcome

cohort_tox <- stats:: rbinom(n = cohort , size =

1, prob = r[comb.curr])

# Dummy variable to store DLT which will be

updated once the time for DLT has passed
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cohort_dlt <- rep(0, cohort)

# Patients in the same cohort recieve the same

dose

cohort_comb <- rep(comb.curr , cohort)

# Follow up time based on the time taken to

recruit a patient

# First patient assumed to be recruited

instantly

# Add the min fu time to indicate when analysis

is done

cohort_fu <- (rectime*(cohort -1)) - (rectime *

0:( cohort - 1)) + minfu

# Time of DLT is recorded and set to be at any

time during the obswin

cohort_dlt_time <- vector ()

for (i in 1: cohort) {

if(cohort_tox[i] == 0){

cohort_dlt_time[i] <- NA

}

else {

cohort_dlt_time[i] <- runif(1,0, obswin)

}

}

# Stores the time DLT occurs for new cohort

dlt_time <- c(dlt_time , cohort_dlt_time)

# Stores new cohorts toxicity

tox <- c(tox , cohort_tox)
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# Stores dose level for each new cohort

dose <- c(dose , cohort_comb)

# Store dummy dlt for new cohort

dlt <- c(dlt , cohort_dlt)

# Add on follow up time and recruitment time

for previous cohorts

fu <- fu + (rectime*(cohort -1)) + minfu

#duration <- duration + (cohort * rectime) +

minfu

# store new cohorts follow up time

fu <- c(fu , cohort_fu)

#duration <- c(duration , cohort_fu)

# Loop through all the patients who will have a

DLT

for(i in 1: length(fu)){

if(tox[i] == 1){

# If the follow up time is greater than the

time the dlt was determined to occur

if(fu[i] >= dlt_time[i]){

# Change the follow up time to the obswin

to indicate the dlt has now happened

fu[i] <- obswin

# As the dlt has happened it should now

be stored for calculation in the

likelihood

dlt[i] <- 1

}
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}

}

fu <- pmin(fu , obswin)

# Calculated weights where the min fu accounts

for 60% and is 80% by window 2

for (i in 1: length(fu)) {

weights[i] <- 0.6 +

0.2*(min(win2 - minfu , fu[i]-minfu)/(win2 -

minfu))+ 0.2*(max(fu[i]- win2 , 0)/(

obswin -win2))

}

# These values are used to calculate patient

allocation and %DLT

y[comb.curr] = y[comb.curr] + sum(cohort_tox)

npts[comb.curr] = npts[comb.curr] + cohort

if (sum(dlt) == length(dlt)) {

comb.curr <- ifelse(comb.curr == 1, comb.curr

,

comb.curr - 1)

}

else if (sum(dlt) == 0) {

comb.curr <- ifelse(comb.curr == ncomb , comb.

curr ,

stage1[cohort.count + 1])
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}

else {

break

}

# Stopping rule ends stage 1 when the same dose

is recommended to a sixth cohort. As this

follows the escalation scheme only stops

when the max dose is prescribed to sixth

cohort.

if(sum(dose == comb.curr) == mtd.lim ){

break

}

cohort.count <- cohort.count +1

}

while (length(dlt) <= n) {

if (sum(dlt) == 0 ) {

stop = 0

break

}

else {

like.tox = est.tox = rep(0, nord.tox)
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for (k in 1:nord.tox) {

beta <- alpha[k,][ dose [1: length(dose)]]

est.tox[k] <- optimize(f = bcrml , interval

= c(0 ,500),

p1 = beta , y = dlt ,

w = weights ,

maximum = T)$maximum

like.tox[k] <- optimize(f = bcrml , interval

= c(0 ,500),

p1 = beta , y = dlt ,

w = weights ,

maximum = T)$

objective

}

postprob.tox = (exp(like.tox) * mprior.tox)/

sum(exp(like.tox) * mprior.tox)

if (nord.tox > 1) {

mtox.sel = which.is.max(round(postprob.tox

,8))

}

else {

mtox.sel = 1

}
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ptox.hat = alpha[mtox.sel , ]^est.tox[mtox.sel

]

loss = abs(ptox.hat - theta)

comb.curr = which.is.max(round(-loss ,8))

# obtain the last dose level from the data

last.lev <- tail(dose , n = 1)

if (comb.curr %in% dose | comb.curr < last.

lev){

# If the next recommended levl has already

been tested or is lower than

# the current dose level than recommend

next level

comb.curr <- comb.curr

}

else {

comb.curr <- max(dose) + 1

}

if (npts[comb.curr] == stop) {

stoprule <- 0

break

}

# Calculate asymptotic variance

beta <- alpha[mtox.sel ,][ dose]

inverse.var <- 0

for (i in 1: length(dlt)) {
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inverse.var <- inverse.var + ((1-dlt[i])*(

weights[i]*beta[i]^est.tox[mtox.sel])*(

log(( weights[i]*beta[i])))^2)/(1-((

weights[i]*beta[i]^est.tox[mtox.sel])))

^2

}

post.alpha.mean <- est.tox[mtox.sel]

post.alpha.var <- ifelse(inverse.var == 0, 0

, 1/inverse.var)

post.alpha.samp <- rnorm(n = 100000 , mean =

post.alpha.mean ,

sd = sqrt(post.alpha

.var))

post.prob.tox.samp <- alpha[mtox.sel ,1]^ post.

alpha.samp

prob.too.toxic <- mean(post.prob.tox.samp >

tox.lim)

if(is.na(prob.too.toxic)) {

prob.too.toxic <- 1

}
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# stopping rule for when lowest dose is too

toxic AND lowest dose has been tested ptox

.hat[1] > 0.5 & 1 %in% dose

#

# stopping rule if dose is being recommended

for a xth time

if (length(dlt) == n |(prob.too.toxic > tox.

cert) & 1 %in% dose | sum(dose == comb.

curr) == mtd.lim) {

stoprule = 0

# once all patients recruited calculate

likelihoods at max weight

like.tox = est.tox = rep(0, nord.tox)

for (k in 1:nord.tox) {

#set all the weights at 1

weights <- rep(1, length(tox))

#ensures that all those predicted to have

toxic event is included in dlt data

# as we are assuming full follow up once

the last patients are recruited

dlt <- tox

beta <- alpha[k,][ dose [1: length(dose)]]

est.tox[k] <- optimize(f = bcrml ,

interval = c(0 ,500),
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p1 = beta , y = tox

, w = weights ,

maximum = T)$

maximum

like.tox[k] <- optimize(f = bcrml ,

interval = c(0 ,500),

p1 = beta , y =

tox , w =

weights ,

maximum = T)$

objective

}

postprob.tox = (exp(like.tox) * mprior.tox)

/sum(exp(like.tox) * mprior.tox)

if (nord.tox > 1) {

mtox.sel = which.is.max(round(postprob.

tox ,8))

}

else {

mtox.sel = 1

}

ptox.hat = alpha[mtox.sel , ]^est.tox[mtox.

sel]

loss = abs(ptox.hat - theta)
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comb.curr = which.is.max(round(-loss ,8))

# obtain the last dose level from the data

last.lev <- tail(dose , n = 1)

if (comb.curr %in% dose | comb.curr < last.

lev){

# If the next recommended levl has

already been tested or is lower than

# the current dose level than recommend

next level

comb.curr <- comb.curr

}

else {

comb.curr <- max(dose) + 1

}

# Calculate asymptotic variance

beta <- alpha[mtox.sel ,][ dose]

inverse.var <- 0

for (i in 1: length(tox)) {

inverse.var <- inverse.var + ((1-tox[i

])*(weights[i]*beta[i]^est.tox[mtox.

sel])*(log(( weights[i]*beta[i])))^2)

/(1-(( weights[i]*beta[i]^est.tox[

mtox.sel])))^2
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}

post.alpha.mean <- est.tox[mtox.sel]

post.alpha.var <- ifelse(inverse.var ==

0, 0 , 1/inverse.var)

post.alpha.samp <- rnorm(n = 100000 , mean

= post.alpha.mean ,

sd = sqrt(post.

alpha.var))

post.prob.tox.samp <- alpha[mtox.sel ,1]^

post.alpha.samp

prob.too.toxic <- mean(post.prob.tox.samp

> tox.lim)

if(is.na(prob.too.toxic)) {

prob.too.toxic <- 1

}

break

}

else {
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# Takes draws from a binomial distribution

to determine if patients in the cohort

had a toxic outcome

cohort_tox <- stats:: rbinom(n = cohort ,

size = 1, prob = r[comb.curr])

cohort_dlt <- rep(0, cohort)

# Patients in the same cohort recieve the

same dose

cohort_comb <- rep(comb.curr , cohort)

# Follow up time based on the time taken to

recruit a patient

# First patient assumed to be recruited

instantly

# Add the min fu time to indicate when

analysis is done

cohort_fu <- (rectime*(cohort -1))-(rectime

* 0:( cohort - 1))+minfu

# Time of DLT is recorded and set between

the time the patient has been followed

up and the remaining observation window

cohort_dlt_time <- vector ()

for (i in 1: cohort) {

if(cohort_tox[i] == 0){

cohort_dlt_time[i] <- NA

}

else {
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cohort_dlt_time[i] <- runif(1,0, obswin

)

}

}

# Stores the time DLT occurs for new cohort

dlt_time <- c(dlt_time , cohort_dlt_time)

# Stores new cohorts toxicity

tox <- c(tox , cohort_tox)

# Stores dose level for each new cohort

dose <- c(dose , cohort_comb)

# Store dummy dlt for new cohort

dlt <- c(dlt , cohort_dlt)

# Add on follow up time and recruitment

time for previous cohorts

fu <- fu + (rectime*(cohort -1)) + minfu

#duration <- duration + (cohort * rectime)

+ minfu

# store new cohorts follow up time

fu <- c(fu , cohort_fu)

#duration <- c(duration , cohort_fu)

for(i in 1: length(fu)){

if(tox[i] == 1){

if(fu[i] >= dlt_time[i]){

fu[i] <- obswin

dlt[i] <- 1

}

}
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}

fu <- pmin(fu, obswin)

# Calculated weights where the min fu

accounts for 60% and 80% by win2

for (i in 1: length(fu)) {

weights[i] <- 0.6 +

0.2*(min(win2 - minfu , fu[i]-minfu)/(

win2 - minfu))+ 0.2*(max(fu[i]- win2

, 0)/(obswin -win2))

}

y[comb.curr] = y[comb.curr] + sum(cohort_

tox)

npts[comb.curr] = npts[comb.curr] + cohort

}

}

}

if (stoprule == 0) {

if (!exists("prob.too.toxic")){prob.too.toxic

<- 0}

if((prob.too.toxic > tox.cert)& 1 %in% dose){

stop.count <- 1

}

else {
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comb.select[comb.curr] = comb.select[comb.

curr] + 1

}

}

# Calculate the duration of the trial

num_cohorts <- length(tox) / cohort

duration <- cohort_fu[1] + (rectime*(cohort -1) +

minfu) * (num_cohorts -1) + (obswin - minfu)

return(list(MTD.selection = comb.select , tox.data

= y,

patient.allocation = npts , duration =

duration ,

stop = stop.count))

}

}

lpocrm.sim <- function(nsim) {

ncomb = length(r)

y <- npts <- matrix(nrow = nsim , ncol = ncomb)

comb.select <- matrix(nrow = nsim , ncol = ncomb )

duration <- stop.count <- trialsize <- rep(0, nsim)
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nstop = 0

for (i in 1:nsim) {

#print(i)

result <- lpocrm(r, alpha , prior.o, x0 , stop , n,

theta)

comb.select[i, ] = result$MTD.selection

y[i, ] = result$tox.data

npts[i, ] = result$patient.allocation

trialsize[i] = sum(result$patient.allocation)

duration[i] = result$duration # convert duration

to months

stop.count[i] = result$stop

}

return(list(true.prob = r,

time = Sys.time() - start_time ,

MTD.selection = round(colMeans(comb.

select) ,2),

patient.allocation = 100* round(

colMeans(npts)/mean(trialsize) ,2),

percent.DLT = sum(colMeans(y))/mean(

trialsize),

months = 12*mean(duration)/365,

stop = mean(stop.count),

max.n.count = length(trialsize[

trialsize == max(trialsize)]),

summary.trialsize = summary(trialsize),

mean.n = mean(trialsize),
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mean.n.perdose = colMeans(npts),

acceptable = sum(colMeans(comb.select)[

which(round(abs(r - theta), 2) <=

tox.range)])))

}

if (nsim == 1) {

twostgcrm(r, x0, stop , n, theta)

}

else {

lpocrm.sim(nsim)

}

}

# Simulation function for PO-CRMs

pocrm_sim <- function (r, alpha , prior.o, x0, stop , n,

theta , nsim ,

tox.range , cohort ,

mtd.lim , tox.lim , tox.cert)

{

start_time <- Sys.time()

sim <- sim1 <- apred <- lik <- pord <- ord <- ahat <-

rpred <- next.lev <- n1 <- N <- NULL

d <- ncol(alpha)

s <- nrow(alpha)

if (nsim > 1) {
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lpocrm <- function(r, alpha , prior.o, x0 , stop , n,

theta) {

if (is.vector(alpha))

alpha = t(as.matrix(alpha))

nord.tox = nrow(alpha)

mprior.tox = prior.o

bcrml <- function(a, p1, y, n) {

lik = 0

for (j in 1: length(p1)) {

lik = lik + y[j] * a * log(p1[j]) + (n[j] -

y[j])

*

log

((1

-

p1[

j]^

a))

}

return(lik)

}

# specifies the number of doses

ncomb = ncol(alpha)

# Initialise empty vectors for use later on
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# y (number of dlt 's per dose), npts(number of

patients per dose)

y = npts = ptox.hat = numeric(ncomb)

# The dose level to be selected (add 1 to

indicate position to stop)

comb.select = numeric(ncomb)

# Starting dose taken from first element of the

dose escalation scheme

comb.curr = x0[1]

stoprule = 0

# Specifies the dose escelation scheme

stage1 <- c(x0 , rep(ncol(alpha), n - length(x0)))

# Counter for the number of cohorts

cohort.count <- 1

# Empty vectors to store dose recived and if dlt

was observed

dose <- dlt <- dlt_time <- fu <- tox <- weights

<- vector ()

# Time to recruit new patients

#rectime <- obswin/recrate

while(length(dlt) < n){

# Takes draws from a binomial distribution to

determine if patients in the cohort had a

toxic outcome

cohort_tox <- stats :: rbinom(n = cohort , size =

1, prob = r[comb.curr])
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# Dummy variable to store DLT which will be

updated once the time for DLT has

passed

cohort_dlt <- cohort_tox

# Patients in the same cohort recieve the same

dose

cohort_comb <- rep(comb.curr , cohort)

# Stores new cohorts toxicity

tox <- c(tox , cohort_tox)

# Stores dose level for each new cohort

dose <- c(dose , cohort_comb)

# Store dummy dlt for new cohort

dlt <- c(dlt , cohort_dlt)

y[comb.curr] = y[comb.curr] + sum(cohort_tox)

npts[comb.curr] = npts[comb.curr] + cohort

if (sum(dlt) == length(dlt)) {

comb.curr <- ifelse(comb.curr == 1, comb.curr

,

comb.curr - 1)

}

else if (sum(dlt) == 0) {

comb.curr <- ifelse(comb.curr == ncomb , comb.

curr ,
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stage1[cohort.count + 1])

}

else {

break

}

# Stopping rule ends stage 1 when the same dose

is recommended to a sixth cohort. As this

follows the escalation scheme only stops

when the max dose is prescribed to sixth

cohort.

if(sum(dose == comb.curr) == mtd.lim ){

break

}

cohort.count <- cohort.count +1

}

while (length(dlt) <= n) {

if (sum(dlt) == 0 ) {

stop = 0

break

}

else {
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like.tox = est.tox = rep(0, nord.tox)

for (k in 1:nord.tox) {

est.tox[k] <- optimize(f = bcrml , interval

= c(0 ,100),

p1 = alpha[k, ], y =

y, n = npts ,

maximum = T)$maximum

like.tox[k] <- optimize(f = bcrml , interval

= c(0 ,100),

p1 = alpha[k, ], y

= y, n = npts ,

maximum = T)$

objective

}

postprob.tox = (exp(like.tox) * mprior.tox)/

sum(exp(like.tox) * mprior.tox)

if (nord.tox > 1) {

mtox.sel = which.is.max(round(postprob.tox

,8))

}

else {

mtox.sel = 1

}
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ptox.hat = alpha[mtox.sel , ]^est.tox[mtox.sel

]

loss = abs(ptox.hat - theta)

comb.curr = which.is.max(round(-loss ,8))

# obtain the last dose level from the data

last.lev <- tail(dose , n = 1)

if (comb.curr %in% dose | comb.curr < last.

lev){

# If the next recommended levl has already

been tested or is lower than

# the current dose level than recommend

next level

comb.curr <- comb.curr

}

else {

comb.curr <- max(dose) + 1

}

if (npts[comb.curr] == stop) {

stoprule <- 0

break

}

# Calculate asymptotic variance

beta <- alpha[mtox.sel ,][ dose]

inverse.var <- 0

for (i in 1: length(dlt)) {
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inverse.var <- inverse.var + ((1-dlt[i])*(

beta[i]^est.tox[mtox.sel])*(log((beta[i

])))^2)/(1-(( beta[i]^est.tox[mtox.sel]))

)^2

}

post.alpha.mean <- est.tox[mtox.sel]

post.alpha.var <- 1/inverse.var

post.alpha.samp <- rnorm(n = 100000 , mean =

post.alpha.mean ,

sd = sqrt(post.alpha

.var))

post.prob.tox.samp <- alpha[mtox.sel ,1]^ post.

alpha.samp

prob.too.toxic <- mean(post.prob.tox.samp >

tox.lim)

if(is.na(prob.too.toxic)) {

prob.too.toxic <- 1

}

# stopping rule for when lowest dose is too

toxic AND lowest dose has been tested ptox

.hat[1] > 0.5 & 1 %in% dose

#

# stopping rule if dose is being recommended

for a xth time
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if (length(dlt) == n |(prob.too.toxic > tox.

cert) & 1 %in% dose | sum(dose == comb.

curr) == mtd.lim) {

stoprule = 0

break

}

else {

# Takes draws from a binomial distribution

to determine if patients in the cohort

had a toxic outcome

cohort_tox <- stats:: rbinom(n = cohort ,

size = 1, prob = r[comb.curr])

cohort_dlt <- rep(0, cohort)

# Patients in the same cohort recieve the

same dose

cohort_comb <- rep(comb.curr , cohort)

# Stores new cohorts toxicity

tox <- c(tox , cohort_tox)

# Stores dose level for each new cohort

dose <- c(dose , cohort_comb)

# Store dummy dlt for new cohort

dlt <- c(dlt , cohort_dlt)
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y[comb.curr] = y[comb.curr] + sum(cohort_

tox)

npts[comb.curr] = npts[comb.curr] + cohort

}

}

}

if (stoprule == 0) {

if (!exists("prob.too.toxic")){prob.too.toxic

<- 0}

if((prob.too.toxic > tox.cert)& 1 %in% dose){

#comb.select[ncomb +1] <- 1

}

else {

comb.select[comb.curr] = comb.select[comb.

curr] + 1

}

}

stop.count <- 0

if((prob.too.toxic > tox.cert) & 1 %in% dose){

stop.count <- 1

}

duration <- 474 + 504*(( length(tox) -1)/3)

return(list(MTD.selection = comb.select , tox.data

= y,
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patient.allocation = npts , stop =

stop.count ,

duration = duration))

}

}

lpocrm.sim <- function(nsim) {

ncomb = length(r)

y <- npts <- matrix(nrow = nsim , ncol = ncomb)

comb.select <- matrix(nrow = nsim , ncol = ncomb)

duration <- stop.count <- trialsize <- rep(0, nsim)

nstop = 0

for (i in 1:nsim) {

print(i)

result <- lpocrm(r, alpha , prior.o, x0, stop , n,

theta)

comb.select[i, ] = result$MTD.selection

y[i, ] = result$tox.data

npts[i, ] = result$patient.allocation

trialsize[i] = sum(result$patient.allocation)

stop.count[i] = result$stop

duration[i] = result$duration

}

return(list(true.prob = r,
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time = Sys.time()- start_time ,

MTD.selection = round(colMeans(comb.

select) ,2),

patient.allocation = 100* round(

colMeans(npts)/mean(trialsize) ,2),

percent.DLT = sum(colMeans(y))/mean(

trialsize),

stop = mean(stop.count),

months = 12*mean(duration)/365,

mean.n = mean(trialsize),

mean.n.perdose = colMeans(npts),

acceptable = sum(colMeans(comb.select)[

which(round(abs(r - theta), 2) <=

tox.range)])))

}

if (nsim == 1) {

twostgcrm(r, x0, stop , n, theta)

}

else {

lpocrm.sim(nsim)

}

}

# Simulation function for two -stage TITE -CRM

applied_titecrmts_sim_v2 <- function (true_tox , prior ,

target , max_sample_size ,
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num_sims , win2 ,

cohort = 1,

obswin , minfu ,

recrate , initdes ,

n.mtd ,

dose_func =

applied_

titecrm , ...)

{

iterations <- list()

start_time <- Sys.time()

for (s in 1:num_sims) {

stop <- FALSE

stop_reason <- NULL

rectime <- obswin/recrate

level <- initdes [1]

stage1 <- c(initdes , rep(length(prior), max_sample_

size - length(initdes)))

duration <- dose <- dlt <- dlt_time <- fu <- tox <-

weights <- vector ()

# Counter for the number of cohorts

cohort.count <- 1

# specifies the number of doses

ncomb <- length(true_tox)

while (length(tox) < max_sample_size) {
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# Takes draws from a binomial distribution to

determine if patients in the cohort had a

toxic outcome

cohort_tox <- stats:: rbinom(n = cohort , size = 1,

prob = true_tox[level])

# Dummy variable to store DLT which will be

updated once the time for DLT has

passed

cohort_dlt <- rep(0, cohort)

# Patients in the same cohort recieve the same

dose

cohort_level <- rep(level , cohort)

# Follow up time based on the time taken to

recruit a patient

# First patient assumed to be recruited instantly

# Add the min fu time to indicate when analysis

is done

cohort_fu <- (rectime*(cohort -1)) - (rectime *

0:( cohort - 1)) + minfu

# Time of DLT is recorded and set to be at any

time during the obswin

cohort_dlt_time <- vector ()

for (i in 1: cohort) {

if(cohort_tox[i] == 0){

cohort_dlt_time[i] <- NA

}

else {
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cohort_dlt_time[i] <- runif(1,0, obswin)

}

}

# Stores the time DLT occurs for new cohort

dlt_time <- c(dlt_time , cohort_dlt_time)

# Stores new cohorts toxicity

tox <- c(tox , cohort_tox)

# Stores dose level for each new cohort

dose <- c(dose , cohort_level)

# Store dummy dlt for new cohort

dlt <- c(dlt , cohort_dlt)

# Add on follow up time and recruitment time for

previous cohorts

fu <- fu + (rectime*(cohort -1)) + minfu

#duration <- duration + (cohort * rectime) +

minfu

# store new cohorts follow up time

fu <- c(fu , cohort_fu)

#duration <- c(duration , cohort_fu)

# Loop through all the patients who will have a

DLT

for(k in 1: length(fu)){

if(tox[k] == 1){

# If the follow up time is greater than the

time the dlt was determined to occur

if(fu[k] >= dlt_time[k]){
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# Change the follow up time to the obswin

to indicate the dlt has now happened

fu[k] <- obswin

# As the dlt has happened it should now be

stored for calculation in the likelihood

dlt[k] <- 1

}

}

}

fu <- pmin(fu , obswin)

# Calculated weights where the min fu accounts

for 60% and is 80% bywindow 2

for (a in 1: length(fu)) {

weights[a] <- 0.6 +

0.2*(min(win2 - minfu , fu[a]-minfu)/(win2 -

minfu))+

0.2*(max(fu[a]- win2 , 0)/(obswin -win2))

}

if (sum(dlt) == length(dlt)) {

level <- ifelse(level == 1, level ,

level - 1)

}

else if (sum(dlt) == 0) {

level <- ifelse(level == ncomb , level ,
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stage1[cohort.count + 1])

}

else {

break

}

# Stopping rule ends stage 1 when the same dose

is recommended to a sixth cohort. As this

follows the escalation scheme only stops when

the max dose is prescribed to sixth cohort.

if(sum(dose == level) == n.mtd ){

break

}

cohort.count <- cohort.count +1

}

while ( !stop & length(tox) <= max_sample_size) {

if (length(dlt) == max_sample_size & sum(dlt) ==

0 ) {

stop = TRUE

break

}

else{

x <- dose_func(prior = prior , target = target ,

weights = weights ,
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tox = dlt , level = dose ,

followup = fu , obswin =

obswin ,

...)

fdose <- level <- x$mtd

stop <- ifelse(is.null(x$stop), FALSE , x$stop)

stop_reason <- x$stop_reason

if(length(dlt) == max_sample_size | stop ==

TRUE ){

x <- dose_func(prior = prior , target = target

, tox = tox ,

level = dose , followup = rep(

obswin , length(tox)),

obswin = obswin , weights = rep

(1, length(tox)),

...)

fdose <- x$mtd

stop <- ifelse(is.null(x$stop), FALSE , x$stop

)

stop_reason <- x$stop_reason

break

}

else{
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cohort_tox = stats :: rbinom(n = cohort , size =

1,

prob = true_tox[

level])

cohort_dlt <- rep(0, cohort) ##

cohort_level = rep(level , cohort)

cohort_fu = (rectime * (cohort - 1)) - (

rectime *

c

(0:(

cohort

-

1)

)

)

+

minfu

cohort_dlt_time <- c()

for (j in 1: cohort) {

if(cohort_tox[j] == 0){

cohort_dlt_time[j] <- NA

}
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else {

cohort_dlt_time[j] <- runif(1,0, obswin)

}

}

# cohort_fu[cohort_tox == 1] <- obswin

# Stores the time DLT occurs for new cohort

dlt_time <- c(dlt_time , cohort_dlt_time) ##

# Store dummy dlt for new cohort

dlt <- c(dlt , cohort_dlt) ##

tox <- c(tox , cohort_tox)

dose <- c(dose , cohort_level)

fu <- fu + (rectime*(cohort -1)) + minfu

fu <- c(fu , cohort_fu)

#duration <- duration + (cohort * rectime) +

minfu

for (l in 1: length(tox)) {

if(tox[l] == 1 & fu[l] >= dlt_time[l]){

fu[l] <- obswin

dlt[l] <- 1

}

}

fu <- pmin(fu, obswin)

for (b in 1: length(fu)) {

weights[b] <- 0.6 +
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0.2*(min(win2 - minfu , fu[b]-minfu)/(win2

- minfu))+

0.2*(max(fu[b]- win2 , 0)/(obswin -win2))

}

cohort.count <- cohort.count +1

}

}

}

print(s)

num_cohorts <- length(tox) / cohort

duration <- cohort_fu[1] + (rectime*(cohort -1) +

minfu) * (cohort.count -1) +( obswin - minfu)

iterations [[s]] <- list(tox = tox , level = dose ,

mtd = fdose ,

stop = stop , stop_reason =

stop_reason ,

duration = duration ,

cohorts = cohort.count)

}

dose_selections = sapply(iterations , function(x) x$

mtd)

doses_given = unlist(sapply(iterations , function(x) x

$level))
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duration = sapply(iterations , function(x) x$duration)

summary = list(true_tox = true_tox , prior = prior ,

target = target ,

max_sample_size = max_sample_size ,

initdes = initdes ,

months = 12*mean(duration)/365,

time = Sys.time()- start_time ,

num_sims = num_sims , cohort = cohort ,

prob_stop = table(substr(unlist(sapply

(iterations , function(x)

x$stop_reason)), 1, 15))/num_sims ,

mtd = sapply (1: length(prior),

function(d)

sum(dose_selections == d, na.rm =

TRUE)/num_sims),

doses_given = sapply (1: length(prior),

function(d)

sum(doses_given == d, na.rm = TRUE)/

num_sims), prob_dose_given =

sapply (1: length(prior),
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function

(

d

)

sum

(

doses

_

given

==

d

,

na

.

rm

=

TRUE

)

/

length

(

doses

_

given

)

)

)
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return(list(summary = summary , iterations =

iterations))

}

# Simulations for no cohorts and removal of minimum

followup

# Not used

titepocrm_sim_nomin <- function (r, alpha , prior.o, x0,

stop , n, theta , nsim ,

tox.range , cohort , obswin ,

minfu , win2 , recrate ,

mtd.lim , tox.lim , tox.cert)

{

sim <- sim1 <- apred <- lik <- pord <- ord <- ahat <-

rpred <- next.lev <- n1 <- N <- NULL

d <- ncol(alpha)

s <- nrow(alpha)

if (nsim > 1) {

lpocrm <- function(r, alpha , prior.o, x0 , stop , n,

theta) {

if (is.vector(alpha))

alpha = t(as.matrix(alpha))

nord.tox = nrow(alpha)

mprior.tox = prior.o

# Function for calculating the likelihood
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bcrml <- function(a, p1, y, w) {

lik = 0

for (j in 1: length(y)) {

lik = lik + y[j] * a * log(w[j]*p1[j]) +

(1 - y[j]) * log ((1 - w[j]*p1[j]^a))

}

return(lik)

}

# specifies the number of doses

ncomb = ncol(alpha)

# Initialise empty vectors for use later on

# y (number of dlt 's per dose), npts(number of

patients per dose)

y = npts = ptox.hat = numeric(ncomb)

# The dose level to be selected (add 1 to

indicate position to stop)

comb.select = numeric(ncomb )

# Starting dose taken from first element of the

dose escalation scheme

comb.curr = x0[1]

stoprule = 0

stop.count <- 0

# Specifies the dose escelation scheme

stage1 <- c(x0 , rep(ncol(alpha), n - length(x0)))

# Counter for the number of cohorts

cohort.count <- 1
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# Empty vectors to store dose recived and if dlt

was observed

duration <- dose <- dlt <- dlt_time <- fu <- tox

<- weights <- vector ()

# Time to recruit new patients

rectime <- obswin/recrate

while(length(tox) < n){

# Takes draws from a binomial distribution to

determine if patients in the cohort had a

toxic outcome

cohort_tox <- stats:: rbinom(n = cohort , size =

1, prob = r[comb.curr])

# Dummy variable to store DLT which will be

updated once the time for DLT has passed

cohort_dlt <- rep(0, cohort)

# Patients in the same cohort recieve the same

dose

cohort_comb <- rep(comb.curr , cohort)

# Follow up time based on the time taken to

recruit a patient

# First patient assumed to be recruited

instantly

# Add the min fu time to indicate when analysis

is done

cohort_fu <- (rectime*(cohort -1)) - (rectime *

0:( cohort - 1)) + rectime
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# Time of DLT is recorded and set to be at any

time during the obswin

cohort_dlt_time <- vector ()

for (i in 1: cohort) {

if(cohort_tox[i] == 0){

cohort_dlt_time[i] <- NA

}

else {

cohort_dlt_time[i] <- runif(1,0, obswin)

}

}

# Stores the time DLT occurs for new cohort

dlt_time <- c(dlt_time , cohort_dlt_time)

# Stores new cohorts toxicity

tox <- c(tox , cohort_tox)

# Stores dose level for each new cohort

dose <- c(dose , cohort_comb)

# Store dummy dlt for new cohort

dlt <- c(dlt , cohort_dlt)

# Add on follow up time and recruitment time

for previous cohorts

fu <- fu + (cohort * rectime)

#duration <- duration + (cohort * rectime) +

minfu

# store new cohorts follow up time

fu <- c(fu , cohort_fu)

#duration <- c(duration , cohort_fu)
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# Loop through all the patients who will have a

DLT

for(i in 1: length(fu)){

if(tox[i] == 1){

# If the follow up time is greater than the

time the dlt was determined to occur

if(fu[i] >= dlt_time[i]){

# Change the follow up time to the obswin

to indicate the dlt has now happened

fu[i] <- obswin

# As the dlt has happened it should now

be stored for calculation in the

likelihood

dlt[i] <- 1

}

}

}

fu <- pmin(fu , obswin)

# Calculated weights where the min fu accounts

for 60% and is 80% by window 2

for (i in 1: length(fu)) {

weights[i] <- 0.6*(min(fu[i],minfu)/minfu) +

0.2*max((min(win2 - minfu , fu[i]-minfu)/(

win2 - minfu)) ,0)+

0.2*max((max(fu[i]- win2 , 0)/(obswin -win2))

,0)
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}

# These values are used to calculate patient

allocation and %DLT

y[comb.curr] = y[comb.curr] + sum(cohort_tox)

npts[comb.curr] = npts[comb.curr] + cohort

if (sum(dlt) == length(dlt)) {

comb.curr <- ifelse(comb.curr == 1, comb.curr

,

comb.curr - 1)

}

else if (sum(dlt) == 0) {

comb.curr <- ifelse(comb.curr == ncomb , comb.

curr ,

stage1[cohort.count + 1])

}

else {

break

}

# Stopping rule ends stage 1 when the same dose

is recommended to a sixth cohort. As this

follows the escalation scheme only stops

when the max dose is prescribed to sixth

cohort.

if(sum(dose == comb.curr) == mtd.lim ){



B.1. TITE-PO-CRM in ADePT-DDR chapter code 311

break

}

cohort.count <- cohort.count +1

}

while (length(dlt) <= n) {

if (sum(dlt) == 0 ) {

stop = 0

break

}

else {

like.tox = est.tox = rep(0, nord.tox)

for (k in 1:nord.tox) {

beta <- alpha[k,][ dose [1: length(dose)]]

est.tox[k] <- optimize(f = bcrml , interval

= c(0 ,500),

p1 = beta , y = dlt ,

w = weights ,

maximum = T)$maximum

like.tox[k] <- optimize(f = bcrml , interval

= c(0 ,500),

p1 = beta , y = dlt ,

w = weights ,
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maximum = T)$

objective

}

postprob.tox = (exp(like.tox) * mprior.tox)/

sum(exp(like.tox) * mprior.tox)

if (nord.tox > 1) {

mtox.sel = which.is.max(round(postprob.tox

,8))

}

else {

mtox.sel = 1

}

ptox.hat = alpha[mtox.sel , ]^est.tox[mtox.sel

]

loss = abs(ptox.hat - theta)

comb.curr = which.is.max(round(-loss ,8))

# obtain the last dose level from the data

last.lev <- tail(dose , n = 1)

if (comb.curr %in% dose | comb.curr < last.

lev){

# If the next recommended levl has already

been tested or is lower than

# the current dose level than recommend

next level
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comb.curr <- comb.curr

}

else {

comb.curr <- max(dose) + 1

}

if (npts[comb.curr] == stop) {

stoprule <- 0

break

}

# Calculate asymptotic variance

beta <- alpha[mtox.sel ,][ dose]

inverse.var <- 0

for (i in 1: length(dlt)) {

inverse.var <- inverse.var + ((1-dlt[i])*(

weights[i]*beta[i]^est.tox[mtox.sel])*(

log(( weights[i]*beta[i])))^2)/(1-((

weights[i]*beta[i]^est.tox[mtox.sel])))

^2

}

post.alpha.mean <- est.tox[mtox.sel]

post.alpha.var <- ifelse(inverse.var == 0, 0

, 1/inverse.var)

post.alpha.samp <- rnorm(n = 100000 , mean =

post.alpha.mean ,
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sd = sqrt(post.alpha

.var))

post.prob.tox.samp <- alpha[mtox.sel ,1]^ post.

alpha.samp

prob.too.toxic <- mean(post.prob.tox.samp >

tox.lim)

if(is.na(prob.too.toxic)) {

prob.too.toxic <- 1

}

# stopping rule for when lowest dose is too

toxic AND lowest dose has been tested ptox

.hat[1] > 0.5 & 1 %in% dose

#

# stopping rule if dose is being recommended

for a xth time

if (length(dlt) == n |(prob.too.toxic > tox.

cert) & 1 %in% dose | sum(dose == comb.

curr) == mtd.lim) {

stoprule = 0

# once all patients recruited calculate

likelihoods at max weight
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like.tox = est.tox = rep(0, nord.tox)

for (k in 1:nord.tox) {

#set all the weights at 1

weights <- rep(1, length(tox))

#ensures that all those predicted to have

toxic event is included in dlt data

# as we are assuming full follow up once

the last patients are recruited

dlt <- tox

beta <- alpha[k,][ dose [1: length(dose)]]

est.tox[k] <- optimize(f = bcrml ,

interval = c(0 ,500),

p1 = beta , y = tox

, w = weights ,

maximum = T)$

maximum

like.tox[k] <- optimize(f = bcrml ,

interval = c(0 ,500),

p1 = beta , y =

tox , w =

weights ,

maximum = T)$

objective

}
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postprob.tox = (exp(like.tox) * mprior.tox)

/sum(exp(like.tox) * mprior.tox)

if (nord.tox > 1) {

mtox.sel = which.is.max(round(postprob.

tox ,8))

}

else {

mtox.sel = 1

}

ptox.hat = alpha[mtox.sel , ]^est.tox[mtox.

sel]

loss = abs(ptox.hat - theta)

comb.curr = which.is.max(round(-loss ,8))

# obtain the last dose level from the data

last.lev <- tail(dose , n = 1)

if (comb.curr %in% dose | comb.curr < last.

lev){

# If the next recommended levl has

already been tested or is lower than

# the current dose level than recommend

next level

comb.curr <- comb.curr

}

else {
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comb.curr <- max(dose) + 1

}

# Calculate asymptotic variance

beta <- alpha[mtox.sel ,][ dose]

inverse.var <- 0

for (i in 1: length(tox)) {

inverse.var <- inverse.var + ((1-tox[i])*

(weights[i]*beta[i]^est.tox[mtox.sel])

*(log(( weights[i]*beta[i])))^2)/(1-((

weights[i]*beta[i]^est.tox[mtox.sel]))

)^2

}

post.alpha.mean <- est.tox[mtox.sel]

post.alpha.var <- ifelse(inverse.var == 0,

0 , 1/inverse.var)

post.alpha.samp <- rnorm(n = 100000 , mean =

post.alpha.mean ,

sd = sqrt(post.

alpha.var))

post.prob.tox.samp <- alpha[mtox.sel ,1]^

post.alpha.samp

prob.too.toxic <- mean(post.prob.tox.samp >

tox.lim)
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if(is.na(prob.too.toxic)) {

prob.too.toxic <- 1

}

break

}

else {

# Takes draws from a binomial distribution

to determine if patients in the cohort

had a toxic outcome

cohort_tox <- stats:: rbinom(n = cohort ,

size = 1, prob = r[comb.curr])

cohort_dlt <- rep(0, cohort)

# Patients in the same cohort recieve the

same dose

cohort_comb <- rep(comb.curr , cohort)

# Follow up time based on the time taken to

recruit a patient

# First patient assumed to be recruited

instantly

# Add the min fu time to indicate when

analysis is done
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cohort_fu <- (rectime*(cohort -1))-(rectime

* 0:( cohort - 1)) +rectime

# Time of DLT is recorded and set between

the time the patient has been followed

up and the remaining observation window

cohort_dlt_time <- vector ()

for (i in 1: cohort) {

if(cohort_tox[i] == 0){

cohort_dlt_time[i] <- NA

}

else {

cohort_dlt_time[i] <- runif(1,0, obswin

)

}

}

# Stores the time DLT occurs for new cohort

dlt_time <- c(dlt_time , cohort_dlt_time)

# Stores new cohorts toxicity

tox <- c(tox , cohort_tox)

# Stores dose level for each new cohort

dose <- c(dose , cohort_comb)

# Store dummy dlt for new cohort

dlt <- c(dlt , cohort_dlt)

# Add on follow up time and recruitment

time for previous cohorts

fu <- fu + (cohort * rectime)
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#duration <- duration + (cohort * rectime)

+ minfu

# store new cohorts follow up time

fu <- c(fu , cohort_fu)

#duration <- c(duration , cohort_fu)

for(i in 1: length(fu)){

if(tox[i] == 1){

if(fu[i] >= dlt_time[i]){

fu[i] <- obswin

dlt[i] <- 1

}

}

}

fu <- pmin(fu , obswin)

# Calculated weights where the min fu

accounts for 60% and 80% by win2

for (i in 1: length(fu)) {

weights[i] <- 0.6*(min(fu[i],minfu)/minfu

) +

0.2*max((min(win2 - minfu , fu[i]-minfu)

/(win2 - minfu)) ,0)+

0.2*max((max(fu[i]- win2 , 0)/(obswin -

win2)) ,0)

}
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y[comb.curr] = y[comb.curr] + sum(cohort_

tox)

npts[comb.curr] = npts[comb.curr] + cohort

}

}

}

if (stoprule == 0) {

if (!exists("prob.too.toxic")){prob.too.toxic

<- 0}

if((prob.too.toxic > tox.cert)& 1 %in% dose){

stop.count <- 1

}

else {

comb.select[comb.curr] = comb.select[comb.

curr] + 1

}

}

# Calculate the duration of the trial

num_cohorts <- length(tox) / cohort

duration <- cohort_fu[1] + (rectime*(cohort)) * (

num_cohorts -1) + (obswin)

return(list(MTD.selection = comb.select , tox.data

= y,
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patient.allocation = npts , duration =

duration ,

stop = stop.count))

}

}

lpocrm.sim <- function(nsim) {

ncomb = length(r)

y <- npts <- matrix(nrow = nsim , ncol = ncomb)

comb.select <- matrix(nrow = nsim , ncol = ncomb )

duration <- stop.count <- trialsize <- rep(0, nsim)

nstop = 0

for (i in 1:nsim) {

#print(i)

result <- lpocrm(r, alpha , prior.o, x0, stop , n,

theta)

comb.select[i, ] = result$MTD.selection

y[i, ] = result$tox.data

npts[i, ] = result$patient.allocation

trialsize[i] = sum(result$patient.allocation)

duration[i] = result$duration # convert duration

to months

stop.count[i] = result$stop

}

return(list(true.prob = r,

MTD.selection = round(colMeans(comb.

select) ,2),
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patient.allocation = 100* round(

colMeans(npts)/mean(trialsize) ,2),

percent.DLT = sum(colMeans(y))/mean(

trialsize),

months = 12*mean(duration)/365,

stop = mean(stop.count),

mean.n = mean(trialsize),

mean.n.perdose = colMeans(npts),

acceptable = sum(colMeans(comb.select)[

which(round(abs(r - theta), 2) <=

tox.range)])))

}

if (nsim == 1) {

twostgcrm(r, x0, stop , n, theta)

}

else {

lpocrm.sim(nsim)

}

}

B.2 Extension to Phase I/II design chapter code

The code below is for various functions that were used to run the simulations

in Chapter 3.

### install required R packages

library(binom)

library(nnet)
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library(dfcrm)

# pwr calcs

library(pwr)

library(matrixStats)

# Written by KB to split out method calculation and

simulation

post.tox <- function(a, p, y, n) {

s2=1.34

lik=1

for(j in 1: length(p)){

pj=p[j]**exp(a)

lik=lik*pj^y[j]*(1-pj)^(n[j]-y[j]);

}

return(lik*exp(-0.5*a*a/s2));

}

# the posterior mean of ptox

posttoxf <- function(a, p, y, n, j) {

p[j]^(exp(a))*post.tox(a, p, y, n);

}

post.eff <- function(b, q, z, n) {

s2=1.34

lik=1

for(j in 1: length(q)){

qj=q[j]**exp(b)
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lik=lik*qj^z[j]*(1-qj)^(n[j]-z[j]);

}

return(lik*exp(-0.5*b*b/s2));

}

# the posterior mean of peff

postefff <- function(b, q, z, n, j) {

q[j]^(exp(b))*post.eff(b, q, z, n);

}

wages.tait = function(y, z, n, p.skel , q.skel , n.ar,

comb.curr = NULL ,

mprior.tox = NULL , mprior.eff =

NULL ,

safety.confidence = 0.95,

futility.confidence = 0.95,

check.tox.at.dose.level ,

lowest.is.placebo = FALSE ,

placebo.rand.prob = NULL) {

# y, number of toxicity events at each dose

# z, number of efficacy events at each dose

# n, number of patients allocated to each dose

# p.skel , toxicity skeleton(s) as vector or matrix

# q.skel , efficacy skeleton(s) as vector or matrix

# n.ar, the number of patients to use in the adaptive

randomisation stage
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# comb.curr , deprecated , ignored

# mprior.tox , prior for each toxicity ordering

# mprior.eff , prior for each efficacy ordering

# safety.confidence is the % CI to construct when

checking whether lowest dose

# is too toxic

# futility.confidence is the % CI to construct when

checking whether current

# dose is too toxic

# check.tox.at.dose.level is the index of the dose on

which design

# should invoke the logic to detect excess toxicity

. In the majority of

# cases this will be dose -level 1. If you have a

trivial lowest dose ("d=0")

# so that toxicity is nearly impossible , you will

want to check for excess

# tox at dose 2 instead (lest you short -circuit the

early stopping criteria)

# This is KB's embellishment.

# lowest.is.placebo is an indicator to identify if

the lowest dose is set to

# be a control/placebo dose

# placebo.rand.prob is the probability of allocating

to the placebo/control

# dose level
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comb.curr = NULL

if(is.vector(p.skel)) p.skel = t(as.matrix(p.skel));

if(is.vector(q.skel)) q.skel = t(as.matrix(q.skel));

ncomb = ncol(p.skel); # number of doses or

combinations

ptox.hat = numeric(ncomb); # estimate of toxicity

prob

peff.hat = numeric(ncomb); # estimate of efficacy

prob

nord.tox = nrow(p.skel);

if(is.null(mprior.tox))

mprior.tox = rep(1 / nord.tox , nord.tox)

nord.eff = nrow(q.skel);

if(is.null(mprior.eff))

mprior.eff = rep(1 / nord.eff , nord.eff)

marginal.tox = rep(0, nord.tox);

for(k in 1:nord.tox) {

marginal.tox[k] = integrate(post.tox , lower=-Inf ,

upper=Inf , p=p.skel[k,],

y=y, n=n)$value;

}

postprob.tox = (marginal.tox * mprior.tox) / sum(

marginal.tox * mprior.tox);
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marginal.eff = rep(0, nord.eff);

for(k in 1:nord.eff) {

marginal.eff[k] = integrate(post.eff ,lower=-Inf ,

upper=Inf , q=q.skel[k,],

z=z, n=n)$value;

}

postprob.eff = (marginal.eff * mprior.eff) / sum(

marginal.eff * mprior.eff);

# toxicity model selection , identify the model with

the highest posterior prob

if(nord.tox > 1) {

mtox.sel = which.is.max(postprob.tox);

}

else {

mtox.sel = 1;

}

# efficacy model selection , identify the model with

the highest posterior prob

if(nord.eff > 1){

meff.sel = which.is.max(postprob.eff);

}

else {

meff.sel = 1;

}
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# calculate posterior mean of toxicity probability at

each combo

for(j in 1:ncomb){

ptox.hat[j] = integrate(posttoxf , lower=-Inf , upper

=Inf , p.skel[mtox.sel ,],

y, n, j)$value / marginal.

tox[mtox.sel];

}

# calculate posterior mean of efficacy probability at

each combo

for(j in 1:ncomb){

peff.hat[j] = integrate(postefff , lower=-Inf , upper

=Inf , q.skel[meff.sel ,],

z, n, j)$value / marginal.

eff[meff.sel];

}

# determine set of safe doses based on toxicity

aset = which(ptox.hat <= tul)

if(length(aset)==0) {

aset = which.min(ptox.hat)

}

peff.hat.aset = rep(0, ncomb)

peff.hat.aset[aset] = peff.hat[aset]
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# deterimine randomisation probabilities based on

efficacy

ar.prob = peff.hat.aset / sum(peff.hat.aset)

if(lowest.is.placebo == TRUE){

ar.prob = c(placebo.rand.prob ,

ar.prob[-1]*(1-placebo.rand.prob)/sum(

ar.prob [-1]))

}

if(length(aset) == 1) {

# The best and recommended dose can only be this

comb.best <- aset

comb.curr <- aset

}

else {

# The best dose is always that in admissible set

with maximal Pr(Eff)

comb.best <- which.max(peff.hat.aset)

# In AR stage , sample current dose from admissible

doses with weighted prob;

# After AR stage , current dose is best dose

ifelse(sum(n) < n.ar,

comb.curr <- sample (1:ncomb , 1, prob=ar.prob

),

comb.curr <- comb.best)
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}

max.dose.given <- max(seq(1, ncomb)[n > 0])

if(comb.curr > max.dose.given + 1) {

# Recommending dose above maximum given , so prevent

skipping

comb.curr <- max.dose.given + 1

skipping_prevented = TRUE

} else {

skipping_prevented = FALSE

}

########## Stopping rules

stop = 0

tox.dl = check.tox.at.dose.level

safety = binom.confint(y[tox.dl], n[tox.dl], conf.

level = safety.confidence ,

methods="exact")$lower

if(safety > tul){

stop = 1

}

if(sum(n) > n.ar){

# We are not in the AR phase , so stopping for

futility is used.

futility = binom.confint(z[comb.curr], n[comb.curr

],
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conf.level = futility.

confidence ,

methods = "exact")$upper

if(n[comb.curr] > 0 & futility < ell){

# Recommended dose has been given; upper efficacy

estimate is below limit

# stop = 2 # KB - surely an error? The stop

value is added below to a previous value

# so it should only be 0 or 1? Maybe the logic NW

wanted was ">0 => stop".

stop = 1

}

}

else {

futility = NULL

}

return(list(

# marginal.tox = marginal.tox ,

ToxBayesFactor = postprob.tox ,

ProbTox = ptox.hat ,

ToxSkeleton = mtox.sel ,

# marginal.eff = marginal.eff ,

EffBayesFactor = postprob.eff ,

EffSkeleton = meff.sel ,

ProbEff = peff.hat ,
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AdaptiveRandProb = ar.prob ,

RecommendedDose = comb.curr ,

OptimalDose = comb.best ,

Dose1ToxLowerBound = safety ,

LowestActiveDoseToxLowerBound = safety ,

RecommendedDoseEffUpperBound = futility ,

AdmissibleSet = aset ,

Stop = stop ,

SkippingPrevented = skipping_prevented ,

Note = "The parameter Dose1ToxLowerBound is a 

misnomer.

    Use LowestActiveDoseToxLowerBound instead."

))

}

###Load the function 'bpocrm '

wt.sim.one <- function(p0, q0, p.skel , q.skel , tul , ell

, cohortsize , ncohort ,

start.comb , n.ar , mprior.tox =

NULL , mprior.eff = NULL ,

safety.confidence = 0.95,

futility.confidence = 0.95,

check.tox.at.dose.level ,

lowest.is.placebo = FALSE ,

placebo.rand.prob = NULL) {
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# p0, true toxicity probabilities

# q0, true efficacy probabilities

# p.skel , toxicity skeleton(s)

# q.skel , efficacy skeleton(s)

# tul , toxicity upper limit

# ell , efficacy lower limit

# cohortsize , obvious

# ncohort , number of cohorts

# start.comb , starting dose -level

# n.ar , number of patients in adaptive randomisation

stage

# mprior.tox , Prior weights to toxicity models ,

uniform if omitted

# mprior.eff , Prior weights to efficacy models ,

uniform if omitted

# safety.confidence is the % CI to construct when

checking whether lowest dose

# is too toxic

# futility.confidence is the % CI to construct when

checking whether current

# dose is too toxic

# check.tox.at.dose.level is the index of the dose on

which design

# should invoke the logic to detect excess toxicity

. In the majority of
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# cases this will be dose -level 1. If you have a

trivial lowest dose ("d=0")

# so that toxicity is nearly impossible , you will

want to check for excess

# tox at dose 2 instead (lest you short -circuit the

early stopping criteria)

# This is KB's embellishment.

# if a single ordering is inputed as a vector ,

convert it to a matrix

if(is.vector(p.skel)) p.skel = t(as.matrix(p.skel));

# if a single ordering is inputed as a vector ,

convert it to a matrix

if(is.vector(q.skel)) q.skel = t(as.matrix(q.skel));

### run a trial

ncomb = ncol(p.skel); # number of combos

y = rep(0, ncomb); # number of toxicity/responses at

each dose level

z = rep(0, ncomb); # number of efficacy at each

dose level

n = rep(0, ncomb); # number of treated patients at

each dose level

comb.curr = start.comb; # current dose level

ptox.hat = numeric(ncomb); # estimate of toxicity

prob
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peff.hat = numeric(ncomb); # estimate of efficacy

prob

comb.select = rep(0, ncomb); # a vector of indicators

for dose selection

stop = 0; # indicate if trial stops early

tox.skel = rep(0, nrow(p.skel))

eff.skel = rep(0, nrow(q.skel))

for(i in 1: ncohort)

{

# generate data for a new cohort of patients

y[comb.curr] = y[comb.curr] + rbinom(1, cohortsize ,

p0[comb.curr]);

z[comb.curr] = z[comb.curr] + rbinom(1, cohortsize ,

q0[comb.curr]);

n[comb.curr] = n[comb.curr] + cohortsize;

# TODO (... something - but what?!)

cohort.update = wages.tait(y, z, n, p.skel , q.skel ,

n.ar ,

comb.curr = comb.curr ,

mprior.tox = mprior.tox ,

mprior.eff = mprior.

eff ,

safety.confidence =

safety.confidence ,
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futility.confidence =

futility.confidence ,

check.tox.at.dose.level

= check.tox.at.dose.

level ,

lowest.is.placebo =

lowest.is.placebo ,

placebo.rand.prob =

placebo.rand.prob

)

# cat('ToxSkel ', cohort.update$ToxSkeleton , '\n')

# cat('EffSkel ', cohort.update$EffSkeleton , '\n')

stop = cohort.update$Stop

comb.curr = cohort.update$RecommendedDose

tox.skel[cohort.update$ToxSkeleton] = tox.skel[

cohort.update$ToxSkeleton] +1

eff.skel[cohort.update$EffSkeleton] = eff.skel[

cohort.update$EffSkeleton] +1

if(stop > 0)

break

}

if(stop == 0){

comb.select[comb.curr] = comb.select[comb.curr] +

1;
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}

# cat('FinalToxSkel ', cohort.update$ToxSkeleton , '\n

')

# cat('FinalEffSkel ', cohort.update$EffSkeleton , '\n

')

return(list(comb.select = comb.select , tox.data = y,

eff.data = z,

pt.allocation = n, stop = stop ,

ToxSkel = tox.skel , FinalToxSkel = cohort

.update$ToxSkeleton ,

EffSkel = eff.skel , FinalEffSkel = cohort

.update$EffSkeleton))

}

# Nolan originally called this bpocrm

bpocrm = wt.sim.one

###Load the function 'bpocrm.sim '

wt.sim <- function(p0 , q0, p.skel , q.skel , tul , ell ,

cohortsize , ncohort ,

start.comb , n.ar , ntrial ,

mprior.tox = NULL , mprior.eff = NULL

,

safety.confidence = 0.95, futility.

confidence = 0.95,
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check.tox.at.dose.level ,

verbose = TRUE , really.verbose =

FALSE ,

full_output = TRUE ,

lowest.is.placebo = FALSE , placebo.

rand.prob = NULL ,

effect.sizes = NULL) {

# p0, true toxicity probabilities

# q0, true efficacy probabilities

# p.skel , toxicity skeleton(s)

# q.skel , efficacy skeleton(s)

# tul , toxicity upper limit

# ell , efficacy lower limit

# cohortsize , obvious

# ncohort , number of cohorts

# start.comb , starting dose -level

# n.ar, number of patients in adaptive randomisation

stage

# ntrial , number of trials to simulate

# mprior.tox , Prior weights to toxicity models ,

uniform if omitted

# mprior.eff , Prior weights to efficacy models ,

uniform if omitted

# safety.confidence is the % CI to construct when

checking whether lowest dose

# is too toxic
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# futility.confidence is the % CI to construct when

checking whether current

# dose is too toxic

# check.tox.at.dose.level is the index of the dose on

which design

# should invoke the logic to detect excess toxicity

. In the majority of

# cases this will be dose -level 1. If you have a

trivial lowest dose ("d=0")

# so that toxicity is nearly impossible , you will

want to check for excess

# tox at dose 2 instead (lest you short -circuit the

early stopping criteria)

# This is KB's embellishment.

StartTime = Sys.time()

# if a single ordering is inputed as a vector ,

convert it to a matrix

if(is.vector(p.skel)) p.skel = t(as.matrix(p.skel));

# if a single ordering is inputed as a vector ,

convert it to a matrix

if(is.vector(q.skel)) q.skel = t(as.matrix(q.skel));

ncomb = length(p0)

comb.select <-y <-z <-n <- matrix(nrow = ntrial , ncol

= ncomb)
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tox.skel <- matrix(nrow = ntrial , ncol = nrow(p.skel)

)

final.tox.skel <- rep(0, nrow(p.skel))

print(final.tox.skel)

eff.skel <- matrix(nrow = ntrial , ncol = nrow(q.skel)

)

final.eff.skel <- rep(0, nrow(q.skel))

nstop = 0

h <- effect.sizes

npower <- matrix(nrow = ntrial , ncol = length(h))

for(i in 1: ntrial){

if(verbose & i %% floor(ntrial / 10) == 0) print(i)

result <- bpocrm(p0, q0, p.skel , q.skel , tul , ell ,

cohortsize , ncohort ,

start.comb , n.ar , mprior.tox =

mprior.tox ,

mprior.eff = mprior.eff ,

safety.confidence = safety.

confidence ,

futility.confidence = futility.

confidence ,

check.tox.at.dose.level = check.

tox.at.dose.level ,

lowest.is.placebo = lowest.is.

placebo ,
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placebo.rand.prob = placebo.rand.

prob)

if(result$stop == 0) {

comb.select[i,] = result$comb.select

} else {

comb.select[i,] = 0

}

y[i, ] <- result$tox.data

z[i, ] <- result$eff.data

n[i, ] <- result$pt.allocation

tox.skel[i, ] <- result$ToxSkel

final.tox.skel[result$FinalToxSkel] <- final.tox.

skel[result$FinalToxSkel ]+1

eff.skel[i, ] <- result$EffSkel

final.eff.skel[result$FinalEffSkel] <- final.eff.

skel[result$FinalEffSkel ]+1

nstop <- nstop + result$stop

if(result$stop == 0 & result$comb.select [1] != 1){

if(result$pt.allocation [1] > 0 &

result$pt.allocation[result$comb.select == 1]

>0 ){

for (j in 1: length(h)) {
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npower[i,j] <- pwr.2p2n.test(h = h[j], n1 =

result$pt.allocation [1],

n2 = result$pt.

allocation[

result$comb.

select == 1],

sig.level = 0.1)

$power

}

}

}

}

if(really.verbose) {

cat("True tox probability: ", round(p0 ,3), sep="   

 ", "\n");

cat("True eff probability: ", round(q0 ,3), sep="   

 ", "\n");

cat("selection percentage: ", formatC(colMeans(comb

.select)*100, digits=1,

format="f"),

sep="    "

, "\n");



344 Appendix B. Code

cat("number of toxicities:    ", formatC(colMeans(y

), digits=1, format="f"),

sep="    ", "\n");

cat("number of responses:    ", formatC(colMeans(z)

, digits=1, format="f"),

sep="    ", "\n");

cat("number of patients treated:     ", formatC(

colMeans(n), digits=1,

format

=

"

f

"

)

,

sep

=

"

 

 

 

 

"

,

"\n");
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cat("percentage of stop:    ", nstop/ntrial*100, "\

n");

}

# Return object

l <- list(

TrueTox = p0,

TrueEff = q0,

ToxSkel = p.skel ,

EffSkel = q.skel ,

TUL = tul ,

ELL = ell ,

NumSims = ntrial ,

NumPatients = cohortsize * ncohort ,

CohortSize = cohortsize ,

NumCohorts = ncohort ,

SizeARPhase = n.ar,

SafetyConfidence = safety.confidence ,

FutilityConfidence = futility.confidence ,

TreatedAtDose = round(colMeans(n), 1),

ToxAtDose = round(colMeans(y), 1),

EffAtDose = round(colMeans(z), 1),

ProbSelect = round(colMeans(comb.select), 4),

NStop = nstop ,

ProbStop = nstop / ntrial ,

EffectSizes = h,

PowerMean = round(colMeans(npower , na.rm = T), 4),
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PowerSD = round(colSds(npower , na.rm = T), 4),

NPower = sum(!is.na(npower [,1])),

CohortToxSkel = tox.skel ,

ProbFinalToxSkel = final.tox.skel / ntrial ,

CohortEffSkel = eff.skel ,

ProbFinalEffSkel = final.eff.skel / ntrial ,

SimulationTime = Sys.time()- StartTime

)

# Full output includes patients

if(full_output) {

l$FullTreatedAtDose = n

l$FullToxAtDose = y

l$FullEffAtDose = z

l$FullRecommendation = comb.select

l$FullPower = npower

# l$FullStopTrial = stop_trial

}

return(l)

}

# Nolan originally called this bpocrm.sim

bpocrm.sim = wt.sim

B.3 TITE-DTP chapter code

The code below was used to generate the DTPs used as examples in Chapter 4.
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library(dfcrm)

library(escalation)

library(dplyr)

library(kableExtra)

library(dtpcrm)

library(tidyr)

library(diagram)

library(DiagrammeRsvg)

library(rsvg)

# Set -up

skeleton <- getprior(target = 0.25, nu =4, nlevel =5,

halfwidth = 0.05)

target <- 0.25

model <- get_dfcrm(skeleton = skeleton , target = target

)

paths <- model %>%

get_dose_paths(cohort_sizes = c(3,3,3), next_dose =2)

#DTPs

spread_paths(as_tibble(paths)) %>%

select(o0 = 'outcomes0 ', d0 = 'next_dose0 ',

o1 = 'outcomes1 ', d1 = 'next_dose1',

o2 = 'outcomes2 ', d2 = 'next_dose2',

o3 = 'outcomes3 ', d3 = 'next_dose3') %>%
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print(n=100)

# Node plot

graph_paths(paths , RColorBrewer_palette = 'Set1') %>%

export_svg() %>%

charToRaw %>%

rsvg_pdf('C:/Users/Amit/Documents/GitHub/PhD/Thesis/

Figures/TITE -DTP -InitialExampleDTPNode.pdf')

# Code for the LaTeX table

spread_paths(as_tibble(paths)) %>%

select(o0 = 'outcomes0 ', d0 = 'next_dose0 ',

o1 = 'outcomes1 ', d1 = 'next_dose1',

o2 = 'outcomes2 ', d2 = 'next_dose2',

o3 = 'outcomes3 ', d3 = 'next_dose3') %>%

print(n=100) %>%

data.frame() %>%

mutate(o0 = 1:64) %>%

kable('latex ', booktabs = T, linesep = "", align = "c

",

col.names = c('Pathway ', 'Dose', 'Outcomes ', '

Dose', 'Outcomes ', 'Dose',

'Outcomes ', 'Dose'),

caption = '\\label{tab_tite -dtp:

InitialDTPExample}Initial DTP for the first 

three cohorts of our example CRM.'

) %>%
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kable_styling(latex_options = c("striped", "HOLD_

position", "scale_down"),

position = "center", font_size = 8) %>%

add_header_above(c('', 'Cohort 1' = 2, 'Cohort 2' =

2, 'Cohort 3' = 2,

'Cohort 4' = 1)) %>%

cat()

# Check using dtpcrm

calculate_dtps(2, cohort_sizes = c(3, 3, 3), dose_func

= applied_crm ,

prior = skeleton , target =

target , no_skip_esc = FALSE)

# matches results form escalation

# DTP flow diagram

calculate_dtps(2, cohort_sizes = c(3, 3, 3), dose_func

= applied_crm ,

prior = skeleton , target = target , no_

skip_esc = FALSE) %>%

dtpflow ()

#

##############################################################################
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# DTPs with stopping rules

model1 <- get_dfcrm(skeleton = skeleton , target =

target) %>%

dont_skip_doses(when_escalating = TRUE) %>%

stop_when_too_toxic(dose = 1, tox_threshold = 0.35,

confidence = 0.9)

paths <- model1 %>%

get_dose_paths(cohort_sizes = c(3,3,3), next_dose =2)

#DTPs

spread_paths(as_tibble(paths)) %>%

select(o0 = 'outcomes0 ', d0 = 'next_dose0 ',

o1 = 'outcomes1 ', d1 = 'next_dose1',

o2 = 'outcomes2 ', d2 = 'next_dose2',

o3 = 'outcomes3 ', d3 = 'next_dose3') %>%

print(n=100)

# Node plot

graph_paths(paths , RColorBrewer_palette = 'Set1') %>%

export_svg() %>%

charToRaw %>%

rsvg_pdf('C:/Users/Amit/Documents/GitHub/PhD/Thesis/

Figures/TITE -DTP -UpdatedExampleDTPNode.pdf')

# Code for the LaTeX table
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spread_paths(as_tibble(paths)) %>%

select(o0 = 'outcomes0 ', d0 = 'next_dose0 ',

o1 = 'outcomes1 ', d1 = 'next_dose1',

o2 = 'outcomes2 ', d2 = 'next_dose2',

o3 = 'outcomes3 ', d3 = 'next_dose3') %>%

print(n=100) %>%

data.frame() %>%

mutate(o0 = 1:55) %>%

replace_na(list(d2 = 'STOP', d3 = 'STOP')) %>%

kable('latex ', booktabs = T, linesep = "", align = "c

",

col.names = c('Pathway ', 'Dose', 'Outcomes ', '

Dose', 'Outcomes ', 'Dose',

'Outcomes ', 'Dose'),

caption = '\\label{tab_tite -dtp:

UpdatedDTPExample}Updated DTPs for the first

 three cohorts of our example CRM with 

additional rules.'

) %>%

kable_styling(latex_options = c("striped", "HOLD_

position", "scale_down"),

position = "center", font_size = 4) %>%

add_header_above(c('', 'Cohort 1' = 2, 'Cohort 2' =

2, 'Cohort 3' = 2,

'Cohort 4' = 1)) %>%

cat()
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# Check using dtpcrm

stop_func <- function(x) {

x = stop_for_excess_toxicity_empiric(x, tox_lim =

0.35, prob_cert = 0.90,

dose = 1, nsamps

= 10000)

}

calculate_dtps(2, cohort_sizes = c(3, 3, 3), dose_func

= applied_crm ,

prior = skeleton , target = target , stop_

func = stop_func ,

global_coherent_esc = FALSE)

# matches results form escalation

# DTP flow diagram

calculate_dtps(2, cohort_sizes = c(3, 3, 3), dose_func

= applied_crm ,

prior = skeleton , target = target , stop_

func = stop_func ,

global_coherent_esc = FALSE) %>%

dtpflow ()

prior <- c(0.05, 0.10, 0.20, 0.35, 0.50, 0.70)

target <- 0.2
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level <- c(2, 2, 2, 3, 3, 3, 4, 4, 4)

y <- c(0, 0, 0, 0, 0, 0, 0, 0, 1)

foo <- crm(skeleton , target , y, level)

summary(foo)

x0 <- c(2,2,2,3,3,3,4,4,4,rep (5,24)) # initial design

foo <- cohere(skeleton ,target ,x0)

foo$message

#

##############################################################################

# DTPs with stopping rules for next 3 cohorts after 2

NNN 3NNTNNT

model2 <- get_dfcrm(skeleton = skeleton , target =

target) %>%

dont_skip_doses(when_escalating = TRUE) %>%

stop_when_too_toxic(dose = 1, tox_threshold = 0.35,

confidence = 0.9)

paths <- model2 %>%

get_dose_paths(cohort_sizes = c(3,3,3),

previous_outcomes = '2NNN 3NNTNNT ')

#DTPs

spread_paths(as_tibble(paths)) %>%
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select(o0 = 'outcomes0 ', d0 = 'next_dose0 ',

o1 = 'outcomes1 ', d1 = 'next_dose1',

o2 = 'outcomes2 ', d2 = 'next_dose2',

o3 = 'outcomes3 ', d3 = 'next_dose3') %>%

print(n=100)

# Node plot

graph_paths(paths , RColorBrewer_palette = 'Set1') %>%

export_svg() %>%

charToRaw %>%

rsvg_pdf('C:/Users/Amit/Documents/GitHub/PhD/Thesis/

Figures/TITE -DTP -UsingDuringTrialDTPNode.pdf')

# Code for the LaTeX table

spread_paths(as_tibble(paths)) %>%

select(o0 = 'outcomes0 ', d0 = 'next_dose0 ',

o1 = 'outcomes1 ', d1 = 'next_dose1',

o2 = 'outcomes2 ', d2 = 'next_dose2',

o3 = 'outcomes3 ', d3 = 'next_dose3') %>%

print(n=100) %>%

data.frame() %>%

mutate(o0 = 1:64) %>%

#replace_na(list(d2 = 'STOP ', d3 = 'STOP ')) %>%

kable('latex ', booktabs = T, linesep = "", align = "c

",

col.names = c('Pathway ', 'Dose', 'Outcomes ', '

Dose', 'Outcomes ', 'Dose',
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'Outcomes ', 'Dose'),

caption = '\\label{tab_tite -dtp:

UsingDuringTrialDTPs4 -7} DTPs for three 

additional cohorts after observing outcomes 

for the first three cohorts.'

) %>%

kable_styling(latex_options = c("striped", "HOLD_

position", "scale_down"),

position = "center", font_size = 4) %>%

add_header_above(c('', 'Cohort 4' = 2, 'Cohort 5' =

2, 'Cohort 6' = 2,

'Cohort 7' = 1)) %>%

cat()

# non uniform cohorts

paths <- model2 %>%

get_dose_paths(cohort_sizes = c(2,1,2),

previous_outcomes = '2NNN 3NNTNNT ')

graph_paths(paths , RColorBrewer_palette = 'Set1') %>%

export_svg() %>%

charToRaw %>%

rsvg_pdf('C:/Users/Amit/Documents/GitHub/PhD/Thesis/

Figures/TITE -DTP -NonUniformDTPNode.pdf')

# Code for the LaTeX table

spread_paths(as_tibble(paths)) %>%
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select(o0 = 'outcomes0 ', d0 = 'next_dose0 ',

o1 = 'outcomes1 ', d1 = 'next_dose1',

o2 = 'outcomes2 ', d2 = 'next_dose2',

o3 = 'outcomes3 ', d3 = 'next_dose3') %>%

print(n=100) %>%

data.frame() %>%

mutate(o0 = 1:36) %>%

#replace_na(list(d2 = 'STOP ', d3 = 'STOP ')) %>%

kable('latex ', booktabs = T, linesep = "", align = "c

",

col.names = c('Pathway ', 'Dose', 'Outcomes ', '

Dose', 'Outcomes ', 'Dose',

'Outcomes ', 'Dose'),

caption = '\\label{tab_tite -dtp:NonUniformDTPs4

-7} DTPs for three additional cohorts with 

varying cohort sizes after observing 

outcomes for the first three cohorts.'

) %>%

kable_styling(latex_options = c("striped", "HOLD_

position", "scale_down"),

position = "center", font_size = 4) %>%

add_header_above(c('', 'Cohort 4' = 2, 'Cohort 5' =

2, 'Cohort 6' = 2,

'Cohort 7' = 1)) %>%

cat()

The code below was used to generate the TITE-DTPs in Chapter 4.

library(dfcrm)
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library(dplyr)

library(tidyr)

library(ggplot2)

library(kableExtra)

library(gtools)

library(rgl)

library(magick)

library(ggrepel)

library(ggpubr)

skeleton <- getprior(target = 0.25, nu =4, nlevel =5,

halfwidth = 0.05)

target <- 0.25

obswin <- 35

#

##############################################################################

# Cohorts of 1

# T

level <- 2

tox <- 1

followup <- 35

mod <- titecrm(prior = skeleton , target = target , tox =

tox , level = level ,

obswin = obswin , scheme = 'linear ',

followup = followup)

mod$mtd
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# N

level <- 2

tox <- 0

followup <- 1: obswin

results <- data.frame('Observed ' = followup , 'Rec' =

rep(0,obswin))

for (i in 1: obswin) {

followup <- i

mod <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,

obswin = obswin , scheme = 'linear ',

followup = followup)

results$Rec[i] <- mod$mtd

}

DTP_c1 <- results %>%

mutate( Dose = 2,

Pathway = Observed + 1,

Outcome = paste0('N','(', Observed , ')'),

Outcome = if_else(Outcome == 'N(35)', 'N',

Outcome)) %>%

select(Pathway , Dose , Outcome , Rec) %>%

add_row(Pathway = 1, Dose = 2, Outcome = 'T', Rec =

1) %>%

arrange(Pathway)
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DTP_c1 %>%

kable('latex ', booktabs = T, linesep = "", align = "c

",

col.names = c('Pathway ', 'Dose', 'Outcomes

', 'Dose'),

caption = '\\label{tab_tite -dtp:TITEDTP_c1

}TITE -DTP for a cohort of 1.') %>%

kable_styling(latex_options = c("striped", "HOLD_

position", "scale_down"),

position = "center", font_size = 5) %>%

add_header_above(c('', 'Cohort 1' = 2, 'Cohort 2' =

1)) %>%

cat()

#

###############################################################################

# Cohorts of 2

## TT

level <- c(2,2)

tox <- c(1,1)

followup <- c(35 ,35)

mod <- titecrm(prior = skeleton , target = target , tox =

tox , level = level ,

obswin = obswin , scheme = 'linear ',

followup = followup)

mod$mtd
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## NT

level <- c(2,2)

tox <- c(1,0)

followupcombo <- cbind(rep(obswin , obswin), 1: obswin)

results <- data.frame('Observed ' = 1:obswin , 'Rec' =

rep(0,obswin))

for (i in 1: obswin) {

followup <- followupcombo[i,]

mod <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,

obswin = obswin , scheme = 'linear ',

followup = followup)

results$Rec[i] <- mod$mtd

}

DTP_c2NT <- results %>%

mutate( Dose = 2,

Pathway = Observed ,

Outcome = paste0('N','(', Observed , ')', 'T')

,

Outcome = if_else(Outcome == 'N(35)T', 'NT',

Outcome)) %>%

select(Pathway , Dose , Outcome , Rec) %>%

arrange(Pathway)

DTP_c2NT %>%
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kable('latex ', booktabs = T, linesep = "", align = "c

",

col.names = c('Pathway ', 'Dose', 'Outcomes ', '

Dose'),

caption = '\\label{tab_tite -dtp:TITEDTP_c2NT}

TITE -DTP for a cohort of 2 for scenario NT.'

) %>%

kable_styling(latex_options = c("striped", "HOLD_

position", "scale_down"),

position = "center", font_size = 5) %>%

add_header_above(c('', 'Cohort 1' = 2, 'Cohort 2' =

1)) %>%

cat()

## NN

level <- c(2,2)

tox <- c(0,0)

combos <- combinations(n = 35, r = 2, repeats.allowed =

T, v = 1:35)

pos <- cbind(rep(0,nrow(combos)))

results <- pos[, rep(1, each=length(tox)+1)]

for (i in 1:nrow(combos)) {

followup <- as.numeric(combos[i,])

weights <- followup / obswin

mod <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,
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obswin = obswin , weights = weights)

for (j in 1:ncol(results)) {

results[,j][i] <- followup[j]

results[,ncol(results)][i] <- mod$mtd

}

}

results <- data.frame(results)

colnames(results) <- c('Patient1 ', 'Patient2 ', 'Rec')

results %>% mutate(TotalFollow = Patient1+Patient2) %>%

group_by(Rec) %>%

summarise(n = n(), min = min(TotalFollow), max = max(

TotalFollow))

results %>% mutate(TotalFollow = Patient1+Patient2) %>%

filter(TotalFollow == 20 | TotalFollow == 21) %>%

select(Patient1 , Patient2 , TotalFollow , Rec) %>%

arrange(desc(TotalFollow)) %>%

kable('latex ', booktabs = T, linesep = "", align = "c

",

col.names = c('Patient 1', 'Patient 2', '

Combined Follow -up', 'Dose Recommendation '),
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caption = '\\label{tab_tite -dtp:TITEDTP_

c2NNprob}Different dose recommendations with

 overlapping combinded follow -up times.')

%>%

kable_styling(latex_options = c("striped", "HOLD_

position"),

position = "center", font_size = 11)

%>%

add_header_above(c('Follow -up' = 2, ' ' = 2)) %>%

cat()

# calculate exact numbe rof pathways for each specific

outcome

results <- results %>%

mutate(TF = Patient1 + Patient2)

results %>%

filter(TF <= 19) %>%

nrow()

results %>%

filter(TF >= 22) %>%

nrow()

results %>%

filter(TF == 20 & Patient2 <= 17) %>%
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nrow()

results %>%

filter(TF == 20 & Patient2 >= 18) %>%

nrow()

results %>%

filter(TF == 21 & Patient2 <= 14) %>%

nrow()

results %>%

filter(TF == 21 & Patient2 >= 15) %>%

nrow()

# To produce a plot need to run on all possible

combinations not just unique

level <- c(2,2)

tox <- c(0,0)

combos <- 1: obswin

combos <- expand.grid(combos , combos)

pos <- cbind(rep(0,nrow(combos)))

results <- pos[, rep(1, each=length(tox)+1)]

for (i in 1:nrow(combos)) {

followup <- as.numeric(combos[i,])

weights <- followup / obswin
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mod <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,

obswin = obswin , weights = weights)

for (j in 1:ncol(results)) {

results[,j][i] <- followup[j]

results[,ncol(results)][i] <- mod$mtd

}

}

results <- data.frame(results)

colnames(results) <- c('Patient1 ', 'Patient2 ', 'Rec')

results %>%

ggplot(aes(x = Patient1 , y = Patient2 , fill = as.

factor(Rec))) +

geom_tile() +

scale_fill_brewer(palette = 'Paired ') +

theme_bw() +

geom_abline(intercept = 19, slope = -1, col = 'red'

,

linetype = 'dashed ') +

geom_abline(intercept = 22, slope = -1, col = 'red'

,

linetype = 'dashed ') +

theme(panel.border = element_blank (), panel.grid.

major = element_blank (),
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panel.grid.minor = element_blank (),

axis.line = element_line(colour = "black")) +

labs(fill = 'Recommended Dose', x = 'Patient 1 

follow -up (Days)',

y = 'Patient 2 follow -up (Days)')+

scale_x_continuous(breaks = seq(0, 60, by = 05),

expand = c(0, 0))+

scale_y_continuous(breaks = seq(0, 60, by = 05),

expand = c(0, 0))

#

###############################################################################

# cohorts of 3

# TTT

level <- c(2,2,2)

tox <- c(1,1,1)

followup <- c(35 ,35 ,35)

mod <- titecrm(prior = skeleton , target = target , tox =

tox , level = level ,

obswin = obswin , scheme = 'linear ',

followup = followup)

mod$mtd

# NTT

level <- c(2,2,2)

tox <- c(1,1,0)
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followupcombo <- cbind(rep(obswin , obswin) ,rep(obswin ,

obswin), 1: obswin)

results <- data.frame('Observed ' = 1:obswin , 'Rec' =

rep(0,obswin))

for (i in 1: obswin) {

followup <- followupcombo[i,]

mod <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,

obswin = obswin , scheme = 'linear ',

followup = followup)

results$Rec[i] <- mod$mtd

}

DTP_c3NTT <- results %>%

mutate( Dose = 2,

Pathway = Observed ,

Outcome = paste0('N','(', Observed , ')', 'TT'

),

Outcome = if_else(Outcome == 'N(35)TT', 'NTT'

, Outcome)) %>%

select(Pathway , Dose , Outcome , Rec) %>%

arrange(Pathway)

DTP_c3NTT %>%

kable('latex ', booktabs = T, linesep = "", align = "c

",
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col.names = c('Pathway ', 'Dose', 'Outcomes ', '

Dose'),

caption = '\\label{tab_tite -dtp:TITEDTP_c3NTT}

TITE -DTP for a cohort of three for scenario 

NTT.') %>%

kable_styling(latex_options = c("striped", "HOLD_

position", "scale_down"),

position = "center", font_size = 5) %>%

add_header_above(c('', 'Cohort 1' = 2, 'Cohort 2' =

1)) %>%

cat()

## NNT

level <- c(2,2,2)

tox <- c(1,0,0)

combos <- combinations(n = 35, r = 2, repeats.allowed =

T, v = 1:35)

combos <- cbind (35, combos)

pos <- cbind(rep(0,nrow(combos)))

results <- pos[, rep(1, each=length(tox)+1)]

for (i in 1:nrow(combos)) {

followup <- as.numeric(combos[i,])

weights <- followup / obswin

mod <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,

obswin = obswin , weights = weights)
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for (j in 1:ncol(results)) {

results[,j][i] <- followup[j]

results[,ncol(results)][i] <- mod$mtd

}

}

results <- data.frame(results)

colnames(results) <- c('Patient1 ', 'Patient2 ', '

Patient3 ', 'Rec')

results %>% mutate(TotalFollow = Patient2+Patient3) %>%

group_by(Rec) %>%

summarise(n = n(), min = min(TotalFollow), max = max(

TotalFollow))

results %>% mutate(TotalFollow = Patient2+Patient3) %>%

View()

# NNN

level <- c(2,2,2)

tox <- c(0,0,0)

combos <- combinations(n = 35, r = 3, repeats.allowed =

T, v = 1:35)

pos <- cbind(rep(0,nrow(combos)))
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results <- pos[, rep(1, each=length(tox)+1)]

for (i in 1:nrow(combos)) {

if(i == 1){

start.time <- Sys.time()

print(start.time)

}

if(i == nrow(combos)){

end.time <- Sys.time()

print(end.time)

}

followup <- as.numeric(combos[i,])

weights <- followup / obswin

mod <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,

obswin = obswin , weights = weights)

for (j in 1:ncol(results)) {

results[,j][i] <- followup[j]

results[,ncol(results)][i] <- mod$mtd

}

}

results <- data.frame(results)

colnames(results) <- c('Patient1 ', 'Patient2 ','Patient3

', 'Rec')
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results %>% group_by(Rec) %>%

summarise(n=n())

results %>% mutate(TotalFollow = Patient1+Patient2+

Patient3) %>%

group_by(Rec) %>%

summarise(n = n(), min = min(TotalFollow), max = max(

TotalFollow))

results %>%

mutate(TotalFollow = Patient1+Patient2+Patient3) %>%

filter(TotalFollow %in% c(24 ,25 ,26)) %>%

group_by(Rec) %>%

summarise(n = n())

#filter(Patient3 == 15)

# Need to run all combinations for the plot

level <- c(2,2,2)

tox <- c(0,0,0)

combos <- 1: obswin

combos <- expand.grid(combos , combos , combos)

pos <- cbind(rep(0,nrow(combos)))

results <- pos[, rep(1, each=length(tox)+1)]

for (i in 1:nrow(combos)) {

if(i == 1){

start.time <- Sys.time()
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print(start.time)

}

if(i == nrow(combos)){

end.time <- Sys.time()

print(end.time)

}

followup <- as.numeric(combos[i,])

weights <- followup / obswin

mod <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,

obswin = obswin , weights = weights)

for (j in 1:ncol(results)) {

results[,j][i] <- followup[j]

results[,ncol(results)][i] <- mod$mtd

}

}

results <- data.frame(results)

colnames(results) <- c('Patient1 ', 'Patient2 ','Patient3

', 'Rec')

plot3d(x = results$Patient1 , y = results$Patient2 , z =

results$Patient3 ,

col = as.factor(results$Rec), xlab = 'Patient 1 

follow -up',

ylab = 'Patient 2 follow -up', zlab = 'Patient 3 

follow -up')
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rgl.postscript("c3NNN", "pdf")

outputFile = sub(".gif$","",outputFile)

movie3d(spin3d(axis=c(0,0,1), rpm=5), duration =12, dir=

getwd(), movie="c3NNN")

#

###############################################################################

# Investigating combinations

# With a combined follow -up of 20 2, 18 leads to 5 but

3, 17 leads to 4

# With a combined follow -up of 21 6, 15 leads to 5 but

7, 14 leads to 4

level <- c(2,2)

tox <- c(0,0)

followup <- c(2, 18)

weights <- followup / obswin

mod1 <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,

obswin = obswin , weights = weights)

followup <- c(3, 17)

weights <- followup / obswin

mod2 <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,

obswin = obswin , weights = weights)
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# Re run analysis but record estimates and variance

level <- c(2,2)

tox <- c(0,0)

combos <- combinations(n = 35, r = 2, repeats.allowed =

T, v = 1:35)

pos <- cbind(rep(0,nrow(combos)))

results <- pos[, rep(1, each=length(tox)+3)]

for (i in 1:nrow(combos)) {

followup <- as.numeric(combos[i,])

weights <- followup / obswin

mod <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,

obswin = obswin , weights = weights)

for (j in 1:ncol(results)) {

results[,j][i] <- followup[j]

results [,3][i] <- mod$mtd

results [,4][i] <- mod$estimate

results [,5][i] <- mod$post.var

}

}

# Rename data frame

results <- data.frame(results)
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colnames(results) <- c('Patient1 ', 'Patient2 ', 'Rec', '

Est', 'Var')

# Check matches previous results

results %>% mutate(TotalFollow = Patient1+Patient2) %>%

group_by(Rec) %>%

summarise(n = n(), min = min(TotalFollow), max = max(

TotalFollow))

# Create table with beta estimate and variance included

results %>% mutate(TotalFollow = Patient1+Patient2 ,

Est = Est %>% round (4),

Var = Var %>% round (4)) %>%

filter(TotalFollow == 20 | TotalFollow == 21) %>%

select(Patient1 , Patient2 , TotalFollow , Rec , Est , Var

) %>%

arrange(desc(TotalFollow)) %>%

kable('latex ', booktabs = T, linesep = "", align = "c

",

col.names = c('Patient 1', 'Patient 2', '

Combined ', 'Dose Recommendation ',

'Beta', 'Variance '),

caption = '\\label{tab_tite -dtp:TITEDTP_

c2NNprob}Different dose recommendations with

 overlapping combined follow -up times.') %>%

kable_styling(latex_options = c("striped", "HOLD_

position"),
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position = "center", font_size = 11)

%>%

add_header_above(c('Follow -up' = 3, ' ' = 1, '

Posterior Estimates ' = 2)) %>%

cat()

# Overall plot

results %>% mutate(TotalFollow = Patient1+Patient2) %>%

ggplot(aes(x = TotalFollow , y = Est , col = factor(Rec

))) +

geom_point() +

geom_hline(yintercept = 0.149 , col = "red", linetype

= "longdash") +

labs(x = "Combined Total Follow -up", y = expression(

Posterior ~ Estimate ~ beta),

col = "Recommended Dose")+

scale_color_manual(values = c("#994 d1a","#1 a6699"))+

scale_x_continuous(breaks = seq(0, 70, 5))+

theme_bw()+

theme(legend.position = "bottom")

# Plot for 20 & 21 days

results %>% mutate(TotalFollow = Patient1+Patient2) %>%

filter(TotalFollow == 20 | TotalFollow == 21) %>%

ggplot(aes(x = factor(TotalFollow), y = Est , col =

factor(Rec))) +

geom_point() +
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geom_hline(yintercept = 0.149 , col = "red", linetype

= "longdash") +

geom_text_repel(mapping = aes(label = paste0("(",

Patient1 , ", ", Patient2 , ")")),

show.legend = FALSE)+

labs(x = "Combined Total Follow -up", y = expression(

Posterior ~ Estimate ~ beta),

col = "Recommended Dose")+

scale_color_manual(values = c("#994 d1a","#1 a6699"))+

theme_bw()+

theme(legend.position = "bottom")

skeleton

beta <- seq(0,1, 0.0001)

df <- data.frame(beta , rec = rep(NA , times = length(

beta)))

for (i in 1: length(beta)) {

ptox <- skeleton^exp(beta[i])

if (all(ptox <= target)) {

df$rec[i] <- length(skeleton)

}

else if (all(ptox >= target)) {

df$rec[i] <- 1

}

else {

df$rec[i] <- order(abs(ptox - target))[1]
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}

}

df %>% group_by(rec) %>%

summarise(min = min(beta) %>% round (4),

max = max(beta) %>% round (4))

# 0.1492 -> 4, 0.1493 ->5

####################################

# For 3 patients

####################################

level <- c(2,2,2)

tox <- c(0,0,0)

combos <- combinations(n = 35, r = 3, repeats.allowed =

T, v = 1:35)

pos <- cbind(rep(0,nrow(combos)))

results <- pos[, rep(1, each=length(tox)+3)]

for (i in 1:nrow(combos)) {

if(i == 1){

start.time <- Sys.time()

print(start.time)

}

if(i == nrow(combos)){

end.time <- Sys.time()

print(end.time)
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}

followup <- as.numeric(combos[i,])

weights <- followup / obswin

mod <- titecrm(prior = skeleton , target = target , tox

= tox , level = level ,

obswin = obswin , weights = weights)

for (j in 1:ncol(results)) {

results[,j][i] <- followup[j]

results [,4][i] <- mod$mtd

results [,5][i] <- mod$estimate

results [,6][i] <- mod$post.var

}

}

results <- data.frame(results)

colnames(results) <- c('Patient1 ', 'Patient2 ','Patient3

', 'Rec', 'Est', 'Var')

results %>% group_by(Rec) %>%

summarise(n=n())

results %>% mutate(TotalFollow = Patient1+Patient2+

Patient3) %>%

group_by(Rec) %>%
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summarise(n = n(), min = min(TotalFollow), max = max(

TotalFollow))

results %>%

mutate(TotalFollow = Patient1+Patient2+Patient3) %>%

filter(TotalFollow %in% c(20 ,21)) %>%

group_by(Rec) %>%

summarise(n = n())

results %>%

mutate(TotalFollow = Patient1+Patient2+Patient3) %>%

filter(TotalFollow %in% c(20 ,21)) %>%

arrange(Est)

# Create table with beta estimate and variance included

for 9 pathways

results %>% mutate(TotalFollow = Patient1+Patient2+

Patient3 ,

Est = Est %>% round (4),

Var = Var %>% round (4)) %>%

filter(TotalFollow %in% c(20 ,21) & Rec == 5) %>%

select(Patient1 , Patient2 , Patient3 , TotalFollow , Rec

, Est , Var) %>%

arrange(desc(TotalFollow)) %>%

kable('latex ', booktabs = T, linesep = "", align = "c

",
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col.names = c('Patient 1', 'Patient 2', '

Patient 3', 'Combined ', 'Dose Recommendation

',

'Beta', 'Variance '),

caption = '\\label{tab_tite -dtp:TITEDTP_

c3NNNprob}Follow -up combinations totalling 

20 or 21 days leading to dose -level 5.') %>%

kable_styling(latex_options = c("striped", "HOLD_

position", "scale_down"),

position = "center", font_size = 11)

%>%

add_header_above(c('Follow -up' = 4, ' ' = 1, '

Posterior Estimates ' = 2)) %>%

cat()

# Overall plot

results %>% mutate(TotalFollow = Patient1+Patient2+

Patient3) %>%

ggplot(aes(x = TotalFollow , y = Est , col = factor(Rec

))) +

geom_point(size = 0.5) +

geom_hline(yintercept = 0.1492 , col = "red", linetype

= "longdash") +

labs(x = "Combined Total Follow -up", y = expression(

Posterior ~ Estimate ~ beta),

col = "Recommended Dose")+

scale_color_manual(values = c("#994 d1a","#1 a6699"))+
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scale_x_continuous(breaks = seq(0, 105, 5))+

theme_bw()+

theme(legend.position = "bottom")

# Plot for 20 & 21 days

results %>% mutate(TotalFollow = Patient1+Patient2+

Patient3) %>%

filter(TotalFollow == 20 | TotalFollow == 21) %>%

ggplot(aes(x = factor(TotalFollow), y = Est , col =

factor(Rec))) +

geom_point() +

geom_hline(yintercept = 0.1492 , col = "red", linetype

= "longdash") +

geom_text_repel(mapping = aes(label = paste0("(",

Patient1 , ", ",

Patient2

, ", 

",

Patient3

, ")"

)),

show.legend = FALSE , max.overlaps =

Inf)+

labs(x = "Combined Total Follow -up", y = expression(

Posterior ~ Estimate ~ beta),

col = "Recommended Dose")+

scale_color_manual(values = c("#994 d1a","#1 a6699"))+



B.3. TITE-DTP chapter code 383

theme_bw()+

theme(legend.position = "bottom")

# Calculate DTP

results <- results %>%

mutate(TF = Patient1 + Patient2+ Patient3)

results %>%

filter(TF <= 19) %>%

nrow()

results %>%

filter(TF >= 22) %>%

nrow()

results %>%

filter(TF == 20 & Patient3 <= 17)

results %>%

filter(TF == 20 & Patient3 >= 18)

results %>%

filter(TF == 21 & (( Patient3 <= 15 & Patient2 <=3) |

Patient3 <= 14))

results %>%
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filter(TF == 21 & (( Patient3 >= 15 & Patient2 >=4) |

Patient3 >= 16))

B.4 ETP chapter code

The code below was used to run the simulations shown in Chapter 5.

# Operating Characteristics - Beta -Binomial Posterior

-------------------------------------------------

# prob_true = underlying true probabilty of response

# npat = number of patients

# prior_par = vector of parameters for beta(a,b) prior

distribution

# crit_rate = required repsonse rate to be greater than

e.g. 0.1

# accept_prob = probability required to be greater than

the required response rate with e.g. 0.8

# nsims = number of simulations

PPOS <- function(n2, apost , bpost , obj.resp.rate ,

accept.prob){

# If remaining number of patients is 0 don 't need to

calculate PPoS

if(n2 == 0){

PPOS = NA
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}

else{

Pr2 <- sapply (0:n2,

function(i) (gamma(apost+bpost)*gamma

(n2+1)*gamma(i+apost)*

gamma(n2-i+bpost)) /

(gamma(apost)*gamma(bpost)*gamma(i

+1)*gamma(n2-i+1)*

gamma(n2+apost+bpost)) )

B <- sapply (0:n2, function(i) 1-pbeta(obj.resp.rate

, apost+i, bpost+n2-i))

temp <- cbind(Pr2 , B) %>%

data.frame() %>%

mutate(GO = if_else(B > accept.prob , 1, 0),

PPP = Pr2*GO)

PPOS = sum(temp$PPP)

}

return(PPOS)

}

oc_betabinom <- function(prob_true , npat , prior_par = c

(0.5 ,0.5), crit_rate , accept_prob = 0.8, nsims , nint

) {

prob <- c(rep(0, nsims))
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ppc <- npat/(nint +1)

cohorts <- npat/ppc

a0 <- prior_par[1]

b0 <- prior_par[2]

for(i in 1:nsims) {

data <- replicate(npat , rbinom(1,1,prob_true))

post_prob <- pbeta(crit_rate , shape1 = (prior_par

[1] + sum(data)),

shape2 = (prior_par[2] + npat -

sum(data)),

lower.tail = FALSE)

ifelse(post_prob >= accept_prob , prob[i] <- 1, prob

[i] <- 0)

for(j in 1:nint) {

n <- ppc*j

r <- data [1:n]

ppos <- PPOS(n2 = npat -n, apost = a0 + sum(r),

bpost = b0 + n - sum(r),

obj.resp.rate = crit_rate ,

accept.prob = accept_prob)

if(ppos < 0.05){

prob[i] <- 0
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break

}

}

}

Acceptance_Rate <- (sum(prob) / (nsims)) * 100

return(Acceptance_Rate)

}

The function below was created to produce ETPs.

## Required packages: ----

library(ggplot2)

library(tidyverse)

## Parameters: ----

# cohort.size - number of patients in each cohort

(cohort size)

# cohorts - number of cohorts

# obj.resp.rate - target objective response rate

(0-1)

# accept.prob - acceptably probability level to

make a go/no go decision

# at final analysis (0-1)

# ppos.accept.prob - acceptably probability level for

PPoS go/no go decision at

# interim (0-1)
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# prior - vector of parameters for beta(a,b)

prior distribution ,

# default is a beta (1,1) which is

entered as c(1,1)

# cred.int.side - specify either a "two.sided" or "

one.sided " credible

# interval

# cred.int.level - specify credible interval level e.

g. 95% (0.95)

# align - specify the alignment of the plot

options are either "left"

# or "centre",

# size - changes size of the text on the

plot default is 5

# legend.off - turn off the legend on the plot

default is on == FALSE

# output.data - function will return key data

along with the plot , default

# is off == FALSE

# verbose.data - returns data with additional

columns with x,y coordinates for

# plotting , default is off == FALSE

# Function: ----

etp <- function(cohort.size ,

cohorts ,

obj.resp.rate ,
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accept.prob ,

ppos.accept.prob ,

prior = c(1,1),

cred.int.side = c("two.sided", "one.

sided"),

cred.int.level = 0.95,

align = c("centre", "left"),

size = 5,

legend.off = FALSE ,

output.data = FALSE ,

verbose.data = FALSE){

# Calculate total sample size

N <- cohort.size*cohorts

# Extract prior parameters

a0 <- prior [1]

b0 <- prior [2]

# Function to calculate PPoS

PPOS <- function(n2, apost , bpost , obj.resp.rate ,

accept.prob){

# If remaining number of patients is 0 don 't need

to calculate PPoS

if(n2 == 0){

PPOS = NA

}

else{
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Pr2 <- sapply (0:n2,

function(i) (gamma(apost+bpost)*

gamma(n2+1)*gamma(i+apost)*

gamma(n2-i+bpost)) /

(gamma(apost)*gamma(bpost)*gamma(

i+1)*gamma(n2 -i+1)*

gamma(n2+apost+bpost)) )

B <- sapply (0:n2, function(i) 1-pbeta(obj.resp.

rate , apost+i, bpost+n2 -i))

temp <- cbind(Pr2 , B) %>%

data.frame() %>%

mutate(GO = if_else(B > accept.prob , 1, 0),

PPP = Pr2*GO)

PPOS = sum(temp$PPP)

}

return(PPOS)

}

# Generate data frame with all the data required for

the etp plot

df <- data.frame(

# produces a vector of responses for each

cumulative cohort

r = rep (0:( cohort.size*cohorts), rev(c(rep(1:

cohorts , each = cohort.size),
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cohorts))))

%>%

group_by(r) %>%

mutate(

# produces y co-ords for plot

y = cohorts -row_number (),

# generic weighting for size of each rectangle on

the plot

w = rep(1, length(r)),

# Establish the specific cohort each row belongs

to

Cohort = 1+y,

# Different fonts for the plot

bolditalic = rep('bold.italic ', length(r)),

bold = rep('bold', length(r)),

italic = rep('italic ', length(r)),

# For each cohort n1 = how may patients with data

, n2 = how many left to recruit

n1 = Cohort * cohort.size ,

n2 = N - n1 ,

# At interim parameters for probability

calculations

apost = a0 + r,

bpost = b0 + n1 - r,

# Labels to identify what probability needs

calculating and analysis stage
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Prob_label = if_else(Cohort == cohorts , 'PP', '

PPOS'),

Analysis = if_else(Cohort == cohorts , 'Final', '

Interim '),

# Calculates estimates

Estimate = signif(qbeta(p = 0.5, shape1 = apost ,

shape2 = bpost)*100, 2),

# Calculate two -sided credible interval

LB = signif(qbeta(p = 0 + (1-cred.int.level)/2,

shape1 = apost ,

shape2 = bpost)*100, 2) ,

UB = signif(qbeta(p = 1 - (1-cred.int.level)/2,

shape1 = apost ,

shape2 = bpost)*100, 2) ,

# Calculate one -sided credible interval

OSB = signif(qbeta(p = 1-cred.int.level , shape1 =

apost , shape2 = bpost)*100,

2)

)%>%

# Ungroup and do probability calcs for each row

ungroup () %>%

rowwise () %>%

mutate(

# Calculate PPoS

Prob = PPOS(n2 = n2, apost = apost , bpost = bpost

, obj.resp.rate ,

accept.prob),
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# If NA means that its the final cohort so need

posterior prob

Prob = if_else(is.na(Prob),

round(pbeta(q = obj.resp.rate ,

shape1 = apost ,

shape2 = bpost , lower.

tail = F), 7),

Prob),

Prob = round(Prob ,3),

# Determine what the decision outcome would be

Decision = case_when(Cohort == cohorts & Prob >=

accept.prob ~ 'GO',

Cohort == cohorts & Prob <

accept.prob ~ 'No GO',

Cohort != cohorts & Prob >=

ppos.accept.prob ~ 'GO',

Cohort != cohorts & Prob <

ppos.accept.prob ~ 'No GO

'),

DecRules = factor(paste(Decision , Analysis , sep =

" "),

levels = c("GO Final", "No GO 

Final", "GO Interim",

"No GO Interim"))

)

# Produce x coords based on alignment
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if (align == "centre") {

df <- df %>%

mutate(x = ifelse(y < cohorts , r+(cohorts -y)*(

cohort.size/2), r),

xmin = x - w/2,

xmax = x + w/2)

}

if (align == "left"){

df <- df %>%

mutate(x = r +0.5,

xmin = r + w - 1,

xmax = r + w )

}

# Code to generate plot

plot <-

ggplot(df, aes(xmin = xmin , xmax = xmax , ymin = y,

ymax = y + 1)) +

# plot rectangles for each response in each cohort

geom_rect(aes( colour = DecRules , lty = DecRules),

fill= "white",

size = 1) +

# reverse the y axis

scale_y_reverse ()+

scale_color_manual("Decision Rules",
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values = c("dark green", "red",

"dark green", "red"),

labels = c(bquote(P(theta >= .(

obj.resp.rate*100) ~ '%') >=

.( accept.

prob) :

Go),

bquote(P(theta >= .(

obj.resp.rate*100)

~ '%') <

.( accept.

prob) ~ '

:No Go'),

bquote(PPoS >= .(ppos.

accept.prob) ~ ':

Go'),

bquote(PPoS < .(ppos.

accept.prob) ~ ':

No Go')),

drop = FALSE)+

scale_linetype_manual("Decision Rules",

values = c(1,1,2,2),

labels = c(bquote(P(theta >=

.(obj.resp.rate*100) ~ '%'

) >=
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.( accept.

prob)

:Go),

bquote(P(theta >=

.(obj.resp.rate

*100) ~ '%') <

.( accept.

prob)

~ ':No

 Go'),

bquote(PPoS >= .(

ppos.accept.

prob) ~ ':Go'),

bquote(PPoS < .(

ppos.accept.

prob) ~ ':No Go

')),

drop = FALSE)+

theme(axis.line=element_blank(),axis.text.x=element

_blank (),

axis.text.y=element_blank(),axis.ticks=

element_blank(),

axis.title.x=element_blank (),

axis.title.y=element_blank (),

panel.background=element_blank(),

panel.border=element_blank(),
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panel.grid.major=element_blank(),

panel.grid.minor=element_blank(),

plot.background=element_blank(),

legend.spacing = unit (0.00, 'cm'))

if(cred.int.side == "one.sided"){

plot <- plot +

geom_text(aes(label=r, x = x , y = y+0.2,

fontface = bolditalic),

size = size , colour = '#313639 ')+

geom_text(data = df %>% filter(Prob_label == '

PPOS'),

aes(label=Prob , x = x, y = y +0.4,

fontface = bold),

colour = 'blue', size = size)+

geom_text(data = df %>% filter(Prob_label == '

PP'),

aes(label=Prob , x = x, y = y +0.4,

fontface = bold),

colour = 'black ', size = size)+

geom_text(aes(label=paste0(Estimate , '%'), x =

x, y = y +0.6) ,

size = size) +
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geom_text(aes(label = paste0('(', OSB ,'%', ')')

, x = x, y = y + 0.8 ,

fontface = italic), size = size)

data <- df %>%

mutate(CrI = paste('(', OSB ,'%', ')', sep = '')

)

}

if(cred.int.side == "two.sided"){

plot <- plot +

geom_text(aes(label=r, x = x , y = y+0.1,

fontface = bolditalic),

size = size , colour = '#313639 ')+

geom_text(data = df %>% filter(Prob_label == '

PPOS'),

aes(label=Prob , x = x, y = y +0.3,

fontface = bold),

colour = 'blue', size = size)+

geom_text(data = df %>% filter(Prob_label == 'PP'

),

aes(label=Prob , x = x, y = y +0.3,

fontface = bold),

colour = 'black', size = size)+
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geom_text(aes(label=paste0(Estimate , '%'), x = x,

y = y +0.5),

size = size) +

geom_text(aes(label = paste0('(', LB,'%'), x = x,

y = y + 0.7 ,

fontface = italic), size = size) +

geom_text(aes(label = paste0(UB,'%',')'), x = x,

y = y + 0.9,

fontface = italic), size = size)

data <- df %>%

mutate(CrI = paste('(',LB ,'%', ' - ', UB, '%', ')

' , sep = ''))

}

if (isTRUE(legend.off)) {

plot <- plot +

theme(legend.position="none")

}

if(isTRUE(verbose.data)){

data <- data %>%

select(Cohort , n = n1 , r, Analysis , Prob ,

Estimate , CrI , Decision ,

x, xmin , xmax , y, apost , bpost , LB , UB ,

OSB) %>%

arrange(Cohort , r)
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}

else{

data <- data %>%

select(Cohort , n = n1 , r, Analysis , Prob ,

Estimate , CrI , Decision) %>%

arrange(Cohort , r)

}

if(isTRUE(output.data)){

return(list(ETP = plot , Data = data))

}

else{

plot

}

}
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