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Abstract

This thesis comprises of three projects from topological combinatorics and structural

graph theory. Firstly, we extend Heawood’s theorem on the colourability of plane trian-

gulations to triangulations of 3-space by proving that a triangulation of 3-space can be

edge coloured with three colours if and only if all edges have even degree. Next, we pro-

pose an open question that seeks to generalise the Four Colour Theorem from two to three

dimensions and show that 12 instead of four colours are both sufficient and necessary to

colour every 2-complex that embeds in a prescribed 3-manifold. However, our example of

a 2-complex that requires 12 colours is not simplicial. We give bounds on this colouring

number for simplicial 2-complexes. Lastly, we look at graphs that are not 1-tough and

consider the set of minimal seperators of these graphs that ”witness” the non-toughness

of the graph.
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CHAPTER 1

INTRODUCTION

A major subject area in structural graph theory is graph minor theory, which sits in the

intersection between combinatorics and topology.

A graph is defined as a pair G = (V,E) where V is the set of vertices of G and E is

a set of pairs of V called edges of G. A graph H is a minor of the graph G if it can be

obtained by deleting and contracting edges of G.

One important avenue within graph minor theory has been characterising the em-

beddability of graphs in 2D surfaces using the minor relation. In 2004, Robertson and

Seymour proved a profound theorem which states that the list of excluded minors for

any minor-closed class of graphs is finite [26]. The proof of this theorem includes the

Graph Minor Structure Theorem which establishes a fundamental connection between

graph minors and topological embeddings of graphs. A well-known example of such an

excluded minor characterisation is the result that was first proved by Kuratowski in 1930

[23]: a graph is planar if and only if it does not have K5 or K3,3 as a minor. In 2017,

Carmesin obtained a 3-dimensional analogue of Kuratowski’s thereom [4, 5, 6, 7, 8] by

characterising the 2-complexes that are embeddable in S3 in terms of forbidden minors.

This thesis considers problems which further explores ideas from graph minor theory in

both two and three dimensions. Chapter 2 provides foundational background for the topics

explored in the thesis. In Chapter 3, a 3-dimensional analogue of Heawood’s theorem

concerning the 3-colorability of plane triangulations is proved. Chapter 4 initiates the
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exploration of a 3-dimensional analogue of the four colour theorem. In Chapter 5, we will

look at the separators of graphs that are not 1-tough.

Viewing graphs from a topological perspective we can replace the vertices with points

and the edges with copies of the unit interval with 0 and 1 identified with the points

corresponding to two endvertices of the original edge. These topological spaces are called

1-complexes. Extending this to 3-dimensions, we get 2-complexes, which are 1-complexes

together with a set of faces. A 2-complex that embeds in S3 must have planar link graphs1

at every vertex, so we can use what we know about planar graphs to help prove more

global statements about 2-complexes.

Carmesin’s 2017 paper series created the foundations for Chapter 3 and Chapter 4

where we look into extending colouring theorems to 2-complexes.

A (vertex-)colouring of a graph G is a labelling of the vertices of G such that two

adjacent vertices get different colours. We say G is k-colourable if it can be coloured in

this way using k colours.

A (edge-)colouring of a 2-complex C is a labelling of the edges of C such that two

edges that are adjacent in a face of C get different colours. Note that if two edges are

adjacent in a face of C, they correspond to two adjacent vertices in the link graph at their

shared endvertex, so an edge-colouring of C induces vertex-colourings of each link graph.

In 1898, Heawood proved that a plane triangulation is 3-colourable if and only if all of

the vertices have even degree [22]. In Chapter 3 we extend Heawood’s theorem by showing

that 3-colourings of the link graphs of a 2-complex C can be simultaneously extended to

a global edge colouring of C, as follows:

Theorem 1.1. A triangulation of 3-space2 can be edge-coloured with three colours if and

only if all edges have even degree.

Chapter 3 is based on a paper [13] that is joint work with Johannes Carmesin and

1The link graph at a vertex v of a 2-complex C is the graph L(v) on the edges incident with v in C,
there is an edge between two vertices in L(v) if they share a face at v in C.

2Here, a triangulation of 3-space would be a 2-dimensional simplicial complex where all of the chambers
are tetrahedrons.
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Bethany Saunders.

The four colour theorem is a famous problem in graph theory that can be traced back

to the 1850’s [3]. The graph theoretic version of the theorem states that every planar

graph is 4-colourable. The following question seeks to generalise the four colour theorem

to three dimensions.

Open Question 1.2. Let M be a 3-manifold. What is the least integer k such that every

2-dimensional simplicial complex that embeds in M is k-colourable?

In Chapter 4 we give bounds for this question by proving that every 2-dimensional

simplicial complex is 12-colourable and giving an example of one which requires 5 colours.

We then show that the answer is ‘k = 12’ when simplicial is dropped from the question.

The second part of Chapter 4 is based on a note [24] that is joint work with Jan

Kurkofka.

A graph G is t-tough if G\S has at most |S|
t
connected components, for every separator

S of G. In 1973, Chvátal observed that all Hamiltonian graphs are 1-tough [14], the

converse of this statement was disproved in 2000 by Bauer, Broersma and Veldman [2].

Although not all 1-tough graphs are Hamiltonian, studying the class of graphs that are

not 1-tough could assist in understanding the properties of Hamiltonian graphs.

By definition, graphs that are not 1-tough must have a separator whose removal leads

to more connected components than there were vertices in the separator. Such a separator

that witnesses the non-toughness of a graph is called feeble.

In Chapter 5 we look at non-tough graphs and prove that if a non-tough graph has

crossed feeble separators, then these are not minimal feeble separators. More formally:

Lemma 1.3. Let G be a non-tough graph with two crossing feeble separators S1, S2 such

that |S1| = |S2| = s and S1 ∩ S2 = ∅. Then G has a feeble separator S ′ with |S ′| < s.
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CHAPTER 2

BACKGROUND

This chapter is based on Diestel’s book on graph theory [15], Hatcher’s book on algebraic

topology [20], Oxley’s book on matroid theory [25], and Carmesin’s paper series on the

3-dimensional Kuratowksi embeddings [4, 5, 6, 7, 8].

2.1 Graph theory

A graph is a pair G = (V,E) where V is the set of vertices of G and E is a multiset of

2-subsets of V called edges of G. If G is not clear from context, we write V (G) and E(G).

Figure 2.1: The Petersen graph is an example of a 3-regular simple graph with 10 vertices
and 15 edges. The vertex v1 has neighbours v2, v5, and v6, and is incident with the edges
v1v2, v1v5, and v1v6.

For e = xy ∈ E, we call x and y the endvertices of the edge e, and these vertices are
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incident with the edge e. The number of edges incident with a vertex v is the degree of

v, denoted by d(v). If all vertices have the same degree k, we say G is (k-)regular. The

number d(G) is the average degree of G. Two vertices x and y are adjacent or neighbours

if xy ∈ E, we denote by N(x) the set of neighbours, or neighbourhood, of the vertex x.

Two edges with a common endvertex are adjacent.

If two edges have the same endvertices then we say they are parallel edges. An edge

with only one endvertex is a loop. We call G simple if it contains no parallel edges or

loops, and a multigraph otherwise.

Figure 2.2: This is an example of a multigraph. The edge v5v5 is a loop. There are two
sets of parallel edges; between v4 and v6, and between v2 and v3.

Two graphs G and G′ are said to be isomorphic if there exists a bijection φ : V (G) →

V (G′) such that xy ∈ E(G) ⇔ φ(x)φ(y) ∈ E(G′) for all x, y ∈ V (G).

Figure 2.3: Two isomorphic graphs. The bijection between them is as follows: φ(v1) = v′1,
φ(v2) = v′3, φ(v3) = v′5, φ(v4) = v′2, φ(v5) = v′4.
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A graph H is a subgraph of G if V (H) ⊆ V (G) and E(H) ⊆ E(G). For a vertex subset

X ⊆ V , if G′ is the graph that has vertex set X and contains all of the edges xy ∈ E such

that x, y ∈ X, then G′ is an induced subgraph of G, denoted G[X]. We denote by G\X

the subgraph G[V \X], and write G\v if X = {v}.

(a) G (b) G1 (c) G2

Figure 2.4: The graph G has G1 and G2 as subgraphs. G2 is an induced subgraph, but
G1 is not.

Given an edge-subset Y of G, the edge induced subgraph G[Y ] is the subgraph of G

whose edge set is Y and vertex set is the set of all endvertices of edges in Y . Denote by

G− Y the subgraph G[E\Y ], and write G− e if Y = {e}.

A subgraph H of G is spanning if V (H) = V (G).

A walk in G is an alternating sequence of vertices and edges v0e0 . . . en−1vn such that

the vertices vi and vi+1 are incident with the edge ei for all i < n. If v0 = vn the walk

is closed. If G is simple, the walk can be defined just by its vertices. A path is a walk

with no repeating vertices. A cycle is a closed walk with no repeating vertices aside from

v0 = vn.
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(a) G (b) P (c) C

Figure 2.5: A path P = v1v5v6v7v3v4 and a cycle C = v1v2v3v4v5v1 in the graph G.

We say G is connected if there is a path between any two of its vertices, and dis-

connected otherwise. The maximal connected subgraphs of a disconnected graph G are

called the (connected) components of G. We call G k-connected if |V (G)| > k and G\X

is connected for every X ⊆ V with |X| < k.

We say G is a tree if it is connected and contains no cycles. G is a forest if it is the

disjoint union of trees.

Figure 2.6: An example of a graph with three connected components.

We say that a set S ⊆ V separates two vertices a and b if every path from a to b in

G contains a vertex from S. A vertex v that separates two other vertices in the same

component of G is called a cutvertex.
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Figure 2.7: The vertex v2 is a cutvertex.

Let A, B and S be vertex subsets of a connected graph G such that A ∪ B = V and

S = A ∩ B. We say S separates A and B if every A − B path in G contains a vertex

from S. We call S, with |S| = k, a k-separator if G\S is disconnected. The pair {A,B}

is called a separation of G; we refer to the sets A and B as the sides of the separation. If

both A\B and B\A are non-empty, then the separation is proper.

Definition 2.1. We call G t-tough if for every separator S the graph G\S has at most

|S|
t
connected components.

Example 2.2. The graph S6 as in Figure 2.8 is not 1-tough. In fact, there are no 1-tough

graphs with a cutvertex.

Figure 2.8: The star S6 is not t-tough for any t.
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Definition 2.3. Let S1 and S2 be two separators in G such that S1 ̸= S2. We say they

cross if Si separates two vertices of S2−i for each i ∈ Z2. Otherwise, they are nested if

S1 ∩ S2 = ∅ and Si is entirely contained in one of the sides of S for each i ∈ Z2.

A set of separators of G is totally nested if all of its elements are pairwise nested.

Figure 2.9: The two 2-separators of C4 are crossed.

Figure 2.10: A graph with a set of totally nested 2-separators.

A tree-decomposition of G is a pair (T,V) consisting of a tree T and a family V =

(Vt)t∈V (T ) of vertex sets Vt ⊆ V (G) such that G =
⋃

t∈V (T ) G[Vt] and the vertex set

{t ∈ V (T ) : v ∈ Vt} is connected in T for all v ∈ V (G).

The edge t1t2 of T induces the separation (X1, X2) of G for Xi =
⋃

t∈V (Ti)
Vt, where

Ti is the component of T − t1t2 that contains ti.

Theorem 2.4 (Carmesin, Diestel, Hundertmark, and Stein [11]). Every totally nested set
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N of proper separations of G defines a tree-decomposition of G, whose edges then induce

the separations in N .

An edge cut of a connected G is a subset Y of edges of G such that G− Y is discon-

nected. A bond is a minimal edge cut.

A directed graph (or digraph) D is one whose edges all have a direction. In a directed

graph the edges xy and yx are not equal as they have opposite directions. When D is

constructed by assigning directions to every edge of an undirected graph G, we call D

an orientation of G. A flow on D is an assignment of real numbers to the edges of D

f : E → R such that f(xy) = −f(yx) and
∑

y∈N(x) f(xy) = 0 for all x ∈ V (G), apart from

some sink and source vertices where the flow leaves and enters the network, respectively.

Figure 2.11: A directed graph with a flow. The vertex s is a source vertex, and t is a sink
vertex.

The complete graph on n vertices, denoted Kn, is the graph where all vertices are

pairwise adjacent. A simple graph G is called bipartite if V can be partitioned into

two disjoint sets such that every edge has an endvertex from each vertex subset. The

bipartite graphs that have every possible edge are called the complete bipartite graphs

and are denoted Kn,m for where n and m are the sizes of the two vertex subsets.

A graph G is embedded on a surface S if G is represented in S such that the vertices

are distinct points in S and the edges of G are non-overlapping arcs between the points

associated with its endvertices. A plane graph is a graph embedded in the plane, R2. We

call G planar if it is isomorphic to a plane graph, which is called a planar embedding or
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drawing of G. The regions of R2\G are called the faces of G.

(a) G (b) H

Figure 2.12: Two representations of the complete graph K4. G is a plane graph and is a
planar embedding of K4. H is isomorphic to G.

Theorem 2.5 (Euler’s Formula). Let G be a connected plane graph with v vertices, e

edges and f faces, then v − e+ f = 2.

For e = xy ∈ E, we subdivide this edge by replacing e with a path between x and y

where every other vertex on this path has degree 2. A subdivision of G is a graph that

con be obtained by subdividing edges of G.

Theorem 2.6 (Kuratowski [23]). A graph is planar if and only if it does not contain a

subdivision of K3,3 or K5 as a subgraph.

(a) K5 (b) K3,3

Figure 2.13: The graphs K5 and K3,3 as in Theorem 2.6
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For e = xy ∈ E, we contract this edge by removing e and identifying the endvertices

x and y into one vertex ve that is adjacent to the neighbours of x and y. We denote by

G/e the graph obtained by contracting the edge e.

Figure 2.14: Contracting the edge e.

A graph H is a minor of G if we can obtain H from G by contracting edges, deleting

edges, and deleting isolated vertices.

We can restate Theorem 2.6 in terms of minors:

Theorem 2.7 (Wagner [27]). A graph is planar if and only if it does not contain K3,3 or

K5 as a minor.

For v ∈ V of degree 2, we suppress this vertex by removing v and adding an edge

between its two neighbours. A graph H is a topological minor of G if some subdivision

of H is a subgraph of G, or equivalently, if we can obtain H from G by deleting edges,

deleting isolated vertices and suppressing vertices of degree 2.

Figure 2.15: Suppressing the vertex v is the reverse of subdividing the edge e.
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A relation ⩽ on X is called a well-quasi-ordering if it is reflexive and transitive, plus

every infinite sequence x0, x1, . . . in X contains a pair xi ⩽ xj with i < j.

Theorem 2.8 (Robertson and Seymour [26]). The finite graphs are well-quasi-ordered by

the minor relation ⪯.

Corollary 2.9. For any minor-closed1 set of graphs X, the set of minor-minimal graphs

not in X is finite.

Example 2.10. The minor-minimal non-planar graphs are exactly K5 and K3,3. In fact,

for every surface S a graph being embeddable in S is minor-closed and so embeddability

in any surface can be characterised by a finite list of minors.

Other minor-closed families of graphs include forests, outerplanar graphs and series-

parallel graphs.

The (plane) dual graph G∗ of a plane graph G is the plane graph defined by embedding

a vertex inside each face of G and connecting two vertices by an edge when the faces share

an edge in G, note that there exists an obvious bijection between E(G∗) and E(G).

Since G and G∗ have the same edge set, deleting an edge from G will result in removing

it from G∗ in some way. In fact, it will result in the contraction of e in G∗, so (G\e)∗ =

G∗/e. Similarly, (G/e)∗ = G∗\e.

Figure 2.16: A plane graph and its dual.

1We say that a set of graphs X is minor-closed if G ∈ X =⇒ G′ ∈ X for all G′ ⪯ G.
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Proposition 2.11. For a plane graph G and its dual G∗, an edge subset Y ⊆ E(G) is

the edge set of a cycle in G if and only if it is the edge set of a bond in G∗.

A (vertex-)colouring of G is a function c : v → X such that c(v) ̸= c(w) whenever

v and w are adjacent. We call the elements of X the colours. c is a k-colouring when

|X| = k. The chromatic number of G, denoted by χ(G), is the smallest k such that

there exists a k-colouring of G. If χ(G) = k then G is k-chromatic, and we say that

G is k-colourable when χ(G) ⩽ k. The set X is a partition of the vertex set of G into

independent sets, called colour classes.

Example 2.12. Graphs with no edges are the only 1-chromatic graphs, and the only

2-chromatic graphs are the non-empty bipartite graphs. The complete graph Kn is n-

chromatic for every n ∈ Z.

(a) 4-colouring of K4.
(b) 2-colouring of

K2,3
(c) 3-colouring of the Petersen

graph.

Figure 2.17: Vertex-colourings of some graphs.

Theorem 2.13 (Four colour theorem [1]). Every planar graph is 4-colourable.
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2.2 Topology

Given a set X, a topology on X is a collection τ of subsets of X with the following

properties:

i ∅ ∈ τ,X ∈ τ ;

ii the intersection of any two subsets in τ is in τ ;

iii the union of any collection of subsets in τ is in τ .

A pair (X, τ) such that τ is a topology on X is called a topological space.

Example 2.14. • The discrete topology on X consists of all subsets of X.

• Given a topological space (X, τ) and a subset X ′ ⊆ X, the subspace topology on X ′

is given by τ ′ = {U ∩X ′ : U ∈ τ}.

A function f : X → Y between two topological spaces, (X, τ) and (Y, υ), is continuous

if for every set V ∈ υ the inverse image of V , f−1(V ), is in τ .

Two topological spaces X and X ′ are said to be homeomorphic, denoted X ∼= X ′, if

there exists a continuous bijection f : X → X ′ such that the inverse f−1 : X ′ → X is also

continuous. Such a function is called a homeomorphism.

A path from a point x to a point y in X is a continuous function σ : [0, 1] → X

with σ(0) = x and σ(1) = y. X is said to be path connected if, for every pair of points

x, x′ ∈ X, there is a path in X from x to x′.

A topological space X is called simply connected if it is path connected and every path

between two points, x and y, in X can be continuously transformed into any other path

between x and y in X.

A simplicial complex K = (V, S) consists of a set V together with a set S of finite

non-empty subsets, called simplices of V such that the following hold.

• v ∈ V =⇒ {v} ∈ S;
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• σ ∈ S and ∅ ≠ τ ⊆ σ =⇒ τ ∈ S.

Figure 2.18: A 2-dimensional simplicial complex.

The vertices of K are the elements of V , and elements of S are the faces of K. If a

simplex consists of n+1 elements of V , we call it a n-simplex and it has dimension n. If

σ ∈ S and τ ⊆ σ, then we call τ a face of σ. The dimension of a simplicial complex K is

the largest dimension of a simplex in K.

Simplices are n-dimensional generalisations of triangles: a 0-simplex is a point, a 1-

simplex is a line segment, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, etc.

Figure 2.19: n-dimensional simplices for n = 0, 1, 2, 3.

The underlying space |K| of a simplicial complex K is defined as |K| =
⋃

σ∈K σ ⊂ Rn

with the subspace topology.

A triangulation of a topological space X is a homeomorphism h : |K| → X from the

underlying space of some simplicial complex K.
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A subcomplex of K is a simplicial complex K ′ such that every face of K ′ is a face of

K. The d-skeleton of K is the subcomplex consisting of all of the faces of K that have

dimension at most d.

For r ∈ Z, the r-chain group of K is the vector space Cr(K) over a field F generated

by treating the r-simplices of K as a basis.

The boundary homomorphism dr : Cr(K) → Cr−1(K) is defined by

dr(σ) =
r∑

i=0

(−1)i(v0, v1, . . . , v̂i, . . . , vr)

where the simplex (v0, v1, . . . , v̂i, . . . , vr) is the face of σ obtained by deleting the vertex

vi. The r-cycle group of K, denoted Zr(K), is the kernel of the boundary homomorphism.

The image of the boundary homomorphism is called the r-boundary group of K, denoted

Br(K).

The rth homology group of K, denoted Hr(K), is the quotient group Zr(K)/Br(K).

A simplicial complex K is said to be connected when there exists a path along the

edges of K between every pair of vertices of K.

Proposition 2.15. If a simplicial complex K is connected, then |K| is path connected.

In this case, H0(K) ∼= Z.
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2.3 Matroids

A matroid M is a pair (E, I) where E is a finite set and I is a collection of subsets of E

with the following properties:

(I1) ∅ ∈ I;

(I2) I ∈ I and I ′ ⊆ I =⇒ I ′ ∈ I;

(I3) I1, I2 ∈ I with |I1| < |I2| =⇒ there exists e ∈ I2\I1 such that I1 ∪ e ∈ I.

This matroid M is called a matroid on E. The members of I are the independent sets

of M , and E is the ground set. We write E(M) for E and I(M) for I when M is not

obvious.

For any subset X of E, the set I|X = {I ⊆ X : I ∈ I} defines the independent sets

of a matroid (X, I|X) called the restriction of M to X.

Two matroids M1 and M2 are isomorphic if there exists a bijection φ from E(M1) to

E(M2) such that φ(X) ∈ I(M2) if and only if X ∈ I(M1), for all X ∈ E(M1).

Let A be an m × n matrix over a field F. Then M = (E, I) is a matroid, where E

is the set of columns of A and I is the set of linearly independent subsets X of E in the

vector space V (m,F). This is the vector matroid of A, denoted by M [A].

Example 2.16. Let A be the following matrix over the field R

A =

1 2 3 4 5 6 7


1 0 0 0 0 0 1

0 1 0 0 1 1 1

0 0 1 0 1 0 0

The vector matroid of A has ground set E = {1, 2, 3, 4, 5, 6, 7}, and the set I of indepen-

dent sets of M [A] consists of all subsets of E\{4} with at most three elements, except for

{1, 2, 7}, {1, 6, 7}, {2, 3, 5}, {3, 5, 6} and any subset containing {2, 6}.
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If M is isomorphic to the vector matroid of a matrix D over a field F, then we say M

is representable (over F), and D is a representation for M (over F).

A subset of E that is not in I is dependent. A minimal dependent set2 of M is called

a circuit of M , and we denote the set of circuits by C(M), or C if M is obvious.

A matroid is uniquely defined by its set of circuits, so we can restate the definition of

a matroid to be M = (E, C) with ground set E and a collection C of subsets of E called

circuits with the following properties:

(C1) ∅ /∈ C;

(C2) C,C ′ ∈ C and C ′ ⊆ C =⇒ C ′ = C;

(C3) C1, C2 ∈ C, C1 ̸= C2, with e ∈ C1 ∩ C2 =⇒ there exists C3 ∈ C such that

C3 ⊆ (C1 ∪ C2)\e.

If E is the set of edges of a graph G and C is the set of cycles of G, then C is the set of

circuits of a matroid on E, called the cycle matroid of G and is denoted by M(G). The

independent sets of M(G) are the edge sets S ⊆ E that do not contain the edge set of a

cycle as a subset i.e. the edge-induced subgraph G[S] is a forest for all S ⊆ E.

The cycle matroid of a graph G can also be defined as the vector matroid of any

incidence matrix3 of G.

Example 2.17. Consider the graph G in Figure 2.20. The cycle matroid of G has the

ground set E = {1, 2, 3, 4, 5, 6, 7}, and the set of circuits ofM(G) is C = {{4}, {2, 6}, {1, 2, 7},

{1, 6, 7}, {2, 3, 5}, {3, 5, 6}, {1, 3, 5, 7}}. Note that M(G) = M [A] from Example 2.16.

A matroid that is isomorphic to the cycle matroid of a graph is called graphic.

All matroids on three or fewer elements are graphic, see [25] for a table of these ma-

troids and a corresponding graph for each. These corresponding graphs are not necessarily

unique, a graphic matroid can be isomorphic to the cycle matroids of multiple graphs.

2The minimal dependent sets are the dependent subsets of E whose proper subsets are all independent.
3The incidence matrix of a graph G is an n×m matrix B, where n = |V (G)| and m = |E(G)|, such

that Bi,j = 1 when vi is an endvertex of the edge ej , and Bi,j = 0 otherwise.
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Figure 2.20: A planar graph G for which M(G) is isomorphic to M [A] from Example 2.16.

The maximal independent sets of M are called the bases of M , we denote the set of

bases by B(M).

We can again restate the definition of a matroid in terms of bases. A matroid M =

(E,B) has ground set E and a collection B of subsets of E called bases with the following

properties:

(B1) B ̸= ∅;

(B2) B1, B2 ∈ B with x ∈ B1\B2 =⇒ there exists y ∈ B2\B1 such that (B1\x)∪ y ∈ B.

Every element of B has the same cardinality which we call the rank of M , denoted

r(M). We can also define the rank r(X) of any subset X of E to be the cardinality of a

basis B of M |X.

Since the independent sets of cycle matroids are the sets X ∈ E that do not contain

cycles, the bases of M(G) are exactly the spanning trees of G which have |V (G)| − 1

edges, so the rank of M(G) is |V (G)| − 1.

The dual (matroid) of M is the matroid M∗ whose ground set is E(M) and whose

bases are the complements of the bases of M , i.e. B(M∗) = {E(M)\B : B ∈ B(M)}.
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Example 2.18. Let M be the matroid from the previous two examples. The set of bases

of M is

B = {{1, 2, 3}, {1, 2, 5}, {1, 3, 5}, {1, 3, 6}, {1, 3, 7}, {1, 5, 6}, {1, 5, 7}, {2, 3, 7},

{2, 5, 7}, {3, 5, 7}, {3, 6, 7}, {5, 6, 7}}

So M∗ is the matroid with ground set E and the set of bases of M∗ is

B(M∗) = {{4, 5, 6, 7}, {3, 4, 6, 7}, {2, 4, 6, 7}, {2, 4, 5, 7}, {2, 4, 5, 6}, {2, 3, 4, 7}, {2, 3, 4, 6},

{1, 4, 5, 6}, {1, 3, 4, 6}, {1, 2, 4, 6}, {1, 2, 4, 5}, {1, 2, 3, 4}}

We denote the dual of the cycle matroid of a graph G by M∗(G), this is called the

bond matroid of G.

Theorem 2.19 (Whitney’s planarity criterion [28]). A graph G is planar if and only if

there exists a graph G′ such that M(G′) = M∗(G).

Unsurprisingly, if G is planar its bond matroid is actually the cycle matroid of its dual

graph G∗, that is M∗(G) = M(G∗).

Figure 2.21: The dual graph G∗ of the planar graph G from Figure 2.20.

Example 2.20. For G in Figure 2.20, the dual graph is G∗ in Figure 2.21. It is easy to

see that the cycle matroid of G∗ is M∗ as in Example 2.18
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A k-separation of M is a bipartition (X, Y ) of E such that r(X)+r(Y )−r(M) = k−1.

We call M k-connected if it has no k′-separator for all k′ < k. The k-separations of M(G)

(for G connected) correspond to the k-separations of G.

We can also define minor operations on matroids, as follows. The matroid obtained

by deleting a subset S ⊆ E from M has ground set E\S and independent sets are the

subsets of E\S that are independent in M , this matroid is denoted by M\S. Let M/S

be the matroid obtained by contracting S from M , this is defined through deleting S in

M∗. So M/S = (M∗\S)∗.

This means that, as with graphs, contraction and deletion are dual. So we get that

(M\e)∗ = M∗/e and (M/e)∗ = M∗\e. In fact, performing these operations on a cycle

matroid extends to performing the graph-theoretic minor operations on the graphs that

generated the matroid. That is, M(G\S) = M(G)\S and M(G/e) = M(G)/e.

A matroid N is a minor of M if we can obtain N from M by performing a sequence

of deletions and contractions.
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2.4 Embeddable 2-complexes

A (topological) embedding of a simplicial complex C into a topological space X is an

injective continuous map from (the geometric realisation of) C into X.

A 2-complex C = (V,E, F ) is a (directed multi-)graph4 G = (V,E) together with a set

F of closed walks called faces. We call the graph G the 1-skeleton of C. A 2-dimensional

simplicial complex is a 2-complex such that G is simple and each face is bounded by

exactly three distinct edges, we refer to these as simplicial 2-complexes.

The link graph L(v) of a simplicial 2-complex C at a vertex v is the graph whose vertex

set is the set of edges incident with v. The edge set is the faces incident with v in C such

that the face f corresponds to an edge in L(v) with the edges of C incident with f and

v as its endvertices. The definition of a link graph extends to non-simplicial 2-complexes

by adding two vertices in L(v) for each loop incident with v and adding an edge between

two vertices in L(v) if a face of C traverses the corresponding edges in C.

Note that, if C is an embeddable 2-complex, then its link graph must be planar,

which gives rise to some of the obstructions for embeddability. However, there are non-

embeddable 2-complexes that have planar link graphs, see Figure 2.22 for an example of

such a 2-complex. A simplicial 2-complex is locally k-connected if all of its link graphs are

k-connected.

Let G1 and G2 be two graphs such that there exists v in V (G1) and V (G2) with a

bijection φ between the edges incident with v in G1 and G2. The vertex-sum of G1 and

G2 over v with respect to φ is the graph G = G1 ⊕v G2 obtained from the disjoint union

of G1 and G2 by deleting v in both G1 and G2 and adding an edge between any pair of

vertices (v1, v2) with v1 ∈ V (G1) and v2 ∈ V (G2) such that (v, v1) and (v, v2) are mapped

to each other by φ.

4In this section all graphs are directed and can have parallel edges and loops, unless stated otherwise. If
we also have a orientation on every face of a simplicial 2-complex C we say that it is a directed 2-complex.
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Figure 2.22: The 2-complex on the right is obtained from the octahedron with its eight
triangular faces by adding three faces of size 4 orthogonal to the three axis. It is easy to
see that all link graphs are planar. Note that adding only one of these three orthogonal
faces gives the embeddable 2-complex on the left. There is space for a second face to be
added on the outside of this embedding, but it can be shown that the 2-complex with all
three 4-faces added is not embeddable. [4]

2.4.1 Space minors and rotation systems

Let e be a non-loop edge of C, we contract this edge by identifying the two endvertices

of e, remove e from all incident faces, and then remove e. Denote by C/e the 2-complex

obtained by contracting e in C. For a face f of C, if f has size two we contract f by

deleting f and identifying its two incident edges. Otherwise, if f has size one we delete f

and remove its incident edge from all faces, then remove this edge.

Let v be a vertex of C, we split v by replacing it by multiple copies in the following

way, for each component of the link graph L(v) there is a copy of v with the incidences

inherited from this component of L(v). We topologically delete an edge e of C by replacing

it with a copy for every incident face such that this copy is incident only with that face

where it takes the role of e.

A 2-complex D is a space minor of C if we can obtain it from C by contracting non-

loop edges5 and faces of size at most two, deleting faces, topologically deleting edges, and

splitting vertices.

These space minor operations preserve embeddability in any 3-dimensional manifold.

5Contracting loops does not preserve embeddability in general.
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Figure 2.23: A graph and a space minor of that graph. We contract the edge e and the
face f , delete the faces a and b, split the vertex v, and topologically delete the edge g. [4]

We can use space minors to see why the 2-complex on the right in Figure 2.22, call it O,

does not embed into 3-space. Contract any one of the faces of size three to a single vertex

in the following way. First contract an edge to make a face of size two, then contract this

face to a single edge that can be contracted to a vertex. The link graph at this new vertex

will be K3,3 which is non-planar, so the new 2-complex cannot be embeddable in 3-space.

Then we have that O cannot be embeddable since it has a non-embeddable minor.

A 2-complex is 3-bounded if all its faces are incident with at most three edges. The

closure of the class of simplicial 2-complexes under the space minor operations is the class

of 3-bounded 2-complexes.

The dual graph of an embedding of C in S3 is the graph G whose vertices are the

components of S3\C, called the chambers of the embedding, and for each face f of C

add an edge with endvertices being the vertices corresponding to the two chambers f

touches in the embedding. The dual complex of the embedding is the 2-complex D with

1-skeleton G and faces F such that there exists a bijection f : E(C) → F , where each edge

e ∈ E(C) is mapped to the face in D that is incident to the edges of G that correspond

to the faces that are incident to e in C. The local surfaces of an embedding of C in S3

are the boundaries of the chambers of the embedding.

A rotation system of a graph G is a family of cyclic orientations σv of the edges

incident with each vertex v. Every embedding of a planar graph G induces a planar
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rotation system. A rotation system of G is planar if it is induced by a planar embedding

of G. A rotation system of a 2-complex C is a family of cyclic orientations σe of the faces

incident with each edge e. The orientations σv and σe are called rotators. A rotation

system of C induces a rotation system of each link graph L(v) by restricting to the edges

incident with v, we take σe if e is directed towards v, and the reverse otherwise. A rotation

system of C is planar if the induced rotation systems at every link graph are planar.

If we have a topological embedding of C in some oriented 3-manifold M , then the

rotation system induced by this embedding is the one which corresponds to the embedding

in the following way: for each edge e in C the cyclic orientation σ(e) of the faces around

e is the ordering in which they are embedded around e in the direction of the orientation

of M .

Lemma 2.21 (Carmesin [4]). If a 2-complex C has a planar rotation system, then any

space minor of C also has a planar rotation system.

To see that the space minor operations preserve the property of having a planar rota-

tion system, consider what happens to the link graphs under each space minor operations.

Contracting a face f of size 2 in C contracts the edges corresponding to f in both of

the link graphs at the two vertices incident with f .

The operation on the link graphs corresponding to contracting a face of size one is

explained in Figure 2.24. Deleting a face f in C deletes the corresponding edges in the

link graphs, along with deleting the vertices that correspond to the edges incident only

with f in C.

Contracting a non-loop edge in C merges the two link graphs at its endvertices.

Splitting a vertex splits the link graph at that vertex into a separate link graph for

each of its connected components.

Topologically deleting an edge e adds a copy of the vertex corresponding to e in the

link graphs for each edge incident with the original vertex, this copy is only incident with

that edge.
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Figure 2.24: The operation on a link graph of a 2-complex C corresponding to contracting
a face of size one in C. [4]

Theorem 2.22 (Carmesin [5]). A simply connected simplicial 2-complex has an embedding

in S3 if and only if it has a planar rotation system.

2.4.2 A 3-dimensional Kuratowski characterisation

For G with no loops, the cone over G is the 2-complex with vertex set V (G) plus one

additional vertex, called the top, edge set E(G) plus one edge for each vertex v ∈ V (G)

joining v with the top, and face set consisting of one face for each e ∈ E(G) that is

incident with e and the two edges from the endvertices of e to the top.

Note that if G had no parallel edges, then the cone over G will be a simplicial 2-

complex. Also, the link graph at the top of the cone if isomorphic G.

Example 2.23. For G non-planar, the cone over G will have a non-planar link graph

at its top and therefore cannot be embeddable in S3. In particular, K5 and K3,3 do not

embed in S3.

Figure 2.25: The cone over K5. [4]
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Lemma 2.24 (Carmesin [10]). Let G and H be graphs without loops such that H is a

minor of G. The cone over H is a space minor of the cone over G.

Let C and D be two 2-complexes with a bijection f between two subsets of their

vertices, we can obtain a 2-complex by simplicial gluing C and D via f in the following

way: start with the disjoint union of C and D and identify vertices via the bijection f ,

we also identify the edges and faces that have all incident vertices in the image of f such

that after identification of these vertices they have the same incident vertices. Gluings of

simplicial complexes are also simplicial complexes.

The simplicial combined cone over the vertex-sum G = G1⊕eG2 is obtained by gluing

the cone over G1 and the cone over G2 via the vertex set containing the vertices in faces

incident with the edge e in the cones.

Lemma 2.25 (Carmesin [10]). Up to subdivision, there are exactly five vertex-sums H =

H1 ⊕e H2, where H is a subdivision of K5 or K3,3 and H1 and H2 both have at least three

vertices of degree at least three. One such H is a subdivision of K5, and the other four

are subdivisions of K3,3.

For two 2-complexes C and D with isomorphic subcomplexes C ′ and D′, respectively,

we obtain a 2-complex from C by gluing D at C ′ in the following way: start with the

disjoint union of C and D and identify C ′ with D′ via their isomorphism.

Given a vertex-sum G = G1⊕eG2, the combined cone over this vertex-sum is obtained

from the cone over G1 by gluing the cone over G2 via the subcomplex consisting of the

edge e and its incident edges in both cones such that in the resulting complex the tops of

the cones are glued onto distinct endvertices of e.

A triangulation of the Möbius strip is nice if it has a central cycle of length three and

all edges of face degree two are on the central cycle or have exactly one endvertex on the

central cycle. A Möbius obstruction is obtained from a nice triangulation of the Möbius

strip by attaching a face at the central cycle. These Möbius obstruction 2-complexes do

not embed in 3-space.
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Let Z be the set of graphs containing cones over subdivisions ofK5 andK3,3, simplicial

combined cones from the five families of Lemma 2.25, and Möbius obstructions.

Theorem 2.26 (Carmesin [10]). Let C be a locally 3-connected simplicial 2-complex such

that the first homology group H1(C,Fp) is trivial for some prime p. The following are

equivalent:

• C embeds in 3-space;

• C is simply connected and has no space restriction6 from the explicit list Z.

Figure 2.26: The only two nice space minor-minimal triangulations of the Möbius strip.
[10]

Let Z ′ denote the list consisting of the cones over K5 and K3,3, the five combined

cones over K5 and K3,3 from Lemma 2.25, and the Möbius obstructions obtained from

the triangulations in Figure 2.26.

Lemma 2.27 (Carmesin [10]). Every element of Z has a space minor in Z ′. The set Z ′

has 9 elements.

In a simplicial 2-complex C, a mega face F = (fi|i ∈ Zn) is a cyclic orientation of

faces fi of C plus, for each i ∈ Zn, an edge ei of C that is only incident with fi and

fi+1 such that ei ̸= ei+1 and fi ̸= fi+1 for all i ∈ Zn. A boundary component of a mega

face F is a connected component of the 1-skeleton of C restricted to the faces fi after we

topologically delete the edges ei.

Let the cycle o be a boundary component of a mega face F , we say that F is locally

monotone at o if, for every edge e of o and each face fi containing e, the next face face of

6A space restriction is a space minor obtained without contracting edges or faces.
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F after fi that contains an edge of o contains the unique edge of o that has an endvertex

in common with e and ei+1. Consider the number of indices i such that e is incident with

fi, this number is the same for each edge e of o when F is locally monotone at o and we

call it the winding number of F at o.

A torus crossing obstruction is a simplicial complex C whose faces can be partitioned

into two mega faces that both have the cycle o as a boundary component and are locally

monotone at o but with different winding numbers. We call o the base cycle, and denote

the set of torus crossing obstructions by T .

Let G be a link graph of C at the vertex v that is incident with a single loop l. We

say that G is helicopter planar if G has a plane embedding such that the rotators at the

two vertices of G corresponding to l are reverse of one another. A helicopter complex is

a 2-complex with a single loop l such that the link graph at the vertex v incident with l

is not helicopter planar.

A helicopter complex is nice if its link graph at the vertex incident with the loop is a

subdivision of a 3-connected graph.

Lemma 2.28. There is a finite set X of helicopter complexes such that every nice heli-

copter complex has a space minor in X .

Now, denote by Y the list of the nine 2-complexes from Z ′ together with the finite list

X . This then leads to the refined Kuratowski characterisation.

Theorem 2.29 (Carmesin [8]). Let C be a simplicial 2-complex such that the first ho-

mology group H1(C,Fp) is trivial for some prime p. The following are equivalent:

• C has a topological embedding in 3-space;

• C is simply connected and has no stretching7 that has a space minor in Y ∪ T .

7A 2-complex
−→
C is a stretching of C if it can be obtained from C by applying some stretching

operations. The precise definition of a stretching of C can be found in [8].
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2.4.3 A Whitney-type characterisation

The incidence vector of an edge e of C is the vector with an entry for every face f , this

entry is 0 if e and f are not incident, 1 if the direction at e is positive in the orientation

of f , and -1 otherwise. The matrix given by all incidence vectors is called the edge/face

adjacency matrix of C.

Here, we assume that all 2-complexes are directed. However, for different directed

simplicial 2-complexes with the same underlying simplicial 2-complex the dual matroids

are isomorphic, so we omit the term ‘directed’.

The following theorem is equivalent to Theorem 2.22.

Theorem 2.30 (Carmesin [10]). Let C be a simplicial 2-complex embedded into S3. Then

the edge/face incidence matrix of C represents (over any field) a matroid which is iso-

morphic to the cycle matroid of the dual graph of the embedding.

This face inspires the definition of the dual matroid of a 2-complex C, which is the

matroid represented by the edge/face adjacency matrix of C over the field F3
8. More

formally:

Definition 2.31. Given a field k, the k-dual matroid of a simplicial 2-complex C is the

k-vector matroid whose ground set is the set of faces of C and its circuit space is generated

by the incidence vectors of the edges of C. If k is clear by context, we call this the dual

matroid of C. We denote the dual matroid of C by M∗(C).

The 3-dimensional analogue of Whitney’s planarity criterion is not as simple as a

simplicial 2-complex is embeddable in 3-space if and only if its dual matroid is graphic.

This is due to a few reasons, one of which is that the cone over K5’s dual matroid is

trivially graphic as it is just a bunch of loops, however it does not embed into 3-space.

To prevent this type of obstruction, we define the following.

A simplicial 2-complex C is k-local if for every vertex v we have that the dual of the

cycle matroid of L(v) is equal to M∗(C) restricted to the faces incident with v.

8Here, F3 could be replaced with Fp for p any prime other than 2.
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Also, we need to restrict to simply connected simplicial 2-complexes because dual ma-

troids of triangulations of general homology spheres are graphic, but these triangulations

do not embed into S3 in general.

This leads to the 3-dimensional analogue of Whitney’s planarity criterion.

Theorem 2.32 (Carmesin [9]). For every field k, a k-local simply connected simplicial

2-complex C embeds in 3-space if and only if its k-dual matroid is graphic; in this case

k-dual matroids over different fields k are isomorphic.
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CHAPTER 3

3-COLOURABLE 3-DIMENSIONAL
TRIANGULATIONS

In 1898, Heawood proved that a maximal plane triangulation is vertex colourable in three

colours if and only if all its vertices have even degrees [22]. In this chapter we prove a

3-dimensional analogue of this theorem.

In fact there is quite a natural way to extend theorems about planar graphs to 3-space.

Indeed, each 2-dimensional simplicial complex (which we will refer to as a simplicial 2-

complex from now) embedded in 3-space has a planar link graph1 at each of its vertices.

Hence we are interested in global statements of the simplicial complex that project down

to the theorem we are trying to extend in each of its link graphs, see [4, 5, 6, 7, 8] for

details.

A (proper) edge-colouring of a 2-complex C is a labelling of each of the edges of C

such that no two edges that share a face have the same label.2 The (face-)degree of an

edge e in a 2-complex C is the number of faces of C that e is incident with.

Intuitively speaking, Heawood’s theorem says that local 3-colourings of the faces ex-

tend to global 3-colourings of plane triangulations. We extend this Heawood principle

even further; these 3-colourings of the link graphs can be simultaneously extended to

global edge-colourings of 2-complexes, as follows:

1The link graph at a vertex v of a 2-complex C is the graph L(v) on the edges incident with v in C,
there is an edge between two vertices in L(v) if they share a face at v in C.

2Note that this definition of edge-colouring a 2-complex C is not the same as edge-colouring the
1-skeleton of C as a graph in the usual way.
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Figure 3.1: A 3-edge-colouring of a tetrahedron. This is an example of a spatial triangu-
lation where all the edges have even degree.

Theorem. A triangulation of 3-space3 can be edge-coloured with three colours if and only

if all edges have even degree.

The n-dimensional version of this theorem was claimed without proof in the 70s [16],

however we do not agree that it is as simple of a result as they believed. Indeed, another

paper [19] claims to prove the 3-dimensional case, however their argument does not seem

to work. For further details on this, see the concluding remarks.

For basics and background, refer to Diestel’s book on graph theory [15], Hatcher’s

book on algebraic topology [20], and the paper series on the 3-dimensional Kuratowski

embeddings [4, 5, 6, 7, 8].

3.1 3-Colourability of Eulerian Simplicial 2-Complexes

Definition 3.1. The Spatial Line Graph SL(C) of a simplicial 2-complex C represents

the face adjacencies of the edges of the simplicial 2-complex. The vertex set of SL(C)

consists of the edges of C, if two edges in C have a face in common, their corresponding

vertices in SL(C) are adjacent.

Definition 3.2. The Directed Spatial Line Graph DL(C) of a simplicial 2-complex C

whose faces have an orientation is a directed graph. The directed spatial line graph is

3Here, a triangulation of 3-space would be a simplicial 2-complex where all of the chambers are
tetrahedrons.
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Figure 3.2: In a directed spatial line graph, for a face with orientation as in the left
tetrahedron, we give the edges of the spatial line graph the directions as in the right
tetrahedron.

the spatial line graph of C with the added property that the edge joining two vertices in

DL(C) is directed with the orientation of the face that the edges are incident to in C, as

in Figure 3.2.

Definition 3.3. The tetrahedron face cycles in a spatial line graph of a simplicial 2-

complex are the cycles whose vertices correspond to the three edges that bound a face on

a tetrahedron in the simplicial 2-complex.

The tetrahedron vertex cycles in a spatial line graph of a simplicial 2-complex are the

cycles whose vertices correspond to the three edges that are adjacent to a common vertex

in a tetrahedron in the simplicial 2-complex.

We refer to the tetrahedron face cycles and the tetrahedron vertex cycles just as the

tetrahedron cycles.

Definition 3.4. An orientation of the faces of a planar graph is consistent if each edge

has opposite directions in the orientations chosen for each of its two incident faces.

The following lemma is proved in [7].

Lemma 3.5. The incidence vectors of the edges of a simplicial 2-complex generate all

cycles of the dual matroid4 over any field, in particular over F2.

Lemma 3.6. A graph is bipartite if and only if all cycles have even length.

4See Definition 2.31 for the definition of dual matroids.
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Figure 3.3: A tetrahedron face cycle (left) and a tetrahedron vertex cycle (right), they
are both called tetrahedron cycles.

Lemma 3.7. Given a simplicial 2-complex embedded in 3-space with all edges of even

degree, then the dual graph is bipartite.

Proof. Let C be a simplicial 2-complex embedded in 3-space with all edges having even

degree. Consider the dual matroid M of C. For each edge e of C, take the column vector

e ∈ FF
2 where each face f ∈ F in C corresponds to a row of e, and there is a 1 in that row

if e is incident to f , and 0 otherwise. These binary column vectors make up a generating

set for the cycle space of the matroid M . Each of the vectors e will have even length since

each edge in C has even degree.

Any cycle of M can be written as a sum of the elements in the cycle space. So because

we have a generating set for the cycles with all elements having even length, this means

that any cycle of M will have even length. To see this, consider the sum two binary

vectors v and w. The length of v +w is just the length of v plus the length of w minus

2 times the number of coordinates where v and w both equal 1.

Now we have that all cycles in M have even length, which means it is bipartite.

Definition 3.8. The effective length of a cycle o in a weighted digraph D is the sum over

the weights of all edges of o oriented in one direction, minus the sum over the weights of

the edges of o oriented in the opposite direction.

Definition 3.9. Given an abelian group Γ, a Γ-co-flow is an assignment of elements of
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Γ (referred to as weights) to the edges of a directed graph D such that every cycle o of D

has effective length 0.

Lemma 3.10. Given an abelian group Γ and a graph G, there is a colouring of the vertices

of G with the elements of Γ such that adjacent vertices receive different colours if and only

if there is a nowhere zero Γ-co-flow on the edges.

Proof. This follows from Section 6.3 in [15].

Corollary 3.11. A weighted digraph with each cycle having effective length 0 mod k,

where the label on each edge is d ∈ Zk\[0]k, is k-vertex-colourable.

Proof. This is a special case of Lemma 3.10.

Lemma 3.12. Let C be a simplicial 2-complex and SL(C) the spatial line graph of C. If

there exists a k-vertex-colouring of SL(C) then a k-edge-colouring of C exists.

Proof. Let C be a simplicial 2-complex with edge set E and set of faces F . Let SL(C)

be the spatial line graph of C, with vertex set VL and edge set EL.

Suppose there exists a k-vertex-colouring of SL(C), a labelling c : VL → X such that

|X| = k and for x, y ∈ VL we have that c(x) ̸= c(y) whenever {x, y} ∈ EL. So no two

adjacent vertices in SL(C) share the same label. By the definition of a spatial line graph,

two vertices in SL(C) are adjacent if their corresponding edges in C are incident to a

common face.

We define an edge-colouring of C as follows: c′ : E → X ′ where c′(x) = c(x) for x ∈ E.

First notice that if x ∈ E then x ∈ VL since the vertex set of SL(C) is precisely the edge

set of C by definition.

Consider y, z ∈ E = VL with {y, z} ⊆ f for f ∈ F . So y and z are edges of C incident

to a common face, by the definition their corresponding vertices in SL(C) are adjacent.

In other words {y, z} ∈ EL. Hence c′(y) = c(y) ̸= c(z) = c′(z) whenever {y, z} ⊆ f for

some f ∈ F . So c′ is a consistent edge-colouring of C.

Moreover, let c′(x) ∈ X ′, then c′(x) = c(x) ∈ X so we have that X ′ ⊆ X and

|X ′| ⩽ |X| = k. Hence a k-edge-colouring of C exists.
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Theorem 3.13. A triangulation of 3-space can be edge-coloured with three colours if and

only if all edges have even degree.

Proof. First we show that a triangulation of 3-space that can be edge-coloured with three

colours has the property that all edges have even degree.

Let C be a simplicial 2-complex embedded in 3-space with every chamber a tetrahedron

and can be coloured using 3 colours. Suppose for contradiction that C has an edge e of

odd degree.

Consider the link graph at v, one of the end vertices of e, the vertex that corresponds

to e in this graph has odd degree. Since C is a triangulation of 3-space we must have

that all of the link graphs are triangulations of the plane. Then by Heawood’s theorem

the link graph at v cannot be 3-colourable as it has a vertex of odd degree.

Now we prove the opposite direction; a triangulation of 3-space where all edges have

even degree can be edge-coloured with three colours. Let C be a simplicial 2-complex

embedded in 3-space with every chamber a tetrahedron and every edge even degree.

Sublemma 3.14. There exists an orientation of all the faces of C such that the four

faces of each tetrahedron form a consistent orientation of that tetrahedron.

Proof. There are two consistent orientations for the faces in tetrahedrons, the left handed

and right handed orientations.

Because the dual graph is bipartite by Lemma 3.7, the tetrahedra in C can be split

into two parts such that if two tetrahedra are in the same set then they do not share a

face. We can give all of the tetrahedra in one of the sets the left handed orientation and

give the other set the right handed orientation.

When two tetrahedra meet at a face the two orientations will be mirrors of each other

and so the orientation on that face will be the same. So we have an orientation for

all of the faces in C that are on tetrahedrons which form consistent orientations on the

tetrahedrons.
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Figure 3.4: The octahedron (black) in a spatial line graph that is where the tetrahedrons
of the original simplicial 2-complex (grey) were.

Sublemma 3.15. There exists an orientation of DL(C) such that every cycle has effective

length 0 mod 3.

Proof. Give the edges of DL(C) the same orientation that the corresponding face has in

C. That is, for a face in C with edges x, y, z and orientation xyz the corresponding edges

in DL(C) will have directions xy, yz, and zx.

It is trivial to see that the tetrahedron cycles of DL(C) all have effective length 0

mod 3. To show that the other cycles in DL(C) have effective length 0 mod 3 we need

to build a simplicial 2-complex from DL(C) such that all its faces are bounded by cycles

of effective length 0 mod 3 and show it is simply connected. For a simply connected

simplicial 2-complex, the face cycles generate all of the other cycles so our tetrahedron

cycles having effective length 0 mod 3 implies that all cycles will have effective length 0

mod 3.

We build the simplicial complex D from DL(C) by adding a face at every tetrahedron

cycle.

In [5] it was proved that if C is a locally connected simplicial complex embedded in

S3, then C being simply connected is equivalent to all the local surfaces being bounded

by spheres. So it is enough to show that all local surfaces of D are bounded by spheres.

In D we have octahedrons where the tetrahedrons in DL(C) were, see Figure 3.4,

which are bounded by tetrahedrons of DL(C) and so these are bounded by spheres. The
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only other local surfaces are the voids where the vertices of the tetrahedrons in DL(C)

were. These are bounded by the new faces we added and so are also bounded by spheres

and we are done.

Now we have that DL(C) is a digraph with every cycle having effective length 0 mod

3. So by Corollary 3.11 DL(C) is 3-colourable.

Then by Lemma 3.12 there exists a 3-colouring of C.

Proposition 3.16. The vertices of a triangulation of 3-space are 4-colourable iff the edges

are 3-colourable.

Proof. Take a triangulation of 3-space with a colouring on the vertices using 4 colours.

Label the 4 colours with the vectors ( 0
0 ) , (

0
1 ) , (

1
0 ) , (

1
1 ) from the abelian group F2 × F2.

Then for each edge, the new colour would be the sum of the two colours on the end

vertices, over F2 × F2. This will give us 3 colours as the vector ( 0
0 ) cannot appear; if it

did it would mean that the two end vertices have the same colour which is not possible

under a proper colouring. Also, it is easy to see that if the three vertices on a triangle

have different colours then the edges will also get different colours, so this 3-colouring on

the edges is proper.

Take a triangulation of 3-space with a 3-colouring on the edges. Replace the 3 colours

on the edges with the vectors ( 0
1 ) , (

1
0 ) , (

1
1 ). For any triangle we will have exactly one

copy of all three vectors present so the sum of the vectors on the triangle cycle is zero.

Since the triangulation is simply connected, we have that all of the cycles are generated

by the face cycles, i.e. the triangles. So the vectors on every cycle sums to zero. Now we

have shown that this is a nowhere zero co-flow, and we can use Lemma 3.10 to show that

we have a 4-colouring on the vertices.

We can now restate our theorem as follows.

Corollary 3.17. For a triangulation of 3-space, the vertices are 4-colourable iff all edges

have even degree.

Proof. Combine Proposition 3.16 and Theorem 3.13.
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3.2 Concluding Remarks

Note that our proof actually proves the stronger statement with the 3-sphere replaced by

a general homology sphere. However the generalisation of our theorem to any 3-manifold

is false. To see this, consider the following example.

Example 3.18. Take a triangulation of 3-space with all edges even degree. All such

triangulations have a unique 3-colouring up to permutation of colours. Take two tetra-

hedron that do not intersect with any common faces, edges, or vertices. Remove their

interiors from the manifold and identify their boundaries in such a way that the colouring

isn’t compatible. Now we have a triangulation of a 3-manifold where all edges have even

degree but isn’t 3-colourable.

In the 70s a paper was published [19] that claims to prove Theorem 3.13. In their proof

it is claimed that in a triangulation of a simply connected space every loop of 3-simplices

is a sum of simple loops5. However, consider the loop of 3-simplices, as in Figure 3.5,

obtained by gluing together 3-simplices in a linear way along faces and then identifying

a vertex of the first 3-simplex with a vertex of the last. This is a loop of 3-simplices that

could occur in a such a triangulation, but it is not clear how this is always a sum of simple

loops or how one could extend a colouring of a simple loop to a colouring of this loop.

The d-dimensional version of Theorem 3.13 is open. The statement is as follows.

Conjecture 3.19. Let C be a triangulation of Sd. Then the 1-skeleton of C is colourable

with d+ 1 colours if and only if all its (d− 2)-faces are incident with an even number of

(d− 1)-faces.

5A simple loop is 3-simplices around an interior edge.
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Figure 3.5: A loop of 3-simplices obtained by gluing together 3-simplices in a linear way
along faces and then identifying a vertex of the first 3-simplex with a vertex of the last
3-simplex.

3.3 Further thoughts on the paper

The proof of Proposition 3.16 gives a method of constructing a 3-edge-colouring of a

triangulation of 3-space given a 4-vertex colouring of the triangulation, Figure 3.6 shows

an example of this.

Figure 3.6: A 4-vertex colouring of a tetrahedron and its corresponding 3-edge-colouring,
as in Proposition 3.16.

We will now give another counterexample for why Theorem 3.13 does not work in any

3-manifold. This example shows a triangulation of the 3-torus that has every edge of even

degree, but is not 3-edge-colourable.

The motivation for this example was that Heawood’s original theorem on the 3-

colourability of maximal plane triangulations is not true on the torus. To see this, consider
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Figure 3.7: K7 embedded on the torus.

K7 embedded on the torus, as in Figure 3.7. In this graph every vertex has even degree

as they all have degree 6, and the chromatic number of K7 is 7, so obviously cannot be

coloured using 3 colours.

Figure 3.8

(a) The Petersen graph embedded on the
torus.

(b) The dual of the Petersen graph embed-
ded on the torus. An orientation has been
given to the edges.

Example 3.20. Consider the Petersen graph embedded on the torus, as in Figure 3.8a.

Now take G to be the dual of this embedding, as in Figure 3.8b. Consider the simplicial

2-complex that is a triangulation of the torus with G as its 1-skeleton, this simplicial 2-

complex is not 3-edge colourable. To see this note that its spatial line graph is equivalent
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to the line graph of the Petersen graph.

Figure 3.9

(a) A visualisation of the 3-torus as a cube. (b) How to layer two copies of a graph in-
side the 3-torus

We need to build a simplicial 2-complex that is embedded into the 3-torus using this.

To start, consider the 3-torus as a cube, where opposite faces are glued together, as in

Figure 3.9a. On the cube of the 3-torus, embed the dual of the Petersen graph onto one

of the faces, and once again as another layer inside the cube. Now we will have a cube

with the dual graph on two of the outside faces which are identified, and once again as a

layer in the middle, as in Figure 3.9b. To connect these faces, connect each triangle face

to itself by attaching a copy of the triangulation of the triangular prism in Figure 3.10.

Figure 3.8b also shows an orientation of the edges of the dual graph, each triangular face

has 2 edges of one direction and one of the other. A way to place the prism triangulations

in a way that is consistent is to orient them such that the diagonal edge on the outside

is pointing downwards in the direction of the arrow. It’s easy to see that each edge will

still have even degree once we do this.

All of the edges in this simplicial 2-complex embedded in the 3-torus have even degree,

but it does not have a 3-edge-colouring as the layers do not have a 3-edge-colouring.
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Figure 3.10

(a) A triangulation of the triangular
prism.

(b) The 3 separate tetrahedron inside the triangula-
tion.
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CHAPTER 4

THE CHROMATIC NUMBER OF EMBEDDABLE
2-COMPLEXES

Motivated by the Four Colour Theorem for planar graphs, we raise the following open

question, which essentially seeks to generalise the Four Colour Theorem from two to three

dimensions, using the same extension from planar graphs to 3-space as in the previous

chapter. An (edge-)colouring of a 2-complex C assigns to every edge of C a colour such

that two edges e and e′ receive different colours whenever e and e′ share an endvertex v

and the boundary of some face of C enters and leaves v through e and e′, respectively.

Open Question 4.1. Let M be a 3-manifold. What is the least integer k such that every

simplicial 2-complex that embeds in M is k-colourable?

In this chapter, we will consider bounds for this question, and then discuss what the

answer is when we remove simplicial from the question. That latter part of this chapter

is based on [24].

4.1 Simplicial 2-complexes

In this section, we give an upperbound for k in Open Question 4.1.

Theorem 4.2. Every simplicial 2-complex that embeds in a 3-manifold is 12-colourable.

The proof of Theorem 4.2 given here is by induction on the number of edges of the

simplicial 2-complex. This is motivated by a similar proof of the six colour theorem for
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planar graphs which uses the fact that the average degree of a planar graph is less than

6.

The 6-colour theorem is proved by induction on the number of vertices of a graph

G and the main idea is to find a vertex v with degree less than 6, remove it, then the

resulting planar graph is 6-colourable and there is a colour not used by the neighbourhood

of v that we can use to colour v and get a 6-colouring of G. However, removing an edge

from a simplicial 2-complex C does not necessarily result in a simplicial 2-complex with

the same edge neighbourhoods. If we remove e and its incident faces to get the 2-complex

C ′, this means that for every incident face the other two edges are no longer adjacent in

C ′.

To get around this problem, we introduce the notion of partially colouring the edge

set of a simplicial complex.

Definition 4.3. Let C be a simplicial 2-complex. A partial colouring of an edge subset

D ∈ E(C) is a labelling of the edges in D with colours such that any two edges that are

incident with a common face get different colours.

Proof of Theorem 4.2. Let C be a simplicial 2-complex that has e edges, v vertices and

f faces. Let E be the set of all edges. For a partial colouring, take a subset X ⊆ E. If

|X| ⩽ 12 then we obviously have a partial colouring of X using at most 12 colours.

For induction, assume that for every subset of size n−1 we can find a partial colouring

using 12 or less colours. Now, let the subset X ⊆ E have size n. For each e ∈ X, we

have two endvertices v1 and v2. Consider L(v1)[X] and L(v2)[X], the induced subgraphs

of the link graphs at v1 and v2 restricted to the vertices in X ∩ V (L(vi)).

Label e with the sum of the degrees of the vertex e in L(v1)[X] and L(v2)[X]: this is

the number of edges in X that e is adjacent to in a face of C. Since C is embeddable,

every link graph is planar. The label on each edge of C is the sum of the degrees of two

vertices from planar graphs, and every planar graph has average degree less than 6, so

the average of the labels on the edges is less than 12 and we must have an edge e1 ∈ X

that is labelled with a number less than 12. Remove this edge from X, then we have a

47



subset with n − 1 edges and we can find a partial colouring using 12 or less colours by

the inductive hypothesis. Now, add e1 back into X and since there are less than 12 edges

that share a face with e1 in X there is a colour leftover for us to use for e1 to get a partial

colouring of X using 12 colours.

We can not use the ideas behind the six colour theorem proof to prove 11-colourability

of simplicial 2-complexes because there is no guarantee that the edge corresponding to

the vertex with degree at most 5 in L(v) has degree at most 5 in the link graph at its

other end vertex.

This gives an upper bound of 12 for k in Open Question 4.1. This bound is not

necessarily optimal; if we could find a simplicial 2-complex that has chromatic number

12, then it would be. So we also need to approach this question from below and find

simplicial 2-complexes that require more colours for a proper edge-colouring.

First, take the cone over a 4-chromatic planar graph, this gives a 4-chromatic simplicial

2-complex, so 4 colours are necessary to colour every simplicial 2-complex. The next

logical step is to find a simplicial 2-complex that needs 5 colours. The idea behind the

following example is that K5 can be embedded on the torus, as in Figure 4.1, so it is

possible to build a simplicial 2-complex with K5 as its 1-skeleton that can embed in

3-space. Then, since χ(K5) = 5, the simplicial 2-complex will also be 5-chromatic.

Example 4.4. Let C be a simplicial 2-complex with K5 as its 1-skeleton and every

possible 3-cycle as its faces. Using the vertex labelling as in Figure 4.1 the sets of the

vertices V edges E and faces F of C are as follows.

V = {a, b, c, d, e}

E = {ab, ac, ad, ae, bc, bd, be, cd, ce, de}

F = {abc, abd, abe, acd, ace, ade, bcd, bce, bde, cde}

Colour C in the same way as the 5-colouring of K5 as shown in Figure 4.1. The colour

classes are {ab, de}, {ac, be}, {ad, bc}, {ae, cd}, and {bd, ce}.
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(a) K5 embedded on the torus. (b) An edge-colouring of K5.

Figure 4.1

To see that C is 5-chromatic, first assume for contradiction that C can be coloured

with 4 or fewer colours. There will be a colour class with 3 or more edges in it, 2 of

these edges must have a common endvertex as C only has 5 vertices. Since every possible

3-cycle is a face of C, then any two edges with a common endvertex are incident with

a common face and therefore cannot be in the same colour class. So C has chromatic

number 5.

To see that C is embedabble in 3-space, consider the layers of faces in Figure 4.2.

Visualise C with the edge bd running below the complex and the edge ae above the

complex. The figure then shows how the faces are embedded.
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(a) (b) (c)

Figure 4.2: The faces of the simplicial 2-complex C embedded in 3-space. These three
layers can be arranged as follows: put the three faces from (a) on the top, the four faces
from (b) in the middle, and the three faces from (c) on the bottom.

4.2 On the edge-chromatic number of 2-complexes

In this section, we show that the answer is ‘k = 12’ for every 3-manifold M if simplicial

is dropped from Open Question 4.1:

Theorem 4.5.

(1) Every 2-complex that embeds in a 3-manifold is 12-colourable.

(2) There is a 2-complex that embeds in S3 and which is not 11-colourable.

This section is part of a project that aims to extend planar graph theory to three

dimensions. Previously, the following results have been extended:

2D 3D

• Kuratowski’s theorem [23, 15] [10]

• Excluded-minors characterisation of outerplanar graphs folklore [12]

• Heawood’s theorem on the colourability of plane triangulations [22] [13]

• Whitney’s theorem on unique embeddings of 3-connected graphs [28, 15] [18]

4.2.1 Terminology

We use the terminology of [15]. In this note, graphs may have loops and parallel edges.
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4.2.1.1 1-complexes

Let G be a graph with vertex-set V and edge-set E. We can obtain a topological space

from G, called the 1-complex of G and also denoted by G, as follows. The 0-skeleton of G

is V equipped with the discrete topology. For every edge e ∈ E, let [0, 1]e be a copy of the

unit interval, disjoint from V and from all other copies [0, 1]e′ . Furthermore, arbitrarily

fix a map φe : {0e, 1e} → V such that the image of φe is equal to the set of ends of e

(so there are two choices for φe if e is not a loop, and only one choice if e is a loop).

The 1-complex of G is obtained from the 0-skeleton of G by adding all copies [0, 1]e for

all edges e ∈ E and identifying 0e and 1e with their images under φe. Note that taking

the quotient as above also defines a topology on the 1-complex. For convenience, we now

change the notation [0, 1]e to refer to [0, 1]e after taking the quotient as above, so that

we have [0, 1]e⊆G. We then call [0, 1]e a topological edge of the 1-complex G, and write

e for [0, 1]e when there is no danger of confusion. The third-edges of G are the closed

intervals [0, 1
3
]e and [2

3
, 1]e of the topological edges [0, 1]e, where e ranges over all edges of

the graph G.

4.2.1.2 2-complexes

A 2-complex C is a topological space obtained from a 1-complex G by disjointly adding

closed 2-dimensional discs Di (i ∈ I), fixing a continuous gluing map φi : ∂Di → G for

each i, and identifying x with φi(x) for all i and x ∈ ∂Di. In this note, we will only

need to consider 2-complexes whose gluing maps φi follow closed walks in G at constant

nonzero speed. This will allow us to also view the gluing maps φi from a combinatorial

perspective, through the closed walks they correspond to. The subspaces of C obtained

from the discs Di by gluing their boundaries to the 1-skeleton are the 2-cells of C. The

vertices and edges of C are the vertices and edges of its 1-skeleton. A 2-complex C is said

to be simplicial if G is simple and each gluing map follows a closed walk that goes once

around a triangle.

1-complexes and 2-complexes are instances of the more general cell complexes, col-
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orredsee Hatcher’s book on algebraic topology [20] for more information on cell complexes.

4.2.1.3 Link graphs

Let C be a 2-complex with 1-skeleton G and gluing maps φi (i ∈ I) for its 2-cells. The link

graph of C, which we denote by L(C), is defined as follows. The vertices of L(C) are the

third-edges of G. For each i, we follow φi along the circle that is its domain (the direction

does not matter), and we add an edge between two vertices I and J in L(C) whenever I

and J share a vertex v in G and φi first traverses I to reach v and then traverses J next

(or vice versa). Hence the link graph L(C) may contain parallel edges and loops, even if

C only has one 2-cell.

A pairing of a set S, with |S| even, is partition of S into classes of size two. A paired

graph is a pair of a graph G and a pairing π of its vertex set. Every link graph has a

default pairing in which every two third-edges that are included in the same topological

edge form a class. When we view a link graph as a paired graph, we always use the default

pairing.

4.2.1.4 Colourings of paired graphs and 2-complexes

A pair-colouring of a paired graph (G, π) is a colouring c of the pairs in π such that

c(p) ̸= c(q) whenever G contains an edge joining a vertex in p to a vertex in q. The terms

pair-chromatic number and k-pair-colourable are defined as expected.

An (edge-)colouring of a 2-complex C is a colouring c of the edges e of C such that

c induces a pair-colouring of the link graph of C (which colours every vertex I⊆[0, 1]e of

L(C) with the colour c(e)). The terms edge-chromatic number and k-edge-colourable are

also defined as expected.
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4.2.2 Proof of (1)

A 2-pire map is a paired graph (G, π) where G is planar. We sometimes call G a 2-

pire map when π is clear from context, or say that G is a 2-pire map with pairing π.

Isomorphisms between 2-pire maps are required to respect their pairings. The name and

definition are directly motivated by Heawood’s m-pire problem [21], which was surveyed

in [17].

Example 4.6. Since every 2-complex that embeds in a 3-manifold has planar link graphs,

the link graphs of such 2-complexes, equipped with their default pairings, are examples

of 2-pire maps.

Lemma 4.7 (Heawood [21]; surveyed in [17]). Every 2-pire map is 12-pair-colourable.

The paired quotient of a paired graph (G, π) is the graph G/π obtained from G by

identifying every two vertices that are paired by π, keeping all edges.

Lemma 4.8. Let C be a 2-complex, and let π denote the default pairing of the link

graph L(C). The following numbers are equal:

(i) the edge-chromatic number of the 2-complex C,

(ii) the pair-chromatic number of the link graph L(C), and

(iii) the vertex-chromatic number of the paired quotient L(C)/π.

Proof of Theorem 4.5 (1). We combine Example 4.6 with Lemma 4.7 and Lemma 4.8.

4.2.3 Proof of (2)

Lemma 4.9. [21] There exists a 2-pire map whose pair-chromatic number is equal to 12.

Proof. For convenience, we have included Figure 4.3, which shows a 2-pire map whose

paired quotient is a K12, and whose pair-chromatic number is equal to 12 by Lemma 4.8.
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Figure 4.3: A 2-pire map whose pair-chromatic number is equal to 12. This was found by
Kim Scott and published (in slightly different form) in [17]

To find a 2-complex C that is not 11-colourable but embeds in S3, it suffices by

Lemma 4.8 to construct C so that its link graph with the default pairing contains a

spanning copy of the 2-pire map as provided by Lemma 4.9 while simultaneously making

sure that C embeds in S3. In the following, we will offer a 2-step construction that achieves

just that. The first step will be Lemma 4.10 below.

Recall that the degree of a vertex v in a graph G is the number of edges of G that

are incident with v, counting loops twice. The pairing π of a paired graph (G, π) is

degree-faithful if every two paired vertices have the same degree in G.

We define punctured 2-complexes as follows. Let G be a 1-complex, and let Fi (i ∈ I)

be pairwise disjoint copies of the closed strip S1 × [0, 1]. For each i, let F ∗
i denote the

subspace of Fi that corresponds to the circle S1 × {0}, and fix a continuous gluing map

φi : F
∗
i → G. As for 2-complexes, we require the maps φi to follow closed walks in G

at constant speed. The topological space D obtained from G and the closed strips Fi
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by identifying x with φi(x) for all i ∈ I and x ∈ F ∗
i is a punctured 2-complex. The

name is motivated by the fact that every punctured 2-complex can be obtained from a

genuine 2-complex by ‘puncturing’ every 2-cell. The link graph of a punctured 2-complex

is analogous to that of the link graph of a genuine 2-complex. In fact, the link graph of a

2-complex is invariant under ‘puncturing’. The subspaces of D obtained from the closed

strips Fi by gluing F ∗
i to G are the punctured 2-cells of D.

The following definition is a variation of a similar definition in [18]. Let X be a set

of points in S3. The shadow of X is the set of all points in S3 that lie on a straight line

segment between the origin and some point in X.

Lemma 4.10. For every 2-pire map G with a degree-faithful pairing π there exists a

punctured 2-complex C such that the link-graph of C with the default pairing is isomorphic

to (G, π) and C embeds in S3.

Proof. Let Br denote the closed ball of radius r around the origin in S3. Since G is planar,

there is an embedding α of G (viewed as a 1-complex) in the boundary of the unit ball B1.

Next, we construct a graphH together with an embedding β ofH in S3, as follows. The

graph H has only one vertex h, which β maps to the origin. For every pair p = {u, v} ∈ π,

the pairing of the 2-pire map G, we add a loop ep to H with end h and let β map the

interior of ep into S3 − h so that the intersection of β(ep) with B1 is equal to the shadow

of {α(u), α(v)}. It is not hard to make sure that the images of distinct loops under β

do not intersect except in h, for example as follows. We enumerate the pairs in π as

p1, . . . , pn. Then we let β map ep for p = pi = {u, v} to the union of the following three

subspaces of S3: the two straight line segments that link the origin to ∂Bi+1 and pass

through α(u) and α(v), respectively, plus one of the obvious arcs that links α(u) and α(v)

in the boundary ∂Bi+1.

The graph H, viewed as a 1-complex, will be the 1-skeleton of the punctured 2-

complex C, which we construct next. For every vertex v of G, let Sv denote the image

under α of the union of all third-edges of G that contain v. Note that the subspaces Sv

are pairwise disjoint, and that Su is homeomorphic to Sv by a homeomorphism mapping
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Figure 4.4: The image of ιp for p = {u, v}. The black graph is α(G). The shadow of α(G)
is indicated by the grey shaded areas.

α(u) to α(v) for all pairs {u, v} = p since π is degree-faithful. For each pair p = {u, v}

in π, we informally link up Su and Sv in S3 minus the interior of B1 by embedding the

space Su × [0, 1] ∼= Sv × [0, 1] so that this follows the topological path β(ep), as shown in

Figure 4.4. More precisely, we find an embedding ιp of Su × [0, 1] in S3 such that

• ιp maps Su × {0} to Su and Su × {1} to Sv;

• ιp maps α(u)× [0, 1] to β(ep) \ B̊1; and

• the image of ιp avoids B1\(Su ∪ Sv).

We can greedily find the embeddings ιp for all pairs p ∈ π so that their images are pairwise

disjoint: For example, if we construct β using the balls of distinct radii as outlined above,

we could even write down an explicit description of ιp, which we do not as it would be

tremendously tedious, but it is possible.

Let C be the topological space obtained from the shadow of α(G) by adding the

images of the embeddings ιp for all pairs p ∈ π. The construction of C ensures that
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all connected components of C\β(H) are homeomorphic to S1 × (0, 1]. Hence C is a

punctured 2-complex with 1-skeleton β(H). By construction, the link graph of C with its

default pairing is homeomorphic to G with the pairing π.

Proof of Theorem 4.5 item (2). By Lemma 4.9, there exists a 2-pire map G with pairing π

such that the pair-chromatic number of G with regard to π is equal to 12. For every edge

of G we add an edge in parallel, to make sure that all vertices of G have even degree,

which then allows us to add loops to G so that π becomes degree-faithful.

By Lemma 4.10, there exists a punctured 2-complex C as a subspace of S3 such that

the link-graph of C with the default pairing is isomorphic to G with the pairing π. Let

F1, . . . , Fn be the punctured 2-cells of C and let φ1, . . . , φn be the corresponding gluing

maps.

For each i = 1, . . . , n we do the following. Let Wi denote the closed walk in H that

φi traverses at constant speed. Let Ui denote the smallest initial segment of Wi that uses

an edge. We define W ′
i to be the closed walk W ′

i = WiUiU
−
i W

−
i , where W− denotes the

reverse of a walk W and writing the walks in sequence means concatenation.

Figure 4.5: The replacement step

We obtain the 2-complex C ′ from C by replacing each punctured 2-cell Fi with a

genuine 2-cell F ′
i whose boundary we glue along W ′

i . By following W ′
i and working in

close proximity to the punctured 2-cell Fi⊆S3, we can embed the interiors of the F ′
i in S3

as depicted in Figure 4.5 so that we obtain an embedding of C ′ in S3.
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4.3 Further thoughts on the paper

In the paper, we defined 1- and 2-complexes as topological spaces, and showed how to

obtain a 1-complex from a graph. We can also recover the underlying graph from a 1-

complex G in the obvious way: let the set of vertices V be the 0-skeleton of G, and let two

vertices v, v′ be connected by an edge if there is a topological edge of G with v and v′ at

its ends. Defining 2-complexes in this way allows us to define the punctured 2-complexes

we needed to help construct the embeddings.

Lemma 4.7 is a direct consequence of Heawood’s proof of the 6m-colourability of m-

pire maps, which uses the same logic as the 6-colour theorem (as planar graphs are just

1-pire maps) and Theorem 4.2.

Also note that the paired quotient L(C)/π is equivalent to the spatial line graph

SL(C) from Section 3.1.
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CHAPTER 5

FEEBLE SEPARATORS OF NON-TOUGH
GRAPHS

Trying to determine whether a graph is Hamiltonian is NP-hard. In 1973, Chvátal ob-

served that all Hamiltonian graphs are 1-tough1[14], however his conjecture that this

connection goes both ways was disproved in 2000 by Bauer, Broersma and Veldman [2].

Although, studying the class of graphs that are not 1-tough could still give some insight

into the properties of Hamiltonian graphs.

By definition, graphs that are not 1-tough must have a separator that breaks the

graph into more connected components than there are vertices in the separator. Such a

separator that witnesses the non-toughness of a graph is called feeble.

In this chapter, we will look at graphs that are not 1-tough, in particular we discuss

the set of feeble separators of a graph that have minimal size.

5.1 Tools and Terminology

Definition 5.1. A separator S⊆V (G) is a feeble separator if G\S has more than |S|

connected components.

If a graph G has a feeble separator then, by definition, it is not t-tough for any t ⩾ 1.

We will call such graphs non-tough.

1See Definition 2.1 for the definition of a t-tough graph.
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Example 5.2. For any star Sn, n ⩾ 2, the central vertex with degree equal to n is a

feeble separator, as in Figure 5.1.

Figure 5.1: The central vertex v of the star S6 is a feeble separator, S6\v has 6 connected
components.

Definition 5.3. For two separators S1 and S2, a connected component A of G\Si is

called:

• tiny if there exists a connected component B of G\S2−i such that A\S2−i⊆B.

• large if there exists a tiny component T of G\S2−i such that T\S2−i⊆A.

• good if it is also a connected component of G\S2−i.

Note that if A is good, then it is both tiny and large. In this case, it is a connected

component of G\(S1 ∪ S2).

The load of a connected component C of G\Si is the number of vertices of S2−i that

are contained in C, i.e. the load of C is equal to |C ∩ S2−i|.

Example 5.4. Consider the graph in Figure 5.2, call it G. Let S1 = {v1, v5, v7} (the

separator in red) and S2 = {v1, v4, v6} (the separator in blue).

The subgraph G[v2] is a connected component of both G\S1 and G\S2, so it is a

good component. The graph G\S2 has the subgraph G[v3] as a connected component,

G[v3] is also contained in a connected component of G\S1 so it is a tiny component. The

component of G\S1 that G[v3] is contained in is G[v3, v6] which is a large component.
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Figure 5.2: A graph with two 3-separators. The separator S2 = {v1, v4, v6} is a feeble
separator, but S1 = {v1, v5, v7} is not feeble.

5.2 Nested Feeble Separators

One question we could ask if whether the set of minimal feeble separators of a non-tough

graph G is totally nested. In other words, if two feeble separators cross2 then they must

not be of minimal size.

Conjecture 5.5. Let G be a non-tough graph with two crossing feeble separators S1, S2

such that |S1| = |S2| = s. Then G has a feeble separator S ′ with |S ′| < s.

If this conjecture were true, this would mean that any non-tough graph G would have

a totally-nested set of minimal feeble separators, this set of separators would then define

a tree-decomposition of G. Unfortunately, this is not true. To see this, consider the

following example.

Example 5.6. Let G be the graph in Figure 5.3, and let S1 = {v3, v5, v7} and S2 =

{v1, v5, v9}. We have |S1| = |S2| = 3, and the number of connected components in G\Si

is 4, for i = 1, 2, so the conditions in Conjecture 5.5 are satisfied.

2See Definition 2.3 for the definition of crossing separators.
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Figure 5.3: A counterexample for the crossing lemma.

(a) The graph G with two feeble cross-

ing separators S1 (coloured in red) and S2

(coloured in blue).

(b) The graph G\S2.

It is easy to see that the only separators of size less than 3 are those of the form

S ′ = {v5, vj}, for j ∈ {1, 3, 7, 9}. However, the number of connected components in G\S ′

is 2, for all j ∈ {1, 3, 7, 9}, as seen in Figure 5.4a. So none of these separators are feeble,

and there does not exist a feeble separator for G with size less than the size of the original

crossing feeble separators.

Figure 5.4: A separator of size 2 in G.

(a) The graph G with S′, a separator of

size 2, coloured in green.

(b) The graph G\S′.
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To avoid such a counterexample, we add the condition that the intersection of any two

crossing separators is empty.

Lemma 5.7 (Crossing Lemma). Let G be a non-tough graph with two crossing feeble

separators S1, S2 such that |S1| = |S2| = s and S1 ∩ S2 = ∅. Then G has a feeble

separator S ′ with |S ′| < s.

Proof. Let S1 and S2 be two feeble separators of the graph G that cross.

Since S1 ∩ S2 = ∅, there must be at least one connected component of G\Si that

intersects S2−i for both i ∈ Z2. So there exists non-tiny components of G\Si, for all

i ∈ Z2.

Assume that every connected component A of G\Si contains more vertices of S2−i

than tiny components of G\S2−i. Every vertex of S2−i is contained in some connected

component of G\Si. So we get:

s ⩾
∑
A

( #tiny components of G\S2−i in A+ 1) > #connected components of G\Si

This is a contradiction to Si being feeble. So there must be some connected component

A of G\Si that contains at least as many tiny components of G\S2−i as vertices of S2−i.

Since S1 and S2 cross the load of A must be less than s. Then let S ′ be the intersection

of A with the feeble separator S2−i. S
′ has size equal to the load of A. Consider the tiny

components of G\S2−i that are contained in A. No two of these can be in the same

connected component of G\S ′ as they are not connected to any vertex of S2−i that is not

in A. So G\S ′ must have a connected component containing each of the tiny components,

plus at least one more for the rest of the graph, and S ′ is feeble with |S ′| < s.

Corollary 5.8. Let G be a non-tough graph such that the intersection of every pair of

crossing feeble separators of the same size is empty. Then the set of minimal feeble

separators of G is totally nested3.

Proof. Let S1 be a feeble separator of G with |S| = k minimal. If there exists another

feeble separator S2 with |S2| = k that is crossed with S1 then by Lemma 5.7 we can find

another feeble separator S ′ with |S ′| < k, contradicting the minimality of k.
3Since non-intersecting separators are either crossed or nested.
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5.3 Concluding Remarks

A non-tough graph whose set of minimal feeble separators is totally nested (we will call

such graphs nested feeble from now on) can have the graph G from Example 5.6 as a

minor, see Figure 5.5.

Figure 5.5: Two nested feeble graphs that have G as a minor, with their minimal feeble
separators highlighted.

(a) H1 has four minimal feeble separators:

{v2}, {v5}, {v9}, {v11}.

(b) H2 has one minimal feeble separator:

{v5, v7, v9}.

Open Question 5.9. Let H be any nested feeble graph with G as a minor. What does

the set of minimal feeble separators of H look like?

From Figure 5.5, the graph H1 has minimal feeble separators of size 1 and the graph

H2 has only 1 minimal feeble separator, these two cases are not very interesting as they

are automatically totally nested sets. Are there any nested feeble graphs with G as a

minor with more interesting minimal feeble separators?

Another interesting question is how do we characterise nested feeble graphs?

Conjecture 5.10. Let H be any non-tough graph without G as a minor. H is a nested

feeble graph.
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