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Abstract 
 
The present study seeks to identify neural correlates of high performance in ecological 

valid, sporting tasks and quantify the differences between high skilled and low skilled 

players. To do this, Esports is chosen to be the sporting model to facilitate clean brain 

activity recordings whilst playing sport, something that is considerably more 

challenging with traditional sports. Participants are first separated into a skilled or 

unskilled group based on their Esports performance using objective classification 

measures to identify the presence of a higher and lower performing groups. Their brain 

activity is then recorded as they complete a series of visuomotor psychophysics and 

Esports aim-training tasks. Results indicate that there are several key differences in the 

brain activity of skilled players that facilitate a higher level of performance. Firstly, 

skilled players modulate visual attention, gated by alpha oscillations, to release the 

visual system before target onset. As a result, visual information is consciously 

accessed more readily to be utilized for a motor response.  Secondly, skilled players 

utilize cueing information,  received from multi-sensory cues, and propagate it in 

working memory to narrow visual search and improve performance. Finally, skilled 

players show an increase in frontal-midline theta during Esports performance 

facilitating management of cognitive load and repeated execution of precise 

movements. Due to the nature of the model, applied implications are suggested for 

both coaches and athletes of all sports to utilize this research. Specifically, 

performance improvement of players could be facilitated by identifying deficits in their 

brain activity and talent identification, by observing the neural correlates reported in 

developing players. 
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CHAPTER 1 
 

General Introduction 

With the professional development of Sport and Sport Science, the branch of 

performance analysis has become crucial to aid players in their continual pursuit of 

improvements. What started as simple observations has now become a rigorous, data-

driven machine powered by many employees across several disciplines. Those 

performance analysis departments that are the most in-depth include data from a huge 

array of sources. It is relatively simple and cost-effective to attach GPS, 

accelerometers, and other such equipment to players as well as high-definition 

videography in both training and during competition. This provides scientists with data 

incomprehensible to the human eye that can be processed, stored, observed, and used 

time and time again. Furthermore, advances in computing have allowed for the 

implementation of statistics, advanced mathematics and machine learning across all 

datasets transforming data to uncover more nuanced relationships between variables 

that were previously hidden.  

 

With modern technology, it is possible to set up statistical analysis of so many aspects 

of performance, but by analysing the team, players, and oppositions collectively, it is 

possible to manipulate the very threads that lead to winning. Whether that is identifying 

players on the cheap for a precise function, or the best talent that money can buy, team 

statistics has untold power if rooted in fundamental mathematics with respect to sport 

in question. Indeed, using mathematical models and statistical propositions to make 

evidence-based interpretations of performance is a key idea for modern sport science. 

To identify performance indicators and analyse their impact on a given player, team or 

sport, one must understand the dynamic nature of each indicator within a 

mathematical context. Crucially though, this theoretical data cannot be used at the 

expense of practical sporting experience and knowledge that can only be gained 

through genuine understanding of the sport (Lames and McGarry, 2007).  
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Although a wide variety of biomarkers have been used within performance analysis, the 

most important endeavour is the brain. The human brain is the most complex organ in 

the living world, yet our knowledge of the brain, however vast, is still incomplete. In 

sport, this problem is compounded by difficulties recording from players as they play 

sport in an ecologically valid setting. For example, experiments on elite swimmers are 

nearly impossible since they are in water, something relatively incompatible with 

electrical devices. However, science continues to find solutions to this problem using 

innovative methodologies. Before reaching that point though, one must first consider 

how brain recordings are possible, and what signal is actually being detected. 

Brain activity and electroencephalography (EEG) 

Brain activity research on Sport using cognitive electrophysiology is a new and 

emerging branch of neuroscience. To understand the results of this data, one must 

consider some of the more fundamental aspects of brain activity. A common step in 

processing EEG data is to decompose it into either the time or frequency domains. In 

the time domain, the tradition form of analysis is to look at how the voltage of the signal 

recorded at each electrode site changes over time whereas the frequency domain 

observes how that activity oscillates over time broken down into certain frequency 

bands. Crucially, this activity is temporally localized to a certain event, moments in 

trials that are marked to represent an important event within each trial. For example, it 

is very common to mark events within in a trial that signify to onset of the trial stimulus 

and that mark a response. From here, one can look at event related dynamics in either 

the time or frequency domain. In this type of analysis, many trials are presented to the 

participant and the brain activity surrounding it is isolated. The same time-window for 

each trial is used to remove an equal portion of the activity before they are all averaged 

together producing an averaged response in either the time or frequency domains.  

 

Event Related Potentials (ERPs) 

The typical time domain analysis is called Event-Related Potentials (ERPs). These 

potentials, when averaged together, can represent brain activity biomarkers of certain 

behavioural components. Elements of the ERP, such as the latency to a peak and the 

amplitude of the peak can be used to discriminate between distinct phases in the brain 
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activity processing. For example, an occipital lobe localized p100 (positive increase 

occurring around 100-150ms after the onset of a visual stimulus) denotes a visual reflex 

and the early-stage processing of visual information.  

 

 

 

Figure 1.1. A typical event related potential (ERP) displaying positive and negative potentials occurring 

over time after a stimulus onset. P/N refers to a positive or negative potential in amplitude. The numbers 

refer to the time at which a peak is observed. Adapted from Baghdadi et al  (2021).  

 

P100 

The visually evoked potential research has identified the p100,  a positive potential 

detected in occipital sensors 100ms after a visual stimulus onset, as an early 

electrophysiological correlate of target-orientated visual processing (Desmedt and 

Robertson 1977). This is a bimodal process with average p100 amplitudes isolated to 

each eye showing little variability when presented in the same spatial location (Shors et 

al., 1986). However, by presenting a visual stimulus in different locations in the visual 

field, significant differences in amplitude and latency in the waveform become 

apparent (Saba et al., 2023). Increases in target size and a participant’s visual acuity 

also modulate the amplitude and latency of the p100 waveform, with decreases to 

latency and gradual increases in amplitude (Li et al., 2011). During continuous visual 

stimulation, steady state visually evoked potential amplitude increases, but time-
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locked averages decrease (Rosenstein et al., 1994). This alteration to time-locked 

evoked potential amplitude is regarded as a substrate for visual habituation.  

 

Early-stage visual processing also has a key contribution to latter stage, more complex 

cognition. This occurs in both explicitly and implicitly vision-based behaviours. A 

notable explicit vision-based behaviour is face perception. This process begins early, 

reflected in the p100 wave form as a face-selective response (Herrmann et al., 2005). 

The p100 (referred to as an M100 using MEG) amplitude correlates with successful 

characterization of face stimuli, discriminating them against other visual stimuli, but 

not with successful individual face recognition (Liu et al., 2013). Sustained spatial 

attentional mechanisms are also influenced by visually evoked potentials. By 

presenting a visual target either to the left or the right visual field immediately preceding 

a continual visual stimulus (in this case, visual gratings), transient VEPs amplitudes 

were enhanced by sustained attention (Di Russo and Spinelli, 1999). Although 

sustained attention is modulated by a wide variety of factors, not least neural 

oscillations, VEPs served as an early marker of attention in the time domain.  

 

Further evidence for the role of VEPs in complex cognition can be found in disease 

models, where certain mental disorders result in perturbed VEPs. One such disorder is 

Autism Spectrum Disorder (ASD) whereby the amplitude of p100 is reduced in ASD+ 

participants (Kovarski et al., 2016; Kovarski et al., 2019). Reduction in p100 amplitude is 

also detected in patients with schizophrenia (Campanella et al., 2006; Shah et al., 

2018). With p100s being successfully used to classify participants between 

schizophrenia+ and healthy groups (Tanaka et al., 2013). Overall, p100 VEPs represent 

an early stage of visual processing that is subject to modulation by the size, location, 

type and duration of visual stimulus as well as the health status of the participant. 

 

P300  

One of the most widely studied ERP components is p300. Widely detected across 

different parts of the brain, occipital parietal p300 is thought to reflect the 

consequences of conscious perception and in particular, conscious access. The 
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central tenant of this theory comes from studies on visual perception of near threshold 

stimuli. In this paradigm, participants report whether they have seen a flash or not. 

Reporting that a flash has been seen is associated with a higher amplitude p300 than 

trials where participants reported no flash (Eimer and Mazza, 2005 ;Salti et al., 2012; 

Rutiku et al., 2015). This effect has also been abolished by blurring the visual stimuli, 

displaying a steep drop in p300 amplitude, and recovered by removing the blur 

(Heinrich et al., 2010). Source analysis has revealed an increase in p300 activation 

across occipital parietal sensors during seen trials as compared to not seen trials. 

Furthermore, rare, oddball stimuli also produce a significantly higher amplitude of p300 

than expected stimuli (Bernat et al., 2001) but also habituated reliably with repeatedly 

matched stimulation (Ravden and Polich, 1998). P300 amplitudes are modulated in 

several ways. Firstly, perceptual training using audio-visual information increases p300 

amplitude however, this effect was only present in older adults and produced no 

significant changes to younger adults (Yang et al., 2018). Secondly, in patients with mild 

cognitive impairment, increasing cognitive load prolonged latency of p300 during target 

stimulus processing (Demirayak et al., 2023). As such, p300 in occipital parietal 

electrodes is seen as a mechanism for conscious access to visual information.  

 

However, p300 may not be the earliest reflection of visual perception. As discussed 

previously, p100 is regarded as one of the earliest markers of visual processing, but 

n200 or Visual Awareness Negativity (VAN) represents a neural correlate of visual 

detection even in trials where the participant isn’t consciously aware of the stimulus 

(Merikle et al., 2001). This potential, occurring 200ms after stimulus onset in a negative 

deflection, is stable in its amplitude and latency regardless of trials in which a flash is 

perceived or not, and remains despite manipulations to stimulus visibility (Koivisto et 

al., 2008). It is likely that VAN is generated in sensory cortices and implicated in sensory 

consciousness (Dembski et al., 2021). VAN thus appears to be a robust component of 

visual perception but does not influence post perceptual processes or even conscious 

access. Alternatively, P300 is not a reliable marker of somatosensory awareness but 

reflects post perceptual processing (Schröder et al., 2021). It can be seen as an index of 

requirements to allocate attentional resources. Perceptual training using audio-visual 

information increases p300 amplitude however, this effect was only present in older 
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adults and produced no significant changes to younger adults (Yang et al., 2018). 

Furthermore, in patients with mild cognitive impairment, increasing cognitive load 

prolonged latency of p300 during target stimulus processing (Demirayak et al., 2023). 

Finally, p300s are evoked with higher amplitudes by autobiographical stimuli that is 

self-relevant such as a participant’s own name, compared to control stimuli (Gray et 

al., 2004). This data suggests that p300 amplitude is subject to modulation by stimulus 

specific training, self-specific stimuli and is perturbed by cognitive impairments.  

 

Neural Oscillations 
 

It has been proposed emerge from the different functions of the cell to process that 

information it has received. At the peak of the oscillation, the positive period, it has 

been suggested that the cell is acquiring information. This is followed by a trough, the 

negative period, which denotes the cell interpreting the information. As a result, it is 

possible to build a cyclical model of how neural oscillations function within the cortex, 

coordinated by pyramidal cells. In other words, the dendrites integrate an electrical 

signal and transfer it to the cell body via the axon. This movement of electrical charges 

along the dendrites generates an electrical field. When there are many of these cells in 

the same orientation and firing in synchrony (active at the same time), then the charge 

is summed and generates a local field potential. This signal is recordable at the 

surface.   

 
Figure 1.2. Representation of different frequency bands of oscillatory power. There are many types of 

oscillatory power which provide different functions within the brain. They range from low frequency 

waves, such as Delta, to high frequency waves such as Gamma. Adapted from 

https://www.diygenius.com. 
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Alpha  

Alpha is the most widely researched rhythm in electrophysiology. Since its discovery by 

Hans Berger (1929), it has steadily increased in research focus as knowledge of its 

importance has intensified. In the earliest research on alpha, there was a general 

misunderstanding of its nature. Previously, alpha was seen as an “idling” rhythm 

reflecting inactive neural networks localised to certain sites not active in sensory 

processing or cognitive processes. The central tenant to this “idling” theory is the 

observation of power decreases of alpha oscillations after sensory stimulation, but 

upon disengagement of any cognitive task, there is an associated increase in alpha 

power (Pfurtscheller , 1992; Pfurtscheller et al., 1996). However, this theory has long 

since been debunked, not to say that it is untrue, more incomplete.  

 

Alpha oscillations are widely detected across the mammalian brain and provide 

suggestions on their diverse, but important role in brain activity and function. They have 

been observed in several cortical areas, including sensory (Bollimunta et al 2008; 

Craddock et al., 2017)), motor (Sauseng et al., 2009; McAllister et al., 2011) and frontal 

cortices (Cohen et al., 2008; Ku et al., 2015). However, the area of the cortex most 

widely associated with alpha oscillations is the visual cortex (see Sewards and Sewards 

(1999) or Peylo et al (2021) for reviews) where the relationship of alpha to visual 

awareness has most widely been studied.  Synchronous alpha oscillations have been 

recorded at higher amplitudes deeper into the cortex, compared to high frequency 

oscillations, such as gamma, often recorded more superficially, when localizing to the 

ventral stream (Buffalo et al., 2011). It is therefore considered that alpha oscillations 

facilitate feedback (Bastos et al., 2015; Michalareas et al., 2016 ) and propagate 

feedback direction (van Kerkoerle et al. 2014)  after receiving bottom-up inputs from 

superficial neurones carrying high frequency oscillations. Mechanistically, this could 

be achieved by cells deep in cortical layers directly activating local inhibitory neurons, 

which in turn inhibit local activity (Olsen et al., 2012).More widely though, alpha 

oscillations have been associated with propagation of activity throughout the brain 

across several critical brain areas. A particular focus has been the communication 

between the thalamus and posterior cortices (Saalmann et al., 2012) and more 
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precisely between occipital, parietal and frontal regions (Sadaghiani & Kleinschmidt, 

2016). Each of these sites seem to be linked by information flow and ultimately, 

communication, facilitated by modulation of alpha oscillations.  

 

Visual Perception 

As mentioned previously, alpha oscillations have a strong relationship to vision as 

evidenced by their prevalence in visual regions of the brain. As such, alpha is a crucial 

component of visual perception . It is regarded as a fundamental rhythm of conscious 

perception that plays an active role in sampling information from the sensory world to 

inform one’s internal conscious experience (Babiloni et al., 2006). In fact, by controlling 

pre-and post-stimulus alpha power using TMS this can differentially impact one’s 

conscious experience of the stimulus. By applying rhythmic-TMS at an alpha frequency 

pre-stimulus, modulated perceptual accuracy but post-stimulus modulated subjective 

confidence in the participants decision (Di Gregorio et al., 2022). Furthermore, there 

are observable individual differences in the periods of alpha that influence the speed at 

which visual information is processed, with shorter alpha period individual processing 

faster than longer period individuals (Ro., 2019).  

 

An important finding related to alpha and visual perception, centres around the phase 

at which a stimulus is presented. If the visual stimulus is presented in the positive 

phase of the occipital alpha cycle, the probability of perception is maximised (Valera et 

al., 1981). This effect has been ratified by finding that visual detection thresholds vary 

with EEG activity phase, particularly in alpha and theta bands, which accounted for a 

large proportion of variability performance in detecting the stimulus (Busch et al., 

2011). This effect may be due to “windows of excitability” created by alpha oscillations, 

increasing likelihood that a stimulus will reach conscious perception (Mathewson et 

al., 2009; Duque et al., 2011). The phase of alpha oscillations can determine whether 

visual signals on a sub-second temporal scale will be temporally integrated or 

segregated (Wurtz et al., 2014). Short-lived alpha phase synchronization has been 

found to be critical for integration of transient visual information (100ms) allowing the 

visual system to remain sensitive to dynamic changes in visual information (Wutz and 
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Melcher, 2014). This finding is supported by decoding experiments using a rapid visual 

stimulus task and found highest decoding accuracy in the phase of alpha oscillations 

(Ranconi et al., 2017).  

 

The peak frequency of alpha shifts depending on the task and state dependencies of 

the experiment, occurring over small timescales (Mierau et al., 2017). These 

fluctuations have been positively correlated to cerebral blood flow in visuo-spatial 

attention networks (Jann et al., 2010). Peak frequency modulations have been observed 

in a diverse range of working memory tasks, showing a significant increase directly after 

the task (Angelakis et al., 2004) that can be load-dependent (Maurer et al., 2015) and 

are localized to the occipital cortex (Haegens et al., 2014). There is also a link between 

APF  modulations and more physically demanding tasks. It has been found that resting 

state APF increases following a strenuous bout of cycling exercise (Gutmann et al., 

2015) and increased during a more demanding conditions in a balance task 

(Hülsdünker et al., 2016). The observed APF modulations was suggested to be caused 

by increased attention required by the more demanding balancing task.  

 

The temporal resolution of alpha can also be subjected to modulation and has a 

relationship to visual perception performance. Faster alpha frequencies have been 

found to predict more accurate flash discrimination, both between and within subjects 

(Samaha and Postle, 2015). In a temporal integration/segregation task, participants 

were entrained using audio-visual entrainment temporally modified  to their individual 

alpha frequency (IAF) peak, with either fast (IAF +2) or slow (IAF -2) frequencies. By 

entraining participants at a faster frequency of alpha, segregation (searching for an odd 

element) trial performance improved and at lower frequencies integration (searching 

for a missing element) trial performance improved (Ranconi et al., 2018). This suggests 

that upper entrainment shrinks the temporal binding window and sensory processing 

coordinated by alpha oscillations since temporal acuity improves at this entrainment 

frequency compared to low alpha frequencies (Marsicano et al., 2023). Therefore, 

alpha oscillations might represent a temporal element within visual processing that 

functions to gate perception (Cecere et al., 2015) 
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Alpha oscillations have been implicated in higher-order cognitive processes, such as 

decision-making by transmitting prior evidence to visual cortex, a common information 

flow. During a detection task, pre-stimulus alpha in posterior electrode sites, predicted 

binary decisions, with the phase of alpha influencing expectations on confidence 

(Sherman et al., 2016). These perceptual expectations are configured by alpha, which 

facilitates optimal processing for subsequent information (Samaha et al, 2015). As a 

result, alpha has been suggested to modulate both pre-stimulus and post-stimulus 

perception impacting both prior expectations and conscious access (Zazio et al., 2022). 

A possible mechanism for this is that during an alpha cycle, there is an oscillation in 

excitability in the visual system, directly influencing environmental processing and 

facilitation conscious awareness (Mathewson et al., 2009).  

 

Attention  

A key cognitive process linked to visual perception and the use of that information is 

attention. Alpha oscillations have repeatedly been implicated in the attentional 

processes and served a major role in developing the understanding of how alpha 

oscillations function.  

 

During sustained attention to visuospatial tasks, alpha power rapidly reduces during 

visual attention in occipital electrode sites, rebounding when these regions become 

disengaged (Fries et al., 2009). The power changes to alpha though, might reflect task-

swtiching as opposed to general attention. This is evidenced by a large body of 

evidence showing that alpha power increases in visual regions contralateral to the 

ignored target, the opposite direction to where attention is focussed (Worden et al., 

2000). This effect was significant post-stimulus, when compared to baseline (Kelly et 

al., 2006) and reliably predicted reaction time (Gould et al., 2011).  

 

Alpha amplitude changes may originate pre-stimulus, beginning up to 200ms before 

stimulus onset with significant suppress at sites contralateral to attention (Sauseng et 

al., 2005). This was accompanied by increased phase coupling and long-range 

synchronisation between frontal and posterior-parietal regions of the contralateral 
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hemisphere but increased desynchronisation in the ipsilateral hemisphere (Doesburg 

et al., 2009; Foxe et al., 2014). In fact, optimal performance correlates with alpha power 

decreases in task irrelevant areas, coordinating sensory inhibition and integration by 

top-down control networks (Jensen & Mazaheri, 2010). Another important aspect of 

attention is working memory, where research has continually linked it to the role of 

alpha oscillations. Although, alpha oscillations seem to suppress irrelevant visual 

information from being attended to (Johnson et al., 2011), alpha power has been shown 

to increase with memory-load (Jensen et al., 2002), increase during memory retention 

period (Bastiaansen et al., 2002) and depending on differences in the visual stream 

activated by the visual information (Jokisch & Jensen, 2007).  

 

Beta   

Oscillatory beta activity is an essential constituent of many aspects of cognitive 

function. Importantly, beta oscillations have been implicated in many characteristics of 

motor activity, regarded as a general mechanism for this activity, as well as 

contributions to cognitive state (Engel and Fries, 2010). Beta activity is localized to a 

number of highly important regions in the brain facilitating its role in general 

motor/cognitive mechanisms. Low frequency beta (15–18 Hz ) is predominately 

observed in occipital-parietal regions and high frequency beta is predominately 

observed in motor (~20Hz) and pre-frontal regions (20-30) of the brain (Rosanova et al., 

2009; Capilla et al. 2022).  

 

An important process associated with beta is visual perception and attention. During 

visual perception tasks, beta power has been shown to significantly increase during 

perceptual switches between two stable pictures, occurring between 250-450 ms 

(Okazaki et al., 2008). These power modulations are also present during animations 

where participants switched between local and global motion (Zaretskaya and Bartels, 

2015) and in motor integration tasks (Aissani et al., 2014). In more complex tasks visual 

tasks, such as a crowding paradigm, larger post-stimulus beta power desynchronized, 

with a greater magnitude in the strong crowding condition, compared to weaker 

crowding condition (Ronconi et al. 2016). However, this effect may occur due to 
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stronger pre-stimulus beta power which was correlated to correct performance in the 

same task (Ronconi and Bellacosa Marotti, 2017). Interestingly though, it has been 

postulated that beta oscillations carry little information directly about the stimulus, but 

may predominately reflect neuromodulatory inputs (Belitski et al., 2008).  

 

It has been seen that beta power modulations are associated with performance in 

different visual attention tasks, computed in the fronto-parietal network. Within the 

frontal eye fields, movement neurones displayed an increase in beta synchronisation 

but a desynchronisation during a saccade task (Gregoriou et al., 2012). This beta 

activity was associated with suppression of attentional shifts (Fiebelkorn et al., 2018). 

An important piece of supporting evidence in a dysfunctional brain can be found in 

neglect patients where frontal and parietal connectivity is suppressed during visual 

attention tasks (Yordanova et al., 2017). Furthermore, within this network, there is a 

correlation between beta-band power and performance within a visual search and 

motor task at resting state (Rogala et al., 2020). When taken together, visual 

perception, attentional switching and visuomotor performance are, at least in part, 

coordinated by beta-band oscillatory power in the fronto-parietal network.  

 

The most famous association with beta power is to motor activity and general motor 

mechanisms. Beta power increases have been implicated in a number of different 

types of movement such as static position maintenance (Baker et al., 1997), post-

movement holds (Pfurtscheller et al., 1996) and even suppressing movement initiation 

(Swann et al., 2009). This suggests that beta oscillations are important for the 

maintenance of motor behaviours (Engel and Fries, 2010). However, this type of 

approach loses some intricacy of the temporal dynamics of beta oscillations and 

movement since beta power can shift depending on the movement phase.  

 

MRBD and PMBR 

A more refined way to characterize beta based on the movement phase is splitting it 

into two distinct categories, Movement-Related Beta Desynchronization (MRBD) and 

Post-Movement Beta Rebound (PMBR) where these two categories reflect movement 
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preparation/initiation (Zhang et al., 2008), and post-movement termination activity 

(Heinrichs-Graham et al., 2017) respectively. 

 

MRBD as well as resting beta power, has been  found to be highly reliable after motor-

training interventions across participants, across sessions in both sensorimotor 

cortices (Espenhahn et al., 2017). There is a significant relationship between MRBD and 

resting beta power in primary motor areas in addition to MRBD magnitude and 

movement duration (Heinrichs-Graham and Wilson 2015). This effect may also reflect 

performance since when reaching, those movements that were preceded by a greater 

reduction in beta power, exhibited significantly faster movement onset times (Khanna 

and Carmena 2017). MRBD might also be linked to circadian rhythms due an increase 

in desynchronisation in the morning to afternoon period (Wilson et al., 2014 (1)). Age 

appears to also play a role in this process by increasing MRBD amplitude and resting 

beta power (Rossiter et al., 2014). Finally, supporting evidence of how this MRBD 

should operate in healthy participants can be found in Parkinson’s and Stroke patients, 

where MRBD in motor cortices was found to be significantly reduced compared to 

control groups (Heinrichs-Graham et al., 2014; Rossiter et al., 2014 (2)). This suggests 

that MRBD is a fundamental mechanism for performing movements since it can 

influence the onset and duration of the movement but is perturbed in a population 

where this process is dysfunction.  

 

PMBR is generated in the motor cortex and was strongest contralateral to the side of 

movement (Jurkiewicz et al. 2006). It serves as a signature of active immobilization after 

a movement has been terminated (Salmelin et al. 1995) and reflecting movement-

related somatosensory processing (Cassim et al. 2001). The amplitude of PMBR is 

subject to modulation by several different factors of the movement that has just 

terminated. Specifically, the type of afferent input (Houdayer et al. 2006) such as the 

rate of force development and the force magnitude (Fry et al., 2016). Furthermore, the 

amplitude of the PMBR is higher after termination of actual movements compared to 

suppressed movements or imagined movements (Solis-Escalante et al. 2012). This 

signifies PMBR to be a type of sensory check after a real movement has terminated. 
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Theta  

Theta oscillations have been implicated in the top-down control of higher-order 

cognitive processes such as visual awareness, memory and movement (Cavanagh and 

Frank., 2014). In particular, theta in midfrontal regions is regarded as a mechanism for 

action monitoring in the brain (Cohen et al., 2016).  

 

The theta rhythm is detected in several cortical structures within the brain (Steriade, 

2000). Specifically, ERS and ERD has been observed in separate yet integrative 

systems, but function in such a way that synchronisation occurs in the hippocampus 

and desynchronisation occurs in the neocortex (Hanslmayr et al., 2016). Theta is also 

detected in the visual system where it is hypothesized to serve feedforward information 

in the cortical output compartment of V1 (Kienitz et al., 2021). A key cognitive process 

that theta has been implicated in is visual awareness and attention. In visual search 

paradigms, theta oscillations may reflect attentional exploration and have a 

relationship to performance (Dugué et al., 2015). Successful and unsuccessful trials 

had differential relationships to post-stimulus theta amplitude and opposing oscillatory 

phase pre-stimulus. This is further supported by the finding that magnitude and phase 

synchrony of theta oscillations was enhanced because of high-frequency visual 

stimulation (Hamilton et al., 2020). When restricted to a specific target in reactive 

control experiments, there was a significant enhancement to theta power localized to 

pre-frontal regions (van Driel et al., 2019). In frontal central regions, activity was 

strongest during multi-sensory conditions, processing both auditory and visual signals, 

where attention was divided (Keller et al., 2017).  

 

Like many brain rhythms, theta oscillations have repeatedly been linked to memory in 

various forms with Klimesch (1999) concluding that theta power synchronisation 

represents the encoding of new information. In support of this idea, it has been found 

that theta synchronisation increases with task demand, facilitating more efficient 

processing (Weiss et al., 2000). In fact, theta power has been shown to increase 

throughout all phases of memory trials, only reducing at the end, even whilst 

processing multiple items (Raghavachari et al., 2001). This concept is supported by 
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further studies showing that during encoding of visual information, there were 

increases to the amplitude of theta oscillations, although this effect was bi-lateral and 

seems to function opposingly to alpha power, (Sauseng et al., 2004) and displayed 

increases in long-range coherence (Klimesch et al., 2010). When taken together, these 

studies describe how theta oscillations in frontal cortical areas display enhanced when 

performing many different cognitive tasks, including those that involve perception, 

attention and multi-sensory processing that exerts cognitive control.  

 

Another brain region under the control of theta oscillations is the motor system. When 

compared with periods of stillness, movement initiation and execution displayed higher 

levels of theta, present in the sensorimotor network (Cruikshank et al., 2012). The 

phase of theta oscillations also predicts perceptual performance with these 

oscillations being phase-locked to movement onset (Tomassini et al., 2017). During 

visuomotor experiments, an observed increase in theta synchronisation occurred in the 

midfrontal areas during higher visual feedback gain trials which corresponded to a 

decrease in force error and variability (Watanabe et al., 2021). Increases in oscillatory 

theta is also implicated in motor control by being predictive of motor slowing during 

motor conflict, independent of attentional conflicts and localized to midfrontal regions 

(Kaiser and Schütz-Bosbach, 2021). 

 

Theta oscillations may also serve a role in motor learning. In latter stages of motor 

learning and during the movement planning stage, there is an accompanied increase in 

theta power in parietal regions (Perfetti et al., 2011). This effect is correlated with 

degree of retention and difficulty (Van Der Cruijsen et al., 2021). The type of learning 

used might also alter the increases of theta whereby differential learning appears 

facilitate increases in theta power more than repetitive, early consolidation (Henz and 

Schöllhorn, 2016). Furthermore,  has been found that training in precise movements 

might alter the spatial dynamics of theta in frontal-parietal areas immediately before 

movement onset and contain a relationship to performance improvements (Rampp et 

al., 2022) 
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Sport Neuroscience  
 

It has been found in many studies that an expert sporting population has an 

increased visuomotor performance relative to a novice population. However, studies 

are conflicted about the neurophysiological origin of this performance difference. In 

one study, they found faster visuomotor transformation in motor areas linked to 

increased performance as opposed to the earlier visual perception of information in the 

visual cortex (Hülsdünker et al., 2016). This is further supported by a follow-up study 

(Hülsdünker et al., 2018) using a similar sporting population of Badminton players 

where the speed of visual perception predicted EMG onset. Interestingly, motor 

processes did not provide the link to visuomotor reaction time performance.  

 

It is not just a sporting population where neurophysiological differences have been 

noted at a population level. Shift workers, especially those working at night, display 

prolonged latency of visual evoked potentials which is associated with an increased 

visual reaction time (Hemanalini et al., 2014). Further highlighting the relationship 

between neurophysiology and performance at a population level. It appears that it is 

the consistency of the behaviour, or repetition of the movement that induces the 

changes at a neurophysiological level. Following general practice on visuomotor tasks, 

there is a correlation between reaction time and somatosensory neurophysiological 

changes (Akaiwa et al., 2020). Furthermore, modality-specific training can induce 

neuroplastic changes to improve visuomotor performance, in particular the execution 

of the response (Yamashiro et al., 2021).  

 

A key criticism of these visuomotor performance tests, especially in a sporting context, 

is the use of computer-based methodologies. Performance metrics, such as reaction-

time, on behaviour tasks such as the go/no-go task, are not representative of the sport 

the playing population competes in. Despite this, many studies argue that inducing a 

movement/cognitive demand is sufficiently ecological validity since there is a selective 

pressure of speed on performance (Hülsdünker et al., 2019). However, sensorimotor 

transformation demands of a movement on a mouse, to move a cursor on a computer 

screen, weakens this assumption. It would be far more ecologically valid to test these 
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movements, with their sensorimotor transformation demands in a sport where the 

demands are the same. 

 

To do this, the experiments will use Esports, a new sport where players compete by 

playing specific video games. Esports has been chosen because it facilitates an ability 

to record from the brain in real-time and in real competition due being a no-contact 

sport played on a computer. Like many traditional sports, Esports place a huge 

pressure on the visually guided biomechanics required to aim and execute precise 

movements to manipulate a piece of equipment. However, there is a much smaller 

range of limb-movements in Esports compared to others, with many movements being 

micro-adjustments required to update ones aim or body position.  

 

Understanding how precise movements contribute to performing high-skill bimanual 

tasks is fundamental to developing better training and development strategies. A focus 

of research in this area has been the use of eye-tracking to probe visual search and 

fixation behaviours during sporting competition (Vossel et al., 2014). Whilst it was 

thought that eye-tracking would lead to physical improvement, it has been found that 

an athlete’s cognitive performance and mental state could be interpreted through 

tracking of eye movements (Bavelier et al., 2012a). A particular focus is understanding 

the relevant eye-movement strategies employed by elite versus novice players of a 

particular sport (Womelsdorf et al., 2014; Anderson et al., 2014). In Esports literature, it 

has been demonstrated that playing video games leads to significant visual attentional 

processing changes (Bavelier et al., 2012b) and eye-movement performance 

differences (Prakash et al., 2012). However, only a small subset of eye movements has 

been tested, with many important contributors not considered.  

 

Live electrophysiological recording of brains in real-time competition is seen as the 

final frontier for sport neuroscience (Strenziok et al., 2014). The ability to quantify 

genuine brain activity, not simply infer it, offers new opportunities to study central 

tenants of sport performance such as biomechanics, training, decision-making and 

attention. In Esports, research has primarily used two different approaches to EEG data 

and to differentiate performance, continuous recording of oscillatory activity and event-
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related potentials (ERPs). Cortical brain activity oscillates within certain frequency 

bands facilitating a huge number of cognitive processes. In Esports literature, research 

has focussed on a range of top-down attention control processes (Gong et al., 2015; 

Pellouchoud et al., 1999) and visuomotor skills (Sheikholeslami et al., 2007). In fact, the 

best predictor of skill acquisition was the frontal alpha rhythms. This frontally 

distributed alpha power is a great predictor of learning shown by a strong correlation 

with steeper improvement of score (Smith et al., 1999). ERPs differ from continuous 

recording by creating epochs around an event (around 200ms before an event 

extending to 1.5s after it) and recording the activity from a specific electrode. By 

presenting this stimulus many times and averaging the response, any noisy data that 

isn’t phase-locked to the event is averaged out, generating a smoother, event-related 

response. This facilitates the identification of standardized responses to specific 

events such as the P300 (positive potential change 300ms after stimulus onset) 

responding to an occasional target in a standardized sequence. ERP evidence suggests 

that the faster behavioural reaction times in Esports players can be attributed through 

faster visual processing  (Latham et al., 2013) displaying earlier n100 latencies in 

occipital electrodes, O1 and O2 Brookings et al., 1996).  

 

In a study on martial-arts, Sanchez-Lopez et al (2016) analysed ERP component 

differences between skilled and novice groups during a sustained attention task. The 

task called Continuous Performance Task (CPT) required participants to detect the 

correct arrow orientation out of five possible and produce a motor response to click on 

the correct one. The skilled athletes displayed significantly larger p100 and n200 

components of their ERP response with the highest significance occurring in occipital 

electrodes (O1 and O2). However, many studies have reported the opposite effect of 

the one found in the present study. Lesiakowski et al (2017) compared athletes from a 

range of different sports that requiring varying degrees of visual processing for high 

performance. All athletes tested were experienced to some degree, but those with the 

most experience all displayed reduction in their VEP p100 amplitudes compared to less 

experienced athletes across volleyball, rowing and boxing. Further to this, exercise 

might have an impact on the amplitude of p100 VEP. After exercise intervals, the 

amplitude significant decreased in athletes, but increased in sedentary participants 
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(Bulut et al., 2005). This effect in a subsequent study was not replicated, with no 

significant changes in amplitude observed after three-bouts of exercise comparing 

volleyball players to non-athletes (Zwierko et al., 2011).  

 

A slightly more unifying observation in the previously mentioned studies, is the change 

in p100 latency which has been observed in many studies, both post exercise 

(Özmerdivenl et al., 2005, Zwierko et al., 2011) and with sporting expertise (Lesiakowski 

et al., 2017). The latencies of both p100 and n140 ERP components in baseball players 

were significantly shorter compared to non-athletes (Yamashiro et al., 2013). 

Furthermore, after extensive training over a multi-year period, the p100 latency of 

volleyball players was reduced by 2.2ms on average. All of these studies show support 

for modulations to p100 peak latency through expertise or training, however, these 

findings were not replicated by the present study. In fact, there was shorter latency to 

p100 peaks in unskilled as opposed to skilled players. Whilst this goes against the 

literature, a possible explanation is that the task did not induce typical VEP as is 

common with the other studies. Specifically, the visual information was not a flashing 

stimulus but a precise target requiring fine motor skill to respond to, not a simple 

button push.  

 
Esports and Neuroscience 

Esports is the newest and latest sporting craze to take over the world. Its 

emergence has been rapidly rising over the past 20 years from its inception, 

accelerated by the Covid-19 pandemic which forced the world inside and halted 

worldwide sport. During this period, large proportions of the world were left without 

competitive sport to watch and were forced online. This teed up Esports to emerge as 

the only competitive sport available to watch for months. Due to the nature of Esports, 

competitive tournaments, using hosted on local networks, referred to as LANs, simply 

moved online, as players could compete as part of their team, against other teams, 

from anywhere in the world, from the comfort of their homes, all the while being 

steamed for free to millions. Furthermore, the diverse nature of Esports, such that 

many different videos-games can be played as an Esport, meant that viewers could 

rotate through many different options at any point. This revolutionary period for Esports 
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catapulted it into worldwide view, transforming the opinions of many doubters about its 

longevity.  

 

 
Figure 1.3. Esports global revenue increases in US dollars over a three-year period (2020-2022) with 

projections for 2025.  Data sourced from Statista, figure taken from “Online gaming statistics 2023”, Nick 

Baker, Uswitch.com 

 

In recent years, Esports has emerged into a professional sport with organisations 

offering paid contracts to highly talented individuals. Academies, coaching services, 

and psychologist are starting to specialize in Esports competition and creating 

pipelines for talent to be spotted, nurtured and developed into high-level athletes who 

can compete on the world stage for vast sums of money. The worldwide public interest 

seems to emerge from the understanding that Esports is one of the most technically 

challenging sports around. Although thoroughly modern in nature, Esports differs from 

traditional sports in that it does not necessarily involve exhaustion of the body. In fact, 

due to the sedentary nature of the sport, within Esports competition, players can often 

be seen warming their hands in between rounds to not let them get cold, something 

rarely seen in other sports. It is the cognitive demand and precise, yet small, 

movements employed by players that yields the fascination of viewers. As a result, 

scientific research, especially in the sport-science, sport-psychology, and 

neuroscience domains, has intensified.  

 

As mentioned, Esports doesn’t exert as drastic physical demands on the body as other 

traditional sports, however that doesn’t mean there aren’t any physical effects. A key 

focus within the literature has been on physiological markers of stress during 
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competition, and a key metric being heart rate and blood pressure. During competition, 

the heart rate of athletes rises to between 102-110 bpm compared to during training 

where they varied between 80-84 bpm (Rudolf et al., 2016). These findings were ratified 

by Koshy et al (2020) who found increases to heart and respiratory rate of Esports 

players during a session compared to a rest session. Interestingly, there were 

significant increases to mean heart rate and respiratory rate in the winning team, 

compared with a losing team during this experiment. Furthermore, the videogame or 

Esport type appears to impact physical parameters too. It has been found that violent 

video games, in particular FPS and fighting games, increase systolic blood pressure 

(Siervo et al., 2013, Sousa et al., 2020, Porter and Goolkasian (2019) compared with 

other video games and/or Esports. These studies demonstrate the relationship to 

physical impacts of Esports and how these responses are strengthened by competition, 

compared to rest, and by high-octane, violent videogames.   

 

The most interesting aspect of the physical exertions on Esports and video-game 

players (VGPs) is the cognitive demands. Such demands induce long lasting changes to 

cognitive performance that are both significant, when compared to controls, and 

reproducible. In one meta-analysis of many studies reported improvements to top-

down attention and spatial processing in VGPs compared to controls (Bediou et al., 

2018). When conducting a variety of cognitive tests, Kowal et al., (2018) found that 

VGPs favoured a strategy of speed over accuracy facilitated by enhance information 

processing speed. There also appears to be a VG type specific cognitive enhancement 

effect, displayed by an increase in cognitive performance across a variety of tasks in 

FPS players over non-FPS players (Seya and Shinoda, 2016), with this effect being 

reproduced through an FPS training intervention, as well as faster reaction times 

(Deleuze et al., 2017). Finally, within Esports players, the skill-level of the athletes, or 

their rank percentile, shows a correlation with their cognitive flexibility (Valls-Serrano et 

al., 2022), a key concept to improve performance by modulating anxiety and stress 

(Han et al., 2011).  

 

As with all sports, VGs and more importantly Esports, relies heavily on vision to 

facilitate performance. VGPs display significant enhancements to early-stage visual 
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processing compared to controls (Appelbaum et al., 2013) as well as to contrast 

sensitivity (Li et al., 2009). Substrate for this enhancement sensitivity might be VGPs 

possessing larger central and peripheral field areas (Buckely et al., 2010). Ultimately, 

the improvements in visual sensitivity manifest as improvements to fundamental 

cognitive mechanisms required in all sport such as visual search, in which VGPs show 

faster response times (Castel et al., 2005) and visual attention (Green and Bavelier., 

2003), with these effects being improved in controls with a training intervention.  

 

Interestingly, the cognitive performance of Esports players has been compared to more 

conventional athletes across a variety of complex tests. Overall, athletes across both 

sports score very similarly in measures of reaction time, attentional control and 

memory but crucially, Esports athletes in the speed of visual search (Grushko et al., 

2021). This ratifies the use of Esports as a sporting model compared to traditional 

sports since their cognitive performance enhancements attributed to being an athlete 

appear to be conserved across multiple areas, and even extenuated in other such as 

visual search. Ultimately, these studies suggest that it is possible to establish a link 

between neural and cognitive aspects of sporting performance using Esports as the 

model (Palaus., 2017), particularly, visual processing, visual search, attention and 

memory.  

 

Esports provides a methodologically brilliant solution to many of the sport 

neuroscience issues. As such, research has been able to identify many neural 

correlates of performance differences to the diverse range of participants who take part 

in the sport. Attentional networks have been a key source of neural correlates using 

Esports and VGs, something routinely proven to differ in players. Functional 

connectivity in attentional networks has been increased due to a VG playing 

intervention (Strenziok et al., 2014) particularly if playing action VGs centred around the 

insula (Gong et al., 2015). By increasing frontal-parietal connectivity, players display an 

improved cognitive control due to enhanced bottom-up reorientating skills within 

attentional and sensorimotor regions, potentially facilitating many of the cognitive 

enhancements of Esports players (Martinez et al., 2013).  

 



 23 

Further evidence in the attentional network differences comes from ERP components 

analysis. Behaviourally, VGPs performed better through greater speed and accuracy 

than novices in target detection paradigms which was associated with a larger 

amplitude, target-elicited p300 component in VGPs (Mishra et al., 2011). Further 

evidence for both p200 and p300 amplitude increases in parietal networks have been 

found after video game training, specifically induced by playing FPS (Wu et al., 2012). 

However, the p2/300 components, common associated with cognitive workload, show 

a negative correlation with game difficulty in expert VGPs (Allison and Polich, 2008). 

From the variety of evidence, attentional ERP components seem to be modulated by 

player status (game played and expertise) and by the training intervention used. 

Interestingly, these studies all reporting an increase in connectivity and modulations to 

ERP components highlighted the role of training intervention regardless of player 

status, either skilled/unskilled or experienced/novice suggested that playing 

attentionally demanding games induces neuro-plastic changes to the brain.  

 

Another important substrate of cognitive neuroscience research on Esports/VGs is the 

role of neural oscillations. As mentioned previously, there are many different rhythms 

that are important to whole brain function which are required for the performance of 

complex tasks. By playing video games, the amplitude of frontal theta power increases 

during playing conditions as opposed to rest conditions (Pellouchoud et al., 1999).  

Theta power also increases over the duration of playing conditions compared to rest 

(Sheikholeslami et al., 2007). The theta power increases associated with prolonged VG 

play was localized to the frontal midline (He et al., 2008). Interestingly, Anguera et al 

(2013) used a VG training intervention on older participants to improve cognitive 

performance. As expected, an increase in frontal midline theta power was found during 

the training but was also sustained – compared to baseline pre training levels – six 

months later. This sustained power change resulted in performance benefits that were 

detected outside the scope of the experiment, particularly untrained cognitive control 

abilities. This collection of studies strongly suggests the role of theta, localized to the 

frontal midline, in the coordinate of sustained attention required by a complex stimulus 

such as VGs/Esports and raises the question about its use as a neural correlate 

substrate of higher performance. However, an important element to note, is that frontal 
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theta power has been shown to be negatively correlated to Internet Gaming Disorder 

(IGD) severity, something young adults are particularly susceptible.  Of course, this is a 

challenging topic since many professional Esports players would fit the diagnostic 

criteria for IGD, even though it’s their profession. Is frontal theta a biomarker of a 

gaming dependency disorder or a correlate of playing time? 

 

Beta power, although lesserly, has also been implicated in the performance of players 

during VGs and Esports. When compared to sitting idly, beta power was higher in 

occipital, parietal frontal and motor regions during VG play, with these regions being 

highly coherent of another implying connectivity during play (Malik et al., 2012). Beta 

power ratio has been found to be significantly higher during an Esports task (car racing 

Esport) than compared to resting conditions (Hagiwara et al., 2020), however there 

wasn’t a comparison to non-Esports players, so understanding whether this originates 

from the motor skills required to execute the response or an elevation specifically in 

Esports players is unclear. A more interesting comparison found beta power increases 

prior to winning a round in Esports, suggesting its impact beyond single actions and 

extending to more complex cognition in Esport performance (Minami et al., 2021).  

 

Finally, the most widely studied rhythm, alpha. Strangely when it comes to Esport 

neuroscience, there is a clear departure from sport neuroscience research which has 

heavily focussed on alpha power. Most surprisingly is that Esport neuroscience 

focusses a lot on attention, for which alpha plays a famed role. However, frontal alpha 

power has been identified as one of the best predictors of learning rate during training 

on a VG (Mathewson et al., 2012). Together with delta and alpha ERSPs, the use of 

alpha power as a predictor accounted for 50% of the learning rate variance of the 

behavioural performance in the task. Furthermore, alpha power has been shown to be 

higher, localized to motor regions, whilst playing a VG compared to resting conditions, 

as well as alpha connectivity (Malik et al., 2012).  
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Gaps in the Literature 

From an extensive literature review, spanning a variety of disciplines that cover Sport 

Performance, Cognitive Electrophysiology and Systems Neuroscience, a few gaps have 

become evident. These are: 

• If differences in performance across skill levels in a population are evident 

behaviourally, is it possible to explain them using neuroscience?  

• Is it possible to apply highly precise cognitive electrophysiology to an 

ecologically valid sport  

• To what degree are neural oscillations implicated in sporting performance of 

fast, reflexive, sensory dependent movement responses.  

• To what degree are cognitive processes, represented by distinct neural 

oscillations and time domain dynamics different in a skilled population over an 

unskilled population.  

 

Aims of Thesis  

The overarching aim of the present thesis is to address whether there are correlates of 

high performance in sport, present in brain activity. The main thesis has three main 

aims, addressed in each experimental chapter.  

 

Firstly, to test whether the visual system responds differently in skilled players compare 

to unskilled players and to what degree does that impact performance. This is 

addressed in all experimental chapters, but especially chapter 4. In this chapter, 

simple visual information is presented over a short time course and players must 

execute a fast, but precise motor response to be successful.  

 

Secondly, to test whether skilled players process muti-sensory information, differently 

to unskilled players. This is a phenomenon that is inherent to many different sports and 

is tested in chapter 5 with an audio-visual cueing paradigm. In this way, auditory 

information predicts the visual stimulus onset location, but the cue is either presented 

unpaired (occurring 1000ms before visual stimulus onset) or paired (occurring 

simultaneously with visual stimulus onset).  
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Finally, at the highest level of complexity and ecological validity, which brain areas are 

coordinating a higher level of performance. This is tested in chapter 6. It has been 

established that theta power is heavily involved in videogame play, but to its 

relationship to Esports performance is unknown.   
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Chapter 2 
 

In this chapter experimental methodology and philosophy is introduced to explain to 

the reader how and why Esports, a new and quickly evolving sport, is an appropriate 

model to choose for all sport as well as an in-depth outline of how the model is utilized. 

Furthermore, a deeper description of EEG methodologies and pre-processing steps is 

included to help the reader understand how the results were achieved.  

 

Experimental Philosophy 

Sport science has developed significantly over the past 50 years. Biomedical, 

technological and mathematical advances have created a diverse and exciting field, 

focussed on improving the performance of players. However, there is a finite source of 

information that these approaches will yield. Incredible models have redefined how we 

observe common assumptions in sport science. For example, using particle physics to 

explain spatial distribution of players and their intrinsic relationships on a football pitch 

provide new data, new conceptual philosophies for analysts to explore. However, there 

is a final frontier. One that could provide a rich source of explanations for performance. 

The brain.  

 

The human brain is the most complex biological entity in the known universe. Even with 

all the technological advances, super computers and AI still can’t function in the same 

way as the human brain. Sport poses one of the most interesting challenges for the 

brain due to the complexity of information required to play at an elite level. this 

information can be broken down into different categories increasing in complexity.  

 

Basic information processing in sport comes from the sensory world. Visual and 

auditory information play a crucial role in all sports providing spatial cues, about a 

multitude of variables implicit in sport. Take for example a goal kick being distributed in 

football. The ball may travel for a few seconds and in that time a player must not only 

analyse where the ball will land, computing attributes of the ball’s movement such as 
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velocity and spin, but a player has to calculate how far that landing spot is from their 

own spatial position. This information will then be used to inform the motor system 

about how fast they should move towards it and where to stop.  

 

On top of this more basic sensory processing, higher-order cognitive computations 

must be made either simultaneously or, at least, within the time window of the ball 

flight. A player must integrate the basic sensory computations information with the 

location of surrounding players, both allied and opposed, to decide about whether they 

should go for the ball or not based on a predetermined tactical approach weighted 

against an analysis of the current tactical situation. This is an incredibly demanding 

task for the brain to compute all whilst under the influence of physical exertion and 

exhaustion.  

 

As such, sport represents one of the most interesting and complex cognitive challenges 

on the brain. Yet, the enormous number of variables implicated in even a basic sporting 

process make scientific research a challenge, where the endeavour is always to 

control, reduce and precisely manipulate variables. This difficulty is further amplified 

by the eternal struggle in science to produce ecological validity whilst controlling 

variables in science. Perhaps this is why cognitive electrophysiological research on 

competitive sport is not as widely studied or powerful as its applications to more 

general cognition. 

 

The present thesis seeks to address this by unifying experimental methods in cognitive 

electrophysiology with ecologically valid sporting tasks. However, the difficultly of 

variable control and precise manipulations in traditional sports remains. Therefore, it is 

proposed that a representative model of sport is used.  

 

Esports as a model for Sport Neuroscience 
 

Elite sport forces humans to seek the pinnacle of physical and cognitive 

performance, making it an incredibly interesting phenomenon of human behaviour. Due 
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to the nature of many traditional sports, recording from the brain has been virtually 

impossible. This is due to several factors such as: amplifier dependence, movement 

(and saccade) artefacts and physical contact with the electrodes. Furthermore, 

considering the nature of human bipedal movement, it is very difficult to isolate the 

neural computations behind movement if as many as four limbs are moving at once. If 

one considers any type of sporting movement, each limb might have a collective but 

independent contribution. For example, kicking a ball requires not just the leg that kicks 

it to be moving with precision, but the standing leg to provide stability and arm 

movements to provide balance.  

 

 

 

Figure 2.1. Football player Steven Gerrard kicking a ball displaying the combined contribution of all limbs 

for a single action. Isolating how the motor cortex computes a precise leg movement, requires identifying 

and subsequently removing the contributions to the other, balancing limbs.  

 

In movements such as these, it becomes more difficult to delineate brain activity 

related to the movement in question since its origins are unclear. Isolating the 

contributions of the brain to execute this movement, without the associated noise of 

balancing movements is incredibly difficult and provides a great example of the 

challenges within sport neuroscience. As a result, the progression of Sport 

Neuroscience has remained truncated to only post hoc analysis of brains or poorly 
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representative recreations of sporting scenarios. To achieve progression, a better 

model is required. 

 

Within science, models are ubiquitously used to overcome different challenges with 

the research focus. In biological sciences, one might use a representational model to 

overcome the issues with conducting certain experiments on humans. This approach 

might give significant biological advantages over human models, beyond simply the 

ethical considerations. For example, zebrafish provide a brilliant model for 

developmental biology due to their transparent embryos or for genetics, drosophila 

having a simple, manipulatable genome. Lessons, rules, and processes present in 

these models can then be applied to humans, having utilized the differences present in 

the model that made the experiments easier.  

 

To build said model in a sporting context, one must consider two things: brain activity 

and sporting ecological validity. However, satisfying both demands is not possible with 

traditional sport. This is where Esports comes in. A new sport, Esports combines 

several different types of video games, played in a competitive way. Whilst the various 

rules and strategies in the video games differ massively, the fundamental movements 

remain similar, just the selective pressures are different. Games such as MOBAs 

(Multiplayer Online Battle Arena) are slower and require a heavier focus on tactics 

whereas FPS (First Person Shooter) games, players need to move, aim and react quickly 

with precision to execute a strategy, placing a heavier focus on the speed and accuracy 

of movements.  

 

A model using FPS games can be representative of all sports since there is a similar 

emphasis on fast, accurate movements under pressure to execute tactics, rather than 

a slower more complex tactical procedures employed playing MOBAs. Interestingly, 

elite competition on FPS Esports also requires a similar environment to those needed in 

Cognitive Neuroscience research. That is, participants/players are sat at a computer 

with stable posture, restricting head and limb movements for robust performance. 

Going back to the ball kicking scenario, aiming movements in Esports require a single 

limb to move, with a player’s posture and stability supported by a chair. As such, brain 
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activity representations of movement are limited to only the limb of interest. 

Furthermore, external environmental variables are also heavily controlled, something 

significantly more difficult in traditional sports. All in-game environmental information 

is fundamentally limited to what’s on the screen, narrowing visual search to a precise, 

measurable area. Lighting, wind, ground quality are all factors that are not present in 

Esports. Opposition movements can also be precisely controlled, constrained, or made 

to be precisely reproducible every time. All these external variables are not present or 

can be precisely controlled in Esports, an advantage not possible with any other sport.  

 

Whilst playing Esports, certain actions in game trigger other events, similar to how 

certain psychophysics experiments are conducted. Similarly, good performance in FPS 

Esports has a selective pressure of a fast reaction time and few errors, common 

performance metrics in psychophysics experiments. This allows FPS Esports to be 

used as a representative model for Sport but also retaining the essence of a 

psychophysics experiment, a precise way to access event related brain activity 

changes.  

 

As a result, the visuomotor performance of skilled Esports players could be used to 

pinpoint the neurophysiological origin of good performance in a highly ecologically valid 

sport-derived scenarios. To achieve this a series of experiments are proposed 

dissecting performance of players, across several different tasks whilst recording brain 

activity and eye movements.  

 

Brain activity and electroencephalography (EEG) 
 

There are a quite a few ways in which brain activity can be recorded and imaged 

that are readily used by researchers in the cognitive approach to neuroscience. One of 

the oldest, cheapest, and powerful is EEG. Pioneered by Hans Berger (1929, 1931), his 

use of electrodes placed on the scalp of human brains recorded electrical activity. 

Although he only used two electrodes, placed frontally and posteriorly, this sparked a 

new generation of neuroscience, stepping away from the typical approach of other 
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neuroscience pioneers like Ramon y Cajal who focussed on neuroanatomy through cell 

culture and staining work. By taking this approach they were able to progress research 

into intact, behaving humans and generating real recordings of the dynamics of the 

brain as it functions. Although his first conceptualizations of neural oscillations in the 

brain have been completely reworked into the precise theories of today, the world of 

cognitive neuroscience and its now diverse approaches and modalities, owes a huge 

amount to Berger. Before moving onto the theories that have since developed, it is first 

imperative that one understands the origin of the signal recorded from EEG.  

 

Like all tissues in the human body, the brain consists of a myriad of complex cells that 

are active together to complete a certain biological function. In the brain, the most 

complex organ and tissue in the mammalian body, there are many biological functions 

that are executed, monitored, and processed here. Cells in the brain come in many 

different types, but the two most important are Astrocytes (supporting cells) and 

Neurons (nerve cells). Whilst the function of Astrocytes is continually unravelled, it is a 

far less studied cell type since it has less of a contribution directly to cognition, more 

providing a supporting role. Neurones, the main consistent cells of the all the central 

nervous system (CNS) but predominately nerve fibres, are incredible, powerful cells. 

They deal with a wide range of activity but are the functional unit of brains. It is from 

neuronal activity that electricity is generated. Whilst incredibly complex, the simplest 

aspects of the activity have been solved for many years. From a cellular perspective, 

electricity is generated during an action potential. This is where the signal in a neuron 

travel down the cell to be communicated to another one. The process of this is best 

described using a particular sense. In this way, we can start from primary reception of 

information and follow how that information is then transmitted to another neuron. 

After an initial action potential is generated in primary receptive tissue (such as a 

retina), action potentials are passed down from neuron to neuron through connections 

called synapses. It is here where processing takes place.  

 

When recording brain activity using Electroencephalography (EEG), the electrodes are 

placed on the scalp of a participant. At the scalp, electrical activity is detected that 

originates from neurones wired into circuits and function within region-specific 
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systems. However, the electrical signal detected differs from those found using cellular 

electrophysiological techniques, such as patch-clamp. In fact, the signal is referred to 

as an electrical field or scalp potential. In scalp potentials, there is local synchronous 

activity from certain neighbouring regions being active together. These regions produce 

a small voltage change which, when summed across many aligned active neurones – in 

certain cases anywhere from millions to billions of neurones – can produce a signal 

large enough to be detected at the scalp. In particular these, neurones are called 

pyramidal cells and are key cellular and structural components of the cortex. These 

cells must be radially orientated to the surface of the cortex, synchronously activated, 

and aligned in parallel to be recorded as a net positive potential.  

 

Such is the nature of the mammalian brains, isolating signal independently from other 

signals is incredibly difficult. The activation of single, aligned sets of neurones will not 

come without activation of other neighbouring electrodes each coupled with its own 

unique significance to the ongoing cognitive process. As a result, an important 

endeavour of processing EEG data is separating these differing parts of activity. A 

common feature of EEG data is detecting electrodes that increase in voltage at a 

certain point and another electrode decreasing in voltage at the same time point. An 

important feature of the pyramidal cells is that they receive both excitatory and 

inhibitory inputs from an array of different cells that make up the cortex for many 

purposes, for example glial cells.  

 

EEG Data Acquisition and Analysis 

To capture the performance of players whilst playing commercially built Esports, 

Weblink (SR Research) was used. Using Weblink facilitated several key aspects for data 

acquisition. Namely, it  allows for the presentation of instructions  to the participant, 

calibration of the participant with the eye-tracker and captures what occurs on the 

screen. Importantly, through a parallel port device (LabHackers), transmission of TTL 

event markers between the display pc, the eye-tracking host pc and the EEG amplifier. 

These event markers are used to epoch the data.  
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Within cognitive electrophysiology, taking data from its raw form to a fully processed, 

visualized state ready for interpretation, is a long and relatively arduous process 

compared to other forms of neuroscience. Fortunately, this process can be 

streamlined into an automatic pipeline, iteratively processing each file, saving it in each 

required format ready for processing and interpretation. To get to this stage, many 

steps are taken and described below.  

 

 

 

Figure 2.2. The steps implemented across the pre-processing pipeline used for data-analysis within this 

experiment.  

 

RANSAC 

After first down sampling the data to a more manageable sampling rate (from 2048 – 

200Hz), the RANSAC algorithm is applied to the raw data. Firstly, RANSAC was 

performed on the original signal to detect bad channels, remove them and interpolate 

the remaining channels to reinstate the original subset. EEG data often contains 

sensors that are locally very noisy, either periodically or throughout the experiment. To 

rectify this for a specific channel, one can add more conductive gel, however, this is a 

slippery slope and has the potential to disturb other sensors that were previously 

acceptable, but with the addition of more gel, will cause them to bridge to one another. 
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Due to the nature of these experiments (inducing saccades and fast movements), noisy 

sensors may only become apparent during the experiment when it is already too late. 

As such, as post-hoc method for dealing with local noisy channels, removing their 

effects from grand averages is incredibly powerful.  

 

After RANSAC has been performed and noisy channels removed then interpolated, the 

data can be epoched around certain events of interest. This is performed by using the 

signal passed through the trigger channel (channel 65 in the present case), and 

identifying the event specific signal sent by it to denote moments of interest. Typically, 

the present collection of studies uses different events for: Stimulus Onset, Successful 

Response and Failed Response. Marked to millisecond precision, the signal denoting 

these events allows one to epoch around them, taking two seconds before and two 

seconds after its occurrence.  

 

AutoReject 

Once epoched, the data the passes through another automated algorithm called 

AutoReject, which functions to reject and repair bad epochs which are the basis for 

trials after being fully processed. To identify bad epochs, AutoReject estimates the 

optimal peak-to-peak threshold using cross validation. This information is then passed 

forward to estimate the threshold for each sensor which can then be used to repair 

through interpolation or, if the threshold is simply too large, excluded from the analysis. 

Once a first pass using AutoReject is complete, independent component analysis is 

then applied to the data to identify repeatable artefacts within the data. After the 

completion of ICA, the data is passed through AutoReject once again as a final check 

for any noisy epochs. This is a final step where noisy epochs, marked now as bads, have 

not been recovered either by AutoReject or ICA algorithms and thus need to be dropped 

from the data.  

 

ICA 

Independent component analysis (ICA) has become an incredibly powerful and widely 

used techniques within electrophysiology data pre-processing pipelines due to its 



 36 

sensitivity at detecting artefacts within the data. Within mixed source signals, ICA 

decomposition can estimate independent signals within the source data of unknown 

ratios. Typically, before ICA decomposition, as performed in the present pre-processing 

pipeline, the signal is first scaled to unit variance before using principal component 

analysis to whiten the data. These steps scale the data by the standard deviation of all 

the channels, passing the scaled principal components to the ICA algorithm. ICA then 

separates detected artefacts from brain signals, something it has been reported to 

accomplish successfully (Barbati et al., 2004). Predominately, ICA is looking for non-

brain activity related components of the signal that can be removed. It performs this by 

comparing the similarity of the components to expert identified components which 

have been marked as artefacts. Once a match is found to a suitable level, this artefact 

is marked for removal. Artefacts of interest are eye-movements, heartbeat and non-

brain activity related noise. 

 

Average Referencing  

Throughout the history of EEG research, active reference electrodes have been used to 

measure the difference in electrical potential between it and all experimental 

electrodes. To achieve this, the signal recorded at the reference electrode is removed 

from the signal recorded at the experimental electrodes individually as a pre-

processing, corrective step. In this way, reference electrodes have been chosen to 

capture electrical activity at the scalp that is non-brain related, isolating it and 

removing it from the experimental electrodes that will be capturing both the artefactual 

signal and genuine brain activity related signal. Thus, environmental noise and 

interference can be effectively removed from the experimental electrodes, making 

re/referencing an incredibly strong signal cleaning technique. Typically, a mastoid 

reference has been used since it will capture the interference around the head but 

placed in a location that will not detect brain activity. However, recently average 

referencing has been shown to be a more effective solution when performing source 

modelling, a key processing step in the present studies. This is because a single sensor 

reference spreads the forward model error into all sensors, which can artificially 

amplify the importance of this sensor when computing source estimates. However, 
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average referencing spreads the error evenly across all computed channels, preventing 

uneven weighting during the estimation process.  

 

Experiment Flow and Design  
 

To achieve a true dissection of Esports performance and elucidate the neural 

correlates of skilled performance, different techniques are required to be employed to 

detect them. The series of experiments seeks to create an understand of two important 

concepts within sport performance. Firstly, how does a player extract information from 

the environment. As has been mentioned, to perform well within a sport, task-relevant 

information must be extracted from the environment. That information could start 

basic, such as visual detection but increase in complexity once context is added. For 

example, visual detection of ball movement close to the player involves simple reflex 

visual processing, however, this information becomes more relevant based on context, 

such as if that balls movement might lead to an attacking situation, therefore, within 

the sporting context, danger. The second concept is how players then use that 

information to produce a motor response which must be quick, accurate and precise 

but made under pressure within the framework of tactics. Continuing the example, 

once the ball movement is detected and a contextual danger cue understood, a player 

must turn and sprint towards the ball enacting a response. These two processes are, as 

of yet, inaccessible to common sport science techniques. Careful consideration is also 

a necessity for the participant, since the goal of the study is to probe human 

performance. As such, the needs of the participant must be placed highly on the list of 

priorities, and an environment conducive to high performance is required. To facilitate 

this, the experiment methodologies and flow are designed with the main aim of allowing 

participants to perform as greatly as possible.  

 

Achieving a high level of performance within any sport first requires some form of a 

warm-up, which primes the muscular skeletal system, metabolism and cognitive 

functions that will be required within the sport (McGowarn et al., 2015) whilst also 

helping to prevent injury (Franklin et al., 2006). In the specific case of Esports and the 
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present studies, warming up has two important functions. First, it primes the body 

ready for performance by introducing the brain to the sensory stimuli that participants 

will respond to and to the type of movements that will be induced. Secondly, it allows 

participants to become accustomed to the experimental testing environment.  

 

Although the environment has been designed to minimise disruption and disturbance, 

some of this effort, and the recording modalities, make this more difficult. The 

participants take part in the experiment in a private sound booth, minimising sound 

from the external environment. Within this sound booth, the light is turned off to benefit 

the accuracy of the eye-tracker with the only light source coming from a small window 

behind them and from the display monitor. Finally, the use of a chin rest and a 64-

electrode EEG system means that participants must get used to constrained head 

movements, robust posture and the sensation of a high-density EEG system being fixed 

to their scalp. As such, the experimental flow allowed for this, introducing warm up 

exercises to ease the participant into the study, either with a basic psychophysics eye-

movement test (Study 1) or fun aim-training exercises using a commercial aim-training 

software (Study 2).  

 
Figure 2.3. The experimental flow of both the studies. A general warm up exercise starts that can consist 

of eye-movement tests or aim-training using a commercial aim-training software called AimLab. That is 

followed by the bulk of the experiment consisting of a variety of psychophysics tasks that present simple 

sensory stimuli to induce Esports related movements in a single action basis. The end of the study used a 
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complex Esport performance task, either isolating Esports movements within the physics engine of the 

Esport, or a full competitive match of the Esport against AI-controlled ‘bots’. 

 

To warm-up, players were first introduced to the Esport in use, Counter-Strike: Global 

Offensive (CS:GO) by loading into a competitive game and playing against the AI-

controlled opponents, termed as ‘bots’. Although they only played a single round, 

participants would be introduced to the game scenario, the way the virtual ‘guns’ would 

shoot, how to aim with the mouse and how to move around using the keyboard. Within 

the Esports community, these concepts are referred to as the mechanics of Esports. 

However, it also allowed players to be cognitively primed for the experiments to come. 

Notably, detecting targets visually, using that information to guide a movement 

response that is under the selective pressure of time, since the game is built on the 

foundation of ‘killing’ the opponent in a kill or be killed scenario. Importantly, this 

reinforced players to be respond as fast as possible or they will fail, a key concept 

within the psychophysics experiments.  

 

After completing the CS:GO tutorial, participants would then complete an eye-

movement test, inducing saccades towards a target direction, with success or failure 

being predicated on whether the fixation location of their eyes was within the confides 

of the target border, termed an Interest Area. This experiment also introduced the 

general flow of the psychophysics experiments. Namely, fixation cross, target onset, 

outcome feedback. By bedding this procedure in early, participants were accustomed 

to it when the full psychophysics portion started. In the second study, a further warm-

up exercise was used to prime the cognitive and muscular-skeletal systems more 

aggressively. To do this, a commercial aim-training software called AimLab was used. 

AimLab has created a wide variety of aiming tasks for players to use to improve 

performance and captures performance metrics to help facilitate this. Importantly, this 

portion gave participants a short window to achieve as higher score as possible based 

on the rules of the task. As such, cognitively, participants were being primed to respond 

against a timer and movement-wise, they had to respond to many targets across the 

breadth of the screen. Both elements were important in the subsequent experiments.  
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Figure 2.4. The use of AimLab by Esports players. ‘Tenz’, a professional Esports player, uses AimLab to 

warmup on stage at an Esports tournament. Taken from www.AimLabs.org. 

 

After completing the various introductory and warm up exercises, participants would 

the enter the Psychophysics portion of the experiments. The psychophysics tasks test 

different elements of aiming, speed and accuracy across the two fundamental aiming 

movements in FPS aiming. The two aiming movements are Flicking, a fast reflexive 

movement to a fixed location and Tracking, a slower, continuous movement following a 

moving target at a repeatedly updating location. Interestingly, the two limb-movements 

map directly onto the two fundamental eye-movements, with flicking being mapped to 

saccades and tracking mapping to smooth pursuits. As such, study one focussed on 

flicking and saccades with study two focussing on tracking and smooth pursuits. 

Different tasks for each experiment were created to induce the respective limb 

movements with different sub modifications to the movement.  

 

To create these tasks, the stimulus presentation software Experiment Builder (Eyelink, 

SR Research) was. All the psychophysics tasks start with a fixation cross (FC) that 

centralizes vision for the first 1000ms of the trial. After this period, a black target 

appears somewhere on the screen, a set distance from the FC. The black target was a 

huge contrast to the white background allowing it to stand out prominently. The trial 

ends when the participant moves the cursor of the pc to the target location and clicks 
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on it. The click is only registered if it is within the target perimeter. The differences 

between the two tasks come from the size, location and appearance duration. Players 

were motivated to succeed by a message stating “move faster” if they failed a trial and 

“well done” if they succeeded.  

  

Esports Aiming Test and Match  

After testing how a simple movement with simple visual information was performed, it 

was necessary to step up the complexity of both the movement and the visual 

information, whilst retaining the control of key variables (specifically opponent 

behaviour).  

 

Two different tests for this were implemented across the two studies to implement 

some of the ideas, movements and concepts tested during the psychophysics portion. 

However, the crucial difference is that within the Esports portion, the in-game physics 

was now in play. Namely, the visual scene was complex and ‘naturalistic’ - in the sense 

it was natural for the Esport - with backgrounds, complex colours/lighting, human body 

shape and features. Furthermore, guns had a weight to them, with heavier guns slowing 

down movement, they also had recoil when shot meaning participants would have to 

account for this in their aiming to remain accurate.  

 

Esports Aiming Test (NAM1) 
 

 
Figure 2.5. NAM1 map visuals displaying a central fixation cross and targets who appear from behind 

walls.  
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NAM1 is a custom-built CS:GO map using source engine programming (Hammer 

Editor). The map is designed as a shooting-range, where targets appear from specific 

locations, at specific distances and players must shoot the targets with a specific gun 

to progress through the trials. To succeed in a trial the player must kill the opponent (an 

AI-controlled bot). The map was split into three rows of target locations, with six 

possible locations a target could appear from on each row. The players started the 

experiment by completing a warm-up using each gun three times before starting with 

the Pistol.  

 

In this context, it’s important to note that killing can be traded for score, semantically. 

Essentially, when each bullet fired from the gun by a player hits an opponent, it counts 

for a certain score. To kill, one must hit the opponent enough times so that their score 

reaches a certain threshold. Once this threshold has been reached, the opponent dies 

or more literally, de-spawns. Importantly, the location each bullet hits on the character 

model of the opponent influences the score each bullet achieves. Bullets hitting the 

head count for the largest score whereas bullets hitting the extremities like a hand or a 

foot, count for the smallest of scores. As a result, it is possible to view the score each 

bullet achieves as damage each bullet does. In this way, a player must do enough 

damage to kill the opponent. Therefore, to kill an opponent quickly, a player must 

balance hitting the highest score/damage locations whilst shooting fast. In this way, 

FPS Esports offers a novel motor challenge compared to other sports where both speed 

and accuracy are a direct relation to performance.  

 

A further layer of complication comes from the guns used. Different guns inflict differing 

amounts of damage and have different multipliers of damage depending on where the 

bullet hit. For example, the Rifle used has a huge headshot multiplier meaning a single 

headshot will kill the opponent whereas the Pistol will require several headshots to kill 

the opponent. This is reflective of the differing amount of damage done per bullet shot 

from each gun, influencing the tactics behind each guns use, and the type of gunfights 

encountered. Indeed, the sniper is a one-shot kill anywhere on the torso or head (but 

not extremities) making it the highest damage gun. Players will thus modify their tactics 

to be suit the damage of the gun in use. Furthermore, the speed at which a gun shoots 



 43 

also modifies tactical approach. A good example of this is the Sniper which shoots a 

single bullet with slow reload times, compared to a Rifle which shoots a high number of 

bullets very quickly. This places a different selective pressure on speed or accuracy 

based on how the gun operates and directly impacts a player’s cognitive approach to 

achieve a high performance. To reflect the differing damage and the differing tactics 

employed when using each gun, the distance to the target row was manipulated. The 

distances were chosen to reflect common gunfights experience when using the 

weapon. In order of shortest to farthest: Pistol, Rifle, Sniper. Once 30 kills were 

achieved by the player using a certain gun, they proceeded to the next.  

 

Esports Match (Mirage) 

To test performance at the full sporting complexity level, participants played a 

competitive bots (AI-controlled opponents) match on CS:GO. The match is out of 30 

rounds and each round is won by detonating the bomb, diffusing the bomb or 

eliminating the opposing team. The map (Mirage) has two bomb sites which a player 

must either attack, or defend, depending on which side they are playing on, either 

terrorist or counterterrorist. Players will play a total of 15 rounds for one side and then 

switch. In this way, the Esport can be seen as attack versus defence. Players 

manoeuvre about the confines of the map, looking for other opponents and attempt to 

plant/defuse the bomb. As with all FPS Esports, visual search is a crucial cognitive 

strategy required for high performance since blind corners, hiding spots and covered 

angles make visually discriminating a opponent very difficult. One spotted, a player will 

then engage in a gunfight, shooting at the opponent. As described above, the player 

needs to hit enough shots on the opponent to inflict a threshold value of damage to 

eliminate them. The performance metrics captured by default were used to quantity an 

players performance.  K/D Ratio is the number of kills to deaths occurred across the 

entire match. Match Score Differential is the No. of round wins for the players team – 

no. of round wins for the opponents, across the match. Round win % is the percentage 

of rounds won by the player. Score per round is the points awarded per round for round 

contributions such as kills, bomb plants/defusals and winning the round.  
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The Esports portion of the experiments offer a complex cognitive challenge for all 

players. In particular, the sensorimotor adaption required to fire the guns. By using real-

Esports and their associated in-game physics, players must manipulate a mouse to 

accurately aim but also to naturalistic gun-control elements such as recoil. That is, to 

accurately shoot a fun with high recoil, a player must not only place their crosshair in 

the correct location, accounting for bullet drop over distance and opponent motion, but 

counterbalance the effect artificial effect of recoil. In the real world, shooting straight 

might require a player to move the mouse in a counter-intuitive way.  
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Chapter 3 
 

Introduction 

Sport is played all over the world at a wide variety of levels. For the most part, sport is 

played by amateurs, recreationally. For a select few, sport becomes their professional 

with all the associated money, fame and glory received by becoming one of the best 

players of that sport in the world. The pressures associated with this, but the incredible 

gains, serve as a huge incentive for young players to dedicate their lives to attaining this 

goal.  

 

To become an expert in a specific sport, a player must master so many different 

elements of it through many hours of practice, with the regularity of training being a key 

differentiating factor in advanced players (Baker et al., 2015). It has been found that 

even by the age of 18, international players have accumulated thousands more hours of 

practice, compared to lower-level players (Helsen et al., 1998). However, high levels of 

practice do not necessarily result in expert performance (Hodges et al., 2007), but 

targeted, deliberate practice is far more likely to result in performance improvements 

(Ericsson et al., 2006), transitioning players to become experts. 

 

Sport science has repeatedly used the expert-novice paradigm to research 

performance differences in either sport-specific tasks or more cognitive tasks. 

However, this approach is too vague since there is no definitive identification of what 

makes a player an expert or novice (Baker et al., 2015). The comparison is both arbitrary 

and relative, something precisely unscientific. Throughout the literature what makes a 

player, athlete or team an expert is not consistent, with experts referred to as anything 

from club level amateurs (Voss et al., 2010), nationally ranked (Bertollo et al., 2012) all 

the way through to Olympic athletes (Grant & Schempp, 2013). As such, a more robust 

method must be proposed whereby players/participants are separated not by their 

supposed group but on performance indicators.  
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To understand the neural correlates of a higher performance, it is imperative that the 

populations are distinguished between high and low performance. Achieving this with 

consistency across a multitude of tests is difficult and subject to experimenter bias. 

One potential route is taking the top 50% of performers in a task and defining them as 

the high-performance group. This would give a balanced sample size, uniformity in 

approach to all tests and ensure that, mathematically speaking, only the highest 

performers are included in the top group. However, there are several issues with this 

approach. By taking a range of participants – or players in that sport – there will be some 

who perform exceptionally, and some who perform poorly, producing maximal 

separation. But what about the midline? With this technique, the higher performance 

group (top 50%) might contain players that are distinctly average, showing very little 

association to the players in the upper quartile. As such, one would then assume, and 

is a key philosophy of this thesis, that their brain activity would be different. Therefore, 

this would not be an appropriate technique to separate players into a high and low 

performance population.  

 

A second potential option is to separate players based on experience level. In this 

method, players self-report their experience with a sport, both historical and current 

activity in the sport, and this information is used to define the population. Sample sizes 

may be subject to imbalances in this method, but the separation between a high and 

low performance might be more achievable due to the assumption that greater 

experience leads to greater performance. However, it is well known that experience 

within a sport, does not necessarily lead to a higher performance in all cases. Some 

players, for whatever reason, simply do not develop into a higher level of performance, 

let alone the elite level. Furthermore, definitions of experience are not without their 

problems. Take, for example, a player who grew up playing a sport, but hasn’t played for 

10 years. Are they experienced or inexperienced? It would not be fair to then compare 

that player to someone who plays every day or someone who has never played before. 

Again, with the extremes in the population, this technique is adequate, but with most 

players, this technique is ineffective. 
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However, in Esports there is a particular problem of players overestimating their ability. 

This perturbed self-perception occurs in experienced players who are stuck in a low 

rank. Essentially their self-perception comes from their experience with the game, 

claiming that it’s the fault of their teammates, issues with their equipment, faults with 

the game or even cheating. These are often self-truths, understandings of the situation 

based on feeling not facts. As such, self-report, especially in Esports regarding 

performance level is not an appropriate separation (Aeschbach et al., 2023).  

 

The aim of the present chapter is to differentiate the population into groups based on 

skill level. This objective measure will use their performance during a battery of Esports 

and Esports related tasks. By classifying players in this manner, later chapters will be 

able to isolate neural correlates of high performance based on the skill level of 

participants.  

 

Methods 

The philosophy of this techniques is to identify skilled and unskilled players based off 

their performance across a range of tasks that combine many elements of the sport.  

 

Participants  

All participants used in this study were university students at University of Birmingham. 

In study one, 37 participants (15 Male, 12 Female) took part were included and in study 

two 43 ( 26 Male, 16 Female) were included. Initially, players are separated based on 

their current experience level with Esports, not historical experience. This is performed 

by a self-report questionnaire asking “Do you play Esports for one hour a week?”. 

Answering yes to this question defines participants as an experienced player, 

answering “No” to this question defines participants as an inexperienced player. 

Separating players in this way does not account for any complicating variables such as 

experience with video games or historical experience with Esports. As such, the 

classification methods employed will be sensitive to identifying  if there is a measurable 

impact of experience. 
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Experimental Procedure 

After initially separating participants into an experienced or inexperienced group, 

participants took part in several experiments testing various visuomotor cognitive tests 

and aiming performance tests. These experiments increased in complexity to develop a 

holistic understanding of a player’s aiming performance, and then their full Esport 

performance. The performance on tasks described below are then used as inputs to 

test for the presence of groups.  

 

AimLabs 

To test performance in a novel, Esports related aiming task, the commercial aim-

trainer, AimLabs was used. This was the first task that participants took part in and 

served as a warmup, allowing players to familiarize themselves with the experimental 

environment and get comfortable. Participants took part in three different tasks which 

were designed to train performance of one of the fundamental movements in FPS 

Esports. These are flicking, fast reflexive movement towards a static target, or tracking, 

a slower continually updating movement to a moving target. Each task tested this 

movement in slightly different ways, facilitating a more holistic understanding of the 

participants aiming ability.  

 

Psychophysics 

After completing this task, participants would then complete the battery of 

psychophysics tasks used to precisely manipulate and record brain activity. Using 

psychophysics tasks that a custom programmed, allowed for a few key methodological 

benefits for concurrent EEG and eye-tracking. Namely, the use of triggers to signal 

events. These tasks were designed to recreate certain aiming movements, with a 

drastic reduction in visual complexity, but also in a single action way, diametrically 

opposed to how AimLabs works. Participants would complete 100 trials per 

psychophysics task.  
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NAM1 

To increase the complexity, and test performance of aiming movements within an 

Esport but in a controlled manner, a custom-built CS:GO map  was designed using 

source engine programming (hammer editor). The map is designed as a shooting-range, 

where targets appear from specific locations, at specific distances and players must 

shoot the targets with a specific gun to progress through the trials. To succeed in a trial 

the player had to kill the opponent (an AI-controlled bot). The performance metrics 

captured are used to quantify performance. TTK is the time from bot spawning to bot 

death. Headshots is the number of headshots. Accuracy is the percentage of shots 

hit/missed. No. of shots is the number of shots taken overall.  

 

Mirage 

To test performance at the full sporting complexity level, participants played a full 

competitive bots (AI-controlled opponents) match on Counter Strike: Global Offensive 

(CS:GO). The match is out of 30 rounds and each round is won by detonating the bomb, 

diffusing the bomb, or eliminating the opposing team. The metrics captured by default 

were used to quantity an players performance.  K/D Ratio is the number of kills to 

deaths occurred across the entire match. Match Score Differential is the No. of round 

wins for the players team – no. of round wins for the opponents, across the match. 

Round win % is the percentage of rounds won by the player. Score per round is the 

points awarded per round for round contributions such as kills, bomb plants/defusals 

and winning the round.  

 

Statistical Analysis of Behaviour data 

All statistical tests were completed using Prism (GraphPad) and the principal 

component analysis, silhouette scoring and k-means clustering was performed on 

Python. Statistical analysis predominately consisted of 2-way ANOVA computed to 

compare Task x Population 
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Experimental Process 

The new methodology is used to determine new populations of participants where 

performance is maximally similar within the group, but maximally different between 

groups in a robust, repeatable manner.  To do this, the first step is normalizing the data.  

 

To compare a widely differing array of data, from different sources, different 

experiments and different metrics, normalization is imperative. Normalization of data, 

alters its scale to fall between 0 and 1, improving the performance of machine learning 

(ML) algorithms, something very beneficial for this method. This occurs because ML 

algorithms converge faster when features are on a smaller scale, creating better post-

training coefficients, improving computation accuracy and reducing computation time. 

In this way, the ML algorithms are less sensitive to the scale of the metrics. In the 

present case, scales can vary from tens of thousands (e.g. AimLab score) to >1 (e.g. 

Errors).  

 

After data is normalized, principal component analysis (PCA) is then applied to the 

data. PCA is a dimensionality reduction technique used to project multi-dimension 

data on common axis, called principal components. These components are newly 

created variables that use a mixture of inputted initial variables to construct new linear 

combinations. This technique allows for the preservation of information, statistical 

trends and patterns within the data set. Crucially, principal components are 

uncorrelated.  

 

After dimensionality reduction, the next step is to identify the presence of clusters 

within the dataset and test which numbers are the most appropriate to achieve the 

most effective classification. To do this, an unsupervised machine learning 

classification technique, k-means clustering has been performed on the transformed 

dataset. Fundamentally, k-means clustering is used to test for the presence of groups 

within a dataset. The goal of this clustering algothrim is to assign ‘n’ data items to ‘k’ 

clusters. It seeks to minimise the following quantity which is the witihin cluster sum of 

sqaures (the amount of varaition within each cluster, by measuring the distance of each 
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data point in the cluster to the centroid of the cluster beofre summing all of that over 

the K clusters. K could be any number, it will acheieve clustering if it minimizes the sum 

of squares.  

 

However, the appropriate number of clusters must be determined based on objective 

measures of centroid closeness through silhouette analysis. This technique identifies 

the separation distance between predetermined numbers of clusters resulting from the 

k-means analysis. When plotted, an objective measure of the how close in data 

subspace (even transformed data subspace as in this case), of closeness between 

neighbouring clusters is outputted within a range from [-1, 1]. Because of the precise 

scores outputted, this technique has been preferred over others such as the ‘elbow 

method’. Once the appropriate number of clusters are formed, the new dataset can be 

visualised, patterned based on their cluster.  
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Results 

Participants performance data across all tasks contained within the thesis are 

presented. Correlation analysis is first performed to understand the intrinsic 

relationships between variables across all.  
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Figure 3.1. Correlation analysis of performance variables in study 1. The variables used are across the 

psychophysics task (Random Flick), the aim-training tasks (AimLabs) and the aim-testing task (NAM1).  

 

The results from the correlation analysis reveal strong relationships between several 

variables but particularly between the Esports measures. One of the strongest themes 

in the correlations are shown between time dependent measures e.g. where a high 

level of performance is shown by temporal metrics. For example, reaction time (RT) in 

the psychophysics task, significantly correlates with time to kill (TTK). Duration of the 
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gun-phase also significantly correlates with TTK in both the AimLab and NAM1 

experiments. The most interesting relationships shown by the correlation analysis of 

study 1 performance metrics are a significant positive correlation between reaction 

time and errors, denoting how participants with longer reaction times display increased 

numbers of errors. Conversely then, the fewest errors are produced by the shortest 

reaction time, equating to good performance. Secondly, participants with the shortest 

TTK in NAM1 also displayed a significant negative correlation to accuracy, headshot % 

and AimLab score, denoting how a faster TTK gives rise to more accurate, better placed 

shots which yielded a higher score. TTK in AimLab tasks displayed a significant positive 

relationship to RT, denoting how there is a relationship between slow reaction time and 

slow TTKs.  
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Figure 3.2. Correlation analysis between performance variables in Study 2, containing variables from the 

psychophysics experiment (Audio delay/normal), the aim-trainer tasks (AimLabs) and Esports 

competition (CS:GO – Mirage).  



 54 

As with the previous analysis, the correlational analysis for performance variables in 

Study 2 display several interesting relationships. In particular, the RT of participants in 

both psychophysics tasks shows a significant negative correlation with performance 

variables in the aim-training and Esports competition tasks. That means shorter 

reaction times in the psychophysics experiment are associated with higher scores, 

higher K/D ratio and higher ADR, all key indicators of good performance. Furthermore, 

all Esports related performance metrics, show a significant positive correlation with 

one another. Ultimately, it is shown here how across both studies, there are strong 

relationships between performance variables across all experimental tasks.  

 

Importantly, those which have speed as an element, with good performance relating to 

a shorter time, show significant correlations to key performance variables in Esports 

related tasks. The present analysis displays rules for good performance, denoted as 

shorter time is related to higher score.  

 

 
Figure 3.3. Silhouette score of clustering in Study 1 and Study 2 and K-means clustering output 

From the silhouette scores above, two clusters are optimal for the datasets provided.  
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The results of the k-means clustering classification, using two clusters projecting using 

principal component axis, show the new population. The players have been resorted 

into their new populations of skilled, those that cluster together in blue, and unskilled, 

those that are clustering together in yellow. By reducing the dimensions of the diverse 

performance dataset, and performing clustering on its transformation, it is possible to 

see that players who perform similarly across all tasks, cluster together.  

 

Discussion 
 

The present thesis seeks to isolate neural correlates of higher performance within a 

sporting model of Esports. As such it is imperative to separate players into different 

groups based on their performance level because plotting brain activity against a 

spectrum of behavioural performance is unmanageable. At first, defining players based 

on experience within Esports, with experience being a common differentiator of 

performance, might provide adequate separation. However, there are many issues with 

self-reporting experience, especially regarding Esports. For example, it is difficult to 

classify a participant who has a high level of experience with video games, in particular 

using a mouse and keyboard, but has never played Esports. Alternatively, participants 

who have played Esports a long time ago, but not recently, offer further difficulties in 

classification based on self-report. Therefore, an objective data-driven approach is 

utilized.  

 

In this method, performance data from all experiments is used to test for the presence 

of clusters, regardless of experience. Players that cluster together, perform most 

similarly. In this way, two groups were formed based on performance alone and 

increased separation when based on experience alone. These two new groups 

contained numerous players who switched from either the inexperienced or 

experienced group, into the other.  

 

 Experience playing video games gives players more of a command over the input 

modality used to manipulate the players in-game avatar, a potential learning curve for 
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inexperienced players that is not needed for experienced ones. Also, previous 

experience with Esports, a competitive version of video games, means that cognitively, 

players understand virtual pressure. Especially in FPS Esports, there is a “kill or be 

killed” aspect that is imperative to good performance. When combining the violence 

aspect of FPS Esports (e.g. shooting guns, blood, death), previous experience with this 

selective cognitive pressure should give rise to a higher level of performance. Again, to 

what extent this will impact performance, especially if there have been many 

intervening years since then, is currently unknown. 

 

Each task varied in its complexity serving different functions and testing different types 

of stimuli and movement. In this case, complexity has two forms. First, the complexity 

of the information that induces the response is increased in its complexity to move 

closer to that of a full Esport, starting with basic information contained within the 

psychophysics task. Here, simple shapes, predominately a small black square is used. 

This visual information has a high contrast to the white background, making the targets 

very pronounced and easy to identify. The shape itself is also very discriminable from 

the background due to sharp corners and thick outline. In the aim-training tasks, more 

vibrant colours are used, in an abstract engaging environment. Targets within the tasks 

retain their prominence out of the environment only this time using colour as opposed 

to high contrast. Moving onto the most complex tasks, the information progresses 

towards being more naturalistic, simulating something closer to the real Esports using 

character models simulated to look realistic. The second complexity change is the 

movement being induced. In the psychophysics task, this is just a single movement of 

varying distances from the central location. Each time a trial is completed, the cursor 

location is reset to the centre of the screen making each movement discrete. In the 

other tasks, the cursor location after destroying a target will impact the subsequent 

target location. This places a greater emphasis on target choice and shot selection by 

linking all target engagements together.  

 

To acclimatize participants to the experimental set up, a warmup exercise was used. In 

this exercise participants would have the opportunity to get used to the weight of the 

electrodes on their head, the chin rest preventing them from moving their head 
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excessively and the distance from the monitor to where the participants sat. This 

distance was required for the eye-tracker to perform accurately but is at odds with a 

typical Esports set up. In this set up, experienced players are often extremely close to a 

monitor, far closer than typical computer work is completed. In many cases, this 

distance is comically small. There is also the process of adjusting to the use of a mouse 

and keyboard, something the majority were not used to. For inexperienced players, the 

only time they had used a mouse and keyboard was for standard computer work. Since 

all the participants were University students, it is safe to assume that any 

inexperienced player has spent a significant amount of time using the mouse and 

keyboard modality, but often not with the selective pressure of accuracy and speed. For 

experienced players who predominately used a controller, this is an opportunity to test 

out how mouse aiming differs from the requirements of a controller which uses an 

analogue stick aiming method, transitioning from a manoeuvring a thumb to a 

hand/arm. A final, and relatively minor consideration is experienced mouse and 

keyboard players adjusting to the sensitivity. One’s sensitivity is very personal. It may 

differ from game to game or change over time. In many cases, the sensitivity of the 

mouse was not exactly like the eDPI used by players at home, so adjusting to this was 

necessary.  

 

By completing the warm-up, all players had the opportunity to familiarize themselves 

with the environment whilst making a high volume of movements that would be tested 

throughout the experiment. Furthermore, the exercises reinforced the idea that both 

speed is a crucial element to performing well, since all tasks had a time-limit 

associated from trial-to-trial, a concept which is carried throughout the study. Although 

the correlation analysis displays the intrinsic relationships between performance 

variables, it does not serve to separate them, only showing the directionality of that 

relationship. To address this problem, there needs to be a way of separating based on 

performance and finding two populations that have a large difference, but also intrinsic 

show similar performance profiles. A first issue is, however, the number of 

performance metrics used, and how to choose which one. A solution to this, is to use 

PCA analysis to project multi-dimension data on common axis, through dimensionality 

reduction.  
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After performing PCA on the data set, the eigenvalues for each PC and the total 

variance explained can be found. In figure X we see some interesting dynamics about 

the dataset that correlate with the behavioural performance. In particular, the largest 

eigenvalues for the first PC which accounts for 94% of the total variance are largest for 

TTK measurements (both Aimlab and NAM1 experiments), Score (Aimlab) and the 

duration (NAM1). Some of the lower measurements are the RT (RF) and both the 

accuracy metrics (NaM1 and Aimlab). In the second principal component, capturing 

the remaining 4% variance in the PCA, we find very high eigenvalues for variables which 

were low previously, and low eigenvalues for variables that were high previously. This 

shows that, since each PC is orthogonal to each other, they were sensitive to and 

retaining different information.  

 

Once the data has been transformed to new form, and plotted along the new axis of 

principal components, it is now possible to perform classification on it. Predominantly, 

this technique makes the identification of groups possible where there are several 

predictor variables. To achieve this, machine learning is often employed. Machine 

learning can either be a supervised process, where a training dataset is used, or an 

unsupervised process, where a training dataset is not used. In this case, the problem is 

that experience does not necessarily mean that all players perform better than 

inexperienced players. As a result, a classification technique could be employed to 

transform the two populations into those that perform better and those that do not. In 

other words, a skilled and unskilled population. However, to not bias the result, the 

previous population group identifier needs to be removed, requiring the technique 

chosen to be unsupervised.   

 

Conclusion 

Finally, the population has been distributed into two groups containing players of 

similar performance standards. Correlation analysis of all performance variables 

revealed that there are intrinsic relationships that dictate performance. A particularly 

strong highlight is how there is a significant negative relationship between time 
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elements and impact, determined as score, accuracy, or damage. This shows how high 

performance within both aiming tests and Esports competition, is achieved by fast, 

accurate responses in aiming movements.  

 

To probe whether experienced players perform better, classification was applied to the 

un-grouped data. PCA was applied to all the performance metrics, achieving 

dimensionality reduction, and re-projecting the data along a 2-dimensional axis of 

principal components, retaining information and capturing variance derived from the 

data. Through silhouette analysis, the optimal number of clusters was determined to be 

2, separating the data maximally. Finally, the data groups were re-classified using k-

means clustering to attribute the data items, to the optimal two clusters. Intrinsically, 

the data items within these clusters contain participants whose performance is most 

similar throughout the data set, but also producing maximum separation to the other 

cluster. As such, two new population groups are determined which increase the 

different in average performance from the original population. Due to the number of 

players in either category switching, it cannot be said that experience faithfully 

increases performance, due to the presence of inexperienced players displaying similar 

performance levels. Now though, two distinct performance groups appear with one 

performing significantly better than the other. From here on, this group will now be 

referred to as Skilled players and the other unskilled players. The increase in overall 

performance difference in the newly termed skilled players over the unskilled players, 

provides a more representative population to elucidate neural mechanisms of high 

performance as opposed to probing neural correlates of sporting experience.   
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Chapter 4 
 

Introduction 
 

Understanding how brain activity relates to performing high-skill motor tasks is 

fundamental to developing better training and development strategies. Such is the 

scope of sport science that it is now possible to co-register eye-tracking and brain 

activity with ecologically valid performance of the sport, to identify how brains of high 

skilled players operate differently to low skilled players. A focus of research in this area 

has been the use of eye-tracking to probe visual search and fixation behaviours during 

sporting competition (Kredel et al., 2017). Whilst it was thought that eye-tracking would 

lead to physical improvement, it has been found that an athlete’s cognitive 

performance and mental state could be interpreted through tracking of eye movements 

(Moran et al., 2018). A particular focus is understanding the relevant eye-movement 

strategies employed by elite versus novice players of a particular sport (Hayhoe et al., 

2012; Mann et al., 2013. In Esports literature, it has been demonstrated that playing 

video games leads to significant visual attentional processing changes (Bavalier et al., 

2012) and eye-movement performance differences (Mack and Ilg, 2014).  

 

A fruitful avenue of research methodology in cognitive electrophysiology research are 

visuomotor performance tests. A key cognitive mechanism behind high performance 

within a visuomotor task is visual perception. Detecting the stimulus is the first step in 

responding to it. Current research has identified several neural correlates associated 

with visual perception and discrimination performance, in both the time and frequency 

domains. Interestingly, sources of evidence centre around two different phases of the 

response depending on the domain the brain activity is processed in. 

 

Within time domain research using event related potentials (ERPs), a common robust 

substrate for early stage visually processing is p100, a positive potential detected in 

occipital sensors 100ms after a visual stimulus onset. It is implicated in target-

orientated visual processing (Desmedt and Robertson 1977) and differs in amplitude 
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depending on stimulus location in the visual field (Saba et al., 2023) but stable across 

either eye (Shors et al., 1986). P100s are implicated in more complex cognitive 

processes such as face detection (Herrmann et al., 2005, Liu et al., 2013) and 

sustained attention (Di Russo and Spinelli, 1999).  

 

In athletes, several differences in p100 amplitudes have been found. Greater 

amplitudes elicited by target than non-target condition in the skilled athlete’s group 

(Sanchez-Lopez et al., 2016). However, several studies have reported reduction in 

early-stage visual processing ERP components. For example, lower amplitudes have 

been detected in volleyball and tennis players, rowers, and boxers (Lesiakowski et al., 

2017; Shangguan and Che, 2018). However, signal conductivity denoted through p100 

peak latency, is reduced in experienced baseball players (Yamashiro et al., 2013) and 

through extensive volleyball training (Zwierko et al., 2014). These shorter latency ERP 

components were correlated with reduced reaction time (Yamashiro et al., 2013). As 

such, p100 is a key visual processing component that shows modulation based on 

sporting experience or expertise and displays a relationship to behavioural 

performance measures, implicit in sport.  

 

In the time domain – how voltage changes over time – a major focus in visual perception 

research, implicit in visuomotor task performance, is a late-stage event related 

potential (ERP) component originating in occipital parietal regions called p300. As is 

denoted by the naming convention, p300 refers to a positive ERP component 300ms 

after stimulus onset therefore it is a post-stimulus component. Although commonly 

used in auditory oddball paradigms (Lindı́ n et al., 2004), p300 amplitudes have been 

found to predict visual perception performance (Eimer and Mazza, 2005 ; Salti et al., 

2012; Rutiku et al., 2015), an effect that is abolished through visual blurring of targets 

(Heinrich et al., 2010). Source analysis reveals that the increase in p300 amplitude 

originates in occipital-parietal sensors (Bablioni et al. 2006). Rare oddball stimuli 

significantly increase this response (Bernat et al., 2001) but repeated stimuli habituate 

it (Rayden and Polisch, 1998). A variety of sources position p300 as a manifestation of 

conscious access, not simply visual perception, and contains signalling to report task-

relevant stimuli (Pitts et al., 2014; Mashour et al., 2020). In this way, p300 can be seen 
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as a reflection of the demand for attentional resource allocation in response to sensory 

stimuli (Gray et al., 2004). As such, it is an incredibly important mechanism for 

visuomotor response.  

 

The other key focus in cognitive electrophysiology of visual perception is pre-stimulus 

alpha power. A wide range of research strongly implies that visual detection 

performance is intrinsically linked to pre-stimulus alpha power through an inverse 

relationship (Benwell et al., 2017; 2022). Specifically, the ability to discriminate the 

presence of a visual stimulus decreases with alpha power (Van Dijk et al., 2008) with 

this effect being present most strongly at the highest intensities of visual stimulus 

(Chaumon and Busch, 2014).  However, whilst pre-stimulus alpha predicts perceptual 

awareness, it may not predict visual sensitivity (Benwell et al., 2017). Importantly, low 

alpha power was also associated with significantly higher ERP amplitudes (Iemi et al., 

2017). This suggests that short-term changes in time domain brain activity post 

stimulus are linked to frequency domain power differences. Research using dual visual 

phenomena, which induces high inter-trial perception variability, has postulated that 

the associated power decrease in pre stimulus alpha is resulting from enhanced global 

visual system excitability (Lange et al., 2013). Individual variability in posterior alpha 

and illusionary threshold is another consideration, discovered through transcranial 

magnetic stimulation-induced visual percepts (Romei et al., 2008). This suggests that 

although conceptually reduced alpha power’s relationship to perceptual performance 

appears stable, individual differences modulate perceptual thresholds.  

 

As such, posterior alpha power modulates gain in the visual system and potentially 

reflects the accumulation of evidence (Kloosterman et al., 2019), a key process in 

decision-making. Through an accumulation of sensory evidence over time, activity 

increases to a threshold, which, when crossed, triggers a decision output. In this case, 

visually guided precise movement. This is a key substrate for the differences between a 

skilled and unskilled population, beyond the movement dynamics itself, but occurring 

in the pre-movement processing stage. In this way, a more broader decision criterion 

could be facilitated by lower alpha power (Limbach and Corballis, 2016) reducing the 

time to hit threshold, manifesting a faster reaction time.  
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Within visuomotor tasks, beta power (13-30Hz) is another important frequency band. 

Two key periods are heavily implicated in performance of complex movements, those 

being Movement-Related Beta Desynchronization (MRBD) and Post-Movement Beta 

Rebound (PMBR). MRBD is a distinct pattern of beta oscillatory power decrease (or 

desynchronisation) relative to a baseline period and reflects movement preparation, 

initiation or execution (Zhang et al., 2008).  

 

MRBD as well as resting beta power, has been  found to be highly reliable after motor-

training interventions across participants, across sessions in both sensorimotor 

cortices (Espenhahn et al., 2017). There is a significant relationship between MRBD and 

resting beta power in primary motor areas in addition to MRBD magnitude and 

movement duration (Heinrichs-Graham and Wilson, 2015). This effect may also reflect 

performance since when reaching, those movements that were preceded by a greater 

reduction in beta power, exhibited significantly faster movement onset times (Khanna 

and Carmena, 2017). MRBD is sensitive to different populations of people, with 

differences across age, increasing MBRD amplitude and resting beta power (Wilson et 

al., 2014), increases in desynchronisation in the morning to afternoon period (Wilson et 

al., 2014) and in Parkinson’s and Stroke patients, where MRBD in motor cortices was 

found to be significantly reduced compared to control groups (Heinrichs-Graham et al., 

2014; Rossiter et al., 2014).The strength of MRBD is also modulated by the type of 

movement required, such as posture, force and movement duration (Nakayashiki et al., 

2014). Reducing beta power pre-movement, a reflection of motor-planning, predicts the 

subsequent increase in adaptive drive (Darsch et al., 2020). Finally, there is a 

lateralized MRBD effect where implicated in motor selection (Doyle et al., 2005), 

however, it is said to be strongest where cues a present, facilitating a reduction in 

reaction time.  

 

PMBR is a synchronisation event that occurs after a movement has been terminated 

(Pfurtscheller et al., 1996). It reflects active inhibition of motor areas (Salmelin et al., 

1995). The amplitude of PMBR is subject to modulation by several different factors of 

the movement that has just terminated. Specifically, the type of afferent input 

(Houdayer et al., 2006) such as the rate of force development and the force magnitude 
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(Fry et al., 2016). It is generated in the motor cortex and was strongest contralateral to 

the side of movement (Jurkiewicz et al., 2006). However, since beta synchronization is 

present regardless of whether a movement was active or passive (Cassim et al., 2001) 

or if the movement was suppressed or imagined (Solis-Escalante et al., 2012). 

Therefore, PMBR might signal more than simply movement termination and has 

become associated with somatosensory processing of the previous movement, 

functioning as a cognitive check.  This is supported by findings from Tan et al (2016) 

who found a strong relationship between PMBR and confidence that a movement 

prediction was correct. A potentially stronger link to PMBR and cognition is the finding 

that synchronisation decreases post erroneous movements, relative to error size (Tan 

et al., 2014). As such, PMBR is modulated by motor learning and reflects salience 

processing, implicated in goal-directed movements (Torrecillos et al., 2015; Korka et 

al., 2023). 

 

To isolate the contributions of the visual system to the movements of skilled and 

unskilled Esports players, a visuomotor performance test is proposed. This test 

perfectly recreates the flicking movement by pulling participants around the screen and 

is a single action task to reduce variables. Within Esports, flicking  is a regarded as rapid 

reflexive movement that changes cursor location to static targets quickly. It is an 

incredibly important movement within Esports, fundamental to FPS performance. 

Flicking maps perfectly onto saccades in terms of the movement execution. The rapid 

alteration to gaze location in a target directed manner, emanates the concept behind 

flicking which rapidly alters a player’s crosshair – central point of the screen and 

indicator of aim direction. The mechanics of the movement area create in such a way 

that they are the same as you would expect in Esports, the only difference being the 

sensory information used. In Esports this information would be incredibly complex with 

bright colours, intricate shapes, that be attempting to be lifelike such as in historical 

war games (such as call of duty or counterstrike), or very much not in games using more 

unrealistic visuals (such as Valorant and Overwatch). In this experiment, the visual 

information is simplified as much as possible so that the recorded neural activity is 

simplified compared to Esports and traditional sports in general, and that the neural 

dynamics are related to a single, stationary object, not anything with movement, or 
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anything that needs to be processed in a higher-order cognitive way. This experiment 

therefore seeks to address how visual information is used to guide a fast and precise 

movement by isolate time and frequency domain activity both pre and post stimulus 

onset.  

 

The main aim of this study is to create a simple visuomotor task that tests a 

fundamental movement in Esports. It is hypothesized that skilled players will execute 

this movement better due to two key neural correlates. Firstly, skilled players will 

display an enhanced visual response to the stimulus onset, responding stronger to it 

and eliciting faster visual processing. Increased ERP component amplitudes, such as 

p100/p300 and decreased pre-stimulus alpha power, are expected to increase visual 

perception of the stimulus. This in turn, facilitates a higher performance. Secondly, that 

skilled players will display an enhanced motor response when executing the 

movement, coordinated by increased theta and beta power.  

 

Methods 

Participants 

37 participants (15 Male, 12 Female) took part in the experiment, 36 of which were 

students at University of Birmingham, one was a Marine (UK Armed Forces).  Of the 

participants, 19 were classified as Skilled players and 18 were classified as unskilled 

players based on the methods described in the previous chapter. Briefly, after reporting 

Esports playing time based on a self-report questionnaire, populations were 

determined based off Esports experience only. Players who played video-games, 

whichever input modality, but not Esports were determined to be inexperienced. After 

completing various Esports and psychophysics tasks, their performance on these tasks 

was used to perform k-means clustering and identify clusters of similarly performing 

player groups. Silhouette scores determined that two clusters were optimal, and 

players were classified based on their cluster. Their previous experience was not 

included as part of the classification process. All participants were right-handed, didn’t 

wear glasses and had no history of neurological disorders. Crucially, all participants 

reported some experience with video-games. 
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Experimental Procedure 

 

 
 

Figure 4.1. Experimental design for the experiment displaying the fixation period, stimulus onset, eye 

movement and cursor movement.  

 

All psychophysics experiments were created using SR Research experiment builder to 

accurately co-register with the eye-tracker and stimulus pc. In each experiment, a 

fixation cross began the trial by being present for 1000ms localizing eye fixation to the 

centre of the screen. After the fixation period was over, the mouse location was set to 

the centre of the screen and the response target, a visual stimulus, would appear on 

the screen. The target was a small black square, projected on a white background to 

maximise contrast. Participants would then have 1000ms after stimulus onset to move 

the mouse to the target and click on it, with only clicks registering within the target 

boundary being registered. The reaction time, calculated from stimulus onset to a 

successful click, was recorded, as well as the number of failed trials, reported as 

errors. If the trial was successful, a blank screen was present for 500ms. If the trial was 

failed because a successful click wasn’t registered within the 1000ms this would be 

recorded as an error and a message reading “FAILURE, MOVE FASTER!” would appear 

on the screen in bold red lettering. After 500ms of this message being present, another 

trial would begin, denoted by the fixation cross reappearance.  
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Before each block, participants would receive instructions and complete eye-tracker 

calibration steps. There were three different blocks, with each block using a different 

target size decreasing by 10 pixels squared each block (30x30 pixels to 10x10 pixels). All 

targets remained the same colour throughout and occurred at a set number of 

locations (20 left and 20 right, 10 centre).  

 

Eye-Tracking 

Eye-movements were recorded using an Eyelink 1000 plus (SR Research), with eye-

tracking calibration steps performed before all experimental blocks before the delivery 

of tasks instructions. To quantify eye-movements during the study, SR research’s data 

analysis tool, Data Viewer was used. This facilitated the identification of saccade, 

fixations, and trial reports. Due to the experimental coding being in another data 

package from SR research, all trials ported over contained the necessary trial condition 

information such as the target size, location, and calibration reports. To identify eye-

movements exclusively during the trial period, a reaction time variable could be 

initialized which marked the moment of stimulus onset, detected by the time the host 

pc received the stimulus onset trigger (the same trigger received by the EEG amplifier) 

to the moment it received the outcome trigger, either success or failure. As such, only 

eye-movement event-locked to the stimulus onset were included in analysis. Saccades 

below 1 degree were excluded from analysis.  

 

EEG recording and analysis 

The data was acquired using a 64-channel EEG (BioSemi) and processed using MNE – 

python toolbox, as described in Chapter 2. The data was subjected to a number of pre-

processing and processing steps as outline in the methods chapter. Briefly, noisy 

sensors were first removed and interpolated by RANSAC algorithm. Then the data was 

downsampled to 200hz to reduce computation time. After downsampling, events were 

marked depending on population (skilled or unskilled), event (stimulus onset or 

response) and outcome (success or failure). From here the data was passed through 

the AutoReject algorithm to reconstruct and drop extremely noisy epochs before being 
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passed to the ICA algorithm which allowed for artefact detection and removal. Then the 

data was passed for a final time to AutoReject to reconstruct any remaining noisy 

epochs and drop any that still didn’t pass the threshold (a lower threshold than the first 

AutoReject pass). At this point, the now clean data was filtered from 1-30Hz (high and 

low-pass) and average referenced. Epochs from this position could finally be averaged 

together to form evoked objects, or grand average ERPs, per population, event, and 

outcome. 

 

Time-domain analysis 

To identify the visual stimulus related component of ERPs, occipital parietal electrodes 

were grouped and plotted as ERPs, event locked to stimulus onset, depending on the 

outcome. Stimulus onset events that were followed by events of interest were defined 

using the function ‘define_target_events’ allowing for new events to be created if a 

target event follows the original event, within a certain time-window. This allowed 

stimulus onset events during success trials, and stimulus onset during failure trials, to 

be identified separately and compared.  

 

Frequency-domain analysis 

With clean and pre-processed data, Morlet waveform analysis was applied to 

frequencies of interest. In this experiment, the frequency ranges used were Theta (4-

7Hz), Alpha (8-12Hz), Low Beta (13-21Hz) and High Beta (22-30Hz), calculating 

individual frequencies in steps of 1Hz.  To define the number of cycles, the frequency 

range was divided by 2 and fast Fourier transform was applied. Power for each 

frequency was then averaged.  

 

Statistical analysis 

Statistical analysis was conducted differently depending on the type of data, 

behavioural data and outputted measurements of time/frequency elements, were 

analysed using Prism (GraphPad). Examples of this are behavioural performance, eye-

tracking, ERP measurements and power estimates.  Statical analysis of complex 

time/frequency elements were analysed using MNE-Python. To establish a statistical 
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relationship between time/frequency elements, outcome, and population, peak 

measurements of grand averages and averaged power estimates were made. These 

measurements were then statistically analysed using a 2-way ANOVA comparing 

Population x Outcome, corrected for multiple comparisons using Tukey’s post-hoc 

test. 1-D cluster-based permutation statistics were calculated for difference waves, 

testing deviation from zero. An F-value threshold of 6 was used to determine a 

significant cluster.  

 

Source localization 

To achieve source localization several different techniques were used to estimate both 

activation and power changes in the source space. To compute all solutions, a forward 

model was create using the standard template MRI subject fsaverage (FreeSurfer). 

Using Dynamics Imaging of Coherent Sources (DICSs), a volumetric forward model was 

created. To do this the template MRI was used to construct boundary element model 

(BEM) using a three-shell model (brain, inner and outer, skull).  

 

To calculate source activations a linear minimum-norm inverse method (eLORETA) was 

computed and applied using a regularized noise covariance matrix. From here, the 

inverse solution can be calculated, and source time courses obtained. To calculate 

event-related source power changes the DICS method was used with the volumetric 

forward model. Cross-spectral density was calculated for each frequency band using 

morlet waveform transformations using a baseline covariance matrix (pre-trial) and an 

active covariance matrix (during trial), in this case, the baseline was set 1.5-1s prior to 

the pre-stimulus fixation cross period, where a blank screen was present after the 

termination of the outcome message. 
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Results 
Behavioural Performance and Eye-Tracking 

 
Figure 4.2. Behavioural results from Random Flick psychophysics task depending on target sizes (1 = 

large, 2 = medium, 3=large) with skilled players in blue and unskilled players in red. Upper and lower 

range are shown and box size represents standard deviation. A) Box plot of reaction time depending on 

target size. B) Box plot showing error index depending on target size. C) Correlation between reaction 

time and error index with general linear model plotted in black. Statistical analysis in box plots is 2-way 

ANOVA corrected for multiple comparisons using Tukey with significant comparisons marked (* = 0.01, 

** = 0.001, *** = 0.0001).  

 

The behavioural results indicate there is not a significant interaction between target 

size and population with reaction time (F(2,72) = 0.3235, p = 0.7247), however there is a 

significant interaction between target size and population with error index (F(2, 72) = 

9.457, p = 0.0259). Skilled players displayed faster average reaction times (F (2, 36) = 

19.76, p=0.0911) to unskilled players, although the lack of significant interaction 
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doesn’t justify post-hoc comparisons. The number of failed trials, referred to as errors, 

was used to create an error index, the likelihood of a player to make an error, are 

significantly different in skilled players compared to unskilled players (F (2, 36) = 19.76, 

p = <0.0001). Tukey’s multiple comparison post-hoc test indicated significant 

differences at all target sizes, from 1 to 3 (p = 0.0005, p = 0.0002, p = 0.0016, 

respectively). Skilled players made significantly fewer errors and thus had a 

significantly small error index than unskilled players across all target sizes. In the 

correlation analysis there is a significant correlation between the two performance 

variables across the combined population (p-value = 0.0029). There is a strong positive 

relationship between reaction time and error index (r = 0.4647, p = 0.0029). Skilled 

players show a significantly better behavioural performance  by showing a faster 

reaction time and fewer errors, two variables that are strongly correlated.  
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Figure 4.3. Eye tracking performance across Random Flick experiment. A) Saccade Latency in successful 

and unsuccessful trials across different target sizes. B) Average saccade velocity in successful and 

unsuccessful trials across different target sizes.  

 

Eye-tracking results indicate a difference in execution between skilled and unskilled 

players (EP and NEP). There is a significant interaction between Population and Target 

size in the Saccade latency (F(5, 216) = 3.045, p = 0.0112. There is also a significant in 

population difference (F(1, 216) = 15.24, p = 0.0001) and there is a significant difference 

across all target sizes (F(5, 216) = 88.31, p < 0.0001). When correcting for multiple 

comparisons there are significant differences in saccade latencies across with p-

values of 0.0032, 0.0059, 0.0394 for sizes 1, 2, 3 respectively. There are no significant 

differences between saccade latency in failed trials. There is not a significant 
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interaction between population and Target size in average saccade velocity (F(5, 216) = 

1.824, p = 0.1094). There is not a significant difference across populations (F(1, 216) = 

0.2281, p = 0.6334). There is a significant difference across outcomes/target size (F(5, 

216) = 23.47, p<0.0001). The lack of a significant interaction doesn’t justify  

 

Time-Domain Analysis 

 
 

Figure 4.4. Grand average ERPs after stimulus onset in skilled and unskilled players preceding a success 

or failed response. A) Grand average ERPs comparing the different waveforms of skilled and unskilled 

players then comparing the difference between outcomes when populations are combined. 2-way 

ANOVA results are plotted comparing Population x Outcome and corrected for multiple comparisons 

using Tukey’s post-hoc test. B) Grand average difference wave ERPs between skilled players, unskilled 

players and between outcomes across populations, corrected for multiple comparisons using cluster 

permutation test. C) Permutation T-test of sensor data 300ms after stimulus onset projecting a Skilled 

minus Unskilled difference wave onto a head model.  
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The time domain results display a statistical interaction between voltage change during 

the trial dependent on both population and outcome. 2-way ANOVA results report a 

statically significant difference between outcome (p=0.0206) and a population (0.0516), 

When corrected for multiple comparisons only skilled players show a statistically 

significant difference between outcomes. Therefore, although there is a trend of 

differences between population and outcome, only skilled players show a significant 

difference in p300 amplitude between success and failure outcomes, there is a 

significant difference in VAN latency (p-value 0.0443). The difference wave plots and 

subsequent 1-D cluster permutation statistics, display a significant difference period in 

skilled vs unskilled players between 100-150ms after stimulus onset in successful 

trials, but no significant difference periods afterwards, although a post threshold, sub 

significant, peak occurs at 400-450ms. In the failure trials, an above-threshold, but 

insignificant peak occurs between 100-150ms after stimulus onset, but no significant 

difference are detected comparing skilled and unskilled players. Finally, there is an 

extended period of significant difference in a combined population, comparing success 

and failure trials. The onset of this difference begins ~200ms after stimulus onset and 

extends to the termination of the trial. The occipital-parietal sensors response 

significantly differs in the early response elements preceding a successful or 

unsuccessful trial, with those differences being most significant in skilled players. 
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Figure 4.5. AUC scores from decoding MVPA between populations and outcome. A) AUC scores 

comparing skilled and unskilled players in successful trials. B) AUC scores comparing skilled and 

unskilled players during failed outcomes. C) AUC scores comparing success and failure outcomes in 

skilled players. D) AUC scores comparing success and failure outcomes in unskilled players. Chance line 

is placed at 0.5.  

 

The decoding MVPA on voltage change over time displays how discriminable two states 

are from one another. In figure 4, peak decoding performance, denoted by highest AUC 

scores is comparing outcomes within populations. The highest best decoding classifier 

performance was achieved discriminating between success and failure in skilled 

players, peaking 550-600ms. Although similar, the decoding classifier performance 

peaked in unskilled players between 600-800ms. Comparing within outcomes, across 

populations, decoding classifier performance between skilled and unskilled players in 

successful outcomes occurred 100-200ms after stimulus onset, whereas peak 

classifier performance in failure outcomes occurred between 400-600ms after 

stimulus onset. Taken together, there is a large difference between the brain activity 

across the whole brain between outcomes, with this being most pronounced in the 
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latter stages of the trial and in skilled players. Within outcomes, classification is at its 

peak in early stages of successful outcomes and latter stages in failed outcomes.  

 

Frequency-Domain Analysis 

 
Figure 4.6. Alpha and Theta power changes over the pre-stimulus, and post-stimulus onset periods. A) 

Alpha power changes in occipital-parietal (Oz, O1, O2, POz, PO3, PO4) electrodes across skilled and 

unskilled players. B) Theta power changes in frontal-central (Fz, F1, F2, FCz, FC1, FC2) electrodes across 
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skilled and unskilled players. C) Beta power changes in midline (Cz, C1, C2, C3, C4) electrodes across 

skilled and unskilled players. Success trials are plotted in blue and failure trials are plotted in red.  

 

The oscillatory power changes in the alpha and theta frequency band occurring during 

the trial period display different relationships between success and failure trials. In 

success trials, there is lower pre-stimulus alpha power across both populations. Both 

populations show a spike of alpha power directly after the fixation cross onsets but 

drop in power quickly and markedly. In skilled players, alpha power gradually builds 

until stimulus onset (time 0) followed by another small spike, before dropping. In 

unskilled players, a different time course shape is observed where a steep rise and fall 

of alpha power occurs, rising sharply 500ms before stimulus onset, and falling quickly 

afterwards. In skilled players there is consistently lower alpha power until 2-300ms 

after stimulus onset. In unskilled players, alpha power is also lower in successful trials, 

but this difference only occurs 2-300ms before stimulus onset, continuing as alpha 

power drops with the difference ending about 500ms after stimulus onset. With theta 

power, there appears to be a large spike occurring in frontal central electrodes in both 

populations, drastically increasing theta power after stimulus onset, lasting for around 

500ms. In skilled players, there is a large difference in theta power between success 

and failure trials, this difference is not present in unskilled players.  
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Figure 4.7. Neural oscillations during visuomotor task performance. A) Pre-stimulus alpha power during 

successful and failed trials with its correlation to reaction time. B) Correlation between pre-stimulus 

alpha power and reaction time during successful trials. C) Post-stimulus theta power during successful 

and failed trials with its correlation to reaction time. D) Correlation between post-stimulus theta power 

and reaction time in successful trials. All Skilled players are plotted in blue, all unskilled players plotted 

in red.  

 

The interaction between Outcome and Population for post-stimulus theta power is not 

significant (F(1,83) = 1.413, p = 0.2389). Alpha power in the pre-stimulus period is 

significantly different between skilled and unskilled players (F (2, 66) = 24.43, p = 

<0.0001) and significantly differs between successful and failed trials (F (1, 66) = 10.91, 

p = 0.0016). Due to the lack of significant interaction, post-hoc analysis is not justified.  

The interaction between Outcome and Population for post-stimulus theta power is not 

significant (F(1,83) = 0.4955, p = 0.4687). Theta power was significantly different across 

successful and failed trials (F (1, 83) = 11.43, p = 0.0011) but not when comparing 
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skilled and unskilled players (F (1, 83) = 1.833, p = =0.1794). Due to the lack of 

significant interaction, post-hoc analysis is not justified. Correlational analysis 

indicated a significant relationship between pre-stimulus alpha power and reaction 

time (r = 0.378, p = 0.0395) across all participants and in post-stimulus theta power (r = 

0.2332, p = 0.0318). This indicates a strong inverse relationship between pre-stimulus 

alpha power and post-stimulus theta power with high performance.  There is a strong 

relationship between neural oscillations and performance, displayed by significantly 

reduced pre-stimulus alpha and significantly reduced post-stimulus theta predicting 

reaction time.  

 

 

 
Figure 4.8. Event related beta power changes. A) Movement related beta desynchronisation (MRBD) 

differences between success and failure trials. B) Post movement beta rebound  (PMBR). Beta power 

lateralisation across different time points occurring during the trial in skilled players (C) and in unskilled 

players (D). The time points used are pre-movement (-1s to 0s), movement (0s to 1s) and post-movement 

(1s to 2s), plotting the different between left and right frontal-central sensors across success and failure 

trials. In A and B, skilled players are plotted in blue, unskilled plotted in red.  
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Beta power data captures prominent MRBD effects occurring in both skilled and 

unskilled players. There is no significant interaction between outcome and population 

for MRBD (F(1, 83) = 1.551, p = 0.2165) or PMBR (F(1, 83) = 0.6655, p = 0.4170). There 

are also no significant differences in MRBD ERSP between population (F (1, 83) = 2.974, 

p = 0.0884) or between trial outcomes (F (1, 83) = 0.4954, p = 0.4835). PMBR displayed a 

significant difference between successful and failed trials across populations (F (1, 83) 

= 6.463, p = 0.0129) but not between populations (F (1, 83) = 0.3717, p = 0.5437). Since 

there was no interaction effect across MRBD or PMBR, post-hoc analysis is not 

justified. There were observed lateralization effects between left and right-side 

electrodes. In skilled players there was a significant difference between left and right 

electrode beta power (F (0.7568, 40.87) = 5.423, p = 0.0333) and between successful 

and failed trials (F (0.7568, 40.87) = 5.423, p = 0.0333), however there was not a 

significant difference between trial outcome and lateralization (F (0.8610, 46.49) = 

3.461, p =0.0745). In unskilled players, there wasn’t a significant difference between 

left and right electrode beta power (F (1, 29) = 0.9790, p =0.3306) or trial outcome (F (1, 

29) = 2.409, p =0.1315), or combining trial outcome and lateralization (F (1, 29) = 1.231, 

p = 0.2764). Overall, there is a greater MRBD across both outcomes in unskilled players. 

PMBR display greater ERS in successful trials than in unsuccessful. Skilled players 

display a high-degree of right-sided lateralization that is not present in unskilled 

players.  
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Source Space Analysis 

 

Figure 4.9. dSPM  source amplitude differences between population and outcome computed with a sign 

flip across occipital-parietal labels. A) dSPM  source amplitude change over trial period in successful 

trials of skilled players. B) dSPM  source amplitude change over trial period in successful trials of 

unskilled players. C) dSPM  source amplitude change over trial period in failed trials of skilled players. D) 

dSPM  source amplitude change over trial period in failed trials of unskilled players. All panels have single 

epoch source amplitude plotted, with mean values computed using sign flip overlaid.  

 

The source amplitude changes are plotted to transform sensor space voltage changes 

to the source space. Within both populations, differences in source amplitude are 

present between outcome conditions, with a greater amplitude occurring in successful 

trials occurring 300ms after stimulus onset. The peak source amplitude is higher in 

skilled players compared to unskilled players; however no detectable differences occur 

in the failure outcome between populations.  
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Figure 4.10. eLORETA source localization across 200-500ms period across skilled and unskilled players, 

during success and failure trials.  

 

Source localization of time-domain activation shows distinct differences between 

skilled and unskilled players in both successful and failed trials. Skilled players, during 

successful trials show the most global distribution of activity across several important 

brain regions, most notably, frontal central regions and parietal regions. Failed trials of 

skilled players display distinctly less activation in frontal-central regions and little 

parietal activity. In unskilled players, the difference between successful and failed trials 

follows a similar pattern with greater activation in successful compared to failed trials. 

Across all participants, a relative right-sided lateralization in frontal central regions is 

apparent.  
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Figure 4.11. Alpha power source localization during the pre-stimulus period using DICS across skilled 

and unskilled players, during success and failed trials.  

 

Pre-stimulus alpha power is localization to occipital regions of the brain in source 

space. In skilled players there is a low level of alpha power in successful trials, with 

higher power in failed trials. In unskilled players, there is greater alpha power 

localization in both trial outcome conditions, with the highest power occurring in failed 

trials.   



 84 

 
Figure 4.12. Time and frequency domain response to success and failure feedback after trial completion 

in frontal central electrodes (FCz, FC1, FC2, Cz, C1, C2). A) Time domain response plotting success in 

solid lines (blue = EP, red = NEP) and failure in dashed lines (blue = EP, red = NEP). Left is the basic ERP 

plotted independently; right is the difference wave computed as Failure ERP minus Success ERP across 

the same channels. B) Frequency domain response in the theta frequency band with the ERSP plotted 

comparing evoked theta data in success and failure trials (Left) and absolute  theta power in success and 

failure trials (right).  

 

The response to success or failure in frontal-central electrodes differs drastically based 

on outcome. Successful trials evoke an earlier response that is sustained for 400ms, 

whereas failed trials evoke a later and shorter, but higher amplitude response. There 

appears to be little difference between skilled and unskilled players. By plotting a 

difference wave, an early negative potential is revealed, referred to as error related 

negativity (ERN). The amplitude and latency of ERN remains stable across populations, 

peaking ~100ms after feedback onset. The peak positivity occurs earlier in unskilled 
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players, with skilled players displaying a more consistent and sustained peak. Although 

there is no significant interaction between outcome and population for frontal theta 

ERSP (F(1, 83) = 0.2633, p = 0.2633), Theta ERSP is significantly different between 

outcomes (F (1, 80) = 77.89, p = <0.0001) but does not significantly differ between 

populations (F (1, 80) = 0.001085, p = 0.9738). Due to the lack of significant interaction, 

post-hoc analysis is not justified. There is no significant interaction between outcome 

and population for Theta absolute power (F(1, 83) = 0.0318, p = 0.8587). It is 

significantly higher in failed trials compared to successful trials (F (1, 83) = 63.25, p = 

<0.0001) but is not significantly different across populations (F (1, 83) = 0.04280, p 

=0.8366). Both theta ERSP and absolute power are significantly higher in failed trials 

than successful trials which is stable across populations.   

 

Discussion 
 

The present study seeks to identify neural correlates of high performance and isolate 

how they differ in a skilled population compared to an unskilled population. This 

population was defined based on their performance during a battery of behavioural 

tasks that tested fundamental movements implicit in performance on the sporting 

model of Esports. To identify neural correlates of fundamental movement performance, 

in this case flicking – a fast reflexive movement – a simple visuomotor psychophysics 

task was created that. Behavioural analysis of task performance revealed that skilled 

players show a reduced reaction time and number of errors compared to unskilled 

players. They also display earlier saccades but with relatively similar average saccade 

velocity.  

 

Neural correlates of this higher level of performance are separated based on 

population/trial outcome and emerge from two different domains of brain activity. The 

time domain, how activity changes over time, and the frequency domain, how activity 

oscillates over certain frequency ranges. In the time domain, the p300 component of 

the occipital-parietal ERP are shown to be modulated by the skill level of the population 

and by the trial outcome. As expected, depending on the trial outcome, either 
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successful or failed, modulations to the p300 amplitude were found. Specifically, a 

significant increase in successful trials. However, no significant differences in p300 

amplitude were found between the two populations as hypothesized. Source space 

analysis revealed that in successful trials of skilled players, the amplitude of activation 

was the highest and the lowest amplitude was found in failed trials of unskilled players. 

This occurred globally across the brain (shown through eLORETA analysis) and in 

occipital-parietal labels (shown through dSPM analysis). Furthermore, skilled players 

displayed a larger VEP compared to unskilled players occurring between 100-200ms 

after stimulus onset. Finally, successful trials across both populations, displayed a 

reduced latency to peak VAN compared to unsuccessful trials. Multi-variate pattern 

analysis revealed peak decoding accuracy between skilled and unskilled players 

occurring over the first 300ms of the response and, across both populations, peak 

decoding between successful and failed trials occurs 400ms after stimulus onset and 

continuing to the end of the trial.  

 

In the frequency domain, there was a difference in pre-stimulus alpha across both 

populations and trial outcomes, with the source localized to occipital regions. Alpha 

power was higher in unskilled players and both populations showed decreased alpha 

power in successful trials. Theta power displayed a strong and stereotyped peak 

occurring over the first 500ms of the post-stimulus response which was higher in 

unsuccessful trials. Both pre-stimulus alpha and post-stimulus theta power in 

successful trials showed a strong inverse relationship to performance. Low oscillatory 

power was associated with short reaction time. Movement-related beta perturbations 

occurred in two important movement periods reflecting the well established MRBD and 

PMBR spectral perturbations. During the movement period, unskilled players displayed 

greater MRBD than skilled players. However, in skilled players there was a difference 

between success MRBD and failure MRBD, in unskilled players this difference was 

negligible. With PMBR, this effect was consistent across populations, with a significant 

difference in PMBR in unskilled players in success trials.  
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P300 and its links to performance 

One of the major neural correlates of performance was displayed by both populations, 

whereby peak p300 amplitude was larger in successful trials, found in occipital parietal 

electrodes (sensor-space) and labels (source-space). This finding is supported by a 

multitude of research focussing on p300 which regards this component as a reflection 

of conscious access (Rutiku et al., 2015)) . Analysis of current spectral density shows 

that the p300 component, induced by visual stimuli, is highly localized to occipital 

parietal regions (Ji et al., 1999). It is induced by visual information since it is abolished 

by blurring of the visual stimulus (Heinrich et al., 2010) and the source strength during 

p300ms in occipital parietal sensors is significantly higher during seen trials, as 

opposed to unseen trials (Babiloni et al., 2006). The present study replicates these 

findings and proposes an interesting idea for how successful responses are achieved. It 

is possible that failed trials occur because the visual information was not consciously 

accessed either at all, or in enough time for the participant to accurately respond. Each 

trial has a time limit (1000ms) which is incredibly short and a departure from the 

methodology employed by other visuomotor tasks. This choice implemented an 

important sporting, but especially Esports, concept of time pressure. Players in sport 

must react with both speed and accuracy under pressure. As expected, to respond 

successfully, a participant must consciously access this information quickly. Skilled 

players can consciously access the salient visual information more frequently, 

facilitating the improved performance. Evidence for an increase in speed of reaction 

comes from the reduced latency to VAN, a reliable indicator of visual perception 

(Koivisto, and Revonsuo, 2003) and is an indicator of unconscious detection (Koivisto 

and Revonsuo. 2010). This component displays a significant reduction in latency in 

successful trials compared to unsuccessful trials across both populations. Its role in 

unconscious visual perception suggests that in successful trials an earlier visual 

perception facilitates improved performance. Furthermore, unlike unskilled players, 

the skilled population display an increased VEP. By combining these results, it suggests 

that skilled players respond faster and with increased accuracy by evoking an 

enhanced occipital-parietal response over the early stages of visual processing.  
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Unfortunately, no correlation between p300 amplitude in successful trials and reaction 

time was found in either population. This finding does not corroborate with the vast 

majority of research in this area. However, many of the studies are simple visual 

detection tasks, asking participants to report if they had seen a stimulus or not. The 

present task is not so simple. Participants have 1000ms during a trial, it would be 

unlikely to suggest that a stimulus was not detected at all within that period. Ultimately, 

there is still a debate in the field about whether p300 reflects conscious awareness or 

unconscious perception in occipital parietal electrodes, since stimuli are perceived 

even when observers are unaware of the stimuli (Merikle et al., 2001). P300 theories 

have been updated to suggest  a post-perceptual marker of conscious access not 

simply conscious perception (Pitts et al., 2014). therefore, there are still many steps 

required by the participants to execute a precise movement in time. Training 

interventions in older populations, have been created displaying enhanced p300 

amplitude which was associated with increased cognitive performance (Yang et al., 

2018). Skilled players, many of which are experienced in Esports, might display pre-

trained enhancements to p300 amplitude which are captured in this study. Whilst this 

might facilitate an increased visual perception and overall performance, it does not 

linearly increase reaction time. The study didn’t report any differences in the amplitude 

or latency of p300 between the skilled and unskilled population in successful or 

unsuccessful trials, respectively. It is possible to conclude that the visual stimulus 

more readily enters conscious awareness of skilled players which allows for the 

utilization of this information to produce a conscious action more frequently. That is, 

it’s not the amplitude difference of p300 that causes the performance difference, but 

the frequency a high amplitude component is induced which produces the observed 

performance difference. There could also be further downstream modulations that 

reflect more complex cognitive/motor, processes and these are only an early indication 

of conscious perception or awareness. How this information is utilized further is 

unclear. 
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Neural oscillations and their link to performance 

There is a wide array of research isolating the role of alpha power in visual perception 

research. However, the present study provides evidence for a relationship between pre-

stimulus alpha power and complex movement performance. In the present study, low 

pre-stimulus alpha power predicted performance, showing a strong relationship to 

reaction time. In both populations, there was a significant correlation between low 

alpha power, and short reaction time.  

 

The present study largely supports this theory across a couple of different ways. Firstly, 

in both populations, a reduction in alpha power is found in success trials compared to 

failure trials, as has been well established in the literature. However, in skilled players 

there is a reduction in alpha across all trials. Behaviourally, although reaction time is 

faster overall in skilled players, this only covers successful trials. The real performance 

difference is the vastly reduced number of errors in skilled players. As such, the 

reduction in occipital-parietal, pre-stimulus alpha, which has a significant relationship 

to reaction time, is present more frequently, leading to a reduction in errors. This 

inverse relationship between pre-stimulus alpha and performance has been repeatedly 

found across numerous studies (Van Dijk et al., 2008; Chaumon and Busch, 2014, 

Benwell et al., 2017; 2022) and has been shown to be associated with higher amplitude 

ERP elements post-stimulus (Iemi et al., 2017). This decrease in alpha is suggested to 

facilitate an increase in global excitability (Lange et al., 2013) and reflect the 

accumulation of evidence over time (Kloosterman et al., 2019) by reducing the 

threshold required to initiate a decision (Limbach and Corballis, 2016). The present 

study would support this idea since lower alpha power might release the visual system, 

direct attention towards the target and induce a motor decision output quicker, 

facilitating faster reaction time, but also reduced number of errors.  

 

Predominately, research has not used such complex motor outputs however, there are 

several studies which would support this notion. It has been found that pre-stimulus 

alpha is decreased prior to the execution of successful putts in golf, relative to power in 

unsuccessful putts (Bablioni et al., 2008) with the strongest alpha power reductions 
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occurring over sensorimotor areas. Golf, however, is a much less visually dominant 

sport than Esports since players do not adapt to rapidly changing visual stimuli. 

Although this result slightly differs in location to the current study, with source 

localisation positioning maximal alpha power decreases in the visual cortex, it 

proposes a link between alpha and performance of a complex movement in sport. 

Within more visually dominant sports, such as air-pistol shooting, a common feature of 

high performance is a reduced, pre-stimulus alpha power in occipital regions that 

precedes successful shots (Kerick et al., 2004; Del Percio et al., 2009). The authors in 

these cases have postulated decreases alpha power corresponds to an increase in 

attentional resources used by the visual system assisting performance. The present 

study strongly supports this idea due to the association between higher performance 

and low pre-stimulus alpha.  

 

Post-stimulus theta power displayed a strong inverse relationship to performance, in a 

similar vein to pre-stimulus alpha power. That is, low post-stimulus theta was strongly 

correlated to high performance. Theta power showed a drastic increased spanning 

500ms after stimulus onset in FM electrodes, however power was lower in successful 

trials. A potential explanation for this general increase is related to realizing the need for 

cognitive control (Cavanagh and Frank, 2014), coordinated by theta power in the 

anterior cingulate cortex (ACC) a region commonly linked to theta power (Cohen and 

Donner,  2013). Its statistical relationship to reaction time has repeatedly been 

identified (Cohen and Cavanagh, 2011; Cohen and van Gaal, 2014) however these 

studies often focus on conflict resolution as opposed to more explosive visuomotor 

performance like the present study. Regardless of trial outcome, theta power increased 

drastically after stimulus onset across both populations. Interestingly, theta was lower 

in successful trials. In unskilled players, there was very little difference in peak theta 

power, but a higher average theta power. Perhaps the sustained increase in unskilled 

players, and peak difference in skilled players explain a similar phenomenon. That is, 

moderations to cognitive control were important for high performance. It is possible 

that unsuccessful trials induced inappropriately large signalling for control that 

impinged performance in unskilled players. 
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Since EMG or motion capture wasn’t utilized in the present study, it is harder to identify 

the exact time of movement onset, therefore elements such as movement-related 

cortical potentials are not possible. MRBD offers a better alternative to quantity brain 

activity during movement. It is seen as seen as a reliable motor potential, originating in 

the motor cortex (Espenhahn et al., 2017),  that increases in magnitude depending on 

movement duration (Heinrichs-Graham and Wilson, 2015) and with reaction time 

(Khanna and Carmena, 2017; Darsch et al., 2020). This period has strongly been linked 

to motor planning which, unfortunately hasn’t been captured in this study. Whilst motor 

planning is logically implicated in this period, it is not explicitly measured.  

 

Unskilled players show increased MRBD magnitude, but reduced performance 

contravening previous findings. This questions whether these claims are true for all 

populations, particularly when extreme populations are used. In the present study, the 

populations are separated based on performance, with skilled players performing 

better across all tasks. These tasks, show the greatest differences in performance 

during Esports task, whether they are aim-training (AimLabs), aim-testing (NAM1) or full 

Esports (CS:GO), the difference in performance increases with complexity and 

ecological, Esports validity. As such, skilled players are better at making these 

movements, not just in this simple task, but even more so in more complex tasks. A 

possible explanation for increased MRBD in unskilled players comes in two forms. 

Firstly, it is possible that the differences are not linear, increasing in amplitude as 

reaction time increases, and that there is a finite point where this switches. Secondly, 

once a certain level of skill is reached, exemplified by very high performing players and 

an extreme population such as Esports players, MRBD during movement planning 

and/or execution is modulated by neural efficiency. Skilled Esports players have put 

considerable time into practicing these exact movements, just with more complex 

visual imagery and often linking them, rather than single action, as is tested here. 

Perhaps, skilled players display an increased neural efficiency to achieve a higher 

performing movement, one that is executed quicker (shown by reduced reaction time) 

and is more accurate (shown by reduced errors) because of both experience and a skill. 

Certain players in the skilled group, however, are not experienced and some in the 

unskilled group are experienced (at least with video games, but also with Esports). 
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Therefore, whilst MRBD has a relationship to performance, with desynchronisation a 

key component of fast, reflexive movements, it may be modulated by efficiency that 

could serve as a predictor of skill potential in non-experienced players.  

 

PMBR and its relationship to performance is supported by the present study. In the 

literature, errors and error size decreases the amplitude of PMBR, something found 

across both populations. During successful trials there is a significant increase in 

PMBR compared to failure trials. Potentially, failure trials result from a decreased force 

applied during the movement (Houdayer et al. 2006), however since force wasn’t 

quantified, it cannot be said with any clarity. This implies that the sensory/cognitive 

check, a function of PMBR, is strongest in successful trials and might serve to 

implement motor learning stronger because of correct movements as opposed to 

incorrect movements.  

 

 Furthermore, present in skilled players, was a lateralisation effect showing 

consistently higher beta power in the right electrodes compared to the left something 

that was not present in unskilled players. Although the finding of increase MRBD during 

successful trials aligns with previous research, the lateralisation data does not. In fact, 

it is in stark contrast to research on MRBD and PMBR finding strong contralateral 

effects (Doyle et al., 2005; Jurkiewicz et al. 2006). A potential explanation for this result 

comes from the movement itself. In previous studies, simple movements are made 

such as finger taps/button presses. In the present studies case, only right-handed 

movements were made to manipulate the mouse, moving it in a fast, precise manner. 

This movement was also made under extreme time pressure with only 1s to respond in 

time. In this way, more complex sensorimotor information must be access and a more 

dramatic transformation is required, moving a mouse in real life to move a cursor on the 

screen, two differing movement planes. Increasing the complexity, the speed and the 

accuracy required for the movement to be successful appears to abolish the 

lateralization effects in skilled players.  

 

Finally, the response to feedback is a crucial element in the present study and 

especially within the framework of sport performance. A failed response triggered an 
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error message informing participants of their failure and instructing them to move 

faster. Because of this feedback, a typical ERN response was triggered. Successful 

trials, not signalled with any feedback still triggered a large response, perhaps 

surprisingly which onset earlier than during error feedback. By calculating a failure 

minus success difference wave, a typical ERN ERP was formed. Since a reward wasn’t 

used in this study, the ERN cannot be attributed to reward expectancy (Holroyd and 

Coles, 2002), nor is there a mismatch between actual and correct responses (Coles et 

al., 2001) due to feedback faithfully representing trial performance. As such, the 

present ERN can be attributed to competition between representations of 

correct/incorrect responses (Yeung et al., 2004). Although successful trials were 

signalled in the same way as failed trials, the absence of an error message can be seen 

as a form of successful feedback. This explains the large success response despite the 

lack of explicit feedback.  Within trial performance, it appears players of all abilities 

respond strongly to feedback regardless of the nature of the message. The positive 

portion of the ERN response is hypothesized to reflect evidence accumulation rather 

than the negativity simply indexing task performance features (Ullsperger et al. (2010; 

Steinhauser and Yeung (2010).  

 

Theta power is regarded as a key component of error related response (Cavanagh et al., 

2011) showing similarities to the ERN component (Torrecillos et al., 2014). In the 

present study, absolute theta power and theta ERSP showed a drastic increase in failed 

trials compared to successful trials. On the one hand, this would be expected due to 

the presence of an explicit error message signalling failure, however, the ERN displayed 

a strong response to success regardless of the missing positive feedback. As such, one 

would still expect a degree of theta power modulation in theta power that is not present 

in successful trials. Implicated in reinforcement learning, error related theta power 

perturbations are seen to provide a saliency signal for motor adaptation, rather than the 

drive itself (Buzsaki and Draguhn, 2004; Von Stein and Sarnthein, 2000; Janker et al., 

2021). In this way, errors are essential element of learning , implicit in performance 

development, providing an internal signal of performance evaluation. 
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Conclusion 
 

The present study utilizes a complex visuomotor performance task to isolate the neural 

correlates of high performance, examining the differences between a skilled Esports 

population and an unskilled population. It has uncovered several key contributing 

factors towards successful trials that are induced by both populations, and some that 

are unique to skilled players. Across both populations, fast reaction times are 

correlated to a reduced number of errors. That is, fast reaction times predicts a lower 

error index, suggesting better performing players are both fast and accurate with their 

responses. An electrophysiological profile of high performance is also identified by the 

present study. Successful trials display a significantly reduced VAN peak latency and 

significantly higher peak p300 amplitude. Although there aren’t any vast differences 

between time-domain ERPs of skilled and unskilled players, this successful ERP can be 

assumed to be induced more readily due to the reduction of errors. Skilled players 

more frequently display a reduced VAN latency more readily and increased p300 

amplitude, facilitating both enhanced visual perception speed and conscious access to 

task-related sensory information compared to unskilled players.  Furthermore, whilst 

differences between average pre-stimulus alpha power in successful trials are 

prevalent across both populations, skilled players display further significant 

reductions. As such, skilled players display a reduction in cortical excitability, 

coordinated by alpha power in occipital parietal regions, which disengages attention of 

task-irrelevant information. Unskilled players appear to attend greatly to the fixation 

cross during the fixation period, resulting in significantly longer saccade latencies in 

successful trials and prevents fast task switching to the target. This is supported by the 

early-stage differences in response whereby skilled players display a significantly 

increased p100 amplitude and decoding scores classifying the response differences, 

peak over this period in successful trials. Skilled players also display recued post-

stimulus theta power, perhaps signifying an increased neural efficiency and ability to 

manage a high cognitive load.  This is further supported by reduced MRBD in skilled 

players, despite a higher performance. The response of both players to feedback also 

highlights the strong impact error signalling has on cognition unified across all 

performance levels and should be considered with any training intervention. 
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Chapter 5 
 

Introduction 
Multi-sensory integration is a crucial process in the human brain but, harnessing 

information from different senses, integrating it and subsequently utilizing that 

information for a goal-directed purpose, is poorly understood. 

 

In a spatial cueing paradigm, information multisensory information can be used to 

predict a target onset prior to a response phase. This priming of the sensorimotor 

system has been shown to increase reaction time (Spence and Driver, 1997). 

Conversely, if a target is present in the opposite side to the cueing stimulus, reaction 

time increases due a process called inhibition of return (IOR). In this process there is an 

impaired ability to return to a previously attended area (Posner and Cohen 1984) due to 

increased attentional resources allocated to the non-target side. In the literature, the 

location of targets presented on the same side as they have been cued are termed valid 

locations and un-cued sides are referred to as invalid locations, thus the difference in 

reaction time to targets in valid/invalid location is referred to as the validity effect.  

 

In MSI models, auditory and visual information is often paired together since this is a 

common occurrence in nature. Common models include spatial navigation and 

speech. As such, the validity effect is a common method of practice, but with auditory 

stimuli often refers to either congruent or incongruent cues. With concurrent 

neuroimaging, it has been found that amplitude of early stage (200ms) negative 

component increased in congruent trials (where sound and word matched) compared 

to incongruent trials (Andres et al., 2011). During multi-sensory integration, activity 

from different sources might display a different time course due to visually receptive 

neurones exhibiting a smaller receptive field than auditory receptive neurones (Cuppini 

et al., 2012). Even so, auditory information that is incongruent to the presented visual 

information, still elicits a response with a remarkably short time course, around 100ms 

after auditory stimulus onset (Wildman et al., 2004). Therefore, audio-visual integration 

relies on both feedforward and feedback connections across different sensory 
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processing regions to integrate and respond quickly to (Foxe, J.J. and Schroeder, C.E., 

2005).  

 

Although AVI was a key component, another important part was the ability to propagate 

the information encoded by the spatial cues in working memory to inform the direction 

of the movement delay from that period. The ability to integrate multi-modal 

information concurrently is not the only way MSI takes place. By manipulating the time 

between multi-sensory stimulation occurs, working memory is engaged so that 

attention to the information is maintained. In this way, research on the neural dynamics 

of working memory has uncovered some common mechanisms.  

 

One of the most prominent mechanisms is how theta power coordinates working 

memory. Theta power is commonly detected in pre-frontal regions which has been 

shown to functionally connect to the hippocampus, the dominant spatial navigation 

and memory region of the brain (Backus et al., 2016). In the pre-stimulus phase, frontal 

theta power has been shown to predict successful memory encoding and predicts 

behavioural performance (Sweeney-Reed et al., 2016). An increase in theta power is 

shown before the onset of later remembered words (Scholz et al., 2017) and accurate 

recollections of the contextual details of memories was also associated with enhanced 

theta power (Addante et al., 2011). With complex visual stimuli such as pictures, 

increased theta power predicted their subsequent remembrance (Schneider, S.L. and 

Rose, M., 2016). Due to the prevalence of theta in prefrontal regions, it could be seen 

that it functions as an oscillatory correlate of episodic retrieval mode (Lepage et al., 

2000; Buckner and Wheeler, 2001 ) by being activated in anticipation of a retrieval 

event.  

 

Another frequency band of oscillatory power, alpha, is also implicated in memory. 

However, this process is theorized to correlate more with increased allocation of 

attentional resources, enhancing the propagation of information and mainlining 

working memory. Alpha synchronization has been shown to enhance the precision of 

item recall (Poliakov et al., 2014). This increase in alpha power is supposedly reflecting 

working memory maintenance and/or active inhibition of task-irrelevant information 
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(Michels et al., 2008). However, decreases in alpha power during a visual memory 

retrieval task have been found as stimulus-specific information is increased (Griffiths et 

al., 2019). Furthermore, higher performing, faster participants also displayed stronger 

alpha desynchronisation after stimulus onset. Despite these contradictions, stronger 

alpha power was detected as working memory load was increased and during memory 

maintenance, resulting in faster resynchronization (Nenerf et al., 2012).  This is further 

supported by trial-by-trial analysis, where pre-stimulus alpha desynchronisation 

predicts the accuracy of memory recall Myers et al., 2014). Thus alpha oscillations 

during memory processes, such as retrieval and maintenance, signal internal attention 

and facilitate increases successful recall (Pastötter et al., 2023).  

 

One of the most widely studied ERP components associated with feedback is error 

related negativity (ERN). This component is a negative deflection occurring  >100ms 

after error feedback. Multiple theories have suggested a variety of explanations for its 

functions such as a mismatch between actual and correct response (Coles et al., 

2001), competition between representations of correct/incorrect responses (Yeung et 

al., 2004), and modulations to reward expectancy (Holroyd and Coles, 2002). However, 

this is not the only element of feedback implicated by incorrect responses. A positive 

deflection occurring 200-300ms after feedback onset also appears to be a crucial 

element (Overbeek et al., 2005). Error positivity (Pe) as it is termed, has been shown to 

reflect the accumulation of evidence entering conscious awareness that an error has 

occurred and ERN simply indexes features of task performance (Ullsperger et al., 2010; 

Steinhauser and Yeung, 2010). As such, Pe is an essential element of learning , implicit 

in performance development, providing an internal signal of performance evaluation.  

 

An important part of performance, whether it is within a physical, sporting framework or 

a more cognitive framework, is the feedback. Informing a participant whether they were 

successful or failed a particular trial triggers evaluation of the previous trials 

performance to inform future trials. Research on feedback has identified theta 

oscillations as a key component of error related response (Cavanagh et al., 2011) 

showing similarities to the ERN component (Torrecillos et al., 2014) in topographical 

distribution. Localized to the ACC, frontal theta increased in response to high errors 
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peaking 200ms after feedback onset (Arrighi et al., 2016). However, theta oscillations 

may not necessarily drive motor adaption explicitly, since they do not predict adaption 

rate (Janker et al., 2021). As such theta oscillations may provide a saliency signal, 

engaging large scale networks related to many aspects of motor performance (Buzsaki 

and Draguhn, 2004; Von Stein and Sarnthein, 2000).  

 

Methods 
Participants 

42 participants ( 26 Male, 16 Female) took part in the experiment, all of which were 

students at University of Birmingham.  Of the participants, 23 were classified as Skilled 

players and 19 were classified as Unskilled players based on the methods described 

Methods chapter. Briefly, after reporting Esports playing time based on a self-report 

questionnaire, populations were determined based off Esports experience only. Players 

who played VG, whichever input modality, but not Esports were determined to be 

inexperienced. After completing various Esports and psychophysics tasks, their 

performance on these tasks was to perform k-means clustering and identify clusters of 

similarly performing player groups. Silhouette scores determined that two clusters 

were optimal, and players were classified based on their cluster. Their previous 

experience was not included as part of the classification process. All participants were 

right-handed, didn’t wear glasses and had no history of neurological disorders. 

Crucially, all participants reported some experience with video-games.  
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Experimental Procedure 

 
 
Figure 5.1 Trial design figure displaying the difference between auditory cue onset time between paired 

and unpaired conditions. The visual stimuli presented on the participants screen is shown above with the 

fixation, response and feedback stimuli being distinct.  

 

All psychophysics experiments were created using SR Research experiment builder to 

accurately co-register with the eye-tracker and stimulus pc. In each experiment, a 

fixation cross began the trial by being present for 1000ms localizing eye fixation to the 

centre of the screen. After the fixation period was over, the mouse location was set to 

the centre of the screen and the response target, a visual stimulus, would appear on 

the screen. In this set of experiments, an auditory cueing stimulus was also used. In 

unpaired trials, the auditory stimulus was played during fixation cross period lasting for 

100ms and occurred at the same time as fixation cross onset. In paired trials, the same 

auditory cueing stimulus occurred at the same time as target onset. The auditory 

stimulus faithfully predicted the location the target appeared, either to the left or right 

of the fixation cross. There were 50 trials to the left and 50 trials to the right per pairing 

condition.  

 

The target was a small black square, projected on a white background to maximise 

contrast. Participants would then have 1000ms after stimulus onset to move the mouse 

to the target and click on it, with only clicks registering within the target boundary being 

registered. The reaction time, calculated from stimulus onset to a successful click, was 

recorded, as well as the number of failed trials, reported as errors. . If the trial was 

Paired

Unpaired

Fixation: 1000 ms

Auditory Cue 

Response: 1000 ms Feedback: 1000 ms

Auditory Cue

Success!
Well Done
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successful, a message reading “SUCCESS, WELL DONE!” would appear on the screen 

in bold, green lettering. If the trial was failed because a successful click wasn’t 

registered within the 1000ms this would be recorded as an error and a message reading 

“FAILURE, MOVE FASTER!” would appear on the screen in bold red lettering. After 

500ms of this message being present, another trial would begin, denoted by the fixation 

cross reappearance. Before each block, participants would receive instructions and 

complete eye-tracker calibration steps. There were two blocks, one for each pairing 

condition, consisting of 100 trials each.  

 

Eye-Tracking 

Eye-movements were recorded using an Eyelink 1000 plus (SR Research), with eye-

tracking calibration steps performed before all experimental blocks before the delivery 

of tasks instructions. To quantify eye-movements during the study, SR research’s data 

analysis tool, Data Viewer was used. This facilitated the identification of saccade, 

fixations, and trial reports. Due to the experimental coding being in another data 

package from SR research, all trials ported over contained the necessary trial condition 

information such as the target size, location, and calibration reports. To identify eye-

movements exclusively during the trial period, a reaction time variable could be 

initialized which marked the moment of stimulus onset, detected by the time the host 

pc received the stimulus onset trigger (the same trigger received by the EEG amplifier) 

to the moment it received the outcome trigger, either success or failure. As such, only 

eye-movement event-locked to the stimulus onset were included in analysis. Saccades 

below 1 degree were excluded from analysis.  

 

EEG recording and analysis 

The data was acquired using a 64-channel EEG (BioSemi) and processed using MNE – 

python toolbox, as described in Chapter 2. The data was subjected to a number of pre-

processing and processing steps as outline in the methods chapter. Briefly, noisy 

sensors were first removed and interpolated by RANSAC algorithm. Then the data was 

downsampled to 200hz to reduce computation time. After downsampling, events were 

marked depending on population (skilled or unskilled), event (stimulus onset or 
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response) and outcome (success or failure). From here the data was passed through 

the AutoReject algorithm to reconstruct and drop extremely noisy epochs before being 

passed to the ICA algorithm which allowed for artefact detection and removal. Then the 

data was passed for a final time to AutoReject to reconstruct any remaining noisy 

epochs and drop any that still didn’t pass the threshold (a lower threshold than the first 

AutoReject pass). At this point, the now clean data was filtered from 1-30Hz (high and 

low-pass) and average referenced. Epochs from this position could finally be averaged 

together to form evoked objects, or grand average ERPs, per population, event, and 

outcome. 

 

Time-domain analysis 

To identify the visual stimulus related component of ERPs, occipital parietal electrodes 

were grouped and plotted as ERPs, event locked to stimulus onset, depending on the 

outcome. Stimulus onset events that were followed by events of interest were defined 

using the function ‘define_target_events’ allowing for new events to be created if a 

target event follows the original event, within a certain time-window. This allowed 

stimulus onset events during success trials, and stimulus onset during failure trials, to 

be identified separately and compared. Trials were separated based on their pairing 

condition.  

 

 

Frequency-domain analysis 

With clean and pre-processed data, Morlet waveform analysis was applied to 

frequencies of interest. In this experiment, the frequency ranges used were Theta (4-

7Hz), Alpha (8-12Hz), Low Beta (13-21Hz) and High Beta (22-30Hz), calculating 

individual frequencies in steps of 1Hz.  To define the number of cycles, the frequency 

range was divided by 2 and fast Fourier transform was applied. Power for each 

frequency was then averaged for time periods of interest, either pre-stimulus (-1, 0.2) or 

post stimulus (0, 0.8).  
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Statistical Analysis 

Statistical analysis was conducted differently depending on the type of data, 

behavioural data and outputted measurements of time/frequency elements, were 

analysed using Prism (GraphPad). Examples of this are behavioural performance, eye-

tracking, ERP measurements and power estimates.  Statical analysis of complex 

time/frequency elements were analysed using MNE-Python. To establish a statistical 

relationship between time/frequency elements, outcome, and population, peak 

measurements of grand averages and averaged power estimates were made. These 

measurements were then statistically analysed using a 2-way ANOVA comparing 

Population x Outcome, corrected for multiple comparisons using Tukey’s post-hoc 

test. 1-D cluster-based permutation statistics were calculated for difference waves, 

testing deviation from zero. An F-value threshold of 6 was used to determine a 

significant cluster.  

 

Source Localization 

To achieve source localization several different techniques were used to estimate both 

activation and power changes in the source space. To compute all solutions, a forward 

model was create using the standard template MRI subject fsaverage (FreeSurfer). 

Using Dynamics Imaging of Coherent Sources (DICSs), a volumetric forward model was 

created. To do this the template MRI was used to construct boundary element model 

(BEM) using a three-shell model (brain, inner and outer, skull).  

 

To calculate source activations a linear minimum-norm inverse method (eLORETA) was 

computed and applied using a regularized noise covariance matrix. From here, the 

inverse solution can be calculated and source time courses obtained. To calculate 

event-related source power changes the DICS method was used with the volumetric 

forward model. Cross-spectral density was calculated for each frequency band using 

Morlet waveform transformations using a baseline covariance matrix (pre-trial) and an 

active covariance matrix (during trial), in this case, the baseline was set 1.5-1s prior to 

the pre-stimulus fixation cross period, where a blank screen was present after the 

termination of the outcome message.  
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Results  

 
Figure 5.2  Behavioural differences in reaction time and errors across Unpaired and Paired conditions, 

comparing over target size. A) Reaction time across different target sizes (1, 2 and 3) and error index 

across different target sizes during unpaired trials. B) Reaction time across different target sizes (1, 2 and 

3) and error index across different target sizes during paired trials. C) Average reaction time and error 

index across all target sizes comparing skilled and unskilled players in unpaired and paired trials. A and B 

analysed using 2-way ANOVA comparing target size and population. C uses unpaired t-test to compare 

the difference between population only per condition.  

 

The behavioural results indicate significant differences between skilled and unskilled 

players deal with multi-sensory information. In paired conditions, there is a significant 

difference in performance across the different target sizes (F (1.865, 72.73) = 39.79, p = 

<0.0001) but not across the two populations (F (1, 39) = 1.005, p = 0.3223). Tukey’s 
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multiple comparison post-hoc test indicated no significant differences across any 

target size between populations (1, p = 0.0762; 2, p = 0.9834; 3, p = 0.6759). There is 

also a significant difference in number of errors across target size in paired trials (F 

(1.988, 77.52) = 30.74, p = <0.0001) but not across population, although it is 

significantly trending (F (1, 39) = 3.889, p = 0.0557). Tukey’s multiple comparison post-

hoc test indicated no significant difference in number of errors across any individual 

target size between populations (1, p = 0.1302; 2, p = 0.1725; 3, p = 0.0723). In unpaired 

trials, there are significant differences in reaction time across target sizes (F (1.675, 

65.31) = 94.79, p <0.0001) and population (F (1, 39) = 5.848, p =0.0204). Tukey’s 

multiple comparison post-hoc test indicated a significant difference in reaction time at 

target size 1 (p = 0.0115),  a significant trend at target size 2 (p = 0.0517) and an 

insignificant difference at target size 3 (p = 0.1686) between skilled and unskilled 

players. The number of errors showed significant differences across target size (F 

(1.821, 71.01) = 45.95, p<0.0001) and across populations (F (1, 39) = 9.677, p =0.0035). 

Tukey’s multiple comparison post-hoc test indicated a significant reduction in errors in 

skilled players across all target sizes (1, p = 0.0285; 2, 0.0402; 3, p = 0.001). Overall, 

there is a strong general trend towards skilled players performing better across both 

pairing conditions than unskilled players. This is displayed by shorter reaction time 

across all distances and fewer average errors. In the cued, unpaired MSI integration 

paradigm, a greater difference emerges. Finally, comparing the change in performance 

between unpaired and paired conditions within each population, skilled players show a 

significant decrease in reaction time in unpaired conditions (p = 0012) and a significant 

reduction in errors (p = 0.0161). Unskilled players show no significant difference in 

reaction time (p = 0.08847) or errors (0.7385). The performance of skilled players is 

significantly higher in unpaired conditions than in paired conditions, whereas unskilled 

players performance its statistically indistinguishable. 
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Time-Domain Analysis 

 

 

Figure 5.3. Time-domain response in the pre-stimulus onset period and post-stimulus onset period 

computed as unpaired minus paired waveforms in butterfly plots (left) and scalp maps (right). High 

positive voltage is displayed as red and low negative voltage is displayed as blue. Sensors significantly 

deviating from 0 are highlighted.  

 

The butterfly plots display a large difference in responses to the AV pairing conditions 

across all participants occurring differently across electrodes sites. In both conditions, 

a large dipole emerges 200ms after visual stimulus onset, with a large positive anterior 

potential and large negative posterior potential . In both trials, a second dipole occurs 

300-400ms after stimulus onset, except it is significantly larger in paired AV trials. The 

difference wave displays the magnitude of this difference, peaking at 400ms and 

topographical distribution of significantly different electrodes is plotted.  

 

The voltage change over time during paired and unpaired auditory visual stimulus trials 

display vast differences between them. Starting with frontal electrodes a sharp negative 

potential is observed in paired trials peaking at 400ms after stimulus onset. This 

potential is not present in unpaired trials. In central electrodes a similar, less sharp 

potential occurs in central electrodes occurring at a similar time, again this is not in 

unpaired trials. Finally, in occipital parietal electrodes a strong negative potential 
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occurs at 200ms after stimulus onset in paired trials, and then a strong positive 

potential occurs at 400ms after stimulus onset in paired trials. It appears there are two 

dipoles across the entire brain present in the data, one occurring at 200ms after 

stimulus onset, which is stronger in unpaired trials and one occurring at 400ms after 

stimulus onset which is occurring 400ms after stimulus onset. These dipoles reverse in 

orientation between the first and second one.  

 
Figure 5.4. peak amplitude of unpaired and paired trials across success and failure trials, in key brain 

regions. A) Peak amplitude measurements of occipital-parietal electrodes. B) Peak amplitude 

measurements of frontal electrodes. Trial measurements occur between 350-450ms. 

 

The peak amplitude measurements show several differences both between location, 

pairing condition and outcome. The interaction between outcome and 

condition/population is significant (F(3,78) = 4.179, p = 0.0186) for occipital parietal 

electrodes and for frontal electrodes (F(3,78) = 5.026, p = 0.0081).  In occipital parietal 

electrodes, there is a significant difference in amplitude between outcomes (F (1.000, 

44.00) = 22.85, p = <0.0001) and between pairing conditions (F (1.000, 44.00) = 38.82, p 
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= <0.0001), however there is no significant differences across population (F (1, 44) = 

0.02290, p = 0.8804). Tukey’s multiple comparison post-hoc test indicated a significant 

difference between successful trials in unpaired conditions of skilled players (p = 

0.0477) and in paired conditions (p = 0.0073). There were no significant differences in 

unskilled players (unpaired, p = 0.22; paired, p = 0.1809). In frontal electrodes, there are 

significant differences between successful and failed trials (F (1, 44) = 25.96, p = 

<0.0001) and between pairing conditions (F (1, 44) = 12.53, p = 0.001) but there are no 

significant differences across populations (F (1, 44) = 0.4889, p = 0.4881). Tukey’s 

multiple comparison post-hoc test indicated there are significant differences between 

successful and failed trials in unpaired conditions of skilled players (p = 0.0089) and in 

paired conditions (p = 0.049). However, there are no significant differences between 

conditions in unskilled players (unpaired, p = 0.1203; paired, 0.2053). Across the 

different pairing conditions, there is a significant increase in voltage, either positively or 

negatively across all electrode sites, between the unpaired and paired conditions. In 

paired conditions, there is a drastic change of voltage. Finally, there are general trends 

in the difference between success and failure trials that remain stable between the two 

populations. In several cases, the amplitude is larger in successful trials than in 

unsuccessful trials across both skilled and unskilled players. As such there are a 

number of differences in peak ERP amplitude between electrode sites, between pairing 

conditions, between outcomes and between skilled and unskilled players This displays 

how multi-sensory processing differs depending on how the stimuli are paired, the 

outcome and the skill level of the participant.  
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Frequency-Domain Analysis 

 

 
Figure 5.5. Power time course during pre/post stimulus during paired trials across skilled and unskilled 

players. A) alpha power time course. B) theta power time course C) beta time course.  
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Figure 5.6. Power time course during pre/post stimulus during unpaired trials across skilled and 

unskilled players. A) alpha power time course. B) theta power time course C) beta time course.  
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Figure 5.7. Alpha oscillatory difference between skilled and unskilled players, in success and failure 

trials across paired and unpaired conditions. Displaying bar charts of the difference and correlation 

between alpha power and performance as reaction time. 

 

The two pairing conditions produce differences in alpha power localized to the 

posterior portion of the brain, the occipital parietal region. In the pre-stimulus period of 

unpaired trials. The interaction between population and outcome is not significant in 

alpha power for paired (F(1, 39) = 2.274, p = 0.1396) or unpaired (F(1, 39) = 0.6902, p = 

0.6902) alpha power. However, there is a significant difference in alpha power across 

trial outcomes  (F (1, 39) = 6.200, p = 0.0171) but not between populations (F (1, 39) = 

0.3552, p = 0.5546). The lack of significant interaction means post-hoc analysis isn’t 

justified. In unpaired trials, there was a significant difference in alpha power depending 

on trial outcome (F (1, 39) = 6.160, p =0.0175). but not between populations (F (1, 39) = 

0.003691, p =0.9519). The lack of significant interaction means post-hoc analysis isn’t 

justified. During the pre-stimulus period in unpaired trials, the auditory cueing  signal 

has been received whereas in paired trials, the cueing signal has not. The presence of 
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the signal increased posterior alpha power. Successful trials were associated with 

lower alpha power across both conditions. Correlational analysis shows a significant 

relationship between pre stimulus alpha power and performance in both paired and 

unpaired trials. In both populations there is a strong inverse relationship between alpha 

power and performance, shown by a positive relationship between alpha power and 

reaction time (unpaired, r = .0.4178, p = 0.0066; paired, r = 0.5804, p = 0.0118) 

therefore, lower alpha power is correlated with lower reaction time, which would yield a 

higher performance. As such, low-pre stimulus alpha is a predictor of performance in 

occipital parietal regions, regardless of the presence of a auditory predicting cue. 

However, by using Fisher’s r-to-z approach, comparing correlations, there is no 

significant difference between populations (z = -0.963, p = 0.168).  

 

 
 

Figure 5.8. Theta oscillatory difference between skilled and unskilled players, in success and failure 

trials across paired and unpaired conditions. Displaying bar charts of the difference and correlation 

between theta power and performance as reaction time.  
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Theta power in frontal regions shows a significant difference between population, trial 

outcome and pairing condition. The interaction between outcome and population is 

insignificant for both unpaired (F(1,39) = 0.5451, p = 0.4647) and paired (F(1, 39) = 

0.2118, p = 0.6425) for theta power. In unpaired trials there is a significant increase in 

theta power in successful trials compared to failed trials (F (1, 39) = 5.739, p = 0.0215) 

but between populations (F (1, 39) = 1.150, p = 0.2901). In paired trials, there were no 

significant differences in theta power across different trial outcomes (F (1, 39) = 

0.06105, p = 0.8061) or across populations (F (1, 39) = 0.6438, p =0.4272). The lack of 

significant interaction means post-hoc analysis isn’t justified. In both pairing 

conditions, there is a significant negative relationship between post-stimulus theta 

power and reaction time (unpaired, r = -0.4469, p = 0.0034; paired, r = -0.3726, p = 

0.0164). That is, higher theta power is correlated to low reaction time, or high 

performance. However, by using Fisher’s r-to-z approach, comparing correlations, 

there is no significant difference between populations (z = = -0.395, p = 0.347). Post-

stimulus theta power shows significant increases in successful trials and higher power 

in unpaired cueing conditions.  
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Outcome Response 

 

 
 

Figure 5.9. Timed domain response from Central electrodes displaying error related negativity and error 

related positivity in skilled and unskilled players.  

 

Event related potential changes to success and failed trials do not vary strongly 

between skilled and unskilled players. Successful trials, produce a far greater response 

than failed trials, shown by a significantly larger peak amplitude. There appears to be 

relatively little differences between the two pairing conditions, with similar peak 

amplitudes across successful and failed trials regardless of pairing. The differences 

waves do not produce the stereotyped event related negativity, commonly associated 

with this type of feedback.  
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Figure 5.10. Theta power modulations post-trial during trial outcome feedback in paired and unpaired 

conditions. A) Theta power differences across successful and failed trials in paired and unpaired. B) 

Event related spectral perturbation in the theta frequency band.  

 

Across both pairing conditions, failures produce a greater theta power response 

compared to successes. However, there is no significant interaction between outcome 

and population in post response theta power in paired (F(1,39) = 0.1605, p = 0.6908) or 

unpaired (F(1,39) = 0.0049, p = 0.944) conditions. In unpaired conditions, there is a 

significant increase in frontal-central theta post feedback in failed conditions (F (1, 39) 

= 7.299, p = 0.0102) but no significant differences between populations (F (1, 39) = 

0.2328, =0.6322). The lack of significant interaction means post-hoc analysis isn’t 

justified. Theta ERSP shows similar post-feedback dynamics to absolute theta power. 

There are significant interactions between outcome and populations in post reponse 

theta ERSP in paired (F(1,39) = 3.2791, p = 0.0392) and unpaired (F(1,39) = 8.451, p = 

0.0060) conditions. In paired conditions, theta ERSP shows a significant difference 
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between trial outcomes (F (1, 39) = 19.99, p = <0.0001) but not between populations (F 

(1, 39) = 0.3290, p = 0.5695). Tukey’s multiple comparison post-hoc test indicated that 

for each population, there was a significant increase in post-feedback theta power 

(skilled players, p = 0.0109; unskilled players, p = 0.0009). In unpaired conditions, theta 

ERSP showed no significant differences across trial outcomes (F (1, 39) = 1.024, p = 

0.3178) or populations (F (1, 39) = 0.01168, p = 0.9145). Tukey’s multiple comparison 

post-hoc test indicated that for skilled players, there was a significant increase in theta 

ERSP in failed trials (p = 0.0052) but not in unskilled players (p = 0.2133). Post feedback 

theta power changes depending on trial outcome, with a significant increase in failed 

trials. Theta ERSP shows a similar trend in paired trials, but depends on the population 

in unpaired trials.  

 

Discussion 
 

The present study seeks to address how multi-sensory information is processed in the 

brain during complex movement tasks. By using a spatial cueing paradigm, auditory 

information predicts the direction of visual target onset which requires a fast and 

precise motor response. The two conditions of the experiment modulate the time 

before the auditory cueing stimulus onset with the first occurring 1000ms before target 

onset and the second occurring simultaneously with the visual target. In this way, 

audio-visual information is either unpaired (1000ms before target onset) or paired 

(simultaneously with target onset). Behaviourally, skilled players displayed faster 

reaction times and fewer errors across both conditions, with a high level of significance 

in unpaired conditions. The audio-visual integration (AVI)  occurring at target onset 

increased the difficulty of the task, harming performance in both populations. However, 

in skilled players, the significant improvement in performance, occurring in the 

unpaired condition, displays how skilled players poses a greater ability to utilize multi-

sensory information which in turn improves performance. This is a common concept in 

sport whereby utilizing salient information to inform cognitive responses is generally 

associated with a higher skill level.  
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The paired condition produced a significantly different response to the unpaired 

condition, inducing a drastic dipole occurring from anterior to posterior regions, 400ms 

after auditory cue onset. This response appears to directly relate to the processing of 

the auditory stimulus since it is present in the pre-stimulus period of unpaired 

conditions, when the cue occurs before visual target onset, and in the post-stimulus 

period of paired conditions, when both auditory and visual information is presented 

simultaneously. Furthermore, this potential  is not present in the psychophysics tasks 

in the previous chapter using the same targets and same complex movement. The peak 

amplitudes of the response in anterior electrodes, covering frontal central regions, and 

occipital parietal regions, in paired trials displays a higher amplitude to the response at 

the same timepoint in unpaired trials. Across all conditions, there is relatively little 

difference in ERP component amplitude between skilled and unskilled players, but both 

populations display significant differences between successful and failed trials. 

Successful trials are associated with a higher amplitude occurring in between 350-

450ms. As with the previous chapter, and the associated research on increased p300 

amplitude and visual perception performance, higher amplitude late-stage ERP 

components appear to be a crucial indicator of sensory perception/conscious access 

to sensory information.  

 

In the present study, there were stark differences in oscillatory power between the 

paired and unpaired conditions, in the pre-stimulus period. During this period, there 

was higher average alpha and theta power, localized posteriorly and anteriorly, 

respectively, across both populations. In paired conditions, where participants had not 

received the auditory cue, there was a generalized reduction in occipital parietal alpha 

power in success trials compared to failure trials. This difference was significant in 

skilled players but not in unskilled players. The paired trials also showed a greater 

recruitment of the parietal cortex compared to unpaired trials, where there was a 

stronger bias to the occipital lobe. In unpaired trials, the reduction in alpha power was 

still prevalent in success trials compared to failure trials. However, no significant 

differences were found. Theta power, localized frontally in both paired and unpaired 

trials, showed a significant increase in unpaired trials, and higher power in success 

trials, a marked difference to posterior alpha power. The difference was significant in 
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skilled players and but not in unskilled players, although it was statistically trending. 

Both alpha and theta oscillatory power predicted performance in the subsequent trials, 

however they each had a different relationship to performance. Low pre-stimulus alpha 

strongly predicted low reaction time or high performance. Whereas high pre-stimulus 

theta, especially in unpaired trials, strongly predicted low reaction time or high 

performance. 

 

Source localization positioned pre-stimulus alpha and theta in different positions. For 

alpha power, the pre-stimulus activity was localized to the occipital-parietal region. In 

the unpaired AV tasks, where the pre-stimulus period was combined with an auditory 

cue predicting target location onset, the activity was more widespread into the parietal 

cortex over more sensory-motor areas, compared with the paired, non-pre stimulus 

cued condition. Multiple studies have localized multi-sensory integration to take place 

in a wide variety of cortical and sub-cortical structures. The area activated is subject to 

a wide variety of factors including, the experimental approach, complexity of 

information and attention (Gao et al., 2023).  

 

Finally, after the trial is completed, a feedback signal is presented to the participant 

displaying either a reward message for successful trials, or a punishment message for 

failed trials. The two outcome feedback messages induced differing reactions, with a 

greater response to punishment than reward across both trial conditions. By plotting an 

error-related negativity (ERN) difference wave, where successful outcomes are 

subtracted from failed outcomes, a strong negative ERP is shown peaking around 

300ms after feedback onset.  The ERN was stronger in paired trials compared to 

unpaired trials. Theta power localized to central regions, increases significantly after 

failed trials compared to successful trials. Although the total power was higher in 

unpaired conditions, the event-related spectral perturbation occurring in paired trials 

was drastically higher.  

 

The paradigm used in the present study modulates two distinct but linked processes. 

Firstly, inhibition of return (IOR), whereby participants can reduce their visual search 

field based on cueing information and second, multi-sensory integration (MSI), whereby 
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a participant processes two distinct sources of sensory information simultaneously. 

Importantly, two further modulations are considered. Firstly, are the neural correlates 

of IOR and MSI different during success and failure trials. Secondly, are neural 

correlates different depending on a skilled and unskilled population. Spatial cueing 

paradigms have shown that responses to cued targets presented in valid locations 

(same side as cue) are faster than responses to targets at invalid locations. Cues 

presented in this manner provide meaningful and salient information about the target 

onset, focussing attention to narrower areas.  The present study used this concept to 

see if higher-skilled players could utilize a short sound to inform response, improving 

performance either if it was provided a substantial time ago, or if it was provided 

simultaneous. By creating the experiment in this way, participants had to propagate the 

cued information in their working memory or perform multisensory integration. In this 

way, only relevant information is extracted from the environment and the efficiency of 

information search increases due to the exclusion of extraneous information (Klein, 

1988; Klein & MacInnes, 1999). However, it has been suggested that there is a temporal 

window whereby this is true. 

 

As such, when analysing the results, it is important to understand how the experimental 

paradigm impacts the brain areas that are activated most strongly. In the present 

studies case, several choices were made with that in mind. Firstly, the time between 

cueing stimulus and response. The cueing stimulus either occurred 1000ms before or 

simultaneously, providing different lengths of time whereby information from the 

cueing stimulus would need to be retained . Secondly, the cueing stimulus faithfully 

predicted target onset direction. In other words, if a sound was heard in the left ear, the 

stimulus would always appear to the left. Although the participants were not informed 

of this, association would be likely to form. These two choices were made deliberately 

for ecological validity of the sporting model of Esports. In Esports, an artificial/virtual 

world, perceptual sensory information is not naturally available as it would be in 

traditional sports in the real world. For example, even without the present of visual 

cues, a player can detect the presence of an opposing player moving towards them due 

to the sound of footsteps or breath. This stimulus is therefore looming and will give 

temporal clues about the time they have to respond. Sport psychology would postulate 
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that better players are more attentive to these cues or at least, are able to utilize this 

information better than worse players. In Esports, this sound is artificially pumped into 

the game to create a more natural perceptual environment. Actions in-game create 

sound to give spatial cues about where players are both in terms of distance and 

direction. The most important of these cues in FPS Esports is footsteps. However, many 

FPS Esports have ways in which a player can reduce or muffle their footsteps at an 

expense of manoeuvrability, namely crouching. Therefore, the sounds are often short, 

non-looming and difficult to discriminate. In the present study, an increase in 

performance in skilled players was found in cues occurring 1000ms prior to target 

onset, outside of the stimulus onset asynchrony window. In unskilled players, there 

was a slight decrease in performance with unpaired trials, although this wasn’t 

significant.  

 

One potential explanation for this finding is that the concept of inhibition of return is 

being tested in an extreme population. Skilled Esports players, and VGPs in general, 

routinely employ visual search, followed by a precise motor response. Research has 

found better visual search strategies and performance, as well as increased visual 

processing speeds in VGPs compared to novices. In the present population, defined (in 

part) by performance in FPS Esports where visual search is of paramount importance to 

success, skilled players appear to utilize the cued information, improving reaction time 

and reducing errors.  As expected, the performance of skilled players was higher than 

that of unskilled players, especially during unpaired trials. This shows how they can 

retain and utilize multi-sensory information to execute a better movement. Therefore, 

cueing information improves performance by inducing IOR, narrowing visual search to a 

smaller area. Better players can utilize this more effectively.  

 

ERPs and p/n400 

The p/n400 occurring in anterior and posterior regions is significantly bigger in 

amplitude in  paired conditions that in unpaired conditions. The same potential can be 

found during the pre-stimulus period in unpaired condition, 400ms after auditory onset. 

It appears this occurs due to the temporal synchrony of the auditory stimulus, 
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reverberating through the brain 400ms after receiving it. Dipole localization places a 

strong dipole in sensorimotor regions of the brains across both populations, a region 

commonly associated with MSI. Although there are few differences between skilled and 

unskilled players, it appears that this potential has a strong relationship to performance 

due to its significant correlation with performance and reduced amplitude in 

unsuccessful trials.  

 

The p/n400 component has been identified in previously studies and appears to reflect 

a mismatch in audiovisual information (Yin et al., 2008). It is possible that the potential 

reflects feedback connections from multisensory areas or projections from the auditory 

cortex to the visual cortex, explaining its relatively late onset (Calvert et al., 1999). This 

is supported by anatomical evidence from monkeys displaying the described 

connections (Falchier et al., 2002; Rockland and Ojima, 2003). As such, the mismatch 

in frontal negativity and posterior positivity,  has been seen to reflect cogntitve 

integration of multisensory information across the brain (Liu et al., 2009). The present 

study accurately recreates this concept by displaying the p/n400 mismatch in unpaired 

minus paired post-stimulus onset period.  

 

ERP amplitude of occipital parietal p300 in unpaired conditions, recreates the 

previously identified visual perception amplitude differences between successful and 

failed trials. That is, that the peak amplitude of p300 in successful trials is significantly 

higher than in failed trials. This is a key amplitude for conscious access and seems not 

to be modulated by any cueing information. It was hypothesized that there would be an 

increase in visual perception speed brought on by cueing information, but this is not the 

case. Later stage ERP components in unpaired conditions still reflect conscious access 

to visual information with similar temporal dynamics regardless of the presence of 

additional predicting information.  

 

Neural Oscillations in MSI and WM 

The stark increase in alpha and theta power in unpaired conditions potentially reflects 

the auditory cue functioning as a working memory. In this way, performance is 
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improved because participants retain a memory of target direction and utilize it to 

narrow the attentional search area. Many studies have linked alpha and theta power to 

memory in a variety of ways.  Theta, localized to the pre-frontal cortex has been 

implicated in the functional relationship between hippocampal and frontal areas 

facilitating communication between these two areas (Backus et al., 2016). Increases in 

frontal theta power has been shown to successfully predict behavioural performance in 

memory encoding and retrieval tasks (Sweeney-Reed et al., 2016) , showing increases 

in word-remembering (Scholz et al., 2017), contextual details recall (Addante et al., 

2011), and complex visual stimuli (Schneider and Rose, 2016). As such, theta power 

increases are seen as a function of episodic memory retrieval (Lepage et al., 2000; 

Buckner and Wheeler, 2001). During unpaired trials, the pre-stimulus theta power 

functions to encode the auditory stimulus as a memory, displayed by an increase in 

theta power, which is retrieved post stimulus onset to improve performance.  Alpha 

power’s role in memory is intrinsically related to attention, whereby increases reflects 

attentional resource allocation. Increases in alpha through ERS have been associated 

with memory recall (Poliakov et al., 2014), memory retention (Bastiaansen et al., 2002) 

and memory load (Nenerf et al., 2012). It appears that inhibits task-irrelevant 

information (Michels et al., 2008) and signals internal attention (Pastötter et al., 2023) 

facilitating successful recall and improving memory performance. ERS was not found in 

the present study, in fact, the opposite (ERD) was observed in the alpha frequency 

band.  

 

However, a key issue with the present study is the lack of modulation to memory load. 

Many studies have manipulated this variable to observe differences in oscillatory power 

directly induced by memory processes. This was not manipulated here and as such it is 

difficult to truly attribute changes pre-stimulus onset directly to memory. Although it is 

likely that the auditory stimulus was, in some way, encoded and maintained within 

working memory, it cannot definitively be said that a memory was formed. The increase 

in performance resulting from the cue does suggest that the information is utilized, 

however an opposing view is that the performance differences are due to the 

simultaneous sensory information presentation. In this way, there is not necessarily a 

performance increase during unpaired trials relative to baseline as a result of the cued 



 122 

information, but a performance decrease relative to baseline as a result of paired multi-

sensory information.  

 

Many of these studies focus on the role of theta in explicit memory recall paradigms. 

Specifically, participants simply must report an item, retrieved from memory which can 

either be correct or incorrect. These tasks do not require any other behaviour other than 

simple button taps or speech. The present study highly differs from this approach by 

inducing a visuomotor performance test after stimulus onset whereby participants 

must respond accurately with a fast movement. This movement also requires a 

sensorimotor transformation manipulating a cursor onscreen with a mouse in the real 

world. As such, the data is less conclusive about the role of memory, especially post-

stimulus onset. The sensorimotor challenge is also under considerable time pressure. 

As such, it is hard to differentiate the origin of the elevated pre-stimulus theta power 

between memory maintenance (in the unpaired condition) and motor action. However, 

the significant increase in pre-stimulus theta power present in the unpaired condition, 

could originate from participants propagating the information in their working memory. 

Future studies should systematically modulate this period with longer and short pre-

stimulus multi-sensory cues that predict target direction, seeing if there is a continued 

propagation of information over longer time courses and if this effect has a shortest 

period. Furthermore, the duration of the cue could also be modulated to help reduce 

the load on working memory and, if the assumptions are correct, reduce theta power 

associated working memory.  

 

Outcome Response 

In the present study, feedback was delivered after each trial indicating whether the trial 

outcome was successful or failed. This brought about strong response, localized to 

frontal central regions. By computing failure minus success difference wave, a typical 

error related negativity plot was identified. In this plot, a strong negative deflection 

occurs 100ms after feedback onset switching to a strong positive deflection 300ms 

after feedback onset. Defined separately, successful trials produced a peak potential 

occurring earlier with a lower peak amplitude compared to errors. With erroneous 
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responses the peak response occurred at 300ms after error onset. Although there 

weren’t any significant differences between skilled and unskilled players, this response 

is crucial to performance. Theta appears to coordinate the outcome response, 

especially to errors, shown by a drastic increase in theta power during outcome 

feedback. During errors, theta power was significantly higher compared to during 

success with similar amplitudes across both experimental conditions. As would be 

expected, the pairing of AV information does not influence the total power exhibited in 

feedback response. However, unexpectedly, pairing trials drastically increased the ERS 

of theta post outcome feedback. An explanation for this comes from the role of theta 

oscillations during error related feedback. Whilst theta might not necessarily provide 

motor adaptation drive (Janker et al., 2021), it is highly engaged during larger errors 

(Arrighi et al., 2016). It appears to inform participants about a need to change 

behavioural policy, something discovered across a wide range of experimental 

paradigms. In the present case, paired trial performance was significantly worse, 

therefore it is likely to assume that a greater degree of behavioural adaptation is 

required. As such, theta oscillatory power is higher in failed trials and show a greater 

synchronisation after errors. Theta absolute power is higher in skilled players compared 

to unskilled players as well as synchronisation, suggesting that behavioural adaptation 

is more prominent in unskilled players (van de Vijver et al., 2011). Although not explicitly 

measured in the present study, higher theta power is attributed to better learners 

(Cavanagh et al., 2010;). The skilled players group contains players who achieve a 

higher performance but crucially is made up of players who are both experienced and 

inexperienced with Esports. That is, the population consists of players who have learnt 

Esports over many hours of practice, and those who, despite being untrained, show an 

aptitude for the sport. Therefore, higher theta power in error feedback during the most 

complex visuomotor challenge condition, could result from players who are inducing a 

higher behavioural adaptation and predicted to be higher learners (Luft, et al., 2013).  

 

Conclusion 

The timing of audio-visual pairing considerably alters brain activity both pre and post 

visual stimulus onset. Providing a faithful directional cue improves performance 
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provided there is temporal separation between cue and target onset times. This 

increases memory-associated neural oscillations that have a strong relationship to 

performance. Skilled players respond to this cue more strongly through a significant 

increase in anterior theta power which is strongly associated to faster reaction times. 

By pairing the audio-visual stimulation, a strong post-stimulus dipole with significant 

increases to frontal negativity and significant increases in posterior positivity, which is 

not present in unpaired trials. The difference in amplitude is significantly different in 

success trials than in failure trials of skilled players. As such, skilled players have been 

shown to utilize a sensory information, maintained in working memory by frontal theta 

power, to inform a faster response with significantly fewer errors and achieve a higher 

level of performance.  
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Chapter 6 
 

Introduction 

Esports has recently emerged as the world’s fastest growing sport with worldwide 

participation at an amateur level, and global intrigue at a professional level. 

Organisations have emerged to bring together rosters of elite players, travelling the 

world to compete against the best for huge prize pools. At the highest level of 

competition, players sit at  a computer and play their specific game competitively 

against opposing players, within the various formatting constraints of the sport. This 

high level of competition is conducted in a strikingly similar way to the standard 

approach within cognitive electrophysiology, making Esports an incredibly useful 

model to study brain activity, specifically, neural oscillations implicit in high 

performance within sport. Since the sport isn’t played outside, in uncontrollable 

conditions, not containing physical contact with other players and doesn’t require full 

body, high velocity movements, the data recorded is significantly less noisy than with 

other, traditional sports.  

 

From a cognitive perspective, the challenge of Esports/VGs has been seen to induce 

enhancements important for daily life, but crucial for high performance in sport. For 

example, early-stage visual processing (Appelbaum et al., 2013), contrast sensitivity (Li 

et al., 2009), visual search (Castel et al., 2005) and top-down visual attention (Green 

and Bavelier, 2003). These visual processing enhancement effects are facilitated by 

larger central and peripheral field areas in VG players (Buckely et al., 2010). A crucial 

aspect of these studies is that the processes are all improved through training 

interventions with video game play including cognitive flexibility (Valls-Serrano et al., 

2022), visual processing speed (Kowal et al., 2018) and visual working memory (Seya 

and Shinoda, 2016). Crucially, top-down attention is also enhanced through video-

game play (Chisholmand and Kingstone, 2012). An important aspect of attaining a high-

performance sport is training. Precise training interventions are used to improve motor 

skills, develop robust competition psychology, physical strength and fitness (Elliott and 



 126 

Mester, 1998). Efficient and powerful performance can be achieved through repeated 

exposure to fundamental movements which, in turn, promotes coordination and 

appropriate activation (Cronin et al., 2001). Whilst this can be achieved in muscular-

skeletal processes, it can also be applied to vision training, boosting perceptual 

performance (Knudson and Kluka, 1997).  

 

It is important to note, that neuroimaging research on Esports is so far limited, however, 

more work has been done on video games (VG) play. Since Esports are a competitive 

format of video game play, the research is still appropriate here. Brain activity within 

Esports/VGs has so far focussed predominately on the role of theta frequency band, 

showing increases to frontal theta power during VG play compared to rest periods 

(Pellouchoud et al., 1999). Theta power increases as a function of rounds progressed 

and increases prior to the onset of feedback informing that a round has been 

successful (Sheikholeslami et al., 2007). In an older population, traditionally those who 

have a limited relationship with VGs but especially Esports, VG play has been shown to 

significantly increase theta power which was correlated to performance improvements 

on a plethora of cognitive tests (Anguera et al., 2013). By giving participants in two 

different age groups, young and old, a battery of cognitive tests, baseline performance 

could be calculated. The authors then used a VG intervention, challenging participants 

with a VG that harness precise movements and spatial tests to achieve a good score in 

the game. During this period, theta power increased, and subsequently correlated to an 

increase in performance on cognitive tests in the older population, who were 

inexperienced with VGs.  

 

However, the neural oscillatory differences occurring between skilled and unskilled 

players during training exercises is poorly understood. The present study seeks to 

address that by using an aim-training software, called AimLabs, to test the 

performance of skilled and unskilled players during fundamental FPS aiming movement 

tasks. Both fundamental aiming movements implicit in FPS Esports will be used whilst 

brain activity is recorded through EEG. Whilst evoked, time-locked to stimulus onset, 

activity will be inaccessible through this methodology, induced neural oscillations 

during precise motor training will, for the first time, be quantified.  
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To probe the neural oscillations evoked by Esports play, a novel method was proposed 

using aiming training software AimLabs, concurrent EEG recording and eye-tracking. 

Aimlab is a commercial aim-trainer designed to improve performance in FPS Esports. It 

provides a collection of tasks and drills to challenge players in specific areas of aiming. 

Those can be the complexity of sensory information (large vs small targets, highly 

coloured vs dull targets, high numbers vs small numbers of targets, high vs low 

background contrast) and the complexity of the motor challenge (distances, sequence, 

motion). In most tasks, a time component is used of 60s, with players tasked with 

generating as high of a score as possible, within that time window. Score calculations 

can then be made adding points for hitting the target or remaining within the boundary 

of the target and removing points for missing the target or departing the boundary of the 

target. A streak multiplier is then applied for hitting multiple targets within succession 

or remaining within the target boundary for extended periods of time. As such, score is 

a function of accuracy over time. Unfortunately, due to AimLabs being a commercial 

company, there is exact computation used to generate score is not publicly known.  

 

To test a wide range of aiming movements, two distinct studies using AimLabs were 

conducted. The first was, a study on flicking and the second was a study on tracking. 

These are the two fundamental aiming movements in FPS Esports that can be 

extrapolated to other Esports too, however they are most strongly induced by FPS. 

Flicking is a fast, reflexive single action movement that rapidly moves the mouse adjust 

the aiming location to the stationary target. Tracking is a slower continually updating 

movement that moves the mouse to follow a moving target. In Esports these 

movements are often chained together within a sequence, flicking to a target’s 

location, and then tracking it as it moves. In this way, tasks were chosen that test the 

different aiming movements in a single action and continually updating way. In each 

study, participants played three different tasks on either flicking or tracking, depending 

on the study. Study one inducing flicking movements used the tasks: Gridshot, 

Spidershot and Burstflick. Study two inducing tracking movements used the tasks: 

Startrack, Switchtrack and Motiontrack. Below, each task parameters are described 

with their accompanying instructions written by AimLabs. 
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Methods 
Participants 

Two sets of participants were tested for this study. In the first 37 participants (15 Male, 

12 Female)  were used, 19 were classified as Skilled players and 18 were classified as 

unskilled players based on the methods described in the methods chapter. In the 

second, 42 participants (26 Male, 16 Female)  took part of which , 23 were classified as 

Skilled players and 19 were classified as Unskilled players based on the methods 

described in the Methods chapter. Briefly, after reporting Esports playing time based on 

a self-report questionnaire, populations were determined based off Esports experience 

only. Players who played VG, whichever input modality, but not Esports were 

determined to be inexperienced. After completing various Esports and psychophysics 

tasks, their performance on these tasks was to perform k-means clustering and identify 

clusters of similarly performing player groups. Silhouette scores determined that two 

clusters were optimal and players were classified based on their cluster. Their previous 

experience was not included as part of the classification process. All participants were 

right-handed, didn’t wear glasses and had no history of neurological disorders. 

Crucially, all participants reported some experience with video-games.  

 

Experimental Procedure 

The experiments were programmed using Weblink stimulus presentation software (SR 

Research) to facilitate concurrent participant screen recording, eye-tracking and EEG 

recording. Each experiment is built modularly with the ability to send triggers from the 

stimulus pc to the eye-tracker host pc and EEG amplifier, synchronizing events in the 

experiment together. After introductory instructions regarding the use of AimLabs and 

eye-tracker calibration steps, participants would be provided with the same 

instructions reported above, written by AimLabs. From here the screen recording 

component would begin and a trigger denoting such would be sent. Participants would 

then load the experiment ‘custom playlist’ on AimLabs and complete the task. After 

completing the task and looking through the results which included information about 

task performance and ranking in both local and global leaderboards, participants 
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would then receive instructions for the next task and proceed as described for the next 

set of tasks.  

 

EEG recording and analysis 

To identify game durations, a trigger was sent at the beginning of the video recording 

elements. This trigger was recorded in the message log of Weblink and could then be 

used to isolate the time in the video when the task began. By subtracting the offset 

between when the trigger was received by the eye-tracker, from the task start, this 

could serve as the initial crop point. Each task lasted for 60s, so the crop end time was 

calculated as the task start time + 60s. Each file was read in individually and cropped 

according to the trial start and end time.  

 

The data was acquired using a 64-channel EEG (BioSemi) and processed using MNE – 

python toolbox, as described in Chapter 2. The data was subjected to a number of pre-

processing and processing steps as outline in the methods chapter. Briefly, noisy 

sensors were first removed and interpolated by RANSAC algorithm. Then the data was 

downsampled to 200hz to reduce computation time. From here the data was passed 

through the AutoReject algorithm to reconstruct and drop extremely noisy epochs 

before being passed to the ICA algorithm which allowed for artefact detection and 

removal. Then the data was passed for a final time to AutoReject to reconstruct any 

remaining noisy epochs and drop any that still didn’t pass the threshold (a lower 

threshold than the first AutoReject pass). At this point, the now clean data was filtered 

from 1-30Hz (high and low-pass) and average referenced.  

 

With clean and pre-processed data, Morlet waveform analysis was applied to 

frequencies of interest. In this experiment, the frequency ranges used were Theta (4-

7Hz), Alpha (8-12Hz), calculating individual frequencies in steps of 1Hz.  To define the 

number of cycles, the frequency range was divided by 2 and fast Fourier transform was 

applied. The transformation was applied to the duration of each epoch which were 

created by making equally spaced epochs of a 1s duration. Power calculations per 
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epoch could then be averaged together. In this way, the power estimates are induced 

rather than evoked (time-locked to events of interest).  

 

Results 

 
Figure 6.1. Behavioural performance results for AimLabs aim-training tasks divided into flicking and 

tracking experiments. A) Overall Score accumulated by participants across all flicking tasks across 

skilled and unskilled populations. B) Average Time to Kill of participants response across all flicking tasks 

across skilled and unskilled populations. C) Overall Score accumulated by participants across all 

tracking tasks across skilled and unskilled populations. D) Average time spent on/off target as a 

percentage ratio across all tracking tasks across skilled and unskilled populations. 

 

Across the multiple tasks testing two different fundamental movements in Esports, 

flicking and tracking, skilled players perform significantly better than unskilled players. 

In flicking tasks, the interaction between task and population is significant for Score (F 

(2, 64) = 3.556, p = 0.0343). There was a significant score difference across each task (F 
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(1.059, 42.34) = 109.0, p = <0.0001) and across population (F (1, 40) = 16.55, p = 

0.0002). Tukey’s multiple comparison post-hoc test indicated there was a significantly 

higher score in skilled players across each task (Burstflick, p = <0.0115; Gridshot, p = 

0.0001; Spidershot, p = 0.0001). Time to Kill also showed a significant interaction 

between task and population (F (2, 64) = 3.382, p = 0.0467). Differences across tasks (F 

(1.788, 57.21) = 58.57, p = <0.0001) and across populations (F (1, 32) = 11.16, p = 

0.0021) were also significant. Tukey’s multiple comparison post-hoc test indicated that 

there were significant differences in Time to Kill across all tasks (Burstflick, p = <0.0499; 

Gridshot, p = 0.0023; Spidershot, p = 0.0306). In tracking experiments there was a 

significant interaction between task and population is significant for Score (F(2,78) = 

7.152, p = 0.0014). differences in score between task performance (F (1.925, 77.01) = 

360.4, p = <0.0001) and between populations (F (1, 40) = 18.00, p = 0.0001) were also 

significant. Tukey’s multiple comparison post-hoc test indicated a significantly higher 

score across all tasks in skilled players (Motiontrack, p = <0.0001, Startrack, p = 

<0.0001, Switchtrack, p = <0.0001). Finally, time on/off target ratio displayed a 

significant interaction between task and population is significant for Ratio (F(2,78) = 

10.69, p < 0.0001). Significant differences between task (F (1.059, 42.34) = 109.0, p = 

<0.0001) and population (F (1, 40) = 16.55, p = 0.0002) were also found. Tukey’s 

multiple comparison post-hoc test indicated higher time on/off target ratio across all 

tasks in skilled players (Motiontrack, p = <0.0001, Startrack, p = 0.0002, Switchtrack, p 

= 0.0003). With both movements, overall score from each task is significantly higher in 

skilled players. In the flicking tasks, the metric Time to Kill, determined as the time from 

target onset to its destruction, is significantly shorter in skilled players. In tracking the 

metric time on/off target ratio, the time spent within the target boundary relative to 

outside of it,  is significantly higher in skilled players than unskilled players. Ultimately, 

the results show how skilled players perform significantly better than unskilled players 

by accumulating a higher score, accrued based on speed and accuracy, respond to 

targets significantly faster, and remain localized to the target for significantly longer.  
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Figure 6.2. Oscillatory power changes during performance of flicking tasks in AimLabs. A)  Theta power 

changes during passive and active portions experiments in frontal-central electrodes. B) Alpha power 

changes across tasks between passive and active portions of the experiment in occipital parietal 

electrodes. C) differences in theta power between skilled and unskilled players across the different 

tracking tasks. D) differences in alpha power between skilled and unskilled players across the different 

tracking tasks. 

 

Frontal central theta power increased significantly in active conditions compared to 

passive conditions (F (0.9344, 29.90) = 36.87, p = <0.0001) but was not significantly 

different between participants (F (1, 32) = 3.373, p = 0.0756). By comparing both active 

and passive conditions and skilled and unskilled groups, a significant difference is 

revealed (F (1, 32) = 4.604, p = 0.0396). Occipital parietal alpha power significantly 

differed between active and passive conditions (F (0.9266, 29.65) = 5.522, p = 0.0278) 

but didn’t significantly differ between populations (F (1, 32) = 1.365, p =0.2514). There 

wasn’t a significant difference by comparing both active and passive conditions and 

skilled and unskilled groups (F (1, 32) = 1.630, p = 0.2109). In flicking tasks, there are 

significant differences between theta power levels across populations (F (1, 32) = 

4.745, p = 0.0369) but not between tasks (F (1.901, 60.83) = 0.5502, p = 0.5709). Tukey’s 

multiple comparison post-hoc test indicated significantly higher theta power in two 
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tasks (Burstflick, p = 0.0086 and Gridshot, p = 0.035) but not in Spidershot (p = 0.0919). 

Occipital-parietal alpha power showed significant differences across population (F (1, 

32) = 4.391, p = 0.0441) but not across task (F (1.845, 59.04) = 0.7792, p = 0.4540). 

Tukey’s multiple comparison post-hoc test indicated significant increases in alpha 

power in skilled players in two tasks (Gridshot, p = 0.0316 and Spidershot, p = 0.0360) 

but not in Burstflick (p = 0.0536) although it was statistically trending. Whilst playing an 

Esports related aim-training task, frontal-central theta power increased significantly in 

the active conditions compared to the passive condition across both populations. 

Theta power also increased significantly in skilled players compared to unskilled 

players. The overall alpha power increased in active conditions compared to inactive 

conditions, although this effect was not significant and only present in skilled players. 

There are differences in the oscillatory power exhibited by skilled and unskilled players 

during the tracking experiments. Skilled players display significantly higher theta power 

across all tasks compared to unskilled players. Unskilled players show higher alpha 

power in the active tasks, but the result is not significant. 
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Figure 6.3. Correlations between theta power and score across each task in frontal-central sensors in 

flicking tasks.  

 

Correlational analysis revealed significant positive relationship between behavioural 

performance within each task and theta power. In skilled players this relationship was 

significant for tasks: Gridshot, Spidershot and Burstflick. In unskilled players this 
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relationship was strongly positive for Gridshot and Spidershot, but negative for 

Burstflick with no relationships being significant. In all cases, this slope of the GLM was 

drastically steeper in skilled players than unskilled players highlighting a much stronger 

relationship. In frontal central sensors, there is a significantly stronger relationship 

between theta power and performance, presenting theta power as a indicator of 

performance in skilled players but not unskilled players. However, by using Fisher’s r-

to-z approach, there were no significant differences across all correlations (Gridshot: z 

= 0.359, p = 0.36; Spidershot z = -0.139, p = 0.445; Burstflick: z = 0.324, p = 0.373).  
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Figure 6.4. Correlational analysis between occipital-parietal alpha power and performance across 

skilled and unskilled players in each flicking task.  

 

Alpha power is shown to be correlated strong to performance in skilled players be not in 

unskilled players. In skilled players, a significant positive correlation is found in the 

Gridshot and Burstflick tasks and a strong positive correlation is found in Spidershot. In 

unskilled players, the relationship between alpha power and performance is much 

weaker, shown by insignificant p-values and smaller correlation coefficients. The 

strongest relationship is with the Burstflick task, with Gridshot and Spidershot being 

much weaker (shown by a smaller r value). None of these relationships are significant. 

Across all players, alpha power seems somewhat correlated to performance, with a 

stronger correlation in skilled players. However, by using Fisher’s r-to-z approach, there 



 135 

were no significant differences across all skilled vs unskilled correlations (Gridshot: z = 

0.612, p = 0.27; Spidershot z = -0.087, p = 0.465; Burstflick: z = 1.133, p = 0.129). 

 

 

Tracking 

 
Figure 6.5. Oscillatory power changes during performance of flicking tasks in AimLabs. A) Induced theta 

power changes across all flicking tasks across both populations. B) Induced alpha power changes across 

all flicking tasks across both populations.  

 

During tracking experiments, theta power was significantly higher in skilled players 

compared to unskilled players. There was a significant interaction between population 

and task in frontal central theta during tracking tasks (F(2, 76) = 8.79, p = 0.0185).There 

was a significant difference across tasks (F (1.855, 70.48) = 20.50, p = <0.0001) and 

across populations (F (1, 38) = 9.521, p = 0.0038). Tukey’s multiple comparison post-

hoc test indicated significant differences in theta power in skilled players across all 

tasks (Motiontrack, p = 0.0016; Startrack, p = 0.0026 and Switchtrack, p = 0.0044). 

Occipital parietal alpha power showed no significant interaction effect between 

population and task (F(2, 76) = 0.3134, p = 0.7319). There were also no significant 

differences between populations (F (1, 38) = 0.7573, p = 0.3896) or across the tasks (F 

(1.893, 71.92) = 1.794, p = 0.1755). During tracking tasks, skilled players showed 

significantly higher frontal-central theta power compared to unskilled players. 
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However, alpha power was higher in unskilled players across all tasks but showed no 

significant differences.   

 

 

0 20000 40000 60000

0

2×10 -10

4×10 -10

6×10 -10

Score

T
h

e
ta

 P
o

w
e

r

r = 0.4212, p-value = 0.0509

20000 30000 40000 50000 60000

0

2×10 -10

4×10 -10

6×10 -10

8×10 -10

score

T
h

e
ta

 P
o

w
e

r

r = 0.5347, p-value = 0.0103

0 10000 20000 30000 40000

0

2×10 -10

4×10 -10

6×10 -10

Score

T
h

e
ta

 P
o

w
e

r

r = 0.5347, p-value = 0.0103

0 5000 10000 15000 20000 25000

0

1×10 -10

2×10 -10

3×10 -10

4×10 -10

Score

T
h

e
ta

 P
o

w
e

r

r = 0.4328, p-value = 0.0729

10000 20000 30000 40000 50000

0

1×10 -10

2×10 -10

3×10 -10

4×10 -10

Score

T
h

e
ta

 P
o

w
e

r

r = 0.3451, p-value = 0.1607

0 5000 10000 15000 20000 25000 30000 35000

0

1×10 -10

2×10 -10

3×10 -10

Score

T
h

e
ta

 P
o

w
e

r

r = 0.2267, p-value = 0.3658

Motiontrack Switchtrack Startrack

Skilled

Unskilled

 
 

Figure 6.6. Correlations of theta power and performance across both skilled and unskilled populations in 

tracking tasks.  

 

Across all populations, theta power is positively correlated to performance. In skilled 

players significant correlations are found across Switchtrack and Startrack tasks, and a 

strong correlation is found in Motiontrack. In unskilled players, strong correlations are 

found in Motiontrack and Switchtrack tasks, and a weak correlation is found in 

Startrack. None of these correlations are significant. However, by using Fisher’s r-to-z 

approach to compare correlations, there were no significant differences across all 

skilled versus unskilled correlations (Motiontrack: z = -0.041, p = 0.484; Switchtrack: z = 

0.722, p = 0.235; Starttrack: z = 0.905, p = 0.183).  
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Figure 6.7. Correlations of occipital parietal alpha power and performance in tracking tasks. 

 

In both skilled and unskilled players, there is a negative correlation between alpha 

power and performance in the Motiontrack and Startrack tasks, and a positive 

correlation in Startrack. In skilled players,  the relationship is significant for every task. 

In unskilled players, there is no significant relationships, although there are strong 

negative correlations in the Motiontrack and Startrack tasks. By using Fisher’s r-to-z 

approach to compare correlations, there were no significant differences across all 

skilled versus unskilled correlations (Motiontrack: z = 0.015, p = 0.494; Switchtrack: z = 

0.217, p = 0.414; Startrack: z = -0.428, p = 0.334).  

 

 

Discussion 
 

The present study seeks to apply cognitive electrophysiological techniques to sport 

science data, overcoming logistical challenges in common practices whilst retaining 

ecological sporting validity. To that end, an ecologically valid methodology was 

employed by capturing participant performance on aim-training tasks within the 

commercial aim-training software, AimLab. The tasks used induced fundamental 

movements required by FPS Esports in a high-volume, fast-movement paradigm. In 

some tasks (Gridshot, Spidershot, Switchtrack) multiple targets were always present 
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on the screen, with participants freely choosing which one to shoot at first, before 

switching to the next. In the remaining tasks, only a single target was present. Skilled 

players performed significantly better than unskilled players across all behavioural 

metrics across many tasks. Time to kill (TTK) and time on/off target ratio (TR), two time 

dependent but accuracy irrelevant metrics, produced significant differences in 

performance between the two populations, with a significantly shorter TTK and a 

significantly higher TR in skilled players. Score, a combination of speed and accuracy, 

which accumulated throughout the trial resulting from successful shots and amplified 

by consecutive successes, displayed the strongest significant differences between the 

populations. Skilled players accumulated a significantly higher score than unskilled 

players across all tasks.  

 

Two experimental conditions were used in the first study, comparing active and passive 

conditions on the same AimLab task. In passive conditions, participants would watch a 

video of a professional player complete the same task before playing it themselves. It 

served to solidify instructions and display the movement speed required to achieve a 

high score. In active conditions, players would then take part in the task, implementing 

what they had just observed. Theta power was significantly higher in active conditions 

compared to passive conditions in frontal-central sensors and alpha power was higher 

in occipital-parietal sensors however this effect was only present in skilled players. 

There were no significant differences found in neural oscillations between populations 

in the passive condition. 

 

Theta power in frontal-central sensors was higher in skilled players across both 

fundamental aiming movements, flicking and tracking. Through correlational analysis, a 

positive relationship was discovered between theta power and performance, with high 

power being associated with high scores in skilled players. Although this relationship 

was directionally the same in unskilled players, the relationship was not significant but 

was trending in certain tasks. Alpha power was found to be significantly higher in 

occipital parietal electrodes in skilled players in the flicking experiments, but lower in 

the tracking tasks, although this effect was not significant. There were no significant 

differences in alpha power found in unskilled players. Correlational analysis revealed 
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significant relationships between alpha power and performance but in opposite 

directions in skilled players. In the flicking experiment, a strong, positive and significant 

relationship, showing high power and high performance, was found. However, in the 

tracking experiment, a strong, significant, negative relationship, showing low power and 

high performance, was found. There were no significant relationships found in unskilled 

players in the flicking experiment, which showed weak correlations, but strong negative 

relationships were found in the tracking experiments, some being significant, between 

low power and high performance. As such, the present study finds that in skilled 

players frontal-centrally distributed theta power is a strong indicator of performance 

across all fundamental aiming movements in Esports, but alpha power might be 

modulated by the required movement, either flicking or tracking.  

 

The increased theta power observed in both participant populations was localized to 

the frontal midline of the cortex. The observed theta pattern is associated with activity 

in the anterior cingulate cortex (ACC) and prefrontal cortex in source localization 

studies (Onton et al., 2005; Ishii et al., 2014). Theta power localized to the ACC and 

other frontal structures has a diverse range of functions in complex cognition such as 

action regulation (Luu and Pedersen, 2004) and monitoring (Cavanagh et al., 2009); 

conflict monitoring (Botvinick et al., 2004), task selection (Womelsdorf et al., 2010). 

Theta power is also highly prevalent in the hippocampus and its thus strongly 

associated to elements of memory (O’Keefe and Reecee, 1993;  Buzsáki, 2005). In 

particular, retention (Jensen and Tesche, 2002) and encoding (White et al., 2010). 

However, the present study observes theta power during a highly complex and dynamic 

visuomotor task. The ACC has strong connections to the motor system ( Deiber et al., 

1999) and parts of the ACC have been shown to play an essential role in the preparation 

and readiness (Cunnington et al., 2003), planning (Jankowski et al., 2009) and initiation 

(Hoffstaedter et al., 2013) of intentional movements. The present study induces a highly 

complex array of movements required precise motor control, speed and accuracy 

within a very quick succession. The extreme temporal density of movements and the 

precision requirements of them, go far to explain the upregulation of theta power in 

both populations.  
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Other studies have linked to video-game play to increases in theta power (Pellouchoud 

et al., 1999) with increases compared to rest periods. The relative power of theta also 

increases as, time spent playing video games increases or as rounds progress  

(Sheikholeslami et al., 2007). Theta increases have been shown during violent events in 

other FPS video games (Salminen and Ravaja, 2008) which required the execution of an 

aiming movement to hit the opponent. Importantly, training in older populations, 

induces significant increases to theta power that are sustained for long periods and are 

associated with other cognitive test improvements (Anguera et al., 2013). Crucially, the 

older population of participants were inexperienced with video games and the 

associated increases in theta were because of video-game play. This highlights the 

interesting cognitive challenge of Esports since they require drastic sensorimotor 

transformation to the virtual world where movements on the screen mismatch the 

movements in the real world. For example, moving aim location vertically requires 

participants to move horizontally in the real world. This is an unusual, non-natural 

movement and might test the ability of players to adapt. The network required for this 

type of process is explicitly activated by mouse manipulation (Gorbert et al., 2004), the 

key movement in Esports aiming. As such, it appears that complex aiming movements, 

required in Esports, activate a cortical network of prefrontal and premotor cortices, 

coordinated by theta power. This network operates differently as a function of skill 

level, with higher skilled, better performing players showing greater activation. 

Enhancements to a variety of cognitive abilities of players are commonly associated 

with video game play including cognitive flexibility (Valls-Serrano et al., 2022), visual 

processing speed (Kowal et al., 2018) and visual working memory (Seya and Shinoda, 

2016). Crucially, top-down attention is also enhanced through video-game play 

(Chisholmand Kingstone, 2012,  

 

However, theta band activity is also linked to cognitive control, signalling an increase in 

demand (Cavanagh and Frank, 2014). In this view, it explains the lack of significant 

differences in theta bands due to the complex computations required for high 

performance in the tasks. Not only is a high level of attention required, but cognitive 

and motor control. Both populations are under extreme cognitive load due to the 

intensity of tasks, speed of movements required, visual complexity and time-pressure. 
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Related to this, displaying how theta is sensitive to complex events in videogames. In 

this way, theta differences could be resulting from a mixture of cognitive mechanisms 

that aren’t possible to disseminate from this set of results alone.  

 

A key finding within cognitive performance tests in video game players is the ability to 

task switch (Boot et al., 2008), an effect broadly coordinated by attention. Within the 

neuroscience literature, task switching is commonly associated with a suppression of 

alpha power and event related desynchronisation in the alpha frequency band prior to 

movement onset. In the flicking experiments, participants must switch between a 

multitude of competing targets rapidly but also accurately. One would assume based 

on the strong field of research on posterior alpha power desynchronisation prior to task 

switching (Verstraeten and Cluydts, 2002.  Sauseng et al., 2006), that these tasks would 

be associated with decreased alpha power and an inverse relationship to performance 

would be found. However, the opposite is true. In tasks where there is a high prevalence 

of switching between tasks, there is a significant, positive relationship to performance. 

This is predominantly found in the flicking tasks however, the same is true for the 

tracking tasks, Switchtrack, that – as the name implies – requires switching between 

targets racking and tracking them as they move.  

 

There are several possible explanations here for this result. Firstly, the literature on task 

switching using event locked methodologies, whereby decreases in posterior alpha are 

pre-stimulus presentation, which in turn predicts task switching. Also, this switch is 

voluntary, not determined by a performance variable. In the present study, participants 

must switch target once it has been ‘destroyed’ either by shooting it or remaining within 

its boundary for a certain period. As such it is not a voluntary switch, but determined by 

what is required by the task. Secondly, the tasks that involve switching are associated 

with additional targets present on screen at any one time, or that are followed 

incredibly quickly based on performance or time. In Gridshot and Switchtrack there are 

up to 9 targets on screen at any one time and in Spidershot and Burstflick, targets 

appear sequentially immediate after being destroyed or after a 200ms time window is 

over. This is to accurately mimic ecologically valid Esports aiming scenarios where 

multiple targets are presented at one time, or incredibly close together.  
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As such, the observed power increases in alpha, with respect to single target 

conditions, and their significant positive relationships to performance, might in fact 

reflect increases in attention to inhibit distractor influences (e.g. alternative targets) 

and focus attention on the present stimulus. This is well documented in the literature.  

(Benedek et al., 2014). Furthermore, alpha power has been shown to decrease in 

response to moving images but increase in response to still (Simons et al., 2003). 

Although this doesn’t fully explain the present data, it offers some explanation for why 

single, moving objects displayed decreases in alpha power in compared to multiple 

static ones. In this view, it appears that the increase of alpha power in skilled players 

reflects decreases in attention to non-salient targets. It is possible that the decreased 

alpha power in the tracking conditions is a result of continually updating the aiming 

location and it in and of itself, switching.  

 

Unfortunately, with the methodology employed, limited by the constraints of using a 

commercial aim-trainer, event related dynamics are not possible to isolate. Nor is any 

time-frequency decomposition. Future studies should focus on this difference by 

creating multi-target, complex movement tasks, that incorporate both static and 

moving targets trials, single and multi-target trials signalled by a trigger system.  

 

Conclusion 
 

During the performance of high frequency, complex fundamental Esports related 

movements, vast differences occur between skilled and unskilled players. Skilled 

players show a significant increase in score across all aiming tasks, incorporating both 

tracking and flicking movements. These individual movements are intrinsic to 

performance in Esports competition are tested here in a controlled and ecologically 

valid way. AimLabs functions as an aim-training software, commercially available but 

used by professional players to precisely train aspects of these movements, notably 

the speed and accuracy. In the present study, the enhanced performance of skilled 

players appears to be coordinated by frontal theta power emerging from frontal-central 
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regions, presumed to emanate from the anterior cingulate cortex. Theta power, across 

both populations, is significantly higher in active versus passive conditions, something 

consistent with the literature. The higher frontal theta power is associated with 

increased performance, with strong associations in skilled players than unskilled 

players. Furthermore, alpha power in occipital-parietal regions also appears to play a 

key role, although differently depending on the task demands. In tasks requiring large 

amounts of switching between tasks, there are increases in alpha power and a strong 

inverse relationship between alpha power and performance. In tasks where a single 

target is tracked, a significant positive relationship occurs. These relationships are 

stronger in skilled players. As such, skilled players appear to achieve a higher 

performance due to an increase in theta power emanating from the ACC which 

improves the speed and accuracy of motor output and differentially modulate alpha 

coordinated attention depending on the nature of the targets used, preferentially 

increasing alpha in multi-target switching tasks, and decreasing in single target tracking 

tasks, potentially reflecting an increased ability to actively suppress distractors.  
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Summary  
To conclude the present thesis sought to address the role of brain activity in the 

execution of precise movements to identify neural correlates of high performance. 

Skilled players display a higher level of performance that can be captured through a 

variety of tasks that directly test fundamental movements in Esports. As with many 

sports, high performance in Esports has two important factors, speed, and accuracy. 

Better performing players routinely display faster and more accurate movements. 

Combining metrics from a variety of tasks allows for the creation of two groups, skilled 

and unskilled, regardless of prior sporting experience.  

 

Skilled players display an enhanced performance level, in part, due to their visual 

system accessing task-dependent visual information for future use. There appears to 

be a brain activity profile reflecting high performance within the time domain of 

electrophysiological data. Skilled players more readily display reduced VAN latency 

and increased p300 amplitude. This response, evoked by visual information is 

displayed more readily in skilled players and facilitates enhanced visual perception and 

task-related conscious access to the available sensory information. Another neural 

correlate of high performance is lower pre stimulus alpha power that amplifies visual 

awareness. In skilled players, further reductions in alpha power are observed 

potentially facilitating the readiness of an enhanced visual response. Disengagement of 

attentional resources is a potential substrate for athlete training. Furthermore, 

appropriate management of cognitive load is implicated shown by reduced theta power 

appears to be crucial to execute an appropriate response. Therefore, moderations to 

cognitive control were important for high performance. It is possible that unsuccessful 

trials induced inappropriately large signalling for control that impinged performance in 

skilled players. By pairing sensory information, it has been shown how skilled players 

are able to utilize a sensory information, maintained in working memory by frontal theta 

power, to inform a faster response with significantly fewer errors and achieve a higher 

level of performance. Despite multi-sensory information perturbing neural processing, 

skilled players still display increased visual awareness. Skilled players display an 

enhanced reaction to errors displayed by increased theta power and theta ERSP, 

displaying a strong role for negative reinforcement learning for high performance. 
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When presented with the most complex tasks requiring repeated, fast and accurate 

movements, skilled players display increases to frontal midline theta which strongly 

correlates to performance. Across all tasks, theta is significantly higher in skilled 

players, a stark contrast to the psychophysics tasks where unskilled players display 

higher power across all frequency bands. The upregulation of theta power seems to 

relate to the increased cognitive challenge caused by Esports, managing cognitive load 

to facilitate a high level of performance. 

 

Future research 

The present thesis utilizes the inherent advantages of using Esports as a model for 

sport neuroscience in a way that has never previously been achieved. It highlights how 

Esports and skilled Esports players display a greatly enhanced performance level that 

is correlated strongly to various aspects of their brain activity. However, further 

research should focus on neural correlates during the most demanding tasks. The 

literature is saturated with psychophysics tasks testing a wide variety of cognitive 

processes. However, the complex nature of Esports, on visual processing and motor 

responses, is rare. Isolating small elements of cognition might not continue to yield 

results in the same way as the past. Esports presents a unique opportunity to 

manipulate complex cognition within the framework of sport, something previously 

thought impossible. A key advancement would be to isolate evoked brain activity, as 

opposed to induced (measured in the present thesis). In this way, time-frequency 

representations of power could be utilized to further isolate how the brains of high 

skilled players differ from unskilled players. The visual complexity of Esports provides 

such a novel sensory environment that pushes visual processing to the extreme. 

Further isolating how this system responds could be a very fruitful avenue.  

 

Applied implications 

An important aspect of the present thesis is relating brain activity to performance using 

the conceptual framework of sport. As such, understanding how this research could be 

utilized by both athletes and coaches is important. Crucially, this thesis is useful not 

just for Esports, the sport used throughout, it can also act as a model sport with 
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transferrable results to any sport relying heavily on rapid sensory processing and 

precise movements. Since the thesis primarily uses Esports as the framework for 

sporting performance, Esports athletes and coaches will be able to directly use the 

data to address performance issues. However,  this thesis serves as a blueprint for 

detecting performance in sensory information driven, fast and precise movements for a 

wide variety of sports.  

 

A key finding of the thesis is that early-stage visual processing pre and post stimulus 

onset, directly contributes to the execution of a precise mouse movement. Esports 

athletes are repeatedly executing this type of movement throughout each game.  Yet, 

this process is implicated in a wide variety of sports too. For example, racket sports 

such as tennis and badminton, batting sports such as cricket, ball sports such as 

football and rugby, combat sports such as boxing and MMA. All these sports require 

very fast visual information processing of target location. It doesn’t matter whether the 

target is a ball, a limb or an opponent, sports where visual perception is an integral 

component that drives a motor response will greatly benefit from understanding this 

research. Therefore, coaches could measure their players brain activity and identify if 

these components are lacking. It may be that before a stimulus onset, they display high 

levels of alpha power or, post stimulus onset, they display reduced amplitude of p100 

and p300 components. As such, a training intervention could be used to improve these 

important biomarkers of performance.  

 

In general, there are two predominant ways it can be used for athletes of Esports and 

other sports, identifying sensory processing weaknesses and training the responses. 

Identifying weaknesses with the very early phases of visual processing, could be a key 

indicator that a player has a weakness in this area. This process is so integral to many 

sports and thus the approaches to identify differences across players in an elite squad 

could benefit them in the future. Although training interventions to modulate time 

domain components are not well established except through behavioural training, 

neural oscillations can be modulated through neurofeedback. Through neurofeedback 

training, it would be possible to reduce alpha oscillations pre stimulus onset. Together 

with sport-specific coaching, the athlete can implement the feedback training midgame 
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to improve performance. Furthermore, younger players, those on a pathway to 

becoming professional could be tested as a means of predicting their future potential. 

We do not know if it is possible to boost early time domain components such as p100, 

VAN and p300 and if that will improve performance directly. Therefore, identifying 

athletes with these traits that are either innate or, more likely, been developed over 

their early years, could greatly improve the accuracy of identifying future elite players.  

 

The tasks used within this thesis could easily be adapted or changed to include more 

sport specific information but in their current form could provide benefit to a wide 

variety of players, boosting their cognitive control, information processing and 

movement execution.  

 
Limitations 
 
There are three general principles of limitations within this thesis that will be explained 

below. These are: limitations with EEG, limitations with Esports as a model for all sport 

and limitations of the task ecological validity with Esports.  

 

The neuroimaging technique of EEG is limited by the nature of the signal itself, what is 

recorded and how the voltage is detected in the brain. Fundamentally there are a few 

different issues. Firstly, activity recorded at the scalp and at a single electrode is not 

only from activity directly underneath the electrode. In other words, there is a large 

amount of signal mixing across electrode sites, emanating from a larger radius of the 

cortex than denoted by the electrode. This makes deciphering what the voltage 

recorded at a specific site more difficult. In the present thesis, this limitation has been 

mitigated by averaging the activity from multiple electrodes. Secondly, EEG can only 

record from activity at the cortex level. This means that many crucial areas of the brain, 

implicated in a plethora of cognitive processes are inaccessible for this type of 

research. In the present study, certain parts of the thesis would have been greatly 

benefited from having activity from regions such as the hippocampus or the basal 

ganglia, unfortunately this is not possible. in some way this could make the brain 

activity seem incomplete, but in truth, there isn’t a single modality where the entirety of 
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information mined from the brain could be accessed. fMRI, MEG, OPM all have 

resolution issues, in the same way that EEG has. For the present thesis, restrictions to 

cortical areas did not present a drastic issue since the main focuses were the visual 

cortex, motor cortex and the frontal cortex, all of these being cortical sites and well-

established targets in the literature.  

 

Another limitation in the present study was the use of Esports as a model for all sport. 

With more traditional forms of sport (such as football, athletics, tennis) the physical 

aspect of the sport is a crucial aspect. How one functions under extreme physical 

stress and exhaustion is a key concept in Sport Neuroscience. Esports, unlike these 

sports, does not have the same physical exertion requirements. However, that does not 

mean the physical demands of the movement aren’t extreme. Although not under heavy 

load or exerting extreme force, the movements are incredibly precise, fast and are 

responding to minute visual changes in mere milliseconds. As such, the dynamic 

nature of Esports and the complexity of the sport make the cognitive demands on par 

with any sport out there. If a sport was defined purely on its physical demands, then 

some of the world’s greatest sports wouldn’t be classified as such for example, golf, 

cricket or snooker.  

 

Finally, the tasks themselves are not directly Esports, only Esports-related. Although a 

fair comment, the tasks used in this thesis are directly testing Esports-related 

movements. They are fundamental to how Esports is performed. An unfortunate 

limitation of the experiments is not directly extracting brain activity from an Epsorts 

match directly. This was primarily due to the inability to send triggers from in game 

events. Code within Esports games, commercially build and sold video-games, is not 

easily manipulated. As such, building a functioning trigger system that fired based on in 

game events marking important moments, was beyond the computing capabilities of 

the authors. Furthermore, the behavioural metrics of reaction time and errors used in 

the psychophysics task may be limited in certain ways, but they are the key concepts in 

Esports, fundamental performance and they can be extrapolated to performance in 

other sports too.  
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Ultimately, the present thesis is not bereft of its own limitations, but various steps have 

been taken to mitigate these issues. Specifically, focusing on neural correlates from 

cortical sites that have been averaged over numerous electrodes, using a model sport 

that requires complex cognition and fast precise movements as expected in most 

traditional sports and finally, using tasks that probe the fundamental movement in 

Esports in a targeted and scientific manner.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 150 

References 
 

1. Addante, R.J., Watrous, A.J., Yonelinas, A.P., Ekstrom, A.D. and Ranganath, C., 2011. 
Prestimulus theta activity predicts correct source memory retrieval. Proceedings of the 
National Academy of Sciences, 108(26), pp.10702-10707. 

2. Aeschbach, L.F., Kayser, D., Hüsler, A.B.D.C., Opwis, K. and Brühlmann, F., 2023. The 
psychology of esports players’ ELO Hell: Motivated bias in League of Legends and its 
impact on players’ overestimation of skill. Computers in Human Behavior, 147, 
p.107828. 

3. Aissani, C., Martinerie, J., Yahia-Cherif, L., Paradis, A.L. and Lorenceau, J., 2014. Beta, 
but not gamma, band oscillations index visual form-motion integration. PLoS One, 9(4), 
p.e95541. 

4. Akaiwa, M., Iwata, K., Saito, H., Sasaki, T. and Sugawara, K., 2020. Altered  
5. Allison, B. Z., & Polich, J. (2008). Workload assessment of computer gaming using a 

single-stimulus event-related potential paradigm. Biological psychology, 77(3), 277–
283.  

6. Anderson, J.R., Bothell, D., Fincham, J.M., Anderson, A.R., Poole, B. and Qin, Y., 2011. 
Brain regions engaged by part-and whole-task performance in a video game: a model-
based test of the decomposition hypothesis. Journal of cognitive neuroscience, 23(12), 
pp.3983-3997. 

7. Andres, A.J., Cardy, J.E.O. and Joanisse, M.F., 2011. Congruency of auditory sounds and 
visual letters modulates mismatch negativity and P300 event-related potentials. 
International Journal of Psychophysiology, 79(2), pp.137-146. 

8. Angelakis, E., Lubar, J.F., Stathopoulou, S. and Kounios, J., 2004. Peak alpha frequency: 
an electroencephalographic measure of cognitive preparedness. Clinical 
Neurophysiology, 115(4), pp.887-897. 

9. Anguera, J.A., Boccanfuso, J., Rintoul, J.L., Al-Hashimi, O., Faraji, F., Janowich, J., Kong, 
E., Larraburo, Y., Rolle, C., Johnston, E. and Gazzaley, A., 2013. Video game training 
enhances cognitive control in older adults. Nature, 501(7465), pp.97-101. 

10. Appelbaum, L.G., Cain, M.S., Darling, E.F. and Mitroff, S.R., 2013. Action video game 
playing is associated with improved visual sensitivity, but not alterations in visual 
sensory memory. Attention, Perception, & Psychophysics, 75, pp.1161-1167. 

11. Arrighi, P., Bonfiglio, L., Minichilli, F., Cantore, N., Carboncini, M.C., Piccotti, E., Rossi, 
B. and Andre, P., 2016. EEG theta dynamics within frontal and parietal cortices for error 
processing during reaching movements in a prism adaptation study altering visuo-
motor predictive planning. PLoS One, 11(3), p.e0150265. 

12. Babiloni, C., Vecchio, F., Bultrini, A., Luca Romani, G. and Rossini, P.M., 2006. Pre-and 
poststimulus alpha rhythms are related to conscious visual perception: a high-
resolution EEG study. Cerebral cortex, 16(12), pp.1690-1700. 

13. Babiloni, C., Vecchio, F., Miriello, M., Romani, G.L. and Rossini, P.M., 2006. Visuo-
spatial consciousness and parieto-occipital areas: a high-resolution EEG 
study. Cerebral cortex, 16(1), pp.37-46. 

14. Backus, A.R., Schoffelen, J.M., Szebényi, S., Hanslmayr, S. and Doeller, C.F., 2016. 
Hippocampal-prefrontal theta oscillations support memory integration. Current 
Biology, 26(4), pp.450-457 

15. Baghdadi, G., Towhidkhah, F. and Rajabi, M., 2021. Neurocognitive mechanisms of 
attention: Computational models, physiology, and disease states. Academic Press. 

16. Baker, J., Wattie, N. and Schorer, J., 2015. Defining expertise: A taxonomy for 
researchers in skill acquisition and expertise. In Routledge handbook of sport 
expertise (pp. 145-155). Routledge. 



 151 

17. Baker, S.N., Olivier, E. and Lemon, R.N., 1997. Coherent oscillations in monkey motor 
cortex and hand muscle EMG show task-dependent modulation. The Journal of 
physiology, 501(Pt 1), p.225. 

18. Barbati, G., Porcaro, C., Zappasodi, F., Rossini, P.M. and Tecchio, F., 2004. 
Optimization of an independent component analysis approach for artifact identification 
and removal in magnetoencephalographic signals. Clinical Neurophysiology, 115(5), 
pp.1220-1232. 

19. Bastos, A.M., Vezoli, J., Bosman, C.A., Schoffelen, J.M., Oostenveld, R., Dowdall, J.R., 
De Weerd, P., Kennedy, H. and Fries, P., 2015. Visual areas exert feedforward and 
feedback influences through distinct frequency channels. Neuron, 85(2), pp.390-401. 

20. Bavelier D., Green C. S., Pouget A., Schrater P. (2012b). Brain plasticity through the life 
span: learning to learn and action video games. Annu. Rev. Neurosci. 35, 391–416. [B]  

21. Bavelier, D., Achtman, R.L., Mani, M. and Föcker, J., 2012. Neural bases of selective 
attention in action video game players. Vision research, 61, pp.132-143.  

22. Bavelier, D., Green, C.S., Pouget, A. and Schrater, P., 2012. Brain plasticity through the 
life span: learning to learn and action video games. Annual review of neuroscience, 35, 
pp.391-416. 

23. Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M.A., Logothetis, N.K. 
and Panzeri, S., 2008. Low-frequency local field potentials and spikes in primary visual 
cortex convey independent visual information. Journal of Neuroscience, 28(22), 
pp.5696-5709. 

24. Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M.A., Logothetis, N.K. 
and Panzeri, S., 2008. Low-frequency local field potentials and spikes in primary visual 
cortex convey independent visual information. Journal of Neuroscience, 28(22), 
pp.5696-5709. Gregoriou, G.G., Gotts, S.J. and Desimone, R., 2012. Cell-type-specific 
synchronization of neural activity in FEF with V4 during attention. Neuron, 73(3), pp.581-
594. 

25. Benedek, M., Schickel, R.J., Jauk, E., Fink, A. and Neubauer, A.C., 2014. Alpha power 
increases in right parietal cortex reflects focused internal 
attention. Neuropsychologia, 56, pp.393-400. 

26. Benwell, C.S., Coldea, A., Harvey, M. and Thut, G., 2022. Low pre‐stimulus EEG alpha 
power amplifies visual awareness but not visual sensitivity. European Journal of 
Neuroscience, 55(11-12), pp.3125-3140. 

27. Benwell, C.S., Tagliabue, C.F., Veniero, D., Cecere, R., Savazzi, S. and Thut, G., 2017. 
Prestimulus EEG power predicts conscious awareness but not objective visual 
performance. eneuro, 4(6). 

28. Berger H (1929) Über das elektroenkephalogramm des menschen. Arch Psychiatr 
Nervenkr 87(1):527–570 

29. Bernat, E., Bunce, S. and Shevrin, H., 2001. Event-related brain potentials differentiate 
positive and negative mood adjectives during both supraliminal and subliminal visual 
processing. International journal of psychophysiology, 42(1), pp.11-34. 

30. Bernat, E., Shevrin, H. and Snodgrass, M., 2001. Subliminal visual oddball stimuli evoke 
a P300 component. Clinical neurophysiology, 112(1), pp.159-171. 

31. Bollimunta, A., Chen, Y., Schroeder, C.E. and Ding, M., 2008. Neuronal mechanisms of 
cortical alpha oscillations in awake-behaving macaques. Journal of 
Neuroscience, 28(40), pp.9976-9988. 

32. Bortoli, L., Bertollo, M., Hanin, Y. and Robazza, C., 2012. Striving for excellence: A multi-
action plan intervention model for shooters. Psychology of sport and exercise, 13(5), 
pp.693-701. 

33. Botvinick, M.M., Cohen, J.D. and Carter, C.S., 2004. Conflict monitoring and anterior 
cingulate cortex: an update. Trends in cognitive sciences, 8(12), pp.539-546. 



 152 

34. Brookings JB, Wilson GF, Swain CR. Psychophysiological responses to changes in 
workload during simulated air traffic control. Biol Psychol. 1996 Feb  

35. Buckley, D., Codina, C., Bhardwaj, P. and Pascalis, O., 2010. Action video game players 
and deaf observers have larger Goldmann visual fields. Vision research, 50(5), pp.548-
556. 

36. Buckner, R.L. and Wheeler, M.E., 2001. The cognitive neuroscience og 
remembering. Nature Reviews Neuroscience, 2(9), pp.624-634. 

37. Buffalo, E.A., Fries, P., Landman, R., Buschman, T.J. and Desimone, R., 2011. Laminar 
differences in gamma and alpha coherence in the ventral stream. Proceedings of the 
National Academy of Sciences, 108(27), pp.11262-11267. 

38. Bulut, S., ÖZMERDIVENLI, R. and Bayer, H., 2003. Effects of exercise on 
somatosensory-evoked potentials. International journal of neuroscience, 113(3), 
pp.315-322. 

39. Busch, N.A., Dubois, J. and VanRullen, R., 2009. The phase of ongoing EEG oscillations 
predicts visual perception. Journal of neuroscience, 29(24), pp.7869-7876. 

40. Buzsaki, G. and Draguhn, A., 2004. Neuronal oscillations in cortical 
networks. science, 304(5679), pp.1926-1929. 

41. Buzsáki, G., 2005. Theta rhythm of navigation: link between path integration and 
landmark navigation, episodic and semantic memory. Hippocampus, 15(7), pp.827-
840. 

42. Calvert, G.A., Brammer, M.J., Bullmore, E.T., Campbell, R., Iversen, S.D. and David, 
A.S., 1999. Response amplification in sensory-specific cortices during crossmodal 
binding. Neuroreport, 10(12), pp.2619-2623. 

43. Campanella, S., Montedoro, C., Streel, E., Verbanck, P. and Rosier, V., 2006. Early 
visual components (P100, N170) are disrupted in chronic schizophrenic patients: an 
event-related potentials study. Neurophysiologie Clinique/Clinical 
Neurophysiology, 36(2), pp.71-78. 

44. Capilla, A., Arana, L., García-Huéscar, M., Melcón, M., Gross, J. and Campo, P., 2022. 
The natural frequencies of the resting human brain: an MEG-based 
atlas. NeuroImage, 258, p.119373. 

45. Cassim, F., Monaca, C., Szurhaj, W., Bourriez, J.L., Defebvre, L., Derambure, P. and 
Guieu, J.D., 2001. Does post-movement beta synchronization reflect an idling motor 
cortex?. Neuroreport, 12(17), pp.3859-3863. 

46. Cassim, F., Monaca, C., Szurhaj, W., Bourriez, J.L., Defebvre, L., Derambure, P. and 
Guieu, J.D., 2001. Does post-movement beta synchronization reflect an idling motor 
cortex?. Neuroreport, 12(17), pp.3859-3863. 

47. Castel, A.D., Pratt, J. and Drummond, E., 2005. The effects of action video game 
experience on the time course of inhibition of return and the efficiency of visual 
search. Acta psychologica, 119(2), pp.217-230. 

48. Cavanagh, J.F. and Frank, M.J., 2014. Frontal theta as a mechanism for cognitive 
control. Trends in cognitive sciences, 18(8), pp.414-421. 

49. Cavanagh, J.F. and Frank, M.J., 2014. Frontal theta as a mechanism for cognitive 
control. Trends in cognitive sciences, 18(8), pp.414-421. 

50. Cecere, R., Rees, G. and Romei, V., 2015. Individual differences in alpha frequency drive 
crossmodal illusory perception. Current Biology, 25(2), pp.231-235. 

51. Chaumon, M. and Busch, N.A., 2014. Prestimulus neural oscillations inhibit visual 
perception via modulation of response gain. Journal of Cognitive Neuroscience, 26(11), 
pp.2514-2529. 

52. Chisholm, J.D. and Kingstone, A., 2015. Action video games and improved attentional 
control: Disentangling selection-and response-based processes. Psychonomic Bulletin 
& Review, 22, pp.1430-1436. 



 153 

53. Cohen, M.X. and Cavanagh, J.F., 2011. Single-trial regression elucidates the role of 
prefrontal theta oscillations in response conflict. Frontiers in psychology, 2, p.9539. 

54. Cohen, M.X. and Donner, T.H., 2013. Midfrontal conflict-related theta-band power 
reflects neural oscillations that predict behavior. Journal of neurophysiology, 110(12), 
pp.2752-2763. 

55. Cohen, M.X. and van Gaal, S., 2014. Subthreshold muscle twitches dissociate 
oscillatory neural signatures of conflicts from errors. Neuroimage, 86, pp.503-513. 

56. Cohen, M.X., 2016. Midfrontal theta tracks action monitoring over multiple interactive 
time scales. NeuroImage, 141, pp.262-272. 

57. Cohen, M.X., Elger, C.E. and Fell, J., 2008. Oscillatory activity and phase–amplitude 
coupling in the human medial frontal cortex during decision making. Journal of cognitive 
neuroscience, 21(2), pp.390-402. 

58. Coles, M.G., Scheffers, M.K. and Holroyd, C.B., 2001. Why is there an ERN/Ne on 
correct trials? Response representations, stimulus-related components, and the theory 
of error-processing. Biological psychology, 56(3), pp.173-189. 

59. Cooke, A., Kavussanu, M., Gallicchio, G., Willoughby, A., McIntyre, D. and Ring, C., 
2014. Preparation for action: Psychophysiological activity preceding a motor skill as a 
function of expertise, performance outcome, and psychological 
pressure. Psychophysiology, 51(4), pp.374-384. 

60. Craddock, M., Poliakoff, E., El-Deredy, W., Klepousniotou, E. and Lloyd, D.M., 2017. 
Pre-stimulus alpha oscillations over somatosensory cortex predict tactile 
misperceptions. Neuropsychologia, 96, pp.9-18. 

61. Cronin, J., McNair, P.J. and Marshall, R.N., 2001. Velocity specificity, combination 
training and sport specific tasks. Journal of Science and Medicine in Sport, 4(2), pp.168-
178. 

62. Cruikshank, L.C., Singhal, A., Hueppelsheuser, M. and Caplan, J.B., 2012. Theta 
oscillations reflect a putative neural mechanism for human sensorimotor 
integration. Journal of Neurophysiology, 107(1), pp.65-77. 

63. Cunnington, R., Windischberger, C., Deecke, L. and Moser, E., 2003. The preparation 
and readiness for voluntary movement: a high-field event-related fMRI study of the 
Bereitschafts-BOLD response. Neuroimage, 20(1), pp.404-412. 

64. Cuppini, C., Magosso, E. and Ursino, M., 2012. A neurocomputational model of cortical 
auditory–visual illusions. Seeing and Perceiving, 25, pp.115-115 

65. Darch, H.T., Cerminara, N.L., Gilchrist, I.D. and Apps, R., 2020. Pre-movement changes 
in sensorimotor beta oscillations predict motor adaptation drive. Scientific 
Reports, 10(1), p.17946. 

66. Deiber, M.P., Honda, M., Ibañez, V., Sadato, N. and Hallett, M., 1999. Mesial motor 
areas in self-initiated versus externally triggered movements examined with fMRI: effect 
of movement type and rate. Journal of neurophysiology, 81(6), pp.3065-3077. 

67. Del Percio, C., Babiloni, C., Bertollo, M., Marzano, N., Iacoboni, M., Infarinato, F., Lizio, 
R., Stocchi, M., Robazza, C., Cibelli, G. and Comani, S., 2009. Visuo‐attentional and 
sensorimotor alpha rhythms are related to visuo‐motor performance in 
athletes. Human brain mapping, 30(11), pp.3527-3540. 

68. Del Percio, C., Infarinato, F., Iacoboni, M., Marzano, N., Soricelli, A., Aschieri, P., 
Eusebi, F. and Babiloni, C., 2010. Movement-related desynchronization of alpha 
rhythms is lower in athletes than non-athletes: a high-resolution EEG study. Clinical 
Neurophysiology, 121(4), pp.482-491. 

69. Deleuze, J., Christiaens, M., Nuyens, F. and Billieux, J., 2017. Shoot at first sight! First 
person shooter players display reduced reaction time and compromised inhibitory 
control in comparison to other video game players. Computers in Human Behavior, 72, 
pp.570-576. 



 154 

70. Dembski, C., Koch, C. and Pitts, M., 2021. Perceptual awareness negativity: a 
physiological correlate of sensory consciousness. Trends in Cognitive Sciences, 25(8), 
pp.660-670. 

71. Demirayak, P., Kıyı, İ., İşbitiren, Y.Ö. and Yener, G., 2023. Cognitive load associates 
prolonged P300 latency during target stimulus processing in individuals with mild 
cognitive impairment. Scientific Reports, 13(1), p.15956. 

72. Desmedt, J.E. and Robertson, D., 1977. Differential enhancement of early and late 
components of the cerebral somatosensory evoked potentials during forced‐paced 
cognitive tasks in man. The Journal of physiology, 271(3), pp.761-782. 

73. Di Gregorio, F., Trajkovic, J., Roperti, C., Marcantoni, E., Di Luzio, P., Avenanti, A., Thut, 
G. and Romei, V., 2022. Tuning alpha rhythms to shape conscious visual 
perception. Current Biology, 32(5), pp.988-998. 

74. Di Russo, F. and Spinelli, D., 1999. Electrophysiological evidence for an early attentional 
mechanism in visual processing in humans. Vision research, 39(18), pp.2975-2985. 

75. Doesburg, S.M., Green, J.J., McDonald, J.J. and Ward, L.M., 2009. From local inhibition 
to long-range integration: a functional dissociation of alpha-band synchronization 
across cortical scales in visuospatial attention. Brain research, 1303, pp.97-110. 

76. Doyle, L.M., Yarrow, K. and Brown, P., 2005. Lateralization of event-related beta 
desynchronization in the EEG during pre-cued reaction time tasks. Clinical 
Neurophysiology, 116(8), pp.1879-1888. 

77. Dugué, L., Marque, P. and VanRullen, R., 2011. The phase of ongoing oscillations 
mediates the causal relation between brain excitation and visual perception. Journal of 
neuroscience, 31(33), pp.11889-11893. 

78. Dugué, L., Marque, P. and VanRullen, R., 2015. Theta oscillations modulate attentional 
search performance periodically. Journal of cognitive neuroscience, 27(5), pp.945-958. 

79. Eimer, M. and Mazza, V., 2005. Electrophysiological correlates of change 
detection. Psychophysiology, 42(3), pp.328-342. 

80. Eimer, M. and Mazza, V., 2005. Electrophysiological correlates of change 
detection. Psychophysiology, 42(3), pp.328-342. 

81. Elliott, B. and Mester, J., 1998. Training in sport: applying sport science. John Wiley & 
Sons. 

82. Engel, A.K. and Fries, P., 2010. Beta-band oscillations—signalling the status 
quo?. Current opinion in neurobiology, 20(2), pp.156-165. 

83. Ericsson, K.A., 2006. The influence of experience and deliberate practice on the 
development of superior expert performance. The Cambridge handbook of expertise 
and expert performance, 38(685-705), pp.2-2. 

84. Espenhahn, S., van Wijk, B.C., Rossiter, H.E., de Berker, A.O., Redman, N.D., Rondina, 
J., Diedrichsen, J. and Ward, N.S., 2019. Cortical beta oscillations are associated with 
motor performance following visuomotor learning. Neuroimage, 195, pp.340-353. 

85. Espenhahn, S., van Wijk, B.C., Rossiter, H.E., de Berker, A.O., Redman, N.D., Rondina, 
J., Diedrichsen, J. and Ward, N.S., 2019. Cortical beta oscillations are associated with 
motor performance following visuomotor learning. NeuroImage, 195, pp.340-353. 

86. Falchier, A., Clavagnier, S., Barone, P. and Kennedy, H., 2002. Anatomical evidence of 
multimodal integration in primate striate cortex. Journal of Neuroscience, 22(13), 
pp.5749-5759. 

87. Fiebelkorn, I.C., Pinsk, M.A. and Kastner, S., 2018. A dynamic interplay within the 
frontoparietal network underlies rhythmic spatial attention. Neuron, 99(4), pp.842-853. 

88. Fontani, G., Lodi, L., Felici, A., Migliorini, S. and Corradeschi, F., 2006. Attention in 
athletes of high and low experience engaged in different open skill sports. Perceptual 
and motor skills, 102(3), pp.791-805. 



 155 

89. Foxe, J.J. and Schroeder, C.E., 2005. The case for feedforward multisensory 
convergence during early cortical processing. Neuroreport, 16(5), pp.419-423.  

90. Foxe, J.J., Murphy, J.W. and De Sanctis, P., 2014. Throwing out the rules: anticipatory 
alpha‐band oscillatory attention mechanisms during task‐set 
reconfigurations. European Journal of Neuroscience, 39(11), pp.1960-1972. 

91. Fries, P., Womelsdorf, T., Oostenveld, R. and Desimone, R., 2008. The effects of visual 
stimulation and selective visual attention on rhythmic neuronal synchronization in 
macaque area V4. Journal of Neuroscience, 28(18), pp.4823-4835. 

92. Fry, A., Mullinger, K.J., O'Neill, G.C., Barratt, E.L., Morris, P.G., Bauer, M., Folland, J.P. 
and Brookes, M.J., 2016. Modulation of post‐movement beta rebound by contraction 
force and rate of force development. Human brain mapping, 37(7), pp.2493-2511. 

93. Fry, A., Mullinger, K.J., O'Neill, G.C., Barratt, E.L., Morris, P.G., Bauer, M., Folland, J.P. 
and Brookes, M.J., 2016. Modulation of post‐movement beta rebound by contraction 
force and rate of force development. Human brain mapping, 37(7), pp.2493-2511. 

94. Gong D., He H., Liu D., Ma W., Dong L., Luo C., et al. . (2015). Enhanced functional 
connectivity and increased gray matter volume of insula related to action video game 
playing. Sci. Rep. 5:9763.  

95. Gorbet, D.J. and Sergio, L.E., 2019. Looking up while reaching out: the neural correlates 
of making eye and arm movements in different spatial planes. Experimental Brain 
Research, 237, pp.57-70. 

96. Gould, I.C., Rushworth, M.F. and Nobre, A.C., 2011. Indexing the graded allocation of 
visuospatial attention using anticipatory alpha oscillations. Journal of 
neurophysiology, 105(3), pp.1318-1326. 

97. Grant, M.A. and Schempp, P.G., 2013. Analysis and description of Olympic gold 
medalists’ competition-day routines. The Sport Psychologist, 27(2), pp.156-170. 

98. Gray, H.M., Ambady, N., Lowenthal, W.T. and Deldin, P., 2004. P300 as an index of 
attention to self-relevant stimuli. Journal of experimental social psychology, 40(2), 
pp.216-224. 

99. Green, C.S. and Bavelier, D., 2003. Action video game modifies visual selective 
attention. Nature, 423(6939), pp.534-537. 

100. Griffiths, B.J., Mayhew, S.D., Mullinger, K.J., Jorge, J., Charest, I., Wimber, M. and 
Hanslmayr, S., 2019. Alpha/beta power decreases track the fidelity of stimulus-specific 
information. elife, 8, p.e49562. 

101. Grushko, A., Morozova, O., Ostapchuk, M. and Korobeynikova, E., 2021. 
Perceptual-cognitive demands of esports and team sports: A comparative study. 
In Advances in Cognitive Research, Artificial Intelligence and Neuroinformatics: 
Proceedings of the 9th International Conference on Cognitive Sciences, Intercognsci-
2020, October 10-16, 2020, Moscow, Russia 9 (pp. 36-43). Springer International 
Publishing. 

102. Gutmann, B., Mierau, A., Hülsdünker, T., Hildebrand, C., Przyklenk, A., 
Hollmann, W. and Strüder, H.K., 2015. Effects of physical exercise on individual resting 
state EEG alpha peak frequency. Neural plasticity, 2015. 

103. Haegens, S., Cousijn, H., Wallis, G., Harrison, P.J. and Nobre, A.C., 2014. Inter-
and intra-individual variability in alpha peak frequency. Neuroimage, 92, pp.46-55. 

104. Hagiwara, G., Iwatsuki, T., Funamori, H., Matsumoto, M., Kubo, Y., Takami, S., 
Okano, H. and Akiyama, D., 2021. Effect of positive and negative ions in esports 
performance and arousal levels. Journal of Digital Life, 1. 

105. Hambrick, D.Z. and Meinz, E.J., 2011. Limits on the predictive power of domain-
specific experience and knowledge in skilled performance. Current Directions in 
Psychological Science, 20(5), pp.275-279. 



 156 

106. Hamilton, H.K., Roach, B.J., Cavus, I., Teyler, T.J., Clapp, W.C., Ford, J.M., 
Tarakci, E., Krystal, J.H. and Mathalon, D.H., 2020. Impaired potentiation of theta 
oscillations during a visual cortical plasticity paradigm in individuals with 
schizophrenia. Frontiers in Psychiatry, 11, p.590567. 

107. Han, D.H., Park, H.W., Kee, B.S., Na, C., Na, D.H.E. and Zaichkowsky, L., 2011. 
Performance enhancement with low stress and anxiety modulated by cognitive 
flexibility. Psychiatry investigation, 8(3), p.221. 

108. Hanslmayr, S., Staresina, B.P. and Bowman, H., 2016. Oscillations and episodic 
memory: addressing the synchronization/desynchronization conundrum. Trends in 
neurosciences, 39(1), pp.16-25. 

109. Hayhoe, M., McKinney, T., Chajka, K., & Pelz, J. B. (2012). Predictive eye 
movements in natural vision. Experimental Brain Research, 217(1), 125–136. 

110. Heinrich, S.P., Marhöfer, D. and Bach, M., 2010. “Cognitive” visual acuity 
estimation based on the event-related potential P300 component. Clinical 
Neurophysiology, 121(9), pp.1464-1472. 

111. Heinrich, S.P., Marhöfer, D. and Bach, M., 2010. “Cognitive” visual acuity 
estimation based on the event-related potential P300 component. Clinical 
Neurophysiology, 121(9), pp.1464-1472. 

112. Heinrichs-Graham, E. and Wilson, T.W., 2016. Is an absolute level of cortical 
beta suppression required for proper movement? Magnetoencephalographic evidence 
from healthy aging. Neuroimage, 134, pp.514-521. 

113. Heinrichs-Graham, E. and Wilson, T.W., 2016. Is an absolute level of cortical 
beta suppression required for proper movement? Magnetoencephalographic evidence 
from healthy aging. Neuroimage, 134, pp.514-521. 

114. Heinrichs-Graham, E., Kurz, M.J., Gehringer, J.E. and Wilson, T.W., 2017. The 
functional role of post-movement beta oscillations in motor termination. Brain 
Structure and Function, 222, pp.3075-3086. 

115. Heinrichs-Graham, E., Wilson, T.W., Santamaria, P.M., Heithoff, S.K., Torres-
Russotto, D., Hutter-Saunders, J.A., Estes, K.A., Meza, J.L., Mosley, R.L. and 
Gendelman, H.E., 2014. Neuromagnetic evidence of abnormal movement-related beta 
desynchronization in Parkinson's disease. Cerebral cortex, 24(10), pp.2669-2678. 

116. Heinrichs-Graham, E., Wilson, T.W., Santamaria, P.M., Heithoff, S.K., Torres-
Russotto, D., Hutter-Saunders, J.A., Estes, K.A., Meza, J.L., Mosley, R.L. and 
Gendelman, H.E., 2014. Neuromagnetic evidence of abnormal movement-related beta 
desynchronization in Parkinson's disease. Cerebral cortex, 24(10), pp.2669-2678. 

117. Helsen, W.F., Starkes, J.L. and Hodges, N.J., 1998. Team sports and the theory 
of deliberate practice. Journal of Sport and Exercise psychology, 20(1), pp.12-34. 

118. Hemamalini, R.V., Krishnamurthy, N. and Saravanan, A., 2014. Influence of 
rotating shift work on visual reaction time and visual evoked potential. Journal of 
Clinical and Diagnostic Research: JCDR, 8(10), p.BC04. 

119. Henz, D. and Schöllhorn, W.I., 2016. Differential training facilitates early 
consolidation in motor learning. Frontiers in behavioral neuroscience, 10, p.199. 

120. Heppe, H., Kohler, A., Fleddermann, M.T. and Zentgraf, K., 2016. The 
relationship between expertise in sports, visuospatial, and basic cognitive 
skills. Frontiers in psychology, 7, p.198892. 

121. Herrmann, M.J., Ehlis, A.C., Ellgring, H. and Fallgatter, A.J., 2005. Early stages 
(P100) of face perception in humans as measured with event-related potentials 
(ERPs). Journal of neural transmission, 112, pp.1073-1081. 

122. Hodges, N.J., Huys, R. and Starkes, J.L., 2007. Methodological review and 
evaluation of research in expert performance in sport. Handbook of sport psychology, 
pp.159-183. 



 157 

123. Hoffstaedter, F., Grefkes, C., Caspers, S., Roski, C., Palomero‐Gallagher, N., 
Laird, A.R., Fox, P.T. and Eickhoff, S.B., 2014. The role of anterior midcingulate cortex in 
cognitive motor control: evidence from functional connectivity analyses. Human brain 
mapping, 35(6), pp.2741-2753. 

124. Holroyd, C.B. and Coles, M.G., 2002. The neural basis of human error 
processing: reinforcement learning, dopamine, and the error-related 
negativity. Psychological review, 109(4), p.679. 

125. Houdayer, E., Labyt, E., Cassim, F., Bourriez, J.L. and Derambure, P., 2006. 
Relationship between event-related beta synchronization and afferent inputs: analysis 
of finger movement and peripheral nerve stimulations. Clinical neurophysiology, 117(3), 
pp.628-636. 

126. Hülsdünker, T., Mierau, A. and Strüder, H.K., 2016. Higher balance task 
demands are associated with an increase in individual alpha peak frequency. Frontiers 
in human neuroscience, 9, p.695. 

127. Hülsdünker, T., Mierau, A. and Strüder, H.K., 2016. Higher balance task 
demands are associated with an increase in individual alpha peak frequency. Frontiers 
in human neuroscience, 9, p.695. 

128. Hülsdünker, T., Ostermann, M. and Mierau, A., 2019. The speed of neural visual 
motion perception and processing determines the visuomotor reaction time of young 
elite table tennis athletes. Frontiers in behavioral neuroscience, 13, p.165. 

129. Hülsdünker, T., Strüder, H.K. and Mierau, A., 2018. Visual but not motor 
processes predict simple visuomotor reaction time of badminton players. European 
Journal of Sport Science, 18(2), pp.190-200. 

130. Iemi, L., Chaumon, M., Crouzet, S.M. and Busch, N.A., 2017. Spontaneous 
neural oscillations bias perception by modulating baseline excitability. Journal of 
Neuroscience, 37(4), pp.807-819. 

131. Ishii, R., Canuet, L., Ishihara, T., Aoki, Y., Ikeda, S., Hata, M., Katsimichas, T., 
Gunji, A., Takahashi, H., Nakahachi, T. and Iwase, M., 2014. Frontal midline theta 
rhythm and gamma power changes during focused attention on mental calculation: an 
MEG beamformer analysis. Frontiers in human neuroscience, 8, p.406. 

132. Jann, K., Koenig, T., Dierks, T., Boesch, C. and Federspiel, A., 2010. Association 
of individual resting state EEG alpha frequency and cerebral blood 
flow. Neuroimage, 51(1), pp.365-372. 

133. Jensen, O. and Mazaheri, A., 2010. Shaping functional architecture by 
oscillatory alpha activity: gating by inhibition. Frontiers in human neuroscience, 4, 
p.186. 

134. Jensen, O. and Tesche, C.D., 2002. Frontal theta activity in humans increases 
with memory load in a working memory task. European journal of Neuroscience, 15(8), 
pp.1395-1399. 

135. Jensen, O., Gelfand, J., Kounios, J. and Lisman, J.E., 2002. Oscillations in the 
alpha band (9–12 Hz) increase with memory load during retention in a short-term 
memory task. Cerebral cortex, 12(8), pp.877-882. 

136. Ji, J., Porjesz, B., Begleiter, H. and Chorlian, D., 1999. P300: the similarities and 
differences in the scalp distribution of visual and auditory modality. Brain 
topography, 11, pp.315-327.  

137. Jin, P., Ge, Z. and Fan, T., 2023. Research on visual search behaviors of 
basketball players at different levels of sports expertise. Scientific reports, 13(1), 
p.1406. 

138. Johnson, J.S., Sutterer, D.W., Acheson, D.J., Lewis-Peacock, J.A. and Postle, 
B.R., 2011. Increased alpha-band power during the retention of shapes and shape-
location associations in visual short-term memory. Frontiers in psychology, 2, p.128. 



 158 

139. Jokisch, D. and Jensen, O., 2007. Modulation of gamma and alpha activity during 
a working memory task engaging the dorsal or ventral stream. Journal of 
Neuroscience, 27(12), pp.3244-3251. 

140. Jurkiewicz, M.T., Gaetz, W.C., Bostan, A.C. and Cheyne, D., 2006. Post-
movement beta rebound is generated in motor cortex: evidence from neuromagnetic 
recordings. Neuroimage, 32(3), pp.1281-1289. 

141. Jurkiewicz, M.T., Gaetz, W.C., Bostan, A.C. and Cheyne, D., 2006. Post-
movement beta rebound is generated in motor cortex: evidence from neuromagnetic 
recordings. Neuroimage, 32(3), pp.1281-1289. 

142. Kaiser, J. and Schütz-Bosbach, S., 2021. Motor interference, but not sensory 
interference, increases midfrontal theta activity and brain synchronization during 
reactive control. Journal of Neuroscience, 41(8), pp.1788-1801. 

143. Keller, A.S., Payne, L. and Sekuler, R., 2017. Characterizing the roles of alpha 
and theta oscillations in multisensory attention. Neuropsychologia, 99, pp.48-63. 

144. Kelly, S.P., Lalor, E.C., Reilly, R.B. and Foxe, J.J., 2006. Increases in alpha 
oscillatory power reflect an active retinotopic mechanism for distracter suppression 
during sustained visuospatial attention. Journal of neurophysiology, 95(6), pp.3844-
3851. 

145. Khanna, P. and Carmena, J.M., 2017. Beta band oscillations in motor cortex 
reflect neural population signals that delay movement onset. elife, 6, p.e24573. 

146. Khanna, P. and Carmena, J.M., 2017. Beta band oscillations in motor cortex 
reflect neural population signals that delay movement onset. elife, 6, p.e24573. 

147. Kienitz, R., Cox, M.A., Dougherty, K., Saunders, R.C., Schmiedt, J.T., Leopold, 
D.A., Maier, A. and Schmid, M.C., 2021. Theta, but not gamma oscillations in area V4 
depend on input from primary visual cortex. Current Biology, 31(3), pp.635-642. 

148. Klimesch, W., 1999. EEG alpha and theta oscillations reflect cognitive and 
memory performance: a review and analysis. Brain research reviews, 29(2-3), pp.169-
195. 

149. Klimesch, W., Freunberger, R. and Sauseng, P., 2010. Oscillatory mechanisms 
of process binding in memory. Neuroscience & Biobehavioral Reviews, 34(7), pp.1002-
1014. 

150. Kloosterman, N.A., de Gee, J.W., Werkle-Bergner, M., Lindenberger, U., Garrett, 
D.D. and Fahrenfort, J.J., 2019. Humans strategically shift decision bias by flexibly 
adjusting sensory evidence accumulation. Elife, 8, p.e37321. 

151. Knudson, D. and Kluka, D.A., 1997. The impact of vision and vision training on 
sport performance. Journal of Physical Education, Recreation & Dance, 68(4), pp.17-24. 

152. Koch, P. and Krenn, B., 2021. Executive functions in elite athletes–Comparing 
open-skill and closed-skill sports and considering the role of athletes' past involvement 
in both sport categories. Psychology of Sport and Exercise, 55, p.101925. 

153. Koivisto, M. and Revonsuo, A., 2010. Event-related brain potential correlates of 
visual awareness. Neuroscience & Biobehavioral Reviews, 34(6), pp.922-934. 

154. Koivisto, M., Lähteenmäki, M., Sørensen, T.A., Vangkilde, S., Overgaard, M. and 
Revonsuo, A., 2008. The earliest electrophysiological correlate of visual 
awareness?. Brain and cognition, 66(1), pp.91-103. 

155. Korka, B., Will, M., Avci, I., Dukagjini, F. and Stenner, M.P., 2023. Strategy-based 
motor learning decreases the post-movement β power. Cortex, 166, pp.43-58. 

156. Kovarski, K., Malvy, J., Khanna, R.K., Arsène, S., Batty, M. and Latinus, M., 2019. 
Reduced visual evoked potential amplitude in autism spectrum disorder, a variability 
effect?. Translational psychiatry, 9(1), p.341. 

157. Kovarski, K., Thillay, A., Houy-Durand, E., Roux, S., Bidet-Caulet, A., Bonnet-
Brilhault, F. and Batty, M., 2016. Brief report: early VEPs to pattern-reversal in 



 159 

adolescents and adults with autism. Journal of Autism and Developmental 
Disorders, 46, pp.3377-3386. 

158. Kowal, M., Toth, A.J., Exton, C. and Campbell, M.J., 2018. Different cognitive 
abilities displayed by action video gamers and non-gamers. Computers in Human 
Behavior, 88, pp.255-262. 

159. Kredel, R., Vater, C., Klostermann, A., & Hossner, E.-J. (2017). Eye-tracking 
technology and the dynamics of natural gaze behavior in sports: A systematic review of 
40 years of research. Frontiers in Psychology, 8, 1845. 

160. Ku, Y., Bodner, M. and Zhou, Y.D., 2015. Prefrontal cortex and sensory cortices 
during working memory: quantity and quality. Neuroscience Bulletin, 31, pp.175-182. 

161. Lange, J., Oostenveld, R. and Fries, P., 2013. Reduced occipital alpha power 
indexes enhanced excitability rather than improved visual perception. Journal of 
Neuroscience, 33(7), pp.3212-3220. 

162. Latham, A. J., Patston, L. L., Westermann, C., Kirk, I. J., & Tippett, L. J. (2013). 
Earlier visual N1 latencies in expert video-game players: a temporal basis of enhanced 
visuospatial performance?. PloS one, 8(9), e75231.  

163. Lepage, M., Ghaffar, O., Nyberg, L. and Tulving, E., 2000. Prefrontal cortex and 
episodic memory retrieval mode. Proceedings of the National Academy of 
Sciences, 97(1), pp.506-511. 

164. Lesiakowski, P., Lubiński, W. and Zwierko, T., 2017. Analysis of the relationship 
between training experience and visual sensory functions in athletes from different 
sports. Polish Journal of Sport and Tourism, 24(2), pp.110-114. 

165. Lesiakowski, P., Lubiński, W. and Zwierko, T., 2017. Analysis of the relationship 
between training experience and visual sensory functions in athletes from different 
sports. Polish Journal of Sport and Tourism, 24(2), pp.110-114. 

166. Li, Q.Q., Liu, X.Q. and Chen, X.P., 2011. Correlation of pattern reversal visual 
evoked potentials P100 with visual acuity. Fa yi xue za zhi, 27(2), pp.91-3. 

167. Li, R., Polat, U., Makous, W. and Bavelier, D., 2009. Enhancing the contrast 
sensitivity function through action video game training. Nature neuroscience, 12(5), 
pp.549-551. 

168. Liebrand, M., Kristek, J., Tzvi, E. and Krämer, U.M., 2018. Ready for change: 
Oscillatory mechanisms of proactive motor control. PloS one, 13(5), p.e0196855. 

169. Limbach, K. and Corballis, P.M., 2017. Alpha‐power modulation reflects the 
balancing of task requirements in a selective attention task. Psychophysiology, 54(2), 
pp.224-234. 

170. Lindı́ n, M., Zurrón, M. and Dı́ az, F., 2004. Changes in P300 amplitude during an 
active standard auditory oddball task. Biological psychology, 66(2), pp.153-167. 

171. Liu, B., Wang, Z. and Jin, Z., 2009. The integration processing of the visual and 
auditory information in videos of real-world events: an ERP study. Neuroscience 
letters, 461(1), pp.7-11. 

172. Liu, J., Harris, A. and Kanwisher, N., 2013. Stages of processing in face 
perception: an MEG study. In Social Neuroscience (pp. 75-85). Psychology Press. 

173. Loze, G.M., Collins, D. and Holmes, P.S., 2001. Pre-shot EEG alpha-power 
reactivity during expert air-pistol shooting: A comparison of best and worst 
shots. Journal of sports sciences, 19(9), pp.727-733. 

174. Luu, P. and Pederson, S.M., 2004. The anterior cingulate cortex: regulating 
actions in context. Cognitive neuroscience of attention, pp.232-242. 

175. Mack, D.J. and Ilg, U.J., 2014. The effects of video game play on the 
characteristics of saccadic eye movements. Vision Research, 102, pp.26-32. 

176. Malik, A.S., Osman, D.A., Pauzi, A.A. and Khairuddin, R.H.R., 2012, June. 
Investigating brain activation with respect to playing video games on large screens. 



 160 

In 2012 4th International Conference on Intelligent and Advanced Systems 
(ICIAS2012) (Vol. 1, pp. 86-90). IEEE. 

177. Mann, D. L., Spratford, W., & Abernethy, B. (2013). The head tracks and gaze 
predicts: How the world’s best batters hit a ball. PLoS ONE, 8, e58289. 

178. Marsicano, G., Bertini, C. and Ronconi, L., 2023. Alpha-band sensory 
entrainment improves audiovisual temporal acuity. Psychonomic Bulletin & Review, 
pp.1-12. 

179. Mashour, G.A., Roelfsema, P., Changeux, J.P. and Dehaene, S., 2020. 
Conscious processing and the global neuronal workspace hypothesis. Neuron, 105(5), 
pp.776-798. 

180. Mathewson, K. E., Basak, C., Maclin, E. L., Low, K. A., Boot, W. R., Kramer, A. F., 
... & Gratton, G. (2012). Different slopes for different folks: alpha and delta EEG power 
predict subsequent video game learning rate and improvements in cognitive control 
tasks. Psychophysiology, 49(12), 1558-1570. 

181. Mathewson, K.E., Gratton, G., Fabiani, M., Beck, D.M. and Ro, T., 2009. To see or 
not to see: prestimulus α phase predicts visual awareness. Journal of 
Neuroscience, 29(9), pp.2725-2732. 

182. Maurer, U., Brem, S., Liechti, M., Maurizio, S., Michels, L. and Brandeis, D., 
2015. Frontal midline theta reflects individual task performance in a working memory 
task. Brain topography, 28, pp.127-134. 

183. McAllister, S.M., Rothwell, J.C. and Ridding, M.C., 2011. Cortical oscillatory 
activity and the induction of plasticity in the human motor cortex. European Journal of 
Neuroscience, 33(10), pp.1916-1924. 

184. Mellalieu, S.D., Hanton, S. and O'Brien, M., 2004. Intensity and direction of 
competitive anxiety as a function of sport type and experience. Scandinavian journal of 
medicine & science in sports, 14(5), pp.326-334. 

185. Merikle, P.M., Smilek, D. and Eastwood, J.D., 2001. Perception without 
awareness: Perspectives from cognitive psychology. Cognition, 79(1-2), pp.115-134. 

186. Merikle, P.M., Smilek, D. and Eastwood, J.D., 2001. Perception without 
awareness: Perspectives from cognitive psychology. Cognition, 79(1-2), pp.115-134. 

187. Michalareas, G., Vezoli, J., Van Pelt, S., Schoffelen, J.M., Kennedy, H. and Fries, 
P., 2016. Alpha-beta and gamma rhythms subserve feedback and feedforward 
influences among human visual cortical areas. Neuron, 89(2), pp.384-397. 

188. Michels, L., Moazami-Goudarzi, M., Jeanmonod, D. and Sarnthein, J., 2008. EEG 
alpha distinguishes between cuneal and precuneal activation in working 
memory. Neuroimage, 40(3), pp.1296-1310. 

189. Mierau, A., Klimesch, W. and Lefebvre, J., 2017. State-dependent alpha peak 
frequency shifts: Experimental evidence, potential mechanisms and functional 
implications. Neuroscience, 360, pp.146-154. 

190. Minami, S., Watanabe, K., Saijo, N. and Kashino, M., 2023. Neural oscillation 
amplitude in the frontal cortex predicts esport results. Iscience, 26(6). 

191. Mishra J., Zinni M., Bavelier D., Hillyard S. A. (2011). Neural basis of superior 
performance of action videogame players in an attention-demanding task. J. 
Neurosci. 31, 992–998. 

192. Moran, A., Campbell, M. and Ranieri, D., 2018. Implications of eye tracking 
technology for applied sport psychology. Journal of Sport Psychology in Action, 9(4), 
pp.249-259. 

193. Myers, N.E., Stokes, M.G., Walther, L. and Nobre, A.C., 2014. Oscillatory brain 
state predicts variability in working memory. Journal of Neuroscience, 34(23), pp.7735-
7743. 



 161 

194. Nakayashiki, K., Saeki, M., Takata, Y., Hayashi, Y. and Kondo, T., 2014. 
Modulation of event-related desynchronization during kinematic and kinetic hand 
movements. Journal of neuroengineering and rehabilitation, 11, pp.1-9. 

195. Nenert, R., Viswanathan, S., Dubuc, D.M. and Visscher, K.M., 2012. Modulations 
of ongoing alpha oscillations predict successful short-term visual memory 
encoding. Frontiers in Human Neuroscience, 6, p.127. 

196. O'Keefe, J. and Recce, M.L., 1993. Phase relationship between hippocampal 
place units and the EEG theta rhythm. Hippocampus, 3(3), pp.317-330. 

197. Ofner, P., Schwarz, A., Pereira, J., & Müller-Putz, G. R. (2017). Upper limb 
movements can be decoded from the time-domain of low-frequency EEG. PloS 
one, 12(8), e0182578. 

198. Okazaki, M., Kaneko, Y., Yumoto, M. and Arima, K., 2008. Perceptual change in 
response to a bistable picture increases neuromagnetic beta-band 
activities. Neuroscience research, 61(3), pp.319-328. 

199. Olsen, S.R., Bortone, D.S., Adesnik, H. and Scanziani, M., 2012. Gain control by 
layer six in cortical circuits of vision. Nature, 483(7387), pp.47-52. 

200. Onton, J., Delorme, A. and Makeig, S., 2005. Frontal midline EEG dynamics 
during working memory. Neuroimage, 27(2), pp.341-356. 

201. Overbeek, T.J., Nieuwenhuis, S. and Ridderinkhof, K.R., 2005. Dissociable 
components of error processing: On the functional significance of the Pe vis-à-vis the 
ERN/Ne. Journal of psychophysiology, 19(4), pp.319-329. 

202. Özmerdivenli, R., Bulut, S., Bayar, H., Karacabey, K., Ciloglu, F., Peker, I. and 
Tan, U., 2005. Effects of exercise on visual evoked potentials. International Journal of 
Neuroscience, 115(7), pp.1043-1050. 

203. Palaus, M., Marron, E.M., Viejo-Sobera, R. and Redolar-Ripoll, D., 2017. Neural 
basis of video gaming: A systematic review. Frontiers in human neuroscience, 11, 
p.248. 

204. Pastötter, B. and Frings, C., 2023. Prestimulus alpha power signals attention to 
retrieval. European Journal of Neuroscience, 58(11), pp.4328-4340. 

205. Pellouchoud E., Smith M. E., McEvoy L. K., Gevins A. (1999). Mental effort-
related EEG modulation during video-game play: comparison between juvenile subjects 
with epilepsy and normal control subjects. Epilepsia 40 (Suppl. 4), 38–43. 

206. Perfetti, B., Moisello, C., Landsness, E.C., Kvint, S., Lanzafame, S., Onofrj, M., Di 
Rocco, A., Tononi, G. and Ghilardi, M.F., 2011. Modulation of gamma and theta spectral 
amplitude and phase synchronization is associated with the development of visuo-
motor learning. Journal of Neuroscience, 31(41), pp.14810-14819. 

207. Peylo, C., Hilla, Y. and Sauseng, P., 2021. Cause or consequence? Alpha 
oscillations in visuospatial attention. Trends in Neurosciences, 44(9), pp.705-713. 

208. Pfurtscheller, G., 1992. Event-related synchronization (ERS): an 
electrophysiological correlate of cortical areas at rest. Electroencephalography and 
clinical neurophysiology, 83(1), pp.62-69. 

209. Pfurtscheller, G., Stancak Jr, A. and Neuper, C., 1996. Event-related 
synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical 
idling: a review. International journal of psychophysiology, 24(1-2), pp.39-46. 

210. Pfurtscheller, G., Stancak Jr, A. and Neuper, C., 1996. Event-related 
synchronization (ERS) in the alpha band—an electrophysiological correlate of cortical 
idling: a review. International journal of psychophysiology, 24(1-2), pp.39-46. 

211. Pfurtscheller, G., Stancak Jr, A. and Neuper, C., 1996. Post-movement beta 
synchronization. A correlate of an idling motor area?. Electroencephalography and 
clinical neurophysiology, 98(4), pp.281-293. 



 162 

212. Pitts, M.A., Metzler, S. and Hillyard, S.A., 2014. Isolating neural correlates of 
conscious perception from neural correlates of reporting one's perception. Frontiers in 
psychology, 5, p.105150. 

213. Pitts, M.A., Padwal, J., Fennelly, D., Martínez, A. and Hillyard, S.A., 2014. 
Gamma band activity and the P3 reflect post-perceptual processes, not visual 
awareness. Neuroimage, 101, pp.337-350. 

214. Poliakov, E., Stokes, M.G., Woolrich, M.W., Mantini, D. and Astle, D.E., 2014. 
Modulation of alpha power at encoding and retrieval tracks the precision of visual short-
term memory. Journal of neurophysiology, 112(11), pp.2939-2945. 

215. Porter, A.M. and Goolkasian, P., 2019. Video games and stress: How stress 
appraisals and game content affect cardiovascular and emotion outcomes. Frontiers in 
psychology, 10, p.445810 

216. Posner and cohen 1984 
217. Prakash R. S., De Leon A. A., Mourany L., Lee H., Voss M. W., Boot W. R., et al. . 

(2012). Examining neural correlates of skill acquisition in a complex videogame training 
program. Front. Hum. Neurosci. 6:115 

218. Raghavachari, S., Kahana, M.J., Rizzuto, D.S., Caplan, J.B., Kirschen, M.P., 
Bourgeois, B., Madsen, J.R. and Lisman, J.E., 2001. Gating of human theta oscillations 
by a working memory task. Journal of Neuroscience, 21(9), pp.3175-3183. 

219. Rampp, S., Spindler, K., Hartwigsen, G., Scheller, C., Simmermacher, S., 
Scheer, M., Strauss, C. and Prell, J., 2022. Archery under the (electroencephalography-) 
hood: Theta-lateralization as a marker for motor learning. Neuroscience, 499, pp.23-39. 

220. Ravden, D. and Polich, J., 1998. Habituation of P300 from visual 
stimuli. International Journal of Psychophysiology, 30(3), pp.359-365. 

221. Ro, T., 2019. Alpha oscillations and feedback processing in visual cortex for 
conscious perception. Journal of Cognitive Neuroscience, 31(7), pp.948-960. 

222. Rockland, K.S. and Ojima, H., 2003. Multisensory convergence in calcarine 
visual areas in macaque monkey. International Journal of Psychophysiology, 50(1-2), 
pp.19-26. 

223. Rogala, J., Kublik, E., Krauz, R. and Wróbel, A., 2020. Resting-state EEG activity 
predicts frontoparietal network reconfiguration and improved attentional 
performance. Scientific Reports, 10(1), p.5064. 

224. Romei, V., Rihs, T., Brodbeck, V. and Thut, G., 2008. Resting 
electroencephalogram alpha-power over posterior sites indexes baseline visual cortex 
excitability. Neuroreport, 19(2), pp.203-208. 

225. Ronconi, L. and Marotti, R.B., 2017. Awareness in the crowd: Beta power and 
alpha phase of prestimulus oscillations predict object discrimination in visual 
crowding. Consciousness and cognition, 54, pp.36-46. 

226. Ronconi, L., Bertoni, S. and Marotti, R.B., 2016. The neural origins of visual 
crowding as revealed by event-related potentials and oscillatory dynamics. Cortex, 79, 
pp.87-98. 

227. Ronconi, L., Busch, N.A. and Melcher, D., 2018. Alpha-band sensory 
entrainment alters the duration of temporal windows in visual perception. Scientific 
reports, 8(1), p.11810. 

228. Ronconi, L., Oosterhof, N.N., Bonmassar, C. and Melcher, D., 2017. Multiple 
oscillatory rhythms determine the temporal organization of perception. Proceedings of 
the National Academy of Sciences, 114(51), pp.13435-13440. 

229. Rosanova, M., Casali, A., Bellina, V., Resta, F., Mariotti, M. and Massimini, M., 
2009. Natural frequencies of human corticothalamic circuits. Journal of 
Neuroscience, 29(24), pp.7679-7685. 



 163 

230. Rosenstein, G.Z., Fufwan, V., Sohmer, H., Attias, J. and Abraham, F., 1994. 
Single P100 visual evoked potential analyses in man. International journal of 
neuroscience, 79(3-4), pp.251-265. 

231. Rossiter, H.E., Boudrias, M.H. and Ward, N.S., 2014. Do movement-related beta 
oscillations change after stroke?. Journal of neurophysiology, 112(9), pp.2053-2058. 

232. Rossiter, H.E., Boudrias, M.H. and Ward, N.S., 2014. Do movement-related beta 
oscillations change after stroke?. Journal of neurophysiology, 112(9), pp.2053-2058. 

233. Rossiter, H.E., Davis, E.M., Clark, E.V., Boudrias, M.H. and Ward, N.S., 2014. 
Beta oscillations reflect changes in motor cortex inhibition in healthy 
ageing. Neuroimage, 91, pp.360-365. 

234. Rudolf, K., Grieben, C., Achtzehn, S. and Froböse, I., 2016. Stress im esport–ein 
einblick in training und wettkampf. In nn. 

235. Rutiku, R., Martin, M., Bachmann, T. and Aru, J., 2015. Does the P300 reflect 
conscious perception or its consequences?. Neuroscience, 298, pp.180-189. 

236. Rutiku, R., Martin, M., Bachmann, T. and Aru, J., 2015. Does the P300 reflect 
conscious perception or its consequences?. Neuroscience, 298, pp.180-189. 

237. Saalmann, Y.B., Pinsk, M.A., Wang, L., Li, X. and Kastner, S., 2012. The pulvinar 
regulates information transmission between cortical areas based on attention 
demands. science, 337(6095), pp.753-756. 

238. Saba, L.M., Hashemi, H., Jafarzadehpour, E., Mirzajani, A., Yekta, A., 
Jafarzadehpour, A., Zarei, A., Nabovati, P. and Khabazkhoob, M., 2023. P100 Wave 
Latency and Amplitude in Visual Evoked Potential Records in Different Visual Quadrants 
of Normal Individuals. Journal of Ophthalmic & Vision Research, 18(2), p.175. 

239. Sadaghiani, S. and Kleinschmidt, A., 2016. Brain networks and α-oscillations: 
structural and functional foundations of cognitive control. Trends in cognitive 
sciences, 20(11), pp.805-817. 

240. Salmelin, R., Hámáaláinen, M., Kajola, M. and Hari, R., 1995. Functional 
segregation of movement-related rhythmic activity in the human 
brain. Neuroimage, 2(4), pp.237-243. 

241. Salmelin, R., Hámáaláinen, M., Kajola, M. and Hari, R., 1995. Functional 
segregation of movement-related rhythmic activity in the human 
brain. Neuroimage, 2(4), pp.237-243. 

242. Salminen, M. and Ravaja, N., 2008. Increased oscillatory theta activation evoked 
by violent digital game events. Neuroscience letters, 435(1), pp.69-72. 

243. Salti, M., Bar-Haim, Y. and Lamy, D., 2012. The P3 component of the ERP 
reflects conscious perception, not confidence. Consciousness and cognition, 21(2), 
pp.961-968. 

244. Salti, M., Bar-Haim, Y. and Lamy, D., 2012. The P3 component of the ERP 
reflects conscious perception, not confidence. Consciousness and cognition, 21(2), 
pp.961-968. 

245. Samaha, J. and Postle, B.R., 2015. The speed of alpha-band oscillations predicts 
the temporal resolution of visual perception. Current Biology, 25(22), pp.2985-2990. 

246. Samaha, J., Bauer, P., Cimaroli, S. and Postle, B.R., 2015. Top-down control of 
the phase of alpha-band oscillations as a mechanism for temporal 
prediction. Proceedings of the National Academy of Sciences, 112(27), pp.8439-8444. 

247. Sanchez-Lopez, J., Silva-Pereyra, J. and Fernandez, T., 2016. Sustained attention 
in skilled and novice martial arts athletes: a study of event-related potentials and 
current sources. PeerJ, 4, p.e1614. 

248. Sanchez-Lopez, J., Silva-Pereyra, J. and Fernandez, T., 2016. Sustained attention 
in skilled and novice martial arts athletes: a study of event-related potentials and 
current sources. PeerJ, 4, p.e1614. 



 164 

249. Sauseng, P., Klimesch, W., Doppelmayr, M., Hanslmayr, S., Schabus, M. and 
Gruber, W.R., 2004. Theta coupling in the human electroencephalogram during a 
working memory task. Neuroscience letters, 354(2), pp.123-126. 

250. Sauseng, P., Klimesch, W., Gerloff, C. and Hummel, F.C., 2009. Spontaneous 
locally restricted EEG alpha activity determines cortical excitability in the motor 
cortex. Neuropsychologia, 47(1), pp.284-288. 

251. Sauseng, P., Klimesch, W., Stadler, W., Schabus, M., Doppelmayr, M., 
Hanslmayr, S., Gruber, W.R. and Birbaumer, N., 2005. A shift of visual spatial attention 
is selectively associated with human EEG alpha activity. European journal of 
neuroscience, 22(11), pp.2917-2926. 

252. Schneider, S.L. and Rose, M., 2016. Intention to encode boosts memory-related 
pre-stimulus EEG beta power. Neuroimage, 125, pp.978-987. 

253. Scholz, S., Schneider, S.L. and Rose, M., 2017. Differential effects of ongoing 
EEG beta and theta power on memory formation. PloS one, 12(2), p.e0171913. 

254. Schröder, P., Nierhaus, T. and Blankenburg, F., 2021. Dissociating perceptual 
awareness and postperceptual processing: the P300 is not a reliable marker of 
somatosensory target detection. Journal of Neuroscience, 41(21), pp.4686-4696. 

255. Sewards, T.V. and Sewards, M.A., 1999. Alpha-band oscillations in visual cortex: 
part of the neural correlate of visual awareness?. International Journal of 
Psychophysiology, 32(1), pp.35-45. 

256. Seya, Y. and Shinoda, H., 2016. Experience and training of a first person shooter 
(FPS) game can enhance useful field of view, working memory, and reaction 
time. International Journal of Affective Engineering, 15(3), pp.213-222. 

257. Shah, D., Knott, V., Baddeley, A., Bowers, H., Wright, N., Labelle, A., Smith, D. 
and Collin, C., 2018. Impairments of emotional face processing in schizophrenia 
patients: Evidence from P100, N170 and P300 ERP components in a sample of auditory 
hallucinators. International Journal of Psychophysiology, 134, pp.120-134. 

258. Sheikholeslami C., Yuan H., He E. J., Bai X., Yang L., He B. (2007). A high 
resolution EEG study of dynamic brain activity during video game play. Conf. Proc. IEEE 
Eng. Med. Biol. Soc. 2007, 

259. Sherman, M.T., Kanai, R., Seth, A.K. and VanRullen, R., 2016. Rhythmic 
influence of top–down perceptual priors in the phase of prestimulus occipital alpha 
oscillations. Journal of cognitive neuroscience, 28(9), pp.1318-1330. 

260. Shors, T.J., Ary, J.P., Eriksen, K.J. and Wright, K.W., 1986. P100 amplitude 
variability of the pattern visual evoked potential. Electroencephalography and Clinical 
Neurophysiology/Evoked Potentials Section, 65(4), pp.316-319. 

261. Siervo, M., Sabatini, S., Fewtrell, M.S. and Wells, J.C., 2013. Acute effects of 
violent video-game playing on blood pressure and appetite perception in normal-weight 
young men: a randomized controlled trial. European journal of clinical nutrition, 67(12), 
pp.1322-1324 

262. Simons, R.F., Detenber, B.H., Cuthbert, B.N., Schwartz, D.D. and Reiss, J.E., 
2003. Attention to television: Alpha power and its relationship to image motion and 
emotional content. Media psychology, 5(3), pp.283-301. 

263. Smith M. E., McEvoy L. K., Gevins A. (1999). Neurophysiological indices of 
strategy development and skill acquisition. Cogn. Brain Res. 7, 389–404. 

264. Solis-Escalante, T., Müller-Putz, G.R., Pfurtscheller, G. and Neuper, C., 2012. 
Cue-induced beta rebound during withholding of overt and covert foot 
movement. Clinical Neurophysiology, 123(6), pp.1182-1190. 

265. Solis-Escalante, T., Müller-Putz, G.R., Pfurtscheller, G. and Neuper, C., 2012. 
Cue-induced beta rebound during withholding of overt and covert foot 
movement. Clinical Neurophysiology, 123(6), pp.1182-1190. 



 165 

266. Sousa, A., Ahmad, S.L., Hassan, T., Yuen, K., Douris, P., Zwibel, H. and 
DiFrancisco-Donoghue, J., 2020. Physiological and cognitive functions following a 
discrete session 

267. Spence, C. and Driver, J., 1997. On measuring selective attention to an expected 
sensory modality. Perception & psychophysics, 59(3), pp.389-403. 

268. Steinhauser, M. and Yeung, N., 2010. Decision processes in human 
performance monitoring. Journal of Neuroscience, 30(46), pp.15643-15653. 

269. Steriade, M., 2000. Corticothalamic resonance, states of vigilance and 
mentation. Neuroscience, 101(2), pp.243-276. 

270. Strenziok M., Parasuraman R., Clarke E., Cisler D. S., Thompson J. C., 
Greenwood P. M. (2014). Neurocognitive enhancement in older adults: comparison of 
three cognitive training tasks to test a hypothesis of training transfer in brain 
connectivity. Neuroimage 85(Pt 3), 1027–1039.  

271. Swann, N., Tandon, N., Canolty, R., Ellmore, T.M., McEvoy, L.K., Dreyer, S., 
DiSano, M. and Aron, A.R., 2009. Intracranial EEG reveals a time-and frequency-specific 
role for the right inferior frontal gyrus and primary motor cortex in stopping initiated 
responses. Journal of Neuroscience, 29(40), pp.12675-12685. 

272. Sweeney-Reed, C.M., Zaehle, T., Voges, J., Schmitt, F.C., Buentjen, L., Kopitzki, 
K., Richardson-Klavehn, A., Hinrichs, H., Heinze, H.J., Knight, R.T. and Rugg, M.D., 2016. 
Pre-stimulus thalamic theta power predicts human memory 
formation. Neuroimage, 138, pp.100-108. 

273. Tan, H., Jenkinson, N. and Brown, P., 2014. Dynamic neural correlates of motor 
error monitoring and adaptation during trial-to-trial learning. Journal of 
Neuroscience, 34(16), pp.5678-5688. 

274. Tan, H., Wade, C. and Brown, P., 2016. Post-movement beta activity in 
sensorimotor cortex indexes confidence in the estimations from internal 
models. Journal of Neuroscience, 36(5), pp.1516-1528. 

275. Tanaka, E., Inui, K., Kida, T., Miyazaki, T., Takeshima, Y. and Kakigi, R., 2008. A 
transition from unimodal to multimodal activations in four sensory modalities in 
humans: an electrophysiological study. BMC neuroscience, 9, pp.1-16. 

276. Tomassini, A., Ambrogioni, L., Medendorp, W.P. and Maris, E., 2017. Theta 
oscillations locked to intended actions rhythmically modulate perception. Elife, 6, 
p.e25618. 

277. Torrecillos, F., Alayrangues, J., Kilavik, B.E. and Malfait, N., 2015. Distinct 
modulations in sensorimotor postmovement and foreperiod β-band activities related to 
error salience processing and sensorimotor adaptation. Journal of 
Neuroscience, 35(37), pp.12753-12765. 

278. Ullsperger, M., Harsay, H.A., Wessel, J.R. and Ridderinkhof, K.R., 2010. 
Conscious perception of errors and its relation to the anterior insula. Brain Structure 
and Function, 214, pp.629-643. 

279. Valera, F.J., Toro, A., John, E.R. and Schwartz, E.L., 1981. Perceptual framing 
and cortical alpha rhythm. Neuropsychologia, 19(5), pp.675-686. 

280. Valls-Serrano, C., de Francisco, C., Caballero-López, E. and Caracuel, A., 2022. 
Cognitive flexibility and decision making predicts expertise in the MOBA esport, League 
of Legends. SAGE Open, 12(4), p.21582440221142728. 

281. Van Der Cruijsen, J., Manoochehri, M., Jonker, Z.D., Andrinopoulou, E.R., Frens, 
M.A., Ribbers, G.M., Schouten, A.C. and Selles, R.W., 2021. Theta but not beta power is 
positively associated with better explicit motor task learning. NeuroImage, 240, 
p.118373. 



 166 

282. Van Dijk, H., Schoffelen, J.M., Oostenveld, R. and Jensen, O., 2008. Prestimulus 
oscillatory activity in the alpha band predicts visual discrimination ability. Journal of 
Neuroscience, 28(8), pp.1816-1823. 

283. van Driel, J., Ort, E., Fahrenfort, J.J. and Olivers, C.N., 2019. Beta and theta 
oscillations differentially support free versus forced control over multiple-target 
search. Journal of Neuroscience, 39(9), pp.1733-1743. 

284. Van Kerkoerle, T., Self, M.W., Dagnino, B., Gariel-Mathis, M.A., Poort, J., Van Der 
Togt, C. and Roelfsema, P.R., 2014. Alpha and gamma oscillations characterize 
feedback and feedforward processing in monkey visual cortex. Proceedings of the 
National Academy of Sciences, 111(40), pp.14332-14341. 

285. Verstraeten, E. and Cluydts, R., 2002. Attentional switching-related human EEG 
alpha oscillations. Neuroreport, 13(5), pp.681-684. 

286. Von Stein, A. and Sarnthein, J., 2000. Different frequencies for different scales of 
cortical integration: from local gamma to long range alpha/theta 
synchronization. International journal of psychophysiology, 38(3), pp.301-313. 

287. Voss, M.W., Kramer, A.F., Basak, C., Prakash, R.S. and Roberts, B., 2010. Are 
expert athletes ‘expert’in the cognitive laboratory? A meta‐analytic review of cognition 
and sport expertise. Applied cognitive psychology, 24(6), pp.812-826. 

288. Voss, M.W., Kramer, A.F., Basak, C., Prakash, R.S. and Roberts, B., 2010. Are 
expert athletes ‘expert’in the cognitive laboratory? A meta‐analytic review of cognition 
and sport expertise. Applied cognitive psychology, 24(6), pp.812-826. 

289. Vossel S., Geng J. J., Fink G. R. (2014). Dorsal and ventral attention systems: 
distinct neural circuits but collaborative roles. Neuroscientist 20, 150–159. 

290. Vossel, S., Thiel, C.M. and Fink, G.R., 2006. Cue validity modulates the neural 
correlates of covert endogenous orienting of attention in parietal and frontal 
cortex. Neuroimage, 32(3), pp.1257-1264. 

291. Watanabe, T., Mima, T., Shibata, S. and Kirimoto, H., 2021. Midfrontal theta as 
moderator between beta oscillations and precision control. Neuroimage, 235, 
p.118022. 

292. Weiss, S., Müller, H.M. and Rappelsberger, P., 2000. Theta synchronization 
predicts efficient memory encoding of concrete and abstract nouns. NeuroReport, 
11(11), pp.2357-2361. 

293. White, T.P., Jansen, M., Doege, K., Mullinger, K.J., Park, S.B., Liddle, E.B., 
Gowland, P.A., Francis, S.T., Bowtell, R. and Liddle, P.F., 2013. Theta power during 
encoding predicts subsequent‐memory performance and default mode network 
deactivation. Human brain mapping, 34(11), pp.2929-2943. 

294. Widmann, A., Kujala, T., Tervaniemi, M., Kujala, A. and Schröger, E., 2004. From 
symbols to sounds: visual symbolic information activates sound 
representations. Psychophysiology, 41(5), pp.709-715. 

295. Williams, A.M., Davids, K., Burwitz, L. and Williams, J.G., 1994. Visual search 
strategies in experienced and inexperienced soccer players. Research quarterly for 
exercise and sport, 65(2), pp.127-135. 

296. Williams, M. and Davids, K., 1995. Declarative knowledge in sport: A by-product 
of experience or a characteristic of expertise?. Journal of sport and exercise 
psychology, 17(3), pp.259-275. 

297. Wilson, T.W., Heinrichs-Graham, E. and Becker, K.M., 2014. Circadian 
modulation of motor-related beta oscillatory responses. Neuroimage, 102, pp.531-539. 

298. Womelsdorf, T., Johnston, K., Vinck, M., & Everling, S. (2010). Theta-activity in 
anterior cingulate cortex predicts task rules and their adjustments following 
errors. Proceedings of the National Academy of Sciences of the United States of 
America, 107(11), 5248–5253.  



 167 

299. Worden, M.S., Foxe, J.J., Wang, N. and Simpson, G.V., 2000. Anticipatory biasing 
of visuospatial attention indexed by retinotopically specific alpha-band 
electroencephalography increases over occipital cortex. The Journal of neuroscience: 
the official journal of the Society for Neuroscience, 20(6), pp.RC63-RC63. 

300. Wu S., Cheng C. K., Feng J., D'Angelo L., Alain C., Spence I. (2012). Playing a 
first-person shooter video game induces neuroplastic change. J. Cogn. Neurosci. 24, 
1286–1293. 

301. Wutz, A. and Melcher, D., 2014. The temporal window of individuation limits 
visual capacity. Frontiers in psychology, 5, p.952. 

302. Wutz, A., Weisz, N., Braun, C. and Melcher, D., 2014. Temporal windows in 
visual processing:“prestimulus brain state” and “poststimulus phase reset” segregate 
visual transients on different temporal scales. Journal of Neuroscience, 34(4), pp.1554-
1565. 

303. Yamashiro, K., Sato, D., Onishi, H., Yoshida, T., Horiuchi, Y., Nakazawa, S. and 
Maruyama, A., 2013. Skill-specific changes in somatosensory-evoked potentials and 
reaction times in baseball players. Experimental Brain Research, 225, pp.197-203. 

304. Yamashiro, K., Sato, D., Onishi, H., Yoshida, T., Horiuchi, Y., Nakazawa, S. and 
Maruyama, A., 2013. Skill-specific changes in somatosensory-evoked potentials and 
reaction times in baseball players. Experimental Brain Research, 225, pp.197-203. 

305. Yamashiro, K., Sato, D., Onishi, H., Yoshida, T., Horiuchi, Y., Nakazawa, S. and 
Maruyama, A., 2013. Skill-specific changes in somatosensory-evoked potentials and 
reaction times in baseball players. Experimental Brain Research, 225, pp.197-203. 

306. Yamashiro, K., Yamazaki, Y., Siiya, K., Ikarashi, K., Baba, Y., Otsuru, N., Onishi, 
H. and Sato, D., 2021. Modality-specific improvements in sensory processing among 
baseball players. Scientific Reports, 11(1), p.2248.somatosensory evoked potentials 
associated with improved reaction time in a simple sensorimotor response task 
following repetitive practice. Brain and Behavior, 10(8), p.e01624. 

307. Yang, W., Guo, A., Li, Y., Qiu, J., Li, S., Yin, S., Chen, J. and Ren, Y., 2018. Audio-
visual spatiotemporal perceptual training enhances the P300 component in healthy 
older adults. Frontiers in Psychology, 9, p.2537. 

308. Yang, W., Guo, A., Li, Y., Qiu, J., Li, S., Yin, S., Chen, J. and Ren, Y., 2018. Audio-
visual spatiotemporal perceptual training enhances the P300 component in healthy 
older adults. Frontiers in Psychology, 9, p.2537. 

309. Yeung, N., Botvinick, M.M. and Cohen, J.D., 2004. The neural basis of error 
detection: conflict monitoring and the error-related negativity. Psychological 
review, 111(4), p.931. 

310. Yin, Q., Qiu, J., Zhang, Q. and Wen, X., 2008. Cognitive conflict in audiovisual 
integration: an event-related potential study. Neuroreport, 19(5), pp.575-578. 

311. Yordanova, J., Kolev, V., Verleger, R., Heide, W., Grumbt, M. and Schürmann, M., 
2017. Synchronization of fronto-parietal beta and theta networks as a signature of visual 
awareness in neglect. NeuroImage, 146, pp.341-354. 

312. Zaretskaya, N. and Bartels, A., 2015. Gestalt perception is associated with 
reduced parietal beta oscillations. Neuroimage, 112, pp.61-69. 

313. Zazio, A., Ruhnau, P., Weisz, N. and Wutz, A., 2022. Pre‐stimulus alpha‐band 
power and phase fluctuations originate from different neural sources and exert distinct 
impact on stimulus‐evoked responses. European Journal of Neuroscience, 55(11-12), 
pp.3178-3190. 

314. Zhang, Y., Chen, Y., Bressler, S.L. and Ding, M., 2008. Response preparation and 
inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience, 156(1), 
pp.238-246. 



 168 

315. Zwierko, T., Lubiński, W., Lubkowska, A., Niechwiej-Szwedo, E. and Czepita, D., 
2011. The effect of progressively increased physical efforts on visual evoked potentials 
in volleyball players and non-athletes. Journal of sports sciences, 29(14), pp.1563-1572. 
 

 


	CHAPTER 1
	General Introduction
	Brain activity and electroencephalography (EEG)
	Sport Neuroscience
	Aims of Thesis

	Chapter 2
	Experimental Philosophy
	Esports as a model for Sport Neuroscience
	Brain activity and electroencephalography (EEG)
	Experiment Flow and Design

	Chapter 3
	Introduction
	Methods
	Results
	Discussion
	Conclusion

	Chapter 4
	Introduction
	Methods
	Results
	Behavioural Performance and Eye-Tracking
	Discussion
	Conclusion

	Chapter 5
	Introduction
	Methods
	Results
	Discussion
	Conclusion

	Chapter 6
	Introduction
	Methods
	Results
	Discussion
	Conclusion
	Summary


