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Abstract

Resolving intra tumour heterogeneity (ITH) remains an extensive therapeutic challenge in
cancer research. Despite an emphasis on the importance of the transcriptional landscape in
understanding cancer cell behaviours, the role of the core promoter remains widely ignored.
Recent studies have shown the presence of alternative transcription start sites (TSS) and
found a distinctive YC TSS enrichment in cancers that correlated with global phenotypes.
However, tumour dynamics are underpinned by a complex network of sub clonal diversity
therefore, the true biological significance of TSS usage remains elusive. Here we further
characterise the phenotypic landscape of YC enriched cancers on both an inter and intra
level. Through successful undertaking of single cell CAGE sequencing, we identify ITH of TSS
usage even at a single cell level. We find differential YC enrichment associated with cellular
physiological states that facilitate a growth phenotype. Next, we identify cell cycle phase
associated TSS shifting and find YC enrichment associated with GO and G1 phases.
Scrutinization of genes utilising YC enrichment showed subsets critically involved in directing
the metabolic state of the cell. Overall, our findings highlight an important TSS association to
cancer cell growth dynamics that act in a cell cycle dependent manner, even at a single cell
resolution. Finally, attempts to characterise the spatiotemporal mapping of cycling phases
through imaging emphasised the dynamic landscape of cancer behaviours. The work
presented here further highlights the importance of TSS usage investigations that are masked

in conventional gene expression analysis.
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Chapter 1: Introduction

1.1 Cancer Heterogeneity

1.1.1 Inter vs Intra tumour heterogeneity

The sheer variability that exists in cancer is simply highlighted in its definition as an
umbrella term for over 200 different diseases (lacona & Lutz, 2019; Miller et al., 2019).
Despite these morphologically characterised subtypes, often little correlation in
treatment response exists between tumours of the same subtype (Burrell et al., 2013;
Dagogo-Jack & Shaw, 2018). Thus, highlighting that the complexity of a tumour’s aetiology
is not just bound by factors such as the location in which it is found. Tumour heterogeneity
is one of the biggest hurdles for diagnostic and treatment progression (Dagogo-Jack &
Shaw, 2018; Fisher et al., 2013; Stanta & Bonin, 2018a). This heterogeneity occurs in two
ways. Firstly, inter heterogeneity whereby tumour phenotype differs between subtypes
and patients. Secondly, intra heterogeneity (ITH) refers to the differences seen within a
single tumour (Hausser & Alon, 2020; Prasetyanti & Medema, 2017). Akin to developing
embryos, tumour architecture is comprised of distinct sub cellular populations defined by
differing fate potentials and phenotypic presentations (Y. Ma et al., 2010). These
subclones (SC) can vary considerably in their genetic, epigenetic, and even transcriptomic
backgrounds and impact overall tumour behaviour (Fisher et al., 2013; McGranahan &
Swanton, 2017). By understanding the molecular contributions for both inter and intra
heterogeneity and their subsequent interaction, we can better resolve the genotype-
phenotype map encompassing tumour formation, development, and response (Lenz et
al., 2021; Cho and Przytycka, 2013b. Hence deepening tumour stratification criteria

facilitating the goals of precision medicine (Al-Hamaly et al., 2023).

1.1.2 Gastrointestinal morphology and Colorectal Cancer
The impact of tumour heterogeneity is widely seen in colorectal cancer (CRC) which has the
third highest cancer mortality rate worldwide (Bray et al., 2018; Morgan et al., 2023). CRC is

a complex disease that develops through accumulation of erroneous genetic and non-



genetic alterations in the gastrointestinal cells that line the crypt-villus axis (De Rosa et al.,
2015; Punt et al., 2017). The intricate morphology of the gastrointestinal system outlined in
Figure 1.1, is composed of diverse cell types to maintain the core barrier function essential
for molecular uptake and protection of other tissues (Shen, 2009). This function is held up
by the compartmentalisation of specialised cells that exist and maintain the villi that line
mucosal layers (Shen, 2009; Sumigray et al., 2018). The crypt, found at the very base
harbours not only Paneth and goblet cells, but also LGR5+ intestinal epithelial stem cells (ISC)
and undifferentiated secretory cells in a region known as the transit amplifying zone
(Foerster et al., 2022; Shen, 2009). Here cells are terminally differentiating and migrating
vertically towards the villi tip into absorption specialised cells such as enterocytes and tuft,
before being expelled from the epithelium (Foerster et al., 2022; Shen, 2009; Sumigray et
al., 2018). This repair and replenishment axis is maintained by vital Wnt signalling acting on
ISC controlling their division and progression up the villi in a concentrated gradient (Krausova
& Korinek, 2014; Mah et al., 2016; Walter et al., 2022). This highly active and dynamic
architecture is often mimicked in CRC aetiology, resulting in tumour cellular composition and

disease outcome being vastly heterogeneous (Fedi et al., 2021; Punt et al., 2017).
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Figure 1.1: Morphological characterisation of intestinal crypt structure. Cellular composition and
ordering of the intestinal crypt begin at the base where Paneth cells are intertwined with naive cells
such as crypt base columnar cells and stem cells. The path of differentiation extends vertically up the
crypt to the villus through a gradient of tightly controlled Wnt signalling. Just above the crypt base is a
highly proliferative zone harbouring the transit amplifying cells with resultant trajectories into
functional secretory and absorptive differentiated cells lines the villus tip. Adapted from (Carulli et al.,
2014).



1.1.3 Drivers of CRC and disease stratification

For years CRC stratification was mainly built on the conventional tumour, node,
metastasis (TNM) staging system with microsatellite instability (MSI) status later also
providing prognostic value (Punt et al., 2017; M. P. Singh et al., 2021; Zaborowski et al.,
2022). However, efforts to better characterise CRC resulted in the identification of
consensus molecular subtypes (CMS) with translational prognostic capabilities (Guinney
et al.,, 2015; Khalig et al., 2022). Utilising a wealth of sequencing data, the CMS
classification system provides an insight and foundation of understanding into the
heterogeneity of the biological underpinnings of CRC (Guinney et al., 2015; M. P. Singh et
al., 2021). The first layer of classification comes from the genomic-focused aberrations
with CMS1 defined by the hypermutable microsatellite instable genotype (Guinney et al.,
2015). Contrastingly the remaining 3 are characterised by significant somatic copy
number alterations underpinned by high chromosomal instability particularly in
oncogenes (Guinney et al., 2015; Rejali et al., 2023). The second layer utilises
transcriptomic and epigenomic analysis and highlighted stark differences and establishes
the now accepted taxonomy. CMS1, the MSI immune subtype, shows distinct
upregulation of pathways vital for immune response (Guinney et al., 2015). CMS2 the
canonical subtype making up the largest portion of CRC cases, shows significant oncogenic
amplification coupled with both WNT and MYC upregulation (Guinney et al., 2015). CMS3
has been identified as the metabolic subtype with tumours characterised as this
displaying both KRAS mutations and upregulation of metabolic signatures (Guinney et al.,
2015). Finally, CMS4, identified as the poorest prognoses subtype, is named aptly as
mesenchymal due to the upregulation of genes known to be important for epithelial to
mesenchymal transition and other stromal infiltrating genes (Guinney et al., 2015; Hoorn

et al., 2022).

The necessity to combine both genomic and transcriptomic features to define the 4
diverse subtypes highlights the importance of the transcriptome in cancer heterogeneity,
further solidifying the belief that cancer cannot be resolved by the genome alone (R. J.
Chen et al.,, 2022). A finding further supported by Wanigasooriya et al, who used
transcriptomic analysis and identified the dysregulation of the mTOR pathway in CRC

correlated with irradiation responsiveness (Wanigasooriya et al., 2022). Through



combination therapy of blocking the mTOR/PI3K pathway they were able to sensitise non-
responsive CRC to irradiation, highlighting an important role of these pathways in CRC
(Wanigasooriya et al., 2022). This research resulted in a novel approach to treating
resistant CRC that would not have been achieved by investigating genomic alterations

alone.

1.1.4 Modelling CRC using organoids

A challenge in resolving heterogeneity is the inability to understand and observe its
true extent in tumour dynamics due to time point bias (Cyll et al., 2017). However, the
development of CRC patient derived organoids (PDO), which sufficiently recapitulate the
tumour cellular organisation missing from 2D cultures, allows for this to be further studied
(Kaushik et al., 2018; Wanigasooriya et al., 2022). The methodology often requires the use
and isolation of either healthy or cancerous tissue specific stem cells (CSC), which are then
embedded in a 3D dome of nutrient containing Matrigel (Yin et al., 2016). An advanced
pooling approach which combines CSC and other cancer, and normal donor cells shows
better retention of heterogeneity and cellular composition seen in tumours (Lancaster &
Huch, 2019; Xiaolei et al., 2017). Co-culturing with mature cells such as fibroblasts also
resulted in organoids that represent the CMS (Atanasova et al., 2023; Sayed et al., 2021).
Furthermore, PDOs have been shown to retain the molecular features and morphology of
their organ of origin, thus creating an exciting modelling system to investigate the full extent
of the phenotypic landscape of tumour growth and treatment response (Betge et al., 2022;
Jeong et al., 2022; Sayed et al.,, 2021). In combination with the advent of single cell
technologies, CRC organoids represent an opportunity to better understand ITH (Bowes et

al., 2022; F. Wu et al., 2021).

1.2 Intra-tumour heterogeneity and the role of cellular

states

1.2.1 Theories of Intra-tumour heterogeneity

Although there is merit in investigating the differences between tumours (inter),

whole tumour analysis may overlook important findings happening within a single tumour
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(intra) (Ramodn y Cajal et al., 2020). The degree of heterogeneity within a tumour is known
to indicate a poorer prognosis (Ramén y Cajal et al., 2020; T. Yu et al., 2021). Further to
this, research has shown populations of cells within a single tumour can respond
differently to treatment and may provide explanations to why some patients relapse with
more aggressive tumours (Ling et al., 2015; Marusyk & Polyak, 2010; Ohshima & Morii,
2021; Punt et al., 2017; Roerink et al., 2018). Many have likened ITH dynamics to that seen
in evolution. Clonal evolution theory states that SC trajectories occur through adaptations
obtained from driver events to maintain a clonal advantage, thus coinciding with

Darwinian natural selection (Hausser & Alon, 2020; Prasetyanti & Medema, 2017).

Conversely, the identification of CSC in many subtypes, fuelled the theory that ITH and
thus production, growth and maintenance of tumours relies on a subset of cells, that
abide to similar principles of regeneration (Prasetyanti & Medema, 2017). These CSC are
capable of both robust self-renewal, thus maintaining plasticity, and differentiation into
further defined progeny, therefore producing heterogenous populations (Clevers, 2011;
Sasaki & Clevers, 2018). Despite previously attributed as opposing theories, the coalition
of both clonal evolution theory and CSC theory highlights the plasticity of tumour cell
behaviour and the significant role the environment plays in defining tumour dynamics
(Marusyk et al., 2012). By better understanding the adaptive and resultant dysregulated
behaviours that uphold tumour phenotypes we can greaten our understanding of cancer

aetiology (Marusyk et al., 2020; Marusyk & Polyak, 2010).

1.2.2 Cellular states within tumours

Resolving tumour evolution requires understanding SC molecular diversity and the
intrinsic and adaptive functional capabilities that drive tumour function and response (X.
X. Sun & Yu, 2015). Characterising these subpopulations has identified many layers of ITH
with differentially defined phenotypes (Maleki et al., 2024a; Stanta & Bonin, 2018a). For
example, tumour composition is shown to be vastly heterogeneous in defined cell types,
often mimicking host organ cellular architecture (Jogi et al., 2012). The building of this ITH
is believed to be mainly due to CSCs (Naz et al., 2021; Wahl & Spike, 2017). CSCs harbour
distinct phenotypic plasticity with resultant trajectories to cell types resulting through

accumulation of genetic and non-genetic alterations driven by tumour microenvironment



(TME) interaction (Nairuz et al., 2023). For example, CDX1, a transcription factor vital for
intestinal differentiation, is believed to play a central role in CSC differentiation in CRC
(Ashley et al., 2013; Jones et al., 2015). CDX1 levels are greatly affected by extrinsic factors
such as nutrient availability and more specifically hypoxia (Ashley et al., 2013; Jones et al.,
2015). It is hypothesised that the promoter region harbours HIF1a target sites therefore,
in hypoxic environments differentiation is prevented and cells are kept in a stem like
guiescent state driving resistance (Ashley et al., 2013; Najafi et al., 2020). This highlights
the necessity of adaptability and hence plasticity of cellular states to maintain or regain

homeostasis to aid tumour growth and survival (Wahl & Spike, 2017).

1.2.3 Cancer stem cells and Cell cycle regulation

To maintain continual plasticity, CSC undergo asymmetric division resulting in more
differentiated and stemlike progeny thus self-renewal (Chao et al., 2023; Z. Li et al., 2022).
The asymmetrical dissemination of fate-determining factors including Notch and Wnt
during mitosis direct the progeny fates (Z. Li et al., 2022). Therefore, the cell cycle is
believed to be one of the key driving forces in CSC fates and consequently in cancer
formation and progression (Lindell et al., 2023). The cell cycle is tightly regulated and
highly dysregulated in cancer making it one of the most prominent targets in anticancer
therapies (Jingwen et al., 2017; Patra et al., 2023). In many cancers the inhibitors shown
in Figure 1.2, known to regulate the formation of the cyclin and cyclin dependent kinases
(CDK) complexes are often silenced through mutation or enhanced protein degradation
(Yin Liu et al. 2017; Otto and Sicinski 2017). The cyclin-CDK complexes are then able to
phosphorylate protein targets allowing for many transcription factors (TF) to activate
genes associated with progression through the cell cycle (Yin Liu et al. 2017). Many of
these genes show cyclic expression in addition to a distinctive delay between active
transcription and steady state RNA expression, highlighting how fine-tuned
transcriptional regulation in cellular division is (Bostrom et al., 2017; Y. Liu et al., 2017).
Further resolution of the role of the transcriptome in the dysregulation of the cell cycle in
diseases such as cancer may provide more therapeutic targets and markers for the

disease.
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Figure 1.2: Cell Cycle regulation and characterisation of phases using FUCCI. Cell cycle progression is
mediated by the formation of phase dependent CDK complexes and are essential for transitions
through checkpoints. Progression can be halted through the upregulation of inhibitors p21 and p16.
Cycle dynamics have been characterised through labelling of key phase associated genes with
fluorescent reporters. FUCCI labels the G1 specific highly expressing CDT1 with mKO2 resulting in a red
or orange nuclei, as cells transition into S phase CDT1 degradation coupled with Geminin upregulation
that has been tagged with the Monomeric Azami-Green fluorescent protein, results in a yellow
emitting nucleus, following complete degradation of CDT1 and hence G2M phase nuclei will be green
before losing all fluorescence upon exiting the cell cycle into GO. Adapted from (Jingwen et al., 2017,
Yano et al., 2020). Made in Biorender.

1.2.4 Cell cycle dysregulation and resistance

The advent of visualisation techniques such as FUCCI (fluorescence ubiquitination-
based cell cycle indicator), which fluorescently label the different cycle phases: G1,5,G2M
Figure 1.2, has also shown ITH populations have different cycle physiology (Newman &
Zhang, 2008; A. M. Singh et al., 2016; Zielke & Edgar, 2015). In addition to differentiation
status slowing cycle iterations, cellular spatial location also shows altered dynamics with
more proliferative cells located at the outer tumour regions (Yano et al., 2014, 2020).
Through efficient upregulation of DNA damage repair (DDR) mechanisms during G2M,
cycle and phase lengths can also be tuned (Maleki et al., 2024b). Utilisation of FUCCI
labelling also revealed proliferative cells were more responsive to cytotoxic agents

whereas quiescent cells show a distinctive resistance (Yano et al., 2020). The ability of



cells to enter this quiescent state in response to stressors is vital to cellular survival
highlighting an important role of the cell cycle in cell adaptability. Maintaining the balance
between driving to and away from a proliferative state is vital for cancer cell survival
(Kumari & Jat, 2021; Loftus et al., 2022). Fuelling two core principles established in the
notable hallmarks of cancer: sustaining proliferative signals and suppressing antigrowth
signals and highlighting the significance of cycle regulation in cancer (Hanahan &

Weinberg, 2000, 2011).

1.2.5 Metabolic adaptability in cancer (The proliferation equilibrium)

A key mediator of maintaining proliferative capabilities is the metabolic state of the
cell (Leal-Esteban & Fajas, 2020; J. Liu et al., 2022; Nong et al., 2023). To survive the high
energy demand required to continue cycling, cancer cells undergo metabolic
reprogramming (Leal-Esteban & Fajas, 2020; J. Liu et al., 2022). The Warburg effect, an
aspect of reprogramming established in the 1920s, highlights cancer cell preference for
adenosine triphosphate (ATP) and lactate production through glycolysis (Liberti &
Locasale, 2016; Navarro et al., 2022; Nong et al., 2023). The absence of complete aerobic
respiration represents a more efficient and thus beneficial approach to energy and
metabolic intermediate production in stressed states (X. Li et al., 2022; Zheng, 2012). The
complex multifaceted shift also produces metabolic precursors for amino acids,
nucleotide, lipid, and carbohydrate biosynthesis all essential for growth and survival
(Nenkov et al., 2021; Nong et al., 2023; Schiliro & Firestein, 2021). This abundancy of
metabolic intermediates enables cells to drive their proliferation (DeBerardinis et al.,
2008). The ability of cells to perform this is believed to be core in defining cellular
behaviour and may even be a vital mechanism underpinning retention of stemness
(Papadaki & Magklara, 2022; G. M. Wen et al., 2022; X. Zhu et al., 2020). This dynamic
exists also in reverse, the ability of a cell particularly in stressed states to restrain from
proliferation and focus on metabolic production and adaptation to reactive oxygen
species (ROS) determines survival (Endo et al., 2020; Pranzini et al., 2021; Varghese et al.,
2020). Therefore, understanding the regulatory mechanisms underlying this equilibrium

needs to be explored.
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Figure 1.3: mTORC1 nutrient sensing cascade. Nutrient sensing pathways and their interconnection
with mTORC1 resulting in inhibition or promotion of its growth and proliferation function. High levels
of glucose results in an increase in ATP subsequently blocking AMP kinase pathway which is activated
in nutrient dense environments that often results in ROS accumulation and DNA damage facilitating
a p53 activation, AMPK phosphorylates mTOR directly inactivating it and indirectly through
interaction with the heterodimer tuberous sclerosis complex (TSC1/2) resulting in its activation and
hence inhibition of mTOR promoting Rheb. PI3k and RAS pathways and their downstream
interactions block TSC1/2 thus preventing Rhen inactivation and enhancing mTOR activation.
Adapted from (J. Huang & Manning, 2008; Jeon, 2016; Mendoza et al., 2011), Created in Biorender.

1.2.6 The role of lipogenic metabolic reprogramming in cancer

Glycolysis is not the only pathway significantly reprogrammed to provide survival
advantages in cancer. Pathways involved in regulating lipid biogenesis are notably altered in
cancers, unsurprising given the essential role fatty acids play in cellular function and survival
(Lee et al., 2022; Y. Ma et al., 2018). Not only do lipids provide a further energy source to
cells through their catabolism to ATP, but they are the backbone of functional processes
including signalling pathways and cellular membrane formation (Batchuluun et al., 2022; H.
R. Jin et al., 2023; Lee et al., 2022; Y. Ma et al., 2018). The increased uptake and de novo
production of fatty acids enables both the proliferative phenotype in cancers but also allows
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for retention of homeostasis in stressed environments (Koundouros & Poulogiannis, 2020).
The lipogenic role even extends to the TME through interaction with immune and stromal
cells and can even result in immunosuppression thus supporting tumour survival (H. R. Jin et
al., 2023). A significant upregulation in the expression of the transporters responsible for the
maintenance of exchange has been well characterised in cancers and high expression of
CD36, an essential fatty acid transporter, is a notable marker of poor prognosis in many
cancers. Furthermore, studies have also shown deleting CD36 was successful in slowing
tumour growth and resistance, highlighting the sheer dependency of lipids as a resource in
some cancers (Beloribi-Djefaflia et al., 2016; Koundouros & Poulogiannis, 2020). Lipogenesis
has since been identified as a universal state found within cancers, highlighting its critical
role in sustaining tumour function, influencing tumour phenotype and even supporting

cancer cell survival (Hausser et al., 2019).

1.2.7 Role of mTORC1 in metabolic reprogramming

Growth signalling pathways are key mediators in determining cell state and fate and
are often found hyperactivated in cancer (Sever & Brugge, 2015). These signals converge
on the key nutrient sensing pathway governed by the two mTOR complexes, mammalian
target of rapamycin complex 1 and 2 (mTORC1 and mTORC2) Figure 1.3 (Zou et al., 2020).
The pathway has extensive downstream interactions that are widely implicated in cellular
response specifically metabolic reprogramming (Navarro et al., 2022; Nong et al., 2023;
Schiliro & Firestein, 2021). Unsurprisingly, mTOR is central to maintaining a functional
level of homeostasis in cancer cells predominantly through mediating macromolecule
catabolism and anabolism (Laplante & Sabatini, 2013). Firstly, on a translational level
through direct activation of translation associated machinery, including the
phosphorylation of S6K1 central to regulating MYC translation (Csibi et al., 2014; Mori et
al., 2014). This well characterised oncogene functions as a global transcriptional re
modeler through its TF role and results in the upregulation of many genes predominantly
associated with enhancing cancer growth (Dang, 2012; Das et al., 2023). mTOR has also
shown to upregulate other TF associated with controlling metabolic shifting including the
well-known glycolysis regulator HIF1a and the lipogenesis regulating TF SREBPs (Laplante

& Sabatini, 2013). More recently mTOR has also been shown to interact with ATF4 a vital

10



TF in regulating the stress response commonly associated with amino acid depletion
(Torrence et al., 2021). Unsurprisingly mTOR inhibition has become a key anti-cancer
therapeutic target, and as highlighted in 1.1.3 a successful one in CRC and sensitising
resistance (Wanigasooriya et al., 2022). However, further understanding of how mTOR

fully facilitates cell dynamics is needed.

1.2.8 Multi-task evolution theory

The appreciation for the dynamic equilibrium that exists in cancer cells has been further
strengthened by a growing theory in cancer called multitask evolution theory (MET). MET
highlights how cellular plasticity is a combination of extrinsic pressures and intrinsic
adaptations specifically on the transcriptional landscape (Hausser & Alon, 2020; W6lfl et al.,
2022). MET states that certain biological pressures, result in specific adaptations within the
tumour transcriptome and cause selective trade-off in cellular function and thus cause ITH
(Hausser & Alon, 2020; Plutynski, 2021). The selection pressure and resultant performance
of an essential function or task owes to the expression of certain genes that allow the cells
to respond to the pressure Figurel.4A (Hausser et al., 2019; Hausser & Alon, 2020). Selective
trade-offs define cellular diversity as certain populations are under different pressures
resulting in distinct phenotypes, thus abiding to the premise that no cell can complete all
functions essential for tumour survival (Hart et al., 2015; Hausser et al., 2019; Hausser &
Alon, 2020).

Using Pareto task inference algorithm which resolves high dimensionality data,
the bounds of the gene expression and hence cell function can be plotted in gene expression
space (Hart et al., 2015; Plutynski, 2021). The resultant plot will exist as a polyhedral with
vertices representing a single archetype with a distinct gene expression profile Figure 1.4B
(Hart et al., 2015; Hausser & Alon, 2020). Determination of a cell’s archetype, positioning in
the polyhedral, and hence function is through distinct spatiotemporal factors highlighting
the fluidity of transcriptional regulation as described in Figure 1.4. Archetypes represent an
exciting new way to define cellular states in cancer appreciating the continuum to which

cells transcriptional landscape exists and collectively contribute to tumour function.
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Figure 1.4. Selective constraints cause evolutionary trade-offs in task decision. (A) Trade off in gene
expression occur depending on environmental factors that promote specific cellular function to enable
survival. Spatially and temporally determined cells closer to blood vessels with more access to
nutrients will be more proliferative compared to cells further away and thus in a nutrient scarce state
will need to shift away from proliferation to metabolism remodelling to survive. (B) Polyhedral
depiction of cancer cell task determination and associated gene expression derived from multi-task
theory, which states under selective pressures and resultant tasks, optimal gene expression will result
in a trade-off depending on task need and quantity of task. Abiding to the premise that no cell can
complete all functions essential for tumour survival. Using Pareto task inference algorithm and a
wealth of tumour sequencing data 5 core archetypes have been universally found in tumours and will
sit on a polyhedral plotted in gene expression space. Whereby each vertices representing a single
archetype with a distinct gene expression profile. (C) The overall known clinical phenotype of a tumour
was consistent with the distribution of gene expression on the polyhedral. Figure adapted from
(Hausser et al., 2019; Hausser and Alon, 2020; Nath et al., 2021).
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1.2.9 Role of archetypes in cancer

Using a wealth of bulk and single cell RNA sequencing data from a broad selection
of cancers, 5 core, universal cancer archetypes have been identified and highlighted in Figure
1.4B (Hausser et al., 2019; Hausser & Alon, 2020). Archetype analysis provides insight into
not only the state of a single cell, but also the overall clinical phenotype of the tumour
through the distribution of cells on the polyhedral Figure 1.4C (Hart et al., 2015; Hausser et
al., 2019). For example, tumours known to have invaded many lymph nodes sat closer to the
invasion and tissue remodelling archetype (Hausser et al. 2019). Other clinical features
impacting distribution on the polyhedral included stage, where early-stage tumours were
found closer to cell division, biomass and energy and the lipogenesis archetype (Groves et
al.,, 2021; Hausser et al., 2019). Later stages were found in the regions of the immune
interaction and invasion and tissue remodelling archetypes highlighting a more
differentiated tumour (Hausser et al. 2019; Combes et al. 2021). The tumours that sat closer
to the biomass and energy archetype profile and had considerable cancer metabolic
reprogramming, a later defined sub archetype, were least responsive to treatments such as
irradiation (Nath et al., 2021). MET and archetypes provide a novel approach to exploring
the continuum of cellular states in cancer and the dynamics in which they exist in cancer
growth, progression, and response.

Despite its relative novelty, MET and the approach of using archetypes to define
universal states in cancer is becoming more popular. Application of MET to small cell lung
cancer enabled the identification of subtypes in what was previously believed to be relatively
homogenous tumours (Groves et al., 2022). Previous approaches had relied on determining
subtypes using expression of specific TF however its utilisation was not successful across
model systems, the use of archetypes however was (Groves et al., 2022). A recent paper by
Combes et al, also extended the use of archetypes to define the immune state of tumours
through analysis of their TME and resultant expression changes (Combes et al., 2023). They
identified dominant immune archetypes that not only provide predictive capabilities, but
outlined potential deficiencies that could be exploited in immunotherapies (Combes et al.,
2022, 2023). These immune archetypes have since also been used by other groups to achieve
similar profiling to identify optimal treatment paths (Anderson et al., 2023). Furthermore, a

recent longitudinal study tracked the changes in archetype presentation in ovarian cancer
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over treatment courses in patients (Nath et al., 2021). Tumour heterogeneity and hence
archetype dominance changed over treatments, they found consistent metabolic and
proliferative states that were highly present in resistant patients (Nath et al., 2021). This
paper and the concept of MET highlights the significance of the transcriptional landscape
and its plasticity in determining cellular state and a need to further our understanding of the

transcriptional regulators involved.

1.3 Generegulatory networks

1.3.1 Transcriptional regulation in Cancer

As described by archetypes, expression changes can give essential insight into the
molecular functions underpinning a specific condition (Rodriguez-Esteban & lJiang, 2017).
Therefore, the study of gene regulation pathways in cancer cellular state dynamics will
contribute to both efficient marking as well as offer opportunity to identify targets of
interference (Assi et al., 2019). Transcription regulation is an extremely complicated process
involving many stages and vast molecular recruitment (Couvillion et al., 2022; Sperling,
2007). The basis of the regulation mechanism includes recruitment and construction of the
transcription machinery, followed by initiation, elongation, release and termination, and
finally RNA modification events (Casamassimi & Ciccodicola, 2019; Villard, 2004). Many
regulatory elements interconnect and uphold this mechanism firstly chromatin accessibility,
driven by remodelling proteins, histone modifications and other epigenetic modifiers
(Casamassimi & Ciccodicola, 2019). Furthermore, TF are highly involved and widely studied
due to their enhancer influence through recruitment of transcription initiation machinery to
promoters (Bushweller, 2019; Lambert et al., 2018). Not only are mutations in TF commonly
associated with cancer but their levels and usage have shown correlations to maintenance

of stemness in CSC (Islam et al., 2021; Lambert et al., 2018).

1.3.2 Cis-regulatory elements and gene expression

The key premise of transcriptional regulation analysis is to understand how
transcription factors and other components target the cis-regulatory elements (CRE) of DNA
surrounding genes and how such interactions mediate signals received by the nucleus of the

cell (K. P. Singh et al., 2018; R. Zhao et al., 2009). CRE are defined into two categories, the
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promoter, the sequence in which transcription initiation starts and enhancers, proximal and
distal TF binding sites (TFBS) (Andersson & Sandelin, 2020; Panigrahi & O’Malley, 2021;
Schoenfelder & Fraser, 2019). The latter has been the predominate research focus in
understanding differential gene expression dynamics in disease states (Z. Sun et al., 2023).
The acquisition of super enhancers at oncogenes is believed to be a vital driving force of
uncontrolled proliferation in cancer and cellular phenotype determination and have shown
therapeutic target relevance (Z. Sun et al.,, 2023). The promoter, however, is often
overlooked despite being the recipient of signals emanating from the complex TF and CRE
interactions that consequently initiate and drive RNA polymerase recruitment (Casamassimi
& Ciccodicola, 2019). The promoter not only interacts with transcription initiation
machinery, including the large multiprotein TFIID composed of TBP and TAFs essential for
core promoter recognition but also directly and indirectly with TF, epigenetic modifiers and
many other regulatory signals (Andersson & Sandelin, 2020; X. Chen & Xu, 2022; Patel et al.,
2020). Thus, highlighting the promoter as the signal integration hub and the complexity of

its vital involvement in defining the transcriptional regulatory response.

1.3.3 Cap dependent translation

Differential regulation post transcription also exists and adds a further layer of complexity
in understanding the significance of gene expression (Corbett, 2018). Alternative
mechanisms of translation highlight a potential differential post transcriptional regulatory
mechanism that utilises transcript diversity and may facilitate differential gene expression.
The canonical pathway of protein synthesis is through cap dependent translation and the
initiation process is composed of the formation and hence binding of the translation
initiation machinery (TIM) (Hinnebusch & Lorsch, 2012). The addition of the 7-
methylguanosine cap (m7G) to 5° of mMRNA transcripts not only aids in preserving transcript
stability but is also the target for the key translation initiation machinery binding also termed
elF4F complex (Figure 1.5) (Cowling, 2010; Furuichi, 2015). The elF4F containing complex
consists of EIF-4e proteins responsible for m7G cap binding, elF4G a core scaffolding protein
aiding in recruitment of the remainder of the preinitiation complex (PIC) elF4A and B
(Blagosklonny, 2013; Borden & Volpon, 2020; Marques-Ramos et al., 2017; Merrick, 2004).

Cap-dependent translation is mainly regulated by the mTOR pathway. When mTOR is active,
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mTORC1 phosphorylates the translational repressor protein 4E-BP1, thus preventing it from
binding to EIF-4e protein (Bohm et al., 2021; X. Qin et al., 2016). EIF-4e binding is the key
rate limiting step of translation ultimately resulting in the recruitment of 40S ribosomal
subunit to the 5’-terminal cap of mRNA and driving initiation (Nandagopal & Roux, 2015).
MTOR also activates ribosomal protein S6 kinase, that regulates many cellular processes
including translation through the activation of eukaryotic translation initiation factor 4B

(elF4B) also important for formation of the PIC (M. Yang et al., 2022).
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Figure 1.5: Alternative routes of translation machinery formation. Formation of cap-dependent
translation machinery involves a core 3 step process centred around recruiting multiple elongation
factors that form the preinitiation complex that subsequently binds to mRNA with the facilitation of
the key Cap binding EIF4F highlighted in step 3. Many of the key factors are regulated by the mTOR
pathways and when in a stressed state a core element of each step is inactivated predominantly
through phosphorylation thus preventing the formation of the machinery. The factors which are shown
to be affected by this are replaced in stressed states by alternative elongation factors and form the
alternative translation machinery also terms EIF4H. The right panel shows the relative composition of
the ATM and the altered components replaced during mTOR inactivation. Adapted from (Ho et al.,
2021; Vaysse et al., 2015) and created in Biorender.
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1.3.4 Alternative translation in cellular stress

Translation is one of the most energy taxing cellular processes, therefore the mTOR
pathway is highly receptive to nutrient sensing and thus plays a vital role in mediating
cellular stress response (Roux & Topisirovic, 2012). In stressed states mTORC1 is inactivated
and unable to phosphorylate several downstream targets resulting in translation repression
often aiding in cell survival (Roux & Topisirovic, 2012; X. Wang & Proud, 2006). However,
translation of certain transcripts is also vital for survival and an intricate alternative
translation machinery (ATM) network exists to bypass the use of mTOR dependent
translation (Uniacke et al., 2012; Vaysse et al., 2015). The ATM is mainly driven by metabolic
stress demands originating from hypoxia environments and hence this machinery is often
termed oxygen-sensing and results in complex translatome remodelling to maintain
translation efficiency (de la Parra et al., 2018; Ho et al., 2016, 2021; Uniacke et al., 2012).
The key proteins involved and regulated by mTOR, elF4E1 and elF4G1, are replaced by
elF4E2 and elF4G3 respectively, resulting in the newly defined hypoxia cap-binding complex
or elF4FH (Ho et al., 2021; Ho & Lee, 2016; Uniacke et al., 2012). This complex is further
aided by a basally dormant protein elF5B which is responsible for transporting met-tRNA
onto ribosomes Figurel.5 (Ho et al., 2018; Ho & Lee, 2016). The transcripts targeted via this
mechanism are those associated with genes known to be vital in metabolic shifting to the
more energy conservative anaerobic glycolysis (Ho et al., 2020). Furthermore, it was found
the remodelling even extends to ribosomal binding proteins (RBP) with a distinct subset
activating in these hypoxic environments (Ho et al., 2020). This adaptive process represents
a complex survival mechanism potentially through exploiting transcript diversity. Such

mechanism maybe utilised in cancers to enable resistance is stressed states.

1.4 Promoter level transcriptional regulation

1.4.1 Promoter classification
A potential source of transcript diversity is believed to originate from transcriptional levels
of regulation such as the promoter (Strausberg & Levy, 2007). To better understand the role

of promoters the last two decades has seen their classification underpinned by distinct
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regulatory interactions leading to defined biological roles (Muller and Tora, 2014a; Nepal et
al., 2013). Characterisation of classes is dependent on a diverse sequence of events
encompassing the following components: composition of the initiation machinery,
organisation of enhancer interaction, chromatin accessibility and epigenetics features,
nucleosomal ordering at transcription start sites (TSS) and positioning of general TF protein
binding sites (Miller & Tora, 2014; Nepal et al., 2013). On the single gene level further
complexity emerges from the use of multiple, alternative promoters (AP) by the same gene
and by differential reading of multiple DNA sequence codes within the same promoter
(Haberle et al., 2014). AP usage can further diversify transcriptional output through differing
transcript and protein production (Huin et al., 2017; Singer et al., 2008). Promoter
architecture is therefore much more complex than previously thought and understanding
the subsequent interactions with these diverse sets of protein complexes represents a

potentially unexplored level of gene regulation.

1.4.2 Alternative promoters and disease

Research into the role of promoters in cancer predominantly focused on epigenetic
regulation such as DNA methylation resulting in gene silencing and the role of enhancers in
initiation complex recruitment (Belinsky, 2005; Gonzalgo & Jones, 1997; Herman & Baylin,
2003; Kazanets et al., 2016). Although insightful, many of these analyses miss crucial gene
regulatory roles of the promoter, beyond a passive response to silencing. Following the
identification of tissue specific AP usage, the role of AP in cancer and other disease states
were investigated (Demircioglu et al., 2019). Isoform and thus transcriptional diversity have
not only been found originating from the pre transcriptional regulation via AP usage, but
such usage shows interesting correlations with patient survival (Demircioglu et al., 2019;
Valcércel et al.,, 2021). Promoter usage may therefore play a role in disease phenotypes such
as resistance thus, opening a new realm of potential biomarkers and even therapeutic
targets. Further to this, epigenetic and other regulatory landscapes surrounding AP appear
to be vastly different, including methylation sites (Nepal & Andersen, 2023). The
heterogeneity in epigenetic and other regulatory landscapes that surround AP maybe

missed if the promoter is not explored.
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1.4.3 Transcription start sites and promoter phenotype

To further investigate promoter structure, usage and promoter-associated transcript
diversity, a high throughput approach called cap analysis of gene expression, or CAGE was
developed (Kodzius et al., 2006; Shiraki et al., 2003). CAGE uses a cap trapper and
biotinylated linker on the 5’end of cDNA strands synthesised from total RNA to produce
CAGE tags (Takahashi, Kato, et al., 2012; Takahashi, Lassmann, et al., 2012). CAGE tags not
only measure RNA expression, but also maps them to their associated TSS down to a single-
nucleotide resolution, thus showing overall RNA expression but also expression levels
associated to specific TSS (Nepal et al., 2020; Shiraki et al., 2003). CAGE analysis broadens
our understanding of distinct promoter characteristics and allows for better classifications
that have interesting biological and functional relevance (Danks et al., 2018; H. Li et al.,
2015). For example, TSS distribution informs promoter architecture: genes can have a single
dominant peak, these sharp promoters are associated with tissue specific structural genes
and ribosome biogenesis genes (H. Li et al., 2015). The absence of a single dominant peak or
broad TSS distribution are found in housekeeping genes. Genes can also harbour multiple
dominant peaks, this multimodal classification was attributed to developmental genes,
highlighting a potential role of utilising alternative TSS in different tissues and regulatory
contexts (H. Li et al., 2015). This highlights how even TSS distribution and usage have a

potential interesting role in transcriptional regulation.

1.4.4 Alternative promoter architecture in cell cycle dynamics
Utilisation of CAGE analysis has highlighted the role of AP usage and promoter architecture
differences in cellular states specifically through its link to cell cycle transitions into fate
specific states during development (Wragg et al., 2020). Stem cells are distinguishable via
their fast proliferative state and hence short cell cycle characterised by a shorter G1 phase
driven by distinct regulations of vital cycle genes (Shyh-Chang et al., 2013; Zaveri & Dhawan,
2018). In developing zebrafish embryos, cells are rapidly cycling before slowing when
transitioning away from pluripotency to defined cell fates (Wragg et al., 2020; Zaveri &
Dhawan, 2018). Both fast and slow cycling cells showed utilisation of TATA-like motifs in their
upregulated genes, however the fast cycling also utilised CCAAT-boxes and W-box motifs

distinguished by a broad promoter usage landscape (Wragg et al., 2020). Conversely in slow
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cycling cells, TSS usage narrowed to a distinct region of the promoter creating a sharper peak
specifically on tissue specific genes (Wragg et al., 2020). These changes were specifically
resulting from shifts in cell cycle dynamics rather than tissue or lineage specific associations
(Wragg et al., 2020). This work highlighted an interesting link between the role of alternative
promoter usage in the regulation of cell cycle dynamic transitioning during differentiation
stages in development. Further analysis is needed to identify a potential further pervasive

role of promoters in cell cycle dynamics in both development and disease.

1.4.5 Advancementsin CAGE methodology

With the increase interest in promoter level sources of transcriptional regulation and the
insight CAGE analysis provided, a push has been seen for advancements in the technology.
As described above conventional CAGE attains the 5’ end of transcripts using cap trapping
and attachment of a biotinylated linker which contains an endonuclease site allowing for
production of CAGE tags (Carninci et al., 1996; Takahashi, Kato, et al., 2012). This technology
has aided many significant research efforts including large scale atlas production like the
FANTOMS consortium (Cvetesic et al., 2018; Forrest et al., 2014). Furthermore, to counteract
the high yield of RNA required and potential PCR amplification and enzymatic digestion
biases that exist in the approach, nAnT-iCAGE was developed (Murata et al., 2014). This
approach has been even further advanced to accommodate extremely low input through the
utilisation of selectively degradable carrier RNA, thus allowing for even nanogram volumes
of input called Super-Low Input Carrier-CAGE (SLIC-CAGE) (Cvetesic et al., 2018). Alterations
in the conventional methodology also allowed for accommodation of low input, nanoCAGE
uses template switching oligonucleotide (TSO) technology which utilises the reverse
transcriptase (RT) innate methodology of incorporating additional deoxycytosines to the
cDNA strand occurring in a cap dependent manner (Poulain et al., 2017; Salimullah et al.,
2011). The TSO contains relevant complementary riboguanosine repeats meaning the RT will
switch from the newly synthesised cDNA to the TSO (Poulain et al., 2017; Salimullah et al.,
2011). This process outlined in Figure 1.6 allows for specific alterations including PCR primer
sites and relevant unique molecular identifier (UMI) into the oligonucleotides that allow for
amplification (Poulain et al., 2017).

Through combining the TSO methodology of nanocage with that of 5’ single cell RNA

sequencing established by 10x genomics single cell CAGE has since been made possible
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(Kouno et al., 2019). The barcoding attributable to the single cell RNA sequencing approach
allows for associating transcript to individual cellular identity and the subsequent nanoCAGE
TSO approach results in capturing TSS (Kouno et al., 2019; Moody et al., 2022). Therefore,
this means we can identify cellular specific gene expression and their relative TSS usage. To
accommodate the G bias outlined in Figure 1.6 that hinders TSO methodology, a newly
devised pipeline has been developed named Single-Cell Analysis of Five-prime Ends (SCAFE).
The TSO linker contains complementary riboguanosine repeats that facilitate the switch to
5’ linker after the RT reaches the cap, these riboguanosine repeats can also be found
downstream of the cap meaning incorrect early integration of the 5’ can occur. This G bias
can therefore produce artefacts (Tang et al., 2013). The SCAFE software enables the
identification and removal of G associated mismatches and hence TSS artefacts that occur as
a result of the TSO G-bias (Moody et al., 2022). The use of single cell CAGE is so far limited
to this paper and their sole scrutinization of CRE, it is yet to be explored its applicability to

other cellular inputs and TSS capture and alternative usage.
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Figure 1.6: Characterisation of mRNA 5’ ends using template switching oligonucleotides. Capture
of 5’ ends can utilise the innate function of reverse transcriptase and the addition of relevant linkers.
Notably the 5’ linker which includes the complementary riboguanosine repeats meaning following
reaching the CAP the RT will switch from the mRNA to the TSO. Strand invasion can occur and is
highlighted in the right panel, when complementary structures are found downstream of the 5’end
and result in early integration of the TSO and thus creates and artefact transcript that will map and
highlight and incorrect TSS. Adapted from (Tang et al., 2013) and created in Biorendor.

1.4.6 Canonical and non-canonical start sites

CAGE analysis also allows for promoter classification through TSS usage and represents an

opportunity for exploration into TSS usage in promoter dynamics. The majority (~80%) of
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TSS initiations occur at pyrimidine (+1), purine (-1 / TSS) dinucleotides (CA, TA, CG, TG) and
these are classified as canonical or YR, Figure 1.7 (Carninci et al., 2006; Kodzius et al., 2006).
Non-canonical or YC initiate with a pyrimidine (+1), cytosine (-1 / TSS) dinucleotide (Haberle
& Stark, 2018). In Drosophila, the YC motif, or TCT as it was previously defined, showed
selective transcription via TATA box binding protein related factor (TRF2), highlighting
differential regulation of TSS (Y. L. Wang et al., 2014). An interesting and notable subset of
YC, characterised by a +5 polypyrimidine stretch following the cytosine initiation are known
as terminal oligopyrimidine (TOP) and were initially predominantly associated with genes
coding translation associated machinery such as ribosomal genes (Nepal et al., 2013; Parry
et al.,, 2010). However recent investigation that began in zebrafish, highlighted that YC
initiation is far more widespread and even constituting a minor, but notable component of
transcription initiation in thousands of genes with an evolutionary conserved dual initiator
(Nepal et al., 2020). Thus, meaning initiation of transcription in these genes harbouring dual
initiation capabilities, or classified as dual genes, could start at either its YR or YC TSS. Further
scrutinization of dual genes has shown the diversity of the intermingling of these initiators,
including the distance from each other and even the preferential usage (Nepal et al., 2020;
Wragg et al., 2023). Therefore, alternative TSS usage represents a previously unexplained
and unexplored contributor to promoter level transcription regulation unrestricted to just

AP usage.

1.4.7 Unclassified promoters

Current research has focused on these two promoter classifications predominantly
resulting from a lack of clear understanding of the role of the other potential TSS sequences
not defined as YC or YR. Furthermore, dinucleotide frequency analysis achieved through
CAGE shows the alternative initiator sequences appear in a significantly low proportion
especially in comparison to the YR and YC (Nepal et al., 2020; Wragg et al., 2023). Despite
their sparsity, initiation occurring from the purine A has shown some functional relevance
on a translational regulatory level. Meyer et al, showed that transcripts that begin with an A
at their 5’UTR are targeted by methyltransferases (Meyer et al., 2015). The resultant methyl
modification is believed to enable these transcripts to bypass cap-dependent translation and
is able to be targeted by alternative translation machinery including RBP (Meyer et al., 2015).

Meyer et al also showed the levels of these transcripts can alter firstly through depletion of
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relevant methyltransferases and even in stress environments (Meyer et al., 2015). These
findings highlight that other promoter classifications are likely needed, and future work

should consider the relevance of the currently unclassified.
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Figure 1.7: Transcription initiation classifications. Characterisation of promoter classes using TSS
initiator sequence. YR transcripts are produced from TSS that initiate from a Purine with a preceding
pyrimidine. YC transcripts are produced from TSS initiating from a cytosine with a preceding
pyrimidine. A subset of YC also known as TOP also initiate from a cytosine but contain a 5 bp sequence
of polypyrimidines positively targeted by translation initiation factors. LARP1 also targets this
polypyrimidine stretch through its DM15 domain and is believed to inhibit the binding of the TIM
through its higher affinity binding. Both mechanisms are regulated by the mTOR pathway. Figure
adapted from (Wragg et al., 2023) and created in Biorender.

1.4.8 TOP initiation in cancer

The functional relevance of TOP initiation has also been investigated in disease, in particular
cancer. As TOP transcripts often code translation machinery elements including both RBP
and even translation factors, it is highly believed to play a role in driving translation levels
(Hochstoeger & Chao, 2024; Weber et al., 2023). This mechanism is hypothesised to be
exploited in cancers to maintain the protein production demand for uncontrolled growth
(Weber et al., 2023). Furthermore, many TOP genes are believed to be host genes for small
nucleolar RNAs (snoRNA), meaning their introns are excised to produce both coding and
noncoding snoRNAs with distinct functions in ribosomal RNA control (De Turris et al., 2004;
Mourksi et al., 2020; M. S. Scott & Ono, 2011). snoRNAs have been highly implicated in
cancers and evidence also suggests oncogenic potential through its interconnection with p53
(Liang et al., 2019; Su et al., 2014; Williams & Farzaneh, 2012). Many snoRNA host genes

harbour dual initiation, here it was found that the canonical initiation population was driving
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protein coding transcription from the promoter, whilst the TOP component encoded the
snoRNA, with regulation of each independent of one another (Nepal et al., 2020). This
finding suggests that alternative transcription initiation complexes are utilised to drive
canonical and TOP initiation from these promoters (Nepal et al., 2020; Yamashita et al.,

2008).

1.4.9 Regulation of TOP transcripts

Further understanding of the functional relevance of differential TSS usage comes from the
evidence that resultant transcripts are differentially regulated. Upon identifying that levels
of TOP mRNA were sensitive to inhibitors of mTOR, it was hypothesised the pathway played
a role in TOP translation through cap-dependent translation (Hsieh et al., 2012; Nepal et al.,
2020; Thoreen et al., 2012; M. Yang et al., 2022). The polypyrimidine stretch that defines
TOP transcripts is believed to be the target and potential binding site of translation initiation
machinery that is specifically regulated by mTOR (Cockman et al., 2020; Hochstoeger et al.,
2024). In activated states mTOR phosphorylates 4E-BP1, preventing it from binding to the
EIFAF TIM components allowing their formation (X. Qin et al., 2016; Thoreen et al., 2012).
Although this form of cap dependent translation targets most mRNAs research has shown
an increased translation efficiency of TOP transcripts (Hochstoeger et al., 2024; Meyuhas &
Kahan, 2015). TOP transcripts often code ribosome biogenesis proteins and hence aid in
further driving translation, this represents a potential feedback loop that cells utilise to aid
in satisfying protein production demands (Cockman et al., 2020). As mTOR is often highly
upregulated in most cancers, the increase in translation required to maintain and drive
proliferative states underpinning tumour growth, may utilise TOP transcript production and
this cap dependent translation mechanism (Bouyahya et al., 2022; T. Tian et al., 2019).
Studies have shown an altered affinity of TIM on TOP transcripts that may result in their
heightened sensitivity to mTOR inhibition (Hochstoeger et al., 2024; Tamarkin-Ben-Harush
et al., 2017). Therefore, this may highlight a biological understanding of the success

attributed to blocking mTOR to sensitise cancers to treatment.

1.4.10 Role of LARP1 and TOP translation regulation

Interestingly deletion of La-related protein 1 (LARP1) using CRISPR CAS9 showed mTOR

inhibition no longer affected TOP mRNA levels, suggesting its predominant role in the
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regulation (Jia et al., 2021). LARP1 belongs to the family of LARP RBPs and like many other
RBPs, has shown significant involvement in cancer aetiology and research has even identified
it as oncogenic (Schwenzer et al., 2021). Unlike many of the other LARP proteins LARP1 is
believed to be able to bind mRNA in two places indicating a potential dual role (Schwenzer
etal., 2021; Stavraka & Blagden, 2015). Firstly, the La domain composed of an accompanying
RNA recognition motif but also the presence of a DM15 domain in its C terminus (Mura et
al., 2015; Stavraka & Blagden, 2015). Despite the presence of extensive LARP1 isoforms both
the aforementioned domains appear in most highlighting their significance in function
(Schwenzer et al., 2021; Stavraka & Blagden, 2015). mTORC1 has been demonstrated to
phosphorylate and hence inhibit LARP1. When in its active unphosphorylated state LARP1,
through its DM15 domain, simultaneously binds to the polypyrimidine stretch of TOP
transcripts and the 5’cap preventing the binding and hence formation of the PIC (Mura et
al., 2015; Ogami et al., 2022). In addition to repressing TOP transcript translation, LARP1 is
also believed to be involved in regulating their stabilisation and decay through its binding to
poly(A)-binding protein C1 (PABPC1) (Mura et al., 2015; Ogami et al., 2022). This binding
facilitates preservation and even extension of poly(A) tail length through polyadenylation
and hence aiding in prevention of transcript degradation (Ogami et al., 2022; Slomovic et al.,
2006). A key target for LARP1 appears to be mTOR transcripts, resulting in their stabilisation
and a complex feedback network regulating post transcriptional events (Hopkins et al., 2016;
Mura et al., 2015).

LARP1 has shown to anchor TOP transcripts to both stress granules (SG) and
processing bodies (PB) (Farooq et al., 2022; Wilbertz et al., 2019). The resultant fate of these
transcripts has been shown to differ, including re-entry into the translation cycle following
diminishing of stressors, potentially representing a store to allow the driving of translation
when energy levels permit (Hsieh et al., 2012; Philippe et al., 2020; Schneider et al., 2022;
Thoreen et al., 2012). However, recent work in starvation whereby chronic mTOR
inactivation is present and hence global translation is lower, baseline levels of TOP
transcripts are still translated through shuttling of transcripts to monosomes (Schneider et
al., 2022). Therefore, our true understanding of the dynamics and the regulation of these

transcripts in different states remains fully understood.

1.4.11 Alternative initiation and cancer
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Despite research highlighting differential regulation and hence potential functional
significance of alternative TSS usage, the understanding of TOP usage in disease was
predominantly limited to its role in ribosomal and translation machinery production
(Alfonso-Gonzalez & Hilgers, 2024). However, work in the Mueller lab wanted to further
resolve alternative TSS usage to explore the previously unappreciated YC and TOP
component in core promoters of dual genes, and its potential implication in cancers beyond
just ribosomal genes and AP usage (Wragg et al., 2023). Utilising CAGE data obtained
through FANTOMS datasets it was established that not only is TOP enriched in cancer when
compared to healthy tissues, the enrichment was seen in the dual genes compared to its YR
counterpart Figure 1.8 (Wragg et al., 2023). This means that in cancer TSS usage shifts away
from its canonical YR start site, resulting in the production of TOP transcripts with potentially
different post transcriptional regulation. Interestingly, such findings would be masked using
standard RNA sequencing approaches as overall transcript levels remain relatively
unchanged but their TSS usage and hence transcript production differ (Wragg et al., 2023).
Further to this it was also established that this usage dynamic was not just limited to TOP
but was in fact seen in other YC start sites not harbouring the conventional TOP motif
sequence (Wragg et al., 2023). Not only does this indicate a potentially similar regulation
and functional usage to TOP but also expands the number of genes of interest undergoing
TSS switching in disease states (Wragg et al., 2023). The dynamic shifting between TSS in
these functional contexts was almost exclusively occurring between the YC and YR
classifications and such phenomena was not significant in the other initiator sequences.
Therefore, the resultant dual gene classification was predominantly assigned to genes

containing both YC and YR.
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Figure 1.8: YC usage Is enriched in Cancer relative to irradiation responsiveness. Representative
view of individual dual initiator gene sumo2b genome browser track highlighting YC (in red) and YR
(in blue) initiation start site usage and relative levels in form of CAGE tags and the relative sum of
Tags per million per initiator class. Relative YC:YR usage in these genes provides a biological readout
that has since been associated with features. Bottom panel highlights schematic representing such
associations. Left shows YC usage in dual initiator genes is enriched in comparison to matched healthy
tissue. Right shows the relative YC enrichment correlates with irradiation responsiveness. In both
cases the overall SUM remains relatively similar meaning would not highlight differential expression
and the closeness of initiators means these findings would be masked in conventional RNA
sequencing. Adapted from (Wragg et al., 2023).

1.4.12 YCinitiation marks irradiation responsiveness

To further explore the TSS shifting dynamic in cancers, CAGE was performed on 5 CRC PDO
with different clinical phenotypes. It was found that YC enrichment, including both TOP and
non-TOP YC TSS, correlated to irradiation responsiveness (Wragg et al., 2023). PDOs that
responded well to irradiation treatment had a higher YC enrichment in dual genes whereas
PDOs which did not respond well to irradiation treatment had a preferential usage of the YR
TSS (Wragg et al., 2023). The overall expression of many of these dual genes showing this

dynamic switching remained relatively unchanged between the different lines, hence
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expanding our understanding of genes previously unexplored in tumour evolution.
Furthermore, analysis of promoter behaviour upon irradiation of CRC organoids revealed a
prominent depletion of TOP initiation both globally and specifically in dual initiators, relative
to YR initiation, with the level of depletion also correlating with therapeutic response (Wragg
et al., 2023). This analysis not only highlighted potential novel therapeutic targets to explore
through the identification of newly relevant functional gene sets but also aids in stratifying
tumours to establish appropriate treatment choices through TSS enrichment. The inter
heterogeneity of TSS usage indicates a potential functional relevance of TSS and hence
function of core promoter dynamics in cancer aetiology and may represent a fundamental

transcriptional regulatory element involved in determining tumour behaviour.

The advent of 5’ sequencing approaches such as CAGE has broadened our appreciation for
the sheer complexity of promoter architecture and provided newfound intrigue into the
fundamental role the promoter plays in cell behaviour. Work in the Mueller lab has
highlighted an appreciation for a previously unexplored promoter level regulation in the
form of TSS and their dynamic usage in development and disease. Although we have
established an interesting shift in usage that represents an exciting biomarker for treatment
response, the functional relevance of this core promoter TSS switching is still not fully
understood. Furthermore, as previously highlighted individual tumours are comprised of a
complex network of phenotypically diverse subcellular populations, and it is not understood
the pervasive existence of TSS usage differences in ITH and therefore may represent a

previously unexplored level of transcriptional regulation in cellular state determination.
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1.5 Aim of this study

In this thesis we aim to deepen our understanding of TSS usage and its role in cellular biology,
particularly in cancer heterogeneity, with the future goal of identifying potential therapeutic
vulnerabilities. By investigating TSS dynamics, we seek to uncover their functional relevance
in cancer, specifically focusing on how TSS usage contributes to ITH and influences treatment
responsiveness and other cancer phenotypes. While current literature has begun to
elucidate the role of TSS usage in transcriptional regulation, highlighting differential
downstream regulatory mechanisms and dynamic shifts across cancer classifications, our
knowledge remains limited. Most studies have linked TSS usage to treatment response, but
without comprehensive insight into the link to the molecular drivers of these phenotypes.
We hypothesise that YC usage may provide a growth advantage and hence aid in driving
highly proliferative cancers. Thus, to test this hypothesis and fill the gaps in our
understanding this thesis aims to explore the biological significance of TSS usage through
transcriptomic and imaging analyses.

This will be achieved by the direct aims:

Firstly, to further phenotypically characterise organoids with global TSS classifications to
understand the molecular features including pathway enrichments of high YC cancers.
Secondly to explore the penetrance of alternative TSS usage by successfully carrying out
single cell CAGE sequencing. This data will be used to identify cellular states linked to TSS
usage, allowing us to better define the genes and molecular features affected, as well as the
significance of the initiator motifs on dynamics.

Finally, to develop methodology to visualise cellular dynamics, including cycle phasing, to

aid in linking genomic insights with spatiotemporal patterning of organoid architecture.
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Chapter 2: Materials and Methods

2.1 Molecular Biology

Table 2.1. Molecular biology material compositions

Name Materials and methods
10g of NaCl and Tryptone, 5g of yeast extract and NaOH were

LB broth for Agar dissolved in 900ml of distilled H,0, pH adjusted and made up to 1litre.
This was split and 5g of Agar was added to 500mL, autoclaved and
Ampicillin (Sigma-Aldrich, Dorset, UK) was added and poured into
plates.
5 mM NacCl, 0.17 mM KCl, 0.33 mM CacCl2, 0.33 mM MgS0O4

E3 Buffer dissolved in H-0.

DNA extraction 10 mM Tris pH 8, 2 mM EDTA. 0.2% Triton X-100, 200 pg/ml Proteinase

buffer K

HEK Media DMEM 12 (ThermoFisher Scientific) 5ml of non-essential amino acids,
5ml penicillin streptomyces, 5ml L-Glutamine, 55ml 10% FBS.

Transfection For T75 flask: 5.1ug of Lentivirus envelope vector PMD2.G, 7.8ug of

master mix 1 Lentiviral packaging plasmid PSPAX and 45pl of P300 enhancer added
to 1875ul of Optimem.

Transfection For T75 flask: 1875ul Optimem + 52.5ul LIPO300

master mix 2

Organoid media Stem cell - 50ml IntestiCult OGM Human Basal medium was added to
50ml of Stem cell organoid supplement. 100ul of Prim antibiotic was
added.

Low melting point | 5% agarose solution was created by dissolving 5g in 100ml of PBS and

agarose stored at RT. Each consecutive use was done by reheating the solution
to 100c and aliquoted out.

2.1.1 Bacterial Transformation

Glycerol stocks of transformed of FUCCI plasmid (PLL3.7m-clover-geminin (1-110)-IRES-
mKO2 -Cdt(30-120)) (Addgene 83841), Plasmid map outlined in Appendix A and Puromycin
donor plasmid (pUM1-EGFP) were produced by transformation of plasmids into
Competent E.coli cells (New England Biolabs) and grown on pre-warmed LB-agar plates
(Table 2.1) at 37°C overnight. FAST-FUCCI pBOB-EF1-FastFUCCI-Puro (Addgene 86849)
(Appendix A) containing competent E.coli stab pipette tip was inserted into stab and spread
onto pre-warmed LB-Agar plates. Selection using ampicillin (Sigma Aldrich, A53554) (100
ug/mL) and colonies picked and cultured in 6mL LB broth and placed on a shaker overnight.

500ul of bacteria culture was added to 500ul of glycerol and frozen at -80°c.
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2.1.2 Plasmid purification
Plasmid purification of remaining culture was conducted using Nucleospin-Plasmid mini

kit (Qiagen, 27104) and quantified using Nanodrop G908 (ThermoFisher Scientific).

2.1.3 Plasmid Construction

Primers for Puromycin resistance gene extraction of the (pLIM1-EGFP) plasmid, for a later
selection marker, were designed using in-fusion cloning primer design tool by Takarabio
and were added to PCR master mix containing CloneAmp HiFi PCR premix (TakaraBio). 5ul
of the amplified puromycin inserts were loaded into 1.5% agarose gel containing ethidium
bromide alongside 100bp ladder (ThermoFIsher) and run at 120v for 20 minutes. PCR
products were cleaned up using Genejet kit (ThermoFIsher) and eluted in 20ul of elution
buffer. The FUCCI plasmid was linearised using restriction enzyme MIVI incubated at 37°c,
run on a 1.5% agarose gel and purified using Genejet kit (ThermoFIsher). The plasmids were
ligated using In-Fusion HD cloning kit (Takarabio) and transformed into bacteria, picked,
and purified as per previous protocol. The ligated plasmid is here on out referred to as

FUCCI-PLIM1.

2.1.4 RNA extraction

All RNA (unless otherwise stated) was extracted by pelleting cells submerged in 1% PBS-
BSA centrifuged at 400g for 4 minutes at 4°c. Supernatant discarded and 350pul of B-
mercaptoethanol containing Buffer RLT and homogenised. The remainder of the steps was
carried out using the RNeasy Micro kit (Qiagen, 74004) including on DNA digestion using

DNasel and resultant RNA was eluted in 50ul of nuclease free water.

2.1.5 RNA and DNA quantification and quality assessment

RNA was quantified using RNA-50 and DNA using DNA-50 on the Nanodrop 2000 using
water as a blank. Further Qubit™ RNA quantification was used for our low yield RNA using
the high sensitivity assay kit following kit specifications to generate relative standards and
1ul of sample to 199ul of working solution and quantified using Qubit™ 3.0 fluorometer.

Pre sequencing RNA quality was checked using Tapestation High sensitivity RNA (Agilent
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Cat: 5067-5579). Performed by University of Birmingham Genomics Facility.

2.1.6 Gel Visualisation

All DNA sample analyses requiring size determination or relevant extraction were loaded
into 1.5% agarose gel (Sigma Aldrich; A9539) containing ethidium bromide (BioRad
Cat:1610433) alongside 100bp ladder (ThermoFisher, 15628050) and run at 120v for 20

minutes.

2.2 Cell Biology

2.2.1 Organoid Culturing
Organoids were split once a week at a ratio of 1:12 to maintain a low confluency. Cells were
disassociated using pre warmed TrypLE Express (1x) (ThermoFisher, 257943) and
suspended to a 1 cell suspension using the big tip little tip method before being washed in
PBS without Mg?* Ca?* (Sigma Aldrich, RNBL2265). Cells were counted using Tryphan Blue
(ThermoFisher, 15250061) and BioRad TC20 automated cell counter replated at a seeding
concentration of 50-100,000 cells in 50ul of 8mg Matrigel (Corning, 354234) in initial
experiments and later 11mg BME-2 select (Bio Techne BMEO001-05) allowing for gel
polymerisation for 15 minutes in 37°c before media is added. Organoids were maintained
in 500ul of Intesticult media as prepared in Table 2.1, which is replenished twice a week,
and kept in 37°c 5% CO.. All work was carried out under cat 2 fume cupboard. Experiments
that required growth past day 7, media was changed every 3 days.
5 Patient derived Colorectal Cancer organoid lines were used and provided by Professor
Andrew Beggs:

e S345653 (p29) — Radio-resistant

e S366557 (p15) — Radio-resistant

e 5309884 (p33) — Radio-sensitive

e 5302389 (p12) - Radio-sensitive

e 5292064 (p29) - Radio-sensitive

Full patient source, treatment and genotype of the lines is outlined in Appendix B.

2.2.2 Organoid Rejuvenation
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Frozen organoid lines were kept in liquid nitrogen for rejuvenation samples were kept on
dry ice before thawing in water bath and added to 5ml of DMEM F12 centrifuged at 400 x
g for 4 minutes, removed the supernatant and resuspend the pellet in 50ul of BME.
Intesticult media as prepared in Table 2.1 is used supplemented with RHoK inhibitor (Stem
Cell Technologies 72307) at a final concentration of 10uM. After 3 days normal intesticult

media is used.

2.2.3 Doubling time calculation

To establish proliferation and hence doubling time, all lines are disassociated to single cell
suspension using protocol in 2.2.1, cells are counted using Tryphan blue at equal volumes
and using Bio Rad TC20 automated cell counter. 50,000 cells are seeded and grown for 4,
9 or 14 days. At the final time point each well is disassociated, BME dissolved using TRPLE
and cell count repeated. Doubling time is calculated using the below equation.
DT=[Dx(LN2)] /[ LN ( Ce/50,000)]

D = Days grown for (4,9 or 14)

Ce = Cell count at end of experiment

2.2.4 Lenti-viral particle production

HEK293 PS5, fast growing and transducible (FT) were rejuvenated in 5ml HEK media and
seeded into T5 flasks. Cells were maintained and split 1:6 into T75 flasks and allowed to
grow for 3 days. The media was washed and disassociated using TryplE and cells were
counted using Tryphan blue and cell count. 2 million cells were seeded in a T25 flask for the
control and 6 million cells for the viral particles, cells were then grown to 95% confluency.
10.2ug of FUCCI-PLIM1 or FAST-FUCCI plasmid was added to transfection master mix 1
(Table 2.1). Master mix 2 was inverted and added to Master mix 1 and 3750ul was added
to T75 containing HEK293 and incubated at 37°c for 5 hours, before replacing with fresh
clean HEK media and allowed to grow for 48 hours. Viral particles were collected into

cryovials and stored at -80°c.

2.2.5 Genetically modified organoid line production
2.25.1 FUCCI-PLUML1 line

3 colorectal cancer organoid lines were used:
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e S345653 (p134) — Radio-resistant

e S366557 (p81) — Radio-resistant

e 5309884 (p129) — Radio-sensitive
2.2.5.2 FAST-FUCCI
2 colorectal cancer organoid lines were used:

e 5302389 (p16) — Radio-sensitive

e 5366557 (p19) — Radio-resistant
Each line was transduced using the FUCCI-PLIM1 or FAST-FUCCI plasmid containing
lentiviral particles. Organoids were disassociated to single cell plated with propylene
containing media and 100ul of viral particles per well before being span for 2 hours and
then incubated at 37c for 3 hours. The viral particles were then washed away, the cells
pelleted and replated in Matrigel domes into individual wells and Intesticult media was
added. Control lines containing no viral particles were plated for all 3 lines to maintain

controls at the same passage.

2.25.3 Puromycin Selection

To check the transduction was successful puromycin containing media was added to the
organoids including one of the control wells. To identify the optimal selection dosage
varying concentrations of puromycin (Gibco, 2260194) were added: 2ug, 4ug, 6ug, 8ug,
10ug and 12ug per well was added after splitting, at one cell stage and allowed to incubate
at 37c for 4 days. Optimal 4ug was identified for all lines. Successful selection was
identified by cell survival and presence of fluorescent cells compared to control cells

treated with puromycin which did not survive.

2.2.6 Irradiation Protocol

Organoids undergoing irradiation for the single cell sequencing experiment were grown for
4 days with no treatment. From days 5 to 9 lines were irradiated using the CellRad Irradiator
once a day at 5Gy, a previously determined optimal dose. The lines were then left to
recover or establish irradiation associated affects for 5 days before cell recovery and hence

sequencing on day 14.

2.2.7 Standard imaging

35



To identify live cells, each well of organoids was stained with 500ul of Hoechst
(ThermoFisher, 62249), the plate covered with foil and incubated at 37c 5% CO; for 30
minutes. Organoids were imaged short-term using EVOS AMEFC4300 Thermo Fisher

microscope.

2.2.8 Fixation and high-resolution imaging

To visualise organoid lines in high resolution Zeiss Z1 lightsheet, organoids were recovered
by removing media, washing with ice cold PBS followed by 500ul of Organoid Harvesting
Solution (OHS) (Corning, 1252001) using a Pasteur pipette were transferred into 15ml
falcon tube and kept on ice and shaker at 60rpm for 30 minutes to dissolve BME. Samples
are then span at 100g for 3 minutes at 4°c supernatant discarded, and pellet of organoids
washed in 1% PBS-BSA span again and supernatant discarded. Pellet is then resuspended
in 1ml of 4% PFA (Sigma Aldrich, MKCH0868) kept at 4°c for 45 minutes before adding of
PBST to inactivate formalin. To image, samples were spun at 100g for 3 minutes,
supernatant discarded and resuspended in 1.5% low melting point agarose (Sigma Aldrich,
A4018) and pulled into appropriate lightsheet capillary before solidification of the agarose.
Samples were imaged in the Zeis Z1 lightsheet using and lasers 488-30 (488nm) and laser
561-20 (561nm) at 1.8 and 1.2 intensity respectively for 287ms exposure and following
filters LBF 405/488/561/640. Lightsheet chamber is filled with PBS without Mg?* and Ca?*.

2.2.9 Image analysis

All Image analysis was carried out using ZEN blue 3.1 or ZEN black (software 2.3)

2.3 Longitudinal high-resolution imaging protocol

2.3.1 Long-term high-resolution imaging protocol overview

The experimental protocol for sample preparation to sufficiently carry out our designed
long-term high-resolution imaging protocol to facilitate the spatiotemporal patterning of
fluorescent reporters in 3D cultures is outlined in Figure2.1. To set up the vertical culturing,
the organoids are seeded into BME or Matrigel as previously outlined with the exception
of setting into a 24 well plate, instead the organoid suspension is set in the Z1 lightsheet

black capillary (GmbH, size 2, 701910). Upon gel polymerisation the suspension is the
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inserted into an Eppendorf containing relevant holding medium. The hybrid gel is then
pulled into a larger green Z1 lightsheet capillary (GmbH, size 3, 701910) resulting in BME
containing organoids being encased in the holding medium gel as outlined in Figure 2.1c.
The capillary can then be loaded into the lightsheet as per standard protocol. The sample
is suspended into the chamber containing PBS using the plunger ensuring only % of the gel
is exposed to prevent breaking. Imaging is done using conditions specified in 2.2.8. In
between imaging the capillary is inserted into a falcon tube containing Intesticult media
(Figure 2.1b), through a hole equal diameter of the capillary, inserted into a modified T25
tissue culture lid. The vertical culturing falcon tube is kept in a test tube rack in a standard

tissue culture incubator at 37°c 5% C02.
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Figure 2.1. Schematic representing sample preparation for long term imaging protocol. (A) Zeiss
Z1 lightsheet sample set up showing suspension of holding capillary into imaging chamber. Loaded
gel embedded sample is pushed into focal plane and hence hanging from capillary. Adapted from
(Eberle et al., 2015) (B) Schematic showing modified vertical culturing design. Organoids are
embedded into the Z1 lightsheet capillary and suspended into organoid media through a modified
T75 tissue culture lid retained on a 15ml falcon containing the media. The capillary is removed from
the falcon and placed into the lightsheet as per standard protocol (C) Schematic of gel embedding
set up, with organoid suspended in Matrigel or BME encased in Gellan fluid gel. Microstructure of
Gellan sheering, and force properties adapted from (Cooke et al., 2018).
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2.3.2 Agarose formation and embedding

1.5% low melting point agarose solution was created using PBS and heated until dissolved
and allowed to cool before complete polymerisation the solution is pulled into glass Z1
lightsheet loading capillary. Using smaller glass capillary containing organoids embedded

in BME is inserted into the capillary containing LMP agarose and dispensed into the gel.

2.3.3 Gellan preparation

2g of Gellan gum powder (Apollo Scientific, 71010-52-1), 2% weight/volume ratio, was
added to 90ml de-ionised water, 10ml PBS and 5ml 0.2M NaCl and stirred on a hot plate at
175°C and 450rpm until dissolved. The solution was then autoclaved. Following this, the
Gellan gum was transferred to a hot plate and span at room temperature until solidified

and cooled. The Gellan gum was stored in a 4°c refrigerator until experimental use.

2331 Gellan microstructure optimisation

Using the above protocol the preparation of Gellan meets many of the required criteria
for the holding medium needed to suit the imaging protocol. Gellan is optically clear and
retains the same refractive index as water meaning imaging visualisation is not distorted.
The microstructure enables sufficient permeability allowing for delivery of nutrients from
the media to reach the embedded organoids. However, the structure of the conventional
preparation approach was not strong enough to enable the embedding of the organoids
or to withstand the vertical culturing and imaging. Therefore, alterations to the Gellan
reagent compositions, notably an increase in the NaCl concentration was advised and
used to enable the formation of stronger ionic bonds. The optimisation process resulted
in the variations of Gellan compositions outlined in Table 2.2. Initial testing showed that
Gel ID 3 and 6 lacked optical clarity, furthermore viability testing showed cell growth was
significantly impacted in these gels. Our testing showed Gel ID 4, was able to withstand
the structural demands of the culturing and imaging set up and did not affect the growth

of the organoids, therefore all proceeding experiments were carried out using Gel ID 4.
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Table 2.2. Gellan reagent composition modifications

GelID | Gellan % NaCl(mM) PBS
1 1.5 10 | 50ul
2 1.5 25 | 50ul
3 1.5 50 | 50ul
4 2 10 | 50ul
5 2 25 | 50ul
6 2 50 | 50ul
2.3.3.2 Gellan viability testing

Viability testing assessing continued organoid growth was performed on Gels: 1,2,4 and 5.
Gellan was dispensed into a well of 24 well Cornig tissue culture plate, at around 2mm
thickness. Utilising the conventional plating outlined in 2.2.1, the BME containing organoids
were added on top and in the centre of the Gellan base. After the BME had polymerised a
further 2mm of Gellan was added on encasing the BME in Gellan, 700ul of media was

added. Lines were grown for 4 days, and their viability assessed by imaging.

2.3.4 Imaging and culturing set up

Organoids embedded in BME were encased in the Gellan Gel ID 4 as outlined in Figure 2.1.
The sample was kept in the vertical culturing condition and then imaged at 7am and 7pm
in the Z1 lightsheet. The chamber was filled with PBS containing both NaCl and Mg2+ to
ensure we did not alter osmotic balance; temperatures were also kept at 37°c. Zeiss Z1
lightsheet microscope was used for this the first track set for the FUCCI the selected lasers
488 and 561nm at 1.8 and 1.3 intensity and 219.71 millisecond (ms) exposure, this was kept
consistent across all imaging. The Z1 lightsheet enables full 3D reconstruction of a sample
ad thus allows for altering 3 dimensions, X Y and Z axis to ensure full free movement. The
relative coordinates, the axis values, of each organoid or organoid cluster were noted and
upon each imaging set up we reinserted them into the Zen software to ensure we were

imaging the same cells.

2.4 Sequencing

2.4.1 Single Cell experiment

General outline of the single cell protocol is outlined in Figure 2.2 organoid lines and
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plating passage point used:
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Figure 2.2. Schematic representation of Single cell CAGE protocol. Experimental and sample
preparation of single cell suspension from 14-day old organoids, viability sort using cell death
staining and negative fluorescent gating in FACS sort. Computational outline to establish YC usage
attributable to cellular states.

Single cell Sample preparation:

5 wells for each control were grown for 14 days as per protocol in 2.2.1 and 10 wells of
5302389 as per irradiation protocol outlined in 2.2.6. On the 14t day cells BME domes were
washed with ice cold PBS, removed from 24 well plate using Pasteur pipette and
transferred to 15ml Falcon tube, span at 400 x g for 4 minutes at 4°c, PBS discarded and
1ml of OHS used to gently resuspend the pellet, kept on ice and shook at 60rpm for 30
minutes to dissolve BME span at 400 x g for 4 minutes and pellet resuspended in 1ml of
Tryple to disassociate cells for 5 minutes and neutralised with 2ml of ice cold PBS followed

by light mechanical disassociation using a 1% PBS-BSA coated P10 pipette tip attached to a
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P1000 pipette tip. Cells were span at 400 x g for 4 minutes and resuspended in 1% PBS BSA
and filtered using FlowMI Cell Strainer (40uM) (Bel-Art J332333). Post filtered cells are
counted to assess viability and span again then resuspended in 100ul of 1:100 dilution of
Zombie Nir cell death stain (Biolegend, 423105), only permeable and, hence staining the
dead cells. These are covered with foil and incubated for 20 minutes on ice before being
washed with ice cold PBS-BSA and resuspended in 1ml of 1% PBS-BSA. In all occurrences,

unless stated otherwise, samples are kept at 4°c.

Flow cytometry of live cells:

Post filtered cells were then sorted using Flow cytometer using Cyan flow cytometer
machine, to ensure retention of high cell viability and thus limit cellular stress we ensured
sorting was carried out on the lowest speed of using 100um nozzle and frequency of
28.3KHz using the gating strategy using laser at 561nm to detect stained cells and hence
non-fluorescing gating was kept the same across all 3 samples and scatters outlined in
Figure 2.3. Flow sorting was carried out by Dr Mary Clarke.

Sample 557 Control Sample 389 Control

B 5 rover 3 | 557 neev-wr (G1:RY) X T > | men-wr (G1iR1) x

Sample 389 Irradiated

= > e (GLRY) x

Figure 2.3. Cell Viability Flow cytometry gating strategy. Left panel of each indicates forward
scatter and right indicates cell death staining, negative cells highlighted in black box.
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Single Cell Library Preparation:

Post sorted cells were kept on ice and viability checked before proceeding with library
preparation was assessed using Tryphan Blue and Bio Rad TC20 counting as previously
outlined and only continued if viability as above 80%. Both Control samples had 98%
viability and irradiated had 79%. The single cell protocol was the standard single cell 5’
mMRNA V2 protocol with the key alteration of the read sequencing cycles outlined in the
protocol by (Moody et al., 2022). Conventional single cell uses 90 cycles from read 2 and
26 cycles from read 1, however, to sufficiently capture the 5’ end the read cycles are

switched with read 1 at 90 cycles.

SC’endS’dT (5'end, oligo(dT) priming)

-
sssssss

UNA

S0cycles 20cycles

Figure 2.4. Single cell adaptor structure. Chromium 10x linkers, 5’ linker containing Barcode (BC)
Unique molecular Identifier (UMI) Template switching oligonucleotide (TSO). Switched read PCR
preference to 90 cycles from Read 1 (R1) and 20 cycles from Read 2 (R2). Adapted from (Moody et
al., 2022).

Table 2.3 Cell Input for single cell library preparation:

Sample no Av cell count Av live % cells water
Sample 1 -389 irradiated 1.53x 1075 79 33 5.7
Sample 2 -389 Control 2.87 x 1075 98 16..5 22.2
Sample 3- 557 control 2.57x 1075 98 16.5 22.2
Table 2.4 cDNA profile for single cell library
cDNA PCR | cDNA stock | Total yield in 50 ng input for | PCR cycles for
Sample . .
cycle no pg/ul 40 ul (ng) library prep library prep

12 1,630 65,200 30.67484663 15

12 29,300 1,172,000 1.706484642 15

12 25,500 1,020,000 1.960784314 15

Individual cells are barcoded using the bead and barcode system outlined in Figure 2.4
using the Chromium Next GEM single cell 5’ Kit V2 (10xGenomics, PN-1000263) with

differential sample specific indexing before pooling and loading onto the Chromium™
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Single Cell K Chip to add gel beads before being sequenced on the Illumina Nova Seq 6000
using the S1 v1.5 Flowcell (lllumina, 20028318) . Two control samples were sequenced at
average 289,401 reads per cell for sample 3 557 and 266,347 reads per cell for sample 2
389. Irradiated sample 1 (389) was sequenced at average 71,080 reads per cell. cDNA
profiles were all checked for sufficient RNA quantity and quality. Library preparation and

sequencing was carried out by Birmingham university Genomics department.

2.4.2 FUCCI SLIC CAGE

Sample preparation:

5 wells seeded at 50,000 density of Sample 557 FUCCI-transduced lines generated in 2.2.5.2
were grown to day 14 as per previously outlined protocol. Single cell suspension was
prepared as described in 2.4.1. Cells were then sorted into relative cycling populations
based on fluorescent reporter expression presence using the 530/30 filter and 488nm laser
to detect the Geminin and hence GFP* G2M population. The 582/15 filter and 561nm laser
to detect the mKO2 and hence RFP+ G1 cells, those not fluorescing were also captured and

determined as GO outlined in Figure 2.5.

Specimen 001-1¢c G1_r1

GFPpos RFPneg

G2M FITC-A

RFPpos GFPneg

G1 PE-A

Figure 2.5. FACS gating strategy for FUCCI cycling phase separation. Gating of 557 FUCCI line. Left
top indicates forward vs side scatter to determine cell vs debris and bottom individual cells. Right
panel highlights mKO2 (or G1) fluorescence on X axis vs Geminin (or G2M) on Y axis. Gating of relevant
G1 populations: RFP positive, GFP negative in red. G2M populations: G2M cells, RFP negative in
green). GO cells: RFP negative and GFP negative in blue. Uncollected cells depicted in yellow.
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RNA was immediately extracted and quantified from each population using protocol

outlined in 2.1.4 and 2.1.5. RNA Tapestation quality assessment.

SLIC-CAGE library preparation:

The following protocol was carried out with Dr Yavor Hadzhiev

Table 2.5 SLIC-CAGE Reagent compositions

Name

Reagents

Catalogue /Lot

Reverse Transcription
Enzyme Mix
(vol per 1reaction)

Nuclease free water (4.6u)
5x First strand buffer (7.6pl)
0.1IMDTT (1.9ul)

10mM dNTPs (1pl)
Trehalose/Sorbitol (7.6ul)
Superscript Il RT (3.8ul)

Thermofisher 1039-498
Thermofisher 18080-044
Thermofisher 18080-044
Thermofisher 18427-088
Sigma Aldrich 618-234
Thermofisher 18080-044

(vol per 1reaction)

1M TRIS-HCL (14pl)
Glycerol (2ul)

250nM NalO4 Img NalOa4 Sigma Al.dl’ICh MKBW2436V
Nuclease free water 18.7l Thermofisher 1039-498
10mM Biotin 50mg biotin S!gma Aldr!ch B4501
DMSO (13.5ml) Sigma Aldrich 102664507
1M Tris-HCL

Sigma Aldrich SLBV0814
Sigma Aldrich G5516-1L

RNAseOne mix
(vol per 1reaction)

10x RNAseONE buffer (4.5ul)
RNAseONE 10U/pl (0.5pl)

Promega M4265
Promega M4265

Wash Buffer A

4.5M NaCl2
50mM EDTApH 8
0.1% Tween

Sigma Aldrich BCBZ6730
Sigma Aldrich BCCD1632
ThermoFisher BP337-500

10mM Tris-HCL

Sigma Aldrich SLBV0814

0.1% Tween

Wash Buffer B 1mM EDTA Sigma Aldrich BCCD1632
0.5M NaOAc Alfa Aesar ZO6E505
0.1% Tween20 ThermoFisher BP337-500
0.3M NaCl2 Sigma Aldrich BCBZ6730
Wash Buffer C 1mM EDTA Sigma Aldrich BCCD1632

ThermoFisher BP337-500

Rnase mix

Nuclease free water (2.4pl)
10x RNAseONE buffer (0.5ul)
Rnase H (0.1pl)

RNAseONE (2ul)

Thermofisher 1039-498
ThermoFisher EN0531

New England Biolabs M0297
ThermoFisher EN0531

2nd Strand Synthesis
Mix
(vol per 1reaction)

10x ThermoPol reaction buffer (5ul)
Nuclease free water (2ul)

10mM dNTPs (1pl)

DeepVen(exo-) DNA Pol (2U/ul) (1ul)

New England Biolabs B9004
Thermofisher 1039-498
Thermofisher 18427-088
New England Biolabs M0259

Enzyme Degradation
mix

I-Scel (RI)
ICeul (RI)

Biolabs 10128048

Biolabs 10033476
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Reverse Transcription to produce cDNA

The SLIC-CAGE library was prepared following the nAnT-iCAGE protocol outlined in (Murata
et al., 2014) with the appropriate modifications for SLIC-CAGE specified in Cvetesic et al.,
2018 to accommodate the low-level RNA input obtained from our FUCCI populations.
800ng of each sample was added to 4200ng of previously prepared carrier mix as per
specification, to this 1ul of 2.5mM N6 primer mix was added per solution and incubated at
65°c for 5 minutes and immediately placed on ice to denature the RNA. 28ul of reverse
transcription (RT) enzyme mix was added to each sample mixed and incubated at 25°c fir
30 seconds followed by 50°c for 1 hour. The samples are then purified using RNAClean XP
beads at a ratio of 1.8 to sample volume, incubated at room temperature (RT), separated
using a magnetic stand, washed twice using freshly made 70% ethanol before eluting with
42ul of water ensuring pipetting up and down 40 times before incubating at 37°c for 5

minutes returning to magnetic stand and transferring supernatant to new PCR tube.

5’ cap oxidation and biotinylation

The next step involved oxidation of the 5’ cap by combining the supernatant with 1M
NaOAc at pH 4.5 mixing and adding 2ul of NalO4 as prepared in Table 2.5, covered with foil
and kept on ice for 45 minutes. To stop the oxidation reaction 16ul per reaction of 1M Tris-
HCL (pH8.5) solution is added. RNAClean XP purification is repeated as previously detailed.
Biotinylation of the samples is carried out by adding 4ul of NaOAc (pH 6) mixed and 4l of
Biotin solution outlined in Table 2.5 mixed and incubated at 23°cin dark. 12l of 2-propanol
(Fisher Scientific, 12608655) is added to the biotinylated sample followed by another round

of RNAClean XP purification.

RNase digestion and Cap-trapping

Purified biotinylated samples were digested with 5ul of RNAseOne mix outlined in Table
2.5 incubated at 30 minutes. For cap -trapping M-270 beads were prepared by adding 30ul
of beads per sample to 0.75ul tRNA (20ug/ul) (double standard amount as we used yeast
tRNA) and incubated on ice for 30 minutes and ensuring mixing by flicking the tube every
5 minutes. The beads are then washed twice in Wash buffer A, outlined in Table 2.5,

followed by resuspension in Wash Buffer A containing tRNA (20ug/ul). 105ul of the
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resuspended beads are added to the RNAseOne treated sample and incubated at 37°c for
30 minutes followed by sequential washing with Wash Buffer A, Wash Buffer B and then
Wash buffer C on the magnetic stand. cDNA is then released from the beads by adding 10x
RNaseOne buffer in equal volume incubated for 5 minutes at 95°c and immediately on ice
for 2 minutes before returning to magnetic stand and transferring supernatant to new
tubes. 30ul of RNaseOne buffer was added to beads mixed and the supernatant transferred
into the previous aliquot resulting in 65ul of sample. Cap-trapped samples incubated with
RNase Mix for 15 minutes at 37°c and purified now using AMPure XP purification beads
using same protocol as the RNAClean XP beads then mixed with 5ul of RNAseOne mix
incubated at 30 minutes for 37°c before repeating AMPure XP purification. Samples are

then Speed Vacuumed at 37°c for 40 minutes and the pellet resuspended in 7ul of water.

Linker Ligation

Single Strand linker ligation (SSLL) mix was created by incubating cap-trapped sample at
95°c for 5 minutes and 5’ single strand linker (2.5uM) at 60°c for 5 minutes before placing
both on ice, both are then combined with 16l of Mighty ligation Mix and incubated at 16°c
for 16 hours. cDNA purification of the 5'SSLL mix and hence removal of additional linker
was performed by 2 rounds of AMPure XP bead purification, repeating speed vac and
resuspending pellet in 7ul of water. Second SSL was carried out this time for the 3’ linkers

following same protocol as the 5’linker addition.

Linker Degradation and second strand synthesis

Following AMPure XP bead purification cDNA was dephosphorylated and hence treated
with 10pl of SAP mix and incubated at 37°c for 30 minutes followed by 65°c for 15 minutes.
3’ linker degradation was achieved by adding 2ul of Uracil specific excision enzyme and
incubated at 37°c for 30 minutes, 95°c for 5 minutes and immediately on ice for 2 minutes
to prevent reannealing. The samples were then purified using AMPure XP beads. To carry
out second strand synthesis we added 10ul of second strand synthesis mix to the sample
incubate at 95°c for 5 minutes, 55°c for 5 minutes, 72°c for 30 minutes and held at 4°c.
Degradation of the second strand primer was carried out through adding 1ul of
Exonuclease | and incubated at 37°c for 30 minutes and purified using SPRI magnetic beads

as previously described.
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Carrier degradation

To remove the carrier, we mixed the cDNA samples with the degradation mix outlined in
Table 2.5 and incubated at 37°c for 3 hours and deactivation of the enzyme by incubating
at 65°c for 20 minutes. The sample was then purified using SPRI beads in a 1:8 ratio as
previously described. To amplify the prepared libraries the samples were mixed with PCR
mix and amplified using the following cycle: 95°c for 3 minutes, 98°c for 20 seconds, 60°c
for 15 seconds, 72°c for 2 minutes, steps 2 to 4 were repeated for 8 cycles followed by 72°c
for 2 minutes and held at 4°c. A second carrier digestion was performed using a 0.7x bead
ratio to remove the shorter strand linkers that may have retained. RNA quality and quantity

was characterised using protocol in 2.1.5 and 6.

2.5 Computational analysis

2.5.1 Preprocessing and mapping of sequencing libraries

25.1.1 Single cell data

The single cell generated data was demultiplexed, trimmed and mapped using the Cell
ranger 7.0 pipeline, the latter steps incorporate the STAR alignment algorithm using the
Hg18 genome reference followed by recalibration using MAPQ adjustment to identify
potential misalignments (Cline et al., 2020; Dobin et al., 2013). Reads are then filtered to
correct for barcode identity and UMI alterations and UMI count is generated and called
to relevant barcodes and hence real cell identity producing a filtered UMI count file. To
account for G biases that exists in the TSO methodology, the reads were further filtered
for TSO causing artefacts using the SCAFE algorithm (Moody et al., 2022). Firstly,
identifying the extra G-mismatches, this information is then fed into the multiple logistic
regression model to identify actual TSS clusters, removes stand invaders or ‘artefacts’ and

validates TSS clusters through parametric clustering of the TSS 5’ends using Paraclu.

2.5.1.2 SLIC-CAGE
Demultiplexing, trimming and mapping were carried out using Bowtie (v.1.3.1) with
mapping criteria set to include only 2 mismatches and a MAPQ score greater than 20

(Langmead et al., 2009).
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Both above analyses were performed by Dr Yavor Hadzhiev.

2.5.2 Quality control assessment

Post filtered reads per cell were analysed for the presence of multiplets using Scrublet
algorithm running default parameters (Wolock et al., 2019). Resultant reads were imported
into a Seurat object and cells with mitochondrial mapping above 10% were removed (Butler

et al.,, 2018).

2.5.3 Cellular state analysis

To investigate ITH originating from actual biological and not technical heterogeneity, reads
per cell were analysed using Seurat V5, data was normalised using scTransform V2 utilising
Pearson residuals generated from negative binomial regression to correct gene weighting
scaling (Choudhary & Satija, 2022). To identify clusters dimensionality reduction analysis was
performed by principle component analysis (PCA) using default settings computing 50 PCs.
Clustering was performed using K-nearest neighbour graph generation using previously
generated PCA space followed by application of the FindClusters function set to 0.5
resolution parameter. Nonlinear dimensional reduction uniform manifold approximation

and projection (UMAP) embedding using the umap-learn package (Mclnnes et al., 2018).

2.5.3.1 DGE analysis

Markers defining clusters were calculated using the Seurat FindMarkers function using
either Wilcoxon Rank sum testing default or for more in depth comparative analysis where
specified using DESeq2 (Love et al.,, 2014). Analysis of upregulated gene sets was
performed using Seurats ModuleScore function, identifying average score of whole gene
set. DGE testing of data without repeats was performed using SOM clustering analysis
using the Kohnen R package, utilising normalised CAGE tags from all signal not separated
by initiator. Gene ontology analysis was calculated using the ShinyGO 0.8 online platform

http://bioinformatics.sdstate.edu/go/ (Ge et al., 2020).

2.5.3.2 Pathway Enrichment analysis
To identify the upregulation of gene subsets and pathways, Seurats Module score

function was used (varying bins of reference genes were used, the standard 100 was
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used unless states otherwise). Gene sets were obtained from GSEA database, utilising
the identifiers outlined in Table 2.6.

Table 2.6. Gene set enrichment source list

Gene Set Source
Proliferation GSEA — Acquisition: GO:0008283
Whnt signalling GSEA — Acquisition: PAHS-043A
Myc Signalling GSEA — Acquisition: (Schaefer et al., 2009)
MTOR signalling GSEA — Acquisition: hsa04150
Differentiation (X. H. Zhao et al., 2023)
Hypoxia GSEA — Acquisition: M5891 (Liberzon et al., 2015)
Hypoxia ATM (Ho et al., 2020)
Hypoxia ATG (Ho et al., 2020)
2.5.3.3 Integration

Comparative analysis between datasets was achieved using Harmony (Korsunsky et al.,
2019) embedded in the Integrate layers function of Seurat and referencing mapping of
cell type and universal archetype comparison using Anchor-based CCA integration (Stuart

et al., 2019).

2.5.4 Archetype analysis

Polytope analysis of single cell data sets to determine archetype vertices was carried out
using the ParetoTl algorithm (Hart et al., 2015)utilising the ParetoTl package in R. The
polytope fitting was achieved by determining the lowest vertices achieves (hence
archetypes) that retained statistical significance. Genes enriched at each archetype were
extracted and analysed in ShinyGo to determine general Gene ontology. To determine
likeness to universal archetypes (for both single cell and bulk comparisons) enriched genes
were compared to the universal markers outlines in (Hausser et al., 2019). 3D projections

were created using Plotly (Sievert, 2020).

2.5.5 Promoter analysis

To identify TSS the generated BAM files containing filtered reads were imported and
analysed using the CAGEr V4.3.1 (Haberle et al., 2015). Data was normalised using power-
law distribution with appropriate a values calculated through reverse cumulative plotting

and set to x 10°. Consensus clusters were calculated as CTSS within 100bp and those falling
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within the promoter region defined by mapping to the hg38 Ensembl reference genome
(Martin et al., 2023). TSS visualisation was achieved using rtracklayer (Lawrence et al.,
2009)to generate bedgraph files subsequently uploaded to UCSC genome browser (Kent et
al., 2002).

2.5.5.1 TSS identification and Ratio calculations

Classification of TSS class identity was achieved by summing CTSS based on initiator
sequence YR = ‘CG’ ‘CA’ ‘TG’ ‘TA’ and YC = ‘CC’ ‘TC’. TOP transcripts were characterised by
presence of conventional TOP motif ‘CYYYY’ in the first 5bp. To calculate dinucleotide
frequency, initiation site (Inr) were extracted and CTSS per Inr were summed and divided
by the total signal to calculate % of Inr. Finally, we summed the YC signal, TSS
dinucleotides represented as ‘TC’ or ‘CC’, and YR dinucleotides defined as ‘CA’, ‘CG’, ‘TA’
or ‘TG’ to define % tags per million (TPM) to initiator class. To calculate dual gene ratios
TPM per initiator class were summed per CC and divided by total signal at that CC. Full list

of consensus Dual genes identified are outlines in Appendix C.

2.5.5.2 Ratio comparisons between states and subpopulations and assessment of
ribosomal Bias in trends
To compare YC:YR between subpopulations, frequency distribution analysis as performed
on YC:YR values for all Dual genes present in the samples compared. This was achieved by
calculating YC signal to YR per gene for each sample divided by the average ratio across
all samples. The date in then normally distributed through log transformation. High YC
samples or YC enriched are identified as those who’s median (peak of the normal
distribution plot) is greater than 0.5, contrastingly those whose median is less than -0.5
are classified as YC low (YR enriched). Secondly to assess the significance of the shift in
ratio between usages removal of known high YC ribosomal genes (Appendix D) was

performed, and frequency distribution analysis repeated.

2.5.5.3 Motif analysis

TOP associated motif analysis was achieved by determining defining TOP decreasing
motifs using the first S5bp from initiation. YC4 = ‘CYYYR’, YC3 = ‘CYYRR’ and pure YC or YC2
=‘CY.
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2.5.6 Bulk Correlation and PCA analysis

Comparison between bulk CAGE from previously generated data was further analysed
using normalised TPM count matrix provided by Dr Joseph Wragg (Wragg et al., 2023).
Comparison between single cell CAGE and matched bulk was achieved by pseudo bulking
and summing reads per sample and normalising reads using power law distribution. PCA

analysis was performed using corrplot package (Wei et al., 2017).

2.5.7 Statistical analysis
Doubling time dot plots were performed using GraphPad Prism V8.0. Venn diagram analysis
using VennDiagram package on r (H. Chen & Boutros, 2011). All other statistical analysis and

graphical visualisations were carried out using ggplot2 (Wilkinson, 2011).
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Chapter 3: Characterisation of high

YC organoids

3.1 Introduction

Core promoter TSS switching represents a previously unappreciated level of transcriptional
regulation in cancer. As discussed in Chapter 1, thousands of genes can be differentially
transcribed through alternative TSS usage, resulting in the production of either YR or YC
transcripts. Research has begun indicating that these transcripts may undergo different pre
and post transcriptional regulation mechanisms (Nepal et al., 2020). Alternative TSS usage is
not detectable in RNA sequencing, therefore its functional relevance is yet to be truly
understood. A shift to YC usage at dual initiator promoters has been found pervasive in
cancer. Furthermore, the YC usage increase provides a novel biomarker for irradiation
responsive CRC cancers and the depletion upon treatment highlights a potential important

promoter level regulation role in tumour dynamics (Wragg et al., 2023).

Differing global TSS phenotype between cancers of the same subtype highlights an
unexplored level of inter tumour heterogeneity. However, our understanding of the
functional relevance of YC enrichment in cancers is currently limited to the evidence that it
correlates with the tumour’s irradiation responsiveness. Such clinical phenotypes are
underpinned by a complex network of molecular mechanisms and gene expression profiles.
Therefore, this link doesn’t provide biological insight into why TSS switching in subsets of
genes may provide an evolutionary advantage in tumour development. In this chapter | aim
to better establish the functional importance and significance of TSS usage preferences in
organoid physiological states. | hypothesised that YC enriched organoids would be
phenotypically distinct from low YC organoids characterised by gene expression profiles that
would provide more functional insight beyond just an association with irradiation
responsiveness. To test this firstly | will further phenotypically characterise CRC organoids

with known global TSS profiles using imaging and transcriptomic analysis.

To truly understand the molecular phenotypes of a tumour, literature suggests it is
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imperative to explore ITH (Ramdn y Cajal et al., 2020). Organoids are shown to be an
excellent model system for CRC in that they successfully recapitulate both inter and intra
heterogeneity seen in the disease (Kashfi et al., 2018). Therefore, we hypothesised that the
YC enriched and YC low organoids would have different SC populations with distinctive
physiological states that we could characterise by their expression profiles. To test this, |

aimed to optimise methodology to successfully carry out single cell CAGE.

3.2 Results

3.2.1 Characterisation of high YC organoids through imaging and
proliferation analysis.

To better understand the molecular underpinnings and hence functional relevance of TSS
usage differences, we set out to further identify the phenotypes associated with the high YC
enrichment beyond just irradiation responsiveness. We selected the 5 CRC PDOs that Wragg
et al., 2023 had already established their global TSS profile of using CAGE, 2 YC enriched (064
and 389), one moderate (884) and 2 YC low (653 and 557), YC enrichment was calculated as
stated in Chapter 2.2.5.2. As discussed in Chapter 1 regulation of YC transcripts is heavily
dependent on growth pathways such as mTOR, therefore we hypothesised that YC
enrichment may contribute to growth dynamics. To test this, | explored the proliferative
capabilities of these lines with differential YC enrichment. To determine proliferation rates
all lines were seeded at 50,000 cells at day O, grown, harvested, and counted again at days
4, 9 and 14 post seeding (PS). Interestingly culturing doubling time analysis revealed that YC
enrichment also correlated with fast proliferation phenotype (Figure 3.1). Initially the
experimental standard 4-day PS counts were performed however significant inter variability
was seen within lines but still showed the aforementioned trend. To rule out that differences
were less likely to be organoid initiating ability rather than proliferation rate | also grew the
lines to day 9 and day 14, the latter being the timepoint at which all sequencing was carried
out. Doubling time shortened for all lines in the later counts however all the time points

showed proliferation rates correlate with YC enrichment.
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Figure 3.1. Proliferation rates decrease following global YC depletion. Doubling time analysis of CRC
organoids. Dot plot representing calculated doubling time for each line ordered by YC enrichment with
highest enriched on the left and YC depleted on the right. Each individual point represents 1 well
counted at day post seeding (PS) (A) 4 days PS, (B) 9 days PS and (C) 14 days PS. All experiments were
a minimum of n=3. * Represents n=5, ** is n=8, and *** n=10.

Uncontrolled growth and the ability to evade antigrowth signals are well characterised
hallmarks of cancer formation and progression, however the dependency on this feature
differs between cancers and can be a result of other tumour characteristics (Hanahan &
Weinberg, 2011). As seen in in embryo development proliferation dynamics change upon
lineage differentiation of cells, with growth slowing as cells move away from pluripotency
(Wragg et al., 2020). Such feature is believed to be mimicked in tumour development, with
fast proliferative tumours often being less differentiated (Jogi et al., 2012). | aimed to explore
whether our different CRC PDO lines had different levels of cellular differentiation and
whether it correlated with proliferative state and hence YC enrichment. As organoids

sufficiently recapitulate host organ and hence tumour architecture including cellular

composition, previous studies have characterised distinctive morphological features
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associated with differentiation status through structural formations present in the organoids

visible using imaging (Fujii et al., 2016; Kashfi et al., 2018).

To explore the morphological characteristics and hence differentiation status of our
organoids, | grew each line under standard culturing conditions to day 14, harvested, fixed
use PFA and immobilised in low melting point (LMP) agarose to image in the high resolution
Z1 lightsheet microscope. Utilising our doubling time analysis information that 14 days would
provide sufficient time for organoid structures to form and to allow for comparison to
sequencing data. The morphology of all lines can be seen in the brightfield images in Figure
3.2a. The two fast growing organoids (064 and 389) showed a distinct cystic morphology,
harbouring the attributable ‘hollow’ core a tell-tale feature of fast proliferating,
undifferentiated cells lacking both segregation and polarisation capabilities (Fujii et al., 2016;
Kashfi et al., 2018). Contrastingly slower growing lines 653 and 557, appeared to mimic host
and hence healthy intestinal structures in the form of crypt and villus formations, highly
indicative of more differentiated cellular lineages. Combining all current summary
characteristics of each organoid in Figure 3.2b allows for identification of TSS associated
trends appearing. For example, YC enriched organoids have a characteristic fast proliferating
undifferentiated phenotype that responds well to treatment. Strikingly opposite correlations
are seen in the slow growing well differentiated unresponsive lines harbouring a YR dominant
(YC low) global TSS profile. Finally, the middle organoid further supported this intermediate
observation sitting in between in all features. Interestingly, using genomic mutation data
undertaken by Professor Andrew Beggs does not show a causative link to YC enrichment

further highlighting the need to explore transcriptomics.
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Figure 3.2. Distinct organoid characteristics correlate with YC enrichment. Summary characteristics
of CRC organoids and brightfield morphology imaging. (A) Brightfield 14-day fixed images, white lined
scale bar represents 100um. (B) Previously characterised features including mutation burden and
potential driver mutations (performed by Professor Andrew Beggs), irradiation treatment
responsiveness and YC enrichment of YC:YR dual genes (performed by Dr Joseph Wragg) and newly
characterised features from doubling time analysis and imaging morphological association.

These findings have since been published and are my own contributions to Intra-promoter

switch of transcription initiation sites in proliferation signalling dependent RNA metabolism

(Wragg et al., 2023).

3.2.2 Molecular Phenotyping of high YC organoids using bulk analysis

An advantage of CAGE sequencing is that not only does it provide transcript counts, but also
captures the 5’end of these tags allowing for base resolution of TSS, the resultant sum of
these tags (TPM) and their distribution allows for profiling of overall TSS usage (Takahashi,
Kato, et al., 2012). Previous work performed in our laboratory characterised the global TSS
profile of these organoids and hence defined them based on their YC enrichment of dual
genes, depicted in Figure 3.2. As with RNA sequencing, CAGE also provides insight into the
gene expression profiles and hence molecular state of these organoids. Dr Wragg was able
to obtain insight into molecular functioning through analysis of dual genes whereby shifting
of TSS usage was present and exploration of the gene ontology (GO) of these gene sets, this
revealed an extensive broad range of functionalities including, proliferation, metabolism,

translation, and others (Wragg et al., 2023).
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To better understand the overall molecular phenotype of the organoid and see if expression
data could validate and add to our current imaging and culturing analysis, | aimed to further
scrutinise the expression sequencing data. We were limited in the analysis we could
statistically and successfully carry out due to the absence of repeats and hence differential
gene expression (DGE) was not possible. | used a generated count matrix from Dr Wraggs
CAGEr analysis that encompassing the normalised TPM per gene for each organoid. Principle
component analysis (PCA) of the underlying gene expression profiles highlights the variance
that exists between our samples. As hypothesised the lines that display similar culturing and
morphological phenotypes cluster closer to each other (Figure 3.3). Therefore, | identified
that global TSS phenotype appears to have a distinctive gene expression profile pervasive

across lines of different origin.
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Figure 3.3. PCA plot of bulk sequencing of CRC organoids. Total TPM counts per gene normalised to
account for sequencing depth bias differences (put in values of normalisation). Coloured by TSS
phenotype, 064 389 coloured Red shades to represent high YC, 884 purple to indicate moderate to
no dramatic TSS shifting and 653 and 557 coloured blue to represent high YR TSS phenotype

| next set out to understand the gene ontology (GO) underpinning the expression profiles
through comparing the gene expression of key pathways and functional features against the
average expression of randomly selected bins of genes. Gene sets were obtained from the
GSEA molecular signatures database (Subramanian et al., 2005). Module scoring generates
a DGE like analysis to determine whether the expression of a predefined set of genes of
interest are more up or downregulated when compared to random gene selection. Bins of

200 random genes were used with the aggregated expression of these genes subtracted

from the average expression of the interest set. A positive score indicates the genes are
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more upregulated, negative delimits downregulated and close to O represents the gene set

is similar to the average expression.
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Figure 3.4. YC enrichment correlates with upregulation of specific functional pathways. Gene set
enrichment analysis in Bulk sequenced organoids. Module score of gene sets compared against
average binned gene expression. Top panel gene sets associated with differentiation, middle
translation and metabolism and bottom growth. Dots coloured TSS global phenotype, red = high YC,
purple = moderate YC and blue = low YC.

Comparing the scores of gene sets previously identified to be functionally relevant in driving
cancer phenotypes between samples, shows distinct correlations and hence similarities
between lines with the same TSS phenotype. Previous studies have highlighted the
fundamental role WNT and its downstream signalling network play in establishing and
maintaining homeostasis of intestinal morphology (Krausova & Korinek, 2014; Mah et al., 2016;
Vermeulen et al.,, 2010). Unsurprisingly, the two more differentiated lines which imaging

analysis in Figure 3.4 showed crypt-like structure formation displayed higher WNT gene

scores when compared to the more undifferentiated lines. Further supported by the same
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observed correlations seen in the differentiation marker gene module score comparisons.
The same trend was also seen whereby high YR scored more highly when analysing mTOR
signalling genes and hypoxia response. The latter gene set encompasses many genes
previously identified to be essential in reprogramming metabolic state and hence advanced
tumour formation (Eales et al., 2016; C. Yang et al., 2014). High YC organoids scored more
highly when ribosomal genes were assessed, having previously established that ribosomal
and translation associated genes are YC dominant and their subsequent expression is often
highly correlated with growth, our hypothesis that the high YC organoids would score more
highly with these gene sets was confirmed. Furthermore, the gene expression of high YC

organoids is also more primed to proliferation associated genes.

3.2.2.1 Characterising global archetypes

To identify more universal characteristics beyond just analysing a selected set of specific
pathways, we next scored the lines for marker genes associated with the universal
archetypes previously established by Hausser et al (Hausser et al., 2019). Previous studies
highlighted tumour behaviours and molecular phenotypes repeatedly showed distinct
archetype profiles and thus provide a formative way of linking the tumour genotype-
phenotype map (Hausser et al., 2019; Hausser & Alon, 2020). Stratification of our organoids
using the archetype module scoring revealed similar trends seen in the literature where the
same analysis was performed on end state tumour samples (Figure 3.5a) (Hausser et al.,
2019; Heiser et al., 2012). The fast-proliferating undifferentiated organoids show a less
dominant archetype profile with the highest expressed genes emanating from the
proliferative archetype (Figure 3.5b). A dominant invasion and tissue remodelling archetype
profile was seen in the two slower growing differentiated lines (Figure 3.5b). This feature
commonly associated with a more progressive resistant disease was found to have lower
expression in the responsive lines. The most resistant line 557, showed an increase in genes
associated with the biomass and energy archetype, many of the genes underpinning this
molecular feature are known to be vital in metabolic reprogramming and hence aid tumour

survival in stressed conditions.
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Figure 3.5. Stratification of organoids using universal archetype referencing. (A) Bar chart of module
scoring for the 5 universal archetypes represented in right legend panel in each organoid line. Positive
value indicates upregulated average expression compared to randomly assigned gene pines, negative
shows downregulation. (B) Projection of each organoid positioning onto universal archetype
polyhedral coloured by YC enrichment. The YC enriched organoids plot within the cell division and
metabolic associated region. The two YC low plot closer to the defined late-stage archetype invasion
and tissue remodelling.

Utilising the reference states and the accompanying growing literature of the clinical
phenotypes associated with archetype profiling, | have further confirmed organoid success
in recapitulating tumour behaviours. Furthermore, this characterisation provided insight
into global phenotype associated with each organoid and helped inform which organoids to

choose for following analysis.

3.2.3 Methodology for single cell CAGE experiment

Our current understanding of molecular features and hence biological relevance of TSS
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usage in cancer states is vastly limited due to the bias accompanying bulk analysis that
greatly masks the intra variability that exists within a tumour. Many previous studies have
highlighted the sheer variability that exists within a tumour and through the advent of single
cell technologies has highlighted the complex SC populations that behave differently but
collectively contribute to tumour function (Caiado et al., 2016; Marusyk et al., 2012).
Therefore, to truly understand the molecular phenotypes that underpin high YC organoids
we aimed to perform single cell CAGE analysis. As depicted in Figure 3.6 our experimental
workflow would allow us to elucidate firstly the cellular physiological states that make up
our organoids, providing us with a better understanding of the biological relevance of
observed TSS profiles. Is it simply that high YC organoids harbour a very distinct population
of cells hence responsible for the YC characteristic or is this a global characteristic not
associated with state and hence gene expression? Secondly, how heterogeneous are the

organoids and is the global TSS profile pervasive through all populations?

In order to allow for sufficient YC comparisons between organoids, we picked two opposing
organoids. Firstly, the YC enriched 389 organoids with fast proliferating phenotype (Figure
3.2b) showing cell division archetype with little differentiation (Figure 3.5a). Secondly, the
YC low 557 organoids, showing extensive differentiation in both imaging (Figure 3.2a) and
late stage archetype presentation through enrichment of invasion cellular states (Figure
3.5a). Although single cell 5 CAGE sequencing had recently been developed and performed
by Moody et al., 2022 the experimental aims of this paper focused on other CRE rather than
TSS calling meaning no study had yet explored TSS variation at a single cell resolution. To
explore and characterise ITH of both physiological state and TSS usage | aimed to adapt the
methodology outlined in Moody et al., 2022 to accommodate single cell preparation of
organoids and successful capture of 5’ends. The experimental design outlined in Figure 3.6
highlights each step required to successfully perform this experiment resulting from multiple
rounds of pre sequencing optimisation to ensure each step did not induce cellular stress.

The full methodology is outlined in Chapter 2.4.1.
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Figure 3.6. Experimental workflow of Single Cell CAGE of CRC. Schematic representation of
experimental design of single cell experiment from sample and library preparation to computations
analysis for ITH and TSS investigations.

Firstly, the single cell sequencing approach relies on live cells upon barcoding, therefore high
cellular viability was essential. As dead or dying cells will contain large amounts of degraded
RNA and degradation predominantly begins at the 5’ end of transcripts, captured transcripts
may result in incorrect TSS mapping reducing robustness and representation of correct
5’ends (Houseley & Tollervey, 2009). To ensure high viability following disassociation to single
cell, organoids were stained with a Zombie NIR (Biolegend) viability dye that only penetrated
the cellular walls of dead or dying cells. This allowed us to gate and hence sort out the
population of viable cells using flow cytometry based on cells not fluorescing outlined in
Chapter 2 Figure 2.3. The flow sort was done at the lowest speed, collected, washed and
sorted in PBS BSA to prevent cellular adhesions and the collection tube was held directly
below the expelling nozzle. All conditions including the sorting were kept at 4°c. Each of
these steps were essential to prevent post sorting stress as previous attempts not using
these steps showed decrease in viability assessed using a Tryphan blue viability count post
sorting. The experiment only progressed to library preparation when viability was above

80%. Each of the lines were cultured in the same conditions as the previous bulk sequencing
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to allow for comparisons and hence sequenced at 14 days PS. We determined that 14 days
provided sufficient growth through presence of secondary structures indicative of
differentiation. Furthermore, BME has shown to begin degrading post 14 days and thus may
affect organoid growth (Kozlowski et al., 2021; Z. Zhao et al., 2022).

Following cell ranger filtering analysis outlined in Chapter 2.5.1.1, that removes background
sources of sequencing reads not resulting from an actual cell, we successfully achieved single
cell sequencing of both control samples. 6283 cells were captured at a mean read depth of
289,401 with median gene coverage of 4,859 per cell for YC depleted 557 line as depicted in
Table 3.1. The control sample of the YC enriched 389 line had a higher number of cells at
7,099 and lower number of reads per cell (266,347) however a larger number of median

genes captured.

Table 3.1: Single cell sequencing library statistics

Sample Numberof Mean Reads Median Genes Number of cells
P Cells (percell) (percell) (post filtering)
557 control 6283 289,401 4859 5506
(YClow)
389 control
(YCenriched) 7099 266,347 5634 5182
389 Irradiated
647 71,080 817 605
(YC_Iow}

Previous work by Dr Wragg in the lab showed a drastic loss in YC enrichment post irradiation
of the YC enriched lines such as 389 (Wragg et al., 2023). | aimed to explore whether this
was simply the result of the loss of a specific population of cells or whether shifting in TSS
usage occurred to mediate cellular survival. However, performing single cell CAGE on post
irradiated samples was exceptionally challenging as desired viability was initially not met
even post sorting. Only 5% of cells from organoid 389 survive post irradiation and the initial
workflow appeared to inflict further stress on the surviving cells meaning the sequencing
could not proceed. However, final optimisation that incorporated the above steps allowed
us to collect viable cells and thus include these in the sequencing at a much lower depth as
depicted in Table 3.1, although this may not allow for direct TSS calling on a single cell level

it would still provide insight into the SC gene expression changes that occur post irradiation.
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3.2.4 Evaluation and validation of single cell experiment success

| aimed to assess the success of the single cell sequencing and hence quality of data
produced initially by analysing the distribution of established quality control metrics in both
samples. Firstly, molecule count, defined as number of molecules or UMI detected within a
cell which indicates sequencing reads. Secondly feature count, defined as number of genes
detected per cell were plotted to explore the distribution between and within the samples
(Figure 3.7a). Filtering for cells containing less than 200 genes and 10 UMl is the pre-defined
standard as these often indicate background or empty droplets (llicic et al., 2016). These
feature plots also indicated a significant bimodal split of data in both samples. To rule out
that this split in data was resulting from the existence of multiplets, the presence of more
than one cell per droplet, we ran the data through the Scrublet pipeline (Wolock et al., 2019).
Using this pipeline outlined in Chapter 2.5.2 we established a low multiplet rate of 4.6% for
sample 389 and 6.8% for sample 557, cells identified as likely multiplet were discarded,
however it did not disrupt the bimodal split. It has recently been highlighted the impact
ambient RNA can have on single cell data analysis, with both quality control metrics and
even cellular state determination being affected thus resulting in inaccurate results
(Floriddia, 2022). To remove the contamination of these freely floating and hence irrelevant
transcripts we used the DecontX workflow and removed the cells however we found this
was also not impacting the split (S. Yang et al., 2020). Further analysis into this bimodal split
of populations is needed as such finding was not seen in literature. However, given that
conventional RNA sequencing is performed at a much lower depth, this could be a result of
sheer disparity between a cell state known to significantly decrease transcription or could

result from a technical bias not previously found in the data.

A significant positive correlation is seen in both samples when number of genes
against number of UMI detected per cell is plotted thus indicating reads are sufficiently
distributed throughout the cells per gene (Figure 3.7b) (llicic et al., 2016). Although our
library preparation cDNA profiles indicated high quality RNA, we further validated the
absence of stressed, dead or dying cells through filtering of out those whereby % of reads
mapping to mitochondrial DNA was above 10% (Figure 3.7c), a threshold recently

established most appropriate for single cell human analysis (Osorio & Cai, 2021).
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Figure 3.7. Feature plots evaluating quality of sequencing per single cell. Coloured by sample of
origin, red indicates sample 389 YC enriched line control, blue is 557 YC depleted control line (A) Data
distribution per cell. Total number of molecules in each individual cell (left) Number of genes
detected in each cell (right). (B) Correlation analysis of per cell molecule count vs Gene count,
Pearsons coefficient =0.95 (C) Read mapping per cell. Percentage of reads that map to the
mitochondrial genome post 10% filtering (left). Percentage of reads that map to ribosomal genes
(right).

The Feature plots outlined in Figure 3.7 show similarity between the two samples however
a shift in % of ribosomal genes in the YC enriched 389 sample was seen (Figure3.7c).
Although this indicated ribosomal genes are more expressed in this line compared to the YC
depleted 557, also supported from bulk analysis highlighted in Figure 3.4, we cannot rule
out that this is resulting from a technical bias. Furthermore, research shows ribosomal genes

are often YC enriched, therefore downstream analysis must take into consideration this bias
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when analysing YC associated trends (Cockman et al., 2020; Hochstoeger & Chao, 2024).

3.2.4.1 Validation to pre-existing data

To explore complexity and representation of our single cell data, | compared expression
profiles to the previously generated bulk data. To achieve this, single cell data was pseudo
bulked per sample and the counts were normalised across single cell and bulk samples using
a power law distribution supported in the CAGEr workflow that allows for disparities
between library sizes (Balwierz et al., 2009; Haberle et al., 2015). Reverse cumulative plots
were generated depicted in Figure 3.8a, and optimal parameters for power law
normalisation determined as a = 1.05 fit in range of tags 10 to 15,000. Gene by Gene TPM
count matrices were then generated and principal component analysis revealed similar
variance firstly existing between samples in both single cell and matched bulk (Figure 3.8b).
Interestingly, a similar variance between experimental conditions, the variation between
single cell 389 and single cell 557 was the same degree of variance seen between the
matched bulk, indicating likely PC2 variation highlights sample differences whereas PC1

variance accounts for sequencing and experimental differences.
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Figure 3.8. Validation of expression profile retention between single cell and bulk CAGE sequencing.
(A) Reverse cumulative of raw TPM counts per single cell sample and matched bulk. (B) PCA
comparison of bulk CAGE sequenced samples and single cell pseudo bulked. Coloured by sample of
origin, shaped by experimental design.

To further compare, log transformed TPM counts per gene from single cell against matched
bulk were compared (Figure 3.9). Linear regression analysis revealed in both samples a
significant positive correlation R= 0.77 and 0.72 for non-responsive and responsive
respectively. Thus, indicating similar gene expression retention between experimental
conditions. Furthermore, in both single cell the top 50 highly expressed genes were
predominantly ribosomal genes, removal of these improved Pearsons’s coefficient value. In
both samples we see a population of genes captured only in the single cell. Both plots also
show genes captured in single cell that are not captured in bulk, and vice versa. Although this
can be a result of increased depth in the single cell increasing chance of capturing low levelled

genes, the different sequencing approaches, outlined in Chapter 1.4.5, can also introduce

technical bias favouring certain RNA capture.
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Figure 3.9. Gene expression profiles are retained between bulk and single cell sequencing. Gene by
gene TPM count Scatter plot of single cell vs matched bulk. Log transformed TPM counts per gene by
sample of origin. X axis represents single cell whereas Y is bulk. Top shows YC enriched 389 single cell
vs matched bulk. Bottom shows YC low 557 single cell vs matched bulk.

3.2.5 Molecular Phenotyping of high YC organoids using single cell
analysis

3.2.5.1 Intra heterogeneity analysis of organoids

As the bulk data indicated interesting phenotypic differences such as increased
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differentiation and metabolic pathway genes in YC low lines, | aimed to investigate whether
similar could also be observed in the single cell. Initial gene set enrichment analysis was
performed and showed some different observations seen in the bulk data. Violin plots in
Figure 3.10 show that sample 389 now on average scores higher than 557 in the mTOR
pathway genes however the opposite trend is observed in the bulk. 389 is characteristically
much more proliferative and hence growth was driven meaning higher mTOR is expected,
the lack of complexity associated to the bulk data may not capture this. The same trend is
seen in the other growth associated pathway MYC. Changes to the increase in hypoxia genes
is likely a result of the responsiveness of sample 389 and the single cell workflow could be
inducing expression changes to accommodate stress generated. However, the WNT

signalling analysis showed that 557 single cell was still higher than 389.
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Figure 3.10. Gene set enrichment analysis in single sequenced organoids per cell. Coloured by
sample of origin, red indicates YC enriched 389 sample control, blue is YC low 557 control sample.
Black dots represent the previous matched sample bulk CAGE module scoring for that pathway (A)
MYC pathway genes (B) mTOR pathway genes (C) Wnt signalling genes (D) Hypoxia associated genes.

To identify gene expression associated with high YC usage, DGE between the YC enriched and
YC low lines was performed. The two single cell data sets were integrated and normalised

using SCtransform V2 as outlined in Chapter 2.5.3, this method utilises the Pearsons residuals
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approach meaning better retention of biologically variable and meaningful genes are kept
even if not highly expressed when compared to conventional log normalisation (Lause et al.,
2021). Counts were aggregated per line and differentially expressed genes (DEG) were
identified as those with log fold change above or below +/- 0.6 with adjusted p value >0.05,
the distribution of DEG of sample 389 vs 557 represented in Figure 3.11. This analysis
highlighted how transcriptionally different the samples were and with more genes
upregulated in 389 an indicative feature of fast proliferation (Bowry et al., 2021). Upregulated
genes in the YC low organoid show a dominance for functions involved in regulating and
guiding differentiation. For example, both HOXC18 and SOX8 have recently shown to be
upregulated in more differentiated CRC and may potentially act as a prognostic marker for
more advanced poorer outcome cancers (Bhatlekar et al., 2018; Y. Wang et al., 2019; J. Yu et
al., 2022). The most significantly upregulated in YC low was the CD69 gene shown to play a
significant involvement in metabolic reprogramming and is direct target of HIF1la (Cibridn &
Sanchez-Madrid, 2017). Conversely upregulated genes in the YC enriched organoid appear to

have distinctive roles in promoting proliferation (Jiang & Liu, 2015; Mao et al., 2021).
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Figure 3.11. Differential Gene Expression Analysis of YC enriched organoid vs YC low organoid.
Volcano plot of average fold change against log transformed p adjusted value of differentially
expressed genes of YC enriched organoids (389) vs YC low (557). Up regulated genes shown in red,
down regulated in blue, those insignificantly unchanged in black.

The violin plots in Figure 3.10 also showed ITH of pathway enrichment within the samples
highlighting that the global phenotypes may not represent all cells within the organoid. |

aimed to characterise ITH and hence identify the identified sub populations with potentially
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different physiological states that exist within our organoids. Clustering analysis was
performed using Seurats SCTransform V2, utilising Pearsons’s residuals negative binomial
distribution analysis to identify gene markers and set cluster identity. Dimensionality
reduction projections of the clusters was performed and represented in Figure 3.12 and 3.13.
To identify physiological state or phenotype DGE analysis was performed on each cluster and
GO was analysed using the identified DEGs, using all genes expressed in the line as
background in ShinyGo8.0. The dominant GO was selected per cluster and annotated as

cluster identity.
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Figure 3.12: Identification of subpopulations in YC enriched organoid (389). (A) UMAP projection of
clusters with annotated identity achieved through Wilcoxon Rank sum testing and pathway
enrichment and gene network fold enrichment analysis of cluster associated marker genes. Number
of cells per cluster highlighted in far-right panel. (B) Violin feature plots grouped by cluster showing

per single cell feature count, UMI count, % of reads mapped to mitochondria and ribosomal genes.

Analysis showed the dominant cluster was translation in 389 followed by ribosomal

biogenesis Figure 3.12, many genes associated with these regulatory networks are involved
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in growth and are characteristically associated with YC or TOP TSS usage. The clusters also
varied in feature count (genes captured), a likely explanation for some of the smaller cluster
separations. Two metabolic populations, cluster 2 and 4, were identified with both showing
less gene and read counts compared to the other clusters, a similar cluster was identified in
sample 557 Figure 3.13 (cluster 0), showing a marked decrease in gene count. Comparison of
the enriched genes in these 3 metabolic associated clusters show similarity and association
to pathways responsible for metabolic reprogramming. Under stress conditions, cells
reprogramme many biological processes to aid in survival, nascent RNA sequencing has
shown global down regulation of transcription also occurs (Vihervaara et al., 2017). However,
stress response genes are upregulated many of which are associated with metabolic
reprogramming. As we filtered out the highly stressed cells using mitochondrial DNA cut offs,
we hypothesise these metabolic cluster could be functionally stressed cells potentially located

in nutrient deprived regions of the organoid.
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Figure 3.13: Identification of subpopulations in YC low organoid (557). (A) UMAP projection of
clusters with annotated identity achieved through Wilcoxon Rank sum testing and pathway
enrichment and gene network fold enrichment analysis of cluster associated marker genes. Number
of cells per cluster highlighted in far-right panel. (B) Violin feature plots grouped by cluster showing

per single cell feature count, UMI count, % of reads mapped to mitochondria and ribosomal genes.

The high YR 557 samples largest cluster was response to reactive oxygen species (ROS) with
genes involved in pathways associated with metabolic reprogramming. Furthermore, this
sample is more heterogeneous with more clusters and separation in clusters. Both these
features are linked in cancer research with resistance to treatment hence their presence
appears to align with the clinical phenotype of the organoid line. Although both samples show
distinct phenotypic differences, similar clusters cellular were identified in both samples. Both
had subpopulations defined by enriched cell cycle genes. Furthermore, these cell cycle
clusters showed a distinctive circular pattern on the UMAP, potentially highlighting dynamic

cell cycle progression.
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3.2.5.2 ldentification of cellular states represented by archetypes.

Recent research has indicated the limitations of UMAP projections to determine
subpopulations in single cell data resulting from the variation that can be generated through
slight alterations in the choice of parameters (Zhai et al., 2022). An alternative to UMAPs
discussed in Chapter 1.2.7 is archetypal analysis and was also pursued to explore ITH. Using
MET to analyse the expression data would identify key cellular states with clearly defined
expression profiles that exist within a sample, these are known are archetypes, all cells will
sit within these archetypes dependent on how similar they are. Archetype analysis has the
advantage of utilising a 3D approach preventing the artificial reduction of dimensions that
result in us drawing arbitrary boundaries which may bias clustering approaches. Therefore,
we hypothesised that archetypal analysis would provide useful insight into the continuum

of cellular states that exist within our organoids.

Archetypal analysis may also aid in understanding the role of TSS usage in universally
characterised states (archetypes) whereby cells have shown to switch or transition into
different states in response to the environment. | identified that many of the marker genes
underpinning the universal archetypes, identified by Hausser et al., 2019, harbour a large
proportion of dual initiator genes as seen in Figure 3.14. Furthermore, many marker genes
are shared between the universal archetypes with less than 20% of their dual initiator genes
being unique to a specific archetype, highlighted in Figure 3.14b. As noted in Chapter 1, an
important balance exists between cellular growth driving and function. A key regulation of
this balance are the networks that underpin proliferative and metabolic phenotypes and the
cellular transition from one to the other state to survive (Keibler et al., 2016; Schiliro & Firestein,
2021; J. Zhu & Thompson, 2019). We found that the largest shared dual initiator genes were
between the cell division and biomass and energy archetypes. Our new hypothesis is that
TSS shifting occurs in these dual genes to aid in transitioning archetype states from one to

another aiding cellular function.
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Figure 3.14: Marker genes of universal archetypes harbour dual initiation. (A) Bar chart showing
percentage of the genes that make up the markers for each archetype that are Top only, Canonical (YR)
only and are Dual. (B) Venn diagram of the dual initiator genes only for each universal archetype
markers and their percentage sharedness across other archetypes. (C) Schematic representation of
hypothesis overlaying shared Dual gene usage between archetypes.

To test our hypothesis and hence better understand the cellular exist in our organoids we ran
the ParetoTl algorithm on our single cell sequencing data (Hart et al., 2015). To determine
polyhedral distribution, | calculated the minimum simplex polytope that best encompasses
our data, with the most distinctive and defined cells at the vertices. | then plotted our
individual cells within the calculated polytope based on their gene expression likeness to the
vertices, or archetypes. Both samples were required 5 archetypes (vertices of defined states)
to encompass all data. The archetype distribution polytopes are shown in Figure 3.15, further
validating that YC depleted 557, is more heterogeneous with distinct specialised populations

compared to the high YC sample 389 validating our previous clustering analysis. We took the
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marker genes for each of the vertices and performed GO analysis and characterised their
likeness to the universal archetypes defined in literature by assigning each vertex to the

universal archetype which it shares the most marker genes expression with Figure 3.15.
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Figure 3.15: Single Cell Archetype distribution plots. Unsupervised characterisation of single cell
using ParetoTl analysis. 2D scatterplot of polytope and annotated vertices (Archetypes) using
dominant gene ontology for YC enriched sample 389 and for YC low sample 557.

As seen in the UMAP projections from Figure 3.12 and 3.13 similar cellular clusters and hence
some cell states exist between the samples this was further validated in the archetype
analysis firstly in the individual sample comparisons showing shared defined universal states.
To explore this further we integrated the datasets to find similarities in cellular states
between the sample using the Harmony algorithm and normalisation using SC transform V2
(Korsunsky et al., 2019; Lause et al., 2021). The integrated dataset was first analysed using
UMARP clustering (Figure 3.16a) and when the plot is split by sample of origin (Figure 3.16b)
few clusters are shared between both samples indicating distinct differences between the

two samples.
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Figure 3.16: Archetype analysis shows similarities between samples missed in UMAP clustering.
Integration of both single cell sequencing data sets. (A) UMAP clustering of integrated YC enriched and
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by both samples. (C) 3D projection of archetype polytopes for integrated dataset containing both 389
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archetypes annotated.
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However, archetype analysis of the integrated data (Figure 3.16¢) shows both have cells
located near the same vertices or defined cell state. Their dispersion to the specialised cell
differed, indicating a shared similar universal state with some disparities in the underlying
expression profile. Such low-resolution analysis is missed in UMAP projections. Archetype 5
in Figure 3.16c shows a vertex and hence cell state only occupied by cells from the YC low
557. GO analysis of the archetype enriched genes revealed a high degree of similarity to the
invasion and tissue remodelling universal archetype. As highlighted in literature the invasion
archetype is often associated with aggressive and differentiated phenotypes, thus further

supporting our previous findings in this chapter (Figure 3.2 and Figure 3.10).

3.2.5.3 ITH analysis of intestinal cell types.

So far, our analysis has been focused on cellular states that underpin the high YC phenotype
to identify a potential cellular feature associated with YC usage. Previous research in zebrafish
showed promoter architecture changes as cells differentiate away from pluripotency (Wragg
et al., 2020). The imaging analysis in Figure 3.2 indicated distinct morphological differences
between our lines with literature highlighting correlations to different cellular functions from
the different host organ cell types (Fujii et al., 2016; Kashfi et al., 2018). To investigate
whether cell type and hence differentiation could also be associated with YC usage |
generated an integrative cell type reference UMAP using the raw preexisting adult gut cell
atlas generated by the Teichmann lab (Zilbauer et al., 2023). Firstly, using the full single cell
RNA sequencing of 428K intestinal cells to establish the broad cell types, this revealed both
samples only harboured cells of epithelial lineage. To characterise the cell types, | generated
a cell type annotation map using the epithelium lineage data using Seurat following the same
processing outlined in (Zilbauer et al., 2023). Following this | integrated the annotation map
with our datasets using anchor based CCA integration to calculate anchors (defined cells with
distinctive gene expression markers) outlined in Chapter 2.5.3.3. The data is then transferred
onto our query datasets to establish prediction scores for cell types and hence identity

established through highest prediction score.

Our analysis showed that the YC enriched organoid line is composed of mainly naive stem like
cell populations, the predominant cell type annotation is intestinal stem cells followed by

transit amplifying cells (Figure 3.17). The latter have been widely documented in literature as
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being the daughter cells of stem cells and function predominantly to continuously proliferate
to eventually produce more differentiated progeny under altered signalling including WNT
(Mah et al.,, 2016; Vermeulen et al., 2010; Walter et al.,, 2022). A small population of
differentiated cells do exist, mainly the secretory goblet cells, likely explaining the cystic
morphology these organoids display. Contrastingly the YC low sample 557 is composed of
more differentiated cells (Figure 3.17) This supported our previous imaging analysis in Figure
3.2 that showed intricate intestinal lumen morphology and high differentiation markers
(Figure 3.4). Although the sample does not contain identifiable stem cell population it does
have a large population of the naive transit amplifying cells likely responsible for maintaining
the organoid growth. This analysis suggests a TSS choice association with cellular

differentiation state.
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Figure 3.17: Heterogeneity in cell type and differentiation between organoids. UMAP projection with
cell type annotation. Single cell predicted annotation of intestinal epithelial cell type classification
using Single cell gut atlas reference projection onto clustered UMAPs using integrative anchors.

3.2.6 Molecular phenotyping of organoids post irradiation

Previous research in our lab has shown that YC usage is a distinctive transcriptional
biomarker for organoids that show high cell death in response to irradiation. Furthermore,
YC enrichment is significantly lost post irradiation whereas the depletion in YC usage in
irradiated non-responsive does not change post irradiation (Wragg et al., 2023). YC enriched

organoid 389 is shown to respond well to irradiation treatment however around 5% of the
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population do survive and post treatment bulk CAGE reveals a shift in YC:YR dynamics to a
dominant YR usage (Wragg et al.,, 2023). What is not known however is whether this
surviving population represent a distinct population of cells present in the control sample
and whether their TSS profile is altered upon irradiation. This would indicate a potential
survival regulatory mechanism in TSS usage shifting. Although it was our goal to explore the
latter, as previously explained the single cell CAGE proved challenging on our irradiated
sample due to inability of obtaining sufficient high-quality cells. However, we were able to
sequence a small population of post irradiated cells at a lower depth highlighted in Table
3.1. Although we will not be able to characterise promoter usage at this depth, we
hypothesised that we would gain essential biological insight into the molecular features and

hence cellular state required for cellular survival.

To investigate this our first approach was to identify whether a specific cluster of cells from
the control group survived post treatment. This was achieved by using the initial control data
and hence UMAP projection from Figure 3.12 as a reference map to annotate the irradiated
sample. Utilising the same approach used in Figure 3.17 where | used a reference atlas to
define cell type. The irradiated sample was initially normalised and clustered as per previous
experimental design and dimensionality reduction to produce the representative UMAP
projection in Figure 3.18. The samples were integrated using anchor based canonical
correlation analysis (CCA) integration using the control sample cluster markers, the DEGs, as
anchors and transferred onto the irradiated data. To visualise the control cluster identity of
the irradiated cells, these were projected onto the original control UMAP outlined in Figure
3.12. As shown in Figure 3.18b cluster retention post irradiated appears not to be associated
with just one cluster or cell state, that in fact a diverse number of clusters and hence cellular

states from the control sample exist post irradiation.
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Figure 3.18: Identification of cellular states post irradiation. (A) UMAP projection of YC enriched line
post irradiation. Intra heterogeneity sub population identification of sample 389 irradiated achieved
using Seurat Sctransform version 2 through statistical dimensionality reduction testing and clustering
through Pearson residuals normalisation approach. (B) Single cell UMAP projection of sample 389
irradiated mapped onto control. Reference mapping of sample389irr onto control.

To make further relevant comparisons between pre and post treatment we had to account
for and attempt to correct the sheer sequencing depth bias between our data sets. Although
literature suggests down sampling is unnecessary given many normalisation techniques are
sufficient to account for these biases, most analysis done in the statistical testing of these
approaches do not deal with data as depth diverse as ours (Lotsch et al., 2021). To achieve

a representative down sampling, we firstly calculated the dispersion of our read count per

cell in the irradiated sample through interquartile range analysis. We then randomly down
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sampled our control using Seurat’s SampleUMI function to a max UMI per cell as 10,602, one
IQW above the median UMI count per cell in the irradiated. Harmony integration and
normalisation was performed on the samples and the result clustering is shown in Figure

3.19, further emphasising the variability of cell clusters retained post irradiation.
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Figure 3.19: Integration of control and irradiated organoids through down sampling (A) Single cell
UMAP integration of sample 389 irradiated and control read count down sampled. (B) Post control
down sampling UMI count (left) and feature count per cell.

To better understand the features of the cells that survive we performed gene set enrichment
analysis between the integrated samples (Figure 3.20). We found that most pathways were
downregulated post irradiated, including the key growth associated features that underpin
the control organoid phenotype, proliferation and mTOR. However, two interesting
associated gene sets were on average enriched more highly post irradiation, these were the
hypoxia ATM and their gene targets highlighted in previous literature, the hypoxia alternative
target genes (ATG). Previous studies have highlighted the role of these genes in the stress
response via retention and maintenance of metabolic reprogramming that is essential for

survival (Ho et al., 2020, 2021).
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Figure 3.20: Hypoxia alternative machinery target genes are upregulated post irradiation. Gene set
enrichment analysis score of pathway associated genes in single sequenced organoids per cell
irradiated (blue) vs control (pink). Key growth associated pathway genes, proliferation and mTOR
signalling are downregulated post irradiation (top). Hypoxia alternative translation machinery (ATM)
genes and their target genes (ATG) are upregulated post irradiation.

Given our previous analysis in Figure 3.16 showed UMAP clustering to insufficiently highlight
similarities between datasets | performed archetype analysis on the control and irradiated
samples. Interestingly, this revealed our surviving population did appear to group together,
unlike the UMAP clustering suggested. Figure 3.21 shows post irradiation population plotted
relatively central in the polytope at almost equidistance away from the vertices and hence
archetypes found in the control sample. This highlights an almost naive population of cells
given that it does not disperse to a vertex thus archetype. Studies highlight that these
undefined states are often stem like meaning they do not have a defined function,
furthermore such feature is attributable to senescence or stress response (Groves et al., 2021;
Hausser et al., 2019). Senescence has been described in literature as a potential survival
mechanism to cellular stress induced by some anti-cancer therapies (Schmitt et al., 2022).
This supports the downregulation of sensing pathways such as mTOR and upregulation of

stress response pathways (Figure 3.20).
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Figure 3.21: Single Cell Archetype distribution plots integrated control vs irradiated. Unsupervised
characterisation of single cell using ParetoTl analysis. 2D scatterplot of polytope integrating high YC
(B) 3D projection of archetype polytopes for integrated dataset containing both 389 Control (Blue)
and 389 irradiated (orange) samples.

3.3 Discussion
Cancer heterogeneity is one of the biggest challenges being faced in cancer research, with

extensive efforts attempting to resolve the molecular features that contribute to different
tumour behaviours (Caiado et al., 2016; Marusyk et al., 2012). Work in our lab has identified
a novel TSS choice feature implicated in cancers. The relative TSS usage showed varying YC
enrichment correlating with treatment irradiation responsiveness in culture (Wragg et al.,
2023). The underlying mechanism of this stratification involves alternative initiation sites
present in the core promoter of thousands of genes, characterised into two distinct TSS
classes, YR and YC (Nepal et al., 2020; Wragg et al., 2023). The resultant transcript produced
from either class are hypothesised to have different pre and post transcriptional regulation.
The subsequent transcript ratios both globally and at a gene level represent an interesting
biological readout. However, we still do not understand why we see a YC enrichment in
cancers and the potential role it plays in tumour dynamics beyond its correlations with

treatment responsiveness.

YC enrichment correlates with growth associated organoid phenotypes.

In this chapter, | demonstrate through various experimental approaches that global TSS
usage in CRC organoids correlates with molecular phenotypes beyond just treatment
response. This finding indicates an interesting link between a new transcriptional initiation

regulatory level and tumour state determination. Given the highly proliferative nature of
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cancers, extensive research efforts have begun resolving the regulatory mechanisms that
facilitate this cancer feature. | show that the high YC TSS profile is underpinned by a highly
proliferative phenotype. Firstly, through the culturing doubling time analysis, which revealed
doubling time decreases in correlation with YC usage (Figure 3.1). It must be noted however
that such approach is limited as a higher doubling time could be due to more cells in the high
YC organoids simply having organoid formation capabilities. Literature suggests that more
stem-like features are required to facilitate organoid formation and hence division into
daughter cells (Xiaolei et al., 2017; Yin et al., 2016; Z. Zhao et al., 2022). The imaging analysis
in Figure 3.2 revealed the YC low organoids, 653 and 557, display more differentiated
morphology, therefore it is likely that upon splitting many cells do not contain regenerative
stem like capabilities in these lines. Although | later confirm these features through
sequencing, our analysis is then limited to time point bias. Therefore, to truly understand
the growth patterns of our different organoid lines, including the proliferative and
differentiation rates, long term 4D imaging of the lines would provide invaluable
spatiotemporal insight into their dynamics allowing for better characterisation into tumour

evolution.

Further evidence of the proliferative phenotype association to YC usage was seen in our
molecular characterisation of bulk CAGE sequencing data (Figure 3.4). Although the absence
of repeats makes it challenging to make statistically driven comparisons, the module scoring
analysis showed that the high YC lines have a higher enrichment for proliferation associated
genes. Furthermore, work by Dr Joseph Wragg in our lab identified that the YC enrichment
seen in these bulk CAGE analyses was not just a result of an increase in TOP genes, previously
identified to be involved in cellular growth dynamics through driving translation (Wragg et
al.,, 2023). Therefore, these findings indicate that YC usage plays an important role in
facilitating cell growth beyond just the upregulation of ribosomal associated genes. This
analysis also suggests that the non-TOP YC genes may share the same regulatory dynamics

as their TOP counterpart.

Single cell CAGE sequencing showed similar transcriptional profile retention to bulk

sequencing approaches.
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Although bulk analysis proved insightful, we are limited to understanding the biological
significance of these findings due to the sheer ITH that exists (Marusyk et al., 2020; Meacham
& Morrison, 2013). Therefore, in this chapter a key aim was to successfully undertake and
validate single cell CAGE sequencing to characterise the molecular phenotypes within our
organoids and later establish TSS choice usage. Utilising the backbone of the sequencing
approach outlined in (Moody et al., 2022), we identified key criteria that must be achieved
and hence optimised to carry out such an experiment. Upon experimental designing we
acknowledged that we must prioritise cellular viability, given that we require high quality
RNA to successfully map correct TSS. As a result, we opted to ensure high cell viability
through cell sorting based on negative presence of a cell death stain. This step could result
in the loss of relevant cell populations therefore true ITH could not be achieved in this
analysis. To overcome the potential loss of populations a spatial transcriptomic experiment
would be insightful and allow for exploration of true ITH (Brady et al., 2021; Waclaw et al.,
2015). This experiment would also allow us to see how representative our identified SC
populations are across multiple organoids, or if certain organoids within our lines only
contain some of the clusters we identified. Furthermore, to achieve high depth, we had to
limit the number of cells we sequenced and therefore we may not be capturing all
populations. Both these issues could be resolved using a spatial transcriptomic analysis
whilst utilising the cluster marker genes we identified in our sequencing to explore the

validity of our analysis.

Given that single cell CAGE had not previously been performed to capture TSS, we were
limited on validation and thus relied on characteristics previously identified in bulk
sequencing. Our first step of validation and the premise of such highlighted in this chapter
was the retention of transcriptional profiles between the single and bulk sequencing. After
normalisation to account for library depth differences we identified a strong correlation of
TPM counts between the pseudo bulked single cell sequenced and matched bulk. Although
PCA results still showed variation between them (Figure 3.8), the same variation was
retained in both experiments between samples likely owing to the significant difference in
sample and library preparation. For example, recent literature has highlighted
transcriptional signatures associated with disassociation techniques, a necessary step in

single cell preparation (Van Den Brink et al., 2017). Furthermore, the bulk CAGE protocol
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relied on a capping technique to identify 5" ends, however the single cell protocol utilised a
TSO approach, which has showed some preferential bias for transcript capture and therefore

could alter transcriptional profiles (Tang et al., 2013).

Single cell sequencing showed ITH differences in cell types and physiological states
between YC low and YC enriched organoids.

Intra tumour heterogeneity analysis can help provide essential insight into the tumour
function and even tumour evolution through the scrutinization of the SC populations (Caiado
et al., 2016; Marusyk et al., 2012; McGranahan & Swanton, 2017). Previous studies have already
begun highlighting the clinical relevance of ITH in determining treatment responsiveness,
with more heterogeneity showing more aggressive phenotypes (Caiado et al., 2016; Stanta &
Bonin, 2018a; X. X. Sun & Yu, 2015). Furthermore, many of the ITH SC populations share
genotypes meaning their behaviours appear to be more dependent on other regulatory
mechanisms such as epigenetic and transcription (Caiado et al., 2016). We show that our
organoids follow the same trends seen in literature and extend findings to correlations with
TSS usage. Firstly, the YC enriched irradiation responsive line shows less heterogeneity
compared to the YC low non-responsive line (Figure 3.12 and 3.13). YC enriched organoids
also show SC populations associated with translation and ribosomal biogenesis, both of
which are highly associated with maintenance of growth dynamics and provide likely
reasoning for the global growth phenotype we see in these lines. Furthermore, our
referencing mapping and cell type annotation revealed that it was composed of stem and
stem-like transit amplifying cells. These naive, undifferentiated cells have been vastly
characterised as being growth driven specifically in CRC (Y. S. Ma et al., 2020; Magee et al.,
2012). These features provide an explanation into the cystic morphology we see in our high-
resolution imaging (Figure 3.2). The imaging analysis also highlighted the presence of
secondary structures in our YC low lines attributable to differentiated morphology (Kashfi et
al., 2018). | later confirmed this in our bulk CAGE through an increase in enrichment in
differentiation associated pathways such as WNT and with our single cell reference mapping
annotations (Figure 3.17). The latter showed the absence of ISC in this population,
contrasting research which has highlighted the link between CSC and resistance (Y. Li et al.,
2021; Makena et al., 2020; Prieto-Vila et al., 2017). This is likely due to the single cell atlas

used to reference map, originating from healthy intestinal tissues, thus missing the
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characteristics of CSC. Many studies have shown that as cells differentiate their growth
patterns slow and some even become quiescent (Jogi et al., 2012; Lindell et al., 2023). We
hypothesise that the shift towards YR usage in this phenotype represents a potential TSS
regulatory mechanism. YR usage utilises cap independent translation making it less sensitive

to stressors that block cap-dependent translation.

The ability of cells to transition to this quiescent state have shown remarkable associations
to cell survival (Kumari & Jat, 2021; Lindell et al., 2023; Schmitt et al., 2022). Such phenotype
maybe present in the post irradiated samples, whereby we see a drastic decrease in the
number of genes being captured. Interestingly however our analysis shows an upregulation
of genes associated with metabolic reprogramming (Figure 3.20). A newly identified
characteristic of this gene set is their continued translation during stress. Translation
continues through the formation of an oxygen dependent translation machinery capable of
forming and bypassing the inactive mTOR pathway (Ho et al., 2020; Uniacke et al., 2012).
Although we were unable to perform high depth CAGE on our post irradiated sample,
previous global bulk analysis showed a significant decrease in YC post treatment (Wragg et
al., 2023). Further research is needed to understand whether the change from YC to YR post
irradiation is a regulatory mechanism or more simply a transcriptional response, such as a
depletion of YC transcript abundance. To begin to explore this, we must further understand
the role of these gene sets in the control sub populations and their relative TSS usage. Do
we see heterogeneity in TSS usage in these genes between clusters? Are these genes always
utilising the YR TSS despite being dual or does TSS usage differ in these genes dependent on

the physiological state of the cell?

In this chapter, | characterised the SC populations present in our organoids and showed both
distinct differences and similarities between lines. A pervasive challenge was sufficiently
comparing cellular physiological states given the many possibilities of GO definitions and our
approach in utilising the dominant GO masks many underlying phenotypes. A solution that
also provided interesting insight into the continuum of states and hence appreciation for
cellular plasticity, was utilising archetypal theory (Combes et al., 2021; Groves et al., 2021; Hart
et al., 2015; Hausser et al., 2019; Hausser & Alon, 2020). By using the previously characterised
universal archetypes by Hausser et al., 2019 as reference GOs we were more easily able to
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compare our SC populations between samples (Figure 3.16b). Furthermore, distinct clinical
phenotypes have been associated to the different archetypes which provided both a level of
validation in our own phenotypes but also greater understanding in the molecular
mechanisms underpinning them (Combes et al., 2021; Groves et al., 2021; Hausser et al.,
2019; Nath et al., 2021). The identification of shared archetype states between the lines
represents an exciting opportunity to explore their TSS usage between samples with
different global TSS profiles. Is TSS usage attributable to a specific SC state irrespective of its
environment? Does TSS shift between differently characterised clinical phenotypes? Such

guestions are the drivers for later chapters.
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Chapter 4: Investigating intra-
promoter switch of TSS in
cellular physiological states.

4.1 Introduction
In the previous chapter we identified that TSS usage correlates with a distinct molecular

phenotype predominantly associated with enhancing growth dynamics. So far however the
analysis has focused on the gene expression profiles associated with a global TSS phenotype
and our previous results highlight variable cell states within both organoids. The use of single
cell CAGE allows us to map the transcripts to TSS, meaning we can characterise ITH of TSS
usage beyond its association to global bulk phenotype. Previous studies have already shown
the clinical significance of ITH and its association with treatment response (Stanta & Bonin,
2018a; X. X. Sun & Yu, 2015). The ability of cells to behave differently in the tumour and
potentially transition into different states following environmental pressures represents an
intrinsic mechanism aiding in cellular survival (Clairambault & Shen, 2020; Pérez-Gonzélez et al.,
2023; Torborg et al., 2022). Transcriptional landscapes are a vital component of this intrinsic
mechanism and understanding the regulatory components will help in identifying these
tumour evolution dynamics and hence cellular plasticity. In this chapter, | aim to understand
the penetrance of TSS usage differences and its contribution to ITH. Firstly, by characterising
the TSS phenotype of cellular physiological states to see whether YC enrichment is unique
to a state. Understanding whether TSS usage changes between molecular states will provide
invaluable insight into the biological relevance of TSS base choice variation. Secondly, to

explore this phenomenon on a single cell level, a resolution not previously achieved.

Chapter 3 also identified shared states within these differing organoids including both
metabolic and cell division associated subpopulations. This poses the question of whether
the TSS usage and hence regulatory mechanisms of these states are also shared? For
example, do the metabolic subpopulations between the samples have the same TSS

phenotype or do they differ? Therefore, the aim of this chapter is to understand the TSS
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usage of both different and shared cellular physiological states. As cellular physiological
states are underpinned by specific gene expression profiles, | aim to identify the gene
networks responsible for YC enriched and YC low states. By identifying functionally relevant
gene sets we can further explore the dependence on the initiator motif. The YC TSS consists
of different subsets mainly dependent on their initiator sequence and similarity to the TOP
motif. Previous research has highlighted the functional relevance of the TOP motif through
differential post transcriptional regulation driven by LARP1 binding and mTOR regulated
translations machinery (Hochstoeger et al., 2024; Jia et al., 2021; Mura et al., 2015; Ogami
et al., 2022; Philippe et al., 2020). Furthermore, work in the lab has identified that YC TSS
without the TOP feature behave transcriptionally similar to TOP on a global scale. Therefore,
| aim to see if the initiator motif of YC subsets is attributable to certain genes linked to a cell

state.

4.2 Results

4.2.1 Validation of single cell CAGE TSS capture
As previously highlighted in chapter 3, single cell CAGE has not previously been performed

to study TSS variation dynamics. Having established a level of validation in the previous
chapter through investigating the general gene expression profile in our lines that has been
sufficiently retained across sequencing approaches, we now aimed to validate the TSS
capturing success. The development of this single cell sequencing approach was designed,
performed, and outlined by (Moody et al., 2022), although their aim was to characterise cis
regulatory elements and not TSS usage, they developed a pipeline (SCAFE) to remove G bias
artefacts that can dominate the sequencing data as discussed in Chapter 1. The reads and
hence bam files generated from the cellranger pipeline were analysed through the SCAFE
pipeline outlines in Chapter 2.5.1. This analysis was carried out by Dr Yavor Hadzhiev. To
show that the single cell sequencing approach is reflective of TSS usage and hence no bias
of base capture | aimed to compare TSS profiles against the previously sequenced bulk data.
To do this | pseudo bulked both single cell samples by summing filtered, corrected reads
obtained from the SCAFE pipeline. The bam files for single cell pseudo bulk and matched
bulk were then analysed in the CAGEr package outlines in Chapter 2.5.5. To compare

between samples, normalisation of CAGE tags was performed as described in Chapter 3.2.4
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using a power law distribution supported in the CAGEr workflow (Balwierz et al., 2009;
Haberle et al., 2015). This step was essential to attempt to account for extensive disparities

between library sizes of the single cell and bulk sequencing highlighted in Table 4.1.

Table 4.1: Library size differences between sequencing approaches

Sample Library Size
Single cell 389 | 225,644,802

Bulk 389 7,755,829
Single cell 557 | 181,357,951
Bulk 557 26,650,370

Reverse cumulative plots were generated depicted in Figure 3.8, and optimal parameters
for power law normalisation determined as a = 1.05 fit in range of tags 10 to 15,000 and
converted to TPM metric. Tag clusters representing likewise promoter regions defined as
genomic regions within 100bp, harbouring multiple spatially separated Tags are then
calculated using a distance-based clustering approach using the distclu argument in the
function, keeping singletons (clusters that have only one Tag) with a normalised signal over
3. The repeated presence across samples means it is found frequently enough to be valid. A
genomic ranges object is produced from the normalised consensus TSS (CTSS) with the total
TPM signal. Consensus clusters (CC) were then calculated between the samples to identify
and define shared promoter regions by aggregating Tag clusters within the quantile
boundaries (set to standard specified in CAGEr workflow) therefore producing CAGE signal

sum in all samples mapped to genomic coordinates for each CC.

Previous findings by Dr Wragg showed that global dinucleotide frequency changes
characterise the organoids (Wragg et al., 2023). Therefore, | aimed to validate the TSS classes
are retained in our single cell pseudo bulked data. | achieved this by summing CTSS signal
per initiator and dividing by total signal to calculate % of initiator class as outlined in Chapter
2.5.5. Previous bulk CAGE sequencing analysis showed %YC increase in sample 389
compared to 557, our pseudo bulk single cell sequencing also matched this trend as seen in

Figure 4.1.
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Figure 4.1 Global YC enrichment is retained in matched samples across sequencing approaches.
Dinucleotide frequency analysis between pseudo bulked single cell sequencing and matched bulk.
(A) Percentage of total TSS is YC in single cell pseudo bulked compared to its matched bulked. (B) Top
50 expressed genes in the single cell data show high ribosomal bias. Right panel shows YC % in single
cell post removal of the top 50 genes.

Our analysis revealed that despite using different sample preparation, sequencing
technique, and library depth differences, we still see the same YC usage trends in our
organoid lines. However, we did see a dramatic increase in YC enrichment in both pseudo
bulked samples compared to the matched control bulk. Our previous analysis in Chapter 3
revealed that on average 10-25% of the reads map to ribosomal genes (Figure 3.7)
additionally our TPM per gene analysis in Figure 3.8 showed the highly expressed genes that
differ to bulk are ribosomal genes. Previous studies have already identified ribosomal genes
as being TOP sequence containing genes, we hypothesised that our high YC values in our
single cell data was a result of a more efficient capture of abundant ribosomal protein genes
(Cockman et al., 2020; Hochstoeger & Chao, 2024; Meyuhas & Kahan, 2015) . We explored this bias

by removing the signal of the top 50 genes in our single cell datasets and repeated the

dinucleotide frequency comparisons. We found, global YC and YR levels more closely
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represented the bulk data but still retained the difference between organoids (Figure 4.1b).
These results suggest that our single cell CAGE was successfully represents global TSS base

choice.

4.2.2 Characterisation of TSS base choice phenotype on a single cell level

Our single cell CAGE data provides the opportunity to explore TSS base choice phenotype on
a single cell level which has not yet been described in the literature. Although the organoids
show a bulk YC:YR TSS ratio variation, Chapter 3 showed these lines harbour degrees of ITH
in cellular physiological state and cell type. Therefore, we hypothesised that there would be
ITH variation in TSS usage between the cells within the same sample resulting from these
features. A challenge however would be in visualisation of the usage on a single cell
resolution, given that we had around 5,000 cells per sample. Firstly, we generated a single
cell matrix profiling the individual cells with information generated from previous pipeline
analysis including read and feature counts. To this matrix the relative TPM signals per
initiator (YC or YR) were added. Additionally using the generated CC ID we were able to
calculate the average YC:YR usage ratio per cell, including all promoters with both signals,
therefore including only dual genes. Collation of this data on a single cell level allows us to

scrutinise the variation of YC:YR in and between samples and compare against other

features.
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Figure 4.2. Scatter YC:YR ratio shows marked variation within samples plot comparison of YC:YR
vs read depth per cell. Scatter plot comparisons of YC:YR per cell vs cell features. Average YC:YR ratio
per cell against number of molecules, hence read depth (left) and against Feature or gene count
captured per cell, coloured by sample of origin.

As seen when plotting the YC:YR vs genes captured per cell, not only do we see validation in

the previously seen bulk trend that the 389 responsive line has a higher YC usage in dual

initiator genes, we also now see variation in this usage within the sample including cells with

96



similar ratio values between samples (Figure 4.2). This raised the question of whether these
cells in different samples were in the same cellular physiological state. To initially explore
this, we plotted the calculated YC:YR ratio per cell values onto our UMAP projections
developed in Chapter 3, to see if TSS phenotype clustered together based on gene
expression determined clusters. Interestingly in both samples the high YC cells
predominantly clustered close together indicating many harboured a similar gene
expression profile (Figure 4.3). In sample 389 another cluster of high YC cells appears in
cluster 4, located distinctively away from the large high YC cluster revealing a different gene

expression profile.
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Figure 4.3: YC enriched cells cluster close together. Single cell UMAP projection of single cell data
coloured by average YC:YR of all DUAL genes calculated per cell. Sample 389 Top, sample 557 bottom.
YC shift in DUAL TSS dynamic depicted by colour scale on right of panel.

To identify the cellular state of these high YC cells and see if they are shared across samples,
we performed gene set enrichment module scoring for states of interest, as had been
previously performed on whole sample level in Chapter 3.10. To make visual comparisons
against the YC:YR, the expression heat map colour scales were kept the same across all
UMAPs. Additionally, to statistically validate the trends, we performed linear correlation
analysis between each gene set feature score per cell against its average YC:YR ratio to
produce Pearson correlation coefficient (r) for each feature to measure both strength and

direction of the relationship.
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Firstly, gene set analysis showed heterogeneity in scores within both samples, further
validating previous ITH analyses. We also saw expected expression correlations between gene
sets. For example, as can be seen in Figure 4.4 the highest expression of proliferation markers
correlated with the Myc gene and its target gene expression. Studies have shown that Myc
proteins are master TF that upregulate and induce the expression of many genes, many of
which are associated with proliferation (Ahmadi et al., 2021). A widely characterised feature
of Myc proteins is their role in cell cycle progression through its multifunctional interactions
including transcriptional activation of pro-cycle genes and the repression of the inhibitors
(Ahmadi et al., 2021; Garcia-Gutiérrez et al., 2019). Correlation analysis revealed that both
these proliferative features negatively correlated to YC:YR in both samples, highlighting a
further link between proliferation and TSS usage, however opposite to the overall phenotype
analysis which shows fast growing and hence highly proliferative lines correlate higher with

YC usage. We aim to explore the reasoning for this in a later chapter.
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Figure 4.4: High YC cells are enriched for metabolic reprogramming genes in fast growing organoid.
(A) YC:YR average per cell. (B) Single cell UMAP projection of gene set enrichment per cell sample 389.
Calculated module score for gene sets shown in scale bar. Top panel includes differentiation
associated gene sets, Middle proliferation and Bottom cap dependent translation and cap
independent translation. R in each panel shows Pearsons correlation coefficient (r) of module score

per cell vs average YC:YR.
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Figure 4.5: High YR cells are enriched for proliferation genes associated with cell division processes.
(A) YC:YR average per cell. (B) Single cell UMAP projection of gene set enrichment per cell sample 557.
Calculated module score for gene sets shown in scale bar. Top panel includes differentiation
associated gene sets, Middle proliferation and Bottom cap dependent translation and cap
independent translation. R in each panel shows Pearsons correlation coefficient (r) of module score
per cell vs average YC:YR.
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Proliferation enrichment score

Although none of our correlations showed strong associations to YC:YR ratio, clear trends
were seen within the samples. For example, in sample 389 the more proliferative line the
largest positive correlation was with the hypoxia ATG. ATG is a gene set widely associated
with metabolic reprogramming essential for maintaining the redox balance and thus enabling
cellular survival, and are targeted by ATM in low oxygen levels (Ho et al., 2020; Uniacke et al.,
2012). The anticorrelation between the proliferative phenotype vs YC:YR and the metabolic
remodelling phenotype vs YC:YR better highlighted in Figure 4.6 and could indicate a TSS level
regulation of growth dynamics through the upregulation of genes responsible for production
of key genes and proteins that provide the building blocks essential for cellular division. TSS
usage may play a role in the proliferation vs metabolism equilibrium discussed in Chapter 1,
a hypothesis explored later in this chapter. Although a similar trend was seen in the slower
growing 557-line (Figure 4.5), the correlations were weaker. The strongest correlation was
with stem cell markers, many of which are associated with lineage differentiation. This
analysis showed that the YC:YR was highest in the cells that displayed the predominant
phenotype of the whole line: sample 389 is highly proliferative and YC:YR was highest in the
genes responsible for aiding in growth through metabolic maintenance whereas sample 557
was defined as highly differentiated and the highest YC:YR was in the cells showing the highest

expression for differentiation markers.

Proliferation Metabolic
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YC:YR ratio per cell YC:YR ratio per cell

Figure 4.6: TSS usage vs proliferation and metabolic features. Scatter plot correlation analysis of
module score for proliferation associated gene sets and hypoxia associated metabolic reprogramming
gene vs average YC:YR usage per cell coloured by sample of origin. Linear regression analysis
performed using pearsons coefficient.

To show that the high YC and hence larger YC:YR values were not simply due to higher expression

of dual initiator genes, we performed correlation analysis between average dual gene expression
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and YC:YR per cell (Figure 4.7). A low positive correlation was seen for both however it can be
argued that the greater dispersion in data is seen between the YC:YR axis than the dual gene
expression score, meaning that not only is there a level of TSS usage in these genes not fully

explored but that conventional RNA-sequencing would not be able to detect such changes.
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Figure 4.7. YC:YR ratio does not strongly correlate with dual initiator gene differential expression.
Scatter plot comparison of average YC:YR vs dual initiator gene expression module score per cell.
Regression analysis linear model displayed with calculated Pearson Coefficient R score.

Furthermore to show this was not a TOP motif specific feature but also attributable to YC TSS not
harbouring the conventional initiator TOP motif, we calculated the non-TOP YC signal per cell
through extracting the first 5 bp of the TSS and summing TPM for those without the presence of

the polypyrimidine stretch and calculated YC:YR per CC and thus average non-TOP-YC : YR per cell.
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UMAP 2

UMAP projection shows ITH variability of non-TOP-YC dynamics in likewise dynamics as all YC:YR
(Figure 4.8). Correlation analysis vs all-YC:YR shows a positive correlation indicating the YC
dynamics are not we see are not solely resulting from TOP associated YC. This suggests a similar

regulatory and hence usage dynamic between all YC initiation sites.
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Figure 4.8: Non-TOP YC initiators show similar ITH enrichment. Single cell UMAP projection of TSS
profiles per cell. Average non-TOP-YC:YR of all DUAL genes calculated per cell. YC shift in DUAL TSS
dynamic depicted by colour scale on right of panel. Right panel shows non-TOP YC: YR vs all YC:YR
correlation analysis with linear regression Pearson coefficient values.

4.2.3 TSS usage in cancer cell physiological states

Now that | have confirmed there is ITH of TSS usage phenotypes | aimed to characterise the cells
that show a higher YC usage and consequently the genes responsible for the dynamic shifting as
we hypothesised this would give us insight into biological relevance. A challenge with continuing
our analysis on a single cell level was although the depth per cell provided some insight into the
global gene usage, resolution to a single gene wasn’t efficient due to the absence of sufficient

molecules per CCID identified making quantitative comparison gene by gene between single cells
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difficult. Therefore we strived to identify the relevant genes using a pseudo bulking approach
which we could later explore on a single cell, single gene level. We hypothesized that as our
UMAP projection in Figure 4.3 showed cells with similar YC:YR average clustered together, we
could pseudo bulk the cells based on previously characterised features determined in Chapter
3. Our first approach was to see if the high YC dynamic was attributable to cell differentiation
types. As previous work in zebrafish embryos show cells alter TSS architecture at genes
responsible for tissue function as they move away from pluripotency (Wragg et al., 2020), |
aimed to see if the more stem-like pluripotent cells in our organoids showed a distinct YC:YR
dynamic. To explore this, we extracted all barcodes attributed to each cell type identity in the
Seurat object. The SCAFE-filtered and processed CTSS for each barcode were collated based on

cell type identity thus treating each cell type as an individual sample (Figure 4.9a).

To identify YC:YR shifting | identified all dual initiator CCID and calculated YC signal to YR
(YC:YR) per gene for each cell type and then the average YC:YR per gene across the sample
(all cell types). Next | normally distributed the data by log transforming the YC:YR per gene
per sample / the average YC:YR per gene, equation shown in Figure 4.9b. Cell types where
there is a YC shift in the YC:YR ratio will plot with their relative frequency plot shifted above
0, the opposite is true for the samples with a higher YR shift than the other cell types. Finally
if there is no changes in the YC:YR dynamic between the samples then the density median
points will stay close to 0. Only the stem and TA cells were included in the analysis for sample
389 (Figure 4.9b) as the other populations contained minimal cells and comparisons

between wouldn’t be possible.
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Figure 4.9: YC:YR dynamics do not differ between naive intestinal cell types. (A) Single cell predicted
annotation of intestinal epithelial cell type classification using Single cell gut atlas reference
projection (Zilbauer et al., 2023) onto clustered UMAPs using integrative anchors. (B) Frequency
distribution of YC:YR ratio per cell type pseudo bulk compared to total pseudo bulked average.

Although some separation between YC:YR is seen in the more heterogeneous organoid 557
(Figure 4.10a). Organoid 557 shows more differentiated lineages, however given the
plasticity of cancer cells they are unlikely to be terminally differentiating like the cells present
in the developing embryo. This retention of some stem like capabilities may indicate
disparities between the cancer and embryo development, thus all TSS trends may not be
conserved. Frequency distribution analysis did show the more distinctive proliferative transit
amplifying cells appear to be YR enriched (Figure 4.10b). Future comparisons will seek to
compare likewise cell types between the organoids. For example, integrating both organoids

and comparing the YC:YR of the transit amplifying cells seen in both.
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Figure 4.10: YC is lower in progenitor cells in more differentiated organoid. (A) Single cell predicted
annotation of intestinal epithelial cell type classification onto YC low sample 557 using Single cell gut
atlas reference projection (Zilbauer et al., 2023) onto clustered UMAPs using integrative anchors. (B)
Frequency distribution of YC:YR ratio per cell type pseudo bulk compared to total pseudo bulked
average.

As our single cell TSS analysis in Figure 4.3 showed the high YC cells cluster together on the
UMAP | decided to repeat the above pseudo bulking approach using UMAP generated
clusters we defined in Chapter 3 (Figure 3.12 and 3.13). Our frequency distribution of YC:YR
analysis showed a greater separation between clusters in the YC enriched sample 389
(Figure 4.11a). Furthermore, the high YC phenotype did not appear to be a result of just one
population unique to this sample, with 3 clusters (translation, metabolism and cell
migration) all showing a marked YC shift. Despite the global whole organoid TSS phenotype
being significantly different, this analysis showed that the same GO defined clusters, or cell
physiological states, also show a YC shift in the 557 sample (Figure 4.11b). This highlights a

potential TSS usage dependence of these physiological cell states many of which appear to

be characteristically energy demanding or focused. For example, literature highlights that
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UMAP_2

translation is one of the most energy demanding processes of a cell (Roux & Topisirovic, 2012).
In both samples the YC low or YR enriched populations are consistently cellular physiological
states associated with cell division including the DNA repair. This highlights a potential cell

cycle associated dynamic which will be investigated in a later chapter.
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Figure 4.11. YC enrichment is seen in likewise clusters across different lines. Comparison of YC:YR
dynamics in subpopulations within samples. UMAP projection of subpopulations clustered and
annotated with dominant gene ontology. Frequency distribution of YC:YR ratio per sample compared
to pseudo bulked average including only clusters where YC:YR shifted. YC:YR expression ratio
calculated per DUAL initiator per cluster divided by average YC:YR ratio for that promoter. Panel (A)
represents sample 389 (n=6265) (B) represents sample 557 (n = 3,360).

Previous work by Dr Joseph Wragg in our lab, identified a signature marker set of dual genes
whose TSS usage and hence YC shift is sufficient stratification criteria for irradiation (Wragg
et al., 2023). Repeating this analysis between the YC lower 389 clusters shows we see greater
dynamic shifting in our cluster YC:YR seen in the frequency distribution plot in Figure 4.12.

Further validating the significance of these genes beyond just association to irradiation

phenotype and thus biological relevance they may provide into understanding YC usage.
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Figure 4.12. YC shifting signature genes validate ITH TSS cluster separation. (A) Frequency distribution
analysis of organoid 389 clusters for all dual initiator genes. (B) Organoid 389 cluster YC:YR dynamics
of signature genes. Frequency distribution of YC:YR ratio per sample compared to pseudo bulked
average for signature Dual genes. YC:YR expression ratio calculated per DUAL initiator per cluster
divided by average YC:YR ratio for that promoter.

The presence of translation associated GOs in the YC enriched clusters was expected as many
studies have shown that TOP initiator motif is highly associated to translation associated
genes (Hochstoeger & Chao, 2024; Meyuhas & Kahan, 2015). To investigate whether this shift was
the result of TOP specific transcription enrichment we calculated the nonTOP-YC : YR ratio
and repeated the normal distribution. As can be seen in Figure 4.13 the YC enriched shifts
between the same clusters are still present, indicating a potential similar regulatory

mechanism for all YC transcripts. It must be noted however that these genes could still contain

a TOP motif downstream of their TSS and hence still be targeted by TOP regulation
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mechanisms including LARP1 (Philippe et al., 2018, 2020). In this analysis we define non-TOP-
YC as the absence of a TOP signal detected in the CCID, However, to fully explore non-TOP-YC
genes we must select genes where no TOP motif is found downstream of the TSS or identify
if distance of the TOP motif from the TSS affects the dynamic by repeating frequency

distribution analysis.
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Figure 4.13. YC enrichment is retained upon removing TOP signal Comparison of YC:YR dynamics in
YC only and YC-TOP initiators. Frequency distribution of YC:YR ratio per sample compared to pseudo
bulked average. YC:YR expression ratio calculated per DUAL initiator per cluster divided by average
YC:YR ratio for that promoter. Right indicates sub setting of genes to only include DUAL genes where
the YC does not have the conventional TOP initiator.

To explore the penetrance of promoter usage heterogeneity and how the cluster bulk is built
from single cell variation, we generated UCSC genome browser tracks of the top 50 cells with
the highest TPM per each cluster. As many genes did not contain sufficient CAGE tags found
in multiple individual cells in different clusters, | selected for genes which had sufficient
capture and were known dual initiator genes. | compared two clusters with opposing
dynamics from organoid 389; the translation GO cluster 0 (YC enriched) and Cluster 3 the
DNA metabolism and repair cluster (YC low). | show that TSS usage differences are seen on
both a single gene level and on a single cell level. Figure 4.14 is a genome browser view of

the pseudo bulked cluster (black) and 5 single cells within that cluster and their CAGE tags.
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Firstly, this analysis shows the dominant single cell TSS usage is representative of the bulk
cluster summed phenotype. Secondly, both base choices can occur in the same cell. In cell 2
of cluster 0 and in cell 3 of cluster 3 both YC and YR TSS are used highlighting for the first

time that alternative TSS usage is not mutually exclusive.
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Figure 4.14. Genome browser view of single cell YC:YR usage of signature DUAL gene. (A) Frequency
distribution of cluster 0 and cluster 3 with distinct YC enrichment and depletion. (B) UCSC snapshot of
CAGE sequencing tracks of the signature dual gene c9ORF85. Cluster summed TSS TPM signals shown
at top of each panel in black scale for both summed clusters is equal. Followed by 5 tracks of 5
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Single cell scales are all equal of 4.

Our analysis showed that in both lines the YC enriched clusters appear to share GO, Figure

4.11 shows both samples have Translation, migration and a metabolic like cluster in the YC
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enriched. Furthermore, the same is seen for the YC depleted clusters all associating with cell
division in both samples. This raised the question as to whether TSS usage, specifically YC
usage, correlates to a specific gene expression profile and hence physiological state
independent of the global whole tumour phenotype. To begin to explore this we must first
understand how similar the TSS defined clusters are between the samples. To achieve this, we
grouped the clusters in both samples as either YC enriched, showing a marked deviation of
their median point, or peak of plot, + 1 SD from the 0 in the frequency distribution plots
(Figure 4.11) thus indicating a higher dependency and usage of YC in dual initiator genes. YC
low clusters were defined as having shifted their median point -1 SD from 0, those not in this
range were defined as no shift. The newly defined groupings appear to be grouped together,

further supporting a similar gene expression profile underpinning TSS usage (Figure 4.15).
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Figure 4.15: Clustering visualisation of high YC and high YR clusters in both samples UMAP projection
of sample 389, high global YC TSS phenotype top, and sample 557, high global YR phenotype bottom.
Coloured by cluster determined TSS profile characterised using YC:YR dynamic shifting of dual genes
in frequency distribution analysis. Clusters with high YC usage in YC:YR coloured in dark red and
clusters with high YR in dark blue. Those that did not show significant change are coloured in grey.
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Next, | pseudo bulked the clusters based on these groupings and performed DGE analysis
between the YC enriched population and YC depleted population within each sample using
non-parametric Wilcoxon rank sum test through Seurats FindMarkers function. Differentially
expressed genes were defined as those with whose log fold-change was greater than 0.6 for
upregulated genes and less than -0.6 for downregulated and both where adjusted p-value,
calculated using Bonferroni correction, was less than 0.05. The volcano plots of this analysis
in Figures 4.16 and 4.17 show of the top 10 most differentially expressed genes neither are
shared between the samples. To investigate this further | performed GO analysis to identify
the biological processes and Kegg pathways enriched in populations using ShinyGo0.80 with
an FDR cut off of 0.05. | found that the low YC clusters in both samples were enriched in cell
cycle associated genes and pathways. The YC enriched clusters share less similarity between
the samples, sample 389 was predominantly associated with metabolic pathways whereas

557 shows enrichment mainly in cell motility with some metabolic pathways including

glycolysis.
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Figure 4.17: Differential gene expression analysis of high YC cluster vs high YR cluster sample 557 (A)
Volcano plot of DEG with top 10 genes both up and down regulated highlighted. Differential regulation
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genes in high YC clusters (Bottom and up regulated in YC clusters (Top).
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The YC clusters appear to be enriched in genes associated with the predominant function and
hence characteristic phenotype of that sample. Comparative analysis of the genes shows 18%
are shared between the high YC populations in both samples, GO analysis of these shared
genes shows upregulation in metabolic associated pathways including the reprogramming
driving hypoxia response pathway Figure 4.18. The shared genes upregulated in the high YR
cells in both sample shows further enrichment and validation of the cell cycle associated
pathways. The continuous finding of YC depletion associated with cell cycle gene enrichment
and hence cell cycle function, further highlights a TSS usage role in cell cycle dynamics that

warrants further validation and investigation.
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Figure 4.18: High YC and High YR clusters show similar GO between samples. Comparative analysis
of shared enriched genes. (A) size proportional Venn analysis of the DEG in YC enriched clusters (Red)
and YC low clusters (blue) separated by genes enriched in just sample 389 (top) and just sample 557
(bottom) with shared genes in the middle. (B) GO analysis of shared DEGs between samples.
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4.2.4 YC shifting in cancer cell archetype states

A clear challenge appears when defining cellular states as the expression profile of cells and
clusters of cells can be explained by a complex network of GO and therefore our previous
conclusions of cluster definition by dominant GO maybe masking underlying phenotypes.
Furthermore, the vast depth of GO possibilities makes it particularly challenging to compare
between samples. The use of archetype analysis represents a growing computational
approach to exploring ITH and the cellular states that exist (Hausser et al., 2019). The pan
cancer analysis identified 5 universal archetypes allowing for convenient and informative
comparisons between samples (Figure 4.19a). | aimed to use this analysis to gain better
appreciation of the continuum of cellular states that exist allowing for better visualisation of
the TSS usage in ITH at a single cell level. Using our polytope determination in Chapter 3, |
projected the previously calculated cell YC:YR ratio average onto the 2D PCAs. Figure 4.19
show that the high YC state shows a gradual transition to a defined state defined by marker
genes associated with the lipogenesis universal archetype in both samples. As can be seen
in Figure 4.19c¢, the high YC:YR cells are more dispersed showing that there are dissimilarities
in their gene expression. When plotting proliferation score (Figure 4.19d) calculated using
known marker genes of cell division from the GSEA (Subramanian et al., 2005), the opposite
correlation to the YC:YR is seen. With the highest proliferating scoring cells existing at the

furthest distance away from the highest YC indicating distinct gene expression differences.
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Figure 4.19: YC enrichment shows dominant archetype cell state preference. (A) Universal archetype
polytope schematic. (B) Archetype polytope coloured by average YC:YR ratio per cell with vertices and
hence dominant archetypes present coloured by universal archetype reference in schematic. sample
557 (C) and sample 389 (D) Archetype polytope coloured by proliferation score for sample 389.
As archetype analysis shows transitioning cells, meaning cells that are not a completely
defined archetype and hence sit in between two archetypes, | aimed to see if YC enrichment
also shows a gradual shifting as cells become a more defined state. Therefore, to further
investigate the relationship of YC enrichment and the lipogenesis archetype depicted in
Figure 4.19c, | extracted the PCA coordinate of this state. Using a distance based metric
analysis using the archetype vertex coordinates and each individual cell coordinates, | ranked
the cells based on distance from the vertex coordinate, explained in Figure 4.20a. | only
included cells that did not exceed the midpoint of the polyhedral and thus not based near
another archetype vertex. These centre cells represent the more undefined stem-like states
(Hart et al., 2015; Hausser et al., 2019). Plotting the cell rank distance from the vertex to
against its average YC:YR ratio shows a strong negative correlation representative in Figure

5.20c with Pearsons coefficient value of -0.55. This indicates that as cells become more

118



defined into this lipogenesis state, they have a higher dependency on YC usage in dual gene.
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Figure 4.20: YC enrichment shows gradual shifting as distance from lipogenesis archetype
increases. (A) Schematic showing how distance base analysis of archetype transitioning cells.
Coordinate of defined lipogenesis state identified and the coordinate of the middle point of the
polyhedral (point equidistant from all archetypes indicating an undefined cell). Ranking of cells based
on their PCA derived coordinates and distance from the archetype coordinate. (B) overlay of distance
schematic onto the 2D archetype polytope used in the analysis. (C) Scatter plot of cell average YC:YR
ratio and distance from high YC lipogenesis archetype vertex.
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Hausser et al., 2019 state that the universal archetypes share a large proportion of marker
genes, given the appreciation that many genes form a complex network of context
dependent interactions and thus their expression may not be attributable to just one
function or hence GO. The analysis in Figure 3.14 also showed that many of these shared
genes were dual initiator genes meaning they harbour base choice-dependent transcript
abundance. As there are shared genes between these archetypes it raises the question of
whether differential TSS usage maybe a distinguishing factor between archetypes. Do we
see a shift in TSS usage in these shared dual initiator genes dependent on the cell’s archetype
state? To investigate this, | aimed to identify cells attributable to each of the universal
archetypes. Using the defined marker genes in Hausser et al., 2019, | scored each cell for
each archetype and assigned the cell identity on the highest score obtained, | projected
these identities onto previously generated cluster UMAPs to see how they compared (Figure
4.21). Interestingly, we see more presence of different archetype throughout the previously
assigned clusters. It must be noted that this approach does not allow for the ‘'undefined’
cells that would exist in normal archetype analysis and would be seen central in the polytope
distinctively distant from defined vertices (Hart et al., 2015; Hausser et al., 2019). This
approach assumes identity to its closest archetype. To identify whether YC enrichment was
attributable to a universal archetype state Figure 4.21 shows the YC:YR average per cell
grouped by archetype identity. This analysis found across both samples the lipogenesis
archetype has the highest median YC enrichment further supporting our previous ParetoTlI

driven archetype analysis in Figure 4.20.
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Figure 4.21: Universal archetype states show differing TSS usage. UMAP cluster coloured by cellular

universal archetype identity. Average YC:YR per cell grouped by universal archetype identity. Violin

plots of grouped data overlayed showing median and upper and lower quantile of data distribution.
To see if the YC:YR shift between the archetypes is a result of shared dual initiator genes, |
pseudo bulked the samples based on archetype and extracted cell barcodes, collated CTSS to
perform CAGEr analysis workflow on each archetype. As previously highlighted in Figure 3.14
the Biomass and Cell Division archetypes share the largest number of dual initiator genes.
Furthermore, the biomass archetype state shows YC enrichment compared to the cell division
archetype which shows global TSS usage is more YR dominant Figure 4.21. | repeated the
previous frequency distribution analysis of the YC:YR per CCID per archetype / the average
YC:YR per CCID however this time only including the genes shared between the two
archetypes. The GO of these shared genes is outlined in Figure 4.22b and shows two distinct
groups of biological processes. Interestingly, when comparing the promoter TSS usage in
shared marker genes we see a YC usage shift dependent on the cell archetype or state (Figure

4.22a).

As many of the YC:YR analyses so far have focused on cellular states or clusters that are
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defined by gene expression profiles and hence comparisons will be affected by DEGs. This
makes YC:YR dynamics difficult to interpret as it is unclear if they exist between
subpopulations because of DEGs. However, by comparing genes known to be upregulated in
both archetypes it allows us to potentially rule out this bias and explore a potential role for
alternative TSS shifting in multifunctional genes. Figure 4.22a shows that as cells enter a
biomass cell state, they shift to a higher YC usage in these shared genes. Contrastingly when
cells enter a cell division state YR TSS are more dominantly used. The GO of these shared
genes (Figure 4.22b) shows two groups. Firstly, translation and associated pathways including
many translation initiation and elongation factors and secondly metabolic pathways. This
highlights a potential base choice regulatory role in cellular state determination in these
genes. Further investigation is needed into the differential regulatory mechanisms of these
TSS and potential surrounding CRE It also highlights a transcriptional level regulatory

mechanism of translation associated genes beyond just TOP usage.
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Figure 4.22: YC:YR projection onto Archetype distribution plots. A) Frequency distribution analysis of
YC:YR ratio per archetype pseudo bulk compared to total pseudo bulked average including only shared
enriched gene. (B) Gene ontology of the genes that show shared enrichment between the biomass
and cell division archetype.
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Shifting into a more conservative or energy depleted state is vital in metabolic
reprogramming and is mediated by nutrient sensing pathways that interact with TF that
upregulate genes that enable this process (Cerezo & Rocchi, 2020; Faubert et al., 2020; Phan
et al., 2014). A core TF in this process shown to be activated by both the mTOR pathway in
growth associated driving and separately by stress in nutrient depleted environments is
ATF4 (Linares et al., 2017; Torrence et al., 2021). We found that ATF4 was a shared marker
gene between the cell division and biomass archetypes. Furthermore, our analysis
highlighted it as a dual gene that showed distinct dynamic shifting from YR to YC in cancers
compared to healthy and its YC usage correlated to irradiation responsiveness (Wragg et al.,
2023). Like other TF, the relevant YC and YR TSS of ATF4 are within a few base pairs of each
other Figure 4.23. When we compare the relative YC:YR usage between the two archetypes
at this gene we see a slight enrichment of YR in the cell division states however a significant
depletion in YC compared to the biomass state. We hypothesise that this shifting could be a
result of biomass states requiring an upregulation of ATF4 to aid in metabolic intermediate
production. The higher usage of YC may represent a higher dependence of the mTOR driven
cap-dependent translation. Contrastingly given ATF4 role as a sensor, it could also be
hypothesised the shift from YC may simply be a result of nucleotide bioavailability being

higher in biomass states.
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Figure 4.23: ATF4 shows state dependent TSS usage. UCSC genome browser view of ATF4 gene and
TSS specific TC for each archetype state. YR initiator distinguished by a ‘CA’ TSS and YC by a ‘CC’". (B)
The delta change of TSS usage between the archetype shows equal change. Total signal between the
samples are equal but YC has increased in the biomass archetype to the same proportion that its YR
has decreased when compared to cell division.
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4.2.4.1 Hidden initiator motifs

An additional critical TF mediated nutrient sensor is SREBF1 and is essential for controlling
lipid and amino acid metabolism. Recent studies have also shown the importance of
lipogenesis in cancer progression and directly linked SREBF1 expression levels with
proliferation rate (Ricoult et al., 2016; Y. A. Wen et al., 2018). SREBF1 is also a shared marker
gene for both cell division and the other metabolic archetype lipogenesis. Although this is a
dual gene, we see TSS usage predominantly associating with YR, however the two dominant
TSS are separated by a distinctive TOP motif meaning only initiation occurring from the first
YR, depicted on the far right of the browser view in Figure 4.24 as this is a reverse strand
gene, will contain this motif. It is speculated that although initiation does not occur from YC,
the presence of an internal top, especially one so close to the initiator, could still be targeted
by TOP specific regulation. Interestingly we see a decrease in the first YR usage between the
states however YR initiator proceeding the TOP motif remains the same. As the predominant
TSS are YR our YC:YR ratio metric would miss this interesting dynamic and thus warrants
further investigation into the internal TOP containing motifs and whether their regulation is
targeted by LARP1. The decrease in the TOP containing motif of the cell division state could
be a result of the upregulation of mTOR driving growth and division and hence these TOP
containing transcripts being translated in this state. Contrastingly the enrichment of this
transcript in the metabolic state could be resulting from LARP1 binding and hence
stabilisation. Furthermore, the TOP containing motif has an A initiator, it has been shown in
literature that methylation can occur at these sites and enable the bypassing of cap-
dependent translation thus allowing for their continued translation in stress blocked mTOR
states (Meyer et al.,, 2015). The preferential use of this initiator in a metabolic state

associated with reprogramming could also result from this.
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To ensure that this finding wasn’t a result of a bias that can occur with specific CAGE
sequencing specifically the G bias that occurs in the template switching approach we used
in our experiment, | compared the peaks against our bulk and the Fantom 5 datasets. We
validated that this is a universal captured TSS and appears to show a potential colon specific

usage.

4.3 Discussion

The work in this chapter begins to highlight the functional relevance of TSS usage even to
single cell resolution through its association to cellular states. Although previous work in our
lab and in the previous chapter had identified a global phenotype associated with high YC
enrichment we still didn’t understand the biological significance beyond its potential growth
role (Wragg et al., 2023). This is because bulk whole tumour analysis masks the variability
that exists within a tumour (Lawson et al., 2018). Therefore, identifying functionally relevant

genes is challenging given the variation of gene expression that occurs within.

Alternative TSS usage represents a new level of ITH.
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In this chapter | validate our single cell TSS capture success and show that despite global TSS
usage phenotype, ITH of TSS usage exists. Initial variability observed between matched bulk
sequencing was resolved upon removal of ribosomal genes (Figure 4.1). Although in principle
combining the individual single cell data should give representative analysis of the whole
tumour, and thus be comparable to the actual matched bulk. Sequencing often has a bias
towards ribosomal genes because of their high expression in comparison to other genes
(Subramanian et al., 2022). Therefore, combining the individual cell data, we are increasing
the ribosomal bias and inadvertently increasing YC bias.

Our initial attempt to explore the TSS usage at a single cell level was to use our previously
defined metric of YC:YR ratio. However, analysing this ratio at a single cell, single gene level
proved challenging as molecule count per CTSS was very low. This meant few CC were
identified across genes and across sufficient cells to provide comparisons. However, mining
of genes with sufficient data is possible and is a future analysis that will be attempted. To
overcome the low level of single cell gene capture we used the average ratio per all dual
genes in each cell. Visualisation of single cell TSS phenotype on our UMAP showed that the
high YC cells predominantly cluster together in both samples (Figure 4.3). This highlights an
underlying gene expression profile underpinning this TSS phenotype and a potential

functional cellular advantage to YC usage.

Cellular physiological states show differential YC enrichment.
Cellular physiological state provides invaluable insight into relevant function of a cell and is
characterised by a defined gene expression profile underpinned by a complex regulatory
network spanning multiple layers (Kotliar et al., 2019). Vast efforts have been underway to
better our understanding of the genetic, epigenetic and even transcriptomic profiles that are
involved in determining cell function and hence state and how these are exploited in cancer
(H. Jin et al., 2023; Kotliar et al., 2019; Trapnell, 2015). Understanding these mechanisms
paves the way for both biomarker discovery and therapeutic targets as interesting
correlations of ITH cell states and behaviours including treatment response are emerging
(Caiado et al., 2016; Stanta & Bonin, 2018b). Here | aimed to begin exploring if TSS base choice
variation is one of the transcription level regulatory mechanisms.

Pseudo bulking by the previously generated clusters in Chapter 3 (Figure 3.13 and

Figure 3.14) allowed us to identify phenotypes associated with high YC shared across both
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samples. Despite the sheer phenotypic differences | identified between our two samples, |
initially saw homogeneity between the clusters that showed high YC (Figure 4.11). As
expected, the GO of the high YC clusters represented translation in both samples. As
previously stated, the predominant gene expression in this experiment was attributable to
ribosomal genes (Figure 3.7c). The high bias will significantly influence data and using our
approach of defining state based on the dominant GO, could be masking the underlying
expression profiles and other relevant biological processes attributable to that cell. This was
validated when we compared the gene expression profiles of the high YC clusters between
the samples and found they only shared 18% of upregulated genes (Figure 4.18), meaning
other biological processes beyond translation were underpinning these clusters.
Contrastingly however, we identified YC appears to be significantly lower in cells enriched in
cell cycle associated genes in both samples representing a potentially previously unexplored

transcriptional level regulation of the cell cycle.

TSS usage differs between universal archetypes.
The identification of universal archetypes in cancer has highlighted shared states consistently
found in cancer that show clinically relevant phenotypic presentation associations (Hausser
etal., 2019; Heiser et al., 2012). Therefore, archetypes represent an opportunity to use them
as reference states in our samples to make more intuitive comparisons. Firstly, | showed that
the results support current literature with the more late-stage aggressive archetype
populations, the invasion and immune, being present mainly in the non-responsive
differentiated line (Figure 4.19) (Groves et al., 2021; Hausser et al., 2019). Previous archetype
analysis in cancer had relied on tumour sequencing, however our findings show that
organoids also sufficiently recapitulate evolutionary and phenotypic dynamics of tumours.
Characterisation of the TSS usage attributable to archetype states found that in both
samples the lipogenesis archetype showed a distinctive YC enrichment (Figure 4.21). This
functional state has been characterised in literature as being involved in production of fatty
acids and is an important metabolic regulating process (Hausser et al., 2019). Further
interrogation of the genes underpinning the lipogenesis state show significant involvement
in protein anabolism and catabolism. Lipogenesis is a multifunctional process widely
exploited in cancer to ensure a proliferative state is retained through sufficient production of

metabolites and even ATP (Koundouros & Poulogiannis, 2020; Mounier et al., 2014; Rysman et al.,
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2010). The regulatory mechanisms of these genes have been widely studied to identify
potential therapeutic targets that will result in inhibiting tumour growth (Guo et al., 2015;
Vettore et al., 2020). Many studies have identified the role of SREBF the highly activated TF
that plays an essential mediator role interconnecting the oncogenic signalling including P13k
and metabolic reprogramming (Guo et al., 2015). Interestingly | have identified many of the
nutrient sensors including SREBF are dual genes. Furthermore, | have identified that we see
differential TSS usage, represented by higher YC usage, in these TF in metabolic states (Figure
4.23 and Figure 4.24)

The challenge when comparing cellular states is they are often characterised by
distinctive gene expression profiles. Therefore, it is unclear if the YC enrichment is simply a
result of an increase in transcription and hence expression. However, archetype analysis
appreciates cellular state is more of a continuum. Furthermore, universal archetypes share
marker gene expression as many genes have multiple functional roles that are often
environmentally context dependent (Hausser et al., 2019). | previously showed that the
biomass and the cell division archetype share the largest amount of marker genes (Figure
3.14). We hypothesise that this is due to the cellular survival equilibrium that exists and is
dynamic in cancer cells. Cellular growth and hence division is intertwined with and highly
dependent on the metabolic state of the cell (Feitelson et al., 2015; Nong et al., 2023; Phan
et al., 2014). In this chapter | showed TSS changes in genes with roles in two contrasting
states: metabolism and cell division (Figure 4.22), with the YC usage associating with the
metabolic states. The GO of the shared genes reveals hypoxia response genes. Many of these
genes play a vital role in the metabolic reprogramming that occurs in cancer, similar to those
identified in the lipogenesis state (Ho et al., 2020; Van Den Beucken et al., 2011). However,
these genes are also essential for maintaining redox balance in stress environments often
widely present in cancers (Ho et al., 2020). A key initiator of upregulating these genes is the
nutrient sensing TF ATF4. ATF4 has been shown to be involved in both the driving of growth
process through its interaction with mTORC1 and mediating cellular stress gene response
through nutrient sensing (Ebert et al., 2022; KreR et al., 2023; Torrence et al., 2021).
Interestingly we see like the case with SREBP1, ATF4 is also a dual gene, and its expression
remains high in two contrasting states, cell division and biomass and energy (Figure 4.23).
TSS usage however and hence YC enrichment differs between them. This highlights a

potential association of TSS usage and maintenance of the proliferation to metabolism
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equilibrium. Recent research has highlighted an ATM that occurs when the mTOR driven cap-
dependent translation is inactivated (Ho & Lee, 2016; Tamarkin-Ben-Harush et al., 2017). This
stress induced pathway allows for translation of genes vital to the proliferation to
metabolism equilibrium during stress environments (Tamarkin-Ben-Harush et al., 2017). The
presence of dual TSS at these genes highlights a potential transcription level regulation
whose translation could be maintained even in stress environments dependent on their 5’
end motif. Further work is needed to see if shifting to a different TSS in these genes in stress.
Direct interference experiments to test the hypothesis that YR transcripts that lack TOP or YC
motif are continued to be translated in these stress environments unlike the YC transcripts,
are needed.

Many of the nutrient sensing genes vital for both maintaining the proliferation
phenotype and metabolic reprogramming and sustenance during stress harbour dual TSS.
Interestingly, the distance between the relevant YC or YR motif are significantly shorter in
these TF than many other dual genes identified previous analysis by Wragg et al (Figure 4.23
and 4.24) (Wragg et al., 2023). We hypothesise that differential usage could result from
nucleotide bioavailability rather than other regulatory differences. Given the close proximity
of the TSS it is unlikely they will be targeted by alternative CRE or conformational changes.
Experiments that directly alter purine and pyrimidine levels in cells and then analysis of

relative TSS usage would allow this hypothesis to be further explored.

In summary, | show that YC enrichment is correlative with metabolic reprogramming genes
that are widely upregulated in cancers. Although our findings are currently through
association, it has fuelled an ongoing hypothesis that YC usage may enable the production
of sufficient metabolic intermediates required to maintain the hallmark proliferative state in
tumours. We postulate this as the translation of YC transcripts is shown to be regulated by
growth signal pathways specifically the mTOR pathway and the resultant translation has
shown to have a higher efficiency (Borden & Volpon, 2020; Schneider et al., 2022). It
therefore raises the possibility that YC translation may represent a potentially more efficient
way of protein production. When cells meet the threshold required for proliferation and cell
division begins, these transcripts are translated resulting in lower YC. Lower YC in cell division
may also represent a shift is to a more controlled low translation state to sufficiently retain

energy demands required for cell division. Although we cannot currently answer this

129



definitively, we have begun to identify associative trends. Firstly, differential YC usage in the
sub populations as previously mentioned but also across cancers whereby the more
proliferative organoid has a higher YC enrichment. Given our ITH findings we can now
hypothesise that YC usage plays a role in retaining the proliferative state of these lines.

A further association can be made when considering the YC transcripts are heavily
reliant on mTOR regulated translation, such pathways are extremely receptive to external
stress stimuli and become inactivated (Csibi et al., 2014; Thoreen et al., 2012; T. Tian et al,,
2019; Zou et al., 2020). Therefore, if a tumour is heavily dependent on YC usage and enter a
stressed state they are likely to be unable to translate the cap-dependent YC transcripts.
Contrastingly the slower growing organoids showing a YR dependency appear to respond
better to stress. Future work is needed to understand the potential link between TSS usage
and the ATM that has recently been elucidated in hypoxia and stress induced states.
Furthermore, as we show that shifting to YR usage correlates with the enrichment of cell
division genes, this highlights a potential cell cycle level regulatory process likely enabling
the proliferative capacity of the cell, such hypothesis is further explored in the following

chapter.
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Chapter 5: Mapping TSS usage in

cell cycle dynamics

5.1 Introduction
The previous chapters demonstrated YC enrichment associated with increased growth and

proliferation, but low YC was associated with enrichment of cell cycle gene expression. We
hypothesised these contrasting results may indicate a potential TSS regulatory role in cell
cycle phases. The cell cycle and its regulation are central in cancer initiation, progression,
and response (Hanahan & Weinberg, 2011). Unsurprisingly it is one of the most investigated
phenomena in cancer research and is one of the most frequently targeted cellular processes
in anti-cancer therapy (Castelli et al., 2021; Feitelson et al., 2015; Sazonova et al., 2024). As
discussed in Chapter 1, maintaining the proliferative phenotype and transition into
guiescence in response to environmental pressures is a vital equilibrium for cell survival and
is also a marker for cellular differentiation (Basu et al., 2022; Castelli et al., 2021; Dalton,
2015).

Core promoter architecture differences have already been identified in differentially
cycling genes in our lab. Previous work from Dr Joseph Wragg identified that promoter usage
became sharper as cells became more differentiated and slower cycling (Wragg et al., 2020).
Although this sharpening showed TSS usage reduced to a small number of bases, they did
not establish specific TSS initiator class usage. Therefore, TSS usage dynamics have yet to be
explored in the context of cell cycle phases. In this chapter, | aim to see if the ITH TSS usage
we see in our organoids can be resolved by cell cycle phase differences.

So far, we have identified a relative proliferative state association to TSS usage,
however we are currently limited to single time points that prohibits temporal analysis. We
are yet to appreciate the evolutionary dynamics of cellular states such as cycling phasing in
organoid development and how these cycling dynamics differ between two differentially
growing organoids. Spatiotemporal resolution of cellular physiological states will allow us to
potentially understand better the role of TSS usage in tumour growth. Organoids sufficiently
recapitulate tumour heterogeneity and spatial organisation (Rios & Clevers, 2018; Sayed et al.,

2021; Z. Zhao et al., 2022). Furthermore, previous archetype analysis in Chapter 4 shows
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retention of evolutionary dependent ITH in our organoids. Therefore, they represent an
exciting model to explore cellular physiological states and TSS usage in tumour formation
and to interpret cellular genomics data with imageable phenotypes.

In this chapter | aim to develop a longitudinal high-resolution imaging protocol for 3D
cultures that can be utilised to resolve cell cycles. A recognised ongoing challenge of using
organoids is the inability to truly capture their whole structures using live imaging due to the
complexity of their culturing conditions (Alladin et al., 2020; Hof et al., 2021; Serra et al.,
2019). Often benchtop light microscopes do not provide sufficient resolution to capture the
full tumour and requires a more powerful high-resolution scope. The lightsheet microscope
enables Z stack scanning and has minimal illumination plane, which limits bleaching and
enables timed lapse imaging (Oksdath Mansilla et al., 2021). The conventional Z1 lightsheet
apparatus was deemed inappropriate for live organoid imaging and later resulted in the
development of a microscope specifically designed for organoid imaging (de Medeiros et al.,
2022; Oksdath Mansilla et al., 2021; Rios & Clevers, 2018). However, the costing of such
equipment and its limitations to organoids makes it an often-unjustified purchase.
Therefore, | aim to explore whether the Z1 lightsheet imaging protocol previously designed
for Zebrafish imaging, can be adapted to organoids, to enable spatiotemporal mapping of

physiological states in organoid growth.

5.2 Results

5.2.1 YCinitiation usage correlates with cell cycle phase

5.2.1.1 Assigning cell cycle phase identity
Our initial findings showed YC enrichment correlated with fast proliferative global

phenotype. However, Intra-cluster analysis in Chapter 4 (Figure 4.11) consistently found YC
was lower in cells enriched in proliferative genes associated with cell division. This
contrasting finding raised our hypothesis that there was a cell cycle phasing role
underpinning these results. Therefore, to see if the ITH in the organoids could be better
characterised by cell cycle phases, | labelled individual cells using the well characterised cell
cycle scoring function in the Seurat analysis, utilising the previously identified cycle phase
specific marker genes (Kowalczyk et al., 2015). This analysis allows us to identify cells in the

G2M and S phase, cells scoring negatively are assigned as G1 phase. Since there are no
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universal markers for G1, given the variation in expression profiles dependent on the cell
state, we cannot distinguish them from GO. Single cell resolution of cycle phase identity was
labelled on the UMAPs for both organoids (Figure 5.1a). Despite the organoids showing
differences in growth dynamics (Figure 3.1), we don’t see a dominant cycle phase difference
between them with the largest population in both being G1/GO cells (Figure 5.1b). A recent
paper highlighted the significance of replication dynamics on gene expression profiles. These
dynamics feature creates a distinctive cycling pattern on UMAPs and interlinks the intricacy
of transcription replication interaction (Pountain et al., 2024). Interestingly we see a similar
cyclic pattern in our UMAPs, represented by black arrows in Figure5.1a highlighting that
these patterns coincide with cell cycle phasing further emphasising transcriptional cycling

effects.

Studies have shown that a significant decrease in transcription occurs following the G1to S
transition to retain energy for the remainder of the cycle and division process and to limit
replication stress (Riba et al., 2022; Ryl et al., 2017; J. Wang et al., 2021). Our initial quality
control analysis of our sequencing data in Chapter 3 (Figure 3.7a) highlighted a bimodal split
in our cells with two distinct populations showing different read and feature count per cell.
We hypothesised that the potential cause of this was cell cycle dependent. Feature plots in
Figure 5.1 show that this is unlikely. Although we still see a high expression count indicating
the likely well documented G1 transcription wave, other phases show a large number of cells
in this high feature count population. It could be argued that this is resulting from the scoring
system is binary and cycling is dynamic so cells could be just entering or transitioning away
from their assigned phase therefore is not truly representative. Furthermore, distinct
differences in the bimodal split are seen between the two organoids, could highlight a

potential technical capture bias.
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Figure 5.1: ITH of cell cycle phase identity in organoids. (A) UMAP clustered organoids coloured by
cell cycle phase identification through cycle gene scoring. Percentage of each phase present in the
total population coloured by relevant phase (red = G1, yellow = S and green = G2M) throughout.
Arrows indicate cycling pattern of expression data recently outlined in (Pountain et al., 2024) (B)
Feature count (genes captured) per cell grouped by cycle phase.

5.2.1.2 Identifying TSS usage dynamics between cycle phases

Next, | repeated our pseudo bulking analysis, generating CTSS files per cell cycle phase for
both samples independently, ran CAGEr workflow normalising between phase populations
with a = 1.05 fit in range of tags 10 to 15,000 and converted to TPM. Identified promoter
regions and TSS type and performed dual gene YC:YR frequency distribution analysis using
the equation in Figure 5.2a. This analysis shows that in both samples we see a distinctive YC
shift in TSS usage in cells in G1/GO0. Contrastingly in both samples YC is depleted in S and
G2M phased cells, supporting finding from Chapter 4. Further to this, after integrating the

datasets to compare likewise phases between samples we see still see the same trend but
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YC enrichment in G1/GO phase is greater in the more proliferative 389 sample, Figure 5.2.
Literature highlights distinct gene expression profiles underpin each cycle phase. Therefore,
| aimed to rule out that the cycle dependent YC shift was just resulting from an upregulation
in dual initiator genes in G1/GO phase. Correlation analysis of YC:YR against dual gene
expression score per cell, coloured by phase shows no distinct separation in the phases in
dual initiator expression but clear separation is seen in YC:YR (Figure 5.2c). Further
supporting that conventional RNA sequencing approaches that only focus on expression

differences may miss underlying TSS associated dynamics.
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Figure 5.2: YC enrichment differs between cycling phases. Cell cycle scored TSS usage analysis. (A)
Frequency distribution of YC:YR ratio per cycle phase compared to whole average for signature Dual
genes. YC:YR expression ratio calculated per DUAL initiator per cycle phase divided by average YC:YR
ratio for that promoter. Top = 389, bottom = 557. (B) Integrated frequency distribution analysis of
cycle phases for both samples, darker = 389, lighter =557. (C) Average YC:YR ratio vs Dual gene module
score per cell, coloured by cycle phase.

To visualise TSS usage on a single gene level and compare between population, we
generated UCSC genome tracks from the normalised CTSS from the genomic ranges object
supported through CAGEr workflow for each cycle phase population. The bigwig files were

uploaded to UCSC genome browser and custom sessions were generated. Figure 5.3 shows
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an example of a dual gene ATF4 with differential TSS usage between phases where overall
expression is relatively unchanged indicated in the bar charts proceeding each track. We see
in ATF4 an enrichment for YC usage shift compared to a YR enrichment shift in G2M. Many
studies have explored the roles of ATF4 particularly in cancer as it plays a significant role in
stress mediated response through its TF function and plays a vital role in controlling cellular
proliferation and in high levels can induce cycle arrest (Torrence et al., 2021; Wortel et al.,
2017). Expression levels of ATF4 are significant in driving the balance between maintaining
proliferative capabilities and surviving cellular stress through mediating metabolite
production and initiating pro-apoptotic signalling (X. Tian et al., 2021; Wortel et al., 2017).
We also previously identified ATF4 as a candidate dual gene. Differential TSS usage of ATF4
highlights a potentially novel regulatory mechanism of cellular stress regulation,

furthermore high YC enrichment in G1 could indicate a cancer cell pro-growth mechanism.
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Figure 5.3. ATF4 shows cell cycle dependent TSS usage. Genome browser view of ATF4 gene TSS.
TPM per cycle phase per TSS. UCSC genome browser view of ATF4 gene and TSS specific TC for each
Cell cycle phase. YR initiator distinguished by a ‘CA’ TSS and YC by a ‘CC’. Bar chart showing total
TPM per TSS and total sum TPM.

Previous studies have shown ribosomal gene expression is significantly enriched in G1 phase
to facilitate the protein production demand required to enable cycle progression (Nosrati et
al., 2014). Feature plots in our samples further validate this showing in G1 cells we see a
higher % of reads mapping to ribosomal genes (Figure 5.4a). | removed 80 ribosomal genes

and repeated YC:YR frequency distribution analysis to determine if our ratio shifts between

phases were resulting from these genes. Overlaying the frequency plots shows little
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alteration in our plots (Figure 5.4b). This analysis highlights that the YC enrichment we
previously identified in G1 is not just a result of an increase in the TOP containing ribosomal
genes. Furthermore, the absence of significant expression differences, highlights genes with
potential differential regulation through alternative TSS usage potentially involved in cell
cycle dynamics. These findings would be missed in conventional RNA sequency due to the

absence of differentially expressed genes.
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Figure 5.4. Removal of high YC ribosomal genes does not change YC:YR shift in cycle phases. Removal
of ribosomal gene mapped counts (A) Percentage of reads mapped to ribosomal genes split by cycle
phase, sample 389 Top and sample 557 Bottom. (B) Cell cycle Dual gene YC:YR frequency distribution
represented by the black lines and post removal of ribosomal genes in coloured.

| aimed to test if the cycle phase dependent shift observed was specific to the YC TSS or a
global shift of transcript abundance. | repeated the ratio frequency analysis calculating TPM
signal for all dinucleotides including conventional YC and YR, the recently identified non-
biological dinucleotide combinations and the uncharacterised others outlined in Figure 5.5.
The greatest shift was attributed to YC:YR with lower degrees of shifting occurring when

comparing YC to the other groups and almost no cycle phase separation when these were

compared to YR dinucleotides (Figure 5.5).
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Figure 5.5. Dinucleotide shifting is unique to YC initiators. Comparison of dinucleotide usage shifting.
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distribution analysis for all dual genes with both signals (B) YC:YR (C) YC and YR : all other dinucleotides
(OT) (D) YC and YR : Non-biological dinucleotides (NB).

5.2.2 Validation of TSS shifting in cell cycle phase sorted populations
So far, our analysis has been on sequencing generated from one experiment, as we are

currently unable to generate a repeat for this single cell experiment, we wanted to validate
our findings by identifying and performing CAGE sequencing on relevant subpopulations.
Given that we see a significant TSS shifting in cell cycle phases across both samples and that
a well-developed and characterised cell cycle fluorescent tracer, FUCCI, has been developed
we opted to choose cycle phase subpopulations. We generated FUCCI organoids by
transducing our organoid lines with Lenti-viral particles containing the FAST-FUCCI plasmid,
outlined in Appendix 1, that we generated from HEK293 FT cells. Initial attempts relied on
the use of a different FUCCI plasmid: FUCCI-PLIM1 plasmid map outlined in Appendix 1.
However, this plasmid contained truncated forms of the phase specific reporters. | found

essential degradation of the G2M protein marker Geminin was not sufficient and led to
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cytoplasmic accumulation making resolution of cycle phases not possible (Figure 5.6a). A
new FUCCI construct was obtained (FAST-FUCCI) the previous line generation steps were
repeated, and imaging showed only nucleic reporter expression. Comparative image analysis
of the two FUCCI generated lines are shown in Figure 5.6b, proceeding experiments relied

solely on the FAST-FUCCI construct.

(A)

FUCCI-PLUM1 FAST-FUCCI

Figure 5.6. Comparison of different FUCCI construct generated organoid lines. (A) FUCCI-PLIM1
transduced 557 organoid showing inefficient Geminin (green) degradation overlapping with red
nuclear CDT1 expression (white arrows) preventing G1 resolution. (B) Left FUCCI-PLIM1 transduced
557 line and right FAST-FUCCI transduced 557 organoid showing nuclear expression of both
fluorescent reporter proteins. Scale bar 100um.

To compare the relative cycling phase populations, present in our organoids and therefore
validate our single cell scoring we recovered and fixed our FUCCI transduced organoids at
day 14 and imaged in the high resolution Z1 lightsheet. As shown in Figure 5.7 fluorescent
signals demonstrates colour variation and spatial differences which correspond with their
characterised morphology. The more proliferative cystic line (389) shows more disperse and
more cycling cells representative of higher quantity of GFP, such feature is indicative of a
more uncontrolled growth with many cells with proliferation association capacity.
Contrastingly the slower growing more differentiated 557 sample has a more compact,

structured lumen like morphology with a more synchronous phasing of cycling cells.
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557
Solid/budding

Figure 5.7. Organoid lines show differential cycling populations. Morphological characterisation of
organoid lines using brightfield imaging. (B) Comparison of FUCCI generated organoid lines with cells
expressing nuclear mKO2-CDT1 red G1 identity or mAG-GEM green G2M cells. Overlapping of
expressing and hence yellow nuclei represent early S phase. Scale bar 100um.

As our single cell analysis was carried out on non-transduced lines we aimed to see if
proliferative dynamics are potentially altered post transduction and antibiotic selection.
Therefore, we repeated our previously outlined doubling time analysis on the FUCCI positive
organoid lines following both the day 4 and day 14 counting. As seen in Figure 5.8 we see
little alterations compared to the growth dynamics characterised in Figure 3.1. The previous
general trend was retained, whereby Sample 389 is still proliferating faster represented by
a shorter doubling time. Despite this organoid 389 being indicatively sensitive, the antibiotic
selection required to generate the FUCCI lines does not appear to have affected the global

phenotype.
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Figure 5.8. Doubling time analysis on FUCCI Organoid lines. Dot plot representing calculated
doubling time for each line. Each individual point represents 1 well counted at day post seeding (PS)
(A) 4 days PS, (B) 14 days PS. All experiments were a minimum of n=3.

| cultured our FUCCI organoids to day 14 following the same culturing, harvesting and single
cell suspension protocol performed in the single cell experiment. To bulk according to cell
cycle phase, | FACS-sorted according to the FUCCI fluorescent reporters using the highlighted
FACs gates defined in Chapter 2.4.2, ensuring consistent and similar environmental
conditions as that used in the optimising for the single cell experiment. The use of the FUCCI
reporter also allowed us to distinguish between G1 cells and those in GO as the latter will be
the non-fluorescing population denoted in blue in Figure 2.5. Therefore, | obtained 3
populations from sample 557: G1, G2M and GO cells, since we yielded different quantities of
cells to make comparable sequencing libraries, | down sampled both G1 and GO to match
the 50,000 cells obtained in the G2M population. Lower concentrations of RNA were
obtained than were necessary for standard CAGE workflow, therefore we opted to perform
the small cell number optimised SLIC-CAGE protocol outlined in Chapter 2.4.2. Initial QC
metrics obtained from library preparation showed little carrier RNA retention used in the

SLIC-CAGE protocol and good quality RNA was identified.
BAM files were generated per population and analysed using CAGEr workflow. Promoter
specific CTSS identified and TSS defined into promoter group (YC or YR) as before and relative

TPM signals were used to calculate YC:YR ratio. Frequency distribution analysis of YC:YR
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demonstrated the similar trend of YC enrichment in G1 compared to G2M (Figure 5.9) as
seen in the scored pseudo bulked single cell experiment validating our findings (Figure 5.2).
Furthermore, GO followed a similar YC enrichment as G1, with little separation occurring

between the two populations (Figure 5.9).
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Figure 5.9. YC enrichment in dual genes is seen in G1 and GO cells. Frequency distribution of YC:YR
ratio per cycle phase compared to whole average for signature Dual genes. YC:YR expression ratio
calculated per DUAL initiator per cycle phase divided by average YC:YR ratio for that promoter.

To identify whether any genes differ in their TSS usage between G1 and GO | plotted a gene
by gene comparison of normalised YC:YR for G1 vs GO. Genes with high YC preference in G1
but high YR usage in GO would plot in the bottom right quadrant of the scatter (+0.5 value
for G1 > x >-0.5 value for GO) where x = a dual gene. Genes with the reverse trend, High YC
in GO but high YR in G1 would plot in the upper left quadrant (+0.5 in GO > x > - 0.5 in G1)
(Figure 5.10). | performed GO analysis on these populations to identify enriched pathways
using KEGG enrichment and identified metabolic genes are enriched in YC genes in GO, as
cells enter the cell cycle and hence G1, YC enrichment shifts to the regulator genes with
known translation associated functions. The enrichment in YC usage in the metabolic genes
is likely needed to enable sufficient cellular metabolite composition to aid in cellular division
before cells enter the cell cycle. Upon entry to G1 TSS usage shifts to the translation
associated genes potentially to drive protein production from the previously generated GO
transcripts, highlighting a potentially transcription level regulation of translation in cell cycle

regulation.
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Figure 5.10. Discrimination of genes with YC enrichment in G1 and GO cells. Per gene comparison of
normalised YC:YR value for G1 vs GO. (A) normalisation equations per sample. (B) gene by gene scatter
plot of normalised YC:YR value in G1 cells vs normalised YC:YR value in GO. Blue indicates genes where
they show YC enrichment in G1 but YR enrichment in GO. Red indicates genes with GO YC enrichment
and G1 YR enrichment. (C) Kegg pathway analysis of enriched genes that show YC enrichment in GO
and YC enriched pathways in G1.

To better visualise the YC:YR distributions | converted the frequency distributions into box
plots, as can be seen in Figure 5.11 the median points of G1 and GO are almost equal. Given
that previous results show that high YC in G1 is attributable to translation associated genes
many of which harbour the indicative TOP motif. | hypothesised that a higher degree of
separation of G1 and GO would be seen between genes not containing the motif. Therefore
| repeated YC:YR frequency distribution analysis ranking genes by TOPness of the initiator
motif one base at a time. Starting with genes with full TOP motif whereby the conventional
5’ pyrimidine sequence is found, YC4 containing only 4 pyrimidines thus flanked by purine
bases, YC3 with 3 pyrimidines and finally YC2 where only two pyrimidines with sequence
(‘CC’ or ‘TC’) are found. Interestingly we found a greater degree of separation and hence YC

shift in GO in the YC2 genes than with the full TOP motif (Figure 5.11).
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Figure 5.11. Decreasing TOP motif likeness separates YC enrichment of G1 and GO cells. Frequency
distribution bar chart plots for FUCCI separated cell cycle phases. (A) YC:YR including all YC signals.
(B) Decreasing TOPness of YC initiator sequence. Top panel including YC signal only from genes with
conventional TOP sequence. YC4 includes genes only with initiator sequence with 4 pyrimidines, YC3

with only and YC2 where only two pyrimidines are found or pure YC.

5.2.3 Selection of GO meta gene for cell cycle phase stratification
To try and validate the GO vs G1 findings and to be able to perform DGE analysis between

GO0 and G1 cells | aimed to identify the GO cells in our single cell data by generating a GO meta
gene. The meta gene was composed of GO vs G1 DEG that | could score the single cell data
for. The initial TSS TPM frequency distribution graphs in Figure 5.9, show little difference
between the two phases. | hypothesise that it is unlikely that these GO cells represent
senescent cells and given the nature of cancer organoid culturing, cells are likely
continuously growing, explaining the significant similarity between G1 and GO. To identify
any potentially differentially expressed genes between the G1 and GO | performed clustering
analysis using the self-organising maps (SOM) algorithm, as we currently do not have repeats
to carry out statistically relevant Deseq analysis. | log transformed the totalled TPM per CC,
meaning signal was not separated by initiator type and thus included all signal and

performed SOM using gaussian neighbourhood functioning (Figure 5.12a).
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Figure 5.12. Identifying cycle phase differentially expressed genes using SOM cluster analysis. (A) 4
by 4 SOM cluster analysis of all TPM signal per cell cycle phase. (B) Gene ontology analysis of the
differentially expressed genes between GO and G1.

| extracted genes from clusters whereby the median of GO was greater than G1, Clusters 3_0,
3 1 and 3_3, and defined these as the GO meta gene. GO of the GO meta gene shows lipid
metabolism associated functions (Figure 5.12b), including the upregulation of genes
associated with inhibition of phospholipase enzymes. Phospholipases are crucial enzymes
that harbour varying functions ranging from production of lipid metabolic biproducts to
signal transduction pathways all of which have shown significant involvement in cancer
progression through proliferation dynamics (Salucci et al., 2023). Moreover, phospholipase
has a significant role in maintenance of the WNT signalling pathway in CRC, a pathway known

to mediate cellular proliferation (W. C. Hwang et al., 2022). Clinical inhibition of these
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enzymes as a potential cancer treatment showed significant reduction in cell proliferation
(W. C. Hwang et al., 2022; K. F. Scott et al., 2010). | concluded that the intrinsic upregulation
of genes with such inhibition function seen between G1 and GO populations are a sufficient

GO meta gene to identify potentially non-cycling cells in our single cell scored data.

To identify the potential GO cells | performed module scoring using our GO meta gene on
single cell data of sample 557, as this was a sample match to our FUCCI CAGE sequencing.
GO identity was then assigned to cells in the upper quartile of prediction scores showing
significant upregulation compared to average. Visualisation of the potential GO cells seen in
Figure 5.13 showed that only cells that were previous G1/GO assigned cells contained GO,
consistent with expectation. The GO cells appeared to also cluster together in a population
distinctively separate from the main clusters and thus may represent cells with
transcriptome associated with leaving the cell cycle whereas the other cluster highlights cells

entering or within the cell cycle.
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Figure 5.13. Clustering visualisation of GO cells in single cell data. UMAP Clustering analysis of
single cell sequenced Organoid 557 coloured by cell cycle phase identity achieved through cycle
phase gene scoring including G1/GO0 separation using GO meta gene highlighted in blue.

To validate the observed GO vs G1 TSS shifting in the FUCCI CAGE analysis, | pseudo bulked
the sample 557 single cell data by cycle phase, now including the newly identified GO cells.
Then | extracted associated cellular barcodes and generated CTSS files using the filtered

SCAFE reads and ran CAGEr workflow as previously. Frequency distribution analysis of dual
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genes showed the same YC enrichment shifts in G1 and GO seen in our FUCCI analysis in
Figure 5.14. Furthermore, both analyses also showed a slightly greater YC shift in GO
compared to the other cycling phases represented by a higher median value (0.68) in the
frequency distribution analysis. Although this analysis provides some degree of validation,
experimental repeats are needed in addition to the same analysis on a separate line to

identify whether this is universally found.
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Figure 5.14. G1 and GO scored cells retain YC enrichment. Frequency distribution analysis of YC:YR
for single cells scored by cycle phase genes including GO metagene to distinguish between GO and
G1 cells. YC:YR calculated per gene per cycle phase divided by average YC:YR for that gene.

5.2.4 Development of long-term high-resolution live imaging protocol

Evolutionary analysis of tumour development is becoming a popular approach to
characterise the plasticity of cellular states and behaviours (McGranahan & Swanton, 2017;
Shackleton et al., 2009). So far, our TSS usage associations to cell state are limited to single
fixed time points. However, our results have shown that G1/G0 specific YC enrichment
maybe a contributing factor in enabling proliferative capabilities. Research has highlighted

the significant timing relevance of these associated cycling phases in enabling and
sustaining high proliferative phenotypes (Fleifel & Cook, 2023; Viner-Breuer et al., 2019).

For example, shortened G1 phase has been established in highly proliferative tumours and
research has strived to understand the regulatory mechanisms that enable this change

(Fleifel & Cook, 2023). Like many cellular states, cycling dynamics are believed to be highly
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dependent on spatiotemporal factors (Gaglia et al., 2022). Therefore, | aimed to
characterise the spatiotemporal patterning of cycling phases in our organoid development.
This was to better understand the growth and hence cycling dynamics in our organoids and
how they may differ between two differentially proliferating lines. Thus, exploring our
hypothesis that the more proliferative line would be underpinned by more G2M
populations and notably shorter cycling phase lengths. The complexity of 3D culturing
conditions, however, makes high-resolution 4D imaging challenging. Furthermore, broad
field microscopy fails to truly capture organoid 3D structures which results in low resolution
of fluorescent reporter spatial patterning (Figure 5.15a). High resolution imaging such as
that achieved with the Z1 light sheet microscope allows for better retention and analysis of

3D architecture (Figure 5.15b).

Broad field Microscopy

Lightsheet Microscopy

Figure 5.15. High resolution imaging captures organoid 3D architecture. (A) Broad field microscopy
imaging of FAST-FUCCI organoids at day 10 (left) and day 14 (right). (B) high resolution lightsheet
imaging of early 7-day 557 organoid (left) and late-stage day 14 (right). Scale bar 50um.

| aimed to develop a protocol to enable high-resolution long-term imaging of organoids
adapting culturing conditions to suit Z1 lightsheet imaging. The imaging set up for the Z1
lightsheet highlighted in Figure 5.16 shows its complex hanging design that requires
suspension of the sample into the imaging chamber, this methodology allows for 3 axis

movement and hence visualisation. Therefore, my experimental design outlined in Chapter
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2.3 Figure 2.1 encompassed the conventional organoid culturing suspension in BME
encased in a holding medium that would allow suspension from the lightsheet capillary.
The cultured organoids would then be imaged in the lightsheet before being returned into
an adapted vertical culturing approach utilising a modified T75 tissue culture lid on a falcon
tube containing Intesticult organoid media. Although it would be desirable to fill the Z1
lightsheet imaging chamber with the organoid media, it contains phenol red and previous
studies have shown it can increase background fluorescence (Stadtfeld et al., 2005).
Furthermore, this media is highly expensive, and the volume required to sufficiently fill the
chamber makes it extremely impractical. To enable the success of this protocol we needed
to identify a holding medium that would have specific biochemical and biophysical
properties that would not interfere with organoid growth and would be strong enough to
hang in a suspension from the glass capillary. We sought out the collaboration of chemical
engineers working with a novel fluid hydrogel called Gellan with malleable molecular
characteristics to enable strategic manipulation to provide a suitable holding medium.
Gellan is composed of a natural biopolymer containing polysaccharide repeating units
(Cooke et al., 2018). This simple sugar-based structure forms distinct similarities to the
extracellular matrix in cells (Albrecht et al., 2022; Cooke et al., 2018). The microstructure of
Gellan can be seen in Figure 2.1, the fluidity of the gel giving it gel like properties is achieved
using a sheering process in its production that creates Van der Waals forces between
smaller fragments (Cooke et al., 2018; Jamshidi et al., 2016). The optimisation of Gellan and
determining most suitable microstructure formation as our holding medium is outlined in

Chapter 2.3.3.
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Figure 5.16. Longitudinal high resolution imaging protocol. Zeiss Z1 lightsheet sample set up
showing suspension of holding capillary into imaging chamber. Loaded gel embedded sample is
pushed into focal plane and hence hanging from capillary. Adapted from (Eberle et al., 2015)

| confirmed Gellan does not affect cellular viability through visualisation of cellular
behaviour and appearance using Broadfield microscopy and comparing to conventional
culturing conditions not embedded in Gellan (Figure 5.17). | found that no apparent affects
to cell viability was seen and growth to 5 days showed retention of average organoid size in
gels 1,2,4 and 5. However significant decrease in organoid growth and cell death was seen
in the high salt containing gels 3 and 6. A likely cause was a disruption to osmotic balance
and therefore causing cell stress and even bursting, these gels also lacked the optical clarity
and therefore we did not proceed with these. This validated both permeability, viability,
and optical clarity of gels. As outlined in Chapter 2.3.3.1 the optimisation analysis
highlighted gel 4 (Table 2.2) as the most appropriate microstructure for imaging and as

shown in Figure 5.17 cell viability is retained in this gel.
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Figure 5.17. Gellan embedding does not impact organoid growth. Broadfield imaging of Day 5
organoids line 557 (A) normal culturing conditions including only BME embedding. (B) Gellan
embedding of BME encased organoids using the different Gellan compositions corresponding to gel
identity. Scale bar 400um.

The imaging was set up as outlined in Chapter 2.3.4. with initial attempts imaging the FUCCI
organoids every 12 hours and retained in the vertical culturing tube when not being imaged.
As outlined in Figure 5.18a | was able to capture and hence map the initial cycling phase
transitions in the first 7 days of organoid growth represented by fluorescent nuclei
highlighting the presence of cycling phase. The continued expression of the Geminin
reporter over multiple time points indicated cells were not undergoing stress induced G1
arrest. Therefore, determining the protocol thus far successful. Initial results showed
shorter doubling times than calculated in the doubling time analysis. Figure 5.8 showed
doubling time was on average 3 days, however Figure 5.18 shows it the be much shorter,

with initial and most subsequent divisions occurring within 24 hours.
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(A)

(B)

Figure 5.18. Cell cycle tracking of FUCCI organoid over 14 days. Fluorescent snapshots of nuclear
expression of FUCCI fluorescent reporters in the same organoid over 14 days (Post seeding on day
0) using adapted long-term high-resolution imaging protocol in Zeiss Z1 lightsheet. Captured using
selected lasers 488 and 561nm at 1.8 and 1.3 intensity and 219.71 millisecond (ms), scale 50um. (A)
Tracking of cell divisions using both fluorescent reporters to distinguish cycle phase and number of
nuclei. Same organoid imaged every 12 hours. (B) Same organoid imaged for days 8-14 showing loss
of synchronicity and resolution of individual cellular changes.

Although | was able to continue imaging post 7 days, the tracking of cellular changes
became challenging as the time points were too far apart making resolution of each cellular
behaviour insufficient (Figure 5.18b). To overcome this, future attempts would have to
increase the time points after 5 days. Although it was an aim to complete this, such
experiment is extremely time consuming and laborious. Therefore, to overcome this and
hence make the approach more practical, we aim to adapt the protocol further to remove
the need of removing of the sample, resulting in continuous imaging. Despite this set back,
we have shown that Gellan works as a successful immobilisation medium to allow high
resolution longitudinal imaging of organoids. To validate that the protocol and hence Gellan
does not impact growth, Figure 5.19 shows comparison of Day 14 organoids using
conventional culturing and those cultured in the designed protocol. Both size and

morphological characteristics were consistently retained across both.
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(A) Conventional Culturing (B) Gellan Vertical Culturing

x v il 5 .
Figure 5.19. Morphological characteristics of organoids are retained using Gellan embedded
vertical culturing. Day 14 snapshot image of organoids grown in different culturing protocols. (Top
= organoid 389, Bottom = organoid 557). (A) Broadfield snapshot of organoids cultured as per
standard culturing conditions embedded in BME and in a 24 well plate. (B) Lightsheet brightfield
snapshot of matched organoids grown using Gellan embedded vertical culturing protocol designed
in this thesis. Scale in all 200pum.

5.3 Discussion

The layman definition of cancer is defined as the uncontrolled growth of a cell (Brown et al.,
2023). This highlights that even in its simplest terms dysregulation of proliferative dynamics
is a core factor underpinning cancer aetiology. Understanding the regulatory processes that
facilitate cell cycle dysregulation has been a cornerstone of cancer research and a key target
for anti-cancer therapies (Feitelson et al., 2015; Sazonova et al., 2024). Many studies have
already established the transcriptional influence on cell cycle dynamics in both healthy and
cancer cells and noted the timed upregulation of specific genes vital for cycle progression
(Bar-Joseph et al., 2008; Fischer et al., 2022). Furthermore, links to the transcriptional
landscape and maintaining a distinctive proliferative phenotype have been identified. Gene

expression patterns underpin both retention of plasticity and transitions down
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differentiation lineages (Castelli et al., 2021; Ruiz et al., 2011; Tzamali et al., 2014). Although
efforts have identified gene regulatory networks involved in controlling this, many of the
findings have focused on conventional transcriptional regulation and often ignored the role
of the promoter. Therefore, the aim of this chapter was to identify whether TSS usage differs
between cell cycle phases. Building on the work in the previous chapters that identified the
significance of core promoter TSS variation in cellular physiological states. This work suggests
a transcriptional link to phenotypic determination not previously explored given that this
dynamic would not be detectable in conventional RNA sequencing. We have already
identified proliferation associated TSS usage relevance, in Chapter 3, | found a significant YC
enrichment in faster growing organoids (Figure 3.1). Following this in Chapter 4 the ITH
analysis highlighted cells enriched in genes associated with cell division, showed a significant
depletion in YC usage compared to other cells (Figure 4.11). Therefore, in this chapter | aimed
to see if cell cycle phases provided a greater association to TSS usage to elucidate a potential

TSS usage role in cycling dynamics.

TSS usage shows cell cycle phase shifting.

Our primary observations indicate that, despite differing growth phenotypes, the initial
single cell scoring analysis revealed similarly separated cell cycle phases across the samples,
with nearly equal numbers of cells in G1 (Figure 5.1). However, given the single cell sample
preparation process, and despite considerable efforts to minimize cellular stress, it is possible
that cell cycle phase distribution may have been affected, particularly in the more sensitive
389 line, which could influence our results. Stressed cells tend to undergo a G1 arrest and
therefore may result in a larger proportion of RFP cells (Fleifel & Cook, 2023; Foy et al., 2023;
Kuczler et al., 2021). Therefore, the higher-than-expected G1 cells in sample 389 maybe
resulting from this. Comparison of fixed day 14 organoids from both lines shows
representative differences in both the presence and distribution of cycling populations
(Figure 5.7). The imaging analysis further highlights the need for linking spatiotemporal

dynamics with transcriptomic data to truly understand cellular behaviours.

Despite this, in this chapter, | show TSS usage shifting in a cell cycle phase dependent manner
(Figure 5.2). Although previous studies have outlined differential gene expression

underpinning cell cycle phase differences (Fischer et al., 2022; Riba et al., 2022; Whitfield et
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al., 2002). I show that TSS usage also differs between the cycle phases and may also provide
a previously unexplored level of differences in non-differentially expressed genes.

| further demonstrated our TSS shifting findings through our FUCCI sorted CAGE
analysis and provide stratification between the G1 and GO phase (Figure 5.9). Initial findings
showed little differences between the G1 and GO populations, we believe this is likely due to
many of the cells continuously cycling. Given the nature of organoid culturing they are likely
already beginning to re-enter the cell cycle. To identify terminally non dividing cells, we could
score or sort for a marker of senescence such as the two cyclin dependent inhibitors p16 and
p21 (W. Huang et al., 2022). Interestingly however, when utilising the generated GO meta
gene to identify GO cells in our single cell data, they predominantly presented in a cluster
distinctively distant from the rest of the cells (Figure 5.13). It could be predicted that this is
the population of cells exiting the cell cycle and the larger group dominated by G1 cells are
those entering the cell cycle. Our findings support the idea that these were continuously
cycling as our SOM clustering showed similarity in gene expression between both G1 and GO
(Figure 5.12). However, disparities were identified and highlighted phospholipase inhibitor
genes (W. C. Hwang et al., 2022; Reynisson et al., 2016). As previously stated, these inhibitors
have been highly implicated in preventing cellular proliferation and felt an appropriate GO

meta gene.

Utilisation of YC TSS usage differs in gene preference between G0 and G1

Despite having little DEG between the G1 and GO, differential promoter usage was present.
Although both showed a marked YC enrichment when compared to the later cycling phases,
upon scrutinization of the genes responsible for YC enrichment in each phase we saw distinct
differences (Figure 5.10). In GO, YC usage appears to preferentially shift toward metabolic-
associated genes, while in G1, YC shifting and subsequent enrichment are more prominent
in regulatory genes, which we have aptly named the sensors and translators. We hypothesise
that this TSS usage dynamic may represent an adaptive process that plays a regulatory role
of both progressing into the cell cycle but also the speed of the phasing. Previous studies
have highlighted that cap dependent translation is likely an efficient, yet energy demanding
process widely regulated by growth signals it is therefore the optimal mechanism in nutrient
rich or unstressed cells (Borden & Volpon, 2020; Cormier et al., 2003; Merrick, 2004; Richter &

Sonenberg, 2005). With regards to the cell cycle, particularly in cancer where cell turnover is
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almost constant, GO represents a phase to ensure sufficient metabolic intermediates to
progress into the cell cycle (Kaplon et al., 2015; Mercadante & Kasi, 2021; Wiecek et al., 2023). The
shift to YC dominance in the metabolic dual genes (Figure 5.10c) shows a potential increased
need for this and that when a hypothesised threshold is met cells enter the G1 phase where
translation has been shown to be abundant (An et al., 2018; Kronja & Orr-Weaver, 2011).
Therefore, resulting in a YC enrichment in the translation associated machinery including
ribosomal biogenesis genes (Figure 5.10c) we hypothesise to aid in the translation of the
previously generated YC transcripts. Many of the regulatory genes seen in Figure 5.10c, that
show YC enrichment in G1 are nutrient sensing genes. As highlighted in Chapter 4 (Figure
4.23 and 4.24) we observed many of the nutrient sensing genes that are dual, including ATF4
and SREBF1 have very little distance between the relative YC and YR TSS. We hypothesise
that the differential usage observed here is unlikely due to differences in transcriptional
regulation. The TSS close proximity likely limits variations in transcription factor binding or
conformational changes that could facilitate interactions with other CREs. Therefore, we
believe at these nutrient sensing genes, differential usage could be resulting from nucleotide
bioavailability a process highly dependent on the metabolic state of a cell, potentially

determined in GO.

In this chapter, | also identify an increased YC enrichment in the G1/GO of the more
proliferative line compared to the G1/GO of the slower growing line (Figure 5.2b). The
abundance of YC transcripts in these phases in a high-growth signalling line may suggest a
role for TSS usage in regulating cell cycle phase timing. Previous studies have identified a
significant shortening of the G1 phase length in rapidly proliferating cells (Fleifel & Cook, 2023;
Viner-Breuer et al., 2019; Zaveri & Dhawan, 2018). Efforts to establish the regulatory processes
that aid this phase shortening have identified expression of oncogenes such as CCNE1 critical
to G1 length. Moreover, recent research suggests that core pluripotency reprogramming
factors, particularly c-MYC, may play an integral role by targeting DNA licensing genes (Fleifel
& Cook, 2023). We hypothesise that TSS usage could also influence cycling dynamics, with YC
enrichment potentially facilitating the rapid upregulation of key genes to shorten such
phases. However, further analysis is required to confirm this hypothesis. For instance,
repeating FUCCI-CAGE experiments on both lines and comparing phase-specific TSS usage

may provide insights. Additionally, it would be important to assess whether cell cycle phase
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lengths differ between the lines and if these differences change as the organoid grows,
highlighting the need for spatiotemporal image analysis to fully characterise the relevance

of these phenotypes.

YC is lower in later stages of the cell cycle.

Our results consistently show YC usage is lowest during cellular states associated with
cell division. Interestingly this process shows a significant transcriptional remodelling almost
similar to that seen in stressed cells whereby gene expression is relatively conserved to
specific subsets that aid in this function (Bostrém et al., 2017; Fischer et al., 2022; Ito et al.,
2001). Additionally, studies have shown that cap-dependent translation is significantly
depleted in the G2M phase of the cell cycle (Cormier et al., 2003). Given that previous
research has shown YC transcripts, specifically those with a TOP motif, are targeted in a cap
dependent manner, our findings of low YC in these phases supports the literature. Many of
the genes that remain actively translated contain an internal ribosome entry site (IRES),
which allows them to bypass the core translation machinery necessary for cap-dependent
translation (Cormier et al., 2003; Walters & Thompson, 2016). This continued expression is often
observed in DDR genes and represents an adaptive mechanism frequently exploited in
cancer. This is particularly relevant in cases where a shortened G1 phase leads to reduced
DNA licensing and increased replication stress (Fleifel & Cook, 2023). Understanding the
regulatory mechanisms that enable the sustained expression and translation of these genes
holds promise for developing novel anti-cancer therapies. Work so far has focused on the
translation level role however we show a potential TSS and hence transcriptional role. Our
identification of the shift to YR dominance in these phases potentially indicates a
conservative TSS shifting potentially utilising less energy demanding cap independent
translation. It is also possible that the low YC in these later cycling phases are a result of the
translation of the increased YC transcripts produced in the former phases. This highlights an
intricate regulatory network and highlights potentially previously unappreciated genes
involved in cell cycle regulation, which could play a crucial role in cancer dysregulation. Many
of these genes may have been overlooked as therapeutic targets because the dynamic nature

of TSS usage is not typically captured in RNA sequencing studies.

Gellan represents a suitable immobilisation medium for organoid imaging.
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All our findings highlight how dynamic the cycling process is and to fully understand its
significance in governing tumour growth we must understand its relevance beyond time
point bias restrictions and hence explore the spatiotemporal patterning of these states. We
attempted to develop a longitudinal high-resolution imaging protocol that would enable us
to map cycling dynamics through fluorescent reporter tracing whilst retaining true
recapitulation of the complexity of 3D cultures like organoids. Other research has opted to
develop an alternative lightsheet microscope the Bruker InVI SPIM Lattice Pro suited for
accommodating the complex culturing conditions that facilitate organoid growth. Others
have also resorted to using plate-based microscopes such as the Cytation (Ramm et al.,
2022). The latter comes with significant limitations as imaging is only done from illumination
upwards, whereas the lightsheet enables full 3 axis visualisation meaning imaging is not
hindered by auto focusing limitations (Ramm et al., 2022; Rios & Clevers, 2018). As we do not
have access to the newly developed organoid lightsheet, we aimed in this chapter to develop
a protocol that would enable us to use our preexisting Z1 lightsheet an often widely present
machine in many imaging facilities.

Although further testing and repeats are needed, we successfully utilised our protocol
to image our organoid cultures up to 14 days (Figure 5.18). Furthermore, we show that our
experimental conditions to not appear to impose growth defects on our lines (Figure 5.19),
given that organoid size does not drastically differ between ours and the conventional
culturing approach. Furthermore, distinctive morphological characteristics we previously
identified in our lines were also retained, likely owing to our approach encompassing the use
of BME essential for retaining cellular adhesions. In addition to further repeats incorporating
more time points for further resolution of population changes between the two different
samples, the approach can be further adapted to explore other questions. For example, as
the Gellan is permeable to the media exploration of the impact of specific drug therapies on
the cycling dynamics could be investigated. The adaptability of the Gellan microstructure
represents an opportunity to alter its composition to aid in imaging other structures

including other 3D cultures or even small organisms such as zebrafish embryos.
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Chapter 6: General Discussion

Even small decisions can have a big impact.

The work in our lab shows that even at the smallest resolution of a cell, the nucleotide base
choice governing the formation of the building blocks of a cell, can have an impact on its
fundamental growth and survival function. Our understanding of the core regulatory
elements controlling gene expression has extended to a newfound appreciation of the
promoter. Previous work has often overlooked its significance, despite its vital integrative
role for transcriptional signalling and its harbouring of initiation site (Haberle & Stark, 2018;
Tirosh et al., 2009). Yet an interesting choice exists in 1000s of genes: the site of transcription
initiation. This base resolution difference has led to the classification of promoters through
alternative TSS defined simply by their initiator sequence, with potential differential pre and
post transcriptional regulation (Nepal et al., 2020; Wragg et al., 2023). To better understand
the functional relevance of these dual initiator genes in different contexts, our lab has begun
identifying trends associated with differential TSS enrichment in both development and
disease. This previous research identified an enrichment of the YC TSS usage in cancer which
then raised questions as to whether there was a role of alternative TSS usage in cancer
aetiology (Wragg et al., 2023). Such hypothesis was further supported by the identification
of heterogeneity in the YC enrichment between cancers and even in vitro cultures such as
organoids (Wragg et al.,, 2023). Despite providing a novel biomarker to irradiation
responsiveness our understanding of the functional dependence and hence biological
significance of TSS usage specifically YC enrichment in cancer was limited.

The core aim of the work in this thesis was to greaten our understanding of differential TSS
usage in cancer cell behaviours, in hopes to identify potential regulatory mechanisms that
may be novel therapeutic targets. The overarching finding in this work identified that TSS
usage differs between cells in different states. This is beginning to paint a picture that TSS
may have a more distinguished role in cellular functioning than previously understood.
Although the work is still very preliminary, so far, we have shown correlative associations
between global TSS usage and specific cellular states, specifically cell cycle phases. To better
our understanding of the impact and consequence TSS usage has on cell function, more
interrogative experiments must be undertaken. Despite this, the following discussion will

highlight the current trends | have identified in this thesis, what | hypothesise this could
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mean and the essential experiments that are needed to further our understanding of the

fundamental biological role of TSS in gene regulation.

YC enrichment underpins growth and stem-like phenotypes.

In this thesis | attempted to identify a potential link between TSS usage and cellular
physiological state and even fate through association to differentiation status. The
resounding finding of the work presented here is that YC enrichment consistently correlates
with fast growth dynamics, both on a single cell and global level. A fundamental principle of
cancer evolution is the sustaining of continual proliferation (Feitelson et al., 2015; Hanahan
& Weinberg, 2011; Keibler et al., 2016). Many efforts have attempted to identify the
molecular underpinnings of dysregulated growth dynamics and consistently highlighted the
significance of gene expression profiles (M. Li et al., 2017; J. Wang et al., 2015). This
regulatory process is hypothesised to exist in an equilibrium, specifically in cancer where cell
trajectories are highly dependent on balancing growth promotion and survival through
metabolic adaptation (Faubert et al., 2020; Keibler et al., 2016; Zhu and Thompson, 2019;
Schiliro and Firestein, 2021; Loftus et al., 2022). Therefore, the transcriptional landscape
adapts through the upregulation of genes involved in these cellular functions (Faubert et al.,
2020; Gallaher et al., 2019; Keibler et al., 2016; Morandi & Indraccolo, 2017; Nong et al.,
2023; Phan et al., 2014). By understanding the mechanisms that control and support this
adaptive process, especially in cancer, we can identify potential targets for intervention that
might drive cancer cells to undergo apoptosis. As my results consistently show alternative
TSS usage, in the form of YC enrichment, associating with fast growth dynamics, it raised the
guestion as to whether TSS usage may play a role in this growth regulatory mechanism. To
explore this further | interrogated the genes that had dual TSS and showed alternative TSS
usage between the fast and slow growing populations. My results showed that many of these
genes were linked to metabolic homeostasis (Figure 3.14b, Figure 4.18b and Figure 5.22b).
The differential usage of TSS appears to be attributable to the state of the cell. In growth
demanding conditions, a constitutive phenotype in many cancers, YC appears to be the
preferred and hence dominant TSS in dual initiator genes (Figure 3.1). | show that this usage
links to an increase in growth signals driving cellular proliferation and drives a global growth
phenotype (Figure 3.10). ITH analysis showed that YC enrichment correlated with other

features including less heterogeneity, represented by a lower number of clusters, and
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absence of clear cellular differentiation (Figure 3.12a, Figure 3.16 and Figure 3.17).
Contrastingly, YC usage is much lower in the slower growing, more differentiated
populations. Given these findings, | hypothesise that enrichment of YC transcripts may confer
a growth advantage. Such reasoning could be supported by evidence showing that these
transcripts contain binding sites heavily targeted by mTOR regulated TIM, coupled with
findings suggesting this specific translation mechanism maybe more efficient (Bouyahya et
al., 2022; T. Tian et al., 2019).

This choice may also come at a cost, YC enrichment also correlates with treatment
responsiveness and an increased sensitivity to mTOR inhibition (Figure 3.2) (Wragg et al.,
2023). Therefore, blocking of these signalling pathways directly or indirectly through stress,
results in an inability to survive potentially resulting from the inability to translate the
abundant YC transcripts. Further research is needed to identify whether the YC enrichment
directly plays a role in treatment response, or if it is simply just a consequence of another
regulatory factor. Although experimentally challenging, direct interference with YC TSS usage
through alteration of YC motifs in genes of interest may answer this. Furthermore, an
experiment to knock out key genes involved in the mTOR regulated TIM, would show the
importance of the translational level of regulation. For example, many of these genes are
believed to be targeted by LARP1 to enable mTOR associated translation. Knock out of LARP1
followed by CAGE analysis of these genes would be insightful in understanding whether their

expression is continued but with a direct shift in TSS usage to YR.

In this work | successfully carried out single cell CAGE on cancer cells and explored
cellular specific TSS usage even down to a single cell, a resolution yet to be achieved (Figure
4.3 and Figure 4.14). | found that despite high sequencing depth, characterisation of single
cell TSS usage at a gene level is challenging and future work would strive for even deeper
sequencing. Work in chapter 4 shows that TSS usage is heterogeneous even in a globally YC
enriched sample (Figure 4.3). Characterising the cellular physiological state to identify
expression profiles linked to YC enrichment was challenging due to the lack of a unified
method for defining cell states (Figure 3.12 and Figure 3.13). Conventional single cell
clustering may ignore underlying GO, however utilising archetypes provided reference states
with core functions already defined in cancer aetiology (Figure 4.19 and Figure 4.21).

Archetype analysis further supported our belief that TSS usage contributes to the
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proliferation equilibrium. Work by Hausser et al defined key marker genes for the universal
archetypes and emphasised the importance of overlapping genes, genes that are
upregulated in multiple archetypes (Hart et al., 2015; Hausser et al., 2019). | show that these
overlapping genes exhibit distinct dual initiator capacity, with their relative usage
attributable to the cell's state or archetype. This analysis showed YC usage was highest in
cells associated with metabolic archetypes and lowest in cells undergoing cell division (Figure
4.20 and Figure 4.22). This further supports our previous global analysis, highlighting the
potential role of YC in meeting metabolic demands to facilitate cellular growth. Current
analysis however is still correlative and direct links of the importance of TSS usage and
maintaining metabolic balance is limited. Future experiments that directly disrupt cellular
growth—such as limiting metabolic intermediates and assessing their impact on TSS
dynamics—could offer invaluable insights into the relationship between TSS usage and
cellular state adaptation. Potential approaches include altering core metabolites in the
culture media, such as serum deprivation or limiting amino acid supplementation. To remove
the complexity that accompanies organoid analysis, the use of 2D lines may also provide

benefits to these interference experiments.

YC enrichment differs in a cell cycle dependent manner.

Although the two organoid lines analysed in the single-cell experiment exhibited distinctly
different global phenotypes and TSS usage profiles, | identified shared ITH states with similar
TSS usage dynamics (Figure 4.11). These shared states consistently correlated to cell cycle
dynamics. Therefore, in Chapter 5 | characterised ITH by cycle phases and found YC usage
was directly attributable to both GO and G1 phases (Figure 5.2, Figure 5.9 and Figure 5.14).
| hypothesise that this indicates a potential role of cell cycle dependent TSS usage to increase
metabolic macromolecule production, enabling cells to meet the energy demand required
for cell division. Highly proliferative cancers appear to have shortened growth phases in their
cell cycle and is a hallmark of their stem-like plasticity (Coronado et al., 2013; Fleifel & Cook,
2023; Y. Hwang et al., 2020; L. Liu et al., 2019). Entry into and out of a cycle phase however
is dependent on metabolic thresholds being met. Our findings that YC is not only enriched in
faster growing cells but is also attributable specifically to the growth phases of the cell cycle,
indicate that YC transcripts may directly or indirectly facilitate the meeting of this threshold

faster. Previous research has shown that TOP containing transcripts harbour a significant
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increase in translation efficiency through utilisation of cap-dependent machinery (Bouyahya
et al., 2022; T. Tian et al., 2019). Given that our analysis shows YC usage dynamics behave
similar to TOP usage they may share a potential unified regulatory mechanism, one that is
more translationally efficient. Although speculative, these associations could suggest that
cells utilise YC transcript production as a more efficient mechanism to facilitate fast growth
dynamics. Combining polysome profiling with CAGE sequencing would provide evidence as
to whether specific initiator motifs in transcripts are being differentially translated. Such
experiments have already begun to be carried out, Wang D, et al found that translation
efficiencies altered dependent on motifs in the 5° UTR of genes linked to synaptic activity (X.
Wang et al., 2019). Using this experimental framework but comparing between fast and slow
growing cells would allow for further insight into whether TSS directly links to growth
dynamics.

The relative shift in YC usage in specific subsets of genes between GO and G1 may
further fuel this speculative functional dynamic that YC is favoured for efficiency. The
observed high YC usage in metabolic genes in GO could account for the need to provide
sufficient metabolic and energy requirements to enter the cell cycle (Figure 5.10). The
resultant shift to high YC in translation and regulatory genes seen in G1 could facilitate the
translation of the previously upregulated metabolic transcripts, thereby promoting cell cycle
progression. Finally, a YR usage shift in the remaining division phases likely represents a
conservative transcriptional landscape, supporting previous literature that identified the
decrease in cap dependent translation in S and G2M phases (Cormier et al., 2003; de la Parra
et al., 2018). This dynamic shifting of TSS usage between cycling phases maybe a potential
regulatory mechanism that contributes to cell cycle phase length and hence overall tumour
growth phenotypes. To explore and validate this, future experiments could include
comparing the TSS usage of cycling populations between differentially proliferating
organoids. Performing CAGE on the FUCCI populations in conjunction with image based

temporal mapping of cycling phase lengths would provide a more causative link.

TSS usage may shift in cellular stress.
While the focus so far has been on the role of the proliferation-equilibrium dynamicin driving
growth and cellular division, this thesis also highlights the emerging recognition of the

reverse trend. The shift from YC to YR in states of stress was initially outlined by preliminary
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experiments in the lab that showed YC was depleted post irradiation (Wragg et al., 2023). As
previously highlighted, many metabolism-associated genes possess dual TSS capacity, and
other studies have shown their sustained transcription and translation in stressed cells (Ho
et al., 2020; Ho & Lee, 2016; Tamarkin-Ben-Harush et al., 2017). The inactivation of the key
cap-dependent translation pathway mTOR in these stressed environments, is the main
driving force for global translation suppression (Tamarkin-Ben-Harush et al., 2017). Stressors
including hypoxia and other nutrient deficiencies exert significant energy demands on a cell,
and the expression of these metabolic reprogramming genes shifts the equilibrium from
proliferation to survival (Tamarkin-Ben-Harush et al., 2017). The observed decrease in YC
levels post-irradiation, a state of cellular stress, alongside the inactivation of mMTOR—a
pathway that targets YC-TOP-containing transcripts—suggests that YR usage may be
favoured under these conditions. This shift could indicate that YR transcripts possess an
alternative translation mechanism. Further experiments are required to explore this
possibility. Future work could look to performing RNA immunoprecipitation targeting the
mTOR-specific TIM, followed by RT-qPCR using specialised primers designed by Wragg et al.
for candidate dual-function genes (Nepal et al., 2020; Wragg et al., 2023). This would help
guantify the relative abundance of 5' motifs in the captured RNA subsequently targeted by
TIM.

Furthermore, a similar stress like environmental condition is seen in the later stages of
the cell cycle, where growth signals and translation are also lower and energy is redirected
toward essential processes like DDR (Cormier et al., 2003). Here we find a significant YC
depletion and hence YR TSS preference (Figure 5.2, Figure 5.9 and Figure 5.14). We
hypothesise that YR usage in certain genes is favoured under energy-conserving conditions
to enable cap-independent translation, bypassing the inactive mTOR-driven translation
pathway. Recent studies have also identified ATM as a specific regulator of these genes (Ho
et al., 2016; Ho & Lee, 2016; Tamarkin-Ben-Harush et al., 2017). However, the research has
remained on the translational level, but our results indicate that a transcriptional element
could interlink (Figure 3.10, Figure 3.20, Figure 4.6 and Figure 4.18). The shift toward YR
dominance in metabolic reprogramming genes under conditions such as nutrient
deprivation, hypoxia, and other energy-conserving states may represent a TSS-based
adaptive mechanism that promotes cellular survival (Figure 3.20). Repeating the above

proposed experiment but targeting the ATM in the immunoprecipitation would provide
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evidence for this hypothesis. Furthermore, scrutinization of the TSS usage between whole
and nascent RNA production would provide invaluable insight into TSS shifting dynamics in
direct response to environmental stimuli. Such experiment could encompass the
methodology outlined in slam-seq. The premise of this experimental procedure allows for
the incorporation of a modified uracil nucleotide to establish the nascent RNA products (P.
Bhat et al., 2023; Wissink et al., 2019). Therefore, the timed addition of the nucleotide
following a stressor such as hypoxia would enable the identification of newly synthesised
RNA transcripts and their preferential TSS usage. This would allow us to identify a direct

shifting highlighting a transcriptional level of regulation to cellular survival.

So far, our TSS dynamics shows usage attributable to physiological states that indicates
potential differential regulatory mechanisms possibly dependent on their 5" motifs. Research
has shown the role of specific translation initiation binding machinery and regulators such as
LARP1 in controlling the translation of TOP containing transcripts (Hochstoeger et al., 2024;
Jia et al., 2021; Mura et al., 2015; Ogami et al., 2022). Previous work in the lab, now further
supported by this thesis, has shown that other YC transcripts exhibit similar behaviour
(Figure 5.11), suggesting a potentially unified regulatory mechanism. Further
characterisation is needed to determine whether these mechanisms affect all YC transcripts
or only those containing a TOP motif. If the latter, the significance of the motif's distance
from the 5' end in relation to differential regulation must also be established. Furthermore,
we have yet to fully understand the impact of TSS usage on transcript diversity. Utilising a
long-read sequencing approach to capture exon boundaries could reveal valuable splice
variants and further illuminate differential post-transcriptional regulation (K. K. Huang et al.,
2021; Marx, 2023; Reese et al., 2023).

Furthermore, the identification of functionally relevant genes involved in differential
TSS usage opens the opportunity to further explore their CRE landscape. In this thesis | have
identified an interesting feature present in nutrient sensing genes, whose resultant cascade
can significantly rewire transcriptional outputs. The promoter architecture highlighted in
Figure 4.23 and Figure 4.24 shows dominant TSS usages with little separation. It is unlikely
that in these genes differential CRE can act on the different TSS, therefore it is hypothesised
that their usage is dependent on nucleotide bioavailability, a metabolically regulated

process. The data produced in this thesis represents an exciting resource to further
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scrutinise. Firstly, on a gene level to identify potential CRE such as TF binding sites associated
with specific TSS usage and through association with our characterised cellular states, their
usage in an environmentally context dependent manner. Secondly on a single cell level to

establish potential co-occurrence patterns of specific TSS usage.

Gellan represents a suitable holding medium for facilitating vertical culturing to enable
long-term high-resolution imaging.

A major limitation of sequencing is its inherent bias toward a single time point, which
restricts our ability to fully appreciate the significance of TSS usage in dynamic cellular states.
Research has highlighted the importance of appreciating the plasticity of cancer cell
behaviour (G. R. Bhat et al., 2024, Clairambault & Shen, 2020; Holton et al., 2024; S. Qin et
al., 2020; J. shun Wu et al., 2021). Archetype analysis on cancer cells has emphasised the
impact environmental factors have on cellular states and the plasticity of the transcriptome
to adapt to these pressures (Combes et al., 2021; Groves et al., 2021; Hausser et al., 2019;
Hausser & Alon, 2020). Spatiotemporal mapping of cellular states can therefore provide
invaluable insight into regulatory dynamics in tumour evolution. Spatial transcriptomics is
gaining significant traction with recent advances even enabling single cell resolution (Vahid
et al., 2023; Zhou et al., 2023). Although we have characterised interesting ITH states in our
organoids, we cannot conclude on their full relevance without understanding the SC
population location and presence in all organoids. For example, do all the organoids present
in a specific line harbour the same composition of cellular physiological states? How
representative are our clusters to the whole line? Therefore, a spatial transcriptomic
experiment would allow us to identify the distribution of our cellular states using
transcriptomic markers we have established. This would allow us to see if the populations
are pervasive throughout each organoid in that line or if specific organoids show different
cluster dynamics highlighting a potential bias in our data. To achieve true resolution however,
a long-term high-resolution mapping experiment will enable full appreciation. The vertical
culturing protocol developed in this thesis represents a novel approach to visualising
organoid dynamics, given its compatibility with Z1 lightsheet imaging set up. We have shown
that the biosynthetic and natural polymer Gellan is an exciting malleable holding medium
that can facilitate imaging set up demands without hindering culturing development (Figure

5.18 and Figure 5.19). A significant challenge encountered was the loss of tracking individual
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cells post 7 days given the loss of synchronicity in cycling dynamics meaning cycling changes
were often missed. To overcome this, we could increase the imaging time points however
this would require extensive experimental hours. We aim to further adapt the protocol to
enable constant imaging, thus removing the need for the altered culturing in a falcon tube.
This could be achieved through adapting the lightsheet imaging chamber to lower the
volume needed thus reducing the amount of media making it feasible. Given the malleability
of Gellan microstructure we show the adaptability of this resource to hopefully enable future
use to other cellular structures both tissue culture based and whole organism such as
zebrafish. Further adaptations on this method could also allow for redundancy in the use of

the falcon tube and enable direct culturing in the lightsheet to achieve true 4D imaging.

Conclusions

This thesis sheds new light on the previously underappreciated role of TSS usage dynamics
in shaping transcriptional landscapes that define cellular physiological states, even at the
resolution of a single cell. Our findings suggest the presence of a potentially dynamic
mechanism driving the growth processes commonly seen in cancers, along with a shift that
may occur to balance cellular growth and survival in a cell cycle-dependent manner.
However, it is important to acknowledge that many of these insights remain associative, and
moving beyond correlative analysis will require more direct experimental interventions to
validate these observations. Despite the current limitations, this work lays the foundation for
a deeper understanding of how promoter activity interconnects with other regulatory
mechanisms, functioning intricately at the single-cell level. The results presented here are
hopefully just the beginning, offering a new perspective on the significance of TSS usage in
broader regulatory networks, and paving the way for future studies to unravel the

complexities of transcriptional regulation in health and disease.
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Appendix A.1: pLUM1-FUCCI plasmid map. PLL3.7m-clover-geminin (1-110)-IRES-mKO2 -Cdt(30-
120)) (Addgene 83841) truncated versions of the reporter genes were generated to facilitate the
co expression with additional Plasmid that allows for full 4 phase resolution of the cell cycle
outlined and generated in (Bajar et al., 2016).
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Appendix A.2: Fast-FUCCI plasmid map. pBOB-EF1-FastFUCCI-Puro (Addgene plasmid, 86849)

plasmid map generated and utilised by (Koh et al., 2017).
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Appendix B

Table 1: Outline of patient cohort data for PDCO generation. Including Pre operation treatment (SCRT
= Selective Combined Radiotherapy, LCCRT = Locally Combined Chemoradiotherapy), irradiation
responsiveness of organoids in culture, relative TNM status of source tumour and CMS classification
and mutational status of key driver genes.

Sample ID

Patient Age Gender

PreOp Treatment

Irradiation Responsiveness

Pre-op TNM

Location

Mutation Count

Driver gene mutational status

5292064

79 Male

CMs2

None

Responsive 1 [R1)

T3NOMO

Sigmoid

11877

TP53 missense

APC stop gained

FEXW7 missense

TGIF1 frameshift

5302389

B1 Male

CMs2

None

Responsive 2 (R2)

T3N1MO

Colon

17275

TP53 missense

APC frameshift

S0XS frameshift

TCF7L2 frameshift

SMAD4 missense

MS5H2 frameshift

5300884

74 Male

CMs2

SCRT

Moderately responsive

TaN1IMO

Rectal

16028

TP53 missense

MRAS missense

APC stop gained

MSHE frameshift

S0OXg frameshift

GMAS missense

5345653

55 Female

CM34

LCCRT

Non-responsive (NR1)

TZNOMO

Rectal

11993

TP53 inframe deletion

KRAS missense

APC frameshift

S0X3 stop gained

SMAD4 frameshift

FEXW7 missense

5366557

75 Female

CMs1

Nane

Non-responsive (NR2)

T3NOMO

Colon

18511

KRAS missense

APC missense

MSHE frameshift

PIK3CA missense

BMPR2 frameshift

BCLSL frameshift

PTEN missense

RPL22 frameshift

ACVR2A frameshift
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Appendix C

Table 1: Full list of consensus dual initiator genes. Consensus cluster ID and HGNC gene name of genes
found to have both YC and YR TSS across both organoid and pan cancer analysis.

cclD Gene Name cclD Gene Name cclD Gene Name
671|UBAP2L 876|EIF2D 1117|HEATR5B
672|HAX1 881|CD55 1124{QPCT
681|ADAM15 885|LAMB3 1125(CDCA2EP3
682|EFNA4 900{NENF 1137|COX7A2L
684|EFNA1 913|EPRS1 1141(LRPPRC
686/|DPM3 915|IARS2 1157|ERLEC1
687|KRTCAP2 916|RAB3GAP2 1159|SPTBN1
692|FAM189B 924|CAPN2 1161|RTN4
693|SCAMP3 933|WDR26 1163[MTIF2
698|DAP3 938|EPHX1 1174|CCT4
703|SSR2 944|H3-3A 1176|B3GNT2
704|LAMTOR2 953|ARF1 1178|MDH1
705|RAB25 956|GUK1 1180{UGP2
706(LMNA 958|H2AW 1185|RAB1A
710|PMF1-BGLAP,PMF1 959|H2BU1 1187|SPRED2
712|GLMP 961|RAB4A 1191|PPP3R1
713|CCT3 963|GALNT2 1198|PCBP1
725|HDGF 969|GNPAT 1203|FAM136A

TSNAX-

731|TAGLN2 974|DISC1,TSNAX 1209|MPHOSPH10
734|DCAF8 978|PCNX2 1221|TPRKB
743|PFDN2 983|TOMM20 1233({INO80B
746|UFC1 984|RBM34 1234|WBP1
748|BAGALT3 990|GPR137B 1236|MRPL53
750|SDHC 996|FH 1240(AUP1
753|UHMK1 998|SDCCAGS8 1253|KCMF1
756|MGST3 999|ADSS2 1256|RETSAT
758|TMCO1 1002|COX20 1261|GGCX
763|CREG1 1004|HNRNPU 1263|RNF181
765|MPC2 1015|SH3YL1 1265(USP39
780|PRDX6 1016|ACP1 1267(IMMT
787|CACYBP 1017|TMEM18 1270|CHMP3
789|KIAA0040 1022|RPS7 1271|RMND5A
796|QSOX1 1032|1AH1 1280(CIAO1
800|ACBD6 1040|HPCAL1 1281|SNRNP200
806|DHX9 1051{NBAS 1287|COX5B
812|Clorf21 1063|SF3B6 1295|MRPL30
815|RNF2 1065|PTRHD1 1297|EIF5B
820|PTGS2 1069|RAB10 1299(NPAS2
821|PLA2G4A 1070{HADHA 1303|RNF149
846|ELF3 1071|HADHB 1307|MRPS9
858/ TMEM183A 1078|0ST4 1308(C20rf49
862|SNRPE 1089|PPM1G 1310(FHL2
863|S0X13 1090{NRBP1 1321(MALL
865(PPP1R15B 1091|KRTCAP3 1330{CHCHD5
871|CDK18 1106|YPELS 1337|ACTR3
874|NUCKS1 1110|YIPF4 1343|(DBI

171



cclD Gene Name cclD Gene Name cclD Gene Name
1350(NIFK 1523|RPL37A 1728|TCAIM
1352(BIN1 1525|IGFBP2 1731|KIAA1143
1361|MZT12B 1530|TMBIM1 1753|MAP4
1367|MZT2A 1539|RETREG2 1756|TMA7
1371|RAB3GAP1 1557|MRPL44 1761|UQCRC1
1375|DARS1 1559|MFF 1764|1P6K2
1379|MMADHC 1566(ITM2C 1767|ARIH2
1387|ARL6IP6 1571|PSMD1 1769|WDR6
1399|GCA 1573|B3GNT7 1771{IMPDH2
1400|GALNT3 1575(NCL 1773|QARS1
1402|STK39 1583|GIGYF2 1777|USP4
1407|PPIG 1585|ATG16L1 1780|RHOA
1411(SSB 1588|HJURP 1787|APEH
1412|METTL5 1594(MLPH 1793|RBM6
1417|DYNC1I2 1596|LRRFIP1 1806|MANF
1418|DYNC1I2 1605|NDUFA10 1810|TEX264
1421|ITGA6 1606|COPS9 1813|ABHD14B
1423|MAP3K20 1611|GPR35 1820{WDR82
1424|CDCA7 1612|PPP1R7 1830|GNL3
1425|0LA1 1615|HDLBP 1832|SPCS1
1430|LNPK 1619(BOK 1838|TKT
1431|MTX2 1621|THAP4 1849|ARF4
1441|ITPRID2 1631|ARLSB 1860|PSMD6
1443|NCKAP1 1638|ARPC4 1864|SUCLG2
1445|ZC3H15 1644|BRK1 1865|TMF1
1447(TFPI 1645|VHL 1867|ARL6IP5
1450|GULP1 1658|RPL32 1876|GBE1
1452|WDR75 1665|SLCEA6 1883|CPOX
1463|STAT1 1668|NR2C2 1884|DCBLD2
1467|STK17B 1672|SH3BP5 1888|NIT2
1470|SF3B1 1674|EAF1 1889|TOMM70
1474|HSPE1 1678|TBC1D5 1891|TFG
1480|SPATS2L 1683|UBE2E1 1893|PCNP
1486|BZW1 1690(|SLC4A7 1894|ZBTB11
1487|CLK1 1696|0OSBPL10 1896|RPL24
1490|0ORC2 1698|CMTM8 1912|NAA50
1492(|NDUFB3 1700|CMTM6 1913|ATP6V1A
1500|NOP58 1701|DYNC1LI1 1920|NDUFB4
1504|ABI2 1703|GLB1,TMPPE 1927|FAM162A
1506|NDUFS1 1706|PDCD6IP 1934|CCDC14
1507|EEF1B2 1708|LRRFIP2 1946|PODXL2
1508|EEF1B2 1711|ACAAL 1949|SEC61A1
1510|CREB1 1718|EIF1B 1952|RPN1
1512(IDH1 1719|RPL14 1953|RAB7A
1518|ATIC 1722|TRAK1 1956|I1SY1-RAB43,1SY1

HIGD1A,ENSG0000

1520|PECR 1726|0280571 1958|COPG1
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cclD Gene Name cclD Gene Name cclD Gene Name
1970|CDV3 2220|FAM114A1 2416|LRBA
1981(NCK1 2223|LIAS 2418|RPS3A
1988|SLC25A36 2227|UBE2K 2424|MND1
1992(RNF7 2237|SLC30A9 2426|PLRG1
2003|PLSCR1 2244|0CIAD1 2427|PPID
2004|GYG1 2258|PAICS 2434|CBR4
2012|WWTR1 2259|SRP72 2435|CLCN3
2016|SERP1 2261|NOA1 2443|HMGB2
2017|(EIF2A 2264|UBA6 2449|SPCS3
2020|{MBNL1 2265|YTHDC1 2452|DCTD
2026|SSR3 2267|UTP3 2457|RWDD4
2038|NMD3 2268|GRSF1 2460]|IRF2
2050(EIF5A2 2271|COX18 2463|CENPU
2051|TNIK 2276|CXCL3 2468|CFAP97
2055|TNFSF10 2287|USO1 2482|BRD9
2057|ECT2 2299|ANXA3 2487|LPCAT1
2060|MFN1 2305|HNRNPD 2489(MRPL36

NDUFB5,ENSG0000

2063|0288698 2307|HNRNPDL 2490|NDUFS6
2066|FXR1 2309|ENOPH1 2491|IRX2
2068|ATP11B 2310|{SCD5 2494|NSUN2
2069(DCUN1D1 2314|PLAC8 2495(SRD5A1
2072|B3GNT5 2317|ABRAXAS1 2501|CMBL
2082|ALG3 2320|HSD17B11 2502|MARCHF6
2089|POLR2H 2322|PYURF,PIGY 2504|DAP
2102|DNAJB11 2329|EIF4E 2516|SUB1
2103|EIF4A2 2330|METAP1 2519|TARS1
2105|ST6GAL1 2331|ADH5 2530(PRKAA1
2112|HES1 2341|MANBA 2532|RPL37
2119|TFRC 2346|CISD2 2544|NDUFS4
2126|PAK2 2348|PPA2 2559|SMIM15
2131|MELTF 2353|AIMP1 2565|SREK1IP1
2134|FYTTD1 2354(PAPSS1 2577(CENPH
2136|RPL35A 2355|HADH 2578|MRPS36
2138|ZNF721 2356|RPL34 2588|MRPS27
2140|ATP5ME 2357|0STC 2595|BTF3
2142(GAK 2358|SEC24B 2599(HEXB
2158|RNF4 2362|GAR1 2602|HMGCR
2159(TNIP2 2372|CAMK2D 2611|TBCA
2163|NOP14 2379|USP53 2613|SCAMP1
2170|STX18 2380|C4orf3 2622|RPS23
2173|MRFAP1 2383|ANXA5 2623|TMEM167A
2186|WDR1 2400{NAA15 2625|COX7C
2200|MED28 2404|MGST2 2626|RASA1
2205|DHX15 2405|SCOC 2630/{TMEM161B
2207(SOD3 2406|ELMOD2 2642(GLRX
2212|SMIM20 2413|LSM6 2644|CAST
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cclD Gene Name cclD Gene Name cclD Gene Name
2661|SRP19 2813|PTTG1 3034|MRPS18B
2662|REEP5 2814|CCNG1 3036|C60rf136
2663|DCP2 2820|RARS1 3038|NRM

TMED7-

2669|TICAM2,TMED7 2825|NPM1 3040|TUBB
2670|ATG12 2831|RPL26L1 3047|DDR1
2676|TNFAIP8 2832|ATP6VOE1 3050|{TCF19
2677|HSD17B4 2840|HIGD2A 3055|MICA
2681|PPIC 2845(UIMC1 3058|DDX39B
2685|ALDH7A1 2849|RAB24 3065|CSNK2B
2694|HINT1 2852|LMAN2 3072|CLIC1
2698|P4HA2 2855|PDLIM7 3075|LSM2
2702|SEPTINS 2871|HNRNPH1 3087|PSMB8
2703|UQCRQ 2872|CANX 3092|SLC39A7
2704|AFF4 2877(MRNIP 3095(RING1
2706|HSPA4 2878|TBC1D9B 3105|CUTA
2708|VDAC1 2879(RNF130 3106|CUTA
2715|CDKN2AIPNL 2894|RACK1 3108|ITPR3
2717|SEC24A 2898|GMDS 3111|HMGA1
2718|CAMLG 2902|SERPINB6 3116|RPS10,RPS10-NUDT3
2719|DDX46 2907|PSMG4 3120|TAF11
2721|TXNDC15 2913|SSR1 3137|PIM1
2725|MACROH2A1 2917|DSP 3144|GLO1
2726|TGFBI 2920(TXNDC5 3151|TOMM6
2728|HNRNPAO 2926|TMEM14C 3164|RRP36
2738|CTNNA1 2928|NEDD9 3171(TJAP1
2740|MATR3 2931|NOL7 3173|YIPF3
2743|UBE2D2 2936(GMPR 3186|TMEM63B
2744|CYSTM1 2944|DEK 3187|SLC29A1
2746|HBEGF 2964|H1-2 3189|HSP90AB1
2755|WDR55 2965|H4C3 3201|TNFRSF21
2756|HARS1 2971|H2BCs 3202|CD2AP
2759|ZMAT2 2979(H2AC8 3226(LMBRD1
2760|TAF7 2985|H2BC9 3234|COX7A2
2766|DELE1 2990|HMGN4 3239|HMGN3
2769|NDFIP1 2996|H2BC12 3244|1BTK
2772|YIPF5 3005(H2AC15 3251|NT5E
2780|CSNK1A1 3006|H2BC15 3264|UBE2)1
2784|CD74 3007|H2AC16 3274|ASCC3
2786|RPS14 3012|H3C11 3276|PREP
2788|DCTN4 3014|H3C12 3287|SNX3
2789|SMIM3 3015|H2AC17 3289|FOX03
2790|TNIP1 3027|RPP21 3301|GTF3C6
2791|ANXAG 3028|HLA-E 3303(TRAF3IP2
2800|{CNOT8 3030|GNL1 3306|HDAC2
2805(THGIL 3031|PRR3 3307|NT5DC1
2809|TTC1 3033(PPP1R10 3309|RWDD1
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cclD Gene Name cclD Gene Name cclD Gene Name
3319|TPD52L1 3567|SEC61G 3771|RBM28
3326|CENPW 3571|MRPS17 3777|ATP6V1F
3330|ARHGAP18 3574|CCT6A 3789|COPG2
3332|EPB41L2 3577|CHCHD2 3794|CHCHD3
3337|TBPL1 3589|SBDS 3799|STMP1
3341|MYB 3602(BUD23 3800(MTPN
3346|PEX7 3606|CLDN3 3802|CREB3L2
3350|PERP 3609|EIF4H 3810|TBXAS1
3352(HEBP2 3611(CLIP2 3818|MRPS33
3355|ABRACL 3618|MDH2 3819|SSBP1
3356|HECA 3620(HSPB1 3824(EPHB6
3359|ADGRG6 3631|TMEM60 3825|GSTK1
3360|AIG1 3640|SLC25A40 3828|ZYX
3361|ADAT2 3651|FAM133B 3829|EPHA1
3365|SF3B5 3653|CDK6 3830|TCAF1
3368|GINM1 3658|PON3 3833|PDIA4
3381|MTRF1L 3661|PON2 3848|SLC4A2
3395|EZR 3664|SEM1 3850{TMUB1
3400|{TCP1 3669|BRI3 3866|UBE3C
3406|SFT2D1 3670|BAIAP2L1 3868|DNAJB6
3409|RNASET2 3674|ARPC1A 3888|FDFT1
3418|PSMB1 3675|ARPC1B 3899|MTUS1
3420|PDCD2 3676|PDAP1 3900|PCM1
3456|ACTB 3679|BUD31 3901(ASAH1

ATP5MF,ATP5MF-

3462|RAC1 3682(PTCD1 3910|FHIP2B
3464|KDELR2,DAGLB 3687|TRIM4 3911|NUDT18
3474|NDUFA4 3688|ZKSCAN1 3932|SLC25A37
3475|TMEM106B 3692|MCM7 3937|PPP2R2A
3478|BZW2 3695|LAMTOR4 3940|DPYSL2
3482|AGR2 3696|TRAPPC14 3943|PTK2B
3483|AGR3 3716|ZNHIT1 3948|CCDC25
3486(SNX13 3717|FIS1 3957(DUSP4
3490|CDCA7L 3719|CUX1 3959|SARAF
3493|TOMM7 3725(ARMC10 3960(LEPROTL1
3508|CBX3 3726|PMPCB 3961|DCTN6
3520|GGCT 3733|SRPK2 3965|GSR
3521|GARS1 3737|SYPL1 3976|BRF2
3526|FKBP9 3738 NAMPT 3982|LSM1
3531|SEPTIN7 3745|LAMB1 3985|DDHD2
3533|ANLN 3749|DNAJB9 3992|TM2D2
3540{MRPL32 3750{IMMP2L 3993|ADAM9
3544|MRPS24 3752|ZNF277 4001|POLB
3552|0GDH 3755(BMT2 4002(VDAC3
3554|ZMIZ2 3764|FAM3C 4008|FNTA
3556|H2AZ2 3769|ARF5 4011(SPIDR
3563|UPP1 3770|SND1 4016(PCMTD1
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cclD Gene Name cclD Gene Name cclD Gene Name
4018|ATP6V1H 4170|FAM91A1 4446|SEC61B
4019|TCEA1 4173|TATDN1 4450(TEX10
4021|MRPL15 4174|NDUFB9 4451|MRPL50
4022|TMEM68 4178 NSMCE2 4455(SLC44A1
4024|LYN 4181|LRATD2 4457|RAD23B
4025|RPS20 4186|CYRIB 4464|TXN
4031|SDCBP 4188|ASAP1 4466|ECPAS
4039|ASPH 4194|ST3GAL1 4467|PTGR1
4043|MTFR1 4197|CHRAC1 4470[{GNG10
4044|RRS1 4198|AG0O2 4472|PTBP3
4054|TRAM1 4199|PTK2 4491(FBXW2
4055|LACTB2 4205|LY6E 4496|GSN
4062(ELOC 4208|TOP1IMT 4500({RBM18
4063|TMEM70 4212|GSDMD 4509|PSMB7
4066|PEX2 4224|NRBP2 4511(RPL35
4074|FABP5 4229|PLEC 4512|ARPC5L
4076|ZFAND1 4231(GRINA 4526(STXBP1
4078|CHMPA4C 4237|SHARPIN 4533|ST6GALNAC4A
4079|RBIS 4240|BOP1 4540|LCN2
4081|RMDN1 4241|HSF1 4541|BBLN
4082|CPNE3 4248|CPSF1 4543|GOLGA2
4084|0SGIN2 4250|VPS28 4544(SWI5
4086|DECR1 4267|RPL8 4547|1COQ4
4090|TRIQK 4276|CDC37L1 4551(SPTAN1
4097|ESRP1 4279|PLGRKT 4553|SET
4105|UQCRB 4285|DMAC1 4554(ZDHHC12
4107|PTDSS1 4295|HAUS6 4566|IER5L
4108/MTDH 4305|CDKN2B 4568({NTMT1
4111|RPL30 4311|NDUFB6 4573|C90rf78
4118|COX6C 4318|CHMP5 4576|ASS1
4127|YWHAZ 4332|DCTN3 4577|FUBP3
4128|YWHAZ 4335|VCP 4582|AIF1L
4129|YWHAZ 4338|UNC13B 4592|GTF3C5
4135|AZIN1 4343|TPM2 4596|RPL7A
4142|0XR1 4352(CLTA 4599|SURF4
4143|EIF3E 4357|ZCCHC7 4605|MRPS2
4144|EMC2 4358|GRHPR 4620(TMEM141
4145|NUDCD1 4359|POLR1E 4622|RABL6

ENSG00000256966

4146|ENY2 4360({,TOMM5 4625|EDF1
4149|EIF3H 4372|CEMIP2 4628|PAXX
4151|RAD21 4379|ANXA1 4630|NPDC1
4157|TAF2 4394|HNRNPK 4631|ENTPD2
4158|DSCC1 4404(CTSL 4647(TOR4A
4166|C80rf76 4424|MFSD14B 4652|MRPL41
4167|ATAD2 4432|SLC35D2 4662|PFKP
4168|NTAQ1 4440|ANP32B 4672|GDI2
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cclD Gene Name cclD Gene Name cclD Gene Name
4674|RBM17 4860|MYOF 5092(TAF10
4678|ATP5F1C 4868|PDLIM1 5094|MRPL17
4685|NUDT5 4873|TM9SF3 5096(CYB5R2
4687(0PTN 4879(MMS19 5105|IPO7
4690|PRPF18 4886|GOT1 5108(SBF2
4700|STAM 4887|COX15 5109|ADM
4704|DNAJC1 4895|SCD 5113|EIF4AG2

COMMD3,COMMD3;

4705|BMI1 4899|HIF1AN 5119|PARVA
4707|KIAA1217 4903|MRPL43 5125(PSMA1
4710|PRTFDC1 4910(NPM3 5126(C110rf58
4724|ARHGAP12 4924|ARL3 5130(RPS13
4727(ITGB1 4928|ATP5MK 5138|TSG101
4734|ZNF33A 4930|STN1 5154(RCN1
4738|CSGALNACT2 4935|GSTO1 5155|EIF3M
4739|FXYD4 4937|GST02 5156|PRRG4
4742|HNRNPF 4939(XPNPEP1 5165|CAPRIN1
4743|HNRNPF 4943|SMNDC1 5166(CAPRIN1
4750{NCOA4 4945|PDCD4 5170|EHF
4762|CCDC6 4949|ACSL5 5174(CD44
4772|HERC4 4954|TCF712 5184(TTC17
4773|HNRNPH3 4967|EIF3A 5185|HSD17B12
4777|DDX50 4969|SFXN4 5187|EXT2
4778|DDX21 4970|PRDX3 5191|LARGE2
4786|PPA1 4972|RGS10 5195(MDK
4787|EIFAEBP2 4989|EEF1AKMT2 5198|AMBRA1
4789|SGPL1 5000{GLRX3 5210(PSMC3
4791|PCBD1 5006|TUBGCP2 5215(|NDUFS3
4795|PSAP 5008(PRAP1 5216|MTCH2
4796|ANAPC16 5010(FUOM 5217|FNBP4
4797|ASCC1 5012|ECHS1 5221(SSRP1
4806|P4HA1 5014{MTG1 5229(SELENOH
4809|MRPS16 5023|IFITM2 5230/CTNND1
4811|PPP3CB 5028(SIGIRR 5239(MRPL16
4816|CHCHD1 5038|PHRF1 5246|DDB1
4819|CAMK2G 5044(TALDO1 5251(SDHAF2
4825|VDAC2 5056|MUC5AC 5253[TMEM258
4828|RPS24 5061|CTSD 5256(FTH1
4830(ZMIZ1 5062|MRPL23 5260|AHNAK
4835|PRXL2A 5066|CD81 5262|EEF1G
4837|GHITM 5070(SLC22A18 5263|EEF1G
4843|ADIRF 5075(NAP1L4 5265(MTA2
4844|GLUD1 5078|NUP98 5267|GANAB
4847|ATAD1 5079|PGAP2 5271|UBXN1
4848|PTEN 5081|RHOG 5272|BSCL2
4849|ANKRD22 5082|RRM1 5277|TTCOC
4851|FAS 5084|TRIM5 5282(STX5
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cclD Gene Name cclD Gene Name cclD Gene Name
5288|PLAAT3 5491(GAB2 5734(PPFIBP1
5289|ATL3 5492|PRCP 5735|MRPS35
5290(RTN3 5502(PICALM 5738|CAPRIN2

COX8A,ENSG00000

5294(256100 5518|CWC15 5742(SINHCAF
5296|MACROD1 5519|ENDOD1 5746|DNM1L
5300{DNAJC4 5526| TMEM123 5751{TWF1
5301|FKBP2 5531|DCUN1D5 5756[SLC38A2
5310|ESRRA 5547|C1iorfl 5759|HDAC7
5311{TRMT112 5550{SDHD 5762(PFKM
5312|PRDX5 5551|IL18 5766|ARF3
5322|ARL2,ARL2-SNX15 5566| TMPRSS4 5767|PRKAG1
5324(CDCA5 5570|ATP5MG 5771|TUBA1C
5326|VPS51 5572|IFT46 5781|CERS5
5328|FAU 5579|RPS25 5788|LETMD1
5332[CAPN1 5582(SLC37A4 5792(SMAGP
5336|DPF2 5600|SIAE 5795|NR4A1
5361(SCYL1 5605|El24 5796|ATG101
5369|RELA 5606|STT3A 5801|KRT8
5374(CFL1 5609|RPUSD4 5802(KRT18
5377|CCDC85B 5611[SRPRA 5804(KRT8
5378|FOSL1 5616|ST3GAL4 5813|PFDN5
5379(DRAP1 5638|FKBP4 5815(MYG1
5380(DRAP1 5648|CD9 5819|PCBP2
5386|SF3B2 5652[SCNN1A 5824|ATP5MC2
5390(RIN1 5653(LTBR 5828|CBX5
5392(SLC29A2 5656|MRPL51 5830(COPZ1
5393|MRPL11 5659|NCAPD2 5837|CD63
5400(|RBM14 5660{GAPDH 5838[SARNP
5408(SSH3 5664|CHD4 5839|ORMDL2
5410{POLD4 5668|MLF2 5843(PYM1
5412(PPP1CA 5669|PTMS 5850(PA2G4
5414|CORO1B 5675|ENO2 5851|RPL41
5416|AIP 5676|C120rf57 5854(MYL6
5418|CDK2AP2 5679|PHB2 5860(CS
5424({NDUFV1 5685(M6PR 5861|CNPY2
5428 NDUFS8 5692|YBX3 5864|TIMELESS
5434(LRP5 5695(BCL2L14 5872|PTGES3
5436|CPT1A 5701|CDKN1B 5874|NACA
5439(MYEQV 5704|HEBP1 5875(PRIM1
5440[CCND1 5705(EMP1 5881(SHMT2
5443(PPFIA1 5708|PLBD1 5886(DCTN2
5444(CTTN 5712|EPS8 5888(0S9
5462|MRPL48 5715|MGST1 5901|GNS
5463|COA4 5716|PLEKHAS 5903|HMGA2
5485|CLNS1A 5723|LDHB 5904|LLPH
5486|RSF1 5726(KRAS 5906|CAND1
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cclD Gene Name cclD Gene Name cclD Gene Name
5915(LYZ 6121|RAN 6335|BCL2L2
5920|YEATS4 6122|SFSWAP 6339(DHRS4
5922(CCT2 6137|PSPC1 6343|DCAF11
5923|RAB3IP 6138(ZMYM2 6344|PSME1
5926 TSPANS 6140|CRYL1 6349|1P0O4
5929|RAB21 6158/ NUP58 6353 NEDD8-MDP1,NEDD8
5931|ATXN7L3B 6163|RPL21 6360|STXBP6
5937(NAP1L1 6168|POLR1D 6364|HECTD1
5938|0SBPL8 6174|HSPH1 6369|EGLN3
5942(PAWR 6193|VWAS8 6373|SNX6
5950(DUSP6 6194|DNAJC15 6376|FAM177A1
5955(BTG1 6198|TSC22D1 6379|PSMAG6
5957|UBE2N 6202|GTF2F2 6380|NFKBIA
5960(|NDUFA12 6207|TPT1 6389|PNN
5964|METAP2 6209|SLC25A30 6393|PRPF39
5966(SNRPF 6213|ESD 6396|RPS29
5967|LTA4H 6217|ITM2B 6399|RPL36AL
5970(SLC25A3 6220|RCBTB1 6404|ARF6
5971(IKBIP 6221|EBPL 6409|NIN
5976(UTP20 6223|TRIM13 6410|PYGL
5977|ARL1 6238|MZT1 6412|RTRAF
5986(C120rf73 6243|COMMD6 6414|ERO1A
5989(TXNRD1 6251|NDFIP2 6422|CDKN3
5993|C120rf75 6257|DNAJC3 6423(CNIH1
5994(CKAP4 6263|1PO5 6429|MAPK1IP1L
6004(ALKBH2 6264(IPO5 6436(KTN1
6010|MMAB 6265|FARP1 6442|ARMH4
6015|C120rf76 6266|STK24 6443|ACTR10
6016|ATP2A2 6267|UBAC2 6444|PSMA3
6018|ARPC3 6268| TM9OSF2 6447|TIMM9
6023|PPP1CC 6277|ARGLU1 6450|DHRS7
6030|ERP29 6284|ANKRD10 6461|MTHFD1
6035|RPL6 6287|TUBGCP3 6465|CHURC1
6038|DDX54 6292|LAMP1 6467|GPX2
6061|PXN 6295|TMCO3 6470|GPHN

COX6A1,ENSG0000

60620111780 6297|GAS6 6477|VTI1B
6065|SRSF9 6308|APEX1 6478|RDH11
6070|POP5 6312|RNASE1 6480|ACTN1
6073|UNC119B 6313|METTL17 6483|SRSF5
6081|RHOF 6316|SUPT16H 6503(NPC2
6082|PSMD9 6320|DAD1 6507|YLPM1
6085|DIABLO 6322|OXA1L 6508|DLST
6093|VPS37B 6323|MRPL52 6510|EIF2B2
6095|ARL6IP4 6325|LRP10 6514|TMED10
6111|SCARB1 6328|HAUS4 6515|FOS
6116|AACS 6330|PSMB5 6522|GSTZ1
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cclD Gene Name cclD Gene Name cclD Gene Name
6525|AHSA1 6772|TRIP4 7047|CEP20
6526|SPTLC2 6774(SPG21 7048|RPS15A
6543|PPP4R3A 6781|RAB11A 7053|GDE1
6547|NDUFB1 6786|RPL4 7062|LDAF1
6551|ITPK1 6790|C150rf61 7063|METTL9
6561|IFI2712 6793|CLN6 7064|UQCRC2
6563|SERPINA1 6798|RPLP1 7071|NDUFAB1
6571|SETD3 6803|HEXA 7078|LCMT1
6574|YY1 6804(ARIH1 7086|TUFM
6589|EIF5 6810|PML 7096|CDIPT
6600|ATP5M) 6820|COX5A 7097|SEZ61.2
6607|CDCA4 6832|FBX022 7098|ASPHD1
6610|MTA1 6834(RCN2 7105|ALDOA
6612|ENSG00000257341 6839|DNAJA4 7106|ALDOA
6615|CYFIP1 6842|IREB2 7107|ALDOA
6626|SCG5 6843|PSMA4 7112|PPP4C
6630|{NOP10 6845(MORF4L1 7117|CD2BP2
6638|SRP14 6846|CTSH 7133|VKORC1
6652|RMDN3 6848|TMED3 7135|KAT8
6663|CHP1 6851|ABHD17C 7136|PRSS8
6676|VPS39 6856|RPS17 7138|PYCARD
6687|PDIA3 6864|SEC11A 7140|ZNF720
6690|SERF2 6870|MRPS11 7141|ZNF267
6692|MFAP1 6883|SEMA4B 7149|DNAJA2
6699|EIF3) 6912|SNRNP25 7156|BRD7
6701(B2M 6914|MPG 7162(NUDT21
6703|SORD 6920|MRPL28 7164|MT2A
6710|EID1 6922|NME4 7166|MT1E
6711|COPS2 6927|METTL26 7191|GOT2
6721|LYSMD2 6946|UBE2| 7197|PDP2
6724|LEO1 6965|NDUFB10 7198|CIAO2B
6725|MAPK6 6970|GFER 7206|NOL3
6728|ARPP19 6977|TRAF7 7210|ELMOS3
6729|RSL24D1 6983|RNPS1 7222|NUTF2
6737|MYZAP,GCOM1 6987|ATP6VOC 7231|CDH3
6740|SLTM 6992|SRRM2 7236|VPS4A
6745|GTF2A2 7002|HCFC1R1 7242(NOB1
6753|VPS13C 7006/1L32 7249|SF3B3
6756|TPM1 7012(TRAP1 7273|CFDP1
6757|TPM1 7014|PAM16 7285|HSBP1
6760|RAB8B 7015|DNAJA3 7299|COX4l1
6762|USP3 7022|SMIM22 7314|CDT1
6763|HERC1 7036|LITAF 7315|APRT
6764|CIAO2A 7039|RSL1D1 7328|TCF25
6768|PPIB 7042|BFAR 7329|TUBB3

ENSG00000259316,

6771|PCLAF 7043(PDXDC1 7344\ YWHAE

180




cclD Gene Name cclD Gene Name cclD Gene Name
7345|CRK 7589|STARD3 7821|NT5C
7346|MY01C 7590|ERBB2 7824|SUMO2
7351|PRPF8 7595|0RMDL3 7835|SAP30BP
7354|RPA1 7598| CASC3 7836|1TGB4
7366|EMC6 7599|WIPF2 7842|WBP2
7389|SPAG7 7600|CDC6 7852|UBALD2
7390|KIF1C 7606|KRT15 7861|SRSF2
7393|RPAIN 7611|KRT19 7862|SEC14L1
7394(C1QBP 7613(EIF1 7863|SEPTIN9S
7400|TXNDC17 7618|DNAJC7 7865|TMC6
7403|RNASEK 7631|MLX 7866|SYNGR2
7404|C170rf49 7638|VPS25 7869|BIRC5
7405|ACADVL 7640(BECN1 7876|LGALS3BP
7409|GABARAP 7644|RPL27 7883|CBX4
7410(CTDNEP1 7648|VAT1 7885|GAA
7412|CLDN7 7650|NBR1 7893|NDUFAF8
7415|EIF5A 7655|TMEM101 7907|MRPL12
7418|KCTD11 7656|LSM12 7910{MCRIP1
7420|PLSCR3 7661|SLC25A39 7911|P4HB

TMEM256-

7421|PLSCR3,TMEM256 7678|KPNB1 7916|SIRT7
7431|CD68 7679|MRPL10 7929|CSNK1D
7433|SAT2 7682|PNPO 7933|CYBC1
7441|\VAMP2 7683(PRR15L 7935|WDR45B
7456|ELAC2 7684|CDK5RAP3 7938|FN3K
7463|ZSWIM7 7695|HOXB6 7939|TBCD
7481|SREBF1 7703|CALCOCO2 7943|TYMS
7483|ATPAF2 7706|SNF8 7945(YES1
7487|FLII 7721|ABCC3 7953|MYL12B
7490|SHMT1 7727\NME2 7958|NDUFV2
7499|SPECC1 7730|TOM1L1 7963|VAPA
7504|WSB1 7731|COX11 7970|AFG3L2
7507(TMEM97 7740|MRPS23 7972|PSMG2
7512|UNC119 7749|SKA2 7973|PTPN2
7526|MYO18A 7751|DHX40 7979(SNRPD1
7527|NUFIP2 7752|CLTC 7983|GATAG
7539|NF1 7753(PTRH2 7986|RIOK3
7542|UTP6 7754|\VMP1 7988|NPC1
7546|ZNF207 7766(DCAF7 7990|TTC39C
7548|MYO1D 7770|DDX42 8009|C180rf21
7553|SLFN5 7772|PSMC5 8012|ELP2
7558|MMP28 7787|GNA13 8014|TPGS2
7561|ZNHIT3 7792|PITPNC1 8021|ATP5F1A
7562|MY019 7794|KPNA2 8022|HAUS1
7563|GGNBP2 7800|PRKAR1A 8027|IER3IP1
7565|AATF 7812(RPL38 8029|DYM
7577|RPL23 7820|ATP5PD 8032|RPL17
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cclD Gene Name cclD Gene Name cclD Gene Name
8036|MYO5B 8244|CDC37 8443|DMKN
8041|ME2 8246|ATG4D 8444(TMEM147
8046|TXNL1 8249|AP1M2 8448|COX6B1
8049(ATP8B1 8251|ILF3 8463|SPINT2
8052|LMAN1 8262|RAB3D 8470|C190rf33
8063|CYB5A 8267|RGL3 8474|PSMD8
8069|HSBP1L1 8268|PRKCSH 8476|EIF3K
8070|TXNL4A 8269|ECSIT 8491|RPS16
8071|ADNP2 8273|ZNF440 8492|SUPT5H
8075|CDC34 8281|MAN2B1 8495|FBL
8085|MISP 8282|WDR830S 8497|ZNF780A
8089|R3HDM4 8283|DHPS 8504|BLVRB
8092|CNN2 8285|TRIR 8508|C190rf54
8096|GPX4 8303|GADD45GIP1 8510|SNRPA
8102|ATP5F1D 8306(STX10 8516|HNRNPUL1
8104|MIDN 8312|C190rf53 8524|RPS19
8105|CIRBP 8324|GIPC1 8535|PAFAH1B3
8106|FAM174C 8325|DNAJB1 8541|ETHE1
8109|RPS15 8326|TECR 8554|CLPTM1
8123|MKNK2 8334|TPM4 8555|CLASRP
8127|PLEKHJ1 8336|TPM4 8562|PPP1R13L
8128|SF3A2 8357|ANO8 8567|ERCC1
8129(JSRP1 8361|SLC27A1 8571|EML2
8132|LSM7 8362(PGLS 8572(SNRPD2
8134|TIMM13 8363|COLGALT1 8580|IGFL2
8140|SGTA 8365|B3GNT3 8583|CALM3
8141|THOP1 8367|CCDC124 8588|AP2S1
8147|TLE5 8370(RAB3A 8609(KDELR1
8169|MAP2K2 8380(ISYNA1 8612|CYTH2
8177|MYDGF 8382|FKBP8 8617|RPL18
8184|SAFB2 8383|KXD1 8621|NUCB1
8186|MICOS13 8384|UBA52 8622|BAX
8187|RPL36 8393|MEF2B 8629|SNRNP70
8190|FUT3 8398|GATAD2A 8637|RPS11

ENSG00000267740,

8191|NDUFA11 8402|LPAR2 8640|PRR12
8194(ALKBH7 8409|ZNF431 8645(IRF3
8195|GTF2F1 8412|ZNF91 8646|BCL2L12
8209|XAB2 8415(UQCRFS1 8648(AP2A1
8212|TRAPPC5 8416|POP4 8660|MYH14
8215|SNAPC2 8420|PDCD5 8664|EMC10
8218|CD320 8421|PDCD5 8670|KLK6
8219|NDUFA7 8435|UBA2 8675|KLK11
8222|RAB11B 8436|GRAMD1A 8694(MYADM
8224|HNRNPM 8437|FXYD3 8698|CNOT3
8230|ZNF561 8439|FXYD5 8705|RPS9
8236|EIF3G 8442|LSR 8708|CDCA42EP5
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cclD Gene Name cclD Gene Name cclD Gene Name
8712|TNNT1 8886|BLCAP 9163|SDF2L1
8719|TMEM238 8910(SDC4 9165(MAPK1
8730|EPN1 8911|DBNDD2 9171|CHCHD10
8744|TRIM28 8913|WFDC2 9173|SMARCB1
8748|MZF1 8917|UBE2C 9175|MIF
8750(C200rf96 8921|CTSA 9180{SNRPD3
8752|RBCK1 8924|SLC35C2 9192|KREMEN1
8754|CSNK2A1 8932|STAU1 9207|SF3A1
8756|PSMF1 8950(PFDN4 9210(PES1
8763|IDH3B 8951|FAM210B 9217|SELENOM
8768|DDRGK1 8962(STX16 9224(YWHAH
8771|C200rf27 8963|GNAS 9227|HMGXB4
8772|CENPB 8965|GNAS 9232|RBFOX2
8773|CDC25B 8970|ATP5F1E 9238|EIF3D
8774|MAVS 8971|PRELID3B 9241|MPST
8794|SNRPB2 8972|LSM14B 9250|LGALS1
8795|DSTN 8979|RPS21 9258 |EIF3L
8802|KAT14,PET117 8981|SLCO4A1 9262|MAFF

SMIM26,ENSG0000

8805|0284776 8989|MRGBP 9263|TMEM184B
8807|NAA20 8990|OGFR 9267|DDX17
8808|CRNKL1 8994|GID8 9269(TOMM22
8810|XRN2 8998|PPDPF 9271|J0OSD1
8816|CST3 9000|PTK6 9273|SUN2
8817|APMAP 9023|BTG3 9284|ATF4
8820|PYGB 9026(ATP5PF 9289|ADSL
8821|ABHD12 9034|APP 9293|ST13
8824|HM13 9038|CCT8 9294(XPNPEP3
8829|BCL2L1 9043|URB1 9298|RANGAP1
8831|TPX2 9056|ATP5PO 9300({TOB2
8835|POFUT1 9059|CBR1 9301|PHF5A
8836|KIF3B 9066|PIGP 9305|XRCCs
8838|NOL4L 9070|ETS2 9307|SNU13
8842|NECAB3 9072|BRWD1 9309|SREBF2
8846|RALY 9074{HMGN1 9345|TBC1D22A
8849|EIF2S2 9078|BACE2 9350|TRABD
8850|AHCY 9079|FAM3B 9353|HDAC10
8855|ACSS2 9083|ABCG1 9359|LMF2
8857(TRPC4AP 9090|TFF1 9373|CD99
8859|PROCR 9098|RRP1B 9382|ARHGAP6
8861|MMP240S 9099|PDXK 9384|PRPS2
8865|ERGIC3 9103|CSTB 9393|SYAP1
8869|CPNE1,RBM12 9104|CSTB 9395|RBBP7
8872|RBM39 9114|SLX9 9399(EIF1AX
8873|PHF20 9119|COL18A1 9403|SMS
8882(RPN2 9144|GNB1L,RTL10 9416(DYNLT3
8885|SRC 9161|UBE2L3 9422|CXorf38
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cclD Gene Name cclD Gene Name cclD Gene Name
9431|NDUFB11 9619|EMD 9119|COL18A1
9432|RBM10 9620(RPL10 9144|GNB1L,RTL10
9434|UBA1 9625|GDI1 9161|UBE2L3
9438|TIMP1 8885|SRC 9163|SDF2L1
9444 | UXT 8886|BLCAP 9165|MAPK1
9448|RBM3 8910|SDC4 9171|CHCHD10
9449|WDR13 8911|DBNDD2 9173|SMARCB1
9453|PQBP1 8913|WFDC2 9175|MIF
9460(PLP2 8917|UBE2C 9180(SNRPD3
9477|MAGED2 8921|CTSA 9192|KREMEN1
9490|PDZD11 8924(SLC35C2 9207|SF3A1
9495|SNX12 8932|STAU1 9210|PES1
9497|NONO 8950(PFDN4 9217|SELENOM
9499|0GT 8951|FAM210B 9224|YWHAH
9502|RPS4X 8962(STX16 9227|HMGXB4
9507|ATRX 8963|GNAS 9232|RBFOX2
9509|COX7B 8965|GNAS 9238|EIF3D
9510|PGK1 8970|ATP5F1E 9241|MPST
9514|TAF9B 8971|PRELID3B 9250|LGALS1
9519|TSPANG 8972|LSM14B 9258/ EIF3L

RPL36A,RPL36A-

9526|HNRNPH2 8979|RPS21 9262|MAFF
9530{ARMCX3 8981|SLCO4A1 9263|TMEM184B
9533|TCEAL8 8989(MRGBP 9267|DDX17
9534|TCEAL9 8990|OGFR 9269|TOMM22
9536|TCEAL4 8994|GID8 9271(JOSD1
9537|TCEAL3 8998|PPDPF 9273|SUN2
9558|PGRMC1 9000(PTK6 9284|ATF4
9559|SLC25A5 9023|BTG3 9289|ADSL
9561|UBE2A 9026|ATP5PF 9293|ST13
9562|SEPTING 9034|APP 9294|XPNPEP3
9565|RNF113A 9038|CCT8 9298|RANGAP1
9566|NDUFA1 9043|URB1 9300|{TOB2
9573|STAG2 9056|ATP5PO 9301|PHF5A
9574|0CRL 9059|CBR1 9305|XRCC6
9576|ZDHHC9 9066|PIGP 9307|SNU13
9581|RBMX2 9070|ETS2 9309|SREBF2
9585|PHF6 9072|BRWD1 9345|TBC1D22A
9586(HPRT1 9074{HMGN1 9350|TRABD
9592|RBMX 9078|BACE2 9353|HDAC10
9599|HMGB3 9079|FAM3B 9359|LMF2
9600|VMA21 9083|ABCG1 9373|CD99
9608|BCAP31 9090|TFF1 9382|ARHGAP6
9611|SSR4 9098(RRP1B 9384|PRPS2
9612|NAA10 9099|PDXK 9393|SYAP1
9616|FLNA 9103|CSTB 9395(RBBP7
9617|FLNA 9114|SLX9 9399(EIF1AX
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cclD

Gene Name

cclD

Gene Name

9403

SMS

9612

NAA10

9416

DYNLT3

9616

FLNA

9422

CXorf38

9617

FLNA

9431

NDUFB11

9619

EMD

9432

RBM10

9620

RPL10

9434

UBA1

9625

GDI1

9438

TIMP1

9444

UXT

9448

RBM3

9449

WDR13

9453

PQBP1

9460

PLP2

9477

MAGED2

9490

PDZD11

9495

SNX12

9497

NONO

9499

oGT

9502

RPS4X

9507

ATRX

9509

COX7B

9510

PGK1

9514

TAF9B

9519

TSPANG6

9526

RPL36A

9530

ARMCX3

9533

TCEAL8

9534

TCEALS

9536

TCEAL4

9537

TCEAL3

9558

PGRMC1

9559

SLC25A5

9561

UBE2A

9562

SEPTING

9565

RNF113A

9566

NDUFA1

9573

STAG2

9574

OCRL

9576

ZDHHC9

9581

RBMX2

9585

PHF6

9586

HPRT1

9592

RBMX

9599

HMGB3

9600

VMA21

9608

BCAP31

9611

SSR4
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Appendix D

Table 1: Full list of Ribosomal associated genes removed in mentioned analysis. HGNC gene name of
the 80 ribosomal genes removed to assess for ribosomal bias in analyses. All identified as having TOP
TSS usage as their dominant promoter.

Gene Name Gene Name
RPSA RPL9
RPS2 RPL10
RPS3 RPL10A
RPS3A RPL11
RPS4X RPL12
RPS4Y RPL13
RPS5 RPL13A
RPS6 RPL14
RPS7 RPL15
RPS8 RPL17
RPS9 RPL18
RPS10 RPL18A
RPS11 RPL19
RPS12 RPL21
RPS13 RPL22
RPS14 RPL23
RPS15 RPL23A
RPS15A RPL24
RPS16 RPL26
RPS17 RPL27
RPS18 RPL27A
RPS19 RPL28
RPS20 RPL29
RPS21 RPL30
RPS23 RPL31
RPS24 RPL32
RPS25 RPL34
RPS26 RPL35
RPS27 RPL35A
RPS27A RPL36
RPS28 RPL36A
RPS29 RPL37
RPS30 RPL37A
RPL3 RPL38
RPL4 RPL39
RPL5 RPL40
RPL6 RPL41
RPL7 RPLPO
RPL7A RPLP1
RPL8 RPLP2
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	Differing global TSS phenotype between cancers of the same subtype highlights an unexplored level of inter tumour heterogeneity. However, our understanding of the functional relevance of YC enrichment in cancers is currently limited to the evidence th...
	To truly understand the molecular phenotypes of a tumour, literature suggests it is imperative to explore ITH (Ramón y Cajal et al., 2020). Organoids are shown to be an excellent model system for CRC in that they successfully recapitulate both inter a...
	3.2 Results
	3.2.1 Characterisation of high YC organoids through imaging and proliferation analysis.
	To better understand the molecular underpinnings and hence functional relevance of TSS usage differences, we set out to further identify the phenotypes associated with the high YC enrichment beyond just irradiation responsiveness. We selected the 5 CR...
	Uncontrolled growth and the ability to evade antigrowth signals are well characterised hallmarks of cancer formation and progression, however the dependency on this feature differs between cancers and can be a result of other tumour characteristics (H...
	To explore the morphological characteristics and hence differentiation status of our organoids, I grew each line under standard culturing conditions to day 14, harvested, fixed use PFA and immobilised in low melting point (LMP) agarose to image in the...
	These findings have since been published and are my own contributions to Intra-promoter switch of transcription initiation sites in proliferation signalling dependent RNA metabolism (Wragg et al., 2023).
	3.2.2  Molecular Phenotyping of high YC organoids using bulk analysis
	An advantage of CAGE sequencing is that not only does it provide transcript counts, but also captures the 5’end of these tags allowing for base resolution of TSS, the resultant sum of these tags (TPM) and their distribution allows for profiling of ove...
	To better understand the overall molecular phenotype of the organoid and see if expression data could validate and add to our current imaging and culturing analysis, I aimed to further scrutinise the expression sequencing data. We were limited in the ...
	I next set out to understand the gene ontology (GO) underpinning the expression profiles through comparing the gene expression of key pathways and functional features against the average expression of randomly selected bins of genes. Gene sets were ob...
	Comparing the scores of gene sets previously identified to be functionally relevant in driving cancer phenotypes between samples, shows distinct correlations and hence similarities between lines with the same TSS phenotype. Previous studies have highl...
	3.2.2.1 Characterising global archetypes
	To identify more universal characteristics beyond just analysing a selected set of specific pathways, we next scored the lines for marker genes associated with the universal archetypes previously established by Hausser et al (Hausser et al., 2019). Pr...
	3.2.3 Methodology for single cell CAGE experiment
	Our current understanding of molecular features and hence biological relevance of TSS usage in cancer states is vastly limited due to the bias accompanying bulk analysis that greatly masks the intra variability that exists within a tumour. Many previo...
	In order to allow for sufficient YC comparisons between organoids, we picked two opposing organoids. Firstly, the YC enriched 389 organoids with fast proliferating phenotype (Figure 3.2b) showing cell division archetype with little differentiation (Fi...
	Firstly, the single cell sequencing approach relies on live cells upon barcoding, therefore high cellular viability was essential. As dead or dying cells will contain large amounts of degraded RNA and degradation predominantly begins at the 5’ end of ...
	Following cell ranger filtering analysis outlined in Chapter 2.5.1.1, that removes background sources of sequencing reads not resulting from an actual cell, we successfully achieved single cell sequencing of both control samples. 6283 cells were capt...
	Table 3.1: Single cell sequencing library statistics
	Previous work by Dr Wragg in the lab showed a drastic loss in YC enrichment post irradiation of the YC enriched lines such as 389 (Wragg et al., 2023). I aimed to explore whether this was simply the result of the loss of a specific population of cells...
	3.2.4 Evaluation and validation of single cell experiment success
	I aimed to assess the success of the single cell sequencing and hence quality of data produced initially by analysing the distribution of established quality control metrics in both samples. Firstly, molecule count, defined as number of molecules or U...
	A significant positive correlation is seen in both samples when number of genes against number of UMI detected per cell is plotted thus indicating reads are sufficiently distributed throughout the cells per gene (Figure 3.7b) (Ilicic et al., 2016). A...
	Figure 3.7. Feature plots evaluating quality of sequencing per single cell. Coloured by sample of origin, red indicates sample 389 YC enriched line control, blue is 557 YC depleted control line (A) Data distribution per cell. Total number of molecules...
	The Feature plots outlined in Figure 3.7 show similarity between the two samples however a shift in % of ribosomal genes in the YC enriched 389 sample was seen (Figure3.7c). Although this indicated ribosomal genes are more expressed in this line compa...
	3.2.4.1 Validation to pre-existing data
	To explore complexity and representation of our single cell data, I compared expression profiles to the previously generated bulk data. To achieve this, single cell data was pseudo bulked per sample and the counts were normalised across single cell an...
	Figure 3.8. Validation of expression profile retention between single cell and bulk CAGE sequencing. (A) Reverse cumulative of raw TPM counts per single cell sample and matched bulk. (B) PCA comparison of bulk CAGE sequenced samples and single cell ps...
	To further compare, log transformed TPM counts per gene from single cell against matched bulk were compared (Figure 3.9). Linear regression analysis revealed in both samples a significant positive correlation R= 0.77 and 0.72 for non-responsive and re...
	3.2.5 Molecular Phenotyping of high YC organoids using single cell analysis
	3.2.5.1 Intra heterogeneity analysis of organoids
	3.2.5.2 Identification of cellular states represented by archetypes.
	3.2.5.3 ITH analysis of intestinal cell types.

	Our analysis showed that the YC enriched organoid line is composed of mainly naïve stem like cell populations, the predominant cell type annotation is intestinal stem cells followed by transit amplifying cells (Figure 3.17). The latter have been widel...
	3.2.6 Molecular phenotyping of organoids post irradiation
	Previous research in our lab has shown that YC usage is a distinctive transcriptional biomarker for organoids that show high cell death in response to irradiation. Furthermore, YC enrichment is significantly lost post irradiation whereas the depletion...
	To investigate this our first approach was to identify whether a specific cluster of cells from the control group survived post treatment. This was achieved by using the initial control data and hence UMAP projection from Figure 3.12 as a reference ma...
	To make further relevant comparisons between pre and post treatment we had to account for and attempt to correct the sheer sequencing depth bias between our data sets. Although literature suggests down sampling is unnecessary given many normalisation ...

	To better understand the features of the cells that survive we performed gene set enrichment analysis between the integrated samples (Figure 3.20). We found that most pathways were downregulated post irradiated, including the key growth associated fea...
	3.3 Discussion

	Chapter 4: Investigating intra-promoter switch of TSS in cellular physiological states.
	4.1 Introduction
	4.2 Results
	4.2.1 Validation of single cell CAGE TSS capture
	Figure 4.1 Global YC enrichment is retained in matched samples across sequencing approaches. Dinucleotide frequency analysis between pseudo bulked single cell sequencing and matched bulk. (A) Percentage of total TSS is YC in single cell pseudo bulked ...
	Our analysis revealed that despite using different sample preparation, sequencing technique, and library depth differences, we still see the same YC usage trends in our organoid lines. However, we did see a dramatic increase in YC enrichment in both p...
	4.2.2 Characterisation of TSS base choice phenotype on a single cell level
	Our single cell CAGE data provides the opportunity to explore TSS base choice phenotype on a single cell level which has not yet been described in the literature. Although the organoids show a bulk YC:YR TSS ratio variation, Chapter 3 showed these lin...
	Figure 4.2. Scatter YC:YR ratio shows marked variation within samples plot comparison of YC:YR vs read depth per cell. Scatter plot comparisons of YC:YR per cell vs cell features. Average YC:YR ratio per cell against number of molecules, hence read d...
	As seen when plotting the YC:YR vs genes captured per cell, not only do we see validation in the previously seen bulk trend that the 389 responsive line has a higher YC usage in dual initiator genes, we also now see variation in this usage within the ...
	To identify the cellular state of these high YC cells and see if they are shared across samples, we performed gene set enrichment module scoring for states of interest, as had been previously performed on whole sample level in Chapter 3.10. To make vi...
	Firstly, gene set analysis showed heterogeneity in scores within both samples, further validating previous ITH analyses. We also saw expected expression correlations between gene sets. For example, as can be seen in Figure 4.4 the highest expression o...
	Figure 4.4: High YC cells are enriched for metabolic reprogramming genes in fast growing organoid. (A)  YC:YR average per cell. (B) Single cell UMAP projection of gene set enrichment per cell sample 389. Calculated module score for gene sets shown in ...
	Figure 4.5: High YR cells are enriched for proliferation genes associated with cell division processes. (A)  YC:YR average per cell. (B) Single cell UMAP projection of gene set enrichment per cell sample 557. Calculated module score for gene sets show...
	Although none of our correlations showed strong associations to YC:YR ratio, clear trends were seen within the samples. For example, in sample 389 the more proliferative line the largest positive correlation was with the hypoxia ATG. ATG is a gene set...
	Figure 4.6: TSS usage vs proliferation and metabolic features. Scatter plot correlation analysis of module score for proliferation associated gene sets and hypoxia associated metabolic reprogramming gene vs average YC:YR usage per cell coloured by sam...
	To show that the high YC and hence larger YC:YR values were not simply due to higher expression of dual initiator genes, we performed correlation analysis between average dual gene expression and YC:YR per cell (Figure 4.7). A low positive correlation...
	Furthermore to show this was not a TOP motif specific feature but also attributable to YC TSS not harbouring the conventional initiator TOP motif, we calculated the non-TOP YC signal per cell through extracting the first 5 bp of the TSS and summing TP...
	Figure 4.8: Non-TOP YC initiators show similar ITH enrichment. Single cell UMAP projection of TSS profiles per cell. Average non-TOP-YC:YR of all DUAL genes calculated per cell. YC shift in DUAL TSS dynamic depicted by colour scale on right of panel. ...
	4.2.3 TSS usage in cancer cell physiological states
	Now that I have confirmed there is ITH of TSS usage phenotypes I aimed to characterise the cells that show a higher YC usage and consequently the genes responsible for the dynamic shifting as we hypothesised this would give us insight into biological ...
	To identify YC:YR shifting I identified all dual initiator CCID and calculated YC signal to YR (YC:YR) per gene for each cell type and then the average YC:YR per gene across the sample (all cell types). Next I normally distributed the data by log tran...
	Figure 4.9: YC:YR dynamics do not differ between naïve intestinal cell types. (A) Single cell predicted annotation of intestinal epithelial cell type classification using Single cell gut atlas reference projection (Zilbauer et al., 2023) onto clustere...
	Although some separation between YC:YR is seen in the more heterogeneous organoid 557 (Figure 4.10a). Organoid 557 shows more differentiated lineages, however given the plasticity of cancer cells they are unlikely to be terminally differentiating like...
	Figure 4.10: YC is lower in progenitor cells in more differentiated organoid. (A) Single cell predicted annotation of intestinal epithelial cell type classification onto YC low sample 557 using Single cell gut atlas reference projection (Zilbauer et a...
	As our single cell TSS analysis in Figure 4.3 showed the high YC cells cluster together on the UMAP I decided to repeat the above pseudo bulking approach using UMAP generated clusters we defined in Chapter 3 (Figure 3.12 and 3.13). Our frequency distr...
	Previous work by Dr Joseph Wragg in our lab, identified a signature marker set of dual genes whose TSS usage and hence YC shift is sufficient stratification criteria for irradiation (Wragg et al., 2023). Repeating this analysis between the YC lower 38...
	The presence of translation associated GOs in the YC enriched clusters was expected as many studies have shown that TOP initiator motif is highly associated to translation associated genes (Hochstoeger & Chao, 2024; Meyuhas & Kahan, 2015).  To investi...
	Figure 4.13. YC enrichment is retained upon removing TOP signal Comparison of YC:YR dynamics in YC only and YC-TOP initiators. Frequency distribution of YC:YR ratio per sample compared to pseudo bulked average. YC:YR expression ratio calculated per DU...
	To explore the penetrance of promoter usage heterogeneity and how the cluster bulk is built from single cell variation, we generated UCSC genome browser tracks of the top 50 cells  with the highest TPM per each cluster. As many genes did not contain s...
	Figure 4.15: Clustering visualisation of high YC and high YR clusters in both samples UMAP projection of sample 389, high global YC TSS phenotype top, and sample 557, high global YR phenotype bottom. Coloured by cluster determined TSS profile characte...
	Next, I pseudo bulked the clusters based on these groupings and performed DGE analysis between the YC enriched population and YC depleted population within each sample using non-parametric Wilcoxon rank sum test through Seurats FindMarkers function. D...
	Figure 4.16: Differential gene expression analysis of high YC cluster vs high YR cluster sample 389 (A) Volcano plot of DEG with top 10 genes both up and down regulated highlighted. Differential regulation determined as having log2FC greater than 0.6 ...
	Figure 4.17: Differential gene expression analysis of high YC cluster vs high YR cluster sample 557 (A) Volcano plot of DEG with top 10 genes both up and down regulated highlighted. Differential regulation determined as having log2FC greater than 0.6 ...
	The YC clusters appear to be enriched in genes associated with the predominant function and hence characteristic phenotype of that sample. Comparative analysis of the genes shows 18% are shared between the high YC populations in both samples, GO analy...
	Figure 4.18: High YC and High YR clusters show similar GO between samples. Comparative analysis of shared enriched genes. (A) size proportional Venn analysis of the DEG in YC enriched clusters (Red) and YC low clusters (blue) separated by genes enrich...
	4.2.4 YC shifting in cancer cell archetype states
	A clear challenge appears when defining cellular states as the expression profile of cells and clusters of cells can be explained by a complex network of GO and therefore our previous conclusions of cluster definition by dominant GO maybe masking unde...
	As archetype analysis shows transitioning cells, meaning cells that are not a completely defined archetype and hence sit in between two archetypes, I aimed to see if YC enrichment also shows a gradual shifting as cells become a more defined state. The...
	Hausser et al., 2019  state that the universal archetypes share a large proportion of marker genes, given the appreciation that many genes form a complex network of context dependent interactions and thus their expression may not be attributable to ju...
	To see if the YC:YR shift between the archetypes is a result of shared dual initiator genes, I pseudo bulked the samples based on archetype and extracted cell barcodes, collated CTSS to perform CAGEr analysis workflow on each archetype. As previously ...
	As many of the YC:YR analyses so far have focused on cellular states or clusters that are defined by gene expression profiles and hence comparisons will be affected by DEGs. This makes YC:YR dynamics difficult to interpret as it is unclear if they exi...
	Figure 4.22: YC:YR projection onto Archetype distribution plots. A) Frequency distribution analysis of YC:YR ratio per archetype pseudo bulk compared to total pseudo bulked average including only shared enriched gene. (B) Gene ontology of the genes th...
	Shifting into a more conservative or energy depleted state is vital in metabolic reprogramming and is mediated by nutrient sensing pathways that interact with TF that upregulate genes that enable this process (Cerezo & Rocchi, 2020; Faubert et al., 20...
	4.2.4.1 Hidden initiator motifs
	An additional critical TF mediated nutrient sensor is SREBF1 and is essential for controlling lipid and amino acid metabolism. Recent studies have also shown the importance of lipogenesis in cancer progression and directly linked SREBF1 expression lev...
	To ensure that this finding wasn’t a result of a bias that can occur with specific CAGE sequencing specifically the G bias that occurs in the template switching approach we used in our experiment, I compared the peaks against our bulk and the Fantom 5...
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	Chapter 5: Mapping TSS usage in cell cycle dynamics
	5.1 Introduction
	5.2 Results
	5.2.1 YC initiation usage correlates with cell cycle phase
	5.2.1.1 Assigning cell cycle phase identity
	Figure 5.1: ITH of cell cycle phase identity in organoids. (A) UMAP clustered organoids coloured by cell cycle phase identification through cycle gene scoring. Percentage of each phase present in the total population coloured by relevant phase (red = ...
	5.2.1.2 Identifying TSS usage dynamics between cycle phases
	Next, I repeated our pseudo bulking analysis, generating CTSS files per cell cycle phase for both samples independently, ran CAGEr workflow normalising between phase populations with α = 1.05 fit in range of tags 10 to 15,000 and converted to TPM. Ide...
	To visualise TSS usage on a single gene level and compare between population, we generated UCSC genome tracks from the normalised CTSS from the genomic ranges object supported through CAGEr workflow for each cycle phase population. The bigwig files we...
	Previous studies have shown ribosomal gene expression is significantly enriched in G1 phase to facilitate the protein production demand required to enable cycle progression (Nosrati et al., 2014). Feature plots in our samples further validate this sho...
	I aimed to test if the cycle phase dependent shift observed was specific to the YC TSS or a global shift of transcript abundance. I repeated the ratio frequency analysis calculating TPM signal for all dinucleotides including conventional YC and YR, th...
	5.2.2 Validation of TSS shifting in cell cycle phase sorted populations
	5.2.3 Selection of G0 meta gene for cell cycle phase stratification
	5.2.4  Development of long-term high-resolution live imaging protocol
	Evolutionary analysis of tumour development is becoming a popular approach to characterise the plasticity of cellular states and behaviours (McGranahan & Swanton, 2017; Shackleton et al., 2009). So far, our TSS usage associations to cell state are lim...
	I aimed to develop a protocol to enable high-resolution long-term imaging of organoids adapting culturing conditions to suit Z1 lightsheet imaging. The imaging set up for the Z1 lightsheet highlighted in Figure 5.16 shows its complex hanging design th...
	I confirmed Gellan does not affect cellular viability through visualisation of cellular behaviour and appearance using Broadfield microscopy and comparing to conventional culturing conditions not embedded in Gellan (Figure 5.17). I found that no appar...
	The imaging was set up as outlined in Chapter 2.3.4. with initial attempts imaging the FUCCI organoids every 12 hours and retained in the vertical culturing tube when not being imaged. As outlined in Figure 5.18a I was able to capture and hence map th...
	Although I was able to continue imaging post 7 days, the tracking of cellular changes became challenging as the time points were too far apart making resolution of each cellular behaviour insufficient (Figure 5.18b). To overcome this, future attempts ...
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	Chapter 6: General Discussion
	Even small decisions can have a big impact.
	The work in our lab shows that even at the smallest resolution of a cell, the nucleotide base choice governing the formation of the building blocks of a cell, can have an impact on its fundamental growth and survival function. Our understanding of the...
	The core aim of the work in this thesis was to greaten our understanding of differential TSS usage in cancer cell behaviours, in hopes to identify potential regulatory mechanisms that may be novel therapeutic targets. The overarching finding in this w...
	YC enrichment underpins growth and stem-like phenotypes.
	In this thesis I attempted to identify a potential link between TSS usage and cellular physiological state and even fate through association to differentiation status. The resounding finding of the work presented here is that YC enrichment consistentl...
	This choice may also come at a cost, YC enrichment also correlates with treatment responsiveness and an increased sensitivity to mTOR inhibition (Figure 3.2) (Wragg et al., 2023). Therefore, blocking of these signalling pathways directly or indirectly...
	In this work I successfully carried out single cell CAGE on cancer cells and explored cellular specific TSS usage even down to a single cell, a resolution yet to be achieved (Figure 4.3 and Figure 4.14). I found that despite high sequencing depth, cha...
	YC enrichment differs in a cell cycle dependent manner.
	Although the two organoid lines analysed in the single-cell experiment exhibited distinctly different global phenotypes and TSS usage profiles, I identified shared ITH states with similar TSS usage dynamics (Figure 4.11). These shared states consisten...
	The relative shift in YC usage in specific subsets of genes between G0 and G1 may further fuel this speculative functional dynamic that YC is favoured for efficiency. The observed high YC usage in metabolic genes in G0 could account for the need to pr...
	TSS usage may shift in cellular stress.
	While the focus so far has been on the role of the proliferation-equilibrium dynamic in driving growth and cellular division, this thesis also highlights the emerging recognition of the reverse trend. The shift from YC to YR in states of stress was in...
	Furthermore, a similar stress like environmental condition is seen in the later stages of the cell cycle, where growth signals and translation are also lower and energy is redirected toward essential processes like DDR (Cormier et al., 2003). Here we ...
	So far, our TSS dynamics shows usage attributable to physiological states that indicates potential differential regulatory mechanisms possibly dependent on their 5’ motifs. Research has shown the role of specific translation initiation binding machine...
	Furthermore, the identification of functionally relevant genes involved in differential TSS usage opens the opportunity to further explore their CRE landscape. In this thesis I have identified an interesting feature present in nutrient sensing genes, ...
	Gellan represents a suitable holding medium for facilitating vertical culturing to enable long-term high-resolution imaging.
	A major limitation of sequencing is its inherent bias toward a single time point, which restricts our ability to fully appreciate the significance of TSS usage in dynamic cellular states. Research has highlighted the importance of appreciating the pla...
	Conclusions
	This thesis sheds new light on the previously underappreciated role of TSS usage dynamics in shaping transcriptional landscapes that define cellular physiological states, even at the resolution of a single cell. Our findings suggest the presence of a ...

