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ABSTRACT

Visual 6D object pose estimation and tracking is crucial for enabling machines to understand and

interact with the three-dimensional world. Despite significant advancements, challenges persist

in this field. Existing methods often struggle in complex real-world scenarios, particularly with

symmetric and textureless objects under occlusion. Category-level methods also face limitations

in generalizability, especially with complex-shaped objects and noisy environments. Additionally,

there is a significant gap in effective methods for category-level object pose refinement, which is

crucial for achieving high-precision pose information with previously unseen objects. To address

these challenges, this thesis proposes three approaches. First, an instance-level object pose tracking

method is introduced, leveraging temporal information with augmented autoencoder-based recon-

struction to enhance robustness to symmetric and textureless objects under occlusion. Second, a

hybrid scope feature extraction layer (HS-layer) is presented for category-level object pose esti-

mation. The HS layer encodes translation and scale information, perceives geometric structural

information for handling complex-shaped objects with robustness to outliers. Lastly, a method

that combines latent geometric feature extraction and learnable affine transformation is proposed

to address shape discrepancy issues in category-level object pose refinement, improving pose re-

finement accuracy and generalizability. Extensive experiments validate the effectiveness of these

approaches in advancing practical applications of visual 6D object pose estimation and tracking.

Additionally, all the proposed methods exhibit real-time performance, crucial for real-life applica-

tions.
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Chapter One

Introduction

Visual 6D object pose estimation and tracking is a fundamental field of computer vision,

where we aim to design algorithms for machines to perceive and understand the three-dimensional

(3D) world around them. This process involves determining both the position (where an object is

located) and orientation (how it is rotated) of the target object in 3D space using visual information,

as illustrated in Figure 1.1. Additionally, for methods dealing with objects with unknown sizes,

the object’s 3D size of its tight bounding box is also estimated. The visual data is usually obtained

from perception sensors such as RGB cameras, depth cameras, RGB-Depth (RGB-D) cameras, or

Lidars.

While we may not always be aware of it, humans regularly rely on the 6D poses of objects

in their daily lives. Understanding an object’s 6D pose is immensely beneficial, aiding in tasks

such as grasping objects, avoiding collisions, navigating surroundings, and interacting with tools.

Similarly, for machines, comprehending object poses is crucial for effective and efficient interac-

tion and manipulation within their environments, making it a key area of research for applications

ranging from robotics to augmented reality systems.

1



Introduction

Figure 1.1: Illustration of 6D object pose estimation task

Today, machines that utilize 6D object poses are commonplace in our lives. For example,

Augmented Reality (AR) depends on accurate object poses to improve user experiences. In AR,

digital information is overlaid onto the real world, and knowing object poses ensures that virtual

objects blend seamlessly into the environment. In manufacturing and industrial settings, industrial

automation machines use object poses for tasks such as quality control, sorting, and automated

assembly. Autonomous vehicles and drones rely on object pose information for navigation and

localization, aiding them in understanding their position relative to objects in the environment and

avoiding collisions. Robots utilize this information to plan and execute actions such as grasping,

manipulation, and assembly effectively. Object pose information is also valuable in surveillance,

human-computer interaction, and various other tracking applications for monitoring objects as they

move through a scene.

Despite the significant enhancements brought by the integration of 6D object pose esti-

mation and tracking into various machines and systems, notable limitations in existing 6D pose

estimators and trackers remain. Current methods can struggle to accurately estimate object pose in

challenging situations, especially when the target object exhibits symmetric, with insufficient sur-

face textures, and is partially occluded. Another challenge is the algorithms’ ability to generalize

to objects not encountered during training, as well as their resistance to noise. Everyday objects

often have shapes that differ from those used in training, and acquiring low-noise data typically

2
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demands expensive sensors, limiting their deployment in everyday consumer devices. Moreover,

there is a lack of effective refinement methods to improve the accuracy of pose estimation for

previously unseen objects, which is essential for high-precision applications or when initial pose

estimations are noisy. Improving the robustness and generalization capabilities of pose estimation

algorithms is crucial for advancing the field and enabling wider use of machines that rely on 6D

object pose information.

In the upcoming sections, I will first discuss the motivation behind my research, highlight-

ing the practical applications of visual 6D object pose estimation and tracking. I will then outline

the key qualities necessary for these methods to meet real-world demands. Afterward, I will present

three significant challenges in this field, and explain how I tackled these challenges in my work.

Finally, I’ll clearly outline what my research has contributed and give an overview of the entire

thesis.

1.1 Motivation

The motivation for research in visual 6D object pose estimation and tracking arises from its pro-

found impact on a wide array of practical applications, spanning across industries and playing a

crucial role in advancing technology and enhancing daily life experiences.

Autonomous Driving One of the most prominent areas benefiting from 6D pose estimation is

autonomous driving (Kothari et al., 2017; Hoque et al., 2023). As autonomous vehicles become

more prevalent, the need for precise object detection and tracking becomes increasingly critical.

Accurate 6D pose estimation enables vehicles to detect and react to objects and obstacles in their

surroundings, ensuring safe navigation through complex environments like bustling city streets and

fast-paced highways. By providing vehicles with the ability to precisely determine the position

3



Introduction

and orientation of objects, such as fallen debris or other vehicles, 6D pose estimation enhances the

safety and reliability of autonomous driving systems.

Augmented Reality (AR) In the realm of augmented reality (AR), accurate object pose estima-

tion is essential for creating immersive and interactive experiences (Y. Su, Rambach, et al., 2019).

AR applications, such as games, retail, and healthcare experiences, rely on 6D pose estimation to

seamlessly integrate virtual elements into the real world. This technology has the potential to rev-

olutionize industries by offering innovative and engaging experiences. For example, in AR games

like Pokémon GO, precise pose estimation ensures that virtual creatures interact realistically with

the environment. Similarly, in retail, companies use AR applications to allow customers to visual-

ize products in their own space before making a purchase decision. In healthcare, AR is used for

medical training and surgical planning, enabling precise overlay of virtual anatomy models onto

the surgical environment.

Robotics The field of robotics is another area where 6D object pose estimation plays a crucial

role (Collet, Martinez, and Srinivasa, 2011; J. Liu et al., 2023). Robots equipped with accurate

pose estimation capabilities can perform a wide range of tasks with precision and flexibility. From

household chores to healthcare and entertainment, robots can interact effectively with their envi-

ronment by leveraging object poses. For example, in household settings, robots can use object

pose estimation to pick up and move objects, assisting with tasks such as cleaning or organizing.

In healthcare, robots can support medical professionals by preparing surgical tools or transporting

medical supplies. Additionally, in entertainment, robots can engage in interactive games such as

Treasure Hunts with humans, providing new forms of entertainment and engagement.

Manufacturing Utilizing 6D object pose estimation in manufacturing provides multiple ben-

efits (Liang et al., 2021), particularly in assembly processes and quality control. Precise pose
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estimation allows for visual inspections of component positions and orientations before assembly,

ensuring precise assembly with minimal errors. This results in reduced component damage rates

and higher-quality outputs. Moreover, in electronics manufacturing, machines using visual 6D

object pose estimation can accurately place tiny components on circuit boards, thereby enhancing

product reliability. Quality control processes also benefit from pose estimation, as it allows for

inspections of component alignments to ensure they meet quality standards.

Warehouse Automation In the context of warehouse automation, 6D pose estimation is essential

for efficient and accurate object manipulation (D.-C. Hoang, Stoyanov, and Lilienthal, 2019; V.-D.

Vu et al., 2024). As e-commerce continues to grow, automated warehouse solutions rely on robots

to pick, pack, and transport items. Accurate pose estimation ensures that robots can grasp and

manipulate objects reliably, even in densely packed environments. By enhancing pose estimation

algorithms, warehouse operations can be optimized, reducing errors and increasing efficiency in

logistics processes.

Security and Surveillance 6D object pose estimation plays a vital role in security and surveil-

lance applications by accurately tracking the pose of objects in the environment (Vidanage, Fer-

nando, Abeywardhana, et al., 2023). Surveillance systems equipped with 6D pose estimation ca-

pabilities can enhance situational awareness and improve threat detection. For example, in public

spaces, surveillance cameras can use pose estimation to track the movements of suspicious objects,

such as unattended vehicles, alerting security personnel to potential threats.

In conclusion, the applications of 6D object pose estimation and tracking are vast and im-

pactful, ranging from enhancing the safety and efficiency of autonomous vehicles to revolutioniz-

ing industries like AR, robotics, warehouse automation, manufacturing, and security and surveil-

lance. These applications highlight the importance of continued research and development in the

field of 6D object pose estimation, as it continues to shape the future of technology and improve
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the quality of life for people around the world.

1.2 Key qualities for real-world pose estimation and tracking

In light of these applications, it raises the crucial question: what qualities should an ideal 6D pose

estimator or tracker possess to meet the demands of real-life applications? To answer this question,

we examine several key characteristics that are essential for practical deployment in a wide range

of scenarios.

Accuracy. Accurately estimating the 6D pose of an object is fundamental for many applications.

High accuracy ensures that the system can make precise decisions and actions based on the object’s

pose information.

Robustness. Real-world environments are often cluttered, under varying lighting conditions, and

objects of interest may be partially or fully occluded. A robust pose estimator or tracker should

be able to handle clutters and illumination changes, and still provide accurate pose estimates even

when parts of the object are not visible.

Noise resistance. Visual data from sensors can be noisy, especially in everyday environments. A

robust pose estimator should be able to handle noise in the data and provide accurate pose estimates

even in the presence of such noise. A pose estimator that can achieve high accuracy and robustness

without requiring expensive sensors or hardware is more likely to be widely adopted.

Efficiency/Real-time performance. Efficiency is crucial for real-time applications. A pose es-

timator should be able to process data and estimate poses quickly enough to be useful in real-time
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scenarios, such as robotics or augmented reality.

Generalization. The ability to generalize to new environments, objects, and lighting conditions

is important for a pose estimator. A system that can adapt to new scenarios without the need for

extensive retraining is more likely to be deployed in real-world applications.

Data efficiency. Some methods require large amounts of labeled training data, which can be

expensive and time-consuming to collect and annotate.

In conclusion, the ideal 6D pose estimator or tracker for real-life applications should exhibit

high accuracy, robustness to clutter and occlusions, noise resistance, efficiency in processing and

real-time performance, and the ability to generalize to new environments without extensive retrain-

ing. These qualities are essential for practical deployment across various scenarios, ensuring that

the system can effectively perceive and interact with its surroundings in real-world applications.

My approaches in this thesis also focused on meeting these qualities, making them more suitable

for real-world applications.

1.3 Outstanding problems

Despite several decades of development in 6D object pose estimation and tracking, there are

still significant limitations in this field that hinder its practical deployment in real-world scenar-

ios. Building on the discussion of essential qualities for real-world pose estimation, this section

presents three outstanding problems that are essential for realistic applications.

Robustness to symmetry, texturelessness, and occlusion. The first challenge is maintaining

robustness in the presence of symmetric and textureless objects under occlusion. Objects with

7



Introduction

symmetric shapes, lack of surface texture, or partial occlusion pose difficulties for pose estimation

systems. Existing methods often address these challenges individually, leading to failures when all

three are present simultaneously (Cao, Sheikh, and Banerjee, 2016; Oberweger, Rad, and Vincent

Lepetit, 2018). For instance, as shown in Figure 1.2, in environments like kitchens or manufactur-

ing plants, objects may exhibit all three challenges concurrently, necessitating robust algorithms

capable of handling such scenarios. Addressing this issue is crucial for ensuring algorithm stabil-

ity in practical applications. Therefore, the question arises: Is there an effective approach that can

simultaneously tackle all three challenges?

Figure 1.2: A daily life scenario where symmetric and textureless objects are under occlusion

Generalization to previously unseen objects, especially for complex-shaped objects. Beyond

handling the aforementioned complex scenarios, a significant challenge is the generalization prob-

lem, where algorithms struggle to manage objects not encountered during training, particularly

when encountering complex-shaped objects. Instance-level methods rely on pre-existing CAD

models, limiting their applicability to a small set of objects. Category-level methods aim to gen-

eralize from known objects to new ones within a category, leveraging the shape similarity be-

tween the objects. However, existing geometric-based methods are sensitive to noise and limited

to simple-shaped objects (W. Chen, Jia, H. J. Chang, Duan, Shen, et al., 2021; Di et al., 2022). As
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the common features among objects are essential for category-level methods, the question arises:

which features are crucial for category-level object pose estimation, especially for complex-shaped

objects and noise robustness?

Lack of effective methods for category-level object pose refinement. When moving into the

realistic application of category-level methods, a key challenge is the lack of effective methods

for object pose refinement. While initial pose estimation is crucial, refining this estimate for high-

precision poses is equally important, particularly in scenarios like AR medical training. Traditional

methods compare the observed object with its CAD models for refinement, but this isn’t feasible

for category-level refinement where CAD models are unavailable. This gap in research is evident,

with only one existing method, CATRE (X. Liu et al., 2022), proposed before my work. CATRE

refines object poses by aligning the observed object’s point cloud with a category-level shape

prior, but it struggles to capture detailed geometric relationships essential for accurate refinement.

This raises the question: Can we improve pose refinement by leveraging geometric relationships

between the shape prior and the target object?

These outstanding problems highlight the need for advancements in 6D object pose esti-

mation and tracking algorithms to meet the demands of real-world applications. Addressing these

challenges will significantly enhance the practicality and effectiveness of pose estimation systems,

paving the way for their widespread adoption across various industries.

1.4 My approaches

I proposed three approaches to address each of the aforementioned outstanding problems.
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Approach 1: tackling prevalent real-world challenges The first approach aims to improve ob-

ject pose estimation in challenging scenarios where objects exhibit symmetry, lack texture, and

are partially occluded. While template-matching methods are effective for handling symmetry and

textureless objects, they often struggle with occluded objects. Understanding an object’s histori-

cal motion can aid in pose estimation, particularly when it’s occluded. To address the challenges

posed by complex scenarios, I propose a Temporal-Primed object pose tracking framework with

Auto-Encoders (TP-AE). This framework comprises a prior pose prediction module and a tempo-

rally primed pose estimation module. The prior pose prediction module uses historical pose data

to predict the most probable pose for the current frame. The temporally primed pose estimation

module adjusts the prior pose based on the current image observation. This adjustment involves

embedding the prior pose into the observed image using a pose-image fusion procedure. Subse-

quently, the fused image is input into an auto-encoder for high-quality object reconstruction, even

in cases of significant occlusion. Finally, the object pose is determined using a dynamic visibility-

guided template-matching procedure that utilizes the auto-encoder’s latent features. This approach

strategically employs object motion information to guide latent feature extraction and matching,

enabling real-time and accurate tracking of partially occluded and textureless objects with sym-

metric shapes.

Approach 2: enhancing generalizability to category-level objects. The second approach fo-

cuses on enhancing algorithm generalizability to category-level objects, crucial for real-world

applications where accurate estimation of unseen objects is necessary without relying on CAD

models. Existing 3D graph covolution (3D-GC) based methods often struggle to extract essential

translation and scale information necessary for precise pose estimation. Moreover, their reliance on

local geometric structures limits their effectiveness to simple-shaped objects and makes them more

susceptible to noise. To overcome these challenges, I propose a novel network structure called

the Hybrid Scope Feature Extraction Layer (HS-layer) for extracting latent features essential for
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category-level object pose estimation. The HS-layer can encode translation and scale information

and perceive outlier-robust local-global geometric information. This is achieved by integrating a

feature-distance-based receptive field construction procedure and an Outlier-Robust Feature Ex-

traction Layer (ORL) with 3D-GC, along with adding a parallel path for scale and translation

encoding. The HS-layer is then used to build a real-time category-level pose estimation structure

called HS-Pose. This model showcases substantial enhancements in accuracy, demonstrating its

ability to handle complex-shaped objects while also exhibiting robustness against outliers.

Approach 3: achieving high-precision in category-level applications. The third approach tar-

gets high-precision category-level applications, where accurately comparing the pose between a

category-level shape prior and the actual object is crucial. To achieve this, I propose leveraging the

geometric relationships that exist between the shape prior and the target object, as objects within

a category often share certain geometric similarities. I begin by incorporating the HS-layer into

the feature extraction process, enabling the extraction of both local and global geometric features.

This step is essential for gaining a comprehensive understanding of the object’s geometry, which is

crucial for achieving precise pose estimation. I then apply learnable affine transformations to align

the extracted features, addressing geometric discrepancies between observed objects and shape

priors. Additionally, I propose a mechanism to merge information from observed data and shape

priors, enhancing the algorithm’s ability to detect pose errors and refine object poses. By incorpo-

rating these strategies, the algorithm demonstrates improved performance in category-level object

pose refinement, making it more reliable and effective in high-precision applications for real-world

scenarios.
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1.5 Contributions

In this thesis, I present three significant contributions to the field of visual 6D object pose estima-

tion and tracking, with a focus on their practical applicability in real-life scenarios:

Novel Approach for Challenging Scenarios: I introduce a novel approach to tackle real life

complex situations where three main challenges co-exist: symmetry, texturelessness, and occlu-

sion. By leveraging temporal information and integrating object motion information into the latent

feature extraction and matching procedure, I demonstrate a significant enhancement in the accu-

racy of real-time object pose tracking. This approach is particularly effective for objects with

ambiguous surface features, those moving with non-constant velocity, or those under occlusion

(Chapter 3).

Generalizability for Category-Level Objects: To enhance the generalizability of object pose

estimation algorithms for category-level objects—essential for applications requiring the handling

of numerous previously unseen objects without specific CAD models—I introduce a hybrid scope

feature extraction layer (HS-layer) within my network architecture. The HS-layer effectively ex-

tracts features in different scopes, showing great perceptiveness to geometric structure and robust-

ness to outliers. This significantly improves the accuracy and noise resistance of category-level

pose estimation, enabling the algorithm to handle complex-shaped objects and operate in real time

(Chapter 4).

Category-Level 6D Object Pose Refinement: I advance the refinement of category-level 6D ob-

ject poses, crucial for high-precision applications, by introducing a novel architecture that specif-

ically addresses shape variation issues. My approach effectively leverages the geometric relation-

ship between shape priors and observed point clouds. Through applying learnable affine trans-
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formations and employing a unique merging mechanism, it enhances the algorithm’s capacity to

refine object poses and detect pose errors, resulting in consistent performance improvements and

enhanced generalization abilities (Chapter 5).

These contributions collectively advance the state-of-the-art in visual 6D object pose esti-

mation and tracking, making algorithms more reliable and effective in real-world scenarios, and

laying a foundation for their widespread use in various practical applications.

1.6 Structure

This thesis is structured as follows:

Chapter 1 serves as an introduction, which outlines the significance of research in visual 6D

object pose estimation and tracking, highlights the outstanding problems in this field, provides an

overview of how each problem is addressed, and clarifies the contributions of this work.

Chapter 2 provides background information on visual 6D object pose estimation and tracking,

including a historical overview and the categorization of existing methods. It also reviews state-

of-the-art methods relevant to the focused scenarios.

Chapter 3 presents a real-time instance-level 6D object pose tracking framework designed to

address challenges in real-life scenarios, such as symmetry, texturelessness, and occlusion. This

chapter demonstrates how temporal information is used and combined with auto-encoder-based

reconstruction to enhance the capability to tackle the challenges. Experimental results are provided

to validate the effectiveness of the approach.
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Chapter 4 explains the enhancement of generalizability of object pose estimation for category-

level objects. The chapter discusses the limitations of existing state-of-the-art methods and demon-

strates how a network architecture was designed to address them by leveraging hybrid-scope fea-

tures. A category-level object pose estimation framework is provided in this chapter. The effec-

tiveness of the approach is demonstrated through extensive experiments.

Chapter 5 presents a novel architecture for the category-level object pose refinement task. This

chapter describes how geometric feature extraction is combined with learnable affine transforma-

tions to address shape variation issues. It also introduces a specially designed merging mechanism

to efficiently merge diverse data sources. Extensive experiments are conducted to demonstrate the

effectiveness of the proposed framework.

Chapter 6 discusses the limitations of the proposed methods and outlines potential future work.

It examines the challenges and constraints faced by the developed algorithms, such as their limi-

tation to long-term object tracking, computational consumption, and the need for object detectors.

The chapter also suggests possible directions for future research to address these limitations and

enhance the applicability of the proposed methods.

Chapter 7 concludes this thesis by summarizing the contributions of this work.
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Chapter Two

Overview of 6D Object Pose Estimation and

Tracking Research

The field of visual 6D object pose estimation and tracking has undergone significant evolution over

the past few decades, with recent years experiencing a notable surge in interest and innovation. Ini-

tially, researchers relied on the availability of the target object’s 3D model as prior information for

pose estimation and tracking (also known as the instance-level method). This method typically in-

volves two main stages: first, extracting features from visual input, and then recovering the object’s

pose by matching these features with the 3D model through template-matching or feature-matching

strategies. One of the foundational works in this area is attributed to Roberts, who calculated the

perspective projection matrix as a solution of a linear system, establishing the relationship between

feature points on an object and their corresponding image projections (Roberts, 1963). However,

early methods like these were limited to objects with simple shapes and were sensitive to noise in

correspondence points.

Subsequent research efforts focused on enhancing feature matching robustness (Fischler

and Bolles, 1981; Haralick et al., 1989) and extracting effective geometric primitives for corre-

spondence matching, often with simplistic models and assumptions (David G. Lowe, 1991; Kosaka
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and Nakazawa, 1995). However, reliance on geometric primitives (David G Lowe, 1987; Harris

and Stennett, 1990) for feature extraction limited the algorithms’ ability to handle complex objects

and textures, leading to challenges in accurate pose estimation in realistic environments.

To address these limitations, researchers turned to data-driven methods, leveraging tra-

ditional machine learning algorithms to learn discriminative features for object pose estimation

and tracking. Examples include the LineMOD (S. Hinterstoisser et al., 2011) algorithm and

SURF (Bay, Tuytelaars, and Van Gool, 2006). Despite their success, these methods often relied on

handcrafted features, requiring extensive hyper-parameter tuning, making them less scalable and

adaptable.

To overcome these challenges, researchers embraced deep learning, using deep neural net-

works to extract feature representations directly from raw data, leading to improved accuracy and

generalizability. Deep learning-based methods quickly became prevalent, with numerous stud-

ies (Xiang et al., 2018; Rad and Vincent Lepetit, 2017) exploring their potential to extract sparse

or dense latent features for object pose estimation and tracking, and even to learn object poses

directly from raw data. Additionally, integrating object pose estimation with scene understanding

and semantic segmentation (K. He et al., 2017) is becoming prevalent, enabling more context-

aware and intelligent object pose estimation and tracking systems.

As accuracy and reliability improved in simple scenarios, there was a growing emphasis

on addressing real-world challenges. Recent efforts have led to the exploration of category-level

methods, which estimate the pose of objects within a category without relying on specific 3D

models, thereby improving generalizability to unseen objects (H. Wang et al., 2019). Concurrently,

there is a significant emphasis on addressing complex real-world scenarios (Zheng, Leonardis, et

al., 2022) characterized by occlusions, cluttered environments, symmetry, and textureless objects.

Apart from these efforts, current trends in this field also involve integrating novel approaches

such as attention mechanisms (Dosovitskiy et al., 2021), graph neural networks (Z.-H. Lin, S.-Y.
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Huang, and Y.-C. F. Wang, 2020), and unsupervised learning (T. Lee, B. Lee, et al., 2021) to

enhance object pose estimation and tracking methods, making them more adaptable to challenging

real-world conditions.

The above developments lay the foundation for my work in visual 6D object pose estimation

and tracking. In my research, I focus on developing algorithms that not only achieve high accuracy

but also demonstrate practicality and generalizability for real-world applications. By tackling the

key challenges in real-world scenarios, my work contributes to the continuous evolution of visual

6D object pose estimation and tracking, advancing us toward the development of practical and

reliable algorithms for real-world use.

In the rest of this chapter, I first introduce the categorization of 6D object pose estimation

and tracking methods based on different criteria, I then discuss the challenges in this field. Later, I

review the state-of-the-art methods related to my work.

2.1 Categorization of 6D object pose estimation and tracking

methods

Visual 6D object pose estimation and tracking methods can be categorized into different groups

based on various criteria. Three main types of categorization are relevant to this work. The

first categorization is based on objectives, where algorithms are grouped into instance-level and

category-level methods. The second categorization is based on methodologies, where algorithms

are roughly grouped into three types: pose estimation, tracking, and refinement. The third cate-

gorization is based on the underlying processing procedure of the algorithms: template-matching,

correspondence-matching, and regression-based methods. Each of these categorizations provides

a different perspective on the object pose estimation and tracking algorithms. I briefly introduce
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them in this section.

2.1.1 Instance-level and category-level methods

Instance-level methods. Instance-level methods in visual 6D object pose estimation and track-

ing focus on precisely determining the pose of individual object instances. These methods typically

require access to the 3D CAD model of the target object. Utilizing the prior information provided

by the known 3D object model, instance-level methods often achieve higher accuracy compared

to category-level methods. However, their reliance on specific object models limits their applica-

bility to scenarios with a small number of known objects. Despite this limitation, instance-level

methods are particularly effective in applications requiring precise object pose information, such

as industrial assembly and object manipulation (Collet, Martinez, and Srinivasa, 2011). Over the

years, research in instance-level methods has seen significant advancements, with current trends

focusing on enhancing robustness in complex and challenging real-world scenarios (Y. Su, Saleh,

et al., 2022).

Category-level methods. Category-level methods, unlike instance-level methods, aim to esti-

mate the pose of objects belonging to a specific category (e.g., chairs, cars, bottles) rather than

individual instances. These methods do not rely on specific object models, making them more gen-

eralizable and suitable for a wider range of everyday applications. While category-level methods

can handle more object instances than instance-level methods, both types of methods are important.

Instance-level methods serve as the foundation for category-level methods, and each has its suit-

able applications. Research on category-level object pose estimation has emerged more recently,

with current efforts focused on improving the ability to handle intra-category shape variations and

enhancing overall performance.
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2.1.2 Object pose estimation, tracking, and refinement Methods

Object pose estimation methods. Object pose estimation methods focus on determining the

pose of objects in a given scene. The goal is to find the transformation that aligns the 3D model

with the observed scene, thus estimating the object’s pose. They determine the pose of objects in a

single image or multi-view image, typically using features extracted from that image alone. These

methods are typically adopted in applications that do not require temporal consistency. Object

pose estimation methods serve as the foundation for object pose tracking and refinement methods,

as they establish the initial pose estimate.

Object pose tracking methods. Object pose tracking methods, on the other hand, aim to track

the pose of objects over time in a video sequence. These methods enhance object pose estima-

tion by incorporating temporal information to maintain continuity in the estimated poses, which is

crucial for applications such as autonomous driving and augmented reality (Marchand, Uchiyama,

and Spindler, 2016; Kothari et al., 2017). The challenges of object pose tracking include maintain-

ing robustness when tracking objects with complex motion (e.g., rapid and non-linear movements)

and varying levels of occlusion. Tracking objects over the long term, where the object is fully oc-

cluded during tracking and reappears, is also a significant challenge in visual object pose tracking.

Since object pose tracking builds upon object pose estimation methods, and category-level object

pose estimation is still in its early stages, most existing works focus on instance-level object pose

tracking, with only a few addressing the challenge of category-level object pose tracking (Weng

et al., 2021).

Object pose refinement methods. Object pose refinement methods aim to enhance the accu-

racy of initial pose estimates. They typically take a less accurate pose estimation and the visual

observation as input, refining it using a template model as additional information. The refine-
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ment procedure often involves comparing the transformed template model with the visual input

and estimating the pose error between the initial pose estimation and the ground truth pose (Yi Li

et al., 2020). This refinement step is crucial for ensuring the reliability of pose estimates, espe-

cially in scenarios requiring high precision or where the initial estimate may be noisy or imprecise.

Category-level object pose refinement is much more challenging than instance-level methods, as

it requires correctly identifying the shape relationships between objects with different shapes (the

template model vs. the target object). Research on category-level 6D object pose refinement is still

in its infancy, with only one existing work introduced (X. Liu et al., 2022) before my proposed

approach.

2.1.3 Template-matching, correspondence-matching, and end-to-end meth-

ods

Template-matching-based methods. Template-matching-based methods rely on comparing ob-

served object features with a precomputed template book generated from the object’s 3D model.

By calculating a similarity metric, such as normalized cross-correlation, these methods search for

the best match between the template book and features extracted from the observed image (V. N.

Nguyen et al., 2022) for pose estimation. Template-matching methods are straightforward and

suitable for textureless objects, handling rotational ambiguity. However, they can be sensitive to il-

lumination, background clutter, and occlusion, as the extracted features tend to vary from templates

in these cases. Recent advances have focused on improving robustness to these challenges (Sun-

dermeyer, Durner, et al., 2020; Zheng, Leonardis, et al., 2022).

Correspondence-matching based methods. Correspondence-matching methods, also known as

feature-based methods, typically employ a two-stage structure for object pose recovery: first, they

identify key features (e.g., sparse or dense keypoints) in both the 3D object model and the visual
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input, and then they establish correspondences between these features using matching algorithms

such as Perspective-n-point (PnP) (Fischler and Bolles, 1981). Correspondence-matching-based

methods are prominent in visual 6D object pose estimation and tracking, often achieving higher

accuracy than template-matching-based and end-to-end methods. However, they can be prone to

errors with mismatched correspondences and may struggle with texture-less objects due to a lack

of distinguishable local features. Recent research in this area has focused on two main paths:

first, exploring deep neural network-based feature matching methods for enhanced robustness to

correspondence errors; and second, enhancing the quality of latent feature extraction (Hansheng

Chen et al., 2022).

End-to-End methods. End-to-end methods, also called direct methods, directly regress the ob-

ject’s pose from input image data without explicitly identifying features or establishing correspon-

dences. These methods arise with the surge of deep learning and typically leverage deep neural

networks to learn complex mappings from visual inputs to poses. End-to-end methods are often

preferred for applications that require real-time speed and show impressive performance in sce-

narios with complex backgrounds. However, they can be challenging to train and require large

amounts of annotated data. Current research works also explored adding auxiliary modules (e.g.,

shape reconstruction (W. Chen, Jia, H. J. Chang, Duan, Shen, et al., 2021), semantic segmenta-

tion (Di et al., 2022)) during training for enhancing the latent feature extraction procedure. The

exploration of better feature extraction network structures to enhance the generalizability of these

methods was also proposed Zheng, C. Wang, et al., 2023.

2.2 Challenges

Visual 6D object pose estimation faces several challenges due to the complexity of real-world en-

vironments and object characteristics. These challenges can significantly impact the accuracy and
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robustness of pose estimation algorithms. In this section, we discuss some of the key challenges

and their implications in detail.

Background clutter. Background clutter refers to the presence of irrelevant or distracting ele-

ments in the scene that can interfere with object detection and pose estimation. This challenge is

particularly problematic in environments with complex backgrounds, where the object of interest

may blend into the surroundings or where the feature extraction procedure could be disrupted by

the clutter. This interference makes it difficult for the algorithm to distinguish between the object

and the background.

Illumination changes. Illumination changes, such as variations in lighting conditions, can sig-

nificantly affect the appearance of objects in the scene. This can lead to variations in the object’s

appearance, making it challenging for visual pose estimation and tracking algorithms to accurately

determine the object’s pose across different lighting conditions.

Textureless objects. Textureless objects, which lack distinct surface features or patterns, are

challenging for pose estimation algorithms because they provide limited visual cues for determin-

ing the object’s pose. Without sufficient texture information, algorithms may struggle to accurately

estimate the object’s pose, especially in cluttered or low-texture environments.

Symmetric objects. Symmetric objects, which exhibit symmetry along one or more axes, pose

a challenge for pose estimation algorithms because multiple poses may be consistent with the

observed image data. This ambiguity makes it difficult for algorithms to uniquely determine the

object’s pose based solely on visual information, especially when the object is partially occluded

or viewed from a challenging angle.
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Occlusions. Occlusions occur when part of the object is obstructed from view by another object

or occluder in the scene. Occlusions can make it challenging for pose estimation algorithms to

accurately determine the object’s pose, as the visible parts of the object may not provide sufficient

information to identify the target object or to infer its full pose.

Noise robustness. Noise in the input data, such as sensor noise, compression artifacts, or the

outliers of detected object point clouds, can negatively impact the accuracy of pose estimation al-

gorithms by introducing spurious information that may be misinterpreted as valid object features.

Robustness to noise is crucial for ensuring reliable pose estimation results in real-world applica-

tions.

Similar-looking distractors. Similar-looking distractors refer to objects or elements in the scene

that visually resemble the target object, potentially leading to confusion for pose estimation and

tracking algorithms. These distractors can cause algorithms to mistakenly identify them as the

target object, leading to errors in pose estimation.

Intra-category variation. Intra-category variation refers to the variability in object appearance

and geometry within the same object category. Objects within the same category can exhibit signif-

icant variations in size, shape, texture, and other visual properties, making it challenging for pose

estimation algorithms to generalize across all instances of a category. Addressing intra-category

variation requires category-level algorithms to learn robust representations that can capture the

underlying similarities and differences between different instances of the same object category.

In summary, visual 6D object pose estimation and tracking face many challenges in real-

world situations, especially when several prevalent challenges occur together. My work focuses on

the prevalent challenges in the field, such as variation within object categories, dealing with noise,

handling symmetric and textureless objects, and coping with occlusions. By addressing these
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challenges, my work aims to make object pose estimation and tracking algorithms more accurate

and reliable, pushing the field forward.

2.3 Related work

In the review of related work, I focus on methods that are directly relevant to my research. Specif-

ically, I review methods that address the challenges in this field that are pertinent to my work.

This selective review allows for a focused discussion on approaches that have implications for the

advancement of my research objectives.

2.3.1 Instance-level: toward real-world challenges

Researchers have explored strategies to overcome challenges in robust visual 6D object pose esti-

mation and tracking for several decades. Traditional methods primarily use handcrafted features

and fixed matching procedures for pose estimation (D. G. Lowe, 1999). For instance, Rothganger,

Lazebnik, Schmid, and Jean Ponce (2006) use local geometric image descriptors and multi-view

spatial constraints for pose estimation, demonstrating a certain level of robustness to background

clutter. S. Hinterstoisser et al. (2011) uses line segments as feature descriptors followed by feature-

based template matching, effectively handles texture-less objects under cluttered backgrounds. Pa-

pazov and Burschka (2010) adopts local keypoints as features with RANSAC (Fischler and Bolles,

1981), aimed to enhance the algorithms’s robustness to occlusions. (Stefan Hinterstoisser, Vincent

Lepetit, Ilic, Holzer, et al., 2013) propose to use color gradient and surface normal as the fea-

ture descriptor for template-matching. While effective in certain situations, these methods often

need extensive hyper-parameter tuning when applied to new scenarios or objects, limiting their

generalization ability.
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To overcome these challenges, Wohlhart and Vincent Lepetit (2015) introduced a deep-

learning approach that uses Convolutional Neural Networks (CNNs) to extract descriptors cap-

turing object identity and 3D pose. These descriptors are then utilized in template matching to

determine the object pose, improving generalizability, scalability, and robustness, particularly for

objects with poor textures. Similarly, Kehl, Milletari, et al. (2016) also applied deep learning to

extract feature descriptors, focusing on features extracted from local image patches for template

matching. PoseCNN (Xiang et al., 2018) and SSD-6D (Kehl, Manhardt, et al., 2017) leveraged

deep learning for end-to-end object pose estimation. They consider the object as a whole and es-

timate its pose directly using deep neural networks. Additionally, they each propose strategies to

address the challenge of rotation ambiguity: SSD-6D leverages a decomposed model pose space,

while PoseCNN introduces separate training loss terms for symmetric and non-symmetric objects.

BB8 (Rad and Vincent Lepetit, 2017) improved the robustness to occlusion by estimating the 2D

projections of an object’s 3D bounding box corners in the image. These sparse keypoints are then

used for correspondence matching to determine the object’s pose. BB8 also addresses rotation

ambiguity by mapping output rotations into a specified range during training. AAE (Sundermeyer,

Z. Marton, et al., 2019) addressed challenges such as textureless and symmetric objects using a

deep learning-based augmented auto-encoder framework. It trained an auto-encoder to reconstruct

objects despite illumination changes, background clutter, and occlusions in the input image. Object

pose was then recovered using a template-matching procedure based on latent features extracted

by the auto-encoder. MPAAE (Sundermeyer, Durner, et al., 2020) extended AAE by structuring

multi-path decoders with a shared encoder for object feature extraction, enabling the generalizabil-

ity to previously unseen objects with a given object 3D model. Despite their advancements, they

can struggle in situations with higher levels of occlusion. Post-refinement techniques like Iterative

Closest Point (ICP) (Arun, T. S. Huang, and Blostein, 1987) are commonly employed to alleviate

this issue, but they often come at the cost of slower inference speeds.

To enhance the performance when objects are partially occluded, researchers have devel-
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oped methods that use dense correspondence matching. These approaches begin by estimating

dense correspondences and then recovering the object’s pose by matching these correspondences,

often employing algorithms like RANSAC and PnP. For instance, PVNet (Peng et al., 2019) re-

gresses pixel-wise unit vectors pointing from each pixel to predefined keypoints, then calculates

the 6D pose using RANSAC and an uncertainty-driven PnP algorithm. Pix2Pose (Park, Patten,

and Vincze, 2019) utilizes pixel-wise 2D-3D correspondences, where an auto-encoder estimates

each pixel’s corresponding 3D coordinates on the object’s canonical frame. Densefusion (C. Wang,

D. Xu, et al., 2019) enhances occlusion robustness by incorporating depth information and fusing

RGB and depth features for pixel-wise pose estimation. DPOD (Zakharov, Shugurov, and Ilic,

2019) also estimates 2D-3D pixel-wise correspondences and includes a deep learning-based pose

refinement structure for improved results. DPOD (Zakharov, Shugurov, and Ilic, 2019) also es-

timates 2D-3D pixel-wise correspondences and includes a deep learning-based pose refinement

scheme for improved results. PVN3D (Y. He, W. Sun, et al., 2020) proposed a voting network

to extract point-wise 3D keypoints and then use least square fitting for object pose estimation.

FFD6D (Y. He, H. Huang, et al., 2021) then extended PVN3D and enhanced the feature extraction

with a bidirectional fusion strategy for fusing the information from the depth and RGB image.

GDR-Net (G. Wang et al., 2021) focused on enhancing the correspondence feature extraction us-

ing geometry as a guide, and trained the network with Path-PnP, enabling end-to-end regression of

object pose. These methods have demonstrated improved robustness to occlusion. However, they

have limitations in handling objects with insufficient textures.

To further enhance the pose estimation for textureless objects, CosyPose (Labbé et al.,

2020a) leveraged multi-view consistency for scene reconstruction and multiple refinement pro-

cesses for improved pose accuracy. It demonstrates impressive performance on static objects un-

der occlusion. However, the time-consuming refinement procedures limited its applicability for

real-time applications. SurfEmb (Haugaard and Buch, 2021) proposed to learn dense and con-

tinuous 2D-3D correspondence distributions with a contrastive loss. It uses a key-query structure
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consisting of two models to map object coordinates and color images into embedding distributions,

resulting in improved robustness for textureless objects. Trans6D (Z. Zhang et al., 2023) and CRT-

6D (Castro and Kim, 2023) investigated Transformer (Dosovitskiy et al., 2021) in 6D object pose

estimation scheme for better perceptiveness of object’s local and global feature, further enhanced

the performance.

Meanwhile, methods that incorporate temporal information have been developed to im-

prove the robustness of handling dynamic real-world objects. Traditional tracking methods (Choi

and Christensen, 2013; Schmidt, Newcombe, and Fox, 2014; D. J. Tan and Ilic, 2014; D. J. Tan,

Tombari, et al., 2015) are effective in tracking objects under partial occlusion and background

clutter. However, these methods often struggle with generalizability and scalability to new sce-

narios. Recent advancements, particularly those based on deep learning, aim to track objects by

utilizing motion information from two consecutive time steps. For instance, Garon and Lalonde

(2017) explored the use of deep learning for direct object tracking. Their approach involves using

a predicted image, generated by rendering the object model at the predicted pose’s view, along

with the observed image as input. The neural network then estimates the residual pose, resulting in

improved performance. Similarly, DeepIM (Yi Li et al., 2020), se(3)-TrackNet (B. Wen, Mitash,

et al., 2020) and Marougkas et al. (2020) used the predicted and observed images as input for object

tracking under occlusion. se(3)-TrackNet introduced a novel neural network architecture to disen-

tangle feature encoding and utilizes a 3D orientation representation using Lie algebra. Marougkas

et al. (2020) proposed a multi-attentional convolutional architecture for real-time 6D object pose

tracking, integrating multiple soft spatial attention modules into a CNN architecture to address

challenges like background clutter and occlusion. However, these methods have limitations, as uti-

lizing only two consecutive time steps may not fully leverage object motion. MaskUKF (Piga et al.,

2021) enhances motion tracking robustness by leveraging Unscented Kalman Filter (Wan and Van

Der Merwe, 2000). PoseRBPF (Deng, Mousavian, et al., 2019) proposed a novel object pose track-

ing structure by integrating Rao-Blackwellized particle filters with Augmented Auto-Encoders.
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Despite its effectiveness in robustly tracking textureless and symmetric objects, PoseRBPF strug-

gles with tracking objects under occlusion due to its reliance on direct object reconstruction using

a single image. The development of learning-based 6D pose tracking schemes has been limited

due to the lack of rich video datasets.

One of the contributions of this thesis, TP-AE (Zheng, Leonardis, et al., 2022), is the first

method to address a challenging real-life scenario where three main challenges coexist: textureless

and symmetric objects under occlusion, with real-time performance.

2.3.2 Category-level: Toward generalizability and higher precision

Instance-level methods are limited to handling a small set of specific objects, requiring the avail-

ability of 3D models for each object. To expand the algorithm’s capability to work with a broader

range of objects, researchers have explored estimating object poses at the category level. One

early approach (Sahin and Kim, 2019) proposed a part-based random forest method that used

skeleton representations to handle shape variations within object categories. While effective, this

method is limited in handling complex shapes. H. Wang et al. (2019) explored deep learning

for category-level object pose estimation using a reconstruction and matching-based approach.

They first estimated the visible surface of the target object in a Normalized Object Coordinate

Space (NOCS) and then recovered the object pose by iteratively matching the NOCS map with the

observed object. Due to the simplicity and effectiveness of this approach, other works have fol-

lowed this structure and incorporated new strategies to improve the accuracy and generalizability

of category-level object pose estimation. For example, SPD (Tian, Ang Jr, and G. H. Lee, 2020)

focused on enhancing the reconstruction procedure and suggested using category-level shape prior,

which is a representative shape for objects in a category (often the mean shape), to improve the

estimation of the NOCS maps. SGPA (K. Chen and Dou, 2021) proposed a method to dynamically

adapt the shape prior to the observed object, resulting in significant performance improvement.
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ANCSH (X. Li, H. Wang, Yi, L. J. Guibas, et al., 2020) extended the NOCS representation to

the parts of articulated objects for category-level articulated object pose estimation. T. Lee, B.-U.

Lee, et al. (2021) suggested adding a metric-scale object reconstruction branch in addition to the

normalized scale. UDA-COPE (T. Lee, B. Lee, et al., 2021) utilized domain adaptation tech-

niques, specifically the teacher-student self-supervised learning scheme, within the reconstruction

and matching-based framework. This approach aims to reduce the reliance on manually labeled

training data and enhance generalizability. Self-DPDN (J. Lin, Wei, Ding, et al., 2022) further

enhances this by incorporating a deep prior deformation network within the self-supervised learn-

ing scheme. TTA-COPE (T. Lee, Tremblay, et al., 2023) improves generalizability by integrating

test-time adaptation techniques. Despite their effectiveness, the time-consuming iterative corre-

spondence matching procedure prevented them from being used in real-time applications.

To address real-time application needs, FS-Net (W. Chen, Jia, H. J. Chang, Duan, Shen,

et al., 2021) explored using local geometric features for category-level object estimation. They

employed a 3D Graph Convolution (3D-GC) based auto-encoder with an auxiliary shape recon-

struction branch to extract latent geometric features of the target object and directly regress the

pose based on these features. This end-to-end 3D-GC-based structure showed enhanced sensitivity

to geometric structures, resulting in improved pose estimation accuracy and real-time performance.

Subsequently, SAR-Net (H. Lin, Z. Liu, C. Cheang, et al., 2022) extended FS-Net by incorporating

a symmetric-aware shape reconstruction procedure, improving rotation and size estimation. GPV-

Pose (Di et al., 2022) further enhanced the 3D-GC-based structure by adopting confidence-aware

estimations and integrating loss terms that constrain the pose and geometric consistency between

different estimations, resulting in further performance improvements. Following these advance-

ments, SSP-Pose (R. Zhang, Di, Manhardt, et al., 2022) enhanced GPV-Pose by leveraging shape

prior with an additional shape deformation module. RBP-Pose (R. Zhang, Di, Lou, et al., 2022)

then integrated residual bounding box projection to further improve object size estimation. De-

spite their improved performance and real-time speed, these 3D graph convolution-based methods
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have limitations. They only use local geometric features, which restricts their effectiveness to

simple-shaped objects and makes them sensitive to input noise.

In my thesis, HS-Pose (Zheng, C. Wang, et al., 2023) aims to improve the generalizability

and robustness of category-level pose estimation for complex-shaped objects and noise, making

them more suitable for practical applications. Another approach I explore is category-level object

pose refinement, which enhances precision by estimating pose errors. CATRE (X. Liu et al., 2022)

was the first to address this, using category-level shape prior and a framework to estimate pose

errors between a transformed shape prior and visual input. My contribution, GeoReF (Zheng, Tse,

et al., 2024), extends CATRE by addressing geometric variation between observed objects and

transformed shape priors, further improving pose estimation accuracy for practical use.

2.4 Summary

The field of visual 6D object pose estimation and tracking has evolved over decades, progressing

from traditional handcrafted methods to modern deep-learning approaches. Algorithms in this field

can be categorized based on their goals (instance-level and category-level), methods (pose estima-

tion, tracking, and refinement), and processing techniques (template-matching, correspondence-

matching, and regression-based methods). These methods focused on various challenges, includ-

ing background clutter, illumination changes, textureless and symmetric objects, occlusions, noise,

similar-looking distractors, and intra-category variations. Current efforts are focused on enhanc-

ing algorithm robustness in real-world scenarios and generalizability to unseen objects. My thesis

work aims to advance these goals by developing accurate, reliable, and generalizable algorithms

for real-life applications.
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Chapter Three

Tackling Real-World Challenges:

Symmetry, Textureless, and Occlusion

This chapter presents work that was published at the IEEE International Conference on Robotics

and Automation (ICRA) 2022 in Philadelphia (PA), USA (Zheng, Leonardis, et al., 2022). The

title of the paper is TP-AE: Temporally primed 6D object pose tracking with auto-encoders. Tze

Ho Elden Tse assisted with the experiment setting and proofreading, and Nora Horanyi and Hua

Chen helped with proofreading.

Fast and accurate tracking of an object’s motion is one of the key functionalities of a robotic

system for achieving reliable interaction with the environment. This paper focuses on the instance-

level six-dimensional (6D) pose tracking problem with a symmetric and textureless object under

occlusion. We propose a Temporally Primed 6D pose tracking framework with Auto-Encoders

(TP-AE) to tackle the pose tracking problem. The framework consists of a prediction step and

a temporally primed pose estimation step. The prediction step aims to quickly and efficiently

generate a guess on the object’s real-time pose based on historical information about the target

object’s motion. Once the prior prediction is obtained, the temporally primed pose estimation

step embeds the prior pose into the RGB-D input, and leverages auto-encoders to reconstruct the

target object with higher quality under occlusion, thus improving the framework’s performance.
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Extensive experiments show that the proposed 6D pose tracking method can accurately estimate

the 6D pose of a symmetric and textureless object under occlusion, and significantly outperforms

the state-of-the-art on T-LESS dataset while running in real-time at 26 FPS.

3.1 Introduction

Thanks to the rapid development of reliable mechanical structures, highly efficient actuators, and

powerful algorithms, robotic systems have been deployed into various real-world applications such

as mobile manipulation (Kaelbling and Lozano-Pérez, 2012), legged systems (Tremblay et al.,

2018), robotic manipulation (Deng, Xiang, et al., 2020), and so on. With the increasing need for

interacting with the environment, accurate detection and tracking of a target object become a core

functionality for modern robotic systems.

This paper focuses on the instance-level six-dimensional (6D) pose tracking problem. Un-

der various robotic application scenarios, the target objects to be manipulated or interacted with

are possibly symmetric and textureless. Furthermore, the target object may be occluded by the en-

vironment or other objects. In these situations, estimating the target object’s pose becomes much

more challenging. Unlike the conventional pose estimation problems based on single RGB(-D)

data, pose tracking leverages historical information about the target object’s movement to assist

in obtaining the desired pose. Incorporating the historical information and considering the pose

tracking problem allows for dealing with challenging scenarios involving symmetric and texture-

less objects under occlusion.

To solve the pose tracking problem, we develop a Temporally Primed 6D object pose track-

ing framework with Auto-Encoders (TP-AE). The proposed framework first predicts the 6D pose

of the target object from a historical pose sequence. Then it uses the prediction to assist the

visual-based pose estimation given the real-time RGB-D measurement. For the prediction step,
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we propose to use temporal pose information to encode the raw RGB-D image stream informa-

tion. Once the prediction is generated, the temporally primed pose estimation step adjusts the

predicted pose via a reconstructed pose reference generated by auto-encoders. By resorting to the

auto-encoder-based reconstruction, the proposed refinement scheme effectively handles symmetric

and textureless objects under occlusion. In Figure 3.1, we demonstrate the performance of the

TP-AE framework in a challenging scenario, showcasing its superiority over state-of-the-art ap-

proaches such as PoseRBPF (Deng, Mousavian, et al., 2019) and CosyPosee (Labbé et al., 2020a)

for symmetric and textureless objects under occlusion.

Object 15

Symmetrical 
Shape &
Textureless
Occlusion

Ground Truth TP-AE (Proposed) CosyPose PoseRBPF

Figure 3.1: Illustration of the challenging scenario and the performance of the proposed TP-AE

framework.

3.1.1 Related works

The work in this chapter is related to previous work on instance-level 6D object pose estimation

and tracking.
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6D object pose estimation. 6D object pose estimation problem that aims to estimate an object’s

6D pose from a single image without temporal information has been extensively studied in the

literature over several decades. Classical methods (D. G. Lowe, 1999; Rothganger, Lazebnik,

Schmid, and J. Ponce, 2006) achieved high precision while requiring prohibitive hyper-parameter

tuning when applied to new scenarios. Recently, deep learning-based methods have shown better

generalization ability in challenging scenarios involving symmetric and textureless objects under

occlusion. For example, (Manhardt, Arroyo, et al., 2018; Pitteri et al., 2019) aim to address ro-

tational ambiguity. (Oberweger, Rad, and Vincent Lepetit, 2018; Y. He, W. Sun, et al., 2020;

Zakharov, Shugurov, and Ilic, 2019) focus on occlusion. (Stefan Hinterstoisser, Vincent Lepetit,

Ilic, Holzer, et al., 2013; Rios-Cabrera and Tuytelaars, 2013) consider textureless objects. More

recently, various approaches have been proposed to deal with mixed challenges. For instance, (Rad

and Vincent Lepetit, 2017; Hodan, Barath, and Jiri Matas, 2020) handle symmetric objects under

occlusion. Estimating poses for textureless objects under occlusion has been investigated in (G.

Gao et al., 2021; Y. He, H. Huang, et al., 2021; C. Wang, D. Xu, et al., 2019; Shi et al., 2021;

Labbé et al., 2020a). Symmetric and textureless objects have been considered in (Sundermeyer,

Z.-C. Marton, et al., 2018; Sundermeyer, Durner, et al., 2020; Zhigang Li and Ji, 2020). However,

none of them can address symmetry, textureless, and occlusion simultaneously.

6D object pose tracking. As a natural extension of classical pose estimation problem, pose

tracking problem try to incorporate temporal information to achieve higher pose estimation ac-

curacy, which offers opportunities to simultaneously address all three aforementioned challenges.

Traditional pose tracking methods (Choi and Christensen, 2013; Schmidt, Newcombe, and Fox,

2014) rely on hand-crafted likelihood functions, which is hard to generalize to new scenarios. Due

to the lack of rich video datasets, the development of learning-based 6D pose tracking schemes

remains limited. Along this direction, pioneering works such as (D. J. Tan, Tombari, et al., 2015;

Garon and Lalonde, 2017; B. Wen, Mitash, et al., 2020; Marougkas et al., 2020; Yi Li et al., 2020)
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try to utilize the relationship between current image with the last image to aid estimating objects’

pose. However, focusing on only two consecutive steps is restrictive in fully characterizing objects’

motion. To this end, (Deng, Mousavian, et al., 2019; Piga et al., 2021) use Rao-Blackwellized Par-

ticle Filter (Murphy and Russell, 2001) and Unscented Kalman Filter (Wan and Van Der Merwe,

2000), respectively, to encode motion information that is subsequently used for object tracking.

Nonetheless, the performance of (Deng, Mousavian, et al., 2019) under occlusion remains unsat-

isfying due to the lack of utilization of temporal information in the object reconstruction phase.

Despite these recent advances on pose estimation and pose tracking, how to construct a re-

liable and efficient pose tracking framework for symmetric and textureless objects under occlusion

remains a challenging problem.

3.1.2 Contributions

The main contributions of this paper are as follows. First, we propose, to the authors’ best knowl-

edge, the first neural-network-based prior pose generation scheme. This scheme exploits the target

object’s pose history of any length to better predict the object’s future pose. By working with the

pose information encoded in the complete movement of the object, the proposed scheme is compu-

tationally friendly and generates more accurate predictions in cases where the object moves with

non-constant velocity. Second, we develop a novel temporally-primed pose estimation scheme

consisting of a pose-image fusion and auto-encoder-based pose estimation, which improves the

learning performance of the residual pose. The pose-image fusion scheme helps with reconstruct-

ing the intact appearance and point cloud from only partially observed measurements. Combined

with the latent codes and features available from the auto-encoders, the overall temporally-primed

pose estimation scheme successfully handles symmetric and textureless objects under occlusion.

Third, the overall framework achieves not only a state-of-the-art performance in standard 6D object

pose estimation dataset benchmarks (especially for the T-LESS dataset that contains numerous sce-
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narios with symmetric and textureless objects under occlusion AR: 82.3 vs. 73), but also real-time

speed (26 FPS).

3.1.3 Framework overview
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Figure 3.2: Overall structure of the proposed TP-AE framework.

Fig. 3.2 shows an overview of the proposed framework. Generally speaking, the proposed

framework contains a prior pose prediction unit and a temporally primed pose estimation unit.

At each time step, the prior pose prediction unit first generates a predicted 6D pose based on the

historical pose estimations of the target object. Then, such a predicted 6D pose together with the

real-time measured RGB-D data is fed into the temporally primed pose estimation unit to further

adjust the predicted pose to obtain the final result.

To achieve fast prediction and account for the lack of large video datasets, the proposed

framework takes the historically estimated 6D pose sequence as input to a GRU-based neural

network to generate the prediction. Once the prediction is obtained, a pose-image-fusion module

merges the predicted pose and the input RGB-D image to generate a RGB-Cloud pair. Then, the

RGB-Cloud pair is fed into three branches to estimate the object’s rotation, translation, and visible

amount, respectively.
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3.2 Prior Pose Prediction

As one of the major differences from standard pose estimation, pose tracking strategies have access

to historical information about the movement of the target object, which has a strong implication

on determining the object’s current pose. The first important question to be answered is how to

extract such key information encoded in the historical data.

An intuitive approach to incorporate temporal data is to train a neural network that directly

maps the historical image streams to the current pose. Such an approach requires substantial data,

which is not practically feasible due to the lack of available datasets. Alternatively, we use histor-

ical pose trajectory to represent the object motion without extra data collection effort. Since the

pose trajectories of different objects can be shared, one can use the pose trajectories of any object

across different datasets to train a prior pose prediction network and then apply it to predict the

pose of an unseen object. Moreover, using historical pose sequence for pose prediction runs faster

than using an image stream, which is essential for object tracking tasks.

Our prior pose prediction unit consists of a buffer and a prior pose prediction net. The

buffer stores the previously estimated poses of the target object. Let l be the size of the buffer and

let Pt
est = {Rt,Tt} with Rt ∈ SO(3) and Tt ∈ R3 be the estimated pose of the target object at

time t, the sequence of estimated poses is denoted by {Pi
est}t−1

i=t−l−1. Given this sequence, the prior

pose prediction net uses a GRU network Cho et al., 2014 to regress the prior pose Pt
pri.

By using the pose trajectories for prior pose prediction, we can train our prediction net more

robustly using additional random data augmentation on the pose trajectories.

Remark 1 During inference, the initial prior pose is generated by the existing single-image 6D

pose estimation approach, as there is no historical poses for prediction.
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3.2.1 Network architecture and loss function

We use a single GRU layer connected to two dense layers to predict the prior pose. During im-

plementation, a 6D parameterization of the rotation space SO(3) proposed by (Y. Zhou et al.,

2019) is adopted to respect the continuity of the rotation space. Consequently, the input to the

neural network is a vector in Rl×9 with l being the size of the buffer. The output is a vector in

R9 parameterizing the 6D pose of the target object, including a 3D translation vector and a 6D

parameterization of the orientation state.

The total loss contains translation loss and rotation loss. We adopt the ℓ2 norm as the

translation loss function and calculate the rotation loss following (Y. Zhou et al., 2019). Then, the

pose prediction loss is:

Losspri = Losspri,R + βLosspri,T (3.1)

where β is a hyperparameter weighting the importance of the translation loss relative to the rotation

loss.

3.3 Temporally Primed Pose Estimation

This module visually estimates an object’s pose assisted by the prior pose. It first fuses the prior

pose with the real-time RGB-D data to generate an RGB-Cloud pair, then feeds the pair to three

modules to estimate the object’s rotation, translation, and visibility. To robustify the pose esti-

mation network against occlusion, we leverage object reconstruction in both the rotation and the

translation estimation module.

Reconstruction networks like auto-encoders can extract the low-dimensional representation

of objects, which are commonly called latent codes. Roughly speaking, auto-encoder-based strate-

gies first extract the latent code of an object by supervising the reconstruction procedure, in which
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the decoder needs to recover the object using the latent code provided by the encoder. Then, the

latent code is used for pose estimation to boost the inference speed without needing a decoder. For

such method, acquiring high-quality latent codes under occlusion is crucial for pose estimation

accuracy.

In this sequel, we first discuss how the prediction and input RGB-D data can be expressed

in a unified way to support object reconstruction, then develop the proposed auto-encoder-based

strategy that particularly addresses the symmetry, textureless and occlusion challenges.

3.3.1 Pose-image-fusion

Given the prior pose prediction Pt
pri and the real-time RGB-D image (It,Dt) at a generic time t,

with It being the RGB data and Dt being the depth data, we first need to provide a unified way of

representing the information encoded therein. For this purpose, we propose to use a cropped RGB-

Cloud image pair (Īt, C̄t) which carries visually sensible prior information for the reconstruction

network. The procedure of obtaining the cropped RGB-Cloud image pair from the given inputs

(Pt
pri, I

t,Dt) consists of three main steps.

First, we backproject the depth image using the camera’s intrinsic parameters to recover its

point cloud image Ct, in which every pixel stores the recovered 3D coordinate of the corresponding

pixel in the depth image. Working with the point cloud image helps the network leverage the

object’s geometric structure.

Then, we extract the potentially useful area by cropping the input RGB image and the

recovered point cloud data with an enlarged object’s bounding box (Bbox) centering at the pre-

dicted translation Tt
pri. To improve the robustness of the overall scheme, a Bbox scaling factor δ

depending on the object’s diameter d is introduced as follows:

δ = max{2
√
3ϵT/d, smin}, (3.2)
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Figure 3.3: Visual depiction of the motivation behind prior pose embedding.

where ϵT is the maximum allowable displacement between the ground truth (GT) translation and

the prediction and smin is a pre-specified minimum scaling factor. This cropped RGB image used

as Īt.

The point cloud image crops, C̃t, is then transformed into the frame defined by the predicted

pose Pt
pri and then normalized with a scaling factor associated with the Bbox:

C̄t = RT
pri(C̃

t −Tt
pri)/|0.5δ|. (3.3)

In essence, the above operations transform the input RGB-D image to the RGB-Cloud pair

(Īt, C̄t). By doing so, the object’s position in the RGB-Cloud pair indicates the distance from

Tt
pri to GT position. The point-wise fusion in (3.3) makes the transformed point cloud robust to

occlusion, as the prior pose can be inferred even when part of the point cloud is invisible.

Figure 3.3 provides a visual depiction of the motivation behind incorporating prior informa-

tion into the point cloud. As illustrated, the recovered point cloud in Dt can be mapped to either the

green (GT) or red surface (if no prior information is provided) in c). By leveraging the prior pose,

the transformed point cloud in C̄t (d) aligns more closely with the GT point cloud distribution (e),

facilitating pose recovery and smoothing the tracking process.

The RGB-Cloud pair, comprising appearance and transformed geometric information, is
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well-suited for object reconstruction networks to robustly recover textureless objects under occlu-

sion.

3.3.2 Auto-encoder and matching-based rotation estimation

Once the RGB-Cloud pair is generated, we exploit the auto-encoder-based strategy to address the

main challenges in estimating the object’s pose. We first generate the latent code of the object to

achieve robustness to occlusion, then get the rotation by a dynamic codebook matching method.

This method naturally handles textureless and symmetric objects, as the code matching compares

the intact object’s feature among different rotations rather than local features.

Latent code extraction and codebook generation

We train an auto-encoder to extract the latent code that encodes the object’s rotation while invariant

to translation. To do so, we generate the target RGB-Cloud pair in which the object is in the center

while maintaining its orientation (See the output of Decoder1 in Figure 3.2) by fusing the GT

pose with the GT image. The GT image shows the intact object against a black background with

constant lighting at the GT pose. After the training, a codebook is generated by collecting the

latent codes of the object in different rotations.

Dynamic latent code matching

Typically, a code matching procedure compares the cosine similarity between the input latent code

with the codebook and then obtains the rotation using the highest similarity score (Sundermeyer,

Z.-C. Marton, et al., 2018; Zhigang Li and Ji, 2020). However, this might fail when the latent

code is of poor quality (e.g. for almost invisible objects). Therefore, we enhance the occlusion
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robustness of the matching phase by inducing the historical information into this phase and using

the object’s visible amount to balance currently observed information and historical information.

Specifically, during inference, we generate two cosine similarity score lists by comparing the code-

book with the latent code of the input RGB-Cloud pair and that of the historical RGB-Cloud pair.

The historical RGB-Cloud pair is obtained by fusing the prior pose with a synthetically generated

RGB-D image in which the target object is viewed from the prior pose perspective. Denoting the

first score list as St
obs and the second score list as St

his, the final score is constructed as follows

St =

 St
obs, ρt > σ

ρt

σ
· St

obs +
σ−ρt

σ
· St

his, ρt ≤ σ
, (3.4)

where σ is a threshold to indicate whether the dynamic adjustment is used. We then get an ini-

tial rotation estimation Rt
init using the highest score from the final score list St. To account for

the rotation ambiguity caused by translation as mentioned in (Kundu, Yin Li, and Rehg, 2018;

Sundermeyer, Z. Marton, et al., 2019), we correct Rt
init by first finding a rotation transformation

∆(Rt) that aligns the direction of the estimated translation Tt
est to camera’s z-axis, then getting

the final rotation estimation by Rt
est = ∆(Rt)−1R̂t

init.

3.3.3 Auto-encoder based translation estimation

The estimation of translation can also leverage the latent code of an auto-encoder to achieve ro-

bustness to occlusion. Specifically, we train an auto-encoder (Auto-Encoder 2 in the proposed

framework Fig. 3.2) to reconstruct the intact object while preserving its location in the RGB-Cloud

pair. The reconstruction target is generated by fusing the prior pose with the GT image. Motivated

by the observation that the object’s location in the RGB-Cloud pair provides information about the

translation difference between the prior prediction Tt
pri and the ground truth Tt

GT , we concatenate

the latent code of rotation auto-encoder and translation auto-encoder to an estimation network that

generates the desired adjustment ∆Tt. Then, the resulting translation estimation is simply given
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by:

Tt
est = ∆Tt +Tt

pri. (3.5)

3.3.4 Visible amount estimation

As it is important whether the target object is still being tracked correctly, this module estimates

the object’s visibility. We define the visible amount ρt as the ratio of visible and total object pixels.

As shown in Figure 3.2, we use the feature of the intact object (the output of Encoder2) and the

occluded object (the output of Feature Net) as the input of the Visible Amount Estimation Net to

regress ρt. During testing, ρ is used to i) trigger re-initialization of tracking when it is lower than a

pre-defined level and ii) enhance rotation estimation under severe occlusion (See Eq.(3.4)).

3.3.5 Network architecture and loss function

The network architecture of the used auto-encoders is the same as AAE Sundermeyer, Z.-C. Mar-

ton, et al., 2018, except that the channel number of input and output images are set to 6. The

structure of the Feature Net, the Visible Amount Estimation Net, and the ∆T Estimation Net is

shown in Fig. 3.4. The loss function for training the temporally primed pose estimation unit in-

cludes three terms: reconstruction loss Lossrec, translation loss Loss∆T, and the visible amount

loss Lossρ.

The object reconstruction loss is the region weighted sum of the pixel-wise losses between

the reconstructed and the target RGB-Cloud pair. We divide the pixels into three regions, the

matched object region, the matched background region, and the mismatch region. Denoting the

set of pixels belonging to the object in the target crops and the reconstructed crops as V and V̂ ,

respectively, the object matching region is V ∩ V̂ , the mismatch region is (V − V̂ ) ∪ (V̂ − V ),

and all other pixels belong to the background region. By denoting the ℓ2 loss of the ith pixel as
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Figure 3.4: The architecture of Feature Net, the Visible Amount Estimation Net, and the ∆T

Estimation Net.

Losspx,i, the object reconstruction loss is:

Lossrec = Σi∈I(γ · Losspx,i) (3.6)

where I is the input crops and γ ∈ {γ1, γ2, γ3} is the region-based weight, in which γ1, γ2, γ3 is

used for the mismatched region, the matched object region, and matched background region, re-

spectively. By setting γ1 > γ2 > γ3, the auto-encoder is guided to focus on aligning the silhouette.

We use ℓ2 loss for translation loss Loss∆T and visible amount loss Lossρ. The total esti-

mation loss Lossest is:

Lossest = λ1Lossrec + λ2Lossρ + λ3Loss∆T. (3.7)

Empirically, the parameters are chosen as β = 0.1, λ1 = λ3 = 1, λ2 = 0.5, γ1 = 3, γ2 = 2 and

γ3 = 1 to achieve balance between all losses.
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3.4 Experiments

We provide the implementation details and the experiment results of the proposed framework in

this section.

3.4.1 Baseline methods

The result of PoseRBPF is available from (Deng, Mousavian, et al., 2019). The single-image

single-object (siso) result of CosyPose is available from its official website (Labbé et al., 2020b).

We use the RGB version of CosyPose since its average recall (ARvsd) performance is lower when

applying the ICP refinement according to the BOP challenge results (Hodan, Michel, et al., 2018).

The rest of the results are from corresponding papers.

3.4.2 Datasets

We use T-LESS (Hodaň, Haluza, et al., 2017) and YCB-V (Xiang et al., 2018) to evaluate our

framework since other existing tracking datasets are either limited in size (Fäulhammer et al.,

2015), not accurately labeled (Lai et al., 2011), or unsuitable for our problem setting, such as

(Garon and Lalonde, 2017; Wu et al., 2017).

1) T-LESS is widely used for pose estimation and best fits our problem setting. It contains

10K test images and 39K training images, in which all 30 industrial objects are symmetric and

textureless. The testing scenarios include various occlusion levels, from non-occlusion to full

occlusion. We use VSD metric (Hodaň, Jiří Matas, and Obdržálek, 2016) for evaluation. The

recall accuracy ARvsd is reported at errvsd < 0.3 with a tolerance τ = 20mm and > 10% object

visibility.
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2) YCB-V contains 92 RGB-D videos (12 for testing) with 130K real images and 80K synthetic

images. It provides 21 daily objects with various shapes and texture levels. We use the ADD-

S (Stefan Hinterstoisser, Vincent Lepetit, Ilic, Holzer, et al., 2013) as the metric, where a pose is

regarded as correct if the average distance of the model points to the nearest estimated points is

less than 10% of the model diameter. Following PoseCNN (Xiang et al., 2018), we report the area

under the accuracy-threshold curve (AUC) for pose evaluation.

3.4.3 Implementation details

We conduct all the experiments using one NVIDIA RTX 2080Ti GPU and an Intel i9-CPU@3.30GHZ.

During training, Adam optimizer is adopted with 15000 training steps and a batch size of 64. Sim-

ilar to AAE, we use domain randomization methods such as {Gaussian blur, add, light, multiply,

contract, Gaussian noise, Coarse Dropout} for training images. Image backgrounds are aug-

mented by the images from (S. Hinterstoisser et al., 2011). Occlusion is simulated by randomly

rendering two 3D models of other objects around the GT position of the target object. We set ϵT

to 28.8mm and smin to 1.3 for pose-image fusion, and the RGB-Cloud pair is scaled to 128× 128

before being fed into the encoders. Pose trajectories for training the prior pose prediction net are

augmented with rotation shift, translation shift, noise addition, random drop, and permutation. The

buffer size l is 10. During inference, we initialize the prior pose using CosyPose (1-view version).

Same as PoseRBPF, we take the one with the highest confidence score from the pose hypotheses

as the initial pose. Re-initialization is triggered when: 1) ρ < 0.2, and 2) the rotation tracking fails

with the same threshold as PoseRBPF (Deng, Mousavian, et al., 2019), which is 0.6 for latent code

comparison. The viewpoint number of the codebook is the same as PoseRBPF (184464). We set

σ of dynamic codebook matching to 0.5 for the T-LESS dataset. Since the pose label of YCB-V is

not very accurate, σ is set to 1 as compensation.
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Table 3.1: Ablation study results (AR: Average Recall).

Item Comparison Train Data Type ARvsd

Full net
Train data Mixed 82.3

Train data Synthetic 77.2

[AS-1]

RGB (AAE +Retina + ICP) Synthetic 57.1

PIEM: RGB-D without Eq. 3.3 Synthetic 60.2

PIEM: RGB-D with Eq. 3.3 Synthetic 77.2

[AS-2]
LSTM Mixed 81.4

GRU Mixed 82.3

[AS-3] Without perspective correction Mixed 80.6

[AS-5] No dynamic codebook matching Mixed 81.6

[AS-6] Refine CosyPose Labbé et al., 2020a (siso, acc: 63.8%) Mixed 74.3

3.4.4 Ablation study

We conducted an intensive ablation study using the T-LESS dataset to validate our framework

design. Full evaluation results are shown in Table 3.1.

[AS-1] Pose-image-fusion. We evaluate the pose-image fusion module by comparing the perfor-

mance of the auto-encoders trained with i) RGB-only synthetic (syn.) images, ii) RGB-D synthetic

images without (w/o) Eq. (3.3), and iii) RGB-D synthetic images with Eq. (3.3). For the first one,

we referenced the result of AAE. The increased pose estimation accuracy in Table 3.1 and the

improved image reconstruction quality under occlusion shown in Figure 3.5 both confirm the ef-

fectiveness and motivation for pose-image fusion.
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Figure 3.5: Reconstructed images from Decoder1 when without and with the Eq. (3.3) in the pose-

image-fusion module.

[AS-2] Prior pose prediction. To investigate the suitable network for pose prediction, we com-

pared the LSTM (Hochreiter and Schmidhuber, 1997) and GRU network. As the motion pattern

is similar between the training set and test set of both T-LESS and YCB-V, training directly on

the training set does not reflect the effectiveness of the proposed module. We thus use the pose

trajectories extracted from other datasets 1 and test the trained model on YCB-V and T-LESS. Note

that this will make the task harder as the model needs to overcome the domain gap between the

training and testing data. Table 3.1 shows that both GRU and LSTM can deal well with the domain

gap, and the GRU performs better than LSTM by 0.9%.

1The pose trajectories are extracted from the test set of the following datasets: OPT (Wu et al., 2017), YCB-

M (Grenzdörffer, Günther, and Hertzberg, 2020), TUD-L (Hodan, Michel, et al., 2018), and HO-3D (Hampali et al.,

2020). Note that the size of the test set is much smaller than the training set, we thus use several datasets.
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Figure 3.6: Pose accuracy under a range of occlusion levels.

[AS-3] Perspective correction. The mean recall dropped by 1.7% when no perspective correc-

tion was carried out.

[AS-4] Pose accuracy distribution under occlusion. Figure 3.6 shows the pose estimation ac-

curacy under a varying level of occlusion. We compared our method with PoseRBPF and CosyPose

on the T-LESS test set of the BOP challenge. As shown in the figure, our proposed method out-

performs them across all occlusion levels. Moreover, the improvements are more significant when

the visibility is under 0.5.

[AS-5] No dynamic codebook matching. Table 3.1 shows that the performance drops by 0.5%

when only using simple codebook matching (use St
obs directly). The influence of dynamic code-

book matching on different occlusion levels is shown in Figure 3.6, which indicates that dynamic

matching is effective on all the occlusion levels when the model is trained only on synthetic data,

but in case of mixed data is more effective when the visible amount is lower than 0.5.
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Table 3.2: Performance Comparison on the T-LESS test set (Primesense)

.

Type Method ARvsd Speed

RGBD

TP-AE (mixed data) 82.3 26

TP-AE (synthetic data only) 77.2 26

AAE (Sundermeyer, Z.-C. Marton, et al., 2018) + (ICP) 57.1 2

PoseRBPF (Deng, Mousavian, et al., 2019) 72.9 10

RGB

AAE (Sundermeyer, Z.-C. Marton, et al., 2018) 18.4 5.9

PoseRBPF (Deng, Mousavian, et al., 2019) 41.5 11.5

CosyPose (siso) 63.8 -

Pix2Pose (Park, Patten, and Vincze, 2019) 29.5 0.6

PFRL (Shao et al., 2020) + AAE 51.53 4.2

D StablePose (Shi et al., 2021) 73 2.5

Rotation Tracking

TP-AE (mixed data) 93.4 26

TP-AE (synthetic data only) 92.7 26

AAE(GT BBox) 72.8 -

PoseRBPF(GT BBox) 85.3 -

GT Re-initialization
TP-AE (mixed data) 84 26

TP-AE (synthetic data only) 79.8 26

50



Tackling Real-World Challenges: Symmetry, Textureless, and Occlusion

[AS-6] Refinement In addition to the object tracking task, we were also interested in how our

proposed method could be used to refine the pose estimation method by taking the estimated pose

of other approaches as the prior pose. We report a 10.5% increase on CosyPose when using our

approach as pose refinement without any iteration.

3.4.5 Comparison with state-of-the-art methods

Results on the T-LESS dataset. Table 3.2 presents the evaluation results on the T-LESS dataset.

We included results from training on synthetic (syn.) data for a fair comparison with AAE and

PoseRBPF. For rotation tracking comparison, we used the GT to provide 2D bounding boxes for

AAE and PoseRBPF. We also reported results when using the GT poses for initialization. Our

framework demonstrates better performances among its competitors on the T-LESS dataset. Qual-

itative results are shown in Figure 3.7, where the target objects (#2, #5, #9, #17, #24) and their

pose are highlighted with a white overlay on the input image. The results are displayed from left

to right as GT, TP-AE, CosyPose, and PoseRBPF, respectively.

Results on the YCB-V Dataset. We compare our results with state-of-the-art methods in Ta-

ble 3.3. We only use 20% of the images of the YCB-V training set for training and got comparable

results with other approaches.

3.5 Conclusion

In this paper, we proposed a novel TP-AE object pose tracking framework that can robustly handle

symmetric and textureless objects under occlusion. Our method outperforms the state-of-the-art,

while also running in real-time (26 FPS). We successfully demonstrated that embedding tempo-
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Figure 3.7: Qualitative results on the T-LESS dataset.

ral information in our proposed framework can increase the pose estimation accuracy by a large

margin. We also demonstrated the generalizability of our prediction network and its robustness un-

der disturbances. In addition, we reported a thorough analysis on the effectiveness of perspective

correction. As a future work, the proposed method could achieve an improved performance when

combined with a refinement process.
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Table 3.3: AUC Performance on the YCB-V dataset.

Type RGB-D Method ADD-S Speed

Tracking

TP-AE (mixed) 93.8 26

TP-AE (syn) 92.5 26

PoseRBPF (200 particles) 93.3 5

DeepIM (Yi Li et al., 2020) + PoseCNN (Xiang et al., 2018) (4 it) 94.0 6

MaskUKF (Piga et al., 2021) 94.2 52.6

se(3)-TrackNet (B. Wen, Mitash, et al., 2020) 95.52 90.0

Estimation

PoseCNN (ICP) (Xiang et al., 2018) 93.0 < 0.1

PVN3D (w/o refinement) (Y. He, W. Sun, et al., 2020) 95.5 5

Densefusion (w/o refinement) (C. Wang, D. Xu, et al., 2019) 91.2 20

G2L-Net (w/o refinement) (W. Chen, Jia, H. J. Chang, Duan, and Leonardis, 2020) 92.4 21

FFB6D (Y. He, H. Huang, et al., 2021) 96.6 13.3
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Chapter Four

Enhancing Generalizability to

Category-level Objects

This chapter presents work that was published at the The IEEE / CVF Computer Vision and

Pattern Recognition Conference (CVPR) 2023 in Vancouver, Canada (Zheng, C. Wang, et al.,

2023). The paper title is HS-Pose: Hybrid Scope Feature Extraction for Category-Level Object

Pose Estimation. Chen Wang assisted with figure drawing and proofreading, Yinghan Sun helped

with tables and figures, and Esha Dasgupta and Hua Chen helped with proofreading.

In this paper, we focus on the problem of category-level object pose estimation, which is

challenging due to the large intra-category shape variation. 3D graph convolution (3D-GC) based

methods have been widely used to extract local geometric features, but they have limitations for

complex shaped objects and are sensitive to noise. Moreover, the scale and translation invariant

properties of 3D-GC restrict the perception of an object’s size and translation information. In this

paper, we propose a simple network structure, the HS-layer, which extends 3D-GC to extract hy-

brid scope latent features from point cloud data for category-level object pose estimation tasks.

The proposed HS-layer: 1) is able to perceive local-global geometric structure and global infor-

mation, 2) is robust to noise, and 3) can encode size and translation information. Our experiments

show that the simple replacement of the 3D-GC layer with the proposed HS-layer on the baseline
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Figure 4.1: Illustration of the hybrid scope feature extraction of the HS-layer.

method (GPV-Pose) achieves a significant improvement, with the performance increased by 14.5%

on 5◦2cm metric and 10.3% on IoU75. Our method outperforms the state-of-the-art methods by

a large margin (8.3% on 5◦2cm, 6.9% on IoU75) on REAL275 dataset and runs in real-time (50

FPS)1.

4.1 Introduction

Accurate and efficient estimation of an object’s pose and size is crucial for many real-world ap-

plications (B. Wen and Bekris, 2021), including robotic manipulation (Kothari et al., 2017), aug-

mented reality (Y. Su, Rambach, et al., 2019), and autonomous driving, among others. In these

applications, it is essential that pose estimation algorithms can handle the diverse range of objects

1Code is available: https://github.com/Lynne-Zheng-Linfang/HS-Pose
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encountered in daily life. While many existing works (Jiang et al., 2022; Hansheng Chen et al.,

2022; Mo et al., 2022; Y. Xu et al., 2022) have demonstrated impressive performance in estimating

an object’s pose, they typically focus on only a limited set of objects with known shapes and tex-

tures, aided by CAD models. In contrast, category-level object pose estimation algorithms (Sahin

and Kim, 2019; Weng et al., 2021; C. Wang, Martín-Martín, et al., 2020; J. Lin, Wei, Zhihao Li,

et al., 2021; Di et al., 2022) address all objects within a given category and enable pose estimation

of unseen objects during inference without the target objects’ CAD models, which is more suitable

for daily-life applications. However, developing such algorithms is more challenging due to the

shape and texture diversity within each category.

In recent years, category-level object pose estimation research (W. Chen, Jia, H. J. Chang,

Duan, Shen, et al., 2021; R. Zhang, Di, Lou, et al., 2022; R. Zhang, Di, Manhardt, et al., 2022)

has advanced rapidly by adopting state-of-the-art deep learning methods. (H. Wang et al., 2019;

D. Chen et al., 2020) gain the ability to generalize by mapping the input shape to normalized or

metric-scale canonical spaces and then recovering the objects’ poses via correspondence matching.

Better handling of intra-category shape variation is also achieved by leveraging shape priors (Tian,

Ang Jr, and G. H. Lee, 2020; K. Chen and Dou, 2021; R. Zhang, Di, Manhardt, et al., 2022),

symmetry priors (H. Lin, Z. Liu, C. Cheang, et al., 2022), or domain adaptation (T. Lee, B. Lee,

et al., 2021; J. Lin, Wei, Ding, et al., 2022). Additionally, (W. Chen, Jia, H. J. Chang, Duan, Shen,

et al., 2021) enhances the perceptiveness of local geometry, and (Di et al., 2022; R. Zhang, Di,

Lou, et al., 2022) exploit geometric consistency terms to improve the performance further.

Despite the remarkable progress of existing methods, there is still room for improvement in

the performance of the category-level object pose estimation. Reconstruction and matching-based

methods (H. Wang et al., 2019; Tian, Ang Jr, and G. H. Lee, 2020; T. Lee, B. Lee, et al., 2021) are

usually limited in speed due to the time-consuming correspondence-matching procedure. Recently,

various methods (W. Chen, Jia, H. J. Chang, Duan, Shen, et al., 2021; H. Lin, Z. Liu, C. Cheang,

et al., 2022; Di et al., 2022; R. Zhang, Di, Manhardt, et al., 2022; R. Zhang, Di, Lou, et al., 2022)
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built on 3D graph convolution (3D-GC) (Z.-H. Lin, S.-Y. Huang, and Y.-C. F. Wang, 2020) have

achieved impressive performance and run in real-time. They show outstanding local geometric

sensitivity and the ability to generalize to unseen objects. However, only looking at small local

regions impedes their ability to leverage the global geometric relationships that are essential for

handling complex geometric shapes and makes them vulnerable to outliers. In addition, the scale

and translation invariant nature of 3D-GC restrict the perception of object size and translation

information.

To overcome the limitations of 3D-GC in category-level object pose estimation, we propose

the hybrid scope latent feature extraction layer (HS-layer), which can perceive both local and global

geometric relationships and has a better awareness of translation and scale. Moreover, the proposed

HS-layer is highly robust to outliers. Figure 4.1 shows an illustration of the hybrid scope feature

extraction of the HS-layer. To demonstrate the effectiveness of the HS-layer, we replace the 3D-

GC layers in GPV-Pose (Di et al., 2022) to construct a new category-level object pose estimation

framework, HS-pose. This framework significantly outperforms the state-of-the-art method and

runs in real-time. Our approach extends the perception of 3D-GC to incorporate other essential

information by using two parallel paths for information extraction. The first path encodes size

and translation information (STE), which is missing in 3D-GC due to its invariance property. The

second path extracts outlier-robust geometric features using the receptive field with the feature

distance metric (RF-F) and the outlier-robust feature extraction layer (ORL).

The main contribution of this paper is as follows:

• We propose a network architecture, the hybrid scope latent feature extraction layer (HS-

layer), that can simultaneously perceive local and global geometric structure, encode trans-

lation and scale information, and extract outlier-robust feature information. Our proposed

HS-layer balances all these critical aspects necessary for category-level pose estimation.

• We use the HS-layer to develop a category-level pose estimation framework, HS-Pose, based
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on GPV-Pose. The HS-Pose, when compared to its parent framework, has an advantage in

handling complex geometric shapes, capturing object size and translation while being robust

to noise.

• We conduct extensive experiments and show that the proposed method can handle complex

shapes and outperforms the state-of-the-art methods by a large margin while running in real-

time (50FPS).

4.2 Related Works

The work in this chapter is related to previous work on instance-level and category-level 6D object

pose estimation.

Instance-level object pose estimation. Instance-level object pose estimation estimates the pose

of known objects with the 3D CAD model provided. Existing methods usually achieve the pose

using end-to-end regression (Kehl, Manhardt, et al., 2017; Labbé et al., 2020a; Yi Li et al., 2020),

template matching (V. N. Nguyen et al., 2022; D. Cai, Heikkilä, and Rahtu, 2022; Shugurov et

al., 2022), or 2D-3D correspondence-matching (Tremblay et al., 2018; J. Sun et al., 2022; Han-

sheng Chen et al., 2022; Haugaard and Buch, 2021; Merrill et al., 2022; Y. He, W. Sun, et al.,

2020). End-to-end regression-based methods estimate object pose directly from the visual obser-

vations and have a high inference speed. Template matching methods recover the object pose by

comparing the visual observation and usually exhibit robustness to textureless objects. (Stefan

Hinterstoisser, Vincent Lepetit, Rajkumar, et al., 2016; Vidal, C.-Y. Lin, and Martí, 2018) use

the 3D models as templates, which achieve high accuracy but suffer from low matching speed.

In recent years, latent feature-based template matching methods (Sundermeyer, Z. Marton, et al.,

2019; Sundermeyer, Durner, et al., 2020; Zheng, Leonardis, et al., 2022; Deng, Mousavian, et al.,
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2019) have achieved real-time performance and have gained popularity. 2D-3D correspondence

matching-based methods (Y. Su, Saleh, et al., 2022; Zakharov, Shugurov, and Ilic, 2019) first esti-

mate the 2D-3D correspondences and then retrieve the objects’ pose by PnP methods. They show

outstanding results for textured objects. The correspondences can be sparse bounding box corners

(Rad and Vincent Lepetit, 2017; Tekin, Sinha, and Pascal Fua, 2018), or distinguishable points

on the object’s surface (Park, Patten, and Vincze, 2019; Zhigang Li, G. Wang, and Ji, 2019; Peng

et al., 2019). While the aforementioned methods have shown impressive capabilities in estimating

object pose, their applicability is limited to a few objects and usually needs the corresponding CAD

models.

Category-level object pose estimation. Category-level methods estimate the pose of unseen

objects within specific categories (J. Lin, Wei, Zhihao Li, et al., 2021; Irshad et al., 2022; Manhardt,

Nickel, et al., 2020; Sahin and Kim, 2019). NOCS (H. Wang et al., 2019) suggests mapping the

input shape to a normalized canonical space (NOCS) and retrieving the pose by point matching.

(Irshad et al., 2022; D. Chen et al., 2020; T. Lee, B. Lee, et al., 2021) enhance NOCS using a shape

prior (Tian, Ang Jr, and G. H. Lee, 2020), mapping the shape to a metric scale space (D. Chen

et al., 2020), or domain adaptation (T. Lee, B. Lee, et al., 2021). (K. Chen and Dou, 2021; J. Lin,

Wei, Ding, et al., 2022) leverage structural similarity between the shape prior and the observed

object. TransNet (H. Zhang et al., 2022) extends the targets to transparent objects. However, they

show limited speed and are unsuitable for real-time applications. CATRE (X. Liu et al., 2022)

explored real-time pose refinement for pose estimation. FS-Net (W. Chen, Jia, H. J. Chang, Duan,

Shen, et al., 2021) explored local geometric relationships using 3D-GC (Z.-H. Lin, S.-Y. Huang,

and Y.-C. F. Wang, 2020), which shows robustness to rotation estimation and runs in real-time. (Di

et al., 2022; H. Lin, Z. Liu, C. Cheang, et al., 2022; R. Zhang, Di, Manhardt, et al., 2022; R. Zhang,

Di, Lou, et al., 2022) inherit the utilization of 3D-GC and enhance the pose estimation performance

in different ways. SAR-Net (H. Lin, Z. Liu, C. Cheang, et al., 2022) proposes shape alignment
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and symmetry-aware shape reconstruction. GPV-Pose (Di et al., 2022) presents geometric-pose

consistency terms and point-wise bounding box (Bbox) voting. (R. Zhang, Di, Manhardt, et al.,

2022; R. Zhang, Di, Lou, et al., 2022) further enhance (Di et al., 2022) by shape deformation (R.

Zhang, Di, Manhardt, et al., 2022) and residual Bbox voting (R. Zhang, Di, Lou, et al., 2022).

Nonetheless, they only look at local geometric relationships and are limited in handling more

complex shapes.

4.3 Methodology

This paper considers the category-level pose estimation problem of estimating the 6D pose and

3D size of an arbitrary instance in the same category based on visual observation. In particular,

our approach estimates the 3D rotation R ∈ SO(3), the 3D translation t ∈ R3, and the size

s ∈ R3 of object instances based on a depth image, the objects’ categories, and segmentation

masks. The segmentation mask and category information can be generated by object detectors

(e.g. MaskRCNN (K. He et al., 2017)). We use point cloud data P ∈ RN×3 as the direct input of

our network, which is achieved by back-projecting the segmented depth data and downsampling.

Due to the fact that geometric features are essential for determining an object’s pose across

different shapes, the 3D graph convolution (3D-GC) (Z.-H. Lin, S.-Y. Huang, and Y.-C. F. Wang,

2020) is widely adopted in recent category-level object pose estimation methods (W. Chen, Jia,

H. J. Chang, Duan, Shen, et al., 2021; Di et al., 2022; R. Zhang, Di, Manhardt, et al., 2022; R.

Zhang, Di, Lou, et al., 2022; H. Lin, Z. Liu, C. Cheang, et al., 2022). In particular, GPV-Pose (Di

et al., 2022) uses a 3D-GCN encoder, formed by 3D-GC layers, together with geometric consis-

tency terms for category-level object pose estimation and achieves state-of-the-art performance.

However, 3D-GC cannot perceive global geometric features, limiting its capability to handle com-

plex geometric shapes and being sensitive to noise. Also, it is invariant to scale and translation,
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which contradicts category-level pose estimation tasks (i.e., size and translation estimation).

In this paper, we propose the hybrid scope geometric feature extraction layer (HS-layer)

which is based on 3D-GC and keeps its local geometric sensitivity while extending it to have the

following characteristics: 1) perception of global geometric structural relationships, 2) robustness

to noise, and 3) encoding of size and translation information, particularly for category-level object

pose estimation tasks.

4.3.1 Background of 3D-GC

The core unit of 3D-GC is a deformable kernel that generalizes the convolution kernel used in 2D

image processing to deal with unstructured point cloud data. In particular, a 3D-GC kernel KS is

defined as:

KS = {(kC ,wC), (k1,w1), . . . , (kS,wS)}, (4.1)

where S is the total number of support vectors, kC = [0, 0, 0]T is the central kernel point, {ks ∈

R3}Ss=1 are the support kernel vectors and w is the weight associated with each kernel vector. The

3D-GC kernel performs a convolution on the receptive field RM(pi), which is the point along with

its neighbors and their associated features f :

RM(pi) = {(pi,fi), (pm,fm)|pm ∈ NM(pi)}. (4.2)

Here NM(pi) is the set of the M nearest neighbor points of pi. In particular, in (Z.-H. Lin, S.-Y.

Huang, and Y.-C. F. Wang, 2020) the receptive field with point distance metric (RF-P) is used for

finding which of the nearest neighbors is within the point distance metric:

distp(pi,pj) = ∥pi − pj∥ . (4.3)

For more details, the readers can refer to the original work (Z.-H. Lin, S.-Y. Huang, and

Y.-C. F. Wang, 2020). It should be noted that 3D-GC has size and translation invariance by design.
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Although this invariance may be benefit tasks like segmentation and classification, it harms the

pose estimation task as the size and translation are the targets to estimate.

4.3.2 Overall framework
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Figure 4.2: Overview of the proposed HS-Pose.

The overview of the framework, HS-Pose, is shown in Figure 4.2. We use the proposed

HS-layer to form an encoder (HS-encoder) to extract the hybrid scope latent features from the in-

put point cloud data. Then, the extracted latent features are fed into the three downstream branches

for object pose estimation, symmetry-aware point cloud reconstruction, and bounding box voting,

respectively. To demonstrate the effectiveness of the proposed HS-layer, which can be inserted into

any category-level object pose estimation method, we construct our hybrid scope pose estimation

network (HS-Pose) based on the state-of-the-art 3D-GC based GPV-Pose with minimal modifica-

tion. Specifically, we only replace the 3D-GC layers of the 3D-GCN encoder of GPV-Pose with

the HS-layer and keep all the other settings the same as the original GPV-Pose, which include net-

work layers, network connection structure, and the downstream branches. Therefore, the extracted

features from the encoder along with the input point cloud are fed into three modules for object
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pose regression, symmetric-based point cloud reconstruction, and bounding box voting. During

inference, only the encoder and the pose regression module are used.

Inside the HS-layer, we extract the hybrid scope latent features of the input using two par-

allel paths. The first path performs scale and translation encoding (STE), which provides essential

information for size and translation estimation. The second path extracts outlier-robust geometric

features by leveraging local and global geometric relationships, as well as global information in

two phases. In the first phase, we form the receptive fields of points based on their feature dis-

tances (RF-F), then feed them to a graph convolution (GC) layer to extract high-level geometric

features. The output of the GC layer is taken as the second phase’s input and passes through an

outlier-robust feature extraction layer (ORL), where each point feature is adjusted by an outlier

robust global information. The final output of the HS-layer is the element-wise summation of the

features of both paths.

4.3.3 Scale and translation encoding (STE)

As mentioned earlier, even though 3D-GC provides geometric features crucial in rotation esti-

mation, it loses the essential translation and scale information necessary for pose estimation. To

address this problem, existing 3D-GC-based methods try to use another network for translation and

size estimation (W. Chen, Jia, H. J. Chang, Duan, Shen, et al., 2021) or concatenate the point cloud

data with the extracted features for downstream estimation tasks with the assistance of other mod-

ules (i.e., bounding box voting) (Di et al., 2022; R. Zhang, Di, Manhardt, et al., 2022; R. Zhang,

Di, Lou, et al., 2022). While these methods are effective and all achieve improvements from the

baseline, we emphasize the scale and translation information is beneficial during the latent feature

extraction phase.

As shown in Figure 4.2, our suggestion is to connect in parallel a linear layer (see STE in
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HS-layer in the figure) to the geometric extraction path and then perform element-wise summation

for their output features:

f out
n = g(fn) + h(fn), (4.4)

where h and g apply linear transformation and geometric feature extraction on the features of the

points, respectively, and fn is the n-th point’s feature. In particular, we use the points’ positions for

size and translation encoding in the first layer since there are no features in the original point cloud.

Our ablation study in Table 4.1 shows that this design choice keeps the advantage of geometric

feature extraction, and boosts the performance of translation and scale estimation.

4.3.4 Receptive field with feature distance (RF-F)

As introduced in Sec. 4.3.1, 3D-GC learns awareness of local geometric features by forming recep-

tive fields with point Euclidean distance metric (RF-P) and then using the deformable kernel-based

graph convolution to extract geometric features for the receptive fields. However, RF-P restricts

the perception to small local regions. Even though the perceived regions can be enlarged when

cooperating with 3D graph pooling, it can not perceive the global geometric relationships essential

for complex geometric structures. This limitation is also exhibited in the performance of category-

level object pose estimation tasks (Di et al., 2022), where the methods show impressive capability

in handling simple geometric shapes (e.g. bowl) while encountering difficulty with more complex

shapes (e.g. mug and camera). However, this limitation has not been well addressed. To this

end, we extend the 3D-GC and propose a simple manner to leverage global geometric structural

relationships.

We suggest forming the receptive field with the feature distance metric (RF-F). Specifically,

we find pi’s neighbors using the feature distance metric:

distf (pi,pm) = ∥fi − fm∥ . (4.5)
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RF-P RF-F feature space
Figure 4.3: The illustration and comparison of the receptive field between RF-P and RF-F.

In other words, with the feature distance metric, the distance between two points is the Eu-

clidean distance between their associated features. We denote the corresponding receptive fields

as RM
f (pi). This receptive field has the advantage that it is not restricted to local regions; distant

points with similar features can also be included.

Figure 4.3 shows the difference between RF-P and RF-F. RF-F can capture a larger recep-

tive field and, therefore, can capture geometric relationships in a larger area, while the RF-P always

formed with local regions.

For initialization, in the first layer, we use RF-P and set all the features f to 1. The RF-F is

used in the following layers for extracting higher-level geometric relationships.

4.3.5 Outlier robust feature extraction layer (ORL)

3D-GC’s sensitivity to noise influences the category-level methods (W. Chen, Jia, H. J. Chang,

Duan, Shen, et al., 2021; Di et al., 2022; R. Zhang, Di, Lou, et al., 2022; R. Zhang, Di, Manhardt,

et al., 2022) that are based on it. To address this problem, we introduce an outlier robust feature ex-

traction layer (ORL) on top of the 3D-GC layer, which enhances the method’s robustness to noise.

The ORL is constructed as follows. Denote the input to this layer as {(p1,f1), . . . , (pN ,fN)},

where fn ∈ RD is the feature of point pn. In Figure 4.4, X represents the input point cloud of a
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Outlier More reliable part� �

Figure 4.4: The design intuition of the outlier robust feature extraction layer (ORL).

camera, including outliers, while Y depicts the complete shape. Outliers can be distracting, and

their features (f ) should not be relied upon. Having a perception of global information, especially

the more reliable part, helps the network gain resistance to noise. To focus on the global infor-

mation of the more reliable part, we need a mechanism to alleviate the deviation caused by the

outliers. Using the global average or maximum pooling directly is limited in addressing this, as all

points are taken equally in the pooling procedure.

To lower outliers’ influence, we propose using the local region as a guide to extract the

global feature. As shown in Figure 4.2 (see ORL), we first use RF-P to find the M nearest neighbors

of each point NM
p (pn). Then, we extract the channel-wise max features of NM

p (pn) using a

maximum pooling layer. It should be noted that the points in the reliable parts are more likely

to be presented in other points’ receptive fields and thus contribute more to the results of the max

pooling. The output of the max pooling layer is then passed to a global average pooling layer to get

the global feature f global. We then generate an adjusting feature using the f global and the original

input per-point feature fn by first concatenating them and then feeding them to a linear layer. The

final output of ORL is the result of the summation of the adjusting feature and the input features

fn of this layer.
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4.4 Experiments

Implementation details. To rigorously verify the effectiveness of the proposed HS-layer and

ensure a fair comparison with the baseline GPV-Pose, we construct the HS-Pose by replacing GPV-

Pose’s 3D-GC layer with the HS-layer while keeping the overall network structure and network

parameters identical to the GPV-Pose, as shown in Figure 4.2. For a fair comparison, we choose

10 neighbors for the RF-F, consistent with the RF-P in GPV-Pose. The neighbor number of ORL is

the same as the RF-F. No other parameters need to be set for the HS-layer as they only depend on

the input and output. We also keep the settings, data augmentation strategy, loss terms, and their

parameters, the same as those in GPV-Pose’s official code2. Following GPV-Pose, the off-the-shelf

object detector MaskRCNN (K. He et al., 2017) is employed to generate instance segmentation

masks, and 1028 points are randomly sampled as the input to the network. The code is developed

using PyTorch. We run all experiments on a computer equipped with an Intel(R) Core(TM) i9-

10900K CPU, 32 GB RAM, and an NVIDIA GeForce RTX 3090 GPU. All categories are trained

together with a batch size of 32, and the training epochs are set to 150 and 300 for REAL275 and

CAMERA25 datasets, respectively. The Ranger optimizer (L. Liu et al., 2019; Yong et al., 2020;

M. R. Zhang et al., 2019) is used with the learning rate starting at 1e−4 and then decreasing based

on a cosine schedule for the last 28% training phase.

Baseline methods. We use GPV-Pose (Di et al., 2022) as the baseline for the ablation study.

Since GPV-Pose did not provide the performance of 10◦2cm, 2cm, and 5◦, we generate them using

their official code2. To ensure a fair comparison of their relative speeds, we report GPV-Pose’s

speed on our machine using the same evaluation code as ours. The results of the other methods are

taken directly from the corresponding papers.

2https://github.com/lolrudy/GPV_Pose
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Datasets. We evaluate our method on REAL275 (H. Wang et al., 2019) and CAMERA25 (H.

Wang et al., 2019), the two most popular benchmark datasets for category-level object pose esti-

mation. REAL275 is a real-world dataset that provides 7k RGB-D images in 13 scenes. It contains

6 categories of objects (can, laptop, mug, bowl, camera, and bottle), and every category contains 6

instances. The training data comprises 4.3k images from 7 scenes, with 3 objects from each cate-

gory shown in different scenes. The testing data includes 2.7k images from 6 scenes and 3 objects

from each category. CAMERA25 is a synthetic RGB-D dataset that contains the same categories

as REAL275. It provides 1085 objects for training and 184 for testing. The training set contains

275K images, and the testing set contains 25K.

Evaluation metrics. Following (R. Zhang, Di, Lou, et al., 2022; Di et al., 2022), we use the mean

average precision (mAP) of the 3D Intersection over Union (IoU) with thresholds of 25%, 50%,

and 75% to evaluate the object’s size and pose together. We evaluate the rotation and translation

estimation performance using the metrics of 5◦, 10◦, 2cm and 5cm, which means an estimation

is considered correct if its corresponding error is lower than the threshold. The pose estimation

performance is also evaluated using the combination of rotation and translation thresholds: 5◦2cm,

5◦5cm, 10◦2cm, and 10◦5cm.

4.4.1 Ablation study

To validate the proposed architecture, we conduct intensive ablation studies using the REAL275 (H.

Wang et al., 2019) dataset. We incrementally add the proposed strategies (STE, RF-F, and ORL)

on the baseline (GPV-Pose) to study their influences, with full results shown in Table 4.1.

We chose GPV-Pose as our baseline for two key reasons. Firstly, for its effectiveness

demonstration, GPV-Pose is a leading method in category-level object pose estimation based on

3D-GC, making it ideal for showing how each component of our HS-layer affects pose estima-

68



Enhancing Generalizability to Category-level Objects

Table 4.1: Ablation studies on REAL275.

Higher score means better performance. Overall best results are in bold, and the second-best results are underlined.

Row Method IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 2cm 5◦ Speed(FPS)

A0 GPV-Pose (baseline) 84.2 83.0 64.4 32.0 42.9 55.0 73.3 69.7 44.7 69

B0 A0 + STE 84.2 82.2 73.1 36.4 45.1 62.2 76.7 75.6 47.4 66

B1 A0 + RF-F 84.2 82.8 67.7 38.9 52.3 62.1 81.8 71.7 56.1 65

B2 A0 + STE + RF-F 84.1 82.0 72.0 42.7 53.7 63.4 79.2 75.7 57.0 64

C0 A0 + STE + RF-F + Average Pool 84.1 81.7 73.4 43.7 54.8 65.7 81.6 75.7 58.5 62

C1 A0 + STE + RF-F + Max Pool 84.2 81.7 74.8 44.3 54.5 66.9 81.8 77.3 58.1 62

D0 A0 + STE + RF-F + ORL (Full) 84.2 82.1 74.7 46.5 55.2 68.6 82.7 78.2 58.2 50

E0 D0: Neighbor number: 10 → 20 84.3 82.8 75.3 46.2 56.1 68.9 84.1 77.8 59.1 38

tion performance. Secondly, for comparison with other strategies, methods like SSP-Pose and

RBP-Pose are built on GPV-Pose. SSP-Pose uses prior shape information and a shape deformation

module, while RBP-Pose enhances GPV-Pose with a residual bounding box projection (SPRV)

module and a shape deformation module. Comparing with these methods demonstrates how our

STE and RF-F strategies perform relative to the state-of-the-art. Specifically, we show STE’s ef-

fectiveness by comparing with SSP-Pose, and we highlight the impact of the RF-F approach by

comparing with RBP-Pose.

[AS-1] Scale and translation encoding (STE). To demonstrate the effectiveness of STE and

highlight the significance of scale and translation awareness when extracting latent features, we

parallelly connected a single linear layer to each 3D-GC layer in the encoder of the GPV-Pose.

The results in Table 4.1, specifically the [B0] row, indicate that the inclusion of STE has a signif-

icant positive impact on scale and translation estimation (8.7% improvement on IoU75 and 5.9%

improvement on 2cm) while also slightly improving rotation estimation (2.7% improvement on

5◦). As shown in Table 4.5, such a simple addition even outperforms the SSP-Pose in several strict

metrics (IoU75, 5◦2cm, and 5◦5cm) and shows a notable improvement of 6.8% on the IoU75 metric,
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despite that the SSP-Pose extends the GPV-Pose using a much more complex shape deformation

module. The experiment results demonstrate the effectiveness of STE.

[AS-2] Receptive field with feature distance (RF-F). To show the usefulness of the proposed

RF-F strategy and to demonstrate the importance of the global geometric relationships, we apply

RF-F on GPV-Pose. From the results in Table 4.1 ([B1]), we see that RF-F has a substantial

impact on rotation estimation and brings a performance leap by 11.4% on 5◦ metric. In addition,

it improves the performance on IoU75 and 2cm by 3.3% and 2.0%, respectively, thanks to the fact

that having a sense of the global geometric relationships is helpful in finding the object’s center

and shape boundary. When comparing the experimental results with the state-of-the-art methods

in Table 4.5, our simple RF-F strategy achieves comparable performance with the state-of-the-art

methods and outperforms them on the stricter metrics (e.g. 5◦2cm and 5◦5cm).

[AS-3] The combination of RF-F and STE. To exhibit the benefit of leveraging global geomet-

ric relationships and size-translation awareness, we conduct an experiment that combines RF-F

and STE. As shown in [B2], the cooperation of RF-F and STE enhances each other and contributes

to a better performance than their individual results. When compared with the baseline method,

GPV-Pose, the combination of RF-F and STE improves 5◦5cm by 10.8%, 5◦ by 12.3% and IoU75

by 7.6%.

[AS-4] Outlier robust feature extraction layer (ORL). To demonstrate the effectiveness of

the ORL, we add the ORL on top of [AS-3]. The results shown in the [D0] row of Table 4.1

demonstrate that using global features to adjust per-point feature extraction is helpful for both

pose and size estimation with an improvement of 5.2% (10◦2cm) and 2.7% (IoU75), respectively.

To check the effectiveness of the outlier robust global feature, we further conduct two experiments

by replacing the outlier robust global feature with two popular global pooling methods: average
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Figure 4.5: The rotation estimation performance of the proposed three strategies and GPV-Pose on

categories with different geometric complexity.

pooling [C0] and max pooling [C1]. The results of [D0], [C0], and [C1] all show the contribution

of global information to pose estimation. The comparison between [D0] and [C0, C1] shows that

the outlier robust global feature plays a positive role and enhances the overall performance.

[AS-5] Capability of handling complex shapes. To exhibit the proposed method’s capability

in handling complex geometric shapes, we compare the rotation estimation results of the three

proposed strategies (STE, RF-F, and ORL) and GPV-Pose on categories with different shape com-

plexity in Figure 4.5. The figure illustrates the rotation estimation mAP (5◦ and 10◦) for objects

with different geometric complexities, with the bottle being the simplest and the camera the most

complex shape. Our method significantly improves the rotation estimation for the simple shape

(bowl) to nearly 100% and notably enhances the rotation mAP for more complex objects (mug

and camera). This demonstrates the method’s ability to handle objects across different shape-

complexities. The figure also demonstrates the effectiveness of leveraging global geometric re-

lationships (STE+RF-F vs. STE) and shows the usefulness of outlier robust global information

guided feature extraction in ORL (STE+RF-F+ORL vs. STE+RF-F).
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Figure 4.6: The comparison of outlier resistance between GPV-Pose and the proposed method.

[AS-6] Noise resistance. To demonstrate the outlier robustness of our method, we tested it along-

side GPV-Pose under different outlier ratios (ranging from 0.0% to 40.0%). Outliers are defined

as points that do not belong to the target object, and the outlier ratio represents the ratio of outlier

points to the total number of points in the input point cloud. We utilized the REAL275 dataset for

testing and generated noisy input data by sampling points from both the background and the object

region based on the specified outlier ratio. Our method consistently outperforms GPV-Pose by a

significant margin across various outlier ratios, demonstrating superior stability as the outlier ratio

increases. For a fair comparison, both our method and GPV-Pose were tested on the same noisy

dataset. Figure 4.6 provides a visual representation of these results.
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Table 4.2: Performance of our method when changing the neighbor number of RF-F.

The neighbor number of the ORL is fixed to 10 in this experiment. Overall best results are in bold, and the second-best

results are underlined.

Neighbor Number 3 5 10 20 30 40

5◦2cm 39.8 41.5 46.5 46.1 44.3 41.6

5◦5cm 49.2 51.4 55.2 56.7 54.7 54.4

IoU75 72.9 72.8 74.7 73.4 74.7 71.9

Speed (FPS) 64 60 50 41 34 30

4.4.2 Influence of neighbor numbers

To understand how neighbor numbers affect performance, we tested our method with different

neighbor numbers (from 3 to 40) in the RF-F and ORL components3. We conducted experiments

in three groups: 1) changing RF-F’s neighbor number with fixed ORL’s neighbor number, 2) chang-

ing ORL’s neighbor number with fixed RF-F’s neighbor number, and 3) changing both neighbor

numbers simultaneously. Results indicate that optimal performance occurs within a specific neigh-

bor number range. Using the same neighbor numbers in ORL and RF-F improves performance,

with the best precision achieved when both neighbor numbers are 20 or 30. We also show results

for 20 neighbors, which outperform those with 10 neighbors, in row [E0] of Table 4.1. Notably,

for a fair comparison with GPV-Pose and to focus on the HS-layer’s design, we use the results with

10 neighbors (as GPV-Pose) in all tables and figures unless specified otherwise.

Change in RF-F’s neighbor number. Table 4.2 displays our method’s performance with differ-

ent RF-F neighbor numbers, with fixed ORL neighbor number at 10. Increasing RF-F’s neighbor

number leads to longer processing times, with a certain range (around 10-20 neighbors) producing

3Due to GPU memory limitations, we adjusted the batch size for each neighbor number (16 for 3-20 neighbors, 8

for 30-40 neighbors).
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better precision. Speed decreases from 64 FPS to 30 FPS when increasing neighbors from 3 to

40. Performance on 5◦2cm peaks at 10 neighbors (46.5%), then declines to 41.6% at 40 neighbors.

Generally, using 10 neighbors for RF-F achieves the best balance of performance and speed, as too

few or too many neighbors can degrade precision. Insufficient or excessive neighbor numbers can

adversely affect precision, as too few neighbors may not fully capture global geometric features,

while too many may obscure geometric structural information in the receptive field.

Table 4.3: Performance of our method when changing the neighbor number of ORL.

The neighbor number of RF-F is fixed to 10 in this experiment. Overall best results are in bold, and the second-best

results are underlined.

Neighbor Number 3 5 10 20 30 40

5◦2cm 43.3 43.6 46.5 42.7 43.1 39.4

5◦5cm 53.1 53.0 55.2 55.3 54.4 53.7

IoU75 74.6 72.8 74.7 72.7 73.9 71.1

Speed (FPS) 52 51 50 48 48 49

Change in ORL’s neighbor number. Table 4.3 shows the proposed method’s performance with

different ORL neighbor numbers, with fixed RF-F neighbor number at 10. Speed remains relatively

stable, dropping by only 4 FPS from 3 to 40 neighbors. Precision benefits from an appropriate

range of neighbor numbers, with 10 neighbors performing better than other values. Compared to

RF-F, ORL’s neighbor number has a lesser impact on speed, likely due to finding neighbors in a

lower dimensional space.

Simultaneous change in neighbor numbers. Table 4.4 presents the method’s performance when

both ORL and RF-F neighbor numbers change simultaneously. Optimal performance occurs

around 10-30 neighbors, where using the same number of neighbors in both components improves

precision. Increasing neighbor numbers in both components helps balance finding reliable points
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Table 4.4: Our performance when changing the neighbor number of the ORL and RF-F together.

The neighbor numbers of ORL and RF-F are the same in this experiment. Overall best results are in bold, and the

second-best results are underlined.

Neighbor Number 3 5 10 20 30 40

5◦2cm 39.0 41.7 46.5 46.2 46.4 39.6

5◦5cm 47.6 52.8 55.2 56.1 56.6 55.8

IoU75 73.1 72.7 74.7 75.3 75.2 70.3

Speed (FPS) 64 59 50 38 30 26

and rejecting outliers, leading to better performance. However, too many neighbors can still de-

grade performance by including too much noise.

4.4.3 Comparison with state-of-the-art methods

Results on the REAL275 dataset. We compare HS-Pose with state-of-the-art methods in Ta-

ble 4.5, focusing on depth-only methods for pose estimation to ensure a fair comparison. As

shown in the table, our method outperforms the state-of-the-art in all metrics except for IoU50,

where it also shows comparable performance. HS-Pose achieves real-time performance and out-

performs the second-ranked method on strict metrics by a large margin, with improvements of

8.3% on 5◦2cm, 7.1% on 5◦5cm, and 6.9% on IoU75. Figure 4.7 presents the average precision

of each category under different thresholds, comparing HS-Pose with GPV-Pose.

Furthermore, we compare our depth-only method with RGB-D-based approaches in Ta-

ble 4.6. HS-Pose achieves competitive results with RGB-D-based approaches, ranking first in 5

out of 9 metrics and second in the rest. We significantly outperform them in several pose estimation

metrics, such as 56.1% (HS-Pose) vs. 50.7% on 5◦5cm metric, and 84.1% (HS-Pose) vs. 78.4% on

10◦5cm metric. Many of these approaches were trained with synthetic data or used mixed training
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Table 4.5: Comparison with the state-of-the-art methods (depth only) on REAL275 dataset.

Higher score means better performance. Overall best results are in bold, and the second-best results are underlined.

Method IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm Speed(FPS)

SAR-Net (H. Lin, Z. Liu, C. Cheang, et al., 2022) - 79.3 62.4 31.6 42.3 50.3 68.3 - 10

FS-Net 4 (W. Chen, Jia, H. J. Chang, Duan, Shen, et al., 2021) 84.0 81.1 63.5 19.9 33.9 - 69.1 71.0 20

UDA-COPE (T. Lee, B. Lee, et al., 2021) - 79.6 57.8 21.2 29.1 48.7 65.9 - -

SSP-Pose (R. Zhang, Di, Manhardt, et al., 2022) 84.0 82.3 66.3 34.7 44.6 - 77.8 79.7 25

RBP-Pose (R. Zhang, Di, Lou, et al., 2022) - - 67.8 38.2 48.1 63.1 79.2 - 25

GPV-Pose Di et al., 2022 84.1 83.0 64.4 32.0 42.9 55.0 73.3 74.6 69

Ours 84.2 82.1 74.7 46.5 55.2 68.6 82.7 83.7 50

Table 4.6: Comparison with the state-of-the-art methods (RGB-D) on the REAL275 dataset.

Higher score means better performance. Overall best results are in bold, and the second-best results are underlined.

Type lists the input data type for pose estimation. Syn. denotes whether the synthetic data is used during training.

Method Type Syn. IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm Speed(FPS)

NOCS (H. Wang et al., 2019) RGB-D ✓ 84.9 80.5 30.1 - 9.5 13.8 26.7 26.7 5

CASS (D. Chen et al., 2020) RGB-D ✓ 84.2 77.7 15.3 19.5 23.5 50.8 58.0 58.3 -

SPD (Tian, Ang Jr, and G. H. Lee, 2020) RGB-D ✓ 83.4 77.3 53.2 19.3 21.4 43.2 54.1 - 4

DualPoseNet (J. Lin, Wei, Zhihao Li, et al., 2021) RGB-D ✓ - 79.8 62.2 29.3 35.9 50.0 66.8 - 2

SGPA (K. Chen and Dou, 2021) RGB-D ✓ - 80.1 61.9 35.9 39.6 61.3 70.7 - -

CR-Net (J. Wang, K. Chen, and Dou, 2021) RGB-D ✓ - 79.3 55.9 27.8 34.3 47.2 60.8 - -

Self-DPDN (J. Lin, Wei, Ding, et al., 2022) RGB-D ✓ - 83.4 76.0 46.0 50.7 70.4 78.4 - -

Ours (10 neighbors) D 84.2 82.1 74.7 46.5 55.2 68.6 82.7 83.7 50

Ours (20 neighbors) D 84.3 82.8 75.3 46.2 56.1 68.9 84.1 85.2 38

with CAMERA25 and REAL275, resulting in larger training sets with over 1K objects. Addition-

ally, they often exhibit limited inference speed. In contrast, HS-Pose is trained using REAL275

with only 1.6k images and 18 objects, achieving real-time performance.

Results on the CAMERA25 Dataset. The performance comparison of the proposed method

and the state-of-the-art is shown in Table 4.7. Our method ranks top and second on all the metrics
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Figure 4.7: Per-category comparison between our method and GPV-Pose.

without prior information. Of the four scores ranked second, three are close to the tops with

negligible differences (0.1% on 10◦5cm and IoU75 metrics, and 0.2% on 5◦2cm metric). It is

also worth noting that CAMERA25 is a synthetic dataset that contains no noise, so one main

contribution of the proposed method, noise robustness, is not reflected in this dataset. However,

this contribution can be identified by comparing the proposed and the state-of-the-art methods’

performance on the CAMERA25 and the REAL275 dataset. The REAL275 dataset contains the

same object categories as the CAMERA25 but is real-world collected and contains complex noise.

It can be observed that the performance drop of our method is much less than other methods when

encountering real-world noises in the REAL275. This demonstrates that our method is more noise-

robust compared with other methods.

4We use the result provided by GPV-Net, which is higher than the reported result in the FS-Net paper.
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Table 4.7: Comparison with state-of-the-art methods (depth-only) on the CAMERA25 dataset.

Higher score means better performance. Overall best results are in bold, and the second-best results are underlined.

Prior denotes whether the method uses shape priors.

Method Prior IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

SAR-Net (H. Lin, Z. Liu, C. Cheang, et al., 2022) ✓ 86.8 79.0 66.7 70.9 75.3 80.3

SSP-Pose (R. Zhang, Di, Manhardt, et al., 2022) ✓ - 86.8 64.7 75.5 - 87.4

RBP-Pose (R. Zhang, Di, Lou, et al., 2022) ✓ 93.1 89.0 73.5 79.6 82.1 89.5

GPV-Pose (Di et al., 2022) 93.4 88.3 72.1 79.1 - 89.0

Ours 93.3 89.4 73.3 80.5 80.4 89.4

We also compare the proposed method with the state-of-the-art RGB-D-based methods on

the CAMERA25 dataset and show the results in Table 4.8. We achieved top and second scores on

5 out of 6 metrics (4 tops and 1 second) without the need for RGB data or shape prior.

Table 4.8: Comparison with state-of-the-art methods (RGB-D) on the CAMERA25 dataset.

Higher score means better performance. Overall best results are in bold, and the second-best results are underlined.

Type lists the input data type for pose estimation. Syn. denotes whether the synthetic data is used during training.

Method Type Prior IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

SPD(Tian, Ang Jr, and G. H. Lee, 2020) RGB-D ✓ 93.2 83.1 54.3 59.0 73.3 81.5

CR-Net (J. Wang, K. Chen, and Dou, 2021) RGB-D ✓ 93.8 88.0 72.0 76.4 81.0 87.7

SGPA (K. Chen and Dou, 2021) RGB-D ✓ 93.2 88.1 70.7 74.5 82.7 88.4

NOCS (H. Wang et al., 2019) RGB-D 83.9 69.5 32.3 40.9 48.2 64.6

DualPoseNet (J. Lin, Wei, Zhihao Li, et al., 2021) RGB-D 92.4 86.4 64.7 70.7 77.2 84.7

Ours (10 neighbors) D 93.3 89.4 73.3 80.5 80.4 89.4

Ours (20 neighbors) D 93.4 89.3 74.0 82.0 80.3 90.2
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Qualitative results. Figure 4.8 presents a qualitative comparison between GPV-Pose and our

method. Ground truth results are shown with white lines, GPV-Pose’s results in blue, and ours in

green. For symmetric objects like the bowl, bottle, and can, correct estimated rotations align with

the symmetry axis. As can be seen from the figure, our method achieves a better size and pose

estimation (e.g. the first three columns), shows robustness to occlusion (e.g. the laptop in the last

column), and handles complex shapes better (e.g. the cameras and mugs in each column).

4.4.4 Per-Category results on REAL275 and CAMERA25

The per-category results trained on the REAL275 and CAMERA25 datasets are shown in Table 4.9

and Table 4.10, respectively.

Table 4.9: Per-category results of our method on REAL275 dataset.

Category IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm 5◦ 10◦ 2cm 5cm 10cm

bottle 57.7 57.7 54.8 43.0 53.1 80.0 95.4 98.5 66.9 99.2 81.0 96.5 99.5

bowl 100.0 100.0 100.0 92.1 95.6 96.5 100.0 100.0 95.6 100.0 96.5 100.0 100.0

camera 90.9 82.3 65.2 2.3 3.1 28.3 35.7 35.8 3.1 35.8 60.9 98.1 100.0

can 71.4 71.4 70.5 68.6 75.0 90.0 98.5 98.5 77.8 99.7 90.0 98.6 98.8

laptop 86.1 84.9 67.1 49.3 79.5 52.4 94.0 96.8 80.8 96.9 52.4 94.6 99.5

mug 99.2 96.4 90.8 23.8 25.0 64.6 72.6 72.6 25.0 72.6 88.5 100.0 100.0

average 84.2 82.1 74.7 46.5 55.2 68.6 82.7 83.7 58.2 84.0 78.2 98.0 99.6

4.4.5 Inference speed

Our method achieves an inference speed of 50 frames per second (FPS) on a computer equipped

with an Intel(R) Core(TM) i9-10900K CPU, 32 GB RAM, and an NVIDIA GeForce RTX 3090

GPU. It’s important to note that inference speeds can vary depending on the hardware configuration
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Figure 4.8: Qualitative results of our method (green line) and the GPV-Pose (blue line) on the

REAL275 dataset.
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Table 4.10: Per-category results of our method on CAMERA25 dataset.

category IoU25 IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm 5◦ 10◦ 2cm 5cm 10cm

bottle 93.9 93.8 90.9 80.1 96.7 80.7 97.8 99.4 98.5 99.8 80.7 97.9 99.5

bowl 96.9 96.8 96.8 98.4 98.6 99.4 99.8 99.8 98.7 99.8 99.4 99.8 99.9

camera 94.8 85.4 74.3 51.2 55.1 65.0 70.6 70.9 55.5 71.4 86.9 99.0 99.6

can 92.5 92.4 92.2 99.0 99.4 99.0 99.5 99.5 99.9 100.0 99.0 99.5 99.6

laptop 98.4 97.4 90.6 75.6 85.2 81.1 92.7 97.0 89.0 97.1 83.3 95.6 99.9

mug 94.1 93.8 91.9 35.4 47.9 57.4 76.2 76.2 49.1 76.9 75.9 99.5 99.6

average 95.1 93.3 89.4 73.3 80.5 80.4 89.4 90.5 81.8 90.8 87.5 98.6 99.7

of the machine. Therefore, we use the speed results to demonstrate the real-time performance of

our method without emphasizing direct speed comparisons with other methods.

To provide a fair speed comparison with the baseline method, GPV-Pose, we report the

speed of GPV-Pose on our machine using the same evaluation code as ours. GPV-Pose achieved

a speed of 69 FPS on our system, which is notably faster than the speed reported in the original

paper (20 FPS). This speed difference can be attributed to two main factors: machine differences

and evaluation code optimization.

Machine differences. The original paper for GPV-Pose reports speed tests on a single TITAN

X GPU, while we tested GPV-Pose on a single RTX 3090 GPU with an Intel(R) Core(TM) i9-

10900K CPU, 32 GB RAM. This difference in hardware configuration resulted in a speed of 33

FPS on our machine.

Evaluation code optimization. Our evaluation code is a refactored version of GPV-Pose’s code.

We change some for-loop operations to batch operations and remove unnecessary calculations

(e.g. the bounding box voting and symmetric point cloud reconstruction) during inference. These
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optimizations significantly improved the speed from 33 FPS to 69 FPS. Importantly, all the changes

have passed unit tests to to ensure they produced the same results as the original code.

4.5 Conclusion

In this paper, we proposed a hybrid scope latent feature extraction layer, the HS-layer, and used it

to construct a category-level object pose estimation framework HS-Pose. Based on the advantages

of the HS-layer, HS-Pose can handle complex shapes, capture an object’s size and translation, and

is robust to noise. The capability of the overall framework is demonstrated in the experiments. The

comparisons with the existing methods show that our HS-Pose achieves state-of-the-art perfor-

mance. In future work, we plan to apply our proposed HS-layer to other problems where unstruc-

tured data needs to be processed, and the combination between the local and the global information

becomes critical.
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Chapter Five

Achieving High-Precision in Category-level

Applications

This chapter presents work that has been accepted by The IEEE / CVF Computer Vision and

Pattern Recognition Conference (CVPR) 2024 in Seattle (WA), USA (Zheng, Tse, et al., 2024).

Tze Ho Elden Tse and Chen Wang assisted with figure drawing and draft writing, Yinghan Sun

helps with tables and figures, and Hua Chen helps with the draft writing.

Object pose refinement is essential for robust object pose estimation. Previous work has

made significant progress toward instance-level object pose refinement. Yet, category-level pose

refinement is a more challenging problem due to the large shape variations of different objects

within a category and the discrepancy between the target object and the shape prior. To address

these challenges, we introduce a novel architecture for category-level object pose refinement. Our

approach integrates an HS-layer and learnable affine transformations, which aims to enhance the

extraction and alignment of geometric information. Additionally, we introduce a cross-cloud trans-

formation mechanism that efficiently merges diverse data sources. Finally, we push the limits

of our model by incorporating the shape prior information for translation and size error predic-

tion. We conducted extensive experiments to demonstrate the effectiveness of the proposed frame-

work. Through extensive quantitative experiments, we demonstrate significant improvement over
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the baseline method by a large margin across all metrics, i.e. IoU75 and 10◦2cm improvement by

8.2% and 10.5%, respectively. 1

5.1 Introduction

Understanding an object’s pose is crucial for a wide range of real-world applications, including

robotic manipulation (Kappler et al., 2018; Morgan et al., 2021; K. Zhang et al., 2023), augmented

reality (Marder-Eppstein, 2016; Nee et al., 2012), and autonomous driving (Y. Su, Rambach, et al.,

2019; Kothari et al., 2017). Significant progress has been made for object pose estimation (Hanzhi

Chen et al., 2023; Hodan, Barath, and Jiri Matas, 2020; Hai et al., 2023; Yang and Pavone, 2023)

and pose refinement (Yi Li et al., 2018; Iwase et al., 2021; B. Wen, Mitash, et al., 2020; Castro

and Kim, 2023; Z. Zhang et al., 2023) using the object’s CAD model. Despite the promising

performance, the reliance on accurate instance-level CAD models limits their generalizability to

everyday objects. Category-level methods have therefore been proposed to overcome this limita-

tion (Zheng, C. Wang, et al., 2023; J. Lin, Wei, Ding, et al., 2022; X. Liu et al., 2022; K. Chen,

James, et al., 2023). The objective of this line of work focuses on estimating object poses within a

category given category-level shape priors. As a result, they face unique challenges as there exist

diverse shape variations in each object category. We illustrate these shape variations in Fig. 5.1,

where SP-m is the mean shape of a category, and SP-1 and SP-2 are randomly sampled shapes

from the categories.

Recently, there have been remarkable advancements in category-level object pose estima-

tion (Zheng, C. Wang, et al., 2023; Di et al., 2022; R. Zhang, Di, Lou, et al., 2022; W. Chen, Jia,

H. J. Chang, Duan, Shen, et al., 2021; J. Lin, Wei, Ding, et al., 2022), primarily due to effective

utilization of geometric information through 3D graph convolution (Z.-H. Lin, S.-Y. Huang, and

1Project page: https://lynne-zheng-linfang.github.io/georef.github.io
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Figure 5.1: Examples of the shape variation.

Y.-C. F. Wang, 2020). In applications that require high precision, it is common to employ an ob-

ject pose refinement procedure in conjunction with pose estimation. This involves an initial pose

estimation algorithm determining the object pose, followed by a refinement step to further enhance

the accuracy of the initially estimated pose by predicting and correcting its error. However, while

instance-level object pose refinement has been extensively studied, category-level pose refinement

remained unexplored until the introduction of CATRE (X. Liu et al., 2022). By leveraging initial

object pose and size estimations, CATRE achieves category-level pose refinement by iteratively

aligning the observed target object point cloud with the category-level shape prior. This pipeline is

shown to be effective by improving the accuracy of the initial pose and size estimations.

While CATRE has proven to be effective in many scenarios, it is limited by the reliance

on the PointNet (Qi, H. Su, et al., 2017) encoder, which is primarily designed for classification

and segmentation tasks. This design choice limits its ability to capture essential and fine-grained

geometric relationships for accurate pose estimation and refinement. This ability is particularly im-

portant in category-level pose refinement as there exists diverse shape variations between inputs.

Consequently, CATRE obtains suboptimal performance by direct application of 3D graph convo-

lution. In addition, as CATRE treats the point cloud and the shape prior features separately until

a later stage of the network, they potentially miss out on the benefits of integrating these features

earlier. Moreover, their approach does not incorporate shape prior information into the translation
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and scale estimation module, which presents another area for potential improvement.

In this paper, we introduce a novel architecture for category-level object pose refinement

which aims to address the limitations mentioned above. To better extract both local and global

geometric information, we incorporate an HS layer into our feature extraction process. We apply

learnable affine transformations to the features to address the geometric discrepancies between the

observed point cloud and the shape prior. This enables the network to align these features more

effectively. In addition, we propose a cross-cloud transformation mechanism that is specifically

designed to enhance the merging of information between the observed point clouds and the shape

prior. This mechanism enables more efficient integration of information between the two sources.

Finally, we push the limit of our model by incorporating shape prior information to more accurately

predict errors in translation and size estimation.

Our extensive experimental results on two category-level object pose datasets demonstrate

that our proposed model to be effective in addressing the problem of shape variations in category-

level object pose refinement, and consequently outperforms the state-of-the-art significantly. To the

best of our knowledge, our proposed method is the first to successfully address the shape variation

issue which is common in category-level pose refinement. Specifically, to enable graph convolu-

tion to be effective in capturing geometric relationships between different shapes, we propose an

adaptive affine transformation matrix that aligns the observed point clouds and the shape prior.

Additionally, the proposed cross-cloud transformation mechanism effectively fuses features from

different input point clouds and brings further performance improvements.

Our contributions are as follows:

• We introduce a novel architecture to specifically address the shape variations issue in category-

level object pose refinement. Our proposed method results in consistent performance gain

and exhibits better generalization ability.
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• We propose a unique cross-cloud transformation mechanism which efficiently merges di-

verse information from observed point clouds and shape priors.

• We conduct extensive experiments on two category-level object pose datasets to validate our

proposed method. On the REAL275 dataset, our method significantly outperforms SPD by

39.1% increase in the 5◦5cm metric. Additionally, we achieve 10.5% improvement in the

10◦2cm metric over the state-of-the-art method, CATRE.

5.2 Related Work

The work in this chapter is related to previous work on 6D object pose estimation and refinement

at the instance level and category level.

Instance-level object pose estimation and refinement. Instance-level approaches estimate the

pose of the target object given known 3D CAD models. They can be briefly divided into correspondence-

matching methods and template-matching methods. Correspondence matching methods (Merrill

et al., 2022; Rad and Vincent Lepetit, 2017; W. Chen, Jia, H. J. Chang, Duan, and Leonardis, 2020;

Y. He, W. Sun, et al., 2020; Tremblay et al., 2018; Y. Su, Saleh, et al., 2022; Zakharov, Shugurov,

and Ilic, 2019; J. Sun et al., 2022; Hansheng Chen et al., 2022; Haugaard and Buch, 2021; Tekin,

Sinha, and Pascal Fua, 2018; J. Zhou et al., 2023) matches the outstanding features of the observed

object images with its model. Template matching methods (Sundermeyer, Z. Marton, et al., 2019;

Zheng, Leonardis, et al., 2022; Shugurov et al., 2022; D. Cai, Heikkilä, and Rahtu, 2022; Sunder-

meyer, Durner, et al., 2020; Stefan Hinterstoisser, Vincent Lepetit, Rajkumar, et al., 2016; Vidal,

C.-Y. Lin, and Martí, 2018; V. N. Nguyen et al., 2022) compares the images or extracted features

with the pre-generated templates. As the initial pose estimates can be noisy to various factors such

as occlusions, object pose refinement (Yi Li et al., 2018; Labbé et al., 2020a; B. Wen, Mitash,
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et al., 2020) is shown to be useful in improving the performance of instance-level methods. Even

though they achieved impressive over the target object, the reliance on object CAD models limited

their generalizability for handling everyday objects. In this paper, we consider a more challenging

problem setting where only the category-level shape prior is provided.

Category-level object pose estimation and refinement. Both tasks mainly focus on addressing

the shape variation between the objects. The pioneering work NOCS (H. Wang et al., 2019) tackles

the shape discrepancy by recovering the normalized visible shape of the target object and achiev-

ing the pose by point cloud matching. A series of methods extend this structure by leveraging

different information such as domain adaptation (T. Lee, B. Lee, et al., 2021), different reconstruc-

tion space (D. Chen et al., 2020), shape prior (Tian, Ang, and G. H. Lee, 2020; T. Lee, B. Lee,

et al., 2021; D. Chen et al., 2020; Irshad et al., 2022), and structural similarities (K. Chen and Dou,

2021; J. Lin, Wei, Ding, et al., 2022). However, this line of work is often limited in speed due to

the iterative point matching. Another series of work starts with FS-Net (W. Chen, Jia, H. J. Chang,

Duan, Shen, et al., 2021), which adopts 3D graph convolution (3D-GC) (Z.-H. Lin, S.-Y. Huang,

and Y.-C. F. Wang, 2020) to obtain geometric sensitivity. Due to its effectiveness and real-time

performance, graph convolution is widely adopted in recent methods with an enhancement in di-

rections including loss function (Di et al., 2022), bounding box voting (R. Zhang, Di, Lou, et al.,

2022), and shape deformation (R. Zhang, Di, Manhardt, et al., 2022). HS-Pose (Zheng, C. Wang,

et al., 2023) extends the geometric feature extraction from local to global, which enhances the ca-

pability to handle objects with complex shapes. The research on category-level refinement began

recently with the proposal of CATRE (X. Liu et al., 2022). It introduced an effective pipeline that

leverages shape priors and a focalization strategy for pose refinement and effectively improves the

initial pose estimations. In this paper, we extend the CATRE and tackle the geometric variation

issue within the framework of category-level pose refinement.
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5.3 Methodology

5.3.1 Problem formulation

In this paper, we tackle the problem of category-level object pose refinement. Given the initial

pose and size estimation (R0, t0, s0), along with the observed point cloud O ∈ RNO×3 and the

shape prior P ∈ RNP×3, we aim to predict the estimation error (∆R, ∆t, ∆s) between the initial

estimations and the ground truths. The pose refinement algorithm ϕ can be described as:

(∆R,∆t,∆s) = ϕ(R0, t0, s0,O,P). (5.1)

This pose refinement algorithm ϕ can be applied iteratively to improve the refinement performance.

5.3.2 Preliminaries

Our proposed category-level object pose refinement framework builds upon previous work, CATRE (X.

Liu et al., 2022) which we briefly review in the following.

CATRE is the first framework that considers the problem of category-level pose refinement.

It predicts the error between the ground truth and the estimated poses by aligning the input point

clouds and the categorical shape priors. Specifically, the network architecture of CATRE consists

of four components: a) point cloud focalization, b) shared encoder, c) rotation prediction, and d)

translation and size prediction. In point clouds focalization, the observed point clouds O and the

shape prior P are first aligned with the initial pose and size estimation [R0, t0, s0]:

Ô = {ôi|ôi = oi − t0, oi ∈ O},

P̂ = {p̂i|p̂i = diag(s0)R0pi, pi ∈ P},
(5.2)
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Figure 5.2: Overall structure of the proposed method.

where diag(·) converts a vector to a diagonal matrix. The focalized observed point cloud Ô and

the focalized shape prior points P̂ contain full information required to predict the estimation error

(∆R,∆t,∆s). First, a PointNet-based shared encoder is used to extract features from the two fo-

calized point clouds independently. Then, both the extracted features are used for ∆R estimation,

while the global feature of the focalized observed point cloud along with the s0 are used for ∆t and

∆s. The initial estimates are updated using the predicted error (∆R,∆t,∆s). Finally, the updated

estimates are used to predict the error again in which this process is iterative and the estimations

are refined progressively and continuously.

5.3.3 Overall structure of GeoReF

The overall framework of our proposed object pose refinement approach is shown in Fig. 5.2.

This framework comprises three principal components: 1) point cloud focalization, 2) feature

extraction, and 3) pose error prediction. We follow CATRE and use the same point cloud focal-

ization module. We apply focalization and extract features from both the observed point cloud

and the shape prior by our Feature Extraction component. Then, we predict the estimation errors
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(∆R,∆t,∆s) using the extracted features in the pose error prediction component.

5.3.4 Graph convolution with learnable affine transformation (LAT)

Geometric structural information is effective in estimating an object’s pose for category-level ob-

ject pose estimations. However, as shown in the ablation study [AS-1], directly applying the 3D

graph convolutions (e.g., HS-Encoder (Zheng, C. Wang, et al., 2023) and 3DGCN-Encoder (Z.-H.

Lin, S.-Y. Huang, and Y.-C. F. Wang, 2020)) to category-level object pose refinement tasks results

in poor performance, as we show in the ablation study. This is due to the differences in task nature

between the pose estimation and the pose refinement. In the pose estimation task, the network

only needs to extract geometric structural information from a single point cloud. On the contrary,

in the pose refinement framework, the network not only needs to extract the geometric structural

information from the two input point clouds but also needs to establish the geometric correspon-

dences between different object shapes. However, establishing geometric correspondence becomes

challenging due to the issue of shape variation issue in category pose refinement.

To address the aforementioned problem, we propose to use learnable affine transformations

(LATs). By employing LATs, the network can dynamically adjust the input point cloud and the

point features which enables better establishment of geometric correspondences between the two

different input shapes. Specifically, we apply three LATs (as shown in the bottom left of Fig. 5.2,

where the Matrix Net outputs the learnable affine transformations): The first LAT M ∈ R3 is

applied to the input point cloud in the Euclidean space. The second LAT Mts is applied to the

extracted translation and size features fts. The third LAT Mr is applied to the extracted rotation

feature fr. With this approach, our method can better utilize the valuable geometric features in

pose refinement.
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5.3.5 Cross-cloud transformation (CCT) for information mixing

In pose refinement, effectively blending information from the focalized observed object and the

shape prior is crucial for enabling the network to align them accurately. However, in CATRE,

the data from the observed point cloud and the shape prior are processed independently until the

late rotation prediction stage, where they are merely concatenated, limiting the effectiveness of the

alignment. To address this problem, we introduce a novel cross-cloud transformation mechanism

that effectively mixes the geometric information from the shape of prior features into the features

of the observed point cloud. In particular, we use the feature transformation matrices MP
r , MP

ts of

shape prior to transforming the features of the observed point cloud:

fO
r = MP

r f
O
r , (5.3)

fO
ts = MP

ts f
O
ts . (5.4)

5.3.6 Integrating shape prior in pose estimation

The information contained in the shape prior is crucial for the network to align the observed point

cloud and the shape prior. For the rotation error prediction, the information contained in the shape

prior is the essential information. For the translation and size prediction, this information can also

be utilized by the network to adjust the learned geometric features accordingly. Therefore, un-

like CATRE, which relied solely on features extracted from the observed point cloud to predict

(∆t,∆s), our approach also incorporates the information from shape prior to predict them. In par-

ticular, we not only mix the information using the previous CCT mechanism, but also concatenate

the features from the shape prior and observed point cloud to obtain mixed features in a similar

way as the rotation estimation. We utilize fOP
t and fOP

s which contain both information from shape

prior and observed point cloud like fOP
r to predict (∆t, δ).

We use two pose error predictors of the same network architecture to predict the rotation
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error and the translation and size error, respectively. Note that the weights of these two pose error

predictors are not shared. The network structure of the pose error predictor is shown in Fig. 5.2.

The pose predictor takes in two features, passes them through two same paths separately, and

obtains two vectors in R3. In the translation and size branch, the pose error predictor takes in fOP
t

and fOP
s and passes them through the two paths, and the output two vectors are regarded as ∆t and

∆s, respectively. For the rotation error prediction, the mixed rotation features fOP
r are copied and

passed through the two paths in the pose error predictor. The two output vectors are regarded as

rx and ry, where rx and ry are the first and second axes of the rotation error matrix ∆R. The third

column rz of ∆R can be found by:

rz = rx × ry. (5.5)

5.3.7 Detailed network architectures

The network structure of the HS Feature Extractor and the Pose Error Predictor is shown in Fig. 2

of the main paper. The structure of the Pose Error Predictor for ∆R estimation and the ∆t,∆s

estimation are identical, we follow the CATRE (X. Liu et al., 2022) and use 3 Convolution-1D

layers with permutation before the final layer to generate the pose errors. For the Matrix Net, we

follow PointNet (Qi, H. Su, et al., 2017) first use 3 Convolution-1D layers with [64, 128, 1024]

output dimensions and a kernel size of 1 to extract the dense point features, then the features going

through a maximum pooling layer and 3 liner layers with [512, 256, fLAT] to generate the matrix.

For the first Matrix Net that generates the adaptive affine transformation (LAT) for the input point

cloud, fLAT is 9. For the second Matrix Net, fLAT is 8192, as it outputs two LATs with the matrix

size of R64×64. In the final structure of the GeoReF, we use two HS-layers to replace the first two

Convolution-1D layers in the second Matrix Net, which in our experiments, show slightly better

results than without HS-layers (See Table 5.1 [B0, G0] for the performance comparison). The

structure of the Global Feature Extractor is shown in Fig. 5.3, we use 1 layer of HS-layer and 2
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Convolution-1D layers with the output size of [128, 512, 1024] to extract dense point features, and

then apply maximum pooling to get the global feature. Finally, the global feature is concatenated

with the input features for the outputs.

+

C
onv 512

C
onv 1024

Max
Pool

Figure 5.3: Structure of the global extractor

5.4 Experiments

Implementation details. We implement and experiment with our method using an RTX 4090

GPU with a batch size of 12 and 150 training epochs. We follow CATRE (X. Liu et al., 2022)

and adopt its loss functions and the basic data augmentation strategies including random drop-

ping points, adding Gaussian noise, random pose perturbations, etc. We set the number of points

for both the observed points and shape prior to be 512. We train the network using Ranger opti-

mizer (L. Liu et al., 2019; Yong et al., 2020; M. R. Zhang et al., 2019) with a base learning rate of

10−4 and anneal the learning rate from the 72% of the total epoch based on cosine schedule.

Baselines. We use CATRE as the baseline for our ablation study as it is the state-of-the-art

category-level object refinement method. As CATRE did not provide the results of IoU50, we

obtained them using their official pre-trained model and kept the rest of the reported metric scores

consistent with the corresponding paper. For fair comparisons, we use the same initial estima-
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tions as CATRE, which is the pose estimation results of SPD (Tian, Ang, and G. H. Lee, 2020).

The result of replacing PointNet with the 3DGC-Encoder in the ablation study is provided by

CATRE. We also apply our method to other state-of-the-art category-level object pose estimation

approaches (Zheng, C. Wang, et al., 2023; Di et al., 2022; J. Lin, Wei, Ding, et al., 2022) to

demonstrate the effectiveness of our proposed refinement method. For the pose refinement on HS-

Pose (Zheng, C. Wang, et al., 2023) and RBP-Pose (R. Zhang, Di, Lou, et al., 2022), we compute

the initial estimations using their official pre-trained models. The results of other methods are

taken directly from their paper.

Datasets. As we focus on the problem of shape variation between input object point clouds, we

choose two popular category-level object pose estimation benchmarks to verify our approach, i.e.,

REAL275 (H. Wang et al., 2019) and CAMERA25 (H. Wang et al., 2019). They both contain 6

object categories with multiple levels of shape complexities, i.e., bowl, can, bottle, laptop, mug,

and camera. REAL275 contains 36 objects in 13 real-world scenes with 7k RGB-D images in

total. Among them, 16 objects in 7 scenes are used for training, resulting in 4.3k images in training.

CAMERA25 is a large synthetic RGB-D dataset. It provides 1085 objects and 275k RGB-D images

for training, and 184 objects and 25k images for testing.

Evaluation metrics. Following (Zheng, C. Wang, et al., 2023; X. Liu et al., 2022), we evaluate

our method using: 1) The mean average precision (mAP) of the 3D Intersection over Union (IoU)

at different thresholds (50% and 75%) to evaluate the pose and size estimation together 2. 2) The

pose metric at n◦mcm defines a pose as correct if the rotation error is below n◦ and the translation

error is below m cm. Here, we use 5◦, 10◦, 2cm, and 5cm as the thresholds.
2Note that there was a small mistake with the IoU computation from the original benchmark evaluation code (H.

Wang et al., 2019), we follow (X. Liu et al., 2022) to recalculate the IoU metrics for the SOTA methods.
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5.4.1 Ablation study

To verify the proposed architecture, we conducted comprehensive ablation studies on the REAL275

dataset using the initial pose estimations from SPD (Tian, Ang, and G. H. Lee, 2020). We present

a quantitative comparison of our method with various key components disabled to motivate our

design choices in Table 5.1.

Table 5.1: Ablation studies on the REAL275 dataset.

Higher score indicates better performance. In the ‘Row’ column, the code in bold means the strategies taken in the

final structure. In the ‘Method’ column, the notation ‘X:Y ’ denotes module Y from structure X , ‘X+Y ’ means add

module Y to X , and ‘X → Y ’ indicates replacing X with Y .

Row Method IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 2cm 5◦

A0 CATRETian, Ang, and G. H. Lee, 2020 (baseline) 77.0 43.6 45.8 54.4 61.4 73.1 75.1 58.0

B0 Ours: E0 + Cross-Cloud Transformation 79.2 2.2↑ 51.8 8.2↑ 54.4 8.6↑ 60.3 5.9↑ 71.9 10.5↑ 79.4 6.3↑ 81.9 6.8↑ 64.3 6.3↑

C0 A0: PointNet → HS-Encoder 71.0 30.1 41.9 45.9 60.6 70.3 71.9 48.7

C1 A0: PointNet → 3DGCN-Encoder - 28.4 36.0 43.4 - - 68.0 47.7

D0 A0 + prior in ST branch 77.1 45.8 48.0 54.6 63.8 72.5 77.9 59.2

E0 D0: PointNet → HS-layer+LAT 79.4 51.0 52.4 58.6 69.4 77.7 80.4 62.4

E1 B0: No LAT on input points 76.1 39.3 46.6 53.0 65.4 74.8 78.0 58.2

E2 B0: No LAT on features 78.5 48.8 47.4 53.0 67.4 75.0 80.4 57.4

E3 B0: No LAT on the rotation feature 79.8 50.6 50.4 56.2 68.6 76.3 80.2 60.8

F0 E0+ Global Concatenation Fusion 77.7 48.4 47.8 54.5 67.1 75.2 80.1 59.4

G0 B0: No HS-layer in Matrix Net 77.8 50.2 54.1 60.1 70.5 78.0 81.2 63.6

[AS-1] Using geometric features directly. To illustrate the limitations of existing geometric-

based encoder under the problem of shape variations, we replace the encoder of CATRE with

two robust geometric-based point cloud convolutional structures, namely 3DGCN-Encoder (Z.-H.

Lin, S.-Y. Huang, and Y.-C. F. Wang, 2020) and HS-Encoder (Zheng, C. Wang, et al., 2023).

3DGCN is a widely adopted graph convolution in existing category-level object pose estimation

algorithms, while HS-Encoder is a recent architecture that achieves state-of-the-art performance in
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category-level object pose estimation. However, as shown in Table 5.1 [C0, C1], even though both

HS-Encoder and 3DGCN-Encoder are powerful in finding an object’s pose from individual inputs,

they failed to manage the pose refinement scenarios when there exist shape variations between the

target object and the shape prior. We observed both encoders result in a performance drop when

compared to the original CATRE with IoU75 of 37.3% (HS-Encoder) vs. 43.7% (CATRE), 5◦5cm

of 43.4% (3DGCN-Encoder) vs. 53.3% (CATRE).

[AS-2] Use prior features in translation and scale estimation. To validate that the information

of shape prior is also important in scale and translation error prediction, we add the features of

the prior shape to the scale and translation branch by using the same network architecture as the

rotation branch. As shown in Table 5.1 [D0], incorporating shape prior information in translation

and size estimation enhanced the overall performance by 2.2% improvement on 5◦2cm metric and

2.4% on 10◦2cm metric.

[AS-3] Use learnable affine transformation (LAT) for geometric features. To demonstrate

the effectiveness of LAT in addressing the shape variation issue, we conduct ablation studies on

applying the proposed LAT to the input point cloud and the extracted geometric features in the

feature space. The result is shown in Table 5.1 [E0]. Compared to using geometric features di-

rectly (Table 5.1 [C0]), LATs brings a significant boost on all the metrics, with IoU75 improved

by 20.9%, 5◦2cm improved by 10.5%, and 5◦5cm improved by 12.7%. The resulted network

also significantly outperforms the PointNet-based encoder (Table 5.1[D0]) on all the metrics with

IoU75 and 10◦5cm improved by 5.2%, 5◦2cm improved by 6.4%, and 10◦2cm improved by 5.6%.

These results verified the effectiveness of LAT on geometric features.

[AS-4] The influence of each learnable affine transformation (LAT). To further demonstrate

the influences of each LAT, we conducted three experiments by gradually disabling LAT from the
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framework: 1) without the LAT on the input point cloud, 2) without applying LATs on features,

and 3) without independent LATs on the rotation features, where a single LAT is used for the

rotation, translation, and scale features. The results are shown in Table 5.1 [E1-E3]. Compared to

the directly using geometric features (Table 5.1 [C0]), we show that LAT can significantly enhance

the network by around 10% improvements on IoU75 and 7% on 5◦5cm metric in Table 5.1 [E1-E3].

We verify that the combination of them consistently results in better performance.
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Figure 5.4: Feature distances between the shape prior and the input point cloud before and after

applying the cross-cloud transformation.

[AS-5] Cross-cloud transformation (CCT) based feature fusion To demonstrate that it is im-

portant to have a good feature fusion strategy in the feature extraction phase, we conducted exper-

iments on two different feature fusion strategies. One of them is the widely adopted feature fusion

strategy, where the global feature of one point cloud is concatenated with the features of another

point cloud and then goes through convolutional layers for feature fusion. Another one is the pro-
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posed CCT-based feature fusion. As shown in Table 5.1 [F0], applying global concatenation-based

fusion does not enhance the overall performance, and even results in worse performance in all the

metrics with the 5◦2cm significantly decreased by 4.6%, and 5◦5cm decreased by 3.1% (compared

to Table 5.1 [D0]). On the contrary, as shown in Table 5.1 [B0], our simple CCT-based feature

fusion shows its effectiveness by improving all the pose metrics by around 2.0%. To visualize the

effect of CCT, we show a statistics plot of feature distances before and after CCT on objects with

different shape complexities of the CAMERA25 test set. In this experiment, the initial pose of

the shape prior is aligned with the ground truth pose to guarantee that the observed variations in

feature distance are solely attributable to differences in shape. As shown in Fig 5.4, the feature

distance between the shape prior and the input target shrinks significantly after applying CCT.
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Figure 5.5: The performance of our method and the CATRE under different shape priors.

[AS-6] Handle shape variations. To demonstrate that the proposed method can handle the shape

variations, we replaced the original shape prior with two randomly sampled models from CAM-

ERA25 and trained on REAL275. Note that the original shape prior represents the mean shape of

a category, and the new models are randomly sampled. Therefore, there are larger shape variations

with certain target objects. We present the results in Fig. 5.5, where we denote the shape prior
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as SP-m, the two sampled models as SP-1 and SP-2, respectively. The figure shows that CATRE

performs best when using the mean shape of the category, while its performance drops dramati-

cally on the randomly sampled shape priors. In contrast, our method exhibits robustness to shape

variations introduced by different shape priors and consistently delivers strong performance.
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Figure 5.6: Comparison between CATRE and our method on different initial estimations across

different refining iterations: (a) IoU75 performance comparison. (b) 5◦2cm performance compari-

son.

[AS-7] Refinement with different initial estimations. To demonstrate our model’s robustness

to different initial estimations, we compare it with CATRE using initial estimations from five pose

estimation methods with varying performance (Tian, Ang, and G. H. Lee, 2020; J. Lin, Wei, Ding,

et al., 2022; R. Zhang, Di, Lou, et al., 2022; Di et al., 2022; Zheng, C. Wang, et al., 2023).
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Figure 5.6 presents line graphs illustrating the performance changes of our method and CATRE

during iteration. Our method (solid lines) consistently improves initial estimation performance,

while CATRE (dashed lines) fails with Self-DPDN’s initial estimations (J. Lin, Wei, Ding, et

al., 2022). Furthermore, our method shows continuous improvement over iterations, contrasting

with CATRE’s performance drop on some of the initial estimations after the first iteration (dashed

lines in Fig. 5.6). Quantitative results in Table 5.2 further highlight the robustness differences.

Our method significantly enhances initial estimations across different metrics. For example, we

improved Self-DPND and GPV-Pose (Di et al., 2022) on the strict 5◦2cm metric by 9.6% and

15.4%, respectively. Additionally, we boosted GPV-Pose and HS-Pose (Zheng, C. Wang, et al.,

2023) IoU75 by 26.5% and 15.2%, respectively. However, CATRE fails to refine Self-DPDN (J.

Lin, Wei, Ding, et al., 2022) and struggles with high-accuracy initial estimations, such as those

from HS-Pose, leading to performance drops on 10◦5cm and 10◦2cm. These results highlight our

method’s robustness and its ability to improve performance across various initial estimations.

Table 5.2: Performance comparison with CATRE on REAL275 using different initial estimations.

Each comparison group contains 3 methods: the initial pose estimation method, refinement using CATRE, and refine-

ment using our method, respectively.

Method IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

Self-DPDN (J. Lin, Wei, Ding, et al., 2022) 42.2 44.3 50.9 65.1 78.6

Self-DPDN + CATRE 0.0 42.2↓ 0.3 44.0↓ 5.1 45.8↓ 0.4 64.7↓ 6.9 71.7↓

Self-DPDN + Ours 49.7 7.5↑ 53.9 9.6↑ 60.1 9.2↑ 75.0 9.9↑ 82.8 4.2↑

GPV-Pose (Di et al., 2022) 23.1* 32.0 42.9 55.0 73.3

GPV-Pose + CATRE 42.6 19.5↑ 39.7 7.7↑ 54.1 11.2↑ 57.1 2.1↑ 78.0 4.7↑

GPV-Pose + Ours 49.6 26.5↑ 47.4 15.4↑ 57.8 14.9↑ 68.1 13.1↑ 81.2 7.9↑

HS-Pose (Zheng, C. Wang, et al., 2023) 39.1* 46.5 55.2 68.6 82.7

HS-Pose + CATRE 47.1 8.0↑ 48.7 2.2↑ 59.1 3.9↑ 67.8 0.8↓ 81.2 1.5↓

HS-Pose + Ours 54.3 15.2↑ 51.7 5.2↑ 59.6 4.4↑ 74.3 5.7↑ 83.8 1.1↑
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[AS-8] Effect of number of iterations We find that our proposed method’s performance sat-

urates after four iterations. Therefore, we set the iteration number to four for our experiments.

The line graph in Figure 5.6 illustrates this saturation effect, showing that our proposed method

consistently outperforms the baseline method and saturates after four iterations.

5.4.2 Generalizability test on the CAMERA25 dataset

In real-world applications, category-level algorithms often encounter a substantially larger number

of objects than what is represented in their training sets. Therefore, category-level approaches are

required to generalize across diverse testing scenarios. To simulate this challenge, we selecte the

CAMERA25 dataset, which provides more than 25K RGB-D testing images.

We train our model using mini-sets comprising 2%, 4%, and 6% of the CAMERA25 train-

ing data, resulting in training sets of approximately 5K, 10K, and 15K images, respectively, from

a total of 275K images. To ensure a balanced distribution of different categories in the sampled

mini datasets, we control the number of images per object: 5 images per object for the 2% training

set, 10 images for the 4% training set, and 15 images for the 6% training set.

In Table 5.3, the baseline method’s performance decreased dramatically when using 2%

of the training images, with IoU75 dropped by 12.9% and 5◦2cm dropped by 9.0% (see [B0]).

On the contrary, our method exhibits a much higher performance when using small datasets for

training. Specifically, our method can already outperform the fully-trained CATRE with only 2%

of images (see [B1]). The performance using 4% images is further increased: our method outper-

forms CATRE with IoU75 and 5◦2cm improved by 3.1% and 3.6%, respectively. Furthermore, we

observed that our performance became stable when using 4% of the training set, eliminating the

need for further testing on larger data sizes. In contrast, CATRE required additional training data

for better performance. This highlights the efficiency and effectiveness of our approach compared
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to the baseline

Table 5.3: The generalizability test on the CAMERA25 dataset.

Higher score means better performance. Overall best results are in bold, and the second-best results are underlined.

Row Method Train Data Size IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

A0 CATRE 275k 76.1 75.4 80.3 83.3 89.3

B0 CATRE 5k 63.2 66.4 72.3 79.4 87.4

B1 Ours 5k 77.5 75.4 81.1 83.4 90.0

C0 CATRE 10k 66.5 69.7 75.5 81.8 89.1

C1 Ours 10k 79.2 77.9 84.0 83.8 90.5

D0 CATRE 15k 69.7 73.2 78.8 82.6 89.4

D1 Ours 15k 78.1 78.0 84.1 83.6 90.5

5.4.3 Comparison with state-of-the-arts

REAL275. We conduct pose refinement on SPD (Tian, Ang, and G. H. Lee, 2020) using the

proposed approach and compare the resulting performance with the state-of-the-art category-level

object pose estimation and refinement methods. As shown in Table 5.4, our method significantly

improves the performance of SPD on all the metrics, with 5◦5cm enhanced by 39.1%, 5◦5cm

improved by 35.3%, IoU75 enhanced by 24.8%, 10◦2cm improved by 24.4%, and 10◦5cm im-

prove by 25.4%. In comparison to our baseline, CATRE, our proposed method demonstrates a

substantial improvement across various performance metrics. Specifically, we observe a remark-

able enhancement of 10.5% in 10◦2cm, 8.6% in 5◦2cm, 7.2% in IoU75, and 6.3% in 10◦5cm. In

addition, compared with SOTA pose estimation methods, the pose estimation results of applying

our proposed refinement method on SPD significantly outperformed these methods’s results by a

large margin. Specifically, the estimation results of applying our method on SPD rank top on 4
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Table 5.4: Performance Comparison with other methods on REAL275.

Method IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

NOCS (H. Wang et al., 2019) 9.4 7.2 10.0 13.8 25.2

DualPoseNet (J. Lin, Wei, Zhihao Li, et al., 2021) 30.8 29.3 35.9 50.0 66.8

CR-Net (J. Wang, K. Chen, and Dou, 2021) 33.2 27.8 34.3 47.2 60.8

SGPA (K. Chen and Dou, 2021) 37.1 35.9 39.6 61.3 70.7

RBP-Pose (R. Zhang, Di, Lou, et al., 2022) 24.5 38.2 48.1 63.1 79.2

GPV-Pose (Di et al., 2022) 23.1 32.0 42.9 55.0 73.3

HS-Pose (Zheng, C. Wang, et al., 2023) 39.1 46.5 55.2 68.6 82.7

SPD∗ (Tian, Ang, and G. H. Lee, 2020) 27.0 19.1 21.2 43.5 54.0

SPD∗+CATRE (X. Liu et al., 2022) 43.6 45.8 54.4 61.4 73.1

SPD∗+Ours 51.8 54.4 60.3 71.9 79.4

out of 5 metrics and rank second on the rest metric, and achieved a 7.9% increase on the 5◦2cm

metric and 5.1% enhancement on 5◦5cm. It is worth noting that the purpose of this section is not

to compare refinement and estimation methods, as they are designed to address different problems.

Instead, our objective here is to demonstrate how our proposed refinement approach can improve

the performance of existing pose estimation methods. Therefore, even though our refinement on

HS-Pose (Zheng, C. Wang, et al., 2023) produced better performance, as mentioned in the ablation

study, we choose to refine weaker initial estimations to show the capability of our approach.

CAMERA25. Table 5.5 compares the accuracy of our method with the state-of-the-arts. As dis-

cussed in Sec. 5.4.2, our performance stabilizes when using 4% of the full train set. Therefore, we

present the results obtained with this training size. As shown in Table 5.5, we greatly enhanced the

performance of SPD, resulting in a performance that outperformed state-of-the-art pose estimation

methods. Specifically, we improved the performance of SPD (Tian, Ang, and G. H. Lee, 2020) on
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IoU75 by 32.7%, 5◦5cm by 25.2%, and 5◦2cm by 23.8%. We also outperform the baseline CATRE

on IoU75 by 3.1%, 5◦5cm by 3.7%, and 5◦2cm by 2.5%. Additionally, we show our results trained

using 5k images (2%) of the train set, which already outperforms the state-of-the-art methods.

Table 5.5: Comparison with other methods on the CAMERA25 dataset

Higher score means better performance. Overall best results are in bold. SPD∗ is the implementation results from

CATRE, which is similar to the original SPD results.

Method IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm

NOCS (H. Wang et al., 2019) 37.0 32.3 40.9 48.2 64.6

DualPoseNet (J. Lin, Wei, Zhihao Li, et al., 2021) 71.7 64.7 70.7 77.2 84.7

CR-Net (J. Wang, K. Chen, and Dou, 2021) 75.0 72.0 76.4 81.0 87.7

SGPA (K. Chen and Dou, 2021) 69.1 70.7 74.5 82.7 88.4

SAR-Net (H. Lin, Z. Liu, C. Cheang, et al., 2022) 62.6 66.7 70.9 75.3 80.3

SSP-Pose (R. Zhang, Di, Manhardt, et al., 2022) - 64.7 75.5 - 87.4

RBP-Pose (R. Zhang, Di, Lou, et al., 2022) - 73.5 79.6 82.1 89.5

GPV-Pose (Di et al., 2022) - 72.1 79.1 - 89.0

HS-Pose (Zheng, C. Wang, et al., 2023) - 73.3 80.5 80.4 89.4

SPD∗ (Tian, Ang, and G. H. Lee, 2020) 46.9 54.1 58.8 73.9 82.1

SPD∗+CATRE (X. Liu et al., 2022) 76.1 75.4 80.3 83.3 89.3

SPD∗+Ours (2%) 77.5 75.4 81.1 83.4 90.0

SPD∗+Ours 79.2 77.9 84.0 83.8 90.5

5.4.4 Per-category performance on REAL275 and CAMERA25

We present the per-category object pose refinement results on the REAL275 dataset and the CAM-

ERA25 dataset in Table 5.6 and Table 5.7, respectively. We use SPD (Tian, Ang, and G. H. Lee,
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2020) as the initial estimation method and report the performance after 4 refinement iterations. We

show that our method largely improved the initial performance.

Table 5.6: Per-category results of our method on REAL275 dataset.

Method category IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm 5◦ 2cm

SPD bottle 49.9 13.1 21.6 23.2 69.4 76.0 87.1 35.9 80.7

SPD+Ours bottle 49.8 36.2 64.8 68.0 82.5 88.6 100.0 82.5 89.1

SPD bowl 100.0 77.1 50.5 54.0 75.8 80.3 80.3 54.0 94.7

SPD+Ours bowl 100.0 91.9 91.2 95.6 95.4 100.0 100.0 95.7 95.4

SPD camera 43.4 3.4 0.0 0.0 0.2 0.2 0.2 0.0 34.8

SPD+Ours camera 78.4 12.4 2.1 2.1 17.9 18.8 18.9 2.2 58.3

SPD can 70.0 29.8 37.9 42.7 80.4 91.6 91.6 45.5 87.1

SPD+Ours can 70.3 36.7 75.6 78.6 96.0 99.9 99.9 80.7 96.0

SPD laptop 82.0 35.5 4.6 7.0 24.5 65.3 65.9 7.1 29.1

SPD+Ours laptop 80.8 73.9 67.6 91.8 68.9 94.4 95.6 92.5 69.3

SPD mug 66.5 8.7 0.3 0.3 10.3 10.4 10.4 0.3 85.2

SPD+Ours mug 96.2 59.5 24.8 25.9 70.7 74.8 74.8 25.9 89.9

5.4.5 Qualitative results

We provide qualitative comparisons of the pose estimation results by SPD, CATRE on SPD, and

our method on SPD in Fig. 5.7 and 5.8. It’s worth noting that for symmetric objects like the bowl,

bottle, and can, correct estimated rotations are considered when the symmetry axis is aligned. As

shown in Fig. 5.7, our method on SPD achieves the best size and pose estimations. In particular,

by considering the camera in the first column of Fig. 5.7, all of the comparison methods struggle to

estimate its orientation. We also provide qualitative examples of the iteration process in Fig. 5.8,
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Table 5.7: Per-category results of our method on CAMERA25 dataset.

Method category IoU50 IoU75 5◦2cm 5◦5cm 10◦2cm 10◦5cm 10◦10cm 5◦ 2cm

SPD bottle 88.9 64.5 63.8 82.8 69.2 92.4 97.3 86.8 69.8

SPD+Ours bottle 89.4 73.8 73.8 94.2 74.2 95.1 99.4 98.4 74.2

SPD bowl 95.9 80.6 83.4 83.7 95.8 96.3 96.3 83.7 99.2

SPD+Ours bowl 96.0 94.7 97.9 98.2 99.5 99.8 99.8 98.2 99.6

SPD camera 61.9 4.7 27.3 29.3 72.9 78.6 78.6 29.5 89.8

SPD+Ours camera 81.6 67.7 83.1 87.2 90.8 95.2 95.2 87.2 93.9

SPD can 90.2 87.2 98.1 98.2 99.4 99.6 99.6 98.2 99.6

SPD+Ours can 90.3 89.8 99.9 100.0 99.9 100.0 100.0 100.0 99.9

SPD laptop 93.3 17.7 35.0 41.9 61.0 80.5 84.5 43.7 65.5

SPD+Ours laptop 95.3 81.3 74.0 85.5 77.4 91.8 95.8 89.1 77.9

SPD mug 82.7 24.1 15.5 15.5 44.1 44.1 44.1 15.9 99.6

SPD+Ours mug 89.8 67.7 39.0 39.0 61.0 61.0 61.0 39.4 99.9

with white lines representing the ground truth. Our method demonstrates faster convergence and

more accurate final result than CATRE. Furthermore, we present additional qualitative results of

our method test on different REAL275 test scenes in Fig. 5.9 and Fig. 5.10, with the performance

differences highlighted by red arrows.

5.4.6 Inference speed

On a machine with an Intel 13900k CPU and a Nvidia RTX 4090 GPU, the speed of our proposed

method is 67.5 FPS for 1 iteration, and 22.3 FPS when using 4 iterations.
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SPD

CATRE

Ours

Figure 5.7: Qualitative comparison between the proposed method and CATRE using SPD as the

initial estimation.

CATRE

Ours

aaaa Initial Pose Iter 1 Iter 2 Iter 3 Iter 4

Figure 5.8: Comparison between the proposed method (row #2) and the baseline method (row #1)

during a complete refinement iteration, both utilized the SPD as the initial estimation.

5.5 Conclusion

In this work, we proposed a novel category-level object pose refinement method which targeted

at addressing the challenge of shape variation. We shown that the geometric structural informa-

tion can be aligned by our adaptive affine transformations. We also demonstrated that the cross-
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cloud transformation mechanism can efficiently merge information from distinct point clouds. We

further incorporated shape prior information and observed improvements in translation and size

predictions. We verified that each of our technical components contributed meaningfully through

extensive ablations. We believe our method sets a strong baseline for future study and opens up

new possibilities to handling more complex shapes, i.e. articulated objects.
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Scene 1-1

Scene 1-2

Scene 2-1

Scene 2-2

Scene 3-1

Scene 3-2

scene 7 SPD SPD + CATRE SPD + Ours

Figure 5.9: More qualitative comparison between the proposed method (column #3) and the base-

line method (column #2) use the SPD (column #1) as the initial estimation (scene 1 to scene 3).
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Scene 4-1

Scene 4-2

Scene 5-1

Scene 5-2

Scene 6-1

Scene 6-2

scene 7 SPD SPD + CATRE SPD + Ours

Figure 5.10: More qualitative comparison between the proposed method (column #3) and the

baseline method (column #2) use the SPD (column #1) as the initial estimation (scene 4 to scene

6).
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Chapter Six

Discussion

In this thesis, I have explored the field of visual 6D object pose estimation and tracking, with a

focus on developing algorithms to fit realistic applications better. I have presented three approaches

to address outstanding problems in this domain, including robustness in challenging scenarios (TP-

AE, Chapter 3), generalization to category-level objects (HS-Pose, Chapter 4), and achieving high

precision in category-level applications (GeoReF, Chapter 5). While these approaches demonstrate

significant advancements, there remain several limitations and avenues for future work that warrant

detailed discussion.

6.1 Limitations

Instance-level: TP-AE. Despite the advancements made by the proposed Temporally Primed

Auto-Encoder (TP-AE) in instance-level object pose estimation and tracking, several limitations

persist. One notable challenge is the algorithm’s performance in long-term tracking scenarios,

particularly when the tracked object undergoes complete occlusion and then reappears. While

TP-AE has shown improvements in tracking objects across various occlusion levels, accurately re-

establishing the object’s identity before and after full occlusion remains a daunting task, especially
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in environments with multiple identical objects. The algorithm’s vulnerability to similar-looking

distractors is another persistent limitation. During re-initialization, if a similar-looking object is

present, the algorithm may mistakenly recognize it as the target object and track it instead. Further-

more, while TP-AE has demonstrated significant improvements over other methods when trained

solely on synthetic data, its performance still falls short compared to training with a combination

of synthetic and real data. Bridging the synthetic-real domain gap is crucial to further enhancing

TP-AE’s performance and applicability in real-world scenarios.

Category-level: HS-Pose and GeoReF. The development of category-level 6D object pose esti-

mation is still in its early stages, and thus, the proposed methods, HS-Pose and GeoReF, also face

certain limitations. Firstly, accurately obtaining category-level object poses under occlusion re-

mains challenging. While our approaches have significantly improved accuracy and robustness for

objects with various shapes, they may struggle when the target object is partially occluded. This

highlights the need for enhancements in this area to improve robustness in real-world applications.

Secondly, the computational memory consumption of HS-Pose and GeoReF poses a limitation, as

the graph convolution involved requires substantial GPU memory. Optimizing these algorithms to

reduce their computational demands while maintaining performance could facilitate their deploy-

ment on everyday devices. Lastly, a limitation lies in the reliance on object detection methods, as

the performance of HS-Pose and GeoReF is closely tied to the object detector’s performance. Im-

provements in object detection could directly benefit the accuracy and efficiency of these methods,

indicating a potential area for future research and development.
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6.2 Future Works

6.2.1 Instance-level

To address the limitations of TP-AE in long-term tracking scenarios, specific future directions

can be explored. One approach is to enhance the model’s memory capabilities by incorporating

an additional memory module that stores object information and background information, such

as object motion information and where the object disappeared. This memory can help the model

maintain the identity of the object before and after occlusion, making it easier to relocate the object

in a nearby position and reducing the risk of mistakenly tracking a different object. Additionally,

developing more robust re-initialization strategies that use contextual information, such as object

appearance and motion cues, can help differentiate between the target object and similar-looking

distractors. By combining these approaches, TP-AE may improve its ability to track objects ac-

curately over extended periods, making it more suitable for real-world applications where objects

may undergo occlusion and reappearances.

Another important area for future work of TP-AE is to bridge the synthetic-real domain

gap. Several strategies can be explored to achieve this. One approach is to adopt domain adapta-

tion methods to align the distributions of synthetic and real images, making synthetic data more

representative of real-world scenarios. This can involve using adversarial training or feature-level

alignment methods to make the synthetic data indistinguishable from real images. Another strategy

is to leverage unsupervised or self-supervised learning methods, which can learn from unannotated

real-world data to improve the model’s performance on real data. Additionally, active learning

approaches can be employed to selectively annotate a small subset of real data that maximally

improves the model’s performance, reducing the overall annotation burden. By bridging the gap

between synthetic and real data, TP-AE can be further enhanced for real-world applications.
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6.2.2 Category-level

To improve the occlusion robustness for the proposed HS-Pose and GeoReF, one possible future

work is to leverage multi-view fusion or integrate temporal information. In Chapter 3, we show

how temporal information can be leveraged in instance-level object pose tracking, resulting in

enhanced occlusion robustness even when the object is severely occluded. While how to leverage

this information in category-level object pose estimation is still an open question, I believe it is an

area worth exploring.

To reduce the computational memory consumption of HS-Pose and GeoReF, another future

work is to explore a more efficient neural network structure for graph convolution to reduce the

memory footprint during computation. Additionally, strategies like model quantization or pruning

could be applied to reduce the overall computational demands of the algorithms.

Integrating semantic understanding into pose estimation algorithms can be another future

work to improve the robustness of HS-Pose and GeoReF. By incorporating information about ob-

ject categories and relationships between objects, they can better understand the context of the

scene, leading to more accurate and reliable pose estimations, and reducing the reliance on addi-

tional object detectors.

Another future work for GeoReF is exploring category-level object pose refinement without

a shape-prior. Although shape priors are widely used in the literature, and our method is not strictly

tied to specific priors, refining object poses without a shape prior could benefit the algorithm to be

widely adapted to different real-world applications. Refining without shape prior remains an open

challenge, which I am interested in investigating in future work, showing the potential for more

progress in the field.

For HS-Pose, in future work, I also plan to apply the proposed HS-layer to other problems

where unstructured data needs to be processed, and the combination between the local and global
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information becomes critical.
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Chapter Seven

Conclusion

In this thesis, I have explored the challenging field of visual 6D object pose estimation and track-

ing, with a primary goal of developing algorithms that are not only accurate but also practical

for real-world applications. Through this journey, three novel approaches have been introduced,

each addressing crucial aspects of this field: robustness in challenging scenarios, generalization to

category-level objects, and achieving high precision in category-level applications.

One of the key contributions of this work is TP-AE (Chapter 3), a robust object pose track-

ing framework designed to handle symmetric and textureless objects under occlusion. By integrat-

ing object motion information into the auto-encoder-based reconstruction process and leveraging

latent feature matching, TP-AE significantly improves pose estimation accuracy. Experimental

validation on benchmark datasets demonstrates TP-AE’s superiority over state-of-the-art methods

while maintaining real-time performance.

Another significant contribution is HS-Pose (Chapter 4), a framework that focuses on en-

hancing the generalizability to previously unseen objects within a known category. The hybrid

scope latent feature extraction layer (HS-layer), introduced in this framework, adeptly captures

local and global geometric structural information, encodes size and translation information, and

remains robust against noise. HS-Pose demonstrates its proficiency in handling complex shapes,
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accurately capturing object size and translation, and exhibiting robustness across diverse outlier

levels. Comparative experiments with existing methods highlight the substantial performance gain

of HS-Pose, establishing it as the new benchmark in real-time category-level object pose estima-

tion.

Furthermore, the thesis presents GeoReF (Chapter 5), a method aimed at advancing category-

level object pose estimation for high-precision applications. GeoReF targets the challenge of shape

variation in category-level object pose refinement, achieving accurate pose refinement through the

alignment of geometric structural information and efficient merging of information from disparate

point clouds. Extensive ablations confirm the meaningful contributions of each proposed compo-

nent. Experiments showed that GeoReF sets a strong baseline for future study and opens up new

possibilities for handling more complex shapes, i.e. articulated objects.

In conclusion, the methodologies introduced through TP-AE, HS-Pose, and GeoReF repre-

sent significant advancements in visual 6D object pose estimation and tracking. These approaches

not only set a new standard for performance, robustness, and adaptability but also hold promise

for various real-world applications. Future research can build upon these foundations to further

enhance the capabilities and applicability of object pose estimation and tracking systems.
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