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Abstract

This work focuses on optimising the operation of fuel cell hybrid trains with the primary
objective of reducing fuel consumption to improve financial viability. It builds on the basic
premise that conventional practices are suboptimal for fuel cell hybrid trains due to the
novelty of this class of trains. Given the hybrid nature of this powertrain, it is hypothesised
that it is necessary to jointly optimise the energy management system along the driving
style and timetable to achieve true optimal operation. Furthermore, it is hypothesised
that implementing measures against fuel cell degradation to extend lifetime would come

at the expense of additional fuel consumption.

Jointly optimising multiple variables that are dynamically coupled increases computa-
tional complexity, especially when they are coupled non-linearly. Therefore, this work sets
out to use convex optimisation, as it comes with practical guarantees on global optimality
and computational complexity. Formulating a convex problem that models the system

adequately is non-trivial which is why it is hypothesised whether it is possible.

A series of optimisation problems with increasing levels of fidelity are built and convexi-
fied with various techniques, such as replacing non-linear variables, introducing surrogate
variables, approximating discrete data by convex polynomials, and relaxing non-linear
equality constraints. Moreover, a hybrid modelling approach that relies on both spatial
and temporal domains is proposed. All of this enables building a joint convex optimisation

formulation for speed, energy management and timetable.

Simulation results prove that jointly optimising speed and energy management is con-
siderably more fuel efficient than coasting, as the latter fails to effectively leverage regener-
ative braking to recover kinetic energy. Adding measures against fuel cell degradation was
found to come at the expense of additional fuel consumption, though the percentage re-
duction in degradation was found to be substantially greater than the additional fuel use.
Lastly, jointly optimising speed, energy management and timetable was found to yield

better fuel economy by distributing running time between stations more efficiently.
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1 INTRODUCTION

This chapter firstly motivates research on fuel cell hybrid trains and justifies the interest
to tackle operational costs. Section 1.2 introduces two basic aims of this work, which
is optimising operation to reduce fuel consumption and efficiently computing this opera-
tional pattern. Section 1.3 briefly explores which operational aspects could be optimised
for fuel cell hybrid trains and contrasts them with conventional practice. Section 1.4
briefly introduces convex optimisation and motivates its use. Lastly, Section 1.5 states

the research hypotheses.

1.1 Background on Hydrogen in Rail

1.1.1 Phasing Out Diesel Traction

In 2018, the UK Rail Minister proposed to ban diesel-only trains by the year 2040 to
decarbonise rail traction [1]. This proposal came despite rail’s low-carbon status, e.g. rail
emitted only 1.4% of the UK’s COse transport emissions in 2019 while accounting for 9.5%
of passenger kilometres [2]. Nonetheless, fleet-wide statistics mask the real environmental
cost of diesel trains. As a matter of fact, passenger diesel trains collectively emit more
COge than their electric counterparts in Great Britain while only constituting 29% of the

network’s fleet.

Diesel engine emissions are also a threat to public health. In 2012, the World Health
Organization (WHO) classified diesel engine exhaust emissions as a Group 1 carcinogen
(proven to cause cancer in humans) [3]. Indeed, an elevated cancer risk has been found
amongst rail workers who are continuously exposed to diesel train emissions [4]. This is
alarming in light of the high diesel engine emissions measured at several train stations in

the UK [5] and even inside diesel train cabins [6].



Another reason for forgoing diesel trains is to provide a quieter travel experience to
passengers. On average, diesel trains are 16dB louder than their electric counterparts
during dwell time [7]. A quieter travel experience will become increasingly important as
silent electromobility becomes the norm across various modes of transport. Passengers
of electric buses already view the lower levels of noise and vibration as a hallmark of

electrified public transport [8].

Lastly, there are national security concerns about the use of imported fossil fuels to
power public transport [9], a concern that is repeatedly exacerbated during periods of

political instability.

1.1.2 Decarbonisation Pathways

In response to the proposed diesel ban, the Rail Industry Decarbonisation Taskforce was
commissioned to assess the technical feasibility of decarbonising the nation’s fleet of diesel
trains [10]. Electrification was recommended for routes with high traffic volumes that
present a strong business case for costly infrastructure upgrades. Battery and hydrogen
trains were recommended for routes with lower traffic volumes, as the cost of ownership
of these alternative technologies was found to be lower than the costs of electrification
for the given volume of traffic. The report strongly discouraged the adoption of bi-mode
diesel-electric trains because they were deemed overly complex while only offering an
incremental reduction in emissions. In response to this report, Network Rail (the rail
infrastructure manager in Great Britain) published its Traction Decarbonisation Network

Strategy (TDNS) [11].

The TDNS assessed the alternatives to diesel for the entire network using a top-down
analysis of costs and benefits. It outlined ambitious plans to electrify 11,700 single track
kilometres (STK) out of the currently unelectrified 15,400 STK. Battery and hydrogen
trains were recommended for branch lines that experience low volumes of traffic, 400

STK and 900 STK, respectively. Battery trains would be used for short branch lines



due to their lower cost of ownership compared to hydrogen trains. On the other hand,
hydrogen trains would be used for longer branch lines whose long distance could not be

accommodated by the lower energy density of batteries.

In 2021, the Treasury rejected funding the TDNS electrification proposals, citing con-
cerns about costs and delivering the best value for the taxpayer [12]. This is by no means
the first time a rail electrification scheme has been scaled back or cancelled due to the
lack of “political will”. For instance, the electrification of the Great Western Mainline was
cut short after its costs ballooned to twice the planned budget [13] and this phenomena

is hardly unique to the UK [14].

The demonstrated vulnerability of rail electrification to “political will” suggests that it
is an unreliable pathway to phasing out diesel trains. It seems very reasonable to expect
that battery and hydrogen trains will play a bigger role than initially proposed in the
TDNS. This calls for further research and development to improve the technical standing
of these alternative technologies. This thesis focuses on the development of hydrogen

trains.

1.1.3 The Economic Challenge for Hydrogen

The management consultancy Ronald Berger concluded in 2019 that there are “no fun-
damental show stoppers” for the use of hydrogen as a traction energy source, though
cited the lack of precedence as a major barrier [15]. Indeed, the successful trial of the
Alstom Coradia iLint in Germany [16] triggered interest from the USA [17], Germany
[18, 19, 20, 21], France [18], Italy [18] and the UK [22].

More recently, the environmental and engineering consultancy Ricardo surveyed the
attendees of the World Congress on Railway Research 2022 about barriers to adopting
hydrogen traction in rail. Figure 1.1 shows the distribution of votes among the 117
respondents. It reveals that rail researchers and industry professionals believe economics

to be the leading barrier, followed by hydrogen storage technology, safety, and sourcing
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Figure 1.1: Distribution of 117 responses to the multiple choice question “What s the
biggest challenge to put hydrogen on-track?”. Question asked by Ricardo at the World
Congress on Railway Research 2022.

hydrogen fuel.

Inline with Ricardo’s finding about the economic barrier, the Hydrogen Council predicts
that early adopters of hydrogen trains will pay a premium due to the high cost of green
hydrogen and a high capital cost due to novelty [23]. While technological improvements
and mass production will reduce capital costs [11], fuel costs are still expected to dominate
the cost of ownership well into the future. Figure 1.2 shows a breakdown of cost of
ownership for hydrogen and diesel trains. It confirms that the cost of fuel will remain the
leading cost for hydrogen trains as is already the case for diesel trains. This is followed

by maintenance and replacement costs upon powertrain end-of-lifetime.

1.1.4 The Fuel Cell Hybrid Powertrain

The fuel cell hybrid powertrain shown in Fig. 1.3 is the most commonly proposed hydrogen

vehicle architecture [25]. Alternative concepts using combustion engines exist, but these



Figure 1.2: TCO of diesel electric multiple unit (DEMU) and hydrogen electric multiple
unit (HEMU). Reprinted from [24]. () 2021 IEEE.
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Figure 1.3: The fuel cell hybrid architecture studied in this thesis.

are less efficient and harmful NOx emissions [26]. Moreover, the cost of ownership of fuel

cells are expected be lower than combustion engines by 2030 [27].

The fuel cell hybrid powertrain consists of a polymer electrolyte membrane fuel cell
(PEMFC) and a traction battery. The battery is typically specified as a high-power
battery to assist the fuel cell in supplying peak power. The fuel cell is specified as the
prime mover thereby leveraging the higher energy density of hydrogen. The vehicle is
propelled by an electric motor that draws power during motoring and returns power to
the battery during regenerative braking. This powertrain only emits water vapour, which

warrants its green status if the hydrogen fuel was obtained from low-carbon sources.

The power split between the fuel cell and the battery is decided by an energy manage-
ment system (EMS). Given that the fuel cell and battery posses unique characteristics,
the EMS plays a highly consequential role in determining powertrain efficiency and degra-

dation.



1.2 Aims

This thesis pursues two main aims:

1. Optimising the operation of fuel cell hybrid trains with the objective of minimis-
ing fuel consumption. This would help alleviate the economic barrier described in

Section 1.1.3.
2. Formulate an algorithm to solve the first aim that:

(a) guarantees finding the optimal solution. This increases the confidence of the

professional user (e.g. powertrain designer, fleet engineer, timetable planner).

(b) is computationally efficient. This enables quick computation time for future

real-time applications and streamlines use by professionals.

1.3 Operational Aspects to Optimise

Traction is the leading consumer of energy for trains [28], therefore reducing traction
demand is an effective means towards achieving the first aim outlined in Section 1.2.
Figure 1.4 lists a range of measures to reduce traction consumption in conventional trains
(diesel and electric). This thesis builds on the premise that while these measures are
likely to remain relevant to fuel cell hybrid trains, further research is required to maximise

returns due to the novelty of this variant of trains.

The fuel cell hybrid powertrain already implements the measure with the highest energy-
saving potential from Fig. 1.4, which is installing an on-board energy storage system
(battery in this case). This measure saves energy by recovering kinetic energy through
regenerative braking for later use. Nonetheless, the energy savings returned by the battery
are dependent on the amount of kinetic energy recovered which is dependent on the driving
style and timetable. To this end, it is worthwhile asking whether conventional ecodriving

practice and conventional timetables are able to fully leverage the energy-saving potential



Figure 1.4: Energy saving potential and implementation cost of various rolling stock
measures. Reprinted from [28]. (C) 2015 Elsevier.

of the fuel cell hybrid powertrain.

Ecodriving Figure 1.5 depicts conventional ecodriving practice: maximum acceleration
rate, cruising (maintain speed), coasting (cut off traction) and maximum braking. This
ecodriving style is being practised by various railways around the world [29, 30, 31]. The
basic premise of this driving style is to save energy by maximising the span of coasting.
This requires delaying and minimising the braking span as much as possible, hence max-
imum braking towards the end. Nonetheless, doing such deters from maximising energy
recovery returns, because regenerative braking will need to be heavily supplemented by
mechanical braking to achieve the short braking span. This lost opportunity at recovering
kinetic energy is often ignored in the context of conventional trains due to the lack of an
energy storage solution. However, hybrid trains are able to store recovered energy for
later use which implies a wasted energy-saving opportunity. All of the above suggests

that there could be a more efficient driving style for fuel cell hybrid trains.



Figure 1.5: Current ecodriving practice: 1) maximum acceleration, 2) cruising, 3) coast-
ing, 4) maximum braking.

Driving Style and EMS The energy management system (EMS) plays a pivotal role in
storing the recovered energy into the battery and reusing it later to offset fuel consumption.
Therefore, one needs to be aware of the EMS to drive the train efficiently. The most direct
means of achieving this is to influence both driving style and EMS simultaneously. This

suggests that jointly optimising speed and EMS is more fuel efficient than otherwise.

Connection to Degradation Relevant evidence from automotive literature suggests
that tuning the EMS for maximum fuel economy can harm hybrid cars [32, 33]. This
implies a compromise between fuel consumption and maintenance costs. Given the high
capital cost of fuel cell hybrid trains, it becomes important to understand the impact of

fuel economy on maintenance costs and thus cost of ownership on the long run.

Timetable Similarly to the conventional ecodriving style, it is to be expected that
existing timetables are suboptimal for fuel cell hybrid trains. This is because existing
timetables would have been designed to suit the characteristics of incumbent trains and
thus fail to leverage kinetic energy recovery for a hybrid train. While some timetabling
algorithms address kinetic energy recovery, this has primarily been done for urban rail
transit (metros and trams) which possess different powertrain characteristics to fuel cell

hybrids and are subject to a different duty cycle [34].

In light of the above, it is reasonable to hypothesise that train operating companies
ought to rethink the adopted driving style and timetable for fuel cell hybrid trains to

minimise costs. Moreover, these factors need to be optimised jointly with the EMS to



fully leverage the powertrain’s characteristics. Jointly optimising this many factors at

once is computationally challenging which motivates the next section.

1.4 Convex Optimisation

Convex optimisation problems posses a convex objective function and a convex feasible
set [35]. The global optimal solution for this class of problems can be guaranteed to
be found, because the convexity conditions themselves imply that any local minimum
coincides with the global minimum. This also enables numeric algorithms to solve this
class of problems efficiently and quickly. Therefore, convex optimisation meets the second

aim outlined in Section 1.2 making it worthwhile pursuing in this work.

One challenge against using convex optimisation is that convexity conditions can limit
model complexity and fidelity. This becomes restrictive when one attempts to model
complex non-linear dynamics, which is often the case for real-world systems. Nonetheless,
there is a growing body of research that attempts to optimise real-world systems using
convex optimisation. This requires the modeller to balance between model convexity and
model fidelity. Based on the author’s previous research on automotive cruise control, such
work already takes place in the automotive sector and is potentially very relevant to rail
[36, 37]; both share the problem setting of optimising vehicle motion in the longitudinal

plane.

This thesis builds on the premise that the computational properties of convex optimi-
sation could become of utility to big optimisation problems in rail. This is particularly
true in light of the joint optimisation problem previously motivated in Section 1.3 that
is expected to be computationally complex, because it would jointly optimise many vari-

ables.



1.5 Research Hypotheses

Based on the motivation to optimise operation as described in Section 1.3 and use convex
optimisation as described in Section 1.4, this thesis poses two categories of hypotheses.
The first category of hypotheses concerns the optimal operation of fuel cell hybrid trains
and is called operational hypotheses (HO). The second category concerns the algorithm

used to deduce this optimal operation and is called algorithmic hypotheses (HA).

1.5.1 Operational Hypotheses

The following set of hypotheses are based on the initial findings of Section 1.3. For

fuel cell hybrid trains:

HO1. Jointly optimising driving style and energy management system is more fuel efficient

than conventional ecodriving that emphasises coasting.
HO2. Pursuing degradation-aware measures costs more fuel than otherwise.

HO3. Jointly optimising the driving style, energy management system and timetable saves

fuel compared to following a given timetable.

1.5.2 Algorithmic Hypotheses

Given the benefits of using convex optimisation outlined in Section 1.4, it is highly desir-

able to asses whether the following hypotheses are true:

HA1. The joint optimisation of driving style and energy management system of a fuel
cell hybrid train can be done using convex optimisation without overly simplifying

system dynamics.

HAZ2. The joint optimisation of driving style, energy management system and timetable
of a single fuel cell hybrid train can be done using convex optimisation without

overly simplifying system dynamics.

10



2 LITERATURE REVIEW

This literature review firstly covers lithium battery degradation and PEMFC degradation
in Sections 2.1 and 2.2, respectively. This knowledge is required to design and assess

degradation-aware operating strategies.

Sections 2.3 and 2.4 review hybrid vehicle literature from rail and automotive domains,
respectively. Automotive literature is added to this review due to the larger number of
publications in the automotive domain, evidenced by the Scopus search results in Figure
2.1. This difference in publications is due to the longer prominence of hybrid cars on the

market in comparison to hybrid trains.

Lastly, Section 2.5 identifies the gap between the current state of literature and the

hypotheses presented in Section 1.5.

2.1 Lithium-Ion Battery Degradation

Subsection 2.1.1 first presents the composition of a lithium-ion battery and degradation
basics that apply to most lithium battery chemistries. Subsections 2.1.2 and 2.1.3 then
dive into the degradation specifics of lithium iron phosphate (LFP) and lithium titanate
oxide (LTO) batteries, respectively. It was chosen to investigate these battery chemistries
because they were among the safest high-power variants at time of writing, making them
more suitable for hybrid rail vehicles [38]. Lastly, Section 2.1.4 summarises the reviewed
knowledge into a group of insights that would directly influence the operating strategies

derived in this thesis.

2.1.1 Basics

Figure 2.2 shows a 3D drawing of a single lithium-ion battery. It consists of two sides,

namely a cathode side and anode side, kept apart by a separator layer that only permits
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Figure 2.1: Scopus search of articles with automotive and rail keywords. Automotive
represents the keywords “fuel cell hybrid” and “automotive”, whereas rail represents the
keywords “fuel cell hybrid” and “rail”. Search performed on 13/09/2023.

the passage of positive lithium ions and prohibits the passage of electrons. This separator
plays a crucial role in creating current by directing electrons towards the current collectors
when connected to an external circuit. The electrolyte, often a liquid-based solution,
acts as a charge carrier for lithium ions. During charging, lithium ions pass through
the separator and intercalate into the anode material, whereas during discharging, they

deintercalate from the anode to return to the cathode.

The anode and cathode are made of “active materials” that contribute to the battery’s
functionality. The cathode is made of a lithium-metal oxide that acts as an “active
lithium” donor to the battery. The anode is made of a material of which lithium ions can
easily intercalate into and out of. The choice of these active materials greatly influences

battery characteristics, such as energy density, peak power, and lifetime.

Depending on the exact chemistry of the battery, degradation is caused by side reactions
that deplete the active materials and active lithium, deteriorate the electrolyte, puncture
the separator, and damage the current collectors. The accumulation of these side reactions
over the lifetime of a battery will diminish its ability to store energy and deliver peak

power, which will negatively affect vehicle fuel economy and performance.
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Figure 2.2: 3D drawing of a battery cell. Reprinted from iStock.com, artist ser_igor.

Degradation side reactions occur continuously regardless of whether the battery is being
used or not. This has led to the terms “calendar ageing” and “cyclic ageing”. Calendar
ageing is degradation that is merely caused by the passage of time. Cyclic ageing is
degradation caused by charge-throughput (exchange of charge) during active use. The
rate of ageing at any given instance is dependent on stress factors. A test campaign of
124 lithium-ion batteries revealed that elevated cell temperature is a leading stress factor,
followed by rate of charging, average SoC and rate of discharging [39]. These stress factors

will be explored in more detail in Subsections 2.1.2 and 2.1.3.

The rate of battery ageing also depends on the current state-of-health; batteries with
poorer state-of-health are expected to degrade at a faster rate than healthier batteries.
Figure 2.3 shows how a lithium battery ages non-linearly with cyclic testing. The first
subplot shows the storage capacity fading linearly after which it fades exponentially. The

onset of exponential fade is often reported after the battery storage capacity has reached
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Figure 2.3: (a) Change in battery’s energy capacity versus number of full cycles; (b) and
(c) change in battery’s impedance versus number of full cycles; a higher impedance causes
larger power fade. Reprinted from [41]. (©) 2015 Elsevier.

80% of the original. The second and third subplots show a similar trend for impedance,
which negatively affects battery power delivery. This trend has been documented for

various lithium-ion chemistries [40, 41, 42].

2.1.2 LFP Batteries

LFP batteries are named after their use of lithium iron phosphate LiFePO, as the cath-
ode’s active material. The anode is made of a carbon-based material which is the most
common anode material for lithium batteries. The state-of-health of the carbon-based
anode is the limiting factor towards LFP’s lifetime. This is because the carbon anode is
electrochemically unstable and therefore vulnerable to side reactions with the surrounding

electrolyte solution [42, 43, 44].

The most prominent side reaction affecting the carbon anode is the formation of the

solid electrolyte interphase (SEI) layer. This is a layer of deposited electrolyte solvents
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and lithium ions [45]. The materials forming the SEI layer become inactive, and thus,
the lithium ions forming the SEI are no longer active, which leads to a loss in storage
capacity. Nonetheless, an evenly formed SEI layer is beneficial because it protects the
anode from further reacting with the surrounding electrolyte. This is why SEI formation
is a vital step during the manufacture of lithium batteries [46]. The SEI layer also protects
the battery from the formation of “lithium dendrites”, which are needle-like structures of
deposited lithium that grow unevenly and could short-circuit the battery by puncturing

the separator. Therefore, any conditions that disrupt the SEI layer are undesirable.

The influence of calendar ageing on the SEI layer is primarily determined by the average
temperature and average state-of-charge (SoC). Leaving the battery at high temperature

and high SoC increases the risk of cracking the SEI layer [47, 48, 49, 50].

It is recommended to operate LFP batteries within the temperature range of 25 — 40C°
[51, 52]. Higher temperatures negatively affect SEI stability [53], while lower tempera-
tures cause a power fade due to slower ionic kinetics. Furthermore, operating at lower
temperatures induces irreversible lithium plating instead of reversible lithium intercala-
tion [45]. Plated lithium also increases the risk of fire because it is known to reduce the

onset temperature of thermal runaway [54].

The magnitude of current (C-rate) also affects SEI stability due to local ohmic heating
[55], although some high-power LFP batteries are better at handling high currents [56].

Charging a battery above its rating invariably causes lithium plating [57].

Carbon-based anodes experience a considerable change in volume when cycled. The
anode expands as lithium ions are intercalated during charging, whereas it anode shrinks
when lithium ions are deintercalated during discharging [58]. Repeating these physical
changes weakens the existing SEI layer and causes it to crack [59]. The magnitude of
these volumetric variations increases with a deeper DoD, leading to faster ageing when
operating in a wider SoC range [55, 60, 61]. In addition to its impact on the SEI layer,

periodic changes in the anode’s volume weakens the interface between the current collector
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and the anode, which causes a rise in electric impedance.

The degradation of an LFP battery over its lifetime follows the same non-linear trend
previously shown in Fig. 2.3. This is directly coupled to the state-of-health of the SEI
layer. The battery initially experiences slow degradation as the original SEI layer is still
intact, but then accelerates later as damage to the SEI layer accumulates. This accelerated
degradation occurs because an unevenly worn SEI layer will be disproportionately stressed

at its weakest points which will ultimately restrict the useful life of the battery [62].

2.1.3 LTO Batteries

LTO batteries are named after their use of lithium titanate oxides as the anode’s active
material. Unlike the carbon-based anode used in LFP batteries, titanate oxide anodes
are electrochemically stable and thus do not grow an SEI layer. Furthermore, they are
not susceptible to growing lithium dendrites or lithium plating, which improves electric
safety and thermal stability [63]. Titanium oxide anodes also exhibit very little volumet-
ric changes during cycling, which circumvents physical cracking of the current collector.
These favourable characteristics lead the LTO battery to last significantly longer than
LFP batteries [44]. Indeed, LTO batteries are known to surpass 20,000 cycles of use,

whereas LFP batteries can only achieve up to 5,000 cycles.

Unlike LF'P batteries, LTO batteries can operate safely over a wider temperature range,
including freezing temperatures. This is possible due to the lack of lithium plating [64],

which also allows LTO batteries to achieve much higher C-rates.

It is discouraged to store LTO batteries at low SoCs because titanate oxide anodes are
not chemically stable at low SoCs. LTO batteries are also prone to high self-discharge

rates when stored at low SoCs [46, 47, 65].

Lastly, LTO batteries exhibit the same non-linear degradation trend shown in Fig. 2.3

[66, 67, 68], though timescales are much longer than LFP batteries.
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2.1.4 Concluding Remarks on Battery Degradation

The following has been concluded from the preceding battery review:

Charge-throughput is the main driver behind cyclic ageing for lithium chemistries.

Battery temperature is to be regulated to slow down harmful side reactions.

Battery current is to be limited to avoid excessive ohmic heating.

Avoid high state-of-charge levels for LFP batteries to circumvent harming the SEI

layer.
e Avoid low state-of-charge levels for LTO batteries to prevent self-discharge.

Given that LTO batteries are more durable, last longer, and can achieve higher power
than LFP, they are becoming an increasingly popular choice for heavy-duty transport
applications. As a matter of fact, the Siemens Mireo Plus B (battery train) is already
being offered with a 700 kWh LTO battery [69].

While LTO exhibits a lower energy density than LFP (in some cases less than half the
energy density), this is not anticipated to be a limiting factor to hybrid applications that
have another prime mover (fuel cell in the case of this thesis). Moreover, the cost of LTO

batteries is expected to be cheaper than LFP batteries per unit power [70].

Therefore, for the purposes of this thesis, it is reasonable to assume that the LTO

chemistry will be used for upcoming fuel cell hybrid trains.

2.2 PEMFC Degradation

This section firstly introduces the composition of a PEMFC and degradation-related facts
in Subsection 2.2.1. It then reports on PEMFC ageing studies found in literature, namely
lab-based in Subsection 2.2.2 and vehicle-based in Subsection 2.2.3. Lastly, Section 2.2.4

summarises the reviewed knowledge into a group of insights that would directly influence
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the operating strategies derived in this thesis.

2.2.1 Basics

The durability of PEMFCs is becoming increasingly more compatible with rail’s require-
ments. The Clean Hydrogen Joint Undertaking estimates that heavy duty PEMFCs
currently achieve 15,000 hours of operational life, where this figure is expected to increase
to 30,000 hours by 2030 [71]. The latter figure seems increasingly realistic to achieve given
that hydrogen bus trials have already surpassed the 20,000-hour mark [72] and Ballard
claims that its heavy-duty offering is capable of more than 25,000 hours [73]. Nevertheless,
simply meeting these durability targets does not guarantee economic operation because
consumption increases as efficiency drops with ageing. This motivates developing a thor-
ough understanding of the mechanisms and conditions that induce PEMFC degradation

to best counteract it.

The degradation of a PEMFC can be characterised by a decrease in power output at
a given current density [74]. Figure 2.4 shows how the voltage-current curve drops with
ageing which leads to a drop in nominal and peak power. A 10 ~ 15% drop in power
output is widely cited in literature as the end-of-life criterion for fuel cells. The decline in

power output is initially linear but later accelerates toward the end of a fuel cell’s lifetime

[75).

Figure 2.5 shows a 3D drawing of a single PEMFC cell, where multiple similar cells
are joined in series to achieve a stack’s required voltage. Multiple stacks are connected
in parallel to achieve the required power output. The external bipolar plates double as
current conductors on the outside and provide a flow pathway for gas species on the
inside. A layer inwards of that, the gas diffusion layer (GDL), is a hydrophobic carbon-
based material that flushes excess water to prevent water blockages [77]. Catalyst particles
(usually platinum held in place by carbon supports) are embedded into the anode and

cathode to sustain the cell’s redox reaction at its low operating temperature; hydrogen
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Figure 2.4: Fuel cell voltage (left axis) and resistance (right axis) at Beginning of Testing
(BoT), several testing snapshots and End of Testing (EOT). Reprinted from [76]. (C) 2022
Elsevier.

oxidation occurs on the anode side and oxygen reduction on the cathode side. Lastly, the
polymer electrolyte membrane in the middle plays the crucial role of conducting hydrogen
ions from the anode to the cathode while redirecting electrons to the external circuit. The
membrane is made of a polymer material that conducts hydrogen ions at high relative
humidity; therefore, its water content needs to be regulated to maintain ionic conductivity
while not causing water blockages. Water is inherently introduced into a fuel cell as a
byproduct of the redox reaction, and more water can be introduced by humidifying the
cell’s air supply. Conversely, water can be expelled by the supply of high flowrates of dry

air.

2.2.2 Lab-based Ageing Studies

A substantial number of studies suggest that membrane and catalyst deterioration are the
leading causes of PEMFC performance degradation [78, 79, 80, 81, 82]. These findings

are also confirmed by fault tree analysis [83] and prognostic models [84, 85].

Among the primary issues affecting the membrane is cracking and thinning. These cause
ohmic shorting and reactant crossover between the cathode and anode, which reduce the

amount of current produced. In some cases of severe reactant crossover, a cell can become
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Figure 2.5: 3D drawing of a PEMFC cell. Reprinted from iStock.com, artist ser_igor.

completely inoperable, adversely affecting all surrounding cells connected in series [86].
Furthermore, reactant crossover has been identified as the most prevalent cause of sudden
catastrophic failure. An example of this can be seen in Fig. 2.6, which shows a pronounced

drop in stack voltage at the onset of severe crossover.

Membrane cracks arise primarily due to fluctuations in humidity. These fluctuations
occur because of the change in water byproduct formation as the cell’s power output is
varied. As the membrane expands and contracts with varying humidity levels, fatigue-
induced microtears form [88]. Larger and faster changes in hydration induce greater
stresses, which increases the probability of tearing [89]. Over time, the accumulation of
these microtears can evolve into larger cracks. On the other hand, membrane thinning
is triggered by side reactions that occur due to the unexpected presence of crossover
reactants [90]. This sets off a detrimental feedback loop where crossover reactants further

weaken the membrane, leading to increased thinning and cracking.
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Figure 2.6: Fuel cell ageing testing on two stacks #01 and #02. Plot c¢) shows that #02
suffered from catastrophic reactant crossover starting from about hour 600. Plot d) shows
the accompanying collapse in cell voltage after onset of reactant crossover [87]. (©) 2023
Elsevier.

Figure 2.7: Voltage cycle profiles. Profile a) is the most damaging while profile f) is the
least. Reprinted from [96]. (©) 2007 ECS - The Electrochemical Society.

The health of the catalyst layer is determined by its remaining active area. It faces
degradation from several mechanisms, each slowing the cell’s redox reaction. The most
significant of these mechanisms involves the oxidation and agglomeration of catalyst par-
ticles, particularly during changes in cell potential and sustained open-circuit voltage [91].
Research indicates that larger and more frequent swings in potential towards the open-
circuit voltage are particularly detrimental to the active area of the catalyst [92, 93, 94].
The specific shape of the cycled voltage profile also influences degradation [95, 96]. Fig.
2.7 illustrates various voltage profiles, with profile a) being the most damaging and profile

f) the least.

The catalyst’s active area can also be diminished if catalyst particles were displaced.
This can occur when their carbon supports corrode due to reactant starvation [97]. Sim-

ilarly, reactant starvation can erode the carbon in the GDL, thereby compromising its
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hydrophobic structure that is crucial for water flushing [98]. Notably, these carbon cor-

rosion instances also increase the cell’s impedance.

It is worth noting that the aforementioned degradation mechanisms accelerate at higher
operating temperatures and pressures because of the acceleration of harmful side reac-
tions. While elevated conditions as such can also enhance the fuel cell’s redox reaction,
thus boosting performance [99], it is vital to strike a balance between performance and

degradation.

2.2.3 Vehicle-based Ageing Studies

Figures 2.8a and 2.8b depict the degradation attributed to various phases of the duty

cycle of a hydrogen bus and car, respectively. Specifically:
e load-cycling refers to periods of varying power output,
e start-stop refers to the starting-up and shutting-down stages,
e idling refers to near zero power output,
e high-power refers to operating near peak power rating.

The discrepancy observed between both figures is probably attributed to differences
in duty cycle and system design. Nonetheless, the load-cycling and start-stop phases

consistently emerged as the most detrimental.

Load-cycling is a recurring event during a duty cycle, primarily because power demand
fluctuates in tandem with traction needs. This phase affects the fuel cell in multiple
ways: i) it affects the catalyst particles as a result of potential cycling and ii) it leads
to membrane tearing and cracking as a result of humidity fluctuations that accompany

varying levels of water byproduct formation.

On the other hand, the damage associated with the start-stop phase can be traced back

to a pronounced occurrence of reactant starvation as the system transitions between its
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Figure 2.8: Fuel cell degradation contribution by phases of road duty cycles; (a) hydrogen
bus data adapted from [103]; (b) hydrogen car data adapted from [104]. High-power data
for (b) was not found.

off and on states [100].

Lastly, the idling phase poses risks to the catalyst, mainly because it maintains the
cell potential at open-circuit levels. The likelihood of reactant crossover also increases as

static pressure builds up during idle [101, 102].

2.2.4 Concluding Remarks on Fuel Cell Degradation

The following has been concluded from the preceding PEMFC review:

e Avoid idle power to reduce reactant crossover and damaging the catalyst through

open-circuit voltage.

e Avoid high-power power outputs to maintain uniform and steady reactant distribu-

tion within the fuel cell.

e Avoid frequent power swings to minimise membrane damage.

2.3 Railway Literature

This review covers speed optimisation, EMS and timetabling practices from rail literature.
The body of literature that specifically addresses fuel cell hybrid trains is relatively small;

therefore, this review is not exclusive to fuel cell hybrid publications and covers other
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relevant powertrains as well, such as diesel-hybrid trains [105], battery-powered trains
[106] and supercapacitor-powered trains [107]. A recent review exclusive to fuel cell hybrid

trains was covered by [108].

Subsection 2.3.1 covers publications that exclusively address one of the following: speed,
EMS, and timetabling. On the other hand, Subsection 2.3.2 covers publications that
address multiple of these objectives. These publications are reviewed separately to better
showcase the potential benefits of jointly optimising multiple objectives together. Lastly,
Subsection 2.3.3 summarises relevant insights from the rail review and identifies potential

deficiencies in literature.

2.3.1 Single Objectives

Dynamic System Optimisation The most prominent methods to optimise the tra-
jectory of dynamic systems are: direct methods, indirect methods, dynamic programming

(DP), metaheuristic optimisation methods.

Direct and indirect methods optimise by searching for a trajectory that satisfies con-
ditions of optimality derived using the system’s model. The difference between these
methods is the means of deriving the conditions of optimality. Direct methods directly
form a finite optimisation problem to search for a finite-step trajectory. The optimality
conditions are decided by the numeric algorithm used. Indirect methods firstly derive
conditions of optimality in the continuous domain using calculus of variations or what
is commonly known as Pontryagin’s Maximum Principle (PMP). This involves forming
and solving a boundary-value problem (setting equality constraints at problem bound-

aries).

One benefit of using indirect methods is that the derived optimality conditions provide
physical insight into the system’s optimal behaviour which can be generalised. These con-
ditions can also sometimes be solved analytically instead of numerically. However, adding

inequality and complex constraints makes these optimality conditions more difficult to
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compute. On the other hand, direct methods natively support a wide range of constraints

by leveraging recent advances in numeric methods.

Dynamic programming relies on “Bellman’s Principle of Optimality” to construct the
optimal trajectory by optimising constituent sub-problems. This makes DP a very ca-
pable optimisation tool that possesses guarantees towards finding the optimal solution.
Nonetheless, DP requires discretising the search space (system states and intputs) which
causes computational complexity to grow exponentially with problem size, known as
“Bellman’s Curse of Dimensionality”. Therefore, DP is often reserved for offline anal-
ysis instead of real-time control and often requires simplifying assumptions to maintain

computational tractability.

Stochastic Dynamic Programming (SDP) is a further variation of DP that assumes
stochastic system dynamics instead of deterministic dynamics. One use of this extension

is modelling uncertainties to obtain a more resilient trajectory.

Metaheuristic methods often use nature-inspired algorithms to solve complex optimisa-
tion problems where traditional methods, like direct, indirect, or dynamic programming,
struggle due to large search spaces and non-linearity. Metaheuristic methods seek near-
optimal solutions by intelligently exploring the search space through iterative, stochastic
processes. Examples include genetic algorithms (GA) which depends on evolution of so-
lution populations, and ant colony optimisation (ACO) which mimics the way ants find
optimal paths by laying and following pheromones. Both are more flexible and scalable
compared to dynamic programming (DP), which ensures optimality but suffers from ex-
ponential computation time as problem size increases. Metaheuristics offer a powerful

alternative by trading off guaranteed optimality for practical efficiency.

Speed Optimisation The majority of speed optimisation literature focuses on reduc-
ing traction consumption to reduce energy consumption. This domain was extensively

reviewed by [109].
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Figure 2.9: Train speed on left axis, traction force on right axis, speed limit illustrated
as hatched line on top, gradient shown as solid bars. The figure shows the use of five
phases (partial power, partial braking, full power, full braking and coasting) to suit the
optimised route. Reprinted from [111]. (C) 2003 Elsevier.

The simplest use of the indirect method (Pontryagin’s Principle) assumes level track
and no speed limits which yields the ordered four phases of Fig. 1.5 [110]. Upon adding
gradient and speed limits, the solution deviates from the aforementioned four phases and
applies the following five phases: partial power, partial braking, full power, full braking
and coasting [111]. On the contrary to the former four phases, the latter five phases are
deployed in an order that is specific to the route optimised and can even be repeated and
interleaved. This is to meet varying speed limits and steep gradients. Figure 2.9 shows

an example of this.

A recent development of using the indirect method is the ability to include further
dynamics such as non-linear regenerative braking which was achieved by solving the opti-
mality conditions using the pseudospectral method [112]. This derives a more complicated
operation regime of seven phases: 1) maximum acceleration, 2) holding speed by partial
traction, 3) coasting, 4) holding speed by partial regenerative braking, 5) maximum re-
generative braking, 6) cruising by maximum regenerative braking and partial mechanical

braking, and 7) maximum braking.
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The implementation of direct methods depends on the numeric method used to for-
mulate the optimisation problem. This most often includes nonlinear programming and
integer programming. The resulting fidelity is highly dependent on the formulation built.
Integer programming is often used due to its superior expressiveness though this comes at
a high computational cost due to its use of boolean optimisation variables. For instance,
the speed of a hydrogen train was optimised using integer programming in [113]. They
used special ordered set (SOS2) constraints to simplify the boolean search thus controlling
computational complexity. Nonetheless, they did not include EMS optimisation, possibly

to avoid excessive computational complexity.

Ant colony optimisation (ACO), genetic algorithm (GA) and dynamic programming
(DP) were compared for single-train speed optimisation [114]. In terms of solution opti-
mality, DP was best followed by GA then ACO, which however came at a higher computa-
tional cost. Both ACO and GA rely on solution convergence until the termination criteria
is reached. Although ACO reached a lesser optimal solution than GA, it converged to a

solution in a more stable manner.

EMS Railway EMS algorithms can be classified into: rule-based, optimisation-based

and data-based algorithms. They vary in objective and computational complexity.

Rule-based methods fall into the subcategories: crisp logic, fuzzy logic and frequency
decoupling. Crisp logic is synonymous with boolean logic, where a decision is dependent
on whether a statement is true or false. These algorithms can be implemented using

computationally light if-then statements or state machines.

The earliest examples of crisp logic EMS were primarily concerned with maintaining
battery state-of-charge within bounds [115, 116, 117]. Later work sought to improve
dynamic performance and kinetic energy recovery around steep slopes [118]. Fuel cell
efficiency parameters has also been integrated into algorithm design to focus operation
around the most efficient points [119]. A rule-based algorithm was also designed to mimic

the optimal behaviour of offline DP on a specific route [120].
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Designing and testing crisp logic can become laborious task. An alternative is fuzzy
logic: using intermediate input and output values that are intuitive to describe linguisti-
cally rather than crisp values. Kinetic energy recovery can be improved using fuzzy logic
[121]. Fuel cell efficiency parameters can be integrated into fuzzy logic [122]. Moreover,

fuzzy logic parameters can be tuned offline using computer simulations [123].

To reduce load-cycling on the fuel cell, it could be operated with a soft-run strategy,
where fuel cell power is kept steady and demand transients are delegated to the battery.
This has the added benefit of reducing fuel cell degradation, though comes at the expense
of additional fuel consumption because power could be held unnecessarily high. An at-
tempt to achieve soft-run using heuristics is to divide the journey into a finite number of

sections during which fuel cell power is held steady [124].

Despite the positive impact of a soft-run strategy on fuel cell health, it could have
adverse effects by excessively charging or discharging the battery [125]. To this end, fuzzy
logic has been used to design EMS to limit battery degradation [126]. The parameters
were tuned using a Genetic Algorithm to minimise energy consumption and battery degra-
dation. The latter was modelled using the Rainbow Flow algorithm, which counts the

number of full charge-discharge cycles.

In order to encourage more research around hydrogen trains, the IEEE Vehicular Tech-
nology Society held a design competition for the EMS of a dual-mode hydrogen locomotive
[127]. The locomotive can be powered by overhead catenary as well as its on-board fuel
cell, battery, and supercapacitor. Contestant submissions were evaluated according to
the running cost of overhead electricity, hydrogen fuel, and component degradation. Both
the winner [128] and the runner-up [129] submitted rule-based algorithms that prioritise
fully charging on-board storage by the overhead catenary when available. This provides
an energy buffer to be used on non-electrified segments prior to relying on more expensive
hydrogen fuel to power the fuel cell. A similar scheme was proposed for dual-mode hydro-

gen trains by [130] though is not related to the aforementioned IEEE competition.
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All of the aforementioned uses rule-based algorithms and heuristics which were proven
sub-par compared to optimisation-based methods [131]. The equivalent consumption
minimisation strategy (ECMS) is an indirect optimisation method based on PMP. It can
be solved analytically under certain simplifying assumptions which explains its popularity

(132, 133, 134, 135].

Optimisation methods were not limited to minimising fuel consumption but also in-
cluded constraints to limit degradation, e.g. a constraint on fuel cell slew rate [136].
Optimisation methods have also been reported to outperform reinforcement learning in

terms of solution optimality [137].

Timetabling Timetables are designed to provide good performance for passenger and
freight traffic [138]. The following performance indicators are often considered during

timetable design:

e Travel time efficiency, which considers running time, dwell time and transfer.

Energy efficiency of the running rail traffic.

Utilisation rate of existing rail infrastructure.

Timetable robustness to service deviations.

Timetable resilience, which is its ability to recover from major disruptions.

Timetable flexibility, which is the ability to adjust, e.g., to meet unexpected demand.
The design of a timetable goes through four planning stages:

1. Strategic planning: addresses aspects that require long-term planning, e.g., infras-
tructure investments to meet capacity targets. Therefore, it takes place years in
advance. It primarily relies on macro-level simulation which only covers main sta-

tions, main junctions and traffic flow.

2. Tactical planning: addresses schedule design, train routing, arrival and departure
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times from stations as well as platform assignments. This takes place up to one year

in advance. A mixture of macro and micro level simulations are used.

3. Operational mid-term adjustment takes place up to 6 months to 1 week in advance.
This is to account for maintenance issues, rolling stock availability, and variable

traffic demand.

4. Operational short-term adjustment take place up to 48 hours in advance and is

mainly concerned with near real-time re-planning to meet unexpected changes.

Of these stages, tactical and operational planning are the most relevant to this thesis.
Tactical planning operates at both macro and micro levels. The macro level focuses on
high-level aspects, such as traffic flow, routing, and planned stops, whereas the micro
level delves into detailed aspects like train speed profiles, traction power profiles, and
track occupancy. The difference in modelling detail allows the macro level to address
broader network-wide considerations, while the micro level provides greater precision for

specific areas that require detailed analysis.

Macro-level optimisation, such as in [139], is particularly effective for addressing large-
scale railway networks. In this study, a mixed-integer programming approach is applied
to optimise schedules for passenger and freight trains. The model does not take into
account detailed speed profiles but rather high-level traffic flow. The model estimates
emissions using train weight, the number of planned stops, delays, and waiting times.
This high-level approach enables planners to assess the schedule of a wide geographic

area.

As the focus shifts to smaller, more localised sections of the rail network, micro-level
optimisation plays a crucial role in fine-tuning train operations. One study explores micro-
level speed optimisation for multiple trains, aiming to minimise energy consumption and
delay through three techniques: enhanced brute force (EBF), ant colony optimisation
(ACO), and genetic algorithms (GA) [140]. While EBF consistently finds a more optimal

solution, it requires significantly more computational power than ACO and GA, which
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converge faster but provide slightly less optimal results. This illustrates the trade-offs in
computational load and optimisation quality at the micro level, particularly relevant for

short-term operational planning where near real-time adjustments are necessary.

Further enhancing micro-level optimisation, another study focuses on the integrated
optimisation of both train speeds and timetables, aiming to improve metro operations by
synchronising departures and arrivals to better utilise regenerative braking energy [141].
By employing genetic algorithms, this joint optimisation approach not only maximises
energy efficiency but also enhances timetable precision, which is especially critical in dense
urban environments. The topic of speed and timetable optimisation has been reviewed

by [109], though primarily covers conventional traction (electric and diesel).

2.3.2 Multiple Objectives

Some rail research has attempted to optimise more than one operational variable. This
could take a sequential form where variables are optimised separately in a specific sequence
with decisions flowing forward only. For instance, a timetable could be optimised offline
by network planners after which a separate entity optimises the speed profile of individual
trains [142]. Another example is sequential optimisation of a hybrid train where speed
is optimised first which dictates power demand that the EMS attempts to cater to [143].
Sequential optimisation also includes hierarchical control, e.g., top layer plans journey
trajectory, intermediate level optimises speed until next stop, and lowest layer optimises

EMS in real-time for current horizon [144].

While there is lack of published data, sequential optimisation is believed to be the most
used in practice. This is because the majority of literature addresses individual objectives
as shown in Section 2.3.1. It is also more natural for organisations to adopt, because it is
compatible with the idea of “separation of concerns”. Moreover, it is easier to implement
from a computational perspective because it naturally breaks down a big optimisation

problem into smaller more manageable ones.
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Nonetheless, sequential optimisation cannot guarantee finding the global optimal solu-
tion because it fails to leverage the dynamic interaction between variables. This is because
decisions that are passed as optimal from a previous step cannot be changed/optimised
in light of the currently optimised variable. An example of such dynamic interaction is
the interaction between electric trains running simultaneously on an overhead section.
Overhead power peaks could be reduced and recovered kinetic energy (regenerative brak-
ing energy) could be more efficiently reused if the timetable were adjusted with prior

knowledge of these aspects [145, 146].

An alternative approach that mitigates the aforementioned limitation of sequential
optimisation is joint optimisation, where all variables are optimised simultaneously. This
empowers the optimisation problem to fully leverage the dynamic interaction between
optimised variables. However, this comes with computational concerns as complexity
increases by encapsulating all smaller problems into a single bigger one. Various means

of dealing with this complexity was found in hybrid rail literature.

Examples include the use of the gradient method to jointly optimise speed and EMS for
electric trains with way-side storage [147]. The problem is simplified by only optimising
operation between a single pair of stations instead of the entire journey. The authors do

not mention specifics about compute time but acknowledge that it is lengthy.

Non-linear programming was used to jointly optimise speed and EMS of a battery
electric multiple unit for an entire journey [106]. A large discretisation step of 100 metres
was used to obtain acceptable compute time on the order of tens of seconds. The error

from using this big discretisation step was reported to be around 5%.

Dynamic programming was used for jointly optimising speed and EMS for urban trains
with on-board storage [148]. They do not report compute time but discretise their DP
search space very coarsely to maintain computational tractability. A comparable example
of an urban train with on-board storage required 1 hour to optimise operation between a

single pair of stations using DP [149]. It showed a very promising reduction in energy con-
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sumption of 13% for joint optimisation when compared to sequential optimisation.

In another study about urban trains with on-board storage, integer programming was
used to optimise operation between a single pair of stations [150, 151]. The computational
time was under 1 second for 1.8 km distance though for a relatively large discretisation
grid of 100 metres per step. This work was then extended to a complete line with multiple
stops by “stitching up” the optimised segments between each pair of consecutive stations
[152]. A drawback of this “stitching” approach is causing state discontinuity between
neighbouring segments. Moreover, it fails to account for the impact of dwell time on
the state. Indeed, the state-of-charge of the energy storage device was found not to be
matching between neighbouring segments. This a potential source of sub-optimality as
it fails to effectively optimise the operation of the energy storage device. Worse still, it

could harm the energy storage device by excessive charging and discharging.

Integer programming was also used for jointly optimising speed and EMS for fuel cell
hybrid trains [153]. The benefit of using the joint method was around 6 % in comparison
to the sequential method. Compute time was on the order of seconds for a consecutive

pair of stations 10 km apart.

One of the only examples in literature that considers speed, EMS and timetable of fuel
hybrid trains was found in [154]. They use dynamic programming sequentially to first
optimise timetable, then speed and lastly apply a rule-based method for EMS. Despite
them using sequential optimisation, the computation time lasts 13 hours for optimising

an entire regional line that is 80 km long.

2.3.3 Concluding Remarks on Railway Literature
The following keys insights were concluded from the rail review:

e The energy savings from joint optimisation was in the range of 5%-20% when com-

pared to sequential optimisation.
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e There is lack of understanding of whether conventional ecodriving that emphasises
coasting is efficient or optimal for hybrid trains. Joint optimisation of speed and

EMS could offer insights that answer this.

e There is lack of understanding about the impact of measures against degradation

on fuel economy.

e There is need for an alternative approach for joint optimisation that is computation-
ally efficient. This is because existing publications, especially joint speed-EMS in
Section 2.3.2, make simplifying assumptions to mitigate computational complexity.
These assumptions come at the expense of solution optimality. Convex optimisa-
tion has not been considered by any of these publications which suggests it is worth

investigating further.

e There is no research on the joint optimisation of speed-EMS-timetable for hybrid

trains. The only relevant example found uses sequential optimisation [154].

2.4 Automotive Literature

The energy management system (EMS) of automotive hybrid vehicles has received sub-
stantial research interest due to their prominence. There are several review papers con-
cerning the EMS of fuel cell hybrid vehicles in particular [155, 156, 157, 158]. Much of
this knowledge could be utilised in the rail problem setting and is thus reviewed in this

section.

Subsection 2.4.1 focuses on the most common objective of the EMS which is improv-
ing operational efficiency. Subsections 2.4.2 and 2.4.3 present EMS designs that mit-
igate battery and fuel cell degradation, respectively. Subsection 2.4.4 outlines a new
paradigm of combining EMS optimisation with wider system-level optimisation. Lastly,
Subsection 2.4.5 distils insights from the automotive review that could be relevant to this

research.
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2.4.1 EMS

EMS algorithms broadly fall into three categories: (i) rule-based, (ii) optimisation-based,
and (iii) learning-based. This classification is based on the methodology underpinning
the EMS power-split decision. Rule-based methods are computer expert systems that
embed human intuition and expert knowledge about powertrain energy management into
a set of rules. Optimisation-based methods use powertrain models to mathematically
optimise an objective, such as minimising fuel costs, within given constraints. Learning-
based methods deploy machine learning to make decisions based on historic duty cycle

data.

Table 2.1 lists the EMS algorithms from automotive publications that focus primarily
on fuel economy. This table first segregates the literature based on the three categories

mentioned above and then further divides them based on the specific algorithm used.

Rule-based Methods

Rule-based methods fall into the subcategories: crisp logic, fuzzy logic, frequency de-
coupling and time series. An example of crisp logic is thermostat and hysteresis algo-

rithms.

With a thermostat-based algorithm, the fuel cell is switched on and off to maintain the
battery’s SoC within a predefined range. When switched on, the fuel cell is operated only
at a predefined power level, most favourably its peak efficiency power level, regardless of
the vehicle’s power demand. Following this heuristic, however, does not always lead to
efficient operation: (i) excessively charging the battery up to the upper SoC limit would
impede its ability to absorb recovered kinetic energy, (ii) charging the battery using the
fuel cell is subject to fuel cell losses, and (iii) relying heavily on the battery while the fuel
cell is switched off accelerates unnecessary battery wear. State machines can reduce the
prevalence of such issues by adding additional sophistication to the if-then statements.

One example is allowing the fuel cell to operate at multiple power levels that are selected
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according to the vehicle’s power demand.

Designing and testing a state machine that is capable of exploiting all system specifics
can become a laborious task. Alternatively, fuzzy logic can achieve comparable behaviour
with less design effort. A distinction is made between “Basic” and “Adaptive” fuzzy
logic. The former operates using fixed algorithm parameters, whereas the latter adapts the
parameters to better accommodate the current duty cycle, e.g. [185] adapt the parameters
differently to urban, rural, and motorway driving; [186] adapt the parameters as the fuel

cell ages.

Frequency decoupling and time series algorithms split the power in a manner that keeps
the power output of the fuel cell steady. The reason here is that the battery can handle
power swings faster and more adequately. Moreover, this reduces fuel cell degradation that
is induced by load-cycling. Frequency decoupling algorithms decompose power demand
into low- and high-frequency components, where lower frequency components are passed to
the fuel cell and higher frequencies are passed to the battery [188]. Time series algorithms,
such as the moving average algorithm, dampen the fuel cell’s output by keeping it close

to a historic average.

The tuning of rule-based parameters is a vital and difficult step. This is initially
done using computer simulations; for example, genetic algorithms were used to tune
state machines and fuzzy logic controllers before performing any real-world experiments
[164, 172]. The parameters however do not scale across different vehicle types and thus
require re-tuning. This parameter “rigidity” is further exacerbated as the powertrain ages
or is subject to duty cycles drastically different than originally designed for. Adaptive
fuzzy logic can partially alleviate this problem; however, only a handful of cases can be

considered in advance.
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Optimisation-Based Methods

Optimisation-based algorithms use mathematical optimisation to make a decision. They
seek a decision that achieves a specified objective, e.g. minimise fuel consumption, while
being subject to physical and operational constraints, e.g. powertrain limits, and target
journey time. The obtained solution is optimal with respect to the mathematical optimi-
sation problem constructed; therefore, it is vital that it accurately reflects the designer’s
objectives and the real-world system. Mathematical models of the powertrain, track and

journey timetable are used to construct the optimisation problem.

This model-centric approach yields an algorithm that can be easily and intuitively
adjusted to reflect changes in attributes, e.g. powertrain ageing, generalisation to other
vehicles, heavier vehicle load, duty cycle. This benefit is especially meaningful for fuel
cells that exhibit considerable changes as they age. For example, it has been shown that
updating the model of an ageing fuel cell reduces consumption [161, 247]. Updating a fuel
cell model as it ages could also be useful if its peak power capability drops considerably

[207], as otherwise it would not meet the power required by the EMS.

Table 2.1 categorises optimisation-based algorithms according to the time at which the
optimisation problem is solved, namely offline methods which are computed prior to a
journey and online methods which are computed during the journey. Offline methods can
afford to use high-fidelity models because, being offline, they have more compute time.
Online methods are restricted to low-fidelity models that are computationally lighter
to meet their real-time compute deadlines. Furthermore, offline methods compute the
optimal solution for the entire journey upfront, whereas online methods often use a rolling
horizon, where the optimal solution is only found for a short horizon into the future
to save on compute time. This implies that online methods could be suboptimal and
shortsighted from the perspective of an entire journey [248, 249], whereas offline methods
can better guarantee global optimality for the entire journey. In practice, however, online

methods have the edge of adapting to unexpected disturbances and model mismatch.
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Some publications combine both methods to reap the benefits of both, namely, they
precompute a global trajectory offline and then resort to online methods upon deviating

off the trajectory [250, 198, 251].

Offline methods can be classed into five algorithm subcategories: (i) dynamic program-
ming, (ii) indirect methods, (iii) direct methods, (iv) genetic algorithms, and (v) game
theory. Online methods can also be classified into direct and indirect methods. The
equivalent consumption minimisation strategy (ECMS) is an online indirect method that
is derived from a simplified PMP formulation [252]. Model predictive control (MPC) is
a leading online direct method that often relies on QP, although alternative optimisation

formulations are also possible.

To counteract the shortsightedness of rolling-horizon online methods, the cost function
needs to penalise both instantaneous fuel consumption and any future consumption that
is needed to maintain a certain battery SoC. To this end, there are two battery operation
schemes: i) charge-sustaining operation that preserves battery SoC for future journeys and
ii) charge-depleting operation that allows full discharge of the battery. Charge-sustaining
operation is advised for hybrid vehicles that cannot recharge from the electric grid, whereas
charge-depleting operation is recommended for hybrid vehicles that can recharge from the
electric grid. The reason for the latter is because power from the grid is often cheaper than

the hydrogen fuel that would be used to recharge the battery using the fuel cell.

Lastly, the Extremum Seeking (ES) algorithm is a model-free online approach that does
not rely on powertrain models to compute the cost function but instead relies on physically
evaluating the cost of actions on the real system. The commanded action is a perturbed
signal that is used to measure the local gradient of the cost function to execute gradient
descent. This model-free approach circumvents model mismatch complications but is not

suitable for long-horizon planning, hence its limited prevalence in EMS literature.
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Learning-based Methods

More recently, EMS algorithms aided by machine learning tools have surfaced. A review
paper on this new development can be found in [253]. Some of these attempts use super-
vised learning to learn optimal solutions from offline optimisation algorithms [238]. This
approach allows one to obtain quasi-optimal performance with substantially less compu-
tational burden. Unfortunately, similarly to rule-based algorithms, a controller obtained
by supervised learning is limited to the training data set. Algorithms based on reinforce-
ment learning (RL) are less rigid than supervised learning because they can continuously
adapt to changes by learning from newer data as they come. RL algorithms minimise a

cost function that is evaluated on data instead of mathematical models.

Data quality, noise and coverage of scenarios is of up-most importance for all learning-
based methods. While this concern can be managed for supervised learning because
data selection takes place under expert supervision, it poses a bigger problem for RL
algorithms that are continuously adapting during deployment. A popular approach to
safeguarding learning-based algorithms is to limit their decisions within provably reliable

bounds [254].

2.4.2 EMS and Battery Degradation

The significant cost of traction batteries has led EMS research to consider preserving
battery lifetime in addition to basic EMS functionality. It should be noted that literature
mainly covers the degradation of carbon-anode batteries, whereas titanate oxide anodes

are often assumed to be degradation-free due to their longer cycle life [255].

One of the simplest heuristics to reduce battery degradation is to reduce its utilisation.

This can be achieved by penalising charge-throughput

/ (0l (2.1)

T1
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Real-world tests show that charge-throughput is the leading degradation driver for
vehicular applications [256, 257, 258], where the severity of degradation is influenced by
operational stress factors such as battery SoC, current, and temperature [259, 260]. This
subsection explores all battery degradation models found in the EMS literature. These
are summarised in Tab. 2.2 namely, (i) electrochemical degradation models, (ii) empirical
models that fit experimental data, and (iii) surrogate models that fit data generated from

electrochemical simulations.

Electrochemical degradation models often use computationally taxing partial differen-
tial equations, a burden that is passed onto the optimisation problem, which explains its
lack of prevalence in EMS literature. The only example found, which models the SEI
layer, recognises that its utility is limited to offline analysis [261]. However, their find-
ings are promising, indicating a potential reduction in battery degradation by 27% at
the minor expense of only a 1% increase in fuel consumption. Figure 2.10 shows their
reported variation in battery SoC against different Pareto coefficients. A lower coefficient
prioritises battery preservation, whereas a higher coefficient prioritises fuel consumption.
The figure shows how attempting to preserve battery lifetime reduces charge-throughput

by reducing SoC swings.

In contrast to electrochemical models, empirical models are computationally lighter
at the expense of accuracy [262]. The Arrhenius Model stands out as a leading semi-
empirical model. At its core, it uses an exponential formula linking charge throughput
and temperature to degradation. The Arrhenius Model can be extended by incorporating
additional stress factors such as C-rate and SoC, which yields the more capable Severity
Factor Model. For example, [263] used a severity factor model to optimise the operation
of electric vehicles, revealing that intermediate discharge rates prolong battery life, while

brief high-rate discharges are more efficient at the expense of battery life.

Empirical models are fitted using experimental data from batteries cycled under vari-

ous stress factors until end-of-life. These campaigns could be carried out using constant
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Figure 2.10: Evolution of battery SoC throughout trip for different Pareto coefficients. A
lower coefficient emphasizes battery preservation, whereas a higher coefficient emphasizes
fuel saving. Reprinted from [261]. (©) 2020 IEEE.
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Table 2.3: Examples of battery degradation test campaigns

Test Campaign Examples

Static [61, 288, 289, 200, 291, 281]
Dynamic [258, 292, 274]

discharge currents (static testing) or using power profiles representative of vehicle duty
cycles (dynamic testing). Models built using the former exhibit inferior prediction accu-
racy because the underlying dataset is not representative of a vehicle duty cycle [262].
This signifies the importance of selecting data that is representative of expected duty
cycle conditions. Table 2.3 shows a list of test campaigns commonly used in literature to

develop models.

The S-N Curve, shown in Fig. 2.11, is an empirical model that predicts a battery’s
expected lifespan as a function of DoD assuming it discharges at constant rate to a given
depth of discharge (DoD). Many battery datasheets include this information, which makes
this model the easiest model to construct amongst those shown in Tab. 2.2. Nevertheless,
its prediction accuracy is very poor for dynamic duty cycles because it assumes static

discharge and thus is not very suitable for vehicle applications.

Surrogate models aim to achieve the performance of electrochemical models at a lower
computational complexity by fitting a regression model to simulated data obtained from
the electrochemical model itself. Polynomial models are amongst the most used surrogate
models and can cover multiple stress factors, e.g. Fig. 2.12 shows a polynomial that
predicts the rate of growth of SEI versus SoC and current. The role of temperature can
be integrated by obtaining several polynomials for a range of temperatures. Unlike models
built using static discharge tests, the polynomial in Fig. 2.12 accommodates the difference
in degradation between charging and discharging; it shows that charging at high SoC is

more damaging than discharging.

The most common method to embed a degradation model into an optimisation problem

is to directly add it to the cost function. Although apparently simple, this forms a multi-
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Figure 2.11: S-N Curve shows expected battery life as function of DoD. Reprinted from
[211]. (© 2015 Elsevier.

Figure 2.12: SEI growth versus SoC and current. Reprinted from [32]. (€) 2013 IEEE.
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objective optimisation problem that presents the designer with the nontrivial task of
tuning the weight factors of competing objectives. An alternative arrangement would be to
only minimise one objective (e.g. fuel consumption) while constraining the other objective
to a maximum value, known as an epsilon-constraint [293]. For example, [294, 267, 266]
limit a unit of battery degradation per unit distance travelled while strictly minimising
fuel consumption. Such an epsilon-constraint makes it easier to quantify the level of

battery degradation accumulated between maintenance intervals.

Most of the surveyed publications assume an ideal battery thermal management system
capable of maintaining battery temperature within a favourable range. However, this
assumption seldom holds due to plant limitations and would thus lead to a suboptimal
operation when the assumption falters. Indeed, by assuming a fixed battery temperature,
the optimal strategy would be to rely heavily on the battery instead of the primary mover
[32], while when modelling battery thermals the optimal strategy is blended operation to

alleviate thermal stresses on the battery [295, 296].

An accurate but computationally taxing approach to control temperature-related degra-
dation would be to include temperature as a controllable dynamic state. The following
achieve this: [255] include thermal dynamics while sizing a battery pack using a Genetic
Algorithm; [203] add thermal dynamics to an EMS PMP formulation but admit to the
problem’s computational intractability; [280] add thermal dynamics to an EMS DP for-
mulation; [296] propose an MPC approach but is only optimal under certain conditions;
[297] propose a simplified PMP formulation for battery cooling; [298] use MPC to balance

between battery cooling and recovering kinetic energy.

2.4.3 EMS and Fuel Cell Degradation

Similarly to batteries, fuel cell degradation can be influenced by the EMS algorithm
employed. The stress factors of interest are those previously mentioned in Fig. 2.8 and

summarised in Section (2.2.4).
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To reduce load-cycling, a soft-run strategy could be adopted, in which fuel cell power
is kept as steady as possible while transients are delegated to the battery [270]. This
reduction in fuel cell degradation comes at the expense of increased fuel consumption, as
fuel cell output will not match power demand in real time and thus might be unnecessarily
maintained at high levels. Moreover, it will lead to increased battery degradation due to
increased battery utilisation. On the other hand, a power-following strategy where the

fuel cell tracks power demand prioritises consumption over fuel cell lifetime [299].

A soft-run strategy can be implemented using rule-based algorithms such as frequency
decoupling and time series as previously introduced in Tab. 2.1. Soft-run can be integrated
into optimisation-based algorithms by penalising [300, 205] or constraining [222, 241, 227,

228, 226 the fuel cell output slew rate (rate of change).

A heuristic related to load-cycling is to adopt a soft-run strategy during the early stages
of a fuel cell’s lifetime and then adopt a power-following strategy as it ages [193]. The
motivation here is that fuel cells experience a higher rate of catalyst loss when new, so
limiting degradation early on is beneficial, whereas fuel economy can become a priority
later on. Nonethess, this heuristic was only verified by simulation and not by real-world

experiments.

The frequency of start-stop cycles can be controlled by applying a constraint on the
minimum time elapsed before a fuel cell stack can be shut down [206, 233, 197, 301].
This heuristic is computationally demanding to integrate into an optimisation problem
because it requires integer variables. Lastly, idling and high power can be discouraged by

constraining or penalising these power levels [170].

A heuristic for multi-stack fuel cells is to operate the stacks as evenly as possible near
their peak efficiency point and to only partially power down some of the stacks during
extended periods of low-power or idling [171]. A calculation method was proposed by

[302] to find the threshold for this low-power level.
Table 2.4 lists the fuel cell degradation models employed in EMS literature. The ma-

47



Table 2.4: Fuel cell degradation models used in degradation-aware EMS literature

Category Subcategory Examples Source
Empirical Runtime I (33, 229] [33]
Runtime I1 269, 193, 195, 272, 271, 225, 270, 229]  [103]
Runtime IIT [193] [303]
Electrochemical Platinum Reduction [196] [304]
Surrogate Polynomial [305] [306]

jority of publications found utilise empirical models due to its computational simplicity.
These models are based on fuel cell runtime and thus predict degradation by multiplying
the rate of hourly degradation by the time spent in operation. The data necessary for this
model can be sourced from manufacturer datasheets and real-world testing. A potential
drawback of this model is that it does not accurately capture the impact of load-cycling

which is very consequential.

2.4.4 Beyond the EMS—Automotive

The majority of hybrid automotive literature focuses on the design of the EMS and
assumes the vehicle’s speed is under the driver’s discretion. This could lead to suboptimal
operation should the driver’s driving style be suboptimal in itself. To this end, a handful
of publications have attempted to optimise both vehicle speed and EMS. The simplest
approach to achieve this is sequential, where the vehicle’s speed is first optimised after
which the resulting power profile is fed to the EMS to be optimised. Examples exist
in both the time-domain [234, 198, 307] and the space-domain [308, 309, 250] problem

settings.

The aforementioned sequential method is easy to implement because it leverages exist-
ing speed optimisation and EMS optimisation methods. Nonetheless, it could fail to yield

optimal operation because the speed optimisation step is unaware of the decisions made
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by the succeeding EMS optimisation step. To counter this shortcoming, both speed and
EMS need to be optimised jointly by a single optimisation problem. Several publications
confirm the superior optimality of the joint method [310, 311, 312, 313, 314]. The fuel
savings between the sequential and joint methods are often reported to be around 5%.
Though these often use computationally intensive algorithms. One publication attempted
using convex optimisation though the solution is optimal under certain conditions [36].
Nonetheless, their attempt is very promising because compute time was under 1 second

for a journey that is 21 km long.

The concept of joint optimisation has also been extended to other vehicle systems
to reap further benefits at the system level. Heating, ventilation and air conditioning
(HVAC) is a prime example of such because it is the leading auxiliary load. For instance,
HVAC efficiency improves with vehicle speed due to the additional airflow around the
HVAC external coil, as shown in Fig. 2.13. This phenomena can be capitalised by
scheduling cooling to when the vehicle is in-motion to reduce cooling consumption. Up to
10% reduction in fuel consumption was reported in simulation [315]. Thermal comfort is
maintained due to the thermal inertia of the vehicle’s interior. Another example of joint
optimisation is to include powertrain thermal management into the EMS as done by [316].
Though doing so in the latter publication only delivered marginal fuel savings due to the

small amounts of energy consumed by powertrain thermal management systems.

2.4.5 Concluding Remarks on Automotive Literature
The following keys insights were concluded from the automotive review:

e There is a growing focus on forming tractable optimisation-based methods. This
promises real-time algorithms that are theoretically more optimal than traditional
rule-based methods. It is more tractable to solve optimisation problems formulated

using the direct method.

e Research has transitioned beyond the simple EMS problem setting into system-level
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Figure 2.13: Variation of cooling energy consumption with vehicle speed. Reprinted from
[315]. (© 2021 IEEE.

optimisation such as optimising speed and auxiliaries.

e The energy savings of joint optimisation is around 5% in comparison to sequential

optimisation. This motivates adopting joint optimisation.

e There is tangible evidence of the possibility to use convex optimisation for joint
speed-EMS optimisation [36]. Compute time was much quicker and for a longer
journey when compared to examples from rail in Section 2.3.2. This motivates
adopting a convex algorithm for the rail problem setting, as it could be computa-

tionally more efficient than existing rail algorithms.

2.5 Gaps in Literature

Based on the reviews of Sections 2.3 and 2.4, Tab. 2.5 contrasts the hypotheses posed by

this thesis with the current state of literature to identify gaps.
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Table 2.5: Contrasting the hypotheses with state of literature

Hypothesis

Answered in literature?

HO1

HO2

HO3

No. Existing literature does not specifically compare
joint speed-EMS optimisation to conventional ecodriv-
ing and coasting. That being said, there is evidence
that the joint method is more optimal than the sequen-
tial method.

Partially. Some evidence supporting this hypothesis was
found in automotive literature. None was found in rail
literature.

No. Existing literature only does sequential optimisa-
tion of speed-EMS-timetable.

HA1

HA2

Partially. There is some success of convex optimisation
in automotive literature. This result is very promising
because it was much quicker and offers better solution
optimality than algorithms used in rail literature, espe-
cially those mentioned in Section 2.3.2.

No. Examples found use non-convex sequential optimi-
sation.
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3 A PRIMER ON CONVEX
OPTIMISATION

This chapter offers a primer on convex optimisation to support formulating convex formu-
lations in Chapter 5. It chapter only covers principles and examples that directly support
this thesis, as a comprehensive coverage would become prohibitively long. Unless cited

otherwise, much of the first-principles covered here can be found in [35].

Section 3.1 introduces sufficient conditions for an optimisation problem to be convex.
Section 3.2 presents some of the basic conditions for a function to be convex. Section
3.3 explores the impact of common mathematical operations on convexity. Section 3.4
deals with convex sets, which is vital in formulating convex problems with constraints.
Section 3.5 lists specific examples of convexity that are directly relevant to this thesis.
Lastly, Section 3.6 covers how some non-convex problems can be “convexified” (turned

convex).

3.1 Introduction

The optimisation problem (3.1) attempts to find the value of x € R™ that minimises the
objective function (3.1a) while satisfying the equality and inequality constraints (3.1b)

and (3.1c).

mxi)n f(z) (3.1a)
st.  h(z)=0, (3.1b)
g(z) <0 (3.1c)
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The following conditions are sufficient for (3.1) to be convex:

the objective function f is convex, (3.2a)
the equality constraint function h is linear (affine), (3.2b)
the inequality constraint function g is convex, (3.2¢)

These conditions are “sufficient” and thus might become restrictive in some circum-
stances. The restrictive circumstances that are directly relevant to this thesis will be

explained in this chapter.

3.2 Convex Functions

3.2.1 Basic Properties

A function f(.) is linear if

flaxy + Brg) = af (z1) + Bf(z2) (3.3)

Vri, 29 € R" and Vo, 8 € R.

A function f(.) is convex if

flaxy + Bxs) < af (x1) + Bf(x2) (3.4)

Vri, 29 € R" and Vo, 8 € R with a+ =1, and o, 8 > 0.

The inequality condition in (3.4) is less strict than the equality condition in (3.3) which

implies that all linear functions are convex, but the converse is not true.

Figure 3.1 plots the convex quadratic function f(z) := 2? to provide geometric intuition

of how a convex function would satisfy (3.4). The red dashed line af (z1)+ 3 f(x2) is above
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4.0 1 — flz): =2?

=== af(z1) + Bf(z2)
3.5 1
3.0 1
2.5 1

= 2.0
1.5 1

1.0 1

0.5 1

0.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Figure 3.1: Plot of convex function f(z) := x°.

or equal to the black line f(ax; + fxq) for all {a, 5 € Rla+ 5 =1 and «, 8 > 0}. When
this condition holds across the function’s entire domain it guarantees the existence of a

single local minimum that coincides with the global minimum.

Figure 3.2 plots the function f(x) := sin(z) + %. The function is non-convex because
it does not satisfy the convexity condition (3.4) throughout its domain. An example of
this is between [—1.2, 3.8] where the red dashed line a.f (1) + 8f(x2) falls below f(ax; +
fx3). This leads to a local maximum in-between that creates a pair of separated local
minima. Consequently, a numerical optimisation algorithm could mistake a sub-optimal

local minimum for the global minimum.

3.2.2 Second Order Condition

The convexity condition (3.4) ought to hold true across the function’s domain which
makes it difficult to asses on functions with high dimensions. To this end, the second-

order derivative of a function is an alternative to assess convexity.
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Figure 3.2: Plot of non-convex function f(x) := sin(z) + f—;.

A function f(z) that is twice differentiable (the second derivative exists across its

domain) is convex if Vo € R

f(z)=0. (3.5)

If the function were to have a multidimensional domain, the Hessian can be assessed
instead. As such, a function f(z) whose Hessian exists Va € R" is convex if its Hessian

matrix is positive semidefinite

V2f(x) = 0. (3.6)

The Hessian is analogous to a function’s second-order derivative but uses partial deriva-

tives instead, which enables it to be used for higher-dimensional functions. The Hessian
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matrix of the function f(x) with x € R" is

Ox? Ox10x> Ox10xn
oy 2y .
Ox20 2 O0x20xn
Hf _ 2011 Ox3 20T (37)
Bl N o) A o i
| OxnOx1  Oxpndx2 oxZ |

A Hessian matrix is positive semidefinite if all of its eigenvalues are non-negative.

3.3 Convexity and Mathematical Operations

This subsection explores the impact of common mathematical operations on the convexity

of functions.

Scaling
Scaling a convex function f by a non-negative constant & > 0 maintains a convex a.f.

Scaling a convex function f by a negative 7 < 0 does not necessarily maintain a convex
vf. For example, scaling the covnex f(x) := z? by -1 leads to the concave —z?, shown in

Fig. 3.3.

Linear functions (which are a special condition of convex functions) are an example
of convex functions whose convexity is not impacted by negative scaling. For example,

scaling the linear f(z) := z by -1 returns the linear —z.

Summation

Adding the convex functions fi, fo produces a convex f; + fo. Similarly, scaling them by
the non-negative constants oy, as > 0 produces a convex aq fi + s fo. This extends to an

arbitrary number of functions added.

Since negative scaling does not preserve convexity, scaling the convex functions fi, fo
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(a) (b)

Figure 3.3: Plots of convex 2% and concave —x2.

by the negative 7;, 7, < 0 and adding them does not necessarily produce a convex 7, f1 +
Ya.f2-
Adding a constant 8 € R to a convex function f does not affect convexity, regardless

of the sign 3. For example, adding —1 to the convex f(x) := x? only causes a vertical

offset, shown in Fig. 3.4.

Composition

There are various rules for composite functions, with the two below being most relevant

to this thesis.

The composite function f(x) = h(g(z)) is convex if both functions h,g : R — R are
convex. For example, the composite of the convex h(z) : 2% and linear g(z) := z + 1
produces the convex composite f(z) = 2% + 2z + 1. To verify this, the second-order

derivative is 2 > 0 which meets the second-order convexity condition (3.5).

The composite function f(z) = h(g(z)) is convex if h : R — R is convex and non-

increasing and g : R — R is concave.
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Figure 3.4: Plots of convex z? and z? — 1.

3.4 Convex Sets

The equality and inequality constraints in (3.1) form the feasible set of the solution.
The optimal solution to the problem (the problem’s global minimum) is defined as that
which minimises the cost function within the feasible set. Therefore, understanding the

convexity of the feasible set is vital to successfully formulate a convex problem.

Condition for Convex Set

A set is convex if any two points within can be connected by a straight line that remains

entirely within the set. This can be described mathematically as follows for the set C'

axry + B.TQ S C, (38)

Ve, 20 € C. a, R, a4+ =1and o, > 0.
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Convex Sets and Equality Constraints

A set that is created using the equality constraint

h(z) =0 (3.9)

will fall exactly on the function line. Therefore, for an equality constraint to form a convex
set, it is sufficient and necessary for h(x) to be linear, because that is the only means to
satisfy (3.8): connect any pair of points within the set with a straight line that remains

within the set.

Convex Sets and Inequality Constraints

A set that is created using the inequality constraint

g(z) <0 (3.10)

will consist of an area (two dimensions) or hypervolume (higher dimensions). To form
a convex set, it is sufficient for g(x) to be a convex function. Though this can be a
restrictive condition, as some non-convex g(x) functions can produce a convex set under
very specific conditions. Variations of such will be used throughout this thesis and will

therefore be explored in Section 3.5.

Figure 3.5 shows examples of convex sets. Figure 3.6 shows examples of non-convex
sets. In the figures, sets formed from equality constraints are plotted as solid lines only;

sets formed from inequality constraints are shaded area including the function’s line.

Intuition Behind Convex Sets

The necessity of convex sets is related to how numerical algorithms explore the feasible
set while searching for the global minimum. This is done incrementally over the course

of straight steps within the feasible set under the condition that each step reduces the
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x+y <1

Figure 3.5: Examples of convex sets formed by an equality constraint in (a) and inequality
constraints in (b), (c¢) and (d).

OV

Figure 3.6: Examples of non-convex sets formed by an equality constraint in (a) and
inequality constraint in (b).
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current cost function value. A convex set that can be fully explored through straight steps
that remain within the set (following the condition (3.8)) allows for thorough exploration.
In contrast, a non-convex set poses the risk of getting stuck at a local minimum that is
not possible to escape in straight steps that remain within the feasible set and reduce the

cost function.

3.5 Relevant Functions and Sets

Quadratic Polynomials

The quadratic polynomial

f(x) = pox® + 1 + po (3.11)

is convex if its second-order derivative is non-negative

f"(x) == 2py > 0. (3.12)

The quadratic polynomial

g(z,y) = P02z + a0y’ + P11TY + PorT + Proy + Poo (3.13)

is convex if its Hessian matrix is positive semidefinite

2 p
2 PP e ) (3.14)

P11 2p2o

Square Root

The square root

f(x) =V (3.15)
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Figure 3.7: Plot of (a) concave \/x and (b) convex -\/x.

is concave for x > 0. This is because its second order derivative is always negative

1

_W. (3.16)

7)==

This means that its negative scaling is convex, namely,

g(z) == -V (3.17)

which is consistent with the positive second-order derivative for z > 0

1

Figure 3.7 shows plots for both the concave v/x and convex —/x.

Reciprocal Function

The reciprocal function

h(z) == (3.19)
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Figure 3.8: Plot of reciprocal function %

is not convex throughout its domain, shown in Fig. 3.8. However, it is convex and non-
increasing for x > 0. Therefore, according to the composite rules in Section (3.3), the

composite
flz) = —= (3.20)
is convex for a concave g(x) and g(z) > 0.

It is important to note that 3.20 is convex as is, and would turn non-convex if multiplied

by another variable. For example

T
f(z,y) = — (3.21)
Yy
is not convex, shown in Fig. 3.9.
Second-Order Cone Constraint
The function
flz,y,2) =2 —yz (3.22)
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Figure 3.9: Plot of non-convex %
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is non-convex because its Hessian matrix

2 0 0
Hi=10 0 -1 (3.23)
0 -1 0

contains a negative eigenvalue: (-1,1,2).

Nonetheless, f(x) can form the convex set

2 < yz (3.24)

for y, 2 > 0. This is a second-order cone constraint [317].

Bilinear Inequality

The bilinear function

f(x,y) ==y (3.25)

is non-convex because its Hessian matrix

01
H, = (3.26)
10

contains a negative eigenvalue: (-1,1).
Figure 3.10(a) shows the non-convexity of the function f(z,y) in 3D space.

Nonetheless, f(x,y) can form the convex set

a<xy (3.27)

for a non-negative constant & > 0 and non-negative variables x,y > 0. Note that this con-

straint is a special condition of the more general second-order cone constraint (3.24).
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Figure 3.10: (a) 3D plot of non-convex xy, (b) contour lines of xy over positive quadrant.

Figure 3.10(b) shows how (3.27) forms a convex set. It shows that the function’s contour
line over the positive quadrant (z,y > 0) forms a convex area above any given constant

(a > 0).

3.6 Formulation Convexification

Convexification is defined as transforming a non-convex optimisation problem into a con-
vex one. The primary objective behind doing so is to harness the benefits associated with
solving convex problems, such as the global minimum guarantee and lower computational

complexity.

The success of a convexified problem largely depends on how closely the optimal so-
lution of the convex version aligns with that of the original non-convex problem. If this
alignment is not sufficiently close, it may diminish the practical utility of the convexified

version.

Convexifying an optimisation problem does not follow a universal approach. It typically
requires an in-depth analysis of the problem to identify non-convex components and then

modifying them using techniques specific to the non-convexity at hand. This process can
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be complex and often relies on the expertise of the formulation designer.

Convexication by Relaxation

Take the optimisation problem (3.28) with both convex and nonlinear functions f,h.
Denote its optimal solution x*. This is a non-convex problem because h does not meet

the linearity condition on equality constraints (3.2b).

min > flx) (3.28a)
=1
st h(z) =0, i=1,...,1 (3.28b)

The optimisation problem (3.28) can be convexified by relaxing the equality constraint
into the inequality shown in (3.29b). This is because the function h meets the convex set

condition on inequality constraints (3.2c).

n

min > flw) (3.29a)

i=1

st. h(z;) <0, i=1,...,1 (3.29b)

Denote the solution of the new relaxed problem «},. The new relaxed problem is a

valid convexification only if &* = . This will be the case if it is shown that objective

*

function f tightens the relaxed constraint to equality at the optimal solution x7,.

Convexication by Substitution

Take the optimisation problem (3.30) that has a convex objective function f and a non-
linear equality constraint function. Assume that it would not be possible to relax this

optimisation problem as in (3.29). A way to convexify this formulation is to substitute
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22 by the surrogate variable v.

min ;f(:p,) (3.30a)
st. 22=0, i=1,...,1 (3.30Db)

The formulation (3.31) shows the alternative variant with a linear equality constraint.
Notice that the variable x has replaced by y. Therefore, the new problem is solved for the
variable y. After finding the optimal y*, the optimal * can be computed by substituting

into the relation between x and y.

min > 9() (3.31a)

st. =0, i=1,...,1 (3.31b)
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4 TRAIN MODELLING

This chapter introduces the mathematical models that will be used later in Chapter 5
to formulate the train’s optimisation problem. This chapter merely derives and presents
the models. The convexity of these models will be thoroughly examined and addressed in

Chapter 5.

Section 4.1 introduces the modelling domain and vital preliminaries required for the
remainder of the chapter. Section 4.2 models longitudinal speed and journey duration.
Section 4.3 models the fuel cell hybrid powertrain which includes the traction motor, fuel

cell and battery.

4.1 Model Fundamentals

4.1.1 The Modelling Domain

A “journey” is defined as the movement of a train, starting from an initial stationary state
and ending with a terminal stationary state. No restrictions are placed on the number
of stops in between. Without loss of generality, it is assumed herein that a journey is a

train service that serves multiple stations and includes dwelling at stations.

A train’s journey can be modelled in the temporal or spatial domain, a choice that
controls how the train’s state evolves. In the temporal domain, the train’s state evolves
after the passage of a temporal interval, whereas the state evolves after traversing a spatial

interval in the spatial domain.

Modelling a train’s movement in the spatial domain rather than the temporal domain
yields higher accuracy. This is because the location of the train after a spatial interval is
deterministically known, whereas it is contingent on the speed achieved after a temporal

interval. Consequently, track characteristics that affect speed can be deterministically
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Figure 4.1: Plot of spatial and temporal sampling examples for an accelerating train.
Train speed is the solid green line. The location of spatial samples 10 meters apart are
orange vertical lines. The location of temporal samples 1 second apart are purple vertical
lines.

retrieved and modelled in the spatial domain, whereas they can only be estimated in the

temporal domain without prior knowledge of the train’s speed.

Figure 4.1 shows spatial samples that are 10 meters apart and temporal samples that
are 1 second apart for an accelerating train. The location of spatial samples are uniformly
distributed and independent of the train’s speed. The location of temporal samples are
dependent on train speed; the spacing is initially small and increases as the train acceler-

ates.

Despite the accuracy of the spatial domain for modelling motion, it is incapable of
modelling dwelling at stations because a stationary state stops the spatial domain from
progressing. On the other hand, the temporal domain would still function while stationary
because it only requires the passage of time rather than motion in space. This makes the

temporal domain preferable for dwelling.
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To leverage the benefits of both domains, this thesis adopts a hybrid approach: the
train’s motion is modelled in the spatial domain when moving, whereas dwelling at stations
is modelled in the temporal domain. Both modelling domains are interleaved over the
course of a journey to achieve motion in between stations and dwelling at stations. The
use of either domain is exclusive of the other at any given instant. The train’s state is

exchanged when transitioning between domains to ensure a seamless simulation.
To avoid ambiguity, in the context of this thesis:

e the spatial domain is defined by scalar distance along the track. Adding all the
distance modelled in the spatial domain returns the total track distance covered,

not to be mistaken for absolute distance from origin.

e the temporal domain is defined by the time spent dwelling at stations. Adding all
the time modelled in the temporal domain returns the total time spent dwelling at

stations, not to be mistaken for total journey time.

Lastly, discrete dynamics will be used instead of continuous dynamics to enable the
use of direct optimisation methods that are computationally more favourable [37] (see the
footer of Tab. 2.1). The zero-order hold will be used to discretise dynamics. This will be
applied to models in both spatial and temporal domains, where a discrete spatial interval

is denoted by Ay and a discrete temporal interval is denoted by A;.

4.1.2 Instances and Intervals

Journey Instances

A journey is discretised by sampling it at N + 1 instances, including both spatial and
temporal instances, starting from the initial stationary state and ending with the terminal
stationary state. This produces N domain intervals, mixed between spatial and temporal

intervals.
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Denote the following set for all indexes of a journey’s N + 1 instances

A=(0,1,2,...,N), (4.1)

which is ordered chronologically by the order of occurence. The train’s state is defined

for all of A.

Define the following subset of A

B={icA|i<N}, (4.2)

which excludes the last instance N. This set is defined for system inputs and domain
intervals, as the discretised dynamics implies that the N — 1 instance is sufficient to

describe the terminal state V.

Assigning Domains and Intervals

The modelling domain assigned to an instance depends on the behaviour required at
that instance: spatial domain for moving instances or temporal domain for stationary
instances. Consequently, the modelling domain chosen for an instance decides the type
of interval it receives: spatial interval Ay or temporal interval A;. The domain decision is
to be made in advance by consulting the route’s information and the working timetable.

This is not restrictive, so long no unplanned stops take place.

The above can be described procedurally as follows. Start by denoting the longitudinal
scalar speed of the train by v. A speed value is not required, only whether the train
is to be moving or stationary at any given instance. Each instance i € B is assigned

either:
e a spatial interval Ay, > 0 if it is required for the train to

— start to move from stationary (v; = 0 and v; 41 > 0), or
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— keep moving (v; > 0 and v;41 > 0), or
— come to a stop (v; > 0 and v;; = 0),

e a temporal interval A; > 0 if the train is required to remain stationary given it

is already stationary (v; = 0 and v;1; = 0).

The magnitude of the discrete intervals, Ay and Ay, is a modelling choice to be made.
Finer intervals would increase model fidelty, though would increase the size of B to main-
tain the journey’s length and duration, thus increasing compute time. A practical rule of
thumb is to reduce interval magnitude until sufficient dynamic behaviour is achieved and

simulation results stabilise.

4.1.3 Additional Sets

This subsection defines further sets that will be used throughout this thesis.

Denote the spatial domain set

S={jeB| A, is defined}, (4.3)

which is a subset of B that was assigned spatial intervals. The set S leaves behind

instances at which A; was defined instead of A..

Denote the temporal domain set

T ={k € B| Ay is defined}, (4.4)

which is a subset of B that was assinged temporal intervals. The set T leaves behind

instances at which Ay was defined instead of A;.

The union of the sets S and T is equal to B, that is, B = SUT . This is because B is a set
of all instances to which a domain interval was assigned. Furthermore, A =SUT U{N},

as N was excluded from B prior to defining the sets S and 7.
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Denote the zero speed set

VW ={leA|v =0} (4.5)

which is a subset of A at which instantaneous speed is zero. By definition, this set will
include all of T, instances of & at which the train starts moving from stationary, the

initial instance 0 and the terminal instance V.

Denote a subset of A that is defined a timing point
M = {m € A| timing point is defined at m } (4.6)

where the train is required to reach m € M by a defined time. This serves the purpose
of defining the train’s arrival time at station stops or passing points. In Great Britain,

this concept is referred to as “TIPLOC”.

It is attempted to use the same instance identifiers (i, 7, k,[,m,n) to improve read-
ability and consistency, where i € B, j € S, k€ T,1 €V’ m &€ Mandn € A At
times this might be difficult, thus notation will be repeated in each context to dispel any

ambiguity.

4.2 Train Longitudinal Dynamics

4.2.1 Longitudinal Speed

This subsection models the train’s longitudinal speed and therefore only applies to moving

instances Vj € S.

The train is modelled as a point mass m with equivalent inertial mass me travelling at
longitudinal speed v while being controlled by traction motor force F},. and mechanical

brake force Fy [318].
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The external forces acting on the train Fi are modelled as
Fxtj=a+bv; + cv? + mgsin(6;) (4.7)

where a + bv + cv? is the Davis Equation and mg sin(6) represents gravitational pull from

the level horizon.
The train speed at instance j + 1 can be predicted by adding mechanical work F'Ag to

kinetic energy %meqzﬂ at 7, namely

1 1
émeqvja_l = §meqvj2' + (Ftrc,j + Fbrk,j)As,j - Fext,jAs,jv (48)

where the right handside is the summation of energy at sampling instance j and the
left handside represents the resulting kinetic energy at sampling instance j + 1. This
calculation is recursively computed forwards to calculate the speed of the train over the

course of a journey.

4.2.2 Journey Duration

Denote the time required to traverse the interval [¢,i + 1) for i € B by ;. Also, denote

the time it takes to reach instance n € A from the begining of the journey by ¢(n).

Then, for n € A and n > 0, the time needed to reach n is

t(n) := Zé‘%i’ (4.9)

According to (4.9), the time required to finish a journey (reach last instance N in A)
is

tH(N) = 2_: 5. (4.10)
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Interval Duration ¢

For £k € 7T the interval duration dyj is the predetermined A;j, defined previously in
Section 4.1.2. On the contrary, the interval duration for instances 7 € S depends on

speed. The simplest model to find duration for interval [j,j + 1) is

— (4.11)

However, this would return an infinite result for instances in S at which the train is
stationary and starting to move, i.e. v; = 0 and v;4; > 0. Moreover, this model poorly
reflects reality, where speed is continuously changing during an interval. To address both
of these concerns, use the average speed of consecutive instances

’Uj -+ /Ui+j

Vavg,j = 9 5 (412)

where both instances j € S and j + 1 € § are consecutive. Recall that & excludes any

consecutive stationary instances which safeguards vy, from returning zero.

To conclude

A .
€S

O =4 o (4.13)
AV i€ T

4.3 Fuel Cell Hybrid Powertrain

This section covers the powertrain components shown in Fig. 1.3, namely the traction
motor, fuel cell, battery, and auxiliary load. Their individual behaviour as well as their

interaction with each other and the train is to be modelled.
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4.3.1 Power Flow

The powertrain components are electrically connected by the power flow equality

P+ Pawxi = Prei + Poati Vi € B. (4.14)

P, is the electric power flow at the motor’s terminals, P,. is electric auxiliary load,
P is fuel cell electric power output, and B, is the electric power flow at the battery’s

terminals. P, is assumed to be predetermined for the entire journey.

Note that no traction effort is exerted in 7, therefore (4.14) can be further simplified
to

Paux,k = Pfc,k + Pbat,k: VkeT (415)

and then

Pm,j + Paux,j = Pfchj + Pbat,j Vj €S. (416)

The power flow equality plays a vital role of describing how electric power supplies (fuel
cell and battery) meet electric loads (traction and auxiliary). Moreover, it models the flow
of power to recharge the battery using the fuel cell or traction motor during regenerative

braking.

Without loss of generality, it is assumed that there is a single large unit for each variant
of the powertrain components. The load is then distributed equally if there were multiple
smaller units. For instance, fuel cell power is equally divided amongst a multi-stack fuel

cell.

In what follows, further details are covered for each component individually. This

includes interaction with the train, models of efficiency, and physical constraints.
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4.3.2 Traction Motor

Mechanical to Electric Efficiency

In order to use the longitudinal speed model (4.8) with the power flow equality (4.16),
mechanical traction force Fi,. from the former should be dynamically coupled with motor
electric power P, from the latter. For 7 € &, this can be achieved by first deriving
mechanical traction power

Ptrc,j = Ftrc,jvavg,j (417)

and then converting mechanical traction power P to electric P, by dividing over effi-

ciency

Flc U .
Pm o re,j vavg,j , (418)
T (Pl jVave )

where 7, (FircVavg) 1s the motor’s efficiency at converting electric power to the requested

mechanical power.

Motor efficiency is usually described as a discrete lookup table, which implies that
(4.18) is only defined at discrete power points. Figure 4.2 shows an example of the
discrete efficiency curve. It peaks at a unique region, thus forming a strictly concave

curve. This curve characteristic is typical of traction motors.

Note that v,y from (4.12) is used here instead of v, because this would return a more
accurate result with speed changing between sampling instances. It also safeguards against
returning zero power for {j € S | v; = 0 and v;4; > 0}.

Motor Constraints

The motor’s traction force and power outputs are subject to physical constraints Vj &€

S.
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Figure 4.2: Plot of motor efficiency against mechanical power output. Data is of an
induction motor for electric vehicles. Data for AC75 from ADVISOR software [319].

The traction force constraint is described by
& S Ftrgj S ma (419)

where Fy, is the limit on positive traction force and Fi is the limit on regenrative braking

force.

The power constraint is

& S ptrc,j S m7 (420)

where P, is the limit on positive motoring power and F;,. is the limit on regenrative

braking power.

The combination of both constraints limits the motor’s feasible operation region to that
shown in Fig. 4.3, where the blue dashed line is the linear constraint (4.19) and the red

dashed line is the hyperbolic constraint of (4.20).

4.3.3 Fuel Cell

Chemical to Electric Efficiency

The fuel cell’s conversion of chemical energy to net electric output (after powertrain

auxiliaries) is to be modelled. This will be used in Chapter 5 to penalise hydrogen
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Figure 4.4: Plot of fuel cell efficiency against electric power output. Data from [319].

consumption. The fuel cell power variable P will couple this model with the power flow

equality in (4.15) and (4.16).

Start by denoting fuel cell efficiency at a given net power output (after powertrain
auxiliaries) as g (Pr). Similarly to motor efficiency, this is given as a discrete lookup
table. Also, fuel cell efficiency has been theoretically proven to always exhibit a concave

form [320]. Figure 4.4 shows this.

The rate of converting chemical energy to electric output can be found by dividing fuel
cell power by efficiency Vi € B
e (4.21)



Similarly to the traction motor, this is only defined at discrete power points because
the efficiency model is discrete. The rate of hydrogen consumption can be computed by

multiplying the lower heating value (LHV)
x LHV (4.22)

and multiplying the duration of an interval d;; to find amount of hydrogen consumed over
the interval [i,i + 1)
Pfc )
——— X LHV X 4. 4.23
Nte(Pre,i) R (4.23)

Lastly, the hydrogen consumed over an entire journey can be found by the summa-
tion

Pci
> —2L X LHV x 4. (4.24)
icB nfC(PfC,i)

Fuel Cell Constraints
Fuel cell power is subject to lower and upper bounds Vi € B

0 S Pfc,i S P_fc7 (425)

however, it is undesirable to leave the fuel cell idling to extend its lifetime thus a positive

minimum power constraint is adopted

P < P < P (4.26)

4.3.4 Battery

A battery model would primarily be used to predict state-of-charge, denoted by (. This

model should also take into account charging and discharging losses. The battery power
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Figure 4.5: Battery equivalent circuit model.

variable Py, will couple state-of-charge to the power flow equalities (4.15) and (4.16).

The battery is modelled using an equivalent circuit model that has a voltage source
and resistor, shown in Fig. 4.5 and explained in [321]. The voltage source U,. rep-
resents the battery’s open-circuit voltage when no load is applied. As the battery is
charged/discharged, energy is wasted across the resistor Ry, representing the battery’s

losses during use.

Both U,. and Ry, are fixed. While this model is simplistic, its fidelity has been shown
to be adequate for simulating the state-of-charge of battery trains [322]. This model is
particularly adequate because the focus is estimating slower dynamics such as state-of-

charge rather than fast electrochemical dynamics.

The equivalent circuit model can be used to calculate the change in state-of-charge over

interval [i,7 + 1), denoted J;, by solving for battery current Iy, at a given power level

Pbat,i-

After finding 6. ; for the instance ¢ € B, Columb Counting is used to compute the next

state-of-charge

Giv1 = Gi — O¢ s (4.27)

The battery’s state-of-charge is to be maintained between lower ¢ and upper limits ¢
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To solve Ia; at a given power level B, ,, start by implementing Kirchhoft’s law as

below

Ubat,i = Uoc - [bat,inata (429)

which upon multiplying by [},,; becomes

Pbat,i = Uoc]bat,z' - ]gaminah (430)

now Ip,at; can be found for a given B, using

Uoc - \/Ugc - 4Rbatpbat,z’

I at,i B at,i) +— 5 4.31
bat,i(Poat.i) T (4.31)
where the following limit applies on Pt
U2
Poay < —*. 4.32
bat = 4Rbat ( )

Note that (4.32) is merely an upper numerical limit to avoid negative values under the

square root. The following physical constraints of the battery are likely to be lower

Poat < Poari < Prat- (4.33)

Since current is the flow rate of electric charge, I, = %’ (4.31) can be expressed

as

Uoc - \/Ugc - 4Rbatpbat,i6

6q,i(Pbat,i7 5t,i) = 9 Rput 3+

(4.34)

A change in units from coloumbs to battery state-of-charge would convert d, to the

required .. This is done by dividing over battery capacity Qan (in ampere hour A - h),
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dividing over 3600 to convert from A-h to A -s, and multiplying by 100 convert to a 100%

scale

Uoc - \/Ugc - 4Rbathat,i 100
X 5t,i X —.
2Rbat 3600QAh

0¢,i(Poatyis Ot,i) == (4.35)

According to the adopted sign convention, a positive B, discharges the battery and a

negative P, charges the battery.
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5 OPTIMISING OPERATION

This chapter covers a core contribution: formulating an optimisation problem for opti-
mising the operation of fuel cell hybrid trains. The optimisation problem is developed
from the ground up, beginning with a speed-only formulation in Section 5.1, followed
by an EMS-only formulation in Section 5.2. These are merged into a joint speed-EMS
formulation in Section 5.3. Lastly, a joint speed-EMS-timetable formulation is developed

in Section 5.4.

The chapter progressively builds from smaller to larger formulations to allow for the
analysis of non-convexities at a smaller scale prior to progressing to larger formulations.
Non-convexities will be addressed within each respective section. The end result of this

chapter is proving the algorithmic hypotheses HA1 and HA2.

Preliminaries

e The instance identifiers (4,7, k,[,n) are maintained, where 1 € B, j € S, k € T,

leVand n € A.

e A boldface notation is adopted for optimised vectors. For instance, F},. is an ordered

vector of traction force instances, Fie = [ Firej | j € S .

e BEach optimisation problem is assigned an alphanumeric label. The alphabatic part
refers to the problem as a whole, whereas the numeric part refers to a specific

equation within the problem.

e Optimisation problem constraints are typed in a double-column format to conserve

space. Constraints are clustered according to the set from which they are called.
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5.1 Speed Optimisation

This section derives a formulation to optimise speed according to conventional ecodriv-
ing: maximum rate acceleration, cruise, coasting, and maximum rate deceleration. It
can be generated using various optimisation techniques and formulations. The variant
derived here minimises positive traction effort in the objective function while attempting
to achieve defined timing points, similar to Eqn. 20 in [109]. The first subsection below

presents a basic non-convex variant followed by a convexified variant.

5.1.1 Basic Speed Formulation

To penalise positive traction, start by denoting it as F',

Fue  Fuc20
Ft = (5.1)

trc
0 Fie <0

The positive traction work performed over the interval [j,j + 1) Vj € S is

Fttc,jAS7j (52)

The optimisation formulation (BSP) minimises positive traction for a journey with
arrival timing points defined as 7, seconds since beginning of the journey at instances
m € M. The timing points in M will be used to define the required arrival time at
intermediate stations and terminal station. The formulation’s label stands for “Basic

Speed”. The optimised vector variables are:

o Fi, F+

tres Pires Firky Vavg are optimised only for & because they are only relevant

to intervals during which the train is moving,

e §; is optimised for S and is assigned the predetermined A for instances in 7,
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e v is optimised for A because it is a system state.

min
Fires Fifos Prrey Fors Uy Uaygs 6 S RLLA (BSP.1)
subject to 1
given as parameters VkeT
Ag; Vjes (BSP.2) Ok = Agk (BSP.13)
Ay YeeT (BSP.3) vl e VO
VjeS =0 (BSP.14)
(4.8) (BSP.4) Vn e A
Pirc,j = Firc,jVave,j (BSP.5) 0 <v, <7, (BSP.15)
Vg = w (BSP.6) VYm € M
b = By (BSP.7) t(m) = 7, (BSP.16)
Vavg,j
0< F (BSP.8)
oy = Ft}LC’j (BSP.9)
Fie € Fircj < Fire (BSP.10)
Fone < Finej <0 (BSP.11)
Puc < Prrej < Pre (BSP.12)

Optimisation Problem 1: Basic Speed (BSP)

The intervals Ay and A are typed in a separate box in (BSP.2) and (BSP.3) to em-

phasise that they are given as parameters.

The optimisation problem (BSP) will successfully minimise positive traction effort if
F were to assume the definition (5.1). This is achieved because the objective function
pushes down on F} while the combination of (BSP.8) and (BSP.9) enable it to mimic the

non-negative fraction of Fi,.. The equality constraint (BSP.5) relates traction force with
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traction power to limit the latter in the bound (BSP.12).

The equality constraint (BSP.4) informs the optimisation problem of the speed dynam-
ics and is referenced using the equation number instead of typing to conserve space. The
zero speed equality constraint (BSP.14) is vital to enforce zero speed according to V°, as
otherwise the optimisation problem would prevent the train from stopping to conserve
kinetic energy. This is different to (BSP.15) which bounds v Vn € A according to the

speed limits of the track.

The average speed constraint (BSP.6) and both spatial (BSP.7) and temporal (BSP.13)

equalities are used to calculate the timing points in (BSP.16) according to (4.9).

The formulation presents the following non-convexities because they are non-linear
equality constraints: (BSP.4), (BSP.7), and (BSP.5). These are addressed in the following
subsection.

5.1.2 Convexifying Speed Formulation

Convexifying (BSP.4)

The equality constraint (BSP.4) is non-linear in v due to the squared operation v? therein.
It can be linearized by substituting the non-linear v? terms with the surogate variable z

(as done in (3.31))

1 1
§meqzj+1 - §meqzj + (ﬂrc,j + Fbrk,j)As,j - Fext,jAs,j7 (54)

where the v? in F. is also substituted for z

Fextj = a+ bv; + cz; + mgsin(0;). (5.5)

The Davis Equation in F, requires both v and z and thus the non-linear equality con-
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straint v? = 2 should be introduced which can be relaxed into the convex inequality

v? < 2. (5.6)

Convexifying (BSP.7)

The equality constraint (BSP.7) is non-linear due to the presence of v,y in the denomi-

nator. To convexify this, define the surrogate variable

1
Apj = (5.7)
’ Vavg,j
then substitute into (BSP.7) to yield the linear
5t,j = As,j)‘v,j- (58)

The non-linear equality (5.7) poses a new source of non-convexity, though it can be

mitigated by relaxing it into the bilinear inequality (recall (3.27))

1 S vavg,j)\v,j (59)

for vavg j; Avj > 0. It will be proven that this relaxed constraint will hold tightly with
equality at the optimal solution. Note that the product of both variables in (5.9) must
be positive to comply with the positive lower bound of 1. This is not restrictive because

Uavg,; Will only return positive values Vj € S.

Eliminating (BSP.5)

The motor power constraint (BSP.5) is non-convex because it is a non-linear equality,
though it is necessary to convert traction force Fi,. into traction power P, which is then

bound in (BSP.12).
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Upon multiplying (BSP.12) by the newly formed surrogate A, (which represents t),

Pi;. can then be replaced by Fi,. due to the mechanical relation F' = %

&/\v S Erc S m/\v (510)

The new linear bounds negate the need for the non-convex (BSP.5) which means it can

be eliminated.

5.1.3 Convex Speed Formulation

The formulation (CSP) is a convexified variant of (BSP) by implementing the changes
proposed in the last subsection. The new label “CSP” stands for “Convex Speed”. The

newly added vector variables are:
e )\, is optimised only for S because it is only to be used with a positive vayg,
e z is optimised for A because it is a system state.

The convexified formulation (CSP) is only equivalent to the original (BSP) if the relaxed
constraints (CSP.16) and (CSP.7) were to tighten and hold at equality. This is indeed
the case because the formulation has the incentive to achieve the timing points 7, for

minimum traction effort. The following elaborates on this:
e (CSP.7) holds at equality because

— Ay is pushed down to achieve timing points constraint (CSP.19). As ), is
reduced, the train would appear to travel faster in (CSP.6) without a traction
cost. Therefore, the optimal solution would rather reduce A, before resorting

to additional traction effort to accelerate the train, and

— as A\, drops, v,y Will be pushed up at some point to maintain the lower bound
1 (constraint left-hand side). Subsequently, A\, can drop further to make the

train appear faster and tighten (CSP.7).
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min

+
Erca Erca Fbrk’ Uy Vavgy 6t7 Z, )\v

subject to

given as parameters
As; Vjes
A YkeT
Vjes
(5.4)

Y + Y1
Uan’j = 9

Otj = DsjAv,j
1 < Vayg,j A,
0<Av;

0< F7

tre,j

FtI'C,j S F;J—I"'_C,j
Ftrc S Erc,j S Erc
Ptrc)\v,j S Ero,j S Ptrc)\

B € e g 0

+
§ Ftrc,jAS:j

JjeES

(CSP.2)

(CSP.3)

(CSP.4)
(CSP.5)

(CSP.6)
(CSP.7)
(CSP.8)
(CSP.9)
(CSP.10)
(CSP.11)
(CSP.12)

(CSP.13)

Optimisation Problem 2: Convex Speed (CSP)
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e (CSP.16) holds at equality

— since v,y was being pushed up in (CSP.7), it will also pull up v in (BSP.6) up

until it reaches z, and,

— z is pushed down in (CSP.4) because of its link to the traction penalty (CSP.1)

through the variable Fi,..

5.2 EMS Optimisation

To implement the results of the speed formulation from the previous section, an accom-
panying energy management system is needed to control the hybrid powertrain such that
it meets traction power demands. This section presents a formulation for optimising the

EMS given interval durations d;, traction force Fi,., and vayg.

The formulation herein directly penalises hyrdogen consumption in the objective func-
tion. Furthermore, it adds a charge-sustaining constraint on the battery and prohibits

fuel cell idling to preserve its lifetime.

5.2.1 Basic EMS Formulation

Given 6y, Fi,. and v, from the preceding speed formulation, first find the electric trac-
tion power P,, using (4.18). Then the optimal EMS power split could be found using
(BEM). Its label “BEM” refers to “Basic Energy Management”. The optimised vector

variables are:
o Py, P, O¢ are only optimised for B,
e ( is optimised for A.

Note that P,, and d; are not optimised, since they are given as inputs. They are typed
in (BEM.2), (BEM.4) and (BEM.5) only to emphasise their presence. Furthermore, the

auxiliary load P,y in (BEM.3) is not optimised and is given as a reference profile.
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min
F)fca Pbat7 C? 5( Pfc,i
pre Nte(Pre,i)

subject to

given as parameters
Py, YieB
Poxi VieB

Ag ,
5t,j = ) VJ eS

Vavg,j

5t,k = At,k Vk € T

i€ B
5 o Uoc - \/Ugc - 4Rbatpbat,i
o 2Rpat X % X Ot
Git1 = G — Oci

&SPfc,iSP_fc

Pbat S Pbat,i S Pbat

(BEM.2)

(BEM.3)
(BEM.4)

(BEM.5)

(BEM.6)

(BEM.7)
(BEM.8)

(BEM.9)

x LHV x 6,

VjesS
B A g = g Pl
VEeT
Pox gk = Pre e + Poat k
Vne A
(<G<C

other

(N = Co

Optimisation Problem 3: Basic Energy Management (BEM)
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The objective function (BEM.1) penalises fuel consumption as defined in (4.24).

The power flow constraints (BEM.10) and (BEM.11) play an important role in meeting
the required power P, P,.. The fuel cell lower power constraint Py, in (BEM.8) is

strictly positive to preserve lifetime.

The change in battery state-of-charge variable . is modelled through the equality con-
straint (BEM.6). The lower and upper bounds on state-of-charge in (BEM.12) are applied
Vn € A because it is a dynamic state and not a control input. The equality constraint

(BEM.13) is a charge-sustaining requirement on the battery’s state-of-charge.
The formulation (BEM) presents two non-convexities:
1. the discrete lookup table 7 in the objective function (BEM.1),
2. the non-linear equality constraint (BEM.6),

which will be both addressed in the next subsection.

It is worth mentioning that é; could have presented an extra non-convexity for both of
these expressions if it were to be an optimised variable because it is directly multiplied
by other variables. However, it poses no issue in this context because it is given as a fixed

input.

5.2.2 Convexifying EMS Formulation

Convexifying (BEM.1)

Pfc
Tfc (Pfc)

leads to a non-convex formulation due to the discontinuity introduced in the discrete
efficiency lookup table. However, its discrete points are expected to follow a convex shape.
This is because the denominator g (P ) is concave and positive, shown in Fig. 4.4, which
satisfies the condition for a convex reciprocal according to (3.20). This characteristic of
fuel cell efficiency can be generalised to other fuel cells, as it was theoretically proven that

efficiency is always concave [320].
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Figure 5.1: Plot of discrete nffﬁgf ) and its quadratic polynomial approximation g..

Given that the discrete m%;f) follows a convex pattern, it implies that it could be

accurately approximated by the continious quadratic polynomial

Gtc(Prei) = p2Pi; + P1Pei +po Vi € B, (5.13)

which is convex for p, > 0. Figure 5.1 plots the quadratic polynomial along the original

discrete data and indeed shows a high approximation rate.

Convexifying (BEM.6)

The equality constraint (BEM.6) does not form a convex set due to the non-linearity of
the square root operation over P,,. This can be convexified by relaxing the constraint

into

Uoc - \/Ugc - 4Rbathat,i S 100

Oci > X Opj X ———.
Gt = 2Rpa 5736000 A

(5.14)

The inequality (5.14) forms a convex set because the lower inequality side is convex

and thus satisfies the condition on convex inequalities (3.10). The numerator U,. —
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\/ U2, — 4Ryat Prat 1s convex because scaling the concave square root by —1 produces a
convex function. Moreover, P, is the only optimised variable on the right-hand side,

since dy,; on the right-hand side is a given input within the context of (BEM).

The relaxed constraint (5.14) shall hold with equality at the optimal solution. This can
be shown to be true by observing its potential use back in (BEM). Firstly, the optimisation
problem will not arbitrarly raise ., because that would discharge the battery and trigger
the charge-sustaining constraint (BEM.13) which in turn will cost fuel to recharge the
battery. Instead, the objective function will push down on d; to save fuel. Furthermore,
there is an incentive for ¢, to go negative to recharge the battery by “free energy”. All of

these tendencies will tighten the relaxed constraint towards equality.

Although the relaxed constraint (5.14) forms a convex set, it will not be accepted by
commercial convex solvers, because they typically lack support for square root constraints.
The full reason for this limitation goes beyond the scope of this thesis. In a nutshell, it
is related to limiting the type of mathematical expressions accepted, which improves

algorithmic efficiency. More details on this can be found in [323, Chapter 7).

One approach around the square-root limitation is to build a custom convex solver.
Another is to use a non-linear solver that supports general constraints; however, this would
fail to leverage the computational benefits of convex models. Instead, it is proposed to
rewrite the constraint into a form that can be accepted by the majority of convex solvers,

a quadratic constraint.

Rewriting (5.14) as Quadratic

To facilitate derivation, start by defining the constant w

36000 a1
= QR X Al 5.15
v bat X 700 (5.15)
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which is used to rewrite (5.14) as the neater

Sci
w(si > Upe — /U2, — 4Ryt Poatiy (5.16)

t,i

then move U, to the left-hand side

Oci
W = Une > =+/UZ = 4Ruut Poat.i (5.17)
t,i
square both sides to drop the square-root (which also flips the inequality)

52 . 5e
w24t o

52 S + Uc?c < Ugc - 4Rbatpbat,i; (518)
t,8 t,2

U2 can now be cancelled from both sides to yield the final convex form

52 5
w? (;; — 2w 5@7’ < —4 Ry Poat.s. (5.19)
t.3 t,1

For a given d;, the final form (5.19) has a quadratic left-hand side and a linear right-

hand side. The quadratic part is convex because its coefficient g’TQ is non-negative by
t,i
definition. Moreover, the non-linear quadratic part is on the lower inequality side which

satisfies the convex inequality condition (3.10).

The constraint (5.19) is merely a reformed alternative to (5.14) and would thus hold

tightly with equality at the optimal solution.

5.2.3 Convex EMS Formulation

The EMS formulation (CEM) is a convexified variant of (BEM) by implementing the
changes proposed in the previous subsection. The new label refers to “Convex Energy
Management”. The only change to the constraints is introducing the relaxed inequality
(CEM.6) which will hold with equality at the optimal solution as explained in the previous

subsection.

97



min
P, P, 0
o2 B 62 0 3 e Pres) x LHV x &y,

icB
subject to
given as parameters VjeS
Pn; VieB (CEM.2) P+ P = Prej + Poas
P, YieB (CEM.3) VkeT
Ag
bj=—2L VjeS8 (CEM.4) Pouxt = Frer + Foatk
Uavg,j
Sx=2Ngp VkeT (CEM.5) vn e A
<( < (¢
VieB $Sas¢
52, 8¢ ; other
2.¢8 °Ct
W5, o < (CEM.6)
_4Rbatpbat,i CN - CO
Git1 = G — O¢q (CEM.7)
P < Pii < P (CEM.8)
Boat < Poati < Poat (CEM.9)

Optimisation Problem 4: Convex Energy Management (CEM)
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5.3 Joint Speed and EMS Optimisation

This section builds a joint speed-EMS formulation to optimise all speed and EMS variables
at the same time. This would improve the optimality of the solution by better exploring

and thus taking advantage of the dynamic interaction between all variables.

Nevertheless, a joint formulation comes at a higher computational cost. For example,
feeding 6 as a fixed input to (CEM) enabled convexifying the constraint (BEM.6) into
(CEM.6). This will no longer be the case for a joint formulation because d; € S should

now be optimised.

Section 5.3.1 attempts creating a joint formulation by merging the convex speed (CSP)
and convex EMS (CEM). This returns a non-convex joint formulation which is analysed
and convexified in Section 5.3.2. The final convex formulation is presented in Section

5.3.3.

5.3.1 Merging Speed and EMS Formulations

Directly merging the convex speed (CSP) and the convex EMS (CEM) formulations pro-

duces the joint formulation (BJN). Its label refers to “Basic Joint”.
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min
Erca Fbrka Vy Vaygy 6‘5’ 2 >\v

Pm7 Hca Pba‘m Ca 5C ZQfC(PfCJ‘) x LHV x (5t,i

ieB
subject to

given as parameters

As; Vjes (BJN.2)
Ay YeeT (BJN.3)
P YieB (BJN.4)
Vie B
252,1' _ O¢i
W5, 2Woctg < (BIN.5)
_4Rbatpbat,i
Git1 = G — A¢y (BJN.6)
P < Prei < P (BJN.7)
Poat < Poati < Poat (BJN.8)
VieS
(5.4) (BJN.9)
Vavg,j = % (BJNlO)
(5t,j = As)\v,j (BJNll)

Ft 7)) .
Py = ——228 _ (BJN.12)
7 Tlm (Ftrc,jvavg,j>

Pmyj + PauX,j = Pfc,j + Pbat,j (BJN.13)

1 < Vayg j A (BJN.14)

v.J
0 < Aoy (BJN.15)

h S F1trc,j S m (BJNlG)
&)\v,j S F1trc,j S m)\v,j (BJN17)

Foe < Fiij <0 (BJN.18)

VkeT
Ok = Agk
e = B Pen
vie )’
=0

Zl:()

Optimisation Problem 5: Basic Joint (BJN)
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Firstly, note that the positive traction variable Fi. has been eliminated. It was used

trc

to penalise (CSP), whereas now hydrogen consumption can be directly penalised using

ch<Pfc)-

Secondly, the constraint (BJN.12), which is based on (4.18), has been introduced, to
convert traction force Fi,. to motor electric power P,. This is done to couple longitudinal

dynamics (BJN.9) with the powertrain (BJN.13).

Although (CSP) and (CEM) were convex in their own right, their merger (BJN) has

introduced the following non-convexities:

1. the bilinear multiplication between the variables P and d; in the objective function
is non-convex for instances that belong to §. It is convex for instances that belong

to T because ¢; is predetermined as A;.

2. the bilinear multiplication between Fi,. and v in the equality constraint (BJN.12) is
non-convex for instances that belong to §. Moreover, the efficiency model therein

is discrete, which also creates non-convexity.

3. the variable ¢, is divided by d; in (BJN.5) which is non-convex for instances in S.

In contrast, it is convex for instances that belong to 7 because d; is predetermined

as Ay.

5.3.2 Convexifying Speed and EMS Merger

This section addresses the aforementioned non-convexities of (BJN) to produce a convex
joint speed-EMS formulation. Since the non-convexities were concerning instances in S,
the focus here shifts to finding alternative models that are convex for §. The convex
alternatives to be developed in this section for & can be used in conjunction with the
already convex models for 7, as the modelling domains are used exclusively of each other

for any given instance.

The convexification strategy for S is inspired by the linear work penalty > thq Asj

JES
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in (CSP.1). This penalty is linear for S because it is assigned a predetermined A ; for all
j € §. Comparing this to the non-convexities in (BJN), suggests that models built using
the predetermined A ; instead of the variable ¢; ;, and using work instead of power, are

likely to be convex for S.

Therefore, it will be attempted to convexify (BJN) by transforming its models for S
from power to work. Upon examining (BJN), it becomes evident that implementing this
approach requires changes to (BJN.13), (BJN.12), (BJN.1) and (BJN.5). This is explored

in the following subsections in the same order.

Rewriting Power Flow (BJN.13) as Work

To transform the electric power equality (BJN.13) into terms of work and A, for all
J € 8, start by multiplying by 9 ;

P it + Paux,jOtj = Prej0t; + Poat,j0t,j (5.22)

which returns the electric energy balance over the interval [j,j + 1).

Substitute &; ; = UAS’J as defined in (4.13) except for P 0t

avg,j

As j As j As ]
Lt PauxiOj = Prej— + Poagj—2. (5.23)

Vavg,j Vavg,j Vavg,j

P,

There is no risk for the denominator v,y to return a zero with S as explained in (4.12).
It was chosen to keep P, ;0 ; because auxiliary power is given as a reference power profile

and not optimised.

The equality (5.23) contains the spatial interval Ay but lacks a force variable to get

work F'Ag. To this end, define the “analogous” force variable Vj € S

Py,
Fpj = —"1, (5.24)
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where x refers to one of: motor, fuel cell or battery. It is called “analogous” because it
draws an analogy to the mechanical relation F = % yet it is applied to electric quanti-

ties.

Now substitute (5.24) into (5.23)

Fm,jAs,j + Paux,jgt,j - ch,jAs,j —|— Fbat,jAs,j' (525)

The equality (5.25) describes the balance of “electric work”. Using work for electric
quantities is not intuitive, though mathematically, Fy ;A ; represents the electric energy

flow for the interval [j,7 + 1) for j € S.

To conclude this subsection, the work equality (5.25) shall replace (BJN.13). To success-
fully implement this change, P, should be replaced by F, for all powertrain components
for S. This will be explored after the next subsection which demonstrates the equivalence

of power- and work-based models using a numerical example.

Numeric Intuition behind F,Aq

This short subsection presents a numerical example to provide insight into how F, ;A ;
and P, ;o ; return the same energy magnitude for j € §. Take an instance j € S, at

which Ag; = 10m, vaye; = 10m-s™! and Py ; = 50kW. This means that the “analogous”

force of the fuel cell is Fy. ; = 18?5‘_:& = 5kN. Also, the interval [j, j+1) lasts 101131_?_1 =1s

long. Energy found using Fi.Ag: 5kN x 10m = 50kJ is equivalent to that using Pg.d;:
50kW x 1s = 50kJ.

Convexifying (BJN.12)

To couple (BJN.12) with the work equality (5.25), motor electric power P, ; should be
transformed into the motor analogous force Fy, ; for all 7 € §. This has the added benefit
that the numerator in (BJN.12) will become linear, which will facilitate convexification.

To do so, repeat the same steps that were used to rewrite the power equality (BJN.13)

103



into the work equality (5.25).

First, multiply (BJN.12) by §;; = As,j

Vavg,j
P ) ASJ — FtrC:jUan’j Asvj (5‘26)
! Vavg,j nm(Ftrc,j Uan,j) Vavg,j ’
replace P, ; by the analogous terms F}, jVayg j, defined in (5.24),
Ag s FlirciVave i  Ag i
Fm,j Vave,j s tre,j “avg,j S,J ’ (5‘27)
Vavgj  Th(Fire,jVave,j) Vave s
cancel out excessive vayg ; terms
Ftrc 1
FoiAg = ] Ag . (5.28
i Frcgturgs) )
optionally, cancel out the common A ;
Ftrc i
Fni= ] . (5.29
" Py Voves) )

Excluding the discrete efficiency term in the denominator, the numerators in (5.29)

have become linear, namely F, ; and Fi, ;.

The discrete % on the right-hand side of (5.29) forms a convex pattern be-
'm rc,jYavg,j

cause motor efficiency is concave and positive, which satisfies the condition for a convex
reciprocal (3.20). This implies that it can be accurately approximated by the convex

quadratic polynomial
G (Fircs Vavg) = Po2Fre + p20U§Vg + P11 FircVavg + Po1 Fire + P1oVavgs (5.30)
though it is proposed to use the much simpler
G (Fire) := poaFie + po1 Furc, (5.31)
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which drops the speed variable v,y,, because it plays a negligible effect on the approxi-

mated discrete points and thus on the approximation rate. In fact, a closer inspection of

Ftrc,j

the approximated expression, ——=—%L——,
Nm (Fire,jVavg,5)

reveals that v,,,; only plays a minor role in
the denominator, whereas Fi, ; plays a major role in both the numerator and denomina-
tor. Note that gm(Fir ;) excludes a constant offset to ensure that traction consumption is

zero if traction force were zero, i.e. gu(0) = poa X (0)2 + po1 X (0) = 0. This goes against

typical polynomial fitting that includes a constant coefficient, see py in (3.11).

Ftrc,j

Figure 5.2 depicts the actual discrete values of ——"L——
nm(Ftrc,] Uavg,])

against the approximated
polynomial ¢y, (Fiyc ;). Moreover, Fig. 5.3 shows that the approximation error is primarily
under 10% for both positive and negative traction spans. This level of accuracy is vital
for informing the optimisation problem of traction losses. For example, failing to model
regenerative braking losses would encourage the optimisation problem to excessively use

negative traction thinking that the recovered kinetic energy would save fuel, whereas in

reality the motor would be capturing less kinetic energy than planned.

Upon substituting g (Fire ;) into (5.29) we get the non-linear equality

Fm,‘ - Qm(F’trc,j)a (532)

which is to be convexified by relaxing it into

Fm,j 2 Qm(Ftrc,j)- (533)

The inequality (5.33) forms a convex set because the convex quadratic term exists on
the lower inequality side, thus satisfying the convexity condition on inequality constraints
(3.10). It will be explained in the final formulation how this relaxation holds tightly at

the optimal solution.

To conclude, (BJN.12) has been convexified by replacing it with (5.33).
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the approximated polynomial ¢y, (Fi,) across the operation domain.

Convexifying (BJN.1)

To couple the objective function (BJN.1) with the work equality (5.25), fuel cell power
P j should be transformed into fuel cell analogous force Fi.; for all j € S. This will also
convexify the objective function as has resulted previosuly for (BJN.12). Nonetheless, the
existing penalty on 7 should remain unmodified because it is already convex. To achieve
this, split the existing penalty summation over B into separate summations for S and 7.
This way it becomes possible to implement changes on & without affecting the existing

penalty on T.

Split (BJN.1) into

> Gie(Prey) X LHV X 6,5 + > e Press) X LHV X 8y (5.34)
JjES keT
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Now roll back g (P ) in the S summation to its discrete expression prior to the

polynomial approximation, which is (4.23),

Proi
—— 5 LHV X 8g; + Y gic(Pres) X LHV X 8. (5.35)
jes fe(Pre.s) keT

Substitute 6 ; = vi,j - and replace P ; by the analogous terms Fi. jVavg ;, defined in
(5.24),
Fc‘ avg,j As j
Y edtEl o LHV x = 3 gr(PBer) X LHV X 6 (5.36)

Fie jVave Vave,j
s Mt (Fc,jVave.j) agJ  per

Now cancel the excessive v,yg ; present in the S summation

Fros
— X LHV x Agj+ Y are(Prei) X LHV X Ay (5.37)

5% e (Fle jVave; ) =t

ch,j

The hydrogen consumption penalty (5.37) would become convex if the discrete E fR—
C c,)Yavg,]

in the § summation were to be replaced by a convex quadratic polynomial as present in
the 7 summation. However, this new polynomial ought to use Fi. unlike P in the T

summation,

Gie(Fe) := P02Ff2c + po1 Fie + poo- (5.38)

The polynomial (5.38) only uses Ff. as its independent variable instead of both Fy. and

ch,j

Vavg. This was found to return adequate accuracy because in the discrete ,
,r]fc(ch,j'Uavg,j)

Vavg
only plays a minor role in the denominator, whereas Fj. plays a major role in both the
numerator and denominator. Figure 5.4 shows actual values against the approximated

polynomial. Figure 5.5 shows that the polynomial’s approximation error is primarily less

than 10%.

To conclude, the following is to replace (BJN.1)

D Gre(Fiog) x LHV X Ay + > gre(Pro) X LHV X 8y (5.39)
jES keT
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Note that the notation gg has been overloaded, where (5.13) is gg(Pi) and (5.38) is
gie(Ftc). These polynomials are not to be mistaken for each other, as they use different

variables and coefficients.

Convexifying (BJN.5)

The battery constraint (BJN.5) should be coupled with (5.25) for instances in S. This is
done by transforming the battery power R, ; into the analogous battery force Fi ; for
all 7 € §. This transformation will also facilitate convexifying (BJN.5) as has resulted

previously for motor constraint (BJN.12) and fuel cell penalty (BJN.1).
Start by multiplying (BJN.5) by the variable d; ; (not its definition yet)

2

0% .
w2% — Woewe; < —4Rpat Poat 01, (5.40)
t.J
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82 . . . .
now replace éf_j (most left term of the inequality) by the surrogate variable A¢ ;

w2>‘<,j — 2Upew0c,j < —4Rpat Poat, 0t (5.41)
substitute the definition 6, ; = vﬁjéjj
2 As,j
w )\Qj - 2UOCW6§,]' S _4Rbatpbat,j—7 (542)

Vavg,j

introduce the analogous battery force Fi ; in place of b‘"‘” , defined in (5.24),
w2)‘C,j - 2UOCW(5C,]' S _4Rbathat,jAs,j> (543)

the inequality is now linear and thus swapping the inequality sign with an equality sign

would return the convex set

WQ)\C,j - 2UOCW5C,]' = _4Rbathat,jAs,j- (544)

Note that the tightening operation that returned (5.44) does not alter the optimal

solution because it is merely undoing the relaxation introduced back in (5.14).

Now that (5.44) is linear, we return our attention to the newly introduced surrogate
variable

Aej =<2 (5.45)

Using the surrogate variable A¢ ; requires the equality constraint (5.45), which is non-
convex because it non-linearly divides optimised variables. However, it can be convexi-
fied by relaxing it and rearranging it into the form of the second-order cone constraint
(3.24)

5 i S 04 (5.46)
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This second-order cone constraint is convex if d;; and A¢; are non-negative. This is

true because time J; ; is naturally non-negative.

The relaxation between (5.45) and (5.46) will not alter the optimal solution. This is

easiest to prove by observing a relaxed variant of (5.45) without altering its form,
62
Aej = =2, (5.47)
), 5t7‘7

now observe that the right-hand side in (5.41) pushes down on the left-handside just as was
proven previously for (5.19). Since A ; is on the left-hand side of (5.41), it will therefore
push down and tighten its relaxed definition (5.47). By equivalence, the second-order cone

constraint (5.46) will also tighten and hold with equality at the optimal solution.

To conclude, (BJN.5) will be convexified for & by replacing it with the linear equality

(5.44) and the second-order cone inequality (5.46).

Adapting Fuel Cell and Battery Bounds

The analogous force variables for the fuel cell Fi. and the battery Fj,; are not directly
compatible with the power bounds (BJN.8) and (BJN.7), because they were originally

written for the power variables P, and P .

To work around this non-compatibility, start by replacing the power variable by the

definition of analogous force, defined in (5.24),
P < Fovgg < P (5.48)

then clear F, on its own by dividing over vy,

(5.49)
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and replace ﬁ by the already defined surrogate variable A, to produce the linear bounds

P\, < F, < P), (5.50)

Using this process, for j € S, (BJN.7) becomes
&)\v S ch,j S P_fc>\v7 (551)

and (BJN.8) becomes
%/\v < Fbat,j < m)\v' (552)

5.3.3 Convex Joint Speed-EMS Formulation

The new formulation (CJN) convexifies (BJN) by implementing the changes proposed in

Section (5.3.2). The new label of (CJN) refers to “Convex Joint”. The changes are:

e the objective function was split to convexify the S penalty by introducing a new

polynomial gg(Fi.). This is different to the 7 penalty which is g (Pr).

e the work equality (CJN.20) introduces the new analogous variables F,, Fi., and Fj.
These are bounded in (CJN.29) and (CJN.30). A bound on the analogous F}, is not
required because it is already lower bounded by mechanical traction Fi,. in (CJN.23)
which in turn is lower bounded in (CJN.26) and (CJN.27). The equivalent power

equality for 7, (CJN.6), remains unchanged.

e the change in state-of-charge for S is modelled by the linear (CJN.21) and con-
vex second-order cone (CJN.24). The equivalent model for 7, (CJN.7), remains

unchanged.
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Table 5.1: The variables optimised for S and 7 in (CJN). @ speed is set to zero because
train remains stationary for 7. @ given as A for T.

‘ ‘ Erc Fbrk UV Vayg dt

S| Vv v o vV
T -

AV I)fc Pbat C 5C Fm Ec Fbat )\C
v

N R
Y Y N

v
. D - ©

Seamless State Transition

Table 5.1 lists all of the variables optimised in (CJN) and whether each is defined for S
or 7. This depiction will help explain the seamless state transition between modelling
domains. Recall that this transition is vital to using hybrid modelling, where both spatial

and temporal domains are used, discussed previously in Section 4.1.1.

In the joint problem setting, state is defined as the tuple (v, z, () which is defined for
both & and 7T according to Tab. 5.1. This means that state (v;, 2;,(;) for i € B will
seamlessly transfer to the next state (viy1,2it1,(y1) for i + 1 € B, regardless of the
domain that was assigned to ¢ and ¢ + 1. Moreover, so long the state is defined, this
transition will occur seamlessly regardless of the underlying state evolution model. For
example, the state ¢ will seamlessly transition between instances, regardless of whether
the state evolution ¢, was computed using (CJN.7) for 7 or (CJN.21) for S. The same

applies to train speed v and z.

Solution Optimality and Polynomial Approximation

The optimality of (CJN) is dependent on the approximation accuracy of the used poly-
nomials. To this end, the error rates were shown to be largely less than 10% in Fig. 5.3
and Fig. 5.5.

Solution Optimality and Constraint Relaxation

For (CJN) to find the real global optimal solution, the relaxed constraints ought to hold

at equality at the obtained solution.
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(CJN) inherits three constraint relaxations from previous formulations, namely (CJN.13)
and (CJN.22) from (CSP) and (CJN.7) from (CEM). No changes have occurred to the
incentives that push these inequalities to hold at equality: they collectively rely on min-
imising fuel consumption, conserving battery charge, and completing the journey by a

target time.

Two new relaxations have been introduced into (CJN), namely (CJN.23) and (CJN.24).
The optimal solution will tighten these relaxed inequalities to hold with equality. The

following elaborates on this

1. (CJN.23) holds with equality because F},; pushes down on Fi,; to reduce its de-
mand on the fuel cell and battery in (CJN.20) to conserve fuel. In return, Fi,. ; will
push up on Fy, ; to accelerate the train in (CJN.17) and achieve the timing points

constraints (CJN.31).

2. Section 5.3.2 explains why (CJN.24) holds at equality. This is not repeated here for

brevity.

As such, the hypothesis HA1 has been proven.

115



min
Fircy Forky Uy Vaygy Oty 25 Ay
-Pfca Pba‘m Ca 5(
Fm’ Eca Fbat, )‘C

subject to

given as parameters

As; VjeS

Ay VkeET

Poxi VieDB

Vk e T
Ok = Apk

2 s = Bl p T P

292k 8¢ k

w 62—’—2Uocw5—’<

2 bk
—4 Ryt Poat i

Pre <Py < P
Poat <Fratk < Poat
VieB

Git+1 = G — D¢y

Zjes Gre(Fre ;)X LHV X Ag ; +

(CIN.2)
(CJN.3)

(CIN.4)

(CIN.5)

(CIN.6)

(CIN.7)

(CIN.8)

(CIN.9)

(CJIN.10)

(CIN.11)

(CIN.12)

(CJIN.13)
(CIN.14)

(CJIN.15)

(CJIN.16)

ZkE’T QfC(Pka) X LHVX(SW

VjieS
(5.4)

. (% -+ Vj+1
Uanaj _ 9

5t,j = As)\v,j

FmJAs’j“_Paux,jé‘t,j:
ch,jAs,j+Fbat7jASuj

w2)\¢7j—2Uocw5<7j:
_4Rbathat,j As,j

1 < Vavg j v,
Gm(Fircj) < Fnj
02 < B jhe,j
0<Aujr Ay
Flge € Wy = Fire
g = oy = P j
e € Wi <0
Pl = Mgy = Py
sy © P s = Poat o
Ym e M
t(m) = Tm
other

v = Go

Optimisation Problem 6: Convex Joint (CJN)

(CIN.1)

(CIN.17)
(CIN.18)

(CJIN.19)

(CIN.20)

(CIN.21)

(CIN.22)
(CIN.23)
(CIN.24)
(CIN.25)
(CIN.26)
(CIN.27)
(CIN.28)
(CIN.29)

(CJIN.30)

(CIN.31)

(CIN.32)



5.4 Joint Speed, EMS and Timetable Optimisation

This section presents a formulation to jointly optimise speed-EMS-timetable for a single
train. The motive to include timetable optimisation is to fully leverage the dynamic
interaction between the timetable and the hybrid powertrain. The formulation optimises

running time between stations given a fixed total journey time.

Observe from (CJN) that the duration constraint (CJN.31) is constraining the inter-
mediate stations {m € M|m < N}. Therefore, dropping these intermediate station
constraints returns a single constraint on total journey time ¢(/N) = 7n. The resulting
formulation is shown in (CTT). This new formulation maintains the incentive to tighten
the previously relaxed constraints. This is because the duration constraint (CTT.31)
still maintains incentive to “move” the train up until the terminal instance N which is

adequate. As such, the hypothesis HA2 has been proven.
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6 SIMULATION RESULTS

This chapter presents a series of simulation results to compare and asses the optimised

performance. These will be used to prove the operational hypotheses.

To start, Section 6.1 describes the case study used throughout this chapter and Section
6.2 defines metrics that will be used to compare outcomes. Section 6.3 compares conven-
tional ecodriving that emphasises coasting to jointly optimising speed and EMS. Section
6.4 explores the impact of adding measures against degradation on fuel consumption. Sec-
tion 6.5 compares following a given timetable to jointly optimising speed-EMS-timetable.
Section 6.6 presents results for optimising both timetable running time and total jour-
ney time. Lastly, Section 6.7 presents numerical results to verify various aspects of the

optimisation, such as polynomial accuracy and constraint relaxation.

6.1 Case Study

The rail line simulated is the 63-km-long Tees Valley Line which runs between Saltburn
and Bishop Auckland in northern England, shown in Fig. 6.1. This line is currently
operated by the train operating company Northern. This case study was chosen because
Northern published a series of reports regarding converting this line from a diesel service

to a hydrogen service [324, 325].

To serve the Tees Valley Line, the train manufacturer Alstom proposed retrofitting a
fuel cell hybrid powertrain into an existing Class 321. Due to the lack of public data about
Alstom’s offering, the train parameters chosen are partially similar to the HydroFLEX

which is based on the Class 319 [326]. These can be found in Appendix A.

The case study is optimised with Ay = 10. The dwell times and working timetable
can be found in Appendix B. To ensure a fair comparison, all simulations were subject to

the same charge-sustaining constraint, where the initial and terminal state-of-charge was
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Figure 6.1: Tees Valley Line. Reprinted from [325].

similarly set to 50%. The solver used is the Gurobi barrier algorithm [327].

6.2 Comparison Metrics

This section introduces metrics that will be used to compare between operating strategies.
These metrics are produced after optimisation and simulation. Therefore, computational
complexity is of no concern and are thus derived using the original non-convex models
of Chapter 4. Note that the small symbol ¥ is used as a prefix to signify that a metrics
is a sum over the journey. This is not to be confused for the mathematical summation

operation that is assigned the bigger symbol » .

Fuel Consumption

Based on (4.24), denote a journey’s total hydrogen consumption by

Pfci
YH, = ——— x LHV x 6;,. 6.1
? ; Nte(Pre,i) R (6.1)

Since efficiency 7. is in the form of a discrete lookup table (see Fig. 4.4), linear

interpolation is used to fetch values that fall between the defined efficiency values.
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Traction Work

Denote total positive traction work for a journey

YW = Z Ft—lfr—c,jASJ? (6.2)
jes
and total negative traction work
SWee = FrejAsjs (6.3)
JES

where .
Frc Frc >0
Fti_c,j = e e (6.4)
0 Ftrc,j <0
and )
_ 0 Ftrc,j Z 0
Fiej = (6.5)
FtI‘C] Ftrc,j <0

Mechanical Braking Work

Denote total mechanical braking work for a journey

YW 1= Z FinejAs 5. (6.6)
jeS
Battery Charge-Throughput

Based on (2.1) and (4.31), denote the total battery charge-throughput for a journey

YQvat = Z |[bat,i|5t,i7 (6.7)

i€B

which according to Section 2.1.4 is the main driver behind cyclic battery degradation.

The resulting unit is Coulombs.
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Fuel Cell Load-Cycling

Based on Equation 13 in [33], denote fuel cell degradation due to load-cycling over a

journey by

PC'L’ _Pci
S D ::Za—‘ e el (6.8)
ieB b

where « is the load-cycling degradation factor. The unit of « is pV - kW™, Since the
expression is linear, an accurate value for « is not required for qualitative comparison.
We assume the same value from [33] (o =0.041pV - kW™'). The degradation measure
(6.8) represents drop in stack voltage; therefore, higher values represent more degradation.

Recall from Fig. 2.4 how stack voltage drops with ageing.

6.3 Conventional Ecodriving vs. Joint Optimisation

This section compares conventional ecodriving that emphasises coasting to joint speed-
EMS optimisation. The former is achieved by first optimising speed according to (CSP)
then optimising the EMS using (CEM). The former is achieved using (CJN). The purpose

of this comparison is to prove hypothesis HO1.

Table 6.1 shows the resulting metrics according to those defined in Section 6.2. It
shows that the joint method consumed 15.1% less fuel than the conventional method,
despite consuming 15.8% more positive traction. This is because the joint method relied
87.5% less on wasteful mechanical braking and relied 342% more on regenerative braking
(negative traction). Therefore, the joint method offset its higher positive traction figure

by bigger regenerative braking returns.
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Table 6.1: Simulation metrics for conventional ecodriving and joint formulations.

SHy SWi, SWiae SWia ZQua; SDi
(kg) (MJ) (MJ)  (MJ)  (MC) (mV)

Conventional || 20.1 677.8 2.7 161.2 1.91 0.75
Joint || 17.1 785.5 3214 20.1 1.82 0.50

Difference to
conventional (%)

-15.1 +15.8 +342 -87.5 -4.2  -33.6

We examine plots of the simulation to understand how the joint method succeeded at
leveraging regenerative braking to its advantage. Figure 6.2 shows a plot for the entire
journey. Alternatively, Figure 6.3 shows a smaller excerpt from the journey for clarity.
The P subplot confirms that the joint method applied positive traction (P, > 0) for
longer while departing stations. This enabled it to form a different speed profile v that
was compatible with earlier and longer regenerative braking (P,. < 0) while coming to
a stop at stations. The Fj, subplots show that it used less wasteful mechanical braking

while coming to a stop because it had already started regenerative braking earlier.

On the contrary to the joint method, the conventional method pulled back on positive
traction as early as possible while departing stations. This is to commence coasting
as early as possible (Py. = 0). It delayed all forms of braking as much as possible to
maximise coasting. The short braking span left towards the end forced it to supplement

regenerative braking with wasteful mechanical braking.

Figure 6.4 is an alternative depiction for the explanation above. It plots the accu-

mulative sum of the comparison metrics. The YW, subplot shows the joint method

trc
accumulating more regenerative braking energy each time it stops. The conventional
method wastefully accumulates more mechanical braking work YWy, each time it stops.

The accumulative fuel subplot X H, shows how the gap in consumed fuel widens as the

journey progresses.

To conclude, the results show that the joint method successfully leverages regenerative

braking thereby consuming less fuel and proving hypothesis HO1. It leverages regenerative
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braking more effectively because it uncovers the dynamic coupling between speed and
EMS at the time of optimising them jointly. On the other hand, the conventional method
uncovers the benefit of regenerative braking at the time of EMS optimisation which occurs
after being given a speed profile, thus is only able to influence regenerative braking to a

limited extent.
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Figure 6.2: Simulation result of the entire journey for conventional ecodriving and joint
formulations.
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6.4 Measures Against Fuel Cell Degradation

This section assesses the impact of a protective measure against fuel cell degradation on
fuel consumption. The protective measure assessed is reducing harmful fuel cell load-

cycling. This assessment is for the purpose of proving hypothesis HO2.

The assessment is performed on the standard joint formulation (CJN) by fixing fuel
cell power during i) dwell time and ii) third of the way between each pair of consecutive
stations. The remaining distance between consecutive stations is left unfixed to allow
for some optimisation flexibility. Figure 6.5 shows both free and “fixed” fuel cell power
profiles. The latter fluctuates a lesser number of times thereby reducing harmful load-

cycling, as shown in the third subplot X Dx..
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0
400
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o
N
Ul
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Figure 6.5: Fuel cell power and accumulative load-cycle degradation for free and fixed
comparison.

Table 6.2 lists the resulting comparison metrics between free and fixed results. The
fixed consumes marginally more fuel at 1.3% while load-cycling drops a substantial 19.7%.

Moreover, rather unexpectedly, the battery charge-throughput dropped by 2.1% as well,
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thereby alleviating some battery degradation as well. This occurred because the fixed fuel

cell power output has offset some of the battery output.

Table 6.2: Simulation metrics for joint formulation with free and fixed fuel cell power.

ZHQ EWth:C Z:I/Vt;c EI/Vbrk ZQbat XD fc
(kg) (MJ)  (MJ)  (MJ) (MC) (mV)

Free || 17.1 7855 3214 20.1 1.82 0.50
Fixed || 17.3 783.3 321.3 18.8 1.78 0.40

Difference to

fee(%) | T13 028 005 61 21 -107

Figure 6.6 plots the journey results for both free and fixed formulations. It shows
that speed v, traction P, and mechanical braking Fj,; remained largely the same. The
biggest difference is in fuel cell power P which was imposed by fixing the power level.
Battery power P, for the fixed variant has dropped in some places to offset for the fixed

fuel cell power output.

To conclude, it was shown that adding protective constraints negatively affects fuel
consumption thereby proving HO2. Nonetheless, the percentage reduction in harmful
load-cycling was substantially bigger than increase in fuel consumption. Although the
protective measure was meant for the fuel cell, the results also suggest that it might
protect the traction battery from degradation as well. These encouraging results are due
to the ability of the joint method to optimise all variables while simultaneously observing

the fixed power constraint.
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Figure 6.6: Journey simulation result for free and fixed fuel cell power.
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6.5 Timetable Joint Optimisation

This section compares the joint speed-EMS (CJN) to the joint speed-EMS-timetable
(CTT). In the figures, the former will be called “timetabled” referring to it being given
a timetable, while the latter will be called “free” referring to it freely self-optimising its
own timetable. The free formulation only follow uses the dwell time parameters from
Appendix B, as it optimises its own running time between intermediate stations. Both

formulations hold fuel cell power constant as in Section 6.4.

Table 6.3 lists the comparison metrics which indeed shows an improvement in all vital
fronts, namely a 4.6% reduction in fuel consumption, a 12.4% reduction in battery charge-

throughput, and a 3.96% reduction in the fuel cell load-cycle metric.

Figure 6.7 plots the results on the time axis. It shows that the free method indeed
selects different running times than the timetable. In some cases it chooses higher speed

to finish a segment quicker, and in others it goes slower and thus longer.

Figure 6.8 plots the simulation results against the space axis with x-axis being annotated
by the names of the stations. Note that the results now align due to them being plotted

against space.

To conclude, jointly optimising speed-EMS-timetable uncovers further dynamic inter-
action between station running time and the existing speed-EMS dynamics. This enables
the joint method to find a more optimal solution by optimising the additional timetable

variables. This proves the hypothesis HO3.
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Table 6.3: Simulation metrics for joint formulation with and without intermediate
timetable.

SHy SWi, SWae SWis ZQua  SDg
(kg) (MJ)  (MJ) (MJ) (MC) (mV)

timetabled || 17.3 783.3 321.3 188 1.78  0.40
free | 16.5 715.2 285.3 3.9 1.56  0.38

Difference to

timetabled (%) -46 -86 -11.1 -79.2 -124 -3.96
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Figure 6.7: Simulation result for timetable optimisation plotted against time.

132




SN il L

—— timetabled

— free

~

- puepdny doysig

r uopliys

F 941124y uoImaN
F uoibuiybiay

I peoy YyiioN
 uojbulieqg

- alepsuig

I 1S9 Su9||vY
I au110s916e3

 Aqeuloyl

- ubnolgsa|ppIN

- Sjueg yinos

L jeqjus) Jeopay
+ 3se3 Jeopay

- BT

o
o

(s/w) a

o

W

Te! To!
_

(M) d

o

o

o

T
(N>Y) 4

LEAREREREE

o O
o O
N

300

(M) “d

o O
o
Te]

—500 -

(M) d

o
O

(%) 9

o
<

100 -

uingijes

(W) uoneAs|s

Figure 6.8: Simulation result for timetable optimisation plotted against station name

(space).

133



6.6 Timetable Pareto Curve

Figure 6.9 depicts the Pareto curve for fuel consumption against total journey time.
This was generated by optimising (CTT) with various values of the duration constraint
(CTT.31) to simulate various trip times. The red star marks the optimal for speed-EMS-
running time under the journey time given in the working timetable (87.5 minutes as in
Appendix B). The green star marks the optimal solution when the journey time is freely

optimised as well.

As journey time increases between the red and green star, fuel is saved because less
traction effort is needed. However, fuel consumption climbs again past the green star.
This is because traction savings are outweighed by running the train’s auxiliary load for

longer.
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Figure 6.9: Pareto curve for hydrogen consumption vs total trip time.
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6.7 Numerical Validation

This section presents various numerical results related to algorithm accuracy and perfor-

mance.

6.7.1 Polynomial Exactness

It was explained in Section 5.3.3 that the real-world optimality of the solution is de-
pendent on the approximation accuracy of the motor polynomial (5.31) and both fuel
cell polynomials (5.13) and (5.38). Figures 6.10 and 6.11 plots an excerpt of the actual
against polynomial approximation under the simulated conditions and indeed confirms a

high approximation rate.
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Figure 6.10: Depiction of motor polynomial accuracy.
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Figure 6.11: Depiction of fuel cell polynomial accuracy.

6.7.2 Constraint Tightness

The optimality of the solution also depends on the relaxed constraints being tightened
at equality. Figure 6.12 plots the tightness tolerance of the relaxed constraints in (CTT)
which proves solution optimality. The figure is generated by subtracting both sides of the
relaxed constraints from each other; therefore, a result closer to zero indicates a tighter

constraint. These are scaled according to constraint numerical magnitude.
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Figure 6.12: The tightness of the relaxed constraints of (CTT).

6.7.3 Computation Time

Table 6.4 lists compute time of (CTT) for various A resolutions. The required compute

time grows polynomially with problem size. The results are on the order of seconds,
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whereas a relevant example from literature using Dynamic Programming is on the order

of hours [154].

Table 6.4: Compute statistics of (CTT) for various problem resolutions.

Ay (m) | 100m  50m  20m  10m  5m

Number Variables || 9201 18049 44621 88931 177649
Number Constraints || 11415 22349 55184 109937 219566
Algorithm Iterations 31 33 39 44 63

Compute Time (s) 1 3 10 25 74

6.8 Concluding Remarks on Joint Optimisation

This work has proven specific hypotheses regarding optimal train operation and how to
compute them. A central theme throughout this work is that jointly optimising more

variables and constraints is likely to deliver more optimal results.

A key enabler to the success of the joint method is its ability to fully leverage the
dynamic interaction between optimised variables by optimising them all simultaneously.
Non-joint optimisation of multiple variables, e.g., sequential optimisation, would fail to
effectively uncover this dynamic interaction thereby affecting solution optimality. This
was indeed the case for the non-joint results in Sections 6.3 and 6.5. For the former,
the EMS optimisation step was given a speed profile and thus could not fully leverage
regenerative braking without changing the speed profile. For the latter, the speed-EMS
step was given a timetable to follow and thus could not suggest a more optimal timetable

for the given powertrain.

Nonetheless, as demonstrated in (BJN) in Section 5.3.1, when speed and EMS formula-
tions were joined, incorporating dynamic interactions jointly can lead to computationally
complex formulations. This work took the approach of convexifying the resulting formu-

lation to improve computational efficiency.
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7 CONCLUSION

7.1 Summary of Work

This thesis is concerned with optimising the operation of fuel cell hybrid trains with
the primary goal of reducing fuel consumption, thereby reducing operational costs and
improving the financial viability of such trains. This work builds on the premise that
conventional operating strategies might be suboptimal for fuel cell hybrid trains, thus a

more optimal operational pattern could be found to save fuel.

Three hypotheses concerning optimal operation were presented, called Operational Hy-

potheses:

1. The first hypothesises that jointly optimising driving style and EMS is more optimal
(fuel efficient) than conventional ecodriving which emphasises coasting. This was
pursued because coasting is a popular means of reducing fuel consumption amongst

train operators.

2. The second hypothesises that adding measures to reduce powertrain degradation
could worsen fuel economy. This was pursued due to the high capital cost of the fuel
cell hybrid powertrain thereby motivating operators to explore means of conserving

its lifetime.

3. The third hypothesises that jointly optimising the timetable along driving style and
EMS is more optimal (fuel efficient) than following a given timetable. This was
pursued to assess whether fuel cell hybrid trains can be efficiently used on existing

timetables or redesigning the timetable is necessary for optimal operation

To prove the Operational hypotheses, a series of optimisation problems had to be for-
mulated to find the optimal solution of the various objectives. Nonetheless, the coupled

dynamics of a hybrid powertrain necessitates a complex joint formulation of several vari-
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ables, which could easily grow into an intractable computational problem. This was
indeed found to be the case in Section 2.3.1 of the literature review, where existing liter-
ature decouples the optimised variables to simplify computational complexity. To tackle
this computational challenge, it was hypothesised that convex optimisation could be used
for joint optimisation without overly simplifying the powertrain’s dynamics, called Algo-
rithmic Hypotheses. The benefits of proving the Algorithmic Hypotheses is owed to the
global optimality and computational complexity guarantees afforded by convex optimisa-

tion.

The literature review in Chapter 2 firstly covers lithium-ion battery and PEM fuel cell
degradation to better understand what measures can be applied to conserve powertrain
lifetime. For batteries, it was found that LTO batteries are more durable and posses
a higher power rating than incumbent battery chemistries used for electric vehicles. Al-
though this comes at the expense of a lower energy density, it is an acceptable compromise
for the fuel cell hybrid powertrain because the battery would only play a supporting role
along the fuel cell. It was also found that charge-throughput is the main degradation
driver which was later used in Chapter 6 to assess the degradation of simulated opera-
tional patterns. For PEM fuel cells, it was found that it is best to hold output power
constant at an intermediate level away from idle or maximum power. The variation of

fuel cell power output was used in Chapter 6 to assess fuel cell degradation.

Chapter 2 also reviewed rail literature for speed, EMS and timetabling practices and
optimisation techniques. It firstly explores publications that exclusively address one of
these objectives at a time, after which it explores publications that address multiple of
these objectives. This was done to assess the potential benefits of joint optimisation. Some
evidence to the superiority of the latter was found. That being said, existing literature
made simplifying assumptions to mitigate computational complexity which unfortunately

came at the expense of solution optimality.

The last section in Chapter 2 covered automotive EMS literature. This was done due to
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the bigger prominence of hybrid vehicles in the automotive domain. In comparison to rail
literature, a bigger variety of algorithms was found spanning rule-based, optimisation-
based and learning-based. This variety of algorithms was also accompanied by a big
variety of powertrain degradation models spanning physics-based and empirical-based
models. Crucially, evidence was found to prove the utility of convex methods for joint

optimisation [36].

Chapter 3 presented a primer on convex optimisation with a focus on what is directly
relevant to this thesis. To this end, the convexity of functions and constraints used in this

thesis are proven therein.

Chapter 4 delves into train modelling details. It firstly proposes a hybrid domain
approach involving both space and time domains to reap the benefits of both. The
spatial domain affords a higher modelling accuracy when the train is moving, whereas
the temporal domain is required for when the train is stationary. This hybrid domain
approach is novel in comparison to the reviewed rail and automotive literature. A chief
enabler of this approach was using mathematical sets to assign each sampling instance to
either domains. The remaining of the chapter derives models for the train’s longitudinal

dynamics and powertrain.

Chapter 5 formulates a series of optimisation problems with increasing levels of fidelity
that ultimately proves the Algorithmic Hypotheses. It starts by formulating a speed opti-
misation formulation in Section 5.1 that is convexified by substituting v? (speed squared)
by the variable z and introducing the surrogate variable A, to circumvent the non-linear
reciprocal operation for instance duration. Section 5.2 builds an EMS formulation that
is convexified by approximating the discrete fuel cell consumption model with a convex
polynomial and relaxing the battery state-of-charge equality into an inequality. The con-
vex polynomial approximation was shown to accurately model the discrete consumption
model because the latter forms a convex shape by the virtue of being the reciprocal of

a concave efficiency curve. This implies that such approximation can be generalised to
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other fuel cells. Moreover, it is shown why the optimal solution sits at the boundary of
the relaxed battery constraint, which proves that the relaxation done to convexify the

formulation does not affect the optimal solution.

Section 5.3 merges the convex speed and EMS formulations into a joint one, though
this direct merger results in a non-convex formulation despite both building constituents
being convex on their own. This occurs because the speed and EMS dynamics are non-
linearly coupled; therefore, by coupling them, one naturally introduces a non-linearity
that leads to a non-convex formulation. This coupling was convexified by expressing the
coupling through linear work-based terms instead of bi-linear power-based terms which
was enabled by the novel hybrid domain approach. Section 5.4 relaxes the duration
constraint imposed on intermediate stations which effectively optimises the running time

between intermediate stations jointly with speed and EMS.

Based on the reviewed rail literature, this is the first successful attempt at jointly
optimising speed-EMS as well as speed-EMS-timetable. Moreover, this was achieved
using convex optimisation, adding to that milestone guarantees on solution optimality

and computational complexity.

Chapter 6 ran a series of simulations to prove the Operational Hypotheses. To perform
an objective comparison, the following metrics were defined: fuel consumption, traction
work, mechanical braking work, regenerative braking work, charge-throughput to assess

battery degradation, load-cycling to assess fuel cell degradation.

Section 6.3 proved that jointly optimising speed-EMS is more fuel efficient than con-
ventional ecodriving that emphasises coasting. This was found to be the case because
coasting delays braking and fails to recover kinetic energy as the train comes to a stop,
whereas joint optimisation efficiently uses regenerative braking early on to slow the train.
Moreover, coasting patterns require a longer acceleration phase which was found to be

more degrading on the fuel cell and battery.
Section 6.4 proved that measures to counter fuel cell degradation comes at the expense
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of additional fuel consumption. This was tested by fixing fuel cell power to reduce load
cycling. Nonetheless, it was encouraging to find that the increase in fuel consumption
was found to be significantly less in magnitude than the reduction in degradation. This
suggests that such a measure might be financially viable and even favourable to imple-

ment.

Sections 6.5 and 6.6 proved that jointly optimising speed-EMS-timetable is more fuel
efficient than following a given timetable. The former achieved this by optimising running
time between intermediate stations while maintaining the total trip time, whereas the
latter achieved this by optimising both running time and total trip time. This is a novel
contribution to rail literature, as existing hybrid train publications only attempt sequential
optimisation to reduce computational complexity, where they optimise the driving style

based on a given timetable that is optimised separately.

Lastly, Section 6.7 uses numerical examples from the simulations to: i) prove the ap-
proximation accuracy of the polynomials, ii) prove the tightness of the relaxed constraints,
iii) demonstrate joint optimisation compute time that is on the order of seconds in com-

parison to sequential examples from literature that are on the order of hours.

7.2 Further Work

Network-wide Scheduling This work focused on a single train, whereas, in reality, a
train’s operation must be compatible with other traffic sharing the network. Therefore, it
remains to be explored how the timetable optimisation techniques proposed here can be
integrated into larger scheduling algorithms that optimise network-wide traffic flow, such
as those reviewed in Section 2.3.1. Nevertheless, the quick computation time of convex

methods would likely facilitate such integration.

Real-World Degradation Testing Degradation is a complex phenomenon that is

highly dependent on the accumulative state and conditions experienced by the asset. The
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fuel cell degradation metric used in this work is only adequate as a qualitative measure
for initial analysis, rather than an accurate measure to quantify the expected degradation
from a specified operational pattern. Therefore, detailed degradation modelling is required
along real-world testing to assess the financial balance between countering degradation
and the increase in fuel consumption. Establishing a Pareto Curve for these contradicting

objectives would provide operators with an effective tool for making such a decision.

Optimising Further Systems In light of this work’s conclusion that joint optimisation
delivers better results, further optimality could be achieved by jointly optimising other
systems and variables. One noteworthy example is the HVAC system which is a leading
auxiliary load [328]. Existing work from the automotive sector supports the view that
HVAC consumption could be reduced by optimising it with the traction load [315]. This

evidence encourages pursuing a similar idea in rail.

Human Factors The economic returns of optimising operational patterns is largely
dependent on the operator’s ability to apply these patterns in practice. This is one
of the reasons coasting is popular among operators [29]; coasting is a relatively simple
pattern to implement by the driver. An important question to answer is whether the
optimised results of this thesis could be implemented repeatedly and reliably by drivers.
This research question could be answered through trials on a driver-simulator and trials

on a real train.
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A SIMULATED TRAIN

A.1 Physical Parameters

Table A.1: Physical parameters of simulated train.

Vehicle Motor Fuel Cell Battery
m 150t F, 8TkN P 400kW Use 600V
A 0.0625 F, —87kN P 24kW Q 375Ah
a 1.743kN P, 700kW ||[LHV 120MJ-kg ' || Rpas 14.4m$
b 76.4kg-s7'|| Pp —770kW ¢ 20%
c 6.2kg-m™! ¢ 80%
P 100kW Poate 650 kW
Fin —147kN Ppate —600kW

Explanation of Motor Parameters Electric machines posses an asymmetric torque-
speed curve between motoring and generation modes, more specifically the magnitude of
the curve is higher in generation than motoring. Therefore, the magnitude of the negative
power limit was set 10% higher than nominal positive. The positive and negative traction
forces were set equal. This is plotted in Fig. 4.3, aligning with the induction motor trends

demonstrated in [329, Fig. 15].

Explanation of Fuel Cell Parameters The fuel cell power limits were computed by
assuming four units of the Ballard FVveloCity HD100 [330]. Each has a lower power limit
of 6 kW and upper power limit of 100 kW which leads to total limits P, 24kW and P
400 kW.
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Explanation of Battery Parameters The battery pack has a capacity of at least
220kWh at an open-circuit voltage of 600 V. This is a capacity of at least 366 Ah. An
LTO cell was assumed to have an open-circuit voltage of 2.5V, internal resistance of
14.4m() and capacity of 15Ah [331]. Therefore, 240 cells in series are required to achieve
the open-circuit voltage (240*2.5V=600V), and 25 modules in parallel are required to
achieve the required capacity (25%15Ah = 375Ah). The battery’s equivalent internal
resistance is 240 x 14.4 m$2 /25 = 138.24 m().

The battery’s power is limited by (4.32). This computes to 600 VZ/(4 x 138.24 m2) =
651 kW. Therefore, 650 kW was chosen for the discharge limit, whereas —600 kW was used
for the charging limit to reduce battery degradation. The discharge limit is adequate along

the fuel cell’s power limit of 400 kW in providing for P,, and Piy.

A.2 Polynomial Parameters

Table A.2: Polynomial parameters of simulated train.

Qm(Ftrc) qfc(Pfc) ch(ch)

(5.31) (5.13) (5.38)

Po2 3.114e — 6 D2 6.929¢ — 6 Po2 8.323e — 5
po1 1.026 p1 1.321 po1 1.528

po 3283.97 Pog 9.818e — 7
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B SIMULATED LINE

Table B.1: Timetable of simulated rail journey.

Station Hime since origin Dwell Time (s) Distance (km)
incl. dwell (s)

Saltburn 0 - 0
Marske 300 60 3.06
Longbeck 450 60 3.8
Redcar East 660 60 6.38
Redcar Central 840 60 7.91
South Bank 1290 60 15.95
Middlesbrough 1680 60 19.98
Thornaby 2040 60 25.15
BEaglescliffe 2370 60 29.97
Allens West 2550 60 31.04
Dinsdale 2940 60 37.98
Darlington 3480 180 44.12
North Road 3840 30 46.19
Heighington 4320 60 53.31
Newton Aycliffe 4530 60 55.46
Shildon 4830 60 58.76
Bishop Auckland 5250 - 63.37
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Figure B.1: Elevation of simulated rail journey.
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C CONTRIBUTIONS

C.1 Publications

During this PhD programme, I submitted the following peer-reviewed papers about fuel

cell hybrid trains:

1. R. Jibrin, S. Hillmansen, C. Roberts, N. Zhao, Z. Tian, “Convex optimization of
speed and energy management system for fuel cell hybrid trains,” in 2021 IEEE
Vehicle Power and Propulsion Conference (VPPC), 25-28 October, 2021, Gijon,
Spain. DOI: 10.1109/VPPC53923.2021.9699165.

2. R. Jibrin, S. Hillmansen, C. Roberts, “Impact of conventional driving strategies on
fuel cell hybrid trains,” in 2022 World Congress on Railway Research (WCRR), 6-10

June, 2022, Birmingham, United Kingdom.

3. R. Jibrin, S. Hillmansen, C. Roberts, “Convex optimization for fuel cell hybrid
trains: speed, energy management system, and battery thermals,” in 2022 European
Control Conference (ECC), 12-15 July, 2022, London, United Kingdom.

DOI: 10.23919/ECC55457.2022.9838209.

The first paper was presented at the IEEE Vehicle Power and Propulsion Conference.

This paper focused on powertrain modelling and optimisation.

The second paper was presented at the World Congress on Railway Research which is
the world’s largest rail research conference and is attended by both rail industry and
academia. It highlighted the disparities between conventional driving strategies and

emerging optimal driving strategies for fuel cell hybrid trains.

The third paper was submitted to the European Control Conference which is hosted by

the International Federation of Automatic Control. This paper presented how auxiliary
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Figure C.1: Photo of the summer school attendees in the UKRRIN CEDS building.

vehicle systems could be integrated into traction optimisation.

C.2 2023 Birmingham Decarbonisation Summer School

The multidisciplinary challenges facing rail decarbonisation inspired me to organise the
2023 Birmingham Decarbonisation Summer School [332]. This was a postgraduate sum-
mer school about rail decarbonisation. Its aim was engaging researchers with the chal-
lenges facing rail decarbonisation. It was attended by 24 PhD students and postdoctoral
researchers from 11 UK universities. It was held in-person in the UKRRIN CEDS building

at the University of Birmingham from the 24th till the 28th of July 2023.

The summer school delivered its objective through two sets of activities that spanned

the week:
1. a series of seminars to familiarise attendees with rail, along,

2. a team competition for proposing a rail decarbonisation plan for the Birmingham-

Peterborough rail line.
Seminars

The following technical seminars were given by experts from academia and industry:

e Introduction to Summer School and Ricardo Rail by Jake Cartmell.
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The RSSB Sustainable Rail Blueprint by George Davies.

About Freightliner Operations by Mark Riley.

Appraisal of Green Projects by Trevor Bradbury.

Introduction to Electrification by Kevin Blacktop.

Railway Decarbonisation by Prof. Stuart Hillmansen.

Railway Operation and Timetabling by Dr Jin Liu.

Air Quality Appraisal by Ferdinand Turral.
Moreover, the technical seminars were complemented by the following seminars:

o Embedding equality, diversity and inclusion in your research and research proposals

by Sarah MacMillan.

o Successfully presenting you and your ideas by Nicola Gittins.

Team Competition

The competition challenged teams to propose a solution to decarbonise the Birmingham
- Peterborough rail line, shown in Fig. C.2. This line is only partially electrified where it
meets the East Coast Mainline at Peterborough. The line operates mixed traffic, including

cross-country passenger services and freight traffic from Felixstowe.

The proposals were evaluated by a panel of rail experts. The winning team proposed
to fully electrify the line, going beyond Peterborough all the way to Felixstowe. This is
due to the strategic importance of Felixstowe for rail freight. Similar recommendations
were published in a recent report by the Chartered Institute of Logistics and Transport

(CILT) [333].

The summer school was a successful collaboration between industry and academia. It
left attendees with a very positive experience, 70% of whom agreed that their participation

encouraged them to consider a career in rail and net zero.
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