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Abstract

As one of the most crucial metals of the 21𝑠𝑡 century, titanium (Ti) is extensively used in

the chemical industry, medical apparatus manufacturing, and aerospace engineering due to its

high melting point, low density, high strength, and other excellent properties. Oxygen and

niobium (Nb), as two representative alloying elements of Ti, are widely employed to form high-

temperature and corrosion-resistant Ti alloys, as well as Ti-based high-entropy alloys tailored for

various performance requirements. In recent years, the study of the 𝛼 and 𝛽 phases in Ti-O and

Ti-Nb alloys has attracted much attention. However, the investigations on the thermodynamic

characteristics of these phases remain incomplete. In addition, it is still difficult to achieve a

comprehensive understanding of the thermodynamic properties and the microscopic mechanisms

underlying thermodynamics.

One challenge is that oxygen, compared to other non-metallic elements, has a much higher

solubility in Ti, which leads to the formation of various oxides at lower temperatures. For the

elements Ti and Nb, the substitutional addition of both to each other’s parent lattice will cause

different degrees of lattice distortion, thereby introducing mechanical instability. Furthermore,

the available studies and reports on the thermodynamics of hcp (𝛼) and bcc (𝛽) Ti-Nb-O systems

and the underlying microscopic mechanisms are very scarce.

In this thesis, we combined first-principles calculations with the cluster expansion method to

investigate the ground-states characteristics for these hcp and bcc binary and ternary systems.

The atomic bonding interactions in these systems were first revealed based on the calculated
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electronic structures. Afterwards, Debye-Grüneisen model and Monte Carlo simulations were

employed together to investigate the thermodynamic properties of ordered and disordered phases

in these systems. For the hcp Ti-O system, a new unreported compound with stoichiometry

Ti12O5 was first discovered, and the effect of vibrational entropy on the order-disorder transition

temperatures of the phases in the system was first examined. For the hcp and bcc Ti-Nb systems,

a good agreement with experimentally reported phase boundaries between 𝛼 and 𝛽 phase

is obtained through handling the mechanical instabilities introduced by the highly-distorted

structures. Furthermore, the cluster expansion information obtained from the binary system was

used as a starting point to investigate the energetics and thermodynamics of the hcp and bcc

Ti-Nb-O systems, and the behind interaction mechanisms between oxygen and metallic Ti and

Nb were also investigated. We believe that the findings and research methodologies presented

in this dissertation provide significant insights and references for the structural prediction and

material design of multi-component Ti-based materials (e.g. novel high-entropy alloys) as well

as other binary and multicomponent metallic alloys.
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Chapter 1

Introduction

Different metallic and non-metallic elements can be alloyed with titanium (Ti) to form a variety

of Ti alloys which can be applied in different fields. These elements can affect the structure and

properties of Ti in different ways, which can be detected and characterized by some experimental

and modeling techniques. However, sometimes it is knotty to predict the effects and behaviour

of the addition of alloying elements due to some reasons like the high solubility of alloying

elements or the presence of the mechanical instabilities introduced by the alloying elements.

Therefore, a specific experimental or modeling scheme that can be used to investigate the

variation of properties caused by the addition of the alloying elements into the Ti is promising.

In this context, a modeling scheme that combines first-principles, cluster expansion method and

statistical mechanics simulations was proposed in this chapter.
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1.1 Ti and Ti alloys

1.1.1 Properties and Applications

As one of the well known refractory materials, Ti has many excellent properties like high

strength, low density, low thermal conductivity and good corrosion resistance such that it has

been widely used in various fields such as architecture, chemical processing, biomaterials and

especially aerospace by alloying with several other elements like Al, Nb, Mo, Cr, and V [1–6].

Compared with other metals, the certain performance advantages of Ti can be seen from Table

1.1 [7–10].

Table 1.1: Some physical performance of Ti, Al, Fe and Ni [7–10].

Physical properties Ti Al Fe Ni

Density (g/cm3) 4.5 2.7 7.9 8.9

Melting point (K) 1943 933 1811 1728

Thermal conductivity (W/mK) 15-22 221-247 68-80 72-92

Elastic modulus (GPa) 115 72 215 200

Reactivity with oxygen high+ high low low

Corrosion resistance high+ high low medium

Metal price high+ medium low high

1.1.2 Alloy classifications

Pure Ti has two allotropes: hexagonal close packed (hcp, also called 𝛼-Ti) crystal structure at

lower temperature, and it will transform to body-centered cubic (bcc, also called 𝛽-Ti) structure

when the temperature is higher than 1155 K [11]. Typically, the mechanical properties of
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Ti alloys can be improved while adding several elements into the alloys by controlling the

temperature of the 𝛼 → 𝛽 transition, this is an alloying process. This means the properties of

an alloy can be tailored to the running environment by adding other elements. For instance, Zr

and Sn are present in Ti alloys for use in compressor disc [12]. Alloying additions are divided

into two groups: neutral, 𝛼 and 𝛽 stabilizers, which situate in either interstitial or substitutional

sites in Ti crystal lattice, as shown in Table 1.2 [8, 13, 14]. The 𝛼 and 𝛽 stabilizers can increase

and lower the 𝛼 → 𝛽 temperature, respectively. However, neutral additions show very slight

effect on this transformation temperature. On the other side, 𝛽 stabilizers exactly have two

classifications 𝛽-isomorphous and 𝛽-eutectoid. The former strengthens the stability of 𝛽 phase

along the whole composition while the latter leads to eutectoid decomposition of 𝛽 phase. The

effect of the above additions and the general classification of Ti alloys are shown in Figure 1.1

[8]. According to the above classification, Table 1.3 [7, 8, 14] shows some examples of Ti alloys

for clear understanding.

Table 1.2: Some alloying elements in Ti and their occupation sites in crystal [8, 13, 14].

𝛼-stabilizer 𝛽-etuectoid 𝛽-isomorphous Neutral

Al O N C Mo V Nb Cr Mn H Sn Zr

Substitutional ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Interstitial ✓ ✓ ✓ ✓

1) 𝛼 and near-𝛽 alloys

Alloys that contain 𝛼 stabilizers such as aluminum and oxygen which can stabilize 𝛼 phase are

called 𝛼 alloys, such as pure Ti with a little oxygen impurity, Ti-5Al-2Sn-ELI, Ti-8Al-1Mo-1V.

These alloys normally have high corrosion resistance and high-temperature properties, resulting

in their wide applications in heat exchangers and the chemical processing industry where these

properties are of prime concern [15].

Near-𝛼 alloys typically refer to the Ti alloys containing mainly 𝛼 phase and less than 10 at.%

3



Introduction

Figure 1.1: The effect of the addition of alloying elements on the 𝛼 and 𝛽 phases of Ti alloys
[8].

𝛼 phase with adding 1~2 at.% 𝛽 stabilizers into the alloys. The presence of 𝛽 phase can

improve the strength and machinability of the alloys, which makes these alloys own superior

high-temperature mechanical properties, but the density is much lower than that of steels. From

this reason, these near-𝛼 alloys can be used in the applications of aero-engine components

suffering from high-pressure and high-temperature environments [16].

2) 𝛼 + 𝛽 alloys

𝛼+𝛽 alloys contains both 𝛼 and 𝛽 phases by adding 4~16% 𝛽 stabilizers, which can be heat

treated. Depending on the environment in which they operate, 𝛼+𝛽 alloys are generally split into

high-temperature and high-strength Ti alloys whose properties can be controlled through heat

processing and the concentration of stabilizers. High-temperature𝛼+𝛽 alloys, such as TIMETAL

834 and Ti-6Al-2Sn-4Zr-6Mo, are usually used in an aeroengine compressor disc accounting

for their high creep strength and strength-to-weight ratio. For high-strength 𝛼+𝛽 alloys, they are

widely applied in fan blades and aeroengine compressor running at low temperatures attributing

to the combination of their high strength with excellent fatigue properties [17]. For example,
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Table 1.3: Categories of Ti alloys and some examples [7, 8, 14].

Category Selected materials

CP-Ti CP-Ti CP-Ti CP-Ti CP-Ti

(0.2Fe,
0.18O)

(0.3Fe, 0.25O) (0.3Fe, 0.35O) (0.5Fe, 0.40O)

𝛼 alloy Ti-5Al-
2.5Sn

Ti-3Al-2.5V Ti-2Cu Ti-0.3Mo-
0.8Ni

near-𝛼 alloy Ti-5Al-
6Sn-2Zr-
1Mo-0.2Si

Ti-2Al-2Sn-
4Zr-2Mo

Ti-8Al-1Mo-
1V

-

𝛼+𝛽 alloy Ti-6Al-4V Ti-6Al-4V
ELI

Ti-6Al-4V-
2Sn

Ti-6Al-2Sn-
4Zr-6Mo

𝛽 alloy Ti-13V-
11Cr-3Al

Ti-11.5Mo-
6Zr-4.5Sn

Ti-13V-11Cr-
3Al

-

near-𝛽 alloy Ti-6Al-
2Sn-4Zr-
6Mo

Ti-8Mo-8V-
2Fe-3Al

Ti-10V-2Fe-
3Al

Ti-8Mn

Ti-Aluminides Ti-24Al-
10Nb

Ti-25Al-
17Nb-1Mo

Ti-22Al-27Nb -

Ti-6Al-4V (Ti-64) which accounts for over 50% of all Ti alloys in use nowadays has a high yield

strength, good ductility and excellent corrosion resistance [18].

3) 𝛽 and near-𝛽 alloys

Except for adding a specific number of 𝛽 stabilizers, 𝛽 and near-𝛽 alloys (also called metastable 𝛽-

alloys) contain with and without small amount of 𝛼 stabilizers, respectively. Some examples are

Ti-10V-2Fe-3Al, Ti-15V-3Cr-3Al-3Sn and Ti-4.5Al-3V-2Mo-2Fe. The alloys in this category

shows high toughness, good weldability and forgeability, and especially highest strength (>1400

MPa) among all classes of Ti alloys due to the effect of solid solution strengthening and age

hardening. Thus, these Ti alloys are customarily spread in landing gear, aircraft fasteners and
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sporting equipment [19, 20].

1.2 Problem statement

1.2.1 Oxygen ingress and oxidation resistance

Oxygen is a crucial impurity and/or alloying addition that severely affects the microstructure

and properties of Ti and Ti alloys. Oxygen is the most common 𝛼 stabilizer in Ti and Ti alloys,

which can stabilize the 𝛼 phase and rise the 𝛽-transus temperature, as shown in Figure 1.2 [21].

The oxygen in Ti and its alloys essentially comes from the gaseous medium in which they are

located. Oxygen ingress generally occurs during the manufacture, forming and service of the Ti

and its alloys.

Figure 1.2: The effect of the addition of oxygen on the phase stability of Ti [21].

In the manufacture and forming processes of Ti (normally called “Kroll” process), Ti ores are

normally used to extract Ti by reacting with coke and chlorine, then the reaction product is

6



Introduction

reduced to pure Ti by reducing agent Mg. After that, in order to obtain high grade pure Ti,

vacuum distilling is widely used to purify the reduced Ti, which highly increases the production

costs. Forming, forging and heat treatment are eventually used to produce Ti products of

various grades. A certain number of residual impurities including oxygen can seriously affect

the properties of the fabricated product, though inert atmosphere or vacuum environment are

commonly used in all aspects of production to hold these impurities at lower levels [22].

For another, the oxygen ingress can also occur in the service of Ti and Ti alloys, which is like

some other metals like iron and aluminum. To be specific, firstly the exposure of metal to air

results in the formation of an oxide layer on the surface of the alloy which exactly acts as a

barrier layer by separating the metal surface from the environment. Then, oxygen from the

environment diffuses through the passivating surface oxide layer forming a subsurface layer

known as oxygen-rich layer or 𝛼 case at temperatures below or above 753 K, respectively. At

last, the oxygen in the brittle subsurface layer dissolves readily into the metal bulk and diffuses

rapidly in it. The oxidation process of Ti is shown in Figure 1.3 [23]. For instance, as shown

in Table 1.4, the maximum solubility of oxygen in 𝛼 Ti can achieve 33 at.% which is 10 at.%

higher than that of interstitial nitrogen [21, 24–26]. The diffusion rate of oxygen in pure Ti is

approximately two orders of magnitude larger than that of nitrogen [27].

Figure 1.3: Schematic diagram of the oxidation process of Ti alloys [23].

The high affinity, solubility and diffusivity of oxygen in 𝛼 Ti can have a significant effect on the

mechanical properties of Ti alloys. Although most interstitial elements including oxygen can

improve the hardness of Ti alloys by solid solution strengthening, this benefit is outweighed by
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Table 1.4: Solubility limit of common interstitial elements in hcp-Ti [21, 24–26].

H B C N O

Maximum solubility in
hcp-Ti (in at. %)

7% 1% 2% 23% 33%

their heavily deleterious impact on toughness, ductility and fatigue resistance etc. For example,

Shenoy 𝑒𝑡 𝑎𝑙. [28] reported that 80 % reduction in tensile elongation caused by the oxygen

ingress occurred in Ti-6262 alloy. Leyens 𝑒𝑡 𝑎𝑙. [29] found that some cracks were observed

in oxygen-penetrated area in Ti-1100 alloy, resulting in a great loss of ductility. The above

examples are mainly caused by the fact that oxygen dissolves and diffuses in Ti alloy matrix

mainly promoting the formation of oxygen-rich layer or 𝛼 case under the oxide layer at various

temperatures. Liu 𝑒𝑡 𝑎𝑙. [30] studied the effect of oxygen on the mechanical properties of Ti-

6Al-2V and Ti-2Al-16V. Their results showed that the ingress of oxygen made these two alloys

brittle to a certain extent, and both the oxygen impurity content and the embrittlement degree of

alloys increased with the heat treatment.

In order to reduce the deterioration of Ti and its alloys introduced by oxygen ingress, many

methods therefore were developed. There are generally three measures to achieve this, namely

pre-oxidation, coatings and addition of alloying elements. Due to the occurrence of breakaway

oxidation, cracking, peeling and degradation of the surface protection layer (shown in Figure

1.4), conventional processes of coatings and pre-oxidation can not provide a stable defense

against oxygen ingress into the metal bulk [31, 32]. In contrary, alloying Ti with other elements

to form binary or multicomponent Ti alloys is considered to be a more practical and effective way

to render Ti with high oxygen-resistant competence inborn. Common elements used for alloying

with Ti are Al, Nb, Sn, Si, etc. which are usually added to Ti in combination but with precise

control of content to achieve balance between the needed alloy properties and oxygen-resistant

competence.
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Figure 1.4: Surface protection layer of Ti alloys [31, 32].

1.2.2 Substitutional Nb in Ti

Niobium (Nb) is one of the important and common 𝛽 stabilizers of Ti, and has body-centered

cubic crystal (bcc) structure. It only can occupy the substitutional sites in Ti when alloying with

Ti. Different compositional TiNb alloys exhibit a lot of excellent properties like good working

plasticity, lower temperature superconductivity, low thermal expansion and good biocompati-

bility, which makes them broadly used in aerospace and superconducting industries [33]. In

addition, like aluminum, Nb is often treated as the second alloying element of Ti, often working

together with other nonmetallic and metallic elements to obtain multi-component Ti alloys such

as Ti-Nb-Si and Ti-Nb-Ta-Zr [34, 35].

The variation of the content of Nb in Ti can cause large differences in the structures and properties

of the formed TiNb alloys due to the different parent lattices of Ti and Nb. For instance, the

lattice constants of TiNb alloys are very crucial parameters when developing the superelastic

TiNb alloys. The 𝛼 and 𝛽 can coexist in the whole composition range of Ti and Nb, as shown in

the phase diagram (Figure 1.5), and the 𝛼 and 𝛽 phases also differ in some characteristics [36].

The 𝛼 phase can enhance the corrosion resistance of the body of TiNb alloy and normally does

not react to heat processing, In another aspect, the 𝛽 phase can be aged and solution treated to

obtain an obvious enhancement in the yield and ultimate strength, and there is no occurrence of

martensite transformation if fast cooling alloy from the 𝛽 phase region. Besides, the 𝛽 phase

has a low value of elastic modulus, which, with the combination of nontoxicity of TiNb alloy,

makes it possible for TiNb based alloys to be used in orthopedic implants. On the other hand,
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the metastable stable 𝛼′′ precipitates which have the orthorhombic crystal structure and appear

from a martensitic transformation by quenching the TiNb alloy from single 𝛽 phase at high

temperatures also have been proven to contribute a lot to the low elastic modulus performance

and good shape memory of TiNb alloy.

Figure 1.5: Phase diagram of TiNb alloy [36].

In view of the above, the 𝛼 phase retains some of the characteristics of Ti itself, such as

corrosion resistance and good heat workability, while the 𝛽 and 𝛼′′ phases play an important

role in obtaining some specific properties of TiNb alloy. Therefore, it is fundamental and

necessary to study the phase equilibria that occurs in TiNb alloys at different temperatures,

especially the 𝛽/(𝛼+𝛽) phase boundary which determines conditions of the appearance of the

𝛽 and 𝛼′′ phase when cooling samples. Although there are many experimental and modeling

investigations on the phase diagram of TiNb alloy, the reports on the in-depth understanding of

the mechanisms underlying the mechanical and thermodynamic properties of TiNb alloys at the

atomic scale are still lacking.
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1.2.3 Oxygen addition into TiNb alloy

Many efforts have been made to improve the high-temperature oxygen-resistant competence of

Ti, among all the beneficial elements, silicon and niobium are regarded as the most effective

alloying elements. Silicon works by forming a SiO2 protective layer to inhibit the oxygen ingress

into the metal bulk [37]. The working mechanism behind the improvement of the oxidation

resistance provided by the addition of Nb is not fully established, although the most likely

explanation is that the stable Nb5+ ions lead to the compensation of Ti3+, which can inhibit

the proceeding of the oxidation [38]. Though some studies that refer to the oxidation of TiNb

alloy can be found, no literature and thermodynamic data, to best of our knowledge, is open

or published to describe the thermodynamics of hcp and bcc phases in the Ti-Nb-O system.

Furthermore, no evidence can be found to investigate the mechanisms behind the properties and

characteristics of the ternary Ti-Nb-O system.

1.3 Motivations of the thesis

1.3.1 Motivation for the study on the Ti-O, Ti-Nb and Ti-Nb-O systems

As mentioned above, oxygen has a very high affinity with 𝛼 Ti and has the highest solubility in it,

which makes oxygen in the environment gain much attention when Ti-based alloys are in service.

As early as the 1970s, few modeling studies reported that the oxygen atoms in the sublattice of

interstitial sites can form Ti6O ordering in the disordered Ti 𝛼 phase. Although a few simulation

results in the past two decades also reported the existence of the other two ordering phases Ti3O

and Ti2O in the Ti 𝛼 phase and their phase region. However, in these studies, the reported order-

disorder transition temperatures of these orderings differ a lot from each other especially for the

Ti2O ordering and have discrepancies with the early experimental data. Until very recently, as

the first experimental evidence, Régis Poulain 𝑒𝑡 𝑎𝑙. [39] successfully observed the arrangement
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of ordered precipitate Ti6O in the Transmission Electron Microscopy (TEM) images of Ti-0.8O

alloy, shown in Figure 1.6, after quenching the melted samples. It is a pity that they did not

capture the precipitates with stoichiometry Ti3O and Ti2O. Moreover, to our knowledge, no

literature reports and analyzes the formation mechanism from a microscopic perspective.

Figure 1.6: TEM images Ti-0.80 alloy and the crystal structure of the precipitate Ti6O [39].

The development of the Ti alloys applied to the biomedical field has been a hotspot topic in

recent years. The invention and manufacturing of implants with high biocompatibility even

more has received widespread attention. As a typical 𝛽 stabilizer of Ti, Ti-Nb alloys are

promising materials for these applications which is attributed to the combined effect of the

𝛼, 𝛽 and 𝛼′′ phase. At low temperatures, the alloying between Nb and Ti can lead to the

partial substitution of Nb in hcp Ti and Ti in bcc Nb, resulting in the coexistence of 𝛼 and 𝛽

phases. The metastable 𝛼′′ precipitates come out when cooling Ti-Nb alloy from single 𝛽 phase

regions at higher temperatures [40]. Hence, the study on the phase boundaries especially on

the 𝛽/(𝛼+𝛽) is essential for the control of the content of these three phases and the design of

different compositional Ti-Nb alloys. Many studies have reported the phase diagram of Ti-Nb

alloy [36, 41–43], whereas the insights into the formations of the 𝛼 and 𝛽 phases in different

compositional Ti-Nb alloys from a view of atomic scale are lacking. In addition, some findings

may have misunderstandings on the changes in alloy stability caused by the addition of Nb to

Ti. For instance, Ravi Chinnappan 𝑒𝑡 𝑎𝑙. [44] found a few bcc structures with high relaxation

and distortion and thus concluded that the bcc phase introduces more mechanical instabilities

into Ti-Nb alloy, which is not rigorous and unconvincing.

Though a few studies are related to the addition of oxygen to Ti-Nb alloys, they either focus on
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the formation mechanism of Nb2O5 [45] or the transformation mechanism of 𝛽 to 𝛼′′ [46]. The

evidence on how the addition of oxygen forms bonds with Ti and Nb atoms and how the presence

of oxygen affects the bonding between Ti and Nb atoms is very limited. The investigation on

the properties of possible stable compounds in hcp and bcc phases in the Ti-Nb-O system and

the thermodynamic properties of the ternary phases is also very scarce.

In view of above, there are still some questions that we are very concerned about. Firstly, for the

Ti-O system, how does the oxygen atom interact with the Ti atom in the ordered 𝛼 phases? How

to obtain the accurate phase transition temperatures between the compounds and the disordered

𝛼 phase? Secondly, for the Ti-Nb system, how does the solute interact with the solvent at

different composition points? How do the interactions between Ti and Nb atoms affect the phase

stabilities over a wide composition and temperature range? When Ti and Nb act as solutes

to each other, which one is likely to introduce more mechanical instabilities into the solvent?

Finally, when oxygen is introduced into the Ti-Nb system, how does it interact with Ti and

Nb, and how does it affect the original Ti-Nb bonds? Are there any stable ternary compounds

appearing in the 𝛼 and 𝛽 phases? How do the introduced oxygen atoms influence the properties

and the thermodynamics of the 𝛼 and 𝛽 phases?

Hence, the design and development of experimental or modeling schemes that can provide

comprehensive insights into addressing the above issues is potentially promising and remarkable.

1.3.2 Motivation for ab initio quantum mechanics method

Many experimental characterization techniques have been widely used to observe the microstruc-

ture of the alloy phases, investigate the thermodynamic properties, and detect the phase transi-

tions, such as X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Thermoanalysis

Technology (TG-DTA-DSC), etc.. Nevertheless, when scrutinizing the interactions and bonding

mechanisms among different phase elements within alloys at the atomic level, some modern

material computational techniques offer distinct advantages. These methods not only can pre-
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cisely compute material phase transitions and thermodynamic characteristics, but also excel in

revealing the structural arrangement of phases, the mechanisms of atomic interactions and even

in mass transfer dynamics. Moreover, to achieve the experimental expectations, throughout

the experimental procedure, quantifying and predicting the financial and temporal investments

necessary for material preparation, processing, and characterization can prove challenging and

indeterminate.

The phase transformation occurred in the alloy is essentially attributed to the significant and

beneficial connection between the change of atomic spacing and interatomic-rearrangement and

the electronic structure of metallic alloys. The gathering, arrangement and combination of

diverse atoms result in a redistribution of electronic charges, forming bonds that predominantly

govern the physical and chemical properties of all crystals.

As a quantum physics method without using empirical parameters and quantities derived from

experiment, ab initio methods which are grounded in density functional theory (DFT) en-

deavor to investigate the structure and properties of materials through the resolution of intricate

quantum mechanical equations, such as the many-body Schrödinger equation. This approach

accurately computes the total energy and electronic structure of microscopic systems, rendering

it applicable across various domains, as elucidated in the forthcoming chapter. The outcomes

pertaining to the electronic structure and properties of materials facilitate further analysis of

phase composition, atomic interactions and bonding mechanism in the ground-state. This en-

hances comprehension of phase formation and macroscopic physical and chemical properties

in alloys from a microscopic standpoint. Furthermore, the ab initio method furnishes crucial

initial parameters for investigating material properties at elevated temperatures by computing

electronic energy information for various phase structures in the ground-state. Integrating the

ab initio method with other material calculation techniques, such as common lattice vibration

free energy calculation models and statistical mechanics methods, proves instrumental in explor-

ing thermodynamic equilibrium and material properties across different temperature regimes.

Leveraging these theoretical methodologies and technologies offers feasibility in delving into
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this project.
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Chapter 2

Literature Review and Research

Background

This chapter firstly elucidates the application of first-principles methodologies in computing the

electronic structure of phases within alloy systems, providing a robust practical underpinning for

our study. Furthermore, an approach to accurately express the energy characteristics of alloys

using the electronic structure information derived from first principles calculations, known as

cluster extension formalism, is introduced. The application of this method in alloy materials

is also summarized. Subsequently, a statistical mechanics approach capable of utilizing the

Hamiltonian provided by cluster expansion is introduced for the computation of properties

across various condensed matter systems, alongside its application in determining properties of

interest in alloys. Meanwhile, the important interrelation between first-principles calculations,

cluster expansion formalism, and statistical mechanics approaches is elaborated. In conclusion,

the research content and significance of the thesis are detailed, accompanied by a succinct

summary of the contents of each chapter.
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2.1 First-principles applications and developments on mate-

rials

The ab initio method, also referred to as first-principles calculation or DFT calculation, typically

relies solely on physical constants as input. This quantum computational technology has found

extensive application across diverse fields including chemistry, physics, catalysis, environmental

engineering, and materials science [47]. In particular, in the field of materials, it can accurately

calculate the electronic structure and energy of materials without necessitating experimental or

semi-empirical parameters, thereby enabling the prediction of the physical and chemical proper-

ties of materials and yielding results very close to experimental data [48, 49]. For instance, many

properties such as dielectric properties, optical properties, ferroelectric pyroelectric properties,

elastic constants, and charge density can be optimized and designed through first-principles

calculations [50].

The applications of first-principles calculations in alloy systems hold significant importance and

extend extensively. For instance, the development of high-performance magnesium alloys re-

mains a prominent research focus, yet comprehensive experimental data on the thermodynamics,

kinetics, and phase stability of multicomponent magnesium alloys is lacking. To supplement

the missing experimental information, employing first-principles calculations presents an ef-

fective approach, offering numerous opportunities to expedite the development of forthcoming

magnesium alloys [51]. On the other hand, as a research hotspot in the field of materials in

recent years, novel energy materials and multicomponent complex alloy materials, especially

battery materials and high entropy alloys, have garnered widespread interests. First-principles

calculations likewise provide powerful support for the theoretical fundamentals and the in-depth

understanding of the microscopic mechanism in analyzing the structures and properties of these

materials. As an example, employing first-principles calculations, some key properties of mag-

nesium ion batteries like electrochemical performance and underlying reaction mechanism have

been successfully anticipated and investigated by simulating the interactions between Mg2+ and
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electrode, which aids in advancing the innovation of novel energy materials [52]. Another

example, under diverse environmental conditions, the occurrence of phase decomposition in

high entropy alloys is an important factor affecting their mechanical properties. Predicting

this decomposition necessitates the establishment of phase diagrams specific to high entropy

alloys. Yet, the direct calculation of the phase diagrams from both experimental measure-

ments and theoretical computations is greatly hindered, primarily stemming from the complex

multi-dimensional composition space involved. Recently, Chen Shuming 𝑒𝑡 𝑎𝑙. [53] used first-

principles calculations to successfully predict and analyze the effect of phase decomposition in

HfNbTaTiZr high entropy alloys on alloy strength by treating the HfNbTaTiZ high entropy alloy

as multiple pseudo-binary alloy systems.

Additionally, the first-principles method has similarly contributed to the advancement of novel

Ti alloys and enhanced our understanding of atomic interactions inside alloys. As an illustration,

Zhou Wenchong 𝑒𝑡 𝑎𝑙. [54] investigated the mechanical stability and elastic properties of Ti-

Mo, Ti-Al, Ti-Sn, and Ti-Zr alloys with hcp and bcc structures, across various compositions,

employing first-principles calculations. They assessed the phase stability of these alloys by

computing the formation energy of the constructed disordered supercells and correlated the

calculated electronic density of states (DOS) with the stability of the hcp and bcc phases. Jun

Hui 𝑒𝑡 𝑎𝑙. [55] studied the twin energies of 14 metallic elements, including Ni, Cu, V, Nb

and Al, in Ti via first-principles calculations and unearthed the strengthening or embrittling

effects at the twin boundaries. It was further revealed that the essence of this strengthening and

embrittlement effect is attributed to the electronic interactions by analyzing the charge density

and density of states of these alloying elements. These findings hold potential significance for

the advancement of novel hcp alloys, as the control of twin boundary characteristics via alloying

with solute atoms presents a viable strategy for regulating metal microstructures and enhancing

the mechanical properties, such as strength and ductility, across various Ti alloys.

The thermodynamic and dynamic behavior of interstitial nonmetallic elements in metal and

alloys, as well as the effects of their addition on the structure and properties, are also focal points
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of concern for many researchers, and first-principles calculations have made many breakthroughs

and progress in these topics. For instance, meeting the demand for cost-effective production

of pure H entails the development of ultra-thin, high-permeability palladium-based membranes

capable of withstanding elevated temperatures and pressures over prolonged operational time,

as commonly encountered in petrochemical sectors. Upon alloying Pd with Au or Ag to

fabricate a membrane, enhanced anti-embrittlement performance can be obtained compared

to the membrane composed of pure Pd. Chandrashekhar G. Sonwane 𝑒𝑡 𝑎𝑙. [56] used first-

principles methods to compute the lattice expansion and binding energy of PdAu and PdAg

alloys with various compositions, and then calculated the solubility of H in these alloys using

Sievert’s law equation. The expansion effect caused by the dissolution of H in these alloys

and the identification of competent PdAg or PdAu alloys at diverse temperatures and pressures

were further illustrated. However, this simulation thought cannot be applied to predict the

solubility of O in Ti alloys, as the solubility of O in many Ti alloys is very high (33 at.% in

pure hcp Ti), and Sievert’s law is no longer applicable in these cases. Jin Wang 𝑒𝑡 𝑎𝑙. [57]

analyzed the dissolution behavior of oxygen in Nb-Cr alloy by calculating the enthalpy change

of oxygen using first-principles calculations. They further concluded that the dominant driving

force for oxygen dissolution is chemical effects when the Cr concentration is 4 at.% or lower,

whereas the combination of elastic and chemical interactions reversely play a main role in

hindering the dissolution of oxygen in Nb-Cr alloys with Cr concentration higher than 4 at.%.

These findings can assist people in better understanding the dissolution behavior of interstitial

elements especially oxygen in alloys. The studies on solubility and diffusion kinetics of oxygen

in Ti alloys are also documented in a few papers. Enrica Epifano 𝑒𝑡 𝑎𝑙. [58] computed the barrier

energies for the boron and oxygen migration between different stable interstitial sites in 𝛾 TiAl

alloys using the Nudged Elastic Bond method performed by the ab initio calculations, then the

minimum energy path for the migration of interstitial oxygen and boron was confirmed. The

diffusion coefficient of these elements in the 𝛾 TiAl alloys were further determined by the multi-

state diffusion method. These research findings possess the potential to unveil latent anisotropic

behaviors unobserved in experimental data, whilst concurrently addressing deficiencies in kinetic
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databases pertaining to the same. Moreover, the interaction energies between the metallic solutes

and the oxygen occupying different interstitial sites in hcp Ti were computed by Henry H. Wu 𝑒𝑡

𝑎𝑙. [59], which revealed the mechanism of attraction or repulsion between solutes and oxygen.

The effects of solutes on oxygen diffusion barriers in hcp Ti were quantified using an activation

barrier approximation. Subsequently, a numerical diffusion scheme was established to assess

the alterations in oxygen diffusivity across a range of solute concentrations. This developed

diffusion model facilitates the exploration of the influence of different solute distributions on

oxygen diffusion dynamics.

The electronic structure method based on density functional theory, also referred to as first-

principles simulation technology, has transcended its initial theoretical domain confined solely

to condensed matter physics and quantum chemistry. First-principles calculation has been

extensively applied by researchers in the study of a wide range of materials, encompassing elec-

tronic structure analysis, energy characteristics calculation, phase transition detection, dynamic

behavior exploration, and identification of the microscopic origin of macroscopic properties.

This computation technique has driven a new paradigm of research approach in understanding,

predicting, and designing the accuracy and efficiency of material properties. Furthermore, in

recent years, the integration of first-principles calculations with machine learning technology

has emerged as a highly promising approach for material design and development, offering the

potential to significantly narrow the disparity between material computation and experimenta-

tion. Given the above, leveraging first-principles calculations to investigate the physicochemical

behavior of oxygen and niobium in Ti presents a notably viable avenue of exploration.

2.2 Application of cluster expansion methods in alloy systems

In numerous disciplines, it is commonplace to conduct parameterization of either physical or

empirical models using a collection of meticulously accurate yet costly calculations or mea-

surements, thereby yielding less precise albeit more economical predictions. Within the realm
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of computational materials science and solid-state physics, the cluster expansion (CE) method

offers a direct estimation of the lattice’s free energy, or any other thermodynamic parameter,

through a discrete cluster function [60, 61]. The CE method establishes a mathematical model

enabling the representation of various scalar quantities of a crystal, such as formation energy,

enthalpy, and elastic strain energy, through multisite correlation functions. This method stands

as one of the foremost utilized approaches in the prediction and design of materials. Achieving

optimal alloy design demands a deep understanding of how defects affect deformation behaviors

and origin of strengthening of the precipitates and solid solutions. The intrinsic capability of the

CE formalism depicting various degrees of configurational order (or disorder) renders it a very

useful methodology for discovering the interactions of alloying elements, phase composition,

and structural imperfections.

It needs to be pointed out that Axel van de Walle 𝑒𝑡 𝑎𝑙. [62] found that CE can directly express the

energy of the whole alloy using the energetics of some configurations with various compositions

calculated by DFT, thereby enabling the prediction of the energies of any compositional structure.

In simple terms, CE method possesses the capability to derive the energetics of the whole system

from the energetic information of a small number of structures. The alloy systems people focus

on generally consist of several or even multiple phases under different service conditions, and

whether ordered or disordered, there are normally the presence of antiphase boundaries (APBs)

at the interfaces between two contacting domains. CE can easily capture these APBs using

energetic information from these sampled structures and derived ground states, thereby enabling

the predictions of phase transitions. For instance, Ruoshi Sun 𝑒𝑡 𝑎𝑙. [63] applied CE method

to straightforward calculate the energy of Ni3Al in the presence of an APB and investigate how

Ti and Hf additions affect the APB energies. In addition, the CE method was employed by

Mohammad S. Dodaran 𝑒𝑡 𝑎𝑙. [64] to investigate the change of APB energies of the ordered 𝛾’

precipitates in Ni-based high-temperature alloys.

For another, not only the energetics of the pseudo defects like APB that maintain the original

symmetry of the crystal lattice can be computed by CE, but also some other planar defects
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capable of breaking the ideal lattice symmetry are able to be examined. In other words, CE

method is also a powerful tool that can be employed to study common surface problems such

as surface segregation, gas absorption, and precipitations. In terms of the studies on surface

segregation, it can be easily achieved by the construction of another CE for the surface except

for the alloy bulk CE construction, whereas more clusters need to be included in the surface CE

construction to achieve an approximate accuracy as studying the alloy bulk. As an illustration,

Drautz 𝑒𝑡 𝑎𝑙. [65] employed a CE method to explore the contest between the inclination for Al

segregation and ordering in the Ni–Al alloy, wherein ordering arises from the breaking of lattice

symmetry at the surface. In their study, 24 clusters were selected in the CE to examine the Ni-Al

alloy bulk, whereas the other CE used for surface investigation involved 400 clusters, despite

some clusters having insignificant interaction values. In another study, a coupled CE method

was established by Han 𝑒𝑡 𝑎𝑙. [66] to investigate segregation and surface ordering behavior

attributed to the oxygen absorption on the surface of Pt with a small amount addition of Ru.

Similarly, a study about the absorption of a diverse number of H atoms on the Ir surface using an

extended CE method was proposed by Lerch 𝑒𝑡 𝑎𝑙. [67]. Employing the CE approach to explore

the thermodynamic and kinetic characteristics of precipitations in structural alloys can enhance

our comprehension of the precipitation hardening process and its mechanisms. For example,

the mixed-space CE method was used in a few studies to investigate the energetics and temporal

changes in the distribution of precipitate shapes and sizes in Al-Zn alloy [68]. Therein, a pair

in reciprocal space and a many-body cluster like triplet in real space were combined to form the

mixed-space CE.

More importantly, performing CE for an alloy system allows for the identification of pivotal

clusters, such as pairs, triplets, and quadruplets, which are instrumental in expressing the energy

of the alloy at the ground-state. Additionally, the interactions among these sites, known as

effective cluster interactions, can also be derived for each cluster. These important clusters and

effective cluster interactions contain valuable energetics information of the alloy, which not only

indirectly reflects sites with stronger interactions between elements in the alloy system but also

provides front-end inputs (Hamiltonian) for statistical mechanics techniques like Monte Carlo
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simulations. Through further performing statistical mechanics simulations, the thermodynamic

properties of various phases in the alloy at finite temperatures can be readily computed. It is

worth mentioning that, as a pioneer, Axel van de Walle 𝑒𝑡 𝑎𝑙. [69] first obtained the energetics

of the Ti-Al system by constructing the CE, then they successfully calculated the potential

surface and Gibbs free energy data for the Ti-Al system by conducting Monte Carlo simulations

imported with the CE results.

To summarize, cluster extension formalism stands out as a crucial methodology capable of

approximating the energetics of structures using DFT data. This approach has found extensive

application in exploring the energy of alloys and the thermodynamic behaviors of various

phases. Moreover, its perfect integration with statistical mechanics methods has broadened its

applicability. The advancements made in cluster expansion methods in these research fields

offer valuable insights and theoretical fundamentals for our investigations on Ti-O, Ti-Nb, and

Ti-Nb-O systems.

2.3 Overview of Monte Carlo simulations in statistical me-

chanics and its applications

Statistical mechanics is a branch of theoretical physics that aims to understand and predict

the behavior of macroscopic systems by examining the statistical properties and dynamics of

their microscopic constituents. It provides a framework for describing how the properties

of matter arise from the behavior of its individual particles, such as atoms and molecules,

under the influence of thermal energy [70–72]. Statistical mechanics utilizes principles from

probability theory and statistical methods to analyze the distribution of particles in various states

and their interactions, ultimately yielding predictions about the thermodynamic properties and

behavior of condensed matter systems at the macroscopic scale. However, some basic goals

about the calculations of the expectation values of some quantities in a system in statistical
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mechanics cannot be solved in the practical application. For example, one possible method to

solve the multivariable integral such as partition function is to exhaustively list all conceivable

configurations of the system and compute the averages arbitrarily [73, 74]. This can be achieved

in fully solvable systems as well as in simulations of simple systems with a small number of

particles, whereas, in realistic condensed matter systems, a full and accurate enumeration of the

systems theoretically should be very hard and impossible to perform due to that these systems

are composed of very many parts and different types of atom or molecule.

To solve these issues in these real complex systems, Monte Carlo numerical method, as a

computational technique, can be employed to model complex systems by generating random

samples from a probability distribution to approximate the behavior of the system [75, 76]. In

Monte Carlo simulations, random numbers are used to sample the possible configurations of a

system according to a specified probability distribution, and statistical averages are computed

from these samples to estimate the properties of the system. This technique was initially invented

by scientists Nicholas Constantine Metropolis 𝑒𝑡 𝑎𝑙. [77] to address complex problems in nuclear

physics reactions that were difficult to solve. Nowadays, Monte Carlo simulation has been widely

applied in many disciplines such as physics, chemistry, finance, economics, and biology.

The underlying mechanism of Monte Carlo simulation is to conceptualize the system as a

vast and random system, leverage the principle of random sampling to explore the potential

system outcomes, and offer probabilistic estimations of system behavior. Through repeated

simulations with numerous random samples, Monte Carlo simulation extracts insights into

system stability, structural characteristics, and responsive tendencies across diverse conditions.

Monte Carlo simulation mainly includes the following steps: problem formulation, random

sampling, model construction, simulation execution, statistical analysis, convergence testing

and results interpretation [78, 79]. The most important step among them is the random sampling

phase. Random sampling is essential because it allows the simulation to explore a wide range

of possible scenarios and outcomes, capturing the uncertainty inherent in the parameters of the

system. The quality and adequacy of the random sampling directly influence the accuracy and
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reliability of the simulation results. Therefore, careful consideration and implementation of

random sampling techniques are critical to the success of a Monte Carlo simulation. In addition,

Monte Carlo simulation offers several advantages compared to other numerical computation

methods in statistical mechanics:

(1) Generality: Monte Carlo simulations are highly versatile and applicable to a wide range

of systems, from simple models to complex, interacting particle systems. They can be used

to study equilibrium and non-equilibrium phenomena, phase transitions, and critical behavior

across various disciplines [80].

(2) Statistical accuracy: Monte Carlo simulations provide statistically accurate estimates of

system properties by averaging over a large number of random samples. This statistical approach

allows researchers to obtain precise results even in the presence of significant fluctuations or

uncertainties.

(3) Sampling efficiency: Monte Carlo simulations efficiently explore the configuration space of a

system by sampling from probability distributions, focusing computational resources on regions

of interest. This makes Monte Carlo methods particularly suitable for studying high-dimensional

systems with complex energy landscapes [81].

(4) Scalability: Monte Carlo simulations can be easily scaled to handle systems of varying

sizes and complexities. By adjusting the number of simulation steps or the number of samples,

researchers can optimize computational efficiency and achieve results for systems of practical

interest [82].

(5) Flexibility: Monte Carlo simulations can incorporate various sampling techniques, such as

Metropolis-Hastings, Gibbs sampling, or importance sampling, to tailor the simulation approach

to the specific problem at hand. This flexibility allows researchers to adapt Monte Carlo methods

to different system configurations and study objectives [83].

In materials science, Monte Carlo simulations find extensive application for studying the struc-
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ture, properties, and behavior of materials at the atomic and molecular levels, some key appli-

cations include:

(1) Phase diagram calculations: Monte Carlo simulations are used to predict phase diagrams of

materials by simulating the behavior of atoms or molecules at different temperatures and pres-

sures. These simulations provide insights into phase transitions, such as melting, solidification,

and phase coexistence, aiding in the design and optimization of materials processing techniques.

An example is a Monte Carlo simulation of the phase diagram calculations of the fcc binary

alloy [84].

(2) Defect formation and diffusion: Monte Carlo simulations are employed to investigate the

formation, migration, and annihilation of defects (e.g., vacancies, interstitials, dislocations) in

materials. By modeling defect kinetics and thermodynamics, Monte Carlo simulations help

understand defect-induced phenomena such as diffusion, grain growth, and mechanical proper-

ties. For example, Howard L. Heinisch 𝑒𝑡 𝑎𝑙. successfully found the mixed one-dimensional

and three-dimensional defect migration of some interstitial atoms in metals [85].

(3) Atomic scale modeling: Monte Carlo simulations are used to model the atomic struc-

ture and dynamics of materials, including crystalline, amorphous, and nanostructured systems.

These simulations provide insights into atomic arrangements, bonding mechanisms, and sur-

face/interface properties, contributing to the development of new materials with tailored prop-

erties. As an illustration, Lucia Scotti 𝑒𝑡 𝑎𝑙. revealed the diffusion mechanism of the O, N, and

C in hcp Ti by performing kinetic Monte Carlo simulations [86].

(4) Thermodynamic properties: Monte Carlo simulations are employed to calculate thermo-

dynamic properties of materials, such as enthalpy, entropy, and free energy, under different

conditions. These simulations aid in predicting material stability, phase transformations, and

reaction kinetics, guiding the design of materials for specific applications. S. J. Wierzchowski

𝑒𝑡 𝑎𝑙. presented an approach to compute free energies and chemical potentials in molecular

models of gas hydrate systems via Monte Carlo simulations [87].
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Overall, Monte Carlo simulations play a crucial role in advancing our understanding of materials

science phenomena, providing predictive capabilities for the design, characterization, and opti-

mization of materials across various applications. Hence, employing Monte Carlo simulation

to study the phase equilibrium and thermodynamic properties of the various phases in Ti-O,

Ti-Nb, and Ti-Nb-O at finite temperatures is highly feasible.

2.4 Scope and Outline of the thesis

In the previous sections, we outlined first-principles calculations, cluster extension methods,

and Monte Carlo simulation, and summarized their applications across various fields, especially

in materials science. These methodologies offer a crucial avenue for investigating the physical

and chemical properties of materials in varied states, and the underlying interactions between

the constituent atoms or molecules. At first, energetics information of a specific number of

structures in the interested system at ground-state is computed using first-principles calculations.

Subsequently, these structures are linked via cluster expansion methods to predict the energetics

information of the system across various chemical compositions. At last, the cluster data

obtained from cluster expansion serves as a Hamiltonian for Monte Carlo simulation, thereby

extrapolating the ground-state energetics of the existing phases to that in different temperature

and pressure conditions.

In this dissertation, based on the integration of the above three methodologies, a framework

is developed for comprehensive insights into the interatomic interaction and thermodynamic

behavior of the additional interstitial oxygen and/or substitutional Nb in Ti. We believe that the

novel scheme provided here would be valuable for investigating the electronic structure, energy

characteristics, and thermodynamic properties of other metal alloys. Chapter 3 illustrates the

workflow of this study and the details about how to integrate these three methods into an interre-

lated framework. Moreover, the algorithm and computation parameters of each method are also

described in detail. Chapter 4 presents the crystal structures of the ground states discovered in
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the hcp Ti-O system, and analyzes the electronic structures of these structures in order to reveal

the underlying mechanisms of interatomic interactions between oxygen and Ti atoms. On the

other hand, the crucial clusters including pairs, triplets, and quadruplets are examined and their

interactions are quantified by the cluster expansion formalism. Furthermore, some thermody-

namic properties such as vibrational free energies, heat capacities, and transition temperatures

are calculated by a transformed Debye model and Monte Carlo simulations. Chapter 5 provides

the properties of the ground states found in the hcp and bcc Ti-Nb systems and then presents the

thermodynamics of these two systems at finite temperatures, and establishes the phase diagrams

for the bcc and hcp phases. Chapter 6 extends the ground-state energetics obtained in Ti-O and

Ti-Nb binary systems to help establish the cluster expansion for the Ti-Nb-O ternary systems.

For those novel ground states found in the CE, the electronic structures and interatomic interac-

tions between Ti, Nb and O are studied. Moreover, the thermodynamics of the appeared phases

were computed for the first time. Chapter 7 discusses the results of Chapters 4, 5 and 6, and

reveals the inherent connections between the previous three chapters from the view of the atomic

scale. Chapter 8 summarizes all results and discusses future directions for additional research.
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Chapter 3

Theoretical and Computational Methods

Based on quantum physics and density functional theory, first-principles calculations can exten-

sively predict a wide variety of physical and chemical properties of any kind of atomic system

without relying on experimental data. It can determine the electronic structures of materials to

reveal the interactions between atoms and electrons at a microscopic level, thereby explaining

the physical phenomena of materials. As a powerful backend for DFT calculations, the CE

method and MC simulation based on quantum mechanics and statistical mechanics can capture

the DFT energetics information and extend it to different environmental conditions, such as high

temperature and high pressure, to meet the conditions under which materials are in service in

practice. This enables the determination of the physical and chemical properties of materials

under different temperature and pressure conditions.

In this dissertation, the finite temperature thermodynamics of the Ti-O, Ti-Nb, and Ti-Nb-O

systems were determined using a combination of DFT calculation, CE, and statistical mechanics

MC methods. Additionally, DFT calculations were employed to discuss the underlying mech-

anism behind the computed properties. This chapter outlines the theories and methodologies

used to study the Ti-O, Ti-Nb, and Ti-Nb-O systems. Section 3.1 provides a flow chart to shape

the calculation framework by connecting the DFT calculation, CE method, and MC simulations.

31



Theoretical and Computational Methods

Subsequent sections delve deeper into the theoretical foundations of each part of the workflow.

Section 3.2 gives a detailed introduction to the theoretical foundations behind DFT calculation,

as well as its implementation in computation software. Section 3.3 introduces the theory behind

the CE method, its predictive ability, and how CE connects with DFT calculation, the thermo-

dynamic Debye model, and MC simulation. Section 3.4 Section 3.6 elaborates on the concepts

of the MC simulations, the algorithms behind the MC simulation, and how to interpret the data

from MC to Gibbs free energy.

3.1 Workflow

Before delving into the methodology, a brief analysis of the positional occupation of O, Ti, and

Nb in crystals is necessary. For all the metallic systems, oxygen can only occupy the interstitial

sites in Ti [11, 88]. For hcp crystal lattice, the interstitial sites include octahedral, tetrahedral,

crowdion, basal octahedral, hexahedral and basal crowdion sites [86], as shown in Figure 3.1.

The stabilities of these interstitial sites for oxygen occupation were examined by performing

DFT calculations for a set of supercells with 32 Ti and 1 oxygen atoms which were placed

in substitutional and corresponding interstitial sites respectively. The total energies of these

supercells and the positions of these oxygen atoms before and after relaxation are shown in

Table 3.1. Among all the interstitial sites, only three of them are stable for oxygen occupation,

namely the octahedral site, hexahedral site, and crowdion site. The most stable site for oxygen

occupation in Ti is the octahedral site where the supercell has the lowest total energy of -258.86

eV. For bcc crystal structure, similarly, the most stable interstitial sites occupied by oxygen are

also octahedral sites. Therefore, in this study, in all systems containing oxygen, the oxygen

atoms are placed at the positions of octahedral sites to obtain configurations with lower energies.

On the other hand, Nb and Ti can only occupy the substitutional sites in the hcp and bcc crystal

lattice, respectively [89–91].

The entire computational process commences with the construction of a parent lattice, based on
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Figure 3.1: Interstitial sites in the hcp crystal lattice [86].

Table 3.1: Stability of the supercell Ti32O when oxygen sited in different interstitial sites.

Interstitial sites for oxy-
gen occupation

Position after full relax-
ation

Total energy (eV)

Octahedral site Same octahedral site -258.86

Tetrahedral site Neighboring octahedral
site

-258.86

Hexahedral site Same hexahedral site -257.57

Crowdion site Same crowdion site -257.35

Basal crowdion site Neighboring hexahe-
dral site

-258.54

Basal octahedral site Basal octahedral site -255.81

the crystal structure of the system under examination, along with the degrees of freedom across

the different sublattices existing in the crystal. As an illustration, in the Ti-O system, the parent

crystal is the hcp crystal lattice, and Ti and oxygen atoms distribute to two different sublattices. In
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other words, Ti occupies the metal sublattice of hcp crystal, namely the substitutional sites with

the close packed triangular lattice planes. Since the formation energies of the structures with

vacancies on this sublattice are above zero, there are no degrees of freedom on this sublattice,

and all sites on this sublattice are occupied by Ti atoms. For the octahedral interstitial sublattice,

not all sites are occupied by oxygen atoms, thereby oxygen and vacancies are randomly arranged

on this sublattice. For the hcp Ti-Nb system, there is no sublattice, only the metal lattice has

degrees of freedom, and both Ti and Nb atoms are allowed to randomly occupy substitutional

sites. After constructing the parent lattice, the factor group that represents the symmetry of

the primitive configurations will be computed. Subsequently, different atomic arrangements are

enumerated on the sublattice having degrees of freedom to obtain configurations of varying sizes

with different compositions and/or atomic arrangements. Meanwhile, the symmetry operations

performed in the factor group ensure that all the enumerated configurations are unique in terms

of symmetry. The next step is to relax all configurations through DFT calculations and compute

the minimum energy when these configurations achieve equilibrium. Thereby, by counting the

number of atoms in each configuration and taking the energies of configurations composed

of two endpoint components as a reference, the formation energy of each configuration can

be calculated. Then, by putting the formation energies of all configurations together, with

composition and formation energy as the x and y axes respectively (with formation energy as

the vertical z-axis in ternary systems), we can obtain the convex hull of the formation energies

across varying compositions. The stable ground-state orderings with different compositions can

be identified from the convex hull. The CE can determine the crucial clusters associated with each

system based on all the configurational energies. The corresponding effective cluster interactions

(ECIs) which refer to the interactions between atoms in the clusters can be computed by CE.

In addition to configuration energy, temperature-dependent vibrational free energy and thermal

expansion can also be calculated. The first step is that the length-dependent force constants are

computed for each configuration, and next vibrational free energy and thermal expansion of each

configuration are evaluated using harmonic or quasi-harmonic approximation. Similarly, these

vibrational free energies can be used to construct another CE to obtain vibrational ECIs. The
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temperature-dependent total ECIs (tECIs) can be obtained by summing up the configurational

ECIs and vibrational ECIs. Eventually, the initial parent lattice, the configurations of the stable

ground states, the clusters, and the tECIs are used as input to perform MC simulations to

compute the thermodynamics at finite temperatures. The electronic free energy is attributed

to the distribution of electrons across different energy levels, and the electronic states near the

Fermi level are mostly filled. It is not included in all the systems as it is several orders of

magnitude smaller compared to the configurational free energy and vibrational free energy,

thus having minimal impact on the thermodynamic properties. The magnetic free energy is

not considered as well since no literature reported that magnetism exists in any Ti-O and Ti-Nb

compounds. Figure 3.2 shows the overall workflow that was adopted in this study. The following

sections of the chapter introduce the computation details and the theory behind each computation

methodology.

Figure 3.2: Workflow of this study.

3.2 First-principles calculations

With the establishment of the quantum mechanics theory in the early 20𝑡ℎ century and the

advent of powerful computers and numerical techniques in the late 20𝑡ℎ century, first-principles
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calculations began to be practically implemented in the field of material calculations [92]. First-

principles calculations aim to solve many-particle problem without relying on any empirical

parameters and experimental data, thereby achieving the prediction of the electronic structure

and energy characteristics of materials.

3.2.1 Many-particle problem

In the realm of first-principles calculations, one of the central challenges lies in accurately

describing the interactions among multiple electrons and nuclei within a given system. This

complex interaction, often referred to as the many-particle problem, arises due to the quantum

mechanical nature of electrons, which necessitates a comprehensive understanding of their be-

havior within a material or molecule [93]. At the heart of this endeavor lies the formulation and

solution of the many-electron Hamiltonian, a cornerstone in quantum mechanics that encapsu-

lates the dynamics of a system composed of multiple interacting particles. The ground-state of a

many-electron system can be described using the many-particle Schrödinger equation [94] with

linear operator:

𝐻Ψ = 𝐸𝐷𝐹𝑇Ψ (3.1)

where Ψ is the many-particle wave function that denotes the current state of the system, eigen-

value 𝐸 which represents the solution of the equation is the energy of the system, and 𝐻 is the

Hamiltonian operator of the system. Both Ψ and 𝐻 depend on the positions of the electrons (𝑟1,

𝑟2, ...𝑟𝑁 ), and nuclei (𝑅1, 𝑅2, ...𝑅𝑀). 𝐻 can be obtained by simply summing up kinetic (T) and

potential contributions (V) by [94]:

𝐻 (−→𝑟 ,−→𝑅 ) = 𝑇𝑒 (𝑟𝑖) + 𝑇𝑛 (𝑟𝑖) +𝑉𝑒𝑒 (𝑟𝑖, 𝑟 𝑗 ) +𝑉𝑒𝑛 (𝑟𝑖, 𝑅 𝑗 ) +𝑉𝑛𝑛 (𝑅𝑖, 𝑅 𝑗 ) (3.2)

𝑇𝑒 (𝑟𝑖) and 𝑇𝑛 (𝑟𝑖) indicate kinetic factor of electrons and nuclei, respectively. 𝑉𝑒𝑒, 𝑉𝑒𝑛, and 𝑉𝑛𝑛

represent the Coulomb potential interaction between electron-electron, electrons-nuclei, and
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nucleus-nucleus, respectively. Each term can be expanded as:
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1
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(3.3)

where 𝑚 and 𝑒 denote the mass and charge of the electron, 𝑝𝑖 and 𝑃𝑘 represent the torque

operators for electron 𝑖 and nucleus 𝑘 , respectively. 𝑁𝑒 and 𝑁𝑛 refer to all the electrons and

nuclei in the system. 𝑇𝑛 can be assumed to be zero as calculated at 0 K when analyzing a system

of stationary ions as the nuclei are considered to be static state. 𝑀𝑘 and 𝑍𝑘 are the mass and

nuclear charge of the ion 𝑘 , respectively. Then, the equation (3.2) can be expressed by:
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(3.4)

where ℏ is the Planck constant. Despite its seemingly straightforward formulation, the many-

electron Hamiltonian poses formidable challenges in practical calculations due to the intricate

interplay of electronic correlations, exchange effects, and quantum confinement. In particular,

the electron-electron interaction term presents a formidable obstacle, as it leads to the emer-

gence of complex many-body phenomena such as correlation effects, screening, and collective

excitations.

Addressing the many-particle problem in first-principles calculations requires the development

of sophisticated theoretical frameworks and computational methodologies capable of accurately

capturing the electronic structure and dynamics of materials. While exact solutions for simple
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Hamiltonians like the particle in a box or single electron systems are achievable, devising a

generalized method to solve an N-electron Hamiltonian and derive an anti-symmetric wave

function Ψ proves challenging. In the early stage, the Hartree approximation [95], which is a

fundamental approach in quantum mechanics, was used to solve the N-electron Hamiltonian

for atoms and molecules by simplifying the complex problem of electron-electron interactions

by treating each electron as moving independently within an average potential generated by the

other electrons. In this method, the wave function Ψ of the entire system is approximated as a

product of single-electron wave functions, with each electron moving in a mean field generated

by the other electrons and the atomic nuclei, and Ψ can be represented by:

Ψ(𝑟1, 𝑟2, ..., 𝑟𝑁 ) = 𝜓1(𝑟1) × 𝜓2(𝑟2) × ... × 𝜓𝑁 (𝑟𝑁 ) (3.5)

where 𝜓𝑖 represents the wave function of the 𝑖-th electron. Despite its simplicity, the Hartree

approximation has several limitations and disadvantages. First, it neglects electron correlation

effects, which are crucial for accurately describing the behavior of electrons in atoms and

molecules. Secondly, the iterative process for determining the mean field potential generated

by the electrons can be computationally intensive and may converge slowly, particularly for

systems with strong electron-electron interactions. Next, this method violates the Pauli exclusion

principle, which states that no two electrons in an atom can occupy the same quantum state

simultaneously. In this method, each electron moves in an independent mean field potential,

leading to incorrect predictions for electron-electron interactions. Moreover, this approximation

method does not adequately account for exchange effects which lead to the stabilization of

electronic states and play a crucial role in determining the structure and properties of atoms

and molecules. This is due to the quantum mechanical indistinguishability of electrons. The

Hartree approximation provides a useful starting point for solving the N-electron Hamiltonian

and offers important assumptions and conjectures. The Hartree-Fock approximation [96], on

the other hand, improves upon the Hartree approximation by incorporating the antisymmetry

principle of quantum mechanics. It constructs a single Slater determinant wave function for the
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N-electron system, known as the Hartree-Fock wave function, by:

Ψ(𝑟1, 𝑟2, ..., 𝑟𝑁 ) =
















𝜓1(𝑟1) 𝜓1(𝑟2) . . . 𝜓1(𝑟𝑁 )

𝜓2(𝑟1) 𝜓2(𝑟2) . . . 𝜓2(𝑟𝑁 )
...

...
. . .

...

𝜓𝑁 (𝑟1) 𝜓𝑁 (𝑟2) . . . 𝜓𝑁 (𝑟𝑁 )















(3.6)

which is antisymmetrized with respect to the electron coordinates. This allows the Hartree-Fock

method to better account for electron correlation effects and provides a more accurate description

for many-electron systems especially small molecules compared to the Hartree approximation.

However, this method treats electrons as independent particles and neglects significant electron

correlations such as Coulomb interaction in metal and solid systems, leading to inaccuracies in

determining the stable state and total energy of these strongly correlated systems. In addition,

some other methods such as configuration interaction (CI) [97] and coupled cluster (CC) theory

[98] were explored to account for the electron correlation effects in solving the many-particle

systems, whereas each method has its disadvantages and limitations.

3.2.2 Density functional theory

To simplify the problem, the Born-Oppenheimer approximation [99] was proposed to describe

the electronic structure of many-electron systems while keeping the positions of atomic nuclei

fixed. This approximation is based on the fact that the mass of the nuclei is much larger than that

of the electrons, leading to a separation of timescales between electronic and nuclear motion.

Consequently, the electronic configuration can be treated as instantaneous compared to the much

slower motion of the nuclei. This approximation considers the contribution of nuclei to the total

energy of the system to be constant, while the electrons in the external field affect the interactions

between ions and electrons, thereby determining the total energy of the system. Based on this

approximation, density functional theory (DFT) was proposed by Hohenberg, Kohn and Sham

[100, 101] to solve the many-electron problem by replacing it with one-electron Schrödinger
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equations. The density in DFT indicates the electron density 𝜌(𝑟) which can represent the wave

function Ψ by:

𝜌(𝑟) =
∫

|Ψ(𝑟1, 𝑟2, ..., 𝑟𝑁 ) |2 𝑑𝑟1𝑑𝑟2...𝑑𝑟𝑁 (3.7)

In order to obtain the ground-state energy of a many electron system, The Rayleigh-Ritz varia-

tional principle [102] states that for any trial wave function belonging to a certain Hilbert space,

the expectation value of the Hamiltonian is always greater than or equal to the ground-state

energy of the system 𝐸0:

𝐸0 ≤ 𝐸 [𝜌] = ⟨Ψ |𝐻 |Ψ⟩
⟨Ψ | Ψ⟩ (3.8)

Therefore, the ground-state energy of the system 𝐸0 can be approached by minimizing the

expectation value of the Hamiltonian. In the (3.8), the energy functional of the electron density

𝐸 [𝜌] comprises of the contributions from electrons (𝐹 [𝜌]) and external potentials, which can

be expressed as:

𝐸 [𝜌] = 𝐹 [𝜌] +
∫

𝜌(𝑟)𝑉𝑒𝑥𝑡𝑑𝑟 (3.9)

The external potentials 𝑉𝑒𝑥𝑡 include all the external factors except for electron-electron inter-

actions, namely nuclei-electron interaction and other potential factors that affect the electron

density. The functional of electron potentials 𝐹 [𝜌] can be separated into three terms as:

𝐹 [𝜌] = 𝑇𝑆 [𝜌] + 𝐸𝐻 [𝜌] + 𝐸𝑋𝐶 [𝜌] (3.10)

where 𝑇𝑆 [𝜌] represents the kinetic energy contribution, T and S denote the operator and entropy

of the electron density 𝜌. 𝐸𝐻 [𝜌] is the Hartree energy contribution arising from the Coulomb re-

pulsion between electrons. 𝐸𝑋𝐶 [𝜌] is exchange-correlation energy contribution which accounts

for the effects of electron-electron correlation and exchange. The exchange term describes the

antisymmetry of the wave function when two electrons are exchanged, while the correlation term

accounts for the interactions beyond the mean-field approximation. By reworking the original

many body Hamiltonian, the Kohn-Sham equation maps the many-body problem onto a set of
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non-interacting single-particle equations, which is given by:

(
−ℏ2

2𝑚
∇2 +𝑉𝑒 𝑓 𝑓 (𝑟)

)
𝜙𝑖 (𝑟) = 𝜀𝑖𝜙𝑖 (𝑟) (3.11)

where 𝜙𝑖 (𝑟) are the Kohn-Sham orbitals which can be represented by 𝜌(𝑟) = ∑𝑁
𝑖 |𝜙𝑖 (𝑟) |2, 𝜀𝑖 are

the corresponding eigenvalues (orbital energies), 𝑉𝑒 𝑓 𝑓 (𝑟) is the effective potential that can be

decomposed into:

𝑉𝑒 𝑓 𝑓 (𝑟) = 𝑉𝑒𝑥𝑡 (𝑟) +𝑉𝐻 (𝑟) +𝑉𝑋𝐶 (𝑟) (3.12)

where 𝑉𝑒𝑥𝑡 (𝑟) is the external potential, 𝑉𝐻 (𝑟) is the Hartree potential arising from electron-

electron repulsion and can be written as:

𝑉𝐻 (𝑟) =
∫

𝑒2𝑛( ⃗⃗𝑟 ′)
| ⃗⃗𝑟 − ⃗⃗

𝑟
′ | 𝑑

3𝑟
′

(3.13)

The exchange correlation potential 𝑉𝑋𝐶 (𝑟) is derived from the exchange correlation energy

𝐸𝑋𝐶 [𝑛(𝑟)] which is a functional of the electron density 𝑛(𝑟), it can be expressed by:

𝑉𝑋𝐶 [𝑛(𝑟)] =
𝛿𝐸𝑋𝐶 [𝑛(𝑟)]

𝛿𝑛(𝑟) (3.14)

This functional approximates the unknown exchange correlation energy, which accounts for

the effects of electron correlation beyond the classical Coulomb repulsion. The complexity of

these interactions makes it challenging to describe them analytically, necessitating the use of

approximation methods. Nevertheless, several approximations [103] are available to evaluate

the exchange correlation energy for specific systems, each with its own approach and level of

sophistication. A common approach is local density approximation (LDA) [104] which is the

earliest and simplest method. It assumes that the exchange correlation energy per particle at a

given point in space depends only on the local electron density at that point. It can be described

by:

𝐸𝐿𝐷𝐴
𝑋𝐶 [𝑛(𝑟)] =

∫
𝜀𝑋𝐶 (𝑛)𝑛(𝑟)𝑑3𝑟 (3.15)
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where 𝜀𝑋𝐶 [𝑛(𝑟)] is the exchange correlation energy density and is typically obtained from the

known exchange-correlation energy of the homogeneous electron gas. Another method, the gen-

eralized gradient approximation (GGA) [105–107] extends LDA by incorporating information

about the gradient of the electron density. This method assumes that the exchange correlation

energy depends not only on the local electron density but also on its gradient:

𝐸𝐺𝐺𝐴
𝑋𝐶 [𝑛(𝑟)] =

∫
𝜀𝑋𝐶 [𝑛(𝑟),∇𝑛]𝑛(𝑟)𝑑3𝑟 (3.16)

the 𝜀𝑋𝐶 [𝑛(𝑟),∇𝑛] is expressed as a functional of the electron density and its gradient. For this

method, some parameterizations were developed to increase the accuracy of the approximation

(e.g. PBE [108]). The latest method hybrid functionals (HF) [109] combine the advantages of

both Hartree-Fock theory and DFT by mixing exact exchange with DFT exchange correlation

functionals, which can be expressed as:

𝐸
ℎ𝑦𝑏𝑟𝑖𝑑

𝑋𝐶
[𝑛(𝑟)] = 𝑎𝐸𝑒𝑥𝑎𝑐𝑡

𝑋 [𝑛(𝑟)] + (1 − 𝑎)𝐸𝐷𝐹𝑇
𝑋 [𝑛(𝑟)] + 𝐸𝐷𝐹𝑇

𝐶 [𝑛(𝑟)] (3.17)

This functional includes a fraction 𝑎 of exact exchange energy 𝐸𝑒𝑥𝑎𝑐𝑡
𝑋

, mixed with DFT ex-

change 𝐸𝐷𝐹𝑇
𝑋

and correlation 𝐸𝐷𝐹𝑇
𝐶

energies. While this method can offer improved accuracy

by including a fraction of exact exchange energy, this enhancement comes at the expense of

higher computational resources and longer calculation times. Additionally, the choice of the

mixing parameter 𝑎 can be somewhat arbitrary, and the performance of the functional may vary

depending on its value.

In reality, the computational cost of explicitly treating core electrons in electronic structure

calculations can be prohibitively high, especially for systems with many atoms or electrons. It

is well-known that core electrons are tightly bound to the atomic nucleus and have little effect

on chemical bonding or electronic properties beyond a certain distance from the nucleus as

bonding and cohesion in the system predominantly arise from the overlap of valence electrons

between atoms [110, 111]. Therefore, to further simplify the electron-electron interactions, it is
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necessary to develop a model or method to coarse graining the contributions from core electrons.

In the context of the above, the pseudopotential method [112] was developed to replace the core

electrons with an effective potential that approximates the interaction between valence electrons

and the atomic nucleus, as well as the screening effects of the core electrons. This effective

potential is constructed to reproduce the combined influence of the core electrons and nuclei,

making it possible to describe valence electrons using a pseudo-wave function with fewer nodes.

That means the wave function can be written with fewer Fourier series terms, which makes the

calculation of the plane wave basis set practical. The diagram that pseudopotential represents

the true potential is shown in Figure 3.3. When 𝑟 > 𝑟𝑐, the pseudopotential, true potential, and

pseudo-wave function largely overlap, sharing the same shape and amplitude. However, when

𝑟 < 𝑟𝑐, the pseudopotential and true potential exhibit more noticeable discrepancy, while the

deviation between the pseudopotential wave function and the true wave function is relatively

small. The sharply changing true wave function is transformed into a slowly changing pseudo-

wave function, thereby achieving the pseudopotential conservation [113].

Figure 3.3: Pseudopotential wave function (red lines) and all electron wave function (blue dashed
lines) [113].

There are several types of pseudopotentials, including norm-conserving pseudopotentials [114],

ultrasoft pseudopotentials [115], and projector-augmented wave (PAW) pseudopotentials [116],

each with its own characteristics and applications. In this dissertation, the PAW method was

43



Theoretical and Computational Methods

employed to approximate the plane wave function, which combines the simplicity of a first-

principles pseudopotential method and the accuracy of all-electron methods. This method starts

by constructing localized projector functions centered around each atomic nucleus [116, 117].

These projector functions are designed to capture the behavior of the core electrons within a

specified cutoff radius. Pseudo-wave functions are then constructed by combining the projector

functions with pseudo-wave functions, which represent the valence electrons. The pseudo-wave

functions are chosen to be smooth and well-behaved functions that accurately describe the

valence electron behavior. Once the projector 𝜏 and these smooth pseudo-wave functions 𝜙

are constructed, a linear transformation is performed to express the all-electron pseudo-wave

functions in terms of the basis of projector functions by:

𝜙𝑘 = 𝜏𝜙 (3.18)

This transformation effectively projects the pseudo-wave functions onto the space spanned by

the projector functions. The linear transformation yields expansion coefficients that represent

the contribution of each projector function to the pseudo-wave function. These expansion

coefficients determine how much each projector function contributes to the representation of the

valence electron behavior, and then are used to construct the one-electron Kohn-Sham equation.

The potentials constructed using the PAW-PBE method in the Vienna Ab initio Simulation

Package (VASP) [115, 118–121] were used to carry out all the DFT calculations in this work.

An important parameter in the potentials in VASP is energy cutoff (𝐸𝑐𝑢𝑡) which determines the

size of the plane-wave basis set in the DFT calculations. All the electron density is represented

as a summation of planar waves:

𝜌(𝑟) =
∑︁
𝐺

𝜌𝐺𝑒
𝑖𝐺𝑟 (3.19)

Plane waves (G) with energies below the cutoff energy are used in the DFT calculations. A

higher 𝐸𝑐𝑢𝑡 can lead to more precise total energy while increasing the time and computation

expense. Another crucial setting is the discretization of the Brillouin zone, known as k-points,

which is a mathematical construct representing the electron momentum space in a crystalline
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solid. The choice of k-points determines the resolution with which electronic states are sampled

in reciprocal space. More k-points provide a finer sampling, leading to more accurate results, but

increasing the computation time. In this study, to ensure calculation accuracy without increasing

unnecessary computation time, all parameters subjected to convergence testing were verified for

convergence according to different systems. The other DFT settings are also described at the

beginning of each chapter.

3.3 Cluster expansion Formalism

The computation of the thermodynamic quantities of an alloy from DFT calculations generally

involves three steps. First, the partition function of the system undergoes a coarse-graining

transformation to that of a lattice model, which effectively captures the potential configurational

disorder of the alloy [69]. Second, the resultant coarse-grained partition function encompasses

a summation over all feasible arrangements of atoms on a given parent lattice. Finally, the

system undergoes thermal equilibration, and free energies over compositions and temperatures

are derived through Monte Carlo simulations [122]. In the second step, due to the immense

number of terms in this summation, computing the energy of each configuration from first

principles is unfeasible. Therefore, it is crucial to find a method that can evaluate the energy of

any configuration of the system based on a portion of the known configuration energies.

The cluster expansion formalism, a generalized Ising model, can parametrize the energy’s

dependence on alloy configuration. This technique offers a concise representation of the config-

urational energy dependence, with the accuracy being progressively enhanced by incorporating

a sufficient number of terms in the expansion. In this method, the energy of a configuration is

linked to the interactions among atoms within small clusters. The ground states at 0 K in the

system can be determined by the construction of cluster expansion of the 0 K DFT energies and

then can be used with the crucial clusters and cluster interactions as a Hamiltonian to perform

Monte Carlo simulations to get their free energy over compositions and temperatures. In this
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study, the alloy theoretic automated toolkit (ATAT) [62, 123, 124] was used to enumerate the

structures, construct the cluster expansion, and fit it to data obtained from DFT calculations.

3.3.1 Clusters and basic functions

Any configuration within the system can be delineated by employing occupation variables

associated with the lattice sites [60, 125]. For instance, in the hcp Ti-O system, the sites in the

metal sublattice can only allow Ti atoms to occupy, such that there is no degree of freedom on

this sublattice. However, in the sublattice with octahedral sites, oxygen atoms and vacancies

are both allowed to occupy these sites. Then, the occupational variable (𝜎𝑖) for a site 𝑖 in the

octahedral sublattice can be assigned 0 if it is occupied by a vacancy and 1 if an oxygen atom is

present at this site, as shown in Figure 3.4. There is no need to assign occupational variables to

the Ti sublattice due to no degree of freedom. Any arrangement of compositional Ti𝑥O𝑦 in the

Ti-O system thereby can be expressed by the occupation variable vector ⃗⃗ ⃗⃗
𝜎 = [𝜎1, 𝜎2, . . . , 𝜎𝑛]

which collects the occupation variables of all the sites 𝑛 in the oxygen-vacancy sublattice in

Ti𝑥O𝑦.

Figure 3.4: The representation of the occupational variables in the hcp Ti-O system.

While the local arrangement of the atoms at the sublattice can be represented by the occupation

variable vector, the energy of a specific configuration is affected by the repulsive and attractive

interactions between these atoms. For this purpose, the basis function representing site clusters

can be employed. This basis function typically takes the form of polynomials of the occupation
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variables in the cluster. Cluster refers to the grouping of certain sites within these sites with

occupation variables [126, 127]. For example, two sites can group as a pair, three sites can form

a triplet, and four sites can generate a quadruplet. Figure 3.5 illustrates the examples of the

cluster formation of the pairs, triplets, and quadruplets on the x-y plane in the hcp Ti-O system.

We can then get the basis function 𝜙𝛼 of a cluster 𝛼 by the multiplication of all the occupation

variables 𝜎𝑖:

𝜙𝛼 =
∏
𝑖∈𝛼

𝜎𝑖 (3.20)

Figure 3.5: Examples of the clusters in the hcp Ti-O system: pair, triplet, and quadruplet.

If all the clusters are taken into account, the basis functions can constitute a comprehensive

orthogonal basis set across the whole configuration space. Then, cluster expansion can express

the energy of any configuration in the system by considering the interactions of all the clusters

and their associated basis functions as [62, 128, 129]:

𝐸 ( ⃗⃗ ⃗⃗𝜎) =
∑︁
𝛼

𝜙𝛼𝐽𝛼 (
⃗⃗ ⃗⃗
𝜎) (3.21)

where 𝐽𝛼 represents the effective cluster interactions (ECI) of cluster 𝛼 which is a crucial

parameter in the cluster expansion method. It can be treated as a coefficient that embodies the

contribution of the interactions between the species in a cluster to the energy of the configuration.

In theory, as the number of enumerated configurations increases, the number of clusters grows

47



Theoretical and Computational Methods

exponentially, making it impractical to capture all clusters. This implies that it is necessary to

truncate the clusters reasonably while ensuring cluster accuracy [130]. When capturing clusters,

limiting the cluster radius or the number of clusters can be considered feasible as it has been

observed from DFT calculations that the correlations between species within clusters become

very weak, gradually approaching zero, when the distance between species in the cluster is beyond

a certain value [122, 131]. Therefore, this truncation method essentially limits the interaction

distance between species within the clusters. In practice, it is found that the interaction between

clusters generally converges rapidly. With 30-50 configuration energies obtained from DFT,

about 10-20 clusters can accurately fit these DFT energies and well predict the energy of any

configuration in a simple system. It should be noted that, in the process of structure enumeration,

ATAT calculates the factor group which represents the symmetry of the primitive structure of

the input crystal structure, then the symmetry operations in the factor group are applied to the

primitive structures to enumerate symmetrically unique configurations [132]. These symmetry

operations do not change the crystal structure and the energy of the system, thereby clusters

mapped to each other through these factor groups have the same ECI. This makes it necessary

to classify clusters with the same site positions and radius. All symmetric equivalent clusters

can be regarded as a set Ω𝛼, here 𝛼 denotes all the clusters that are equivalent to the cluster 𝛼

through symmetry. Then, the cluster basis function (3.20) can be normalized as:

⟨𝜙𝛼 (
⃗⃗ ⃗⃗
𝜎)⟩ =

∑
𝛽∈Ω𝛼

𝜙𝛽 (
⃗⃗ ⃗⃗
𝜎)

𝑚𝛼𝑁𝑝

(3.22)

where 𝑚𝛼 represents the quantity of the clusters that are equivalent to the cluster 𝛼 and 𝑁𝑝 is

the number of the primitive cells in the enumerated configuration. Therefore, the energy of the

configuration can be described by reworking the equation (3.21) as follows:

𝐸 ( ⃗⃗ ⃗⃗𝜎) =
∑︁
𝛼

𝑚𝛼𝐽𝛼⟨𝜙𝛼 (
⃗⃗ ⃗⃗
𝜎)⟩ (3.23)
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3.3.2 Determination of effective cluster interactions (ECIs)

In the equation (3.23), an important parameter 𝐽𝛼 (ECI), which reflects the strength of the

interactions between the internal sites and embodies the information regarding the energetics of

the system, needs to be determined. There are typically two ways to evaluate the ECIs. The first

is by considering ordered structures as perturbations to the disordered structure. In this method,

the disordered alloy is computed either using the Virtual Crystal Approximation (VCA) [133,

134] or the Coherent Potential Approximation (CPA) [135]. The second method, also known as

Structure Inversion Method (SIM) or the Collony-Williams method [136], is by fitting ECIs to

the energy of a relatively small number of configurations obtained through DFT computations.

Both of these two methods were applied to numerous systems, however, the first method, as

a perturbative approach, is tested to fail when applied to systems where there is a significant

energy difference between the disordered and ordered phases. Additionally, due to the lack of

information on atomic force, the CPA fails to capture the geometric relaxation of configurations.

In contrast, the second method can be straightforward to evaluate the ECIs by performing DFT

calculations on a number of known configurations. The 𝑚𝑎𝑝𝑠 and 𝑚𝑚𝑎𝑝𝑠 codes in ATAT

[69] can help us sequentially enumerate configurations from small to large sizes and provide

information about the crucial clusters and their correlations with these configurations. To obtain

the values of ECIs by fitting clusters to the DFT energies of the enumerated configurations, we

need to work on the following linear operation of matrices:

E𝐷𝐹𝑇 = 𝝓J (3.24)

where E𝐷𝐹𝑇 is the 𝑚 × 1 matrix consisting of the energies of all the 𝑚 configurations, 𝝓 is the

𝑚 × 𝑛 matrix consisting of the correlations between each configuration and the clusters, and J

is the 𝑛 × 1 matrix consisting of ECIs of all the 𝑛 clusters. While the values of ECIs can be

obtained via equation (3.24), the selection of clusters can greatly affect the values of ECIs and the

predictive power of the cluster expansion. The constructed cluster expansion model is not just

used to predict DFT energies, but also employed to predict the energies of thousands of large-
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size configurations in the subsequent Monte Carlo simulations. Performing DFT calculations

on these large-size supercells is not feasible, thus finding a cluster model with good predictive

power is crucial. In order to obtain a high-precision cluster expansion model with accurate and

representative ECIs, the following three points need to be considered. First, it is essential to

enumerate a diverse set of configurations that adequately span the entire compositional space of

the system such that clusters can collect all the important interactions between species. Second,

the choice of basis functions (i.e. clusters) should accurately capture the energetics of the system

and account for important atomic arrangements in the configurations. The last is to validate

the predictive power of the cluster expansion model by testing its performance on independent

datasets not used in the fitting process. Regarding the first point, ATAT can initially enumerate

representative configurations over wide compositions, then based on the calculated DFT energies

of these configurations, continually enumerate important configurations until all ground states

are found, and no new ground states can be predicted. For the second point, we can set an upper

limit on the distance between the nearest neighbors in the clusters, such that ATAT only searches

for important clusters within the given limit. We can also limit the number of selections for

each type of cluster so that ATAT only searches the specified number of clusters for each type.

However, for the final point, it is necessary to calculate the difference between the DFT energy

and the CE predicted energy for each configuration, in order to calculate the cross-validation

score and thereby evaluate the quality of cluster expansion. This step requires more manual

intervention to minimize the score.

3.3.3 Cross-validation score

As mentioned above, to achieve a perfect cluster expansion model, theoretically an infinite

number of clusters and configurations are required. However, to obtain a satisfactory high-

precision cluster expansion model, it is sufficient to truncate both at an appropriate position,

meaning that a number of clusters are fitted to a certain number of configuration energies.

The challenge lies in determining how many configurations and clusters are needed for a given
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system. On one hand, too few configurations may fail to adequately represent the entire system,

while an excessive number of configurations increases computational costs and introduces more

noise into the cluster expansion. On the other hand, for a selected set of configurations, too

few clusters may result in the cluster expansion model being unable to accurately predict DFT

energies, as the truncated clusters may fail to account for all sources of energy fluctuations.

Conversely, if too many clusters are kept, the more subtle problem of overfitting manifests itself.

This can lead to a situation where the fitting mean square error may appear seemingly small,

whereas the true predictive capability of the cluster expansion for the energies not included in

the fit is actually much lower. The essence of this problem is that the energy variations caused

by the ECIs (𝐽𝛽) of cluster set 𝛽, which are not included in the fit, may be incorrectly attributed

to the ECIs (𝐽𝛼) of another cluster set 𝛼 that is included in the fit. Therefore, for a given set of

DFT energies, it is needed to find the compromise between these two detrimental effects in order

to obtain the most predictive cluster ensemble for ECIs. A reliable solution to this problem is

the "Leave-one-out cross-validation" (LOOCV) method [137] which leaves one data point out

during each iteration to simulate a scenario where the model is trained on a subset of the data

and tested on the remaining data, allowing for an assessment of how well the model generalizes

to unseen data. Applying LOOCV here, each energy point in the DFT dataset is left out once,

and the cluster expansion model is trained on the remaining energy points. Then, the prediction

of the model is evaluated based on the omitted energy point. This process is repeated for each

energy point in the DFT dataset. LOOCV provides a robust estimate of the performance of the

constructed cluster expansion model as it evaluates the model on all energy points in the DFT

dataset. In addition, it not only does not require the random splitting of the DFT dataset, which

can lead to variability in the evaluation results, but also maximizes the use of available energy

dataset for both training and testing, especially in DFT datasets with a small number of energy

points.

Based on the LOOCV method, the goodness of the fit of the cluster expansion can be clearly
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quantified through the cross-validation (CV) score [122] (also presented in [131]):

𝐶𝑉 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(𝐸𝑖 − 𝐸𝑖(𝐶𝐸))2 (3.25)

where 𝑛 is the number of all the configurations used to fit the cluster expansion. 𝐸𝑖 and 𝐸𝑖(𝐶𝐸)

indicate the DFT calculated energy of structure 𝑖 and CE predicted energy obtained from a least-

squares fit to the 𝑛 − 1 other calculated energies, respectively. Similar to the root-mean-square

error, the CV score, which is sensitive to outliers, averages deviations between DFT energies

and CE predicted energies on all configurations. A smaller CV score in most cases indicates a

highly accurate and predictive CE, which is different from the well-known mean square error.

As shown in Figure 3.6, the CV score first decreases as more degrees of freedom (more clusters)

are available to account for the variations in energy. After the CV score reaches its minimum,

overfitting occurs, where an increase in noise in the ECIs happens, which in turn causes the

CV score to gradually increase. Hence, the selection of the clusters corresponding to the

minimum CV score provides the optimal and most predictive ECIs. Assessing the accuracy of

a constructed cluster expansion model entails predicting another validation set. It is noteworthy

that a key feature of the CV equation is its simplicity to operate by removing one point at a time

from the dataset, without necessitating multiple splits. Additionally, while certain points are

excluded from the fit when operating the CV equation, the resulting CV score can also reflect

the predictive capability of the cluster expansion model with the inclusion of all points.

3.4 Noise identification and removal in the cluster expansion

For a given energy dataset, we can always find the optimal solution by optimizing the radius or

number of clusters, obtaining the minimum CV score. However, for some systems, especially

those containing elements with different crystal structures, the optimal solution of the CV score

may be unsatisfactory. This results in the constructed cluster expansion model being unable

to accurately predict energies in the dataset. The underlying reason for this phenomenon is
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Figure 3.6: Working mechanism of the CV score.

not the inadequacy of the cluster expansion fit but rather the presence of noise in the energy

dataset, which cannot be eliminated by optimizing the cluster expansion model. The source of

this noise is certain configurations in the configuration set that become highly distorted after

fully relaxation through DFT calculations, with some configurations even relaxing to other

geometries. Therefore, these highly distorted configurations should not be included in the

cluster expansion fit of the system. They should be accurately identified and removed from the

configuration set. Only in this way can the blocked CV score be better optimized, resulting in a

predictive cluster expansion model.

An important method to analyze the crystal geometry of a configuration is common neighbor

analysis (CNA) [138]. The mechanism of CNA involves examining the coordination environ-
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ments of individual atoms in a crystal lattice by analyzing their neighboring atoms and the types

of bonds formed between them. This analysis is based on the idea that atoms in a crystal lattice

tend to arrange themselves in regular and repeating patterns, with certain coordination numbers

and bond angles characteristic of specific crystal structures. The CNA algorithm employed in

this work involves three steps. The first is to identify the nearest neighbors of each atom in each

configuration based on a specified cutoff radius. Then, CNA determines the types of bonds

formed between each atom and its nearest neighbors, and it analyzes bond lengths, bond angles,

and the coordination number of each atom. Last, the local atomic environments of each atom

based on the types of bonds formed with its nearest neighbors are classified. This classification

method includes distinguishing between different crystal structures and identifying defects or

interfaces within the configuration. Figure 3.7 shows the coordination number and the specific

arrangement of atoms in the local environment of fcc, hcp, icosahedral, and bcc crystal struc-

tures [139]. Sometimes an appropriate cutoff cannot be found using conventional CNA, in this

case, we use the more advanced interval CNA (i-CNA) method [140] to investigate all possible

threshold choices for each atom, which provides a better recognition rate.

Figure 3.7: Coordination number of fcc, hcp, icosahedral, and bcc crystal structure [139].

While the CNA method can identify all configurations that do not keep the parent lattice of

the system, there may still be some highly distorted configurations in the system that have not

relaxed to other crystal structures. For such configurations, CNA is ineffective since they still

maintain the crystal structure type of the parent lattice of the system. Therefore, it is necessary

to compute the relaxation amount (RA) for each configuration after relaxation. In this study,
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the 𝑐ℎ𝑒𝑐𝑘𝑟𝑒𝑙𝑎𝑥 command in ATAT [123] (also presented in [131]) was employed to calculate

the distortion for each configuration, representing the RA. The distortion of a configuration is

measured by:

𝑅𝐴 =





D+D𝑇

2 − I





𝐹

(3.26)

where I and 𝐹 denote the identity matrix and the Frobenius norm, respectively. D refers to the

matrix that represents the distortion between the original and relaxed configuration, and it can

be derived from:

D =

(
A

(𝑑𝑒𝑡A)1/3

)−1
× B

(𝑑𝑒𝑡B)1/3 (3.27)

here A and B are the matrix composed of lattice vectors of the configurations before and after

relaxation, respectively. In general, for a simple binary system, RA>0.1 is considered too

much for distortion, and those offending configurations should be disabled to construct cluster

expansion [141].

By applying CNA method and RA calculation to all the enumerated configurations, all the

noises can be identified and removed from the cluster expansion, thereby lowering the blocked

CV score reasonably by selecting appropriate clusters.

3.5 Vibrational free energy and other thermodynamic prop-

erties

(The work presented in this section is adapted from [131])

To accurately extend the thermodynamic properties of different configurations and phases at 0 K

to finite temperatures, besides the 0 K configuration energy, magnetic free energy, electronic

free energy, and vibrational free energy caused by lattice thermal expansion also should be

considered. Magnetic properties and electronic free energy are not discussed in this dissertation

since, for metallic systems, the electronic energy is generally several orders of magnitude smaller

than the configuration energy, and no previous literature reported that magnetism exists in any
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Ti-O and Ti-Nb compounds. Unlike the effect of magnetism and electrons, vibrational free

energy (𝐹𝑣𝑖𝑏) exists in any system as thermal expansion happens in crystal lattices even at

lower temperatures. Furthermore, as the temperature increases, 𝐹𝑣𝑖𝑏 contribution to the total

free energy may be significant because, as the primary contribution to the 𝐹𝑣𝑖𝑏, vibrational

entropy (𝑆𝑣𝑖𝑏) is positively correlated with temperature. Therefore, computing and discussing

the vibrational free energy of configurations are crucial for correctly understanding the stability

of various phases at different temperatures.

Many thermodynamic models have been developed to account for the vibrational degrees of

freedom in solids with different precision. Here, the widely-applied Debye-Grüneisen model

[142, 143], implemented in the Gibbs2 package [144, 145], was employed to estimate the 𝐹𝑣𝑖𝑏

for those relaxed structures close to convex hull over the whole composition region. These data

then was used to fit another CE for 𝐹𝑣𝑖𝑏 to obtain vibrational ECIs. In the Debye-Grüneisen

model, the lattice vibrational properties are described using the Debye model, which assumes

that the vibrational modes of the crystal can be treated as sound waves propagating through

an elastic medium. These modes are characterized by a maximum frequency known as the

Debye frequency. The Grüneisen parameter accounts for deviations from the harmonic behavior

assumed by the Debye model, capturing the effects of anharmonicity and thermal expansion on

the lattice vibrations. Within this framework, the volume- and temperature-dependent 𝐹𝑣𝑖𝑏 of a

configuration can be calculated by:

𝐹𝑣𝑖𝑏 =
9
8
𝑛𝑘𝐵Θ𝐷 + 3𝑛𝑘𝐵𝑇 ln(1 − 𝑒−Θ𝐷/𝑇 ) − 𝑛𝑘𝐵𝑇𝐷 (Θ𝐷/𝑇) (3.28)

where 𝑛 is the number of atoms in primitive cell, 𝑘𝐵 the Boltzmann’s constant and 𝐷 the Debye

function given by:

𝐷 (𝑥) = 3
𝑥3

𝑥∫
0

𝑦3𝑒−𝑦

1 − 𝑒−𝑦
𝑑𝑦 (3.29)
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and Θ𝐷 denotes the Debye temperature calculated at the static equilibrium volume 𝑉0 by [142]:

Θ𝐷 (𝑉) = Θ𝐷 (𝑉0) ·
(
𝑉0

𝑉

)𝛾
(3.30)

where 𝛾 is the Grüneisen parameter, which can be obtained by [146]:

𝛾 = 𝑎 + 𝑏
𝑑𝐵𝑠𝑡𝑎

𝑑𝑝
= 𝑎 − 𝑏

𝑑 ln 𝐵𝑠𝑡𝑎

𝑑 ln𝑉
(3.31)

where 𝐵𝑠𝑡𝑎 is the static bulk modulus, factor 𝑎 and 𝑏 can be approximated using the expression by

Slater (𝑎 = −1/6, 𝑏 = 1/2) [147], Dugdale-McDonald (𝑎 = −1/2, 𝑏 = 1/2) [148], Vaschenko-

Zubarev (𝑎 = −5/6, 𝑏 = 1/2) [149] and the mean free volume gamma (𝑎 = −0.95, 𝑏 = 1/2)

[150]. There is little difference when testing each of the above expressions in this study, we

adapt in the value of 𝑎 = −5/6, 𝑏 = 1/2. The Θ𝐷 (𝑉0) can be expressed by:

Θ𝐷 (𝑉0) =
1
𝑘𝐵

(6𝜋2𝑉
1/2
0 𝑛)1/3 𝑓 (𝜎)

√︂
𝐵𝑠𝑡𝑎

𝑀
(3.32)

where 𝑀 is the molecular mass of the primitive cell and 𝜎 the Poisson ratio at equilibrium state.

The function 𝑓 (𝜎) can be represented by:

𝑓 (𝜎) =
3

[
2
(

2(1 + 𝜎)
3(1 − 2𝜎)

)3/2
+

(
(1 + 𝜎)

3(1 − 𝜎)

)3/2
]−1

1/3

(3.33)

Other thermodynamic properties of a configuration can be derived directly from the Helmholtz

free energy, obtained from the configurational and vibrational free energies, according to the

following equation:

𝐹 (𝑉 ; 𝑝, 𝑇) = 𝐹𝑐𝑜𝑛 𝑓 𝑖𝑔 (𝑉) + 𝑝𝑉 + 𝐹𝑣𝑖𝑏 (𝑉 ;𝑇) (3.34)

In order to calculate the free energy of phases as a function of composition and temperature with

the inclusion of vibrational entropy, the temperature-dependent ECIs obtained by summing up

ECIs calculated from CE of configurational and vibrational free energies respectively were used

as input (Hamiltonian) in Monte Carlo simulations.
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3.6 Thermodynamic averaging of the investigated systems

Through constructing the CE model for a system, we obtained valuable ECIs that capture all

types of interactions in the system and thereby represent the energetics of the system. These

ECIs derived from the CE model can be used to extract the thermodynamic properties of various

phases over the composition space and temperatures by thermodynamic averaging methods such

as statistical sampling. The implementation of this is based on the physical fact that, when the

system is in equilibrium, the macroscopic properties of the system can be described by ensemble

averages which represent the average behavior of a large number of microscopic configurations

of the system [151]. These microscopic configurations correspond to any microstate that the

system may achieve. And as the temperature increases, the system fluctuates between different

microstates. The probability of finding a system in a particular microscopic state 𝑖 (𝑃𝑖) can be

evaluated by the Boltzmann distribution via:

𝑃𝑖 =
1
𝑍

exp (− Ω𝑖

𝑘𝐵𝑇
) (3.35)

where 𝑘𝐵 and 𝑇 are the Boltzmann’s constant and temperature, respectively. Ω𝑖 is the potential

of state 𝑖 in a specific ensemble. 𝑍 is the partition function, which ensures that the probabilities

sum up to 1 over all possible states, can be given by:

𝑍 =
∑︁
𝑖

exp (− Ω𝑖

𝑘𝐵𝑇
) (3.36)

Then the ensemble average of an observable thermodynamic quantity can be calculated by

averaging the values of it over all the states of the system, weighted by the probability of each

state. For instance, the average energy of the system can be computed by:

𝐸 =
∑︁
𝑖

𝑃𝑖𝐸𝑖 (3.37)
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By averaging over many such states according to their probabilities, ensemble averages offer

insights into the thermodynamic properties and allow predictions of macroscopic observables.

3.6.1 Semi-grand canonical Monte Carlo

To obtain the free energy at finite temperatures and establish phase stability for a system, it

is necessary to perform Monte Carlo simulations that sample semi-grand canonical ensembles

(SGMC) [152]. In this ensemble, the total number of atoms is fixed, while the externally

imposed temperature and chemical potential are allowed to vary. A single-phase equilibria,

free of interfaces, is ensured when the system achieves an equilibrium state. Additionally,

it simplifies the computation of free energies by thermodynamic integration. The algorithm

underlying the SGMC includes four steps. First, potential moves are randomly selected, such

as trial potential changes, from a predefined probability distribution. The change in potential

caused by the move from microstate 𝑖𝐴 to 𝑖𝐵 can be calculated by:

ΔΩ𝐴→𝐵 = Ω(𝑖𝐴) −Ω(𝑖𝐵) (3.38)

Then, according to the Metropolis criterion [153], the potential move is always accepted if

ΔΩ𝐴→𝐵 < 0, which means 𝑃𝐴→𝐵 = 1. If ΔΩ𝐴→𝐵 > 0, the move only can be accepted with the

probability:

𝑃𝐴→𝐵 = 𝑒𝑥𝑝(−ΔΩ𝐴→𝐵

𝑘𝐵𝑇
) (3.39)

Next, the previous two steps are repeated for a large number of iterations, allowing the system to

equilibrate and sample configurations according to the semi-grand canonical ensemble. Finally,

the sampled configurations are analyzed to calculate relevant properties of interest.
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3.6.2 Thermodynamic integration of free energy

The Gibbs free energy, which can be calculated through the thermodynamic averaging from the

semi-grand canonical Monte Carlo simulations, is represented by:

𝐺 = 𝑈 − 𝑇𝑆 + 𝑃𝑉 (3.40)

where 𝑈 and 𝑆 refer to the internal energy and entropy of the system, respectively. DFT

calculations are performed at zero pressure, thus the 𝑃𝑉 term can be ignored.

The partition function of the system can be used to express the semi-grand canonical thermody-

namic potential 𝜙 by [69, 154]:

𝜙(𝛽, 𝜇) = − 1
𝛽𝑁

ln

(∑︁
𝑖

exp(−𝛽𝑁 (𝑈𝑖 − 𝜇𝑥𝑖))
)

(3.41)

where 𝛽 = 1/(𝑘𝐵𝑇), 𝑈𝑖 and 𝑥𝑖 are the internal energy and the concentration at a certain state

𝑖, respectively. The Helmholtz free energy 𝐹 can then be calculated via 𝐹 = 𝜙 + 𝜇𝑥. The

thermodynamic potential 𝜙 can also be written in differential form:

𝑑 (𝛽𝜙) = (𝑈 − 𝜇𝑥)𝑑𝛽 − 𝛽𝑥𝑑𝜇 (3.42)

here, 𝑈 and 𝑥 are the average values of the system. The thermodynamic potential 𝜙(𝛽, 𝜇) can

be obtained by thermodynamic integration according the (3.42) by:

𝛽1𝜙(𝛽1, 𝜇1) = 𝛽0𝜙(𝛽0, 𝜇0) +
∫ 𝛽1,𝜇1

𝛽0,𝜇0

(𝑈 − 𝜇𝑥,−𝛽𝑥)𝑑 (𝛽, 𝜇) (3.43)

The integral is conducted along a continuous trajectory connecting points 𝛽0, 𝜇0 and 𝛽1, 𝜇1

without encountering a phase transition. For any given 𝑇 and 𝜇, the internal energy𝑈 and com-

position 𝑥 of the system can be evaluated by the semi-grand canonical Monte Carlo simulations.

The advantage of the integration technique is that the property is expressed as the thermody-
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namic averaging of computationally inexpensive quantities, implying that the properties of the

interested phases are directly reflected by the calculated quantities. In this study, the semi-grand

canonical Monte Carlo simulation implemented in 𝑒𝑚𝑐2 and 𝑚𝑒𝑚𝑐2 code [62] were performed

to get the thermodynamic averages for the binary and ternary systems, respectively.
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Chapter 4

Hcp Ti-O system

(The work presented in this chapter is adapted from [131])

The DFT-based first-principles calculations implemented in Vienna Ab-initio Simulation Pack-

age (VASP) [115, 118–121] were performed to calculate the electronic structure and total

energies of all the structures. The 𝑚𝑎𝑝𝑠 code in alloy theoretic automated toolkit (ATAT) [62]

was used to enumerate the structures, construct the cluster expansion and fit the DFT energies.

For the hcp Ti-O system, various configurations containing no more than 6 hcp Ti unit cells

with oxygen vacancy random ordering over the octahedral sites were enumerated. The input

lattice constants to enumerate the configurations are 𝑎 = 2.9508 Å and 𝑐 = 4.6855 Å. It should

be noted that, in the configuration enumeration process, the symmetry operations performed in

the factor group calculated by ATAT ensure that all the enumerated configurations are unique

in terms of symmetry [132]. The 𝑒𝑚𝑐2 code in ATAT was used to perform Monte Carlo sim-

ulations using the cluster expansion Hamiltonians via scanning chemical potential range and

temperatures specified.

All the DFT calculations are performed using the projector augmented-wave (PAW) method as

implemented in VASP. The exchange-correlation functional was described by the generalized

gradient approximation parametrised by Perdew-Burke-Ernzerhof (PBE) [108]. The PAW po-

tentials of Ti_sv with 12 valence electrons and O with 6 valence electrons, recommended in the
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VASP manual, were used to treat valence states. Energy cutoff of 550 eV and 5000 k-points

per reciprocal atom were used which were tested as sufficiently large to have a good calculation

convergence for all the hcp Ti-O structures, achieving convergence to 1 meV or lower. For each

structure, all the degrees-of-freedom were first allowed to relax (i.e. full relaxation) with ions

relaxing using a conjugate-gradient algorithm, followed by a static calculation with reaching the

structural convergence criteria, ensuring residual forces on each atom are below 0.02 eV/Å. All

electronic self-consistent loops were stopped when the difference in total energy between sub-

sequent iterations dropped below 10−6 eV. The second-order Methfessel-Paxton scheme [155]

with the smearing width of 0.1 eV was used to treat the partial occupancy for relaxation cal-

culations, meanwhile the tetrahedron method with Blöchl corrections [156] was employed for

static calculations. No previous paper reported that magnetism exists in any Ti-O compounds,

therefore all the calculations were performed with non-spin polarization.

4.1 Ground-states characteristics

A total of 365 configurations were enumerated over the whole oxygen concentration range to

search the ground states and obtain a predictive CE model. All of these fully relaxed structures

remain hcp, as confirmed using the common neighbor analysis (conventional, adaptive and

interval CNA), which reflects that the oxygen stabilizes the 𝛼 phases in Ti. After obtaining the

total energy of each configuration, directly comparing the total energy is not scientific since

the size of each configuration may be several times that of the initial hcp unit cell, and the

number of atoms contained in each configuration is different. Therefore, it is necessary to

normalize the calculated total energy in order to compare the stability of all the enumerated

configurations. Here, the pure 𝛼Ti and 𝛼TiO, where the octahedral sites are totally vacant and

occupied in full, respectively, are treated as the reference states to normalize the total energy

of each configuration. Then, we can define the formation energy (𝐸 𝑓 ) for each configuration,
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relative to a mechanical mixture of 𝛼Ti + 𝛼TiO, by:

𝐸 𝑓 =
𝐸𝑡𝑜𝑡 − 𝑥𝐸𝛼𝑇𝑖 − 𝑦𝐸𝛼𝑇𝑖𝑂

𝑥 + 𝑦
(4.1)

where 𝐸𝑡𝑜𝑡 is the total energy of the configuration 𝛼Ti𝑥+𝑦O𝑦 which has 𝑥 vacancies and 𝑦 oxygen

atoms. 𝐸𝛼𝑇𝑖 and 𝐸𝛼𝑇𝑖𝑂 are the total energy per chemical formula of the pure 𝛼Ti and 𝛼TiO. 𝐸 𝑓

of a configuration describes the energy difference between this configuration and the reference

states. Therefore, the 𝐸 𝑓 of the two endpoints 𝐸𝛼𝑇𝑖 and 𝐸𝛼𝑇𝑖𝑂 are zero, and any 𝐸 𝑓 above zero are

energetically unfavorable. If connecting the lowest 𝐸 𝑓 points of each component in sequence, we

can obtain a convex hull, in which all energetically metastable and stable configurations should

fall. Configurations lying on the convex hull line correspond to the most stable configurations

(lowest 𝐸 𝑓 ) for each composition and are referred to as ground states. The DFT calculated 𝐸 𝑓

of all the enumerated configurations are plotted in Figure 4.1, and the O concentration in the

oxygen-vacancy sublattice is taken as the x-axis (i.e. 𝑋𝑂 = 𝑁𝑂/𝑁𝑇𝑖) since it is convenient to

observe the difference on the oxygen composition and compare our data with the relevant reports

such as Burton’s work [157] which uses this as x-axis as well. It is evident that the 𝐸 𝑓 of most

structures fall in the convex hull, only 4 structures have the 𝐸 𝑓 above zero. The composition

𝑋𝑂 of these 4 structures ranges from 0.2 to 0.5, and we observed the nearest O-O distance in

these structures was enlarged from 2.34 Å to 2.43 Å, 2.45 Å, 2.49 Å and 2.58 Å which cause

the positive 𝐸 𝑓 . In addition, with the exception of two end points, there are 5 ground states

found, namely Ti6O, Ti3O, Ti2O, Ti3O2, and a new unreported compound, Ti12O5. Although

the ground-state Ti12O5 was first found in this study, the compounds Zr12O5 and Hf12O5 were

previously observed in the 𝛼ZrO𝑋 and 𝛼HfO𝑋 system, respectively [158, 159].

Then we constructed a CE model to fit all the 365 DFT 𝐸 𝑓 energies and to predict the other

potential ground states. A set of optimized clusters, consisting of 40 pairs, 40 triplets and 30

quadruplets, was employed to construct this CE. The DFT and CE fitted 𝐸 𝑓 and the residuals of

the CE fit are shown in Figure 4.2. From the Figure 4.2 (a), we can see that the distribution of

all data points is along or near the line of the function y=x, and there are no outliers far away
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Figure 4.1: DFT Calculated formation energies (𝐸 𝑓 ) of the enumerated structures in hcp Ti-O
system, the DFT ground-state orderings are connected as convex hull.

from y=x, indicating the DFT 𝐸 𝑓 are well fitted by the constructed CE model. It also can be

seen from the Figure 4.2 (b) that the difference between the DFT calculated 𝐸 𝑓 and CE fitted

𝐸 𝑓 of all the configurations are less than 25 meV/atom. Most of the residuals of the CE fit are

smaller than 10 meV and only the residuals of 3 configurations are slightly larger than 20 meV,

which also indicates the constructed CE is well predictive. More importantly, the 𝐸 𝑓 errors

between fitted and actual values of the ground states are 3.1 meV, 0.8 meV, 2.2 meV, 3.2 meV

and 0.8 meV for the Ti6O, Ti3O, Ti12O5, Ti2O and Ti3O2, respectively, which are very small

and indicates the strong power of the constructed CE model for predicting the DFT energies. In

addition, no configuration outside the convex hull was predicted by the CE model, which means

there was no new ground-state existed in the Ti-O system.

On the other hand, the CV score of a CE model with predictive power is typically less than 25

meV/atom, this CE model achieved a low CV score of 6.13 meV/atom which indicates the CE

model is well predictive. In order to get a more precise CE model, we calculated the relaxation

amount (RA) of each configuration by taking into account the cell distortion before and after

relaxation. As shown in Figure 4.3, the RA of all configurations is within 0.17, the maximum RA

value is 0.168 appearing at the higher O content of 0.875 and 1. The value of RA increases with
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Figure 4.2: (a) The DFT and CE fitted 𝐸 𝑓 and (b) the residuals of the CE fit.

the increase of O content, which also reflects that the continuous addition of oxygen can increase

the strain of the structure. Typically, the RA values above 0.1 are considered too much for the

CE to be applicable, therefore those configurations with RA greater than 0.1 should be excluded

from the establishment of the CE model, and the oxygen content of all these configurations

is greater than 0.5. Many studies have shown that there is a limit to the solubility of oxygen

in 𝛼 Ti, for example as shown in the Ti-O phase diagram updated by H. Okamoto [21], the

maximum solubility of oxygen is only 50 at.% which means that oxygen cannot occupy all the

octahedral sites. And the fact that the two octahedral sites in the hcp Ti unit cell are highly

energetic for oxygen occupation simultaneously was found very early on [160, 161]. Thus, in

view of the above, the enumerated structures with 𝐸 𝑓 above zero and those with 𝑋𝑂 larger than

0.5, including the ground-state Ti3O2, are excluded during the CE. In addition, structures farther

away from the convex hull represent metastable or unstable higher-energy configurations that

may exist under certain conditions but are less thermodynamically favorable. Assigning lower

weights to these structures highlights their metastable nature and distinguishes them from the

more stable phases represented by points closer to the convex hull. By adjusting the weights

based on the distance from the convex hull, the convex hull diagram can effectively highlight the

most stable phases while still including information about metastable phases. In this work, more

importance is given to the configurations that are closer to the convex hull such that a very low

weighted CV score of 2.45 meV/atom was obtained by fitting to the remaining 236 structures.
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Figure 4.3: The relaxation amount (RA) of all the configurations in the hcp Ti-O system.

The crystal structures and lattice parameters of these 4 ground states are shown in Figure 4.4 and

Table 4.1, respectively. It should be noted that, in the process of structure enumeration, first the

ATAT calculates the factor group which represents the symmetry of the primitive structure of the

input crystal structure, then the symmetry operations in the factor group are used to enumerate

only the symmetrically unique configurations. Therefore, all the configurations including the

ground states shown in Figure 4.4 and Table 4.1 belong to the same lattice system (hcp), however

the space groups can be different. Except for the fact that the Ti2O has an orthorhombic Pbcn

space group, all the other three ground states have trigonal R3 symmetry. The calculated lattice

constants of pure hcp Ti are 𝑎 = 2.934 Å and 𝑐 = 4.653 Å, which are close to the theoretical

values of 𝑎 = 2.932 Å and 𝑐 = 4.644 Å at 0 K and comparable with the experimental values of

𝑎 = 2.951 Å and 𝑐 = 4.684 Å at room temperature [162]. The nearest neighbor O-Ti distance in

these ground states becomes larger than the Oct-Ti distance in pure Ti, which indicates that the

oxygen enlarges the interstitial radius of the octahedral site. The ECIs of the optimized clusters

including 20 pairs, 34 triplets and 26 quadruplets are shown in Figure 4.5. A high ECI value

of 142 meV for the smallest pairwise cluster, with a radius of 2.34 Å, was calculated, which

represents a strong oxygen-vacancy interaction. The magnitude of all the ECIs decays to zero
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with the increase of the cluster diameter and the number of the sites it contains, which is due

to the fact that the interaction strength between the sites in a structure should drop off with the

increase of the site spacing.

Figure 4.4: Crystal structures of the DFT ground states in hcp Ti-O system: (a) Ti6O, (b) Ti3O,
(c) Ti12O5, and (d) Ti2O (red balls are oxygen atoms occupying hcp octahedral sites). All these
ground states belong to the hcp lattice system, because the symmetry operations in the factor
group are used to enumerate only the symmetrically unique configurations.

Figure 4.5: The effective cluster interactions (ECIs) of the optimized 20 pairs, 34 triplets and
26 quadruplets in 𝛼TiO CE.
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Table 4.1: Lattice parameters of the ground states found in hcp Ti-O system.

Ground-state Structure Space group 𝑎(Å) 𝑏(Å) 𝑐(Å) 𝛼(◦) 𝛽(◦) 𝛾(◦)

Ti6O trigonal R3 5.588 − − 54.45 54.45 54.45

Ti3O trigonal R3 5.604 − − 54.83 54.83 54.83

Ti12O5 trigonal R3 10.029 − − 29.78 29.78 29.78

Ti2O orthorhombic Pbcn 4.79 5.111 6.01 90 90 90

4.2 Electronic structures of the ground states

To better understand the underlying physical mechanism of the properties of different ground

states and phases, electronic structure calculation analysis enables us to reveal the interatomic

interactions and bonding characteristics between unlike atoms. First, we calculated the density

of states (DOS) which describes the distribution of electronic energy states of a configuration

by [163, 164]:

𝐷 (𝐸) = 1
𝑉

𝑁∑︁
𝑖=1

𝛿(𝐸 − 𝐸 (k𝑖)) (4.2)

where V, N and 𝛿 are the volume, the number of countable energy levels and the Dirac delta

function, respectively. E and E(k𝑖), respectively, represent the energy at which the DOS is

evaluated and the energy of each electronic state 𝑖 with the wave vector k. The total density of

states (DOS) and O and Ti orbit-projected DOS are illustrated in Figure 4.6, with the energy of

Fermi level (𝐸Fermi) set to 0. It can be seen that all the ground states show metallic characteristics,

since the Fermi Energy resides in the middle of the 𝑑 band. The states around 20 eV below 𝐸Fermi

are contributed by the oxygen 2𝑠 orbital when the oxygen is introduced in hcp Ti. Moreover, the

𝑝 orbitals of oxygen hybridize with the 𝑑 orbitals of Ti below the 𝐸Fermi to form 𝜎 and 𝜋 bonds,

and notably the bond strength enhances with the increase of oxygen concentration, which can be

demonstrated by the variation trend of the 𝐸 𝑓 of these ground states, shown in Figure 4.1. The

DOS in the energy interval spanning the 𝐸Fermi is dominated by the 𝑑 orbitals of Ti.
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Figure 4.6: DOS of the ground-sates Ti, Ti6O, Ti3O, Ti12O5 and Ti2O: (a) Total and O projected
DOS; (b) Total and Ti projected DOS.

To further understand the nature of the chemical bond formation, we evaluated the effect of the

addition of oxygen on the electron density by calculating the charge density difference which

represents the variation in electron density before and after the addition of oxygen via [165]:

Δ𝜌 = 𝜌𝑇𝑖𝑥𝑂𝑦
− 𝜌𝑇𝑖𝑥 − 𝜌𝑂𝑦

(4.3)

where 𝜌𝑇𝑖𝑥𝑂𝑦
represents the total charge density of the ground-state 𝑇𝑖𝑥𝑂𝑦, 𝜌𝑇𝑖𝑥 and 𝜌𝑂𝑦

are the

charge density of the systems after removing all the oxygen and Ti atoms from the ground-state

𝑇𝑖𝑥𝑂𝑦 and leaving the structure unrelaxed, respectively. The 3D charge density difference of all

the ground states is shown in Figure 4.7, here in order to view more clearly the gain and loss

of electrons between oxygen and Ti, we only intercepted the fragments of the charge density

distribution between the oxygen atom and the nearest neighbor Ti atoms (fragments in Figure

4.4). The yellow and green regions indicate the positive and negative charge density difference,

respectively. It can be seen that the charge density difference of all the ground states concentrates

around the oxygen atom, indicating that the bonding between Ti and O in each ground-state is

a process of oxygen atom gaining electrons and Ti atom losing electrons. In addition, except

for Ti12O5, which has two types of charge density difference distribution, all other ground states

have only one type of Ti-O bond. Ti6O has a charge density distribution with a shape between

spherality and cube. The shape of the charge density difference of Ti3O looks like a bowl with
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a symmetrical central depression. The two types distribution of the charge density difference

of Ti12O5 is more like a mixture of charge density difference distribution of Ti6O and Ti3O.

However, Ti2O has a charge density difference shape that is completely different from that of the

other three ground states, and it appears to be a symmetric semi-ellipsoidal shape. In essence,

the difference in the electron cloud shape for the charge density difference of each ground-state

demonstrates the difference of the electron configuration in space and thereby the difference in

the bond strength. This can be clearly observed from the sliced plane of the 2D charge density

difference, as shown in Figure 4.8 where the saturation of the color corresponds to the magnitude

of the charge density difference. Warm colors indicate larger differences in charge density, while

cool colors indicate smaller differences. In all ground states, compared to oxygen atoms, the

change in charge density around Ti atoms is relatively smaller. However, the maximum charge

density difference around oxygen atoms increases with the increase of the Ti concentration. For

instance, the charge density differences around the oxygen atoms in Ti6O are distributed in a

ring shape with the maximum charge density difference of 0.17 e/A3, and the changes are more

obvious at the four corners, while the charge density changes around the oxygen atoms in Ti3O

are stronger with the maximum charge density difference of 0.20 e/A3 and are distributed on

both sides of the oxygen atoms in a fan shape. Similarly, the changes of the charge density

around oxygen atoms in Ti12O5 have two types and look like the mixture of the type of charge

density difference in Ti6O and Ti3O. In particular, the charge density around the oxygen atom

in Ti2O changes the most and is distributed on both sides of the oxygen atoms, showing a larger

fan shape than that in Ti3O.

The Bader analysis [166, 167] was then performed to compute the gain and loss of electrons

on each Ti and oxygen atom. As shown in Table 4.2 where positive and negative values,

respectively, refer to the gain and loss of electrons on each atom in the ground states, compared

to the ground-state Ti6O, the oxygen atoms in all the other ground states gain more electrons

from Ti atoms. Accordingly, the Ti atoms lose more electrons with the increase of oxygen

concentration from 𝑋𝑂=0.167 to 𝑋𝑂=0.5, and the gradient of this change achieves the largest when

𝑋𝑂 changes from 0.167 to 0.333, that is, each Ti atom loses about 0.268 electrons. On the
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Figure 4.7: Charge density difference of the ground states in hcp Ti-O CE. The yellow and green
regions indicate the positive and negative charge density difference, respectively. Warm colors
indicate larger differences in charge density, while cool colors indicate smaller differences.

Figure 4.8: Sliced planes of the charge density difference of the ground states in hcp Ti-O CE,
the unit is in e/A3.

other hand, the introduction of oxygen into the hcp Ti lattice can cause the elongation of the

lattice parameters and the expansion of the lattice volume. Table 4.3 shows the lattice constants

and volumes of the originally relaxed hcp unit cells obtained through symmetry operations for

each ground-state. As expected, the lattice constant a and c of all the ground states increased

compared to the original pure Ti unit cell, and the volume expansion rates of the ground-states

Ti6O, Ti3O, Ti12O5 and Ti2O are 3.64 %, 5.48 %, 6.35 % and 5.68 %, respectively, compared

73



Hcp Ti-O system

to the volume of the Ti unit cell. It is unexpected that the Ti12O5 exhibits the largest volume

expansion among all the ground states, which may be due to the fact that two type Ti-O bonds

with different differential charge densities in Ti12O5 appear alternately on the stacking planes

passed by the [111] crystal orientation. Figure 4.9 shows the lattice constants and volume versus

the oxygen concentration of the hcp Ti-O ground states. It can be seen that, as expected, the

change of the 𝑐 length of each ground state follows Vegard’s law, however, the change trend of

the 𝑎 length is not linear since the oxygen ordering along each crystal orientation in these ground

states is different as confirmed in Figure 4.13. As shown in Figure 4.9 (c), some deviations

from the linear change also can be observed in the change of the volume with the composition.

This is normal because Vegard’s law is indeed seldom perfectly obeyed, and many systems obey

Vegard’s law but a lot do not [168, 169].

Table 4.2: Gain and loss of electrons of each Ti and oxygen atom in the hcp Ti-O ground states
via Bader analysis.

Ground-state O atoms Ti atoms

Ti6O +1.278 -0.183,-0.188, -0.212, -0.224, -0.246, -0.225

Ti3O +1.444 -0.481, -0.481, -0.481

Ti12O5 +1.46, +1.46, +1.445,
+1.466, +1.444

-0.503, -0.71, -0.709, -0.503, -0.503, -0.71, -
0.709, -0.502, -0.503, -0.71, -0.709, -0.502

Ti2O +1.437 -0.718, -0.719

4.3 Vibrational properties and volumetric expansion of the

ground states

Thermodynamic properties are essential to describe the state of a solid system at various

temperatures. In the previous two sections, we discussed the energetics of the hcp Ti-O system

at 0 K and the electronic structure properties of the ground states. However, as the environmental
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Table 4.3: Lattice constants and volume of the unit cell of the hcp Ti-O ground states.

Ground-state a length(Å) c length(Å) volume(Å3)

Ti 2.934 4.653 34.644

Ti6O 2.952 4.745 35.906

Ti3O 2.979 4.747 36.542

Ti12O5 2.976 4.788 36.843

Ti2O 2.964 4.790 36.61

Figure 4.9: Lattice constants and volume versus the oxygen concentration of the hcp Ti-O ground
states.

temperature increases, it may be inaccurate to only account for the configurational free energy

of the system. This is because when the temperature increases, the atoms or ions in the

crystal lattice can oscillate away from the equilibrium position, and this oscillation could be
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more severe at high temperatures [170]. For another, the volume expansion of the lattice

also increases with the increase of temperature, in which the oscillation of the atoms plays an

important role [171]. This atomic oscillation is also known as lattice vibration. In addition, in

some cases, lattice volumetric expansion can also be influenced by anharmonic effects, where

the restoring forces between atoms or ions are not purely harmonic. Anharmonic effects can

lead to deviations from ideal behavior, such as non-linear temperature dependence of lattice

parameters and thermal expansion coefficients [172, 173]. Here, the Debye-Grüneisen model

we applied accounts for both harmonic and anharmonic effects in the vibrational properties of

Ti-O system. Specifically, the Grüneisen parameter, introduced in the Debye-Grüneisen model,

quantifies the anharmonicity of the vibrational modes [174].

To investigate the vibrational properties and thermal expansion of the ground states, firstly, a

series of energy-volume (E-V) data of the full relaxed structures were calculated and fit to the

zero-order Birch–Murnaghan equation of state [175]. The ordering Ti12O5 was not observed

in experiments since our study shows it decomposes on heating into Ti3O and Ti2O at very

low temperature (∼ 50 K), its vibrational properties and thermal expansion are not discussed

here. Figure 4.10 shows the E-V curve of all the four stable ground states, the volume changes

of all the configurations were imposed by changing the scale factor of the lattice parameters

of the relaxed configuration at equilibrium from 0.95 to 1.05, that is, the volume change is

within 5 %. It can be seen that there is no unusual point outside the E-V convex hull of all

the ground states, thereby all the E-V data points can be well fitted by the Birch–Murnaghan

equation of state. These E-V data can then be used to evaluate the thermodynamic properties of

the configuration of the ground states. For instance, the calculated static bulk modulus at 0 K

is shown in Table 4.4, our results achieve good agreement with the DFT data reported by Tang,

Andersson and Mei 𝑒𝑡 𝑎𝑙. [176–178], though no literature reported the bulk modulus of Ti6O.

Besides, the DFT data in the Materials Project platform overestimated the bulk modulus for all

the ground states, especially for Ti6O and Ti3O, which is possibly due to that the Ti6O and Ti3O

structure collected by Materials Project [179] are not the most stable configuration at respective

composition. Specifically, the Ti6O and Ti3O in the Materials Project have the space group of

76



Hcp Ti-O system

P31c which is different from the configurations we obtained. Moreover, the reported 𝐸 𝑓 of the

Ti6O and Ti3O in the Materials Project are -0.886 and -1.525 eV/atom which are higher than

those we calculated. In other words, the 𝐸 𝑓 of these configurations should fall inside the convex

hull in Figure 4.1, not on or outside the convex hull line. The temperature-dependent isothermal

bulk modulus can be calculated by [144]:

𝐵𝑇 = −𝑉
(
𝜕𝑝

𝑉

)
𝑇

(4.4)

where the 𝑝 and𝑉 are the pressure and the initial volume of the ground-state. Figure 4.11 shows

the volume expansions and the bulk modulus ratio of the ground states, all thermodynamic data

are normalized by 𝑉0 and 𝐵0 which are the equilibrium cell volume and bulk modulus at 300 K,

respectively. It is obvious that the change trend of volume expansion for all ground states is very

similar, especially below 700 K. As the temperature exceeds 800 K, Ti2O exhibits the maximum

volume expansion rate, followed by Ti3O and finally Ti6O. Our results for Ti2O almost overlap

with the data reported by Tang 𝑒𝑡 𝑎𝑙. [176], though there is a little difference in the volume

expansion rate of Ti3O. Moreover, it can be seen from Figure 4.11(b), compared to Ti3O and

Ti6O, the bulk modulus of Ti2O decreases faster when the temperature is above 300 K, and the

bulk modulus ratio reaches the lowest value of about 0.74 at 1200 K. However, the results of Tang

𝑒𝑡 𝑎𝑙. show that the bulk modulus of Ti3O decreases the fastest, reaching a minimum of 0.77 at

1200 K. This slight difference may be due to the use of different algorithm in relaxing the atoms

and lattice parameters of the structures. The Broyden-Fletcher-Goldfarb-Shannon algorithm is

used in the relaxation calculations in their study, while we use the conjugate-gradient algorithm

to perform full relaxation calculations for these ground states.

The thermal expansion and heat capacity of the ground states, indicating their anharmonicity

and heat retention or loss ability [180], were also calculated by the Debye-Grüneisen model.

Except for the inclusion of the configurational degrees of freedom, the 𝐹𝑣𝑖𝑏 was also determined

to view its effects on phase stability. The obtained equilibrium volume at a given temperature
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Figure 4.10: E-V data and the fitted curve of the pure 𝛼Ti, ground-states Ti6O, Ti3O and Ti2O.

Table 4.4: 0 K static bulk modulus of the hcp Ti-O ground states, some DFT data from literature
was used for comparison, units in GPa.

Ground-state This study Tang 𝑒𝑡

𝑎𝑙.[176]
Materials
Project[179]

Andersson 𝑒𝑡

𝑎𝑙.[177]
Mei 𝑒𝑡

𝑎𝑙.[178]

Ti 112 - 113 - 110

Ti6O 131 - 141 - -

Ti3O 153 151 164 160 -

Ti2O 183 187 184 182 -

and pressure can be used to derive the linear thermal expansion 𝜆 by:

𝜆 =
1

3𝑉

(
𝜕𝑉

𝜕𝑇

)
𝑝

(4.5)

The total 𝐹𝑣𝑖𝑏 and the linear thermal expansions of Ti6O, Ti3O and Ti2O are shown in Figure

4.12. With the increase of temperature, the 𝐹𝑣𝑖𝑏 of these three ground states gradually drops,
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Figure 4.11: (a) volume expansions and (b) the bulk modulus ratio of the ground-state Ti6O,
Ti3O and Ti2O.

this can be interpreted by the well-known volume effect which is basically attributed to thermal

expansion: the volume expansion of a given compound stretches chemical bonds, which in turn

makes them softer, leading to an increase in vibrational entropy [181]. It also can be seen that

the Ti2O has the largest reduction rate over the whole temperature range since it has the biggest

growth rate of linear thermal expansion (shown in Figure 4.12(b)), indicating the anharmonic

contributions are non-negligible especially at higher temperatures [182]. On the other hand, the

number of the bonds between unlike atoms determines the stiffness of a structure or phase in a

system [181]. As shown in Figure 4.13, though oxygen atoms fill alternating layers of octahedral

sites in Ti6O and Ti3O, oxygen occupies more sites in Ti3O in the same layer. In Ti2O, oxygen

orders as zigzag rows on the same layer of octahedral sites and can be distributed on adjacent

octahedral interstitial layers, rather than being distributed on the alternating layers as Ti6O and

Ti3O. Therefore, Ti2O has a larger number of Ti-O bonds than Ti3O, followed by Ti6O. The

increase in bonds not only contributes to the stiffness of the structure and the reduction of the

𝐸 𝑓 (as shown in Figure 4.1(a)), but also leads to a decrease in vibrational entropy, and therefore

a stiffer structure. Therefore, as shown in Figure 4.12(a), the vibrational free energy of the three

ground states over a wide temperature range (0 ∼ 950 K) show the ordering: Ti2O>Ti3O>Ti6O.

79



Hcp Ti-O system

Figure 4.12: Temperature dependence of the (a) total vibrational free energy and (b) linear
thermal expansion for the ground-states Ti6O, Ti3O and Ti2O. The data of the Ti3O with P-31C
structure and the Ti2O with P-3M1 structure used in is plotted here for comparison [176].

Figure 4.13: The orderings of oxygen atoms on the x-y and x-z planes in Ti6O, Ti3O and Ti2O.

The constant pressure and constant volume heat capacity can be calculated by [144]:

𝐶𝑝 =

(
𝜕𝐻

𝜕𝑇

)
𝑝

𝐶𝑣 =

(
𝜕𝑈

𝜕𝑇

)
𝑝

(4.6)

where 𝐻 and 𝑈 are the enthalpy and internal energy of the configuration respectively which

can be derived from the Helmholtz free energy. The specific heat at constant pressure (𝐶𝑝)

and constant volume (𝐶𝑣) of the ground states are shown in Figure 4.14. Similar to other
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metal compounds, their heat capacity increases with the increase of temperature, and the higher

the temperature, the slower the change rate [183]. In addition, the heat capacity of Ti6O is

significantly higher than that of the other two ground states as more atoms mean more atomic

degrees of freedom existed in the structure, where each degree of freedom contributes equally to

the heat capacity at higher temperatures. Unfortunately, the simulation and experimental reports

on the temperature dependence of the thermodynamic properties of these three ground states

are extremely scarce, hence the thermodynamic properties of Ti2O and Ti3O with respective

P-3M1 and P-31C space groups examined by Tang 𝑒𝑡 𝑎𝑙. were used for comparison [176]. Our

calculated 𝐶𝑝 and 𝐶𝑣 for Ti3O and Ti2O are in good agreement with those reported by Tang, due

to the little difference in formation energy of the corresponding ground-state. For instance, the

formation energy of the P-31C Ti3O found in our CE is -0.248 eV/atom which is slightly higher

than that of ground-state R3 Ti3O (-0.25 eV/atom).

Figure 4.14: The constant-pressure (a) and constant-volume (b) heat capacities of the ground-
states Ti6O, Ti3O and Ti2O as a function of temperature.

4.4 Thermodynamic properties of the ground states

Although we have obtained the thermodynamic and mechanical properties of different ground

states at various temperatures through Debye-Grüneisen model and DFT calculations, in order to

investigate the thermodynamics of the ground states over various compositions and temperatures,
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statistical mechanics methods are often applied to get the thermodynamic quantities. Here,

Monte Carlo simulation implemented in the 𝑒𝑚𝑐2 code was used to calculate the Gibbs free

energy and order-disorder transition temperatures for the Ti-O ground states. The size of the

simulation cell in the Monte Carlo simulations is determined by the radius specified, specifically,

the simulation cell size is the smallest supercell that both contains that sphere and that is

commensurate with the unit cell of the ground-state of interest. Up to 2000 average and

equilibrium passes were performed in the Monte Carlo simulations to evaluate thermodynamic

quantities at each step of these simulations.

The calculated Helmholtz free energy (𝐹) at several temperatures for the pure 𝛼Ti phase, ground-

state Ti6O and Ti3O is shown in Figure 4.15, where the active site in the unit of 𝐹 indicates the

octahedral sites in the O-Vac sublattice without inclusion of the Ti sites since there is no degrees

of freedom on the Ti sublattice. The 𝐹 can be regarded as the Gibbs free energy at atmospheric

pressure in solid-state systems because the product of pressure P with changes in specific volume

(Δ𝑉) are very small [69]. It can be seen that, at 600 K, 𝛼Ti and Ti6O undergo phase transitions at

oxygen concentration of 6.4 at.% and 13.1 at.%, respectively. This gap in oxygen concentration

narrows with the increase of temperature, decreasing to 2.4 at.% at 800 K, which means as the

temperature continues to go up, the 𝛼Ti and Ti6O phase may meet and the Ti6O could undergo

an order-disorder phase transition. Besides, for the Ti6O and Ti3O phase, the gap in oxygen

concentration is 7.4 at.% at 400 K, however as the temperature increases from 400 K to 600 K,

this value rapidly drops to 2.2 at.%. This indicates that compared to 𝛼Ti and Ti6O, the Ti6O

and Ti3O phase could meet at a lower temperature. Since the solid-state transformation of 𝛼Ti

+ Ti2O → Ti3O + Ti2O occurs at around 547 K and the gap in oxygen concentration between

Ti2O and Ti3O or 𝛼Ti does not change obviously with increasing temperature, the calculated 𝐹

of Ti2O is not shown in Figure 4.15. The phase boundaries between these ground states are then

constructed, as shown in Figure 4.16, by applying the common tangent method to the calculated

𝐹 of each ground-state. The oxygen concentration is calculated by 𝑁𝑂/(𝑁𝑂+𝑁𝑇𝑖) for convenient

comparison with the literature. It is evident our calculated 𝛼Ti and Ti6O phase boundary is

below those reported by Burton 𝑒𝑡 𝑎𝑙. [157] and Gunda 𝑒𝑡 𝑎𝑙. [184], and the solubilities of Ti6O
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and Ti3O in hcp Ti are a little narrower than the results of Burton. Moreover, our work show that

the lowest temperatures that pure Ti6O and Ti3O can appear are 370 K and 345 K respectively,

which are 190 K and 215 K higher than Burton’s results of 180 K and 130 K respectively. In

addition, we also underestimated the highest temperature of the coexistence of Ti3O and Ti2O

and thereby a narrower coexistence span for Ti3O and Ti2O was obtained in this study.

Figure 4.15: The calculated Helmholtz TiO free energy (𝐹) versus composition of the pure 𝛼Ti,
ground-state Ti6O and Ti3O at different temperatures.

The effects of lattice vibration on the order-disorder transition temperature of Ti6O, Ti3O and

Ti2O were also examined by performing Monte Carlo simulations, as shown in Table 4.5. It is

evident that vibrational entropy lowers the transition temperatures for all the phases, and this

effect has greater impact on Ti6O and Ti2O. Our calculated transition temperatures without

including vibrational free energy for all the three ground states are in good agreement with those

reported by Gunda 𝑒𝑡 𝑎𝑙. [184]. About 207 K difference on the transition temperature of Ti6O

excluding vibrational free energy obtained in this paper and Burton 𝑒𝑡 𝑎𝑙. [157] could arise from

the difference of the ground-state structure as obtained from the first-principles simulations. The

most stable Ti6O structure at 0 K found by Burton contains 18 Ti atoms and 3 O atoms with

the similar R3 symmetry, and its formation energy (-0.1471 eV/atom) is slightly higher than

that of Ti6O (-0.1489 eV/atom) consisting of 6 Ti atoms and 1 O atom found in this work. It is
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Figure 4.16: The calculated phase boundaries between 𝛼Ti, ground-state Ti6O and Ti3O, with
the oxygen concentration calculated by 𝑁𝑂/(𝑁𝑂+𝑁𝑇𝑖).

worth noting that the transition temperatures of Ti2O reported by Burton and Ruban 𝑒𝑡 𝑎𝑙. [185]

reach 1612 K and 2860 K, respectively, which is 479 K and 1727 K higher than that reported

here. The difference of 1727 K is possibly due to the fact that a different ground-state was used,

as Ruban 𝑒𝑡 𝑎𝑙. used a Ti2O ground-state that has an anti-CdI2 structure (P3m1), which we

find has a 22.73 meV/atom higher 𝐸 𝑓 than that of Ti2O found in this work. The difference in

transition temperature between this study and the work by Burton 𝑒𝑡 𝑎𝑙. is probably due to the

higher accuracy of our cluster expansion, which is based on a much larger number of structures.

Specifically, 96 supercells were enumerated and calculated by DFT in their work, while the

DFT energies of 365 configurations across the whole composition range were analyzed in this

study. There is no DFT calculation reported anywhere else to take the vibrational contribution

into consideration. Our calculated transition temperature for Ti6O with the inclusion of 𝐹𝑣𝑖𝑏

(745 K) is the one closest to the experimental data (700 K) among those DFT investigations.

This little overestimation on the phase transition temperatures was also observed in some other

alloys [186–188]. However, the transition temperature of the phase Ti3O was unexpectedly

underestimated versus experimental observation [185], this was also captured by Gunda 𝑒𝑡 𝑎𝑙.

in spite of their neglect of the effect of vibrational entropy.
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Table 4.5: Order-disorder transition temperatures of Ti6O, Ti3O and Ti2O with and without
inclusion of vibrational free energy (𝐹𝑣𝑖𝑏), temperature in K.

This study

Phase w/o 𝐹𝑣𝑖𝑏 w/ 𝐹𝑣𝑖𝑏 Gunda 𝑒𝑡 𝑎𝑙.[184] Burton 𝑒𝑡 𝑎𝑙.[157] Expt.[185]

Ti6O 913 745 999 1120 700

Ti3O 689 656 609 860 780-850

Ti2O 1133 914 1027 1612 −

4.5 Summary

In this chapter, a comprehensive understanding of the phase stability in the hcp Ti-O system at 0 K

was achieved by performing a series of first-principles calculations. Some stable ordering oxides

were identified by constructing the convex hull diagram for the 𝐸 𝑓 of the enumerated structures,

namely Ti6O, Ti3O, Ti12O5 and Ti2O. The ground-state compound with stoichiometry Ti12O5

was reported in the 𝛼Ti-O CE for the first time in this study. CNA results show all the structures

keep hcp geometry after full relaxation, which objectively demonstrates oxygen can stabilize 𝛼

phases in the hcp Ti-O system. To remove the noises in the CE, we excluded the highly distorted

structures, structures with 𝑋𝑂 larger than 0.5 and configurations with 𝐸 𝑓 larger than 0. A good

predictive CE model, achieving a CV score of 2.45 meV/atom, was constructed by fitting to the

remaining structures. We also found a strong O-O or O-Vac interaction with ECI value of 142

meV appeared in the smallest pairwise cluster. The electronic structures of the ground states

were further analyzed, and found that bonding strength of the formed 𝜎 and 𝜋 bonds enhances

with the increase of interstitial oxygen concentration. This bonding interaction appearing on the

nearest-neighbor Ti and O atoms is attributed to the hybridization between oxygen 𝑝 orbitals and

Ti 𝑑 orbitals. In addition, the thermodynamic properties of the ground-state phases were also

investigated for the first time. It was shown that Pbcn Ti2O has the largest 𝐹𝑣𝑖𝑏 than the other

ground states, and our calculated volume expansion, linear thermal expansion, bulk modulus
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ratio and heat capacities of the ground-states Ti3O and Ti2O are comparable to the work by

Tang 𝑒𝑡 𝑎𝑙. though no data was available for comparison with Ti6O. Furthermore, the computed

phase boundaries between these ground states are lower than the results reported by Burton 𝑒𝑡

𝑎𝑙. and Gunda 𝑒𝑡 𝑎𝑙. which may be due to that we constructed a 𝐸 𝑓 training set with much more

configurations, leading to a lower CV score. The vibrational CE was also constructed and the

order-disorder transition temperatures of these oxide phases were calculated without and with the

inclusion of lattice vibration. It is found that vibrational entropy yields downward corrections to

the computed transition temperatures for all the phases, although, compared with experimental

data, our results still slightly overestimate and underestimate the transition temperatures for Ti6O

and Ti3O, respectively.
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Hcp and Bcc Ti-Nb system

(Some of the work presented in this chapter is adapted from [131])

For the Ti-Nb system, VASP was also used to perform DFT calculations to calculate the total

energies of the enumerated configurations and analyze the electronic structures of the ground

states. The 𝑚𝑎𝑝𝑠 code in ATAT [62] was used to enumerate the configurations, construct and

optimize CE model, and fit the calculated DFT energies. For hcp and bcc Ti-Nb systems, various

configurations containing at most 4 hcp Ti and 6 bcc Nb unit cells with Nb and Ti atoms random

ordering over the substitutional sites were enumerated, respectively. The symmetric uniqueness

of each configuration is also guaranteed by applying the scale factor matrix to the parent lattice

vectors in the configuration enumeration process [132]. The initial lattice constants that were

imposed by scale factor for the hcp and bcc Ti-Nb system are a=2.9508 Å and c=4.6855 Å and

a=b=c=3.3079 Å, respectively. The input lattice constants of the hcp Ti-Nb system remain the

same as those in the hcp Ti-O system, this is because the hcp Ti-O and Ti-Nb binary structures

can be used as a starting point to construct the cluster expansion model for the hcp Ti-Nb-O

ternary system where can only identify the structures with the same initial lattice constants. All

the Monte Carlo simulations were performed using the 𝑒𝑚𝑐2 code in ATAT with the input of

cluster expansion Hamiltonians in order to compute the thermodynamics of different phases

over compositions and temperatures.
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The generalized gradient approximation parameterised in PAW-PBE method [108] was used

to describe the exchange-correlation functional in DFT calculations. The PAW potentials of

Ti_sv with 12 valence electrons and Nb_sv with 6 valence electrons, suggested in the VASP

manual, were employed to treat valence states for the configurations in both hcp and bcc Ti-

Nb systems. Energy cutoff of 400 eV and 8000 k-points per reciprocal atom were identified

sufficiently to achieve good DFT calculation convergence, namely less than 1 meV, for all the Ti-

Nb configurations in these two systems. Each structure was first fully relaxed with ion positions

relaxing using a conjugate-gradient method, then a static calculation was performed to reach the

structural convergence criteria and ensure residual forces on each atom less than 0.001 eV/Å.

An energy convergence criteria of 10−7 eV was applied to the electronic self-consistent loops,

namely the calculation stopped when the total energy difference of the adjacent two steps was

lower than 10−7 eV. The second-order Methfessel-Paxton scheme [155] with the smearing width

of 0.2 eV was employed to treat the partial occupancy for relaxation calculations, while the

tetrahedron method [156] was used for static calculations. For both hcp and bcc Ti-Nb systems,

all the calculations were performed with non-spin polarization due to no magnetism existing in

Ti and Nb.

5.1 ground-states characteristics

166 and 266 configurations were enumerated in total in the range of Nb concentration from 0 to 1

to search the ground states and construct a good converged CE model. However, unlike oxygen,

Nb is a strong 𝛽 stabilizer that can introduce mechanical instability into hcp Ti [189]. Specifically,

for the hcp Ti-Nb system, many configurations relaxed too far from the ideal hcp crystal, with

some transforming to bcc. CNA methods were performed for each structure, it shows that 20

structures relaxed to bcc or other geometries. To accurately determine the applicability of each

structure to the CE model, we calculated the distortion (RA) of all the 166 structures based

on the changes in lattice parameters before and after relaxation ((3.26)and(3.27)), as shown in
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Figure 5.1(a). A total of 42 % of the 166 enumerated structures were excluded (all red marks).

As it can be seen, the higher the Nb content of a structure, the higher the possibility that its

RA is larger than 0.1. A total of 92 % of those over-relaxed structures (RA > 0.1) have Nb

concentration larger than 50 %, and 80 % of the structures that relax to bcc or other geometries

(red triangle) have RA above 0.1. As a result, 97 structures were left to construct the hcp TiNb

CE, and the CV score was reduced from 19.1 meV/atom to 5.03 meV/atom before and after

excluding the unstable structures.

Figure 5.1: Distortion of (a) the 166 structures in the hcp Ti-Nb system and (b) the 266 structures
in the bcc Ti-Nb system.

Due to the different parent crystal lattices of Ti and Nb, it is expected that it is hard to accommo-

date each other between the two. This can also be reflected from Figure 1.5, where it indicates

that at 0 K, Nb has no solubility in 𝛼Ti, and Ti has very narrow solubility in 𝛽Nb. However,

in our work, it is surprising that, compared to the hcp system, the structures in the bcc Ti-Nb

system exhibit smaller distortion, resulting in a higher stability of the system. As shown in

Figure 5.1(b), the RA values of all the enumerated structures in the bcc system are below 0.15,

with only four structures having RA values greater than 0.1. To obtain the most predictive CE

model while capturing various Ti-Nb interactions as much as possible, all structures that relaxed

to other geometries (red triangles) and structures with RA values greater than 0.05 (red squares)

were excluded from the construction of the CE model. It can be seen that among all the excluded

structures, only 4 % have an Nb content greater than 50 %, indicating that the bcc Ti-Nb system
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exhibits higher stability when the Nb concentration exceeds 50 %. In addition, 43 % of the

structures that relaxed to other symmetries have RA values greater than 0.05. For all structures

with RA values less than 0.05, their Nb content spans the entire range from 0 to 1, unlike the

hcp Ti-Nb system, which shows a trend of an increase in RA values with the increasing content

of the element that does not have the hcp parent lattice. This objectively reveals that the bcc

lattice has a stronger ability to accommodate Ti atoms compared to the ability of the hcp lattice

to accommodate Nb atoms, resulting in more stabilities in bcc Ti-Nb systems. As a result, 241

configurations were used to construct the bcc TiNb CE, and the CV score was reduced from

4.89 meV to 2.59 meV before and after removing these unstable structures from the construction

of the CE model.

Then we calculated the 𝐸 𝑓 of each structure in the hcp and bcc Ti-Nb system using the calculated

DFT total energy and normalizing it to the reference states (pure 𝛼𝑇𝑖 and 𝛽𝑁𝑏) by:

𝐸 𝑓 =
𝐸𝑡𝑜𝑡 − 𝑚𝐸𝛼𝑇𝑖 − 𝑛𝐸𝛽𝑁𝑏

𝑚 + 𝑛
(5.1)

where 𝐸𝑡𝑜𝑡 is the total energy of a configuration 𝛼𝑇𝑖𝑚𝑁𝑏𝑛 or 𝛽𝑇𝑖𝑚𝑁𝑏𝑛 in the hcp or bcc Ti-Nb

system which has 𝑚 Ti atoms and 𝑛 Nb atoms. 𝐸𝛼𝑇𝑖 and 𝐸𝛽𝑁𝑏 are the total energy per atom

of the two end members for the hcp and bcc system. Thus, the 𝐸 𝑓 of these two end members

are zero, and the 𝐸 𝑓 of all the other structures expresses the energy difference between it and

the reference states. The DFT calculated 𝐸 𝑓 of all the enumerated configurations in the hcp

and bcc system are shown in Figure 5.2(a) and (b), respectively, with Nb concentration taken as

the x-axis. It can be seen that most structures fall in the convex hull in both two systems, and

the 𝐸 𝑓 of 23 % (22 structures) of the 97 structures in the hcp system is above the dashed line,

while in the bcc system, only 10 % (25 structures) of the 241 structures have the 𝐸 𝑓 above the

dashed line. In addition, the 𝐸 𝑓 of all structures in the hcp system fall within the range of 0-0.3

eV/atom and the 𝐸 𝑓 of the structures with the Nb concentration larger than 0.5 are further from

the convex hull, indicating the introduction of stronger mechanical instability. However, the 𝐸 𝑓

of all structures in the bcc system are within the range of 0.1 eV/atom, which indicates that, at
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0 K, the structures and ordered phases in the bcc system are more stable in energetics than in the

hcp system. It is also obvious that a compound having stoichiometry TiNb with orthorhombic

Pmmn is predicted to be a ground-state, the inset of Figure 5.2(a) shows its crystal structure. In

the bcc system, more stable ground states were found on the convex hull, they are Ti6Nb, Ti3Nb,

Ti2Nb, Ti4Nb3 and Nb2Ti. It is worth noting that the 𝐸 𝑓 of these 5 ground-state structures

are close, making the convex hull line, plotted by connecting these 5 𝐸 𝑓 points, appear more

concave. This differs from the hcp Ti-O and hcp Ti-Nb systems, where the ground states with

intermediate compositions have the lowest 𝐸 𝑓 , resulting in the convex hull line with a distinctly

convex peak around the middle. The crystal structures and lattice parameters of these 5 ground

states are shown in Figure 5.3 and Table 5.1, respectively. Both the ground-states Ti6Nb and

Nb2Ti belong to the trigonal crystal system but have two different space groups namely R3 and

P3m1 symmetry, respectively. Furthermore, the lattice parameters of Ti6Nb show that exhibit

characteristics where 𝑎 = 𝑏 = 𝑐 and 𝛼=𝛽=𝛾< 120◦, which can be described by the rhombohedral

(primitive) cell of the trigonal crystal system. The ground-state Nb2Ti has the lattice parameters

of 𝑎 = 𝑏 ≠ 𝑐, 𝛼=𝛽=90◦ and 𝛾=120◦, which can be represented by the hexagonal (R-centered)

cell of the trigonal crystal system. Besides, the ground-states Ti3Nb, Ti2Nb, Ti4Nb3 all belong

to the monoclinic crystal system. Both Ti3Nb and Ti2Nb share the same space group of P2/m,

with the lattice parameters of 𝑎 ≠ 𝑏 ≠ 𝑐, 𝛼=𝛾=90◦ and 𝛽 ≠ 120◦. Ti4Nb3, however, has the

space group of Cm and the characteristics of lattice parameters 𝑎 = 𝑏 ≠ 𝑐 and 𝛼=𝛽 ≠ 𝛾 ≠ 90◦.

Figure 5.2: DFT Calculated formation energies (𝐸 𝑓 ) of the enumerated structures in (a) hcp and
(b) bcc Ti-Nb system, the DFT ground-state orderings are connected as convex hull.
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Figure 5.3: Crystal structures of the 5 ground states in the bcc Ti-Nb system. All these ground
states belong to the bcc lattice system, because the symmetry operations in the factor group are
used to enumerate only the symmetrically unique configurations.

Table 5.1: Lattice parameters of the ground states found in bcc Ti-Nb system.

Ground-state Structure Space group 𝑎(Å) 𝑏(Å) 𝑐(Å) 𝛼(◦) 𝛽(◦) 𝛾(◦)

Ti6Nb trigonal R3 7.068 7.068 7.068 118.23 118.23 118.23

Ti3Nb monoclinic P2/m 2.855 4.568 5.439 90 102.11 90

Ti2Nb monoclinic P2/m 2.851 4.606 7.949 90 88.97 90

Ti4Nb3 monoclinic Cm 9.698 9.698 2.856 96.59 96.59 27.36

TiNb2 trigonal P3m1/m 4.627 4.627 2.862 90 90 120

The constructed CE models for the hcp and bcc systems by excluding those highly distorted

structures (red marks in Figure 5.1) were then optimized and verified. The DFT calculated and

CE fitted 𝐸 𝑓 of the enumerated structures in hcp and bcc system are shown Figure 5.4(a) and (b)

respectively, it is evident that all the data points are along or near the line y=x, indicating that

the DFT calculated 𝐸 𝑓 are well reproduced by the constructed CE model for both two systems.

Figure 5.4(c) and (d) show the residuals of the CE fit of the structures in the hcp and bcc system,
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respectively. For the hcp Ti-Nb system, the 𝐸 𝑓 residuals for all the 97 structures are acceptable,

the largest residual of 8.13 meV/atom appears at a point outside the convex hull with the Nb

content of 50 %. Compared to the hcp system, as shown in Figure 5.4(d), the 𝐸 𝑓 residuals of

the bcc Ti-Nb system are smaller than those in the hcp system and closer to the line y=0, the

biggest residual is 6.23 meV/atom. For both hcp and bcc systems, most residuals are within 5

meV/atom, to be specific, 90 % and 98 % fitting residuals in the hcp and bcc system are less

than 5 meV/atom, respectively. The weighted CV scores of 2.59 meV/atom and 1.71 meV/atom,

which is much lower than that reported by Chinnappan 𝑒𝑡 𝑎𝑙. [44], were obtained by assigning

higher weights to structures closer to the convex hull in the hcp and bcc systems, respectively.

Figure 5.4: The DFT and CE fitted 𝐸 𝑓 of the structures in (a) hcp and (b) bcc Ti-Nb system and
the residuals of CE fit of the (c) hcp and (d) bcc system.

The optimized clusters for the hcp Ti-Nb system include 13 pairs, 15 triplets and 10 quadruplets

and their ECIs are illustrated in Figure 5.5(a). The largest value for pairwise and triple-wise

93



Hcp and Bcc Ti-Nb system

ECIs in this CE appearing at the cluster diameter of 5.1 Å and 2.946 Å respectively is about

10 meV which is much lower than that for pairwise (139.9 meV) calculated in hcp TiO CE.

In addition, the values of some ECIs in triplets and quadruplets are comparable to those in

pairs at cluster diameter around 5 Å, indicating there are some non-negligible complex Ti-Nb

interactions in this system. We note that the magnitude of ECIs decays with the increase in the

number of sites contained, as generally expected. The optimized clusters for the bcc TiNb CE,

consisting of 20 pairs, 20 triplets and 20 quadruplets are shown in Figure 5.5(b). Compared to

the ECIs discovered in the hcp TiNb CE, the ECIs for the bcc TiNb CE are smaller and converge

better with the increase in the number of sites that clusters contain, the largest value of ECIs

appearing at the cluster diameter of 3.3 Å of a pair is 4.4 meV which is much lower than the

maximum in the hcp TiNb CE. This reflects that, the Ti-Nb interactions in the hcp Ti-Nb system

are stronger than those in the bcc Ti-Nb system.

Figure 5.5: The effective cluster interactions (ECIs) of (a) the 13 pairs, 15 triplets and 10
quadruplets in hcp TiNb CE and (b) the 20 pairs, 20 triplets and 20 quadruplets in bcc TiNb CE.

Our finding that, compared to the addition of Ti to bcc Nb, adding Nb to hcp Ti can introduce

more mechanical instabilities since DFT calculations indicate more structures in the hcp TiNb

system present larger RA and distortion, is contrary to that found by Chinnappan 𝑒𝑡 𝑎𝑙. [44].

This discrepancy may be due to the smaller number of structures calculated in the Chinnappan

study and the different calculation settings used in this study. To be specific, in their DFT

calculations of hcp TiNb system, the larger convergence criteria (10−4eV) set for the electronic
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self-consistent loop results in some structures maintaining the metastable hcp crystal structure.

Different PAW potentials were also used, which leads to small differences in formation energies

for some structures. In this study, we opted to use the Ti_sv and Nb_sv potentials, which

respectively treat 12 and 13 electrons as valence electrons. This leads, for instance, to the

formation energy of TiNb to be 6.8 meV/atom higher than when using Ti_pv and Nb_pv.

5.2 Electronic structure analysis of the ground states

In order to clearly understand the underlying physical mechanism of the energetics and the Ti-Nb

interactions in the hcp and bcc Ti-Nb systems, electronic structure calculations are powerful

tools to provide us with deep insights into these physical observations such as the bonding

characteristics of Ti and Nb in hcp and bcc crystal cells. For the hcp Ti-Nb system, the total

and projected DOS of the ground-state TiNb and pure Ti are shown in Figure 5.6, to reveal

trends, the DOS of Ti3Nb and TiNb3 with the lowest 𝐸 𝑓 at their respective composition are

also plotted. We can see, from Figure 5.6(a), that the addition of Nb into hcp Ti parent cell

changes the overall shape of each total density of states (TDOS), and it is more evident with the

increase of Nb concentration. The TDOS of ground-state TiNb exhibits fewer sharp peaks than

pure Ti, indicating stronger metallic bonding present in TiNb thereby a lower obtained 𝐸 𝑓 . This

trend was also captured by Zhou 𝑒𝑡 𝑎𝑙. [91] although their study investigated this using special

quasi-random structures [122, 190]. For the ground-state TiNb, the 𝑑 orbitals of both Ti and Nb

contribute to the electronic states of the bonds, whereas anti-bonding was dominated by Ti 𝑑

orbitals alone, implying that the repulsion interaction between the nuclei is mainly caused by Ti.

The 𝑑 orbitals of the ground-state TiNb can be split into three separate directional groups, namely

𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 , 𝑑𝑦𝑧 and 𝑑𝑥𝑧, and 𝑑𝑧2 [191]. The 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 orbitals, lying on the 𝑥 − 𝑦 plane,

facilitate the bonding between the nearest neighbor Ti and Nb atom within the closed-packed

plane. The 𝑑𝑦𝑧 and 𝑑𝑥𝑧 orbitals, vertical to the 𝑥 − 𝑦 plane, promote the hybridization of the Ti

and Nb atoms on the 𝑥 − 𝑦 plane with those nearest neighbor atoms sitting on the adjacent 𝑥 − 𝑦
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planes. The 𝑑𝑧2 orbitals with lobes pointing along the 𝑧 axis are responsible for the interactions

between atoms on the 𝑥 − 𝑦 plane and their second neighbor along the 𝑧 direction, however this

interaction is weaker than that of the first two groups. This can also be confirmed from Figure

5.6(b), the contribution to PDOS by 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 orbitals are comparable to that by 𝑑𝑦𝑧 and

𝑑𝑥𝑧 orbitals, both of which are greater than that of the 𝑑𝑧2 orbitals, although the electron states

of all these three groups spread over the entire energy interval around 𝐸Fermi.

Figure 5.6: (a) DOS of the pure Ti, ground-state TiNb and ordered Ti3Nb and TiNb3; (b)
Projected DOS of the ground-state TiNb in the hcp Ti-Nb system.

For the ground states in the bcc Ti-Nb system, the calculated total DOS and the projected DOS

of Ti and Nb 𝑑 orbitals are shown in Figure 5.7, similar to the hcp Ti-Nb system, the addition of

Ti into the bcc Nb lattice cell also changes the shape of each TDOS. Specifically, the electronic

states at around 4 eV in pure bcc Nb do not appear in the DOS of all the ground states and the

electronic states around the 𝐸Fermi gradually represent the characteristics of the 𝑑 orbitals of

Ti. Furthermore, the addition of Ti leads to an increase in the number of TDOS peaks around

the 𝐸Fermi and a decrease in the number of sharp TDOS peaks, especially for the ground-state

Ti4Nb3, which has the largest number of low peaks around the 𝐸Fermi. This indicates that, when

Ti and Nb are mixed in the bcc lattice cells and the concentration of Ti is close to 50 %, the

electronic states below the 𝐸Fermi will be distributed across more energy levels. It is also can

be seen that, above the 𝐸Fermi, the electronic states are mainly contributed by the Ti 𝑑 orbitals,

which reflects that the anti-bonding effects and repulsion interaction between nuclei in the bcc
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system are also dominated by Ti atoms. From the projected DOS of Ti and Nb 𝑑 orbitals,

we can conclude that the bonding effects appearing in all the ground states are caused by the

hybridization between Ti and Nb 𝑑 orbitals. The hybridization in the ground-states Ti6Nb,

Ti3Nb and Ti2Nb are predominantly contributed by the Ti 𝑑 orbitals, and the contribution from

Nb 𝑑 orbitals becomes less and less with the increase of Ti content. For instance, the Nb

𝑑 orbitals contribute very little near the 𝐸Fermi in the ground-state Ti6Nb, whereas the Ti 𝑑

orbitals contribute few around the 𝐸Fermi in the ground-state TiNb2. It is worth noting that, for

the ground-state Ti4Nb3 in which the peaks near the 𝐸Fermi are the broadest, the contributions

of the electronic states from both Ti and Nb 𝑑 orbitals are balanced, indicating strong Ti-Nb

interactions and complex hybridizations existed in this ground-state. On the other hand, it is well

known that the TDOS at the 𝐸Fermi affects electrical conductivity and other electronic properties

[192–194]. In the hcp Ti-Nb system, as shown in Figure 5.6(a), the TDOS at the 𝐸Fermi in these

compounds increases with the rise of the Nb content, namely TDOS from 0.92 states/atom to

1.27 states/atom as the Nb concentration from 0 to 0.75. This means the electrical conductivity

of these compounds increases when the Nb concentration changes from 0 to 0.75. Nevertheless,

for the bcc Ti-Nb system, this trend is not observed in these ground states, that is to say, there

is no obvious increase or decrease in the electrical conductivity when Nb content changes. We

can also see that the TDOS at the 𝐸Fermi in pure bcc Nb (Figure 5.7) is larger than that in pure

hcp Ti (Figure 5.6(a)), which demonstrates the fact that Nb has a higher electrical conductivity

than Ti.

Figure 5.8 shows the projected DOS of each sub-orbital of the Ti and Nb 𝑑 orbitals, which

helps us further understand the bonding characteristics of these ground states in the bcc Ti-Nb

system more specifically. It can be observed that in all ground states, the electron states near

the Fermi level resulting from the hybridization of 𝑑 orbitals between Ti and Nb are mainly

contributed by 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 , and 𝑑𝑥𝑧 and 𝑑𝑦𝑧 orbitals. These orbitals are responsible not only

for the interactions between nearest neighbor Ti and Nb atoms within the same 𝑥 − 𝑦 plane but

also for bonding between nearest neighbor Ti and Nb atoms in adjacent 𝑥 − 𝑦 plane. The 𝑑𝑥𝑧

and 𝑑𝑦𝑧 orbitals in both Ti and Nb contribute the most to the electron states near the Fermi
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Figure 5.7: Total DOS and the projected DOS of Ti and Nb 𝑑 orbitals of the ground states in the
bcc Ti-Nb system.

level after hybridization, slightly more than the 𝑑𝑥𝑦 and 𝑑𝑥2−𝑦2 orbitals. This indicates that

the hybridization between the 𝑑𝑥𝑧 + 𝑑𝑦𝑧 orbitals of Ti and Nb is predominant, followed by the

𝑑𝑥𝑦 + 𝑑𝑥2−𝑦2 orbitals. The 𝑑𝑧2 orbitals contribute very little to the electron states near and below

the Fermi level but significantly contribute to the electron states above the Fermi level at around

2.5 eV. This suggests that the 𝑑𝑧2 orbitals mainly promote the formation of electron states of

anti-bonding between Ti and Nb, contributing little to the formation of metallic bonds. The

gain and loss of each atom in each ground-state in the bcc and hcp Ti-Nb systems are then

evaluated by performing the Bader analysis, as shown in Table 5.2. It can been seen that, in

all the ground states, Nb atoms gain electrons, while Ti atoms lose electrons, and the average

number of electrons gained by each Nb atom increases with the Ti concentration. For all the

ground states, only the number of electrons gained by each Nb atom in the ground-state Ti4Nb3
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is different, and only each Ti atom in the ground-state Ti6Nb lose the same number of electrons.

The number of electrons gained and lost between Ti and Nb in the ground-state TiNb in the hcp

Ti-Nb system is similar to that in the ground-state Ti4Nb3 in the bcc system, which is related to

the similar Nb concentrations in both ground states, indicating that when the Nb concentration

is close to 50 %, the electron localization around Ti and Nb atoms in these two Ti-Nb systems is

similar. Compared to the electron transfer between Ti and Nb in the Ti-Nb system, the number

of electrons gained and lost between O and Ti in the ground states in the hcp Ti-O system is

higher, indicating a higher degree of electron localization in the ground states in the hcp Ti-O

system.

Figure 5.8: Projected DOS of each sub-orbital of the Ti and Nb 𝑑 orbitals of the ground states
in the bcc Ti-Nb system.
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Table 5.2: Gain and loss of electrons of each Nb and Ti atom in the bcc and hcp Ti-Nb ground
states via Bader analysis.

Ground-state Nb atoms Ti atoms

Ti6Nb +1.136 -0.189, -0.189, -0.189, -0.189, -0.189, -0.189

Ti3Nb +1.102 -0.332, -0.332, -0.439

Ti2Nb +0.866, +0.87 -0.751, -0.205, -0.571, -0.21

Ti4Nb3 +0.359, +0.929, +0.65 -0.532, -0.827, -0.106, -0.473

TiNb2 +0.436, +0.436 -0.871

TiNb(hcp) +0.664, +0.664 -0.664, -0.664

5.3 Vibrational and thermodynamic properties of the ground

states

In order to evaluate the vibrational properties and thermal expansions of these ground states

in the hcp and bcc Ti-Nb system, the Debye-Grüneisen model was applied to account for both

harmonic and anharmonic effects in the vibrational properties of Ti-Nb system. At first, a set

of E-V data points of the ground states were computed by performing full relaxation in DFT

calculations, followed by fitting these data points to the zero-order Birch–Murnaghan equation

of state. The original E-V points and the fitted E-V curve of all the ground states found in the

hcp and bcc Ti-Nb system are shown in Figure 5.9, where the point in each sub graph with

the lowest total energy corresponds to the state that the corresponding ground-state is at its

equilibrium volume. All the other total energy data points in each sub plot correspond to the

states having cell volumes that fall within 5 % contraction or expansion of the equilibrium cell

volume. This can be achieved by adjusting the scaling factor of the lattice parameters. It is

evident that all the E-V data points of the hcp and bcc ground states are situated on the fitting

line of Birch–Murnaghan equation of state, there is no outlier of DFT data. These E-V data were
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then used to calculate the vibrational and thermodynamic properties at different temperatures.

Figure 5.9: E-V data and the fitted curve of all the ground states in the hcp and bcc Ti-Nb system.

Figure 5.10 shows, in the hcp Ti-Nb system, the calculated total 𝐹𝑣𝑖𝑏 of the pure Ti unit cell, the

structure with the lowest 𝐸 𝑓 at X𝑁𝑏=0.25, and the ground-state TiNb at different temperatures. It

can be seen that for the pure Ti, the calculated 𝐹𝑣𝑖𝑏 at low temperatures has a very small difference

compared to the results calculated by Zhou 𝑒𝑡 𝑎𝑙. [54], and this discrepancy gradually increases

with the increase in temperature, reaching 84 meV/Ti at 1000 K, though this discrepancy is not

large in numerical terms. For the Ti3Nb, which has the lowest 𝐸 𝑓 at X𝑁𝑏=0.25, our data is very

close to that obtained by Zhou, with the discrepancy varying little with temperature and reaching

27 meV/Ti at 1000 K. For the ground-state TiNb, our calculated 𝐹𝑣𝑖𝑏 at low temperatures shows

a little difference (∼80 meV/Ti) from the data reported by Zhou, while this difference gradually

drops with rising temperature, achieving 34 meV/Ti at 1000 K. The calculated total 𝐹𝑣𝑖𝑏 for the
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bcc Ti-Nb system is shown in Figure 5.11, with the data reported by Zhou plotted as scatter.

Similar to the results for pure Ti in the hcp system, the calculated 𝐹𝑣𝑖𝑏 of bcc pure Nb diverges

increasingly from Zhou’s data as the temperature rises, reaching a difference of 109 meV/Ti at

1000 K, and also exhibits the lowest 𝐹𝑣𝑖𝑏 over almost the entire temperature range. In addition,

except for the ground-state TiNb2, the 𝐹𝑣𝑖𝑏 of other ground states are comparable below 400 K.

For all the ground states, as the Nb content increases, 𝐹𝑣𝑖𝑏 decreases more rapidly with increasing

temperature above 400 K. For both hcp and bcc systems, the discrepancy between our data and

that reported by Zhou 𝑒𝑡 𝑎𝑙. could be mainly due to that, all the supercells used in their study are

created by employing the special quasirandom structure (SQS) model [195, 196] and have 128

atoms in total, with different number of solute atoms randomly distributed on the substitutional

sites in the supercells. However, all the structures used in the 𝐹𝑣𝑖𝑏 calculation in this study

are the ground states that are on the 𝐸 𝑓 convex hull and those that are close to the 𝐸 𝑓 convex

hull. The supercells generated by the SQS model have random atomic arrangements and can

only represent the disordered 𝛼 and 𝛽 phases in the Ti-Nb system. In contrast, our work is to

search for stable ordered phases and ground states by the combination of DFT calculation with

the CE model. Clearly, in general, at the same composition, disordered structures have more

possible vibrational modes than ordered structures [197, 198]. Therefore, the entropy change

(Δ S) in disordered structures is greater than in ordered structures, which results in a lower 𝐹𝑣𝑖𝑏,

as observed from Figures 5.10 and 5.11.

The calculated linear thermal expansion (LTE) of all the ground states in the hcp and bcc Ti-Nb

system are shown in Figure 5.12, the data for the pure hcp Ti, hcp Ti3Nb with the lowest 𝐸 𝑓 at

its composition and pure bcc Nb are plotted for comparison. It shows that the LTE of all the

ground states rapidly increases in the temperature range of 0− 600 K, and then increases slowly

with the further rise of temperature. It can also be observed that, for both the hcp and bcc Ti-Nb

systems, the LTE of the structures increases with the increase in Nb content. Moreover, Ti3Nb

and Ti2Nb in the bcc system exhibit similar LTE curves, which may be attributed to the close

proximity of their Nb concentrations. The calculated static bulk modulus of the ground states

in both of these two systems is shown in Figure 5.13, with the data for the structures closest to
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Figure 5.10: The calculated 𝐹𝑣𝑖𝑏 of the pure Ti, ordered Ti3Nb and the ground-state TiNb in the
hcp Ti-Nb system, the data calculated using SQS method by Zhou 𝑒𝑡 𝑎𝑙. [54] were plotted with
dashed lines.

Figure 5.11: The calculated 𝐹𝑣𝑖𝑏 of the pure Nb, the ground-state Ti6Nb, Ti3Nb, Ti2Nb, Ti4Nb3
and TiNb2 in the hcp Ti-Nb system, the data calculated using SQS method by Zhou 𝑒𝑡 𝑎𝑙. [54]
were plotted with scatter.

the convex hull at various compositions plotted for observing the overall trend. Obviously, the

hcp and bcc Ti-Nb systems have close values and similar change trends for the bulk modulus,

especially at X𝑁𝑏=0.5, where the difference in bulk modulus is only 1.2 GPa. This indicated

that the atomic interactions in both the hcp and bcc Ti-Nb systems are similar and the bonding
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strength and nature of atomic forces in these two systems are also comparable. Besides, our

calculation results agree well with those obtained by Zhou 𝑒𝑡 𝑎𝑙. [54] using the SQS model,

especially for the hcp system, where the differences are minimal. This reflects that the model we

established by combining DFT calculation and CE methods can predict the static bulk modulus

of the disordered phase in the Ti-Nb system, even though we used the ordered structure with

the lowest 𝐸 𝑓 at the respective composition. However, compared to our work and Zhou’s study,

the data reported by Zhang 𝑒𝑡 𝑎𝑙. [199] using the coherent potential approximate (CPA) slightly

underestimated the bulk modulus of both systems, which is probably because CPA ignores the

local lattice distortion. Although the vibrational, mechanical, and thermodynamic properties

of the Ti-Nb system calculated using ordered structures in this work cannot truly represent the

properties of disordered 𝛼 and 𝛽 phases, they can still provide a quick initial prediction of

properties for these disordered phases.

Figure 5.12: The linear thermal expansion (LTE) of the ground states, pure Ti, ordered Ti3Nb
in the hcp Ti-Nb system (solid lines), and the ground states, pure Nb in the bcc Ti-Nb system
(dashed lines).
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Figure 5.13: The static bulk modulus of the ground states and some ordered structures in the
hcp and bcc Ti-Nb system, triangle scatter and square scatter are the data reported by Zhou 𝑒𝑡

𝑎𝑙. [54] and Zhang 𝑒𝑡 𝑎𝑙. [199] using SQS and CPA method, respectively.

5.4 Finite temperature phase stability

To evaluate the thermodynamics of the ground states across the compositions and temperatures,

the semi-grand canonical Monte Carlo simulations were performed to get the thermodynamic

quantities versus composition and temperature. For the inclusion of the vibrational entropy, for

both hcp and bcc Ti-Nb systems, the 𝐹𝑣𝑖𝑏 of the structures of which 𝐸 𝑓 are close to the convex

hull of hcp and bcc CE was calculated to construct a vibrational CE to obtain the vibrational

ECIs (fvib ECIs) which will then be added to the ECIs obtained using configurational free energy

to get the temperature-dependent ECIs (tECIs). The tECIs can be used as new Hamiltonian

inputs into Monte Carlo simulations to calculate the changes in thermodynamic quantities after

considering vibrational entropy. First, we performed a series of Monte Carlo simulations for all

the ground states found in both hcp and bcc systems, however, all of them turn to be unstable and

disordered at lower temperatures (10 − 40 K), it is unnecessary to discuss their order-disorder

transition temperature and thermodynamic quantities. Here, in order to verify the precision of

the constructed CE for both two systems, the phase boundaries between the disordered 𝛼 and 𝛽
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phases were examined. The computed phase boundaries between 𝛼 and 𝛽 phase in the Ti-Nb

system are shown in Figure 5.14. As can be seen, compared with 𝛼Ti-O ordered phases, the

vibrational free energy has a greater impact on the phase boundaries in the Ti-Nb system, and

significantly reduces the phase transition temperature, which is also observed in the Ti-V and

Ti-Ta systems [44]. It is well-known that the vibrational entropy always reduces the transition

temperatures in most metallic systems [181]. Our calculated phase boundaries with the inclusion

of 𝐹𝑣𝑖𝑏 are more consistent with the experimental data reported by Kumar 𝑒𝑡 𝑎𝑙. [200], especially

in the Ti and Nb rich region.

Figure 5.14: Phase boundaries between 𝛼 and 𝛽 phase in the Ti-Nb system, DFT results and
experimental data calculated by Chinnappan 𝑒𝑡 𝑎𝑙. [44] and Kumar 𝑒𝑡 𝑎𝑙. [200] are shown as
blue lines and red lines, respectively.

5.5 Summary

In this chapter, we calculated the 𝐸 𝑓 of a series of hcp and bcc Ti𝑥Nb1−𝑥 structures by DFT

calculations. However, we analyzed relaxation and the number of nearest-neighbor atoms for

each structure using RA calculation ((3.26) and (3.27)) and the CNA method, finding that, unlike

the hcp Ti-O system, both systems contain highly distorted structures. Our results show that
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the hcp Ti-Nb system has more highly distorted structures compared to the bcc Ti-Nb system,

indicating more mechanical instability existed in the hcp system. This is contrary to the findings

reported by Chinnappan 𝑒𝑡 𝑎𝑙. [44], which can be attributed to their training set containing fewer

structures and their DFT calculations not fully relaxing the structures, thereby leaving some

metastable and unstable structures in the systems. Then, we removed these identified highly

distorted and over-relaxed structures from the CE, resulting in the construction of the predictive

CE models for the hcp and bcc systems. The constructed CE models can accurately predict the

𝐸 𝑓 of all the structures in both systems, respectively, thus effectively expressing the energetics

of the systems. Although the ECIs of the clusters in both systems are converged, compared to

the bcc system, a few stronger ECIs in pairs and triplets are present in the hcp system. This

also objectively reflects the relative stability of these two systems. From the two 𝐸 𝑓 convex

hull diagrams, we identified a total of six ground-state structures: TiNb in the hcp system, and

Ti6Nb, Ti3Nb, Ti2Nb, Ti4Nb3 and Nb2Ti in the bcc system. We then analyzed the density of

states of these six ground states and found that the bonding characteristics of metallic bonds are

similar within the two systems. The strength of the metallic bonds is related to the hybridization

degree between the d orbitals of Ti and Nb atoms, especially the hybridization of 𝑑𝑥𝑦 + 𝑑𝑥2−𝑦2

and 𝑑𝑥𝑧 + 𝑑𝑦𝑧 orbitals.

Subsequently, we calculated the thermodynamic properties of these ground-state structures at

constant composition and different temperatures, including 𝐹𝑣𝑖𝑏 and LTE. We found that, for

most ground states, our results showed some discrepancy with those obtained using the SQS

method reported in the literature. However, this discrepancy is acceptable since there should be

thermodynamic differences between ordered and disordered structures. These differences can

ultimately be attributed to the varying strengths of interatomic interactions brought about by

the ordered and disordered nature of atomic arrangements at different temperatures, resulting

in differences in 𝐸 𝑓 . Surprisingly, the performance of these ordered ground states in certain

static mechanical properties (such as bulk modulus) is very close to the mechanical properties

of corresponding compositional disordered structures calculated using the SQS method in the

literature. This provides a new approach for predicting the mechanical and thermodynamic
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properties of disordered structures using ordered structures. In the end, we calculated the phase

stability of all the ground states over various compositions and temperatures through Monte

Carlo simulations. It is found that these ordered ground states decompose into disordered hcp

or bcc phases at very low temperatures. To verify the accuracy of our DFT and CE models,

the phase stabilities of the disordered 𝛼 and 𝛽 phases were then computed and the effect of

vibrational entropy on their stabilities was also examined. It is observed that the inclusion of

vibrational entropy significantly reduces the phase transition temperature of the 𝛼 and 𝛽 phase,

this effect was also captured in the Ti-V and Ti-Ta systems reported in the literature. In addition,

our computed phase boundaries between 𝛼 and 𝛽 phase are consistent with experimental results.
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Chapter 6

Hcp and Bcc Ti-Nb-O system

Compared to the binary Ti-O and Ti-Nb systems studied in the previous chapters, reports on

the thermodynamic data of ordered and disordered phases in the Ti-Nb-O ternary system are

very scarce [201]. To efficiently construct and well optimize the cluster expansion models for

the Ti-Nb-O ternary systems, the structures used in the hcp Ti-O and hcp Ti-Nb CE, as well as

the structures used in the bcc Ti-Nb CE, were thereby employed to train the CE models for the

hcp Ti-Nb-O system and the bcc Ti-Nb-O system, respectively. We only investigate the Ti-rich

and Nb-rich regions in the hcp and bcc ternary systems, respectively, since this study focuses

on the hcp and bcc phases that appeared in the Ti-Nb-O system. All the DFT total energies

of the enumerated structures and the electronic structures of the ternary ground states were

calculated by VASP. The 𝑚𝑚𝑎𝑝𝑠 code implemented in ATAT was used to enumerate ternary

ordered structures, train the CE models, and fit the DFT energies. For both hcp and bcc ternary

systems, the size of the enumerated symmetric unique supercells was limited to within 25 hcp

Ti and bcc Nb unit cells, respectively. The initial lattice constants of these two ternary systems

remain consistent with those of the hcp and bcc binary systems described in the previous two

chapters. The 𝑚𝑒𝑚𝑐2 code in ATAT [202] which is the multicomponent version of the 𝑒𝑚𝑐2

was used to perform Monte Carlo simulations by employing the cluster expansion Hamiltonians

as the input in order to obtain the thermodynamic quantities of the ordered and disordered versus
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compositions and temperatures. The exchange-correlation functional in all the DFT calculations

were described by the GGA which is parameterised in PAW_PBE method [108]. The valence

states for all the structures in the ternary systems were treated by the PAW potentials of Ti_sv with

12 valence electrons, Nb_sv with 6 valence electrons and O with 6 valence electrons. Energy

cutoff of 550 eV and 8000 k-points per reciprocal atom were tested large enough to achieve good

convergence (within 1 meV in total energy) of DFT calculations for the ternary structures in both

hcp and bcc ternary systems. Similar to the binary systems, each structure in the ternary systems

also underwent full relaxation calculation first using the conjugate-gradient method [203], then

a static calculation was followed to achieve the structural convergence criteria and ensure the

residual forces on each atom less than 0.001 eV/Å. The total energy convergence criteria of 10−7

eV was imposed on the electronic self-consistent loops in both full relaxation calculation and

static calculation of each structure. The second-order Methfessel-Paxton scheme [155] with the

smearing width of 0.2 eV and the tetrahedron method [156] were employed to treat the partial

occupancy for relaxation calculations and static calculations, respectively. For both two ternary

systems, all the DFT calculations were performed with non-spin polarization.

6.1 ground-states characteristics

In order to efficiently construct the CE model for the hcp Ti-Nb-O system, all the 236 and 97

structures used in the hcp Ti-O and hcp Ti-Nb systems were employed as a starting point to

enumerate structures for the hcp ternary system. The 241 structures used in the bcc Ti-Nb

system were employed to start the enumeration of the structures in the bcc ternary system. The

hcp Nb-O, bcc Ti-O systems are unstable at 0 K, therefore it is impossible to construct the

CE model for these two systems. Also, for the bcc Nb-O system, we also found most of the

structures relaxed away from the ideal bcc structure, thus we only included the stable 8 Nb-O

binary structures into the CE construction for the bcc ternary system. After the above steps,

a total of 926 and 703 configurations were, respectively, included in the hcp and bcc Ti-Nb-O
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systems, including all the binary structures used in the CE models of the binary systems. Then,

we performed CNA for each structure and found that 105 and 283 structures in the hcp and bcc

ternary system, respectively, relax away from the ideal hcp and bcc crystal structure to other

geometries. Hence, all these structures were removed from the construction of the CE models

for the ternary systems. Based on the changes in lattice vectors before and after relaxation,

we calculated the distortion of the remaining 821 and 420 configurations in the hcp and bcc

ternary systems, respectively, by using the Equations (3.26) and (3.27). As shown in Figure

6.1(a), there are only two ternary structures in the hcp Ti-Nb-O system with RA values greater

than 0.15 (red dots). Both of these two structures have an oxygen content of 33.3 at.%, which

is the solubility limit of oxygen in the hcp lattice, and their chemical formulas are Ti5NbO3

and Ti4Nb2O3, respectively. Besides, there are 16 ternary structures with RA values between

0.1 and 0.15 (yellow dots), accounting for 3.5 % of all ternary structures. Among these, 13

structures have an oxygen content of 33.3 at.%, while the remaining 3 structures have an oxygen

content below 12 at.%. It also can be seen that the majority of the ternary structures have RA

values below 0.1, indicating that most of the hcp ternary structures are stable. As described in

Chapter 5, the addition of Nb to hcp Ti cells introduces significant mechanical instability to the

system. However, here, by computing the lattice distortions of the hcp ternary structures, we

found that the addition of oxygen to the hcp TiNb structures significantly reduces the distortion

effect, thereby improving the mechanical stability of the system. This can be attributed to the

fact that the instabilities introduced by the 𝛽 stabilizers can be counteracted or mitigated by the

addition of oxygen which is one of the strong 𝛼 stabilizers. Figure 6.1(b) shows the distortion

values of all structures in the bcc ternary system. It can be seen that, compared to the hcp

ternary system, there are more structures with high RA values in the bcc ternary system. The

maximum distortion value is 0.57, which is 3.8 times the maximum distortion value (0.15) in

the hcp ternary system. Specifically, there are 16 ternary structures in the bcc ternary system

with RA values greater than 0.2, and 37 ternary structures with RA values between 0.1 and 0.2,

accounting for 15.1 % and 34.9 % of the total bcc ternary structures, respectively. In addition,

the oxygen content of all the ternary structures having RA values larger than 0.2 is higher than
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13.8 at.%. It is obvious that the RA values of the ternary structures tend to go up with the

increase in oxygen content, a trend not observed in the hcp ternary structures. Therefore, ternary

structures with smaller RA values in the bcc ternary system are concentrated in the Nb-rich

region. This also reflects that, compared to the bcc Ti-Nb system, the hcp Ti-Nb system has

the capacity to accommodate more oxygen atoms. This finding can also be confirmed by the

CNA result which indicates the bcc ternary system has more configurations that relax to other

geometries. In view of the above, to better construct the well-converged and good predictive

CE models, only the structures with RA values less than 0.15 and 0.2 in the hcp and bcc ternary

systems (orange and blue dots in Figure 6.1), respectively, were employed in the construction

and optimization of the CE models.

Figure 6.1: Distortion of (a) the 821 structures in the hcp Ti-Nb-O system and (b) the 420
structures in the bcc Ti-Nb-O system.

The 𝐸 𝑓 of all the structures that were used in the construction of the CE models in the two ternary

systems were calculated by taking pure 𝛼𝑇𝑖, 𝛽𝑁𝑏, single oxygen atom as well as vacancy as

reference states:

𝐸 𝑓 =
𝐸𝑡𝑜𝑡 − 𝑁𝑇𝑖𝐸𝛼𝑇𝑖 − 𝑁𝑁𝑏𝐸𝛽𝑁𝑏 − 𝑁𝑂

1
2𝐸𝑂2 − 𝑁𝑉𝑎𝑐𝐸𝑉𝑎𝑐

𝑁𝑇𝑖 + 𝑁𝑁𝑏 + 𝑁𝑂 + 𝑁𝑉𝑎𝑐

(6.1)
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where 𝐸𝑡𝑜𝑡 is the DFT calculated total energy of a configuration in the ternary systems, 𝐸𝛼𝑇𝑖,

𝐸𝛽𝑁𝑏, 𝐸𝑂2 and 𝐸𝑉𝑎𝑐 are the total energies of pure 𝛼𝑇𝑖, pure 𝛽𝑁𝑏, oxygen molecule and the

vacancy, respectively, where the total energy of vacancy is zero. 𝑁𝑇𝑖, 𝑁𝑁𝑏, 𝑁𝑂 , and 𝑁𝑉𝑎𝑐

represent the number of Ti, Nb, oxygen, and vacancy in the configuration, respectively. Figure

6.2(a) shows the calculated 𝐸 𝑓 of all the structures used in the CE of the hcp Ti-Nb-O system,

it can be seen that only the 𝐸 𝑓 of the TiNb binary structures and pure hcp Nb are greater than

zero, while the 𝐸 𝑓 of all the TiO binary structures and TiNbO ternary structures are smaller

than zero. Among all structures, the binary ground-state Ti2O has the lowest 𝐸 𝑓 of -1.55

eV/atom. In addition, the 𝐸 𝑓 of all ternary structures range between -0.1 and -1.5 eV/atom,

with the ground-state Ti5NbO3 having the lowest 𝐸 𝑓 of -1.48 eV/atom, and Ti22Nb2O having

the largest 𝐸 𝑓 of -0.11 eV/atom. This indicates that ternary structures with dilute oxygen tend

to have higher 𝐸 𝑓 , which can also be confirmed by Figure 6.2(b) that shows the averaged 𝐸 𝑓

distribution over compositions. It is evident that the 𝐸 𝑓 of ternary structures exhibits a gradient

change with the variation in composition. Specifically, as the oxygen content increases, the 𝐸 𝑓

decreases, while at the same oxygen content, an increase in Nb content does not significantly

affect the 𝐸 𝑓 . Therefore, it can be seen from the figure that points with the same level of 𝐸 𝑓

(points with the same color) are distributed horizontally in a linear manner, and as the oxygen

content increases, the gradient of 𝐸 𝑓 changes from cool to warm tones. The 𝐸 𝑓 convex hull of

the structures employed in the bcc Ti-Nb-O system are shown in Figure 6.3(a), similar to the hcp

ternary system, only the 𝐸 𝑓 of the bcc TiNb binary structures are larger than zero, all the ternary

structures have the 𝐸 𝑓 less than zero. However, unlike the hcp ternary system, although the

same reference states are taken for calculating 𝐸 𝑓 in both ternary systems, the 𝐸 𝑓 of the ternary

structures in the bcc ternary system are much higher, ranging from -0.04 to -0.62 eV/atom. The

ground-state TiNbO in the ternary structures has the lowest 𝐸 𝑓 of -0.61 eV/atom, whereas the

structure TiNb24O, also having diluted oxygen, owns the highest 𝐸 𝑓 of approximately -0.05

eV/atom. Figure 6.3(b) exhibits the averaged 𝐸 𝑓 distribution versus compositions for all the

structures in the bcc ternary system. Although we can observe similar changes in the 𝐸 𝑓 gradient

as seen in the hcp ternary system, especially in the region with oxygen content below 0.25, it
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becomes challenging to obtain more stable ternary structures that can maintain bcc geometry

as the oxygen content exceeds 0.25 since most of the ternary structures not included in the

figure have significant distortions and relax into other geometries. This also indicates that the

bcc ternary system is hard to accommodate more oxygen compared to the hcp ternary system.

Therefore, as confirmed in Figure 6.1, the lattice distortions in the hcp ternary structures are

relatively smaller. Moreover, it should be pointed out that in the bcc ternary system, even in the

low oxygen region, it is also hard to obtain stable ternary structures that can maintain the bcc

geometry when the Ti content exceeds 0.5.

Figure 6.2: (a) DFT calculated 𝐸 𝑓 of the structures used in the CE in hcp Ti-Nb-O system and
(b) 𝐸 𝑓 distribution versus composition (averaged 𝐸 𝑓 at each composition) of the structures.

Then, as shown in Figure 6.4, we constructed the 0 K phase equilibrium for the hcp and bcc

Ti-Nb-O system, respectively, according to the ground states obtained from the calculated 𝐸 𝑓 .

For both two ternary systems, it is clear that all the binary ground states discovered in the Ti-Nb

systems and the hcp Ti-O system are successfully reproduced by the phase stability analysis of

the ternary systems. It can be seen from Figure 6.4(a) that, in the hcp ternary system, there

are 6 ternary ground states found, i.e. Ti5NbO3, Ti4Nb2O3, TiNbO, Ti2Nb6O3, Ti4Nb4O and

Ti3Nb5O, of which 4 ground states have an Nb content below 0.5, and 2 ground states have

an O content below 0.12. The 𝐸 𝑓 of the ground-state Ti5NbO3, Ti4Nb2O3, and TiNbO with
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Figure 6.3: (a) DFT calculated 𝐸 𝑓 of the structures used in the CE in bcc Ti-Nb-O system and
(b) 𝐸 𝑓 distribution versus composition of the structures.

the same oxygen concentration (0.33) are -1.48, -1.41, and -1.32 eV/atom, respectively, which

are lower than the 𝐸 𝑓 of ground-state Ti2Nb6O3 at -0.92 eV/atom. These are also lower than

the 𝐸 𝑓 of ground-state Ti4Nb4O and Ti3Nb5O with an oxygen concentration of 0.11, which

are -0.33 and -0.30 eV/atom, respectively. Therefore, these ternary ground states in the hcp

system show a gradient decrease on the 𝐸 𝑓 as the oxygen content increases. In addition, at the

same oxygen concentration, the 𝐸 𝑓 of the ground states increases stepwise with the increase

in Nb content. Figure 6.4(b) represents the 0 K phase equilibrium of the ground states in the

bcc Ti-Nb-O system, there are also 6 ground states discovered in this system, namely TiNbO,

Ti4NbO2, Ti2NbO, TiNb2O, Ti3NbO and Ti14Nb11O. It is surprising that, compared to the hcp

ternary system, more ground states found in the bcc ternary system have Ti content larger than

0.5 and an ordering with stoichiometry Ti14Nb11O having diluted oxygen was identified as a

ground-state. It can also be observed that, unlike the ground states in the hcp ternary system,

the 𝐸 𝑓 of the ground states in the bcc system decrease stepwise with the increase in solute Ti

content. For instance, the Ti content of the ground-state Ti2NbO is 0.25 higher than that of

TiNb2O, while the 𝐸 𝑓 is 0.07 eV/atom lower.

The lattice parameters of all 6 ground states in the hcp ternary system are shown in Table 6.1,

115



Hcp and Bcc Ti-Nb-O system

Figure 6.4: The 0 K phase equilibrium in the (a) hcp Ti-Nb-O system and (b) bcc Ti-Nb-O
system.

as can be seen, except for the ground-state Ti2Nb6O3, which belongs to the triclinic crystal

system and features 𝑎 ≠ 𝑏 ≠ 𝑐 and 𝛼 ≠ 𝛽 ≠ 𝛾 ≠ 90◦, all the other ground states belong

to the monoclinic crystal system. Among them, Ti5NbO3, Ti4Nb2O3, and Ti3Nb5O share the

same space group 𝐶𝑚 and exhibit the characteristic 𝑎 = 𝑏 ≠ 𝑐 and 𝛼 = 𝛽 ≠ 𝛾 ≠ 90◦. The

ground-state Ti4Nb4O also has the characteristic of 𝑎 = 𝑏 ≠ 𝑐 and 𝛼 = 𝛽 ≠ 𝛾 ≠ 90◦ but belongs

to the 𝐶2/𝑚 space group, whereas the ground-state TiNbO belongs to the 𝑃21/𝑐 space group

and features 𝑎 ≠ 𝑏 ≠ 𝑐 and 𝛼 = 𝛾 = 90◦ ≠ 𝛽. The atomic arrangements on different crystal

planes of these ground states are presented in Figure 6.5. The arrangements of oxygen atoms in

the ground states of Ti4Nb2O3 and Ti5NbO3 are identical on the (001) and (100) crystal planes.

However, Nb atoms are arranged more densely on these planes in the ground-state Ti4Nb2O3

than in the ground-state Ti5NbO3, with the number of Nb atoms being twice as many. It can

also be observed that the distribution of oxygen atoms on the (001) and (100) planes in the

ground-states Ti3Nb5O and Ti4Nb4O is similar, with a tendency to occupy the octahedral sites

that neighbor nearest to Ti atoms. The difference lies in the (001) plane, where Nb atoms in

Ti3Nb5O occupy a layer independently, alternating with Ti atom layers, while in Ti4Nb4O, Ti

and Nb atoms alternately occupy each layer. Besides, in the ground-state TiNbO, Ti and Nb

atoms are alternately distributed on each layer of the (100) and (010) planes, with no separate

layers of Ti or Nb atoms. Table 6.2 indicates the lattice parameters of all the ground states in
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the bcc ternary system, the ground-states Ti4NbO2, Ti2NbO, TiNb2O and Ti3NbO are identified

as monoclinic system, while the ground-states TiNbO and Ti14Nb11O are classified as triclinic

system. Unlike the hcp ternary ground states, only the bcc Ti3NbO has the characteristic of

𝑎 = 𝑏 ≠ 𝑐 and 𝛼 = 𝛽 ≠ 𝛾 ≠ 90◦. All the other bcc ground states show the features of 𝑎 ≠ 𝑏 ≠ 𝑐

and 𝛼 ≠ 𝛽 ≠ 𝛾. Figure 6.6 illustrates the arrangements of the Ti, Nb and oxygen atoms on

the different crystal planes in these bcc ternary ground states. Unlike the hcp ternary ground

states, for the bcc ground states, only Ti2NbO and TiNb2O have similar oxygen arrangements.

Specifically, in the (100) plane, adjacent oxygen atom layers are separated by three metal layers,

whereas in the (001) plane, separated by two metal layers. All the other ground states show

different arrangements of oxygen and metallic atoms, especially the oxygen in the ordering

Ti14Nb11O prefers to occupy the octahedral sites in the Ti layers and the oxygen spacing is larger

than 5 Å.

Table 6.1: Lattice parameters of the ground states found in hcp Ti-Nb-O system.

Ground-state Structure Space group 𝑎(Å) 𝑏(Å) 𝑐(Å) 𝛼(◦) 𝛽(◦) 𝛾(◦)

Ti5NbO3 monoclinic Cm 5.168 5.189 4.855 88.98 88.98 120.14

Ti4Nb2O3 monoclinic Cm 5.207 5.207 4.899 89.53 89.53 120.22

TiNbO monoclinic P21/c 4.948 5.152 6.11 90 87.93 90

Ti2Nb6O3 triclinic P1 5.86 5.95 5.991 109.56 105.21 53.31

Ti4Nb4O monoclinic C2/m 5.508 5.508 10.991 116.83 116.83 29.73

Ti3Nb5O monoclinic Cm 5.61 5.61 10.997 116.84 116.84 28.82

After excluding all highly distorted structures, we optimized the CE models using the remaining

structures in both the hcp and bcc Ti-Nb-O systems. The CV scores of the resulting CE models

were 6.69 and 3.55 meV/atom, respectively. Figure 6.7(a) and (b) show the DFT calculated

and CE fitted 𝐸 𝑓 for the hcp and bcc ternary systems, respectively. As can be seen, similar

to the binary systems, the data points in both ternary systems are distributed along the y=x
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Figure 6.5: The atomic arrangements on different crystal planes of the hcp ternary ground states,
blue, green, and red balls are Ti, Nb and oxygen atoms, respectively, the original cells of ground
states were transformed to 5×5×5 size for convenient observation.

axis, indicating that the constructed CE models have good predictions. The residuals of the CE

fitted 𝐸 𝑓 of these two systems are shown in Figure 6.7(c) and (d). The maximum residual in

the hcp system is 26.2 meV/atom, and 94 % of the structures have a fitting residual lower than

10 meV/atom. In contrast, compared to the hcp system, the residuals of the structures in the

bcc system are relatively smaller, with a maximum residual of 10.1 meV/atom, and the fitting

residuals of 98 % structures are less than 5 meV/atom. The ECIs of the optimized clusters used in

the hcp and bcc ternary systems are depicted in Figure 6.8(a) and (b), respectively. The number
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Table 6.2: Lattice parameters of the ground states found in bcc Ti-Nb-O system.

Ground-state Structure Space group 𝑎(Å) 𝑏(Å) 𝑐(Å) 𝛼(◦) 𝛽(◦) 𝛾(◦)

TiNbO triclinic P1 2.98 4.809 5.914 87.55 102.11 85.19

Ti4NbO2 monoclinic Cm 12.597 12.281 3.001 82 77.11 13.78

Ti2NbO monoclinic C2/m 4.766 4.604 2.886 90 90.25 118.88

TiNb2O monoclinic Cm 4.899 4.567 2.946 90 97 117.78

Ti3NbO monoclinic C2 5.406 5.406 5.657 116.8 116.8 117.24

Ti14Nb11O triclinic P1 5.363 5.471 15.232 94.23 94.85 85.88

of the optimized clusters in the hcp system includes 50 pairs, 28 triplets and 6 quadruplets,

and it is obvious that the ECIs decay with the increase of cluster diameter which indicates the

constructed CE model converges well. The largest ECI value of 137 meV appears at a pair with

the cluster diameter of 2.34 Å. For the bcc ternary system, there are totally 60 clusters used

in the CE model by optimizing the CV score. The largest ECI of 470 meV also occurs on a

pair with same cluster diameter of 2.34 Å, while this value is much higher than that in the hcp

system. In addition, the ECIs also converge well with the increase in the cluster diameter, more

importantly, most ECIs in the bcc system are larger than the ECIs in the hcp system, reflecting

that the cluster interactions in the bcc system are stronger than those in the hcp system [60, 204].

6.2 Electronic structures of the ground states

In order to better understand the effects of oxygen addition on the electronic states, intermetallic

interactions, and interactions between metals and oxygen atoms in the Ti-Nb system, we per-

formed electronic structure calculations for the ground states in the hcp and bcc ternary systems.

Figures 6.9(a) and (b), respectively, show the contributions of the 𝑠 and 𝑝 orbitals of oxygen,
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Figure 6.6: The atomic arrangements on different crystal planes of the bcc ternary ground states,
blue, green, and red balls are Ti, Nb and oxygen atoms, respectively, the original cells of ground
states were also transformed to 5×5×5 size for convenient observation.

as well as the 𝑑 orbitals of Ti and Nb, to the total density of states of the ground states in the

hcp ternary system, with normalizing to the Fermi level (black dashed lines). First, it can be

observed that the electronic states at the Fermi level for all the ground states are contributed by

the 𝑑 orbitals of Ti and Nb, without the involvement of 𝑠 and 𝑝 orbitals of oxygen. This indicates

that the hcp ternary system presents the characteristic of the metallic system and the electronic

properties of the system are determined by the 𝑑 orbitals of Ti and Nb. It is also shown that the
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Figure 6.7: The DFT and CE fitted 𝐸 𝑓 of the structures in (a) hcp and (b) bcc Ti-Nb-O system
and the residuals of CE fit of the (c) hcp and (d) bcc system.

Figure 6.8: The effective cluster interactions (ECIs) of the optimized clusters used in the (a) hcp
and (b) bcc Ti-Nb-O CE model.

𝑠 and 𝑝 orbitals of oxygen are predominantly responsible for the electronic states below -5 eV.

The 𝑑 orbitals of Ti and Nb also contribute to the electronic states at around -7.5 eV where the

𝑝 orbitals of oxygen are predominant, the presence of the overlapping peaks at -7.5 eV suggests
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the oxygen 𝑝 orbitals hybridize with 𝑑 orbitals of Ti and Nb to form covalent bonds. Therefore,

the chemical bonds formed between O, Ti, and Nb are directional and polar, with the electron

densities tending to be closer to the more electronegative oxygen atoms, leading oxygen atoms

to contribute more significantly to the electronic state density at this energy level. Furthermore,

the peak width and intensity at around -7.5 eV are positively correlated with the oxygen content

of the ground states. Specifically, the electronic states at this energy level for ground-states

TiNbO, Ti4Nb2O3, and Ti5NbO3 are higher than those for Ti2Nb6O3, and greater than those

for Ti4Nb4O and Ti3Nb5O. This also indicates that the degree of orbital hybridization and the

electronic interactions enhance with the increase in oxygen content, which is also observed in

most transition metal oxides [205–207]. In addition, except for the ground-state Ti2Nb6O3, the

𝑑 orbitals of Ti contribute the most to the anti-bonding interactions in the other ground states.

For the ground-state Ti3Nb5O, the contributions of the 𝑑 orbitals from Ti and Nb to the anti-

bonding interactions are almost equal. In other words, when the Nb content is less than 0.55,

the anti-bonding interactions in the hcp ternary system are dominated by the 𝑑 orbitals of Ti.

Figure 6.10 shows the projected density of states of each sub-orbital in 𝑑 orbitals of Ti and Nb.

It can be seen that the electronic states at -7.5 eV below the Fermi level are mainly contributed

by the Ti and Nb 𝑑𝑥𝑦 + 𝑑𝑥2−𝑦2 orbitals, while the 𝑑𝑧2 orbitals have almost no contribution to

the electronic states at this energy level. This indicates that the 𝑝 orbitals of oxygen primarily

hybridize with the Ti and Nb 𝑑𝑥𝑦 + 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑧 + 𝑑𝑦𝑧 orbitals to form bonding states through

electronic interactions [208, 209]. We can also see that all 𝑑 sub-orbitals significantly contribute

to the electronic states at energy levels from -3 to 0 eV, indicating that the hybridization between

the 𝑑𝑧2 , 𝑑𝑥𝑦 + 𝑑𝑥2−𝑦2 , and 𝑑𝑥𝑧 + 𝑑𝑦𝑧 orbitals facilitates bonding interactions between Ti and Nb

atoms on the same layer and between two adjacent layers. Moreover, the Ti and Nb 𝑑𝑥𝑦 + 𝑑𝑥2−𝑦2

and 𝑑𝑥𝑧 + 𝑑𝑦𝑧 orbitals contribute more to the electronic states above the Fermi level compared to

the 𝑑𝑧2 orbitals, thus causing a greater anti-bonding interaction in the ground-state.

The contribution of the 𝑠 and 𝑝 orbitals of oxygen and the 𝑑 orbitals of Ti and Nb to the total

density of states of the ground states in the bcc ternary system was depicted in Figure 6.11. As

can be seen, similar to the ground states in the hcp ternary system, the electronic states around
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Figure 6.9: Total DOS and the projected DOS of (a) 𝑠 and 𝑝 orbitals of oxygen and (b) Ti and
Nb 𝑑 orbitals of the ground states in the hcp Ti-Nb-O system.

the -7.5 eV energy level are mainly contributed by the 𝑝 orbitals of oxygen, while the electronic

states around the Fermi level are contributed by the 𝑑 orbitals of Ti and Nb. Moreover, the

degree of hybridization and bonding interactions between O and Ti or Nb in the ground states

increases with the increase in oxygen content. It is also evident that when the Nb content in

the Ti-Nb sublattice is less than 0.5, the hybridization and electronic interactions between Ti

and oxygen are stronger. Therefore, in the ground-states Ti3NbO, Ti2NbO, and Ti4NbO2, the 𝑑

orbitals of Ti contribute more to the electronic states at the energy level of -7.5 eV compared

to the 𝑑 orbitals of Nb. Besides, except for the ground-state TiNb2O, the anti-bonding states

in other ground states are mainly contributed by the 𝑑 orbitals of Ti. Figure 6.12 presents the

contribution of the density of states of 𝑑 sub-orbitals to the total density of states of 𝑑 orbitals

of Ti and Nb in these ground states. Similar to the ground states in the hcp ternary system,

at the energy level of around -7.5 eV, the orbitals that hybridize with the oxygen 𝑝 orbitals are

primarily the Ti and Nb 𝑑𝑥𝑦 + 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑧 + 𝑑𝑦𝑧 orbitals. The 𝑑𝑧2 orbital, however, hardly

participates in hybridization with the oxygen and also contributes very little to the anti-bonding
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Figure 6.10: Projected DOS of each sub-orbital of the (a) Ti and (b) Nb 𝑑 orbitals of the ground
states in the hcp Ti-Nb-O system.

states above the Fermi level. For the energy level from 0 to -2.5 eV below the Fermi level,

unlike the hcp ternary ground states where the 𝑑𝑧2 orbital significantly influences the bonding

between Ti and Nb atoms on the one and adjacent layers, the 𝑑𝑧2 orbital has a smaller impact on

the bonding between Ti and Nb in the bcc ternary ground states [192]. Instead, the bonding is

primarily driven by the 𝑑𝑥𝑦 + 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑧 + 𝑑𝑦𝑧 orbitals.

Bader analysis was then performed to examine the electron gain and loss of each atom in the

hcp ternary ground states, as shown in Table 6.3, in all ground states, oxygen and Ti atoms gain

electrons and lose electrons, respectively, due to the big electronegativity difference between

oxygen and Ti [210, 211]. It is also can be seen that Nb atoms gain electrons in the ground-

states Ti3Nb5O, Ti4Nb4O, and Ti5NbO3, while Nb atoms lose electrons in the ground-states

Ti2Nb6O3, TiNbO, and Ti4Nb2O3. The difference in the performance of Nb atoms to gain or

lose electrons in different ground states is mainly due to the electronegativity of Nb, which is

intermediate between Ti and O. This causes Nb to lose electrons when it tends to bond with
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Figure 6.11: Total DOS and the projected DOS of (a) 𝑠 and 𝑝 orbitals of oxygen and (b) Ti and
Nb 𝑑 orbitals of the ground states in the bcc Ti-Nb-O system.

oxygen and gain electrons when it tends to bond with Ti. As shown in Figure 6.9, at the energy

level around -7.5 eV, the electronic states contributed from Nb in the ground-states Ti2Nb6O3,

TiNbO, and Ti4Nb2O3 are larger than in the other ground states, indicating a stronger tendency

to bond with oxygen, thereby a higher possibility of losing electrons for Nb. Furthermore, in the

ground-state TiNbO, the number of electrons gained or lost by different atoms of one element

is the same. To be specific, each Nb atom loses 0.322 electrons, each Ti atom loses 1.068

electrons, and each oxygen atom gains 1.39 electrons, indicating that only for the ground-state

TiNbO, the contribution of different atoms of the same element to orbital hybridization and

bonding interactions is identical. Similar to the hcp ternary ground states, as shown in Table

6.4, oxygen can only gain electrons due to its very stronger electronegativity than Ti and Nb

and, in some ground states, Nb atoms lose electrons, while in other ground states, they gain

electrons. However, in the ground-state Ti14Nb11O, one Nb atom loses electrons, the other

Nb atoms gain electrons [212, 213], and surprisingly, three Ti atoms in this ground-state gain

electrons, indicating the complicated interactions between Ti and Nb.
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Figure 6.12: Projected DOS of each sub-orbital of the (a) Ti and (b) Nb 𝑑 orbitals of the ground
states in the bcc Ti-Nb-O system.

6.3 Thermodynamic properties of the grounds states

Subsequently, the Debye-Grüneisen model was employed to evaluate the thermodynamic and

vibrational properties of the ternary ground states in the hcp and bcc Ti-Nb-O systems by

fitting a series of E-V data of the ground-state to the Birch–Murnaghan equation of state. As

shown in Figure 6.13 and 6.14, the Birch–Murnaghan equation of state well fits the E-V data

points of all the ground states, with no outliers. Also, it is evident that the cell volume of

the hcp ternary ground states is generally larger compared to most bcc ternary ground states.

Furthermore, the volume change of the supercell bcc Ti14Nb11O exceeds 500 bohr3. Then, the

vibrational free energy and some thermodynamic properties of all hcp and bcc ground states

were evaluated by importing the E-V data to the Debye-Grüneisen model. The variations of

linear thermal expansion (LTE) and vibrational free energy (𝐹𝑣𝑖𝑏) of the hcp ternary ground

states with temperature are described in Figure 6.15(a) and (b), respectively. It is expected that,

like other metallic systems, the LTE of all the hcp ground states increases with temperature,
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Table 6.3: Gain and loss of electrons of each O, Nb and Ti atom in the hcp Ti-Nb-O ternary
ground states via Bader analysis.

Ground-state O atoms Nb atoms Ti atoms

Ti3Nb5O +1.411 +0.156, +0.314,
+0.203, +0.152, +0.256

-0.866, -0.947, -0.678

Ti4Nb4O +1.429 +0.294, +0.292,
+0.251, +0.251

-0.762, -0.762, -0.496, -
0.496

Ti2Nb6O3 +1.369, +1.384, +1.384 -0.337, -0.337, -0.331, -
0.331, -0.231, -0.231

-1.170, -1.170

TiNbO2 +1.39, +1.39, +1.39,
+1.39

-0.322, -0.322, -0.322, -
0.322

-1.068, -1.068, -1.068, -
1.068

Ti4Nb2O3 +1.412, +1.409, +1.409 -0.244, -0.205 -0.899, -0.947, -0.947, -
0.988

Ti5NbO3 +1.429, +1.427, +1.425 +0.038 -0.833, -0.880, -0.829, -
0.891, -0.886

and the growth rate of the LTE decreases after 400 K, however, the rate of change in LTE varies

among different ground states. Ti2Nb6O3 and Ti5NbO3, which have the highest and lowest

Nb content on the Ti-Nb sublattice, respectively, exhibit the highest and lowest LTE across the

entire temperature range. Except for Ti3Nb5O, which shows comparable LTE to Ti4Nb2O3,

the LTE of other ground states demonstrate a decrease with an increase in Ti content in the

configuration. In addition, as shown in Figure 6.15(b), the ordering Ti2Nb6O3 and Ti5NbO3,

which have the highest and lowest LTE, respectively, exhibit the lowest and highest 𝐹𝑣𝑖𝑏 values

throughout the overall temperature range. This is mainly due to that the volume expansion of

the compounds extends the chemical bonds [181], leading to an increase in vibrational entropy.

It is also observed that at lower temperatures (< 400 K), Ti3Nb5O and Ti4Nb4O with lower

oxygen content have smaller 𝐹𝑣𝑖𝑏, while the other four ground states have comparable 𝐹𝑣𝑖𝑏.

This is because the lower the oxygen content, the fewer chemical bonds between Ti and Nb

atoms with oxygen atoms, resulting in weaker structural stiffness and stability, higher vibrational
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Table 6.4: Gain and loss of electrons of each O, Nb and Ti atom in the bcc Ti-Nb-O ternary
ground states via Bader analysis.

Ground-state O atoms Nb atoms Ti atoms

Ti14Nb11O +1.426 +0.314, +0.032, +0.032,
+0.629, +0.200, +0.107,
+0.209, +0.111, +0.121,
+0.321, -0.026

+0.303, +0.151, +0.276, -
0.369, -0.590, -0.698, -0.059,
-0.033, -0.058, -0.437, -0.442,
-0.483, -0.383, -0.651

Ti3NbO +1.404 +0.507 -0.633, -0.633, -0.645

Ti2NbO +1.396 +0.038 -0.718, -0.716

TiNb2O +1.374 -0.044, -0.302 -1.029

Ti4NbO2 +1.369,
+1.340

-0.278 -1.722, -0.027, -0.270, -0.412

TiNbO +1.352,
+1.373

-0.076, -0.542 -1.203, -0.905

entropy, and thereby lower 𝐹𝑣𝑖𝑏 [181]. When the temperature exceeds 700 K, the bonding of Ti

with Nb and oxygen atoms determines the stiffness and stability of the configuration. That is,

at a specific oxygen content, the higher the Ti content in the ground-state, the more chemical

bonds formed, leading to higher structural stability and 𝐹𝑣𝑖𝑏. Consequently, the 𝐹𝑣𝑖𝑏 follows

the order: Ti5NbO3 > Ti4Nb2O3 ≈ Ti4Nb4O > TiNbO ≈ Ti3Nb5O > Ti2Nb6O3. Figure 6.16

shows the LTE and 𝐹𝑣𝑖𝑏 of the bcc ternary ground states in the bcc Ti-Nb-O system. Similar to

the hcp ternary system, the LTE of bcc ternary ground states with high Ti content is lower than

that of bcc ground states with low Ti content, suggesting that the LTE of Ti2NbO, Ti4NbO2,

Ti3NbO, and Ti14Nb11O is lower than that of TiNbO and TiNb2O. For ground states with close

Ti content, namely Ti4NbO2, Ti3NbO, and Ti14Nb11O, the differences in oxygen content cause

slight differences in LTE. Notably, TiNbO, which has the highest oxygen content, exhibits the

largest LTE, and its LTE maintains a high growth rate even after the temperature exceeds 400 K.

This trend is also observed in the ground-state Ti2O in the Ti-O binary system. As shown in

Figure 6.16(b), compared to the ground states with high Ti content, the 𝐹𝑣𝑖𝑏 of TiNbO and
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TiNb2O, which have lower Ti content, decreases more rapidly. Above 500 K, their 𝐹𝑣𝑖𝑏 is lower

than that of the other four ground states, and the lower oxygen content in TiNb2O also leads

to a decrease in the number of bonds, resulting in a lower 𝐹𝑣𝑖𝑏. Therefore, across the entire

temperature range, the 𝐹𝑣𝑖𝑏 of TiNb2O is consistently lower than that of TiNbO. The trends

observed in the bcc ternary system are very similar to the conclusions drawn from the hcp

ternary system, indicating that the increase of octahedral interstitial oxygen reduces vibrational

entropy. Moreover, as the temperature increases, Ti in the substitutional sites of both hcp and

bcc lattices more effectively reduces the vibrational entropy compared to Nb, thereby increasing

the 𝐹𝑣𝑖𝑏 of the system.

Figure 6.13: E-V data and the fitted curve of the ternary ground states in hcp Ti-Nb-O system.

Finally, we calculated the thermodynamic quantities of the ternary ground states in the hcp

Ti-Nb-O system across compositions and temperatures. However, our Monte Carlo results
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Figure 6.14: E-V data and the fitted curve of the ternary ground states in bcc Ti-Nb-O system.

Figure 6.15: Linear thermal expansion and total vibrational free energies of the ternary ground
states in hcp Ti-Nb-O system.

show all these ordered compounds can decompose on heating into disordered 𝛼 phase at very

temperatures (20∼60 K), therefore the Helmholtz free energy (F) of the disordered 𝛼 phase was
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Figure 6.16: Linear thermal expansion and total vibrational free energy of the ternary ground
states in bcc Ti-Nb-O system.

studied instead. Figure 6.17(a) shows the curved surface of F of the 𝛼 phase at 1000 K, by

fitting the limited F data points obtained by Monte Carlo simulations to a polynomial function.

It is evident that the fitted surface is smooth and the F in the oxygen-rich region is greater

than that in the Nb-rich region, both of which are higher than the F in the Ti-rich region.

This indicates the 𝛼 phase presents higher thermodynamic stability over the Ti-rich region than

other compositional spaces. Although no literature reports the F of the 𝛼 phase in Ti-Nb-O

systems at any temperatures, our calculated F for the pure hcp Ti at 1000 K is -0.53 eV/active

site (-51.1 kJ/mol) which is close to the value of -44.8 kJ/mol calculated by Xiong 𝑒𝑡 𝑎𝑙. [214].

The projected F on the composition plane, which represents the F gradient change with the

composition, is shown in Figure 6.17(b). It also can be seen that oxygen-rich region has the

highest F, and Ti-rich region shows the highest thermodynamic stability, especially at the oxygen

composition around 0.33 in Ti-O binary line (darkest area of the cool color tones). This can be

confirmed by the thermodynamic investigation of the hcp Ti-O binary system in chapter 4 where

we found Ti2O has a lower F than Ti6O and Ti3O at 1000 K.
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Figure 6.17: The fitted Helmholtz free energy (F) of the disordered 𝛼 phase in the hcp Ti-Nb-O
system across the whole compositional space at 1000 K: (a) 3D curved surface of F and (b)
projection of F on the x-y plane.

6.4 Summary

In this chapter, a great number of ternary configurations in the Ti-rich and Nb-rich regions were

enumerated, respectively, for the hcp and bcc Ti-Nb-O ternary systems. All the configurations

were fully relaxed through DFT calculations and those over-relaxed structures in these two

ternary systems were identified by performing CNA and RA calculations. Compared to the hcp

system, we found that there are more highly distorted structures in the bcc system, with some

structures surprisingly having RA values greater than 0.5.

Subsequently, the 𝐸 𝑓 of all the structures in the two ternary systems were calculated and it is

observed that the ternary structures having higher oxygen content present lower 𝐸 𝑓 , while the

𝐸 𝑓 is less sensitive to the Ti and Nb content. Furthermore, some previously unreported ternary

ordered ground states were discovered in both systems and the phase equilibria at 0 K were

established based on the 𝐸 𝑓 of the ground states in each system. Two CE models were then

accurately developed for the two ternary systems, respectively, by fitting the DFT calculated 𝐸 𝑓

precisely, which demonstrates the good predictive power of the constructed CE models. The

ECIs of both two CE models converge well with increasing cluster diameter, although the ECI
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values in the bcc system were larger compared to those in the hcp system.

The density of states for the ground states in both systems was further evaluated, which helps

us understand the orbital hybridization and bonding interactions between oxygen and metallic

Ti and Nb atoms. A detailed analysis of the projected density of states of the 𝑑 sub-orbitals of

Ti and Nb was performed to deeply investigate their interactions with oxygen and intermetallic

interactions, as well as the impact on anti-bonding states. After the E-V curves of all ground

states were calculated, the LTE and 𝐹𝑣𝑖𝑏 of the ordered ground states in both systems were

examined by employing the Debye-Grüneisen model, revealing the roles played by oxygen

and metallic Ti and Nb atoms in these thermodynamic quantities. In the end, Monte Carlo

simulations were performed to compute the thermodynamics of the disordered 𝛼 phase in the

hcp Ti-Nb-O system over the composition at 1000 K. It can be concluded that Ti-rich region has

the highest thermodynamic stability than other composition areas.
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Chapter 7

Comparisons Between the Binary Ti-O,

Ti-Nb, and Ternary Ti-Nb-O Systems

In the previous three chapters, the energetics, ground-state electronic structure, and thermody-

namic properties of the configurations in the hcp Ti-O, hcp Ti-Nb, bcc Ti-Nb, hcp Ti-Nb-O, and

bcc Ti-Nb-O systems were systematically investigated. It is found that the introduction of oxy-

gen, within its solubility limit in Ti, does not cause significant distortion in the configurations,

and all the structures in the hcp Ti-O system maintain the ideal hcp crystal lattice (Figure 4.3).

In contrast, as shown in Figure 5.1, adding Nb to hcp Ti can result in large distortions in many

structures, with some even relaxing to other geometries. Our findings differ from the viewpoint

of Chinnappan 𝑒𝑡 𝑎𝑙. [44], in that the addition of Nb to bcc Ti does not induce significant distor-

tions in the configurations. This highlights the critical role of oxygen in stabilizing the 𝛼 phase

in Ti and Nb in stabilizing the 𝛽 phase in Ti. It was observed, from the RA results of the ternary

structures in the ternary systems (Figure 6.1), that although the hcp Ti-Nb system contains many

highly distorted configurations, the addition of oxygen significantly reduces these distortions,

thereby mitigating the mechanical instability induced by Nb. On the contrary, adding Nb to

bcc Ti enhances the mechanical stability of most structures across the entire composition range,

while the subsequent introduction of oxygen disrupts this stability, leading to significant relax-
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ations and increased distortions, introducing many mechanical instabilities to the bcc ternary

system. This indicates that the mechanical instability induced by the introduction of oxygen in

the bcc Ti-Nb system is more significant than the stabilization effect provided by Nb as a strong

𝛽 phase stabilizer.

The stability of the system can also be demonstrated by the 𝐸 𝑓 convex hull of each system. It is

evident, from Figures 4.1 and 5.2, that the 𝐸 𝑓 of hcp Ti-O structures are lower than the 𝐸 𝑓 of

those in the hcp and bcc Ti-Nb systems. Comparing the 𝐸 𝑓 of the ternary structures in the hcp

and bcc Ti-Nb-O systems (Figures 6.2 and 6.3) which use the same reference states, it shows

that the 𝐸 𝑓 of the hcp ternary structures are much lower, indicating that the hcp ternary system

is more stable than the bcc ternary system. For instance, the 𝐸 𝑓 of the hcp ternary ground-state

TiNbO is -1.32 eV/atom, while that of the bcc ternary ground-state TiNbO is -0.61 eV/atom,

higher by 0.71 eV/atom. On the other hand, the ECIs derived from the constructed CE models

reveal that the ECI values of all clusters in the hcp and bcc Ti-Nb systems fall within the range of

0 ∼ 10 meV, as illustrated in Figure 5.5. In contrast, the ECIs in the hcp Ti-O system (Figure 4.5)

are larger, indicating stronger interactions between O-O or O-Vac interstitial sites compared to

the Ti-Nb, Ti-Ti, or Nb-Nb substitutional sites in the Ti-Nb system. Notably, as shown in Figure

6.8(a), some crucial clusters with larger ECIs are also observed from the CE model of the hcp

Ti-Nb-O system. These clusters not only reproduce the important O-O or O-Vac sites from the

hcp Ti-O system but also include significant interactions between interstitial and substitutional

cross-sites, such as O-Ti, O-Nb, O-Ti-Nb, O-Ti-Ti, and O-Nb-Nb interactions. It can also be

observed from Figure 6.8(b) that the introduction of oxygen into the bcc Ti-Nb system causes

significant changes in the ECIs. These ECIs point to the cross-sites of octahedral interstitial

sublattices (O-Vac) and substitutional lattices (Ti-Nb), such as O-Ti and O-Nb, reflecting the

strong interactions between oxygen and the metallic Ti and Nb in the bcc Ti-Nb-O system.

Further analysis of the DOS of each element in the ground states reveals that the 𝑝 orbitals of

oxygen hybridize with the 𝑑 orbitals of Ti and/or Nb in the hcp Ti-O, hcp Ti-Nb-O and bcc

Ti-Nb-O systems, promoting the formation of bonding states exhibiting the characteristics of

covalent bonds. Similarly, the 𝑑 orbitals of Ti hybridize with the 𝑑 orbitals of Nb in the hcp and
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bcc Ti-Nb systems, however, this hybridization is concentrated near the higher energy Fermi

level, resulting in the formation of the bonding states having characteristics of metallic bonds

and weaker interactions, which is also the evidence of the lower ECI values.

Through the calculation of the thermodynamic properties of ground states in binary and ternary

systems, it was found that the LTE of all ground states exhibits exponential growth below 400 K

(as seen in Figures 4.12(b), 5.12, 6.15(a) and 6.16(a)), while the growth slows and gradually

converges above 400 K. This is because, at lower temperatures, the thermal vibrations of atoms

in alloy systems increase as the temperature rises. The anharmonicity of these vibrations

causes the atoms to move further apart on average, leading to a rapid increase in linear thermal

expansion [215, 216]. The initial stages of heating activate more atomic vibrational modes,

which contribute significantly to the thermal expansion. As temperature increases beyond

400 K, most of the vibrational modes that contribute to expansion are already activated. For

another, the metallic system approaches a quasi-equilibrium state where the increase in atomic

separation due to thermal expansion is balanced by the metallic bonding forces, leading to a

slower growth of LTE [217, 218]. More importantly, comparing Figure 5.12 with Figure 6.15(a)

and 6.16(a), we notice that the introduction of oxygen in hcp and bcc Ti-Nb system results in

the reduction of LTE over the whole temperature. For example, in the temperature range of 0

to 1200 K, the LTE of the ground-state bcc Ti2Nb ranges from 0 to 8×10−6K−1, whereas the

LTE of the ternary ground-state bcc Ti2NbO changes from 0 to 4×10−6K−1. This downward

change can be attributed to that the bonding interactions of oxygen with Ti and Nb show the

characteristics of covalent bonds which leads to a rigidity of the ternary ground states, thereby

restricting the movement of Ti and Nb atoms and making the crystal structure of ternary ground

states less responsive to thermal expansion [219]. From another point of view, the introduction

of oxygen can cause the effect of solution strengthening and thereby increase the hardness of

the system. Typically, a harder material tends to exhibit lower thermal expansion since the

atomic bonds resist thermal vibrations more effectively [220, 221]. Moreover, the solution of

oxygen increases the elastic constants of the Ti-Nb systems, thus improving the elastic modulus

of the systems. Generally speaking, alloys with higher elastic modulus show lower coefficients
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of thermal expansion due to their increased resistance to deformation under thermal stress [46,

222].

Unlike LTE, the 𝐹𝑣𝑖𝑏 of all binary and ternary ground states decreases slowly before the tem-

perature increases to 400 K. As the temperature rises beyond 400 K, the rate of decrease in 𝐹𝑣𝑖𝑏

gradually accelerates. The main reason is that, at low temperatures, the vibrational entropy,

which contributes to the 𝐹𝑣𝑖𝑏, increases slowly as fewer lattice vibrational modes are excited

[223]. The specific heat capacity at constant volume, which is related to the number of excited

lattice vibrational modes, is lower. In addition, quantum mechanical effects are more significant

at low temperatures, leading to discrete vibrational energy levels. The number of these levels

changes with temperature, resulting in a slower decrease in 𝐹𝑣𝑖𝑏 [224, 225]. As temperature

increases from ∼400 K, the alloy system transitions from quantum to classical behavior. In the

classical regime, vibrational energy is more continuous, and higher temperatures significantly

increase vibrational entropy. The higher the temperature, the more lattice vibrational modes

are excited, leading to a more rapid increase in vibrational entropy. This contributes to a faster

decrease in 𝐹𝑣𝑖𝑏 as the temperature continues to rise.

In summary, as two important alloying elements of Ti, oxygen and Nb have significant impacts on

the mechanical stability, bonding interactions in the system, and the thermodynamic properties of

various structures in both hcp and bcc Ti-Nb-O systems. Despite the multifaceted and complex

nature of these influences, we believe that the findings and discussions presented in this study

provide valuable insights for the broader readers.
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

Oxygen and Nb are two representative alloying elements of Ti to form high-temperature and

chemically-aggressive resistance Ti alloys. The investigation on the thermodynamic characteris-

tics of Ti-O, Ti-Nb and especially Ti-Nb-O systems has attracted much attention in recent years.

However, in this regard, a satisfied experimental technique or modeling scheme is still yet to be

developed due to the appearance of a variety of oxides in hcp Ti-O system and the mechanical

instability present in hcp and bcc Ti-Nb and Ti-Nb-O systems. In this dissertation, DFT cal-

culations and the cluster expansion method were combined with the Debye-Grüneisen model

and the Monte Carlo simulations to study the ground-states characteristics, electronic structure,

thermodynamic properties and phase stabilities of the hcp Ti-O, hcp Ti-Nb, bcc Ti-Nb, hcp

Ti-Nb-O and bcc Ti-Nb-O systems.

In chapter 4, we first performed a series of DFT calculations to construct the 𝐸 𝑓 of convex

hull of the hcp Ti-O system such that some stable ordering ground states, namely Ti6O, Ti3O,

Ti2O and unreported Ti12O5, were discovered. A predictive cluster expansion model was then

constructed to fit the DFT 𝐸 𝑓 energies and represent the energetics of the whole hcp Ti-O system,
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and many crucial ECIs were derived from the CE model. The density of states and the charge

density difference of these ordering Ti-O oxides were further analyzed to reveal the underlying

bonding interactions between interstitial oxygen and Ti. It was found that 𝜎 and 𝜋 bonds are

formed in these ground states and the bonding strength is positively correlated with the oxygen

concentration. The thermodynamic properties of these oxides were examined, and it shows that

the Ti2O has the largest 𝐹𝑣𝑖𝑏 and the lowest heat capacities over the entire temperature range.

Another CE model was established using the 𝐹𝑣𝑖𝑏 to evaluate the effect of vibrational entropy on

the order-disorder transition temperatures of the ground states. Downward corrections on the

order-disorder transition temperature appeared for all the Ti-O ground states when including the

𝐹𝑣𝑖𝑏 in the Monte Carlo simulations. The calculated transition temperature for the Ti6O is only

45 K higher than the experimental data.

At the beginning of chapter 5, the 𝐸 𝑓 of a group hcp and bcc Ti-Nb structures were calculated.

It is determined that the reason for the inability to establish robust CE models is the presence

of highly distorted structures in the Ti-Nb systems which can introduce much noise into the

construction of the CE model. After performing CNA and RA calculations on all configurations

in both hcp and bcc Ti-Nb systems, it was observed that the hcp Ti-Nb system contains more over

relaxed structures, indicating that the hcp Ti-Nb system exhibits more mechanical instabilities

compared to the bcc Ti-Nb system. These structures were then excluded from the CE model

to obtain well-converged CE models with good predictive capability. Further analysis of the

density of states of the ground states in both systems revealed that their bonding characteristics

are similar, specifically the hybridization of 𝑑𝑥𝑦 + 𝑑𝑥2−𝑦2 and 𝑑𝑥𝑧 + 𝑑𝑦𝑧 orbitals. Subsequently,

we calculated the thermodynamic properties of these ground states, including 𝐹𝑣𝑖𝑏, LTE, and

bulk modulus. All the 𝐹𝑣𝑖𝑏 in each system were further employed to construct another CE model

such that the effect of vibrational entropy was incorporated into the calculation of the phase

boundaries between the 𝛼 and 𝛽 phases. The results obtained are in good agreement with the

experimental data, indicating that vibrational entropy plays a crucial role in lowering the phase

transition temperatures between the disordered 𝛼 and 𝛽 phases.
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In chapter 6, a larger number of ternary structures in the Ti-rich and Nb-rich regions were enu-

merated for the hcp and bcc Ti-Nb-O systems, respectively. CNA and RA analysis were executed

for each ternary structure in these two systems by performing DFT relaxation calculations. The

results indicate that, compared to the hcp ternary structures, the bcc ternary structures exhibit

greater relaxation, with some structures showing an RA exceeding 0.5, and many relaxing to

different geometries. This suggests that although the bcc Ti-Nb system is more stable than the

hcp Ti-Nb system, the introduction of oxygen fundamentally alters the stability of both systems,

in other words, the hcp Ti-Nb-O system is mechanically more stable than the bcc Ti-Nb-O

system. Subsequent 𝐸 𝑓 calculations corroborate this conclusion, showing that the 𝐸 𝑓 of hcp

ternary structures are significantly lower than that of bcc ternary structures. Both of these two

ternary systems exhibit a trend where 𝐸 𝑓 decreases with increasing oxygen content while being

relatively insensitive to Ti and Nb content. From the 𝐸 𝑓 convex hulls, some previously unre-

ported ordered ground states in these two ternary systems were identified for the first time, and

the 0 K phase equilibria were established based on the 𝐸 𝑓 . Two separate predictive CE models

were then developed, well fitting the DFT 𝐸 𝑓 , and revealing that the introduction of oxygen

significantly affects the ECIs of both Ti-Nb systems. Some important interactions between

interstitial and substitutional sites were identified, such as Ti-O, Nb-O, O-Ti-O, O-Nb-O, and

O-Ti-Nb-Vac interactions. The density of states calculations were consequently performed to an-

alyze the bonding mechanisms in these ternary ground states. It was found that the hybridization

between the 𝑝 orbitals of oxygen and the 𝑑 orbitals of Ti and Nb is responsible for the formation

of low-energy bonding states that exhibit strong covalent characteristics. For another, the hy-

bridization between the 𝑑 orbitals of Ti and Nb promotes the formation of high-energy bonding

and anti-bonding states, showing metallic bonding characteristics. Furthermore, we calculated

the 𝐹𝑣𝑖𝑏 and LTE for all ternary ground states, highlighting the critical role of interstitial oxygen

interactions with metallic Ti and Nb in determining these thermodynamic properties. At the end

of this chapter, since all the ternary ground states found in the hcp Ti-Nb-O system turn to be

unstable at very low temperatures and decompose into disordered 𝛼 phase, we calculated the F

of the disordered 𝛼 phase in the hcp Ti-Nb-O system at 1000 K. The Monte Carlo results show
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the Ti-rich region has the highest thermodynamic stability than other composition area at this

temperature.

In the end, in chapter 7, based on the computational results presented in chapters 4, 5, and 6, we

conducted an in-depth analysis of the intrinsic connections among ground-state properties, lattice

distortions, electronic structures, and thermodynamics in these binary and ternary systems. This

comprehensive study reveals the profound impact of energetics and interatomic interactions on

the high-temperature thermodynamics of these systems.

8.2 Future work

This study investigates the ground-state characteristics, electronic structures, and thermodynam-

ics of hcp Ti-O, Ti-Nb, Ti-Nb-O systems, and bcc Ti-Nb, bcc Ti-Nb-O systems. A comprehensive

analysis of the energetics, internal bonding mechanisms, and high-temperature thermodynamic

behavior of each system was achieved. Future work will focus on the thermodynamics of the

ordered and disordered 𝛽 in the bcc Ti-Nb-O system over compositions and temperatures. The

effect of vibrational entropy on the phase stabilities of ordered and disordered phases in the

hcp and bcc Ti-Nb-O systems will also be worth investigating. Certainly, the design of multi-

component materials remains a challenging and complex process. Future research could include

the incorporation of additional elements such as Al, Zr, and Sn into the hcp and bcc Ti-Nb-O sys-

tems, and controlling their concentrations to achieve the design of Ti-based high-entropy alloys.

We believe that the findings and methodologies presented in this dissertation provide significant

insights and references for the structural prediction and material design of multi-component

Ti-based materials as well as other binary and multicomponent metallic alloys.
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