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“Uncertainty is an uncomfortable position.

But certainty is an absurd one.”

– Voltaire
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Abstract

This thesis explores the intricacies of managing and modelling tail risk and uncer-

tainty in financial markets. Tail risks arise from infrequent but potentially significant

events, while uncertainty refers to the unpredictable aspects of market dynamics that

cannot be accounted for by standard probabilistic models. Traditional models often

struggle to account for these elements, leading to inadequate investment strategies

which underestimate risk. This thesis proposes a new investment framework cen-

tred around three objectives: (1) to develop forecasting methods that provide more

accurate and robust predictions of asset prices and volatility, accounting for the in-

herent uncertainty in financial markets (2) to devise new methodologies which better

predict the probability and impact of tail events (3) to create portfolio allocation

algorithms which eliminate unrealistic assumptions and better reflect the complex

dynamics of modern financial markets.

In addressing the first objective, this thesis critiques existing forecasting mod-

els and introduces a Bayesian approach to ARMA-GARCH modelling. This new

approach incorporates prior knowledge and directly accounts for the uncertainty in

financial data, offering a more robust prediction framework.

Regarding the second objective, this thesis introduces existing quantitative tools

to measure financial risk and then proposes a new algorithm called the Multicanoni-

cal Sequential Monte Carlo Sampler (MSMCS), which efficiently reconstructs prob-
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ability distributions to capture tail risk.

For the final objective, this thesis proposes a series of Bayesian Optimisation

algorithms that address optimal portfolio allocation. These algorithms are tailored

to reduce the computational intensity often associated with such tasks and to take

advantage of specific characteristics of portfolio optimisation problems.

This thesis culminates in the combined application of the Bayesian ARMA-

GARCH models to forecast asset returns, MSMCS to assess tail risk, and Bayesian

Optimisation to find an optimal portfolio allocation. The combined framework is

applied to historic market data and shown to outperform various existing strategies

and market indices.

This work contributes to financial mathematics by challenging conventional ap-

proaches and introducing new Bayesian-based models that more accurately reflect

the complexity and inherent uncertainties of financial markets. It provides a foun-

dation for further research and practical applications in financial forecasting models,

risk assessment, and portfolio management.
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Chapter 1

Financial Markets

1.1 Overview of financial markets

In the realm of financial markets, it is essential to distinguish between real assets

which contribute directly to an economy’s productive capacity (like land, buildings,

machinery, human capital, knowledge, etc.) and financial assets (like stocks and

bonds) which serve as a means for companies to raise capital for the acquisition

and development of real assets. Financial assets also represent claims on the income

and value of real assets. For example, while one may not directly own a significant

industrial asset like a mining operation (a real asset), by purchasing shares (a finan-

cial asset) in a corporation engaged in mining activities, one can benefit from the

revenue generated by the company’s production activities from such real assets.

1.1.1 Sell-side dynamics

On the sell-side of financial markets, Investment Banks (IBs) assist companies in

formulating a balanced capital structure to finance their operations and growth. This

includes bond issuance to fund investments expected to yield returns surpassing

the debt servicing costs (i.e. interest and principal payments). The bonds are

structured into tranches whereby, in periods of financial difficulty, a company pays
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debt holders in the order of tranch seniority (senior, junior, and then mezzanine).

This approach allows companies to optimise financing costs and risk management—

where the issuance prices and rates are set per tranche to reflect the company’s

credit risk, ensuring that investors receive appropriate compensation for the level of

risk undertaken.

Investors in equity gain partial ownership in the companies; deriving returns

from dividends and changes in stock value. Regarding a company’s overall capital

structure, equity investors are the first risk bearers in periods of financial distress.

Debt holders face default only after all possible losses are absorbed by equity holders.

Whilst equity may provide the highest potential returns, it also has the greatest risk.

Finally, beyond bonds and stocks, derivatives like options, futures, and swaps can

be used for risk hedging and speculative purposes. For example, a company might

use futures to stabilise raw material costs against fluctuating commodity prices, or

swaps to guard against interest rate changes, enabling more predictable financial

management.

1.1.2 Buy-side dynamics

On the buy-side of financial markets, investors acquire and manage financial assets,

aiming to balance investment risk and return based on their specific investment goals.

Mutual funds pool resources from many investors to build diversified portfolios,

targeting various return objectives and risk profiles. Pension funds invest employees’

retirement savings, prioritising long-term, stable returns in order to meet future

pension liabilities. Insurance companies invest premium income to ensure they can

cover future claims, often adopting a more conservative strategy with a mix of low-

risk bonds and some other securities for higher returns. With differing investment

strategies, all three contribute to the dynamics and liquidity of financial markets.

2



As an example, when a company initiates a new project, the future cash flows

from this venture remain uncertain. Suppose the company gathers capital for its

new project by issuing both equity and bonds. Some investors might purchase the

equity, embracing the associated risk and potential for higher returns, while more

cautious investors might opt for bonds, which promise more predictable returns. As

such, the project’s risk is distributed amongst the investors, becoming a financial

risk, which is then priced and managed by the investors as part of their overall

strategies.

The variety of financial instruments enables investors with higher risk tolerance

to shoulder more of that risk in pursuit of higher returns, whereas those with a

lower risk appetite can opt for more secure assets. This facilitates more tailored

investment strategies for investors, catering to their unique risk profiles and return

expectations, and it enables corporations to access diverse funding sources at the

best rates, further bolstering the real assets in the economy.

1.1.3 Financial markets uncertainty

Financial markets serve a dual role: to enable companies to access various funding

sources for real asset growth, and to allow investors to achieve their financial goals.

The collective actions of the buy and sell side ensure market prices accurately rep-

resent risk, and as investors manage this risk as part of their broader investment

strategy, financial markets can be viewed as self-regulating.

This idealised view of financial markets is the foundation of many mathemat-

ical models. In reality, financial markets are fraught with uncertainty. Investors

often make irrational decisions based on emotions and biases. Market prices can be

distorted by speculation, misinformation, and herd mentality rather than reflecting

information accurately. Financial markets do not perfectly self-regulate.
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Moreover, investor forecasting activity has historically focused on predicting fre-

quent but relatively unimportant events, e.g. as shown by Bond and Dow (2021).

Consequently, investors often only bet on or against frequent events, limiting their

potential gains and resulting in a failure to foresee rare events, which tend to have

the largest financial implications. The historical record is littered with such events,

also called tail events ; a prime example is the Global Financial Crisis (GFC) of 2007-

09, which resulted in asset valuation write-downs totalling c. $4.1 trillion across the

USA, Europe, and Japan (IMF, 2009).

This thesis focuses on the buy side and optimal investment strategies. The

following section gives an overview of the evolution of such investment strategies,

highlighting how irrational behaviours, market inefficiencies, and unexpected events

challenge the idealised perception of financial markets.

1.2 The evolution of investment decisions

Financial modelling and investment decision-making have evolved significantly since

the early 20th century, challenging the idealised view of financial markets. In the

1930s, Economists like Fisher laid the groundwork for stock market analysis using

complex mathematical models. Whilst useful, these early models are overly simplis-

tic in addressing real market complexities and investor behaviours.

The 1950s saw the development of the Modern Portfolio Theory (MPT) by

Markowitz (1952), introducing the concept of diversification and the first mathemat-

ical framework for optimal investing. MPT provides a useful theoretical foundation

for optimal investing. However, the key assumption of asset returns being uncorre-

lated to each other and investor behaviour being rationale is unrealistic, particularly

during market crashes and volatile conditions (Curtis, 2004).

The advent of computer-based models in the 1950s and 1960s further revolu-
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tionised financial analysis, enabling the processing of large datasets and the devel-

opment of technical analysis methods like trend line analysis and indicators such as

the Relative Strength Index (Bodie et al., 2002).

In the 1970s, Fama’s Efficient Market Hypothesis (Fama, 1970) posited that

markets and asset prices reflect all available public and private information, negat-

ing the possibility of consistently outperforming the market. This hypothesis has

been largely rebuked; for example, many investors have consistently outperformed

market averages, indicating the existence of inefficiencies in market pricing (Ball,

1996). Later, Kahneman and Tversky (1979) studied and formalised such inefficien-

cies through their work on Behaviour Finance. Their work challenges the rational

investor assumption underlying most traditional financial models, highlighting in-

vestor’s tendency to favour long shots, avoid near-certain gains, and take large risks

to win back losses (Curtis, 2004).

The late 20th and early 21st centuries marked a shift towards more sophisticated

financial models to accommodate the growing complexity of markets and advanced

investment strategies (Bodie et al., 2002). The ‘quantitative revolution’ continues

to this day, with over 80% of trading on the NYSE becoming automated through

mathematical algorithms by the late 2010s (CNBC, 2019).

1.2.1 Limitations of existing models

Uncertainity

More than a century ago, Knight (1921) emphasised the importance of distinguish-

ing between quantifiable risk and unquantifiable uncertainties in financial markets.

Later, Keynes (1936) related this directly to probability theory, explicitly distin-

guishing risk as quantifiable uncertainties that can be measured through probabil-

ity, from true uncertainty representing those outcomes that are unknown and not
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amenable to probabilistic prediction. Whilst most investors today consider risk in

their investment decisions, few consider uncertainty.

The importance of this distinction is central to the recent publication by Kay

and King (2020), which challenged the standard mathematical models used in eco-

nomics and finance, arguing such models are too reliant on the ideas of rationality

and predictable outcomes, with no regard for uncertainty. The work calls for mathe-

maticians and financial modellers to recognise the limitations of purely probabilistic

approaches and emphasise the need for more robust and flexible mathematical mod-

els that perform well under a wide range of scenarios, adapting to unforeseen changes

and conditions. It also calls for the incorporation of prior or expert knowledge.

Keynes (1921) and Knight (1921) also highlighted the challenges in formulat-

ing uncertainty in terms of precise probabilities, emphasising the paradox that the

future’s unpredictability is both a source of problems and solutions in knowledge

acquisition. In his exploration of econometric models, Hansen (2014) challenged

the reliance solely on historical data in predicting future events, suggesting models

should incorporate uncertainty as an integral component rather than relying solely

on deterministic or probabilistic forecasts. Furthermore, Hansen and Sargent (2001),

Hansen and Sargent (2007) and Hansen (2014) explore the importance of robust con-

trol and model uncertainty in economic models, arguing for new models that can

accommodate the complexities and ambiguities inherent in financial systems.

The limitations of traditional econometric approaches, particularly in handling

uncertainty, are further emphasised by the works of Ai and Chen (2003), Chamber-

lain (1987), and Newey (1990). Chen and Epstein (2002) discuss ambiguity and risk

in asset returns, indicating a gap in standard models in addressing uncertainties in

continuous time. This body of work underscores the critical need for financial models

beyond simple deterministic and probabilistic frameworks, which more accurately
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reflect financial markets’ inherent uncertainties and complexities.

Tail risk

Incorporating tail risk into financial modelling and portfolio optimisation is a critical

aspect of modern financial analysis, as underscored by the growing body of liter-

ature on the subject. Traditional models’ inability to capture the impact of rare,

unforeseeable, and significant events, collectively referred to as “Black Swan” events,

is studied in Taleb (2005). Gao and Song (2018) further emphasise the ubiquitous

nature of tail risk across financial markets, indicating its pervasive impact on market

dynamics and investor behaviour.

The importance of tail risk is highlighted in the works of Albagli et al. (2015), who

demonstrate how heterogeneous information1 among market participants influences

asset pricing, particularly in the context of extreme events. Underscoring the need

for financial models to account for these risks, Kelly and Jiang (2014) discuss how

tail risk significantly influences asset prices. This need for inclusion is echoed in

works focusing on non-Normal distributions and extreme events in economic models,

for example, in studies by Breon-Drish (2015), Straub and Ulbricht (2021) and

Chabakauri et al. (2021). By acknowledging and quantifying tail risks, investors can

better prepare for unforeseen market disruptions, allocate resources more effectively,

and better understand the potential risks and returns in financial markets.

The combination of modelling uncertainty, a key component in preparing for tail

risk, and the role of “Black Swan” events are explored in the works of Orlik and

Veldkamp (2014), and Cogley and Sargent (2005). Integrating uncertainty and tail

risk into financial modelling and investment strategies is paramount in navigating

the complexities and uncertainties inherent in today’s financial markets.

1In financial markets, not all participants have access to the same information or interpret
information in the same way. This disparity is referred to as “heterogeneous information”. The
impact of this becomes particularly pronounced during extreme events (Albagli et al., 2015).
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1.2.2 The need for a new approach

Given the evidence against the notion of inherently efficient and self-regulating mar-

kets and the importance of incorporating uncertainty and tail risk into financial mod-

els, this thesis proposes a new approach to financial market analysis and investment

decision-making. To address the current limitations, this thesis proposes a compre-

hensive re-evaluation of the investment decision process—across returns forecasting,

risk management and portfolio optimisation—centred around three objectives:

1. Asset Returns Forecasting. Develop models that provide more accurate

and robust asset price and volatility forecasts, accounting for uncertainty.

2. Risk Management. Develop new methodologies which better predict the

probability and impact of tail events.

3. Optimal Portfolio Allocation. Develop portfolio allocation algorithms

which better reflect the complex dynamics of modern financial markets, re-

moving unrealistic assumptions.

Bayesian modelling may address these challenges. Unlike traditional methods,

Bayesian models provide a probabilistic understanding of model parameters, offering

deeper insights into uncertainty. Bayesian models can incorporate prior knowledge

and expert judgements, and update predictions with new information, making them

adaptable and adept at handling tail risk.

This thesis is structured around these three core objectives. We will examine

existing approaches to each objective and then present our proposed methods and

algorithms to achieve the aims. We demonstrate the proposals using both rigorous

mathematical theory and numerical examples.
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1.3 Key data

For the sake of simplicity and to ease evaluation, we introduce a central task: de-

termining the optimal allocation to a selection of nine assets. This objective is

achieved through improved returns forecasting, risk management and optimisation

algorithms. The nine assets are carefully selected to encompass a cross-section of

sectors, market capitalisations, and regions (United States of America (US), United

Kingdom (UK), and People’s Republic of China (CN))—summarised in Table 1.1.

The equity index with the largest total market capitalisation within each coun-

try is chosen, as it best represents the stock market performance for that country.

Within each index, the company with the largest and smallest market capitalisa-

tion are selected unless the sector has already been covered, in which case the next

largest (or smallest) company is chosen.

Country Asset Ticker Sector Market cap

US
S&P 500 SP500 Index -
Apple Inc AAPL Technology $2.9tn
Alaska Air Group
Inc

ALK Aviation $6.6bn

UK
FTSE 100 FTSE100 Index -
Shell Plc SHEL Energy $89.7bn
Taylor Wimpey Plc TW Construction $8.6bn

CN
SSE Composite In-
dex

SSE Index -

Ping An Insurance
Ltd

PING Insurance $139.3bn

Shenzhen Salubris
Pharmaceuticals
Co Ltd

SHEN Pharmaceuticals $29.6bn

Table 1.1: Key information on core dataset. Market capitalisation data, as at End-
2021.
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Historical asset price data can give gross and net returns, which show the ac-

tual percentage change in stock prices. Additionally, one can obtain logarithmic

returns, which have several advantages, including stabilising return series variance,

statistical properties like symmetry and time additivity, and the accommodation of

compounding effects. Formally, the returns are defined as follows:

Definition 1.3.1 (Tsay, 2005) Let Pt be the value or price of an asset at time t.

Then the ‘simple gross return’, denoted by 1 + Rt, for an asset held over the period

from date t− 1 to date t is:

1 +Rt =
Pt

Pt−1

. (1.3.2)

The corresponding ‘simple net return’, denoted by Rt, is:

Rt =
Pt

Pt−1

− 1 =
Pt − Pt−1

Pt−1

. (1.3.3)

Definition 1.3.4 (Tsay, 2005) The natural logarithm of the simple gross return is

called the ‘log return’, denoted by rt, calculated as:

rt = ln(1 +Rt) = ln

(
Pt

Pt−1

)
= pt − pt−1, (1.3.5)

where pt = ln(Pt) is the natural logarithm of the asset price at time t.

For the purpose of this work, we focus on log returns—given the aforementioned

advantages. For the core data set, we provide a visualisation of the historical prices

(on linear and log scales) and weekly returns2.

2A forward-filling method was employed, ensuring continuity in the dataset to address any
missing values and maintain data integrity.
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Figure 1.1: Historic prices (linear scale) from January 1, 2010 to December 30, 2021.
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Figure 1.2: Historic prices (log scale) from January 1, 2010 to December 30, 2021.
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Figure 1.3: Historic weekly log returns from January 1, 2010 to December 30, 2021.
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1.3.1 Preliminary observations

The U.S. stock market, represented by the S&P 500 index (SP500), Apple Inc.

(AAPL), and Alaska Air Group Inc. (ALK), saw a general upward trend across

the period—albeit, with some stagnation for ALK in the latter half of the decade.

Higher volatility is seen around 2020, likely due to the COVID-19 pandemic.

The U.K. stock market, represented by the FTSE 100 index (FTSE100), Shell

Plc (SHEL) and Taylor Wimpey Plc (TW), had mixed performance over the decade,

with a noticeable ‘V-shaped recovery’ in 2015-2017, characterised by a sharp decline

followed by a rapid recovery, likely due to the EU Referendum. Higher volatility is

seen around 2020, likely due to the COVID-19 pandemic.

The Chinese stock market, represented by the SSE Composite index (SSE), Ping

An Insurance Ltd (PING) and Shenzhen Salubris Pharmaceuticals Co Ltd (SHEN),

had a strong performance over the decade with a significant bull run in 2015, driven

by government encouragement of retail investing and some speculative trading (Sor-

nette et al., 2015).

1.4 Conclusion

We have established motivation for reassessing financial models and the investment

process to better account for uncertainty and tail risk—structuring this thesis around

three objectives.

Objective One: Asset Returns Forecasting is addressed in Chapters 2, 3,

and 4. Chapter 2 explores the analysis of financial time series data to understand

market behaviours and patterns, which may be useful in developing more refined

forecasting algorithms. Chapter 3 builds on this by examining various existing fi-

nancial time series forecasting models. Chapter 4 explores the potential of Bayesian

forecasting in enhancing the accuracy and reliability of financial predictions, advo-
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cating for a shift towards models that account for market uncertainties. We present

original research comparing methods for Bayesian evidence calculation in this con-

text.

Objective Two: Risk Management is the focus of Chapters 5, 6, 7 and 8.

Chapter 5 introduces quantitative financial risk measurement. Chapter 6 explores

the application of Monte Carlo methods and importance sampling in risk analysis.

In Chapter 7, advanced techniques for risk analysis are presented building to the

presentation, in Chapter 8, of a new algorithm called the ‘multicanonical sequential

Monte Carlo sampler’, which improves the ability to quantify the probability and

magnitude of tail risk.

Objective Three: Optimal Portfolio Allocation is covered in Chapters 9

and 10. Chapter 9 reviews traditional portfolio optimisation algorithms and intro-

duces a risk-based optimisation approach. Chapter 10 presents new Bayesian Op-

timisation algorithms for optimal portfolio allocation, including various demonstra-

tive examples. Chapter 10 concludes with the results of our complete framework—

price forecasting under uncertainty, tail risk management, and optimal portfolio

allocation—combined and applied to historical data. Chapter 11 provides conclud-

ing remarks.

This thesis proposes a shift in financial modelling and investment decision-

making. By analysing existing methodologies and proposing our own algorithms,

we aim to provide a more realistic investment framework for navigating the uncer-

tainties and tail risks of the financial markets.
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Chapter 2

Financial Time Series Analysis

We have established the foundational principles of financial markets, emphasising the

critical balance between risk and return for investors. Distinguishing risks that are

measurable through probability from true uncertainty, where outcomes are unknown

and not amenable to probabilistic prediction, is central to our first objective: to

develop models that provide more accurate and robust asset price and volatility

forecasts, accounting for uncertainty.

Building forecasting models involves analysing a financial time series, such as

historical stock returns data ({rt}t=T
t=1 ), to understand the relationship between the

series value at time t and the information known before time t. This chapter aims to

establish a foundation for time series analysis, paving the way for the presentation

and development of forecasting models in subsequent chapters.

2.1 Time series analysis

The foundational concepts of normality and stationarity underpin many forecasting

models—we briefly introduce them here, adapting the presentation of Tsay (2005).
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2.1.1 Normality

A cornerstone of traditional financial models is the assumption of normality in finan-

cial returns, which presumes symmetry in the return distributions, where positive

deviations from the mean are mirrored by negative ones—it is not only a statistical

convenience; it fundamentally shapes how risk is measured.

However, the assumption is clearly flawed, as most financial time series and asset

returns do not follow a Normal distribution (Bodie et al., 2002). For example, in

our core data set, the methods of moments of the daily and monthly log returns

(Tables 2.1) and the histograms plots (Plots 2.1 and 2.2)—which follow—indicate

that the log returns time series do not follow a Normal distribution. Negative

skewness indicates a pronounced left tail resulting from sporadic extreme negative

returns. Positive excess kurtosis1 indicates a heavy-tailed distribution and a more

accentuated peak compared to a standard Normal distribution.

When analysing a financial time series and building forecasting models, it is

imperative to check the assumption of normality. This can be achieved through the

use of rigorous statistical tests, such as:

1. Shapiro–Wilk test examines the dataset to calculate a test statistic and

corresponding p-value, assessing how closely the historical returns follow a

Normal distribution.

2. Anderson-Darling test examines the fit of the data to the Normal distribu-

tion in terms of the order statistics of the dataset.

3. Jarque-Bera test concentrates on skewness and kurtosis.

4. Kolmogorov-Smirnov test compares the empirical cumulative distribution

1Kurtosis of 3 (i.e.,K(x) = 3) indicates a Normal distribution; as such, excess kurtosis is defined
as K(x)− 3.

17



function of the data to the Normal distribution. Assessing the degree to which

the data conforms to the expected distribution.
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Table 2.1: Daily & Monthly Log Return Statistics
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Daily

SP500 2778 0.04 1.10 −0.86 16.56 −12.77 8.97

AAPL 2778 0.11 1.78 −0.30 6.54 −13.77 11.32

ALK 2778 0.07 2.42 −0.78 16.24 −26.45 18.49

FTSE100 2778 0.01 1.05 −0.67 9.94 −11.51 8.67

SHEL 2778 0.01 1.66 −0.58 19.79 −19.35 18.55

TW 2778 0.07 2.40 −1.08 19.62 −34.62 17.07

SSE 2778 0.00 1.33 −0.88 6.64 −8.87 6.37

PING 2778 0.04 1.88 0.04 5.41 −14.74 12.22

SHEN 2778 0.04 2.44 −0.05 3.21 −10.56 9.54

Monthly

SP500 2758 0.91 4.41 −2.07 13.49 −40.00 22.35

AAPL 2758 2.27 7.90 −0.40 0.64 −33.45 30.85

ALK 2758 1.41 11.24 −1.98 14.61 −102.04 59.07

FTSE100 2758 0.14 4.55 −2.06 13.47 −39.38 15.42

SHEL 2758 0.25 7.53 −1.08 13.34 −67.89 40.87

TW 2758 1.45 10.78 −1.41 7.94 −76.28 42.46

SSE 2758 0.06 6.59 −0.38 2.93 −37.71 23.70

PING 2758 0.92 9.05 −0.17 1.67 −48.81 42.64

SHEN 2758 0.93 10.90 0.40 1.32 −31.50 51.34
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Figure 2.1: Histogram of historic daily log returns
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Figure 2.2: Histogram of historic monthly log returns
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All four tests applied to our core data set concur that the historical asset returns

are not Normally distributed2. Deviations from normality, especially when negative

skewness is observed, can potentially understate extreme negative outcomes—or tail

risk. Investors should move away from the normality assumption when analysing

financial time series—a concept we return to in later sections.

2.1.2 Stationarity

We now focus on features of financial time series which may be leverageable in build-

ing price and volatility forecast models. The first feature is stationarity, which indi-

cates that the statistical properties of a time series remain constant over time. For-

mally, a time series {rt} is strictly stationary if the joint distribution of (rt1 , ..., rtk)

is identical to that of (rt1+t, ..., rtk+t) for all t; where (t1, ..., tk) is a collection of

integers for any k ∈ Z+.

Clearly, strict stationarity is challenging to verify empirically; as such, a more

practical, less stringent form of stationarity is often assumed—called weak stationar-

ity. A time series is considered weakly stationary if for all t: (a) E(rt) = µ, a constant

mean, (b) Var(rt) = σ2, a constant variance, and (c) Cov(rt, rt−l) = γl, which de-

pends solely on l, that is, the covariance between rt and rt−l is time-invariant. This

covariance γl, called the lag-l autocovariance of rt, holds two vital properties: (a)

γ0 = Var(rt) and (b) γ−l = γl.

If a time series’s statistical properties remain constant over time—where its val-

ues fluctuate around a consistent mean and follow a predictable pattern—it is con-

sidered stationary. The opposite of this would be a behaviour akin to a random

walk, which does not revert to a constant level over time; therefore, the time series

would have the presence of a unit root, as shown by Cheung and Lai (1995). Testing

a time series for the presence of a unit root is easier than testing for stationarity.

2Detailed results are in Appendix A.1.
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Augmented Dickey–Fuller test

The Augmented Dickey–Fuller (ADF) test is used to establish whether a time series

exhibits stationarity by testing for the presence of a unit root. The test’s null

hypothesis is that the time series contains a unit root, implying non-stationarity; the

alternative hypothesis is that the time series exhibits stationarity. To demonstrate

this test, we applied it to our key data across the whole period from January 1, 2010

to December 30, 2020—with a significance level set at α = 0.05.

Asset p-value Stationary?

SP500 1.73× 10−27 Yes
AAPL 4.80× 10−30 Yes
ALK 1.17× 10−17 Yes

FTSE100 2.57× 10−30 Yes
SHEL 3.59× 10−20 Yes
TW 0.0 Yes
SSE 5.06× 10−16 Yes
PING 0.0 Yes
SHEN 9.31× 10−26 Yes

(a) Daily log returns

Asset p-value Stationary?

SP500 9.25× 10−12 Yes
AAPL 2.20× 10−10 Yes
ALK 1.57× 10−10 Yes

FTSE100 1.40× 10−10 Yes
SHEL 2.99× 10−09 Yes
TW 8.71× 10−1 Yes
SSE 2.01× 10−08 Yes
PING 9.02× 10−11 Yes
SHEN 9.94× 10−11 Yes

(b) Monthly log returns

Table 2.2: ADF test results

The results in Tables 2.2a and 2.2b indicate that the time series relating to our

core data exhibit stationarity over the whole period.

Applying the ADF test for each year separately, rather than over the whole

period, indicates that the daily log returns exhibit stationarity across all years—

the results are given in Appendix A.2. In contrast, the stationarity of monthly log

returns varies by year (Table 2.3).

A time series that exhibits stationarity has stable and predictable statistical

properties through time, which can be utilised in forecasting models. In contrast,

building a model on a non-stationary time series is very challenging—as one cannot
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utilise such properties; leading to unreliable and spurious results when traditional

statistical analysis is applied.

Asset 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Portfolio ✓ ✓ ✓ ✓ × ✓ ✓ × × ✓ ✓
SP500 × ✓ ✓ ✓ ✓ ✓ × ✓ ✓ ✓ ✓
AAPL ✓ ✓ × ✓ ✓ × ✓ ✓ × ✓ ×
ALK ✓ × ✓ × ✓ ✓ × ✓ ✓ ✓ ✓
FTSE100 ✓ ✓ ✓ ✓ ✓ ✓ × ✓ × ✓ ✓
SHEL × ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
TW × ✓ × ✓ ✓ ✓ ✓ × ✓ × ✓
SSE ✓ × × ✓ × × ✓ ✓ ✓ ✓ ✓
PING × ✓ ✓ × × × × ✓ ✓ ✓ ×
SHEN × ✓ ✓ ✓ × ✓ ✓ × ✓ ✓ ×

Table 2.3: Stationarity status of monthly log returns by year. ✓ denotes stationarity.
× denotes non-stationarity.

2.2 Autocorrelation

By understanding the relationship between an asset return rt at time t and the

information known before time t, it is possible to build forecasting models on a

stationary time series {rt} knowing that such a relationship is stable over time.

One route to do this, is to consider the correlation between the asset return

rt and its historical values, referred to as autocorrelation or serial correlation; a

distance measure of how closely current asset returns relate to their past values.

For a weakly stationary return series rt, the linear dependence between rt and

its past values rt−l is termed the lag-l autocorrelation of rt, denoted by pl. For

example, in daily stock returns, a lag-1 autocorrelation represents the correlation

between today’s return and yesterday’s. The autocorrelation coefficient for a weakly

stationary time series at lag-l is defined by Tsay (2005) as:

pl =
Cov(rt, rt−l)√
Var(rt)Var(rt−l)

=
Cov(rt, rt−l)

Var(rt)
=
γl
γ0
. (2.2.1)
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We make several immediate observations:

1. p0 = 1: The autocorrelation of a series with itself (lag-0) is always one; as any

series is perfectly correlated with itself.

2. Symmetry, pl = p−l: Autocorrelation is symmetric around lag-0, meaning

the correlation at lag l is the same as at lag −l.

3. Range, −1 ⩽ pl ⩽ 1: An autocorrelation coefficient of -1, 0 or 1, respectively,

indicates a perfect negative, zero, or a perfect positive linear correlation.

4. A weakly stationary series rt is not serially correlated if and only if pl = 0 for

all l > 0.

By assessing the autocorrelation of a time series, one can determine its memory and

predictability. Autocorrelation provides a basis for understanding how past values

might influence future values; crucial in financial modelling and forecasting.

2.2.1 Ljung–Box test

The opposite of a serially correlated time series is a white noise sequence, defined as

a collection of independent identically distributed random variables with constant

mean and variance but no autocorrelation between data points. While directly test-

ing for serial correlation is hard, testing for white noise is relatively straightforward.

The -Box statistical test, introduced by Ljung and Box (1978), applied to time

series, has a null hypothesis that the series is a white noise process. Conversely, a

significant p-value indicates the presence of serial correlation. The Ljung–Box test

statistic (Q) is given by:

Q = n(n+ 2)
h∑

l=1

p2l
n− l

, (2.2.2)
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for sample size n, number of lags being tested h, and sample autocorrelation pl at

lag l. Under the null hypothesis (no autocorrelation) and when certain regularity

conditions are satisfied, the test statistic Q follows a χ2 distribution with h degrees

of freedom. These conditions include the independence of observations, normality

of residuals, and the assumption of no autocorrelation at lag lengths beyond those

tested.

We applied the Ljung–Box test to our core daily and monthly log returns data,

with lag periods of 5, 10, 20 and 30 for daily returns and 1, 6, 12 and 24 for monthly

returns. For the purpose of this test, we computed the monthly log returns for each

calendar month in isolation, to ensure no overlap between the periods which would

inadvertently cause autocorrelation.

For the daily log returns, the Ljung–Box tests indicate the presence of significant

serial correlation for all assets across all tested lags except the FTSE 100 and PING.

The FTSE 100 shows no significant correlation at lag 5 but demonstrates significance

at higher lag values. Conversely, PING has no significant serial correlation at lags

10 and 20 but significance at lags 5 and 30. For the monthly log returns, the Ljung–

Box results show no significant serial correlation at the 5% level for any assets. The

historical monthly returns are unlikely to be useful in indicating future values. In

contrast, the daily log returns exhibit significant autocorrelation—so past returns

may be useful in predicting future returns.
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Daily log returns

Symbol Lag LB statistic p-value Serial correlation

SP500

5 103.8 8.28e-21 Yes
10 238.39 1.49e-45 Yes
20 292.91 2.27e-50 Yes
30 308.43 5.76e-48 Yes

AAPL

5 11.18 4.79e-2 Yes
10 44.12 3.13e-6 Yes
20 66.31 7.20e-7 Yes
30 75.48 8.63e-6 Yes

ALK

5 14.43 1.31e-2 Yes
10 47.59 7.37e-7 Yes
20 98.64 2.21e-12 Yes
30 115.12 6.64e-12 Yes

FTSE100

5 3.42 6.36e-1 No
10 34.62 1.4e-4 Yes
20 54.96 4.17e-5 Yes
30 70.11 4.70e-5 Yes

SHEL

5 19.38 1.61e-3 Yes
10 47.51 7.62e-7 Yes
20 79.17 5.44e-9 Yes
30 99.08 2.59e-9 Yes

TW

5 18.94 1.97e-3 Yes
10 22.68 1.19e-2 Yes
20 37.69 9.66e-3 Yes
30 64.79 2.33e-4 Yes

SSE

5 12.73 2.6e-2 Yes
10 42.26 6.74e-6 Yes
20 67.24 5.11e-7 Yes
30 111.67 2.45e-11 Yes

PING

5 12.95 2.38e-2 Yes
10 17.82 5.81e-2 No
20 25.91 1.68e-1 No
30 44.59 4.21e-2 Yes

SHEN

5 32.43 4.88e-6 Yes
10 40.61 1.32e-5 Yes
20 65.30 1.04e-6 Yes
30 90.77 5.02e-8 Yes

Table 2.4: Ljung–Box test results for daily log returns
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Monthly log returns

Symbol Lag LB statistic p-value Serial correlation

SP500

1 2.35 1.2e-1 No
6 5.81 4.44e-1 No
12 8.17 7.72e-1 No
24 26.11 3.45e-1 No

AAPL

1 1.01 3.14e-1 No
6 6.38 3.82e-1 No
12 12.69 3.92e-1 No
24 23.72 4.78e-1 No

ALK

1 0.09 7.60e-1 No
6 1.23 9.75e-1 No
12 5.96 9.18e-1 No
24 14.49 9.34e-1 No

FTSE100

1 0.16 6.91e-1 No
6 1.34 9.69e-1 No
12 6.46 8.91e-1 No
24 12.38 9.75e-1 No

SHEL

1 1.12 2.92e-1 No
6 6.66 3.54e-1 No
12 10.69 5.56e-1 No
24 13.55 9.56e-1 No

TW

1 0.32 5.72e-1 No
6 1.61 9.52e-1 No
12 8.18 7.71e-1 No
24 13.79 9.51e-1 No

SSE

1 0.67 4.12e-1 No
6 4.34 6.31e-1 No
12 15.60 2.10e-1 No
24 26.63 3.22e-1 No

PING

1 0.15 7.02e-1 No
6 4.58 5.98e-1 No
12 10.99 5.29e-1 No
24 18.57 7.75e-1 No

SHEN

1 3.02 8.2e-2 No
6 5.73 4.55e-1 No
12 10.22 5.97e-1 No
24 23.38 4.98e-1 No

Table 2.5: Ljung–Box test results for monthly log returns
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2.2.2 Autocorrelation plots

The daily log returns exhibit serial correlation, implying that past values can help

predict future values. Autocorrelation function (ACF) plots and partial autocorre-

lation function (PACF) plots can help determine the significant lags to capture this

correlation.

ACF plots show the autocorrelation between a time series and its lagged values

at different time lags. PACF plots show the partial autocorrelation between a time

series and its lagged values, controlling for the influence of intermediate lag. Within

ACF and PACF plots, the correlations are plotted along with confidence intervals,

representing the range within which the values would fall under the assumption of

no autocorrelation (white noise). ACF and PACF values outside of these confidence

intervals indicate significant lags.

We generated ACF and PACF plots for our core daily log returns data. As the

underlying daily log returns are not normally distributed, we used bootstrapping3 to

obtain a more accurate estimation of the confidence intervals without the need for

normality assumptions. The ACF and PACF plots are shown below for lag values

up to 42, with a bootstrapping sample size of 1000 and 95% confidence intervals.

3Bootstrapping is a resampling technique used to estimate the sampling distribution of data,
which repeatedly resamples from the observed data with replacement.
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Figure 2.3: Autocorrelation and partial autocorrelation plots of daily log returns
(US)
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Figure 2.4: Autocorrelation and partial autocorrelation plots of daily log returns
(UK)
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Figure 2.5: Autocorrelation and partial autocorrelation plots of daily log returns
(CN)
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The significant lag values falling outside the confidence intervals are listed in

Table 2.6.

Asset ticker Significant ACF lags Significant PACF lags

SP500 1, 2, 6, 7, 8, 9, 10, 13, 14, 15,
16, 22

1, 2, 4, 6, 7, 8, 9, 13, 15

AAPL 1, 8, 9, 14, 18, 19, 22 1, 8, 9, 14, 19
ALK 2, 6, 7, 8, 9, 11, 12, 13, 15, 17 2, 6, 7, 8, 9, 11, 12, 13, 17
FTSE100 6, 7, 8, 13, 24 6, 7, 8, 13, 18, 24
SHEL 1, 7, 8, 13, 19, 22, 24 1, 5, 7, 8, 13, 19, 22, 23
TW 1, 4, 16, 23 1, 4, 16, 23
SSE 4, 6, 7, 8, 13, 21, 23 4, 6, 7, 8, 13, 21, 23
PING 1, 7, 23 1, 7, 23
SHEN 1, 2, 5, 7, 12, 13, 20, 21, 23 1, 2, 5, 12, 13, 20, 21

Table 2.6: Significant autocorrelation and partial autocorrelation lags.

Serial correlation suggests a departure from the random walk hypothesis often as-

sumed in financial markets, thereby providing a foundation for predictive modelling.

For our core daily log returns data, significant p-values at various lags indicate the

presence of serial correlation, suggesting that past values influence future values.

This finding is pivotal, as it provides a route to building forecasting methods.

2.3 Time series summary

In conclusion, this chapter has explored the concepts of normality, stationarity, and

autocorrelation within time series analysis, setting the stage for the development of

forecasting models. Here’s how each aspect contributes to the overarching goal of

developing advanced forecasting methods:

Normality: The assumption of normality in financial data underpins many

traditional forecasting models, despite it being widely accepted that financial data

is non-Normal. As such, new mathematical methods should remove the normality

assumption and better reflect the true probability distribution of financial data.
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Stationarity: Forecasting models must consider the stationarity (or lack thereof)

in a financial time series. The presence of stationarity ensures statistical properties

remain constant over time allowing them to be exploited for forecasting purposes.

Autocorrelation: Autocorrelation challenges the random walk hypothesis and

indicates that past values might inform future ones. Recognising and leveraging

autocorrelation in financial data can lead to more insightful and accurate forecasting

models, especially in capturing temporal dependencies.

The first objective of this thesis is to develop models that provide more accurate

and robust asset price and volatility forecasts, accounting for uncertainty. By lever-

aging the analysis from this chapter, we have a route to develop such forecasting

methods.
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Chapter 3

Financial Time Series

Forecasting

Weak stationarity of a time series implies stability in the statistical properties over

time. This, combined with autocorrelation, posits that past returns may help fore-

cast future returns. In this chapter, we introduce forecasting models that take

advantage of autocorrelation, dividing this chapter into two parts: return forecast-

ing and volatility forecasting. By understanding these models and their limitations,

we motivate the development of new return and volatility forecasting models, which

better account for uncertainty.

3.1 Return forecasting models

Return forecasting models utilise the relationship between past and current return

data to forecast future returns. The autoregressive model (AR) leverages the rela-

tionship between a variable and its lags; the moving average model (MA) focuses on

past forecast errors; and the autoregressive moving average model (ARMA) com-

bines the two. We now introduce these models, their underlying assumptions, and

implementation details. The work in this section and the next draws on the presen-
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tation by Tsay (2005).

3.1.1 Linearity

A fundamental consideration in time series analysis is whether the time series rt

exhibits linear behaviour, where rt can be expressed as a linear function of its past

values and some shocks or errors. Shocks refer to random and unpredictable events

that cause significant deviations in the time series. In this context, errors are the

deviations of observed values from the predicted values of the model, encapsulating

the impact of these unpredictable shocks. Therefore, while shocks represent the

actual unforeseen events affecting the time series, errors represent the discrepancies

between the model’s forecasts and the actual values, often influenced by such shocks.

Formally, rt is linear if it can be written as (Tsay, 2005):

rt = µ+
∞∑
i=0

ψiat−i, (3.1.1)

where the first component is the (constant) mean of the series µ and the second

component is a summation across various lags of past random shocks at−i weighted

by their importance ψi. The shocks are represented by {at−i}∞i=0, a sequence of

independent and identically distributed (i.i.d.) random variables embodying white

noise with mean zero; implying that the time series is influenced by some random,

unpredictable factors, distinguishing linear time series from more deterministic pat-

terns.

This thesis considers the case where at is a continuous random variable and

the asset returns rt exhibit weak stationarity. As such, the time series’ mean and

variance are:

E(rt) = µ, Var(rt) = σ2
a

∞∑
i=0

ψ2
i , (3.1.2)
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where σ2
a represents the variance of at.

3.1.2 Autoregressive model

The first return forecasting model we explore is the simple autoregressive model,

which captures the influence of past values on future values. If a time series can be

expressed as a linear function of its past data, we focus on utilising autocorrelation.

By identifying significant autocorrelation across different lag periods, p ∈ Z+, we

know that the lagged return will likely be useful in predicting rt. To take advantage

of this, one can define a simple autoregressive model AR(p) for p ∈ Z+ as:

rt = ϕ0 + ϕ1rt−1 + ...+ ϕprt−p + at, (3.1.3)

where at is a white noise series with mean zero and variance σ2
a; and ϕi represent

the autoregressive parameters to be tuned.

The AR(p) model posits that the previous p values, denoted as rt−i (for i =

1, ..., p), collectively influence the conditional expectation of rt. This model structure

resembles a multiple linear regression model, albeit with a crucial difference: the

independent variables are the lagged values from the same time series.

The optimal order p is typically not known in advance and needs to be deter-

mined through empirical analysis. This process is known as order determination and

has been the subject of extensive research. There are two primary methods: the

first utilises the partial autocorrelation function, while the second employs specific

information criterion functions. We will return to this discussion shortly.
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Expectation of rt

The expectation of rt under the AR(p) model is

E(rt) = E(ϕ0 + ϕ1rt−1 + · · ·+ ϕprt−p + at)

= ϕ0 + ϕ1 E(rt−1) + · · ·+ ϕp E(rt−p),

using the linearity of expectation and given E(at) = 0. Now assuming stationarity,

where E(rt−i) = µ for all i, by deriving

µ =
ϕ0

1− (ϕ1 + · · ·+ ϕp)
, (3.1.4)

one can understand how the model’s parameters influence the mean of the series.

Variance of rt

Assuming stationarity and Var(at) = σ2
a, then the variance of rt is:

Var(rt) = ϕ2
1Var(rt−1) + · · ·+ ϕ2

p Var(rt−p) + σ2
a. (3.1.5)

Given that Var(rt−i) = σ2 for all i under stationarity, this simplifies to:

σ2 =
σ2
a

1−
∑p

i=1 ϕ
2
i

. (3.1.6)

This captures the cumulative impact of the autoregressive terms on the overall

variance of the time series (σ2).

Forecasting

Having established an AR(p) model for a financial time series, it can be used to

forecast the value of rh+ℓ with forecast horizon ℓ ⩾ 1 starting at forecast origin h.
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The forecast of rh+ℓ is denoted by r̂h(ℓ) and utilises all available data up to the

forecast origin, represented by Fh. The l-step ahead forecast r̂h(ℓ) is selected such

that:

E
[
(rh+ℓ − r̂h(ℓ))2 |Fh

]
⩽ min

g
E
[
(rh+ℓ − g)2 |Fh

]
, (3.1.7)

where g is a function of Fh that encapsulates the information available up to time

h. For a general AR(p) model and using a minimum squared error loss function, the

ℓ-step ahead forecast can be considered as the conditional expectation of rh+ℓ given

Fh:

r̂h(ℓ) = ϕ0 +

p∑
i=1

ϕir̂h(ℓ− i), (3.1.8)

where r̂h(i) = rh+i if i ⩽ 0. This allows iterative computation of the forecast r̂h(i)

for i = 1, . . . , ℓ− 1.

3.1.3 Simple moving average

We now explore the moving average (MA) model, which focuses on the impact of

past forecast errors rather than past series values. Unlike the autoregressive (AR)

model, which incorporates the influence of past values and the shocks affecting them,

the MA model emphasises the deviations (errors) from previous forecasts.

We introduce MA models by considering them as an infinite-order AR model

with some parameter constraints, following the approach of Tsay (2005). In theory,

a time series {rt} can be modelled using an AR model with infinite order of the

form:

rt = ϕ0 + ϕ1rt−1 + ϕ2rt−2 + ...+ at. (3.1.9)

However, this model is not feasible since it requires infinite parameters. To make

the model more realistic, constraints can be imposed on the coefficients ϕt, reducing
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them to a finite number of parameters:

rt = ϕ0 − θ1rt−1 − θ21rt−2 − θ31rt−3 − ...+ at, (3.1.10)

where the coefficients depend on the single parameter θ1 via ϕi = −(θ1)i for i ⩾ 1.

Writing this in a compact form:

rt + θ1rt−1 + θ20rt−2 + ... = ϕ0 + at, (3.1.11)

from which the model for rt−1 is:

rt−1 + θ1rt−2 + θ21rt−3 + ... = ϕ0 + at−1. (3.1.12)

Multiplying Eq. 3.1.12 by θ1 and subtracting the result from Eq. 3.1.11, obtains:

rt = ϕ0(1− θ1) + at − θ1at−1. (3.1.13)

In the resulting equation, the current value rt is influenced by a combination

of components: a constant term ϕ0 multiplied by one minus the coefficient θ1; the

present shock or error term at; and the previous period’s shock at−1 weighted by the

coefficient θ1. As such, rt can be considered as a weighted average of the immediate

unexpected change with a fraction of the preceding periods’ shocks1. The general

form MA(q) is:

rt = c0 + at − θ1at−1 − ...− θqat−q, (3.1.14)

for a non-negative integer q, a constant c0 and white noise series at.

1In this context, the term “error” refers to the deviations in the model’s predictions, often caused
by unpredictable shocks. Therefore, “shock” and “error” are used interchangeably to reflect the
impact of unforeseen events on the time series.
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The optimal order q is typically not known in advance and needs to be determined

through empirical analysis. An ACF can be used to identify the appropriate order

of the MA model, known by q, or other more advanced methods, explored later.

Expectation of rt

To determine the expectation of rt under the MA(q) model, consider that

E[rt] = E[c0 + at − θ1at−1 − · · · − θqat−q]. (3.1.15)

Given that at is white noise with zero mean, we obtain

E[at] = E[at−1] = · · · = E[at−q] = 0 (3.1.16)

Thus,

E[rt] = E[c0] + E[at]− θ1 E[at−1]− · · · − θq E[at−q] (3.1.17)

= c0. (3.1.18)

As such, the expected value of the time series rt is equal to the constant term c0, so

it is uninfluenced by the white noise components.

Variance of rt

To find the variance of rt, we obtain:

Var(rt) = Var(at) + θ21 Var(at−1) + · · ·+ θ2q Var(at−q) (3.1.19)

and given that each ai term has a variance σ2
α,

Var(rt) = σ2
α(1 + θ21 + · · ·+ θ2q). (3.1.20)
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Therefore, as MA models are a finite linear combination of a white noise sequence

for which the first two moments are time-invariant, they can be considered to exhibit

weak stationarity (Tsay, 2005).

Forecasting

As the MA(q) model only considers the previous q white noise terms, the effect of a

shock to rt will persist for q periods, after which its influence will disappear entirely.

For a forecast horizon h, the forecasted value will converge to the series’ mean.

For instance, in an MA(1) model, a shock at time t will influence forecasts for

rt+1, but when forecasting rt+2 and beyond, the shock’s effect vanishes. This swift

convergence to the mean is a distinctive feature where the multistep ahead forecasts

converge to the series mean. The MA(q) for the period h+ l is defined by:

rh+l = c0 + ah+l −
q∑

j=1

θjah+l−j. (3.1.21)

So, the value at time h+ l is influenced by a constant term c0, the error term for the

period ah+l, and the error terms from the previous q periods, each being multiplied

by their respective θ parameters.

By evaluating the conditional expectation of the forecast, based on the infor-

mation available at time h, an l-step ahead forecast r̂h(l) can be obtained using:

r̂h(l) = E(rh+l|Fh) = c0 −
q∑

j=1

θjah+l−j. (3.1.22)

The forecast error, eh(l), the difference between the true value and the predicted

value, is calculated using:

eh(l) = rh+l − r̂h(l). (3.1.23)

Understanding the variance associated with this forecast error is essential in practical
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contexts. In the MA(q) framework, the variance of the l-step ahead forecast error

can be generalised as:

Var[eh(l)] = σ2

(
1 +

q∑
j=1

θ2j

)
. (3.1.24)

This is equal to the variance of the series; as such, for a stationary series, the

multistep ahead forecasts converge both to the series mean and the forecast errors

to the variance of the series.

3.1.4 Autoregressive moving average

With its focus on previous time series values, the AR model excels in capturing the

persistence of shocks over time. However, it may fall short in scenarios where the

impact of a shock is not solely dependent on the series’s own past values. On the

other hand, the MA model accounts for random errors, which are often caused by

unpredictable shocks impacting the time series, but has limited memory, only incor-

porating recent disturbances and neglecting the more extended historical context.

This is where the combined strength of the autoregressive moving average (ARMA)

model offers a better framework, where past values (AR component) and past error

terms (MA component) jointly influence the present value. A general ARMA(p, q)

model is represented by (Tsay, 2005):

rt = ϕ0 +

p∑
i=1

ϕirt−i + at −
q∑

j=1

θjat−j, (3.1.25)

where at is a white noise series, rt−i are past series values, and ϕi and θj represent

parameters to be tuned. The model orders p and q are non-negative integers. We

note that there are no common factors between these two polynomials; otherwise,

it is possible to reduce the model’s order (p, q).
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Forecasting

Let Fh denote the information set available at the forecast origin time h. This infor-

mation set Fh includes all past observations of the time series up to and including

time h, such as past returns and error terms.

The l-step ahead forecast of rh+l using an ARMA model is given by (Tsay, 2005):

r̂h(ℓ) = E(rh+ℓ | Fh) = ϕ0 +

p∑
i=1

ϕir̂h+ℓ−i −
q∑

j=1

θjah+ℓ−j. (3.1.26)

Here, E(rh+ℓ | Fh) represents the conditional expectation of the future value rh+ℓ

given the information set Fh containing all available past information up to time

h. This expectation is computed based on the ARMA model, which includes the

parameters ϕ0, ϕi (for i = 1, 2, . . . , p), and θj (for j = 1, 2, . . . , q).

Multistep-ahead forecasts using the ARMA model are generated in a stepwise

manner, where each successive forecast depends on the previously forecasted values

and errors.

ARMA Models

With their integrated approach, ARMA models offer advantages over simpler models

by efficiently capturing the linear aspects of time series data and leveraging past

values and error terms, thereby providing a more comprehensive view of market

dynamics.

Financial markets are notorious for their unpredictable and often volatile nature,

which ARMA models, in their standard form, do not directly address. This limi-

tation is particularly pronounced in periods of market turbulence, where volatility

tends to cluster, leading to large swings in asset prices. The inability of ARMA

models to account for such changing volatility can lead to less reliable forecasts,

especially in these turbulent periods.
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3.2 Volatility forecasting models

Modelling volatility presents a unique challenge, as it is not directly observable;

however, certain consistent characteristics can be taken advantage of:

1. Volatility clustering: Periods of high or low volatility tend to cluster to-

gether in financial time series.

2. The leverage effect: Volatility reacts differently to significant price move-

ments, where volatility tends to increase more when asset prices decrease.

One class of volatility models which take advantage of these features are conditional

heteroscedasticity models. Conditional heteroscedasticity implies that the variance

of a time series is not constant over time but varies depending on certain conditions.

We now introduce such models, drawing on the presentation by Tsay (2005).

3.2.1 Background

Given a data set accessible at time t−1, denoted by the information set Ft−1, which

includes all historical values and error terms up to time t− 1, an ARMA model can

be used to obtain the mean and variance of rt conditioned on Ft−1. This is defined

as follows:

µt = E(rt|Ft−1), (3.2.1)

σ2
t = Var(rt|Ft−1) = E((rt − µt)

2|Ft−1). (3.2.2)

In this context, µt = E(rt|Ft−1) represents the conditional expectation of rt,

which is the expected value of the return at time t given all the information available

up to time t−1. This expectation is derived using an ARMA model, which captures

the linear relationship between the current return and past returns, as well as past
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error terms.

Similarly, σ2
t = Var(rt|Ft−1) = E((rt− µt)

2|Ft−1) represents the conditional vari-

ance of rt. It is the expected value of the squared deviation of rt from its mean, µt,

given the information set Ft−1. This variance reflects the uncertainty or volatility

of the return at time t based on past information.

Therefore, the time series rt can be decomposed into two components: rt =

µt + at, where µt represents the predictable component based on past information

(using an ARMA model), and at is the unpredictable error term or residual. The

residual term at is crucial as it embodies the uncertainty in the time series not

captured by the ARMA model. It reflects the market’s inherent unpredictability

and the impact of unforeseen events.

For an ARMA model, the conditional mean µt is expressed as:

µt = ϕ0 +
k∑

i=1

βixit +

p∑
i=1

ϕirt−i −
q∑

j=1

θjat−j, (3.2.3)

where ϕ0 is a constant, ϕi and θj are coefficients for past values of rt and at respec-

tively, and βi are coefficients for external variables xit. These external variables are

included in the model to explain variations in the conditional mean that cannot be

captured by the time series’ past values.

Combining Eq. 3.2.2 and Eq. 3.2.3, the conditional variance of rt given the past

information Ft−1 can be defined as:

σ2
t = Var(rt|Ft−1) = Var(at|Ft−1). (3.2.4)

Volatility models focus on the evolution of the conditional variance σ2
t , using

the ARMA residuals at. These models fall into two broad categories: the first uses

a precise function to dictate the progression of σ2
t , the second employs a random
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equation; we focus on the first.

3.2.2 The ARCH effect

To model a time series’ volatility, typically, models assume conditional heteroscedas-

ticity of the ARMA residuals (at = rt − µt), signifying the non-static variability of

a series over time. This assumption allows for the modelling of volatility clustering,

as even if the original residuals are uncorrelated, there will be significant autocorre-

lation in the squared residuals—as shown by Tsay (2005).

The presence of volatility clustering within ARMA residuals is called the au-

toregressive conditional heteroscedastic (ARCH) effect. If the residuals exhibit the

ARCH effect, it is possible to utilise an ARCH model to quantify the conditional

volatility by explicitly modelling the variance as a function of past squared residu-

als. The ARCH effect can be identified using various tests, including the Lagrange

Multiplier test (Breusch and Pagan, 1979) and Engle’s ARCH test (Engle, 1982).

3.2.3 The ARCH model

The autoregressive conditional heteroskedasticity (ARCH) model, pioneered by En-

gle (1982) relies on two key observations: the shock at in the return series is serially

uncorrelated yet still has dependencies; the dependency in at can be articulated

using a quadratic function based on its lagged values. Using these observations, at

can be considered as a combination of a predictable component of the series σt and

some random element, εt, left after modelling the predictable component. That is,

at = σtεt, where

σ2
t = α0 + α1a

2
t−1 + · · ·+ αma

2
t−m, (3.2.5)

given {σt} represents a series of independent and identically distributed (i.i.d) ran-

dom variables with mean of zero and variance of one; σ0 > 0 and σi ⩾ 0 for i > 0;
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and the distribution of εt is modelled as a standard Normal distribution, a Student’s

t-distribution, or a more generalised error distribution.

Large shocks in the past, denoted by {a2t−i}, elevate the present conditional

variance, σ2
t . Consequently, the residuals at exhibit large absolute values following

significant shocks—so, a significant shock does not just signal a wider variance, it in-

creases the likelihood of subsequent high-magnitude shocks, encapsulating volatility

clustering.

ARCH models are limited by their inability to model longer-term volatility de-

pendencies without significantly increasing the model’s complexity. This increase in

complexity can cause overfitting, making the model more sensitive to the idiosyn-

crasies of the training data and less capable of forecasting accurately.

3.2.4 The GARCH model

The generalized autoregressive conditional heteroskedasticity (GARCH) model in-

troduced by Bollerslev (1986) builds on the ARCH model by incorporating past

conditional variances. This captures longer memory in the volatility process with-

out an extensively long lag structure.

For the GARCH model, σ2
t is modelled using the past squared errors a2t−i—as

per the ARCH model—and also, the past conditional variances σ2
t−j. Additionally,

a base level of variance is set α0. As such, the GARCH(m, s) process is defined as:

at = σtεt where, (3.2.6)

σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j, (3.2.7)

where αi and βj are the coefficients of the lagged squared residual term and the

lagged conditional variance term, respectively, which are parameters to be optimised.
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GARCH forecasting

For a GARCH(1, 1) model, an l-step ahead forecast from origin h is given by:

σ2
h(l) =

α0(1− (α0 + β1)
l−1)

1− α1 − β1
+ (α1 + β1)

l−1σ2
h(1). (3.2.8)

The first term captures the long-term variance. The second term captures the

short-term shocks and volatilities. With a longer period l, the forecasted variance

converges to its long-term value, provided that the shock effects decrease with time

(commonly referred to as the stability condition). This can be formalised, by ob-

serving that if α1 + β1 < 1, then

σ2
h(l)→

α0

1− α1 − β1
, as l→∞. (3.2.9)

For a general GARCH(m, s) model, the l-step ahead forecast from origin h can

be computed iteratively. The forecast of the conditional variance at each future step

can be derived by:

σ2
h+k(l) = α0 +

m∑
i=1

αiE[a
2
h+k−i(l)] +

s∑
j=1

βjσ
2
h+k−j(l), (3.2.10)

where E[a2h+k−i(l)] is the expected value of the past squared errors at step h+ k− i.

This iterative process allows incorporating both past shocks and past variances,

thus providing a comprehensive forecast of the future conditional variance. The

long-term forecast converges to:

σ2
∞ =

α0

1−
∑m

i=1 αi −
∑s

j=1 βj
, (3.2.11)

assuming the stability condition
∑m

i=1 αi +
∑s

j=1 βj < 1 holds. This long-term
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variance represents the equilibrium level to which the forecasted conditional variance

converges over time.

GARCH models are very effective for modelling the volatility in the ARMA

residuals. By incorporating both long-term variances and short-term shocks, the

conditional variance is modelled as a function not only of past squared errors (as in

ARCH models) but also of past conditional variances. This feature enables GARCH

models to account for more extensive historical information in modelling volatility

clustering. However, GARCH models are limited by their inability to account for

the asymmetries of market responses, or the leverage effect introduced earlier.

3.2.5 The TGARCH model

The Threshold GARCH (TGARCH) model extends the GARCH framework to ac-

count for the asymmetric impact of shocks on volatility commonly observed in fi-

nancial markets, developed by Alexander (2008). The TGARCH model defines the

conditional variance σ2
t at time t, as

σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j +

n∑
k=1

γkIt−ka
2
t−k, (3.2.12)

where γk captures the asymmetric effect of shocks; It−k is an indicator function,

where It−k = 1 if at−k < 0 and It−k = 0 otherwise; and the terms common to the

GARCH model are as defined in Eq. 3.2.7.

When at−k is negative (indicating a negative shock), then the term γka
2
t−k is

added to the conditional variance. Conversely, when at−k is positive, the additional

term is not added. This reflects the fact that negative shocks tend to increase

volatility more than positive shocks of the same magnitude (Alexander, 2008).
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3.3 ARMA-GARCH model

The ARMA-GARCH model refers to the joint process of using the ARMA model

to model the mean of a time series, with the GARCH model applied to the ARMA

residuals to model and forecast volatility (considering clustering and longer-term

variances). One can also use an ARMA-TGARCH model, which utilises TGARCH

to account for the leverage effect.

A core argument in this thesis is the need for financial models to separate risk

quantifiable through probability from uncertainty, where outcomes are unknown

and not amenable to probabilistic prediction. To understand whether an ARMA-

GARCH forecast accounts for this uncertainty, we must understand the model order

selection and parameter tuning processes.

3.3.1 Order choice and parameter tuning

In the ARMA-GARCH model, the optimal model orders ((p, q) for ARMA and

(m, s) for GARCH) and model parameter values must be determined. When using

ARMA-GARCH models, firstly, the optimal model orders for the ARMA model are

chosen, and then the parameters are tuned. Using the ARMA residuals, the ARCH

effect is tested for, and then the optimal GARCH model orders and parameters are

tuned.

Typically, the Akaike information criterion (AIC) or the Bayesian information

criterion (BIC) is applied to different order combinations from which the optimal

combination is chosen, balancing goodness of fit and simplicity. However, AIC/BIC

struggle when the underlying data has high volatility and frequent structural breaks,

as shown by Pesaran and Timmermann (2001). McQuarrie and Tsai (1999) iden-

tified that AIC/BIC also struggle when data exhibits complex dynamics and non-

linear relationships, leading to overfitting.
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ARMA-GARCH model parameters are often tuned using Maximum Likelihood

Estimation (MLE). MLE relies on the assumption of normally distributed residuals,

which is rarely true as residuals are often non-normal, heavy-tailed, and skewed. As

such, MLE may result in poor parameter choice and the severe underestimation of

financial risk measures, as shown in research by Cont (2001) and Rachev (2003).

When tuning ARMA-GARCH model parameters using MLE, the parameters

are chosen so that—based on historical data—the proposed model specification best

explains the observed data. This process, therefore, assumes that past patterns and

relationships will persist into the future. Similarly, the use of AIC/BIC in model

order selection assumes that the best model for future data prediction is one that

has performed well on past data. Such frequentist methods are rooted in long-run

probabilities based on experiments; while useful in certain scenarios, these methods

do not effectively address the unique challenges of dynamic financial environments

where the data set at hand is distinct and not one among many hypothetical scenar-

ios. Mallikarjuna and Rao (2019) demonstrated that no single frequentist forecasting

model uniformly applies to all markets. Under this frequentist framework, ARMA-

GARCH models fall short in accounting for true uncertainty that is not quantifiable

or predictable from historical data.

3.3.2 Proposed solution

In contrast to frequentist statistics, Bayesian statistics provides a more intuitive and

flexible framework particularly suited to financial markets. Bayesian methods con-

sider parameters and hypotheses as probability distributions with fixed data rather

than deterministic values and outcomes. The Bayesian approach allows for the in-

corporation of prior knowledge and expert insights into the analysis, updating the

hypothesis probabilities as new data becomes available (Fornacon-Wood et al., 2022).
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By using a Bayesian evidence approach for model order selection and Bayesian in-

ference for parameter estimation, the Bayesian models account for uncertainties in

the model-building process.

Bayesian methods are particularly suited for modelling complex financial time

series, as they provide more precise and robust models, accounting for the inherent

uncertainties of financial markets—as demonstrated in research, for example, by

Geweke (2001) and West and Harrison (2006). Adopting a Bayesian approach to

ARMA-GARCH modelling will help us achieve our first objective to develop models

that provide more accurate and robust asset price and volatility forecasts, accounting

for uncertainty.
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Chapter 4

Bayesian Forecasting

Part of the reason for this research is the idea that financial models and investment

strategies need to give greater consideration to tail risk and uncertainty—motivating

the first thesis objective: to develop models that provide more accurate and robust

asset price and volatility forecasts, accounting for uncertainty.

In Chapter 2, fundamental characteristics of financial time series were estab-

lished, like stationarity, which ensures the stability of statistical properties through

time, and autocorrelation, which suggests past returns may indicate future returns.

In Chapter 3, the ARMA-GARCH model for forecasting returns was introduced,

which takes advantage of these properties, combining ARMA’s proficiency in pre-

dicting the mean of a series with GARCH’s ability to model and forecast changing

volatility. The frequentist approach to model order selection and parameter tuning

has several limitations due to its reliance solely on historical data. Whilst such an

approach can handle quantifiable risks, it falls short in addressing true uncertainty

relating to situations that are not quantifiable or predictable from historical data.

We propose developing a Bayesian approach to ARMA-GARCH models, which

allows for the incorporation of prior knowledge and direct consideration of the uncer-

tainty in financial data and models. Such an approach has the advantage of yielding
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a probability distribution of forecasted returns rather than a point estimate (as in

the frequentist framework).

This chapter develops the technical aspects of this application, demonstrat-

ing how Bayesian inference can enhance the predictive capabilities of ARMA and

GARCH models, making them more responsive to the uncertainties of financial

markets.

4.1 Bayesian inference

4.1.1 Introduction

This section briefly introduces Bayesian inference, which updates evolving probabil-

ity distributions of parameters and hypotheses as new information becomes available.

We start with key definitions, according to Gelman et al. (2013).

4.1.2 Key notation

To make probability statements on the distribution of some observed value y—

which relates to the true unobservable data ỹ—and its underlying parameters θ,

a model can be established for the joint probability distribution of θ and y. This

joint distribution is obtained as the product of two densities p(θ, y) = p(y|θ)p(θ),

where p(θ) denotes the prior distribution of the parameters θ and p(y|θ) denotes the

sampling or likelihood distribution of observing y given θ.

Bayes’ rule can then condition this joint distribution on the observed value of

the data y, to obtain the posterior density :

p(θ|y) = p(θ, y)

p(y)
=
p(y|θ)p(θ)
p(y)

, (4.1.1)

where p(y) =
∑

θ p(y|θ)p(θ), or p(y) =
∫
p(θ)p(y|θ)dθ for the discrete and continuous
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cases respectively.

The prior predictive distribution, which is the distribution of the unknown but

observable y before the data is considered, is defined as:

p(y) =

∫
p(y, θ)dθ =

∫
p(θ)p(y|θ)dθ. (4.1.2)

After observing data y, the distribution of ỹ can be predicted with:

p(ỹ|y) =
∫
p(ỹ, θ|y)dθ (4.1.3)

=

∫
p(ỹ|θ, y)p(θ|y)dθ (4.1.4)

=

∫
p(ỹ|θ)p(θ|y)dθ. (4.1.5)

This is called the posterior predictive distribution of ỹ: posterior as it is conditional

on the observed y and predictive as it is a prediction of an unobservable ỹ (Gelman

et al., 2013).

4.1.3 Bayesian evidence

Bayesian model selection employs Bayesian evidence (or marginal likelihood) to

determine which model best explains our observed data y. Simply put, Bayesian

evidence is the probability of the observed data given a specific model, integrating

over all possible parameter values θ—thereby considering any uncertainty within

these parameters. For a model M , the Bayesian evidence is defined as

p(y|M) =

∫
p(y|θ,M)p(θ|M)dθ, (4.1.6)

where p(y|θ,M) is the likelihood function and p(θ|M) is the prior distribution of

the parameters under M .
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Model selection

Bayesian evidence in model comparison balances model fit (likelihood) with model

complexity (prior), so a model that better explains the data without additional

complexity will generally have higher Bayesian evidence. To compare two models,

say M1 and M2, Bayes factor is utilised:

K =
p(y|M1)

p(y|M2)
(4.1.7)

This ratio quantifies how much more likely the data is under model M1 compared

to M2; that is, if K > 1, then M1 is more strongly supported by the data, while

K < 1 favours M2. For multiple models, ranking them based on Bayesian evidence

ascertains the model which best explains the observable data.

4.1.4 Bayesian inference conclusion

From the frequentist viewpoint, probability is a measure of the long-term frequency

of events; in contrast, Bayesian statistics views probability as a measure of uncer-

tainty. Bayesian inference allows for the inclusion of prior knowledge and the ability

to update beliefs in light of new evidence. This is formalised through Bayes’ Theo-

rem, which updates the prior distribution p(θ) with the likelihood of the observed

data p(y|θ) to arrive at the posterior distribution p(θ|y), capturing the updated

beliefs about the uncertain parameter θ after observing data y.

The Bayesian framework recognises that uncertainty is not merely about the

variability in repeated sampling but encompasses the lack of knowledge about a

single event or parameter. For a Bayesian statistician, the probability of an event

is a statement about an individual’s degree of belief based on their own intuition

and available information, including prior experiences and current evidence. This
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contrasts with the frequentist approach, where probabilities are considered objec-

tive and solely based on long-term frequencies under repeated sampling conditions

(Gelman et al., 2013).

The Bayesian approach to uncertainty is encapsulated in the posterior predictive

distribution p(ỹ|y), which is the prediction for unobservable ỹ based on the observed

data y. This predictive distribution reflects all the uncertainty about the model

parameters and about future observations, integrating out the parameters using

their posterior distributions.

By embracing the principles of Bayesian probability, one can make more informed

decisions under uncertainty, reflecting both the known and the unknown in a cohesive

and mathematically rigorous manner—explored in the general context by Gelman

et al. (2013). Such an approach clearly has value in the ARMA-GARCH modelling

framework.

4.2 Bayesian ARMA-GARCH model

Bayesian inference for ARMA and GARCH parameter tuning integrates prior knowl-

edge and expert insights into the estimation process, treating model parameters not

as fixed entities but as variables with their own probability distributions. Such

a probabilistic approach allows for a more thorough exploration of the parameter

space, ultimately providing a probability distribution of forecasted returns rather

than a single-point estimate.
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4.2.1 Bayesian ARMA model

ARMA model

For a time series rt, an ARMA(p, q) model is defined as:

rt = ϕ0 +

p∑
i=1

ϕirt−i + at +

q∑
j=1

θjat−j, (4.2.1)

where rt is the time series value at time t, ϕ0 is a constant, ϕi are AR coefficients,

at is the error term, and θj are MA coefficients.

1. Prior distributions

In Bayesian ARMA modelling, the selection of prior distributions for the model

parameters is crucial. For the ARMA parameters, weakly informative priors can be

used to incorporate some prior knowledge while allowing the data to play a dominant

role in the inference. A common choice for weakly informative priors on the AR and

MA coefficients is the Normal distribution.

Let π(ϕi) and π(θj) denote the prior distributions for the AR and MA coefficients,

respectively. A typical choice is the Normal prior distribution defined by:

π(ϕi) ∼ N (0, 0.1), (4.2.2)

π(θj) ∼ N (0, 0.1). (4.2.3)

This choice of prior is weakly informative and crucially, it keeps the parameter values

close to zero, thereby reducing the risk of the characteristic roots lying outside the

unit circle, which is necessary for stationarity and invertibility in ARMA processes.

Alternative prior variances can be used, depending on the specific context. Sen-

sitivity analysis should be conducted on varying variance values to assess the ro-
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bustness of the model results to different prior specifications.

2. Likelihood Function

The likelihood of observing the return data r given the chosen parameters is reflected

in the likelihood function:

L(r|ϕ, θ) =
T∏
t=1

f(rt|ϕ, θ, rt−1, . . . , rt−p, at−1, . . . , at−q), (4.2.4)

where f is the probability density function of rt given the parameters and past

values. The construction of the likelihood function should consider the properties

of financial returns, such as fat tails, volatility clustering, and potential non-linear

dependencies.

The daily log returns for our core data set have a non-Normal distribution with

heavy tails, negative skewness, and positive excess kurtosis. Hence, a skewed Stu-

dent’s t distribution is likely most appropriate. The probability density function f

can be specified as:

f(rt|ν, µ, σ, α) ∼ Skewed-t(ν, µ, σ, α), (4.2.5)

where ν is the degrees of freedom, µ is the location parameter, σ is the scale pa-

rameter, and α is the skewness parameter. The skewed Student’s t-distribution is

defined by its probability density function (PDF) as follows:

f(x|ν, µ, σ, α) =


bc

σ
√
ν

(
1 + 1

ν

(
b(x−µ)

σ

)2)− ν+1
2

, if x < µ,

bc
σ
√
ν

(
1 + 1

ν

(
b(x−µ)

σ

)2)− ν+1
2

, if x ⩾ µ,

(4.2.6)
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where

b =
Γ
(
ν+1
2

)
Γ
(
ν
2

)√
π(ν − 2)

,

c =

(
1 +

(
α√
ν

)2
)− ν+1

2

.

This approach allows for more flexibility in modelling the distribution of returns,

thereby providing a more accurate representation of the underlying data-generating

process.

3. Posterior distribution

The posterior distribution combines our prior beliefs with the observed data, up-

dating our understanding of the parameter values. This posterior distribution is

proportional to the product of the likelihood and the priors:

π(ϕ, θ|r) ∝ L(r|ϕ, θ)π(ϕ)π(θ). (4.2.7)

Due to the complexity of these models, numerical methods like Markov Chain Monte

Carlo (MCMC) are often employed to approximate the posterior. The choice of

these methods and their tuning parameters (like the number of iterations or burn-in

period) should be made carefully, as the choice can significantly impact the accuracy

and computational efficiency of the inference process.

From this posterior distribution, it is possible to obtain the predictive posterior

distribution of future asset returns, given by:

p(r̃|r) =
∫
L(r̃|ϕ, θ)π(ϕ, θ|r)dϕdθ. (4.2.8)
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Implementation testing

To ensure the reliability of the Bayesian ARMA model, it is crucial to validate the

model by checking its ability to predict out-of-sample data accurately. One way to

do this is to use posterior predictive checks, where the simulated returns data is

compared to the actual observed data. If there are discrepancies, this could indicate

a model misspecification or insufficiently informative priors. Additionally, sensitivity

analysis can be performed to assess how sensitive the results are to different prior

choices. This analysis helps to guide the refinement of prior distributions.

4.2.2 Bayesian GARCH model

The Bayesian ARMA model uses a probabilistic framework to capture the linear

relationships in time series data. However, it is essential to model the volatility in

financial data using GARCH models on ARMA residuals.

GARCH model

The GARCH process is applied to ARMAmodel residuals to model volatility, defined

as:

at = σtεt where, (4.2.9)

σ2
t = α0 +

m∑
i=1

αia
2
t−i +

s∑
j=1

βjσ
2
t−j, (4.2.10)

where εt is an independent and identically distributed (i.i.d.) random variable with

zero mean and unit variance. The coefficients αi and βj are GARCH model param-

eters, which must meet the positivity condition:

α0 > 0, αi ⩾ 0 for all i, βj ⩾ 0 for all j. (4.2.11)
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This condition ensures that all coefficients in the GARCH equation contribute non-

negatively to the conditional variance, maintaining its positivity. Additionally, the

GARCH parameters must satisfy the following summability condition:

m∑
i=1

αi +
s∑

j=1

βj < 1. (4.2.12)

This condition ensures that the model is stationary, guaranteeing that the series has

a finite unconditional variance and that the volatility process reverts to a long-term

mean.

1. Prior distributions

The GARCH prior distributions can be modelled using a Gamma distribution, to

ensure that the GARCH parameters are strictly positive, thereby ensuring that

the GARCH model is positive (as required). Other options like Inverse-Gamma,

Beta, or Log-Normal distributions might be more appropriate depending on the

characteristics of the financial returns in the training data. The chosen prior should

accommodate the expected range and volatility behaviour observed historically. For

instance, if volatility exhibits long-range dependence or persistence, priors should

be chosen to reflect such features.

Let π(αi) and π(βj) denote the prior distributions for the GARCH coefficients,

respectively. A Gamma distributions can be defined by:

π(αi) ∼ Gamma(κα, λα), (4.2.13)

π(βj) ∼ Gamma(κβ, λβ), (4.2.14)

where κ is the shape hyperparameter and λ is the scale hyperparameter, tuned based

on previous empirical studies or expert judgement.
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2. Likelihood Function

In the context of a GARCH model, where at represents the errors or ARMA residuals

being modelled, the likelihood function is essential for quantifying the probability

of the observed residuals given a set of model parameters. The likelihood function

is the product of the probability densities of each observed residual, conditioned on

past values and the conditional variance estimated by the GARCH parameters:

L(a|α, β) =
T∏
t=1

f(at|α, β, at−1, . . . , at−m, σ
2
t , . . . , σ

2
t−s). (4.2.15)

Here, f represents the probability density function (pdf) of the residuals at,

given the GARCH parameters α and β, and conditioned on the previous residuals

at−1, . . . , at−m and past conditional variances σ2
t , . . . , σ

2
t−s. The pdf f characterizes

the distribution of the residuals, often assumed to follow a Normal distribution in

basic GARCH models but potentially following other distributions such as Student’s

t-distribution in more complex models. This function is formulated based on the

conditional volatility modelled by the GARCH process.

3. Posterior distribution

The posterior distribution is the updated belief about the model’s parameters af-

ter observing the market data, derived by combining the prior distribution of the

GARCH parameters with the likelihood of the observed data under these parame-

ters:

π(α, β|a) ∝ L(a|α, β)π(α)π(β). (4.2.16)

This distribution is often approximated or sampled using numerical methods, such

as Markov Chain Monte Carlo (MCMC), due to the complexity of obtaining an ana-

lytical solution. The posterior distribution is used to make probabilistic statements
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about future volatility and assess the model’s predictive performance.

From this posterior distribution, it is possible to obtain the predictive posterior

distribution of future asset volatility, or errors, given by:

p(ã|a) =
∫
(ã|α, β)π(α, β|a)dαdβ. (4.2.17)

Bayesian TGARCH

The Bayesian framework can be adapted for TGARCH modelling of the ARMA

residuals to allow for different responses in volatility to positive and negative shocks.

Bayesian TGARCH modelling of the ARMA residuals is an effective method for

capturing volatility in financial time series. This method integrates prior knowledge,

updating parameter estimates with observed data, and provides greater insight into

financial forecasting incorporating uncertainties.

For the TGARCH model, an additional prior distribution is required for the pa-

rameter γk, which should be chosen carefully to reflect the asymmetry in volatility—a

Gamma distribution can still be used:

π(γk) ∼ Gamma(κγ, λγ). (4.2.18)

The likelihood function for TGARCH differs from that of GARCH due to the addi-

tional term γk, to reflect the probability of observed returns given the asymmetric

impact on volatility:

L(a|α, β, γ) =
T∏
t=1

f(at|α, β, γ, at−1, . . . , at−m, σ
2
t−1, . . . , σ

2
t−s, It−1, . . . , It−n).

(4.2.19)

Lastly, the posterior distribution in the TGARCH context incorporates the likeli-
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hood function considering the asymmetric effects:

π(α, β, γ|a) ∝ L(a|α, β, γ)π(α)π(β)π(γ). (4.2.20)

Implementation testing

Validating a Bayesian (T)GARCH model is crucial to ensure that it effectively cap-

tures volatility dynamics. This process usually involves analysing the model’s resid-

uals to check for any remaining patterns or autocorrelations, which could suggest

the model is not a good fit. Posterior predictive checks are also useful in this case, as

they can reveal how well the model captures the distributional properties of financial

returns, such as the heavy tails and clustering of volatility.

4.3 Bayesian ARMA-GARCH order choice

For the ARMA(p, q) model, autocorrelation and partial autocorrelation analysis

provide initial estimates for the required AR and MA terms, p and q. For each

combination, the Bayesian evidence can then be calculated—quantifying how well

each model explains the observed data—by integrating the product of the likelihood

and the prior over all possible parameter values:

P (r|M) =

∫
L(r|ϕ, θ,M) π(ϕ|M) π(θ|M) dϕ dθ. (4.3.1)

Similarly, to determine the orders m and s in a GARCH(m, s) model, one can

establish GARCH order candidates by analysing the ARMA residuals through sta-

tistical tests for ARCH effects, and testing the significance of lagged terms. Then,

for each combination of potential orders, the Bayesian evidence can be calculated:

P (r|M) =

∫
L(a|α, β,M) π(α|M) π(β|M) dα dβ. (4.3.2)

66



4.3.1 Bayesian evidence computation

The computation of Bayesian evidence can be challenging, especially in financial

time series forecasting models, as the likelihood functions are complex and high-

dimensional, making the computation analytically intractable. Although numerical

methods like Markov Chain Monte Carlo (MCMC) can be used, their associated

computational cost is often prohibitively expensive. To address this, many advanced

methods have been developed.

One approach is to use vertical likelihood representations, which transform the

multi-dimensional integrals into equivalent one-dimensional integrals. This simpli-

fies the computation process, making it more efficient and tractable, especially in

high-dimensional parameter spaces. Vertical likelihood representations could be ad-

vantageous for Bayesian evidence estimation in ARMA-GARCH models due to their

complex, high-dimensional parameter spaces.

The multicanonical Monte Carlo method (MMC) is an example of a vertical like-

lihood representation method, but to date, it has not been applied for the purpose

of Bayesian evidence estimation. This method is known for its efficiency in sam-

pling from complex, multimodal distributions, so its application could lead to more

accurate and efficient Bayesian evidence calculation.

Llorente et al. (2023) examine various computational methods for Bayesian ev-

idence estimation, although their work focuses on Bayesian evidence estimation in

statistical physics applications, it provides valuable insights into the theoretical and

practical aspects of Bayesian evidence computation. We draw on this work within

the following sections.

The next sections introduce vertical likelihood representations and alternative

non-parametric approaches, including the original presentation of MMC in this con-

text. Up to now, no comprehensive comparison of Bayesian evidence methods for
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financial time series applications has been published. In this review, a comparison

and analysis, with numerical examples, is presented. This review is distinct from

that of Llorente et al. (2023) as it specifically addresses the application to finan-

cial forecasting models and directly compares vertical likelihood representations to

alternate non-parametric approaches.

4.3.2 Vertical likelihood representations

Most traditional approaches to determining integrals rely on integrating over the

whole parameter space—more or less uniformly exploring it. By looking across the

parameter space, such methods are considered horizonal methods. In contrast, one

can transform the calculation of the marginal likelihood function into a more easily

approximated form by converting the multidimensional integral over the parameter

space into a one-dimensional integral over a single variable; focusing sampling on

those areas which are of primary interest. Such methods can be considered vertical

likelihood representations.

One example is nested sampling—detailed below and in the paper by Llorente

et al. (2023). Another method is the multicanonical Monte Carlo method (MMC),

detailed later in Chapter 8. To date, MMC has not been employed for the purpose of

Bayesian evidence estimation; we will explore its usefulness in this context shortly.

Nested Sampling

Nested sampling was specifically developed for estimating Bayesian evidence, as

detailed in the work by Skilling (2006). It transforms the high-dimensional integral

required for Bayesian evidence into a one-dimensional integral by integrating over

the ‘prior mass’ rather than directly over the entire parameter space. Through

iterative sampling, the parameter space is systematically narrowed, focusing samples

in regions of higher likelihood by replacing the lowest-likelihood sample with a new
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one from the prior distribution with a higher likelihood.

A set of samples is generated from the prior distribution, from which points

are iteratively refined based on the likelihood function. The Bayesian evidence

Z = p(y|M) can be estimated as:

Z =

∫ 1

0

L(θ) dX, (4.3.3)

where L(θ) denotes the likelihood function evaluated at a parameter set θ, and X

represents the prior mass. The integral is estimated by summing over a series of

likelihoods, each weighted by a differential amount of prior mass.

Skilling (2006) demonstrates that the algorithm’s evolution is guided by the

shape of the likelihood contours, which remain invariant under monotonic re-labelling.

This invariance implies that the path of convergence is independent of the actual

likelihood values, focusing solely on the prior mass reduction, thus facilitating con-

vergence. The convergence of nested sampling is theoretically guaranteed as the

number of iterations tends to infinity, provided that the algorithm adequately ex-

plores the entire parameter space. The accuracy of the evidence estimate improves

with the number of live points (N) and iterations, with uncertainties decreasing pro-

portionally to 1/
√
N (Skilling, 2006). However, practical convergence depends on

ensuring that sufficient iterations are performed to capture the bulk of the posterior

mass, typically indicated by a plateau in the accumulation of the evidence estimate.

This convergence criterion is often a matter of judgment, with a recommendation

to continue iterations until the evidence estimate stabilises or an analytical upper

bound on the likelihood is reached.

Nested sampling offers a robust and efficient approach for estimating Bayesian

evidence in the context of model selection. We reserve further discussion of the
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advantages, limitations, and applicability to Bayesian ARMA-GARCH models for

the later comparison in Section 4.4.

Algorithm 1 Nested Sampling Algorithm for Bayesian Evidence

1: Input: Number of live points N , model M , data y

2: Initialise a set of live points {θi}Ni=1 from the prior p(θ|M)

3: Evaluate the likelihood Li = p(y|θi,M) for each live point

4: Set initial evidence estimate Z = 0 and prior mass X0 = 1

5: for i = 1 to N do

6: Find the live point with the lowest likelihood, Lmin

7: Calculate the weight for the current iteration wi = Xi−1 − Xi, where Xi =

e−i/N

8: Update evidence estimate: Z ← Z + Lmin × wi

9: Remove the live point with likelihood Lmin

10: Replace it with a new sample from the prior with likelihood L > Lmin

11: end for

12: Increment Z by 1
N

(∑N
i=1 Li

)
×XN

13: Return: Bayesian evidence estimate Z

Multicanonical Monte Carlo

In Chapter 8 we extensively detail the multicanonical Monte Carlo (MMC) method.

Here, we provide enough detail to understand MMC in the context of Bayesian ev-

idence estimation. MMC is a form of importance sampling which splits the state

space of a performance variable into a set of small bins. Then MMC iteratively

constructs a so-called flat-histogram importance sampling distribution that can as-

sign equal probabilities to each bin, to ensure sampling occurs across the target

distribution. MMC can explore complex, high-dimensional spaces by accurately re-
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constructing the performance variable’s entire distribution, making it suitable for

Bayesian evidence computation.

Starting from an initial distribution p(x), MMC iteratively adjusts its sampling

distribution to drive sampling towards the regions of low probability. Specifically,

given an initial importance sampling distribution q0(x) and a set of parameters Θ0,

MMC iteratively refines an importance sampling distribution, given by:

qt(x) ∝ p(x) ·Θt(x), (4.3.4)

where t denotes the iteration step, and Θt represents a set of weights adjusted at

each step to flatten the histogram of sampled values.

In the context of Bayesian model selection, MMC facilitates the computation of

the Bayesian evidence through sampling from a sequence of modified distributions,

which eventually leads to efficient sampling from the posterior distribution p(θ|y,M).

The evidence p(y|M) can then be estimated using these samples, typically involving

techniques such as importance sampling or histogram-based methods.

This method has been shown to be asymptotically exact, meaning that as the

number of iterations increases, the estimated probability distribution converges to

the true distribution. The key to this exactness lies in the iterative reweighting

procedure that adjusts the sampling distribution until it closely approximates the

desired uniform distribution across the entire state space (Berg and Neuhaus, 1992).

MMC offers a new, powerful approach to Bayesian evidence estimation. Its

ability to navigate through complex parameter spaces and adaptively sample from

posterior distributions makes it a valuable technique in this context. The exactness

of the Bayesain evidence estimation largely depends on how well the algorithm has

obtained a flat-histogram importance sampling distribution. We reserve further dis-
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cussion of the advantages, limitations and applicability to Bayesian ARMA-GARCH

models for the comparison in Section 4.4.

Algorithm 2 Multicanonical Monte Carlo for Bayesian evidence

1: Input: Initial distribution q0(x), initial parameters Θ0, target distribution p(x)

2: for each iteration t do

3: Modify the distribution: qt(x) ∝ p(x) ·Θt(x)

4: Sample from qt(x) and adjust Θt to flatten histogram

5: end for

6: Estimate Bayesian evidence using histogram method

7: Return: Bayesian evidence estimate p(y|M)

4.3.3 Alternative non-parametric approaches

Following the discussion on vertical likelihood representations, we introduce three

key non-parametric approaches for Bayesian evidence estimation: bridge sampling,

thermodynamic integration and steppingstone sampling.

Bridge Sampling

Bridge sampling is an effective method for estimating the Bayesian evidence (or

marginal likelihood) by relating two different probability distributions. The Bayesian

evidence is critical for model comparison. The bridge sampling identity, as defined

by Meng andWong (1996), estimates the ratio of the evidences of two modelsM1 and

M2 with respective posterior distributions p(θ|y,M1) and p(θ|y,M2). The identity

is given by:

p(y|M1)

p(y|M2)
=

Ep(θ|y,M2)

[
p(y|θ,M1)p(θ|M1)

q(θ)

]
Ep(θ|y,M1)

[
p(y|θ,M2)p(θ|M2)

q(θ)

] , (4.3.5)

where q(θ) is a suitably chosen proposal distribution, and Ep(θ|y,Mi) denotes the
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expectation under the posterior distribution of model Mi.

The proposal distribution q(θ) serves as a bridge between the posterior distri-

butions of the models being compared. It should ensure sufficient overlap between

the posterior distributions p(θ|y,M1) and p(θ|y,M2). If the proposal distribution

does not sufficiently cover the high probability region of the posterior, the estima-

tor can suffer from high variance and potential bias, leading to inaccurate evidence

estimation (Gronau et al., 2020). Common choices for q(θ) include:

• Mixture distributions: Combines the posterior distributions of the mod-

els being compared. Provides good overlap and can balance accuracy and

computational efficiency.

• Adaptive distributions: Tailored to specific properties of the posterior dis-

tributions involved. More complex but can offer better performance in certain

scenarios.

In their work, Meng and Wong (1996) demonstrated that an asymptotically

optimal bridge function can minimise the relative mean-square error of the estimator.

Under such a condition, the evidence estimate converges to the true value. This

optimality is achieved by balancing the contributions from both the target and the

proposal distributions, ensuring that the bridge function efficiently bridges the gap

between them.

Bridge sampling is a valuable tool in Bayesian model selection. We will discuss

the advantages, limitations, and applicability to Bayesian ARMA-GARCH models

in the later comparison in Section 4.4.

73



Algorithm 3 Bridge Sampling for Bayesian Evidence Estimation

1: Input: Posterior distributions p(θ|y,M1) and p(θ|y,M2), proposal distribution

q(θ)

2: Obtain samples {θ(1)i }
N1
i=1 from posterior p(θ|y,M1) and {θ(2)i }

N2
i=1 from posterior

p(θ|y,M2)

3: Choose a proposal distribution q(θ)

4: for each sample θ
(1)
i from p(θ|y,M1) do

5: Compute weight w
(1)
i =

p(y|θ(1)i ,M2)p(θ
(1)
i |M2)

q(θ
(1)
i )

6: end for

7: for each sample θ
(2)
i from p(θ|y,M2) do

8: Compute weight w
(2)
i =

p(y|θ(2)i ,M1)p(θ
(2)
i |M1)

q(θ
(2)
i )

9: end for

10: Estimate Bayes factor K =
1

N2

∑N2
i=1 w

(2)
i

1
N1

∑N1
i=1 w

(1)
i

11: Return: Bayesian evidence ratio K

Thermodynamic Integration

Thermodynamic integration (TI) bridges between the prior and the posterior of a

single model, as proposed by Swendsen and Wang (1986). The method is rooted

in statistical mechanics, where the analogy between statistical thermodynamics and

Bayesian inference is established.

TI introduces a temperature parameter β, which scales the likelihood function,

creating a path between the prior distribution (β = 0) and the posterior distribution

(β = 1). Formally, the Bayesian evidence p(y|M) can be expressed in terms of the

temperature integral (Lartillot and Philippe, 2006):

ln p(y|M) =

∫ 1

0

Eβ[ln p(y|θ,M)]dβ,
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where Eβ[·] denotes the expectation with respect to the distribution

pβ(θ|y,M) ∝ p(y|θ,M)βp(θ|M)1−β.

The integral effectively averages the log-likelihood over a continuum of distribu-

tions between the prior and posterior. This algorithm integrates over the parameter

β by discretising the interval [0, 1] into K steps and approximating the integral using

the trapezoidal rule. The sampled θi values are used to compute the expectation

of the log-likelihood at each intermediate distribution, which is then averaged to

estimate the log evidence.

Convergence of the TI algorithm to the true Bayesian evidence is generally as-

sured under specific conditions, as outlined by Lartillot and Philippe (2006). First,

the choice of the temperature path is essential. The parameter β, which scales

the likelihood function, needs to vary smoothly from 0 to 1, ensuring a continuous

bridge between the prior and posterior distributions–especially in regions where the

likelihood changes rapidly (Knuth et al., 2015).

Secondly, the sample size at each β step must be sufficiently large to provide

reliable estimates of the expected log-likelihood. Insufficient sampling can lead to

inaccurate integration and, consequently, poor convergence (Annis et al., 2019).

Finally, the integration method used to compute the area under the curve formed

by the log-likelihood values across different β values must be accurate. Techniques

like the trapezoidal rule or Simpson’s rule can be applied to achieve this Annis et al.

(2019). Convergence is generally assured if these conditions are met. However,

difficulties arise in cases of phase transitions or multimodal distributions, where the

path between the prior and posterior is not smooth.
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Algorithm 4 Thermodynamic Integration for Bayesian Evidence

1: Input: Number of intermediate steps K, number of samples N , model M , data

y

2: Define a sequence {βk} where β0 = 0 and βK = 1

3: for k = 0 to K do

4: Sample {θi}Ni=1 from the intermediate distribution pβ(θ|y,M) ∝

p(y|θ,M)βkp(θ|M)1−βk

5: Compute sample average Lk =
1
N

∑N
i=1 ln p(y|θi,M)

6: end for

7: Estimate Bayesian evidence:

ln p(y|M) ≈
K−1∑
k=0

βk+1 − βk
2

(Lk + Lk+1)

8: Return: Bayesian evidence estimate e(ln p(y|M))

Steppingstone Sampling

The large number of integrals to be calculated during thermodynamic integration

can have a significant computational cost. First introduced by Xie et al. (2010),

steppingstone sampling (SSS) is a refinement of thermodynamic integration, offering

a more efficient approach for estimating Bayesian evidence.

Steppingstone sampling involves a series of intermediate distributions that bridge

the gap between the prior and posterior, similar to thermodynamic integration.

However, SSS uses a discrete set of ‘stepping stones’ instead of a continuous path,

making the computation more manageable.

The Bayesian evidence under SSS is estimated as a product of ratios of expec-

tations between adjacent stepping stones. By defining a sequence of distributions

parameterized by βk, where β0 = 0 is used for the prior and βK = 1 for the posterior,
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the Bayesian evidence can be estimated as:

ln p(y|M) ≈
K∑
k=1

(βk − βk−1)

(
ln

(
1

N

N∑
i=1

p(y|θi,M)βk−βk−1

))
, (4.3.6)

where the expectation Eβk
[·] denotes the expectation with respect to the power

posterior distribution p(θ|y,M)βkp(θ|M)1−βk .

Instead of integrating over the entire path from the prior to the posterior (as

is done in thermodynamic integration), SSS calculates the ratios of normalizing

constants between successive pairs of power posteriors. By multiplying these ratios,

the Bayesian evidence is obtained. By using a discrete set of distributions, SSS is

more computationally efficient than continuous-path methods like thermodynamic

integration.

The convergence of steppingstone sampling to the true Bayesian evidence is the-

oretically assured under certain conditions. For instance, the algorithm’s efficacy is

contingent on the proper selection of the sequence of intermediate distributions. The

use of a Beta distribution for determining the temperature schedule, as highlighted

by Xie et al. (2010), optimises the placement of these intermediate steps, ensuring

a more stable and accurate convergence.

Empirical studies have shown that with an adequately large number of interme-

diate distributions, the steppingstone sampling provides a reliable estimate of the

Bayesian evidence, reducing bias as the number of stepping stones increases (Annis

et al., 2019). Conversely, improper implementation or insufficient stepping stones

can impede its convergence and accuracy.
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Algorithm 5 Steppingstone Sampling for Bayesian Evidence

1: Input: Number of intermediate distributions K, number of samples N , prior

p(θ|M), posterior p(θ|y,M)

2: Define a sequence of distributions {pβk
(θ|y,M)} where 0 = β0 < β1 < · · · <

βK = 1

3: for k = 1 to K do

4: Sample {θi}Ni=1 from the power posterior pβk
(θ|y,M)

5: Compute the ratio of normalizing constants:

rk =
1

N

N∑
i=1

p(y|θi,M)βk−βk−1

6: end for

7: Estimate Bayesian evidence:

ln p(y|M) ≈
K∑
k=1

(βk − βk−1) ln rk

8: Return: Bayesian evidence estimate exp(ln p(y|M))

4.4 Bayesian evidence method comparison

This section examines the effectiveness of vertical likelihood representations (such as

nested sampling and multicanonical Monte Carlo) and non-parametric alternatives

(including bridge sampling, thermodynamic integration, and steppingstone sam-

pling) in Bayesian evidence estimation by considering:

1. Accuracy: To measure how closely each method’s output aligns with a true

baseline solution; crucial for ensuring the selected model reflects the underlying

data and its dynamics.
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2. Scalability: To assess how well a method can adapt to increasing dimension-

ality; critical in the finance sector, where data volumes and complexity are

constantly growing, a scalable solution is necessary to handle large datasets

efficiently.

3. Efficiency: To measure the computational resources and time required for

convergence; particularly important in time-sensitive financial applications.

4. Complexity: To consider complexity and interpretability. Simpler methods

are often more desirable for practical implementation and understanding.

5. Robustness: To determine the sensitivity of each method to their parameters.

A robust method performs consistently under parameter changes.

These criteria are applicable in the general setting, so we establish additional criteria

specific to Bayesian evidence estimation for Bayesian ARMA-GARCH models:

1. Efficient sampling. The algorithm should employ efficient sampling methods

to explore the entire parameter space of ARMA-GARCH models.

2. Handling high-dimensional spaces: The algorithm must be capable of op-

erating effectively in high-dimensional spaces—like ARMA-GARCH models—

avoiding the ‘curse of dimensionality’.

3. Tail events: The algorithm should ensure the entire ARMA-GARCH param-

eter space is explored to capture tail events common in financial markets.

4.4.1 Numerical example

We introduce a demonstrative example to evaluate various aspects of each estimation

method while having an easily obtainable baseline solution.
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Prior distribution. Define an n-dimensional input vector x following a mul-

tivariate Gaussian distribution with mean vector 0 and covariance matrix In (an

n× n identity matrix). The prior distribution for our example is given by:

x ∼ N(0, In). (4.4.1)

Performance function and likelihood. Define a dependent variable ỹ, as the

sum of squares of the elements of x, following a Chi-Squared distribution with n

degrees of freedom:

ỹ =
n∑

i=1

x2i , ỹ ∼ χ2(n). (4.4.2)

The observed noisy data y is modelled by the likelihood function:

p(y|ỹ) = exp

(
−(y − ỹ)2

2

)
, (4.4.3)

quantifying the discrepancy between the observed y and true value ỹ.

Posterior distribution. Applying Bayes’ Theorem, the posterior distribution

p(ỹ|y) is:

p(ỹ|y) = p(y|ỹ)p(ỹ)
p(y)

, (4.4.4)

where p(y) is the marginal likelihood or Bayesian evidence.

Bayesian evidence. The objective is to compute the Bayesian evidence p(y)

for varying degrees of freedom n and observation y = 0. Considered in terms of x,

the Bayesian evidence estimation is equivalent to calculating the expectation of the

likelihood function, denoted by f(x), given by:

E[f(x)] =
∫

exp

(
−(
∑n

i=1 x
2
i )

2

2

)
p(x)dx. (4.4.5)
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Numerical results

Each method’s performance is assessed for varying degrees of freedom (DoF =

2, 5, 10, 18). Numerical integration, specifically the scipy.integrate.quad function

from Python’s SciPy library, establishes a reference solution for our demonstrative

example.

Thermodynamic integration and steppingstone sampling are implemented in two

ways. The first is the proper implementation, with bridges adaptively chosen to

optimally bridge between the prior and posteriors, denoted simply as “TI” and

“SSS”. To demonstrate the sensitivity to the bridging set-up, we also employ an

evenly distributed bridging strategy denoted “TI-Equal” and “SSS-Equal’, using

equal intervals for bridging rather than an adaptive strategy.

The numerical results are given in Table 4.1 showing the mean and standard

deviations (Std Dev) for each method and DoF—under 10 repeated experiments.

The table also states the number of evaluations required for a viable and stable

solution (# Evals). Table 4.2 shows the Mean Squared Errors (MSE) using a baseline

solution. Table 4.3 shows the Coefficient of Variation = Standard Deviation / Mean.
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DoF 2 DoF 5 DoF 10 DoF 18
Method # Evals Mean

(Std Dev)
# Evals Mean

(Std Dev)
# Evals Mean

(Std Dev)
# Evals Mean

(Std Dev)

Baseline - 4.38× 10−1 - 8.51× 10−2 - 1.79× 10−3 - 6.27× 10−7

NS 25000 4.55 × 10−1

(3.97× 10−2)
121000 7.87 × 10−2

(5.97× 10−3)
144000 1.86 × 10−3

(2.75× 10−4)
225000 6.55 × 10−7

(1.74× 10−7)
MMC 2000 4.19 × 10−1

(4.45× 10−2)
4000 6.28 × 10−2

(5.92× 10−3)
50000 1.67 × 10−3

(1.72× 10−4)
1500000 5.89 × 10−7

(6.21× 10−8)
BS 10000 4.34 × 10−1

(1.11× 10−2)
10000 7.46 × 10−2

(6.55× 10−3)
10000 1.94 × 10−3

(4.79× 10−4)
10000 1.49 × 10−7

(3.04× 10−7)
TI 10000 4.21 × 10−1

(1.65× 10−2)
10000 8.21 × 10−2

(4.52× 10−3)
10000 1.59 × 10−3

(1.49× 10−4)
10000 5.95 × 10−7

(7.52× 10−8)
TI-Equal 10000 3.71 × 10−1

(3.47× 10−3)
10000 5.102 × 10−2

(1.57× 10−3)
10000 1.40 × 10−3

(1.21× 10−4)
10000 5.79 × 10−7

(4.58× 10−8)
SSS 10000 4.16 × 10−1

(1.78× 10−2)
10000 7.98 × 10−2

(3.26× 10−3)
10000 1.64 × 10−3

(1.54× 10−4)
10000 6.11 × 10−7

(6.58× 10−8)
SSS-Equal 10000 2.53 × 10−1

(1.93× 10−3)
10000 7.14 × 10−2

(1.75× 10−3)
10000 1.59 × 10−3

(1.53× 10−4)
10000 1.11 × 10−7

(1.08× 10−8)

Table 4.1: Comparative results of Bayesian evidence methods
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Method DoF 2 DoF 5 DoF 10 DoF 18

NS 1.88× 10−3 7.69× 10−5 8.13× 10−8 3.08× 10−14

MMC 2.36× 10−3 5.32× 10−4 4.29× 10−8 5.27× 10−15

BS 1.38× 10−4 1.54× 10−4 2.51× 10−7 2.30× 10−13

TI 5.51× 10−4 2.93× 10−5 5.86× 10−8 6.68× 10−15

TI-Equal 4.54× 10−3 1.16× 10−3 1.66× 10−7 4.39× 10−15

SSS 8.20× 10−4 3.89× 10−5 4.54× 10−8 4.60× 10−15

SSS-Equal 3.42× 10−2 1.90× 10−4 6.30× 10−8 2.66× 10−13

Table 4.2: Mean squared error (MSE) of Bayesian evidence methods

Method DoF 2 DoF 5 DoF 10 DoF 18

NS 8.72× 10−2 7.58× 10−2 1.48× 10−1 2.65× 10−1

MMC 1.06× 10−1 9.42× 10−2 1.03× 10−1 1.05× 10−1

BS 2.55× 10−2 8.78× 10−2 2.47× 10−1 2.05× 10−1

TI 3.91× 10−2 5.50× 10−2 9.31× 10−2 1.26× 10−1

TI-Equal 9.36× 10−3 3.08× 10−2 8.61× 10−2 7.90× 10−2

SSS 4.29× 10−2 4.08× 10−2 9.40× 10−2 1.08× 10−1

SSS-Equal 7.61× 10−3 2.45× 10−2 9.63× 10−2 9.72× 10−2

Table 4.3: Coefficient of variation (CoV) of Bayesian evidence methods

4.4.2 Comparison of Bayesian evidence methods

Using our established criteria for comparing the Bayesian evidence methods and the

demonstrative example results, we now discuss each estimation approach, focusing

on their strengths and weaknesses and applicability to Bayesian ARMA-GARCH

model order choice.
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1. Nested sampling

Metric Conclusion

Accuracy NS’s effectiveness in handling complex, multimodal problems is due
to its ability to focus sampling in areas where the likelihood is sig-
nificant. This strength is evident in the demonstrative example
results, where NS closely aligns with the baseline across all DoFs,
suggesting high accuracy. This accuracy makes NS highly suit-
able for Bayesian evidence estimation in Bayesian ARMA-GARCH
models, as it can reliably navigate the intricacies of financial time
series data.

Scalability While NS effectively identifies the bulk of the posterior mass, it
can struggle in higher-dimensional spaces, a common scenario in
complex financial models. The increased CoV in higher DoFs in
the demonstrative example highlights this issue, suggesting reduced
stability as dimensionality grows. Despite this, NS’s relative stabil-
ity in lower dimensions makes it a viable option for Bayesian evi-
dence estimation in less complex Bayesian ARMA-GARCH models.

Efficiency NS’s iterative sampling from the prior distribution becomes increas-
ingly challenging as the complexity and dimensionality of the pa-
rameter space grows. NS must maintain a representative set of
samples (live points) that can capture the structure of the poste-
rior distribution; so, the method inherently requires more evalua-
tions in higher dimensions, where generating a new sample with
a higher likelihood can be very difficult. The necessity for more
samples in higher dimensions, as shown in the demonstrative ex-
ample, indicates that while efficient for simpler models, NS might
be too computationally demanding for Bayesian evidence estima-
tion in highly complex Bayesian ARMA-GARCH models.

Complexity The straightforward implementation of NS, requiring only sample
generation from a prior distribution and likelihood evaluation, is
advantageous. This simplicity makes NS an accessible method for
Bayesian evidence estimation in Bayesian ARMA-GARCH models,
especially if computational resources are limited.

Robustness. The increasing variability with DoF suggests some sensitivity of
NS to parameter changes in high-dimensional settings; however,
the consistent performance across all DoFs in the demonstrative
example indicates robustness. This robustness and consistent per-
formance render NS a reliable method for Bayesian evidence esti-
mation.

Table 4.4: Summary of nested sampling for Bayesian evidence estimation
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Drawing on these evaluations, we now comment on whether nested sampling is

suitable under the Bayesian ARMA-GARCH specific criteria.

Efficient sampling and handling high-dimensional spaces: NS effectively

transforms complex multi-dimensional integrals into simpler one-dimensional inte-

grals over ‘prior mass’, which is particularly beneficial for ARMA-GARCH models

requiring navigating complex posterior distributions. NS exhibits increased vari-

ability and reduced stability in higher dimensions, as shown in the demonstrative

example, presenting challenges in the high-dimensional spaces typical of ARMA-

GARCH models. This implies that NS is capable but may require extra caution

and additional computational resources for optimal performance, where the compu-

tational costs escalate with increased dimensionality.

Adaptability to tail events: NS’s significant strength lies in its ability to

sample in those areas of greatest importance, which aids in efficiency. However, it

does make the method less likely to capture tail events, a crucial aspect of ARMA-

GARCH models.

Nested sampling’s direct estimation of marginal likelihood without relying on

approximations and strength in exploring complex parameter spaces are useful for

Bayesian evidence estimation of ARMA-GARCH models. However, it faces chal-

lenges in high-dimensional spaces, requiring careful calibration to maintain stability,

high computational costs, and issues with tail risk modelling.
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2. Multicanonical Monte Carlo

Metric Conclusion

Accuracy MMC is very effective at exploring the complete target distribu-
tion, guiding sampling towards underexplored areas—allowing for
efficient sampling across the whole distribution (even multimodal).
Despite slightly higher deviations in higher dimensions, the close
alignment with the baseline across all degrees of freedom (DoF) in
the demonstrative example highlights its accuracy. This high level
of accuracy makes MMC particularly suitable for Bayesian evidence
estimation in Bayesian ARMA-GARCH models, ensuring a compre-
hensive understanding of the data’s distribution.

Scalability MMC’s approach to guiding sampling towards regions of interest
and new intermediate distributions in each iteration contributes
to its stability, a key factor in handling the variability of finan-
cial models. The low standard deviation across dimensions in the
demonstrative example underscores this stability, unaffected by the
increase in dimensionality. Such scalability makes MMC a robust
choice for Bayesian evidence estimation for ARMA-GARCH mod-
els.

Efficiency MMC’s efficiency is contingent on the nature of the distribution; it
excels in lower-dimensional spaces, where it can easily flatten the
probability landscape but requires significantly more samples to ex-
plore high-dimensional distributions common in financial models.
The diminished efficiency in higher dimensions, as evidenced in the
demonstrative example, highlights MMC’s challenges in more com-
plex scenarios. While efficient for simpler Bayesian ARMA-GARCH
models, MMCmight be less practical for highly complex models due
to increased computational demands.

Complexity MMC can be challenging to implement, especially regarding gener-
ating samples from the target distribution. This complexity might
pose challenges for practitioners using MMC in Bayesian evidence
estimation for ARMA-GARCH models, especially those without ex-
tensive computational resources or specialised expertise.

Robustness MMC’s performance across different DoFs indicates reasonable ro-
bustness, although increased standard deviation in higher dimen-
sions suggests some sensitivity to model complexity.

Table 4.5: Summary of multicanonical Monte Carlo for Bayesian evidence estimation
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Drawing on these evaluations, we now comment on whether multicanonical Monte

Carlo is suitable under the Bayesian ARMA-GARCH specific criteria.

Efficient sampling and handling high-dimensional spaces: MMC obtains

accurate solutions with low MSE for high-dimensional problems, albeit with a large

number of samples. Its flat-histogram sampling ensures proportional exploration

of all areas of the parameter space, a highly beneficial feature for multi-parameter

ARMA-GARCH models. However, the efficiency of MMC decreases in very high-

dimensional scenarios, as evidenced in the demonstrative example, indicating a po-

tential challenge for complex financial models.

Adaptability to tail events: MMC’s comprehensive coverage of the parameter

space, including its ability to effectively explore tail distributions, makes it particu-

larly adept at capturing tail events. This adaptability is crucial for financial models

like ARMA-GARCH, where extreme market events, though rare, can significantly

impact model accuracy and risk assessment.

Multicanonical Monte Carlo, with its unique approach to Bayesian evidence es-

timation, exhibits promising capabilities in the context of ARMA-GARCH models.

MMC excels in efficiently sampling the parameter space and capturing tail events,

which is essential in financial time series analysis. However, its iterative nature

can be computationally demanding, particularly for high-dimensional models. The

critical aspect lies in carefully tuning weights and parameters, which requires exper-

tise and computational resources. This aspect might pose a challenge in practical

applications, particularly in scenarios with limited computational capabilities. We

directly address this later in Chapter 8.
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3. Bridge sampling

Metric Conclusion

Accuracy BS’s accuracy hinges on the appropriate choice of the bridging func-
tion to connect the posterior distributions effectively. High accu-
racy demonstrated in the demonstrative example across all degrees
of freedom (DoF) indicates BS’s capability to provide precise es-
timations of Bayesian evidence. This level of accuracy makes BS
particularly suitable for Bayesian evidence estimation in Bayesian
ARMA-GARCH models, where accurate model selection is pivotal.

Scalability The challenge in BS lies in maintaining stability as the complexity of
the posterior distribution increases. Finding an appropriate bridg-
ing function becomes more challenging in high-dimensional spaces
like those often encountered in financial models. In the demonstra-
tive example, the increased CoV at higher DoFs highlight potential
stability issues as dimensionality increases. Caution is advised in
applying BS to highly complex Bayesian ARMA-GARCH models.

Efficiency BS is efficient regarding the number of samples required, especially
if the bridging function is well-optimised. This optimisation reduces
the computational burden significantly, an essential consideration
in time-sensitive financial analyses. The demonstrative example
results show a significantly lower number of evaluations is needed
compared to NS, especially at higher DoFs. BS’s efficiency makes it
an attractive method for Bayesian evidence estimation in ARMA-
GARCH models, particularly where computational resources are
limited or in less complex model structures.

Complexity While conceptually straightforward, selecting a suitable bridging
function can add a layer of complexity to BS. This complexity may
pose challenges in implementing BS for Bayesian evidence estima-
tion in ARMA-GARCH models.

Robustness BS shows overall robustness across different DoFs, yet the high
variability at the highest DoF suggests potential sensitivity in more
complex parameter spaces. This variability is a concern for high-
dimensional ARMA-GARCH models.

Table 4.6: Summary of bridge sampling for Bayesian evidence estimation
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Drawing on these evaluations, we now comment on whether bridge sampling is

suitable under the Bayesian ARMA-GARCH specific criteria.

Efficient sampling and handling high-dimensional spaces: BS’s design

focuses on efficient sampling from the posterior distribution, a critical requirement

for capturing the full spectrum of parameter values in Bayesian ARMA-GARCH

models. This efficiency is highlighted by its performance in the demonstrative ex-

ample, requiring fewer evaluations than the vertical likelihood methods, particularly

at higher DoFs. However, BS’s effectiveness seems to wane in higher-dimensional

settings, typical of more complex ARMA-GARCH models. The observed increase

in variability at higher DoFs suggests a potential decrease in the method’s efficiency

and stability in these scenarios.

Adaptability to tail events: The ability of BS to effectively bridge the poste-

rior distributions is advantageous in exploring the entire parameter space, including

the tails. However, the increased variability noted at higher dimensions could impact

BS’s consistency in capturing these critical tail events.

Overall, BS emerges as a valuable method for Bayesian evidence estimation in

financial time series models, especially those of moderate complexity and lower di-

mensionality. It demonstrates commendable accuracy and stability in such settings.

However, for ARMA-GARCH models with high-dimensional parameter spaces, the

increased variability and potential challenges in handling complex distributions war-

rant careful consideration. The choice of whether to use bridge sampling should

be informed by the Bayesian model’s specific requirements, balancing its strengths

in efficient sampling and adaptability against the potential limitations in high-

dimensional spaces and complex scenarios.
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4. Thermodynamic integration

Metric Conclusion

Accuracy TI’s high accuracy stems from its ability to systematically bridge be-
tween the prior and posterior distributions, capturing the nuanced
variations in the parameter space. In our demonstrative example,
the TI mean values are very close to the baseline, indicating high
accuracy. The method aligns well with the true baseline solution,
especially for low DoFs. This method is highly suitable for accu-
rately estimating Bayesian evidence in Bayesian ARMA-GARCH
models.

Scalability TI demonstrates high stability due to its approach to transitioning
between distributions. This characteristic is beneficial in manag-
ing the complexity of financial models, which often involve a wide
range of parameters. The results display high stability with consis-
tently low CoV across all degrees of freedom, suggesting little con-
cern when dealing with high dimensional problems. Its consistent
performance across different dimensions makes TI a reliable choice
for Bayesian evidence estimation in simple and complex ARMA-
GARCH models.

Efficiency The efficiency of TI hinges on the well-set bridging distributions.
While it requires a similar number of evaluations as other methods,
its complex calculations can demand more computational time, a
critical factor in time-sensitive financial modelling.

Complexity The complexity of TI lies in establishing a series of distributions that
effectively bridge the prior and posterior, requiring careful setup and
understanding of the model’s dynamics.

Robustness TI uses a temperature schedule to bridge between the prior and
posterior distributions to ensure that the most important parts of
the parameter space contribute to the integral. The method is very
sensitive to the choice of temperature and path. When the temper-
ature and path do not fully capture the full complexity of likelihood
distribution, the performance is poor, as seen in our demonstrative
‘TI-Equal’ example. This sensitivity necessitates careful calibration
of the temperature schedule and path in TI, making it a method
that requires meticulous setup. It may be less suitable when model
parameters are frequently adjusted, like in highly dynamic financial
environments.

Table 4.7: Summary of thermodynamic integration for Bayesian evidence estimation
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Drawing on these evaluations, we now comment on whether thermodynamic inte-

gration is suitable under the Bayesian ARMA-GARCH specific criteria.

Efficient sampling and handling high-dimensional spaces: TI is capable

of efficient sampling from the posterior distribution, a critical aspect for captur-

ing the full range of parameter values in complex models like ARMA-GARCH. TI

performs well even in high-dimensional settings, although this efficiency can be com-

promised by TI’s sensitivity to the bridging strategy, necessitating careful tuning to

ensure optimal performance.

Adaptability to tail events: TI’s adaptive bridging process allows for a thor-

ough exploration of the entire parameter space, including the tails. By effectively

capturing these extreme but rare events, TI enhances the robustness of the model

selection process.

In conclusion, TI exhibits commendable accuracy and potential for efficient sam-

pling in complex financial models, especially with an adaptive bridging strategy. Its

performance, however, tends to be less stable in higher-dimensional scenarios, under-

lining the importance of a meticulously designed bridging strategy. Although TI is

complex and requires careful calibration, it remains a key method for Bayesian model

selection in financial time series analysis. Its ability to handle complex likelihood

surfaces and provide accurate marginal likelihood estimates is invaluable, particu-

larly in scenarios where other methods might falter. The key to leveraging TI’s full

potential in ARMA-GARCH models lies in the optimal design and implementation

of the bridging strategy.
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5. Steppingstone sampling

Metric Conclusion

Accuracy SSS achieves high accuracy by employing a sequence of intermediate
distributions that bridge the gap between the prior and posterior,
allowing for a more thorough exploration of the parameter space;
ensuring that the key features of the distribution are well-captured.
This strength is underscored by its close alignment with the base-
line in the demonstrative example, showcasing its ability to reflect
underlying data dynamics accurately. The precision is highly benefi-
cial for accurately estimating Bayesian evidence in ARMA-GARCH
models.

Scalability The stability comes from SSS’s approach to transition between dis-
tributions, which minimises abrupt changes in the parameter space.
This gradual transition ensures consistent performance, especially
in lower-dimensional settings where the transition steps are more
manageable. The low CoV in the demonstrative example demon-
strates this stability. The stable performance of SSS is advantageous
for Bayesian evidence estimation in ARMA-GARCH models, ensur-
ing reliable results.

Efficiency SSS’s efficiency is attributed to its sequential approach, which does
not necessarily require a drastic increase in computational effort
as the dimensions increase. The efficiency stems from the abil-
ity to reuse calculations across steps, reducing the total computa-
tional load. The consistency in the number of evaluations required
across different DoFs suggests an efficient use of computational re-
sources. This efficiency is beneficial for Bayesian evidence estima-
tion in ARMA-GARCH models, as it ensures thorough exploration
without excessive computational demands.

Complexity The complexity of SSS lies in defining a sequence of distribu-
tions between the prior and posterior, requiring careful setup and
understanding of the model’s dynamics. This process can be
challenging—although methods exist for adaptive implementation.

Robustness Issues arise in SSS’s robustness if the power posteriors do not ad-
equately cover the target distribution’s full complexity due to the
poor choice of intermediate distributions. The underestimation ob-
served in the demonstrative example when these power posteriors
are not comprehensive enough (‘SSS-Equal’) highlights this concern.
While robust in general, careful construction of power posteriors is
essential for SSS to be effective.

Table 4.8: Summary of steppingstone sampling for Bayesian evidence estimation
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Drawing on these evaluations, we now comment on whether steppingstone sampling

is suitable under the Bayesian ARMA-GARCH specific criteria.

Efficient sampling and handling high-dimensional spaces: SSS’s ap-

proach of progressing through intermediate distributions enables an efficient ex-

ploration of the parameter space. This efficiency is particularly advantageous for

complex models like ARMA-GARCH, where the need to navigate through a diverse

range of parameter values is critical. The method ensures a thorough coverage of

the parameter space without excessive computational demands, a significant factor

in modelling time-sensitive financial data—even in high-dimensional spaces.

Adaptability to tail events: SSS’s technique of bridging between the prior and

posterior distributions allows it to explore the extremities, or tails, of the distribu-

tion. By capturing these events, SSS comprehensively estimates Bayesian evidence

for ARMA-GARCH models.

Overall, SSS, particularly when employing an adaptive bridging strategy, presents

a highly effective approach for Bayesian evidence estimation in financial time series

models. Its capability to handle complex, high-dimensional spaces and adapt to

tail events, combined with its efficiency and accuracy, makes it a strong candidate

for ARMA-GARCH model analysis. However, the intricacies involved in its imple-

mentation and the need for careful design of the sequence of distributions can be

challenging.
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4.4.3 Conclusion

The comparison of various Bayesian evidence estimation methods, specifically con-

trasting vertical likelihood representations (such as nested sampling and multicanon-

ical Monte Carlo) with non-parametric alternatives (including bridge sampling, ther-

modynamic integration, and steppingstone sampling), reveals insightful distinctions,

particularly in the context of financial models like ARMA-GARCH.

Vertical likelihood methods: Nested sampling and multicanonical Monte

Carlo stand out in their ability to navigate complex, high-dimensional parameter

spaces. By fully exploring the posterior distribution, these methods can capture tail

events. However, such approaches can be computationally intensive, especially in

higher dimensions, which might limit their practicality in certain scenarios.

Non-parametric alternatives: Bridge sampling, thermodynamic integration,

and steppingstone sampling offer more flexibility in handling the intricacies of fi-

nancial models. Their approach, particularly in the case of steppingstone sampling,

is characterised by a systematic progression through a sequence of intermediate dis-

tributions, allowing for a detailed exploration of the parameter space. While these

methods are generally efficient and robust, they require careful calibration and are

sensitive to the choice of bridging strategy, especially in high-dimensional spaces.

In conclusion, vertical likelihood and non-parametric methods have unique strengths

and limitations in the context of Bayesian ARMA-GARCH model order selection.

The choice between these methodologies should be guided by the model’s specific

requirements, considering factors like dimensionality, complexity, and the need for

efficient sampling. With their flexibility and adaptive strategies, non-parametric

methods might offer an edge in more complex, high-dimensional scenarios. In con-

trast, vertical likelihood methods could be more suitable for scenarios where com-

putational efficiency is less important but capturing tail risk is.
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4.5 Establishing the Bayesian model

ARMA-(T)GARCH models combine ARMA’s proficiency in predicting the mean of

a series with (T)GARCH’s ability to model and forecast changing volatility, con-

sidering volatility clusters and asymmetry. A Bayesian approach allows for the

incorporation of prior knowledge and direct consideration of uncertainty.

4.5.1 Key data analysed

For our core dataset, the significant ACF and PACF values, as presented in Table

2.6, serve as potential candidates for ARMA model orders. Using steppingstone

sampling, we calculate the Bayesian evidence for each combination, including the

additional values {1, 2, 3, 5, 8}. The complete Bayesian evidence results are provided

in the table in Appendix B.1.

Additionally, we estimate the Bayesian evidence for each combination of poten-

tial TGARCH model orders—based on the ARMA residuals—using steppingstone

sampling. These results are also detailed in Appendix B.1.

The optimal ARMA and TGARCH model orders, based on the Bayesian evi-

dence, are presented in Table 4.9.

ARMA orders TGARCH orders
Asset ticker p q m t s

SP500 7 15 2 1 1
AAPL 9 0 3 1 9
ALK 0 17 3 2 10

FTSE100 9 0 1 1 1
SHEL 0 23 1 1 1
TW 5 0 2 3 3
SSE 8 15 1 3 2
PING 0 1 1 1 1
SHEN 3 12 6 3 4

Table 4.9: ARMA-TGARCH Model orders for key data
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4.5.2 Achieving objective one

In conclusion, this chapter has been driven by our first thesis objective, to develop

algorithms that transcend the limitations of traditional financial models, enabling

a more accurate and robust prediction of asset returns and volatility considering

the inherent uncertainty in financial markets. Bayesian methods offer a natural

framework for quantifying uncertainty in ARMA and GARCH models.

By recognising that model order selection and parameter tuning are critical in

pursuing more accurate forecasts, we explored various prior distributions for ARMA

and GARCH parameters and approaches to fine-tune them. Finally, we compared

Bayesian evidence estimation methods for choosing optimal model orders in ARMA

and GARCH.

From the posterior distributions of the Bayesian ARMA-GARCH models, a prob-

ability distribution of future forecasted returns can be obtained. It remains to ex-

plore how to do so, in particular, to obtain expected return and tail risk measures.

Focus now shifts to the second objective for ‘enhanced risk management’, which is

to develop new methodologies that better predict the probability and impact of tail

events.
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Chapter 5

Financial Risk

Tail risk refers to financial risk arising from extreme market events that fall out-

side the typical range of expectations and historical norms. These events, often

characterised as “Black Swan” events, can lead to significant deviations in asset

prices and investment returns (Taleb, 2005). Quantifying tail risk is critical be-

cause these events, while low in probability, can have disproportionately large and

often catastrophic impacts on investment portfolios. A prime example is the Global

Financial Crisis (GFC) of 2007-08, which was triggered by the collapse of the sub-

prime mortgage market in the USA and led to the subsequent failure of many major

financial institutions. The GFC was largely unpredictable and far-reaching in its

consequences: triggering a global economic downturn, significant losses in stock

markets, widespread unemployment, and a decrease in consumer wealth (McKibbin

and Stoeckel, 2010).

Historically, investor forecasting activity has focused on predicting frequent but

relatively unimportant events, as shown by Bond and Dow (2021). Consequently,

investors often only bet on or against frequent events, failing to account for tail risk.

By quantifying and considering tail risk, investors can better prepare for unforeseen

market disruptions and allocate their resources more effectively.
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Harder than predicting the occurrence of a rare event is the complexity of predict-

ing the wide-ranging, often inconsistent consequences. As an example, the Russia–

Ukraine conflict that began in late February 2022 caused global equities to broadly

experience a sharp decline from mid-February to mid-March 2022 (Federal Reserve

Bank of St. Louis, 2022). However, some stocks experienced significant gains, like

in the Oil and Gas sector, where Shell Plc’s stock price rose 15% from March 2022

to March 2023 due to benchmark oil prices surging nearly 30% from before the con-

flict to a high on March 8, 2022. The war demonstrates how hard rare events are

to assess probabilistically, further motivating the need to consider uncertainty in

financial markets and mathematical models.

This chapter focuses on the quantitative measurement of market and credit risk1,

considering tail risk and uncertainty quantification—working towards the second

thesis objective, to develop new methodologies which better predict the probability

and impact of tail events.

5.1 Quantitative measurement of risk

Investments necessitate the acceptance of risk to surpass the risk-free rate of re-

turn2 (RfR). Risky assets should be priced such that the risk premium aligns with

the risk associated with the expected excess return (Bodie et al., 2002). The Sharpe

ratio assesses the ratio of the excess expected return to the standard deviation of

returns: Sharpe ratio = Expected Return - RfR
Standard Deviation

; helping to compare different asset’s per-

formance and idiosyncratic risk. To mitigate idiosyncratic risk, investors can utilise

1The risk to an investment portfolio from movements in the market, such as equity & commodity
prices, foreign exchange & interest rates, is called Market risk. The risk to debt securities that
one counterparty does not fulfil their obligation, in part or full, on the agreed-upon date is called
Credit risk, or Default risk.

2The risk-free rate of return is the theoretical rate of interest an investor would gain from a
zero-risk investment over a specified period; typically represented by U.S. Treasury bill yields for
USD investments and U.K. Gilt yields for GBP investments.
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diversification to reduce the impact of any single asset’s performance. However,

diversification cannot eliminate systematic risk which affect the whole market.

From our core data, the Sharpe ratio and risk-return profiles of our individual

assets can be compared to an equally-weighted portfolio3. The results show that

the portfolio has a lower standard deviation for equivalent mean return than most

individual assets, demonstrating the benefits of diversification.

Asset Daily net returns Daily log returns

Portfolio 0.06 0.05
SP500 0.04 0.04
AAPL 0.07 0.06
ALK 0.04 0.03

FTSE100 0.01 0.01
SHEL 0.01 0.01
TW 0.04 0.03
SSE 0.01 0.00
PING 0.03 0.02
SHEN 0.03 0.02

Table 5.1: Sharpe ratio of core data

3Using the historical data, the equally-weighted portfolio is constructed by allocating an equal
amount of capital to each asset on January 1, 2010, and measuring the performance through time.
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Figure 5.1: Risk return profile of core data

Whilst useful for its simplicity, standard deviation does not account for the return

distribution’s shape or the likelihood of extreme outcomes. The correlation between

historical mean returns and standard deviations is weak—as seen in the plots—so

such a metric does not suffice for comprehensive risk assessment. The Sharpe ratio

falls short in accounting for the interdependencies between different assets. More

advanced metrics are needed for tail risk management.

5.1.1 Return relationships

Covariance, the product of the deviations of two returns from their means, offers

insights into the directional relationship between two assets. The sign indicates

the nature of the relationship (positive for moving together, negative for moving

inversely); its magnitude is less intuitive due to scale dependencies. Table 5.2 gives

the covariances for our key data.

Correlation provides a normalised view, quantifying the strength of relationships

between returns. A correlation near one suggests that the returns move in tandem,
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indicating exposure to common risks. A correlation of zero implies there is no

relationship. This understanding is pivotal, as assets with high positive correlations

may not effectively diversify a portfolio’s risk. Table 5.3 gives the correlations for

our key data.
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Table 5.2: Covariance of daily log returns

SP500 AAPL ALK FTSE100 SHEL TW SSE PING SHEN

SP500 - - - - - - - - -
AAPL 1.30× 10−4 - - - - - - - -
ALK 1.53× 10−4 1.41× 10−4 - - - - - - -
FTSE100 7.30× 10−5 6.40× 10−5 1.03× 10−4 - - - - - -
SHEL 8.30× 10−5 6.40× 10−5 1.27× 10−4 1.32× 10−4 - - - - -
TW 9.60× 10−5 7.50× 10−5 1.56× 10−4 1.33× 10−4 1.17× 10−4 - - - -
SSE 2.20× 10−5 3.00× 10−5 2.50× 10−5 2.90× 10−5 3.10× 10−5 4.10× 10−5 - - -
PING 3.70× 10−5 3.90× 10−5 4.80× 10−5 6.10× 10−5 6.20× 10−5 8.80× 10−5 1.32× 10−4 - -
SHEN 2.10× 10−5 3.70× 10−5 3.30× 10−5 2.00× 10−5 1.70× 10−5 4.30× 10−5 1.64× 10−4 1.04× 10−4 -

Table 5.3: Correlation of daily log returns

SP500 AAPL ALK FTSE100 SHEL TW SSE PING SHEN

SP500 - - - - - - - - -
AAPL 0.660 - - - - - - - -
ALK 0.574 0.327 - - - - - - -
FTSE100 0.626 0.343 0.406 - - - - - -
SHEL 0.453 0.215 0.317 0.755 - - - - -
TW 0.362 0.174 0.269 0.530 0.294 - - - -
SSE 0.146 0.126 0.078 0.209 0.140 0.128 - - -
PING 0.177 0.117 0.106 0.307 0.198 0.195 0.527 - -
SHEN 0.079 0.085 0.056 0.080 0.041 0.074 0.506 0.226 -
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By examining the covariance and correlation matrices, one can identify how asset

returns co-move, revealing both the magnitude and directionality of their relation-

ships. In financial markets, investment returns have infinite tails, so correlation

cannot be truly defined, as it relies on finite variance. Furthermore, correlation tells

us very little about tail dependencies; therefore, a more sophisticated approach is

warranted. Tail risk can be assessed by interpreting the distribution of forecasted

returns using various risk measures—introduced next.

5.2 Equity risk

Equity risk encompasses the volatility and potential for loss due to fluctuations in

stock prices driven by various market factors. This risk is particularly pronounced

during extreme market events, which can cause significant deviations in stock per-

formance, resulting in substantial financial impacts.

Key notation

For a portfolio, we define an N -dimensional vector w = (w1, ..., wN) to represent the

capital allocation or portfolio weights to N assets. Each component wi corresponds

to the fraction of the total capital allocated to the ith asset. The vector w is defined

within the constraints of a feasible set W = {w ∈ RN |wi ⩾ 0,
∑N

i=1wi ⩽ 1}, to

ensure that the sum of all weights does not exceed the total available capital.

To represent the forecasted future returns for the portfolio, we define a random

vector Z. In a Bayesian ARMA-GARCH model, the posterior predictive distribu-

tions of returns form the random vector Z = (Z1, ..., ZN), where Zi represents the

random variable of forecasted returns for asset i. The return function f(w, z) rep-

resents the forecasted portfolio return for an allocation w and realisation z from

Z. As such, f(w,Z) is a random variable representing the forecasted return for a

portfolio w, obtained as the sum of the product of the portfolio weights and their
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respective forecasted return distributions.

Through obtaining an accurate estimate of the distribution yf = f(w,Z), one

can obtain the future expected return and measure of tail risk for a specific allocation

w; under uncertainty. The subsequent chapters will explore how this distribution

can be obtained. First, the key risk measures using yf are introduced.

For clarity: f(0,Z) = 0, as no capital invested means no returns; f(w, z) < 0 if

the portfolio is forecasted to lose money and f(w, z) > 0 if the portfolio is forecasted

to gain money. As an example, f(w, z) = 0.1 means a forecasted gain of 10%;

f(w, z) = −0.2 means a forecasted loss of 20%.

5.2.1 Value-at-risk

It is possible to calculate a risk measure every day for each market variable; however,

this does not provide a measure of the total risk across a portfolio. Value-at-risk

(VaR) and conditional VaR (CVaR) exist to provide a single number that summa-

rizes the total risk in a portfolio.

Till Guldimann developed VaR at J.P. Morgan in the late 1980s as a market risk

management tool (Holton, 2016). VaR measures the worst loss over a given horizon

under normal market conditions at a given confidence level (Jorion, 2000).

Definition 5.2.1 The VaR of f(w,Z) at a specified risk level α ∈ (0, 1), denoted

as vf (w;α), is defined as the threshold value ω such that the probability of the loss

exceeding ω is at most (1− α). Formally, VaR is defined as:

vf (w;α) = inf{ω : P(f(w,Z) ⩽ −ω) ⩽ 1− α} (5.2.2)

The VaR confidence level α is typically set to a high value (e.g., 0.95 or 0.99) to

assess the risk of extreme losses.

As an example, if a portfolio’s 10-day VaR for a 99% confidence level (α = 0.99)
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is 0.2, there is a 99% probability that the portfolio will not lose more than 20% of

its value in the next 10 days. The remaining 1% represents the uncertainty, where

losses could exceed the VaR threshold.

VaR does not account for the size of potential losses beyond the VaR threshold

in the tail of the distribution, as such it is an incomplete measure of risk. While

VaR answers the question, “How bad can things get?”, it does not provide insights

into “What happens beyond that point?” (Bodie et al., 2002).

5.2.2 Conditional value-at-risk

To address this limitation, conditional value-at-risk (CVaR) measures the expected

loss during an N -day period conditional on the losses being worse than the VaR

value. It is a measure for the worst-case scenario, asking how much value an invest-

ment portfolio is expected to lose, given the VaR threshold is met.

Definition 5.2.3 The CVaR of f(w,Z) at a specified risk level α ∈ (0, 1) is defined

as the expected loss, assuming that the loss is worse than the VaR threshold. It

represents the average of the worst-case losses. Formally, CVaR is defined as:

CVaRα[f(w,Z)] = −E[f(w,Z)|f(w,Z) ⩽ −vf (w;α)] (5.2.4)

where vf (w;α) is the VaR, as defined previously.

For example, if the CVaR at the 99% confidence level (α = 0.99) is 0.35, then

the average losses under the worst 1% of scenarios are expected to be 35%. This

additional insight better considers the tail end of the loss distribution.

Considering two portfolios, with return distributions as shown in Figure 5.2, the

difference between VaR and CVaR can be visualised. Both portfolios would have

the same VaR but different CVaR—demonstrating the benefits of CVaR in tail risk

105



measurement.

Figure 5.2: VaR and CVaR for two portfolios (adapted from Hull (2012))

5.2.3 Alternative risk measures

The widely cited paper by Artzner et al. (1999) establishes key desirable properties

for risk measures. Of those, CVaR meets many, including subadditivity, transla-

tion invariance, positive homogeneity, and monotonicity. In contrast, VaR lacks

sub-additivity, convexity, and differentiability. Beyond VaR and CVaR, various al-

ternative risk measures have been developed to address different aspects of risk

management—as compared in the work of Fischer et al. (2018). This work is sum-

marised below, considering each metric and its strengths and weaknesses.

An additional measure, not in the Fischer analysis, is Liquidity-adjusted VaR

(LVaR). The main objective of LVaR is to account for liquidity issues during market

downturns. These issues make selling assets harder, exposing the investor to greater

risks. The first version of LVaR was proposed by Angelidis and Benos (2006) in

2006. The method uses a bid-ask spread to adjust the estimated sale price of an

asset and, consequently, the VaR figure. Another approach is suggested by Al Janabi

et al. (2019), part of a portfolio optimisation framework that uses historical close-out

periods for different asset classes to modify the VaR calculation.
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Value-at-risk (VaR) VaR is a statistical
measure that quanti-
fies the level of finan-
cial risk over a spe-
cific time frame. VaR
represents the max-
imum expected loss
over a given time pe-
riod for a specified
confidence level.

Easy to calculate and
understand.

Not coherent as it
fails to account for
the magnitude of
losses beyond the
VaR threshold; not
subadditive, which
can discourage diver-
sification.

× × ✓ ✓ ✓ W
eak

T
op

ology

Conditional value-at-
risk (CVaR)

CVaR is the expected
loss beyond the VaR
level.

Coherent risk mea-
sure that accounts
for tail losses; en-
courages diversifica-
tion; and gives infor-
mation about the size
of extreme losses.

More complex to cal-
culate than VaR; can
be sensitive to as-
sumptions about tail
behaviour of the loss
distribution.

✓ ✓ ✓ ✓ × W
asserstein
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Median Shortfall
(MS)

Variation on CVaR,
using the median of
the α-tail distribu-
tion, so both fre-
quency and severity
of extreme losses be-
yond VaR are consid-
ered.

Elicitable, robust
with respect to the
weak topology, and
easy to implement.

Shares the same
drawbacks as VaR
since MSα(L) =
V aR 1+α

2
(L).

× × ✓ ✓ ✓ W
eak

T
op

ology

Expectile VaR (Ex-
VaR)

Uses an asymmetric
quadratic optimisa-
tion problem and
least squares estima-
tion to consider the
entire distribution
(unlike quantiles).
Provides a better
estimate around the
α-threshold.

Only known coherent
and elicitable alter-
native. More con-
servative estimate for
heavy-tailed distribu-
tions, so better cap-
tures large losses.

Depends on the
whole distribution,
so the complete loss
function must be
reconstructed. Not
comonotonic addi-
tive, which can lead
to misleading diversi-
fication incentives.

✓ ✓ × ✓ ✓ W
asserstein

Lambda VaR (LVaR) Works by narrowing
the loss distribution
range from which
VaR is calculated,
controlling the re-
lationship between
the probability and
severity of losses
through a probability
function.

Monotone and law in-
variant, with prop-
erties of elicitability
and robustness.

LVaR is not trans-
lation invariant and,
therefore, cannot be
a monetary risk mea-
sure nor optimisation
purposes.

× × × ✓ ✓ C
-rob

u
st
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VaR on benchmark
loss distributions
(BLDs)

VaR based on BLDs
which take account
of both the frequency
and severity of losses,
aiming to standard-
ise risk measurement
across different port-
folios or firms by us-
ing a common set of
loss scenarios.

Facilitates compari-
son across different
portfolios or firms
by using a standard
set of loss scenarios;
can provide a more
uniform approach
to risk assessment
in diverse market
conditions.

Lacks flexibility as
it is tied to specific
benchmark distri-
butions. Like VaR,
it does not account
for the magnitude
of losses beyond the
VaR threshold and
is not a coherent
risk measure. Not:
convex, subadditive,
positive homoge-
neous, or elicitable.

× × × ✓ × C
-rob

u
st

Range VaR (RVaR) A robust alternative
to CVaR in cases
where the range of
loss probabilities van-
ishes around 0 and 1.
RVaR calculates the
average of VaR lev-
els across a predefined
range.

Robust in cases
where the range of
loss probabilities
vanishes around 0
and 1, whereas CVaR
would not be.

Not a coherent risk
measure in general.

× × ✓ ✓ × C
-rob

u
st
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Wang Transformation-
based risk measure
that adjusts the
probability distribu-
tion of losses using a
distortion function,
which skews the
distribution to give
more weight to tail
events, emphasising
extreme losses.

Unlike VaR and
CVaR, Wang takes
into consideration all
available information
from the loss distri-
bution, providing a
more comprehensive
view of risk by focus-
ing on extreme loss
scenarios.

The choice of dis-
tortion function can
significantly impact
the measure, intro-
ducing subjectivity;
more complex to
implement and un-
derstand compared
to simpler measures;
may not always pro-
vide intuitive results.

✓ ✓ ✓ ✓ × -

Glue VaR Four-parameter fam-
ily of risk measures
which allows for dif-
ferent measures to
be calculated from
one equation (includ-
ing (C)VaR). Can be
calibrated to be less
or more conservative.

Can alter parameters
to see how the risk
profile changes based
on how conservative
an estimate you want.

Complex to imple-
ment compared to
VaR and CVaR.

× × ✓ ✓ × W
asserstein

Entropy Risk Mea-
sure (ERM)

Tightest upper bound
of (C)VaR using
Chernoff’s inequality.
Considers the set of
payoffs with positive
expected utility.

More efficient com-
putation than CVaR,
due to ERM be-
ing strongly and
strictly montone.
Also, coherent, con-
vex, comonotonic
additive, and law
invariant.

Computational com-
plexity in scenarios
involving non-linear
or complex loss distri-
butions; challenging
to implement and
interpret in practical
risk contexts.

✓ ✓ ✓ ✓ × -
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5.2.4 Essential properties of CVaR

VaR often exhibits multiple local extrema and unpredictable behaviour as a function

of portfolio positions, limiting its usefulness in portfolio optimisation problems, lim-

itations which do not apply to CVaR (Mausser and Rosen, 1999; McKay and Keefer,

1996). Additionally, to achieve this thesis’s central objective of developing a new

investment framework that can handle and account for uncertainty, a key aspect is

ensuring the robustness of the chosen risk measure to uncertainty. Embrechts et al.

(2022) published a framework for considering the effect of uncertainty around an

α-quantile level, concluding that, unlike VaR, CVaR remains stable and robust in

simulation-based optimisation methods with uncertainty.

The described features and resilience to uncertainty position CVaR as the risk

measure we choose to base our investment framework and later portfolio optimisation

algorithm on4. As CVaR is the central risk measure used in the subsequent research

& chapters, it is imperative to understand the properties beyond those explained so

far.

Stochastic dominance of CVaR

Stochastic dominance is used to compare two probability distributions: if one dis-

tribution can be considered more favourable than another under certain conditions,

it is said to stochastically dominate the other. CVaR is monotonic with respect to

stochastic dominance of order 1 and order 2 (Pflug, 2000). In financial risk manage-

ment, this property is essential. Let us formalise the first case:

4The significance of CVaR extends to financial regulations too. The transition from Basel III
to Basel IV Banking regulations requires a shift from VaR to CVaR in Bank’s Economic Capital
(ECAP) calculations. ECAP is based on a bank’s risk profile, aimed at preventing liquidity or
insolvency crises (Saissi Hassani and Dionne, 2021).
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Claim 5.2.5 (Pflug, 2000) For stochastic dominance of order 1, if a random vari-

able X1 stochastically dominates X2, then:

CV aR(X1) ⩽ CV aR(X2). (5.2.6)

Proof. For stochastic dominance of order 1, X1 stochastically dominates X2 if for

every x, the cumulative distribution function FX1(x) ⩽ FX2(x). Therefore, X1 has

a distribution skewed towards higher values compared to X2. For a given level of α,

the VaR and consequently the CVaR for X1 will be lower than or equal to that of

X2. □

This property implies that when comparing two investment options, if one demon-

strates lower risk (as indicated by CVaR) while providing equal or higher expected

returns, it is universally more favourable regarding the risk-return balance—as ex-

pected in the practical context. This enables us to confidently use CVaR as a reliable

and robust risk measure within portfolio optimisation.

CVaR-return tradeoff

As discussed in Chapter 1, the underlying principle in investing is that a riskier asset

should generate higher returns to compensate investors for taking on greater risk. A

robust risk measure should reflect this feature. Research by Bali and Cakici (2004)

and Iqbal et al. (2010) proved a positive relationship between CVaR and expected

returns. To visualise this relationship, the historical daily returns (from our core

data) are plotted against the VaR and CVaR in Figure 5.3.
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Figure 5.3: VaR and CVaR against average returns from historic data

A higher expected return can only be obtained by increasing risk exposure; con-

versely, if an investor wishes to reduce the CVaR of their portfolio, the expected

return will reduce too.

Stochastic Dominance means that for a chosen expected return, an investor can

identify a portfolio that meets or exceeds this return with the lowest possible risk,

as measured by CVaR. When optimising a portfolio, these concepts imply that to

achieve a certain level of expected return, one must consider the associated CVaR.
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The optimal portfolio, in this context, would be the one that offers the desired

expected return with the lowest possible CVaR. If the goal is to reduce the portfolio’s

CVaR, the expected return will decrease too. This relationship lays the groundwork

for the portfolio optimisation algorithm developed in Chapter 10.

CVaR calculation

Three primary methods are used to calculate VaR and CVaR: the historical method,

the variance-covariance method, and Monte Carlo simulations. Nadarajah et al.

(2014) provides an extensive comparison of 45 different methods for estimating CVaR

and concludes that Monte Carlo simulations offer the greatest accuracy and consis-

tency, particularly during economic downturns. For our Bayesian ARMA-GARCH

models, the ability of VaR and CVaR to capture tail risk is dependent on the ability

to reconstruct the distribution f(w,Z). In the following chapters, we detail such

simulation methodologies.

This concludes our introduction to market risk. Whilst the core data used

throughout this thesis is based on equities, our research would be incomplete without

consideration of credit risk.

5.3 Credit risk

In fixed-income debt securities, coupon payments are the periodic interest payments

made to bondholders. The maturity date marks the end of the bond term when the

principal amount is due to be repaid. A default refers to the failure of the borrower

to meet these obligations; the associated risk is encapsulated in credit ratings. These

ratings, provided by agencies like S&P and Moody’s, serve as a barometer for default

risk and significantly influence the market value of bonds.

Credit risk, or default risk, is a pivotal component of financial risk management.

The essence of credit risk management lies in assessing the likelihood of default,
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which can manifest as missed coupon payments or the inability to return the prin-

cipal at maturity. Credit risk evaluation is influenced by numerous factors ranging

from individual borrower characteristics to macroeconomic conditions.

In a portfolio of fixed-income assets, one could consider each asset’s default

risk separately, which is relatively straightforward. However, such an approach

fails to account for the interdependencies between different securities and issuers,

which manifests itself through the clustering of defaults often seen during periods

of financial turmoil.

Default correlation describes the propensity for two or more companies to default

at about the same time. Default correlation is caused by macroeconomic factors

(e.g., recessions and regulatory changes) and credit contagion, where one company’s

financial difficulties directly affect other companies they are closely associated with.

The interconnected nature of financial markets means that stresses can propagate

quickly, with defaults in one area leading to a chain reaction of credit events and a

clustering of external risk factors during market downturns—a phenomenon termed

extremal dependence.

Copula models were developed to estimate this tail risk more accurately by

allowing for the separation of a portfolio’s dependence structure from each asset’s

marginal densities—representing the individual risks of each obligor—which can

have different probability distributions. As such, copula models join or ‘couple’ the

individual default risks of various fixed-income assets to consider the portfolio as a

whole. By doing so, copula models capture the likelihood of simultaneous defaults,

thus offering a more comprehensive measure of the potential for extreme losses in a

portfolio.
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5.3.1 Normal copula model

Before the Global Financial Crisis, the most widely used copula model was the

‘Normal copula model’ proposed by David Li at J.P. Morgan in 1997 (Li, 2000;

Morgan et al., 1997).

The model

Consider a portfolio of loans consisting of N obligors. Suppose the probability

of default for the ith obligor over the considered time horizon is pi ∈ (0, 1), for

i = 1, ..., N , and that if the ith obligor defaults, a fixed and given loss of ci monetary

units occurs.

A copula model introduces a vector of underlying latent variablesX = (X1, ..., XN)

such that the ith obligor defaults ifXi exceeds a given threshold level xi. This thresh-

old xi is set according to the marginal default probability of the ith asset so that

P(Xi > xi) = pi. The portfolio loss from defaults is given by

L(X) = c1I{X1>x1} + ...+ cnI{XN>xN}, (5.3.1)

where I{Xi>xi} denotes the indicator function, equal to 1 if Xi > xi and 0 otherwise.

As per Glasserman and Li (2005) and Li (2000), in the Normal copula model the

joint distribution of the latent variables X = (X1, ..., XN) follows a multivariate

Gaussian distribution given by:

Xi = wi1Z1 + ...+ widZd + wiηi, (5.3.2)

where w2
i1 + ... + w2

id + w2
i = 1; (Z1, ..., Zd) are i.i.d. standard Normal random

variables known as common risk factors that capture the systemic risks common to

all the obligors; and ηi is a Normal random variable—independent of the common
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risk factors—that captures the idiosyncratic risk specific to the ith obligor.

In summary, in the Normal copula model, each obligor’s default risk is modelled

by a latent variable Xi, which comprises both systematic risk factors Z1, . . . , Zd and

an idiosyncratic risk factor ηi. The weights wi1, . . . , wid quantify the influence of

each systematic risk factor on the ith obligor’s default risk, while wi represents the

idiosyncratic risk’s contribution. This model adeptly captures the shared risks that

affect all obligors and the unique risks to individual obligors, thus evaluating the

potential for concurrent defaults due to systemic events and singular defaults arising

from idiosyncratic events.

Limitations

The Normal copula model—used by nearly every bank globally prior to the Global

Financial Crisis (GFC) for risk management and asset valuation purposes, is now

referred to as The Formula That Killed Wall Street due to its role in exacerbating the

GFC (Bass, 2009). This model and its impact on the GFC is a powerful reminder

of how the failure of institutions to build appropriate mathematical models and

simulations can have deep consequences.

As Frey and McNeil warned in their 2001 paper (Frey and McNeil, 2001), as a

result of the risk factors in the Normal copula model being modelled as multivariate-

normally distributed random variables, which are asymptotically independent, the

occurrence of many joint large movements of the risk factors is very rare. This

contradicts reality, as large movements of many risk factors occur with non-negligible

frequency. Frey and McNeil add that “this [key assumption] casts some doubt on

whether latent variable models based on a Gaussian copula are necessarily the best

choice for modelling dependent defaults”.

The paper by Zeevi and Mashal (2002) added to this criticism, where following

analysis of Gaussian dependence structures, compared to t-dependence structures,
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the paper concluded that “the Gaussian dependence hypothesis that underlies most

modern financial applications should be deemed inadequate”, adding “[we] believe

that the t-dependence structure is an important step towards a more realistic model

of dependencies between underlying assets”—a model we explore next.

Before the GFC, most banks used the Normal copula model in risk manage-

ment. As a result, they seriously underestimated tail risk & the likelihood of a

large number of simultaneous asset defaults. This resulted in banks having insuf-

ficient capital and inappropriate risk management, exacerbating the crisis; hence,

the Normal copula model gained its reputation as The Formula That Killed Wall

Street. Much research has gone into developing better copula models, including the

aforementioned Student’s t Copula to better account for extremal dependence.

5.3.2 Student’s t copula model

To address the weaknesses in the Gaussian copula model, Bassamboo et al. (2008)

proposed an alternative model building on the work of Frey and McNeil (2001),

replacing the Gaussian copula with a multivariate Student’s t copula model. The

Student’s t distribution is similar to the Normal distribution but features heavier

tails, which increase the likelihood of extreme values. Furthermore, the Student’s t

copula introduces a common random variable that amplifies the joint likelihood of

extreme values occurring simultaneously across multiple variables, effectively cap-

turing the dependencies between them.

The performance of the Student’s t copula model is demonstrated in a review

paper by Patton (2012), which assessed the performance of the Normal, Clayton,

Rotation Gumbel and Student’s t copula models using various tests. The Student’s

t model outperformed all other models when applied to four different goodness-of-fit

tests.
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The model

The loss function and set-up of the copula model, except for the Latent Variable

equations, are the same as for the Normal copula model, presented in Section 5.3.1.

As per Bassamboo et al. (2008), the Student’s t copula model specifies the joint

distribution of the latent variables X = (X1, ..., XN), by modelling the dependence

among obligors with latent variable following a multivariate Student’s t distribution

given by:

Xi =
wi1Z1 + ...+ widZd + wiηi

T
, (5.3.3)

where w2
i1+...+w

2
id+w

2
i = 1; (Z1, ..., Zd) are i.i.d. standard Normal random variables

known as common risk factors and ηi is a Normal random variable that captures

the idiosyncratic risk specific to the ith obligor. T is a random variable which takes

value according to

T =
√
k−1 Gamma(1/2, k/2) , (5.3.4)

an adapted Gamma distribution with shape k/2 and scale 1/2. As such, the dis-

tribution given in Eq. 5.3.4 results in latent variables (Xi : 1 ⩽ i ⩽ N) following

a multivariate Student’s t distribution, whose dependence structure is given by a

t-copula with k degrees of freedom.

The random variable T introduces an additional layer of dependency among

obligor defaults by representing common shocks. When T takes values close to zero,

all the latent variables Xi are likely to exhibit large values simultaneously, leading

to many simultaneous defaults. This mechanism allows the t-copula model to better

capture tail risk and the clustering of extreme events.

Beyond merely modeling extreme events, the Student’s t copula captures de-

pendencies between variables through the concept of tail dependence—that is, the

increased likelihood that extreme values in one variable will coincide with extreme
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values in another. In the Student’s t copula model, the latent variables X =

(X1, . . . , XN) are influenced by both common risk factors (Z1, . . . , Zd) and idiosyn-

cratic risk factors ηi. The common risk factors create a correlation between variables,

while the random variable T scales these correlations, particularly under extreme

conditions. As T varies, it induces a dependency structure that allows for both

linear and non-linear relationships between variables, capturing the complex nature

of financial markets.

Theoretical analysis by Embrechts et al. (2001) demonstrates the upper and lower

tail dependence properties of the t-copula model, confirming its ability to account

for the co-movement of variables during extreme market conditions. This enhanced

dependency modeling is why the Student’s t copula is considered more effective in

financial risk management compared to the Gaussian copula.

Further adaptations

Tang et al. (2019) present an adaptation to the copula model, which introduces a

single common shock variable. This shock variable represents a significant market

or economic event to see how a portfolio would perform. They conclude (somewhat

intuitively) that large portfolio losses can be attributed to either the common shock

variable or the systematic risk factor, whichever has a heavier tail.

Bassamboo et al. (2008) propose replacing the default thresholds xi in the copula

model with a function fi(n)—for portfolio size n. Whereby fi(n) increases at a

subexponential rate, as n increases, to account for portfolio diversification. So,

higher diversification reduces the likelihood of large losses.

5.3.3 Copula model summary

The Student’s t copula model marks a significant advancement in the ability to

capture dependencies and tail risk within a credit portfolio. The Student’s t copula
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model relies on the ability to explore the parameter space in order to reconstruct

the loss function—in subsequent chapters, we investigate how to do this.

5.4 Failure probability

Failure probability estimation is widely researched in engineering and other scientific

disciplines to determine the likelihood and impact of undesirable outcomes or ‘fail-

ures’ in complex systems. By considering market risk measures (like VaR and CVaR)

and large simultaneous defaults from credit risk models as failures, we can develop

a unified framework for quantifying the likelihood of undesirable financial outcomes.

By defining ‘failure’ as the event where financial outcomes, such as losses, exceed a

predefined critical threshold, we can establish a common framework for developing

and evaluating risk assessment methodologies.

5.4.1 The framework

To ensure clarity in the remaining presentations, we separate the notation used here

for generic applications—to explain key methods, algorithms, and approaches—

from the notation used previously that relates specifically to portfolio optimisation,

forecasting asset returns and financial risk management.

Let x be a d-dimensional random vector following distribution p(x); for clarity,

x = (x1, ..., xd), where the ith component of this vector is denoted by xi. Let yg

be a scalar variable characterised by a function yg = g(x), called the performance

variable, with respective probability density function π(yg). x and yg are assumed

to be continuous random variables.

The failure probability can be estimated by determining the performance vari-

able’s distribution π(yg), where a system failure event occurs when the performance
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variable yg exceeds a threshold value y∗g—formalised as a set F :

F = {x ∈ X| yg = g(x) > y∗g}. (5.4.1)

The failure probability is obtained using the integral:

PF = P(F ) =
∫

{x∈X|g(x)>y∗g}

p(x)dx. (5.4.2)

This can be more easily obtained using:

PF = P(F ) =
∫

x∈X

IF (x)p(x)dx, (5.4.3)

where IF (x) is defined as an indicator function of the set F:

IF (x) =


1, if x ∈ F ;

0, if x /∈ F .
(5.4.4)

To accurately estimate the failure probability, the distribution π(yg) must be ob-

tained.

5.5 Distribution reconstruction

To achieve our second objective of developing new methodologies which better pre-

dict the probability and impact of tail events, it is essential to utilise sophisticated

risk measures.

The assessment of equity risk requires obtaining the entire distribution of fore-

casted asset returns to calculate CVaR and quantify tail risk. In credit risk, the

ability to accurately model and reconstruct the entire joint default distributions in
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copula models is essential for evaluating the tail risk in a portfolio, as it determines

the likelihood of extreme loss scenarios that can arise from clustered defaults.

The unified failure probability framework directly relies on the ability to recon-

struct probability distributions of performance variables. In this context, a failure

event is defined by the performance variable exceeding a certain threshold. While

point estimates can provide a snapshot of the likelihood of failure, the full probabil-

ity distribution of the performance variable is necessary to understand the range and

severity of potential failures. This distributional perspective is crucial for compre-

hensive risk assessment, encompassing the frequency and severity of failure events.

In summary, all three areas – equity risk, credit risk, and failure probability

estimation – necessitate not only the computation of point estimates but also the

detailed reconstruction of probability distributions. This is essential for capturing

tail risks and the inherent uncertainties in financial markets.

In the next two chapters, we explore the application of Monte Carlo methods

and more sophisticated simulation techniques for failure probability estimation and,

as such, CVaR estimation for equity market risk and the Student’s t copula model

for credit risk. This motivates the development of our own algorithm for probability

distribution reconstruction.
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Chapter 6

Monte Carlo Methods for Risk

Analysis

Working towards our second thesis objective for enhanced risk management to de-

velop new methodologies which better predict the probability and impact of tail

events, we seek to determine the distribution of the performance variable yg = g(x)—

denoted by π(yg)—from which failure probabilities and other risk measures can be

estimated.

The most widely used rare event simulation1 is the Monte Carlo (MC) method

proposed by Stanislaw Ulam as part of his work on the Manhattan project, develop-

ing nuclear weapons in the late 1940s. The main strength of MC is its robustness;

that is, the accuracy of the MC approximation does not depend on the dimension-

ality of the input space. So, unlike other methods (e.g. numerical integration), it

does not suffer from the “curse of dimensionality”. Whilst MC is robust, it is highly

inefficient in estimating small probability due to the substantial number of samples

required.

As a result, MC adaptations have been developed, the most popular being im-

1The field of rare event simulation is concerned with developing models to simulate events with
extremely small probabilities, generally of the order 10−6 or less.
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portance sampling (IS), which aims to increase the accuracy and efficiency of MC

by using alternative biasing distributions that drive sampling towards the region

of interest. In this chapter, we present the Monte Carlo method and importance

sampling—which lays the groundwork for the more advanced methods which follow.

All rare event simulation methods rely on the generation of representative sam-

ples from target probability distributions; the most widely used methods are the

Metropolis-Hastings algorithm (Hastings, 1970; Metropolis et al., 1953), which utilises

Markov chains to generate samples following a target distribution π(·), the sequen-

tial Monte Carlo sampler (Del Moral et al., 2006), which generates samples from

a sequence of distributions {πt(·)}Tt=1, and population Monte Carlo. The chapter

concludes with a comparison of these methods.

6.1 The Monte Carlo method

6.1.1 General framework

Suppose we have a target density p(x) defined on a high-dimensional space X, where

x is a random vector defined on Rd and g(·) is a real-valued function defined on Rd.

A Monte Carlo simulation can approximate the expectation of y = g(x) given by:

y = E[y] =
∫

x∈X

g(x)p(x)dx. (6.1.1)

The Monte Carlo simulation works by drawing M independent identically dis-

tributed (i.i.d.) samples {x1, . . . ,xM} from the distribution p(x), computing g(xj)

for each xj and then—by utilising the strong law of large numbers—estimating y

using:

y ≈ ŷ =
1

M

M∑
j=1

g(xj). (6.1.2)
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6.1.2 Monte Carlo for failure probability estimation

As defined in Eq. 5.4.1, the probability of a failure event F is defined by:

PF = P(F ) =
∫

{x∈X|g(x)>y∗}

p(x)dx =

∫
x∈X

IF (x)p(x)dx, (6.1.3)

where IF (x) is an indicator function of the set F , defined as

IF (x) =


1, if x ∈ F ;

0, if x /∈ F .
(6.1.4)

For simple low-dimensional problems, PF can be estimated via standard Monte

Carlo, drawing M samples x1, ...,xM from the distribution p(x) and estimating PF

with the following formula:

PF ≈
1

M

M∑
j=1

IF (xj). (6.1.5)

6.1.3 Monte Carlo for probability distribution construction

One approach to using the Monte Carlo method to construct a probability distribu-

tion π(y), is to “bucket” the MC samples. For convenience, assume that π(y) has

bounded support2 Ry = [a, b], then decompose Ry into K bins of equal width ∆

centred at the discrete values {b1, ..., bK}, where the kth bin is defined as the interval

Bk = [bk −∆/2, bk +∆/2]. This binning implicitly defines a partition of the input

2If the support is not bounded, choose an interval [a, b] that is sufficiently large so that P(y ∈
[a, b]) ≈ 1.
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space into K domains {Dk}Kk=1, where

Dk = {x ∈ X : g(x) ∈ Bk}, (6.1.6)

is the domain in X that maps into the kth bin Bk (see Fig. 6.1).

Figure 6.1: Schematic illustration of the connection between Bk and Dk.

While Bk are simple intervals, the domains Dk are multidimensional regions

with possibly tortuous topologies. Therefore, define an indicator function to classify

whether a given x-value is in bin Dk or not:

IDk
(x) =


1, if x ∈ Dk;

0, otherwise,

(6.1.7)

or equivalently {y = g(x) ∈ Bk}. By using this indicator function, the probability

that y is in the k-th bin, i.e. Pk = P{y ∈ Bk}, can be written as an integral in the

input space:

Pk =

∫
Dk

p(x)dx =

∫
IDk

(x)p(x)dx = E[IDk
(x)]. (6.1.8)

Where Pk can be estimated via a standard MC simulation. Namely, draw M i.i.d.

127



samples {x1, ...,xM} from the distribution p(x), and calculate the MC estimator of

Pk using:

P̂MC
k =

1

M

M∑
j=1

IDk
(xj) =

Mk

M
, for k = 1, ..., K, (6.1.9)

whereMk is the number of samples that fall in bin Bk. From {Pk}Kk=1, the PDF of y

at the point yk ∈ Bk—for a sufficiently small ∆—can be calculated as π(yk) ≈ Pk/∆.

This approach can be readily adapted to reconstruct the distribution of f(w,Z)

in the context of forecasted asset returns3, from which one can obtain the expected

return and conditional value-at-risk. Crucially, to obtain an accurate estimate of

the expected return for a proposed allocation w, one only needs a relatively small

number of samples (from Z). However, to obtain an accurate estimate of CVaR,

one must use a very large number of MC samples (from Z) to ensure that the tail

distribution is properly assessed. For further details on Monte Carlo methods for

CVaR estimation, refer to Hong et al. (2014).

6.1.4 Monte Carlo method conclusion

The primary advantage of the Monte Carlo method lies in its robustness; the ac-

curacy of the Monte Carlo approximation is unaffected by the dimensionality d of

the input space Rd. Unlike certain other methods (e.g., numerical integration), the

Monte Carlo method is not afflicted by the “curse of dimensionality” as long as

samples can effectively be generated from the target distribution p(x).

Relative error is a key measure of accuracy in the Monte Carlo method. For M

samples and a target probability p, the relative error (RE) with a confidence interval

of 95% is given by:

RE ≈ 1/
√
Mp. (6.1.10)

3Detailed later in this thesis.
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As an example, for an event with a probability of order 1×10−9, to obtain a relative

error of less than 10%, a Monte Carlo simulation would need at least 1011 samples.

If drawing and calculating each sample took one millisecond, the total computation

time would be over 3 years! While the Monte Carlo method is effective for very sim-

ple models with high probability, it is prohibitively inefficient in estimating small

probabilities. As such, importance sampling was developed to improve the compu-

tational efficiency of the Monte Carlo method by driving sampling to the regions of

interest.

6.2 Importance sampling

6.2.1 General framework

Importance sampling (IS) was pioneered in the 1950s by Kahn and Marshall (1953).

It enhances the accuracy of numerical estimates by artificially increasing the con-

centration of samples within the critical region, by drawing samples from a proposal,

or importance sampling distribution, denoted as q(x). This distribution is deliber-

ately weighted to favour the region of interest, to skew sampling in the direction of

interest. The estimates need to be adjusted to account for the fact that samples

were drawn from the proposal distribution q(x) rather than the original distribution

p(x).

Let q(x) be an arbitrary distribution, then Eq. 6.1.1 can be rewritten as:

E[y] =
∫
g(x)p(x) dx =

∫
g(x)

p(x)

q(x)
q(x) dx = Eq

[
g(x)p(x)

q(x)

]
, (6.2.1)

where Eq[·] denotes the expectation for x ∼ q(x).

The ratio p(x)/q(x) = w(x) is called the weight, or likelihood ratio, and the

inverse B(x) = w−1(x) is called the bias at x. The expectation can be simplified to:
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E[y] =
∫
g(x)w(x)q(x) dx = Eq[gw]. (6.2.2)

Applying a Monte Carlo simulation to draw M samples x1, ...,xM from the pro-

posal distribution q(x) and applying them to Eq[gw] obtains:

ĝIS =
1

M

M∑
j=1

g(xj)w(xj), (6.2.3)

where ĝIS is the called the importance sampling estimator of E[g].

6.2.2 Importance sampling for failure probability

Importance sampling can be used to estimate the failure probability by drawing M

samples x1, ...,xM from the IS distribution q(x) and then estimating PF using the

following equation:

P IS
F ≈

1

M

M∑
j=1

IF (xj)w(xj), (6.2.4)

where w(x) = p(x)/q(x) and IF (xj) is an indicator function as defined in Eq. 6.1.4.

6.2.3 Importance sampling conclusion

Importance sampling allows for more efficient estimation of rare event probabili-

ties and other risk measures. In the context of failure probability estimation, IS

draw samples from a distribution that targets the failure regions, enabling precise

estimation with significantly fewer samples than standard Monte Carlo simulations.

The performance of IS relies heavily on the choice of the IS or proposal distri-

bution, which must be carefully selected to provide efficient sampling in the region

of interest. IS can struggle with high-dimensional problems and those with multiple

failure regions. To address these limitations, and further drive performance, more

advanced methods have been developed—explored in the next chapter.
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First, we present key methods for generating samples from target distributions.

These sampling techniques are critical to the advanced methods discussed in the

subsequent chapter. Understanding these techniques’ strengths and weaknesses es-

tablishes a solid foundation for exploring the more sophisticated approaches to rare

event simulation which follow—and it is necessary for the presentation of our pro-

posed algorithm in Chapter 8.

6.3 Sampling methods

Rare event simulations—which can be used to determine the probability of a failure

event—all rely on the ability to generate samples from target probability distribu-

tions, denoted by π. In this chapter, we present three popular and widely applicable

sampling methods, namely Markov chain Monte Carlo (MCMC), sequential Monte

Carlo sampler (SMCS) and population Monte Carlo (PMC).

6.3.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are pivotal tools in statistical in-

ference, particularly for approximating complex probability distributions. These

methods rely on constructing Markov chains whose stationary distribution aligns

with the target posterior distribution. This section introduces the foundational

concepts underpinning MCMC, starting with the basic principles of random walks,

progressing to Markov chains, and then the Metropolis-Hastings algorithm.

Random walks

Random walks form the foundation for understanding Markov processes. A random

walk is a stochastic process where an object’s movement in a mathematical space is

independent of its past positions.

Definition 6.3.1 (Random walks) Let X1, X2, . . . be i.i.d. random variables, then
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the partial sum, Wn = X1 + X2 + . . . + Xn, represents the position of the random

walk at step n starting from W0 = 0.

As Wn+1 = Wn +Xn+1 for n = 0, 1, 2, . . ., the random variables W1,W2, . . . are not

independent, however, the difference Wn −Wm for m < n is independent of Wm.

Markov chains

The concept of Markov chains arises as a natural progression from random walks.

While a random walk involves independent steps, a Markov chain introduces a de-

pendency, albeit limited to the current state.

Definition 6.3.2 (Markov chains) (Roberts and Rosenthal, 2004) A Markov chain

is a stochastic process {Xn} defined on a continuous state space X , characterised

by the Markov property: the future state Xn+1 depends only on the current state Xn,

not on the sequence of events that preceded it.

Definition 6.3.3 (Transition kernel) (Roberts and Rosenthal, 2004) The transi-

tion kernel P (x,A) describes the probability of moving from a state x to a measurable

set A ⊆X . It is defined as:

P (x,A) = P(Xn+1 ∈ A | Xn = x),

where P (x,A) is a probability measure for fixed x ∈ X and a measurable function

of x for fixed A.

The n-step transition kernel P n(x,A) extends this definition to the probability of

moving from state x to set A in exactly n steps, given by:

P n(x,A) = P(Xn ∈ A | X0 = x),
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where X0 = x is the starting state and Xn represents the state of the Markov chain

after n transitions.

Stationary distributions

Markov chains extend the concept of random walks by introducing state dependency,

forming the core concept behind MCMC methods. A stationary distribution π for

a Markov chain is a probability measure that remains unchanged under the action

of the transition kernel P . This means π satisfies:

π(A) =

∫
X

P (x,A) π(dx) for all measurable A ⊆X .

Definition 6.3.4 (Stationary Distribution) (Roberts and Rosenthal, 2004) A

probability measure π on (X ,B) is a stationary distribution of the Markov chain

with transition kernel P if πP = π, where πP (A) =
∫

X
P (x,A) π(dx) for all A ∈ B.

The Metropolis-Hastings algorithm

Metropolis and Ulam (1949) and Hastings (1970) proposed the Metropolis-Hastings

algorithm as a statistical approach to solving differential equations. The algorithm

is an MCMC method that constructs a Markov chain with a specified stationary

distribution π, satisfying the detailed balance condition:

π(dx)P (x, dy) = π(dy)P (y, dx), ∀x, y ∈ S

This condition is sufficient for ensuring that π is a stationary distribution of the

Markov Chain with Kernel P . In the context of the Metropolis-Hastings algorithm,

the condition is ensured by using an acceptance probability a(x′|x) defined as follows:

a(x′|x) = min

{
1,
π(x′)q(x|x′)
π(x)q(x′|x)

}
,
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where q(x′|x) is the density of the proposal kernel, i.e.,

Q(x, dx′) = q(x′|x)dx′.

This acceptance probability ensures that the ratio π(x′)P (x,dx′)
π(x)P (dx′,x)

is equal to 1,

thus satisfying the detailed balance condition. By adhering to this condition, the

Metropolis-Hastings algorithm ensures that π is an invariant measure of the Markov

chain.

Irreducibility and Aperiodicity

To ensure convergence of the Markov chain to the stationary distribution π, the

chain must be irreducible and aperiodic. A Markov chain is said to be irreducible if

it is possible to reach any measurable set with a positive measure from any state in

a finite number of steps - formally defined as follows.

Definition 6.3.5 (Irreducibility) (Roberts and Rosenthal, 2004) A Markov chain

is irreducible with respect to a non-zero σ-finite measure ϕ on X if for any x ∈X

and any measurable set A ⊆ X with ϕ(A) > 0, there exists an integer n > 0 such

that P n(x,A) > 0.

A Markov chain is aperiodic if it does not cycle deterministically through states

in fixed intervals - formally defined as follows.

Definition 6.3.6 (Aperiodicity) (Roberts and Rosenthal, 2004) A Markov chain

is aperiodic if it does not get trapped in a cyclic pattern, meaning there does not exist

a fixed integer d ⩾ 2 and disjoint subsets X1,X2, . . . ,Xd such that for all x ∈ Xi,

P (x,Xi+1) = 1 and P (x,X1) = 1 for x ∈Xd.

In the context of the Metropolis-Hastings algorithm, these properties guarantee

that the Markov chain will eventually sample from the entire target distribution π
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and facilitate the convergence of the chain to the desired posterior distribution, mak-

ing the Metropolis-Hastings algorithm an effective tool for generating samples that

approximate complex probability distributions. Conditions ensuring these proper-

ties for the Metropolis-Hastings algorithm are discussed in Roberts and Smith (1994)

and Roberts and Rosenthal (2004).

Algorithm 6 Metropolis-Hastings algorithm

1: Input: Number of iterations T , initial value x0, target distribution π(x), pro-

posal distribution q(x′|x)

2: Initialization

3: Let t = 0

4: for t = 1 to T do

5: Draw a new candidate value

6: Draw x′
t from the proposal distribution q(x′

t|xt−1)

7: Calculate the MH acceptance probability

8: Calculate a(x′
t|xt−1) = min

{
π(x′

t)q(xt−1|x′
t)

π(xt−1)q(x′
t|xt−1)

, 1
}

9: Update xt based on at(x
′
t|xt−1):

xt =

 x′
t, with probability a(x′

t|xt−1)

xt−1, otherwise
(6.3.7)

10: end for

11: Return: Sampled values {x1,x2, . . . ,xT}

The Metropolis-Hastings algorithm is an effective sampling technique due to its

simplicity and flexibility, particularly as the input PDF need only be known up to a

multiplicative constant. Whilst a chain of samples generated by the algorithm will

have a stationary distribution equal to the target distribution, it can be difficult
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to know when the samples follow this distribution. Therefore, a burn-in period is

often needed, where the first P% of samples are discarded; however, this reduces its

efficiency.

A desirable feature for sampling methods is the generation of i.i.d. samples, this

is not the case for MCMC. As such, autocorrelation adjustments may need to be

applied to the generated samples, which can result in many samples being discarded.

These limitations are addressed, at least in part, by the sequential Monte Carlo

sampler (SMCS) and population Monte Carlo (PMC).

6.3.2 Sequential Monte Carlo sampler

Proposed by Del Moral et al. (2006), the sequential Monte Carlo sampler (SMCS)

is a method for drawing samples from a sequence of distributions {qt(·)}Tt=1. It is

a generalisation of the particle filter for dynamic state estimation by Arulampalam

et al. (2002), where weighted samples are generated from a posterior distribution.

The SMCS procedure moves samples from a distribution qt−1(·) to qt(·) through:

1. Forward kernel application to each current sample, sometimes incorporat-

ing an acceptance criterion.

2. Weight calculation on each newly generated sample—detailed shortly.

3. Effective sample size (ESS) check across all samples. The ESS is calcu-

lated as follows:

ESS =

(∑M
j=1wj

)2
∑M

j=1w
2
j

where wj are the normalised weights of the samples. If the ESS falls below a

specific threshold, usually less than half of the total number of samples, then:

4. Resample the proposed samples based on their weights. The resulting weighted

samples follow the distribution qt(·).
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The paper by Beskos et al. (2014) provides a thorough theoretical analysis of

SMCS, focusing on the algorithm’s stability for high-dimensional problems. The

paper demonstrates that SMCS is particularly powerful in sequential inference prob-

lems, approximate Bayesian computation and when there is a desire for a consistent

adaptive algorithm with little user input.

The method

SMCS is central to our proposed algorithm in Chapter 8, so we now give a very

detailed description and explanation of how SMCS can generate samples from a

sequence of distributions {qt(·)}. We present the SMCS method in a recursive

formulation, drawing on the work of Del Moral et al. (2006) and Wu et al. (2020).

Suppose that at time t − 1, we have an IS distribution γt−1(xt−1), from which

we can generate, or already have, an ensemble of M samples {xt−1}Mj=1. To imple-

ment SMCS, we first define two conditional distributions Kt(·|xt−1) and Lt−1(·|xt),

referred to as the forward and backward kernels respectively. Using Lt−1(·|xt), we

are able to construct a joint distribution of xt−1 and xt in the form of

rt(xt−1,xt) = qt(xt)Lt−1(xt−1|xt), (6.3.8)

such that the marginal distribution of rt(xt−1,xt) over xt−1 is qt(xt). Now, using

γt−1(xt−1) and the forward kernel Kt(xt|xt−1), we can construct an IS distribution

for rt(xt−1,xt) in the form of

γ(xt−1,xt) = γt−1(xt−1)Kt(xt|xt−1). (6.3.9)

Using {xt−1}Mj=1 and the forward kernel Kt, draw samples from this joint IS distri-

bution γ(xt−1,xt) to obtain an ensemble {(xj
t−1,x

j
t)}Mj=1. The corresponding weights
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are computed as

wt(xt−1:t) =
rt(xt−1,xt)

γ(xt−1,xt)
=

qt(xt) Lt−1(xt−1|xt)

γt−1(xt−1) Kt(xt|xt−1)

= wt−1(xt−1)α(xt−1,xt),

(6.3.10a)

where

wt−1(xt−1) =
qt−1(xt−1)

γt−1(xt−1)
, and

αt(xt−1,xt) =
qt(xt) Lt−1(xt−1|xt)

qt−1(xt−1) Kt(xt|xt−1)
.

(6.3.10b)

As such the weighted ensemble {xj
t−1:t, w

j
t}Nj=1 follows the joint distribution rt(xt−1:t)

and {xj
t , w

j
t}Nj=1 follows the marginal distribution qt. By repeating this procedure,

one can obtain weighted samples from the sequence of distributions {qt}Tt=1.

SMCS implementation

For the SMCS method, the choice of forward and backward kernels is essential.

While noting several methods exist for determining the optimal forward kernel, in

our later application, we adopt the MCMC kernel proposed by Del Moral et al.

(2006), which is closely related to the Metropolis step in MCMC (as the name

suggests).

Specifically, the forward kernel (more precisely, the process for generating sam-

ples from the forward kernel) is constructed as follows. A proposal distribution

k(xt|xt−1) is chosen and using a sample from the previous iteration xj
t−1, we draw a

sample x∗
t from k(xt|xj

t−1), and then accept (or reject) x∗
t according to the following

acceptance probability:

at(x
∗
t |x

j
t−1) = min

{
qt(x

∗
t )

qt(x
j
t−1)

k(xj
t−1|x∗

t )

k(x∗
t |x

j
t−1)

, 1

}
. (6.3.11)
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That is, we set

xj
t =


x∗
t , with probability at(x

∗
t |x

j
t−1)

xj
t−1, otherwise.

(6.3.12)

Once a forward kernel Kt(xt|xt−1) is chosen, one can determine an optimal choice

of Lt−1 by:

Lopt
t−1(xt−1|xt) =

qt−1(xt−1)Kt(xt|xt−1)

qt(xt)

=
qt−1(xt−1)Kt(xt|xt−1)∫

qt−1(xt−1)Kt(xt|xt−1)dxt−1

,

(6.3.13)

where the optimality is achieved through yielding the minimal estimator variance

(Del Moral et al., 2006). In reality, this optimal backward kernel usually cannot be

used directly as the integral on the denominator cannot be calculated analytically.

However, when the MCMC kernel is used, an approximate optimal kernel can be

derived4 from Eq. (6.3.13), as:

Lt−1(xt−1|xt) =
qt(xt−1)Kt(xt|xt−1)

qt(xt)
. (6.3.14)

When Eq. (6.3.14) is used, the incremental weight function αt(xt−1,xt) in Eq.

6.3.10b, reduces to the following:

αt(xt−1,xt) =
qt(xt−1)

qt−1(xt−1)
. (6.3.15)

Note that, interestingly, when Eq. (6.3.14) is used, only the previous sample is used

in the weight calculation. Later, in our proposed algorithm, we use the MCMC

kernel and Eq. (6.3.14) as the forward and backward kernels, respectively.

To alleviate sample degeneracy, a key step in SMCS is the resampling of samples

according to their associated weights. In SMCS, typically, resampling is conducted

4The detailed derivation can be found in Del Moral et al. (2006).
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when the effective sample size (ESS) is lower than a prescribed threshold value

ESSmin (Doucet and Johansen, 2009). To conclude, we provide the complete proce-

dure of SMCS in Algorithm 7, to generate M samples from the target distribution

qt(·).

Algorithm 7 Sequential Monte Carlo sampler

1: Input: Number of iterations T , number of particlesM , initial weighted ensemble

{(xj
0, w

j
0)}Mj=1, proposal function k(·|·), target distribution q(·), ESSmin

2: for t = 1 to T do

3: for j = 1 to M do

4: Draw x∗
t from k(·|xj

t−1)

5: Calculate the acceptance probability a(x∗
t ,x

j
t−1)

6: Determine xj
t based on the acceptance probability

7: Calculate αj
t for weight adjustment

8: Update weight: wj
t = wj

t−1 · α
j
t

9: end for

10: Normalize the weights of the ensemble

11: Calculate the Effective Sample Size (ESS)

12: if ESS < ESSmin then

13: Resample the ensemble

14: Set wj
t =

1
M

for all j = 1, . . . ,M

15: end if

16: end for

17: Return: Final ensemble {(xj
T , w

j
T )}Mj=1
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In the SMCS algorithm, each particle in the ensemble denoted as {(xj
t ,w

j
t )}Mj=1,

is updated independently, rendering the algorithm highly parallelisable. Specifi-

cally, the operations for drawing a new sample x∗
t from the proposal function k(·|·),

calculating the acceptance probability a(x∗
t ,x

j
t−1), updating the state xj

t , and ad-

justing weights αj
t for each particle j can be executed simultaneously across multiple

processors. This independent processing, devoid of sequential dependency between

particles, significantly enhances computational efficiency, making SMCS particularly

suited for distributed parallel computing environments. Moreover, the parallelisable

nature of the resampling step, essential when the Effective Sample Size (ESS) falls

below ESSmin, further contributes to the scalability of SMCS, allowing for efficient

handling of large-scale problems.

To summarise, the SMCS algorithm is easily parallelisable, which is the main

advantage over MCMC; in addition, SMCS is designed for sampling from a sequence

of target distributions—we will take advantage of both features in our later proposed

algorithm.

SMCS implementation (kernel choice)

Critical to the success of SMCS is the kernel choice, Green et al. (2022) showed

that the use of an approximately optimal L-kernel reduces the variance of SMCS

estimates by up to 99% while also reducing the number of times that resampling

was required by between 65% and 70%..

Recent developments in designing proposal or kernel distributions include Heng

et al. (2020), which introduces an iterative scheme to approximate the solution of an

associated optimal control problem for deriving proposal distributions. This scheme

minimises the KL-divergence between the target and proposal distributions.

Another approach, proposed by Wu et al. (2020), involves using the Ensemble

Kalman filters (EnKF) framework to construct kernels for SMCS. EnKF approx-
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imates the posterior distribution with a Gaussian and derives the forward kernel

from that approximation. Meanwhile, the backward kernel is based on a Gaussian

approximation of the optimal backward kernel.

Finally, South et al. (2019) suggest using independent proposal distributions,

which are highly parallelisable to exploit parallel computing power. This approach

allows for estimating the posterior by reusing all MCMC candidates generated, re-

sulting in significant ESS improvements.

SMCS implementation (resampling techniques)

Resampling is a crucial step in SMCS, where samples are selected based on their

associated weights. Douc and Cappé (2005) provided a comprehensive overview of

four major resampling techniques (Multinomial, Residual, Stratified, and System-

atic) including numerical examples demonstrating the choice of resampling tech-

nique is highly problem-dependent. From a theoretical perspective, only residual

and stratified resampling methods can be proven to outperform the basic multino-

mial resampling approach.

Further SMCS adaptations

Surrogate functions. Studies have explored the use of surrogate functions to

improve the efficiency of Sequential Monte Carlo Sampling (SMCS) in dealing with

sequences of distributions and overall performance functions. Recently, a paper by

Bon et al. (2021) introduces a technique called delayed-acceptance (DA) to reduce

the computational effort required to approximate the posterior expectation. This

technique involves using a surrogate model to initially screen proposed samples and

reject those that are likely to be rejected based on the surrogate model. This reduces

the number of likelihood evaluations and computational expenses incurred by the

full calculation with the actual likelihood function. The paper provides details on

142



designing the DA kernel and selecting appropriate parameters, which has demon-

strated the efficiency of this method, particularly when dealing with computationally

expensive performance or likelihood functions. The paper also addresses potential

issues arising from mismatched tail probabilities in the target and surrogate models.

Nested SMCS. If SMCS faces challenges while sampling from complex and

high-dimensional problems, Naesseth et al. (2015) proposed a possible solution

known as “Nested SMCS”. This approach employs a Nested Sequential Monte Carlo

(NSMC) sampler to generate an efficient proposal distribution for the next NSMC

sampler. The nesting can occur to any degree, making it a flexible solution. NSMC

requires only approximate, properly weighted samples to be generated from the pro-

posal distribution, making it usable within another NSMC procedure. The paper

highlights the robust performance of this nested approach, particularly in handling

difficult high-dimensional scenarios.

Summary of sequential Monte Carlo sampler

The sequential Monte Carlo sampler is a robust method for drawing samples from

a sequence of target distributions, using weighted samples and resampling steps

to ensure that samples effectively represent the evolving target distribution. The

computational cost of SMCS can be high, especially when dealing with expensive

likelihood evaluations, limiting its scalability for certain applications. Later in this

chapter, we provide more details on the strengths and weaknesses of this method—

but first, we introduce population Monte Carlo.

6.3.3 Population Monte Carlo

The population Monte Carlo method (PMC) was proposed in Cappé et al. (2004). In

the context of PMC, the importance sampling distributions change in each iteration

based on the performance of the previously generated samples. It has the advantage
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of generating unbiased samples in every iteration. As a result, the process can

be terminated at any point to produce a set of samples that are approximately

simulated from the target distribution.

A useful reference text for PMC by Lee et al. (2011) focuses on how to adapt

PMC for high-dimensional problems. In addition, the paper by Cappé et al. (2007)

is useful for comparing sequential methods. We state the algorithm here and refer

the reader to the paper by Cappé et al. (2004) for the complete derivation and

rationale.

The algorithm

The population Monte Carlo Algorithm is as follows (for sample sizeM) as provided

by Cappé et al. (2004).

Algorithm 8 Population Monte Carlo

1: Input: Number of iterations T , number of samples M , target distribution π(·)

2: for t = 1, ..., T do

3: for j = 1, ...,M do

4: Select the proposal distribution qjt(·)

5: Generate x
(t)
j ∼ qjt(·) and compute w

(t)
j = π(x

(t)
j )/qjt(x

(t)
j )

6: Normalize the weights w
(t)
j

7: Resample N values from the x
(t)
j ’s using the normalized weights w

(t)
j

8: end for

9: end for

10: Return: Set of resampled values {x(T )
j }Mj=1 and their weights {w(T )

j }Mj=1

PMC implementation

Key to the performance of PMC, in terms of sample quality and efficiency, is the

choice of the proposal distribution qit(·), which changes with the iteration index
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t and sample index i. The most basic implementation is for the proposal distri-

butions qit(·) to be random walks centred at the previous samples x
(t−1)
i . More

complex implementations adapt to the quality of the samples from the previous

step (x
(t−1)
1 , ...,x

(t−1)
N ), or, if storage allows, all previous samples generated across all

iterations. In either case, a variance criterion is widely used to determine qit(·).

PMC adaptation

Cross-entropy PMC. In Section 7.1, we will discuss the cross-entropy (CE)

method, which is a popular technique for determining the optimal proposal dis-

tribution. Recently, Miller et al. (2021) proposed a cross-entropy based population

Monte Carlo algorithm (CE-PMC).

The algorithm works by introducing a new parameter µ to parametrise the bias-

ing distribution qit(·). Samples are drawn from an adapted proposal distribution x
(t)
i

from qit(·, µ(t)
i ). The optimal value for µ

(t)
i is then determined using cross-entropy.

Numerical examples show that the proposed method is more computationally

efficient than standard CE, especially for high-dimensional problems. The authors

plan to investigate whether smoothing the performance functions could further en-

hance the algorithm’s efficiency and performance.

Summary of population Monte Carlo

The main advantage of population Monte Carlo is its ability to generate unbiased

samples at each iteration, enabling it to be used for adaptive importance sampling

and effectively approximating target distributions. However, the performance of this

technique is highly reliant on the selection of the proposal distributions, which can

be challenging to design for complex, high-dimensional problems.
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6.3.4 Comparison of sampling methods

Rare event simulations—as demonstrated in the next chapter—rely on the ability to

sample from complex high-dimensional probability distributions effectively and effi-

ciently. MCMC is the most widely used due to its efficiency, as the input PDF only

needs to be known up to a multiplicative constant. However, there are drawbacks

to MCMC, which SMCS and PMC address—as summarised in Table 6.3.4.
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Table 6.1: Comparison of sampling methods

Aspect MCMC SMCS PMC

Parallelism Struggles with
parallelism due
to its serial na-
ture. Cannot fully
utilise advances
in High-Powered
computing.

Easily parallelis-
able, leveraging
parallel HPC.

Easily parallelis-
able, leveraging
parallel HPC.

Sample Correla-
tion

Generates cor-
related samples,
requiring au-
tocorrelation
adjustments and
leading to ineffi-
ciencies.

Generates inde-
pendent, uncorre-
lated samples.

Generates inde-
pendent, uncorre-
lated samples.

PDF Error Esti-
mation

Challenging to
estimate the error
in PDF estimation
due to correlated
samples (Lima
et al., 2005).

Easier error esti-
mation with inde-
pendent samples.

Easier error esti-
mation with inde-
pendent samples.

Burn-in Period Requires a sig-
nificant burn-in
period to reach
stationary distri-
bution.

Does not require a
burn-in period.

Does not require a
burn-in period.

Data Utilisation Uses all data in a
single batch, po-
tentially missing
out on sequential
data structures
(Gilks et al.,
1995).

Updates posterior
distribution with
new data. Draws
samples directly
from the poste-
rior.

Updates posterior
distribution with
new data. Draws
samples directly
from the poste-
rior.

6.4 Conclusion

In conclusion, this chapter introduced rare event simulations to model events with

minuscule probabilities. Such tail events pose unique challenges in risk analysis;
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Monte Carlo methods offer a robust approach to tackle them, where MC’s accuracy

does not depend on the dimensionality of the input space, avoiding the “curse of

dimensionality”. However, MC’s efficiency diminishes when estimating small proba-

bilities due to the substantial number of samples required. Recognising this limita-

tion, importance sampling techniques were established to enhance the accuracy and

efficiency of MC simulations by using biasing distributions to generate more samples

in the region of interest to quantify tail events better. More advanced techniques

exist, which we explore next.

This chapter also introduced a key aspect of rare event simulation: the im-

portance of generating samples from probability distributions. It highlighted three

widely used sampling methods: Markov chain Monte Carlo (or Metropolis-Hastings)

algorithm, sequential Monte Carlo sampler, and population Monte Carlo. These

methods are fundamental to the more advanced algorithms for rare event simulation

and failure probability estimation, which we explore in the next chapter—allowing

us to continue towards our second objective: to develop new methodologies which

better predict the probability and impact of tail events.
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Chapter 7

Advanced Techniques for Risk

Analysis

Quantifying uncertainty and tail risk is crucial for effective risk management. Monte

Carlo and importance sampling methods can simulate rare events and estimate fail-

ure probabilities in simple problems. However, such approaches are inefficient for

problems with high dimensionality, extremely small target probabilities, or com-

plex multi-modal performance functions. Therefore, alternate numerical simulation

techniques have been developed, including cross-entropy, subset simulation, line

sampling, first-order reliability methods, and second-order reliability methods.

This chapter briefly introduces these approaches, drawing comparisons and high-

lighting limitations to motivate our proposed algorithm (presented in Chapter 8).

Restating our problem set-up, let x be a random vector defined on Rd with probabil-

ity density p(x). Given a performance variable (yg) defined by a function yg = g(x),

the aim is to estimate the probability of a failure event, defined as:

F = {x ∈ X| yg = g(x) > y∗g}. (7.0.1)
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The failure probability is defined as,

PF = P(F ) =
∫

{x∈X|g(x)>y∗g}

p(x)dx =

∫
x∈X

IF (x)p(x)dx, (7.0.2)

where IF (x) is an indicator function of the set F:

IF (x) =


1, if x ∈ F ;

0, if x /∈ F .
(7.0.3)

The failure probability can be estimated directly, or through determining the distri-

bution π(yg) of the performance variable, from which the expectation of yg and the

failure probability of yg > y∗g can be obtained.

7.1 Cross-entropy

Proposed by Rubinstein (1999), the cross-entropy (CE) method is one of the most

widely used rare event simulations, which utilises Kullback-Leibler divergence to

determine an optimal importance sampling distribution. We present CE based on

De Boer et al. (2005).

7.1.1 The method

Kullback-Leibler (KL) divergence is a measure of divergence between two probability

distributions, formally defined as:

Definition 7.1.1 Let p(x) and q(x) be two continuous probability distributions. The

Kullback-Leibler divergence DKL(p(x), q(x)) is defined by

DKL(p(x), q(x)) =

∫ ∞

−∞
p(x) ln

(
p(x)

q(x)

)
dx. (7.1.2)
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CE tries to find an importance sampling, or biasing distribution q(x) which

is close to the target distribution p(x), as measured by KL divergence1. Suppose

p(x) and q(x) are continuous probabilities distributions, and that q(x) is from a

distribution family Q, we obtain the following optimisation problem:

min
q∈Q

DKL(p(x), q(x)) = min
q∈Q

∫ ∞

−∞
p(x) ln

(
p(x)

q(x)

)
dx. (7.1.3)

Expanding the KL divergence obtains:

DKL(p(x), q(x)) =

∫ ∞

−∞
p(x) ln

(
p(x)

q(x)

)
dx

=

∫ ∞

−∞
p(x) ln(p(x)) dx−

∫ ∞

−∞
p(x) ln(q(x)) dx.

(7.1.4)

As the first term is a constant, the optimisation problem can be written as:

max
q∈Q

∫ ∞

−∞
p(x) ln(q(x)) dx, (7.1.5)

equivalent to,

max
q∈Q

∫ ∞

−∞

g(x)p(x)

E[g]
ln(q(x)) dx, (7.1.6)

or

max
q∈Q

∫ ∞

−∞
g(x)p(x)ln(q(x)) dx, (7.1.7)

where each term is known.

To make the optimisation problem easier to solve, one can consider q(x) in a

parametrised form q(x|θ), for θ in state space Ω. From which, the complete cross-

entropy method can be stated (Algorithm 9)—to estimate the expectation of yg.

1Note: KL divergence cannot be considered a distance measure, as it is not symmetric. The
KL divergence from p(x) to q(x) differs from q(x) to p(x).
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Algorithm 9 Cross-entropy method

1: Input: Number of samples M , initial distribution p(x), modified distribution
q(x|θ), function g(x)

2: Draw M samples x1, ...,xM from p(x)
3: Solve the optimization problem to find θ:

argmax
θ∈Ω

F̂ (θ) =
1

M

M∑
j=1

g(xj) ln(q(xj|θ))

4: Draw M samples x1, ...,xM from q(x|θ)
5: Estimate ĝIS = 1

M

∑M
j=1 g(xj)w(xj), where w(xj) =

p(xj)

q(xj |θ)
6: Return: Estimated value ĝIS

To estimate failure probability using CE, replace the function g(x) with an in-

dicator function related to the failure event of interest—the remaining procedure is

unchanged.

7.1.2 Cross-entropy summary

The cross-entropy method presents a robust framework for rare event simulation,

leveraging the Kullback-Leibler divergence to optimise an importance sampling dis-

tribution. However, for very rare events, the method can struggle to find an appro-

priate biasing distribution.

To address this limitation, Li et al. (2011) propose a novel hybrid methodology

that integrates surrogates with the cross-entropy (CE) method to enhance compu-

tational efficiency. This innovative technique diverges from the conventional CE

optimisation procedure by operating on a surrogate, denoted as ĝ, in lieu of the ac-

tual limit state function g. To bolster accuracy and circumvent potential loss when

utilising surrogates, the study incorporates a hybrid strategy, building on earlier

work by Li and Xiu (2010) to strategically integrate information from g when ĝ

approaches zero. The results demonstrate clear and demonstrable improvements in

efficiency compared to the standard CE implementation.
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7.2 Subset simulation

Au and Beck (2001) introduced a novel approach for evaluating rare event fail-

ure probabilities called subset simulation (SS), which leverages intermediate failure

events to streamline the calculation process. The paper by Au et al. (2007) vali-

dates SS’s efficacy—through application to the Schueller tests2—underscoring SS’s

advancement in computational efficiency compared to traditional MC methods.

7.2.1 The method

In this section, we draw on the foundational work of Au and Beck, and insights from

Zuev (2015). Subset simulation begins by decomposing the failure event F into a

sequence of nested events Fk, such that

F = Fm ⊂ Fm−1 ⊂ ... ⊂ F1, (7.2.1)

where F1 is a common event (with high probability) and Fk are increasingly rare

events, from k = 1 until k = m, the event of interest. Given this sequence, the

probability of failure P(F ) can be represented as the product of larger probabilities:

P(F ) = P(Fm)

= P(F1)
P(F2)

P(F1)

P(F3)

P(F2)
...
P(Fm−1)

P(Fm−2)

P(Fm)

P(Fm−1)

= P(F1) · P(F2|F1) · ... · P(Fm|Fm−1),

(7.2.2)

where P(Fk|Fk−1) = P(Fk)/P(Fk−1) denotes the conditional probability of event Fk

given the occurrence of event Fk−1 for k = 2, ...,m.

In subset simulation, the conditional probabilities are determined adaptively as

2The Schueller tests evaluate and compare the effectiveness of numerical techniques in reliability
estimation of structural systems in high-dimensional spaces.

153



the algorithm proceeds. A sampling method—like MCMC—is used to generate

samples from each conditional distribution, from which each subset’s probability

can be estimated. After which, the target probability P(Fm) can be estimated using

7.2.2.

7.2.2 The algorithm

The best SS algorithm summary is in Zuev et al. (2012), which we adapt for our

notation as Algorithm 10.

7.2.3 SS implementation

To ensure subset simulation is effective, it is crucial to choose an appropriate sam-

pling method for transitioning from one set of samples to the next in each conditional

probability stage. Typically, MCMC is used, where Zuev, in collaboration with Beck

and Au, found the optimal acceptance/rejection level in MCMC should be around

23%, with a conditional failure probability of p0 = 0.2 (Zuev et al., 2012).

If the step size within the sampling method is too large, there’s a high likeli-

hood of rejection during the acceptance/rejection step. On the other hand, if the

step size is too small, the Markov Chain will explore the new distribution too slowly,

requiring many samples; particularly in high-dimensional spaces. A simple SS adap-

tation to address this balancing dilemma is a component-wise Metropolis-Hastings

method, which generates new samples by independently varying each dimension,

thereby increasing the likelihood of sample acceptance—detailed in Papaioannou

et al. (2015).

In SS, the intermediate failure region is determined so that the conditional fail-

ure probability at each level, P (Fi|Fi−1), equals a predefined value (e.g., p0 = 0.2

as per Zuev et al.). However, achieving this exact probability at each level is not

always feasible (Au et al., 2007)—a significant source of uncertainty in the final
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failure probability estimation. To address this, Zuev et al. (2012) propose a subset

simulation Plus method, which generates a posterior PDF of the failure probabil-

ity, utilising both the sampled data and prior knowledge of the model—that is, a

Bayesian approach.

Algorithm 10 Subset simulation
Input:
Set p0, the conditional failure probability for k = 0;
Choose N , the number of samples per conditional level.
Algorithm:

1: Set NF (k) = 0, number of failure samples at level k

2: Sample x
(1)
0 , ...,x

(N)
0 ∼ p(x)

3: for i = 1, ..., N do
4: if g(i) = g(x

(i)
0 ) > b then

5: NF (k)← NF (k) + 1
6: end if
7: end for
8: while NF (k)/N < p0 do
9: k ← k + 1

10: Sort {g(i)} : g(i1) ⩽ g(i2) ⩽ ... ⩽ g(iN )

11: Define bj =
g
(iN−Np0

)
+g

(iN−Np0+1)

2

12: for j = 1, ..., Np0 do

13: Starting from x
(1),j
k = x

(iN−Np0+j)

k−1 ∼ p(·|Fk),

generate 1/p0 states of x
(1),j
k , ...,x

(1/p0),j
k ∼ p(·|Fk), using MCMC

14: end for
15: Renumber: {x(i),j

k }Np0,1/p0
j=1,i=1 → x

(1)
k , ...,x

(N)
k ∼ p(·|Fk)

16: for i = 1, ..., N do
17: if gi = g(x

(i)
k ) > b then

18: NF (k)← NF (k) + 1
19: end if
20: end for
21: end while

Output:
p̂SSF , estimate of pF :

p̂SSF = pk0
NF (k)

N
(7.2.3)
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7.2.4 SS adaptations

This section briefly describes some popular SS adaptations and recent developments.

Hamiltonian Monte Carlo SS (HMC-SS) proposed by Wang et al. (2019)

leverages Hamiltonian dynamics for sampling in the SS framework by transforming

the probability space into Hamiltonian terms, treating the outcome event as a po-

sition vector and the probability structure as potential energy. HMC-SS, especially

in its Rejection Sampling (RS-HMC) form, outperforms standard MCMC in explor-

ing probability spaces for both Gaussian and non-Gaussian models. However, the

Barrier Bouncing (BB-HMC) variant incurs higher computational costs, making it

less suitable for general reliability problems.

Generalised SS (GSS) proposed by Cheng et al. (2022) modifies failure thresh-

olds and amplifies input variables to more efficiently navigate towards the failure re-

gion. Utilising coordinate rotation and standard deviation amplification techniques

similar to Single Value Decomposition, GSS has shown computational improvements

over standard SS but is less effective for performance functions unrelated to the

strongest response variation and in problems with more than a hundred dimensions.

Control variate SS (CV-SS) proposed by Abdollahi et al. (2020) is designed

for problems with highly non-linear or misleading performance functions. CV-SS em-

ploys MCMC for sample generation, incorporating control variates for the proposal

distribution and failure probability calculation. While promising, further analysis is

required to evaluate its effectiveness against standard SS-MCMC and other methods.

Kriging methods proposed by Dubourg et al. (2011), are used to create sur-

rogate models of complex performance functions, reducing computation time. It

allows for error estimation within the surrogate models and final failure probabil-

ity. However, this approach is less efficient with large design experiments and is

unsuitable for non-smooth performance functions.
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Splitting and hybrid SS was propsed by Au et al. (2007). Splitting SS is suit-

able for deterministic dynamical systems with stochastic excitations, while Hybrid

SS is an extension that accommodates systems with uncertain parameters. These

methods efficiently generate new samples but have limitations in thoroughly explor-

ing the failure region and require specific system conditions for optimal performance.

Bayesian subset simulation (BSS) proposed by Bect et al. (2017) integrates

subset simulation with Sequential Monte Carlo Sampling (SMCS)—as the sampling

method within each conditional failure region iteration. BSS shows significant com-

putational advantages over standard SS-MCMC. Future research aims to assess the

method’s robustness relative to the number of evaluations per intermediate level.

7.2.5 Subset simulation summary

Subset simulation is a sophisticated method for estimating rare failure probabilities,

particularly in high-dimensional spaces. Its primary strength lies in its ability to

efficiently compute these probabilities by decomposing the failure event into a series

of nested events, thus simplifying the process and significantly improving compu-

tational efficiency compared to traditional Monte Carlo methods. However, SS is

unable to reconstruct the entire distribution g(x)—rendering SS unsuitable for the

estimation of VaR and CVaR—as these risk measures depend on the entire distri-

bution of outcomes.

7.3 Further methods for failure probability esti-

mation

We now provide a very brief summary of line sampling, the first-order reliability

method (FORM), and the second-order reliability method (SORM).
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7.3.1 Line sampling

Line sampling (LS) was devised for addressing high-dimensional challenges with

non-linear performance functions and multiple failure regions (Koutsourelakis et al.,

2004). LS utilises stepwise estimation, using information from the samples generated

at each intermediate step, to probe the failure domain (similar to SS but with lines

rather than points).

At the core of LS is the identification of an important direction, denoted as α,

oriented towards the failure region(s). This involves utilising a sampling method,

typically MCMC, to generate initial sample points, from which lines parallel to α are

extended towards the failure regions. LS enables the estimation of failure probability

by measuring the distance between each sample point and the limit state function.

The efficacy of LS was tested on the Schueller tests in a study by Pradlwarter

et al. (2007). The tests revealed that LS is most effective in scenarios where the

critical failure directions are identifiable and the system exhibits weakly non-linear

reliability. The study concluded that in cases of increased complexity, universally

applicable methods like subset simulation yield more reliable results.

Algorithm 11 Line sampling for failure probability estimation

1: Input: Target distribution π(·), failure domain F , number of samples M .
2: Initialisation: Estimate the most probable point (MPP) on the limit state

surface.
3: for j = 1 to M do
4: Generate a random direction vector dj from the MPP.
5: Perform a line search along dj to find the intersection with the limit state

function.
6: Sample points along the line segment within the failure domain F .
7: Estimate the failure probability contribution from this line.
8: end for
9: Aggregate the failure probability contributions from all lines.

10: Return: Estimated failure probability.
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7.3.2 FORM and SORM

In structural reliability, the first-order reliability method (FORM) is widely used

for assessing the failure probability. FORM transforms the problem into a stan-

dard normal space, where the most probable point (MPP) of failure is identified.

The reliability index, β, is then computed, which is inversely related to the failure

probability. FORM is particularly effective for linear and mildly non-linear prob-

lems, balancing accuracy and computational efficiency (Ditlevsen and Madsen, 1996;

Rackwitz, 2001).

The second-order reliability method (SORM) extends FORM by including second-

order terms in the Taylor series expansion of the limit state function around the

MPP. This provides a more accurate failure probability estimation, especially in

cases where the limit state surface is highly non-linear near the MPP (Hohenbichler

and Rackwitz, 1987; Breitung, 1984). While SORM is computationally more inten-

sive than FORM, its improved accuracy makes it valuable for complex engineering

problems.

Algorithm 12 First-order reliability method (FORM)

1: Input: Limit state function g(x), stochastic model of variables x
2: Initialisation: Transform variables x to standard normal space U
3: Find the design point u∗ (most probable point of failure) in U-space using an

optimisation algorithm
4: Calculate the reliability index β = −Φ−1(Pf ), where Pf is the failure probability

and Φ−1 is the inverse of the standard normal cumulative distribution function
5: Return: Reliability index β and failure probability Pf = Φ(−β)
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Algorithm 13 Second-order reliability method (SORM)

1: Input: Limit state function g(x), stochastic model of variables x
2: Initialisation: Transform variables x to standard normal space U
3: Find the design point u∗ (most probable point of failure) inU-space using FORM
4: Approximate the limit state surface at u∗ by a second-order (quadratic) surface
5: Calculate the curvature radii κi at u

∗

6: Use the curvature information to correct the FORM failure probability, adjusting
for second-order effects

7: Return: Adjusted failure probability Pf accounting for second-order effects

7.3.3 Comparison

Objective two of this thesis (“Risk Management”) is to develop methodologies that

better predict the probability and impact of tail events in financial markets. This

objective is motivated by the recognition that traditional financial models often fail

to accurately predict and manage extreme market scenarios, such as “Black Swan”

events. Additionally, this thesis aims to ensure uncertainty—from financial markets

and mathematical models—is considered in investment risk management.

This chapter set out to provide a comprehensive evaluation of risk management

strategies and rare event simulation methodologies. They have been discussed in the

general setting—now we provide comments specifically concerning risk management

in financial markets and portfolio optimisation. The paper by Schuëller et al. (2004)

compares rare event simulation methods in the context of structural engineering, we

draw on this review.

Direct MC is straightforward, it can handle multiple design criteria and points

with high accuracy and is suitable for high-dimensional problems, but it is highly

inefficient for estimating small probabilities due to its requirement for a large number

of samples. This inefficiency is particularly problematic in financial markets, where

rare events, though infrequent, can have substantial impacts—the inefficiency of MC

in this context is emphasised in recent studies (see e.g., Embrechts et al. (2013)).
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FORM is effective for linear limit state functions, offering high efficiency and

suitability for medium-dimensional problems, but its accuracy is very low, especially

for multiple design criteria. SORM incorporates second-order approximations to

handle non-linearities. However, it has limited efficiency and accuracy, particularly

for high-dimensional problems. This limitation becomes critical in complex financial

models where non-linearity and high dimensionality are common. This criticism

of FORM and SORM in handling complex, real-world scenarios is supported by

Rackwitz (2001).

Importance sampling (IS) has improved efficiency compared to MC and is more

robust than FORM and SORM. However, determining the optimal distribution for

complex problems can be challenging. IS’s performance in medium-dimensional

problems is notable, but its application in more complex scenarios encountered in

financial markets can be problematic, as noted in the works of Glasserman (2004).

Subset simulation (SS) breaks down the problem of failure estimation into in-

termediate stages to efficiently estimate small probabilities. It is widely applicable,

performing well irrespective of the nature of the performance function and excelling

in high dimensions. However, its tendency to generate biased samples and provide

only a single probability value for a failure event limits its application in financial risk

management, where a more comprehensive understanding of the risk distribution is

crucial.

Finally, line sampling (LS) performs well in high-dimensional problems, identi-

fying critical failure directions. Its efficiency, however, depends on an assumption

of independence in sampling. The reliance on this assumption can be a drawback

in financial markets modelling, where correlations between assets are common, as

highlighted by McNeil et al. (2015).

Schuëller et al. (2004) produced a useful summary table for comparing rare event
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simulation methods (albeit, for structural reliability problems)—it is reproduced

here for reference.

Method Multiple
design
criteria

Multiple
design
points

Accuracy Dimension Efficiency

Direct
MC

Yes Yes High High Low

FORM Yes Yes Very low Medium High
SORM No No Low Medium Low
Standard
IS

Yes No Medium Medium Medium

IS with
kernel
density
estimator

Yes Yes High Medium Medium

SS Yes Yes High High High
LS Yes Yes High High High
LS using
stepwise
estima-
tors

Yes Yes High High High

Table 7.1: Comparison of rare event simulation techniques (Schuëller et al., 2004)

7.4 Motivation

As discussed in Chapter 5, to capture tail risk and accommodate uncertainty, equity

and credit risk management hinges on the ability to reconstruct probability distri-

butions entirely. In equity risk, distribution reconstruction is pivotal for accurately

evaluating the probability of extreme market movements. For credit risk, especially

in copula models, the challenge extends to modelling joint default distributions—to

assess the risk of clustered defaults. In order to fully assess the risks of potential fail-

ures, it is important to obtain the complete probability distribution of a performance

variable to capture both the likelihood and severity of failures.
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Obtaining the complete distribution of forecasted returns is necessary in portfo-

lio optimisation too: from robust optimisation, which focuses on mean and variance

(Du and Chen, 2004), to risk-based optimisation, where tail probability and ex-

treme quantiles are of interest (Rockafellar and Uryasev, 2000); and finally, utility

optimisation, where the entire distribution of the performance variable is required

(Hazelrigg, 1998). In summary, all three areas – equity risk, credit risk, and failure

probability estimation – necessitate the detailed reconstruction of probability distri-

butions. However, the methods explored so far can only predict the probability of

a single failure event. Our focus is on developing a new algorithm that can obtain

the entire probability distribution of g(x).
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Chapter 8

The Multicanonical Sequential

Monte Carlo Sampler

The inherent uncertainty within financial markets significantly influences investment

performance and risk. These uncertainties stem from various sources, such as eco-

nomic variables, market dynamics, investor behaviour, and external shocks. In risk

management, a central task is to characterise and quantify these uncertainties.

Mathematical models and simulations are important tools to assess how systems

are impacted by uncertainty. Within these, the performance variable y can be

considered as a performance measure, expressed by a function y = g(x), where the

multi-dimensional random variable x represents all the uncertainty factors affecting

the system; the performance function is usually not of analytical form and needs to

be evaluated by simulating the underlying mathematical model. In finance, y could

represent the future return distribution for a specific portfolio allocation.

Several advanced Monte Carlo techniques exist to provide a variance-reduced

estimator for a quantity associated with the distribution of y, such as the failure

probability. Our research has shown that to capture tail risk fully, it is necessary to

obtain the complete probability distribution of y = g(x).
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One method for reconstructing probability distributions is ‘multicanonical Monte

Carlo’ (MMC); a form of adaptive importance sampling. In MMC, the state space

of the performance variable is split into a set of small bins, from which a (so-called)

flat-histogram importance sampling distribution is constructed. This IS distribution

ensures sampling occurs with equal probability for each bin; as such, MMC can

obtain the entire distribution of y, including the tails, significantly more efficiently

than using standard MC1.

Brief history of MMC

In 1991 and 1992, Bernd Berg and Thomas Neuhaus published two papers presenting

a new approach for simulating first-order phase transitions in Physical Systems called

multicanonical ensemble (Berg and Neuhaus, 1991, 1992). Almost a decade later, a

follow-up paper by Berg (2000) applied multicanonical Monte Carlo to simulating

physical systems.

MMC was first applied to statistics by Yevick (2002), in the paper ‘Multicanonical

communication system modelling - application to PMD statistics’. The paper used

MMC to quantify the impact of polarization mode dispersion (PMD) on outages in

optical fibre systems. As outage probability is typically of order 10−5 or less, stan-

dard MC would be too inefficient, so Yevick used MMC to generate the probability

density function (PDF) of the outage probability under different scenarios. Subse-

quently, many papers applying MMC to topics in optimal communication have been

published (see e.g., Biondini et al. (2002); Holzlööhner and Menyuk (2003); Bononi

et al. (2009)).

1We note that an alternative approach would be to use surrogate models approximating the
performance function; however, this is an entirely different strategy from developing sampling
schemes. In certain applications, surrogate methods struggle (e.g. when the performance function
is of high dimensions (Koziel et al., 2011), like in Bayesian ARMA-GARCH models), so sampling
methods like MMC are more appropriate; therefore, this thesis restricts itself to such sampling
methods.

165



MMC (primarily used in communications system engineering) has yet to be ap-

plied to financial modelling. With some adaptation and enhancements, we believe

MMC can fill the gap in current risk methods, where complete probability distri-

bution reconstruction is required. In the next few sections, we present the MMC

algorithm, drawing on the presentations by Bononi et al. (2009) and Wu and Li

(2016) and provide guidance on optimal implementation. This work builds to the

presentation of our proposed algorithm, called ‘multicanonical sequential Monte

Carlo sampler’; an adaptation of MMC which allows for parallel implementation,

more efficient sampling, and specific application to financial modelling.

8.1 Problem setup

Let x be a d-dimensional random vector following distribution p(x) and let y be a

scalar random variable characterised by a function y = g(x). We want to determine

the probability density function (PDF) of y, given by π(y), where we assume that

both x and y are continuous random variables.

In Section 6.1.3, we detailed how π(y) could be estimated using a Monte Carlo

simulation. In summary, the bounded support Ry = [a, b] of π(y) is decomposed

into K bins of equal width ∆ centred at the discrete values {b1, ..., bK}, implicitly

defining a partition of the input space X into K domains {Di}Kk=1. We reprint the

illustration of the connection between distribution π(y) and the mapping Bk to Dk.
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Figure 8.1: Schematic illustration of the connection between Bk and Dk.

By defining an indicator function IDk
(x), which classifies if an x-value is in bin

Dk or not, the probability that y is in the kth bin, i.e. Pk = P{y ∈ Bk}, can be

written as an integral in the input space:

Pk =

∫
Dk

p(x)dx =

∫
IDk

(x)p(x)dx = E[IDk
(x)]. (8.1.1)

Using this, Pk can be estimated via a standard MC simulation, by drawing M i.i.d.

samples from p(x) and then estimating Pk with:

P̂MC
k =

1

M

M∑
j=1

IDk
(xj) =

Mk

M
, for k = 1, ..., K, (8.1.2)

where Mk is the number of samples that fall in bin Bk. From {Pk}Kk=1, the PDF

of y at the point yk ∈ Bk — for a sufficiently small ∆ — can be calculated as

π(yk) ≈ Pk/∆.

8.1.1 Flat histogram importance sampling

To accurately reconstruct π(y), using a MC simulation, a large number of samples is

required, particularly for narrow-tailed distributions. To improve efficiency, impor-

tance sampling can be utilised, to artificially increase the number of samples within
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the histogram’s tail bins. For IS distribution q(x), Eq. 8.1.1 can be re-written as

Pk =

∫
IDk

(x)

[
p(x)

q(x)

]
q(x)dx = Eq[IDk

(x)w(x)], (8.1.3)

where w(x) = p(x)/q(x) is the IS weight and Eq indicates expectation with respect

to the IS distribution q(x). The IS estimator for Pk can be written as:

P̂ IS
k =

[
1

M

M∑
j=1

IDk
(xj)w(xj)

]
, (8.1.4)

for each bin k = 1, ..., K.

Within this framework, selecting the appropriate IS distribution q(x) is partic-

ularly difficult as we are estimating multiple values (P1, P2, ..., PK) instead of just

one. A special IS distribution needs to be designed to:

1. Allocate the same probability to each bin, that is, assuming x ∼ q(x), then

P ∗
k := P(y = g(x) ∈ Bk) = 1/K,

for all k. Intuitively, this property allows all bins to be equally visited by the

samples generated from the IS distribution.

2. Assign a constant weight to all samples falling in the same bin, that is w(x) =

Θk for all x ∈ Dk, where Θk is a positive constant. This ensures that all

samples falling in the same bin are equally good.

To achieve this, the multicanonical Monte Carlo method proposes a so-called uniform

weight flat-histogram (UW-FH) IS distribution to artificially elevate the probability

of sampling points in less populated tail regions. The UW-FH distribution ensures

that each bin has an equal probability of being sampled and that a constant weight
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is applied within each bin, creating a more uniform and representative sampling of

the entire distribution.

The UW-FH distribution can be defined in the form:

q(x) ∝


p(x)

cΘΘ(x)
, x ∈ D,

0, x /∈ D,
(8.1.5)

where Θ(x) = Θk for x ∈ Dk, k = 1, ..., K, and cΘ is a normalizing constant. Then

the estimator for Pk becomes,

P ∗
k =

∫
Dk

q(x)dx =

∫
Dk
p(x)dx

cΘΘk

=
Pk

cΘΘk

. (8.1.6)

By design P ∗
k = 1/K for all k, so Θk ∝ Pk, i.e. Θk is proportional to the sought

probability Pk and cΘ =
∑K

k=1
Pk

Θk
.

8.1.2 Multicanonical Monte Carlo method

The UW-FH distribution, given by Eq. (8.1.5), cannot be used directly as Θk de-

pends on the sought-after unknown Pk. The MMC method addresses this issue

iteratively, starting from the original input PDF p(x), to progressively refine the IS

distribution, moving closer to the ideal UW-FH distribution. Starting with q0(x)

and Θ0,k = p for all k = 1, ..., K, where p =
∑K

k=1 Pk, the MMC method iteratively

constructs a sequence of distributions (for t ⩾ 1),

qt(x) ∝


p(x)

ctΘt(x)
, x ∈ D;

0, x /∈ D.
(8.1.7)

where Θt(x) = Θt,k for x ∈ Dk and ct is the normalizing constant for qt. Ideally, we

want to construct qt to converge to the actual UW-FH distribution as t increases,
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so each iteration brings us closer to an equalised sampling across all bins, thereby

achieving a more representative sampling of π(y).

Accurately estimating {Θt,k}Kk=1 is crucial, as it directly influences the effec-

tiveness in sampling the performance variable’s distribution more evenly in each

iteration. For IS distribution qt(x), we can see that Pk = ctP
∗
kΘt,k. Therefore, in

each MMC iteration, M samples {xj}Mj=1 are drawn from the current IS distribution

qt(x), then {Θt+1,k}Kk=1 is updated using the following formulas,

Ĥt,k =
M∗

t,k

M
(8.1.8a)

Pt,k = Ĥt,k Θt,k (8.1.8b)

Θt+1,k = Pt,k (8.1.8c)

where M∗
t,k is the number of samples falling into region Dk in the tth iteration2.

The process is repeated until the resulting histogram is sufficiently “flat” (see

Section 8.2.2). A ‘flat’ histogram indicates that each bin has been sampled uni-

formly, signifying a successful implementation of the MMC method and an accurate

representation of the full distribution.

To implement the MMC method, samples must be generated from the warped

PDFs at each iteration. Typically, this is done using MCMC, which is particularly

suited due to its ability to sample from complex distributions. Optimal MCMC

acceptance probability ranges from 20− 30% for high-dimensional problems to 40−

70% for low-dimensional problems (Biondini et al., 2002).

The multicanonical Monte Carlo method using MCMC is given as Algorithm 14.

2In Eq. (8.1.8b), we neglect the normalizing constant ct as it is not needed in the algorithm,
which will become clear later.
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Algorithm 14 Multicanonical Monte Carlo method—MCMC based

1: Input: Distribution p(x), function g(x), bins {Bk}Kk=1, number of samples M

2: Initialisation: Set q0(x) = p(x), Θ0,k = p for all k = 1, ..., K

3: repeat

4: Draw M samples {xj}Mj=1 from the current IS distribution qt(x)

5: for k = 1 to K do

6: Count M∗
t,k, the number of samples falling into region Dk

7: Calculate Ĥt,k =
M∗

t,k

M

8: Update Pt,k = Ĥt,k ·Θt,k

9: Set Θt+1,k = Pt,k

10: end for

11: Update qt+1(x) according to the new Θt+1,k values

12: until Histogram is sufficiently flat

13: Return: Estimates {P̂k}Kk=1 for the PDF π(y) at points yk ∈ Bk

8.2 MMC implementation

This section discusses key aspects of MMC implementation, including bin width

selection, stopping criteria, and recent adaptations that enhance the algorithm’s

performance.

8.2.1 Bin width selection

A crucial aspect of MMC’s performance is the choice of bin width. Bononi et al.

(2009) suggests that the bin width should be set such that the probability in a bin is

within one order of magnitude of its adjacent bins. This empirical approach ensures

a balanced representation of the performance variable’s distribution across all bins.
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8.2.2 Stopping criteria

The algorithm is considered complete when the histogram is sufficiently “flat”. Iba

et al. (2014) propose when the number of samples in each bin is at least 92% of the

average value across all bins, then it can be considered flat—as this is sufficient to

achieve a comprehensive representation of π(y).

8.2.3 MMC enhancements

To improve MMC’s efficiency, several adaptations have been proposed, addressing

specific challenges in its application:

Subset multicanonical Monte Carlo (SMMC): Chen and Li (2017) in-

troduced SMMC, combining MMC with Subset Simulation for enhanced efficiency.

SMMC focuses on generating samples from smaller, iteratively refined subdomains

of the performance variable, moving closer to the region of interest with each iter-

ation. This targeted approach improves algorithm performance by utilising more

samples in estimating the density of the area of interest.

Surrogate accelerated MMC for UQ: Addressing the issue of computation-

ally expensive performance functions, Wu and Li (2016) developed an adaptive algo-

rithm using local Gaussian process (GP) surrogates. This method constructs surro-

gates within a non-parametric Bayesian regression framework, significantly speeding

up each MMC iteration. The efficacy of the GP surrogate depends on the choice of

covariance functions, highlighting a potential area for future research.

8.3 Adapting multicanonical Monte Carlo

In financial risk management, obtaining the probability distribution associated with

a system’s performance or reliability is crucial—as explained in Section 7.4. De-

spite its importance, research into efficient methods capable of reconstructing the
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entire distribution of performance variables has been limited primarily due to the

associated high computational costs. To address this directly, we propose several

adaptations and enhancements to MMC, to improve efficiency and allow for paral-

lel computing implementation. After which, we focus on the specific application of

MMC to financial modelling.

8.3.1 New sampling approach

Each iteration of the MMC algorithm introduces a new importance sampling distri-

bution, progressing towards the targeted UW-FH distribution. This process creates

a sequence of distributions, each requiring efficient sampling.

It has been common practice to use Markov chain Monte Carlo (MCMC) to gen-

erate samples from the iteratively warped PDFs in each MMC iteration. However,

MCMC has several limitations, explored in Section 6.3.4. Firstly, MCMC generates

correlated samples, making it more difficult to estimate errors compared to inde-

pendent sampling methods (Lima et al., 2005). Secondly, MCMC lacks preferential

direction in exploring proposal distributions, leading to lower efficiency, as demon-

strated by Bononi et al. (2009). Lastly, MCMC’s focus on converging to a single

stationary distribution can be a bottleneck, especially when the goal is to navigate

through a series of evolving distributions.

In the context of MMC, an alternative yet underexplored method is the Se-

quential Monte Carlo sampler (SMCS). Specifically designed to generate samples

from a sequence of distributions, SMCS aligns seamlessly with MMC’s requirements.

SMCS’s inherent design makes it an apt choice for MMC, enabling a more efficient

journey through the series of distributions; adapting to changes in the target space

as the MMC algorithm evolves. Additionally, SMCS is easily implemented in a

parallel computing environment, which is not true for MCMC.
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Parallel computing

MCMC has an inherent serial nature and struggles with parallelisation. While par-

allel variants exist (see e.g., VanDerwerken and Schmidler (2013)), such methods do

not fully leverage the capabilities of modern high-performance computing. Specifi-

cally, as MCMC requires a considerable ‘burn-in’ period to achieve convergence to

the target distribution, even in a parallel setting, this is costly. As a result, MCMC

is one of the most significant cost drivers in the MMC algorithm; we demonstrate

this cost implication in our numerical examples.

In stark contrast, SMCS offers inherent parallelisability and does not require any

‘burn-in’ period, aligning well with contemporary computing architectures. This

characteristic of SMCS is pivotal in enhancing the efficiency of the MMC method

in financial applications, promising more accurate and comprehensive insights into

financial risk management. The subsequent sections delve deeper into the imple-

mentation, discussing its advantages and exploring its potential applications in en-

gineering problems and financial modelling.

8.4 The multicanonical sequential Monte Carlo

sampler

This section introduces our proposed algorithm, the multicanonical sequential Monte

Carlo sampler (MSMCS). This novel algorithm combines the strengths of multi-

canonical Monte Carlo with the Sequential Monte Carlo sampler. This hybrid ap-

proach is designed to tackle the challenges of effectively reconstructing the full prob-

ability distribution of performance variables. This task has been historically chal-

lenging in financial modelling, due to financial data’s high-dimensional and complex

nature.
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The proposed MSMCS algorithm employs SMCS to generate samples in each it-

eration of the MMC method. SMCS’s ability to handle a series of evolving distribu-

tions makes it an ideal fit for MMC’s requirements, where each iteration introduces

a new biasing distribution. Integrating SMCS as the sampling method requires two

key adaptations.

Adaptation one: weighted samples

In the standard MMC method, samples generated using MCMC are unweighted.

Therefore, the update procedure for Θ’s—determined by the proportion of samples

landing in each bin—is based on unweighted samples. When using SMCS, the

generated samples are weighted. Therefore, we need to adjust the MMC update

procedure for the Theta distributions. Specifically, we change how the value of

Ĥt,k—the estimator of Pi—is determined. When using unweighted samples, the

update procedure is determined by Eq. (8.1.8). When SMCS is used, the update

procedure needs to be modified; Eq. (8.1.8a) becomes

Ĥt,k =
M∑
j=1

IDk
(xj) w(xj). (8.4.1)

This ensures that the unique characteristics of SMCS-generated samples are appro-

priately factored into the MMC framework.

Adaptation two: annealing

For SMCS to be effective, two successive distributions cannot be too far apart; other-

wise, the samples will likely be rejected in the acceptance/rejection Metropolis step.

Within the MMC method, there is no guarantee that the IS distributions obtained

in two successive iterations are close to each other. For example, in the numerical

experiments (which follow), we observed that for high-dimensional problems, such
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an issue frequently appears in the first MMC step due to the difference in the initial

distribution q0(x) ∼ p(x) and subsequent target distribution q1(x).

To address this issue, we include a simulated tempering process in the MSMCS

method to smoothen the transition between distributions. We introduce a set of

intermediate distributions between qt and qt+1, which SMCS is applied to. The

difference in the IS distributions can be attributed to differences in the Θ-functions

(i.e. Θt(x) and Θt+1(x)), as per Eq. (8.1.7), therefore we choose a strictly increasing

sequence of scalars {αs}Ss=1 with α0 = 0 and αS = 1, such that the intermediate

Θ-functions are:

Θs(x) = αsΘt+1(x) + (1− αs)Θt(x). (8.4.2)

It follows that the sequence of intermediate distributions {qs}Ss=0 can be defined

accordingly via Eq. (8.1.7). Applying SMCS to this sequence of distributions, we

ultimately yield samples from the target distribution qt+1(x).

When qt and qt+1 are close to each other, SMCS can efficiently generate samples

from qt+1 via the forward kernel using the samples from qt, so the tempering process

is not needed. For two consecutive IS distributions that are far apart, whilst intro-

ducing intermediate steps for generating samples from the next target distribution

qt+1(x) increases the computational time, overall the MMC converges faster, off-

setting this increased cost. In our proposed algorithm, tempering is only triggered

when certain prescribed conditions are satisfied (e.g. ∥Θt(x) − Θt+1(x)∥ exceeds a

threshold value).
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Complete proposed MSMCS algorithm

Algorithm 15 Multicanonical sequential Monte Carlo sampler (MSMCS)

1: Input: Distribution p(x), function g(x), bins {Bk}Kk=1, number of samples M ,

sequence {αs}Ss=1

2: Initialisation: Set q0(x) = p(x), Θ0,k = p for all k = 1, ..., K

3: repeat

4: Apply SMCS to generate samples from qt(x)

5: for k = 1 to K do

6: Calculate Ĥt,k =
∑M

j=1 IDk
(xj)w(xj)

7: Update Pt,k = Ĥt,k ·Θt,k

8: Set Θt+1,k = Pt,k

9: end for

10: if Tempering condition is met (e.g., ∥Θt(x) − Θt+1(x)∥ exceeds threshold)

then

11: Define intermediate Θs(x) = αsΘt+1(x) + (1− αs)Θt(x)

12: Apply SMCS to the sequence of distributions {qs}Ss=0

13: end if

14: Update qt+1(x) according to the new Θt+1,k values

15: until Convergence criterion is met

16: Return: Estimates {P̂k}Kk=1 for the PDF π(y) at points yk ∈ Bk

8.4.1 Asympotitic properties

As discussed in the context of Bayesian evidence estimation, Berg and Neuhaus

(1992) demonstrated that MMC is asymptotically exact, meaning that as the number

of iterations increases, the estimated probability distribution converges to the true

distribution. When MMC is combined with MCMC, the method remains asymp-
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totically exact. This is primarily because MCMC itself is an asymptotically exact

sampling method, meaning that given sufficient time, it will sample from the target

distribution correctly. In the context of MMC-MCMC, this exactness is preserved

through the iterative adjustment of the sampling distribution, which ensures that

the entire state space is adequately explored, including the low-probability regions.

The MSMCS method, which integrates MMC with SMCS, also achieves asymp-

totic exactness. SMCS is known for its ability to generate independent and uncor-

related samples, which simplifies error estimation and enhances sampling efficiency.

As with MMC-MCMC, the iterative nature of MMC ensures that as the number

of iterations increases, the sampled distribution converges to the true distribution.

The thesis highlights the superior performance of MSMCS over traditional MMC-

MCMC, particularly in high-dimensional and complex problems, while maintaining

the property of asymptotic exactness – demonstrated in the following numerical

examples.

8.5 Numerical examples

Four numerical examples of increasing complexity3 are provided to demonstrate

the performance of the MSMCS algorithm, highlighting the significant time-saving

advantages over traditional MMC-MCMC methods, especially when implemented in

a parallel computing environment. Each numerical example demonstrates a different

aspect of our proposed algorithm. After which, we apply MSMCS to credit and

equity risk.

3By complexity, we are referring to the problem’s dimensionality and the performance variable’s
rarity.
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8.5.1 Problem 1: Chi-Square distribution

Introduction

Our first numerical demonstrates the efficacy of MMC, using both the SMCS and

MCMC, in accurately reconstructing the Chi-square distribution—a widely recog-

nised continuous distribution in statistical analysis, describing the sum of squared

independent Gaussian random variables.

Problem set-up

By summing the squares of k independent Gaussian random variables with zero

mean and unit variance, represented as:

y =
k∑

i=1

x2i , (8.5.1)

the dependent variable y follows the Chi-square distribution with k degrees of free-

dom (y ∼ χ2(k)). The analytical form of this PDF is known, providing a benchmark

for assessing the reconstruction accuracy of the MMC methods.

Implementation details

We focus on a Chi-square distribution with k = 20 degrees of freedom. The imple-

mentation of both the MMC-MCMC and MSMCS methods had 20 iterations, each

comprising 5 × 103 samples. Using the same setup for both methods allows for a

direct and fair comparison of their performance. In the MMC-MCMC iterations, a

single long chain of 5× 103 samples was utilised without a burn-in period.

Results

The results are illustrated in Figure 8.2, presented on both linear and logarith-

mic scales. The figure compares the reconstructed Chi-square distributions from
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MSMCS and MMC-MCMC against the known analytical solution. It also shows the

absolute and relative errors compared to the true analytical solution.

Interpretation of results

Both methods closely approximate the exact analytical solution across the distri-

bution, with the linear scale showing minimal absolute and relative errors. The

logarithmic scale emphasises the precision of both methods in the tails, capturing

the extremes. This numerical example highlights the accuracy and effectiveness of

both MSMCS and MMC-MCMC in modelling the distribution, including the low-

probability tail regions, with a relatively small total sample size.
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Figure 8.2: Chi-square distribution with 20 degrees of freedom computed by MSMCS
and MMC-MCMC, compared to the analytical solution. The results are plotted on
the linear scale (left column) and the logarithmic scale (right column). The first row
contains the approximated and analytical PDFs of y. The second and third rows
show the absolute and relative errors compared to the analytical solution.

8.5.2 Problem 2: Cantilever beam problem

Introduction

In the second numerical example, we explore a real-world engineering problem - the

reliability analysis of a cantilever beam studied by Li et al. (2011) and Wu et al.

(1990). In this example, we impose a burn-in period on MCMC, as is often required,

to ensure all the samples generated by MCMC follow the MMC distribution in each
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iteration—this is not required for SMCS, where all samples can be utilised.

Problem set-up

Figure 8.3: Cantilever beam

The cantilever beam (shown in Figure 8.3) is characterised by its width w, height t,

length L, and elasticity E. Subjected to transverse load Y and horizontal load X, its

failure is associated with the maximum deflection y, calculated using the equation:

y =
4L3

Ewt

√(
Y

t2

)2

+

(
X

w2

)2

(8.5.2)

Following the problem set up of Li et al. (2011) and Wu et al. (1990), the beam is

chosen to have fixed length L = 100, with w, t,X, Y and E treated as independent

random variables following a Normal distribution, with means and variances detailed

in Table 8.1.

Parameter w t X Y E

Mean 4 4 500 1000 2.9× 106

Variance 0.001 0.0001 100 100 1.45× 106

Table 8.1: The mean and variance of the random parameters

Implementation details

The PDF of y is computed with three methods: plain MC, MMC-MCMC and

MSMCS. In the MC simulation, 108 full model evaluations are conducted. Both
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MMC-MCMC and MSMCS employ 20 iterations with 5×104 samples per iteration,

ensuring a fair comparison. MMC-MCMC has a 15% burn-in period—to ensure the

samples follow the target distributions—a requirement not imposed on MSMCS.

The range Ry = [5.35, 6.80] is divided into 145 bins of width 0.01.

Results

Figure 8.4 depicts the computed PDFs using all three methods. The results are

presented on linear and logarithmic scales to provide a comprehensive view of the

performance in various probability regions.
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Figure 8.4: Cantilever beam PDF computed by MC, MSMCS and MMC-MCMC.
The results are shown on both the linear scale (top) and the logarithmic scale (bot-
tom).

Interpretation of results

While all three methods accurately reproduce the PDF in high-probability regions,

the MMC-based methods (MMC-MCMC and MSMCS) exhibit superior perfor-

mance in low-probability regions. Notably, plain MC fails to achieve the same
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rarity level (e.g. at y = 6.6) with 100 times more samples. The two MMC methods

yield comparable results in this example, but MSMCS has the advantage of parallel

implementation.

8.5.3 Problem 3: Metaball limit-state function

Introduction

The numerical examples so far have simple performance functions; our third nu-

merical example is specifically chosen to have a complex and changing topological

structure. It involves analysing a metaball limit-state function, offering a unique

perspective on the complexities encountered in probabilistic modelling. We also

measure the time saved through the parallel implementation of MSMCS.

Problem set-up

The limit-state function under consideration is defined as (Breitung, 2019):

g(x) =
30

[4(x1 + 2)2/9 + x22/25]
2 + 1

+
20

[(x1 − 2.5)2/4 + (x2 − 0.5)2/25]2 + 1
− 5,

(8.5.3)

where x1 and x2 are i.i.d. random variables following a standard Gaussian dis-

tribution. The function’s geometry, featuring multiple regions of high probability,

poses a significant challenge to many sampling methods, as studied in the paper by

Tabandeh et al. (2022).

Implementation details

We compute the PDF of g(x) with three methods: plain MC, MMC-MCMC and

MSMCS. For the MMC-MCMC and MSMCS methods, we use 5 iterations with

15, 000 samples per iteration, and we compare these to a plain MC simulation com-

prising 75, 000 samples.
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Results

The outcomes of the three methods are depicted in Figure 8.5. This figure presents

the approximated PDFs on both linear and logarithmic scales.
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Figure 8.5: PDF computed by MC, MSMCS and MMC-MCMC. The results are
shown on the linear scale (top) and the logarithmic scale (bottom).

Interpretation of results

All three methods yield similar performance in high-probability regions. However, a

notable distinction is observed in the low-probability regions, where only the MMC

methods effectively reproduce the sought PDF.

MSMCS’s advantage in computational efficiency is demonstrated through lever-

aging parallel computing across multiple cores, significantly reducing computation

time. To demonstrate the computational time saved, we provide the computation
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time for the MSMCS algorithm across varying numbers of cores (using the previously

detailed setup). The results are shown in Fig. 8.6.
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Figure 8.6: Time, in seconds, to complete 5 iterations of the MSMCS algorithm
with 15000 samples per iteration and varying numbers of cores.

There is a minimum fixed cost in the MSMCS algorithm relating to the MMC

component. Through using parallel computers across multiple cores, significant time

savings can be made in the SMCS procedure—reducing the overall computational

cost for the SMCS algorithm.

In contrast, MMC-MCMC cannot be implemented in parallel; its computational

time is similar to that of MSMCS with one core (namely, c. 60 seconds), demon-

strating the significant computational savings achieved through implementing the

proposed MSMCS algorithm in a parallel computing environment.

8.5.4 Problem 4: Quarter car model

Introduction

A quarter-car model is a classic representation of vehicle suspension systems, provid-

ing insights into the system’s response to varying road surfaces. In this example, we
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implement MMC-MCMC in two alternate ways to demonstrate the computational

efficiency gained by using MSMCS over MMC-MCMC. This problem has very high

dimensionality and a complex performance function.

Problem set-up

Figure 8.7: Quarter car model

We follow the problem set-up by Wong (2008). As illustrated in Figure 8.7, the

Quarter Car model consists of a sprung mass ms and an unsprung mass mu con-

nected by a non-linear spring (with stiffness ks) and a linear damper (with damping

coefficient c). The unsprung mass interacts with the road surface via the non-linear

spring (with stiffness ku). The displacement of the wheel z(t) represents the interac-

tion of the quarter-car system with the road surface. The parameters are assumed

to be fixed, taking the values given by Table 8.2.

ms mu ks ku c
20 40 400 2000 600

Table 8.2: The parameter values of the quarter car model

The maximum displacement is the difference between the sprung and unsprung

masses over a specific interval, as excessive displacement could indicate suspension
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failure. The displacements of the sprung and the unsprung masses are denoted by

x1 and x2, respectively. Mathematically, the model is described by a two-degree-of-

freedom ordinary differential equation (ODE) system:

ms
d2x1
dt2

= −ks(x1 − x2)3 − c
(
dx1
dt
− dx2

dt

)
, (8.5.4a)

mu
d2x2
dt2

= ks(x1 − x2)3 + c

(
dx1
dt
− dx2

dt

)
+ ku(z(t)− x2). (8.5.4b)

The uncertainty arises through the random road profile z(t), which is modelled as

a zero-mean white Gaussian random force with standard deviation σ = 1. We are

interested in the maximum difference between the displacements of the sprung and

unsprung springs in a given interval [0, T ], as calculated by:

y = max
0⩽t⩽T

{|x1(t)− x2(t)|}. (8.5.5)

In extreme scenarios, the car’s suspension would break when this displacement ex-

ceeds a certain value, say y∗. We want to reconstruct the entire probability density

function (PDF) of y to estimate the probability P(y > y∗) for any value of y∗.

Implementation details

We numerically solve Eqs. (8.5.4) using the 4th order Runge–Kutta method where

the step size is taken to be ∆t = T/100, effectively making it a 100-dimensional

problem. Let T = 1 and set initial conditions of Eqs. 8.5.4 to be

x1(0) =
dx1
dt

(0) = 0, x2(0) =
dx2
dt

(0) = 0. (8.5.6)
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In our simulation, the standard MC simulation is implemented with 106 samples. In

both MSMCS and MMC-MCMC, 20 iterations with 2 × 104 samples per iteration

are utilised.

As we explored in the previous example, the MSMCS method is easily parallelis-

able. Within each MMC iteration, SMCS can generate the new samples in parallel

according to the target MMC distribution rather than forming a single long chain

(as is required in MCMC). To ensure a fair computational comparison, we perform

MMC-MCMC in two different ways. In the first implementation, we use a single

long chain of length 2 × 104—the most typical implementation of MCMC, in line

with the other numerical examples. In the second implementation, within each it-

eration, we use 10 chains of length 2 × 103 to provide a fairer comparison to the

parallel implementation of MSMCS.

Results

The results of all three methods are shown in Figure 8.8. This include MC; MSMCS;

MMC-MCMC with a single chain (referred to as MMC-MCMC-SC); and MMC-

MCMC with multiple chains (referred to as MMC-MCMC-MC).

Interpretation of results

The simulation results, shown in a figure, reveal that while the standard Monte

Carlo method provides a basic estimation of the PDF to the order of 10−6 (as

expected), MSMCS achieves a far more detailed estimation, extending to much

lower probability orders (10−12). Comparatively, MMC-MCMC-SC with a single

long chain accurately reconstructs the PDF. The parallel implementation of MMC-

MCMC-MC with multiple short chains falls short, particularly in estimating higher

displacement values (y > 1.8).
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Figure 8.8: Quarter car model PDF computed by MC, MSMCS and MMC-MCMC.
MMC-MCMC-SC uses a single long chain. MMC-MCMC-MC uses ten shorter
chains in parallel. The results are shown on the logarithmic scale.

8.5.5 Summary of numerical results

The numerical examples offer compelling evidence of the proposed multicanonical

sequential Monte Carlo sampler’s capabilities in accurately and efficiently recon-

structing probability distributions. These examples span simple statistical distribu-

tions to intricate real-world engineering models, each underscoring a different facet
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of MSMCS’s strengths.

The results highlight a critical limitation of MMC-MCMC when implemented in

parallel using multiple short chains: its inability to accurately estimate the tail of

the distribution. This contrasts sharply with the MSMCS method, which, due to

its parallelisable design, not only provides more accurate results but does so with

greater computational efficiency. The examples demonstrate MSMCS’s superior

performance over traditional MMC-MCMC methods in high-dimensional, real-world

applications, particularly when leveraging parallel computing resources.

One weakness of the proposed method is that MCMC is easier to implement than

SMCS and involves simpler computations—so MMC-MCMC is marginally faster

than MSMCS. However, if one can use a parallel implementation, MSMCS sig-

nificantly outperforms MMC-MCMC, as shown in the numerical examples. More

importantly, both approaches to MMC can struggle in high-dimensional settings,

where the generation of a new sample is likely to get rejected, which should be dealt

with by developing and utilising more effective proposal distributions, for example,

that based on the Hamiltonian dynamics (Neal, 2011).

8.6 Assessing credit risk using MSMCS

As detailed in Section 5.3, copula models play a pivotal role in credit risk modelling

by enabling the separation of a portfolio’s dependence structure from the marginal

densities of individual risk factors. This separation allows for the individual risk of

each obligor and the interconnectedness of different assets to be considered. The

Normal copula model has been historically popular; however, it has faced significant

scrutiny after its role in exacerbating the Global Financial Crisis came to light. The

Student’s t copula model has emerged as a more robust alternative. The heavier

tails of the Student’s t distribution allow the model to more accurately represent
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the extremal dependence and the likelihood of simultaneous defaults, thus offering

a more realistic measure of potential losses in a credit portfolio. The Student’s t

copula model, with its enhanced ability to capture tail risk, aligns better with the

complex realities of financial markets, particularly in stress scenarios.

Current approach

It is possible to simulate a copula model using a Monte Carlo simulation. How-

ever, MC simulations are highly inefficient for high-dimensional problems or recon-

structing distributions with low tail probabilities. For the Normal copula model,

Glasserman and Li (2005) developed an importance sampling method involving a

mean shift in the distributions of common risk factors Z and exponential twisting

of the conditional default probabilities. This method significantly reduced variance

and improved efficiency with asymptotic optimality.

For the Student’s t copula models, Bassamboo et al. (2008) developed two im-

portance sampling (IS) techniques, both targeting the denominator T ’s distribution.

The first approach involves an exponential distribution twist, while the second em-

ploys a variation of hazard-rate twisting, referred to as ECM and HRT, respectively.

Their study, which limits the copula model to just one common risk factor, presents

a thorough theoretical and empirical analysis of the proposals. In the simulations,

these methods demonstrate significant variance reductions.

Chan and Kroese (2010) offer two algorithmic variations on Conditional Monte

Carlo (CMC). The first, CondMC, involves pre-selecting the proposal distribution,

while the second, CondMC-CE, integrates cross-entropy (CE) at each algorithmic

step. The paper’s numerical examples, modelled after Bassamboo’s, yielded variance

reductions ranging between 1.2− 4 times and 20− 100 times higher than the ECM

method by Bassamboo, using CondMC and CondMC-CE respectively. The CMC

approach requires sampling from standard distributions, enhancing its efficiency

192



compared to the ECM method, which relies on rejection sampling and is typically

three times slower than basic simulations.

Hong et al. (2014) strongly critiqued the proposed Conditional MC methods,

highlighting a significant limitation: their performance heavily depends on the choice

of conditioning variables, which vary per problem. This dependency poses a chal-

lenge in optimally selecting these variables, which must be tailored for each problem

scenario.

Motivation for MSMCS application

There is still room for improvement in copula simulations, and this is where our

algorithm, the multicanonical sequential Monte Carlo sampler, comes into play.

MSMCS offers a novel approach to credit risk modelling, particularly for Student’s

t copula models, with four key advantages:

• Efficient sampling of tail probabilities: MSMCS is uniquely equipped to

handle the challenges of sampling from distributions with low tail probabilities,

a critical aspect in accurately assessing credit risk. This is especially important

in Student’s t copula models, known for their heavier tails and more complex

dependence structures.

• Adaptive importance sampling: Unlike traditional importance sampling

methods, which require careful selection of proposal distributions, MSMCS

adaptively constructs the sampling distribution. This adaptability makes it

more robust, especially in the high-dimensional setting characteristic of credit

risk models.

• Parallel computing capabilities: MSMCS can leverage parallel computing,

a significant advantage over traditional methods like Conditional Monte Carlo.
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This allows for faster computations, making it more suitable for practical

application where time efficiency is crucial.

• Versatility in handling complex models: MSMCS’s ability to sample

efficiently from complex, non-linear relationships ensures it can capture the

intricate dynamics of credit markets—like in a Student’s t copula.

8.6.1 MSMCS for Student’s t copula

Following the Student’s t copula framework established in Section 5.3.2, our goal

is to determine the loss distribution from defaults in a portfolio within a specified

time horizon. Here are the steps to apply MSMCS for this task.

Step 1: Model specification

1. Portfolio of obligors: Consider a portfolio of loans consisting of n obligors,

each with a default probability pi ∈ (0, 1) and predetermined loss ci in case of

default.

2. Latent variables: Define a vector of latent variables X = (X1, ..., Xn), where

obligor i defaults if Xi > xi, chosen so P(Xi > xi) = pi.

3. Portfolio loss function: The portfolio loss from defaults is: L(X) =
∑n

i=1 ciIXi>xi
,

where IXi>xi
= 1 if Xi > xi, and 0 otherwise.

Step 2: Dependency structure with Student’s t copula

1. Common and idiosyncratic risk factors: Assume the common risk fac-

tor, Z, and individual idiosyncratic risks, ηi, are independent and Normally

distributed. Specifically: Z ∼ N(0, 1) and ηi ∼ N(0, σ2
η) for i = 1, ..., n.

2. Latent variable expression: With a chosen probability 0 < p < 1, the

latent variables are expressed as: Xi =
pZ+
√

1−p2ηi
T

for i = 1, ..., n, where T is
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a non-negative random variable independent of Z and ηi.

3. Student’s t distribution: For a positive integer k, let T =
√
k−1Γ (1/2, k/2),

where Γ denotes the PDF of the Gamma distribution. Therefore, X follows a

multivariate t-distribution with k degrees of freedom.

Step 3: Implementing MSMCS

1. Initialistion: Initialise MSMCS with the prior distributions for latent vari-

ables X.

2. Iterative process: Through applying Algorithm 15, iteratively construct an

equally weighted flat-histogram IS distribution, from which samples of X can

be generated and the losses L(X) calculated.

3. Evaluate losses: Consider the computed losses—from across the bins—to

construct the overall loss distribution L(X) for the portfolio; analyse the tail

distribution and compute risk metrics, like VaR and CVaR.

8.6.2 Example application

We replicate the setup of Chan and Kroese (2010), setting σ2
η = 9, xi =

√
n × 0.5,

pi = 0.25, and ci = 1 for all i. Both MMC-MCMC and MSMCS employ 20 iterations

with 104 samples per iteration. As per numerical example four, we implement MMC-

MCMC in two variations: one with a single long chain (MMC-MCMC-SC) and

another with parallel chains (100 chains, each of length 100), the latter providing a

parallel comparison to MSMCS. Additionally, we perform a standard MC simulation

with varying sample sizes.

Results

Our primary interest lies in the probability of substantial losses, defined as L(X) > l,

with l = bn. We vary the degrees of freedom k or the sample size n, estimating the
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probability of losses exceeding l for b = 0.1, 0.2, 0.25, 0.3. The results for varying

the degrees of freedom k are given in Table 8.3 and for varying the sample size n in

Table 8.4.

Table 8.3: Copula results using MC; MSMCS; and MMC-MCMC. (Part 1)

(a) k = 4 & n = 250

Large loss
Threshold (b)

Sample size Probability estimate
MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5× 105 7.36× 10−2 7.27× 10−2 1.69× 10−1 7.31× 10−2

0.2 5× 105 1.72× 10−2 1.63× 10−2 5.96× 10−2 1.71× 10−2

0.25 5× 105 8.08× 10−3 8.13× 10−3 3.29× 10−2 8.05× 10−3

0.3 5× 105 3.21× 10−3 3.24× 10−3 1.71× 10−2 3.28× 10−3

(b) k = 8 & n = 250

Large loss
Threshold (b)

Sample size Probability estimate
MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5× 106 1.45× 10−2 1.39× 10−2 2.24× 10−3 1.42× 10−2

0.2 5× 106 9.49× 10−4 9.43× 10−4 1.66× 10−4 9.49× 10−4

0.25 5× 106 2.38× 10−4 2.49× 10−4 4.29× 10−5 2.46× 10−4

0.3 5× 106 4.04× 10−5 3.98× 10−5 1.04× 10−5 4.01× 10−5

(c) k = 12 & n = 250

Large loss
Threshold (b)

Sample size Probability estimate
MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5× 107 9.77× 10−3 9.82× 10−3 5.96× 10−5 9.78× 10−3

0.2 5× 107 7.49× 10−3 7.63× 10−3 1.04× 10−6 7.53× 10−3

0.25 5× 107 1.05× 10−5 1.02× 10−5 1.22× 10−7 1.03× 10−5

0.3 5× 107 1.12× 10−6 1.34× 10−6 1.65× 10−8 1.21× 10−6

(d) k = 16 & n = 250

Large loss
Threshold (b)

Sample size Probability estimate
MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5× 108 9.40× 10−4 9.36× 10−4 2.50× 10−6 9.43× 10−4

0.2 5× 108 6.91× 10−6 6.90× 10−6 9.58× 10−9 6.86× 10−6

0.25 5× 108 6.22× 10−7 6.18× 10−7 6.04× 10−10 6.19× 10−7

0.3 5× 108 4.40× 10−8 4.37× 10−8 3.67× 10−11 4.51× 10−8

(e) k = 20 & n = 250

Large loss
Threshold (b)

Sample size Probability estimate
MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5× 108 2.83× 10−4 2.88× 10−4 1.39× 10−7 2.76× 10−4

0.2 5× 108 7.98× 10−7 7.61× 10−7 1.35× 10−10 7.73× 10−7

0.25 5× 108 5.40× 10−8 4.92× 10−8 2.99× 10−12 5.32× 10−8

0.3 5× 108 0 5.72× 10−9 1.02× 10−13 5.63× 10−9
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Table 8.4: Copula results using MC; MSMCS; and MMC-MCMC. (Part 2)

(a) k = 12 & n = 250

Large loss
Threshold (b)

Sample size Probability estimate
MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5× 107 9.77× 10−3 9.82× 10−3 5.96× 10−5 9.78× 10−3

0.2 5× 107 7.49× 10−3 7.63× 10−3 1.04× 10−6 7.53× 10−3

0.25 5× 107 1.05× 10−5 1.02× 10−5 1.22× 10−7 1.03× 10−5

0.3 5× 107 1.12× 10−6 1.34× 10−6 1.65× 10−8 1.21× 10−6

(b) k = 12 & n = 500

Large loss
Threshold (b)

Sample size Probability estimate
MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 5× 108 9.61× 10−5 9.42× 10−5 5.08× 10−12 9.52× 10−5

0.2 5× 108 1.34× 10−6 1.39× 10−6 7.15× 10−13 1.38× 10−6

0.25 5× 108 1.36× 10−7 1.57× 10−7 4.37× 10−13 0.84× 10−7

0.3 5× 108 1.00× 10−8 1.29× 10−8 2.54× 10−13 1.27× 10−8

(c) k = 12 & n = 1000

Large loss
Threshold (b)

Sample size Probability estimate
MC MC MMC-MCMC-SC MMC-MCMC-MC MSMCS

0.1 3× 108 1.96× 10−6 1.88× 10−6 2.54× 10−13 1.91× 10−6

0.2 3× 108 3.67× 10−8 3.58× 10−8 6.29× 10−14 3.72× 10−8

0.25 3× 108 2.39× 10−9 2.24× 10−9 4.18× 10−14 2.28× 10−9

0.3 3× 108 0 3.25× 10−10 7.24× 10−15 3.19× 10−10

Interpretatation of results

As MMC reconstructs the whole loss distribution, we only require one simulation

to be performed from which the loss probability for any b-value can be obtained.

This is a significant computational saving compared to other existing methods, like

the conditional-MC proposed by Chan and Kroese (2010), which require a new

simulation for each b-value.

Compared to standard MC, MMC is very effective for the copula model estima-

tion of large loss probabilities. Both MMC-MCMC (with a single long chain, denoted

by MMC-MCMC-SC) and MSMCS are very effective here—although MMC-MCMC

(with multiple parallel chains, denoted by MMC-MCMC-MC) performs poorly,

particularly in the high-dimensional setting, clearly illustrating the advantage of

MSMCS in the parallel implementation.
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8.6.3 Conclusion

In conclusion, MSMCS offers a new approach to credit risk modelling, utilising a Stu-

dent’s t copula to offer: efficient sampling of tail probabilities, adaptive importance

sampling, parallel computing capabilities, and versatility in handling complete mod-

els. MSMCS provide a more accurate estimation of tail risks, contributing to more

robust risk assessment strategies and aiding financial institutions in better preparing

for extreme market events. With a more accurate credit risk model, financial insti-

tutions can allocate capital more efficiently, ensuring they are adequately prepared

for potential losses.

8.7 Assessing equity risk using MSMCS

In the context of equity risk (detailed in Section 5.2), understanding and manag-

ing the volatility of stock prices and the potential for significant market movements

is critical, especially when considering the impact of ‘tail events’. VaR provides a

threshold value such that the probability of a loss exceeding this threshold is at a

given level. However, VaR has limitations, particularly its failure to capture the

magnitude of potential losses beyond its threshold. CVaR addresses this by repre-

senting the expected loss, given that the losses are worse than the VaR value. CVaR

offers a more comprehensive view of potential losses in the tail of the distribution.

Importance sampling can be used for CVaR approximation, and whilst IS is

more efficient than Monte Carlo for CVaR estimation, it still has limitations. Xing

et al. (2022) propose applying IS within a nested simulation framework to reduce

the variance in the CVaR estimation. Deo and Murthy (2021) propose a black-box

importance sampling for VaR and CVaR estimation. Finally, Heinkenschloss et al.

(2018) propose a reduced-order model approach to CVaR estimation. For further

details on importance sampling for CVaR estimation, refer to the works of Sun and
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Hong (2009).

In Chapter 4, we introduced a Bayesian framework for ARMA-GARCH mod-

els to forecast future asset returns. This framework combines ARMA’s ability to

predict the mean of a series with GARCH’s ability to model and forecast changing

volatility. The Bayesian approach results in a posterior distribution for the ARMA-

GARCH forecast. By reconstructing this distribution, we can obtain a distribution

of forecasted returns—from which the expected return and risk measures (like VaR

and CVaR) can be obtained.

This section shows how MSMCS can be applied to reconstruct the forecasted

returns distribution from the Bayesian ARMA-GARCH model. The MSMCS ap-

proach shares the same four advantages as the credit risk application: efficient

sampling of tail probabilities, adaptive importance sampling, parallel computing

capabilities, and versatility in handling complex models.

8.7.1 MSMCS for ARMA-GARCH model

Problem set-up

1. Portfolio weights: Define the N -dimensional vector w = (w1, ..., wN) rep-

resenting the allocation to each of the ith asset. The weights must be non-

negative, and their sum cannot exceed one.

2. Forecast function: Define f(w, z) to represent the forecasted returns for a

portfolio with weights w and realisation z of Z. z represents one realisation

of the Bayesian ARMA-GARCH model.

Bayesian ARMA and GARCH models

1. ARMA model: Using the process in Chapter 4, determine the optimal

ARMA model order choice and fit a Bayesian ARMA model to the histori-
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cal time series for each asset i.

2. GARCH model: Using the process in Chapter 4, determine the optimal

GARCH model order choice and fit a Bayesian GARCH model to the ARMA-

residuals for each asset i by choosing the appropriate prior distribution for the

GARCH parameters.

3. Likelihood functions: Construct likelihood functions for both models, re-

flecting the probability of observing return data given the model parameters.

4. Predictive posterior distribution: Combine the priors and likelihoods to

define predictive posterior distributions for the ARMA-GARCH model, repre-

senting the forecasted asset returns, namely Z.

Implementing MSMCS

1. Initialisation: Initialise MSMCS using the prior ARMA-GARCH distribu-

tions for a set portfolio w.

2. Iterative process: Through applying Algorithm 15, iteratively construct an

equally weighted flat-histogram IS distribution to generate samples from the

Bayesian ARMA-GARCH model representing forecasts f(w, z).

3. Evaluate losses: Use the forecasted values from the overall forecasted return

distribution f(w,Z); compute the overall return expectation and assess the

tail distribution to compute risk measures like VaR and CVaR.

8.7.2 Example application

To demonstrate the performance of the Bayesian ARMA-GARCH framework com-

bined with MSMCS, we implement it on our core data. The Bayesian ARMA-

GARCH models are as defined in Section 4.5.1. To provide a comparison, we also
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implement MSMCS on the frequentist ARMA-GARCH framework. The standard

frequentist implementation of ARMA models obtains a single estimate of a fore-

casted mean return. The frequentist GARCHmodel obtains a single estimate of fore-

casted return variance. Assuming that the returns follow a Normal distribution—

typical in frequentist ARMA-GARCH models—we can obtain the forecasted return

distribution using these forecasted means and variances, with MSMCS.

Using the historical data, we identified the biggest 20-day bull, bear, and volatile

periods for the S&P 500, FTSE 100, and SSE indexes—and applied our framework

over these dates by country. The results follow.
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Forecasting in a bull market for US assets
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Forecasted Bull Market - Starting October 31, 2011

Figure 8.9: Return distribution using MSMCS on Bayesian ARMA-GARCH fore-
casts: Bull market (US)
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Figure 8.10: Return distribution using MSMCS on frequentist ARMA-GARCH Fore-
casts: Bull market (US)
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Forecasting in a bull market for UK assets
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Figure 8.11: Return distribution using MSMCS on Bayesian ARMA-GARCH fore-
casts: Bull market (UK)
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Figure 8.12: Return distribution using MSMCS on frequentist ARMA-GARCH Fore-
casts: Bull market (UK)
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Figure 8.13: Return distribution using MSMCS on Bayesian ARMA-GARCH fore-
casts: Bull market (CN)

206



92.5 95.0 97.5 100.0 102.5 105.0 107.5
Final Investment Value

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y

  True Value: 101.67  

  Mean: 100.04  

  VaR Threshold: 96.89  

SSE - 1 Day Forecast
97.5% Var/CVaR: 3.11 / 3.62

85 90 95 100 105 110 115
Final Investment Value

0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ilit

y

  True Value: 103.61  

  Mean: 100.31  

  VaR Threshold: 93.49  

SSE - 5 Day Forecast
97.5% Var/CVaR: 6.51 / 7.76

80 90 100 110 120 130
Final Investment Value

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Pr
ob

ab
ilit

y

  True Value: 103.78  

  Mean: 100.73  

  VaR Threshold: 87.89  

SSE - 20 Day Forecast
97.5% Var/CVaR: 12.11 / 14.31

90 95 100 105 110
Final Investment Value

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

Pr
ob

ab
ilit

y

  True Value: 100.54  

  Mean: 100.08  

  VaR Threshold: 95.48  

PING - 1 Day Forecast
97.5% Var/CVaR: 4.52 / 5.39

80 90 100 110 120
Final Investment Value

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Pr
ob

ab
ilit

y

  True Value: 107.09  

  Mean: 100.30  

  VaR Threshold: 90.29  

PING - 5 Day Forecast
97.5% Var/CVaR: 9.71 / 11.42

60 80 100 120 140 160
Final Investment Value

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ilit

y

  True Value: 112.97  

  Mean: 100.83  

  VaR Threshold: 82.16  

PING - 20 Day Forecast
97.5% Var/CVaR: 17.84 / 20.91

90 95 100 105 110
Final Investment Value

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Pr
ob

ab
ilit

y

  True Value: 96.80  

  Mean: 99.55  

  VaR Threshold: 95.40  

SHEN - 1 Day Forecast
97.5% Var/CVaR: 4.60 / 5.30

80 90 100 110 120
Final Investment Value

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ilit

y

  True Value: 93.98  

  Mean: 101.04  

  VaR Threshold: 92.20  

SHEN - 5 Day Forecast
97.5% Var/CVaR: 7.80 / 9.40

80 100 120 140
Final Investment Value

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Pr
ob

ab
ilit

y

  True Value: 105.08  

  Mean: 102.27  

  VaR Threshold: 84.72  

SHEN - 20 Day Forecast
97.5% Var/CVaR: 15.28 / 18.26

Forecasted Bull Market - Starting December 19, 2014

Figure 8.14: Return distribution using MSMCS on frequentist ARMA-GARCH fore-
casts: Bull market (CN)
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Forecasting in a bear market for US assets
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Forecasted Bear Market - Starting August 19, 2011

Figure 8.15: Return distribution using MSMCS on Bayesian ARMA-GARCH fore-
casts: Bear market (US)
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Forecasted Bear Market - Starting August 19, 2011

Figure 8.16: Return distribution using MSMCS on frequentist ARMA-GARCH fore-
casts: Bear market (US)
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Forecasting in a bear market for UK assets
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Forecasted Bear Market - Starting August 10, 2011

Figure 8.17: Return distribution using MSMCS on Bayesian ARMA-GARCH fore-
casts: Bear market (UK)
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Forecasted Bear Market - Starting August 10, 2011

Figure 8.18: Return distribution using MSMCS on frequentist ARMA-GARCH fore-
casts: Bear market (UK)
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Forecasted Bear Market - Starting July 8, 2015

Figure 8.19: Return distribution using MSMCS on Bayesian ARMA-GARCH fore-
casts: Bear market (CN)
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Forecasted Bear Market - Starting July 8, 2015

Figure 8.20: Return distribution using MSMCS on frequentist ARMA-GARCH fore-
casts: Bear market (CN)
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Forecasting in a volatile market for US assets
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Forecasted Volatility Market - Starting March 27, 2020

Figure 8.21: Return distribution using MSMCS on Bayesian ARMA-GARCH fore-
casts: Volatile market (US)
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Figure 8.22: Return distribution using MSMCS on frequentist ARMA-GARCH fore-
casts: Volatile market (US)
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Figure 8.23: Return distribution using MSMCS on Bayesian ARMA-GARCH fore-
casts: Volatile market (UK)
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Figure 8.24: Return distribution using MSMCS on frequentist ARMA-GARCH fore-
casts: Volatile market (UK)
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Figure 8.25: Return distribution using MSMCS on Bayesian ARMA-GARCH fore-
casts: Volatile market (CN)
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Figure 8.26: Return distribution using MSMCS on frequentist ARMA-GARCH fore-
casts: Volatile market (CN)
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8.7.3 Conclusion

Applying MSMCS in equity risk assessment significantly enhances our understanding

and capabilities in financial risk management. The MSMCS approach, applied to

both Bayesian and frequentist ARMA-GARCH models, can efficiently reconstruct

a complete probability distribution and obtain a CVaR estimate. Based on our core

data, the Bayesian ARMA-GARCH models obtain a more accurate forecast of future

returns, being closer to the true return values (in most cases) than the frequentist

ARMA-GARCH implementation.

The MSMCS Bayesian ARMA-GARCH framework combines the Bayesian ARMA-

GARCH’s ability to forecast returns accurately—by incorporating prior knowledge

and updating beliefs with new information—with MSMCS’s efficient sampling of

complete distributions, including the tails. This combined framework achieves the

first two thesis objectives:

• Objective one: asset returns forecasting. Develop models that provide

more accurate and robust asset price and volatility forecasts, accounting for

uncertainty.

• Objective two: risk management. Develop new methodologies which

better predict the probability and impact of tail events.

Publication

The proposed MSMCS algorithm has been published:

Millar, Robert, Li, Hui, and Li, Jinglai. “Multicanonical sequential Monte

Carlo sampler for uncertainty quantification”. Reliability Engineering & System

Safety 237 (2023).
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Chapter 9

Optimal Portfolio Allocation

In the preceding chapters of this thesis, we systematically analysed methods for

(1) forecasting asset returns and volatility under uncertainty and (2) measuring

financial risk, specifically tail risk. Future asset returns can be forecast to account

for uncertainty, by using methods like Bayesian ARMA-GARCH. Tail risk can be

captured through the use of risk measures (like CVaR) by applying MSMCS. Given

these insights, one question remains: How can investors achieve an optimal portfolio

allocation in uncertain markets?

9.1 Problem set-up

Traditionally employed in Engineering, reliability-based design optimisation (RBDO)

incorporates reliability measures, often probabilistic, directly into the optimisation

process, as either the objective function or the constraint. By adapting RBDO ap-

proaches for financial optimisation, the inherent uncertainty and tail risk in financial

modelling can be captured within the optimisation process. We propose using CVaR

as the risk measure within the objective of the optimisation problem.

In Section 5.2.4, we found that CVaR operates under stochastic dominance and

has a positive relationship to expected return (see section 5.2.4)—features we can
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exploit in our optimisation problem design.

In order for an investor to achieve a certain level of expected return, the asso-

ciated CVaR must be considered—where the most desirable portfolio, achieves the

expected return requirement with the lowest possible CVaR. Noting that, to reduce

the portfolio’s CVaR further would necessitate a lower expected return. On this

basis, we establish our optimisation problem as follows.

The optimisation problem has a minimum expected return requirement, set as

the constraint, and an objective to minimise the CVaR. We seek to find the optimal

allocation of portfolio weights w. Formally, the problem is defined as follows:

min
w

F (w) := CVaRα[f(w,Z)] (9.1.1a)

s.t. R(w) := EZ[f(w,Z)] ⩾ rmin (9.1.1b)

0 ⩽ wi ⩽ 1, i = 1, ..., N,
N∑
i=1

wi ⩽ 1. (9.1.1c)

9.2 Portfolio optimisation methods

Portfolio optimisation utilising CVaR is not new—various algorithms exist to obtain

an optimal solution under such a framework, where CVaR is either in the objective

or constraint(s).

9.2.1 Linear programming

One of the most commonly referenced papers in this field is by Rockafellar and

Uryasev (2002). The paper aims to minimise CVaR while ensuring a certain level of

return. The paper demonstrates that if the reward and loss functions are linear and

accessible (not black-box), then the problem can be solved as a classic linear pro-

gramming (LP) problem, where basic MC simulations are used to generate samples
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representing the risk factors from known probability distributions.

Rockafellar and Uryasev (2000) seeks to maximise expected returns under condi-

tional value-at-risk (CVaR) constraints. The paper calculates VaR using either (1)

a linear approximation of portfolio risk and assuming joint Normal distributions of

market variables, or (2) a Monte Carlo simulation-based method when the portfo-

lio contains non-linear assets. The proposed algorithm considers different expected

returns and their associated risks to generate an efficient frontier, from which the

optimal portfolio allocation is obtained.

Hochreiter (2007) propose using an evolutionary exploration with LP to con-

sider a finite set of scenarios with different probabilities, to which an evolutionary

algorithm is applied and improving solutions that meet the CVaR constraint are

accepted, as determined using standard LP.

The LP approaches all rely on the assumption of linearity; an oversimplification.

Markets often exhibit non-linear behaviour due to their market dynamics and com-

plex financial instruments. As such, LP methods have the potential to misrepresent

the risk and return dynamic.

9.2.2 Non-linear and other traditional programming

Gaivoronski and Pflug (2005) published a portfolio optimisation approach in the non-

linear setting, which aims to establish an efficient frontier by minimising VaR for

different values of minimal return—from which the optimal allocation is estimated

using standard non-linear programming (NLP) methods. The VaR is determined

using a smoothed VaR function based on historical VaR data to reduce the effect of

outliers.

Other traditional approaches include: Ghaoui et al. (2003) propose a conic op-

timisation approach. Pirvu (2007) propose a sequential quadratic programming
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approach. Finally, Wozabal (2012) propose converting the VaR into difference of

convex functions. Whereby the distribution of the underlying random variables

becomes discrete, so the branch-and-bound method can be applied.

Ahmadi-Javid and Fallah-Tafti (2019) propose using the primal-dual algorithm

to solve investment optimisation problems, where Newton’s method is applied to the

KKT equations. Such gradient-based methods assume differentiability of the return

function, which is not always viable, as return distributions can be discontinuous

or exhibit jumps due to market events. As such, non-gradient-based methods are

desirable.

9.2.3 Heurstic and simulation-based methods

In their study, Gilli and Këllezi (2002) present a heuristic technique that uses Thresh-

old Accepting, a deterministic form of Simulated Annealing, to search through the

solution space. Specifically, the paper aims to maximise returns under a VaR or

CVaR constraint by conducting a local search where the generated samples can

escape local minima by accepting solutions not worse than a specified threshold.

The threshold is reduced at each iteration until it reaches zero, at which point only

improving solutions are accepted. (C)VaR is determined using modelled future re-

turns, which are randomly drawn from the empirical distribution of past returns.

The work was extended to use actual data in Gilli et al. (2006).

Nguyen et al. (2011) propose a Cross-Entropy method for finding an optimal

portfolio with VaR constraints. The paper applies CE to improve the design variable

quality by encouraging sampling in the optimal return-maximising region. VaR is

determined for each proposed variable and then an acceptance threshold is applied,

in which the objective function is set to zero if the VaR violates this threshold.
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9.3 Motivation for new approach

The assumptions of linearity, differentiability, or accessible objective and constraint

functions underlie the optimisation algorithms set out above. In many financial

settings, the return functions are not linear, and cannot be accessed directly, mak-

ing these approaches infeasible. Additionally, none of these methods allows for the

incorporation of uncertainty into the framework; a central objective of this the-

sis. Therefore, an alternative approach to portfolio optimisation is needed; one

that avoids any unrealistic assumptions imposed on the objective and constraint

functions, can work with black-box functions, and incorporates uncertainty into the

procedure.

Some progress towards this has been made, nicely summarised in the literature

reviews by Kalayci et al. (2019) and Xidonas et al. (2020). The reviews compared

various portfolio optimisation algorithms—concluding that advanced deterministic

models, such as robust optimisation and stochastic programming, offer a more re-

alistic approach by considering uncertainty and allowing non-normal return distri-

butions. Robust optimisation focuses on creating portfolios that perform well under

worst-case scenarios, safeguarding against extreme market movements. Stochastic

programming utilises dynamic portfolio adjustments to adapt to changing market

conditions.

Through the optimisation problem set-up we established in Section 9.1, our pro-

posed framework can be considered robust—as it considers worst-case scenarios

through the CVaR objective. To solve our optimisation problem, we propose the

application of a stochastic programming procedure. Stochastic, also called search-

based, algorithms have the added advantage of being able to handle the multiple local

extrema or discontinuities that return and risk functions often display. Stochastic
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algorithms do not impose assumptions on statistical properties of optimisation func-

tions, including allowing for black-box functions; and—as we will see—stochastic

algorithms can account for uncertainty. The class of robust stochastic optimisation

algorithms we utilise are Bayesian Optimisation.

9.4 Bayesian Optimisation

With the increasing complexity of financial markets and instruments, portfolio op-

timisation faces challenges, especially when dealing with noisy and expensive black-

box objective and constraint functions. Traditional optimisation methods are inade-

quate for such problems. Bayesian optimisation (BO) methods have gained attention

for their effectiveness in handling noisy, expensive and black-box functions. The BO

procedure is detailed in the next chapter.

BO methods are applicable to scenarios where the objective function does not

have a closed-form expression, but noisy evaluations can be obtained at sampled

points (Brochu et al., 2010). The BO method is highly beneficial when the function

evaluations are costly, when derivatives are inaccessible, or when dealing with non-

convex problems—all of which are characteristics of portfolio optimisation problems.

The effectiveness of Bayesian optimisation hinges on two fundamental components

(Brochu et al., 2010): firstly, it leverages the entire history of samples to construct a

posterior distribution over the unknown objective function; secondly, it employs an

acquisition function to balance exploration and exploitation in selecting subsequent

sampling points. Consequently, Bayesian optimisation techniques are among the

most efficient methods in terms of minimising the number of function evaluations

required.

Cakmak et al. (2020) propose a BO algorithm for the unconstrained optimisation

of risk measures—specifically, VaR and CVaR—of black-box expensive-to-evaluate
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functions, with randomness induced by an environmental random variable. The

paper proposes modelling the underlying function f as a GP and applying a BO

method which jointly selects both a portfolio weight w and realisation of the envi-

ronmental variable Z, using a one-step look-ahead approach based on the knowledge

gradient acquisition function.

Furthermore, Nguyen et al. propose two alternate BO approaches for optimising

VaR (Nguyen et al., 2021b) and CVaR (Nguyen et al., 2021a), which provide certain

desirable computational and theoretical properties—further explored in the next

chapter. More recent work includes Daulton et al. (2022a), which aims to tackle

multivariate value-at-risk problems and Picheny et al. (2022), which studies the

situation that the distribution of Z is unavailable.

The aforementioned methods are designed for unconstrained minimisation of risk

measures. Designing a BO method that seeks to minimise the risk measure under

a minimum expected return constraint is highly desirable. A popular class of BO

methods for general constrained optimisation problems incorporate the constraints

into the acquisition function design (Gramacy and Lee, 2011; Gardner et al., 2014;

Gelbart et al., 2014).

More recent advances include Lam and Willcox (2017), Letham et al. (2019) and

Eriksson and Poloczek (2021), among others. Whilst these methods are effective,

they often require frequent evaluation of the risk measure functions, which is un-

suitable for complex allocation problems. Hence, we are motivated to develop a BO

algorithm for optimal portfolio allocation, where we seek to minimise a risk measure

under a minimum return requirement or constraint.
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Chapter 10

Bayesian Optimisation for

Portfolio Allocation

This chapter introduces Gaussian Processes (GPs) for modelling complex, non-linear

relationships in data, effectively incorporating uncertainty through probabilistic pre-

dictions. GPs are the backbone of GP-based regression, which enables flexible, non-

parametric modelling without assuming a specific form for the underlying function.

Bayesian Optimisation (BO)—which utilises GPs—is employed to solve our port-

folio optimisation problem, seeking to minimise conditional value-at-risk (CVaR)

under a minimum expected return constraint.

By applying BO for this task, we aim to harness the strengths of GPs in capturing

uncertainty and the efficiency of BO in navigating complex solution spaces—aligning

with our overall thesis motivation and objectives. We propose several adaptations to

existing BO procedures, designed to take advantage of two key properties of portfolio

allocation problems: 1) the expected return constraint functions are much cheaper to

evaluate than the objective function, i.e., the risk measures; 2) the expected return

constraints are typically active – namely, the optimal solution lies on the boundary

of the feasible region defined by the constraints. Both statements are justified within
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this chapter.

We introduce a two-stage BO adaptation, which reduces the number of full-

function evaluations needed to find an optimal solution, significantly reducing the

algorithm’s computational cost. Only samples that meet certain criteria are fully

evaluated in the second stage; this differs from a cascade-based BO approach (see

e.g., Kusakawa et al. (2022)) where all samples in the first stage are used in the

second, regardless of their feasibility or promise.

By taking advantage of our problem set-up, we propose a new acquisition func-

tion that encourages more samples to be generated in the near-optimal region, im-

proving the algorithm’s performance. To take advantage of parallel computing, we

detail how our proposed BO algorithms can be adapted for batch implementation.

The proposed BO algorithms are highly effective for solving constrained portfolio

allocation problems, outperforming the current best constrained BO approaches

with a lower computational cost and, crucially, faster convergence to an optimal

solution—as demonstrated in later numerical examples. These improvements are

achieved by combining a new acquisition function, a two-stage procedure and the

potential for parallel batch implementation. We begin by introducing GP and GP-

regression, the backbone of Bayesian Optimisation.

10.1 Gaussian Process

A Gaussian Process (GP) is a collection of random variables, any finite number

of which have a joint Gaussian distribution. A GP model provides a framework

for conducting non-parametric regression in the Bayesian fashion. As defined by

Rasmussen (2003), the GP model for a function g(x) can be written as:

g(x) ∼ GP (µ(x), k(x, x′)), (10.1.1)
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where the mean function µ(x) and covariance function k(x, x′) are defined for any

pair of input points x, x′ ∈ Rd, by:

µ(x) = E[g(x)],

k(x, x′) = E[(g(x)− µ(x))(g(x′)− µ(x′))].
(10.1.2)

Therefore, given a set of points x = {x1, ..., xT} with corresponding function val-

ues g(x) = {g(x1), ..., g(xT )}, the marginal distribution is a multivariate Gaussian

distribution:

g(x) ∼ N(µ(x), k(x,x)), (10.1.3)

with mean vector µ(x) and positive-definite covariance matrix & function Σ =

k(x,x).

The specification of the covariance function k(x,x)—or kernel function—allows

one to set prior information over the function g(x). In our procedure, we chose to

use the Matérn 5/2 kernel due to its balance between flexibility and accuracy in the

function representation. This is particularly useful since our underlying process is

unlikely to be perfectly smooth. The Matérn 5/2 kernel is defined for two points x

and x′ as:

kMatern52(x, x
′) = σ2

(
1 +
√
5r +

5

3
r2
)
exp

(
−
√
5r
)
,where (10.1.4)

r =

√√√√ d∑
i=1

(xi − x′i)2
l2i

. (10.1.5)

r is an adapted measure of the Euclidean distance between x and x′, li are the

length scales, and σ2 is the variance parameter. Refer to Rasmussen (2003) for

further details on the GP design.

Gaussian Processes are used to model complex, often non-linear relationships in
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data, accounting for uncertainty by providing both predictions and their associated

confidence levels through a probabilistic framework.

10.1.1 GP-based regression

GP-based regression leverages the principles of GPs for inferring complex relation-

ships within data. GP-based regression aims to predict outcomes by constructing a

probabilistic model, where the predictions at any set of input points are Gaussian

distributed, providing both an estimate and uncertainty measure for each prediction.

The GP-based regression proceeds as follows. Based on a set of input points x,

referred to as the training set, GP-based regression seeks to evaluate a new proposed

design point x̂. To start, the joint Gaussianity of all finite subsets implies:

g(x)
g(x̂)

 = N


µ(x)
µ(x̂)

 ,
k(x,x) k(x, x̂)

k(x̂,x) k(x̂, x̂)


 (10.1.6)

From this, it is possible to obtain the posterior distribution of g(x̂) conditional on

the training data set D = {x, g(x)}. The posterior distribution is Gaussian with

N(µ̃(x̂), Σ̃(x̂)):

µ̃(x̂) = µ(x̂) + k(x̂,x)k(x,x)−1(g(X)− µ(x)),

Σ̃(x̂) = k(x̂, x̂)− k(x̂,x)k(x,x)−1k(x, x̂).

(10.1.7)

The posterior mean, µ̃(x̂), updates our prediction for g(x̂), incorporating the

influence of the training data by adjusting the prior mean with a weighted difference

of observed and expected outputs. The posterior covariance, Σ̃(x̂), quantifies the

uncertainty of this prediction, reducing the prior variance based on the information

gained from the training data. These computations are central to GP regression,

enabling predictions informed by the data and quantifying uncertainty.
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Having introduced the GP-regression, we proceed with the presentation of Bayesian

Optimisation; this chapter first explains Bayesian Optimisation in the general setting

with objective g(x) and some constraints. Then, it presents Bayesian Optimisation

for portfolio allocation problems and introduces our proposed adaptations.

10.2 General Bayesian Optimisation

Bayesian Optimisation (BO) is a probabilistic framework for optimising black-box

functions based on the GP model (Močkus, 1975). In the unconstrained setting, BO

sequentially evaluates the objective function at selected points, from which a GP

model of the target function is constructed. The design point(s) are selected by max-

imising an acquisition function—detailed in the next subsection—which quantifies

a desired trade-off between the exploration and exploitation of the GP model.

This fundamental trade-off exists in finite resource problems, where the decision-

making process can be oriented towards two main strategies: exploitation or explo-

ration. Exploitation involves making the best decision based on current information,

focusing on known and proven methods or areas. In contrast, exploration is about

gathering more information by venturing into unknown or less understood areas.

This trade-off is crucial in optimising the performance of GP models, where balanc-

ing these two approaches can lead to more effective and informed decision-making.s

The standard BO procedure for unconstrained problems is given in Alg. 16.
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Algorithm 16 Bayesian Optimisation

1: Input: Objective function g(x), acquisition function a(x, g̃), initial design for

training data set D0, stopping criteria

2: Initialize the training data set D0 using an initial design

3: Let t = 0

4: while stopping criteria not met do

5: Let t = t+ 1

6: Construct a Gaussian Process (GP) model g̃t−1 using Dt−1

7: Find xt = argmaxx a(x, g̃t−1)

8: Update Dt = Dt−1 ∪ {xt, g(xt)}

9: end while

10: Return: The point xt that globally minimises g(x) based on the GP model

10.2.1 General BO acquisition functions

Bayesian Optimisation utilises various acquisition functions to guide the search pro-

cess. Three popular acquisition functions are Expected Improvement, Probability

of Improvement, and Upper Confidence Bound.

Expected Improvement

The Expected Improvement (EI) function maximises the expected improvement over

the current best-known point. It balances exploration and exploitation effectively

and has strong theoretical and empirical support, as demonstrated in the works by

Turner et al. (2020) and Snoek et al. (2012). However, it is less effective in high-

dimensional spaces due to the curse of dimensionality. The Expected Improvement

for a proposed point x is defined as:

EI(x) = E[max{0, g(x+)− g(x)}], (10.2.1)
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where g(x+) is the value of the best sample so far, and the expectation is taken with

respect to the posterior distribution of g(x).

Probability of Improvement

Probability of Improvement (PI) is a probabilistic adaptation of EI, which maximises

the probability that a new data point will improve on the current best observation

(Turner et al., 2020). PI uses incremental improvements, tending to propose points

with small but certain improvements, potentially missing out on areas with higher

uncertainty but larger potential gains. The Probability of Improvement for a pro-

posed point x is defined as:

PI(x) = P(g(x) < g(x+)), (10.2.2)

where g(x+) is the value of the best sample so far, and P denotes probability.

Upper Confidence Bound

The Upper Confidence Bound (UCB) function is the sum of the prediction and a

term proportional to the uncertainty (Brochu et al., 2010). UCB provides explicit

control over the exploration-exploitation trade-off using a parameter denoted by κ,

which is problem-specific and often challenging to select. The Upper Confidence

Bound for a proposed point x is defined as:

UCB(x) = µ(x) + κσ(x), (10.2.3)

where µ(x) and σ(x) are the mean and standard deviation of the posterior distribu-

tion at x.
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10.2.2 General constrained BO

This section presents the BO method for optimisation problems with inequality

constraints, largely following Gardner et al. (2014) and Gelbart et al. (2014)—based

on the following constrained optimisation problem:

min
x

g(x) s.t. ck(x) ⩽ 0, k = 1, ..., K. (10.2.4)

To utilise the BO method to solve Eq.(10.2.4), it is necessary to model all the

constraint functions ck(x) as separate GPs. Specifically, the GP model for the

kth constraint function ck(x) is obtained from the constraint training set Ck =

{(x1, ck(x1)), ..., (xm, ck(xm))}. For each design point, every constraint function must

be evaluated to improve the GP c̃k(x) for the corresponding constraint function

ck(x). In the BO procedure, to assess the objective and constraints for each proposed

design point, the acquisition function should incorporate the constraints.

As per Gardner et al. (2014), let x+ be the current best evaluated point, i.e., the

point with the smallest g(x+) value in the current training set. Then, conditional

on this training set Ck, define the probability of feasibility (PF) to be:

PF(x) = P(c̃1(x) ⩽ 0, c̃2(x) ⩽ 0, ..., c̃K(x) ⩽ 0). (10.2.5)

This represents the probability that a candidate point x satisfies all the constraints.

Then, by conditional independence of the constraints given x:

PF(x) =
K∏
k=1

P(c̃k(x) ⩽ 0). (10.2.6)

Incorporating this with the EI acquisition function obtains a new acquisition func-
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tion:

aCW-EI(x) = EI(x)PF(x), , (10.2.7)

which, as per Gardner et al. (2014), is referred to as the ‘constraint-weighted ex-

pected improvement’ (CW-EI) acquisition function. This acquisition function con-

siders the expected improvement in the objective and the probability of feasibility

for the constraints.

The constrained BO algorithm proceeds largely the same as the unconstrained

version (Alg. 16), except for the following two main differences: (1) the constrained

acquisition function in Eq. (10.2.7) is used to select the new design points; (2) for

each design point, both the objective and constraint functions are evaluated. We

hereafter refer to this constrained BO method as ‘CW-EI BO’.

10.3 Bayesian optimisation for portfolio alloca-

tion

Gardner et al. (2014) and Gelbart et al. (2014) established a constrained Bayesian

Optimisation framework to account for uncertainty caused by an environmental ran-

dom variable (i.e., Z). This framework has been applied in the general setting but,

to the best of our knowledge, never for portfolio optimisation. Our proposed BO

procedure builds upon this work but includes several adaptations to enhance per-

formance and leverage the specific problem structure related to portfolio allocation.

It is possible to apply a class of BO approaches (see e.g., Fröhlich et al. (2020);

Cakmak et al. (2020); Daulton et al. (2022b)) which model the function f as a single

GP for a fixed environmental variable z during the optimisation procedure, where the

variable Z is only random during implementation. Whilst this may be appropriate

for some optimisation problems, it is not for portfolio allocation problems where
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the full range of Z must be considered within the optimisation procedure to ensure

uncertainty and tail risk are adequately accounted for.

The constraint-weighted expected improvement BO procedure could be applied

directly to the portfolio optimisation problem—as set up in Section 9.1. CW-EI

would model the CVaR objective and expected return constraint as separate GPs

and the then standard procedure is followed (Alg. 16). Within this, for each proposed

portfolio allocation w, the expected return and CVaR with respect to f(w,Z) must

be obtained. This could be achieved through a standard MC simulation, or a more

advanced technique (i.e., the proposed MSMCS algorithm).

The work in Chapter 6, demonstrated that a small MC sample size can be used

to obtain an expectation from f(w,Z), however, to obtain an accurate estimate

of the tail risk, or CVaR, a very large number of samples is required. As such,

the computational cost of evaluating the CVaR objective—in the BO procedure—is

much higher than evaluating the expected return constraint1. This fact is central to

our proposed BO algorithm.

Our proposed BO algorithm is an adaptation of the CW-EI BO method, moti-

vated by our observation that the computational cost of evaluating CVaR is signifi-

cantly higher than the expected return, so the computational efficiency of BO can be

enhanced by reducing the number of CVaR evaluations. In addition, the proposed

BO algorithm is specifically designed to take advantage of key features unique to

portfolio allocation problems—which we detail now.

10.3.1 Activeness of the minimum expected return constraint

To ease understanding, we restate the VaR and CVaR definitions.

Definition 10.3.1 The VaR of f(w,Z) at a specified risk level α ∈ (0, 1), denoted

1For example, in our later numerical examples (in Sect. 10.6.2), the cost for evaluating the
expected return is around 1% of the cost for evaluating CVaR.
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as vf (w;α), is defined as the threshold value ω such that the probability of the loss

exceeding ω is at most (1− α). Formally, VaR is defined as:

vf (w;α) = inf{ω : P(f(w,Z) ⩽ −ω) ⩽ 1− α}. (10.3.2)

Definition 10.3.3 The CVaR of f(w,Z) at a specified risk level α ∈ (0, 1) is defined

as the expected loss, assuming that the loss is worse than the VaR threshold. It

represents the average of the worst-case losses. Formally, CVaR is defined as:

CVaRα[f(w,Z)] = −E[f(w,Z)|f(w,Z) ⩽ −vf(w;α)]. (10.3.4)

It is important to note that f(w, z) ⩽ 0 indicates losses, whereas VaR and CVaR

are statements about the losses, so vf (w;α) ⩾ 0 and CVaRα[f(w,Z)] ⩾ 0 represent

negative returns, or losses. We introduce and prove several assumptions in relation

to the return function f(w, z) and the distribution of Z.

Assumption 1. (a) f(w, z) is a continuous function of w for any fixed z; (b)

f(0, z) ≡ 0; (c) for a given w ∈ W and any fixed z, if f(w, z) ⩽ 0, f(ρw, z) is a

decreasing function of ρ ∈ [0, 1]; (d) there exists α ∈ (0, 1) such that vf (w;α) ⩾ 0 ∀

w ∈W.

• Assumption 1.(a) ensures that small changes in portfolio allocation do not lead

to abrupt or unpredictable changes in outcomes; a reasonable expectation in

most financial models.

• Assumption 1.(b) is straightforward; an absence of investment will result in a

neutral (zero) financial return.

• Assumption 1.(c) implies that, if a chosen portfolio allocation results in a

loss for a certain scenario, this loss does not increase if the total capital is

238



proportionally reduced2; this reflects the intuitive notion that if investing a

certain amount leads to a loss, investing less should not lead to a greater loss.

• Assumption 1.(d) implies that there always exists a choice of α ∈ (0, 1) so

that no matter the allocation (w ∈ W), vf (w;α) is positive, i.e., a loss. In

simpler terms, no matter the allocation, there always exists some level of risk

(represented by α), which can be chosen to ensure there is always some risk

of loss (as indicated by VaR). This is important, as it allows us—through the

appropriate choice of α—to just consider the loss scenarios when evaluating

the associated CVaR.

From this, we obtain the following theorem:

Theorem 10.3.5 If function f(w,Z) and distribution pz(·) satisify Assumptions 1,

α is chosen such that vf (w, α) ⩾ 0 ∀ w ∈W, and solutions to the constrained opti-

misation problem (9.1.1) exist, then there must exist a solution to problem (9.1.1),

denoted as w∗, such that R(w∗) = rmin.

Before we prove this theorem, we interpret it. Simply put, Theorem 1 states that,

under some reasonable assumptions, the constraint (9.1.1b) is active for at least one

solution. The result is rather intuitive, as it infers that a higher expected return

can only be obtained by increasing risk exposure and, as such, the CVaR. The

optimal solution to our problem will likely arise from an active constraint, where

the minimum expected return requirement limits our ability to reduce the CVaR

further. This aligns with our earlier analysis in Section 5.2.4 on CVaR’s properties

of stochastic dominance and its relationship to returns.

2For clarity, as ρ goes from 0 to 1, f goes from f(0, z) ≡ 0 to f(w, z). As f(w, z) ⩽ 0, the
function value f(ρw, z) gets more negative, so f is a decreasing function w.r.t. ρ ∈ [0, 1].
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Proof. First, assume that w′ is a solution to the constrained optimisation problem

(9.1.1). It follows directly that R(w′) ⩾ rmin. Obviously if R(w′) = rmin, the

theorem holds.

Now consider the case that R(w′) > rmin, i.e., it does not lie on the boundary of

the feasible region. From Assumption 1.(a), R(w) is a continuous function of w in

W. Next define a function

h(ρ) = R(ρw′)

for ρ ∈ [0, 1]. As R(w) is a continuous function in W, h(ρ) is a continuous function

too.

From Assumption 1.(b), we know that h(0) = 0, and therefore,

h(0) = 0 < rmin < h(1) = R(w′)

According to the intermediate value theorem on continuous functions, there exists

some ρ∗ ∈ (0, 1) such that h(ρ∗) = R(ρ∗w′) = rmin. Let w∗ = ρ∗w′ denote this point,

which lies on the constraint boundary—we wish to compare F (w∗) and F (w′), i.e.,

the CVaR values at these two points for a fixed α.

From the Theorem’s assumption, we have vf (w
′, α) ⩾ 0 and vf (w

∗, α) ⩾ 0.

From Assumption 1.(c), we know that for any z, if f(w′, z) ⩽ 0, then f(w′, z) ⩽

f(w∗, z) ⩽ 0.

It follows that for any z ∈ {z|f(w′, z) ⩽ −vf (w′, α)}, we have

f(w′, z) ⩽ f(w∗, z) ⩽ −vf (w∗, α) ⩽ 0.
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As such, we can derive vf (w
∗, α) ⩽ vf (w

′, α), and obtain,

CVaRα[f(w
∗,Z)] = −E[f(w∗,Z)|f(w∗,Z) ⩽ −vf (w∗;α)] (10.3.6)

⩽ −E[f(w∗,Z)|f(w∗,Z) ⩽ −vf (w′;α)] (10.3.7)

⩽ −E[f(w′,Z)|f(w′,Z) ⩽ −vf (w′;α)] (10.3.8)

= CVaRα[f(w
′,Z)], (10.3.9)

Therefore, x∗ is also a minimal solution w.r.t. the objective function and R(x∗) =

rmin. The proof is thus complete. □

10.3.2 Two-Stage point selection

Theorem 1 proves that under some reasonable assumptions, the constraint (9.1.1b)

is active for at least one solution—where the minimum expected return requirement

limits the ability to reduce the CVaR further. We seek to exploit this feature.

Based solely on the expected return of a proposed portfolio weight w, one may

decide not to evaluate the CVaR objective function in the following two situations.

Firstly, if the expected return is lower than the minimum constraint threshold, then

the proposed design point is not feasible and as such, the CVaR function does

not need to be evaluated. Secondly, if the expected return is too high (i.e., not

approximately active), the corresponding CVaR is likely far from optimal—as per

Thm. 1—so the objective need not be evaluated. To formalise ‘too high’, we propose

the introduction of a maximum expected return parameter, denoted by rmax, set on

the basis that those points with expected returns higher than this value are highly

unlikely to be optimal.

Based on these observations and rmax, we propose a two-stage point selection

procedure. The first stage selects a design point based on the acquisition function.
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The second stage calculates the expected return and only if the expected return

satisfies

rmin ⩽ R(w) = EZ[f(w,Z)] ⩽ rmax, (10.3.10)

the objective function is evaluated, and the constraint and objective GPs are up-

dated. If Eq. (10.3.10) is not satisfied, the proposed point is rejected and the ob-

jective function is not evaluated. To ensure the same point is not reproposed, the

expected return constraint GP is updated (but not the objective function GP).

This two-stage (2S) adaptation has the advantage of only fully evaluating feasible

and (approximately) active points. As such, it reduces the number of evaluations

of the expensive-to-evaluate CVaR objective. Through this process, the algorithm

obtains two training sets, one for the CVaR objective and one for the expected

return constraint, with the former being a subset of the latter.

10.3.3 New acquisition function

Using the two-stage selection procedure (‘2S’), significantly more evaluations of the

expected return constraint will occur compared to the CVaR objective. As such, the

GP for the constraint will be more accurate than the objective function’s. The CW-

EI acquisition function would be highly effective at proposing feasible points—due

to the quality of the constraint GP—but may be poor at proposing points with low

CVaR—due to the lower quality of the objective GP. We propose a new acquisition

function to address this issue.

As the CW-EI acquisition function only accounts for the feasibility of the con-

straint, we want to incorporate the activeness as well. Let R̃(w) be a GP model of

the expected return R(w), we define

PF(w) = P(rmin ⩽ R̃(w) ⩽ rmax), (10.3.11)
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which is the probability that a design point w is both feasible and approximately

active. Therefore, given w, we have

PF(w) = PFmin(w)× PFmax(w), where

PFmin(w) = P(R̃(w) ⩾ rmin)

PFmax(w) = P(R̃(w) ⩽ rmax).

(10.3.12)

Combining Eq. (10.3.12) with the Expected Improvement we obtain:

aACW-EI(w) = EI(w)PFmin(w)PFmax(w), (10.3.13)

which is hereafter referred to as the ‘active constraint-weighted expected improve-

ment’ (ACW-EI) acquisition function. Note that this acquisition function depends

on both the GPmodels for CVaR and the expected return—denoted by aCW-EI(w, F̃ , R̃).

The new term PFmax in the acquisition function encourages proposed points to be

approximately active, which, by proxy, increases the likelihood they are near-optimal

with respect to the objective function. The choice of rmax is explored through our

numerical examples.

The inclusion of this parameter is a crucial aspect of our proposed BO algo-

rithms. Two feasible points with different true CVaRs are likely to have a similar

expected improvement (prior to full evaluation) due to the low-quality GP for the

objective function and equal probability of feasibility for the constraint (namely,

= 1). By introducing the new rmax term—based on the more accurate expected

return GP—our proposed BO procedure can differentiate between these two points

during the selection procedure. The procedure will choose the point with the lower

(but feasible) expected return, which, in turn, is more likely optimal.
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10.4 The complete BO algorithm

To complete our proposed algorithm, we must discuss the weight constraints:

0 ⩽ wi ⩽1, i = 1, ..., N, (10.4.1)

N∑
i=1

wi ⩽ 1, (10.4.2)

which will be denoted as w ∈ S in what follows. It is possible to deal with these

constraints in the same manner as the expected return, i.e., as GP models. How-

ever, unlike the expected return constraint, which is probabilistic, the summation

constraint is deterministic and easy to evaluate. As such, we impose the constraint

during the maximisation of the acquisition function by solving the following con-

strained maximization problem: maxw∈S aACW-EI(w), which in this work is solved

with the barrier method. In our numerical examples (which follow), we assume that

any remaining capital obtains zero return. Alternatively, one could assume that the

remaining capital gains the risk-free rate (thereby treating it as another potential

asset, i.e., Cash).

Finally, by combining the two-stage point selection, the ACW-EI acquisition

function, and the constrained acquisition maximisation, we obtain our complete

2S-ACW-EI BO algorithm, detailed in Alg. 17.

10.5 Batch implementation

In most Bayesian optimisation approaches, the acquisition function is used to select

a single point for evaluation. The posterior GPs are then updated based on this

evaluation, and the process is repeated. This approach is sequential in nature, as

each point is selected and evaluated one at a time.
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Algorithm 17 The 2S-ACW-EI BO algorithm

1: Input: Initial training data sets D (for the objective) and C (for the con-
straint), stopping criteria, bounds rmin and rmax for the constraint, search space
S, acquisition function aACW-EI

2: Initialise the training data sets D and C using an initial design
3: Let t = 1
4: while stopping criteria not met do
5: Construct a GP model F̃t−1 using D
6: Construct a GP model R̃t−1 using C
7: Find ŵ = argmaxw∈S aACW-EI(w, F̃t−1, R̃t−1)
8: Evaluate the constraint R(ŵ)
9: Update C = C ∪ {ŵ, R(ŵ)}

10: if rmin ⩽ R(ŵ) ⩽ rmax then
11: Evaluate the objective F (ŵ)
12: Update D = D ∪ {ŵ, F (ŵ)}
13: Let t = t+ 1
14: end if
15: end while
16: Return: Optimised dataset D for the objective function under constraints

As it is expensive to evaluate the objective function, it may be advantageous

to evaluate several points simultaneously, for example by using parallel computers.

In this regard, a batch implementation of our proposed BO procedure is desirable,

where several design points are proposed using the acquisition function and then

evaluated simultaneously in parallel.

In most batch BO methods, the batch of design points is determined sequen-

tially via a given point-selection procedure, from which the objective and constraint

functions are evaluated after the whole batch is obtained. To adapt our two-stage

method for batch implementation, we propose including the constraint evaluation as

part of the batch point-selection procedure; only once the whole batch is obtained

are the CVaR objectives evaluated in parallel.

More specifically, the expected return is evaluated for each new proposed point. If

the expected return satisfies Eq. (10.3.10), it is added to the batch and the constraint
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GP is updated. If the expected return does not satisfy Eq. (10.3.10), the point is

not added to the batch, but the GP for the constraint is still updated to ensure that

the point is not proposed again. Once a batch has been determined, each point is

fully evaluated—knowing that all points are feasible and approximately active. The

pseudo-code for our two-stage batch selection is provided in Alg. 18.

The batch approach can be implemented in parallel, so it has a lower compu-

tational cost. However, as the GPs are updated less frequently (than in sequential

implementation), each sample is proposed based on a less accurate GP compared

to at the equivalent stage in the sequential approach. As such, the batch approach

requires a greater total number of samples to converge to the optimal solution.

Algorithm 18 Two-stage batch selection

1: Input: Training set D for the CVaR objective function, training set C for
the expected return constraint, batch size b, constraint bounds rmin and rmax,
selection rule for design points

2: Initialize batch B = ∅
3: Let i = 0
4: while i < b do
5: Propose a new design point ŵ based on the prescribed selection rule
6: Evaluate the constraint R(ŵ)
7: if rmin ⩽ R(ŵ) ⩽ rmax then
8: Update B = B ∪ {ŵ}
9: Let i = i+ 1

10: end if
11: Update C = C ∪ {ŵ, R(ŵ)}
12: Update the Gaussian Process (GP) model for the constraint using C
13: end while
14: Return: Batch B of b design points satisfying the constraints

10.6 Numerical experiments

For a proposed portfolio allocation, it is possible to utilise the Bayesian ARMA-

GARCH framework with MSMCS to obtain a forecasted expected return and CVaR.

The results of such an implementation are reserved for the final example, which
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brings together all aspects of our research. First, we demonstrate the performance

of the proposed BO algorithm in isolation through four numerical examples. We be-

gin with a simple mathematical example, which enables us to better explain how the

proposed BO algorithm drives sampling and, thus, performance. Then, to demon-

strate the performance of the BO algorithms against each other, we introduce three

portfolio allocation problems, which are simpler to understand than the complete

Bayesian ARMA-GARCH MSMCS framework.

For all the numerical examples, our proposed BO algorithms are implemented

using Trieste, a BO Python package built on TensorFlow. We used the default

Matern 52 Kernel within the package, with length scale 1.0 and likelihood variance

1e−7. The resulting problem is solved using the Efficient Global Optimisation (EGO)

method provided by the package.

10.6.1 Mathematical example

Problem set-up

We first consider a simple mathematical example to demonstrate how the design

points are selected by the different BO algorithms. Adapted from Gramacy et al.

(2016), we apply the BO algorithms to solve the following constrained optimisation

problem:

min
x

f(x) :=− x1 − x2

s.t. c(x) :=
3

2
− x1 − 2x2 −

1

2
sin(2π(x21 − 2x2)) ⩾ 0.

(10.6.1)

Implementation details

The original CW-EI method, ACW-EI (i.e. the new acquisition function without the

2S process), and 2S-ACW-EI are implemented with 10 initial points and a further
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50 iterations.

Results

Figure 10.1 shows the design points obtained by each of the three algorithms. The

true optimal solution to the problem is x = (0.918, 0.540), where f(x) = 1.458.

Figure 10.1: Plots showing the optimal solution (green “x”) and the design points
generated by each method. The figures include the fully evaluated points (red dots)
and those for which only the constraint was evaluated (blue dots). The feasible
region is dark grey, the active region is light grey and the infeasible region is very
light grey. The objective function contours are shown too, going from objectives
maximal (blue) to minimal (yellow).

Interpretation of results

The CW-EI and ACW-EIs methods both establish a good GP for the objective func-

tion, encouraging samples to be generated in the high objective region, before the

GP for the constraint is fully formed. This is reflected in the algorithms’ generating

a significant number of infeasible samples with high objective values before moving

towards the feasible region.

In contrast, in the 2S-ACW-EI method, samples are only fully evaluated if they

are in the active region, therefore after a few iterations, the GP for the objective and

constraint functions are weak and strong respectively. Thanks to the well-formed

constraint GP, the acquisition function prioritises the generation of points in the

feasible region, particularly in the active region, before finding those feasible points

that are maximised for the objective.
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10.6.2 Simple portfolio allocation examples

Introduction

The following three examples are based on an investor seeking to optimally allocate

capital to stock or stock options, related to the twenty largest technology companies

by market capitalisation listed on American stock exchanges (both the NYSE &

Nasdaq). The key data is summarised in Table 10.1, including the historical averages

and standard deviations of annual returns; and information related to options, which

form the basis of our second and third examples. The data is a snapshot from July

13, 20223.

In this simple example, we assume that future prices can be predicted simply by

using a Normal distribution based on the historical means and standard deviations

of returns. Clearly, this is a grand simplification of financial market dynamics and

forecasting. In the final numerical results, we apply the proposed BO algorithms to

our Bayesian ARMA-GARCH MSMCS framework to demonstrate the performance

on a more complex and realistic set-up. However, in this example we intentionally

use a simple problem set-up, as it allows us to more easily understand the nature of

our algorithms and compare their performance, removing factors such as the quality

of the forecasting and distribution reconstruction methods.

3The stock price data, including historical performance, is from morningstar.com; call options
price data is from marketwatch.com and Greeks’ data is from nasdaq.com.
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Asset i Company name Ticker Stock price ($)
Historic average

annual return (%)

Historic return

std dev (%)
Strike price ($)

12-month call

bid price ($)
Delta Gamma

1 Apple Inc AAPL 145.49 34.67 66.63 160 14.60 0.4462 0.0112

2 Microsoft Corp MSFT 252.72 31.83 42.45 275 21.45 0.4029 0.0068

3 Alphabet Inc GOOGL 2227.07 29.07 40.46 2, 450 222.20 0.4249 0.0007

4 Amazon.com Inc AMZN 110.40 75.21 196.12 120 15.10 0.4615 0.0119

5 Tesla Inc TSLA 711.12 116.93 219.27 780 152.90 0.5313 0.0012

6 Meta Platforms Inc META 163.49 36.96 33.72 180 26.05 0.5160 0.0066

7 Nvidia Corp NVDA 151.64 59.05 89.51 165 22.35 0.4942 0.0069

8 Broadcom Inc AVGO 481.73 37.44 26.24 530 37.70 0.3933 0.0032

9 Oracle Corp ORCL 70.03 36.06 66.03 78 4.75 0.3857 0.0249

10 Cisco Systems Inc CSCO 42.70 33.10 59.29 47 2.06 0.3896 0.0414

11 Adobe Inc ADBE 371.94 33.43 52.08 410 39.25 0.4569 0.0038

12 Salesforce Inc CRM 163.49 34.66 42.79 180 17.80 0.4859 0.0081

13 Intel Corp INTC 37.21 25.58 51.98 40 3.40 0.4041 0.0393

14 Qualcomm Inc QCOM 135.64 100.34 469.18 150 15.15 0.4764 0.0091

15 Texas Instruments Inc TXN 154.29 16.71 36.39 170 10.65 0.4131 0.0110

16 Intuit Inc INTU 383.31 27.55 42.81 420 44.20 0.4769 0.0035

17 AMD Inc AMD 77.52 49.76 120.59 85 13.10 0.5152 0.0130

18 IBM Corp IBM 137.18 8.84 26.60 150 6.60 0.3191 0.0133

19 Paypal Holdings Inc PYPL 71.36 39.24 47.09 78 11.80 0.5119 0.0144

20 Netflix Inc NFLX 176.56 72.39 115.07 195 29.85 0.5222 0.0053

Table 10.1: Key financial data as of 13th July 2022
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Problem set-up

Take the environment random variable Z to represent the distribution of forecasted

stock prices at a future time (under the Gaussian assumption on historical data).

Then in all three examples, we define the return function as:

f(w, z) =
20∑
i=1

wiyi(zi), (10.6.2)

where yi is the asset return corresponding to the i-th company, a function of its

future stock price zi. In the three examples, we alter the asset type – namely the

function yi(zi) varies. In each example, we consider two return constraints, one lower

and one higher, to understand the BO algorithm’s robustness to this parameter.

Example one. We seek to optimally allocate the investor’s capital directly to

the twenty stocks, which corresponds to setting yi = zi/zi − 1 with zi being the

stock’s purchase price. Example 1 has a constraint for α = 0.0001 of rmin = (a) 0.45

and (b) 0.55.

Example two. We seek to allocate the investor’s capital to European Call

options held till expiry, based on the twenty stocks. A European Call option

gives the owner the right to purchase the underlying asset for a pre-agreed strike

price on a specified future date. Suppose that the present bid price of the call

option for the ith stock is bi and the strike price is Ki, then the asset return is

yi = (max(0, zi −Ki)− bi)/bi − 1

Example 2 has a constraint for α = 0.0001 of rmin = (a) 4.30 and (b) 4.40.

Example three. We consider European Call options, but where the return is

derived from selling the option after six months rather than holding it to maturity.

As such, the return depends on the change in the option price. Option prices

can be modelled using quadratic functions of the underlying asset returns, realised
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through a delta-gamma approximation, that is, a second-order Taylor expansion of

the portfolio return (Zymler et al., 2013). Namely, at a particular future time, the

associated call option return becomes yi = ∆i ε +
1
2
Γi ε

2 − 1, with ε = zi − zi.

Example 3 has a constraint for α = 0.0001 of rmin = (a) 1.90 and (b) 2.00.

Results

In all three examples, we applied the three sequential and two batch methods (stan-

dard CW-EI batch method and our proposed 2S batch method). We used 10 initial

points, a further 110 iterations for the sequential methods and 11 batches of size 10

for the batch methods. In our numerical experiments, we set rmax = 110%rmin (i.e.,

rmax is 10% higher than the minimal expected return rmin). The results are given

in Table 10.2.

Sequential BO methods Batch BO methods

CW-EI ACW-EI 2S-ACW-EI KB-ACW-EI 2S-KB-ACW-EI

1a CVaR (SD) 0.202 (0.013) 0.199 (0.013) 0.184 (0.012) 0.199 (0.012) 0.191 (0.012)

1a Ex return (SD) 0.473 (0.012) 0.485 (0.012) 0.473 (0.012) 0.479 (0.012) 0.478 (0.012)

1b CVaR (SD) 0.266 (0.012) 0.253 (0.012) 0.247 (0.012) 0.263 (0.014) 0.249 (0.013)

1b Ex return (SD) 0.581 (0.012) 0.577 (0.012) 0.561 (0.012) 0.580 (0.012) 0.567 (0.012)

2a CVaR (SD) 0.317 (0.013) 0.291 (0.015) 0.275 (0.014) 0.302 (0.013) 0.287 (0.013)

2a Ex return (SD) 4.335 (0.013) 4.320 (0.012) 4.302 (0.013) 4.341 (0.012) 4.322 (0.012)

2b CVaR (SD) 0.336 (0.014) 0.320 (0.014) 0.303 (0.013) 0.322 (0.013) 0.308 (0.013)

2b Ex return (SD) 4.427 (0.013) 4.428 (0.012) 4.417 (0.013) 4.433 (0.013) 4.420 (0.012)

3a CVaR (SD) −0.094 (0.012) −0.122 (0.014) −0.132 (0.013) −0.102 (0.012) −0.131 (0.014)

3a Ex return (SD) 2.105 (0.013) 2.030 (0.013) 1.938 (0.012) 2.082 (0.013) 1.970 (0.013)

3b CVaR (SD) −0.075 (0.013) −0.083 (0.013) −0.094 (0.014) −0.064 (0.012) −0.075 (0.013)

3b Ex return (SD) 2.113 (0.013) 2.075 (0.013) 2.056 (0.012) 2.125 (0.012) 2.089 (0.013)

Table 10.2: Optimal solution for the portfolio allocation problems: in each case, the
best result among the methods is shown in bold. The standard deviations are given
in parentheses.

Our proposed sequential methods outperform the standard BO approach for all
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three examples, finding a lower CVaR objective value whilst meeting the feasibility

condition. In addition, the two-stage approach produces better results than the

one-stage approach. The same is true for the batch methods, where the two-stage

method outperforms the one-stage method. The batch methods obtain better results

than the standard sequential BO method but perform worse than the best sequential

implementations. This is expected because the GP is only updated after a full batch

has been identified, in contrast to the GP being updated after each new sample is

proposed—as in the sequential approach.

To illustrate the results, we plot the current best solution’s objective value after

each iteration in Figure 10.2. Consistently, the best solution of 2S-ACW-EI decreases

faster than the other two sequential methods. The two-stage batch method performs

better than the standard implementation in all test cases.

Sensitivtiy to rmax

A key parameter in the proposed algorithm is rmax. Our numerical experiments

found that setting rmax = 110%rmin generally works well. To test more rigorously

how sensitive our proposed BO algorithm is to this parameter, we provide further

numerical results obtained with rmax = 105%rmin, in Table 10.3 and Figure 10.3.

These results show that our proposed BO algorithms are not highly sensitive to the

choice of rmax.
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Figure 10.2: The best objective value obtained after each iteration for the portfo-
lio allocation problems across the existing method (CW-EI BO) and the four new
proposed methods.
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Sequential BO methods Batch BO methods

CW-EI ACW-EI 2S-ACW-EI KB-ACW-EI 2S-KB-ACW-EI

1a CVaR (SD) 0.202 (0.013) 0.198 (0.011) 0.188 (0.014) 0.201 (0.0.014) 0.194 (0.011)

1a Ex return (SD) 1.473 (0.012) 1.473 (0.018) 1.471 (0.013) 1.477 (0.016) 1.474 (0.017)

2a CVaR (SD) 0.317 (0.013) 0.299 (0.014) 0.281 (0.014) 0.308 (0.011) 0.293 (0.017)

2a Ex return (SD) 5.335 (0.013) 5.324 (0.013) 5.317 (0.016) 5.331 (0.012) 5.323 (0.013)

3a CVaR (SD) −0.094 (0.012) −0.115 (0.016) −0.125 (0.013) −0.112 (0.014) −0.128 (0.015)

3a Ex return (SD) 3.105 (0.013) 3.103 (0.014) 3.083 (0.018) 3.102 (0.018) 3.061 (0.013)

Table 10.3: Optimal solutions for the portfolio allocation problems, with active
region size of 5%
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Figure 10.3: The best objective value obtained after each iteration with an active
region size of 5%, for the base methodology (CW-EI BO) and our four proposed
algorithms.

255



10.6.3 Advanced portfolio allocation example

To conclude this chapter, we provide the numerical results of the complete thesis

framework applied to our core data set; seeking to find an optimal allocation to

nine assets. The ‘2S-ACW-EI’ BO algorithm is applied on the first available date of

each month from January 2015 to December 2020—to propose an optimal allocation.

For each month, MSMCS is applied to Bayesian ARMA-GARCH forecasts to obtain

predicted CVaR and expected returns—which feed the BO algorithm. The portfolio

is reallocated each month.

Based on an initial investment of $1000 on January 2, 2015, we compare the

performance of our complete framework (called ‘Optimal Portfolio’ ) with various

rmin values against several other portfolio optimisation approaches:

• Equal (Set Allocation) Portfolio: This approach evenly distributes the

initial investment across each asset on January 2, 2015, without any subsequent

adjustments.

• Equal (Monthly Rebalance) Portfolio: In this strategy, the investment

is initially divided equally among the assets on January 2, 2015, and then the

portfolio is rebalanced at the start of each month to an equal weighting across

all assets.

• Markowitz (Set Allocation) Portfolio: Based on Markowitz’s portfolio

theory, this method determines the optimal asset weightings on January 2,

2015, to maximise returns for a given risk level, without any subsequent ad-

justments.

• Markowitz (Monthly Rebalance) Portfolio: This strategy applies Markowitz’s

portfolio theory monthly, recalculating and adjusting asset weightings on the
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first available date of each month to relocate and optimise the risk-return

profile.

• Minimum Variance Portfolio: This strategy focuses on minimising risk by

optimising asset weightings for the lowest possible portfolio variance, with the

initial allocation set on January 2, 2015, without any subsequent adjustments.

• Risk Parity Portfolio: This portfolio strategy allocates investments based

on risk, aiming to equalise the risk contribution of each asset to the portfo-

lio, with the initial weights set on January 2, 2015, without any subsequent

adjustments.

• Maximum Diversification Portfolio: This approach seeks to maximise

diversification benefits by optimising the ratio of portfolio diversification to

total risk, with initial weightings determined on January 2, 2015, without any

subsequent adjustments.

The results are shown in the following pages, where our complete framework sig-

nificantly outperforms all other portfolio optimisation methods in the comparative

analysis. This performance can be attributed to the framework’s robust consider-

ation of both uncertainty and tail risk in financial markets, elements often over-

looked or inadequately addressed by traditional models. By integrating Bayesian

ARMA-GARCH models with the ‘2S-ACW-EI’ Bayesian Optimisation algorithm,

our approach dynamically adapts to changing market conditions and uncertainties,

offering a more responsive asset allocation strategy. The framework’s success in out-

performing traditional and commonly used strategies underlines the achievement of

the primary aim of this research: to find an optimal investment strategy for investors

to allocate their resources in financial markets fraught with uncertainty.
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Optimal Portfolio Comparison
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Major Indices vs. Optimal Portfolio
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Major Indices vs. Optimal Portfolio
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Equal Allocations vs. Optimal Portfolio
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Markowitz vs. Optimal Portfolio
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10.7 BO conclusion

This thesis has explored the twin challenges of forecasting asset returns and volatility

in uncertain financial markets and measuring tail risks—building to our final thesis

objective, to develop portfolio allocation algorithms which better reflect the complex

dynamics of modern financial markets, removing unrealistic assumptions.

This chapter presented new Bayesian Optimisation algorithms that utilise Gaus-

sian Processes’ power to model the complex, non-linear relationships inherent in

financial data. The chapter explored how BO algorithms could find an optimal

portfolio to minimise CVaR under a minimum expected return requirement while

accounting for financial market uncertainty through an environmental variable Z.

We proposed several novel adaptations to standard Bayesian Optimisation pro-

cedures, specifically tailored to the nuances of portfolio allocation problems and

designed to reduce the number of expensive objective function evaluations. The

proposed BO algorithms included a new acquisition function, a two-stage point se-

lection process, and a batch implementation to use parallel computing.

Our proposed BO algorithms consistently outperformed standard approaches in

the numerical experiments, achieving lower CVaR while satisfying the minimum

expected return constraint. These results underscore the effectiveness of our adap-

tations, particularly the two-stage optimisation process and the active constraint-

weighted acquisition function, in efficiently navigating the complex landscape of

portfolio allocation. We expect the proposed algorithms to be helpful in both fi-

nancial portfolio allocation and similar problems arising from other fields, e.g., re-

inforcement learning (Ghosh et al., 2022).
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Chapter 11

Conclusions

Financial markets are often assumed to be highly efficient, where prices reflect all

available information, and the collective actions of investors ensure accurate pricing

and effective risk management. These assumptions portray investors as completely

rational, driven by the objective of maximising returns within their risk tolerance.

However, this conventional view faces substantial criticism, including in the

works of Kay and King (2020), which critiques the standard economic and financial

models for excessively relying on notions of rationality, efficiency, and the predictabil-

ity of financial markets. Additionally, they emphasise the crucial distinction between

risk and true uncertainty. As defined by Keynes (1936), risk is quantifiable and mea-

surable through probability, whereas true uncertainty comprises unknown outcomes

that resist probabilistic prediction, a factor paramount in financial decision-making.

Historical analysis conducted by Bond and Dow (2021) reveals a tendency among

investors to concentrate on frequent yet relatively minor events. This focus often

leads to the negligence of rare but significant tail events, which have significant

financial implications. Recognising and quantifying tail risk is essential for enhanced

preparedness against market disruptions and more effective resource allocation. Such

an approach also deepens understanding of potential risks in financial markets.
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Addressing the critical challenges of managing and modelling tail risk and un-

certainty in financial markets is the cornerstone of this thesis. Traditional financial

models frequently fall short in accounting for these factors, resulting in an underesti-

mation of risks and the formulation of misguided investment strategies. This thesis

set out to refine asset price forecasting, advance risk management methodologies,

and optimise investment strategies to address the pivotal question: “How should

investors allocate their resources in financial markets fraught with uncertainty?”

11.1 Asset returns forecasting

The first objective was to develop models that provide more accurate and robust

asset price and volatility forecasts, accounting for uncertainty.

Chapter 2 established fundamental characteristics of financial time series, like

stationarity—which ensures the stability of statistical properties through time—and

autocorrelation, indicating that past returns may help predict future returns.

Chapter 3 introduced the ARMA-GARCH model for forecasting time series re-

turns to take advantage of these properties; combining ARMA’s proficiency in pre-

dicting the mean of a series with GARCH’s ability to model and forecast changing

volatility, offering a more robust framework for capturing linear relationships and

volatility clustering in time series data. Additionally, we introduced TGARCH to

enhance GARCH forecasting for asymmetric volatility modelling.

In Chapter 4, we achieved our first objective by developing a Bayesian approach

to ARMA-(T)GARCH models, which allowed for the incorporation of prior knowl-

edge and uncertainty measurements into financial forecasting models.

Bayesian ARMA-GARCH models present an avenue for further exploration, par-

ticularly in the domain of posterior sampling. The current methodology estab-

lishes posterior distributions of model parameters during training but relies on point
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estimates–either real or forecasted mean returns-—to derive predictive posteriors of

forecasted means and variances. This approach fails to fully exploit the Bayesian

framework by neglecting the posterior distributions of the forecasted means. To ad-

dress this limitation, it may be possible to employ Generalized Langevin Equations

(GLE), stochastic differential equations designed to model systems with memory

and history-dependent dissipation. By treating the problem as a hierarchical model

where the posterior distributions of previous forecasted values inform subsequent

values, we can better capture dependencies across different levels of the hierarchy.

Utilising Langevin dynamics, which are stochastic processes for sampling from com-

plex distributions, will enhance posterior sampling by incorporating memory effects

and improving the modelling of dependencies within the hierarchy.

Bayesian methods, despite their robustness with finite outcomes, exhibit brittle-

ness in continuous contexts with limited data (Owhadi et al., 2015). Posterior distri-

butions can be highly sensitive to small changes in the model or prior distributions.

Accurate Bayesian evidence estimation for model order selection is crucial to address

this issue. When multiple models seem promising, averaging over a set of plausible

models can enhance robustness. Hierarchical priors, which assign distributions to

hyperparameters, can stabilise inferences, though at increased computational cost.

Regularising likelihood functions can prevent overfitting, particularly in noisy data

scenarios, thus enhancing the reliability of the models (Owhadi et al., 2015).

One limitation of this thesis is the choice to model each time series individually,

establishing ARMA-GARCH models for each asset in isolation. This approach could

fail to adequately account for the correlation structure which exists between some

assets. The copula model explained in Ch. 5, allows for the decoupling of general

risks and idiosyncratic risk, thereby allowing for better modelling of this correlation

structure. Future research could take a more general vector-valued viewpoint, es-
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tablishing a time series model which considers a collection of time series together - in

the form of a vector - allowing for greater consideration of this correlation structure.

11.2 Risk management

The second objective was to develop new methodologies which better predict the

probability and impact of tail events.

Chapter 5 introduced a quantitative framework for financial risk, specifically eq-

uity and credit risk. Concluding that CVaR was an essential measure of market risk

and Student’s t copula models were best for credit risk. Crucially, we found that

equity risk, credit risk, and failure probability estimation necessitate the reconstruc-

tion of probability distributions to capture tail risk.

Chapters 6 & 7 analysed several Monte Carlo, importance sampling and more

advanced methodologies which provide a variance-reduced estimator for a specific

quantity associated with the distribution of our performance variable y, such as the

probability of a given random event or failure probability. We sought to develop a

new algorithm that obtains the entire probability distribution of g(x), or f(w,Z)—

from which to calculate the expectation and other tail-based risk measures.

In Chapter 8, we introduced the novel multicanonical sequential Monte Carlo

sampler (MSMCS) algorithm, which incorporates the multicanonical Monte Carlo

method with the sequential Monte Carlo sampler—along with several other adap-

tations. Through numerical examples, we demonstrated that the proposed MSMCS

method can outperform MC and standard MMC-MCMC. By combining MSMCS

with the Bayesian ARMA-GARCH framework, we showed the power of this algo-

rithm for both credit and equity risk management—achieving our second objective.

In the context of the Multicanonical Sequential Monte Carlo Sampler (SMCS),

the selection of bin width poses a significant challenge. Accurate Conditional Value-
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at-Risk (CVaR) values require narrow bins, which are computationally expensive,

while wider bins, although easier to explore, may lead to issues with theta value

updates. An adaptive bin width method could balance accuracy and computational

efficiency, though this method must reset at each stage to maintain consistency in

the theta update procedure–a topic which should be researched further.

Choosing optimal forward and backward kernels in SMCS is inherently chal-

lenging, often resulting in suboptimal choices that degrade efficiency. Adaptive

kernel schemes that adjust parameters based on sampler performance can enhance

efficiency. Optimisation algorithms can also be employed to fine-tune these kernel

parameters, thereby improving the overall performance of the sampler. This presents

a future avenue for research.

11.3 Optimal portfolio allocation

The third objective was to develop portfolio allocation algorithms which better re-

flect the complex dynamics of modern financial markets, removing unrealistic as-

sumptions.

Chapter 9 introduced our overarching optimisation problem—utilising CVaR’s

properties—which set an objective of minimising CVaR under a minimum expected

return constraint. The chapter explored various approaches to such risk-measure-

based optimisation problems but found several limitations that we sought to address.

In Chapter 10, we presented four new BO algorithms specifically designed for our

portfolio optimisation problem, accounting for uncertainty through an environmen-

tal random variable Z. The proposed algorithms significantly reduce the number

of evaluations of the expensive objective function by taking advantage of the spe-

cial properties of portfolio optimisation problems. We developed a new acquisition

function, a two-stage point selection process, and a batch implementation to take
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advantage of parallel computing. Through simple numerical examples, we found

that the ‘2S-ACW-EI’ BO algorithm outperforms both existing methods and our

other proposed algorithms—achieving our third objective.

Bayesian optimisation, particularly in the context of high-dimensional datasets,

presents significant challenges. Large portfolio sizes result in large kernel matrices

for Gaussian Processes (GP), leading to high computational and memory costs.

Applying Principal Component Analysis (PCA) to the matrix can compress data,

improving computational efficiency without compromising accuracy. Developing

methods to achieve this without significant data loss is crucial for optimizing the

acquisition function–as explored by Schafer et al. (2021).

The final numerical example in Chapter 10, draws on each aspect of our the-

sis to provide the numerical results for our core data set, using Bayesian ARMA-

TGARCH models to forecast asset returns, MSMCS to reconstruct the probability

distributions and assess tail risk, and BO to find optimal portfolio allocations. Our

complete framework outperforms existing approaches and achieves the overall thesis

objective of finding an optimal investment allocation considering both tail risk and

uncertainty.

The proposed research directions aim to refine and enhance current methodolo-

gies for financial forecasting and risk management. By addressing the limitations

of Bayesian ARMA-GARCH models, improving the robustness of the Multicanoni-

cal Sequential Monte Carlo Sampler, and optimising Bayesian approaches for high-

dimensional datasets, future research can develop more accurate and efficient tools

for navigating financial markets. These advancements will contribute to a deeper un-

derstanding of market dynamics, better management of tail risks, and more effective

portfolio optimisation strategies.
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Appendix A
Financial Analysis Details

A.1 Normality test results

Asset Statistic (Test) Value p-value Normality

SP500

Shapiro-Wilk 0.86 1.68e-44 Reject H0
Anderson-Darling 74.76 - Reject H0
Jarque-Bera 32078.90 0.0 Reject H0
Kolmogorov-Smirnov 0.48 0.0 Reject H0

AAPL

Shapiro-Wilk 0.93 2.04e-34 Reject H0
Anderson-Darling 36.64 - Reject H0
Jarque-Bera 4999.44 0.0 Reject H0
Kolmogorov-Smirnov 0.47 0.0 Reject H0

ALK

Shapiro-Wilk 0.88 8.13e-42 Reject H0
Anderson-Darling 48.21 - Reject H0
Jarque-Bera 30792.30 0.0 Reject H0
Kolmogorov-Smirnov 0.47 0.0 Reject H0

FTSE100

Shapiro-Wilk 0.93 9.74e-35 Reject H0
Anderson-Darling 33.64 - Reject H0
Jarque-Bera 11652.40 0.0 Reject H0
Kolmogorov-Smirnov 0.48 0.0 Reject H0

SHEL

Shapiro-Wilk 0.87 1.18e-42 Reject H0
Anderson-Darling 50.58 - Reject H0
Jarque-Bera 45470.18 0.0 Reject H0
Kolmogorov-Smirnov 0.47 0.0 Reject H0

TW

Shapiro-Wilk 0.91 8.06e-38 Reject H0
Anderson-Darling 32.84 - Reject H0
Jarque-Bera 45114.81 0.0 Reject H0
Kolmogorov-Smirnov 0.47 0.0 Reject H0

SSE

Shapiro-Wilk 0.90 1.21e-38 Reject H0
Anderson-Darling 62.08 - Reject H0
Jarque-Bera 5458.80 0.0 Reject H0
Kolmogorov-Smirnov 0.48 0.0 Reject H0

PING

Shapiro-Wilk 0.94 1.95e-31 Reject H0
Anderson-Darling 33.31 - Reject H0
Jarque-Bera 3390.91 0.0 Reject H0
Kolmogorov-Smirnov 0.47 0.0 Reject H0

SHEN

Shapiro-Wilk 0.95 2.31e-30 Reject H0
Anderson-Darling 38.65 - Reject H0
Jarque-Bera 1191.71 1.68e-259 Reject H0
Kolmogorov-Smirnov 0.46 0.0 Reject H0

Table A.1: Normality Tests for Core Data Daily Log Returns
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Asset Statistic (Test) Value p-value Normality

Portfolio

Shapiro-Wilk 0.88 2.47e-42 Reject H0
Anderson-Darling 47.23 - Reject H0
Jarque-Bera 20448.32 0.0 Reject H0
Kolmogorov-Smirnov 0.41 0.0 Reject H0

SP500

Shapiro-Wilk 0.86 8.83e-44 Reject H0
Anderson-Darling 60.66 - Reject H0
Jarque-Bera 22875.53 0.0 Reject H0
Kolmogorov-Smirnov 0.48 0.0 Reject H0

AAPL

Shapiro-Wilk 0.99 3.67e-13 Reject H0
Anderson-Darling 5.04 - Reject H0
Jarque-Bera 118.69 0.0 Reject H0
Kolmogorov-Smirnov 0.47 0.0 Reject H0

ALK

Shapiro-Wilk 0.87 7.03e-43 Reject H0
Anderson-Darling 39.72 - Reject H0
Jarque-Bera 26332.40 0.0 Reject H0
Kolmogorov-Smirnov 0.47 0.0 Reject H0

FTSE100

Shapiro-Wilk 0.88 3.27e-42 Reject H0
Anderson-Darling 36.23 - Reject H0
Jarque-Bera 22794.89 0.0 Reject H0
Kolmogorov-Smirnov 0.45 0.0 Reject H0

SHEL

Shapiro-Wilk 0.89 3.56e-41 Reject H0
Anderson-Darling 35.79 - Reject H0
Jarque-Bera 20982.15 0.0 Reject H0
Kolmogorov-Smirnov 0.43 0.0 Reject H0

TW

Shapiro-Wilk 0.90 1.91e-38 Reject H0
Anderson-Darling 36.22 - Reject H0
Jarque-Bera 8159.00 0.0 Reject H0
Kolmogorov-Smirnov 0.39 0.0 Reject H0

SSE

Shapiro-Wilk 0.96 2.31e-27 Reject H0
Anderson-Darling 24.28 - Reject H0
Jarque-Bera 1050.45 0.0 Reject H0
Kolmogorov-Smirnov 0.42 0.0 Reject H0

PING

Shapiro-Wilk 0.99 4.67e-15 Reject H0
Anderson-Darling 4.42 - Reject H0
Jarque-Bera 333.00 0.0 Reject H0
Kolmogorov-Smirnov 0.41 0.0 Reject H0

SHEN

Shapiro-Wilk 0.98 1.02e-17 Reject H0
Anderson-Darling 8.47 - Reject H0
Jarque-Bera 273.53 0.0 Reject H0
Kolmogorov-Smirnov 0.39 0.0 Reject H0

Table A.2: Normality Tests for Core Data Monthly Log Returns
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A.2 Augmented Dickey-Fuller (ADF) rest results

Asset 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

SP500 3.77e-29 1.09e-12 3.63e-29 3.34e-30 8.99e-29 1.36e-23 3.18e-30 3.33e-30 1.05e-11 6.81e-30 7.41e-04
AAPL 1.03e-27 5.56e-16 6.92e-07 8.14e-28 4.40e-17 4.18e-29 2.53e-27 2.14e-08 1.46e-27 6.36e-30 1.64e-05
ALK 8.43e-29 1.14e-29 8.29e-30 8.60e-30 2.17e-30 1.56e-08 6.70e-28 4.79e-27 1.91e-14 1.15e-29 3.56e-03
FTSE100 1.04e-27 2.22e-26 3.20e-30 4.88e-13 1.88e-11 7.52e-29 5.21e-15 7.59e-16 4.88e-30 6.83e-26 1.18e-06
SHEL 5.12e-28 6.01e-26 7.74e-30 1.90e-27 5.55e-29 5.19e-28 8.63e-22 1.27e-27 5.93e-30 5.75e-27 2.07e-26
TW 1.02e-27 1.05e-14 3.24e-18 2.76e-16 1.38e-22 2.93e-24 5.13e-10 6.48e-30 3.86e-30 6.14e-29 5.19e-15
SSE 9.27e-29 9.05e-30 4.90e-29 1.64e-06 1.61e-02 1.39e-03 6.04e-14 7.20e-29 1.06e-07 1.65e-04 1.20e-28
PING 3.28e-19 1.50e-08 2.32e-29 4.44e-27 1.09e-4 5.89e-27 3.79e-23 8.61e-14 1.06e-10 1.60e-05 1.27e-10
SHEN 6.25e-29 2.52e-26 2.94e-11 2.55e-13 2.25e-15 4.30e-04 0.0 1.24e-22 1.38e-29 1.44e-25 4.67e-27

Table A.3: ADF Test p-values for Core Data Daily Log Returns.

Asset 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

SP500 0.0677 0.0159 0.0442 3.70e-05 0.0069 0.0101 0.0601 0.0012 0.0427 0.0042 0.0044
AAPL 0.0064 0.0010 0.3154 0.0169 0.0136 0.0518 0.0002 0.0018 0.4606 0.0268 0.1011
ALK 0.0259 0.1421 0.0481 0.1669 0.0002 0.0155 0.2315 0.0001 0.0060 0.0044 0.0441
FTSE100 0.0284 0.0049 0.0208 0.0000 0.0002 0.0197 0.0819 0.0001 0.0552 0.0016 0.0085
SHEL 0.0595 0.0163 0.0208 0.0000 0.0015 0.0136 0.0002 0.0209 0.0242 0.0104 0.0179
TW 0.2028 0.0145 0.0670 0.0091 0.0087 0.0427 0.0095 0.0600 0.0202 0.0854 0.0047
SSE 0.0036 0.1049 0.3072 0.0018 0.5780 0.0935 0.0003 0.0488 0.0001 0.0278 0.0198
PING 0.0922 0.0082 0.0002 0.0917 0.2383 0.1175 0.1119 0.0093 0.0337 0.0003 0.0640
SHEN 0.0653 0.0015 0.0423 0.0003 0.1823 0.0412 0.0000 0.5396 0.0115 0.0270 0.2902

Table A.4: ADF Test p-values for Core Data Monthly Log Returns.
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Appendix B
Bayesian Evidence Results

B.1 ARMA Bayesian evidence

Model Order p
0 1 2 3 5 6 7 8 9 10 11 13 14 15 16 22

M
o
d
e
l
O
rd

e
r
q

0 8577.10 8609.74 8618.59 8617.63 8618.94 8627.21 8638.93 8646.09 8651.13 8650.14 8653.30 8652.30 8652.82 8652.12 8651.51 8651.55
1 8604.34 8614.59 8617.59 8616.67 8618.05 8624.83 8636.74 8644.25 8650.00 8649.03 8652.20 8651.20 8651.63 8651.00 8650.39 8651.55
2 8617.85 8618.19 8615.82 8615.36 8616.79 8623.16 8634.11 8642.40 8648.70 8647.76 8650.83 8649.85 8650.47 8649.89 8649.20 8650.15
3 8618.67 8622.00 8616.49 8615.36 8615.64 8622.15 8633.18 8626.47 8647.79 8646.85 8649.88 8648.89 8649.55 8648.98 8648.29 8648.51
4 8618.13 8623.56 8612.13 8608.94 8646.01 8629.27 8633.11 8646.85 8645.79 8482.20 8649.07 8648.08 8648.73 8648.14 8647.56 8647.43
5 8618.25 8625.29 8624.33 8642.88 8602.34 8635.74 8631.52 8639.18 8643.94 8644.98 8646.12 8647.11 8647.84 8647.20 8646.53 8645.67
6 8619.94 8631.81 8643.62 8653.21 8629.83 8632.07 8633.16 8604.02 8643.94 8643.45 8646.81 8645.83 8646.79 8646.23 8645.56 8644.92
7 8626.09 8638.30 8637.63 8646.54 8649.09 8646.55 8645.66 8649.94 8649.67 8648.53 8645.61 8644.59 8645.73 8645.28 8644.41 8643.24
8 8633.56 8640.74 8639.80 8646.93 8650.63 8650.81 8650.89 8649.92 8643.33 8647.39 8644.24 8643.34 8644.83 8644.51 8644.08 8642.01
9 8642.43 8642.23 8641.55 8645.59 8648.59 8650.87 8649.05 8648.55 8641.85 8637.77 8642.20 8641.84 8643.54 8643.54 8642.43 8639.93
13 8646.67 8648.61 8649.34 8648.67 8647.82 8648.28 8652.89 8651.82 8597.06 8640.08 8638.09 8637.40 8644.66 8639.83 8638.57 8637.12
15 8648.85 8650.86 8649.63 8649.03 8652.40 8651.19 8654.36 8653.28 8652.21 8652.92 8638.73 8633.34 8637.35 8637.72 8636.65 8634.13

Table B.1: S&P 500
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Model Order p
0 1 2 3 5 8 9 14 18 22

M
o
d
e
l
O
rd

e
r
q

0 7253.81 7257.09 7256.17 7255.80 7254.21 7259.32 7263.88 7262.72 7260.75 7261.58
1 7257.03 7256.27 7255.14 7254.78 7253.19 7258.01 7262.83 7261.69 7259.81 7260.61
2 7256.11 7255.36 7254.44 7253.77 7252.20 7256.99 7261.82 7260.68 7258.82 7259.60
3 7255.72 7254.34 7253.75 7252.75 7251.20 7255.95 7260.84 7259.67 7257.82 7258.59
5 7254.14 7255.75 7258.02 7261.95 7255.40 7258.67 7260.19 7261.58 7255.83 7256.60
8 7256.96 7260.78 7260.85 7260.12 7252.95 7250.23 7256.07 7255.83 7252.87 7253.80
9 7261.86 7261.35 7259.55 7259.68 7257.39 7256.63 7257.60 7255.31 7251.94 7252.75
14 7260.39 7259.37 7259.11 7257.71 7259.63 7258.04 7257.29 7254.01 7252.27 7247.83
19 7262.02 7261.05 7260.62 7260.90 7258.54 7256.54 7256.90 7252.12 7244.60 7243.17

Table B.2: AAPL

Model Order p
0 1 2 3 5 6 7 8 9 11 12 13 15 17

M
o
d
e
l
O
rd

e
r
q

0 6407.63 6407.88 6410.38 6411.05 6409.69 6412.27 6415.00 6417.00 6418.73 6425.73 6427.50 6428.87 6428.63 6430.43
1 6407.77 6396.01 6406.71 6410.06 6408.66 6411.19 6413.94 6415.91 6417.75 6424.82 6426.43 6427.86 6427.64 6429.44
2 6410.12 6410.19 6411.31 6409.25 6407.57 6409.95 6412.62 6414.85 6416.58 6423.95 6425.60 6426.74 6426.53 6431.90
3 6411.31 6409.14 6407.81 6418.71 6406.58 6408.78 6414.44 6406.49 6415.55 6422.98 6424.50 6425.74 6425.59 6427.52
5 6409.46 6412.47 6407.47 6406.38 6409.99 6411.42 6411.83 6412.95 6414.53 6423.95 6422.87 6424.25 6427.04 6425.52
6 6410.65 6411.31 6413.13 6411.21 6422.29 6409.46 6416.32 6414.01 6416.27 6422.74 6423.55 6423.08 6422.61 6426.61
7 6412.76 6414.23 6414.89 6412.02 6418.55 6417.59 6414.63 6413.60 6414.18 6419.84 6422.66 6423.25 6427.05 6423.76
8 6414.30 6412.99 6414.27 6411.87 6421.55 6422.11 6420.10 6418.70 6412.43 6427.68 6427.11 6423.82 6422.02 6422.75
9 6415.94 6415.86 6416.94 6416.25 6422.84 6423.86 6421.42 6428.35 6424.28 6429.69 6428.60 6424.85 6422.39 6422.28
11 6424.61 6424.52 6422.93 6422.92 6422.35 6428.49 6427.42 6425.84 6426.64 6427.72 6426.34 6429.11 6420.49 6420.66
12 6425.56 6424.66 6423.79 6422.59 6421.92 6427.86 6426.56 6426.15 6426.55 6426.60 6426.49 6427.16 6421.18 6420.67
13 6426.29 6425.18 6425.87 6425.07 6425.85 6427.36 6426.31 6425.91 6426.08 6426.52 6426.97 6425.35 6431.04 6419.92
17 6431.27 6430.23 6427.64 6427.65 6429.86 6428.89 6427.60 6429.50 6428.53 6351.49 6421.34 6275.08 6420.35 6418.83

Table B.3: ALK
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Model Order p
0 1 2 3 5 6 7 8 9 13 24

M
o
d
e
l
O
rd

e
r
q

0 8729.35 8728.48 8727.69 8726.73 8726.10 8728.22 8731.53 8738.87 8739.35 8739.32 8736.09
1 8728.49 8728.99 8727.06 8725.73 8725.10 8727.26 8730.61 8737.93 8738.35 8738.34 8735.08
2 8727.70 8727.02 8725.35 8724.35 8724.14 8726.35 8729.73 8737.00 8737.40 8737.31 8734.06
3 8726.71 8726.00 8724.35 8723.35 8721.34 8725.41 8728.76 8730.30 8736.45 8736.30 8733.02
5 8726.54 8733.19 8731.29 8733.73 8728.53 8729.88 8734.12 8734.37 8734.37 8734.01 8731.04
6 8729.28 8734.83 8736.73 8738.29 8726.45 8722.81 8726.04 8732.93 8733.22 8733.14 8730.10
7 8732.08 8736.45 8735.73 8734.14 8734.56 8742.00 8744.88 8731.73 8732.09 8732.25 8728.88
8 8738.36 8737.98 8736.38 8735.27 8733.29 8732.47 8732.44 8730.89 8730.86 8731.38 8727.92
13 8739.06 8738.63 8735.93 8736.35 8736.17 8734.90 8738.75 8696.17 8730.49 8726.82 8723.09
24 8729.15 8733.15 8732.39 8734.64 8732.34 8732.07 8730.66 8729.85 8729.55 8726.48 8713.66

Table B.4: FTSE100

Model Order p
0 1 2 3 5 8 13 19 22 24

M
o
d
e
l
O
rd

e
r
q

0 7452.63 7458.45 7458.77 7457.78 7457.80 7471.29 7474.38 7474.10 7474.06 7473.66
1 7458.86 7458.86 7457.77 7456.77 7456.85 7470.52 7473.37 7473.08 7472.93 7472.77
2 7458.79 7457.80 7456.55 7455.78 7455.93 7469.56 7472.44 7472.12 7471.85 7471.67
3 7457.78 7456.93 7455.77 7454.78 7454.93 7468.54 7471.46 7471.11 7470.85 7470.67
5 7458.27 7460.13 7458.14 7458.23 7461.66 7466.94 7469.44 7469.28 7468.99 7471.38
7 7460.32 7462.13 7460.32 7459.06 7466.38 7471.79 7467.35 7467.25 7466.86 7469.50
8 7469.26 7468.17 7466.89 7466.44 7472.37 7468.34 7465.71 7465.89 7465.78 7465.43
13 7472.79 7471.83 7471.02 7469.59 7466.67 7470.57 7467.84 7461.75 7461.07 7460.79
19 7474.34 7473.30 7471.94 7471.80 7472.31 7470.72 7470.14 7463.99 7455.68 7454.87
22 7473.45 7472.84 7472.52 7471.13 7471.50 7468.78 7465.94 7462.06 7451.87 7453.60
23 7475.01 7474.14 7474.30 7473.15 7471.80 7469.74 7466.82 7460.86 -7459.39 7456.18

Table B.5: SHEL
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Model Order p
0 1 2 3 4 5 8 16 23

M
o
d
e
l
O
rd

e
r
q

0 6432.56 6436.01 6435.14 6434.53 6436.05 6436.43 6434.96 6431.87 6431.95
1 6436.08 6435.10 6434.13 6433.47 6434.94 6435.42 6433.96 6430.76 6430.76
2 6435.11 6434.12 6434.52 6432.48 6433.21 6434.29 6432.95 6429.76 6429.74
3 6434.36 6435.07 6432.40 6435.34 6433.28 6433.38 6431.96 6428.77 6428.73
4 6435.50 6435.57 6436.06 6435.04 6433.47 6432.17 6431.01 6427.74 6432.14
5 6436.25 6435.27 6435.25 6434.31 6432.44 6431.35 6430.00 6426.76 6430.57
8 6434.96 6434.44 6432.90 6432.96 6431.96 6433.06 6434.17 6423.65 6425.84
16 6430.65 6429.75 6428.72 6426.35 6425.38 6426.03 6428.70 6423.52 6421.42
23 6432.67 6432.84 6434.88 6433.77 6433.32 6432.94 6429.27 6418.96 6419.10

Table B.6: TW

Model Order p
0 1 2 3 4 5 6 7 8 13 21 23

M
o
d
e
l
O
rd

e
r
q

0 8043.95 8044.29 8044.27 8043.47 8046.25 8045.25 8050.54 8052.27 8054.48 8061.30 8060.50 8061.34
1 8044.36 8043.82 8042.89 8042.44 8045.25 8044.24 8049.67 8051.16 8053.41 8060.37 8059.54 8060.73
2 8044.21 8043.18 8042.25 8041.36 8044.14 8043.14 8048.60 8050.12 8052.44 8059.37 8058.52 8059.75
3 8043.21 8041.89 8036.28 8032.20 8048.11 8044.94 8048.36 8052.77 8053.33 8058.42 8057.56 8058.77
4 8045.30 8044.27 8051.02 8051.95 8051.67 8052.51 8053.23 8048.04 8051.06 8057.42 8056.59 8057.71
5 8044.25 8043.34 8052.48 8050.68 8050.60 8048.14 8048.56 8054.88 8050.89 8056.52 8055.61 8056.74
6 8050.68 8049.88 8051.94 8050.82 8049.98 8053.07 8053.56 8054.70 8053.57 8055.54 8054.49 8055.44
7 8053.52 8053.43 8052.40 8053.30 8054.31 8054.25 8053.61 8051.50 8055.84 8049.03 8053.57 8054.70
8 8056.71 8055.23 8053.71 8052.47 8055.14 8055.48 8055.23 8055.54 8055.13 8053.84 8052.46 8053.75
13 8061.26 8060.28 8059.08 8058.15 8057.66 8056.13 8061.10 8061.04 8056.67 8033.45 8049.56 8048.10
15 8060.25 8059.25 8058.63 8057.94 8056.90 8057.34 8062.18 8063.04 8063.76 7999.17 8045.63 8046.05
21 8058.59 8056.23 8059.13 8059.67 8059.47 8057.99 8059.61 8058.84 8061.56 8057.27 8044.45 8039.55
23 8060.84 8058.76 8058.08 8057.92 8057.13 8055.34 8056.91 8055.83 8058.82 8056.16 8041.77 8046.31

Table B.7: SSE
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Model Order p
0 1 2 3 4 5 8 23

M
o
d
e
l
O
rd

e
r
q

0 7098.04 7101.45 7100.45 7099.69 7100.30 7099.86 7099.89 7089.54
1 7101.45 7100.45 7099.45 7098.73 7099.35 7098.89 7098.87 7088.52
2 7100.44 7101.26 7098.44 7097.73 7096.73 7097.89 7097.88 7087.52
3 7099.88 7098.83 7097.83 7096.79 7097.38 7096.93 7096.98 7086.55
4 7100.68 7100.99 7100.00 7098.79 7097.62 7095.97 7095.77 7085.54
5 7100.13 7099.83 7098.89 7097.77 7096.04 7095.07 7094.73 7084.52
7 7100.22 7098.82 7098.05 7097.19 7097.99 7094.14 7097.15 7082.54
8 7099.22 7098.05 7097.06 7096.48 7096.68 7095.60 7097.12 7081.58
23 7089.55 7088.53 7087.49 7086.72 7085.69 7085.23 6952.33 7073.75

Table B.8: PING

Model Order p
0 1 2 3 5 7 8 11 12 13 20 21 23

M
o
d
e
l
O
rd

e
r
q

0 6380.00 6382.57 6389.32 6388.37 6391.76 6391.52 6390.95 6390.16 6393.13 6394.09 6391.22 6394.15 6393.44
1 6383.15 6386.11 6388.42 6387.35 6390.78 6390.47 6393.93 6389.25 6391.96 6393.11 6390.25 6393.14 6392.41
2 6389.51 6389.71 6382.14 6386.62 6389.57 6389.54 6388.96 6388.09 6390.90 6392.03 6389.10 6392.09 6391.46
3 6388.92 6388.90 6387.36 6388.17 6392.74 6388.52 6387.94 6387.13 6389.90 6391.03 6388.08 6391.16 6390.45
5 6390.69 6388.94 6393.84 6392.47 6386.29 6387.87 6386.09 6385.28 6389.61 6389.67 6386.37 6390.09 6389.49
7 6391.60 6391.20 6391.66 6391.11 6389.47 6388.59 6388.31 6387.31 6386.29 6387.48 6386.16 6386.89 6386.31
8 6391.53 6390.73 6390.74 6390.22 6390.06 6387.87 6383.30 6383.90 6386.17 6387.46 6384.59 6386.03 6385.30
12 6392.06 6392.60 6391.52 6395.01 6391.76 6393.37 6384.28 6384.39 6384.36 6384.79 6381.15 6382.70 6381.31
13 6393.79 6391.98 6390.45 6392.96 6390.87 6392.24 6391.75 6390.04 6389.41 6379.41 6385.51 6385.39 6381.39
20 6390.17 6389.85 6389.59 6387.83 6386.33 6391.03 6388.97 6389.22 6386.69 6377.86 6374.84 6373.76 6380.15
21 6391.18 6390.15 6389.79 6388.33 6387.24 6389.15 6388.79 6381.15 6380.78 6379.08 6376.64 6378.60 6382.33

Table B.9: SHEN
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