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Abstract

A painter should begin every canvas with a wash of black, because all things in nature are

dark except where exposed by the light.

- Leonardo Da Vinci

Stars give off light which enables the evolution of intelligent life and gives it access to information

about the universe it inhabits. Despite their importance, our understanding of the inner workings

of these objects is still far from complete. This thesis is dedicated to the only probe capable

of providing observational information about the deep interiors of stars, asteroseismology, the

study of stellar oscillations. In the following I will study the solar-like oscillator, in which sound

waves are excited and subsequently trapped, manifesting in pulsations. Alongside probing the

conditions in the interior of a star, observations of these oscillations provide accurate and precise

constraints on fundamental stellar parameters. Asteroseismic measurements of stellar masses,

radii, and ages have advanced several fields outside of stellar astrophysics, including exoplanet

research and the study of the history of the Milky Way. In this thesis, I will cover a range of

asteroseismic analyses, from detecting the presence of solar-like oscillations to exploiting the

pulsations to measure the properties of stellar cores.

After a brief introduction to stellar evolution and an overview of the basics of asteroseismic

analysis, I will present three works. The first introduces an automated pipeline we designed

to detect solar-like oscillations using measurements of stellar flux as a function of time. This

pipeline is then applied to data collected by NASA’s TESS mission for over 200,000 stars, gen-

erating a catalogue of thousands of solar-like oscillators. The next work looks to the future of
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asteroseismology, presenting predictions for the proposed HAYDN space telescope. The mis-

sion would exploit solar-like oscillators in stellar clusters to answer some of the most pressing

open questions in stellar astrophysics and the history of the Milky Way. Two features of stellar

evolution that could be investigated are core rotation and core magnetic fields. I comment on the

potential for using HAYDN to make asteroseismic inferences on these properties and evaluate

potential detection biases. Finally, I present the first large catalogue of asteroseismic probes

of core rotation and magnetism in real stars observed by Kepler. In this catalogue I identify a

bimodality in the distribution of core rotation rates which has not yet been replicated by stellar

models and has implications for our understanding of angular momentum transport in stars.

Asteroseismology has provided us with tools to investigate stars in unprecedented levels of

detail. To fully exploit this information to better our understanding of stellar evolution, we

require larger and more complete catalogues of seismic parameters. In this thesis I build upon

this, both introducing new methods to assist asteroseismic analysis in large datasets and report-

ing thousands of new measurements from the most fundamental detections to probes of the

deep interiors of stars. The future of the field will see missions like ESA’s PLATO providing

even more data amenable to asteroseismic analysis, making the tools and results detailed here a

crucial chapter in the ongoing asteroseismic story.
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Chapter 1

Introduction

From the first measurements of distance to another galaxy made by Edwin Hubble (Hubble,

1925; Hubble, 1926) to the recent exploration of exoplanets, some of the most fundamental

questions in astrophysics have been answered via observations of starlight. Any study using this

information to make physical inferences must, therefore, have a good understanding of the object

producing the light. Stars are not static, they evolve as they age, undergoing various physical

changes that influence their observable properties. Until very recently, stellar astrophysics (the

field dedicated to understanding these changes) remained broadly theoretical, observationally

limited to the properties of the surface layers of stars. This era ended with the advent of

asteroseismology, to which this thesis is dedicated, which finally provided the means to probe

the internal structures of stars.

The first book laying out the detailed fundamentals of stellar evolution was published by

Sir Arthur Eddington (Eddington, 1926). From 1926 until the 1960s many of the physical

principles of stellar evolution could not be observationally challenged. This was a direct result

of the opaque nature of stars, which only become transparent to photons in a thin shell (0.1%

by radius in the Sun) near the surface, known as the photosphere. Given photons are the main

transmitter of information from distant stars to us observers, on face value it would appear we

have no direct probe sensitive to depths below a few fractional percent. This was taken as true

until the 1960s, when Leighton et al. (1962) reported the discovery of oscillations in Doppler
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measurements of the solar surface. Subsequent work demonstrated the dominant period of these

oscillations is ≈ 5 mins and they do not just occur on the surface, rather the whole Sun pulsates

(Claverie et al., 1979).

The oscillations Leighton observed are excited by convection in a thin layer near the surface

of the solar convective envelope. The turbulent motion associated with this process generates

sound waves which travel through the body of the Sun, being refracted as they do so. The waves

continue on their paths until they re-emerge at the surface, and the sharp drop in density results

in reflection. The incoming reflected wave and outgoing refracted wave interfere, producing

trapped standing waves. As a result, the Sun pulsates (or oscillates), periodically expanding and

contracting.

The waves which form the modes propagate in regions far below the photosphere, where

they are encoded with information about the properties of the gas. Therefore, measurements

of their frequencies, lifetimes and amplitudes can be used to make inference on the internal

workings of the Sun. A new field of stellar astrophysics emerged on this principle, which today

we call helioseismology. The advent of helioseismology revolutionized solar physics, providing

measurements of the sound speed profile in the Sun alongside many other fundamental properties

like the rotational profile below the photosphere (see the reviews of Howe, 2009; Basu, 2016;

Buldgen et al., 2019).

Helioseismic analysis uses observations of the pulsations of the Sun to infer its fundamental

properties. As it happens, the Sun is far from the only star which oscillates. The natural next

question is whether we can apply helioseismic methods to other stars. This question is the basis

of research in the field of asteroseismology. Broadly, we classify pulsating stars into one of

two categories, defined by the manner in which the observable oscillations are excited. So-

called classical oscillators host pulsations that are excited by heat engines, where-as solar-like

oscillators host pulsations excited by turbulence from convection. This thesis will focus on stars

in the latter category. Not all solar-like oscillators are in the same phase of their lives as the Sun.

Indeed, the vast majority of stars in which we have detected this class of oscillation are much

more evolved. This highlights the greatest success of asteroseismology, as a tool to study not
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only the current internal state of stars like the Sun, but the way in which they evolve.

As helioseismology revolutionized solar physics, asteroseismology revolutionized stellar

physics. The most basic asteroseismic analysis can provide tight constraints on fundamental

stellar properties like mass and radius (which can be determined with a precision on the order

of a few percent), while more detailed work includes the measurement of properties deep within

the body of a star. Examples of mechanisms that asteroseismology alone can probe include

rotation and magnetism near stellar cores. Aside from stellar physics for stellar physics sake,

these improvements have crucial implications for many other fields of research, including the

study of exoplanets (which benefit from measurements of fundamental stellar properties) and the

history of The Milky Way (which requires the stellar ages that asteroseismology can provide).

Observing campaigns (or missions) releasing data suitable for asteroseismic analysis have

been rapidly increasing their output in recent years. We now have the data required to deploy

asteroseismic techniques on hundreds of thousands of stars. Current tools must be adapted

to the demands of this "big data", prioritizing automation over manually intensive methods.

With these adaptations in place, it is the perfect time to make population-based inferences on

asteroseismically inferred stellar properties. This thesis is dedicated to that task, going from

automating the detection of solar-like oscillators in large datasets to making population scale

inference on the properties of stellar cores using asteroseismology.

The thesis is structured as follows, in Chapter 1, I will briefly cover the aspects of stellar

evolution required to understand the following work, and highlight the processes I will later

investigate. This will include an overview of the theory of stellar oscillations. In Chapter 2,

I will cover the necessary aspects of data analysis utilized by asteroseismologists and how we

exploit them to detect solar-like oscillations. I will introduce a pipeline that Dr. Martin Nielsen

and I developed for automating the process of detection in Chapter 3. Chapter 4 applies this

detection algorithm to a large dataset, and is adapted from a paper I published. In Chapter

5, I will discuss the potential for asteroseismic studies of stellar clusters, and present some

predictions for the total detection yields for a candidate cluster. Finally, in Chapter 6, I will go

beyond detection, and detail a pipeline I generated for the measurement of core rotation and core
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magnetic fields using asteroseismic techniques. I will also present the results of the application

of this method to hundreds of stars.

Given the wealth of data we still have to explore, the field of asteroseismology is still in

its infancy. In this thesis I will demonstrate this, by greatly expanding the number of stars to

which we can apply asteroseismic techniques. Additionally, I will demonstrate how the currently

available data can be used to open a window on the core properties of hundreds of stars. Finally,

I will look to the future, making predictions for a proposed asteroseismic specific observing

mission.

1.1 A General Overview of the Evolution of Low-mass Stars

All stars begin their lives as clouds of interstellar gas which have become unstable to gravitational

collapse. This gas cloud will eventually evolve into a stable star, which will then undergo a

series of evolutionary processes significantly changing its properties. Historically, we have

studied these changes in the context of the stellar luminosity and temperature. Stars were

initially classified by placing observational proxies of the former as a function of the latter on

what is known as a Hertzprung-Russell diagram (HR diagram). We access information about

luminosity and temperature via measurements of the photons a star gives off, the stellar flux.

While the total flux is a function of luminosity, its wavelength dependence carries information

about temperature. We use this to define the effective temperature, the temperature of a perfect

blackbody producing the same flux-wavelength dependence.

An example HR diagram is shown in Figure 1.1, showing the paths taken by stars of three

different initial masses. I have limited these tracks to show only the phases of evolution that will

be important for this work; The main sequence (MS), subgiant branch (SGB) and red giant

branch (RGB). Briefly, stars begin their lives on the main sequence, burning hydrogen to helium

at their cores. Once the hydrogen fuel has been exhausted at their cores, they join the subgiant

branch and then the red giant branch, where hydrogen burning continues in a shell about the

inert core. Subsequent evolution will involve the burning of progressively heavier elements.
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Figure 1.1: HR-diagram showing the evolutionary tracks of stars of mass 1M⊙, 1.5⊙ and 2M⊙
at solar metallicity. For each track, the location of the main sequence is identified by the label
‘MS’, the subgiant branch by ‘SG’ and the red giant branch by ‘RGB’.
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The path which a star takes while it traverses the HR diagram depends crucially on the way

in which energy is transported. Largely, stars transport energy via two processes: radiation and

convection. In the case of the former, the net flow of energy is a result of the way in which

photons interact with the gas. The latter involves the upward movement of hot gas, and downward

movement of cool gas. Should a bubble of gas be displaced upwards into a region in which the

gas is less dense, it will survive and continue to rise if the element is in pressure equilibrium with

its surroundings. According to the ideal gas law, this would imply the temperature in the bubble

of gas must be higher than that in the surrounding plasma. These conditions are met in regions

in which the temperature gradient in the ambient gas is a more rapidly decreasing function of

radius than the adiabatic temperature gradient. Once the pressure equilibrium is disrupted, the

bubble dissolves, depositing its thermal energy to the surrounding plasma. A sinking bubble of

gas must be denser than the surroundings, implying it is cooler. The movement of relatively hot

gas upward, and relatively cool gas downward produces a net flow of thermal energy outward.

For a predominantly radiative star, the relation between luminosity and effective temperature

is a function of opacity, a measure of how much energy is required to heat the gas by 1K.

Gas is under different conditions in stars of varied mass, such that the opacity is dominated by

distinct processes. For example, where the density of free electrons is very high, the opacity

is dominated by electron scattering. This requires the gas to be fully ionised, and as such only

occurs in the hottest stars, which are predominantly high mass. On the other hand, the luminosity

for a fully convective star is essentially independent of mass and scales only with temperature.

This causes stars to evolve along a single line in the HR-diagram, known as the Hayashi track.

On the Hayashi track, luminosity decreases with increasing temperature. In the following I will

use this context to discuss the evolution of a typical solar-like oscillator.

For a gas cloud to collapse we require that it has gravitational energy exceeding approximately

twice its thermal energy. This implies hotter clouds of gas must be higher mass to be unstable

to collapse. These high mass clouds are the progenitors of high mass stars, and so more massive

stars begin their lives at hotter temperatures. Due to their large radii, even the hottest proto-stars

are cool in a stellar physics context. This causes high opacities, which result in larger ambient
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temperature gradients, making the gas unstable to convection. Accordingly, the cloud follows

the Hayashi track on the HR diagram and decreases in luminosity as it heats up.

Once the gas becomes dense enough at the core of the proto-star, hydrogen begins to fuse,

releasing enough nuclear energy to support the cloud against contraction. We label the period

in a star’s life when core hydrogen burning is occurring as the main sequence (see MS label

on figure 1.1). The luminosity and temperature of the new star increase during this phase, the

change being much less significant than it was during the pre-main-sequence. For stars with

masses > 0.25M⊙, the outer layers of the star meet the required conditions for convection. This

convective envelope decreases in thickness with increasing mass, such that for a star of mass

0.4M⊙ at solar metallicity the base of the zone sits at 40% of the radius, compared to 70% in the

Sun (van Saders et al., 2012). Stars with masses in the range 1.1M⊙ ⪅ M∗ ⪅ 1.5M⊙ host two

convection zones, both in the outer envelope and in the stellar core. Should the mass exceed ≈

1.5M⊙, surface convection will not occur (Kippenhahn et al., 1994).

After a period of time, the hydrogen fuel will be exhausted in the core. However, the

temperature in a shell outside of the resulting inert core will have become sufficiently high to

enable hydrogen fusion. The burning produces more inert helium, increasing the mass of the

core and causes it to contract. In a process that is still not well understood, the presence of shell

burning leads to an expansion of the outer layers of the star, decreasing the temperature at the

surface. At this point, most of the star is radiative such that the decrease in temperature leads to a

decrease in luminosity. We call this phase of the lifecycle of a star the subgiant branch. Given

the timescales associated with gravitational contraction are much shorter than those of nuclear

burning, core contraction during the subgiant branch is rapid when compared to the timescales

of evolution on the main-sequence.

As the temperature of the star continues to drop, the outer convection shell deepens until the

star is primarily convective in nature and joins the Hayashi track, marked by a sharp increase

in luminosity. This phase is called the red giant branch. The outer layers continue to expand,

decreasing the temperature and increasing the luminosity until the core is dense and hot enough

for helium fusion to begin. This causes the core to expand, such that the outer layers contract

7



1.1. EVOLUTION OF LOW-MASS STARS CHAPTER 1. INTRODUCTION

Figure 1.2: Illustrative diagram showing the refraction and reflection of an acoustic wave as it
travels from a point on the surface radially inward and then outward to be reflected at another
point.

and the star reverses its path on the HR diagram.

1.1.1 Oscillations in Low-mass Stars

We have identified that convection occurs in the outer envelopes of low-mass stars on the

main-sequence (M∗ ⪅ 1.5M⊙) and in stars on the subgiant and red giant branches. This outer

envelope crucially influences the dynamics of the entire star, acting as the birth place of solar-

like oscillations. As gas in the outer envelope undergoes turbulent motion, sound waves are

generated. These waves propagate through the body of the star, before being refracted back

toward the surface where they are eventually reflected. An illustration showing this refraction

and reflection can be seen in Figure 1.2. The ingoing and outgoing waves interfere with each

other and create trapped standing modes of oscillation, which cause the star to periodically

expand and contract at characteristic frequencies.

As we will see in detail in Section 1.3, the frequencies at which a solar-like oscillator will

pulsate are dependent on the properties of the gas in which they propagate. On the population

scale, this causes differences in the periods of oscillation for stars with different masses, radii

and effective temperatures. This enables us to use observations of solar-like oscillations to

measure these fundamental properties in field stars, which would otherwise be very poorly

constrained. Aside from bulk stellar parameters, the frequencies of the solar-like oscillations

are impacted by internal properties, such that they can be used to study conditions deep below
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the stellar photosphere to which all other traditional observations are blind. Two mechanisms

which asteroseismology is uniquely situated to study are magnetism and rotation, which have a

measurable impact on solar-like oscillations (which will be discussed in Section 1.3.5). Thus far

I have discussed stars in the absence of these phenomena, in the following section I will address

the ways in which they impact stellar evolution, and detail the current observations.

1.2 Stellar Rotation and Magnetic Fields

Rotation (primarily non-solid-body rotation) impacts the manner in which different chemical

elements are transported through the body of a star. The associated mixing processes can

provide the core with additional hydrogen fuel and dredge burnt helium up to the surface (see

Maeder et al., 2012, for a review). The increase in hydrogen in the core increases the main

sequence lifetime of a star when compared to the non-rotating case (Meynet et al., 2000). It

has also been shown that the increased helium in the surface layers substantially changes the

stellar luminosity, a result of the decrease in opacity (Meynet et al., 2000; Maeder et al., 2010;

Eggenberger et al., 2021). Therefore, attempts to predict the observable properties of a star

without considering rotation are inherently flawed. Despite the clear requirement for a good

understanding of stellar rotation to accurately model a star, the details of how stars rotate in

reality are still not well understood. As I will discuss in Section 1.2.1, classical observational

data is limited in sensitivity to just the surface layers, and there is little reason to assume all

stars rotate as solid bodies. To fully understand how rotation impacts stellar evolution, we must

observationally probe deeper into the interior. Asteroseismology is the only technique capable

of making such measurements.

The surfaces of low-mass stars are observed to spin-down as they evolve on the main

sequence (Kraft, 1967; Skumanich, 1972; Barnes, 2003; Barnes, 2007; Irwin et al., 2009). As

we will see in section 1.2.2, this is the result of magnetism in the upper layers. Accordingly, the

most accurate stellar model should account for both rotation and magnetism. Akin to rotation,

observations of magnetic fields are primarily limited to the surface layers (see section 1.2.2).
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However, the presence of a magnetic field below the outer convective envelope could lead to

coupling across the stellar radius influencing the transport of angular momentum through the

body of the star (Mestel et al., 1987; Charbonneau et al., 1993; Maeder et al., 2014). Again,

only asteroseismology can produce observations of magnetic fields in these regions.

In the following sections I will give a brief overview of the ways in which we expect the

rotation of a star to evolve from the main sequence to the red giant branch. These theories will

be compared to current observations. I will then discuss the leading theories regarding stellar

magnetic fields and the limits of current observations.

1.2.1 Rotation

Theory

The host of dynamical processes occuring in a star as it evolves make predicting rotation difficult.

Stars inherit the angular momentum of the cloud from which they form, which is then conserved

as the gas contracts, spinning the star up. A common assumption is that the fully convective

pre-main sequence star rotates as a solid-body (Amard et al., 2019). This is interrupted by the

appearance of radiative zones, and the star begins to experience radial differential rotation. After

the main sequence, the stellar core contracts while the envelope expands. To locally conserve

angular momentum, this implies that the core must spin up, while the envelope spins down.

Including a full treatment of stellar rotation when modelling evolution is difficult given the

number of mechanisms that can alter the transport of angular momentum. These include the

motion of convective elements and solar-like oscillations. Magnetic fields are also capable of

altering the rotational profile of a star by enhancing the coupling between layers. Indeed, even

a weak field can enforce rigid body rotation (Mestel et al., 1987).

Observations

Stellar rotation is most commonly measured using one of two techniques (see Bouvier, 2013, for

a review), Doppler broadening of absorption lines and starspot monitoring, which I will briefly
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Figure 1.3: Surface rotation rates as a function of stellar mass for stars in 8 stellar clusters. The
youngest cluster is plotted in the top left and the oldest cluster in the bottom right. Periods
appear randomly distributed in the youngest cluster, as the age increases stars start join a track
in mass-period space. There-in, the higher mass stars converge to shorter periods than the lower
mass stars. Figure 2 in Irwin et al. (2009)
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Figure 1.4: Asteroseismically inferred core rotation periods as a function of stellar radius shown
as scatter points. Lines show various predictions for the core period as a function of radius
according to different prescriptions for angular momentum transport. In green is a simple
treatment, with rotation considered in shells and the total angular momentum is conserved. The
model in purple includes rotational instabilities. In red is a model with a core magnetic field in
the radiative core. Black line shows the surface period. Figure 2 from (Cantiello et al., 2014).
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cover in the following.

One limb of a rotating star has velocity along the line of sight toward the observer, while

the other has velocity in the opposite direction. Therefore, the light from one side of the

observed disk will be blue shifted while the other is red shifted. This broadens absorption lines

in the spectrum of a star, with the degree of broadening being dependent on how rapidly a

star is spinning. As the absorption features originate in the stellar photosphere measurements

of Doppler broadening are only sensitive to rotation in the surface layers, and cannot provide

information about the radial profile within the star.

Photometric measurements can also be used to measure surface rotation. This is done via the

monitoring of starspots, locally dimmer regions on the stellar surface caused by strong magnetic

fields. These magnetic fields suppress convection, preventing hot gas from moving upwards

such that the area is locally cooler and therefore dimmer. The magnetic fields are frozen-in to

the gas, meaning that starspots rotate with the star. The periodic dimming of the star as a spot

rotates onto and off of the observable disk is thus a direct measure of the stellar rotation period.

The magnetism manifesting in starspots acts only in the surface layers of the star, and again the

probe is not sensitive to the rotation below the outer convection zone.

Measurements of surface rotation periods have been made for thousands of stars, which lead

to the identification of a decrease in the surface rotation rate of main-sequence stars as they age.

The effect can be seen in Figure 1.3, which shows the rotational periods as a function of stellar

mass for stars in stellar clusters at different ages (Irwin et al., 2009). In the youngest bin, all stars

are on the pre-main sequence, and rotation rates are randomly distributed. As the age increases,

stars start to join the main sequence, and begin to converge to a track in period-mass space. By

150 Myrs, almost all stars with masses ⪆ 0.7M⊙ have joined this track. The average period on

the track decreases with stellar mass, such that higher mass stars are rotating more rapidly. These

stars exhaust their core hydrogen supply faster than their lower mass counterparts, implying that

the degree to which a star spins down depends on how long it spends on the main sequence.

The spin down exemplified in Figure 1.3 is the result of a phenomenon known as the stellar

wind. Stars with mass ⪅ 1.5M⊙ host convective envelopes which generate magnetic fields.
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These fields throw off gas near the surface of the star. The gas remains coupled to the star out

to the radius at which the magnetic tension is no longer high enough to resist the coriolis force.

The effective increase in radius slows the stellar spin, converging to the observed sequence. It

was found that this process produces rotation rates that can be approximated by a simple power

law on the main sequence age (Ω ∝ 𝑡−1/2) known as the Skumanich relation (Skumanich, 1972).

High mass stars without convective envelopes are not spun down by stellar winds, and thus rotate

much more rapidly on the main sequence.

Classical measurements of rotational period can only provide information about the surface

layers. Although the assumption of solid-body rotation is sometimes made to simplify stellar

modelling, in reality we know that it is likely not a true reflection of the interior of a star.

Fortunately, the frequencies of the oscillations of a rotating star differ from a non-rotating

reference, such that we can make asteroseismic measurements of rotation. I will discuss this in

greater depth in section 1.3.5. Helioseismic measurements of rotation have been made down to

depths of ≈ 50% of the solar radius. These have shown that solar rotation varies with both radius

and latitude in the outer convection zone, but converges to a solid body profile in the radiative

zone (Howe et al., 2000).

As solar-like oscillators evolve, the observed frequencies become increasingly sensitive

to regions near the core (a full discussion will be given in Section 1.3). This has enabled

asteroseismic measurements of core rotation in hundreds of red giants, highlighting a major

shortcoming in our understanding of stellar rotation. Rates are orders of magnitude slower

than those that would be predicted from traditional models of angular momentum transport

(Eggenberger et al., 2012; Eggenberger et al., 2017; Ceillier et al., 2013; Marques et al., 2013;

Spada et al., 2016; Ouazzani et al., 2017; Fuller et al., 2019; Mombarg, 2023). Additionally,

the rates remain remarkably consistent across the entire red giant branch, despite the core

contraction. This is shown in Figure 1.4, which is Figure 2 in Cantiello et al. (2014). There-in

the authors compare the observed distribution of rotation rates with those predicted by various

theories. Marked in green is the simplest case, where rotation is considered in shells and the

total angular momentum is conserved. The other predictions include terms that can transport
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angular momentum from the core to the envelope, reducing the core rotational period. The

authors considered mechanisms associated with rotational instabilities (purple) and a magnetic

field generated in the radiative core (red lines). Although none of the predictions can replicate

the observations, it is important to note the model including a magnetic field gets the closest.

Asteroseismology has confirmed that the surfaces of red giants rotate slowly. However, the

rates are so slow that actually measuring the surface rotation rate (rather than putting upper

limits on the possible value) is difficult. Currently we have only seismically inferred the surface

rotation of a few tens of evolved stars (Deheuvels et al., 2014; Triana et al., 2017). Akin to

the core rotation, which remains fairly constant across the entire red giant branch, the surface

rotation also appears remarkably consistent despite the rapidly expanding outer layers. Unlike

main sequence stars, classical measurements of the surface rotation of evolved stars are limited.

The signature in Doppler broadening is often on the order of the measurement uncertainty.

Additionally, evolved stars are not very magnetically active, such that starspot monitoring is not

frequently successful.

1.2.2 Magnetic Fields

Theory

As we have seen, magnetic fields have both an observable impact on surface rotation and are

theorised to be influential on core rotation rates. However, the evolution of magnetic fields in

stars is a topic of much debate. Indeed, we currently lack a unified theory capable of predicting

the properties of the magnetic field we should expect to observe in a star of given type. In theory,

magnetic fields in the interstellar medium should ‘freeze-in’ to a protostar as it collapses. It

is possible for certain field geometries to remain stable through subsequent evolution onto the

main sequence. After a star has inherited a field from the interstellar medium, there are several

mechanisms by which it may transform this initial field from one configuration to another,

destroying the original field architecture.

The mechanism which is best understood is the fluid dynamo, which is believed to generate
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the magnetic field in the outer layers of the Sun (Parker, 1955; Babcock, 1961). In such a

process the star starts with an initial seed field which is distorted by the currents induced by

the shear or turbulent motion of conducting gas. This alters the field structure and supports

it against ohmic decay. The ingredients are clear, an initial seed field and shear or turbulent

motion. These conditions are met in convection zones. Accordingly, we expect magnetic fields

in fully convective pre-main sequence stars alongside the outer envelopes of low mass stars on

the main sequence and potentially the convective cores of intermediate mass stars on the main

sequence. It is possible for a field originally driven in a convection zone to remain stable over

the timescales associated with stellar evolution. This would allow for the existence of magnetic

fields in radiative zones. They are labelled as ‘fossil fields’ given they are no longer being

actively regenerated.

Finally, the Spruit-Tayler dynamo (Spruit, 2002; Fuller et al., 2019) allows for the generation

of a dynamo in stably stratified regions. In this scenario, differential rotation creates instabilities

in the magnetic field which result in dynamo action. In this way differential rotation acts as a

replacement for convection in the traditional solar dynamo. This could produce fields near the

cores of evolved stars, releasing the requirement that such a field be ‘fossil’ in nature.

Observations

For stars on the main sequence, the primary method of detecting fields is spectropolarimetry,

exploiting the Zeeman splitting of spectral lines. Given this effect is limited to the regions

where the absorption is occuring, it is only sensitive to magnetic fields in the outer layers of the

star. Measurements using spectropolarimetry on solar-type stars have shown that faster rotators

generally have stronger field strengths (Reiners et al., 2022). Spectropolarimetric studies of A

and B-type main sequence stars have revealed magnetic fields with strengths in the range of a

few hundred to tens of kG in ≈ 10 % of the studied sample (Power et al., 2008). These stars

have radiative envelopes which cannot be supporting a solar dynamo.

The strength of a field generated by a solar dynamo scales with surface rotation such that

small average field strengths are expected in red giants (with slow surface rotation). However,

16



CHAPTER 1. INTRODUCTION 1.3. SOLAR-LIKE OSCILLATIONS

starspots (implying stronger field strengths) have been observed in a small fraction of giants.

In a sample of over 4000 giants observed by Kepler, Gaulme et al. (2020) found an occurence

rate for spot modulation of 8%. Beyond the red giant branch, strong magnetic fields are also

observed in ≈ 10% of white dwarfs (Liebert et al., 2003) and, although an occurence rate is

not known, have also been observed in neutron stars. The ‘fossil field’ theory is the leading

explanation as to why there are magnetic fields in these radiative stars.

Assuming the magnetic fields in white dwarfs and neutron stars are the fossil remnants

of a field generated earlier in the stellar lifecycle, we should expect some red giants to have

buried magnetic fields, close to the core. Asteroseismology provides the only probe sensitive

to conditions in these regions. Much like rotation, magnetic fields perturb mode frequencies,

as we will see in Section 1.3.5. Methods to exploit this phenomena to measure the properties

of such fields in red giants have only just become operable. Indeed, the first catalogue of

asteroseismically inferred magnetic fields in the cores of red giants was made in 2022, with a

set of 3 stars (Li et al., 2022a). There-in, the authors identified magnetic fields with strengths

in the range of 30-100kG. Subsequently, asteroseismology has been used to identify magnetic

fields in the cores of 21 red giants (Deheuvels et al., 2023; Li et al., 2023).

With the relevant aspects of stellar evolution covered, I will now describe the properties of

solar-like oscillators. I will cover the general properties of the oscillations, give a basic overview

of the theory and discuss the ways in which the pulsations evolve with the star. This will be

extended in Chapter 2, where-in I will provide additional details about how we use asteroseismic

data to make inferences about stellar properties.

1.3 Fundamentals of Solar-Like Oscillations

Asteroseismology is the study of stellar pulsations, which are broadly excited by one of two

mechanisms - convection or a heat engine. Thus far we have discussed the former mechanism,

which generates solar-like oscillations. The latter mechanism generates a class of stars known

as classical oscillators, which will not be the focus of this work. As we previously discussed,

17



1.3. SOLAR-LIKE OSCILLATIONS CHAPTER 1. INTRODUCTION

solar-like oscillators require only the existence of an outer convection zone in which sound waves

are being produced. Therefore, we can expect such oscillations in low mass stars on the main

sequence and in all subgiants and red giants.

Solar-like oscillations are encoded with information about the gas in which they propagate.

Basic measurements of their properties enables precise inference on a star’s mass and radius,

parameters which can usually only be effectively constrained for the brightest stars, or in stars in

eclipsing binary systems. More detailed analysis can reveal information about internal properties

that are completely inaccessible to other observational probes, such as how the star is rotating

below the photosphere and whether a magnetic field is present outside of the convective envelope.

In the following, I will detail some fundamentals of the theory of solar-like oscillations, and

how the pulsations depend on both the global stellar properties and the conditions in the stellar

interior.

1.3.1 Overview of the Data

Almost all asteroseismic analysis is done in the frequency domain. The data of interest is the

frequency power spectrum associated with measurements of either the stellar flux as a function

of time (which we call a lightcurve), or temporal variations in the velocity of the surface. In

this thesis I will only use the former. I will start by discussing an example power spectrum as a

means of introducing the important parameters, before providing an overview of the theory of

solar-like oscillations. In Chapter 2 I will build on this to give a much more detailed review of

the data.

An example spectrum for a subgiant solar-like oscillator observed by NASA’s Kepler mission

(Borucki et al., 2010) is shown in Figure 1.5. The shape of this power spectrum (and those of all

solar-likes) can be described using the combined signature of a handful of phenomena. Power

at the lowest frequencies (below ≈ 10 𝜇Hz in Figure 1.5) is identified with the signature of

instrumental drift alongside contributions from rotation and activity. In the intermediate regime

(below ≈ 500 𝜇Hz in Figure 1.5) the signal is dominated by a process known as granulation.

This is the observable imprint of convection, as cells of gas move upward, radiate energy as
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Figure 1.5: Example of the spectrum of a subgiant solar-like oscillator observed by Kepler
(KIC6442183). The signature of granulation, white noise and the shape of the mode envelope
are indicated by a dashed, dotted and continuous line respectively. The inset axis shows a zoom
in around the mode envelope, showing a number of Lorentzian peaks associated with individual
mode frequencies.

heat and sink. Granulation is described by either one (as exemplified by the black dashed line in

Figure 1.5) or multiple Harvey profiles (Harvey, 1985a), the parameters of which are dependent

on the physical properties of the star (see Chapter 2). Solar-like oscillation appear at frequencies

above the characteristic frequency of granulation. A single mode can be approximated by

a Lorentzian peak in the power spectral density (see the inset in Figure 1.5), with height

modulated by an approximately Gaussian function (the continuous black line in Figure 1.5). We

call the frequency at which this Gaussian function is a maximum the frequency at maximum

power, 𝜈max. Individual mode frequencies appear at regular intervals in frequency, which we

parameterize using the large frequency separation Δ𝜈. Both 𝜈max and Δ𝜈 will be discussed in

greater detail in the following section. Finally, shot noise associated with the instrument used

to make the observations dominates at the highest frequencies. This produces a flat offset (as

shown by the black dotted line in Figure 1.5).
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1.3.2 General Properties of Solar-like Oscillations

The modes of oscillation that we observe in the Sun are trapped sound waves, and are thus

referred to as pressure or p-modes. The maximum frequency which a sound wave can have

before it is no longer reflected at the surface of a star is referred to as the acoustic cut-off

frequency (𝜈ac). Brown et al. (1991) argued that the range in frequency in which we observe

p-modes should scale with 𝜈ac. That is, 𝜈max ∝ 𝜈ac. This leads to a scaling with stellar surface

properties that goes as,

𝜈max ∝ 𝜈ac ∝ 𝑔𝑇−0.5
eff , (1.1)

where 𝑔 is the surface gravity and 𝑇eff is the effective temperature. Indeed, a significant body

of observational evidence has confirmed this scaling to be broadly accurate (e.g. Stello et al.,

2008; Chaplin et al., 2011a; Coelho et al., 2015).

Given we are observing standing sound waves, modes should be separated by a near-constant

spacing in frequency. To calculate an approximate dependence of this separation on stellar

properties, consider simplifying the star to an open-ended 1D pipe with length 𝐿. In this case

we observe overtones at frequencies 𝜈𝑛 = (𝑛 + 1)𝑐/2𝐿, where 𝑐 is the sound speed in the gas.

Therefore, the separation between modes of successive overtone is 𝜈𝑛+1 − 𝜈𝑛 = 𝑐/2𝐿. In our star,

the appropriate length scale is the stellar radius (𝑅∗), and so we expect modes to be separated in

frequency by,

Δ𝜈 =

[
2
∫ 𝑅∗

0

𝑑𝑟

𝑐∗

]−1
, (1.2)

where 𝑐∗ is the sound speed. We refer to this spacing as the large frequency separation. We can

calculate an approximation for the sound speed in the star by assuming the ideal gas law, such

that the sound speed scales with the square root of the ratio of the gas pressure (𝑃) to the density

(𝜌), 𝑐∗ ∝
√︁
𝑃∗/𝜌∗. Using this in Equation 1.2 and combining it with the equation for hydrostatic

equilibrium, 𝑃/𝑅∗ ∝ 𝑀∗𝜌∗/𝑅2 allows us to identify Δ𝜈 as a proxy for stellar density,
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Figure 1.6: Examples of spherical harmonics for angular degrees (ℓ) 0 and 1 and the associated
azimuthal orders (𝑚). Red indicates a minima, and blue a maxima.

Δ𝜈 ∝ √
𝜌∗, (1.3)

Again, there is a large observational body of evidence confirming the relation (Ulrich, 1986;

White et al., 2011b; Guggenberger et al., 2016; Guggenberger et al., 2017).

Thus far I have discussed some general properties of the p-mode oscillations of a solar-

like oscillator. However, Δ𝜈 and 𝜈max only carry information about the bulk properties of the

star. Individual modes, on the other hand, reveal more detailed structural information. In the

following section I will discuss how the frequencies of these modes can be approximated, and

in the process introduce two additional types of pulsation; gravity and mixed modes.

1.3.3 Pressure, Gravity and Mixed Modes

The frequencies at which a star can pulsate arise as the solution to a number of differential

equations and associated boundary conditions. To compute these we assume stellar oscillations

can be described using spherical harmonics (see Figure 1.6), such that each mode is associated

with three parameters, the radial order (𝑛), the angular degree (ℓ) and the azimuthal order (𝑚).

21



1.3. SOLAR-LIKE OSCILLATIONS CHAPTER 1. INTRODUCTION

The radial order specifies the number of nodes in the radial direction. The angular degree

represents the number of nodes on the surface of the star, such that the number of regions

contracting and expanding increases with increasing ℓ. We call modes with ℓ = 0 radial modes, ℓ

= 1 dipole modes, ℓ = 2 quadrupole, and so on. Finally, the azimuthal order denotes the number

of nodes passing through the stellar equator. For a given angular degree 𝑚 can vary between

-ℓ and ℓ, such that there will be 2ℓ + 1 values of 𝑚 for each ℓ. In the case of a non-rotating

star, the direction in which an oscillation is travelling is of no consequence, given the spherical

symmetry. As such, the frequencies of all of the azimuthal orders for a given combination of 𝑛

and ℓ are identical. However, departures from spherical symmetry will change this, lifting the

degeneracy. In the following we will discuss the symmetric case, and I will extend this analysis

to include non-symmetric terms in Section 1.3.5.

In this framework, several simplifying assumptions are applied to the equations of stellar

oscillations and a second-order differential equation is derived,

𝑑2𝜉𝑟

𝑑𝑟2 =
𝜔2

𝑐2
𝑠

(
1 − 𝑁2

𝜔2

) (
𝑆2
ℓ

𝜔2 − 1
)
𝜉𝑟 , (1.4)

where 𝜉𝑟 is the radial component of the displacement associated with a given mode and 𝜔 the

angular frequency. Importantly, the eigenvalues at which this equation has oscillatory solutions

can be sorted into two ‘flavours’, defined by the Lamb frequency, 𝑆ℓ, and the Brunt Väisällä

frequency, 𝑁 .

The Lamb frequency is associated with pressure modes (acoustic or p-modes), which are

trapped sound waves. It is defined as,

𝑆2
ℓ =

ℓ(ℓ + 1)𝑐2
𝑠

𝑟2 , (1.5)

where 𝑐𝑠 =
√︁
Γ1𝑃/𝜌. The Lamb frequency increases with depth, which (for most of the stellar

body) is due to the increase in sound speed. Close to the core, the term in 1/𝑟2 dominates.

The Brunt Väisällä frequency defines a type of mode which we have not yet encountered,

the gravity mode (bouyancy or g-mode). In the absence of convection, should an element of gas
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be displaced from its equilibrium position to a region where the gas is less dense, gravity will

restore it to its original position. The frequencies of the associated modes are defined by 𝑁 ,

𝑁2 = 𝑔

(
1

Γ1𝑃

𝑑𝑃

𝑑𝑟
− 1
𝜌

𝑑𝜌

𝑑𝑟

)
, (1.6)

where Γ1 is the adiabatic exponent. The Brunt-Väisällä frequency has a strong dependence

on the density gradient. Regions where this gradient is large and positive, where heavier material

is sitting on top of lighter material, have negative 𝑁2. Positive values of 𝑁2 occur where the

density gradient is negative. This gradient is maximum in regions where nuclear burning has

occured, meaning heavier burnt material sits below the lighter unburnt material.

P-modes are those having 𝜔2 > 𝑆2
ℓ

and 𝜔2 > 𝑁2. On the other hand, g-modes have 𝜔2 < 𝑆2
ℓ

and 𝜔2 < 𝑁2. There is a slight caveat here, in that g-modes with ℓ = 0 cannot exist, given they

cannot provide the required horizontal displacement. In the intermediate regime (i.e 𝑁2 < 𝜔2 <

𝑆2
ℓ
) solutions to the oscillation equation are not oscillatory in nature, i.e. this defines evanescent

regions. Given 𝑆ℓ decreases from core to surface, regions close to the surface support p-modes

with a greater range in frequency than regions nearer to the stellar core. Modes with lower

angular degrees have a lower Lamb frequency throughout the body of the star, as is clear by

the ℓ dependence on 𝑆ℓ. As such, a p-mode with lower angular degree will generally propagate

further into the star. Additionally, 𝑁2 is only positive in regions with radiative stratification, such

that the outer convection zone cannot support g-modes. Being trapped deep within the body

of a star means that g-modes have very little impact on the observable properties of solar-like

oscillators. That is, they have very little influence on the total stellar flux, making them very

difficult to detect.

In the Sun, the frequencies at which p-modes are excited to an observable degree are

sufficiently distinct from g-mode frequencies, such that the two modes do not influence each-

other to any significant degree. However, should a star support g-modes at frequencies near

those of the observable p-modes the two types can couple causing a third observable ‘flavour’ of

oscillation, the mixed-mode. Akin to coupling two springs, the frequencies of the mixed-modes

are no longer that of the pure g- or p-mode, instead they sit at intermediate values.
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1.3.4 Asymptotic Equations of Solar-Like Oscillations

Taking limits on equation 1.4 allows us to determine some simple relations approximating

the frequencies of solar-like oscillations. We call these asymptotic expressions, and they are

commonly used to model the spectra of solar-like oscillators.

Pressure Modes

The high frequency limit, 𝜔2 » 𝑁2, defines the asymptotic relation for p-modes,

𝜈
p
𝑛,ℓ

≈ Δ𝜈(𝑛𝑝 + ℓ/2 + 𝜖p) − 𝛿𝜈0,ℓ, (1.7)

where 𝜖𝑝 is a phase offset which depends on the boundary conditions in the region in which

p-modes propagate. The small frequency separation, 𝛿𝜈0,ℓ, describes the difference in frequency

between radial and non-radial modes whose order, 𝑛, differs by unity.

Gravity Modes

Taking low frequency limit, 𝜔2 « 𝑆2
ℓ
, we obtain the asymptotic relation for g-modes,

1
𝜈

g
𝑛,ℓ

≈ ΔΠℓ (𝑛𝑔 + 𝜖g). (1.8)

There-in, modes are spaced with an approximately constant separation in period, rather than

frequency. We call this the period spacing, ΔΠℓ, which depends on the integral of the Brunt-

Väisällä frequency in the region in which a g-mode is trapped. The offset 𝜖g is associated with

the boundary conditions in the g-mode cavity.

Mixed Modes

Mixed modes occur where the frequencies of g-modes and p-modes approach eachother. Asymp-

totic analysis involves matching solutions across the p-mode and g-mode cavities. The resulting

relation defines the mixed mode frequencies as a function of the pure g and p-mode frequencies

and a coupling term, 𝑞,
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𝜈𝑚𝑚𝑛,𝑙 = 𝜈
𝑝

𝑛𝑝 ,ℓ
+ Δ𝜈

𝜋
arctan

[
𝑞 tan 𝜋

(
1

ΔΠℓ
𝜈𝑚𝑚𝑛,ℓ − 𝜖𝑔

)]
(1.9)

.

Inherent in the derivation of these relations is the assumption that stars are spherically

symmetric. Accordingly, the azimuthal order, 𝑚, does not appear in the asymptotic expressions.

However, there are mechanisms that can break this spherical symmetry, such that the asymptotic

relations must be modified. I will discuss these cases in the following section.

1.3.5 Magnetism, Rotation and Asteroseismology

In Section 1.2 we discussed the importance of rotation and magnetic fields in the context of

stellar evolution. Thus far, I have not addressed how these phenomena impact stellar oscillations.

In fact, both mechanisms can break the spherical symmetry that was assumed in the preceding

section. This lifts the degeneracy between modes of different 𝑚, such that where once we would

have a single peak in the power spectrum per 𝑛, ℓ, we now have multiple components. We refer

to collections having the same 𝑛 and ℓ as multiplets.

As we shall see, both magnetism and rotation introduce perturbations to mode frequencies.

In this context, an important property of modes is their inertia,

𝐼𝑛,ℓ =

∫
𝑉

𝜌 ®𝜉𝑛,ℓ · ®𝜉𝑛,ℓ𝑑3®𝑟, (1.10)

which can be identified with the amount of mass that is affiliated with a given pulsation. As

gravity modes propagate in regions close to the stellar core, where the density is high, they

have much higher inertia than pressure modes. We use the mode inertia to define the parameter

𝜁 , which quantifies whether a mixed mode has properties dominated by the underlying pure

g-mode or the pure p-mode,

𝜁 =
𝐼core

𝐼
. (1.11)

The mode inertia in the core, 𝐼core, is equivalent to the total mode inertia, 𝐼 for a pure g-mode,
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such that 𝜁 is unity. Pure p-modes, on the other hand, do not propagate in the core and thus 𝜁 =

0.

Rotation

The rotation rates associated with solar-like oscillators are slow enough that the resulting shift

to frequencies is taken as a perturbation to the reference, non-rotating case. This produces

mode frequencies that are approximated as 𝜈𝑛,ℓ,𝑚 = 𝜈𝑛,ℓ + 𝛿𝜈𝑛,ℓ,𝑚,rot, where 𝛿𝜈𝑛,ℓ,𝑚,rot « 𝜈𝑛ℓ.

The perturbation depends on the properties of the rotation in the regions in which a given

mode is sensitive. We parameterise this using a rotational kernel, 𝐾𝑛,ℓ,𝑚, which quantifies the

interaction between a mode and the rotational profile. This results in the definition,

𝛿𝜈𝑛,ℓ,𝑚,rot = 𝑚

∫ 𝑅

0

∫ 𝜋

0
𝐾𝑛,ℓ,𝑚 (𝑟, 𝜃)

Ω(𝑟, 𝜃)
2𝜋

𝑑𝑟𝑑𝜃, (1.12)

where Ω(𝑟, 𝜃) is the stellar rotation. According to Equation 1.12, modes are perturbed propor-

tionally to 𝑚, resulting in frequencies that are symmetric about the 𝑚 = 0 mode. For a given

multiplet we can measure 𝛿𝜈𝑛,ℓ,𝑚,rot by the difference in frequency between modes of 𝑚 = +𝑚′

and 𝑚 = −𝑚′, such that we refer to the quantity as the rotational splitting. Measurements of

𝛿𝜈𝑛,ℓ,𝑚 can be used to invert for the stellar rotation profile, if 𝐾𝑛,ℓ,𝑚 is known.

In main sequence stars, we only observe pressure modes (see the discussion in Section

1.3.6). The associated rotational kernels all probe similar locations close to the stellar surface.

In evolved stars, however, we observe mixed modes (see Section 1.3.6). Here, kernels have

sensitivity much closer to the stellar core. Accordingly, observations of rotationally split mixed

modes can provide measurements of core rotation, a parameter which is impossible to access

using any other technique. In practise, we assume that the stellar rotational profile varies in

radius only, such that we have Ω(𝑟). For evolved stars, we assume the core has very different

rotational properties to the envelope, and decompose the splitting into components from the two

distinct regions,
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𝛿𝜈𝑛,ℓ,𝑚,rot = 𝛽core,ℓ

〈
Ωcore

2𝜋

〉
core

+ 𝛽env,ℓ

〈
Ωenv

2𝜋

〉
env
. (1.13)

For dipole modes, 𝛽core,1 = 𝜁/2 and 𝛽env,1 = (1 − 𝜁) (Goupil et al., 2013).

Magnetism

Magnetism both affects the structure of mode cavities and alters the oscillation equations via

the introduction of the Lorentz force. Again, the effect is frequently treated as a perturbation to

a reference, non-magnetic star. Accordingly, the frequencies (ignoring rotation) can be written

𝜈𝑛,ℓ,𝑚 = 𝜈𝑛,ℓ + 𝛿𝜈𝑛,ℓ,𝑚,mag, with 𝛿𝜈𝑛,ℓ,𝑚,mag « 𝜈𝑛,ℓ,𝑚. The value of 𝛿𝜈𝑛,ℓ,𝑚,mag depends on the

perturbation due to the Lorentz force,

𝛿𝐹𝐿 =
1

4𝜋
[(∇ ∧ B) ∧ 𝛿B + (∇ ∧ 𝛿B) ∧ B], (1.14)

where B is the stellar magnetic field with perturbation given by 𝛿B = ∇ ∧ (𝜉 ∧B), with 𝜉 as the

displacement of the oscillation eigenvector. The resulting frequency shift is then calculated via,

𝛿𝜈𝑛,ℓ,𝑚 = − ⟨𝜉𝑛,ℓ,𝑚, 𝛿𝐹𝐿/𝜌⟩
4𝜋⟨𝜉𝑛,ℓ,𝑚, 𝜉𝑛,ℓ,𝑚⟩

, (1.15)

where ⟨𝜉, 𝛼⟩ =
∫
𝑉
𝜌(𝜉∗ · 𝛼)𝑑𝑉 . As Equation 1.14 is crucially dependent on the curl of the field,

the resulting magnetic splitting depends on the geometry of B. Unlike rotation, modes of the

same absolute value of the azimuthal order (|𝑚 |) are perturbed equally. Additionally, magnetic

fields can (depending on the geometry of the field) induce shifts to the 𝑚 = 0 modes. The shifts

on these modes need not be equal to those on modes with𝑚 ≠ 0, such that the resulting multiplet

can have an asymmetric appearance in frequency. Similar to rotation, whether a magnetic field

will affect the observed oscillations depends on where it is localised compared to the mode

propagation cavities. Oscillations in stars on the main sequence are only sensitive to magnetic

fields in the outer envelope, while oscillations in evolved stars can probe magnetic fields buried

closer to the stellar core.

Using perturbed mixed-mode frequencies in solar-like oscillators is the only method currently
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capable of probing core magnetic fields, but analysis has only recently been applied to real data.

Li et al. (2022a) derived the relation between the magnetic field and the perturbations to mixed

mode frequencies in the case of an axisymmetric field. They found for dipole mixed modes

(denoted mm in superscript),

𝛿𝜈𝑚𝑚𝑚=0,mag = 𝜁 (1 − 𝑎)𝜈𝐵, (1.16)

and

𝛿𝜈𝑚𝑚𝑚=±1,mag = 𝜁 (1 + 𝑎/2)𝜈𝐵, (1.17)

where 𝑎 contains the dependence on the topology of the field. The parameter 𝜈𝐵 scales with

the radial magnetic field strength (𝐵𝑟) as 𝜈𝐵 ∝ ⟨𝐵2
𝑟 ⟩/𝜈3, where the average is calculated in a

region near the hydrogen burning shell. Accordingly, the signature of a magnetic field in the

core of an evolved star can be identified with asymmetrically split multiplets, with a frequency

dependence 1/𝜈3.

1.3.6 Solar-Like Oscillations and Stellar Evolution

Mode frequencies are sensitive to stellar structure, such that the frequencies of evolved stars

differ significantly from those in stars on the main sequence. The spectra of three stars at different

evolutionary phases is shown in figure 1.7. There-in we have replaced power spectral density

with signal-to-noise, S/N. This is the observed power with contributions from instrumental drift,

rotation, granulation and white noise removed.

We may visualise the way in which modes evolve by using whats known as a propagation

diagram. This shows 𝑆2
ℓ

and 𝑁2 as a function of radius. Figure 1.8 shows such diagrams for

a stellar model with mass 1.15𝑀⊙ in three different evolutionary phases (ages 1.4, 7 and 7.5

Gyr respectively). There-in I have chosen to plot the Lamb frequency for dipole modes, 𝑆1. I

will use this to discuss the general properties of oscillations in solar-like oscillators on the main

sequence, subgiant branch and red giant branch.
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Figure 1.7: Signal-to-noise spectrum for three stars observed by Kepler (KIC6106415,
KIC6442183 and KIC6035199 respectively). Evolutionary phase increases downward, such
that the third panel is the most evolved star.
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Figure 1.8: Propagation diagrams for a model of a 1.15M⊙ star at solar metallicity in three
different evolutionary phases. The Brunt-Väisäillä frequency and dipole Lamb frequency is
shown. Shaded regions are those with 𝜈2 < 𝑁2 (identified with g-mode frequencies) and 𝜈2 >
𝑆2

1 (identified with p-mode frequencies).

Solar-like Oscillations in the Sun and main sequence Stars

The value of 𝜈max scales with 𝑔 and 𝑇eff , such that stars on the main sequence oscillate at the

highest frequencies (typically a few thousand 𝜇Hz). An example of an observed spectrum for a

star on the main sequence is shown in the top panel of Figure 1.7.

The top panel of Figure 1.8 is that of a model on the main sequence, where 𝜈max has been

plotted as a black dotted line. The star supports dipole p-modes at frequencies about 𝜈max from

the surface down to a depth of ≈ 10% of the total radius. However, 𝜈2
max is significantly larger

than 𝑁2 throughout the star. As such, the star will not host any g-modes in the frequency range

at which we would expect to observe p-modes. Given a spectrum of pure p-modes is described

by Equation 1.7, stars on the main-sequence can be identified by mode envelopes that appear

very regular, with modes appearing at intervals of Δ𝜈. This can be seen in Figure 1.7.
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Evolved Solar-like Oscillators

As a star evolves off of the main sequence, its radius significantly increases. This leads to a

decrease in 𝜈max, which drops from a few thousand 𝜇Hz towards a few tens of 𝜇Hz on the red

giant branch. The middle and lower panel on 1.7 show an observed subgiant spectrum and red

giant spectrum respectively. The profile of 𝑁2 also changes significantly as a star evolves off of

the main sequence, as can be seen in the middle panel in Figure 1.8. This is the same model

star discussed in Section 1.3.6, but on the subgiant branch. The process of nuclear burning

has established a negative density gradient in the core resulting in a peak in the Brunt-Väisäillä

frequency. At radii smaller than ≈ 10% of the total radius, 𝑁2 exceeds 𝜈2
max. G-modes will now

be supported at frequencies close to the frequencies of the observed p-modes and mixed modes

emerge (see section 1.3.3).

The degree to which a mode is coupled (parameterized by 𝑞 in equation 1.9), and accordingly

the extent to which a mixed mode is perturbed from the pure p-mode or g-mode frequency, is a

function of the size of the evanescent zone separating the two mode cavities. Given the p-mode

cavity extends further into the star for modes of low ℓ, the impact of mode mixing decreases

with increasing ℓ.

For a subgiant star, the g-mode density is such that, generally, mixed modes emerge as a

single pure p-mode coupling to a single pure g-mode. Given g-modes are spaced inversely in

frequency, the appearance of mixed modes disrupts the simple comb-like pattern observed in

main sequence stars. Aside from the appearance of these modes, Δ𝜈 decreases in response to the

decrease in the bulk stellar density in the subgiant phase. The resulting spectrum of a subgiant

is thus both less regular and presents a much denser collection of peaks. This can be seen in the

example spectrum in the middle panel of Figure 1.7.

The decrease in Δ𝜈 and 𝜈max continues as a star evolves up the red giant branch. The

maximum value of 𝑁2 also increases, such that more g-modes emerge per Δ𝜈. This results in

multiple g-modes coupling to a single p-mode and an increase in the density of mixed modes.

As such, red giants can have spectra with very complex appearance, which is exemplified in the

final panel of Figure 1.7.
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1.4 Summary

Thus far we have seen that stellar evolution is a complex process, and for many years our

theoretical understanding has been hampered by a lack of observations of properties below the

photosphere. Solar-like oscillations, however, are sensitive to these regions and encoded with

detailed information about their host. The global asteroseismic parameters, Δ𝜈 and 𝜈max, are

dependent on the bulk properties mass, radius and effective temperature. As we shall see in

Chapter 2, this enables us to invert Δ𝜈 and 𝜈max to measure mass and radius to extraordinary

precision. Additionally, given the evolution of the oscillations as a star traverses the HR diagram,

even a brief glimpse at the spectrum of a solar-like oscillator can give invaluable insight into the

evolutionary status of the observed star.

We have seen that solar-like oscillations come in three ‘flavours’, pressure modes, gravity

modes and mixed-modes. The former are the most readily observable, given they propagate

primarily in regions close to the stellar surface. Gravity modes, however, are trapped deep within

the body of the star, near the core, meaning they have very little impact on the net variability of

the stellar flux. Mixed-modes emerge in evolved stars, where the frequencies of the observable

pressure modes and the low amplitude gravity modes are close enough that the two types can

couple. The resulting coupled modes share characteristics of the modes that produced them,

such that they have much larger amplitude than pure g-modes whilst still containing information

about the properties of the stellar core. We have also seen that the frequencies of solar-like

oscillations are affected by rotation and magnetism. Accordingly, mixed-modes can be used to

measure the properties of these mechanisms near the stellar core, in regions which cannot be

probed by any other observational technique.

With the basic physical principles covered, in the next chapter I will discuss asteroseismic

analysis in more detail. I will describe how power spectra are calculated, and the data that is

used to do so. I will also give a much more detailed overview of how the observable properties

of the oscillations are modelled, and the relations between the parameters of these models and

the stellar properties.
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A Crash Course in Asteroseismic Data

Solar-like oscillations cause stars to expand and contract, heating and cooling as they do so. This

change in temperature propagates to periodic changes in luminosity, modulating an observed

lightcurve. Assuming we observe the star for long enough to properly sample these flux

variations, we can use the data to measure various properties of the oscillations. The most

basic analyses exploit the global parameters Δ𝜈 and 𝜈max which, as we have seen in Chapter 1.3,

provide information about the bulk density, effective temperature and surface gravity of the star.

The individual mode frequencies contain even more detailed information about the stellar body,

with the potential to measure properties such as stellar rotation and magnetism (see Section

1.3.5).

Most asteroseismic analysis is done in the frequency domain, as solar-like oscillations are not

coherent. In the following Chapter I will introduce the techniques we use to translate between

time and frequency. I will then go on to give a detailed description of the power spectra of

solar-like oscillators, and how they vary with stellar fundamental properties. The relations I

discuss will underpin the analysis presented in the following Chapters. I will cover the two

main methods used to make inference on the physical parameters of solar-like oscillators via

their observed properties. Finally I will describe the two current observing missions which are

crucial to the work in this thesis.
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2.1 Frequency Analysis

2.1.1 Fourier Transforms

The analysis of solar-like oscillations usually begins with a conversion between the time and

frequency domains. This can be achieved via a Fourier transform, which represents how much

of a function can be described by periodic signals with different frequencies. It is defined as,

𝑋 (𝜈) = 1
√

2𝜋

∫ +∞

−∞
𝑥(𝑡)𝑒−𝑖2𝜋𝜈𝑡𝑑𝑡, (2.1)

where 𝑋 (𝜈) and 𝑥(𝑡) are the signal in the frequency and time domain respectively. To directly

apply this transform we require knowledge of the continuous function, 𝑥(𝑡). In our real data we

have to take measurements at specific times, such that we can never truly observe 𝑥(𝑡). Instead

we observe 𝑁 instances of the continuous function at integer multiples ( 𝑗) of the sampling

cadence (Δ𝑡). These observations are made for a total observing time, 𝑇 , and the observed

signal is thus,

𝑥obs(𝑡) =
+∞∑︁
𝑛=−∞

𝑥(𝑡)𝛿(𝑡 − 𝑗Δ𝑡)Π( 𝑡
𝑇
), (2.2)

where the delta function (𝛿(𝑡− 𝑗Δ𝑡)) describes the sampling, and the rectangular function (Π( 𝑡
𝑇
))

is known as a window function, defining the duration over which our observations were made.

Taking the Fourier transform of 𝑥obs(𝑡) we arrive at,

𝑋obs(𝜈) =
𝑁∑︁
𝑛=0

𝑥(𝑛Δ𝑡)𝑒−𝑖2𝜋𝜈𝑛Δ𝑡 , (2.3)

where 𝑁 is the total number of observations. Given we cannot numerically compute 𝑋obs(𝜈)

for continuous 𝜈, we now need to define a set of frequencies on which to evaluate the Fourier

transform. Accordingly we define the sampled Fourier transform 𝑋𝑘 = 𝑋obs(𝑘Δ𝜈), where 𝑘 is

an integer and Δ𝜈 is the frequency resolution.

The most appropriate frequency resolution can be identified with the properties of the window
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function, Π( 𝑡
𝑇
). Taking the Fourier transform of the product of two functions (here our sampled

observations of 𝑥(𝑡) and Π( 𝑡
𝑇
)) involves calculating the convolution of the Fourier transforms

of the two functions independently. The Fourier transform of the rectangular function is a sinc

function, with width given by the inverse of the width of the rectangle. For our observation that

width is 𝑇 = 𝑁Δ𝑡. Accordingly, 𝑋obs(𝜈) will be correlated at frequencies separated by less than

1/𝑁Δ𝑡. Therefore, the natural choice for the frequency resolution is,

Δ𝜈 =
1
𝑁Δ𝑡

. (2.4)

Substituting this resolution into Equation 2.3 with 𝜈 = 𝑘Δ𝜈, we arrive at,

𝑋𝑘 =

𝑁∑︁
𝑛=0

𝑥(𝑛Δ𝑡)𝑒 −𝑖2𝜋𝑘𝑛
𝑁 . (2.5)

This is just the definition of the discrete Fourier transform.

The maximum frequency at which we evaluate Equation 2.5 must also be defined. In

practise this is usually set at the Nyquist frequency, the maximum frequency that can be

uniquely identified in a dataset with sampling rate Δ𝑡. The Nyquist frequency is related to the

properties of the observed data by

𝜈Nyq =
1

2Δ𝑡
. (2.6)

This is simply stating that we cannot make unambiguous inference on periodic signals that are

sampled less than twice over the period of the variability (i.e. the minimum period is 2Δ𝑡).

Oscillations in the Sun have been measured with periods as short as ≈ 3 mins, implying we

require observations with a sampling rates on the order of 1 mins. This constraint is relaxed

for more evolved stars, which oscillate with longer periods. A low-luminosity red giant, for

example, may only require sampling every 30 mins.

Finally, we must appreciate that we are not making instantaneous flux measurements, instead

we are collecting total flux over an observation cadence and then summing it. In reality the

representation of sampling in time as a set of delta functions is not accurate. Instead we must

multiply the true underlying signal by another set of rectangular functions with a width at the
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cadence of the observations. As previously discussed, this results in the signal in the frequency

domain being modulated by a sinc function, this time with width 1/Δ𝑡,

𝜂(𝜈) = sinc(𝜋𝜈Δ𝑡) = sinc
[
𝜋

2
𝜈

𝜈Nyq

]
, (2.7)

and the amplitude of the signal drops off as we approach the Nyquist frequency. We call this

apodization. Given the associated decrease in amplitude, it is preferrable to try to design

observations such that the mode frequencies are some distance from the Nyquist frequency.

To determine how much of the observed signal is described by oscillatory components at

different frequencies we calculate the power spectral density (or PSD). This removes the phase

dependence and complex components,

𝑃(𝑘) = |𝑋𝑘 |2. (2.8)

Statistics of the Power Spectral Density

In order to determine whether the peak in a PSD is significant, we need a good understanding of

the statistics describing the noise. The data relavent to this thesis will be measurements of stellar

flux, so that the noise in the time domain is that associated with photon counting. Given the large

numbers of photons we sum over, we assume our flux measurements are distributed according

to a Gaussian (or a normal distribution), with a standard deviation determined by the specifics

of a given instrument. The real and imaginary components of the Fourier transform of such a

variable are also independently Gaussian distributed. Accordingly, calculating 𝑃(𝑘) involves

summing two independently distributed, squared, random variables. The resulting distribution

is 𝜒2 2 degrees of freedom (dof) (Woodard, 1984; Appourchaux et al., 1998).

2.1.2 The Lomb-Scargle Periodogram

The algorithm frequently used to calculate the discrete Fourier transform is known as a fast

Fourier transform. This is derived under the assumption that the signal is sampled on a regular

36



CHAPTER 2. ASTEROSEISMIC DATA 2.1. FREQUENCY ANALYSIS

grid. This is not necessarily the case for real-world observations, which are interrupted by, for

example, telescope repointing, signal loss due to cosmic rays and data downlinking. Where

regular sampling produces a predictable aliasing of peaks in the power spectrum, irregular

sampling produces aliases that are specific to the irregularity, giving the power spectrum the

appearance of random noise. It is thus harder to establish a peak associated with solar-like

oscillations. The Lomb-Scargle Periodogram (LSP, Lomb, 1976; Scargle, 1982) was designed

to overcome this challenge. In essence, at each frequency the sinusoidal function representing

the minimum 𝜒2 goodness-of-fit is calculated, and a periodogram is constructed using the

amplitude of that function. Accordingly, the resulting LSP is distributed according to 𝜒2 2 dof

statistics. The spurious peaks associated with the aliasing of a true signal are reduced in the LSP

versus the discrete fourier transform, making the signature of actual oscillation on a star easier

to identify.

2.1.3 Stellar signals in the Frequency Domain

In Section 1.3, I briefly covered the different signals contributing to the spectrum of a solar-like

oscillator. In the following section I will provide a much more detailed overview of how these

features are described in the PSD, and how they vary with stellar properties. The resulting

relations will be used throughout the rest of this thesis.

Granulation

Granulation is the direct observable product of convection in the near surface layers. In the

convective envelope, hot plasma rises in currents, reaching the surface and radiating heat, which

contributes to the stellar luminosity and thus the observed flux. We model the response in

the lightcurve as a superposition of peaks which randomly, instantaneously appear and then

exponentially decay. An example of a single peak in such a model is shown in Figure 2.1.

Assuming these peaks have a characteristic amplitude 𝜎𝑐 and timescale 𝜏𝑐 the response in the

frequency domain would be,
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Figure 2.1: Model for the contribution of a single pulse in the lightcurve attributed to granulation.
The real signal is modelled as the sum of a number of these peaks, which randomly appear.

𝑃𝑐 (𝜈) =
4𝜎2

𝑐 𝜏𝑐

1 + (2𝜋𝜈𝜏𝑐)2 . (2.9)

Modelling the peaks as undergoing exponential growth, rather than instantaneous appearance

gives a similar response, albeit with the exponent of two in the denominator changing to a 4.

Harvey laws (Harvey, 1985a) like Equation 2.9 are commonly used to fit the granulation signal

in real data, with the exact choice of exponent in the denominator varying between 2 and 4

depending on the author (Mathur et al., 2011; Kallinger et al., 2014a; Lund et al., 2017).

The convective properties of a star depend on its fundamental properties, like mass and

effective temperature. The acoustic cut off frequency (see Section 1.3) depends on the pressure

scale height in the convection zone, a parameter which controls the properties of convective

elements. Therefore, both 𝜎𝑐 and 𝜏𝑐 should have some dependence on the acoustic cut-off

frequency, and accordingly should scale with 𝜈max. Indeed, Kjeldsen et al. (2011) showed that,
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Figure 2.2: Smoothed spectra for 3 stars at different evolutionary phases. The characteristic
timescale of granulation increases with decreasing 𝜈max, such that the frequency at which the
granulation profile has a knee decreases.

𝜏𝑐 ∝
1
𝜈max

(2.10)

and

𝜎𝑐 ∝
√︄

𝐿2

𝑀3𝑇5.5
eff
𝜈max, (2.11)

where 𝐿 is the stellar luminosity and 𝑀 is the stellar mass. An example of the spectra of three

stars with different 𝜈max is shown in Figure 2.2, highlighting the dependance of 𝜏𝑐 on 𝜈max.

Mode Envelope

The mode envelope of a solar-like oscillator observed by Kepler is shown in Figure 2.3. The

total power due to the oscillations appears to be modulated by a smoothly varying function in

frequency, which is commonly modelled as a Gaussian centered on the parameter 𝜈max (Lefebvre

et al., 2008; Lund et al., 2017). That is, if we smooth the observed power overΔ𝜈 (averaging over

the sharp Lorentzian peaks), we would find we could describe the resulting smoothed spectrum

by,

𝐻gau(𝜈) = 𝐻env exp
−(𝜈 − 𝜈max)2

2𝜎2
env

, (2.12)
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Figure 2.3: Signal-to-noise spectrum of the solar-like oscillator KIC6442183 observed by
Kepler. The dotted line represents the Gaussian function used to describe the p-mode envelope.
The large frequency separation Δ𝜈 is marked with an arrow. The inset shows a zoom around
three individual modes with angular degree ℓ = 0, 1 and 2.

with 𝜎env = Γenv/2
√

2 ln 2. We can relate the envelope height (𝐻env) to the properties of the

modes by defining the amplitude of a notional ℓ = 0 p-mode at 𝜈max, 𝐴max. The smoothed power

in a section of the spectrum centered on 𝜈max with width Δ𝜈 would then be,

𝐻env =
𝐴2

max𝜁

2Δ𝜈
. (2.13)

Here 𝜁 accounts for the fact that modes of different ℓ have different heights (see the insert in

Figure 2.3, the derivation of 𝜁 will be discussed further in Section 2.1.3). We can use Equation

2.13 to relate the observed height of the envelope to the properties of the modes, which depend

on the physical properties of the star.

The exact dependence of 𝐴max on the properties of the star is complex, and is still an

ongoing area of research (Samadi et al., 2005; Samadi et al., 2007; Houdek, 2006). A simplified

analysis assuming adiabaticity and approximating the star as a polytrope predicts the amplitude

as observed by a specific instrument should be given by scaling relations of the form,

𝐴max ∝
(
𝐿

𝑀

) 𝑠
𝑇
−(𝑟−1+𝛼bol)
eff , (2.14)
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(Kjeldsen et al., 1995; Basu et al., 2017b), where the values of the positive scalars 𝑠 and 𝑟

are obtained empirically. The term 𝛼bol is required to describe the wavelength response of

the observing instrument. Although the exact choice of 𝑠 and 𝑟 likely varies between stars of

different evolutionary status, the general rule is that mode amplitudes increase as a star evolves

from the main sequence to the red giant branch.

Equation 2.14 has been shown to over-predict amplitudes in the hottest solar-like oscillators.

The degree of suppression has been approximated using the empirically derived 𝛽 correction

(Chaplin et al., 2011b),

𝛽 = 1 − exp
−(𝑇red − 𝑇eff)

1250
, (2.15)

where 𝑇red is the temperature of the red-edge of the 𝛿-Scuti instability strip, which marks the

approximate transition between stars that do and do not host outer convective envelopes. This

scales with luminosity approximately as 𝑇red ∝ 𝐿0.093 (Houdek et al., 1999).

The envelope width, Γenv is dependent on the efficiency of mode excitation, and a simple the-

oretical derivation of the dependence on stellar parameters does not currently exist. Empirically,

however, it has been shown to scale with 𝜈max according to,

Γenv(𝜈max) =


0.66

(
𝜈max
𝜇𝐻𝑧

)0.88
, 𝑇eff ≤ 5600

0.66
(
𝜈max
𝜇𝐻𝑧

)0.88
(1 + 6 × 10−4(𝑇eff − 𝑇eff,⊙)), 𝑇eff > 5600

(Mosser et al., 2012a; Lund et al., 2017). That is, the width of the mode envelope decreases as

a star evolves.

Properties of Individual Modes

The inset in Figure 2.3 shows the spectra of three individual modes, labelled by their angular

degree. Treating solar-like oscillations as randomly driven, damped, harmonic oscillations would

imply modes should appear in the PSD as Lorentzians (Basu et al., 2017b). The Lorentzian

function is defined as,
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𝑃(𝜈) = ℎ𝑛,ℓ,𝑚

1 + 4/Γ2
n,ℓ,m(𝜈 − 𝜈𝑛,ℓ,𝑚)2

, (2.16)

where ℎ𝑛,ℓ,𝑚 is the height and Γ𝑛,ℓ,𝑚 is the width of a mode at frequency 𝜈𝑛,ℓ,𝑚.

Aside from the intrinsic properties of a given mode, observed amplitudes are also dependent

on geometric effects. For stars other than the sun, we observe the flux averaged over the stellar

disk. As ℓ increases, this involves taking the average of a large number of nodes and anti-nodes,

resulting in smaller net fluctuations. Therefore, for solar-like oscillators, almost all asteroseismic

analysis is restricted to the study of modes with ℓ = 0 - 3. In addition to the geometry of the

pulsations, we must also consider the impact of limb darkening. This describes how the

observed stellar flux varies with the distance from the center of the disk. We observe a star

is brightest at the center, becoming progressively fainter with increasing radius. This is the

result of the decrease in the optical depth as our line of sight through the star gets progressively

shorter, and probes regions of decreased gas density. Limb darkening generally decreases the

amplitudes of modes with low ℓ compared to high ℓ, mitigating some of the cancellation.

The net effect of the geometric cancellation and limb darkening is parameterized in the

visibility function, 𝑆ℓ, which corrects the amplitudes in the time domain (Dziembowski, 1977;

Gizon et al., 2003; Ballot et al., 2011). This is then squared, to represent the power as seen

in the frequency domain and normalized to the visibility of a radial mode, (𝑆ℓ/𝑆0)2. The sum

of these visibilities gives the value of 𝜁 , used in Equation 2.13. An example of the normalised

mode visibility is shown as a function of angular degree in Figure 2.4. The maximum of this

curve corresponds to dipolar modes, as the best trade off between geometric cancellation and

limb darkening.

As discussed in Section 1.3, rotation and magnetism break the degeneracy between frequen-

cies of different azimuthal order. Accordingly, where we would have observed a single peak

for a given 𝑛, ℓ in a non-rotating and/or non-magnetic star, we now observe multiple. The

amplitudes of the modes in these multiplets are dependent on the stellar inclination, 𝑖 (Gizon

et al., 2003). Taking the example of dipolar modes, those with 𝑚 = 0 have a nodal line at

the equator, such that observations made pole on minimize the cancellation between expanding
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Figure 2.4: Visibility as a function of angular degree according to Ballot et al. (2011). Values
are calculated using atmospheric models for the limb darkening of a star with 𝑇eff = 5800K and
logg = 4.5dex at solar metallicity. The maximum of this function is at ℓ = 1.

and contracting regions and the modes are readily observable. On the other hand, modes with

𝑚± 1 have nodal lines crossing the poles, such that observations made pole on maximize the

cancellation. Accordingly, it is not possible to observe ℓ = 1, 𝑚± 1 modes for a star with 𝑖 = 0°.

Similarly, ℓ = 1,𝑚 = 0 components are only observable at 𝑖 < 90°, with amplitudes progressively

decreasing with increasing inclination. An example of the distribution in power for a simulated

dipole multiplet observed at three different inclination angles can be seen in Figure 2.5. There-in

I have normalised each multiplet to have the same maximum height.

In the presence of rotation only, modes are perturbed by a frequency proportional to 𝑚, such

that the resulting distribution in power is symmetric about the 𝑚 = 0 profile. Magnetism, on

the other hand, causes shifts to all components of a multiplet. The scale of this shift (generally)

differs among components with different absolute values of 𝑚 (Prat et al., 2019; Bugnet et al.,

2021; Mathis et al., 2021; Li et al., 2022a). That is, 𝛿𝜈mag,𝑚=±1 ≠ 𝛿𝜈mag,𝑚=0 (see Section 1.2.2).

This results in multiplets which are no longer symmetric about a central component. An example

of such a distribution is shown in Figure 2.6.
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Figure 2.5: Simulated mode profiles in a dipole multiplet containing rotational perturbation only
at three different inclinations. The first panel is for the star observed pole-on, and in the third
the star is viewed equator on.

Figure 2.6: Simulated mode profiles for a dipole multiplet in a star at intermediate inclination
(45°). In the left hand panel the profile is shown with rotational splitting only, while on the right
we show rotational and magnetic splitting
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2.2 Asteroseismic Observables to Stellar Properties

Thus far, we have seen the ways in which the frequencies and amplitudes of solar-like oscillations

are dependent on the physical properties of the star. In the following section I will detail how we

can use measurements of the asteroseismic parameters to invert for stellar properties. Methods

of doing so can be broadly divided into two domains. Those requiring stellar models, and those

that are model independent.

2.2.1 Model Independent Property Recovery

The most fundamental observable asteroseismic parameters required to describe a solar-like

oscillator are 𝜈max and Δ𝜈, which capture the basic properties of the oscillations. They are

fairly simple to interpret and the easiest values to measure in the power spectrum of a solar-

like oscillator. The pair share dependencies on stellar mass and radius. Accordingly, with an

independent measurement of 𝑇eff , 𝜈max and Δ𝜈 can be combined to give mass (𝑀) and radius

(𝑅),

𝑀

𝑀⊙
=

(
𝜈max

𝜈max,⊙

)3 (
Δ𝜈

Δ𝜈⊙

)−4 (
𝑇eff

𝑇eff,⊙

)1.5
, (2.17)

𝑅

𝑅⊙
=

(
𝜈max

𝜈max,⊙

) (
Δ𝜈

Δ𝜈⊙

)−2 (
𝑇eff

𝑇eff,⊙

)0.5
. (2.18)

We call this method of determining stellar properties the ‘direct method’ (Brown et al., 1991;

Kjeldsen et al., 1995). Typical fractional uncertainties on 𝜈max, Δ𝜈 and 𝑇eff are on the order

of 1%, propagating to fractional uncertainties on mass of the order of 10%. Indeed, Mathur

et al. (2012) achieved a median precision of 9% on mass derived via Equation 2.17 for a sample

of 22 high signal to noise targets using a month of Kepler data. Given the smaller exponents

on Equation 2.18, the uncertainties on radii are smaller. Mathur et al. (2012) report a median

precision of 3% on radius for their sample of stars.

The accuracy of the direct method has been extensively studied. Comparing the masses and
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radii measured using traditional techniques to their seismic equivalents has shown the scaling

relation derived values are systematically overestimated. To account for the bias in the scaling

relations, several corrections to Equations 2.17 and 2.18 have been suggested (White et al.,

2011b; Miglio et al., 2012; Sharma et al., 2016), which are generally dependent on effective

temperature or metallicity. Gaulme et al. (2016) studied 10 red giants in eclipsing binaries,

comparing the masses and radii calculated via radial velocities and eclipse photometry to those

determined by asteroseismic scaling relations (including corrections according to Mosser et al.,

2013). They found that on average the overestimation on radius was approximately 5% and on

mass was approximately 15%.

2.2.2 Model Dependent Property Recovery

Direct application of Equations 2.17 and 2.18 assumes that for a star of given mass and radius all

values of effective temperature are equally valid. Thus, an erroneous measurement of the latter

will influence the derived stellar properties. Additionally, the base scaling relations for 𝜈max and

Δ𝜈 are approximations and not exact. Indeed, it is now well established that they should contain

some additional metallicity dependence (Rodrigues et al., 2017; Li et al., 2022b).

To obtain results that fold in our understanding of stellar evolution theory we require stellar

models. For a set of simulated stars with different initial properties (frequently initial masses

and metallicities), predictions are made for the evolution of the star at discrete points in its

lifecycle. From the associated fundamental properties, the expected observable parameters can

then be calculated. Each set of such properties (fundamental and observable) is referred to as

a single stellar model. Thousands to hundreds of thousands of these models are combined to

produce a grid. Inference is made on the fundamental properties of an observed star by assigning

a likelihood to each model in the grid according to the similarity between the model and real

observables. Given we cannot make grids with infinitely fine resolution, such techniques often

involve interpolating between grid points.

Alongside traditional observables like effective temperature and magnitude, mode frequen-

cies can be simulated for comparison with observations. This increases the computational
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expense, and is not always necessary, given model values of 𝜈max and Δ𝜈 can be calculated

directly from mass, radius and temperature. Stellar masses and radii calculated in this manner

are more precise than those inferred using scaling relations. For a set of 66 stars, Silva Aguirre

et al. (2017) distributed measurements of individual mode frequencies, effective temperatures

and metallicities to a number of stellar modelling teams and found average uncertainties of 4%

and 2% on mass and radius respectively. In a set of 87 stars Chaplin et al. (2014) performed a

similar exercise but only used Δ𝜈, 𝜈max, metallicity and effective temperature. They found that

grid-based modelling could achieve average uncertainties of 5.4% on mass and 2.2% on radius

when including metallicity in their set of observables. In addition, other physical parameters can

be fit for in this manner. Stellar ages are generally in high demand, given they are notoriously

difficult to determine using traditional techniques. Grid-based modelling with asteroseismic

observables can lead to uncertainties on ages of order 10% (Silva Aguirre et al., 2017).

2.3 Sources of Asteroseismic Data

Requirements for observations suitable for the recovery of solar-like oscillations are primarily

related to total duration and cadence. Stars on the main-sequence oscillate at the highest

frequencies, with 𝜈max values in the mHz range (Lund et al., 2017). For a suitable Nyquist

frequency, this requires cadences of the order of minutes (see Section 2.1.1). Additionally,

mode widths can be as small as a fraction of a 𝜇Hz in the most evolved solar-like oscillators

(Yu et al., 2018b). To resolve the associated Lorentzian profiles, we require observations with

lengths on the order of weeks to months rather than days. In the least evolved stars, amplitudes

are on the order of parts per million (ppm), which again requires observations largely on the

order of weeks to months, which are broadly uninterrupted. Although these requirements can be

met by a few ground based observatories for the brightest solar-like oscillators, large catalogues

of measurements were only made possible by the space-based missions CoRoT (Baglin et al.,

2006), Kepler (Borucki et al., 2010) and TESS (Ricker et al., 2014).
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2.3.1 Kepler

The NASA Kepler mission launched in 2009, with the main aim of detecting Earth-sized

exoplanets orbiting in the habitable zones of their hosts via the transit method 1. The same

patch of sky was observed for 4-years, ending with the failure of a reaction wheel. During the

4-year observing run, the telescope required periodic rolls to align solar panels, meaning the

observations were split into ≈ 90 day ‘quarters’. Each quarter saw the release of lightcurves of

two types, referred to as long and short cadence data. In total, ≈ 200,000 stars were observed

in long cadence, in which measurements were read out every ≈ 29.4 minutes. This sampling

means that the resulting lightcurves have a Nyquist frequency of ≈ 277𝜇Hz. A smaller selection

of targets were observed in short cadence, with images produced every 58.85 seconds, resulting

in a Nyquist frequency of 8333𝜇Hz. In a given quarter, only 512 stars could be observed in

short-cadence. Accordingly these slots were preferentially retained for the cool, main-sequence

stars that were most likely to meet the aims of the mission.

The total number of solar-like oscillators identified and analysed using Kepler data numbers

over 16,000 (Lund et al., 2017; Serenelli et al., 2017; Yu et al., 2018a). Given 𝜈max scales with

the temperature and radius of the star (see Equation 1.1), we can make a seismic analogy to the

HR diagram with 𝜈max as a function of 𝑇eff . Figure 2.7 shows the resulting plot for the >16,000

solar-like oscillators identified using Kepler data (Serenelli et al., 2017; Yu et al., 2018a). From

the perspective of cataloguing solar-like oscillators, two features are notable on this plot. Firstly,

the number of solar-like oscillators detected on the red giant branch significantly outweighs the

number on the main sequence. Secondly, there is a clear divide between the two regimes with a

decrease in the density of detections around ≈ 300 𝜇Hz. These features are the product of both

the Kepler observing strategy and the dependence of mode heights on stellar properties. As

previously discussed, most of the data collected by Kepler was done so in long cadence. Given

the maximum detectable frequency in this data is ≈277𝜇Hz, it is not appropriate for targets that

have not yet joined the red giant branch (see Figure 2.7). Detections in less evolved solar-like

1The transit method detects the presence of an exoplanet by the relative decrease in stellar flux that occurs while
the planet crosses in front of the star, relative to the observer

48



CHAPTER 2. ASTEROSEISMIC DATA 2.3. SOURCES OF ASTEROSEISMIC DATA

oscillators could only be made in the smaller number of stars observed in short cadence. This

compounds with the fact that the amplitude of solar-like oscillations scales approximately with

𝐿/𝑀 (Kjeldsen et al., 1995), such that the average signal to noise for main sequence oscillations

is much lower than that of their evolved counterparts. Although subgiants are more luminous,

and thus have higher mode amplitudes, they were not prioritized for observation. This was

because the main aim of the mission was the detection of small planets via the transit technique.

A small planet would produce a larger transit when orbiting a less luminous star, so short cadence

observations were prioritized for stars on the main sequence. The resulting sampling of the HR

diagram is such that red giants are the best represented, followed by main sequence stars with

subgiants as the least populous group. Such a disjoint coverage of the HR diagram impacts

asteroseismic inference on the evolution of stellar properties.

2.3.2 TESS

The Kepler mission was succeeded by NASA’s Transiting Exoplanet Survey Satellite (TESS),

launching in 2018. Rather than observing a single field of view for the duration of the mission,

TESS observes millions of stars across the sky. To do so, the sky is split into 26 rectangular

segments which are each observed for ≈ 27.5 days before the pointing changes. The nominal

mission had a duration of 2 years, with 13 sectors in the southern hemisphere observed during

the first year and the remaining 13 in the northern hemisphere observed in the second year. At

time of writing, TESS has been observing for 5 years, such that most targets will have been

observed for at least 2 sectors (≈ 2 months). A small number (relative to the total target list) of

stars have been observed for a year or more. This is the result of the segmented approach, as

sectors overlap at the poles in regions known as the Continuous Viewing Zones.

The mission prioritized observing brighter stars than those observed by Kepler, with the

distribution in 2MASS K-band magnitude for TESS targets peaking at ≈ 9, compared to ≈ 14

for Kepler. Again, lightcurves are available at multiple cadences, varying from 30 minutes to

20 seconds. All stars are observed in the longest cadence, thereafter target lists decrease in size

with decreasing cadence. Indeed, 20 second cadence data is only available for 1,000 stars per
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Figure 2.7: 𝜈max as a function of𝑇eff for solar-like oscillators observed by Kepler. Measurements
are taken from Yu et al. (2018a) and Serenelli et al. (2017). The Kepler long cadence Nyquist
frequency is marked by a black dotted line. Three evolutionary tracks are shown for stars at
solar metallicity with masses 1.0, 1.5 and 2.0M⊙ generated by MIST (Choi et al., 2016).
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sector.

2.3.3 PLATO

The next space mission expected to provide significant contributions to asteroseismology is The

PLAnetary Transits and Oscillations of stars (PLATO) mission (Rauer et al., 2014), funded by

ESA and set to launch in 2026. Like TESS and Kepler, the main aim of PLATO is the detection

of terrestrial planets via transits in stellar lightcurves. Although asteroseismology for the sake of

studying stellar internal properties is not the main aim of the mission, it will be used as a crucial

method to determine the properties of host stars. Observations are scheduled for a nominal

period of 4 years, observing two fields for two years each. Targets will be observed in various

cadences, varying from 25 seconds, to 600 seconds.

2.4 Summary

In this chapter, I have given a detailed review of the properties of the power spectrum of a

solar-like oscillator. We began at an overview of the construction of a power spectrum from

measurements of stellar flux as a function of time. We identified the most important features of

these spectra in the context of asteroseismic analysis, namely the Nyquist frequency, frequency

resolution and the apodization of the signal. I then described how solar-like oscillations appear

in the power spectral density, and how their observable properties depend on fundamental stellar

properties. We then exploited this to demonstrate how measurements of the features in the power

spectrum can be used to invert for the properties of the star. Finally, I described three notable

observing missions, Kepler, TESS and PLATO.

Asteroseismic analysis of solar-like oscillations is uniquely powerful in its ability to give

excellent constraints on bulk stellar properties, like mass and radius, in addition to inference

on mechanisms like rotation and magnetism occurring below the photosphere. To fully exploit

these features, it is of prime interest that we maximise the number of stars in which we have

detected solar-like oscillations. In terms of the quantity of observations, no other mission comes
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close to the output of TESS. However, having so much data is both a blessing and a curse, as

it is no longer possible to manually search for solar-like oscillations. In the following chapter I

will address this issue by introducing a pipeline we designed to detect solar-like oscillations in

large datasets.
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Detecting Oscillations

As discussed in Chapter 2, NASA’s TESS mission monitors millions of stars (Ricker et al., 2014)

making it an invaluable resource in the search for solar-like oscillators. Manually vetting this

data to identify solar-like oscillators would be an impractical task. Therefore, it is crucial we

automate as much of the recovery process as possible. Given we know that solar-oscillations

require an outer convection zone, which is only present for stars in certain regions of the HR-

diagram, measurements of luminosity and effective temperature can give us a feel for whether a

star is likely to be a solar-like oscillator or not. However, whether oscillations will be detectable

depends on the ratio of the signal amplitude to the telescope specific noise and the total duration

of the observations among many other details that are not related to the fundamental properties

of the star. For a mission like TESS, a simple cut based on luminosity and temperature would

return hundreds of thousands of stars (Stassun et al., 2019), a large percentage of which would

likely not display any detectable signature of solar-like oscillations.

Aside from constructing a simple true or false flag, the significance of a detection is useful in

determining the information that can be extracted from an observed oscillation spectrum. That

is, measurements of Δ𝜈 and 𝜈max may be possible even in the low S/N domain. Individual mode

frequencies, however, require more favourable conditions. It is, therefore, of prime importance

that we can assign a significance to the stars labelled as detections.
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In the following chapter I will introduce methods of establishing the significance of peaks

in the power spectrum, and how we can identify these with solar-like oscillations. Using

these principles, I will discuss the detection algorithm that we created to automate the

recovery of solar-like oscillations in large datasets. That work was the joint effort of Dr.

Martin Nielsen and myself and resulted in the publication of two papers, a method paper

(Nielsen et al., 2022a) and the results of the application of the pipeline (Hatt et al., 2023,

see section 4). The following chapter details the work published in the former paper. For

that publication the roles which I was solely responsible for included experimenting with

the background removal method, creating the testing set of stars and determining the true

and false positive rates in that set. I then applied the pipeline to hundreds of thousands of

lightcurves collected by TESS, producing the first catalogue of solar-like oscillators detected

in TESS short cadence data (see Chapter 4).

3.1 Automating Identification of Solar-like Oscillations

Much of the following work relies on the application of Bayesian statistics (Bayes et al., 1763),

a formalism for describing the probability that a hypothesis is supported by observations of

some type. In practise, we use Bayesian statistics to determine whether data can be described

by a model with a set of parameters. The four key components of Bayesian analysis are the

prior probability, likelihood, evidence and posterior probability. In the following, I will use 𝐻

to denote the hypothesis, 𝐼 for prior information and 𝐷 for data.

The prior probability, P(𝐻 |𝐼), encapsulates the beliefs we have about the model parameters

before ‘seeing’ the data. These can be entirely physically motivated, or inspired by independent

studies. As a simple example, I may be trying to measure the age of a star given some data. In

the absence of any other information, I could place a prior on this parameter that would allow

the age to vary from a few tens of thousands of years, to the age of the universe.

The likelihood, P(𝐷 |𝐻, 𝐼), represents the probability of observing the data given a set of

model parameters. This is calculated by assuming some likelihood function, which quantifies

54



CHAPTER 3. DETECTING OSCILLATIONS 3.1. AUTOMATED DETECTION

how likely it would be to observe a given datapoint assuming the model is true. The appropriate

likelihood function depends on the statistical properties of a given dataset.

The evidence, P(𝐷 |𝐼), is the probability of observing the data given any hypothesis, which

involves summing the likelihoods of all possible hypotheses. It is required for normalisation,

but usually requires integration over a very large parameter space. In the example of aging a

star, we would have to establish the likelihood of every age in the prior range and sum. Many

Bayesian methods are designed such that this calculation is not required.

These parameters are then combined to calculate the posterior probability, P(𝐻 |𝐷, 𝐼), the

probability that a certain model accurately represents the data. The posterior probability is

calculated via Bayes’ theorem, which has that,

P(𝐻 |𝐷, 𝐼) = P(𝐻 |𝐼)P(𝐷 |𝐻, 𝐼)
P(𝐷 |𝐼) . (3.1)

The best fitting model maximises this posterior probability.

In the following section, our hypotheses will be that detectable modes either are present (the

H1 hypothesis) or are not present (the H0 hypothesis) in a given spectrum (this being the data,

𝐷). Using the assumption that the data can be described by one of these cases, I will outline

how to establish the posterior probability that the H1 hypothesis is true.

3.1.1 Null Hypothesis (H0) tests

The null (or H0) hypothesis states that the data can be described by just observational noise.

For the asteroseismic analysis in this thesis, we work with measurements of stellar flux as a

function of time. We approximate these measurements as normally distributed, independent,

random variables. Each element in the associated power spectrum is the sum of the squared

real and imaginary components of the Fourier transform of this data. Both values are normally

distributed, with variance given by that in the time domain. Such a sum is known to follow a

𝜒2 distribution with 2 degrees of freedom (Woodard, 1984; Appourchaux et al., 1998). The
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associated probability density function is given by,

𝑓 (𝑥) = exp−𝑥/2
2

. (3.2)

This defines the H0 likelihood function, describing the probability we would observe power, 𝑥,

in a given bin according to the null hypothesis.

Rather than causing excesses in power in individual bins in the spectrum, solar-like oscilla-

tions produce additional power spread across a range in frequency. Accordingly, we may want

to search for regions in a spectrum where the H0 likelihood is consistently low. This can be

achieved by investigating the power summed across 𝑁 bins. In this case, the total summed

power is distributed according to a 𝜒2 distribution with 2𝑁 degrees of freedom. The probability

density function is modified to,

𝑓 (𝑥, 𝑁) = 𝑥𝑁−1 exp−𝑥/2
2𝑁Γ(𝑁)

. (3.3)

Applying this equation to automate detection would involve dividing the spectrum into

several segments (or windows), and calculating the H0 likelihood in each. The widths of these

windows would be informed by the predicted width of a mode envelope, Γenv. Windows with

low H0 likelihood could then be flagged as potentially containing a mode envelope.

The H0 likelihood alone (without calculating the posterior probability) could be used to

reduce the list of potential solar-like oscillators by removing spectra consisting of just white

noise. However, there are a host of phenomena which can cause excesses in power which are

not related to photon noise. Non-solar-like periodic signals include those caused by eclipsing

binaries, transits and classical pulsations. An H0 test could not discern these cases, resulting in

false positives.

3.1.2 Alternative Hypothesis (H1) Testing

To minimize the number of false positives, an H1 test allows us to include expectations about

the features specific to solar-like oscillations. Assuming solar-like oscillations are present, basic

56



CHAPTER 3. DETECTING OSCILLATIONS 3.1. AUTOMATED DETECTION

information about the star in question allows us to predict the total power we should observe

in 𝑁 bins. The observed power would then be distributed about this prediction according to

Equation 3.3. Accordingly, the likelihood that the observed power excess (𝑠𝜈) is consistent

with the signature of solar-like oscillations (𝑠pred) is given by 𝑓 (𝑠𝜈/𝑠pred,𝜈, 𝑁). We can inform

𝑠pred,𝜈 via a combination of theoretical predictions and observations. These will be discussed in

Section 3.2.2.

Now that we have the likelihood for each of our competing hypotheses, we can calculate

the posterior probability on the H1 hypothesis, thus determining whether the data supports the

presence of solar-like oscillations. The evidence is the sum of the probabilities of H1 and H0,

P(𝐷 |𝐼) = P(𝐻0|𝐼)P(𝐻0|𝐷, 𝐼)︸                   ︷︷                   ︸
Probability of H0

+P(𝐻1|𝐼)P(𝐻1|𝐷, 𝐼)︸                   ︷︷                   ︸
Probability of H1

. (3.4)

Given we have assumed that one of the two hypotheses must be true, we also have that P(𝐻0|𝐼) +

P(𝐻1|𝐼) = 1. Substituting these terms into Bayes’ theorem (Equation 3.1) we have that the

posterior probability for the H1 hypothesis is,

P(𝐻1|𝐷, 𝐼) =
P(𝐻1|𝐼)P(𝑠𝜈, 𝑠pred,𝜈, 𝑁 |𝐻1)

(1 − P(𝐻1|𝐼))P(𝑠𝜈 ≥ 𝑠′𝜈, 𝑁 |𝐻0) + P(𝐻1|𝐼)P(𝑠𝜈, 𝑠pred,𝜈, 𝑁 |𝐻1) , (3.5)

and a star with P(𝐻1|𝐷, 𝐼) > 0.5 can be labelled as likely presenting detectable solar-like

oscillations.

3.1.3 Asteroseismic Applications of Bayesian Model Fitting

Once solar-like oscillations have been detected in a spectrum, the following analysis will be to

measure some property or properties of the identified modes. Generally, this involves fitting one

of two classes of models. Either we are interested in the asymptotic properties of the modes,

that is the parameters in Equation 1.7 or Equation 1.8, or we are interested in the individual

Lorentzian profiles themselves. The underlying machinery enabling the determination of these

parameters in a Bayesian manner is the same as that informing our H0 and H1 tests. However,

57



3.1. AUTOMATED DETECTION CHAPTER 3. DETECTING OSCILLATIONS

the likelihoods for these tests were functions of a maximum of two parameters, 𝑠𝜈 and 𝑠pred,𝜈.

Models describing the spectrum in more detail can be functions of a large number of parameters,

such that the problem of determining which model best describes the data becomes increasingly

computationally expensive.

To fit our model we take the hypothesis, 𝐻, that the selected model determined by a set of

parameters (Θ) describes the data. We then calculate the posterior probability for a given set Θ

via Equation 3.1. This posterior distribution has dimensions equal to the number of parameters

in the model. To make inference on the best fitting values of individual parameters, however, we

require the posterior distribution on each parameter independently. This is calculated from the

full space by integrating over all parameters but the one of interest. For the example of a model

described by Θ = (𝛼, 𝛽), the posterior probability of 𝛼 would be given by,

𝑃(𝛼 |𝐷) =
∫

𝑃(𝛼, 𝛽 |𝐷)𝑑𝛽, (3.6)

which we refer to as a marginalised posterior probability.

Calculating marginalised posterior probabilities requires the computation of integrals over

the large number of, often correlated, parameters. Evaluating the evidence is subject to the

same problem. Both calculations are commonly analytically impossible and must be done

numerically. However, as the number of parameters in a given model increases, the number of

grid points required to effectively approximate the posterior distribution becomes intractable.

Therefore, we instead explore the posterior distribution using sampling algorithms. There-in,

we draw samples from the posterior using one of a number of stochastic algorithms. One such

algorithm, frequently used due to its simplicity, is the Markov Chain Monte Carlo (MCMC)

method (Metropolis et al., 1953).

The MCMC algorithm is an iterative process, deploying one or more walkers to explore the

posterior space. Walkers are initialized with a set of parameters, which are used to calculate

discrete values of the posterior. A new set of parameters is then drawn, using a proposal

distribution centered on the current parameter set. The posterior is evaluated for this new set,

and the parameters are accepted as a new position with a probability given by the ratio of the new
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to old posterior probability. In this way, walkers will converge to the true underlying posterior

distribution, with most of the walkers concentrated in areas of high posterior probability and

fewer in regions of low posterior probability. Given steps are taken based on the ratio of posterior

values, the evidence cancels and is not required.

3.2 A New Pipeline For Automating the Detection of Solar-

like Oscillators

We now have the tools required to define tests determining whether solar-like oscillations

are present in a power spectrum. This machinery is exploited in the pipeline I developed in

collaboration with Dr. Martin Nielsen, which is capable of recovering solar-like oscillators in

large datasets. Our aim was to apply this pipeline to TESS short cadence data, hoping to populate

the sparsely sampled subgiant regime (see Section 2.3.1). The work resulted in two publications,

one describing the method (Nielsen et al., 2022a) and the other the results of its application to

data (Hatt et al., 2023, see section 4). This section covers the details published in the method

paper.

Alongside evaluating the posterior probability that oscillations are present via identification

of power excesses consistent with our expectations, we also included a test searching for the

presence of a regularity in the lightcurve associated with sound waves crossing the star. These

function as two separate modules, the power excess module (PE module/test) and the repeating

pattern module (RP module/test). The modules are used to produce functions that represent

the significance of a detection of the associated feature as a function of frequency, which we call

merit functions. To label the result of the tests as positive or negative (i.e. oscillations either

detected or not detected) then requires isolating cases where the merit functions exceed some

threshold.
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3.2.1 Data Pre-Conditioning

The following tests are searching for signatures unique to solar-like oscillations. Other contri-

butions to the spectrum of a solar-like oscillator include the additional power from instrumental

drifts, activity, granulation and white noise (see Chapter 2). Given we are not interested in these

phenomena, we call the resulting combined frequency response the background. The signal to

noise in a given frequency bin (𝑖) is thus defined as

SNR𝑖 =
𝑃𝑖

𝐵𝑖
, (3.7)

where 𝑃𝑖 is the total observed power and 𝐵𝑖 is the power from the background terms.

Functionally, 𝐵𝑖 is described by the combination of the Harvey law for granulation plus a flat

white noise term (see Section 1.3). In practise, we could calculate this by fitting a model to

the data. However, this is computationally expensive to evaluate for a large number of stars.

Additionally, the presence of a yet undetected mode envelope could bias the results. Instead

we employ a so-called ‘moving average’, which amounts to binning the data over the peaks

associated with both the noise realisation and the excess caused by the modes. We use a moving

median, which takes the median value of the power in a series of bins in frequency. Given

the background consists of a rapidly varying signal at low-frequency and a slowly varying

signal at high frequency, bins are spaced linearly in log-frequency. An example of the resulting

approximation can be seen in Figure 3.1, where we see that the difference between the moving

median background (dotted black line) and the result of a fit to the background (black line) is

slight.

3.2.2 Power Excess Test

As discussed in Section 3.1, we can calculate the posterior probability for the hypothesis that

solar-like oscillations are detectable in a spectrum by evaluating Equation 3.5. There-in we

replace 𝑠𝜈 and 𝑠pred,𝜈 with the SNR. Calculation then requires knowledge of SNRpred,𝑖. We are

also required to set a window in which to sum the observed power, which should capture the
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Figure 3.1: Spectrum of KIC6442183 observed by Kepler. Black solid line represents a fit of
Equation 2.9 to the data, dotted line is the approximation calculated via a moving median filter.

entire envelope to ensure we correctly compare to predictions. This would involve summing

power in the range 𝜈max − Γenv < 𝜈 < 𝜈max + Γenv. In the fully automated approach, we cannot

apriori set 𝜈max. Therefore, we must define a set of windows that we should like to test ahead of

doing any analysis. In the following we label the central frequencies of the selected segments

as {𝜈0, 𝜈1..., 𝜈𝑖, ...𝜈𝑛}.

The width of a window at test frequency 𝜈𝑖 is set by the predicted width of a mode envelope

at 𝜈max = 𝜈𝑖. As discussed in Section 2.1.3, there is no theoretically rigorous prediction for

how this parameter should scale with stellar properties. Instead we use the empirically derived

scaling,

Γenv(𝜈max) =


0.66

(
𝜈max
𝜇Hz

)0.88
, 𝑇eff ≤ 5600

0.66
(
𝜈max
𝜇Hz

)0.88
(1 + 6 × 10−4(𝑇eff − 𝑇eff,⊙)), 𝑇eff > 5600

where 𝑇eff,⊙ = 5777K (Mosser et al., 2012a; Lund et al., 2017). The width of a window

at 𝜈𝑖 is thus Γenv(𝜈𝑖) (Γenv,𝑖), such that the number of bins we are summing in a spectrum with

frequency resolution Δ𝜈 is given by 𝑁env,𝑖 = Γenv,𝑖/Δ𝜈.

The predicted power in a p-mode envelope centered on 𝜈𝑖 can be estimated using Equations

1.1, 2.13 and 2.14. The exponents of Equation 2.14 were given by Kjeldsen et al. (1995),
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𝐴max = 𝐴max,⊙𝛽

(
𝐿

𝐿⊙

) (
𝑀

𝑀⊙

)−1 (
𝑇eff

𝑇eff,⊙

)−2
. (3.8)

The stellar mass (𝑀) is replaced by 𝜈max given that,

𝜈max =

(
𝑀

𝑀⊙

) (
𝑅

𝑅⊙

)−2 (
𝑇eff

𝑇eff,⊙

)−1/2
. (3.9)

We then use the Steffan Boltzmann law, 𝐿 ∝ 𝑅2𝑇4
eff , to replace the dependence on luminosity

(𝐿) and radius (𝑅) with 𝑇eff . This results in 𝐴max ∝ 𝛽𝑇1.5
eff 𝜈

−1
max. This is substituted into

the equation relating the height of the envelope to 𝐴max (Equation 2.13). This relation has

dependence on the large frequency separation, Δ𝜈, which is replaced with 𝜈max using the

approximation Δ𝜈 ∝ 𝜈𝛼max such that we arrive at,

𝐻env = 𝐻env,⊙𝜂
2𝐷2𝛽2

(
𝜈max

𝜈max,⊙

)−(2+𝛼) (
𝑇eff

𝑇eff,⊙

)3
. (3.10)

We have added 𝜂2 to account for the apodization of the signal, as discussed in Section 2.1.1.

Additionally, flux from other stars in the target aperture will reduce the total SNR. The parameter

𝐷 accounts for this, defined as the ratio of the target flux to the total measured flux in the aperture.

Estimates of 𝐷 are available for TESS targets as a part of the TESS input catalogue (TIC). We

determined the exponent 𝛼 via a fit to observations. Using the combined catalogues of White

et al. (2011a), Silva Aguirre et al. (2015), Serenelli et al. (2017), Lund et al. (2017), and Yu

et al. (2018a) we found the best fitting value was 𝛼 = 0.791.

Finally, we use 𝐻env evaluated with 𝜈max = 𝜈𝑖 (𝐻env,𝑖), Γenv,𝑖 and 𝜈𝑖 to evaluate the expected

height of the Gaussian envelope as a function of 𝜈 (Equation 2.12). We then only require an

independent constraint on 𝑇eff . The value of SNRpred,𝑖 is calculated as

SNRpred,𝑖 =
∑︁
𝑁env,i

𝐻gauss,𝑖

𝐵𝑖
, (3.11)
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The observed signal to noise in the envelope is,

SNR𝑖 =
∑︁
𝑁env,𝑖

𝑃obs,i

𝐵𝑖
. (3.12)

These predicted and observed values are then used to evaluate the H0 and H1 likelihood according

to 𝜒2 2𝑁env,𝑖 degrees of freedom statistics. That is,

L𝑖 (SNR𝑖 |𝐻0, 𝑁env,𝑖) =
1

2𝑁envΓ(𝑁env)
(SNR𝑖)𝑁env−1 exp

(
− 1

2
SNR𝑖

)
, (3.13)

and

L𝑖 (SNR𝑖 |𝐻1, 𝑁env,𝑖) =
1

2𝑁env,𝑖Γ(𝑁env,𝑖)

(
SNR𝑖

SNRpred,𝑖

)𝑁env,𝑖−1
exp

(
− 1

2
SNR𝑖

SNRpred,𝑖

)
. (3.14)

An example power spectrum of a solar-like oscillator observed by TESS and the corresponding

PE likelihoods is shown in Figure 3.2.

Priors

We define two priors for use with the power excess module. Firstly, we note that at high

frequency, 𝐻env tends towards small values. Accordingly the H1 likelihood will be high at high

frequency, even in spectra lacking a clear envelope. This can be accounted for by demanding

that our signal exceeds some false alarm probability. That is, for frequency 𝜈𝑖, we calculate the

SNR required to generate a H0 probability above some threshold, SNRthresh. The prior then

becomes the probability that the predicted envelope at 𝜈𝑖 would produce a signal in excess of

this threshold,

𝑃T,𝑖 =

∫ ∞

𝑅i

exp (−𝑅𝑖)
Γ(𝑁) 𝑅

(𝑁−1)
𝑖

𝑑𝑅 (3.15)

, where 𝑅𝑖 =
∑
𝑁env SNRthresh,𝑖/SNRpred,𝑖.

Additionally, large observing campaigns like Gaia (Perryman et al., 2001) and 2MASS

mean that effective temperatures from colour photometry are far from the only independent
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Figure 3.2: Example of the likelihoods output from the power excess test in a star observed by
TESS. The top panel shows the log-likelihoods for the H0 and H1 hypotheses. The bottom panel
is the signal-to-noise spectrum.
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observational constraint available. Given an apparent magnitude and distance estimate we can

calculate an approximate stellar luminosity, which can be translated to a radius when combined

with effective temperature. These parameters are used to estimate 𝜈max by manipulating Equation

1.1 and using the scaling with Δ𝜈,

𝜈̃max = 𝜈max,⊙

(
𝑅

𝑅⊙

) 0.5
0.5−𝛼

(
𝑇eff

𝑇eff,⊙

) −0.25
0.5−𝛼

, (3.16)

where again we use 𝛼 = 0.791. Excesses of power occurring outside of a sensible range in

frequency (according to 𝜈̃max) are penalised via setting a log-normal prior,

𝑃𝜈max,𝑖 = exp
− log (𝜈𝑖/𝜈̃max)2

2𝜎2
𝜈max

. (3.17)

Comparing this predicted value to the observed values in Kepler data reported in Yu et al.

(2018a) and Lund et al. (2017), we found 𝜎𝜈max = 0.5 captured the scatter of the residuals. We

then define the prior on H1 as,

𝑃H1,𝑖 = 0.5𝑃T,𝑖𝑃𝜈max,𝑖, (3.18)

from which 𝑃H0,𝑖 can be calculated given 𝑃H0,𝑖 +𝑃H1,𝑖 = 1. The resulting merit function is given

by the posterior probability on H1, normalised to be between 0 and 1 in every bin.

3.2.3 Repeating Pattern Test

A wave emitted at some point near the upper turning point of acoustic oscillations will travel

across the star before it meets the surface at an opposing point, perturbs it and contributes to

the observed flux. This induces correlations in the lightcurve separated by the time it takes for

a sound wave to cross the stellar diameter (the acoustic radius). Recall from Section 1.3, the

inverse of this time is also the definition of Δ𝜈. This led Roxburgh et al. (2006) to identify a

measurement of the timescale of the correlation as a means to determine the large frequency

separation. There-in the authors suggest using the autocorrelation function (ACF), which

represents the degree of correlation between a function, 𝑓 (𝑥), and the same function translated
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by some amount, 𝑢,

ACF(𝑢) =
∫ +∞

−∞
𝑓 (𝑥) 𝑓 ∗(𝑥 − 𝑢)𝑑𝑥. (3.19)

The ACF has been used to measure the value of Δ𝜈 in a number of works (Mosser et al.,

2009b; Hekker et al., 2009; Mosser et al., 2010; Tian et al., 2014). Given we should not expect

large peaks in the ACF of a white noise lightcurve, we identify it as an additional mechanism

to establish whether solar-like oscillations are present at all. That is, given a description of the

statistical properties of the ACF of a white noise spectrum, we may infer another H0 probability.

Importantly, the ACF of the lightcurve and its power spectrum are Fourier pairs, such that

the inverse Fourier transform of the latter returns the former. Therefore, for every frequency that

we tested in the PE module we calculate

ACF𝑖 (𝜏) =
∫ 𝜈Nyq

0
SNR(𝜈)𝑊𝑖 (𝜈) exp (𝑖2𝜋𝜈𝜏)𝑑𝜈, (3.20)

where 𝜏 is the lag in time (our proxy for 1/Δ𝜈) and 𝑊𝑖 (𝜈) is band-pass filter, defined to select

the range in frequency consistent with the width of an envelope centered on 𝜈max = 𝜈𝑖. Mosser

et al. (2009a) suggest the use of a Hanning filter, which approximates the shape of the envelope.

Accordingly, we define our set of filters as

𝑊𝑖 =


0.5

(
1 − cos

(
2𝜋(𝜈−𝜈𝑖)
𝑁env,𝑖

))
, |𝜈 − 𝜈𝑖 | ≤ Γenv,𝑖/2

0 |𝜈 − 𝜈𝑖 | > Γenv,𝑖/2.

For each test frequency, 𝜈𝑖, we then have the autocorrelation as a function of lag, 𝜏, such

that the full space is a two-dimensional map. We label the associated matrix G, with elements

𝐺𝑖,𝑘 . The contribution of each element to the observed flux is established by taking the squared,

absolute value, |𝐺𝑖,𝑘 |2. For a solar-like oscillator, there will be a peak in this 2d distribution at

𝜏 ≈ 1/Δ𝜈 and 𝜈𝑖 ≈ 𝜈max. An example of the 2d space for the solar-like oscillator in Figure 3.2

is shown in Figure 3.3.

To establish a detection metric as a function of test frequency (such that it is analogous with
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Figure 3.3: Main panel shows the two dimensional autocorrelation function for the star in Figure
3.2. The peak identified with the true value of Δ𝜈 and 𝜈max is identified by the black cross.
Dotted lines show the range in 𝜏 that is summed over for each test frequency. The panels at
the top and on the left are the collapsed autocorrelation function over test frequency and lag
respectively.

the metric from the PE test) we need to marginalise over 𝜏. We also note that the ACF evaulated

at 𝜏 = 0 is just the total squared power, so we normalise to this value,

𝑟𝑖 =
1
𝑁𝜏,𝑖

∑︁
𝑁𝜏,𝑖

|𝐺𝑖,𝑘 |2

|𝐺𝑖,0 |2
, (3.21)

where 𝑁𝜏,𝑖 is the bins in 𝜏 over which we perform the sum. To limit this range we exploit the

scaling Δ𝜈 ∝ 𝜈𝛼max, again with 𝛼 = 0.791. To capture the possible range in 𝜏 for this choice

of exponent we sum over 𝑢Δ𝑇/Δ̃𝜈𝑖 < 𝜏 < 𝑢−1Δ𝑇/Δ̃𝜈𝑖, where Δ̃𝜈𝑖 is determined via the scaling

relation and 𝑢 is set to 100.2. The range in 𝜏 included in the sum is shown in Figure 3.3, with

the resulting ACF marginalised over each axis shown in the top and right hand panels.

To establish the statistics of the filtered, collapsed autocorrelation function we used simu-

lations. We generated 10,000 realisations of lightcurves of pure white noise, calculating 𝑟𝑖 for

each. The resulting distribution of 𝑟𝑖 was well approximated by a Γ distribution with probability
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density function

𝑓 (𝑥;𝛼, 𝛽) = 𝑥𝛼−1 exp−(𝛽𝑥)𝛽𝛼
Γ(𝛼) , (3.22)

with 𝛼 = 𝜇2/𝜎2 and 𝛽 = 𝜇/𝜎2. Empirically, we found that 𝜇 scaled with the number of bins

included in the calculation according to

𝜇 =
3
2

1
𝑁env,𝑖𝑁𝜏,𝑖

. (3.23)

The variance was well approximated by,

𝜎2
𝑖 ≈

𝜇2
𝑖

𝑁env,i

(
1 + 𝑁T

𝑁𝜏,𝑖

)
. (3.24)

These are used to calculate the H0 likelihood, according to

𝑃(𝑟𝑖 |𝐻0) =
𝑟𝛼−1
𝑖

exp−(𝛽𝑟𝑖)𝛽𝛼

Γ(𝛼) . (3.25)

The merit function is then the inverse of this likelihood, normalised to be between 0 and 1 in

every bin.

3.2.4 Validation and Performance

Thus far I have described how the power excess and repeating pattern tests are used to generate

merit functions. To label positive and negative detections we require sensible thresholds on these

functions. In theory, excursions above a merit function of 0.5 would identify a spectrum as more

likely to have detectable solar-like oscillations than not. However, we have taken the simplifying

assumption that spectra contain power that is either consistent with solar-like oscillations or

white noise. In reality, other phenomena can cause large excesses in power, which could result

in false positives. Therefore, the optimal thresholds require tuning to real data.

The optimal thresholds should minimize the number of false positives whilst maximizing

the number of true positives. Given the two tests are searching for different properties, causes of

false positives will differ, meaning the thresholds need not be identical. In addition, we should
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identify whether requiring the star to pass both tests (2 flag response) or just a single test (1 flag

response) produces the best result. To answer these questions, we exploited a test set of data

collected by the TESS mission.

Target and Data Selection

To calculate the true and false positive rates associated with different parameters, we required a

set of spectra with solar-like oscillations and a set of spectra where-in we cannot identify solar-

like oscillations. Given our aim is to apply the pipeline to a large number TESS short-cadence

lightcurves, we drew our testing set from a small subset of these data. For the targets that we

selected, power spectra were calculated using the detrended 120 second cadence lightcurves

from the TESS Science Processing Operations Center (SPOC) pipeline (Jenkins et al., 2016).

This data includes gaps which can be up to a year in length for stars observed in the nominal

mission and then again in the extended mission. These gaps cause correlations in the power

spectrum, and can reduce the signal to noise of modes of oscillation (García et al., 2014; Bedding

et al., 2022a). We tested leaving these gaps untreated and removing them by shifting timestamps.

We found that applying the latter approach for gaps larger than ≈ 50 days reduced the number

of false positives and so employed this strategy. We used the open source package Lightkurve

to download and process the lightcurves (Lightkurve Collaboration et al., 2018), calculating the

power spectrum via a Lomb-Scargle periodogram.

Constructing a list of solar-like oscillators prior to completing the pipeline required manual

identification. At time of this work, TESS had observed over 200,000 stars in 120 second

cadence. The majority of these stars were unlikely to show detectable signatures of solar-like

oscillations. Accordingly, a random draw on the full target list would have to be extensive to

produce a large enough testing set. Fortunately, predictions for the targets that would be the

best candidates for asteroseismic analysis were calculated pre-mission by Schofield et al. (2019).

Exploiting similar machinery to that underpinning our power excess test, the authors calculated

the probability that stars in the TESS input catalogue would show detectable signatures of solar-

like oscillations. The work focused on targets oscillating at frequencies above the Kepler long
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cadence cut off, enforcing a minimum predicted 𝜈max of 240𝜇Hz. Additionally, stars that are

likely to be classical oscillators were removed. This was achieved via a temperature dependent

upper limit on luminosity, marking the location of the 𝛿 Scuti instability strip. In total, they

produced a catalogue of 25,000 stars with detection probabilities > 5%. Of these, 11,220 had

been observed in 120 second cadence at time of work. From this list I identified 400 clear solar-

like oscillators. From the larger set in which I could not identify oscillations, I drew another

400 stars, weighted by their effective temperature such that they produced the same distribution

in 𝑇eff as their oscillating counterparts. The combined test set is shown in Figure 3.4 alongside

the set of Kepler solar-like oscillators (according to Serenelli et al., 2017; Lund et al., 2017; Yu

et al., 2018a).

The power excess module requires input values of stellar radius and effective temperature for

use in calculating SNRpred and the prior on 𝜈max. We drew𝑇eff values from version 8 of the TESS

input catalogue (TIC; Stassun et al., 2019). For stellar radius we used a combination of parallaxes

from GDR2 (Gaia Collaboration et al., 2018) to calculate distance, apparent magnitudes from

2MASS and a set of bolometric corrections to calculate an approximate luminosity. We then

used this luminosity and the TIC 𝑇eff to invert the Steffan-Boltzmann law for 𝑅. The bolometric

corrections were calculated via a polynomial fit as a function of 𝑇eff to the simulated parameters

of the STAGGER grid (Magic et al., 2013).

Results

For single and double flag detections separately, we tested varying the threshold on each module

independently, using 100 values between 0 and 1. We then calculated the true positive (TP)1,

true negative (TN) 2, false positive (FP)3 and false negative (FN) 4 rates for each combination of

power excess and repeating pattern threshold. The percentage of the sample which is correctly

labelled is known as the accuracy,

1Fraction of the oscillator set correctly identified as detections
2Fraction of the non-oscillator set labelled as non-detections
3Fraction of the non-oscillator set incorrectly identified as detections
4Fraction of oscillator set labelled as non-detections
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Figure 3.4: Luminosity as a function of effective temperature for solar-like oscillators observed
by Kepler, and those in the TESS test set. The Kepler sample is in orange, consisting of
16,000 solar-like oscillators Serenelli et al. (according to 2017), Lund et al. (2017), and Yu
et al. (2018a). The remaining scatter points are those in our TESS short cadence test set. The
background is a histogram of a random draw of Gaia stars for comparison purposes. The top
and right-hand panels are one dimensional histograms of the distributions in luminosity and
effective temperature in the two sets. Reproduction of Figure 1 from Nielsen et al. (2023)
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accuracy =
TP + TN

TP + TN + FP + FN
. (3.26)

We used this to identify the most effective set of thresholds.

Figure 3.5 shows the TP rate as a function of the FP rate for the tested configurations of the

pipeline. That is, each curve corresponds to a single power excess threshold, with each point on

the line associated with a single repeating pattern threshold. Maximum accuracy corresponds to

the ‘knee’ of such a curve, and is marked for the single and double flag scenarios. The maximum

accuracy we achieved was 93.2%, corresponding to asking for a single module response with

thresholds of 0.77 and 0.73 on the power excess and repeating pattern modules respectively.

Asking for a double module response reduced the number of both true positives and false

positives, such that for a given pair of thresholds the overall accuracy is lower. The maximum

accuracy for double module responses was 91.5%, achieved with much lower thresholds (0.4

and 0.03 for power excess and repeating pattern respectively).

False positives included a signal with a period of 4-minutes that produced a single large peak

in power. This was discussed in the TESS Data Release Notes for sector 5 as ‘black flutter’

(a periodic change in the mean black level affecting two cameras, Fausnaugh et al. (2019)).

Additionally, 23 stars identified as false positives showed marginal detections in both the PE

and RP module at frequencies consistent with the predictions in the prior. In these cases, we

could not identify some other source of the signature. Although these cases were from the

non-oscillator testing set, they may in reality be solar-like oscillators with very low SNR, such

that manual identification was not possible.

Generally, false negatives were the result of incorrect predictions of either 𝜈max or the signal-

to-noise of the theoretical envelope. Although the prior on 𝜈max was conservative, large offsets

in the apparent magnitude, distance or effective temperature could result in the prior exploring

the incorrect range in frequency. The parameters controlling the predicted signal-to-noise are

𝑇eff and 𝐷. We used values of 𝐷 from the TIC, which were calculated pre-mission, assuming

a common width on the point spread function. As such, they may have been underestimated

for stars in the vicinity of the brightest targets. However, the average magnitude in the 24 false

72



CHAPTER 3. DETECTING OSCILLATIONS 3.2. A NEW PIPELINE

Figure 3.5: Left frame shows the true positive versus false positive rates for varying thresholds
on the power excess and repeating pattern tests. Each curve corresponds to a single power
excess threshold, with every point on the line being a single repeating pattern threshold. The
false positive and true positive rates for stars passing these thresholds in either one module
(labelled ’Either’) or two modules (labelled ’Both’) are plotted on the x and y axes. Panels to
the right show the accuracy of the pipeline at each combination of thresholds. The top panel
is for responses in either module, and the bottom for responses in both modules. Scatter points
mark the maximum accuracy. Reproduction of figure 7 in Nielsen et al. (2023).

negatives that do not pass the PE threshold is higher, not lower, than the population average (7.07

versus 6.64). In the absence of issues with SNRpred, a false negative could also be the result of

an unexpected reduction in the observed SNR. This could result from the way in which we close

large gaps in the lightcurves. Where a star was observed first in the nominal and then later in

the extended mission, the resulting lightcurve has a gap of a year in length. We removed these

by shifting timestamps, which we found reduced the false positive rate significantly. However,

the method reduces the SNR of long-lived modes have lifetimes of similar length to the gap.
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3.3 Summary

In this chapter I have introduced a pipeline that we developed to automate the detection of

solar-like oscillations in large data sets. The algorithm takes in a lightcurve and converts it

to a power spectrum, on which it runs two detection tests. These modules search for unique

signatures of solar-like oscillations; The power excess associated with the mode envelope, and

the correlation in the lightcurve associated with sound waves crossing the star.

By exploiting a testing set of 400 oscillators and non-oscillators identified in TESS 120

second cadence data, we determined the pipeline can achieve an accuracy of 93.2%. We

identified the causes of false positives include instrumental effects that produce large peaks in

the power spectrum, and errors in the independent measures of temperature and radius used to

inform the predictions in the power excess test. Although we listed the combination of thresholds

that maximised the accuracy of the algorithm, we note that different thresholds can be selected

that will prioritize either minimizing false positives or false negatives, depending on the use

case.

In the following chapter, I will detail the results of the application of the pipeline to a much

larger set of TESS data. Additionally, I will exploit the likelihoods to make measurements of

the global seismic parameters (𝜈max and Δ𝜈) in the stars in which we make a detection.

74



Chapter 4

A Catalogue of Solar-Like Oscillators

Observed by TESS

This chapter is a reformatted version of Hatt et al. (2023), for which I am responsible for

all of the text and work. The paper has been kept in its entirety, such that there is some

repetition of Chapter 3 in Section 4.4. The work was accepted and is published in Astronomy

& Astrophysics, Volume 669.

4.1 Introduction

Asteroseismology, the study of the intrinsic oscillations of stars, has revealed the physical

properties of thousands of stars to high precision (e.g. Metcalfe et al., 2014; Lebreton et al.,

2014; Lagarde et al., 2015; Serenelli et al., 2017; Yu et al., 2018b; Yıldız et al., 2019). Solar-like

oscillators, wherein modes are excited and damped by the turbulent motion of gas in the outer

convection zone, have been of particular interest due to the host of identifiable overtones present

in their oscillation power spectra. The spectra of these stars can be characterized via two global

parameters, the large frequency separation (Δ𝜈) and the frequency at maximum power (𝜈max).

The first describes the regular frequency interval separating overtone modes of a given angular

degree. The second refers to the central frequency of the Gaussian-like envelope describing the
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visible power excess caused by the modes. These two parameters are the most readily available

in the spectrum of a solar-like oscillator and, when combined with an independent measure of

effective surface temperature (𝑇eff), can be exploited to determine the mass and radius of a star

to within a few percent (Silva Aguirre et al., 2012; Huber et al., 2012; Guggenberger et al., 2016;

Gaulme et al., 2016; Yıldız et al., 2016; Li et al., 2021; Mathur et al., 2022).

With the only requirement for the excitation of modes being the presence of an outer

convection zone, solar-like oscillations have been observed in stars on the main sequence (e.g.

Chaplin et al., 2014), in the subgiant phase (e.g. Appourchaux et al., 2012a; Mathur et al., 2022)

and on the red giant branch (e.g. Bedding et al., 2010; Yu et al., 2018b; Çelik Orhan et al., 2021).

As a given star evolves through these phases, structural changes will affect the properties of the

oscillations. The least evolved stars oscillate at a few thousand 𝜇Hz. This decreases as the star

evolves off the main-sequence, dropping to below ∼100 𝜇Hz on the red giant branch. Despite

the large coverage of the Hertzprung-Russell (HR) diagram, current catalogues are disjoint in

evolutionary state. Detections are dominated by a large number of red giants and a much smaller

set of main-sequence stars, with the subgiant phase only sparsely sampled. Although a decrease

in numbers is expected during this phase, given their rapid evolution, observational constraints

have magnified the discrepancy.

Relying predominantly on space-based photometry means that observations of solar-like

oscillators are mostly limited to data collected by a handful of missions. Of these, the Kepler

(Borucki et al., 2010) mission provides the longest time series for a large number of available

targets. Observing the same patch of sky for four years, the mission monitored approximately

196,000 targets (e.g. Huber et al., 2014). Data were collected in two modes, long and short

cadence, with the associated sampling rates corresponding to Nyquist frequency limits of 283

𝜇Hz and 8496 𝜇Hz, respectively. The short cadence data span the full range in frequency where

solar-like oscillations are located. However, due to telemetry constraints, the number of targets

observed in the longer cadence greatly outnumbered those in short. Of the total observed targets,

only a few thousand were selected for short cadence (Thompson et al., 2016). Therefore, of the

tens of thousands of solar-like oscillators detected using Kepler data, the vast majority are more
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evolved stars (Stello et al., 2013; Hekker et al., 2011; Yu et al., 2018b).

Although sparse in comparison, detections of solar-like oscillators were made in the short

cadence data (Chaplin et al., 2011a). Due to the reduced capacity for these observations, these

slots were reserved for targets most suited to the main aims of the mission: the detection of

exoplanets via the transit method. This led to the preferential selection of cool main-sequence

stars (Batalha et al., 2010). The combination of the selection criteria for the short cadence

observations and the Nyquist frequency in the long-cadence data resulted in the asteroseismic

yield lacking a significant number of subgiant stars. The largest list of these stars was constructed

by Li et al. (2020) and numbers only 50 subgiants.

The TESS mission (Ricker et al., 2014) launched in 2018 and has been surveying the

majority of the sky, providing an extensive database of potential solar-like oscillators. The

nominal mission lasted two years, and observations continue during the first extended mission,

which concluded observing in September of 2022. To maximise the sky coverage, observations

are made in sectors with an average length of 27.4 days. Most targets are captured in one or

two sectors, while a small number of stars are located where the sectors overlap at the ecliptic

poles (known as the Continuous Viewing Zones). Similarly to Kepler, the majority of the stars

monitored by TESS in the nominal mission were observed at 30-minute cadence (referred to

as full-frame images, or FFIs), corresponding to a Nyquist frequency of 278 𝜇Hz. Currently,

the largest systematic searches for solar-like oscillators have been performed with observations

at this cadence, and they were therefore restricted to the more evolved stars (Hon et al., 2021;

Mackereth et al., 2021; Stello et al., 2022). Shorter cadences are available for a smaller set of

targets, with the nominal mission including a 120-second integration time (double the Kepler

short cadence). The extended mission introduced 20-second data for a reduced target list

while the FFI cadence was shortened to 10 minutes. With Nyquist frequencies of 4167 𝜇Hz

and 25000 𝜇Hz, respectively, the 120-second and 20-second cadence data allow us to detect

solar-like oscillations in less evolved solar-like oscillators.

To this end, we used 120-second and 20-second TESS data to search for oscillations in stars

observed during Sectors 1 to 46. Starting with a smaller set of targets that were identified as
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the most likely to oscillate above the 30-minute FFI Nyquist frequency (Schofield et al., 2019),

we have identified 400 candidate solar-like oscillators by eye. These were used to optimise a

detection algorithm presented in Nielsen et al. (2022a) (henceforth referred to as N22). We then

passed the remaining stars observed during the aforementioned sectors to this tuned pipeline.

Although the main aim of this work is to construct a list of solar-like oscillators, we found that

we could exploit the probability distributions calculated by the algorithm to measure the global

properties (𝜈max and Δ𝜈). Therefore, we provide these values for the majority of the detected

solar-like oscillators.

4.2 Target selection

The full list of targets observed in 120-second cadence by TESS exceeds 300,000. The Astero-

seismic Target List (ATL, Schofield et al., 2019) gives some indication of which stars are most

likely to be solar-like oscillators prior to running the algorithm. By separating this sample from

the full set of 120-second cadence targets, we can loosen detection constraints whilst keeping

the required manual validation to manageable levels. To distinguish the stars in the ATL from

the remaining targets observed in 120-second cadence, we refer to the latter sample as ‘the Large

Sample’.

The ATL was constructed prior to the launch of TESS to provide a prioritised list of

targets most likely to yield detections of solar-like oscillations (Schofield et al., 2019; see also

Fausnaugh et al., 2021; Godoy-Rivera et al., 2021). Aimed at 120-second cadence data, the list

was restricted to stars that would oscillate above the 30-minute FFI Nyquist frequency. To select

targets, the authors employed asteroseismic scaling relations for 𝜈max (Campante et al., 2016).

This allowed them to locate stars in the TESS field of view that were predicted to have 𝜈max >

240 𝜇Hz. Calculating the expected power excess caused by the modes, the authors estimated the

probability that the oscillations would be detectable. Only targets with a probability of at least

5% of making a detection were retained, which constituted ≈ 25,000 targets. Of these, 11,220

had been observed at the time of this work. In the following analysis, values of parallax and 𝑇eff
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(required by the detection algorithm) were taken from the ATL. The ATL used parallaxes from

Gaia data release 2 (GDR2; Gaia Collaboration et al., 2018), supplemented at bright magnitudes

with values from the eXtended Hipparcos Catalogue (XHIP; Anderson et al., 2012). Effective

temperatures in the ATL were computed from a polynomial in dereddened (B-V) colour, using

coefficients according to Torres (2010).

The Large Sample consists of the remaining 120-second cadence targets. We selected stars

brighter than 11th magnitude in 2MASS 𝐾S magnitude, and used 𝑇eff from the TESS Input

Catalogue (TIC; Stassun et al., 2019) to restrict to the range 4500K < 𝑇eff < 6500K. This

includes the typical ranges in 𝑇eff of stars from the main sequence to the red giant branch, and

removes stars that are likely too faint for modes to be visible (Stello et al., 2017). In this set, we

analysed light curves for 255,089 stars. We applied the same cuts to all of the targets observed

in 20-second cadence, which yielded light curves for 6157 stars. Parallaxes for both sets were

again drawn from GDR2.

For reference, we also identified targets with a published detection of solar-like oscillations

and some measure of the global asteroseismic parameters. A set of 13 such stars was produced,

which is shown in Table 4.1 and referred to in the following as the ‘literature sample’. We

prioritized targets oscillating at frequencies above the Kepler long-cadence Nyquist as per the

main aim of the catalogue. Parallaxes and effective temperatures were drawn from GDR2.

4.3 Data selection

We used detrended light curves produced by the TESS Science Processing Operations Center

(SPOC) pipeline (Jenkins et al., 2016), which carries out the simple aperture photometry and

removes instrumental trends. We used light curves recorded in 120-second cadence, except

when 20-second data were available. In the literature sample, we used 120-second cadence light

curves for all but three stars (𝛾 Pav, 𝜋 Men and 𝛼 Men), where we used 20-second cadence light

curves. We used the open source package Lightkurve (Lightkurve Collaboration et al., 2018)

to stitch sectors together, and remove flux values exceeding 5𝜎.
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Name TIC 𝜈max (𝜇Hz) Δ𝜈 (𝜇Hz) Source
HD 19916 200723869 1188 ± 40 61.4 ± 1.5 TESS 120-second 1

HD 222416 441462736 430 ± 18 28.94 ± 0.15 TESS 120-second 2

𝜆2 For 122555698 ≈ 1280 69.76 ± 0.23 TESS 120-second 3

HD 212771 12723961 226.6 ± 9.4 16.25 ± 0.19 TESS 30-minute FFI 4

HD 222076 325178933 203.0 ± 3.6 15.60 ± 0.13 TESS 120-second 5

94 Aqr 214664574 875 ± 12 50.2 ± 0.4 TESS 120-second 6

𝛾 Pav 265488188 2693 ± 95 119.9 ± 1.0 TESS 20-second 7

𝜋 Men 261136679 2599 ±69 116.7 ± 1.1 TESS 20-second 7

𝜈 Ind 317019578 25.08 ± 0.10 TESS 120-second 8

𝛽 Hyi 267211065 ≈ 1000 57.24 ± 0.16 HARPS and UCLES, WIRE 9

𝜇 Ara 362661163 ≈ 2000 89.68 ± 0.19 HARPS 10

𝜇 Her 460067868 1216 ± 11 64.2 ± 0.2 SONG 11

𝛼 Men 141810080 3134 ± 440 140 ± 2 TESS 20-second 12

Table 4.1: Global asteroseismic parameters of stars in the literature sample.
References. 1 Addison et al. (2021) 2 Huber et al. (2019) 3 Nielsen et al. (2020)
4 Campante et al. (2019) 5 Jiang et al. (2020) 6 Metcalfe et al. (2020)
7 Huber et al. (2022) 8 Chaplin et al. (2020) 9 Bedding et al. (2007), Karoff et al.
(2007) 10 Bouchy et al. (2005) 11 Grundahl et al. (2017) 12 Chontos et al. (2021)

As TESS observes in 27.4 day sectors, there are gaps present in the light curves. During

the nominal mission, the northern and southern hemispheres were each observed for 13 sectors,

amounting to a total two-year observing run. The extended mission returned to the southern

hemisphere, meaning that the light curves of some targets contain year-long gaps. Both leaving

the gaps and methods to fill the gaps (e.g. linear interpolation; Stello et al., 2015) introduce

strong correlations between frequency bins. Assuming mode lifetimes follow the relation given

by Appourchaux et al. (2012b) (see also Lund et al., 2017), at 𝑇eff = 5000K, we expect mode

lifetimes on the order of weeks. Therefore, if a star is observed in the nominal mission and then

a year later in the extended, we expect that the modes have been re-excited so that the variability

in the time series is no longer correlated. Hence we removed the gap in the data by shifting

the time stamps. As in N22, gaps larger than 50 days were treated in this way. Gap closing in

this manner is not the optimal approach and does alter the line profiles, which would impact

measurements of individual frequencies, as was discussed in Bedding et al. (2022b). However,

as noted in N22, the inclusion of gaps significantly increased the false-positive rate (see N22

Fig. A.1), necessitating closing the gaps for our detection tests. Furthermore, we report only
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the global seismic parameters, and do not measure individual frequencies. We then used the

Lightkurve package to produce a power density spectrum via the ‘fast’ Lomb-Scargle method

(Lomb, 1976; Scargle, 1982; Press et al., 1989).

4.4 Detection of solar-like oscillators

In the following section, we briefly review the methods used in the detection algorithm of N22

before we discuss the detections made in each set of targets. The detection test consists of two

modules, which exploit different properties of solar-like oscillators:

1. Power excess test: The first module uses the power spectral density of the time series.

Given the assumption that the noise in each frequency bin follows a 𝜒2 distribution with

2 degrees of freedom, the probability that only noise is present in a given bin is calculated

(the H0 probability). The probability that an envelope is present is then computed via a

prediction of the expected power in a hypothetical envelope centred on each frequency

bin (the H1 probability). The prediction is calculated via the methods of Chaplin et al.

(2011b) and Schofield et al. (2019), requiring 𝑇eff . Prior information on 𝜈max is used,

guided by parallax and 2MASS 𝐾S-band magnitude.

2. Large separation test: The second module looks for the signature of the regularly spaced

overtones. This is achieved using the methods described in Mosser et al. (2009a), who

used the autocorrelation function (ACF) of the time series. A band-pass filter is placed on

the power spectrum at a test frequency and the ACF of this filtered time series is calculated

via an inverse Fourier transform. Repeating this for other test frequencies, we produce

a 2D ACF in test frequency (a proxy for 𝜈max) and lag (related to the large frequency

separation via 𝜏 = 1/Δ𝜈). This 2D map is collapsed along the lag axis to produce a 1D

distribution in frequency. To evaluate whether the probability the observed collapsed ACF

is inconsistent with noise, N22 approximated the response due to noise by a Γ distribution.

Using 400 solar-like oscillators and non-detections manually identified from the ATL, N22

established the performance of the pipeline for a range of detection thresholds. They found that
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the pipeline was able to attain a true-positive rate of 94.7% and a false-positive rate of 8.2%

when asking for a response in at least one of the two modules1.

In the following sections, we discuss the detections made in the four samples via this

algorithm (see Table 4.2). All of the reported solar-like oscillators have been manually vetted

to check for false positives. We retained only targets in which we are confident we have

identified the presence of oscillations, prioritizing a reduced false-positive rate over maximising

the yield. This may cause an under-representation of targets with a very low signal-to-noise

ratio. A breakdown of the total counts, and which sample they belong to, can be seen in Table

4.3. Cross-referencing with NASA’s Exoplanet Archive 2, we found that 28 of the stars in our

catalogue are confirmed planet hosts. The majority of these stars have not yet been studied

asteroseismically. Asteroseismic inferences on these targets are reserved for an upcoming work.

We also cross-referenced with the Ninth Catalogue of Spectroscopic Binary Orbits of Pourbaix

et al. (SB9; 2004), discovering 25 stars are components in spectroscopic binary systems.

Fig. 4.1 shows the value of 2MASS 𝐾S magnitude against the predicted value of 𝜈max. In

grey we show targets observed in 120-second cadence with a detection probability greater than

10% using the methods described by Chaplin et al. (2011b) and Schofield et al. (2019). The

gap in the grey population starting at KS ≈ 4 is present in the full sample of short cadence

targets and is not enforced by the probability cut, which only places upper limits on 𝜈max and

magnitude. This is likely the result of the TESS target selection process, which consists of

selecting stars from a number of lists including cool dwarfs, known planet hosts, bright stars,

hot subdwarfs, and guest investigator targets (Stassun et al., 2018; Stassun et al., 2019). We did

not detect solar-like oscillations in any targets with 𝜈max < 5 𝜇Hz, regardless of magnitude. As

discussed in N22, the predicted mode amplitude used in the power excess module included the

observed decrease near the red edge of the 𝛿 Scuti instability strip. This was done via a factor

that depends on 𝜈max and 𝑇eff , so that at a given temperature, amplitudes decrease as a function

of frequency (Chaplin et al., 2011b). The correction was calibrated using main-sequence stars

1This is achieved when taking a threshold of 0.77 on the power excess module and 0.73 on the frequency spacing
module.

2https://exoplanetarchive.ipac.caltech.edu
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Figure 4.1: 2MASS 𝐾S magnitude and predicted 𝜈max for stars observed in 120-second cadence
with a detection probability exceeding 10% (grey). The targets that we identified as solar-like
oscillators are marked in blue.

and therefore may not be appropriate for the most evolved targets. At 𝑇eff = 4800K, the factor

decreases to approximately zero at frequencies below 5 𝜇Hz, which suppresses detections in the

power excess module. In addition, from the approximate relation between 𝜈max and Δ𝜈 (Stello

et al., 2009, see Eq. 4.1) at a 𝜈max of 5 𝜇Hz, we would expect Δ𝜈 to be below 1 𝜇Hz. This is

approaching the resolution in a single sector of TESS data (0.4 𝜇Hz). Therefore, detections in

the repeating pattern module are also increasingly unlikely.
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TICID No. Sectors RP PE 𝜈max (𝜇Hz) 𝜎(𝜈max) (𝜇Hz) Δ𝜈 (𝜇Hz) 𝜎(Δ𝜈) (𝜇Hz) sample Flag
270536913 1 1 1 368.24 11.22 24.17 0.35 120-sec –
286507416 3 1 1 238.42 2.17 17.93 0.08 120-sec –
142275448 2 1 0 523.65 14.99 32.05 0.25 120-sec –
181655818 2 1 1 427.37 6.99 26.51 0.25 120-sec –
394151928 3 1 0 285.34 12.86 21.55 0.17 120-sec –
71109681 2 1 1 216.30 3.60 16.89 0.12 120-sec –
47067158 3 1 1 375.80 7.54 24.23 0.36 120-sec SB9
141201954 1 1 1 253.72 4.83 18.38 0.18 120-sec –
301558151 2 1 1 483.88 4.09 29.26 0.19 120-sec –
178199266 3 1 1 210.91 9.32 16.70 0.12 120-sec –

Table 4.2: Catalogue of seismic parameters for detected solar-like oscillators. The full table is available in online materials. Quantities RP
and PE track which modules the target produced a detection in. Flag is ‘SB9’ for targets in the Ninth Catalogue of Spectroscopic Binary
Orbits (Pourbaix et al., 2004) and ‘PH’ for targets which are confirmed planet hosts according to NASA’s Exoplanet Archive.
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Figure 4.2: Left: Distribution of Teff for targets used in the testing set of 400 oscillators from
N22 compared to those in the catalogue reported here. Right: Distribution with 2MASS KS
magnitude

4.4.1 Literature Sample

Of the 13 solar-like oscillators drawn from the literature, the algorithm flagged a detection in

both modules for 11 stars. 𝜇 Ara produced a response in the power excess module, but not the

repeating pattern. Oscillations in this star have thus far only been detected in Doppler velocity

(Bouchy et al., 2005). As the signal from granulation is lower relative to the modes in velocity

measurements than in photometry (Basu et al., 2017a), the single-module response is likely

just an effect of the decreased signal-to-noise ratio. The remaining star, HD19916, did not

produce a flag in either module. Although oscillations in HD19916 have been detected in TESS

120-second cadence data, the authors note that a custom aperture had to be used, expanding to

include more of the stellar flux (Addison et al., 2021). To maintain consistency with the rest of

our catalogue, we did not mimic this approach. We note that the stars with detections reported

in 20-second data (𝛾 Pav, 𝜋 Men, and 𝛼 Men) produced flags in both modules. However, when

we use the available 120-second data for the same stars, one is not detected at all (𝜋 Men) and

the others are only detected in the power excess module, despite oscillating at frequencies well

below the corresponding Nyquist frequency limit. The improvement made by the 20-second

data was highlighted by Huber et al. (2022).
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4.4.2 Asteroseismic Target List

To construct the set of stars used to establish the performance of the detection algorithm in

N22, a manual inspection of the 11,220 spectra discussed in Sect. 4.2 was performed. On the

construction of the the sets of 400 oscillators and 400 ‘non-oscillators’, several stars fell into the

category of targets for which, although some excess power was present in the spectrum, we were

unable to unambiguously classify the target as a solar-like oscillator. Since that work was done,

new sectors of data had become available, which could facilitate unambiguous classification.

We therefore reran the algorithm on the full set of 11,220 spectra. With the testing set of

oscillators from N22 removed, 2651 stars were flagged in just one module and 490 in two. Of

the single-module detections, the vast majority were false positives, presenting some large non-

solar-type signal rather than solar-like oscillations (e.g. periodic dips caused by a transit, eclipse,

or classical oscillations). These stars were not included in the metrics stated in N22. Including

these stars in the false-positive metric for a single-module response increases the percentage

to ≈20%. In total (with the testing set included), we detected 494 solar-like oscillators with

responses in both modules, and another 258 with a single-module response.

4.4.3 Large Sample

For the 255,089 stars for which we analysed light curves, we expect a false-positive rate of 8.2%.

Assuming the majority are not solar-like oscillators, this would equate to false positives in the

range of ≈20,000. We found 37,250 flagged in at least one module, therefore we took the more

conservative approach and performed a manual inspection of stars that produced a flag in both

modules. Of the 5,781 stars that produced flags in both modules, we found 2,927 clear solar-like

oscillators. We have retained the list of single-module responses, but reserve releasing it until

they have been manually vetted, to avoid confusion. Unlike the ATL sample, we have relaxed

the requirement that 𝜈max exceeds 240 𝜇Hz. This gives a set of targets that are cooler on average,

and more strongly peaked in magnitude (see Fig. 4.2).
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Sample Double Single Total
Literature 11 1 12

ATL 494 258 752
Large 2927 - 2927
20-sec 288 198 486
Total 3720 457 4177

Table 4.3: Detection counts in each sample. ‘Double’ refers to cases where the star
flagged a detection in both the power excess and repeating pattern modules. ‘Single’
refers to cases where the star flagged in one module only.

4.4.4 20-second cadence

Of the 6157 stars in this set, the algorithm produced a single-module response for 1585, and

a double-module response for 421. Upon visual inspection of these targets, we were able to

clearly identify 490 solar-like oscillators.

4.5 Global asteroseismic parameters

Alongside enabling detection, the probability distributions calculated in the detection process

allow us to measure the global asteroseismic parameters Δ𝜈 and 𝜈max. There are already a

number of pipelines dedicated to measuring these parameters via different methods (Huber

et al., 2009; Hekker et al., 2010; Kallinger et al., 2010; Mathur et al., 2010; García et al.,

2014; Elsworth et al., 2017; Zinn et al., 2019). However, as the main aim of this work is the

construction of a list of solar-like oscillators, a full comparison between our method and these

alternatives is reserved for future work.

The probability distribution as a function of frequency calculated by the frequency spacing

method (see Sect. 4.4) was normalized to unit integral over the spectrum, producing a probability

density. The 50th percentile of this was used to measure 𝜈max, with the 16th and 84th percentiles

giving the confidence interval.

N22 only required the ACF collapsed along the lag (𝜏) axis to perform a detection. To

determine Δ𝜈 , we instead collapsed along the test frequency. Rather than summing the ACF for

all test frequencies at a given lag, we exploited the approximate relation between 𝜈max and Δ𝜈
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(Stello et al., 2009),

𝜈̃max

𝜈max,⊙
=

(
Δ𝜈

Δ𝜈⊙

)𝑎
, (4.1)

where we took the value 𝑎 = 0.791 as in N22. This estimate of 𝜈max at a given Δ𝜈 (𝜈̃max) allowed

us to restrict the range of frequencies summed. Accordingly, we only summed bins in the range

|𝜈max − 𝜈̃max | < 0.2𝜈̃max.

To calculate the expectation from a spectrum devoid of oscillations, we used 103 white-noise

realizations. Similarly to N22, we found that for filtered white noise, the noise statistics can be

well approximated by a Γ distribution in lag. The mean of this distribution can be described by

the empirical relation

𝜇(𝜏) = 𝐴(𝐵 + 𝜏𝛼/𝑁 𝛽
𝜈 ), (4.2)

where 𝑁𝜈 is the number of frequency bins included in the calculation of the ACF at a given 𝜏.

Using the emcee package (Foreman-Mackey et al., 2013a), we fitted for the parameters 𝐵, 𝛼,

and 𝛽, the results of which can be found in Table 4.4. Parameter 𝐴 is a calibration constant that

depends on the time-series length and was determined on a star-by-star basis. Using Eq. 4.1 to

estimate the value of Δ𝜈 (Δ̃𝜈) given the measured value of 𝜈max, we masked the ACF in the range

0.7Δ̃𝜈 < Δ𝜈 < 1.3Δ̃𝜈. The calibration factor 𝐴 was then estimated by the ratio of the modelled

to observed ACF in the first 5 𝜇Hz and final 50 𝜇Hz (with the latter range accounting for the

decrease in frequency resolution at small lag).

We found that the variance in the collapsed ACF can be approximated by

𝜎(𝜏)2 = 𝑐𝜇(𝜏)2, (4.3)

with the value of 𝑐 determined by a fit to the white-noise simulations (see Table 4.4). A

comparison of the predictions from Eq. 4.2 and 4.3 to simulations of different time-series

lengths is shown in Fig. 4.3. We also tested the model on data binned to different effective

lengths. The net effect of the binning is an additional multiplicative factor, which is accounted

for in the calibration.
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Parameter Value
𝐵 1.54
𝛼 0.65
𝛽 0.36
𝑐 0.34

Table 4.4: Parameters for Eq. 4.2 and 4.3.

We used Eq. 4.2 and 4.3 to establish the probability (𝑃Δ𝜈) that the collapsed ACF (𝑟) at a

given value of 𝜏 is inconsistent with noise. Logarithmic probabilities were used for numerical

stability. Given that the envelope will cause an excess above the mean, we can label any

divergences below the mean as noise. Therefore, the natural choice is the survival function,

log 𝑃Δ𝜈 = − log
(∫ ∞

𝑟

𝛽𝛼

𝛾(𝛼) 𝑟
′,𝛼−1exp(−𝛽𝑟′)𝑑𝑟′

)
, (4.4)

where the shape parameter is 𝛼(𝜏) = (𝜇(𝜏)/𝜎(𝜏))2 and the scale parameter 𝛽(𝜏) = 𝜇(𝜏)/𝜎(𝜏)2.

Normalizing 𝑃Δ𝜈 to unit integral over the Δ𝜈 axis produces a probability density. The 50th

percentile of this was used to measure Δ𝜈, with the 16th and 84th percentiles giving the

confidence interval.

In the following sections, we discuss the values of Δ𝜈 and 𝜈max in each of our samples.

We use our Literature Sample to briefly comment on the robustness of our methods in TESS

data compared to results produced largely from a bespoke analysis of individual stars. We then

proceed to discuss the results in the remaining new detections. A summary of the catalogue is

shown in Fig. 4.4. We note that in some targets, values of Δ𝜈 may be reported even though

the star does not produce a flag in the repeating-pattern module. To report a detection, we

require that the repeating-pattern merit function exceed a threshold that was chosen as the

best balance between the false positives and false negatives. Therefore, a star could produce

a measurable response in the collapsed ACF, while the merit function peaks just below the

selected threshold. Accordingly, we only removed measurements from the final catalogue that

were manually identified as clear outliers in the 𝜈max-Δ𝜈 plane. The values that have been

removed are shown in Fig 4.A.1 of the appendix.
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Figure 4.3: Mean simulated collapsed ACF as a function of Δ𝜈 for filtered white noise (top
panel). Colours represent time series of different lengths, with one sector in black, four in blue,
nine in green, and twelve in magenta. Pale lines show the predictions for each length according
to Eq. 4.2. Variance on the simulated collapsed ACF presented in the top panel (bottom panel).
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Figure 4.4: Asteroseismic HR diagram for stars in all samples (main panel, orange circles).
Effective temperatures have been drawn from the TIC in all cases, to maintain consistency.
Contour lines represent measurements from Kepler data reported in Yu et al. (2018b), Lund
et al. (2017), and Serenelli et al. (2017), with effective temperatures from GDR2. The horizontal
dashed line represents the Kepler long-cadence Nyquist frequency. Three stellar tracks at masses
1.0, 1.5, and 2.0 M⊙ generated by MIST (Choi et al., 2016) are shown in grey. The distributions
in 𝑇eff and 𝜈max are shown in the bottom and right panels, respectively. Here, the catalogue
is split into the ATL set in turquoise and the Large Sample in pink (dashed), with the Kepler
distribution shown in black.

91



4.5. GLOBAL ASTEROSEISMIC PARAMETERS CHAPTER 4. TESS CATALOGUE

4.5.1 Literature Sample

Of the 13 targets making up the sample, 9 have published 𝜈max values with uncertainties. In the

remaining stars, the authors focussed on determining individual frequencies rather than global

parameters, and so estimates of 𝜈max without uncertainties were published. A comparison of

the literature values to those measured by our method is shown in Fig. 4.5. On average, the

measured values of 𝜈max are higher than those reported in the literature by ≈ 2.5%. The star

with largest fractional difference is HD 212771, where our value of 𝜈max is higher by ≈ 9%.

The literature value was measured using FFI data processed by the TESS Asteroseismic Science

Operations Center (TASOC) pipeline (Handberg et al., 2021). From visual inspection of the

signal-to-noise ratio spectrum of HD 212717, we found that the envelope extended beyond the

FFI Nyquist frequency. The attenuation caused by the sampling integration causes a decrease in

power near the Nyquist frequency, which could have caused an underestimate on 𝜈max in Silva

Aguirre et al. (2020). Visual inspection of the power spectra confirms that our higher value is

more accurate.

In total, 11 stars have measurements of Δ𝜈 in the literature. In the case of 𝜈 Ind, the most

recent asteroseismic study was made in Chaplin et al., 2020, where the authors used a single

sector of TESS data to fit individual modes. We measured Δ𝜈 from the gradient of a linear fit

to the radial mode frequencies as a function of order (White et al., 2011b). We took the same

approach for 𝜆2 For, where similarly the authors did not provide estimates of Δ𝜈 (Nielsen et al.,

2020). A comparison of the values with those from the algorithm is shown in the right panel

of Fig. 4.5. The agreement is better than for 𝜈max, with a mean fractional difference on Δ𝜈 of

0.24%.

4.5.2 Asteroseismic Target List

Of the 752 validated solar-like oscillators, we report both Δ𝜈 and 𝜈max for 739. In the majority

of cases, the determination is linked: both come from the autocorrelation function collapsed

along the relevant axis. However, it is possible to detect the envelope without a signal from the
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Figure 4.5: Comparison of the global asteroseismic parameters measured by our algorithm to
those reported in the literature. Stars are coloured by the number of modules in which they
produce a flag; pink for a single module, brown for two modules, and an open grey marker for
none. Triangles represent stars for which no uncertainty on 𝜈max was reported in the literature.
Targets𝜆2 For, 𝜈 Ind, and HD212771, which are discussed in the text, are marked with a diamond,
circle, and square, respectively. The left and right panels show the fractional difference between
the values of 𝜈max and Δ𝜈 as measured by the algorithm vs literature value, respectively.

frequency spacing.

In order to assess the quality of the measured 𝜈max and Δ𝜈 values, we exploited the approxi-

mate scaling relation between the two (Eq. 4.1). Although there is a slight mass dependence in

exponent 𝑎 (Stello et al., 2009), the general trend remains such that stars disagreeing significantly

with the rest of the population may indicate an error in one (or both) of the measured values.

Fig. 4.6 shows the relation between the values of 𝜈max and Δ𝜈 for the targets in the ATL

sample. The majority of the stars with detections in both modules follow Eq. 4.1. We highlight

TIC 381975502 (CD-56 1110), in which a background eclipsing binary introduced several

harmonic peaks in the power spectral density at low frequency. These peaks appear in the ACF

as a large response at a test frequency corresponding to the frequency of the orbital harmonics,

resulting in the algorithm incorrectly assigning both Δ𝜈 and 𝜈max. This is also the case for TIC

271701447 (HR 4749; HD 108570). The values of 𝜈max and Δ𝜈 for these targets have been

removed from the final catalogue, while IDs have been retained.

For targets detected in just one module, there is a larger scatter about the scaling relation, as

shown on Fig. 4.6. Using an exponent on Eq. 4.1 of 𝑎 = 0.791 as calculated in N22, Δ𝜈 for 13

targets differs by more than 30% from the value predicted by the scaling relation and measured

value of 𝜈max. We performed a manual inspection of these stars and found that four are likely
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misclassifications. A further two passed the detection threshold, both at the envelope and at a

much lower frequency, biasing the resulting parameters. In three stars, the estimated 𝜈max used

in the prior was significantly higher than the observed value. They are overestimated by factors

of three, five, and two. In these cases, the parallaxes reported in the ATL were drawn from XHIP

rather than GDR2. The 𝜈max predicted using GDR2 parallaxes produced a prior more consistent

with the measured 𝜈max. The remaining stars could be divided into two sets: Targets with less

than one full sector of data, and high-𝜈max targets with low-mode amplitudes. The resulting low

signal-to-noise ratio could impact the determination of Δ𝜈. Values of 𝜈max and Δ𝜈 for these

outliers have been removed.

In Fig. 4.4 the stars in the ATL sample cluster about the base of the red giant branch and

extend toward the main sequence. The peak of the distribution falls just above the Kepler long-

cadence Nyquist frequency, populating the previously sparsely sampled region. The density

falls off toward higher 𝜈max, which is likely a result of the decreasing mode amplitude.

4.5.3 Large Sample

Here, we report both 𝜈max and Δ𝜈 for all but 62 stars. For these outliers, we found similar

issues to those discussed in the ATL. Additionally, we noted 16 stars for which the probability

distributions in 𝜈max were multi-modal. The remaining targets vastly outnumber those from

the ATL, and span the red giant branch (as shown in Fig. 4.4). The density increases with

decreasing 𝜈max until it peaks at ≈ 49𝜇Hz. At the high-𝜈max tail, we note an overlap between

the ATL and Large Sample. There are 119 stars that did not appear in the ATL even though

they show oscillations at frequencies above 240 𝜇Hz. Of these, just under half lie near the

ATL cutoff, with 240 < 𝜈max < 300𝜇Hz. A total of 63 stars, however, are above 300 𝜇Hz

in a region that should be included in the ATL. There are several reasons why these targets

could have been omitted. The estimate of 𝜈max in the ATL was a function of 𝑇eff , such that a

significant underestimate on the latter could have pushed the former beyond the enforced 240

𝜇Hz cut. Calculating Teff for the additional targets using the methods stated in the ATL, we did

not find a systematic underestimate compared to GDR2, with values agreeing to within 10%
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Figure 4.6: Δ𝜈 as a function of 𝜈max measured by the algorithm for validated solar-like oscillators
from the ATL set (main panel). Stars producing flags in only one module are shown in pink,
and those producing flags in both modules are shown in brown. Triangles mark stars that were
likely misclassified as solar-like oscillators. Targets TIC381975502 and TIC271701447, which
are discussed in the text, have been marked with a diamond and circle. The dotted black line
shows Eq. 4.1. Additional panels show the fractional uncertainties on Δ𝜈 and 𝜈max.

.
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in over 90% of the targets. The other possibility is that the detection probabilities for these

targets were underestimated. This could be the result of an overestimated noise level caused by,

for example, an underestimation of the size of the predicted pixel mask or a greater degree of

contamination from background sources. A full comparison between the predictions in the ATL

and the observed yield is reserved for future work.

According to the main aim of the TESS mission (Ricker et al., 2014), we expected that

targets proposed for 120-second cadence would be less evolved than the giants presented here.

Although targets were also selected when they were brighter than 𝑇mag = 6 (where Tmag is the

magnitude of the star for the TESS instrument response), which would preferentially select

bright giants, we found that ≈ 80% of the giants in which we detected solar-like oscillations

were fainter than this limiting magnitude. We therefore checked that the oscillations occur in the

star associated with the TIC number being searched, rather than in another star in the mask, by

comparing the 𝜈max value predicted by the prior to the detected value (see Fig. 4.7). In general,

the ratio of the two was close to unity, indicating that the detected envelope belongs to the target

in question.

4.5.4 20-second cadence

The measured values of Δ𝜈 and 𝜈max are shown in Fig. 4.8. A total of 16 stars were removed

by manual identification. We note that the uncertainties on Δ𝜈 presented in Fig. 4.8 appear

larger than those presented in Fig. 4.6 (the ATL sample), which is likely due to the population

of targets at 𝜈max < 100 𝜇Hz. The mean fractional uncertainty on the measured Δ𝜈 in the

20-second-cadence sample is 2.1%, approximately consistent with 1.9% in the ATL sample.

Again, we find that the population is dominated by evolved stars, with the distribution peaking

at a 𝜈max value of 50 𝜇Hz.

We note a detection in an oscillator observed by Kepler (KIC 6106415; HD 177153; ‘Perky’),

which is a clear outlier in Fig. 4.8. The algorithm reports a Δ𝜈 of 131 𝜇Hz despite reporting

a 𝜈max of 127 𝜇Hz. Using Kepler data, oscillations were identified at 𝜈max = 2249 𝜇Hz (Lund

et al., 2017). The envelope we detected at 127 𝜇Hz (which can be visually identified) appears
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Figure 4.7: Prior 𝜈max (𝜈max,prior) vs measured values in short cadence targets. The dashed blue
line represents the 1-1 line.
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Figure 4.8: Δ𝜈 vs 𝜈max for validated solar-like oscillators from the 20-second cadence set. Stars
producing flags in only one module are shown in pink, and those producing flags in both are in
plotted in brown.

to be on another red giant in the pixel mask. Therefore, the prior has caused an erroneous

measurement of Δ𝜈.

4.6 Conclusions

Applying the algorithm introduced by Nielsen et al. (2022a) to 120-second- and 20-second-

cadence observations from the TESS mission spanning Sectors 1 to 46, we have detected

solar-like oscillations in a total of 4177 targets. Of these, 12 belong to a set of previously

reported solar-like oscillators, 752 to stars that appeared in the ATL, and 486 were detected
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using 20-second-cadence data. The remaining are targets brighter than 11th magnitude in

2MASS 𝐾S, with temperatures in the range 4500K < 𝑇eff < 6500K, observed in 120-second

cadence. Since Sector 46, data for additional sectors have been released. We leave the analysis

of these and the data collected in upcoming sectors as we approach the end of the first extended

mission for future work.

All catalogued targets have been manually vetted to confirm the presence of oscillations. We

note that signals from eclipsing binaries, classical pulsators, or transiting planetary bodies can

cause false-positive detections. Therefore, we highlight that when using the algorithm presented

in N22 with very large data sets, the more conservative approach (asking for responses in both

modules) is the most effective at reducing the amount of manual vetting required.

We have extended the work of N22 to include methods for measuring the global asteroseismic

parameters, 𝜈max and Δ𝜈. We introduced a new model for parameterizing the collapsed ACF to

produce a probability density for Δ𝜈. Applying this technique to the catalogue of detections,

we measured the global asteroseismic parameters for 98% of the targets. Overlaying these stars

on the asteroseismic HR diagram (𝜈max and 𝑇eff) allowed us to confirm the ATL successfully

identified the least evolved stars, with little overlap in the remaining detections. The small set

of stars that appear to have been missed by the ATL cluster about 𝐾S = 6 mag, which is a region

where the GDR2 astrometric solutions are known to have inferior astrometry (Lindegren et al.,

2018), suggesting an issue in the parallaxes.

This catalogue demonstrates the significant contribution that the TESS mission can make

to the field of asteroseismology. When targets from the ATL are isolated, the increase in the

number of detections between the 280 𝜇Hz cutoff enforced by the 30-minute FFI observations

and the upper edge of our catalogue at around 1000 𝜇Hz is at least twofold on the detections

made in Kepler data. With the inclusion of the stars detected in 120-second cadence that did

not appear in the ATL, we were able to use a homogeneous data set to measure asteroseismic

values in solar-like oscillators from the subgiant regime through the red giant branch.
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Figure 4.A.1: Δ𝜈 as a function of 𝜈max for targets in the final catalogue in brown. Values that
were removed after manual identification are shown as open circles.
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Chapter 5

Predictions for HAYDN

Asteroseismology is uniquely suited to probe the internal mechanisms governing stellar evolu-

tion, many of which are still not yet well understood. However, these processes depend on the

fundamental properties of stars, like mass and metallicity. To comprehensively sample the evo-

lution of stellar interiors we require observations of stars sharing similar fundamental properties

at different evolutionary states. Although numbering thousands of stars, Kepler asteroseismic

catalogues are lacking in subgiants (see Section 2.3.1) and consist of stars that are broadly spread

in metallicity. TESS observations have been used to close this subgiant gap (see section 4), but

lightcurves are generally not of the required quality to enable well constrained measurements of

individual mode frequencies, which are necessary for the most detailed asteroseismic analysis.

To fully exploit the power of asteroseismology we require a new mission, designed to output the

highest quality asteroseismic data for populations of solar-like oscillators.

If all stars of different fundamental properties were randomly distributed in space, isolating

similar solar-like oscillators would require observations of large regions of the sky. Fortunately,

nature does locally generate collections of similar stars. Stellar clusters consist of stars that

have formed out of the same gas cloud, at roughly the same time, such that they share common

chemical compositions and ages. The High-precision AsteroseismologY in DeNse stellar fields

(HAYDN) space telescope was proposed to exploit these properties observing stellar clusters

in, if it were to be accepted, the first mission dedicated primarily to asteroseismology (Miglio
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et al., 2021). HAYDN went through its first proposal submission in 2023, responding to the

ESA Voyage 2050 call for proposals. During the process, predictions for the seismic yield were

required to determine the optimal observing strategy. I was involved in this process, producing

simulated lightcurves for stars in clusters of interest and using these to determine the amount of

asteroseismic information we could recover. Ultimately, HAYDN was not accepted. However,

there is still a large amount of scientific interest in the mission, and it is expected that it will be

proposed again in the future.

Among the processes HAYDN could provide crucial insight into is stellar rotation. Although

classical techniques have enabled measurements of surface rotation in thousands of stars (e.g.

Glebocki et al., 2005), rotation below the photosphere can only be measured using asteroseis-

mology. Asteroseismic analysis of core rotation in red giants observed by Kepler has shown that

our current modelling of the transport of angular momentum over-predicts core rotation rates

by orders of magnitude. Which mechanism drives the required additional angular momentum

transport, and its efficiency as stars evolve has not yet been identified. A magnetic field could

be the cause (Mestel et al., 1987; Charbonneau et al., 1993; Maeder et al., 2005), but to explain

the observations those fields would have to impact radiative zones, which is not expected for

the types of surface fields we currently observe in stars. Fortunately, asteroseismology can

also reveal the presence of magnetic fields buried deep below the outer convection zone in

evolved stars. HAYDN could provide insight into the prevalence of such fields, and whether

they correlate with internal rotation for stars sharing similar age and chemical composition.

Inference on both rotation and magnetism requires precise measurements of individual mode

frequencies; The associated signatures can cause shifts that are on the order of 0.1% of the un-

perturbed frequency. Alongside investigating the total number of stars in which we could detect

solar-like oscillations, I also quantified the detectability of the signatures of core rotation and

magnetism on ℓ = 1 modes.
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The following chapter is adapted from a draft for publication, as such there is some repetition

of Chapter 3 in Section 5.4. The work is in collaboration with the HAYDN science team

lead by Prof. Andrea Miglio, who provided the population simulation of NGC 6397 (thanks

to Dr. Léo Girardi and Dr. Diego Bossini) and predictions for the instrumental noise for

each simulated star (thanks to Dr. Reza Samadi). The remaining work is all my own, as is

all of the text.

5.1 NGC 6397; Asteroseismic Potential for Investigations of

Core Magnetism and Rotation.

5.2 Introduction

As the only observational probe sensitive to the physical conditions below the photosphere of a

star, asteroseismology has made significant contributions to our understanding of stellar physics

(see Kurtz 2022 for a recent review). The combined observational power of NASA’s TESS

(Ricker, 2014) and Kepler missions (Borucki et al., 2010) has provided asteroseismic data for

stars from the pre-main sequence to the red giant branch. However, these targets span a wide

range in metallicity, age and mass (see the catalogues of Silva Aguirre et al. 2017; Yu et al.

2018c; Hatt et al. 2023). This has the unfortunate consequence that we are restricted in our

ability to study the dependence of various physical mechanisms on any one stellar parameter.

Additionally, the most detailed asteroseismic analysis requires the accurate recovery of individual

mode frequencies. Data of the quality required to facilitate such studies make up only a fraction

of the available set.

Stellar clusters consist of populations of stars with similar age, initial chemical composition

and distance. These shared properties make the stars in such associations excellent candidates

for both testing current stellar models, and studying the evolution of stellar properties using

asteroseismology. The Kepler mission (Borucki et al., 2010) observed four clusters, which have
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been the subject of a number asteroseismic analyses. The scientific output of the works ranges

from measurements of mass loss along the red giant branch to tests of asteroseismic scaling

relations (Stello et al., 2007; Stello et al., 2010; Miglio et al., 2012; Brogaard et al., 2016;

Arentoft et al., 2017; McKeever et al., 2019; Tailo et al., 2021; Tailo et al., 2022). However,

Kepler was not designed for peak performance in dense stellar fields. Pixel sizes were set to

capture the flux from field stars, and are too large to isolate single stars in stellar clusters. As

a result, flux from nearby stars contaminates measurements of the target star, which affects the

detectability of solar-like oscillations. Accordingly, although inference could be made using

asteroseismology on global stellar parameters for numerous stars in stellar clusters, accessing

detailed information about the stellar interior via individual mode frequencies has only been

possible in a small number of targets (Handberg et al., 2017; Brogaard et al., 2021; Brogaard

et al., 2023).

Asteroseismic analysis of solar-like oscillators in stellar clusters would provide key insights

into the evolution of stellar rotation. In evolved stars, such techniques can be used to probe

rotation deep below the photosphere. This is possible via the exploitation of mixed-modes, the

result of coupling between modes propagating close to the stellar core and in the outer convective

envelope. Measurements of rotationally perturbed mixed-modes in red giants observed by Kepler

have highlighted a major shortcoming in the current modelling of angular momentum transport.

Core rotation rates as inferred by asteroseismology are orders of magnitude slower than those

predicted by stellar models (Eggenberger et al., 2012; Eggenberger et al., 2017; Ceillier et al.,

2013; Marques et al., 2013; Spada et al., 2016; Ouazzani et al., 2017; Fuller et al., 2019;

Mombarg, 2023). Additionally, the average core rotation rate appears broadly consistent from

the base of the red-giant branch to near its tip (Gehan et al., 2018a), seemingly at odds with

the ongoing contraction occurring in the core. Given this contraction should imply a spin

up of the core, to locally conserve angular momentum, the efficiency of the mechanism of

angular momentum transport must evolve with the contraction. Unfortunately, catalogues of

core rotation rates inferred using asteroseismology are lacking in subgiants, such that it is not

possible to observationally constrain the epoch in the stellar lifecycle at which models of stellar
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rotation begin to break down. Stellar clusters could provide the first complete view of the

evolution of core rotation from the first emergence of mixed modes on the subgiant branch to

the red giant branch.

Several mechanisms have been presented as potential solutions to the missing angular mo-

mentum problem, including the presence of a magnetic field (Cantiello et al., 2014; Spada

et al., 2016; Eggenberger et al., 2019; Fuller et al., 2019; Gouhier et al., 2022; Eggenberger

et al., 2022; Moyano et al., 2023). While the magnetic fields we currently have observed in

stars using traditional techniques are driven in convection zones, those capable of producing the

observed core rotation rates in red giants would have to act in radiative interiors. Such fields are

detectable using asteroseismology, and thus far have been measured in a small number of stars

(Li et al., 2022a; Li et al., 2023; Deheuvels et al., 2023). The current leading theory explaining

the presence of core magnetic fields in red giants is that they are the fossil remnants of magnetic

fields driven by convection while the star was on the main sequence. Convectively driven fields

are dependent on the gas properties, and as such the metallicity (Amard et al., 2020; Witzke

et al., 2023). Therefore, following the evolution of the fossil remnants of a convectively driven

magnetic field requires observations of stars of different evolutionary status sharing the same

initial chemical composition. These conditions would be met by stars in stellar clusters.

The HAYDN space telescope (Miglio et al., 2021) was proposed in 2023 as the first, if it were

to be accepted, asteroseismic mission aimed at observing clusters. In the following work we will

provide insight on the amount of asteroseismic information that could be gathered for a stellar

cluster identified as a potential target for HAYDN. To that end, we produced realistic synthetic

lightcurves for thousands of solar-like oscillators in the cluster NGC 6397, and used these to

identify whether oscillations were detectable. For those stars in which we made detections,

we determined whether the frequencies of ℓ = 0 and 2 modes were recoverable using currently

available tools. Finally we introduced perturbations due to core rotation and magnetic fields to

the ℓ = 1 modes of a test star at the base of the red giant branch. Varying the scale of the two

perturbations, we identified the ranges in magnetic and core rotational splitting which would

have a measureable impact on oscillations.
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Parameter Unit Value
Equivalent pupil diameter cm 120
Focal length mm 4125
PSF diameter 𝜇m 26
Pointing Error mas/Hz1/2 70
Integration time s 1.3
Readout time s 0.1209
Pixel size 𝜇m 10
Pixel scale arcsec 0.5
Readout noise e- 30
PRNU - 1%
ADC bits 14
Full Well Capacity ke- 140
Gain e-/ADU 10

Table 5.1: Proposed set of specifications for the HAYDN mission, used to generate expected
noise levels.

5.3 Simulations

5.3.1 Stellar Parameters

During the proposal process for HAYDN, population simulations were performed for a number

of stellar clusters (including NGC 6397) using the TRILEGAL code (see Miglio et al., 2021).

In short, TRILEGAL functions by drawing fundamental parameters from a selected initial mass

function, age-metallicity relation and star formation rate (Girardi et al., 2005). Stars of a given

age, mass or metallicity are then recovered from a database of stellar tracks. NGC 6397 was

simulated with a metallicity of [Fe/H] = −1.8 and age of 13.4 Gyrs (see Harris, 1996).

In total, the cluster simulation consisted of 22,248 stars. We identified candidate solar-like

oscillators, which included stars from the main-sequence to the horizontal branch. Stars with

luminosities exceeding the red edge of the 𝛿 Scuti instability strip (according to their effective

temperature) were removed. We calculated the associated limiting luminosity according to,

𝐿red = 𝐿⊙

(
𝑇red

𝑇red,⊙

)−1/0.093
, (5.1)

with 𝑇red,⊙ = 8907K (Houdek et al., 1999; Chaplin et al., 2011b). Taking 𝑇red = 𝑇eff in Equation
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5.1 for each star in the simulation, we calculated the associated 𝐿red. If the star had luminosity

above this limit, we removed it from the sample. This resulted in the removal of 190 stars (see

Figure 5.1). The density of mixed modes increases as a star evolves, such that calculating mode

frequencies becomes increasingly computationally expensive. Accordingly, we removed stars

that had evolved beyond the tip of the red giant branch. This resulted in the removal of an

additional 30 stars. There were also a large number of low luminosity, low mass main-sequence

stars which were highly unlikely to produce detectable oscillations. To reduce the total number

of lightcurves in need of simulation, we set a faint limit on the apparent V-band magnitude for

the considered solar-like oscillators at 𝑚𝑉 = 17, informed by the yields predicted in Miglio et al.

(2021). As a result, an additional 15,256 stars were removed, making the final count 6771 stars,

with magnitudes ranging from the enforced maxima at 17 to the brightest star at 10.8 (see Figure

5.1).

To simulate the lightcurve of a solar-like oscillator we required the frequencies of the

pulsations, alongside other properties such as amplitudes and lifetimes. These are dependent on

internal structure, meaning we required a stellar model for every star in the simulated population.

To that end, we used Modules for Experiments in Stellar Astrophysics (MESA, Paxton et al.,

2011; Paxton et al., 2013) to calculate a grid of models with a metallicity of [Fe/H] = −1.8dex,

and initial masses in the range 0.72M⊙ < M < 0.77M⊙, according to the stars selected from

the TRILEGAL simulation. The input physics was consistent with that in Rodrigues et al.

(2017). This included the Grevesse et al. (1993) heavy elements partition. Equations of state

and opacities were those of Rogers et al. (2002) and Iglesias et al. (1996) respectively, with

low-temperature opacities augmented according to Ferguson et al. (2005). The atmosphere was

a Krishna Swamy (1966) model. Convection was treating using mixing-length theory with a

mixing length of 𝛼MLT = 1.9657. We used 𝑍 = 𝑍⊙ · 10[Fe/H] to convert between metallicity and

mass fraction. The initial helium mass fraction was described by a linear enrichment law with

a primordial helium abundance of 0.2485 and a slope of 1.007. Finally, mass loss along the red

giant branch was included via Reimers law (Reimers, 1975), with 𝜂 = 0.2.

For the purpose of the detection of solar-like oscillations, the crucial property of the oscilla-
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Figure 5.1: HR diagram for selected stars from simulation. The full set of stars output from
TRILEGAL is shown in the empty scatter points. Filled points are the solar-like oscillators
selected for this work. The black dotted line marks the location of the red-edge of the 𝛿 Scuti
instability strip. Accordingly, stars in the red shaded region are unlikely to host solar-like
oscillations. The background colour shows the distribution of luminosity and temperature in a
random draw from Gaia.
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tions is their amplitude. These scale with luminosity, mass and effective temperature. The stars

in our selection vary in luminosity by ≈ 300 𝐿⊙, in 𝑇eff by ≈ 2000K and in mass by ≈ 0.05M⊙.

Accordingly, we matched each star in the TRILEGAL simulation to one of our stellar models

by minimizing,

𝜒2 =

√︃
(𝐿MESA − 𝐿TRILEGAL)2 + (𝑇eff,MESA − 𝑇eff,TRILEGAL)2. (5.2)

On average the MESA models and the TRILEGAL simulations differed in 𝑇eff and L⊙ by

less than 0.01%. This would propagate to a difference in mode amplitude of the same order.

5.3.2 Simulated Lightcurves

We calculated the lightcurves using The AsteroFLAG Artificial Dataset Generator 3 (AADG3)

which simulates relative flux data for solar-like oscillators (see Howe et al., 2015, for full details).

Lightcurves were calculated using the same cadence as the Kepler short-cadence data (58.85s),

which is suitable for the detection of oscillations in main sequence stars. Star-specific inputs

required by AADG3 include the properties of the modes alongside additional background terms

required to describe the signal from granulation. To calculate these properties, we followed

the general method of Ball et al. (2018), with some adjustments that will be addressed in the

following section (Section 5.3.3).

Once the lightcurve based on the intrinsic properties of the star had been calculated, we added

white noise consistent with the specifications proposed for HAYDN (as detailed in Table 5.1,

see Section 5.3.4). As no telescope is capable of truly uninterupted observations we introduce

gaps in the lightcurves, informing the number and length of these gaps with the distribution of

such quantities in Kepler long-cadence observations (see Section 5.3.5).

The following analysis splits into two domains. Firstly, we used all 6771 simulated

lightcurves to determine in which stars oscillations are detectable, and whether the frequen-

cies of individual ℓ = 0, 2 modes were recoverable using tools that are currently available.

Secondly, we took a test star from the set in which ℓ = 0 and 2 modes were recovered and inves-
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tigated the detectability of seismic signatures of core rotation and magnetism on ℓ = 1 (dipole)

mode frequencies. Magnetism and rotation were only added to this star, and not included in the

first step in analysis, given for dipole modes they triple the number of profiles that AADG3 has

to simulate (adding 𝑚 = ± 1). We expect this should not impact the total detection yield, as the

total power in the envelope associated with modes remains the same regardless of perturbations

to the individual mode frequencies.

5.3.3 Properties of The Unperturbed Oscillations

Unperturbed Mode Frequencies

We computed unperturbed frequencies using GYRE (Townsend et al., 2013), simulating modes

of angular degree ℓ = 0 to 2. Modes with ℓ = 3 were not included, given they are computationally

expensive to calculate in stars near the tip of the red giant branch. Although such modes have

been detected in the spectra of red giants observed by Kepler, they are rarely used in seismic

analysis given their low signal-to-noise. As such, they are unlikely to be of use in the large

scale population analysis for which the HAYDN mission is being proposed. GYRE solves the

oscillation equations by searching in a grid of possible eigenfrequencies. As in Ball et al. (2018)

we varied the number of points in these grids of frequencies according to ℓ. These were set to

800 points for ℓ = 0, 1000 for ℓ = 1 and 3000 for ℓ = 2.

Our simulations included both evolved stars and stars on the main sequence. For the former,

using frequency grids with values spaced inversely in frequency is more appropriate (given

the presence of mixed modes which repeat at regular intervals in period), whereas for the

latter a linear spacing in frequency is more appropriate (as modes repeat at regular intervals in

frequency). To determine in which stars we should grid inversely in frequency, we calculated

the mixed mode density, N = Δ𝜈/(𝜈2
maxΔΠ1), where Δ𝜈 is the large frequency spacing, 𝜈max is

the frequency at maximum power and ΔΠ1 is the period spacing for dipole modes. The mixed

mode density approximates the number of g-modes we should expect per Δ𝜈. For stars with N

> 1, we used inverse gridding for non-radial modes. Radial modes are never mixed, and thus we

112



CHAPTER 5. PREDICTIONS FOR HAYDN 5.3. SIMULATIONS

Star Type 𝛾 𝛼 𝛽

Main Sequence 1 -1 1.5
Red Giant Branch 0.83+0.03

−0.03 -0.62+0.01
−0.01 -4.77+0.28

−0.27

Table 5.2: Exponents used in Equation 5.3 for stars on the red giant branch and the main
sequence. Exponents for stars on the main sequence are from a manipulation of the equations
in Kjeldsen et al. (1995). These are the result of a combination of theoretically derived scaling
relations and fits to model stars and observational data. There-in error bars are not listed on the
exponents of the fits. Exponents for red giants were determined via a fit to measurements from
the Yu et al. (2018c) catalogue.

always use linear gridding.

Mode linewidths, amplitudes

One of the detection modules that we apply to the data (see Section 5.4) functions using

predictions for mode amplitudes as a function of 𝜈max and𝑇eff . The relation used is a manipulation

of that given by Kjeldsen et al. (1995), where the luminosity and mass dependence has been

replaced by 𝜈max (see Nielsen et al., 2022b). We use the same equation to generate mode

amplitudes for the main sequence stars in our simulation (see Table 5.2). However, as stars evolve

the scaling relation for mode amplitude given in Kjeldsen et al. (1995) becomes increasingly

inaccurate (Stello et al., 2011; Huber et al., 2011). Therefore for the red giants in our population

we refit a relation of the form,

𝐴max = 𝐴max,bol𝛾

(
𝜈max

3090

)𝛼 (
𝑇eff

5777

) 𝛽
, (5.3)

to the observed amplitudes of red giant branch stars reported in Yu et al. (2018c) using the emcee

package (Foreman-Mackey et al., 2013a). The best fitting exponents are in Table 5.2, alongside

the exponents we used for main sequence stars. We did not fit a separate relation to observations

of solar-like oscillations in subgiants, given the small number of measurements available. To

determine which exponents to use for a given simulated star, we labelled models with central

hydrogen abundance less than 10−12 as main sequence (Dotter, 2016), the remaining stars were

labelled as red giants.
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x 𝑎𝑥 𝑏𝑥 𝑐𝑥

𝛼 −3.710 × 100 1.073 × 10−3 1.883 × 10−4

Γ𝛼 −7.209 × 101 1.543 × 10−2 9.101 × 10−4

ΔΓdip −2.266 × 10−1 5.083 × 10−5 2.715 × 10−6

𝜈dip −2.190 × 103 4.302 × 10−1 8.427 × 10−1

𝑊dip −5.639 × 10−1 1.138 × 10−4 1.312 × 10−4

Table 5.3: Parameters for Equation 5.5, according to Ball et al. (2018).

Linewidths were calculated according to Equations (13) and (14) in Ball et al. (2018), in

which the linewidth of a mode at frequency 𝜈 is calculated via,

ln Γ = 𝛼 ln
𝜈

𝜈max
+ ln Γ𝛼 +

lnΔΓdip

1 +
(

2 ln 𝜈
𝜈dip

ln
𝑊dip
𝜈max

)2 , (5.4)

where 𝛼, Γ𝛼, ΔΓdip, 𝜈dip and 𝑊dip are determined according to the 𝑇eff and 𝜈max of the star in

question. That-is, each parameter (taken in the following as 𝑥) is approximated as,

𝑥 = 𝑎𝑥 + 𝑏𝑥𝑇eff + 𝑐𝑥𝜈max, (5.5)

where 𝑎𝑥 , 𝑏𝑥 and 𝑐𝑥 were determined via a fit to 92 stars. These are listed in Table 5.3, which is

a reproduction of Table 1 in Ball et al. (2018).

As in Ball et al. (2018), to account for the observed reduction in linewidth and mode

amplitude with increasing mode inertia (I𝑛,ℓ), we divided these values by the parameter Q𝑛,ℓ,

Q𝑛,ℓ =
I𝑛,ℓ

I0(𝜈𝑛,ℓ)
. (5.6)

Here, I0(𝜈𝑛,ℓ) is the mode inertia of a hypothetical radial mode evaluated at a given mode

frequency (𝜈𝑛,ℓ). The inertia I𝑛,ℓ is output directly from GYRE. We then calculated I0(𝜈𝑛,ℓ) by

interpolating the ℓ = 0 mode inertia as a function of frequency and evaluating at 𝜈𝑛,ℓ.
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5.3.4 Properties of the noise

The catalogues of stellar parameters generated prior to this work included predictions for the

expected noise levels in lightcurves collected by HAYDN, using the telescope specifications

detailed in Table 5.1. The associated noise levels were generated using the methodology

described in Samadi et al. (2019), which calculates the expected standard deviation on the

lightcurve in ppm/hr1/2. This required the effective temperature and magnitude of the stars,

which were taken from the catalogues described in Section 5.3.1. Contributions to the noise

budget included photon noise, readout noise, quantization noise, background noise and various

jitter noise components due to the pointing error (satellite jitter). Finally, the contribution of

the flux from nearby stars to the aperture of the target star was added, using the point spread

function given in Table 5.1. This required stellar positions, which were drawn according to the

observed cluster position (Harris, 1996) and an empirical log(density)-log(radius) relation (see

Ferraro et al, in prep). The distance was set at 2.4 kpc (Harris, 1996).

We transformed the predicted noise from ppm/hr1/2 to ppm/cadence (𝜎 [ppm/cadence]) and

added it to the lightcurves output from AADG3 by a random draw from a normal distribution

with zero mean and variance 𝜎 [ppm/cadence].

5.3.5 Observation duration and Gaps

Gaps are expected to occur in lightcurves for various reasons, including downlinking data,

repointing the telescope and more anomalous causes like issues with detector electronics. These

gaps alter the properties of the power spectrum, and can reduce the signal-to-noise of solar-

like oscillations (see for example García et al., 2014; Bedding et al., 2022a). The longest

uninterrupted observations we currently have access to are those of the nominal Kepler mission,

which released observations in 90-day long quarters. To simulate realistic gaps to modify our

lightcurves we drew 100 random stars from the seismic catalogue of Yu et al. (2018c). For each

star, we calculated the average number and duration of the gaps in each available quarter. For

each star in our simulation we then drew the total number of gaps and their length from the
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resulting distribution across the Kepler stars.

The total duration of the lightcurve also has a significant impact on the detectability of

solar-like oscillations. A shorter lightcurve will result in a power spectrum with a reduced

signal-to-noise and frequency resolution. These impact both the detection of the power excess

associated with modes, and the identification of individual mode frequencies (when not properly

resolved). To investigate the impact of observation length on the detectability of oscillations in

NGC 6397 we calculated lightcurves with four different lengths. The minimum was set at 90

days (the length of a single Kepler quarter) and the maximum at one year. For a small subset of

stars we calculated lightcurves that were four years in length (these will be discussed in Section

5.6), providing the required resolution to detect the small frequency perturbations associated

with magnetic fields and rotation.

5.4 Detection Metrics

5.4.1 The Presence of Oscillations

Given HAYDN would observe thousands of stars, the mission would likely have to employ an

automated approach to identify stars in which solar-like oscillations are detectable. Various

pipelines have been produced to automate detection, optimized for use primarily with Kepler

and TESS data (Stello et al., 2017; Hon et al., 2019; Kuszlewicz et al., 2020). In the following

we use the pipeline presented in Hatt et al. (2023). This is able to both perform detection and

give initial estimates of the global parameters 𝜈max and Δ𝜈.

The pipeline consists of two modules searching for different identifying features present in

the spectra of solar-like oscillators. These are;

1. Power Excess (PE) Module: This searches for excess power present in the spectrum that

is consistent with expectations for a solar-like oscillator and inconsistent with white noise.

The module outputs a merit function (the PE merit), identified with the probability that a

solar-like envelope is present, as a function of 𝜈max. This function is normalized such that
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it varies between zero (no significant evidence of solar-like oscillations) and unity (clear

evidence of solar-like oscillations).

2. Repeating Pattern (RP) Module: This searches for correlations in the lightcurve that can

be identified with sound waves crossing the star. Like the PE module, it also outputs a merit

function as a function of 𝜈max. The period of the correlations that occur in lightcurves due

to solar-like oscillations is a proxy for Δ𝜈. Accordingly, alongside outputting the merit

function, the module exploits the associated likelihoods to produce probability densities

for 𝜈max and Δ𝜈.

The thresholds on PE and RP merit that were found to maximise the accuracy of the pipeline

are 0.77 and 0.73 respectively (Hatt et al., 2023). As such, any star with a PE merit exceeding

0.77 or a RP merit exceeding 0.73 is labelled as a positive detection.

5.4.2 ℓ = 0, 2 Mode Frequency Recovery

Before fitting mode frequencies we removed the signature of granulation by applying a moving-

median filter to the power spectrum. We divided the observed power by this approximate

spectrum, which defined the signal-to-noise ratio (SNR). The resulting SNR spectrum of a

solar-like oscillator can be approximated as the sum of Lorentzian profiles centered on the mode

frequencies. That is,

SNR =
∑︁
𝑛

∑︁
ℓ

ℎ𝑛,ℓ𝑉ℓ

1 + 4
Γ2
𝑛,ℓ

(𝜈𝑛,ℓ − 𝜈max)2
, (5.7)

where 𝑉ℓ is the mode visibility, ℎ𝑛,ℓ is the mode height, Γ𝑛,ℓ is the linewidth and 𝜈𝑛,ℓ the mode

frequency. We fit Equation 5.7 to the spectra of our simulated oscillators in two steps. For all of

the targets in which we detected oscillations we fit the profiles of modes with ℓ = 0 and 2 using

the pbjam package (Nielsen et al., 2021). The ℓ = 1 modes were only fit a test star, drawn from

the set in which we could measure the ℓ = 0, 2 mode frequencies, in which we explored varying

rotational and magnetic signatures.
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The pbjam package enables automated fitting of modes with ℓ = 0 and 2 by setting priors on

the locations of mode frequencies informed by the p-mode asymptotic relation,

𝜈𝑛,ℓ ≈ Δ𝜈(𝑛 + ℓ/2 + 𝜖𝑝) − 𝛿𝜈0,ℓ . (5.8)

Fitting is divided into two steps; Firstly Equation 5.7 for ℓ = 0 and 2 is fit to the data, with 𝜈𝑛,ℓ

replaced by Equation 5.8. This fit only includes one quadrupole mode per radial mode, which

will be preferentially the most pressure dominant. The number of radial orders over which to

perform the sum is provided as input by the user. In the following we chose to fit for 12 radial

orders per star1. Mode visibilities are set at 𝑉ℓ=0 = 1, 𝑉ℓ=2 = 0.62 (Lund et al., 2017). In this

step ℎ𝑛,ℓ and Γ𝑛,ℓ are replaced by a single mode width and height, such that the parameters of

the model are Δ𝜈, 𝜈max, 𝜖𝑝, 𝛿𝜈0,2, Henv (the envelope height), Γenv (the envelope width) and

Γmode (the mode width). To perform this fit in a computationally efficient manner, pbjam takes

as input estimates of 𝜈max, Δ𝜈 and 𝑇eff , which are used to construct priors. We supplied 𝜈max and

Δ𝜈 (and associated uncertainties) from the detection pipeline, alongside the model value of 𝑇eff

with an uncertainty of 250K. After the spectrum has been fitted using Equations 5.8 and 5.7, the

resulting parameters are used to inform priors of a second fit where mode frequencies, heights

and widths are allowed to vary.

The pbjam package can fit ℓ = 0 and 2 modes even in evolved stars as radial modes cannot

be mixed (and so always follow Equation 5.8), and quadrupole modes are expected to be heavily

p-dominated. Dipole modes are not included, as they quickly become mixed as stars evolve off

of the main sequence, meaning Equation 5.8 could not be used as a prior.
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Figure 5.2: HR diagram for the simulated population of NGC 6397 showing detection results
made with year-long lightcurves. Right: Points coloured by the maximum of the PE merit
function in a given spectrum. Left: Points coloured by the maximum of the RP merit function in
a given spectrum. Dashed horizontal line marks the maximum 𝜈max of stars reliably recovered
by the PE module. The dotted dashed line is the same for the RP module.
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5.5 Results in Unperturbed Spectra

5.5.1 Detection of Oscillations

With a years worth of observations, we found we could detect the solar-like oscillations in a total

of 740 targets. The faintest magnitude of the stars in which we made detections was 𝑚𝑉 = 15.4.

This corresponds to a maximum detected 𝜈max of 363 𝜇Hz, which for stars in this mass range

is at the base of the red giant branch (see Figure 5.2).This maximum is far below the Nyquist

frequency for observations made at a 60-second cadence, instead implying the theoretical limit

on cadence could be as long as 45 minutes. Detections made in the PE module extended to

higher 𝜈max than those made in the RP module (363 𝜇Hz and 336 𝜇Hz respectively). A total of

90 stars have detectable power excess, but do not pass the threshold for identification of Δ𝜈.

As expected, the total number of detections increased with observing length. Counts for

lightcurves of length 3, 6 and 9 months are shown in Table 5.4 and shown in Figure 5.3. We

made an additional 137 detections when increasing the lightcurve length from 3 months to

12 months. The largest increase in number of detections occured between 3 and 6 months.

Although the number of detections in the RP module levels off once the length reaches 12

months (see Figure 5.3), it appears the detections in the PE module still continue to increase.

This suggests observations longer than 12-months could result in additional detections, albeit

the lack of a response in the RP module means they are unlikely to be high enough SNR to allow

measurement of Δ𝜈. Surprisingly, a small number of main sequence stars did pass the PE merit

threshold in the 9 month, 6 month and 3 month data. There were 9, 3 and 9 stars with 𝜈max >

500 𝜇Hz in these sets respectively. For these stars we calculated another 100 realisations of the

lightcurves and re-ran the detection pipeline. We found that none of the detections were made

again, and so the positive detections were likely the result of chance realisation of the noise.

Therefore, to determine the maximum value of 𝜈max in which HAYDN would perform well in

NGC 6397, we do not use these stars. Instead, we sort the detections by 𝜈max and locate the value

below which the difference in successive 𝜈max values is less than 10 𝜇Hz. This essentially marks

1Although this is a larger number than will likely be identifiable in any given spectrum, modes which have very
low SNR will not contribute significantly to the likelihood ad thus will not influence the result.
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Figure 5.3: Number of stars with PE or RP merit functions exceeding thresholds as a function
of observation length.

Observing strategy PE RP Total Unique Maximum 𝜈max
1 year 731 641 740 363 𝜇Hz
9 months 711 636 717 352 𝜇Hz
6 months 670 600 684 329 𝜇Hz
3 months 584 502 603 270 𝜇Hz

Table 5.4: Number of stars exceeding detection thresholds in the PE and RP modules for various
lightcurve lengths.

the location on the HR diagram at which oscillations become readily detectable, regardless of

noise realisation. The resulting limits are listed in Table 5.4.

We used the values of Δ𝜈 and 𝜈max from the detection pipeline to inform priors when

performing the analysis of individual modes. Therefore, if they are inaccurate, we may expect

biases in the recovery of mode frequencies. In Figure 5.4 we show the value of the global

parameters measured by the detection pipeline against the values from the stellar models. For

𝜈max, the value measured by the pipeline is within 1𝜎 of the model value for all but one star.

The uncertainties reported by the pipeline decrease with 𝜈max, a result of the increasing SNR.

For Δ𝜈, the pipeline reports values that are more than 1𝜎 from the model value in 6 stars. As

was the case for 𝜈max, these are at high values of Δ𝜈 (> 20 𝜇Hz), reflecting the decreased SNR.

Indeed, the mean apparent V-band magnitude in the 6 discrepant stars is 15.26, compared to the

mean in the remaining stars at 14.04.
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Figure 5.4: Global asteroseismic parameters 𝜈max (top panel) and Δ𝜈 (bottom panel) measured
by the detection pipeline as a function of the values from the stellar models. Black dotted line
is the one-to-one line.
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Figure 5.5: Recovery of ℓ = 0 and 2 frequencies according to the mean difference between
model and measured frequencies. Successful recoveries are defined as those in which the
average difference between the model and measured mode frequencies is less than the average
uncertainty reported by pbjam. The top panel shows the fraction of stars in which ℓ = 0 or 2
modes are recovered as a function of 𝜈max. Fractions are calculated in bins in 𝜈max with a width
of 20 𝜇Hz. For reference, the distribution in 𝜈max of all of the stars in which we detect the
presence of oscillations is included in the bottom panel.

5.5.2 Results: ℓ=0, 2 Mode Frequency Recovery

We quantified the number of stars in which we correctly recovered the ℓ = 0, 2 mode fre-

quencies according to the mean difference between the model and measured mode frequencies

2(⟨𝜈𝑛,ℓ,model − 𝜈𝑛,ℓ,measure⟩). For radial modes, we found this difference was less than three times

the average error as reported by pbjam 3 (𝜎) in 322 stars, which have 12 𝜇Hz < 𝜈max < 336 𝜇Hz.

There was no clear dependence between the fraction of stars in which we recovered radial mode

2measured mode frequencies are identified as the mean of the posterior distribution of the mode frequencies
from pbjam

3This is taken as the standard deviation on the posterior distributions of the individual mode frequencies
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frequencies and 𝜈max, as is shown in Figure 5.5. For the quadrupole modes the difference was

less than 3𝜎 in 103 stars, with 70 𝜇Hz < 𝜈max < 328 𝜇Hz. The recovery of ℓ = 2 mode frequencies

does depend on 𝜈max, as can be seen in Figure 5.5. There-in we find the fraction of stars in which

the average difference in model and measured frequency is less than 3𝜎 is consistently below

5% for 𝜈max ⪅ 150 𝜇Hz. The decrease in the fraction of stars in which we recovered quadrupole

mode frequencies with decreasing 𝜈max is a result of the increased mode mixing in the ℓ = 2

modes. This both makes the asymptotic p-mode relation used by pbjam to inform a prior on

mode frequencies less appropriate and reduces the linewidths and mode amplitudes according

to the increase in the mode inertia. We note here that the reduction in amplitudes via Q𝑛,ℓ (see

Equation 5.6) assumes that damping in the envelope dominates over radiative damping in the

core. However, for the most evolved giants in this cluster it is likely the radiative damping is

dominant. The inclusion of the effect of radiative damping in the cores of these evolved stars

may influence conclusions on the detectability of quadrupole modes (Grosjean et al., 2014; and

see the review of Belkacem, 2019).

5.6 Detectability of Rotational and Magnetic Signatures

For non-radial modes, rotation and magnetism break the degeneracy between modes of different

𝑚 for a given 𝑛 and ℓ, resulting in the appearance of multiplets in the power spectrum. For the

rotation rates observed in solar-like oscillators (which are relatively slow), rotation shifts modes

proportionally to 𝑚, producing multiplets that have a symmetric appearance. For dipole modes,

stellar rotation rates are recovered by measuring the separation between components with 𝑚 =

+1 and −1, with the degree of separation increasing with more rapid rotation (see Section 5.6.1).

Magnetism, on the other hand, does not generally produce shifts that are proportional to 𝑚 (see

Section 5.6.2). This can result in multiplets with an asymmetric distribution in frequency. The

asymmetry of a multiplet is defined as 𝛿asym = 𝜈𝑚=−1 + 𝜈𝑚=+1 − 2𝜈𝑚=0, and has been previously

used to identify the presence of magnetic splitting (Li et al., 2022a; Li et al., 2023).

There are four primary features impacting the detectability of rotational perturbations for a
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spectrum in which the signal-to-noise is high enough to permit the measurement of individual

mode frequencies. Firstly, measurement using dipole frequencies requires identification of

modes with 𝑚 = ±1, which implies the star must have an inclination 𝑖 ⪆ 30°. Assuming an

isotropic distribution of stellar inclination angles, this would be the case for 90% of stars in

a randomly drawn sample. The rotational splitting must then be large enough that the single

Lorentzian profile is no longer a good descriptor of the data. The associated minimum detectable

rotational splitting will be dependent on mode linewidth and so will vary on a star-by-star basis.

The data must also be collected for long enough that the frequency resolution is finer than

the rotational splitting. Finally, rotational splitting which is large enough to be on the scale

of the separation between adjacent mixed modes introduces additional difficulty in the mode

identification process and can lead to the incorrect assignment of a given mode to a multiplet.

The density of mixed modes increases as a star evolves, such that the maximum recoverable

rotation rate may decrease as stars climb the red giant branch.

Magnetic perturbations recovered via the asymmetry of multiplet components are subject to

similar requirements. For dipole modes, measuring the asymmetry parameter (𝛿asym) requires

constraints on the frequencies of all three azimuthal orders in a multiplet. This is only possible

for stars with 30° ⪅ 𝑖 ⪅ 60°. Again assuming an isotropic distribution of stellar inclination

angles, this condition would be met for ≈ 40% of the observed stars. A significant detection in

a single multiplet requires that the asymmetry is larger than the uncertainty on individual mode

frequencies. Therefore, detectability is also impacted by the frequency resolution of the data

and the linewidth.

We investigated the range of magnetic and rotational perturbation for which we could

accurately recover perturbed dipole mode frequencies. To make the recovery of perturbations

below the 0.1 𝜇Hz level possible, lightcurves exceeding a year in length are preferable. We

extended our baseline to four years, matching that of the nominal Kepler mission. We selected a

test star in which the ℓ = 0 and 2 modes were recoverable, prioritizing a target near the base of the

red giant branch where the mode amplitudes are lowest. The effects of varying the rotation and

magnetic parameters were investigated independently. That is, we tested recovering different
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rotational signatures in the absence of magnetism before setting a representative rotation rate

and exploring the magnetic parameter space.

5.6.1 Simulated Mode Frequencies with Core Rotation

We re-ran AADG3 to calculate 4-year lightcurves for the selected star. Aside from the addition

of rotational perturbations, all other inputs were the same as those described in Section 5.3.2.

AADG3 includes rotation by augmenting the unperturbed frequencies according to,

𝜈𝑛,ℓ,𝑚 = 𝜈𝑛,ℓ + 𝑚𝛿𝜈rot,n,ℓ, (5.9)

where 𝛿𝜈rot,n,ℓ is taken as an input. The selected target is on the red giant branch. The radial

rotation profile in such stars can be approximated by considering two domains, informed by

the contraction of the core and expansion of the envelope. Therefore, we approximate 𝛿𝜈rot,n,ℓ

according to,

𝛿𝜈rot,𝑛,ℓ = 𝜁𝑛,ℓ𝛿𝜈core + (1 − 𝜁𝑛,ℓ)𝛿𝜈env, (5.10)

where 𝜁𝑛,ℓ is dependent on mode inertia as,

𝜁𝑛,ℓ =
Icore,𝑛,ℓ

I𝑛,ℓ
, (5.11)

describing the extent to which a mode is mixed, with 𝜁𝑛,ℓ = 1 as a pure g-mode and 𝜁𝑛,ℓ = 0

a pure p-mode.

We informed the ranges in 𝛿𝜈core and 𝛿𝜈env to test using observations from three catalogues

(Deheuvels et al., 2014; Triana et al., 2017; Gehan et al., 2018a, see Figure 5.6). These

catalogues had a minimum value of 𝛿𝜈core ≈ 0.1 𝜇Hz, which we set as our minimum. We were

interested in testing whether the maximum recoverable value of 𝛿𝜈core would be limited by the

mixed mode density. Therefore we set the maximum value at the predicted separation between

mixed modes at the base of the red giant branch, 𝛿𝜈core = 3 𝜇Hz.

The envelopes of evolved stars rotate far slower than the cores, given the expansion of the
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Figure 5.6: Rotational splitting as a function of surface gravity for stars reported in Deheuvels
et al. (2014) and Gehan et al. (2018a) and Triana et al. (2017). Squares represent core rotation
rates, circles for envelope rotation rates. Line shows the log-linear fit to the data of Deheuvels
et al. (2014) and Triana et al. (2017).

outer layers. As such, 𝛿𝜈env is a difficult quantity to measure, even with four years of Kepler

data. The only catalogues to report envelope rotation rates in evolved stars are Deheuvels et al.

(2014) and Triana et al. (2017). Despite the difference in evolutionary phase, the distribution of

envelope rotation is very similar in both works (see Figure 5.6), with a mean of 𝛿𝜈env = 0.1 𝜇Hz

and 0.08 𝜇Hz respectively. Accordingly, we gave all models the same envelope rotation rate at

𝛿𝜈env = 0.09 𝜇Hz.

5.6.2 Simulated Mode Frequencies with Core Magnetism

We recalculated lightcurves for the selected star with a 4-year baseline, but set a constant

rotational profile and varied the magnetic signature. The value of 𝛿𝜈core for the test star was
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taken as the mean value from Gehan et al. (2018a) for targets with measured 𝜈max within 20 𝜇Hz

of the simulated value. The envelope splitting, 𝛿𝜈env, was again set to 0.09 𝜇Hz.

The public version of AADG3 does not yet include the option of providing magnetic pertur-

bations. Therefore, we altered the package to allow the user to provide such shifts as input. In

the presence of a magnetic field modes are perturbed according to,

𝜈𝑛,ℓ,𝑚 = 𝜈𝑛,ℓ + 𝑚𝛿𝜈rot,𝑛,ℓ + 𝛿𝜈mag,𝑛,ℓ,𝑚 . (5.12)

Assuming this field is axisymmetric, 𝛿𝜈mag,𝑛,ℓ=1,𝑚 can be parameterized as (Li et al., 2022a),

𝛿𝜈mag,𝑛,ℓ=1,𝑚=0 = (1 − 𝑎)𝛿𝜈mag

(
𝜈max

𝜈

)3
(5.13)

and

𝛿𝜈mag,𝑛,ℓ=1,𝑚=±1 = (1 + 𝑎/2)𝛿𝜈mag

(
𝜈max

𝜈

)3
, (5.14)

where 𝑎 is a parameter controlled by the topology of the field and 𝛿𝜈mag by a radial average

of the field strength. The topology parameter can take values in the range −0.5 < 𝑎 < 1.0. We

sample three representative values, −0.5, 0.0 and 1.0. Observational evidence for a sensible

range in 𝛿𝜈mag is sparse compared to that for 𝛿𝜈core. At time of writing, values have been

reported in the range 0.05 𝜇Hz to 0.2 𝜇Hz. We tested 10 values from 0.05 𝜇Hz to 0.5 𝜇Hz (Li

et al., 2022a; Li et al., 2023).

5.6.3 ℓ = 1 Mode Recovery

To recover the properties of the dipole modes, we used the pbjam results to mask regions of the

spectrum with frequency within 3Γmode of a ℓ = 0 or 2 mode. We then fit the remaining spectrum

using a sum of Lorentzians. Each radial order consists of three modes with frequencies 𝜈𝑛,𝑚=0,

𝜈𝑛,𝑚=+1 and 𝜈𝑛,𝑚=−1 (I have dropped the ℓ = 1 subscript as these are all dipole modes). The

spectrum is thus,
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Figure 5.7: Spectrum of the star used to test fitting perturbed ℓ = 1 modes. Insert is the region
in which we fit the perturbed dipole modes. Grey dotted lines show the true values of the 𝑚 = 0
frequencies.

SNR =
∑︁
𝑛

∑︁
𝑚=−1,0,+1

ℎ𝑛E𝑚 (𝑖)
1 + 4

Γ2
𝑛
(𝜈𝑛,𝑚 − 𝜈max)2

, (5.15)

where E𝑚 (𝑖) describes the dependence of the relative heights of the modes in a multiplet on the

stellar inclination (𝑖). Modes with 𝑚 = 0 have E𝑚=0(𝑖) = cos2(𝑖) and modes with 𝑚 = ±1 have

E𝑚=±1(𝑖) = 1/2 sin2(𝑖). We parameterise the mode frequencies (𝜈𝑛,𝑚) according to Equations

5.9 and 5.10 or 5.12 - 5.14 depending on whether we are investigating rotation or magnetism.

In either case, the priors on the mode heights, widths and the stellar inclination are the same.

These are detailed in Table 5.5 alongside the priors used for parameters associated with mode

frequencies. The mean values used to define priors on the unperturbed mode frequencies were

set via a visual inspection of the spectra. We set a conservative prior on the unperturbed

frequencies with a width of 5% of Δ𝜈. This was to account for the fact that magnetic fields

may impact the 𝑚 = 0 frequency, such that we can no longer identify the central frequency of a

multiplet as the unperturbed frequency, 𝜈𝑛,ℓ=1.
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Parameter Prior
Γ𝑛 logN (𝜇 = log (Γ𝑛,ℓ=0,2), 𝜎 = 1.0)
𝜈𝑛 N(𝜇 = 𝜈𝑛,guess, 𝜎 = 0.05Δ𝜈)

ℎ𝑛,ℓ=1 logN (𝜇 = log (ℎgauss,𝑛), 𝜎 = 0.4)
𝑖 U(0, 𝜋/2)

𝛿𝜈core,𝑛 U(0, 3.0)
𝛿𝜈mag,𝑛 U(0, 0.5)
𝑎 U(-0.5, 1.0)

Table 5.5: Priors used in the fit of the perturbed dipole mode frequencies.

5.6.4 Results: Rotation Recovery

We selected the test star with 𝜈max = 216.8 𝜇Hz, 𝑇eff = 5344K, 𝑀 = 0.77M⊙ and 𝑖 = 45°. The

model used to fit the rotationally perturbed spectrum has five parameters per mode, meaning the

computational expense of the fit quickly increases as more modes are included. Therefore, we fit

only a selection of modes in the spectrum with the highest signal-to-noise. We identified eight

multiplets in the range 𝜈max − Δ𝜈 < 𝜈 < 𝜈max + Δ𝜈. The full spectrum and associated window in

which the fitting was performed is shown in Figure 5.7.

Figures 5.8 - 5.10 show the recovery of the rotational splitting. A successful recovery for

the rotational splitting on a given mode is defined as cases in which the mean of the posterior

on 𝛿𝜈rot,𝑛 (𝛿𝜈rot,𝑛,measure) is within three standard deviations of the model value (𝛿𝜈rot,𝑛,model).

Additionally, we require that the standard deviation on the posterior is less than 50% of the

mean, which removes cases which are just a replica of the prior. According to these conditions,

on average we recover the rotational splitting on five modes per spectrum. We recovered the

rotational splitting on all eight modes for four values of 𝛿𝜈core (0.85 𝜇Hz, 1.1 𝜇Hz, 1.4 𝜇Hz

and 2.55 𝜇Hz). We did not correctly measure any of the rotationally split modes in spectra with

𝛿𝜈core < 0.4 𝜇Hz. For these spectra, the posteriors on the rotational splitting for each mode are

just a replica of the uniform prior. The sampler has converged on a model with larger linewidth

and low inclination, such that the𝑚= ±1 modes are not contributing significantly to the observed

power. Generally, the number of modes that are recovered increases from 𝛿𝜈core = 0.1 𝜇Hz to

1.0 𝜇Hz, before levelling out between 1.0 𝜇Hz and 2.0 𝜇Hz, and finally decreasing at values
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Figure 5.8: Recovery of rotational splitting for 0.1 𝜇Hz < 𝛿𝜈core < 1.0 𝜇Hz. Panels in the top
row show the posterior on the difference between the model and measured values of 𝛿𝜈rot,n for
each value of 𝛿𝜈core. Annotations are included with the value of 𝛿𝜈core in 𝜇Hz. Panels on the
bottom row show the number of modes in which we measure |𝛿𝜈rot,𝑛,measure - 𝛿𝜈rot,𝑛,model| < 3𝜎.

in excess of 2.0 𝜇Hz. The mode that is the most frequently unsuccessfully recovered is the

most mixed of the set, and has the smallest linewidth at 0.01 𝜇Hz (the average in the remaining

modes is 0.04 𝜇Hz). Where-as at 𝛿𝜈core < 2.0 𝜇Hz unsuccessful recovery of rotational splitting

is associated with overestimating 𝛿𝜈rot,𝑛,model, at 𝛿𝜈core > 2.0 𝜇Hz the splitting is more frequently

underestimated.

The missing angular momentum problem has that stellar models imply the rotation rates of

the cores of red giants should be more rapid than those which we have thus far observed. For

this test star we have found that rotation rates both in the range of those previously observed (<

0.4 𝜇Hz), and in the more rapid ranges which are predicted by stellar models ( > 2 𝜇Hz) were

not consistently accurately recovered. This implies that care must be taken to establish accurate

detection thresholds when exploiting observations of populations of stars to make inference on

the distribution of core rotation rates, and its relation to model predictions.
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Figure 5.9: As in Figure 5.8, but with 1.1 𝜇Hz < 𝛿𝜈core < 2.0 𝜇Hz

Figure 5.10: As in Figure 5.8, but with 2.1 𝜇Hz < 𝛿𝜈core < 3.0 𝜇Hz
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5.6.5 Results: Magnetic Recovery

For the test star selected in the previous section, we applied a core rotational splitting of 𝛿𝜈core

= 0.34𝜇Hz. Given the degeneracy between 𝛿𝜈mag and 𝑎, we define a successful recovery

of the magnetic signature via the frequencies of the individual components of each multiplet

(𝜈𝑛,𝑚=0,±1). That-is, we identify the success of a recovery with the difference between 𝜈𝑛,𝑚,model

and 𝜈𝑛,𝑚,measured. For the selected test star, magnetically perturbed mode frequencies were

recovered to within 1𝜎 for all of the combinations of 𝛿𝜈mag and 𝑎 that we tested. This is

shown in the left panel of Figure 5.11. This is true even when the magnetic splitting is larger

than the rotational splitting, and the asymmetry is maximised. Although below the scale of

the uncertainty on an individual measurement, the measured mode frequencies appear to be

systematically overestimated.

We calculated the asymmetry parameter, 𝛿asym, using the posteriors on the parameters

defining 𝜈𝑚=−1, 𝜈𝑚=+1 and 𝜈𝑚=0. The mean of the resulting distribution was taken as the

measured value of 𝛿asym, with error bars as the standard deviation on the distribution. The

right panel of Figure 5.11 shows the recovered and true values of the asymmetry parameter

for the most asymmetrically split multiplet in each realisation of the spectrum. We found that

in all cases the measured values of 𝛿asym agreed with the true values to better than 1𝜎. The

best agreement between the true asymmetry and the measured asymmetry is achieved with 𝑎 =

1. However, the error bars estimated via the standard deviation on the posterior for 𝛿asym are

substantial enough that no measurement is more than 2𝜎 from zero.

Should we accurately measure the dipole mode frequencies for all 322 stars for which we

could recover radial mode frequencies, ≈ 130 would be in the correct inclination range to permit

measurement of the magnetic asymmetry (assuming an isotropic distribution on 𝑖). As we could

not make a measurement of asymmetry that was more than 2𝜎 from zero in this test star, the

signatures tested here may not appear as significant outliers in this population.
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5.7 Conclusions

We generated 6771 realistic simulated lightcurves for solar-like oscillators in the cluster NGC 6397

as they would be observed by the proposed HAYDN mission. We found that if these stars were

observed for a year we could detect solar-like oscillations in 740. This was reduced to 603 when

only observing for 3 months. In all data sets we were only able to reliably detect oscillations on

the red giant branch, in stars with 3 𝜇Hz < 𝜈max < 363 𝜇Hz.

For the lightcurves that were a year in length, we quantified the number of stars in which we

could recover the frequencies of the ℓ = 0 and 2 modes. We measured radial mode frequencies

that were less than 3𝜎 from the model values in 322 stars, with 12 𝜇Hz < 𝜈max < 336 𝜇Hz.

Quadrupole modes were accurately recovered in fewer stars, for a total of 103 stars with 70

𝜇Hz < 𝜈max < 328 𝜇Hz. These were preferentially the least evolved; For stars with 𝜈max ⪅ 150

𝜇Hz, the fraction of stars in which the average difference between model and measured mode

frequencies was less than 3𝜎 was consistently less than 5%.

We then tested whether rotational and magnetic perturbations to ℓ = 1 modes would be

detectable in a test star in which we could recover ℓ = 0 and 2 frequencies. We selected a star

at the base of the red giant branch, with 𝜈max = 216.8𝜇Hz, fitting the rotational splitting in 8

modes. We found that rotational splitting could not be accurately recovered for any modes in

spectra with 𝛿𝜈core < 0.4 𝜇Hz. This is surprising, given the average mode linewidth for these

modes is a factor of ≈ 10 smaller than 𝛿𝜈core, at 0.03 𝜇Hz. For 𝛿𝜈core from 0.4 𝜇Hz to 2.0 𝜇Hz

the number of modes with accurately recovered rotational splitting increased. Beyond this the

number of modes in which we could accurately measure the rotation decreased on average.

We tested whether the frequencies of magnetically perturbed modes could be recovered in

the test star, when setting a rotational splitting consistent with that reported in the literature.

We applied perturbations with values of 𝑎 of of -0.5, 0.0 and 1.0, and 𝛿𝜈mag in the range 0.05

𝜇Hz < 𝛿𝜈mag < 0.5 𝜇Hz. To quantify how well the perturbations could be recovered, we fit the

same eight modes as were considered for the investigation of the signature of rotation. We found

that we could measure the resulting perturbed mode frequencies to within 1𝜎 in all the cases

tested. The asymmetry between modes in multiplets has been used to identify spectra in which
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a core magnetic field may be altering mode frequencies. Therefore, we identified whether the

associated asymmetry parameter, 𝛿asym, was correctly measured in the spectra. We found that

although it was recovered to within 1𝜎 of the model value, the measured value was less than

2𝜎 from zero in all cases. This implies that although we could infer whether a magnetic feature

was present in this test star, should this signal be buried in a population of hundreds of stars it

may not be flagged as significant enough to warrant further investigation.

The HAYDN mission marks the next big step in our understanding of stellar evolution.

In this work we have shown how observations of just one cluster (NGC 6397) will provide

information rich spectra for hundreds of solar-like oscillators. We achieved this using tools that

are currently readily available, such as the open-source mode recovery code pbjam. In future,

we should expect such packages and the methods they exploit to progress even further, enabling

the recovery of mode frequencies in even more stars. Additionally, NGC 6397 is far from the

brightest of the candidate clusters suggested as good targets for observation. Therefore we can

expect future work to confirm HAYDN as capable of having an asteroseismic yield rivalling

current missions, with stars selected specifically to enable inference on the evolution of various

stellar internal properties.
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Figure 5.11: Diagnostic plots for the recovery of magnetically perturbed modes. Plots in the
left-hand column are the average difference in the model and measured frequencies as a fraction
of the measurement uncertainty, 𝜎(𝜈fit). From top to bottom these are for perturbations with a
= −0.5, 0 and 1. Plots in the right hand panel are in the same order in 𝑎. These panels show the
recovery of the asymmetry parameter, 𝛿asym. Empty circles are the true value.
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Chapter 6

Rotation and Magnetism

This chapter is a reformatted version of a draft for publication that was submitted to

the journal Monthly Notices of the Royal Astronomical Society and is currently pending

reviewer comments. Section 6.2.2 was written by Dr. Martin Nielsen, and Dr. Joel Ong

provided the first paragraph of text under the subheading ‘Priors on ΔΠ1, 𝑝𝐿 , 𝑝𝐷 , 𝜖g and

𝛿𝜈01’ in Section 6.2.3. The code used to generate the stretched échelles used in the following

was provided by Dr. Joel Ong.

6.1 Introduction

Magnetic fields play a critical role in stellar evolution. The prevailing theory regarding those

which are observed in the Sun and other main-sequence solar-type stars is that they are generated

by a dynamo process. This mechanism is, crucially, dependent on the interplay between turbulent

convection and differential rotation (Noyes et al., 1984). Convection is supported at various

phases in the lifecycle of low to intermediate mass stars, providing several avenues for the

formation of a magnetic field. Magnetic fields have been invoked as a possible solution to many

open problems in stellar evolution (see Brun et al. 2017 for a review). Notably, a magnetic field

could transport angular momentum from the core to the outer envelope, reducing the degree

of differential rotation occurring in evolved stars (Cantiello et al., 2014; Spada et al., 2016;
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Eggenberger et al., 2019; Fuller et al., 2019; Gouhier et al., 2022; Eggenberger et al., 2022;

Moyano et al., 2023). This could resolve the observed discrepancy between predicted rotation

rates in the cores of evolved stars and those observed, the latter being (at best) two orders of

magnitude too small (Eggenberger et al., 2012; Marques et al., 2013; Ceillier et al., 2013).

Given magnetic fields in the outer layers of stars can be detected in light curves due to

the manifestation of this field as star-spots, most detected stellar magnetic fields in convection

zones are sun-like in nature. However, a magnetic field capable of producing observed red giant

branch (RGB) rotation rates would need to operate near the stellar core (Maeder et al., 2014).

Core convection is expected in stars with masses above ≈1.1M⊙ during the main sequence (MS)

(Kippenhahn et al., 1990). It is possible for these fields to remain stable as the star evolves

off of the main-sequence, where the interior becomes radiative (Emeriau-Viard et al., 2017;

Villebrun et al., 2019; Becerra et al., 2022). Even without the presence of a convective core

on the main sequence, it is possible to create a magnetic field in stably-stratified zones via a

Taylor-Spruit dynamo or related processes (Spruit, 2002; Fuller et al., 2019; Eggenberger et al.,

2022; Petitdemange et al., 2023).

Asteroseismology, the study of stellar pulsations, offers the only probe sensitive to near core

regions. Solar-like oscillations come in two types, propagating in two largely distinct regions.

In the surface convection zones, turbulent motion drives acoustic oscillations known as pressure

or p-modes. Closer to the core, strong density stratification supports bouyancy oscillations,

gravity or g-modes. When the frequencies of p and g-modes approach each other, the two types

of modes can couple forming what is known as a mixed-mode (Unno et al., 1989). Sharing

properties of both the pure p and g modes, mixed-modes are both sensitive to conditions near

the stellar core and the surface. Mode amplitudes reach a maximum about a characteristic

oscillation frequency (𝜈max) that scales with the acoustic cut off. On the main sequence, the

maximum g-mode frequency is significantly lower than 𝜈max, such that mixed modes are not

excited to observable amplitudes. As a star evolves off of the MS onto the RGB, 𝜈max decreases

in response to the expansion of the outer layers. Concurrently the core contracts, increasing the

density of g-modes. As 𝜈max approaches the maximum frequency of the g-modes, mixed modes
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become increasingly observable. The Kepler telescope (Borucki et al., 2010) observed a large

number of evolved stars with high-precision photometry, such that we are able to measure mixed

modes in thousands of stars (Mosser et al., 2014; Vrard et al., 2016; Kuszlewicz et al., 2023).

The presence of a magnetic field within the region where modes propagate has been shown

to perturb mode frequencies (Gough et al., 1990; Goode et al., 1992; Takata et al., 1994;

Hasan et al., 2005; Mathis et al., 2021; Bugnet et al., 2021; Li et al., 2022a; Mathis et al.,

2023). This owes both directly to the introduction of the Lorentz force into the equations of

stellar oscillation and indirectly by impacting the properties of mode cavities. Unlike rotation,

magnetic fields are not, in general, azimuthally symmetric. As such, the degree to which a

mode is perturbed is dependent both on field strength and its geometry and topology (Gomes

et al., 2020; Mathis et al., 2021; Bugnet et al., 2021; Loi, 2021). Alongside identifying

the presence of a magnetic field, asteroseismology can put key constraints on field strength

and structure. The theoretical tools required to exploit the spectra of evolved stars in such a

way have only just been established. Furthermore, the size of the parameter space involved

with fitting even unperturbed mixed modes makes the problem computationally expensive and

contingent on well-informed priors (Kuszlewicz et al., 2023). Even more free parameters are

required when considering perturbations, amplifying the issue. As such, only the cases with the

strongest magnetic signatures have thus far been analysed. Accordingly current catalogues of

core magnetic fields are very limited, numbering 24 stars at time of writing (Li et al., 2022a; Li

et al., 2023; Deheuvels et al., 2023).

In this work we will investigate the perturbations caused by core rotation and magnetic fields

using a sample of 302 low luminosity RGB stars observed by Kepler. In section 6.2 we describe

how the sample is selected from the > 16000 RGB stars in Yu et al., 2018a (hereafter Y18).

We then go on to fit a perturbed asymptotic expression to the power spectra. To enable a large

scale fitting without the problem becoming computationally intractable, we construct priors on

the perturbed quantities. This is done via a novel method of exploiting stretched period échelle

diagrams calculated using the spectrum directly, a tool so far only used on previously measured

mode frequencies. In section 6.3 we detail the resulting measurements, before discussing
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correlations with fundamental stellar properties in section 6.4.

6.2 Survey Methodology

6.2.1 Target Selection

We used Kepler long-cadence light curves, calculating the power spectral density via a Lomb-

Scargle periodogram (Lomb, 1976; Scargle, 1982) using the lightkurve package (Lightkurve

Collaboration et al., 2018).

Of the observable mixed modes present in a given spectrum, those which are gravity-

dominated are the most sensitive to core conditions. As the widths of these modes are smaller

than their pressure-dominated counterparts (Mosser et al., 2011; Mosser et al., 2015; Mosser

et al., 2018; Vrard et al., 2016), they set an upper limit on the frequency resolution we required.

For such modes, the linewidths are on the order of 0.01𝜇Hz (Yu et al., 2018a; Li et al., 2020)

necessitating time series that exceed three years in length. Therefore we restrict ourselves to

stars that were observed by Kepler for a full 4-years.

For a given radial order and ℓ, rotation breaks the degeneracy between modes of differing

azimuthal order, 𝑚. To leading order in perturbation theory (i.e. for slow rotation), the degree

to which a mode is perturbed by rotation is proportional to 𝑚, such that modes of order 𝑚 =

0 are not affected, remaining at the unperturbed frequency. For modes with non-zero 𝑚, the

magnitude of the perturbation is shared between two modes having azimuthal orders𝑚 and𝑚′ if

|𝑚 | = |𝑚′|. The sign of𝑚 then determines whether the mode increases or decreases in frequency.

Magnetic fields will perturb all components of a multiplet, with (generally) a different shift

for all |𝑚 | components. The resulting asymmetry in the spectrum of a magnetically perturbed

multiplet is distinct, and as such is commonly used to establish a detection. However, the degree

to which the shift differs among components is dependent on the topology of the field (see

section 6.2.3) and certain configurations result in zero asymmetry regardless of field strength

(Loi, 2021; Mathis et al., 2023; Li et al., 2022a). Therefore, we make no selection based on

asymmetry but rather focus on the average shift of the multiplet. In the following we used

140



CHAPTER 6. ROTATION AND MAGNETISM 6.2. SURVEY METHODOLOGY

Figure 6.1: 𝜈max and 𝑇eff values for the selected sample (pink) compared to those from the
catalogue by Yu et al. (2018a) (green). For reference we show the MIST (Choi et al., 2016;
Dotter, 2016) evolutionary tracks for 1 M⊙, 1.5 M⊙, 2 M⊙, and 2.5 M⊙ stars at [Fe/H] = −0.25
which approximately corresponds to the median metallicity of the selected sample, as reported
in table 2 of Yu et al. (2018a).
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modes of angular degree ℓ = 1 (dipole modes, see section 6.2.3), such that multiplets consist of

3 components (𝑚 = 0,±1). Given all components of the multiplet contain information about the

magnetism, we restricted ourselves to targets where-in we could visually identify all three peaks

for a given ℓ = 1 mode. This occurs at intermediate inclination, approximately in the range 30°

< 𝑖 < 60°.

Finally, as a star evolves along the RGB, the mixed mode density (N = Δ𝜈/ΔΠ1𝜈
2
max)

increases. Once the rotational splitting is of the order of the separation between adjacent mixed

modes, identification of multiplet components becomes difficult. Therefore we restrict ourselves

to targets with 𝜈max > 100 𝜇Hz (implying mixed mode densities in the region of N < 10). The

upper limit on 𝜈max is set by the Nyquist limit in the data at 277 𝜇Hz. Applying these constraints

to the > 16000 targets identified in Y18, we construct a list of 334 stars (see Fig. 6.1).

6.2.2 Data pre-processing

Rather than measuring mode frequencies prior to fitting for the perturbed quantities, we fit the

power spectra directly. Given p-modes of angular degree ℓ = 0 do not couple to g-modes, they

will not provide information about core magnetism or rotation. Additionally, mode coupling in

modes of angular degree ℓ = 2 is orders of magnitude smaller than that in ℓ = 1 modes. As such,

we removed the additional power from the ℓ = 0 and 2 modes (see sections 6.2.2, 6.2.2) prior to

fitting a perturbed expression to the spectrum of the dipole modes (section 6.2.3).

Computing the S/N spectrum

The first step in the process is to estimate the background noise level. Here we define the

background noise as any power that is not directly attributed to the oscillation modes. For stars

on the red giant branch (RGB) the background typically consists of a frequency independent term

due to photon noise, two frequency dependent terms due to granulation on the stellar surface, and

finally a third frequency dependent term which accounts for any residual, long-term, instrumental

variability (see, e.g, Kallinger et al., 2014b).

Here we model the photon noise as a frequency independent, random, variable. Three

142



CHAPTER 6. ROTATION AND MAGNETISM 6.2. SURVEY METHODOLOGY

frequency-dependent terms as Harvey-like profiles (Harvey, 1985b), following Kallinger et al.

(2014b), are introduced to model the signature of granulation. All the terms in the background

noise model vary slowly with frequency, and so we bin the spectrum in log-frequency, after

which the model parameters are sampled.

We evaluate a set of 100 draws from the model posterior distribution to compute a mean

background level on the unbinned frequency grid. We divide the power spectral density (PSD)

by the mean background model to obtain a residual S/N spectrum which now only contains the

oscillation envelope.

Establishing a mean ℓ = 2, 0 model

The next step is to remove the contribution of the ℓ = 0 and ℓ = 2 modes to the S/N spectrum.

This is done by computing a mean ℓ = 2, 0 model which is then used to obtain a residual S/N

spectrum which notionally only contains the ℓ = 1 modes. The ℓ = 2, 0 model that we use is

consistent with that of Nielsen et al. (2022a) which, to summarize, consists of a set of mode

frequencies determined by the asymptotic p-mode relation for the ℓ = 0 and ℓ = 2 modes. The

spectrum is then approximated as a sum of Lorentzian profiles at these frequencies, modulated

by a Gaussian envelope in power setting the mode heights. For simplicity, we set a single width

for all modes. To construct the mean ℓ = 2, 0 model we draw 50 samples from the model

posterior distribution, and average the resulting model spectra. The sampling is performed

using a principal component based dimensionality reduction method presented in Nielsen et al.

(2023).

Dividing the S/N spectrum by the mean ℓ = 2, 0 model leaves us with a residual spectrum

which consists primarily of power due to the ℓ = 1 modes, any potential ℓ = 3 modes, and to

a lesser extent any residual power remaining due to errors in the ℓ = 2, 0 model. While this

simplifies the sampling of the ℓ = 1 model posterior distribution, the inference on the core

rotation and magnetism is now conditional on the background and ℓ = 2, 0 models. This means

that in the following we neglect any errors due to uncertainty in these models. However, for

high S/N red giant stars where the background and ℓ = 2, 0 model parameters can be precisely
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estimated, this is not expected to be a significant contribution to uncertainty on the rotation and

magnetic field terms. We also cannot capture correlations between perturbed quantities and the

background.

6.2.3 Estimating the ℓ = 1 model parameters

We then used the remaining S/N spectrum to estimate the posterior distribution of the ℓ = 1

model parameters. At high radial order, the frequencies of pure 𝑔-modes (𝜈g) approximately

satisfy an asymptotic eigenvalue equation,

1/𝜈𝑔 ≈ ΔΠ1(𝑛𝑔 + 𝜖𝑔), (6.1)

where ΔΠ1 is the period spacing for ℓ = 1 modes, 𝑛𝑔 is the g-mode radial order and 𝜖𝑔 is the

phase offset. To calculate the frequencies of mixed-modes, these pure g-modes must be coupled

to the pure p-modes. For this purpose we used the matrix construction of Ong et al., 2021a

(see also Deheuvels et al., 2010). That is, mixed modes emerge as the eigenvalues (𝜔) of the

following,

©­­«

−𝛀2

𝑝 L

L† −𝛀2
𝑔

 + 𝝎2


I D

D† I


ª®®¬ v = 0, (6.2)

where 𝛀𝑝 = 2𝜋𝝂𝑝 and 𝛀𝑔 = 2𝜋𝝂𝑔 are diagonal matrices containing the angular frequencies

of the pure p- and g-mode frequencies (𝝂𝑝 and 𝝂𝑔), 𝒗 is the eigenvector specifying mixed-modes

as a combination of pure p- and g-modes, L and D are coupling matrices (with elements 𝐿𝑖 𝑗 and

𝐷𝑖 𝑗 respectively). In general, the elements of these coupling matrices vary with their associated

p- and g-mode frequencies. We parameterised this frequency dependence as 𝐿𝑖 𝑗 ∼ 𝜔2
𝑔, 𝑗

· 𝑝𝐿 ,

where 𝑝𝐿 is a scalar, and similarly 𝐷𝑖 𝑗 ∼ 𝜔𝑔, 𝑗/𝜔𝑝𝑖 · 𝑝𝐷 , where 𝑝𝐷 is a scalar. A full motivation

for this parameterisation will be provided in Nielsen et al. (in prep.). Therefore, for a given set of

pure p- and g-mode frequencies, mixed mode frequencies can be described using the introduction

of two parameters, 𝑝𝐿 and 𝑝𝐷 . For each star we sample these as random, independent variables.
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The parameters ΔΠ1, 𝜖𝑔, 𝑝𝐿 and 𝑝𝐷 were used to provide unperturbed 𝑚 = 0 mode frequen-

cies, to which we introduced the perturbations due to core rotation and a core magnetic field.

In the presence of slow rotation, as is the case in these red giants, modes are perturbed linearly.

Here, we approximate the rotation as happening in the core, ignoring the much slower envelope

rotation (Goupil et al., 2013). Under such assumptions, pure g-modes are perturbed according

to,

𝜈′𝑚,𝑔 = 𝜈𝑔 + 𝑚𝛿𝜈rot,𝑔, (6.3)

where 𝜈𝑔 is the unperturbed frequency and 𝛿𝜈rot,𝑔 is the rotational splitting of the pure

g-modes. In the following we will drop the subscript g for simplicity.

A magnetic field in the core will also perturb the pure g-mode frequencies. In the following

we used models consistent with those established in Li et al., 2022a, which are subject to the

constraint that effects of non-axisymmetry of the magnetic field are negligible. Unlike the case

of rotation, a magnetic field will also impact the 𝑚=0 modes, such that we have,

𝛿𝜈mag,𝑚=0 = (1 − 𝑎)𝛿𝜈mag

(
𝜈max

𝜈

)3
, (6.4)

𝛿𝜈mag,𝑚=±1 = (1 + 𝑎/2)𝛿𝜈mag

(
𝜈max

𝜈

)3
, (6.5)

where 𝑎 is a parameter dependent on the field topology, dependent on an average of the

radial field strength weighted by a second order Legendre polynomial. As such, the value ranges

between−0.5 < 𝑎 < 1, with the maximum negative value corresponding to a field concentrated

about the equator and maximum positive values corresponding to a field concentrated at the

poles. A full inversion for the structure of the field is not possible, given the degeneracy between

fields of different spatial scales (see Loi, 2021; Mathis et al., 2023). The parameter 𝛿𝜈mag is

dependent on an average of the radial field strength (see section 6.4.2). It should be noted that

the assumption of non-axisymmetry are met only when the ratio of the magnetic to the rotational

splitting is less than one.
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Our total model for the perturbed pure g-mode frequencies is thus,

𝜈′𝑚 = 𝜈 + 𝑚𝛿𝜈rot + 𝛿𝜈mag,𝑚 . (6.6)

Given values for the parameters ΔΠ1, 𝜖𝑔, 𝑝𝐿 and 𝑝𝐷 , we may then calculate the resulting

mixed-mode frequencies by performing mode-coupling calculations via equation 6.2 for each

𝑚 separately, linearly perturbing the pure g-mode frequencies as above to describe core rotation

and a core magnetic field. For this purpose, we neglect the effects of rotation and magnetism on

the pure p-modes, which are largely insensitive to the core.

The final additional parameter required to describe the mode frequencies is the ℓ = 1

small frequency spacing (𝛿𝜈01), which describes the deviation between the pure p-mode ℓ = 1

frequencies and the midpoint of the adjacent ℓ = 0 mode frequencies. The complete set of

parameters required to describe the frequencies numbers 8 (ΔΠ1, 𝑝𝐿 , 𝑝𝐷 , 𝜖g, 𝛿𝜈01, 𝛿𝜈mag, 𝑎,

𝛿𝜈rot).

Similar to the analysis in section 6.2.2, we used these frequencies to fit a forward model

to the power spectrum, described by a sum of Lorentzian profiles. Linewidths are fixed at the

value of the ℓ = 0 linewidth modified by the 𝜁 function, Γℓ=1 = Γℓ=0(1 − 𝜁). This accounts

for the reduction in linewidth for g-dominated mixed modes, where the mode inertia is large.

We assume mode heights can be approximated by the product of the envelope height from the

ℓ = 0, 2 model with the relative mode visibility of ℓ = 1 modes (Vℓ=1), which for Kepler is Vℓ=1 =

1.505 (Mosser et al., 2012a; Lund et al., 2017). Additionally, the relative power between modes

in a multiplet depends on stellar inclination, 𝑖. This is frequently accounted for by multiplying

mode heights by the factor Eℓ,|𝑚 | (𝑖). For dipole modes with 𝑚 = 0 this is given by E1,0(𝑖) =

cos2(𝑖), and for 𝑚 = ±1 by E1,|1| (𝑖) = 1/2 sin2(𝑖). We included this in our model, allowing 𝑖 to

vary as a free parameter, setting a uniform prior in the range 0° to 90°.

To estimate the posterior distribution on the parameters of the ℓ = 1 model we use the

Dynesty nested sampling package (Speagle, 2020). This relies on establishing a set of prior

distributions for each of the model parameters.
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Figure 6.2: Stretched échelle power diagrams for two red giants showing characteristic features
of rotation and magnetism. (a): KIC 10006097, showing symmetric rotational splitting. (b):
KIC 8684542, from the sample of Li et al. (2022a), showing pronounced asymmetric rotational
splitting indicative of core magnetism. The power spectrum indicates excess power along the
g-mode ridges that do not correspond to identified and fitted modes in, e.g., their Fig. 3.

Priors on ΔΠ1, 𝑝𝐿 , 𝑝𝐷 , 𝜖g, 𝛿𝜈01

To construct priors on these parameters, we exploited the so-called ‘stretched’ échelle diagram

construction (Vrard et al., 2016). In the asymptotic approximation, mixed modes are the roots

of the characteristic equation

tan 𝜃𝑝 (𝜈) tan 𝜃𝑔 (𝜈) − 𝑞(𝜈) = 0, (6.7)

where 𝑞 is a coupling strength (in most cases approximated as a constant), and 𝜃𝑝, 𝜃𝑔 are smooth

functions of frequency constructed such that at pure p- and g-mode frequencies 𝜈𝑝 and 𝜈𝑔,

𝜃𝑝 (𝜈𝑝) = 𝜋𝑛𝑝; and 𝜃𝑔 (𝜈𝑔) = 𝜋𝑛𝑔 . (6.8)

Given observational access to only mixed modes, but also inferences of notional p-mode fre-

quencies, g-mode period spacings, and coupling strengths consistent with Eqs. (6.1), (6.7) and

(6.8), one may invert Eq (6.7) to produce “stretched” frequencies 𝜈𝑔 associated with each mixed

mode 𝜈. While several numerical formulations for doing this exist (e.g. Mosser et al. 2012b;

Mosser et al. 2015; Mosser et al. 2017; Mosser et al. 2018; Gehan et al. 2018b; Gehan et al.
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2021), Ong et al., 2023b prescribe an analytic expression,

1
𝜈𝑔

≡ 𝜏(𝜈) ∼ 1
𝜈
+ ΔΠ𝑙

𝜋
arctan

(
𝑞

tan 𝜃𝑝

)
, (6.9)

assuming that the pure p-modes are affected by neither rotation nor magnetism. Traditionally,

these stretching functions are applied to mixed-mode frequencies fitted in advance from the power

spectrum. In this work, we instead apply the stretching directly to the frequency coordinate of

the power spectrum. Having done so, the morphology of the resulting stretched period-échelle

power diagrams correspond directly to the linear expressions Eqs (6.3) to (6.5).

To exploit this diagram to construct priors we note two features:

1. If the correct values of ΔΠ1 and 𝑞 are used to construct the diagram, modes of given

azimuthal order should sit in distinct ridges. Therefore, by varying these parameters

manually and identifying those which return the most well defined ridges we arrive at

initial estimates of ΔΠ1 and 𝑞.

2. In the absence of a magnetic field, 𝑚 = 0 modes would align vertically in a ridge at the

value of 𝜖g. As such, once we have settled on the combination ΔΠ and 𝑞, we can use the

central ridge as an estimate of 𝜖g.

We varied these parameters by hand using the interactive tool introduced in Ong et al. (2023a).

We show examples of the resulting power diagrams in figure 6.2.

Priors on ΔΠ1 and 𝜖g were set according to a normal distribution centered on our estimate

from the stretched échelle. Uncertainties on ΔΠ1 from methods exploiting stretched échelles

are on the order of a few percent (Vrard et al., 2016). The only literature work using stretched

échelles to measure 𝜖g is Mosser et al. (2018). There-in the mean uncertainty on 𝜖g is ≈ 30%.

We also note that previous uncertainty estimates do not account for the presence of magnetic

asymmetry. For cases where 𝑚 = 0 components have been significantly perturbed by a magnetic

field, the combination of parameters constructing the most vertical 𝑚 = 0 ridge will not be an

accurate representation of the true values. In an attempt to quantify this effect, we constructed a

mock spectrum with values of 𝛿𝜈mag and 𝑎 consistent with those reported for KIC8684542 by Li
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et al. (2023) (the full set of asymptotic values used can be found in the appendix). We found that

the difference between the injected and recovered ΔΠ1 was below the 1% level. The difference

between the input 𝜖g,input and that from the hand tuned stretched échelle was more significant, at

approximately 10%, but remained below the mean uncertainty reported in Mosser et al. (2018).

We set the width of the prior on ΔΠ1 as 10% of the mean. As previously discussed, the

average fractional uncertainty on 𝜖g reported in the literature is ≈ 30% (Mosser et al., 2018).

The computational expense associated with nested sampling scales with the volume of prior

space, such that setting a very wide prior leads to the calculation becoming infeasible. As such,

the width of the prior on 𝜖g was set to 30% of the mean. To ensure our results are not prior

dominated, we visually inspected the posterior versus prior distributions on 𝜖g.

Exploiting the stretched period échelles required us to use the asymptotic expression for

mixed modes, rather than the matrix formalism used in the sampling. Following Ong et al.

(2023b) the value of 𝑞 evaluated at 𝜈max can be determined from the matrix coupling parameters

as

𝑞 ≈ 1
Δ𝜈ΔΠ1

(
𝐿 + 𝜔2𝐷

8𝜋𝜈2

)2

=
1

Δ𝜈ΔΠ1

(𝜋
2
(𝑝𝐿 + 𝑝𝐷)

)2
, (6.10)

with all frequencies evaluated at 𝜈max. This expression indicates that, from a single value of

𝑞 alone, it is not possible to uniquely identify 𝑝𝐿 and 𝑝𝐷 . However, given they are informed

by the internal profile of the star, certain values will be more physically motivated. To identify

characteristic values of 𝑝𝐿 and 𝑝𝐷 for our stars we exploited the grid of stellar models used in

Ong et al. (2021b). For a given model star in this grid, values of 𝑝𝐿 and 𝑝𝐷 were subsequently

calculated from the corresponding coupling matrices. Stellar tracks were calculated with masses

from 0.8 M⊙ to 2 M⊙, and Fe/H from −1.0 dex to 0.5 dex.

For a given star, we select stellar model tracks in a mass range consistent with those reported

in Y18. We then located models with 𝜈max in the range 𝜈max,obs ± 𝜎(𝜈max,obs), ΔΠ1 in the range

ΔΠ1,prior ± 0.1ΔΠ1,prior and a value of 𝑞 consistent with that derived from the stretched échelle

(to within 10%). The means of the distributions of 𝑝𝐿 and 𝑝𝐷 in the selected models were taken

as the means of the normal distributions we used as priors on 𝑝𝐿 and 𝑝𝐷 . The widths of these

priors were set at 10% of the mean, informed by the average standard deviation on the values in
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Figure 6.3: Distribution of summed power across ridges defined by 𝛿𝜈rot = 0, 𝛿𝜈mag = 0 and 𝑎 = -
0.5 for a white noise spectrum stretched according to the asymptotic parameters of KIC10006097

the selected models.

Priors on 𝛿𝜈mag, 𝑎, 𝛿𝜈rot

Once ΔΠ1, 𝑞 and 𝜖𝑔 have been set, ridges in the stretched échelle can be approximated using the

three remaining parameters in our mixed mode model. Therefore, for each star we constructed a

grid of templates describing possible ridges given test values of 𝛿𝜈mag, 𝑎 and 𝛿𝜈rot. We uniformly

sample 𝛿𝜈mag in the range 0 to 0.2𝜇Hz, 𝛿𝜈rot in the range 0.0 to 0.8𝜇Hz and 𝑎 from -0.5 to 1.

Our grid had 50 points in each direction, such that the resolution on the magnetic splitting is

0.004𝜇Hz, on the rotation it is 0.02𝜇Hz and on 𝑎 is 0.03.

To establish the parameter values required to best describe the data we performed a null

hypothesis test (H0 test). For a given star, we summed the total observed power in these ridges,

and established the likelihood that we would observe the resulting power just due to white noise

(the H0 likelihood). If we were summing power in N bins without performing the stretching,

this would simply amount to the likelihood of drawing a given value of summed power from

a 𝜒2 distribution with 2N degrees of freedom. However, the stretching introduces correlation

between bins, such that the number of degrees of freedom in the stretched spectrum is no longer

2N. An analytical definition of the correct number of degrees of freedom required to describe a
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Figure 6.4: Left panel: Inverse of the 2-dimensional H0 likelihood space for 𝛿𝜈mag and 𝛿𝜈rot. Two
stars are shown, KIC 8684542 and KIC10006097. Right panel: Inverse of the 2-dimensional
H0 likelihood space for 𝛿𝜈mag and 𝑎 for KIC 8684542 and KIC 10006097.

stretched spectrum is yet to be established. Given the degree of stretching depends on ΔΠ1 and

𝑞, this will vary on a star-by-star basis.

To approximate the statistics for the summed stretched power we therefore used white noise

simulations. For each target we performed 50 realisations of a white noise spectrum evaluated

on the same frequency grid as the real data. We then stretched this spectrum according to the

value of ΔΠ1 and 𝑞 used in the prior and processed the stretched échelle as if it were real data.

This resulted in 50 realisations of a 3 dimensional summed power array for a given star. Given

each point corresponds to the sum of a large number of 𝜒2 distributed parameters, the resulting

sum should be distributed according to a Gaussian (according to the central limit theorem).

Accordingly, we calculated the H0 likelihood of the real data for a combination of 𝛿𝜈mag, a, 𝛿𝜈rot

via,

L(Θ|𝐻0) ≈ N (𝜇Θ,𝑊𝑁 , 𝜎Θ,𝑊𝑁 ), (6.11)

where 𝜇Θ,𝑊𝑁 and 𝜎Θ,𝑊𝑁 are the mean and standard deviation of the white noise realisations.
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The parameters are Θ = (𝛿𝜈mag, 𝑎, 𝛿𝜈rot). Figure 6.3 shows the distribution of summed power in

a single cell of the 3-d array for a white noise spectrum stretched according to the asymptotic

parameters of KIC10006097. There-in we increased the number of realisations to 100 for

illustrative purposes.

The width over which we summed the power about the predicted ridge was informed by the

expected (stretched) line-width for g-dominated modes. At the base of the RGB, the distribution

of radial mode linewidths peaks at ≈ 0.15𝜇Hz (Yu et al., 2018a). The dipole mode linewidth

for a given mixed mode then scales as Γ1(𝜈) = Γ0(1 − 𝜁 (𝜈)). For a mode 𝜈𝑖 with 𝜁 (𝜈𝑖) = 0.9,

this implies Γ1(𝜈) ≈ 0.015𝜇𝐻𝑧. Therefore, we sum power in a width of 0.03𝜇Hz. Given

this definition was set using an arbitrary selection of 𝜁 , we tested 10 different widths up to a

maximum of 0.15𝜇Hz. For KIC10006097 we found the resulting value of 𝛿𝜈rot was consistent

across widths from 0.015 to 0.084 𝜇Hz. At widths larger than 0.084 𝜇Hz, the measured value

of 𝛿𝜈rot was consistently smaller by ≈ 0.1𝜇Hz.

Examples of the 2-d distributions in likelihood for the échelle diagrams shown in figure 6.2

can be seen in figure 6.4. The H0 likelihood was then marginalised over each axis, and the

minima of the 1D distributions used to inform the mean of the prior used in the sampling.

In a handful of cases the likelihood space was multimodal. To identify which mode best

described the data, we manually vetted the associated ridges and subsequently reduced the range

to exclude the spurious peak. This multimodality was a by-product of the use of H0 likelihood,

as a model that is not necessarily the best descriptor of the signal can still capture power that is

very unlikely to be the result of noise (for example residual power from ℓ = 0, 2 modes).

Given these likelihoods are conditional on the combination of ΔΠ1, 𝑞 and 𝜖𝑔, we did not use

the width of the minima in the H0 likelihood to establish the width of the prior. To establish

the most appropriate width to set on the prior on rotational splitting, we compared our values to

those from Gehan et al., 2018b (henceforth G18). The resulting differences in measured rotation

rates give a better estimate of the uncertainty associated with varying asymptotic parameters.

Of the 334 stars in our target list, 142 are also in G18. The differences between the values in that

catalogue and those we measured can be well approximated using a normal distribution with 𝜇
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Figure 6.5: Core rotational splitting from the template matching technique versus those reported
in G18. Black dotted lines show the 1-1 relation ± 0.05 𝜇Hz

= 0.00 𝜇Hz and 𝜎 = 0.05 𝜇Hz (see figure 6.5). As such our prior was N(𝛿𝜈rot,echelle, 0.05𝜇Hz).

The largest catalogue of magnetic parameters is that of Li et al., 2023 (henceforth L23, see

also Li et al., 2022a, henceforth L22). Of the 13 stars listed there, 8 appear in our target list. We

found our values of 𝑎 differed substantially (see figure 6.6), with a preference for large values,

which could be a consequence of the correlation with ΔΠ1 (noted in L23). As such we ignore

the result from the summed stretched power and set a uniform prior on 𝑎 between -0.5 and 1 for

all stars.

Our values of 𝛿𝜈mag are in better agreement (see figure 6.6), with a standard deviation of

0.05𝜇Hz. We set the prior as uniform, allowing values in the range [𝛿𝜈mag,echelle - 0.15𝜇Hz,

𝛿𝜈mag,echelle + 0.15𝜇Hz]. For cases where this width would cause the prior to allow negative

values of 𝛿𝜈mag, we set the lower limit on the prior at 0. In one outlier, the grid method has a

𝛿𝜈mag which is smaller than that in L23 by 0.13𝜇Hz. This is likely a consequence of selecting

the value of ΔΠ1 that made the 𝑚 = 0 ridge appear most vertical (see section 6.2). Given setting

a wider prior on 𝛿𝜈mag for all stars would result in significant additional computational expense,

we manually vetted posteriors and best fit models and only expanded the prior ranges where

necessary. This amounted to expanding the prior range on 𝛿𝜈mag for KIC8684542.
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Figure 6.6: Left panel: Magnetic splitting, 𝛿𝜈mag, measured using summed power versus that
reported in L23. Black dotted lines are the 1-1 relation ± 0.05𝜇Hz. Right panel: Topology
parameter, 𝑎, measured using summed power versus that reported in L23. Black dotted line is
the 1-1 relation.

6.3 Results

Of the 334 targets we report the magnetic and rotational parameters in 302 stars. Those which

we do not report are cases where the posterior distribution was simply a replica of the prior.

Such cases were the result of either low SNR or low inclination such that the rotational splitting

was not well constrained. For a comparison of our values of ΔΠ1, 𝑞 and literature values, see

appendix 6.B. Example corner plots for the parameters in the ℓ = 1 model in two stars of the

302 are shown in the appendix (figures 6.C.1 and 6.C.2).

6.3.1 Rotational splitting

The distribution of core rotational splitting is shown in the top panel of figure 6.7, and is bimodal.

The more populous peak is located at ≈ 0.32𝜇Hz with the secondary peak at ≈ 0.47𝜇Hz. There

does not appear to be any strong correlation between the rotational splitting (or associated

bimodality) and the remaining asymptotic parameters (see figure 6.B.1, which shows a corner

plot of the distribution of asymptotic parameters across the whole population). Notably the

distributions of 𝛿𝜈mag and 𝑎 with 𝛿𝜈rot > 0.4𝜇Hz are consistent with those in the remaining

catalogue.

Revisiting the 142 stars which appear in G18 which we used to inform the width of the prior

on 𝛿𝜈rot, we found general agreement, with ≈ 80% agreeing to 10% or better. As can be seen in
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figure 6.8, we found a correlation between the difference in 𝛿𝜈rot with 𝛿𝜈mag. For the star with

the largest value of 𝛿𝜈mag (KIC8684542), the difference in 𝛿𝜈rot is of order 0.23 𝜇Hz. This was

also noted in L23. Given the small values of magnetic splitting present in the vast majority of

our targets, the offset in 𝛿𝜈rot is below the scale of the uncertainties. As such, this is unlikely to

impact previous conclusions regarding the distribution of rotational splittings on a population

scale. We note a small number of stars (9) with differences in 𝛿𝜈rot exceeding 0.1 despite having

𝛿𝜈mag values below 0.001. This is a symptom of low SNR on the 𝑚 = ±1 components of

multiplets due to low stellar inclination, the average in the 9 cases being 45°.

6.3.2 Magnetic Parameters

The distribution in magnetic splittings peaks about log10(𝛿𝜈mag) = -2.54, with a standard de-

viation of 𝜎(log10(𝛿𝜈mag)) = 0.45 (see figure 6.9). This indicates that, from an observational

perspective, perturbations to mode frequencies due to a core magnetic field of the scales re-

ported in L22 and L23 are uncommon regardless of asymmetry. In total we find the mean on

the posterior of the magnetic splitting is at least 2𝜎 from zero in 24 stars, approximately 8% of

the total sample.

The measurements of the topology parameter 𝑎 span the full range in values allowed by the

prior, with a peak at zero - the value which minimizes the asymmetry (see figure 6.9). For stars

in which the mean value of the posterior on 𝛿𝜈mag is at least 2𝜎 from zero, 42% have values

of 𝑎 exceeding 0.5. These are inconsistent with a dipolar field, and must be identified with an

architecture having the field concentrated more towards the poles than the equator. Values of 𝑎

below -0.2 occur in 30% of the stars with significant 𝛿𝜈mag. These also cannot be the result of a

dipolar field, instead being consistent with a field concentrated near the equator.

The asymmetry between modes in a multiplet is often used as an identifier of the presence

of a magnetic perturbation. L22 and L23 quantify this using an additional parameter, 𝛿asym

= 3𝑎𝛿𝜈mag. In our catalogue 𝛿asym also peaks near zero, the distribution having a mean value

log10(𝛿asym)=−2.78 with a standard deviation of 𝜎(log10(𝛿asym)) = 0.67 (see figure 6.9). Only 12

stars have asymmetry parameters that are at least 2𝜎 from zero, making them easily identifiable
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Figure 6.7: Distribution of 𝛿𝜈rot in three mass ranges. Values of 𝛿𝜈rot are those reported here,
supplemented by values from G18 with 𝜈max < 150𝜇Hz. The black curves show are a KDE of
the distribution. Black dotted lines mark the locations of the two peaks identified in the lowest
mass set to guide the eye.
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Figure 6.8: Fractional difference in 𝛿𝜈rot measured here and reported in G18 as a function of
𝛿𝜈mag.

by eye. All 8 of the stars that we have in common with L23 appear in this set. The remaining

targets identified as having significant 𝛿𝜈mag values but little asymmetry have not been previously

identified.

We find no obvious correlation between 𝛿𝜈mag and any other asymptotic parameter, including

the topology. This was also noted in L23. Bugnet, 2022 noted that not accounting for a magnetic

perturbation could produce a systematic underestimate of ΔΠ1 when using the techniques

presented in Vrard et al., 2016. They simulated a star with a magnetic splitting of 0.4 𝜇Hz,

which is much larger than those reported in L22 and L23, and found this would cause a 1%

difference in the measured period spacing. We do not find a clear trend between the difference

in our period spacing and that recorded in Vrard et al., 2016 with the magnetic splitting. As

such, for stars with the magnitudes of magnetic perturbation reported here, discrepantΔΠ1 alone

cannot be used as an identifier.

For the 8 stars we have in common with Li et al. (2023), our values of 𝛿𝜈mag are in broad

agreement, with the mean absolute difference being 1.09𝜎. Agreement on 𝑎 is slightly worse,

with a mean absolute difference of 1.5𝜎. Our methods do differ, Li et al. (2023) fit the
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asymptotic expression to mode frequencies rather than directly fitting a forward model to the

spectrum. Additionally we differ in our method of coupling modes, where we used the matrix

construction discussed in Ong et al. (2021a) and Deheuvels et al. (2010), Li et al. (2023) use the

JWKB construction of Unno et al. (1989). Finally, our priors on asymptotic parameters differ

(see Li et al. 2023 for details).

6.4 Discussion

6.4.1 Rotation and stellar mass

As previously noted, the distribution of core rotational splitting appears bimodal. We show the

dependence of this distribution with stellar mass in the left-most panel of figure 6.10. Masses are

from Y18, where-in they are calculated via scaling relations with 𝜈max, Δ𝜈 and 𝑇eff . It appears

the divide between the two populations in rotation is mass dependent, with the more rapidly

rotating peak preferentially populated with less massive stars. To better sample the underlying

distribution, we expand our sample to include stars from the G18 catalogue with 𝜈max > 100𝜇Hz,

giving us 492 stars. We show these data in the middle panel of figure 6.10. The trend with

stellar mass remains.

We divided the combined catalogue into stars in ranges 1.0M⊙ < M∗ < 1.2M⊙, 1.2M⊙ < M∗

< 1.4M⊙ and M > 1.4M⊙. The resulting distributions in 𝛿𝜈rot can be seen in figure 6.7. In the

lowest mass range, the secondary peak is identifiable at 𝛿𝜈rot 0.47 𝜇Hz. In the mid range, the

peak shifts upwards in 𝛿𝜈rot to 0.50 𝜇Hz and is less well populated. The set with the highest

masses contains the fewest total stars and it is unclear whether a secondary peak is present. In

total 25% of the population have 𝛿𝜈rot > 0.40𝜇Hz.

Although it was not reported in G18, a bimodality in core rotation is present in their

measurements for stars with 𝜈max > 100𝜇Hz. In figure 6.11 we show our measurements of 𝛿𝜈rot

and those from G18 as a function of stellar mass in three ranges of N . The left-hand panel

is a reproduction of figure 6.10. The following panels show this distribution with increasing

mixed mode density, N . As such, for a given mass, stars go from least to most evolved from
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Figure 6.9: Distributions of magnetic parameters. Histograms are built using 100 draws from the
posterior for each of the 302 stars. Top panel: Distribution of 𝛿𝜈mag. Middle panel: Distribution
of 𝛿asym. Bottom panel: Distribution of 𝑎.
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Figure 6.10: Distribution of 𝛿𝜈rot as a function of stellar mass for the combined set of stars
reported here and in G18. The left-most panel shows just the measurements reported in this
work. In the center panel we fold in measurements from G18. The Black contours in the right
hand panel are a kernel density estimate (KDE) highlighting the bimodality.

the left-most to the right-most panel. G18 and Mosser et al., 2012b concluded that core rotation

rates in red giants decrease slightly as stars evolve, but only slightly. Indeed, the highest density

of stars is at ≈ 0.3𝜇Hz in all three subsets. However, the spread in the distribution increases,

such that the secondary peak identified at 0.47𝜇Hz appears to migrate to larger values with

increasing N . For stars with N < 7, 2.4% of the population have 𝛿𝜈rot > 0.6𝜇Hz, this increases

to 6.1% for stars with N > 11.

Red Clump stars are expected to have core rotation rates that differ from those on the RGB.

However, given the cores are undergoing expansion due to the onset of helium burning, rotation

rates are expected to decrease. This was observed to be the case in Mosser et al., 2012b. There-in

the authors reported splittings ranging from 0.01 to 0.1𝜇Hz. Therefore, it is unlikely the subset

of rapid rotators are misclassified clump stars.

One interpretation of this result is that the stars in the more rapidly rotating population

in each range in N belong to a single population with a weaker rotational coupling between

core and envelope, such that the efficiency of angular momentum transport has been reduced.

Accordingly their cores would be able to more effectively spin up as they contract. As the

core contracts, the envelope is undergoing expansion, such that we can use the evolution of core

rotation with stellar radius to infer the sign of the dependence on core contraction. Cantiello et al.

(2014) found that the increase in core rotation should scale with stellar radius asΩcore ∝ 𝑅𝛼∗ , with
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Figure 6.11: Distribution of 𝛿𝜈rot reported in G18 (grey edgecolor) and here (black edgecolor)
for stars in 3 different N ranges. The left-most panel is targets with N < 7, the middle panel has
targets in the range 7 < N < 11. The right-most is stars with N > 11. Black dotted lines are at
𝛿𝜈rot = 0.32 𝜇Hz and 0.47 𝜇Hz. Histograms on the right show the distribution in the stars with
N < 7 in pink and with N>11 in green.

𝛼 taking a value of 1.32 or 0.58, depending on whether they include just rotational instabilities

or fold in those due to magnetic torques in radiative regions. That is, the cores should spin up as

the star evolves. This is in clear disagreement with the core rotation rates measured by Mosser

et al. (2012b), who found exponents of −0.5 for stars on the RGB and −1.3 in the RC. The mean

values of stellar radius in the stars with N < 7 and N > 11 are 4.89 R⊙ and 7.14 R⊙ respectively.

For representative stars at these radii to spin up from ≈ 0.5𝜇Hz to ≈ 0.7𝜇Hz would imply a

relation of the form Ωcore ∝ 𝑅0.8
∗ . This exponent sits in between those predicted by Cantiello

et al. (2014).

6.4.2 Magnetic Perturbations and Stellar Properties

As noted in section 6.1, a core magnetic field could impact the transport of angular momentum

within a star. We found no clear correlation between the bimodality in 𝛿𝜈rot and 𝛿𝜈mag or 𝑎.

However, given a strong core magnetic field is frequently hypothesised as a solution to the

discrepancy between modelled and observed core rotation rates, constraints on the average field

strength in a large sample of stars remain in demand. In the following sections we invert the

observed magnetic splitting to constrain the average core magnetic field strength.
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Stellar Models

According to L22, the root-mean-square (rms) of the radial field strength scales with the magnetic

splitting as

⟨B2
r ⟩ =

∫ 𝑟𝑜

𝑟𝑖

𝐾 (𝑟)𝐵2
𝑟 𝑑𝑟 =

16𝜋4𝜇0𝜈
3
max𝛿𝜈mag

I , (6.12)

where I is a factor determined by the internal structure of the star. This is given by,

I =

∫ 𝑟𝑜
𝑟𝑖

(
𝑁
𝑟

)3 𝑑𝑟
𝜌∫ 𝑟𝑜

𝑟𝑖

𝑁
𝑟
𝑑𝑟

, (6.13)

where 𝑁 is the Brunt-Väisällä frequency, 𝑟 is radius and 𝜌 the stellar density. Therefore, we

require models of the internal profile of our targets to invert our measured 𝛿𝜈mag to give an

estimate of the radial field strength.

To that end, we used Modules for Experiments in Stellar Astrophysics (MESA, Paxton et al.,

2011; Paxton et al., 2013) to calculate a grid of stellar models with varying mass and metallicity.

We calculated stellar evolution tracks with masses varying in the range of those reported in

Y18 for our targets, spanning from 1M⊙ to 2M⊙ in increments of 0.05M⊙. Metallicities ranged

from -1.0dex to +1.0dex with a spacing of 0.25dex. We used a mixing length of 𝛼MLT = 2.29,

which was found via calibration of a solar model. Overshoot was treated using the exponential

formalism with 𝑓1 = 0.015 and 𝑓0 = 0.004. Mode frequencies were then calculated using GYRE.

To avoid too much computational expense, we restricted the grid to just radial modes.

A suitable model from this grid was selected for each star using the AIMS package (Astero-

seismic Inference on a Massive Scale, Rendle et al., 2019). To do this AIMS searches the grid

for the region with the highest posterior probability given the observed parameters, then explores

the surrounding space using an MCMC sampler (emcee, Foreman-Mackey et al., 2013b). For

general use in fitting global properties, AIMS interpolates between grid points. However, we

require internal profiles and are, therefore, restricted to selecting models in the grid. We choose

the model with the highest posterior probability, but note this is naturally restricted by the grid
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resolution. AIMS provides several methods to apply surface corrections to model frequencies,

of which we selected the method of Ball et al. (2014). We provided 𝑇eff , [Fe/H], log(𝑔), mass

(from Y18) alongside ΔΠ1, 𝜈max, Δ𝜈 and radial mode frequencies from the ℓ = 2, 0 model (see

section 6.2.2) as observables.

The only model parameter which could induce additional uncertainty in equation 6.12 is I.

Across all of the best fitting models, the variation in this parameter is well approximated by a

Gaussian with a spread which is 30% of the mean. If we take this as a conservative proxy for the

model uncertainty on this parameter (given our stars share similar observable properties), we

would expect a modeling error on the inferred field strength of order 30%. We took this value

forward as the model error, stating it in addition to the statistical error from the measurement of

𝛿𝜈mag, noting this is a very conservative estimate.

Mass

The presence of core convection during the main sequence is dependent on stellar mass, requiring

the star to have a mass greater than ≈1.1 M⊙ (Kippenhahn et al., 1990). A magnetic field could

then be driven in this convection zone and remain on the RGB in fossil form. Should significant

magnetic perturbations only be measured in stars of mass > 1.1M⊙, we may take this as evidence

that core magnetic fields in red giants are the remains of those generated in a convection zone

on the main sequence. However, as shown in Li et al. (2022a) and Li et al., 2023, stars with

masses below 1.1M⊙ can still develop small convective cores on the main sequence, due to the

burning of 3He and 12C outside of equilibrium. There-in the authors find that the core sizes are

not large enough to reach the hydrogen burning shell on the red giant branch. As such, modes

would be less sensitive to the presence of the field and therefore require a larger field strength

to produce a shift of similar scale. Assuming field strength does not depend on stellar mass, we

should then find that measurable magnetic perturbations in stars with M < 1.1 M⊙ are broadly

smaller in magnitude.

Figure 6.12 shows 𝛿𝜈mag as a function of stellar mass (mass values from Y18). We note that

𝛿𝜈mag values in excess of 0.04𝜇Hz only begin to appear at masses larger than≈ 1.1 M⊙. However,
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Figure 6.12: Left panel: 𝛿𝜈mag as a function of stellar mass. Right panel: Best fitting
√︁
⟨B2

r ⟩ as
a function of stellar mass.

this is not the case for small but significant magnetic splittings at values below 0.04𝜇Hz. In this

regime stars span the full range in stellar mass present in our population. This could be consistent

with a field driven in the small main sequence convection zone caused by the burning of 3He and

12C outside of equilibrium. Given that these targets have not previously been published due to

the lack of asymmetry, this highlights a potential detection bias when manually selecting targets.

This result could also be the signature of a systematic underestimate on stellar mass for the stars

with significant 𝛿𝜈mag at M < 1.1M⊙. However, comparisons to masses derived from eclipsing

binaries have shown masses from asteroseismic scaling relations are likely to be systematically

overestimated rather than underestimated (Gaulme et al., 2016; Brogaard et al., 2018; Themeßl

et al., 2018; Li et al., 2022b).

Magnetic Field Strengths

To determine the value of ⟨B2
r ⟩ that would reproduce the magnetic splitting we measured, we

utilized the best fitting models from the grid outlined in section 6.4.2. From these models

we calculated the value of I for each star. We then drew 1000 samples from the posterior

distributions on 𝛿𝜈mag and 𝜈max and calculated the mean field strength, ⟨𝐵2⟩, according to

equation 6.12. The reported field strength for each star is taken as the mean of the resulting

distribution on ⟨𝐵2⟩. Uncertainties are the standard deviation on this distribution plus the
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Figure 6.13: Best fitting
√︁
⟨B2

r ⟩ as a function of mixed mode density, N . Stars with 𝛿𝜈mag -
2𝜎(𝛿𝜈mag) > 0 are shown in orange. The remaining measurements are in grey. Blue diamonds
show values reported in L23 for stars that do not appear in this work.

expected uncertainty from the models (see section 6.4.2) added in quadrature.

The distribution of ⟨B2
r ⟩ peaks at zero, reflecting the measured magnetic splitting. For the

stars with a field value at least 2𝜎 from zero, 30% of the population have ⟨B2
r ⟩ < 30kG. The

distribution then tails with increasing field strength to the maximum at 169.4 ± 51 kG, occurring

in KIC5696081.

There is no significant correlation between the measured core field strengths and stellar mass

(see figure 6.12). At the low mass end of the distribution, the scale of the spread appears larger

in ⟨B2
r ⟩ than 𝛿𝜈mag. This is a consequence of the 𝜈−3

max dependence on 𝛿𝜈mag. For a given field

strength, a larger 𝜈max (preferentially occurring in lower mass stars) implies a smaller magnetic

splitting.

L23 identified a decrease in the core field strength as stars evolve along the RGB, but caveat

this with a note that there is significant scatter. We observe the same dependence in our larger

set of stars, as is shown in figure 6.13. There-in the authors identified the decrease follows the

decrease in the critical field strength, which sets an upper limit on the observable field strength.
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6.5 Limitations

Although the aim of this work was to catalogue a large number of stars such that we could

start exploring population statistics, we were still subject to various detection biases. Firstly, we

restricted ourselves to spectra where-in we could clearly identify all three components of the ℓ =

1 multiplets. Therefore, we are restricted to inclination in the approximate range 20° < 𝑖 < 80°.

With the assumption that stellar inclination is isotropically distributed this limits us to ≈ 70%

of the possible sample of stars.

Secondly, targets were selected by manual identification of rotational splitting. This meant

that we required spectra where-in the separation between mixed modes was significantly larger

than the rotational splitting. This defined both the lower limit on 𝜈max (100 𝜇Hz) and sets an

upper limit on the 𝛿𝜈rot for a given star. For a target with 𝜈max = 150 𝜇Hz, ΔΠ1 = 80 secs,

the expected separation between adjacent mixed modes is approximately 3𝜇Hz. Currently,

the maximum recorded core rotation rate for a red giant is 0.95 𝜇Hz (Gehan et al., 2018b).

Therefore, while our method is well suited to the range in core rotation previously reported in

the literature, stars with rotation rates exceeding a few 𝜇Hz would not have appeared in our

initial sample selection.

Finally, We do not treat envelope rotation, which would introduce additional splitting in

the p-dominated modes. Should the envelope rotation be significant, this could lead to an

overestimate in our measurement of core rotational splitting. However, surface rotation rates

in red giants are observed to be orders of magnitude smaller than the core rotation (Goupil

et al., 2013), such that they are unlikely to cause significant error. Non-standard stellar evolution

(e.g. mergers) can cause rapid envelope rotation in red giants. However, best estimates for the

prevalence of such non-standard rotators is on the order of 8% (Gaulme et al., 2020). In our

catalogue, ≈ 25% of stars have core rotational splitting larger than 0.4𝜇Hz. A study of the

relation between envelope rotational splitting, core rotational splitting and magnetic parameters

is reserved for future work.
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6.6 Conclusions

Exploiting the stretched period échelle, we have demonstrated how template matching can be

used to construct initial estimates of the perturbations to dipole mode frequencies caused by

core rotation and a magnetic field. We parameterise these using the magnetic splitting (𝛿𝜈mag),

a parameter dependent on field topology (𝑎) and core rotational splitting (𝛿𝜈rot). This allowed

us to establish well-motivated priors for 𝛿𝜈mag and 𝛿𝜈rot in 334 low luminosity red giants.

Utilizing the information gained from the stretched échelles, we performed a full fit of the

perturbed asymptotic expression to the power spectrum. This allowed us to jointly constrain

ΔΠ1, 𝑞, 𝜖g, 𝛿𝜈01, 𝛿𝜈rot, 𝑎 and 𝛿𝜈mag in 302 targets. We found that not accounting for the magnetic

perturbation when measuring the rotational splitting can lead to biased measurements when the

magnetic perturbation is large (𝛿𝜈mag on the scale of 0.1𝜇Hz). For the star with the largest value

of 𝛿𝜈mag the value of 𝛿𝜈rot reported in G18 is 70% smaller than the value we measured.

We identified a bimodality in the core rotation rates of the stars in our sample. The more

populous peak is at 𝛿𝜈rot = 0.32 𝜇Hz, with the secondary at 0.47 𝜇Hz. The location and size of

this secondary peak appears to be mass dependent. We found the distribution also evolves with

N , with the upper limit on core rotation increasing with increasing N . Assuming that in each

N range the most rapidly rotating stars belong to a secondary population, the observed increase

in core rotation rate would imply a relation of the form Ωcore ∝ 𝑅0.8
∗ . This is much closer to

the predictions in Cantiello et al. (2014), suggesting in these stars the evolution of core rotation

could be reproduced using a combination of rotational and magnetic instabilities.

We measured a magnetic splitting that is at least 2𝜎 from zero in 8% of the total sample.

Strong asymmetry was only present in 50% of these targets (4% of the full catalogue). For

the stars with a clear detection of magnetic splitting, the topology parameter is not uniformly

populated. A large percentage (42%) have values of 𝑎 exceeding 0.5, identifiable with an

architecture with the field more concentrated at the poles than the equator. Another large group

(30% of stars with significant magnetic splitting) have values of 𝑎 below -0.2, consistent with a

field concentrated near the equator.

We did not observe any correlation between magnetic and rotational parameters, and so are
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ΔΠ1 (s) 𝜖𝑔 q 𝛿𝜈mag (𝜇Hz) 𝑎 𝛿𝜈rot (𝜇Hz)
80.39 0.8 0.124 0.195 0.47 0.33

Table 6.A.1: Values of the asymptotic parameters used to construct a mock spectrum for
KIC8684542.

unable to comment on whether the additional angular momentum transport is directly related to

the magnetic fields we measured.

Although the largest magnetic splittings we measured were in stars with masses greater than

1.1 M⊙, magnetic splittings inconsistent with zero were measured in stars with masses from

1.03M⊙ to 1.6M⊙. This suggests that a main sequence convective core may not be the only

channel for generating stable magnetic fields that are observed in fossil form on the red giant

branch.

For the targets in which we measured significant magnetic splittings, the field strengths

are on the order of tens of kG, with the number of detections decreasing with increasing field

strength. The maximum value we measured was 169.4kG in KIC5696081. We confirm the

tentative conclusion made in L23 that measurable field strengths decrease as stars evolve.

6.A Parameters for Injection Recovery Test

6.B Comparisons to Literature Values

6.B.1 G-mode asymptotics

Vrard et al., 2016 (V16) published measurements of g-mode asymptotics in 6100 red giants.

Mosser et al., 2017 (M17) built on this catalogue to include the mode coupling parameter, 𝑞. In

figure 6.B.2 we show comparisons between our measurements of period spacing and coupling

parameter (which we derive from equation 6.10) and those from the aforementioned catalogues.

The strong gridding in 𝑞 is a result of the methods used in M17. On average, the values of 𝑞

reported here are higher, with the mean offset being 10%. This is below the average uncertainty

168



CHAPTER 6. ROTATION AND MAGNETISM 6.B. LITERATURE COMPARISONS

Figure 6.B.1: Corner plot showing the distribution of the asymptotic parameters, rotational
splitting and magnetic parameters across all 302 stars.
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Figure 6.B.2: Left: Difference in period spacing measured here and reported in V16. Right:
Difference in 𝑞 measured here and reported in M17.

reported in M17, which is 16%. Dhanpal et al. (2023) measured 𝑞 using .

Our period spacing measurements are consistent with those reported in V16. We note the

uncertainties reported here are smaller than those in V16 by two orders of magnitude. They are,

however, consistent with those reported in more recent studies exploiting similar fitting methods

(Li et al., 2022a; Kuszlewicz et al., 2023; Li et al., 2023).

6.C Example Corner Plots
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Figure 6.C.1: Corner plot of the asymptotic parameters of KIC11515377.
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Figure 6.C.2: Corner plot of the asymptotic parameters of KIC7018212.
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Chapter 7

Conclusions and Future Work

This thesis was dedicated to developing and applying asteroseismic analysis methods to both

identify solar-like oscillations and measure stellar internal properties in large numbers of stars.

I made measurements in increasing levels of detail, beginning with detecting the presence of

oscillations and ending with measuring small perturbations to mode frequencies due to core

magnetism and rotation. Additionally, I used the methods generated for use on real data to

quantify the asteroseismic potential of the proposed HAYDN observing mission.

In Chapters 1 and 2, I covered the basics of the evolution of the solar-like oscillator and

how we exploit measurements of their oscillations to reveal stellar fundamental properties. In

Chapter 3, I used this basis to introduce the pipeline I worked on to detect solar-like oscillations

in large datasets. In doing so, I covered the basics of Bayesian analysis, describing how we

determine the probability that a hypothesis is supported by observations of some type. These

mechanisms were used to develop two modules searching for signatures in the power spectrum

that can be used to identify solar like oscillations. In the first, we determined whether the

observed power in the spectrum was consistent with expectations for a mode envelope. In the

second we utilized the autocorrelation of the lightcurve to identify signatures of sound waves

crossing the stellar radius. We validated the method on a test set of stars observed by NASA’s

TESS mission, determining the pipeline could function to an accuracy of 93.2%.

In Chapter 4 we extended the pipeline to include methods to measure the global asteroseismic
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parameters, Δ𝜈 and 𝜈max. In doing so, I introduced a new parameterization of the statistics of a

collapsed auto-correlation function. After demonstrating the method could reproduce literature

values of Δ𝜈 and 𝜈max, I applied the pipeline to over 200,000 lightcurves. This resulted in the

first catalogue of solar-like oscillators identified using TESS short cadence data, numbering

4,177 stars. At time of writing, the catalogue has doubled the number of stars detected with

𝜈max between 280𝜇Hz and 1000𝜇Hz. These stars populate the subgiant branch, which marks

a significant transitional period where-in core hydrogen burning has ceased and the star is

undergoing structural change.

We constructed the TESS catalogue using data taken from sectors 1-46. The majority of the

lightcurves were collected in 120 second cadence, as 20 second cadence was only introduced

during the first extended mission (starting with sector 27). We found in a number of main-

sequence stars observed at both cadences, oscillations were only detectable in 20 second data,

where-in the signal-to-noise was larger. Another 30 sectors have passed since the completion

of our catalogue, meaning the amount of 20 second data available has more than doubled. In

future, we will be rerunning the pipeline on this new data, with the aim of increasing the number

of main sequence stars in which we have detected solar-like oscillations using TESS.

In Chapter 5, I introduced the asteroseismic potential of stellar clusters. I discussed the

HAYDN mission, a space mission proposed to observe stellar clusters with the main aim being

the study of solar-like oscillations. To establish the expected yield of such a mission, I generated

realistic lightcurves for a population of stars that were simulated to mimic the characteristics

of the cluster NGC 6397. I then applied the detection pipeline to this data, determining the

detection limits in lightcurves of various lengths. For year-long lightcurves, oscillations were

detected in 740 of the 6771 stars. Reducing the observing period to 3 months resulted in a net

loss of 137 detections. Regardless of length tested, we only detected oscillations in stars on

the red giant branch. For those stars in which oscillations were detectable, I used the pbjam

package to fit the ℓ = 0 and 2 modes. We reliably measured ℓ = 0 mode frequencies in 322

stars. Those stars in which we systematically could not recover the frequencies were the most

evolved in the set, having 3.4 𝜇Hz < 𝜈max < 12 𝜇Hz. Quadrupole mode frequencies (ℓ = 2) were
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recovered in 103 stars, preferentially in the least evolved (70𝜇Hz < 𝜈max < 328 𝜇hz). Finally,

I experimented with rotation and magnetism, identifying the ranges in these parameters which

produce measurable perturbations to dipole mode frequencies. For a test star at the base of

the red giant branch, I found that rotational splitting could be reliably measured in the range

0.4𝜇Hz < 𝛿𝜈rot < 2.0𝜇Hz. At splitting below 0.4𝜇Hz we could not recover the splitting in any

modes, while above 2.0 𝜇Hz the number of modes for which we could accurately recover the

splitting varied significantly for each test value of 𝛿𝜈rot. The magnetic asymmetry (a parameter

frequently used to identify magnetic signatures) was recovered in all test cases, however the

measured value was never more than 2𝜎 from zero. This work demonstrated the wealth of

asteroseismic information that could be captured by a mission like HAYDN.

At time of writing, stellar models of NGC 6397 with self consistent mode frequencies had

not been generated. Accordingly, we had to assign frequencies by matching a new set of stellar

models to stars in the simulated population. The team that produced the population synthesis for

candidate clusters are currently working on a new simulation where stars are drawn from grids

including asteroseismic parameters. These will replace our models in the published version of

Chapter 5. Additionally, I identified the ranges in which signatures of rotation and magnetism

could be recovered in the spectrum of a test star at the base of the red giant branch. In future, this

will be extended to the more evolved stars in which we could detect oscillations, to determine

how detection limits vary with evolutionary status. This will have important implications for

the use of these measurements in exploring the missing angular momentum problem.

Finally, in Chapter 6 I reported the largest catalogue of measurements of magnetic and

rotational perturbations to mode frequencies made to date. In doing so I introduced a new

method to make first estimates of the magnetic and rotational parameters for an observed star.

We used these measurements as a prior on a full fit of the spectrum of the perturbed dipole

modes in 312 stars. We identified a clear bimodality in core rotation rate, which had not yet

been reported. We found the more populous primary peak had 𝛿𝜈rot = 0.32 𝜇Hz (consistent

with previous catalogues), while the secondary peak had 𝛿𝜈rot = 0.47 𝜇Hz. The secondary

peak appears to migrate to larger 𝛿𝜈rot and become less populous as stellar mass increases.
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This introduces another feature which our current models of stellar rotation cannot account

for, opening a new chapter in our investigation of the angular momentum transport in stars. A

magnetic splitting that was more than 2𝜎 from zero was identified in just 24 stars, which were

not uniformly distributed in the topology parameter, 𝑎. This could indicate the magnetic fields

in the cores of red giants are generated with some preferential topology.

The cause of the bimodality we identified in core rotation rates is yet to be established. Our

current models for rotation in red giants produce core rotation rates that are much more rapid than

those identified with the primary peak in our distribution. Future work will include identifying

whether the stars in the more rapidly rotating secondary peak are compatible with current models,

which would provide further insight into the missing angular momentum problem. Additionally,

the magnetic parameters catalogued in the final sections of Chapter 6 constitute the largest set

ever measured. The current leading theory concerning the origins of core magnetic fields in red

giants is that they are the fossil remains of a field generated in the convective core on the main

sequence. However, such a convective core is traditionally assumed to only occur in stars with

mass greater than 1.1M⊙. We measured a significant magnetic signature in a number of stars

with masses below this limit. It has been shown that small convective cores can be generated

in stars with masses below this limit. A more complete modelling of our observed stars would

allow us to identify whether this is likely the case in these stars.

Catalogues of measurements of solar-like oscillations are providing insight into stellar pro-

cesses that have previously been observationally inaccessible. Techniques learned using Kepler

data can now be applied to the hundreds of thousands of stars observed by TESS, enabling large-

scale population studies of the internal properties of stars. An asteroseismic specific observing

mission seems inevitable, and will likely answer a number of open questions in the field of stellar

physics.
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