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Abstract 

Modern fluorescence microscopy techniques can visualise biological samples from 

micro- to nano-scale resolutions. Conventional microscopy produces images of 

cellular structures, while single molecule localisation microscopy (SMLM) localises 

individual molecules, which are represented as spatial or marked point pattern data. 

Depending on the imaging target and modality, the data arising from fluorescence 

microscopy can vary in architecture and present features with irregular or 

unpredictable geometries, which can be challenging to quantify. Topological data 

analysis is invariant of geometry and lends itself well to this form of feature extraction, 

but is yet to see widespread adaptation in quantifying biophysical properties of cellular 

structures. The cell plasma membrane is of particular interest, as the dynamic 

reorganisation of transmembrane proteins plays a crucial role in regulating cell 

signalling. Dysfunction in this process is associated with several human disorders, 

such as autoimmune diseases and cancer. Further, it is hypothesised that this 

reorganisation is influenced by the biophysical properties of the membrane, such as 

lipid composition. As such, this thesis concerns the development of novel topological 

data analysis techniques for feature extraction in image and point pattern data, with 

an emphasis on investigating membrane properties across acquisition scales. For 

conventional fluorescence microscopy, we present a topological image analysis tool 

(TOBLERONE) for cell and organelle segmentation. Then, we produce a framework 

for agent-based modelling of molecular aggregation on the plasma membrane 

(ASMODEUS), which simulates transmembrane protein dynamics. Furthermore, we 

introduce a software package (PLASMA) for partitioning marked point patterns and 

identify nano-scale lipid heterogeneity in RAMA27 SMLM data. These techniques may 

yield a promising avenue for mapping multiscale membrane properties.  
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Chapter 1: Introduction 

The focus of this thesis is on the development of topological data analysis techniques 

for processing image and marked point pattern data, with applications to investigating 

the cell plasma membrane. This chapter serves as an introduction to the properties of 

the plasma membrane, the microscopy systems used for visualising these properties, 

and techniques for analysing the data which arise from those systems. Here, we 

discuss biophysical membrane properties, taking lipid order as a specific example, and 

introduce the concept of the lipid raft hypothesis. An overview of membrane phase 

separation and the role of spatiotemporal molecular organisation is given. Further, we 

explore the principles of fluorescence microscopy (FM), with an emphasis on SMLM 

and its applications in quantifying properties of the plasma membrane. We discuss 

methods for processing image and point pattern data arising from FM, focussing on 

spatially-descriptive statistics and methods of cluster analysis. Fundamentally, we 

explore existing topological data analysis techniques, and in particular persistent 

homology, which underpins the methods presented herein. Specifically, in Chapter 2, 

we present an implementation of persistent homology for segmenting images from 

conventional FM. Then, in Chapter 3, we develop a computational framework for 

modelling transmembrane protein aggregation. This model could serve a dual 

purpose: to simulate static protein maps which recapitulate the topological properties 

seen in experimental data, and to predict protein aggregate behaviour in dynamic 

systems. Finally, in Chapter 4, we introduce algorithms for identifying and extracting 

topological features in marked point pattern data. Primarily, these methods can 

partition marked point patterns into clusters defined by both a given spatial scale and 

a quantifiable distribution of marked values. However, in this chapter, we first explore 

the motivation of this work with a discussion on the plasma membrane. 
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1.1 The plasma membrane 

1.1.1 Plasma membrane structure and function 

Membrane composition and structure 

The plasma membrane is the barrier that separates the aqueous compartments which 

form the cell interior from the surrounding extracellular medium. While the full extent 

of the plasma membrane’s function varies across cell types, its primary role is for 

maintaining cell structure and survival1. The membrane is the principle site for 

conducting cell-cell communication and regulating interactions with the surrounding 

medium1. This is owed to its highly specialised nano-environment, comprising a 

heterogeneous ecosystem of biological molecules1. One of the most prevalent 

biological molecules in the plasma membrane is the phospholipid, which comprises a 

phosphate head, with an attached variable group, connected to two acyl lipid (or fatty 

acid) tails by a glycerol or alcohol backbone (Figure 1.1a)2. The lipidome of 

mammalian plasma membranes is primarily composed of four phospholipids, 

phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylethanolamine (PE) 

and phosphatidylserine (PS), as well as the sphingolipid sphingomyelin (SM)2. Here, 

the variable group dictates phospholipid type – for example, PC presents a choline 

group, while PS presents serine2. In sphingolipids, such as SM, the glycerol 

component is replaced by a long-chain amino alcohol known as sphingosine, which is 

amide-linked to a fatty acid and phosphate group (Figure 1.1b)2. The membrane itself 

is composed of two layers of phospholipids, known as leaflets, which together form 

the phospholipid bilayer3. Here, the hydrophilic phosphate heads face towards the 

aqueous medium on either side of the membrane, while hydrophobic acyl lipid tails 

are sheltered behind them facing inwards (Figure 1.1c)4. Each acyl tail contains a 

hydrocarbon chain, which is composed of carbon and hydrogen atoms, held together 
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Figure 1.1: Lipids in the plasma membrane. a Diagram of a phospholipid. The 

hydrophobic head is comprised of a phosphate group attached to a glycerol moiety. 

Variable groups may be attached at the position labelled R. The hydrophilic fatty acid 

tails are hydrocarbons, which may be either saturated or unsaturated. b Diagram of 

sphingomyelin, which generally consists of a sphingosine base, with an 18-carbon 

chain and a double bond at position 4, attached to a phosphorylcholine fatty acid. c 

The position of the phospholipid within the phospholipid bilayer of a cell membrane. 
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by attractive forces called bonds4. In the context of acyl tail structure, adjacent carbon 

atoms may form single or double bonds – these tails are referred to as saturated and 

unsaturated fatty acids, respectively4. The fluid mosaic model, first coined by Singer 

and Nicolson in 1972, describes the bilayer as a two-dimensional fluid with associated 

biological molecules embedded (Figure 1.2)5. Eukaryotic cells contain glycolipids, 

another class of lipids, which are composed of two major moieties: a carbohydrate (a 

mono- or oligosaccharide group) and a lipid6. Glycolipids are found only on the outer 

(or exoplasmic) leaflet, the exterior surface of the membrane, acting as receptors to 

the extracellular medium (ECM) and inducing signal transduction6. The plasma 

membrane may also contain glycoproteins, which, like their glycolipid counterparts, 

also contain a carbohydrate group, but with the substitution of a peptide in place of a 

lipid6. 

Sterols (steroid alcohols) are another subtype of amphipathic lipids present in the 

mammalian plasma membrane. One such sterol is cholesterol, a 27-carbon compound 

composed of a hydrocarbon tail, four hydrocarbon rings (known as the sterol nucleus) 

and a polar hydroxyl group (Figure 1.3)7. Cholesterol is synthesised in the 

endoplasmic reticulum of the cell8, but is noticeably sparse here, and most commonly 

localised with the plasma membrane (representing around 30% of all membrane-

associated molecules)7. Owing to its hydrophilic head group and flat structure, 

cholesterol fits between the phospholipids in each monolayer, with its polar hydroxyl 

group close to the phospholipid head groups9,10. 
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Figure 1.2: A diagram of a cell plasma membrane. The lipid bilayer provides a 

foundation in which peripheral proteins, integral (transmembrane) proteins, 

glycoproteins and glycolipids are embedded. Cholesterol is present within the bilayer 

of mammalian cells. This is representative of the Singer-Nicolson (fluid mosaic) model. 

 

Proteins associated with the plasma membrane may be integral (embedded) or 

peripheral (attached to the surface via protein-protein interactions) and are largely 

responsible for regulating membrane processes and cellular function11. Some 

proteins, such as Lck or Ras proteins, may be affiliated with post-translational 

modifications12. This changes the structure and properties of the protein by proteolytic 

cleavage, adding a modifying group, such as phosphoryl, glycosyl or methyl, to one or 

more amino acids12. Integral proteins are typically transmembrane, with structures 

exposed on both the outer and inner leaflets. Such transmembrane proteins are held 

in the membrane by the hydrophobic amino acids present within their membrane-

spanning component11. Membrane receptors are one class of integral protein, which 

are largely responsible for regulating cell signalling and communication11. Of particular 

note in this thesis is the T cell receptor complex, which mediates recognition of peptide  
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Figure 1.3: Diagram of cholesterol, a 27-carbon compound composed of a 

hydrocarbon tail, a sterol nucleus and a hydroxyl group. 

 

fragments on antigen-presenting cells, and undergoes spatial reorganisation to elicit 

T cell activation13. Although the molecular composition differs on a cell-to-cell basis, 

all membranes possess lipids and proteins in roughly equal masses14. However, since 

protein molecules are larger than lipids, they only make up around 1-2% of all 

membrane molecules14. 

 

Membrane function 

The structural role of the cell plasma membrane is to keep all cellular features, such 

as the cytoplasm and organelles, isolated from extracellular solvents and foreign 

biological structures15. It is also the primary site for complex biological processes, such 

as cell-cell recognition, cell communication, and active transport of molecules from the 

surrounding medium15. Cell signalling is the mechanism by which the plasma 

membrane receives or processes information from the cell’s local environment16. Cell 

surface receptors, comprised of proteins or glycoproteins with highly specialised active 
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sites, bind to specific extracellular ligands16. This binding brings about activation of 

enzymes associated with the membrane, altering cell metabolism and ultimately giving 

rise to a cascade of chemical interactions16. Cell recognition, although functionally 

similar to cell signalling, is governed by binding of complementary molecules on 

opposing cell surfaces17. This mechanism allows the membrane to distinguish 

between neighbouring cells and is used to bring about behavioural changes of whole 

cells or tissues, such as during angiogenesis or adhesion17. 

The medium surrounding the cell contains nutrients required for cell survival, growth 

and proliferation, alongside other harmful or toxic substances, such as metabolic by-

products18. The bilayer is populated with a range of specialised transmembrane 

proteins known as channels, which open in the presence of complementary 

substrates, and facilitate diffusion of small ions or molecules through the membrane18. 

Other proteins, termed pumps, force solutes across the membrane and into the cell 

via a process called active transport19. Both transporters may be gated by ligands, 

voltage or mechanical force19. Other membrane functions include endocytosis, in 

which a region of the extracellular space is internalised by the cell, and exocytosis, in 

which vesicles of molecules are brought to the inner leaflet and their contents are 

externalised20. 

 

Lipid packing and membrane order 

Under the fluid mosaic model, the membrane exists in a state of thermodynamic 

equilibrium, afforded by the relative biophysical properties of the fluid membrane 

compartments21. One such property is membrane lipid order, which is characterised 

by lipid acyl chain structure, and can be measured directly through nuclear magnetic 

resonance (NMR) spectroscopy22. Steinkühler et al showed that membrane order is 
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proportional to membrane viscosity (resistance to change in shape or flow), and 

therefore inversely proportional to membrane fluidity (the reciprocal of viscosity)23. 

Heterogeneity in membrane order establishes a degree of varying fluidity across the 

membrane, which is essential for dynamics of lipids and proteins21. Several models 

have been proposed to describe these dynamics, including the picket fence theory24,25, 

in which the motility of transmembrane proteins with large intracellular domains is 

obstructed by the dense cortical actin meshwork, the lipid raft hypothesis26,27, in which 

protein affinity for ordered or disordered membrane regions dictates dynamics (see 

Section 1.1.2), and the size exclusion model28, in which membrane protein distribution 

is influenced by extracellular domains interacting with the crowded extracellular space. 

Generally, transmembrane proteins move laterally across the plasma membrane, but 

motion may be restricted by the presence of intracellular proteins (such as membrane 

actin-myosin or the cytoskeleton)29, contractile mechanisms of dynamic polar 

filaments24,30, electrostatic interactions between proteins and lipids31, obstruction by 

ligands28, variation in membrane order32, or post-translational modifications of 

proteins33. 

 

1.1.2 The lipid raft hypothesis 

Membrane phases 

The phospholipid bilayer can exist in a liquid-disordered, liquid-ordered or gel phase, 

although the latter is only observed in model membranes without cholesterol34. In the 

liquid-ordered phase, there is greater lipid packing, which reduces membrane 

permeability, obstructing the passage of ions and water-soluble molecules which 

otherwise would diffuse across the membrane and enter the cell35. But in the liquid-

disordered phase, there is greater fluidity and lateral mobility in the plane of the bilayer. 
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These phases depend on phospholipid composition and are mainly dictated by the 

structure of the acyl lipid tails (Figure 1.4)34. From a biochemical perspective, the 

saturated tails generally adopt trans configurations and pack tightly together in an 

ordered array, promoting the liquid-ordered phase36. Unsaturated lipid tails are more 

likely to form cis configurations and become kinked37. In this case, the acyl tail loses 

its linearity and protrudes off-centre, making it less likely to fit neatly into the membrane 

beside other phospholipid molecules37. As such, the membrane becomes highly 

disordered and packing is less efficient, promoting the liquid-disordered phase37. 

Acyl tail length correlates with increased lipid order, which increases the melting 

temperature of the ordered phase over the disordered phase38. In thermodynamics, 

entropy is defined as the measure of a system’s thermal energy per unit temperature 

that is unavailable for doing mechanical work39. In this context, entropy is interpreted 

as a measure of molecular disorder or randomness, and correlates with the number 

of geometric conformations (the three-dimensional arrangement of atoms) a molecule 

can attain40. Within unsaturated fatty acid molecules, an increase in temperature yields 

greater kinetic energy, which increases entropy and promotes lipid disorder40. Unlike 

unsaturated acyl tails, the four carbon rings which comprise the body of cholesterol 

give the molecule a rigid structure, which intercalates between phospholipid 

molecules41. This presents a dual functionality: at low temperatures, cholesterol 

prevents phospholipid molecules from clustering and stiffening, while at high 

temperatures, cholesterol reduces the entropy of acyl tails41. In either case, cholesterol 

plays a role in intra-cellular homeostasis by regulating membrane fluidity and 

counteracting the effect of changes in temperature on the nano-environment42. 

Lipids and membrane-bound molecules may present an affinity for a particular phase, 

and  aggregate  correspondingly43. Transmembrane  proteins  contain  a  hydrophobic  
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Figure 1.4: Saturated lipids and cholesterol interact more favourably with each other 

than with unsaturated lipids. Figure adapted from Levental et al26. 

 

region, known as a transmembrane domain, which embeds itself into the bilayer to 

evade water43. Lorent et al find that an increase in transmembrane domain length and 

total solvent-accessible surface area correlates with increased ordered phase 

affinity44. Recently, Gurdap et al showed that increasing the mass or glycosylation – a 

post-translational modification – of the extracellular protein domain (ECD) can 

decrease molecular diffusivity and affinity towards the ordered phase45. Initiation of 

cellular signalling has been attributed to the ECD, and many proteins undergo post-

translational modifications or ligand binding during signalling events45. 

It is hypothesised that the membrane organises itself into liquid-ordered domains of 

sub-200nm size, enriched with clusters of cholesterol and saturated lipids 

(phospholipids and sphingolipids), that move laterally within the plasma membrane as 

a unit35. These domains, called lipid rafts (Figure 1.5), may underpin cell signalling 

and communication processes46. The pertinence of bio-membrane lipid order came to 
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light when Baumgart et al demonstrated spontaneous lipid phase separation in giant 

plasma membrane vesicles (GPMVs), in which co-existing liquid phases promoted 

plasma membrane organisation into “raft-like” lipid domains47. Sezgin et al reported 

greater lipid packing in this raft-like phase, which associated with higher viscosity and 

enrichment with saturated lipids, sterol analogues and lipidated proteins48. This, 

fundamentally, validated the principle that ordered, lipid-driven phases can elicit 

functional organisation of the plasma membrane27. From an evolutionary perspective, 

this supports the notion that the plasma membrane, with minimal energy expenditure, 

could concentrate specific reactants, exclude negative regulators, induce 

conformational changes, and regulate local membrane properties26. However, 

Levental et al determine an absence of most transmembrane proteins from lipid rafts 

in GPMVs, and find that even those proteins which are included are rarely enriched49. 

Further, Saka et al observe protein-depleted membrane domains in live cells under 

super-resolution microscopy50. The biophysical properties (such as size, lifetime and 

stability) and compositions of lipid rafts are context-dependent and reflect the specifics 

of the membrane in which they arise – the full impact of this heterogeneity is yet to be 

fully accounted for51. Adding to this complexity, Tulodziecka et al propose that 

immobilised order-preferring proteins could recruit a dynamic assembly of raft-forming 

lipids, rather than lipid-driven domains recruiting freely-diffusing proteins52. The 

interplay of lipids and proteins through cooperative clustering is fundamental to raft 

function, though the cause cannot be so easily distinguished from the effect. 
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Figure 1.5: A lipid raft within a mammalian cell plasma membrane. Increased 

cholesterol promotes rigidity in the ordered phase and lipid packing excludes water 

molecules. As a result, water content is increased in the disordered phase. The 

transmembrane domain dictates protein affinity for lipid order, which may cause 

transmembrane proteins to aggregate into lipid rafts. 
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Phase separation and biomolecular condensates 

Phase separation is the physicochemical process by which a homogenous mixture 

separates into distinct phases53. Phase separation in membrane lipids can result in 

the formation of lipid rafts53. Generally, phase separation among lipids is influenced 

by factors such as lipid composition, temperature and membrane curvature53. 

Biomolecular condensates are a class of membrane-less organelles and organelle 

subdomains – including, for instance, clusters of signalling molecules at the membrane 

–  which concentrate specific collections of proteins and nucleic acids54. These 

dynamic assemblies arise from the condensation of cellular material through liquid-

liquid phase separation and are hypothesised to play a role in protein assembly and 

signalling55. Furthermore, the crosstalk between membranes and condensates can 

promote phase separation in lipids and proteins56. Condensates often present as 

relatively small assemblies (ranging from nanometres to micrometres in scale) that do 

not coarsen into a single droplet despite their known proclivity to fuse55. Furthermore, 

membranes have been reported to control the size of intracellular condensates and 

modify their material properties55. It has been shown that the interaction between 

condensates and membranes can lead to the complex remodelling of the membrane-

condensate interface, producing microscopic membranous protrusions57. 

Furthermore, Mangiarotti et al suggest that condensate wetting is a mechanism to tune 

lipid packing56. These observations offer some insight into the interaction between 

membranes and condensates at the micro-scale, but the underlying molecular 

mechanisms remain elusive and largely unexplored55. The relationship between the 

microscopic properties of the component molecules and the macroscopic properties 

of condensates is not fully understood56. Furthermore, it is not known how these 
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properties relate to biochemical and cellular functions, or if cells regulate these 

properties to achieve a functional effect56. 

 

Functional roles of lipid rafts 

Lipid rafts modulate the aggregation and mobility of transmembrane proteins, through 

lipid-mediated interactions in membrane-hosted signalling events, and regulate the 

frequency of protein encounters to determine signalling outcomes58. These rafts play 

a role in several cell survival signalling pathways, motility of transporters and ion 

channels, and death receptor signalling18,51. Alteration of the composition or 

distribution of ordered domains can disrupt cell function, up to and including cell 

death59,60. For instance, Ros-Baró et al showed that lipid rafts underpin redistribution 

and translocation of the glucose channel GLUT4 in adipose cells61. This promotes 

insulin-regulated glucose uptake into muscle cells, which is foundational for physical 

movement61. Chamberlain et al found that SNARE proteins, which mediate fusion of 

vesicles during exocytosis, associate with glycosphingolipids and cholesterol in lipid 

rafts62. This association acts to concentrate SNARE proteins at defined exocytosis 

sites on the plasma membrane, and depends heavily on membrane lipid composition 

and organisation62. Analogously, Lajoie et al found that lipid rafts regulate caveolin-1 

and dynamin-1 distribution, which is an essential prerequisite of vesicle formation in 

receptor-mediated endocytosis63. 

Lymphocytes, such as T cells, must strike a delicate balance between activating in 

response to signals from potentially pathogenic organisms and avoiding activation 

from stimuli emanating from the body’s own cells64. It is well-documented that the raft-

mediated oligomerisation, or clustering, of T cell receptors facilitates T cell activation 

and immunological specificity65-67. Upon activation, the T lymphocyte cell surface is 
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restructured, forming membrane domains at TCR-signalling foci and immunological 

synapses68. The plasma membrane condenses into the liquid-ordered phase at TCR 

activation sites, and TCR engagement promotes aggregation of lipid rafts68. The 

protein tyrosine phosphatase CD45 has been reported to both activate the Src family 

kinase Lck, which phosphorylates the TCR complex, and conversely to 

dephosphorylate TCR signalling motifs69. These mechanisms are hypothesised to 

grant CD45 both an immunoenhancing and immunosuppressive function, which 

enables graded signalling outputs while filtering weak or spurious signalling events69. 

CD45 and TCR bear large ECDs, and express affinity for disordered phase, whereas 

Lck is a small protein, which exhibits a strong affinity for the ordered phase69. Urbančič 

et al report that partial immobilisation of TCR, through aggregation or ligand binding, 

changes the complex’s preference towards a more ordered lipid environment70. This 

leads to preferential partitioning of TCR with Lck, while segregating CD45, which 

promotes immunological activation70.  Aggregation of lipid rafts results in colocalisation 

of Lck and raft-associated protein LAT (linker for activation of T cells) and exclusion of 

CD4571. Wang et al report that coupling of LAT protein condensates to ordered lipid 

domains is a prerequisite to functional membrane organisation in T cells72. Schiefer et 

al found that cholesterol depletion, and therefore lipid raft disruption, inhibited CD4+ T 

cell responses73. 

Analogously, receptor organisation plays a role in suppression of T cell signalling and 

effector functions. Programmed death ligand-1 (PDL1), expressed on antigen 

presenting cells, induces spatial reorganisation of programmed death-1 (PD1), a 

coinhibitory receptor expressed on activated T cells, into nanoscale clusters, which 

elicit an immunosuppressive response74. Fang et al showed that PDL1-presenting 

DNA origami flat sheets inhibited T cell signalling with two ligands separated by 
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200nm, but not at 13nm or 40nm74. The spatial organisation PDL1 regulates T cell 

signalling and is currently being investigated for intelligent nanotherapeutic design in 

immunotherapy74. Fernandes et al found that ligand discrimination depends crucially 

on individual contacts being ∼200 nm in radius, matching the dimensions of the 

surface protrusions used by T cells to interrogate their targets, which suggests that 

cell topography and curvature influences signalling outcomes75. These results are not 

exclusive to just T cells and suggest that protein oligomerisation, lipid ordering and 

signal initiation are indeed linked via passive biophysical concepts76. Lipid 

nanodomains are generally heterogeneous and their characteristics depend on 

specific cell, lipid and environmental conditions, although it is generally regarded that 

protein clusters are tuned to optimise the transmission of signalling information77,78. 

 

1.1.3 Interplay between lipid rafts and membrane biophysical properties 

Thermodynamics of membrane phases 

Acyl tail length correlates with increased lipid order, which increases the melting 

temperature of the ordered phase over the disordered phase38. In thermodynamics, 

entropy is defined as the measure of a system’s thermal energy per unit temperature 

that is unavailable for doing mechanical work39. In this context, entropy is interpreted 

as a measure of molecular disorder or randomness, and correlates with the number 

of geometric conformations (the three-dimensional arrangement of atoms) a molecule 

can attain40. Within unsaturated fatty acid molecules, an increase in temperature yields 

greater kinetic energy, which increases entropy and promotes lipid disorder40. Unlike 

unsaturated acyl tails, the four carbon rings which comprise the body of cholesterol 

give the molecule a rigid structure, which intercalates between phospholipid 

molecules41. This presents a dual functionality: at low temperatures, cholesterol 
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prevents phospholipid molecules from clustering and stiffening, while at high 

temperatures, cholesterol reduces the entropy of acyl tails41. In either case, cholesterol 

plays a role in intra-cellular homeostasis by regulating membrane fluidity and 

counteracting the effect of changes in temperature on the nano-environment42. 

 

Lipid order and diffusivity 

The diffusion coefficient will typically be lower in the ordered phase, due to increased 

viscosity, which correlates with tighter lipid packing79. Filipov et al found that the lateral 

diffusion coefficient decreases linearly with molecular cholesterol percentage and 

increases exponentially with temperature80, with coefficient 𝐷 ≈ 1.25 × 10-13 m2/s for 

30% cholesterol content at 313°K. Dietrich et al reports that the ratio of coefficients 

between the liquid-disordered (𝐷𝑑) and liquid-ordered (𝐷𝑜) phase is measured as 

𝐷𝑑/𝐷𝑜 ≈ 3 in model membranes81. Further, Beckers et al found a near-linear 

correlation between membrane order and diffusion coefficient in GUVs (giant 

unilamellar vesicles) and GPMVs, which reconstitute lipid bilayers, but not in 

supported lipid bilayers, which present nanoscale differences in surface topology82. 

This suggests a relationship between lipid order, melting temperature, viscosity, 

diffusivity and membrane curvature, although a functional form has yet to be fully 

quantified82. Furthermore, these properties can differ significantly across and between 

leaflets. 

 

Membrane asymmetry 

The lipid subtypes PC and SM are found predominantly in the exterior leaflet while PE, 

PI and PS are typically associated with the inner leaflet3. This difference in leaflet 

composition, alongside a variation in curvature, characterises the property of 
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membrane asymmetry21. Such asymmetry is advantageous because it ensures that 

membrane proteins are correctly oriented for their specific functions21. Lorent et al 

performed comprehensive lipidomic analysis and determine lipid species 

concentrations across the inner and outer leaflets3. The authors found discrepancies 

between lipid concentrations pertaining to both the head groups and acyl chain 

formations3, as summarised in Figure 1.6. Notably, they report that lipid tails in the 

cytoplasmic leaflet are approximately 2-fold more unsaturated than the exoplasmic 

leaflet3. Variation in cholesterol content can differ across the plasma membranes of 

mammalian cells, and may depend on cell line or primary cell origin83. For example, 

Buwaneka et al determine molecular cholesterol composition of 44.0% in the outer 

leaflet of HeLa cells and 3.6% in the inner leaflet83. In the same study, the authors find 

49.0% content in the outer leaflet of Human Pulmonary Artery Endothelial Cells 

(HPAEC) and 0.6% in the inner leaflet83. It is, however, generally regarded that the 

exoplasmic monolayer comprises a higher molecular cholesterol content and exhibits 

greater lipid packing than the cytoplasmic monolayer84. Pinkwart et al found that the 

diffusion coefficient of cholesterol was approximately twice as large as the diffusion 

coefficients of phospholipids and sphingolipids in live cells, but only in the inner leaflet 

of the bilayer85. Buyan et al report increased cholesterol concentration in the outer 

leaflet, especially in regions of relatively high curvature, whereas PC and SM 

concentrations are reduced86. Owing to these differences, it is not necessarily the case 

that lipid domains or rafts must match up in position across the leaflets3. 

 



Page | 19  

a b

c

 

Figure 1.6: The asymmetric lipidome of the plasma membrane. Molecular content of 

lipid species present in a the exoplasmic and b the cytoplasmic plasma membrane 

leaflets. Numeric percentiles are given for each molecular species in c. Figure adapted 

from Lorent et al3. 

 

Girard and Bereau showed that membrane asymmetry may arise as a natural 

consequence of differences in phospholipid and sphingomyelin count across the 
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leaflets87. Asymmetry in composition is stabilised by the presence of a high free energy 

barrier against transverse diffusion of constituents (flip-flops) and the controlled 

abundance of flippase and floppase proteins, which translocate lipids from the outer 

leaflet to the inner leaflet, and vice versa, respectively88. Menon et al find that 

phospholipid scramblases, a class of proteins responsible for translocation of 

phospholipids between the monolayers of the membrane, are impaired upon 

cholesterol loading, and therefore cholesterol acts to stabilise asymmetry89. Levental 

et al find that mammalian membranes incorporate dietary polyunsaturated fatty acids, 

which induce a reduction in membrane order4. These effects are rapidly compensated 

through upregulation of saturated lipids and cholesterol, which promotes robust 

lipidomic remodelling and recovers homeostatic membrane packing and permeability4. 

Notably, inhibition of this response leads to cytotoxicity4, which was also reported by 

Castillo et al, who showed that mitochondria-targeting cancer drugs can disrupt 

membrane asymmetry, alter membrane permeabilisation and elicit cell death90. 

 

1.1.4 Techniques to study membrane biophysical properties and lipid order 

Non-optical methods for studying membrane order 

The extent of lipidomic organisation, and even the existence of lipid rafts, is often 

drawn into question. Part of this scepticism arises from an absence of direct 

observation of lipid rafts in live cells, even with modern imaging modalities. The 

necessity for studying heterogeneity in membrane composition and biophysical 

properties has guided technological innovation. For example, electron microscopy 

(EM) is one such method for probing membrane order which makes use of electron 

optics91. When a focused beam of electrons is directed onto a coated sample, the 

metal ejects X-rays and backscattered electrons, which can be traced by a detector to 



Page | 21  

produce signal91. The wavelength of an electron used in EM depends on the voltage 

with which the microscope is operated, although this wavelength (~2-4pm) is typically 

far below the wavelength of visible light (~400-700nm)91. Since image resolution is 

proportional to imaging wavelength, this permits sub-1nm resolution91. However, EM 

only functions in samples coated with conductive metals, making the method 

unsuitable for live cell imaging91. Atomic force microscopy (AFM) can also probe 

membrane thickness by mechanically scanning the cell surface with a sharp probe 

and tracing motion92. Studies in artificial membranes have identified decreases in 

membrane thickness of up to 1nm in the liquid-disordered phase, when compared to 

the gel phase, using AFM92. However, AFM presents a slow rate of scanning which 

can lead to pronounced sample drift92. This is highly detrimental to live-cell image 

quality, especially when viewing lipid domains at the nanoscale. 

 

Optical methods for studying membrane order 

Optical imaging methods typically make use of fluorescence, which is the 

photophysical process of absorbing light and then producing light at a longer 

wavelength93. Quantitative fluorescence microscopy can be used for imaging lipid 

environments and measuring membrane lipid order in live and fixed cells, as well as 

in intact tissues (see Section 1.2). Substances which exhibit fluorescence are known 

as fluorophores93. The distribution of photonic emissions from a fluorophore is defined 

as the emission spectrum, which determines the relative intensity of each wavelength 

of light emitted93. In its ground state, a fluorophore rests in a relatively low-energy, 

stable configuration, and does not fluoresce94. When light from an external source hits 

the molecule, energy may be absorbed, and if the energy absorbed is sufficient, the 

molecule reaches a higher-energy state called an excited state94. The fluorophore 



Page | 22  

returns to the ground state and the excess energy is released, emitted as light – the 

length of time that the fluorophore remains in the excited state is called 

the fluorescence lifetime, which is typically around 10-8 seconds93. The excitation 

spectrum represents the relative emission of the fluorophore at each excitation 

wavelength93. Since the emission is of lower energy than the absorption, the light 

emitted is of longer wavelength94. Artificial fluorophores are usually designed for 

staining of specific cellular components or biological constructs95. Those used in 

imaging the plasma membrane must be amphipathic but not permeated by the 

membrane itself95. An example fluorophore, Alexa Fluor 488, is given in Figure 1.7. 

Each fluorophore presents inherent photophysical properties, which must be 

appropriately selected for, depending on target structure and imaging modality. This 

may include: 

• Stokes shift – The difference between absorption and emission maximum, 

measured in either wavelength or wavenumber96. 

• Absorption cross-section (σnet) – The probability that a photon will be absorbed 

by the fluorophore multiplied by the average cross‐sectional area of the 

molecule93. 

• Quantum efficiency – The ratio of the number of photons absorbed to number 

of photons emitted, often measured as a percentage97. Probes are generally 

selected for high absorption cross section and quantum efficiency, as this 

increases contrast against background signals and noise97. 

• Switching cycle – The average number of times the fluorophore can switch 

between dark and fluorescent states95. This should be optimised to balance the 

trade-off between reducing the impact of imaging artefacts and ensuring 

sufficient fluorophore blinking95. 
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• Photostability – In an excited state, fluorophores are more likely to react with 

oxygen in their environment, which may cause them to denature and lose their 

ability to fluoresce (photobleaching)98. The number of photons a fluorophore 

can emit before becoming photobleached varies between molecular species, 

but is typically between 104 and 105 for fluorescent proteins and between 105 

and 106 for organic dyes98. 

Furthermore, the buffers, imaging conditions and laser intensity required by the 

fluorophore must not impact cellular physiology throughout the acquisition95. Anti-

photobleaching solutions can obstruct photobleaching by reducing the oxygen 

available to fluorophores, but may be toxic to living cells95. 

Optical probes used in model membranes can discern the liquid-ordered and liquid-

disordered phases by preferential partitioning99. These fluorescent molecules, known 

as partitioning probes, are lipophilic and therefore colocalise with specific lipid 

domains99. Such probes can be viewed under conventional fluorescence microscopy 

(see Section 1.2.1) in artificial membranes where domains form at the macroscale99. 

However, conventional portioning probes would need to be mixed into the lipids prior 

to membrane formation, making them unsuitable for imaging rafts in cells99. 

Traditionally, probes used in cell studies would bind to membrane components that 

aggregate in rafts100. This could be used to determine clustering of intrinsically raft-

associated molecules, but would not demonstrate the physicochemical properties of 

the environment of the raft, unlike modern fluorescent probes100. In order to map the 

impact of lipid order on cellular function, dynamic visualisation and quantification of 

lipid packing in live cells is required. The aforementioned methods are either 

inapplicable to live-cell imaging or incapable of explicitly tracking lipid properties99,100. 

Further, the  liquid-ordered phase is itself  defined by structural arrangements of  tight, 
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Figure 1.7: The chemical composition of the fluorescent probe Alexa Fluor 488 

alongside the molecule’s excitation and emission spectra. Stokes shift is defined as 

the difference between excitation and emission peaks. 

 

highly specific lipid packing, and tagging of raft lipids with a bulky, hydrophilic label – 

such as those used in domain-specific probes – would reduce affinity for raft 

domains101. Accordingly, Sezgin et al finds that most fluorescent lipids are excluded 

from ordered phases101. However, smaller, quantitative, environmentally-sensitive 

probes offer a more practical method of probing live-cell membrane properties. 

 

Environmentally-sensitive fluorescent probes 

Fluorophores which alter their emission spectra, fluorescence intensity or 

fluorescence lifetime in response to the specific properties of their surrounding 

medium are known as environmentally-sensitive fluorescent probes66. Multi-channel 

fluorescent microscopy techniques image over several channels in sequence, 

detecting distinct ranges of wavelengths. The spatially-averaged intensity in each 
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channel can then be used as a proxy for the target membrane property. Such 

fluorescent probes include: 

• Viscosity sensors, which measure the membrane’s resistance to changes in 

shape. Some BODIPY dyes depict changes in viscosity by altering their 

fluorescence intensity and lifetime102. 

• pH sensors alter their fluorescence properties in response to acidity across the 

membrane, which is defined by the abundance of hydrogen ions (protons)103. 

pHrodo dyes are some of the most commonly used indicators of pH, for which 

green, red and deep red variants exist103. 

• Surface tension sensors are mechanosensitive. One such tension biosensor is 

Flipper-TR, which prefers a twisted molecular conformation in relaxed 

membranes104. Local lipid reorganisation stretches the probe into a planarised 

conformation as membrane tension increases – for this reason, Flipper-TR is 

called a push-pull probe104. This change of structure alters the distribution of 

electrons within the molecule, inducing a red-shift in excitation spectra and an 

increase in fluorescence lifetime104. 

 

1.1.5 Polarity-sensitive fluorescent probes 

Efficient lipid packing in the ordered phase excludes polar water molecules from the 

otherwise non-polar bilayer, resulting in a change in local environmental polarity105. As 

a result, polarity-sensitive fluorescent probes alter their emission spectra depending 

on the polarity of the surrounding medium, and can therefore be used as a proxy for 

the degree of membrane lipid order106. These probes are solvatochromic and show an 

increase in charge separation when excited in polar solvents, which results in a larger 

dipole moment107. The transitions from locally excited state in non-polar solvents to 
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internal charge transfer state in polar solvents shifts the emission maxima108. This shift 

in emission profile between liquid-disordered and liquid-ordered phases allows for 

quantitative assessment of membrane order42. This is typically achieved by calculating 

a ratiometric measurement of the fluorescence intensity recorded in two spectral 

channels, known as a generalised polarisation (GP) value42. Leung et al showed that 

the order parameter derived from NMR correlates linearly with GP from fluorescence 

microscopy with polarity-sensitive dyes22. 

 

Nile Red 

Nile Red is a solvatochromic dye, used for imaging lipid droplets and membranous 

structures in cells, which carries a quantum yield of 70% 109. The structure of Nile Red 

includes a hydrophobic phenoxazine ring, which allows the molecule to integrate into 

the plasma membrane109. In the disordered phase, Nile Red fluoresces with an 

emission maximum of 630nm, which drops to approximately 550nm in the polar 

environment of the ordered phase110. This exhibits a blue shift of 80nm and represents 

a chromatic shift from yellow to deep red111, however, Moon et al showed that the 

average Stokes shift of Nile Red molecules increased linearly with cholesterol content 

in model lipid vesicles112. Using spectrum and polarisation optical tomography, 

Zhanghao et al recorded the full spectra of Nile Red emissions, tracked dynamic lipid 

properties in subcellular membranes, and determined an increase in polarity from early 

to late endosomes110. Iaea et al used Nile Red-based probe NR12S to compare 

differences in lipid order between the cell plasma membrane and the endocytic 

recycling compartment of model cell line U2-OS113. 
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Laurdan 

The polarity-sensitive probe Laurdan comprises an aliphatic tail of 12 carbons114. As 

such, Laurdan embeds within the plasma membrane, exposing its fluorescent moiety 

to the surrounding aqueous medium115. As a derivative of the fluorescent hydrocarbon 

diphenylhexatriene, this dye has been shown to report local phase separation when 

inserted in GUVs and live cell membranes, resulting in a 50nm blue shift in the ordered 

phase, from 490nm to 440nm (blue to violet), with a quantum yield of 61%116,117. 

Laurdan has been used to demonstrate that HeLa and B35 neuroblastoma cell plasma 

membranes could be forced to undergo broad order-disorder phase transitions when 

subjected to variation in cholesterol and pH or treatment with anaesthetic118. Gaus et 

al pioneered the use of Laurdan to measure condensation of the plasma membrane 

at the site of T lymphocyte activation68. It was determined that membrane 

condensation occurs upon TCR stimulation but is prolonged by CD28 co-stimulation, 

which suggests a role of lipid rafts in mounting of the immune response68.  

 

Di-4-ANEPPDHQ 

Di-4-ANEPPDHQ is a polarity-sensitive styryl dye, which has been used to visualise 

cholesterol-rich lipid domains (Figure 1.8)119. The molecular structure of di-4-

ANEPPDHQ includes a hydrophobic polyene chain which nestles into the plasma 

membrane, parallel to lipid acyl chains, positioning its fluorescent core to interact with 

the local lipid environment119. Variations in polarity induce a 60nm blue shift in 

emission spectra (from 630 to 570nm) between membranes in the cholesterol-

containing liquid-ordered state to the cholesterol-free liquid-disordered state100,119. 

Building on previous membrane order comparisons with Laurdan, Sengupta et al used 

di-4-ANEPPDHQ  to show that cholesterol-dependent  membrane order is critical  for  
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Figure 1.8: An example polarity-sensitive probe, di-4-ANEPPDHQ. a The chemical 

structure of di-4-ANEPPDHQ. b Schematic of emission spectra within the ordered 

(green) and disordered (red) phase. Variations in intensity are tracked across two 

image channels, corresponding to the c ordered and d disordered phase. e The GP 

image is taken as a ratiometric sum of c and d. C gattii cells stained with di-4-

ANEPPDHQ were imaged under confocal microscopy as in Panconi et al122. 

 

responses generated by CD4+ T cells120. Waddington et al measured lipid order at the 

immune synapse with di-4-ANEPPDHQ and found that activation of liver X receptor 

(LXR), a key transcriptional regulator of cholesterol and phospholipid metabolism, 

significantly reduced lipid order and dampened proinflammatory T cell function121. 

 

Considerations for probe selection 

As discussed, the collective biophysical properties which induce membrane order are 

determined by the structural diversity of lipid species within the membrane123. With GP 
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as a metric of lipid-packing, the next task is in quantifying the difference between 

domains and their surrounding bulk, and determining whether this difference is even 

large enough to be detectable. Feigenson et al report that model membranes express 

relatively small differences in cholesterol concentration between the ordered and 

disordered phases124. Furthermore, Sezgin et al has shown that differences in lipid 

packing are much smaller in natural membrane models than in the synthetic models 

which are typically used to calibrate analytical methods101. Even with state-of-the-art 

imaging modalities, the limitation of discernible lipid packing would require sensitive, 

or at least highly tuneable statistical analysis. Furthermore, it has been shown that 

polarity-sensitive dyes exhibit varying sensitivity to the biological parameters which 

underpin membrane order125. For instance, Ragaller et al determine that Pro12A (a 

Laurdan derivative) performs well at sensing cholesterol content, while NR12S (a Nile 

Red derivative) is preferable for differentiating the degree of acyl tail saturation and 

the properties of the phospholipid headgroup125. Alternatively, the authors find that 

NR12A (another Nile Red derivative) is best suited for differentiating between positions 

and configurations of the double bond in unsaturated lipids125. Unlike other polarity-

sensitive dyes, di-4-ANEPPDHQ does not require multiphoton excitation and exhibits 

complex photophysics (sensitivity to multiple biophysical properties)108,123. Further, it 

has been shown that di-4-ANEPPDHQ is unaffected by membrane proteins, including 

inserted peptides, making it an ideal probe for assessing lipid packing in both live cells 

and artificial membranes126. 

 

1.2 Microscopy 

Cells are generally only visible at sub-100μm scales, and therefore microscopy 

systems must be used to examine the structure, composition and function of the 
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plasma membrane127. Conventional fluorescence microscopy (FM) permits research 

into the biophysical properties of the plasma membrane at a diffraction-limited 

resolution of ~200nm127. With the introduction of super-resolution microscopy, it is 

possible to visualise and study structures at resolutions below the diffraction limit of 

light128-130. However, the output data of FM can range from simple grayscale images 

to highly multivariate datasets131-135. This data does not necessarily represent strictly 

spatial information about cellular structures and can encompass an array of membrane 

properties136. 

 

1.2.1 Introduction to fluorescence microscopy and justification for use 

The basic fluorescence microscope 

The term “fluorescence microscope” refers to any microscope which uses 

fluorescence to generate an image137. In practice, a fluorescence microscope is an 

optical instrument, which can perform selective excitation and detection of fluorescent 

molecules within organic and inorganic samples138.  This process can be performed 

over a range of spatial and time scales, depending on the instrument setup138. A 

fluorescence microscope requires a near-monochromatic illumination source, which 

presents a higher light intensity than some widespread light sources such as halogen 

lamps139. Such light sources could include lasers, high-power LEDs, or xenon arc and 

mercury-vapour lamps with an excitation filter139. This near-monochromatic light may 

be filtered through dichroic mirrors, which are specifically designed to transmit 

particular wavelengths of light and reflect others93. A tube lens may be used to refocus 

non-converging rays from the objective lens to form an image, or collimate light, which 

is then collected by the objective lens and focused on a sample stained with 

fluorophores135. Light emitted from fluorescent molecules is then filtered back through 
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Figure 1.9: Optical diagram of a conventional fluorescence microscope. A light source 

is filtered through an excitation filter to isolate the excitation wavelength. The laser is 

reflected by a dichroic mirror, specific to the excitation wavelength, through the tube 

lens, the objective lens, and then onto the sample. Fluorophores are excited and emit 

light at a higher wavelength. Fluorescence is passed back through the dichroic mirror 

and transmitted across a barrier filter, which blocks reflected excitation light. Variations 

in intensity are recorded by a detector. 

 

a barrier or emission filter, to block out any unwanted wavelengths, and onto a detector 

for image digitisation (Figure 1.9)93. In an idealised fluorescence microscope, only 

emitted light should reach the detector – the type of detector used, such as a charge-
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coupled device (CCD) or scientific compound metal-oxide semiconductor (sCMOS) 

camera, will depend on the imaging hardware135. 

 

The diffraction limit and resolution 

When a single molecule (a point source) fluoresces, photons are emitted isotropically 

in a spherical wavefront140. As the wavefront approaches the circular aperture of an 

objective lens, it experiences Fraunhofer diffraction, and the resultant intensity 

distribution at the back focal (Fourier) plane of the objective presents as a top-hat 

function in frequency space140. The inverse Fourier transform of a top-hat function 

produces an amplitude which is a sinc function, and the intensity is a sinc squared 

function at the detector – this is known as an Airy disk138. As a result, fluorescing 

molecules appear as a diffraction pattern of light instead of an infinitely small point, 

which creates blur when several fluorophores are imaged in close proximity141. The 

functional form of the three-dimensional intensity distribution of this diffraction pattern 

is termed the point spread function (PSF)141. The resolution of FM is defined as the 

smallest distance at which two point sources can be distinguished as independent 

objects and is fundamentally limited by the diffraction of light127. The diffraction limit of 

an objective is dependent on its ability to collect light and resolve detail at a fixed 

distance from the sample – this property is known as the numerical aperture142 (NA), 

typically quantified between 0.5 and 1.5. The diffraction-limited resolution of an optical 

system was characterised by Ernst Abbe in 1873 and is given by, 

𝑑𝑥𝑦  
𝜆

2NA
, 

𝑑𝑧  
2𝜆

NA2
, 

where 𝜆 is the wavelength of light, 𝑑𝑥𝑦 is the lateral resolution, and 𝑑𝑧 is the axial 

resolution142. Note that the PSF is elongated along the optical axis (z), owing to the 
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asymmetry of the wavefront originating from the microscope objective and, as a result, 

axial resolution is typically worse than lateral138. Even with an idealised NA of 

approximately 1.5, visible light is constrained to a wavelength of at least 380nm93, 

which places a theoretical lower bound on the axial resolution of approximately 130nm. 

In practice, this is rarely achieved, with modern optics systems consistently resolving 

at 200nm or more across the focal plane143. 

 

Variants of conventional fluorescence microscopy 

To capture the depth of a specimen, the sample must be imaged over several thin 

slices144. Optical sectioning is a system for achieving 3D imaging which works by 

removing fluorescence detected from regions outside of the focal plane144. By 

repeating this process over a subset of axial positions, a sample can be split into 

several planes and reconstructed into a scan or z-stack144. FM can also be used for 

live-cell imaging provided phototoxicity is accounted for and a hospitable environment 

is provided for cells to carry out their metabolic and physiological functions145. 

Lowering the laser intensity will counteract the effect of phototoxicity, but also 

deteriorate the visible distinction between the sample and the background145. This may 

reduce the signal-to-noise ratio (SNR) of the system, which can lower image 

contrast145. Further, built-in image processing techniques such as line averaging may 

also require additional computation time, which increases the acquisition time between 

frames145. As such, temporal resolution generally comes at the expense of spatial 

resolution, and can range between microseconds and minutes145. 

FM systems will typically be selected to optimise particular optical or experimental 

parameters. For instance, laser scanning confocal microscopy illuminates one 

diffraction-limited volume of the image at a time, accepting signal only from that region, 
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which may then be averaged over a given period of time to improve SNR146. This 

excludes secondary fluorescence from regions outside the focal plane while achieving 

maximum resolutions of ~180nm laterally and ~500nm axially146. However, confocal 

suffers from longer acquisition times and may be inappropriate for imaging with 

pronounced cellular motility or drift99. As light transitions from a medium of greater 

refractive index (such as the sample) to one of lesser refractive index (such as the 

glass coverslip) at a specific incident angle, it undergoes reflection instead of 

refraction92. Total internal reflection fluorescence (TIRF) microscopy exploits this 

principle to produce an evanescent field, which penetrates no more than 100nm into 

the sample and diminishes rapidly with distance, confining fluorophore excitation to 

those in close proximity92. This enhances axial resolution (~100nm isotropically) and 

improves SNR, but is limited by a shallow penetration depth and stringent sample 

preparation requirements92. 

 

1.2.2 Single molecule localisation microscopy 

Conventional FM is a fast and relatively cheap imaging modality, which gives suitable 

spatial and temporal resolution for studying microscale cellular processes147. 

However, colocalisation and co-clustering of membrane proteins typically occurs at 

scales below the diffraction-limited resolution148. Methods in super-resolution 

microscopy, such as single molecule localisation microscopy (SMLM), can overcome 

this limit148. Instead of the grid-like images derived from conventional FM, SMLM can 

provide a series of molecule localisations as output96. These localisations are 

aggregated into point clouds which may also express additional information, such as 

localisation precision, photon count, or data regarding quantitative properties of the 

fluorophore environment96. 
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The principles of single molecule localisation microscopy 

The fundamental principle of localisation-based super-resolution microscopy is to 

temporally separate individual PSFs, avoiding ensemble activation of multiple 

fluorophores, estimate each molecule position, and reconstruct the underlying 

structure by painting fluorophores in a pointillist fashion 138. By exploiting the 

fluorescence intermittency or blinking properties of point sources, it is possible to 

image individual fluorescing point sources149. Furthermore, it has been shown that the 

pixelated PSF of an individual point source can be recapitulated by a Gaussian or Airy 

function, whose central position estimates the spatial position of the emitter, and 

whose standard deviation is a measure of the localisation uncertainty150. By 

stochastically activating sparse subsets of fluorophores in each image frame, SMLM 

can achieve temporal separation of PSFs and limit the probability of PSF overlap151. 

Once acquisition is complete, each frame is processed individually to localise all 

fluorescing molecules152. Molecule positions (taken as point coordinates) and 

localisation uncertainties are recovered from each frame, with all points overlaid and 

aggregated into one distribution128.  

 

Methods in SMLM 

Diversity in target structures and experimental conditions has given rise to a range of 

methods in SMLM, in which each modality presents its own advantages and 

disadvantages, depending largely on the type of acquisition required. For example, 

photoactivated localisation microscopy (PALM) makes use of photoactivatable 

fluorophores, which switch to an active state under UV illumination and then become 

irreversibly photobleached153,154. By exciting a small region at low UV power, only a 
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sparse subset of fluorophores will reach emission simultaneously – this process is 

repeated until a sufficient number of localisations has been recorded153. Labelling in 

PALM is typically undertaken by genetically encoding fluorescent proteins, such as 

EosFP, mEos, GFP or PS-CFP2154. Since only low power irradiation is used, PALM is 

suitable for live cell imaging and can achieve resolutions of ~20nm laterally and ~50nm 

axially96. In fluorescence, the process of transitioning from an active (emitting) state to 

an inactive (dark) state, or vice versa, is known as photoswitching95. Stochastic optical 

reconstruction microscopy (STORM) uses photoswitchable fluorophores, which are 

forced into a stable dark state, in the presence of buffers containing thiol reducing 

agents and oxygen scavengers, by laser illumination95. Then, in the presence of redox 

buffers, a low powered UV laser activates a small subset of fluorophores95. Pairs of 

dyes are often used, with one molecule acting as a primary fluorophore, while the other 

is used as a facilitator, which induces photoswitching of the primary95. In STORM, 

labelling is often achieved with immunolabelling (Figure 1.10). Direct STORM 

(dSTORM) is a variant of STORM which uses a single photoswitchable fluorophore 

that reversibly switches between active and inactive states, depending on the 

wavelength of irradiation. dSTORM can image cellular structures with resolutions of 

approximately 20nm, without the use of a facilitator155. In this instance, laser 

illumination induces an inactive dark state in fluorophores, which then stochastically 

return to their fluorescent ground state155. 
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Figure 1.10: The workflow of stochastic optical reconstruction microscopy (STORM). 

a Fluorophores are attached to membrane proteins by immunofluorescence labelling. 

b Individual PSFs are recorded over several frames with Gaussian fitting used to 

localise molecules in each image. Localisations are combined to give a point cloud. 

 

1.2.3 DNA-PAINT 

Point accumulation for imaging nanoscale topography (PAINT) is a form of SMLM 

which makes use of fluorescent ligands which diffuse freely unless bound to a target 

molecule and immobilised141. A standard variant of PAINT, known as DNA-PAINT, 

uses a hybridisation probe comprised of a fluorescently-labelled DNA fragment156. 

These fragments are termed as imager strands and bind specifically to their 

complements, known as docking strands, which are attached to target molecules156. 

Dye-labelled ligands diffuse rapidly, and may cross a space corresponding to several 

pixels between acquisition frames, giving them the appearance of low-intensity blurred 
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streaks, which can be filtered out of image frames by thresholding156. When the probe 

is immobilised for a prolonged period of time, the detector can accumulate a emitted 

photons for detection, which produces a stable PSF141. PAINT microscopy is 

advantageous for circumventing photobleaching, since stable fluorophores can be 

continuously replenished in the sample, but suffers from high background 

fluorescence signal and long acquisition times in dense samples157.  DNA-PAINT 

depends on stochastic binding and unbinding of imager and docking strands – these 

binding events are predictable, and imager strands exhibit characteristic fluorescence 

on- and off-times158. PSF separation is therefore regulated by controlling the 

concentration of the dye, rather than by exploiting the complex photophysical 

properties of fluorophores158. 

 

Advancements in DNA-PAINT 

In 2014, Jungmann et al introduce Exchange-PAINT, a multiplex imaging approach 

wherein orthogonal imager strands are sequentially applied to the same sample159. 

This allows for sequential imaging of multiple targets using only a single dye and a 

single laser source159. This was succeeded by the development of qPAINT, which 

uses the predictable second-order association kinetics of imager strands to their 

docking strands to obtain absolute quantification of molecule numbers158. More 

recently, Schueder et al developed proximity PAINT (pPAINT), an extension to DNA-

PAINT, which uses a split-docking site configuration to detect spatial proximity 

between target biomolecules160. This modality can used to detect interacting protein 

pairs with both high sensitivity and accuracy160. Ostersehlt et al demonstrated an 

analogous DNA-labelling principle for use with MINFLUX (minimal fluorescence 

photon  fluxes)  SMLM  for   3D  nanoscale   (<5nm)  imaging   of  multiple   molecular  
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Figure 1.11: An example of SMLM supplemented by machine learning. Fast DNA-

PAINT of cellular proteins a Vimentin, b TOM20 (mitochondria) c CalR-KDEL 

(endoplasmic reticulum), imaged in fixed U-2 OS cells. Cells and organelles were 

labelled with fluorescent probes JF635-S5 (a and c) and 5 nM SiR-Hy4 (b). Wide-field 

and conventional PAINT (ground truth) images are given for each data set. Predicted 

super-resolution images were generated by neural network-assisted DNA-PAINT (HT-

PAINT). Zoomed regions for each image are marked with corresponding numerals and 

show the relative similarities between ground truth and HT-PAINT output. HT-PAINT 

images were acquired ~25-fold faster than conventional PAINT. Scale bars are 5μm 

(overview) and 2μm (zoom-in). Figure adapted from Jang et al165. 

 

targets161. Recently, Narayanasamy et al developed a neural network-based approach 

which can predict fluorophore positions from high emitter density DNA-PAINT and 

reduce image acquisition time162. Further, Kessler et al introduced a short-distance 

self-quenching mechanism for fluorophore dimers to reduce background fluorescence 
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signal in DNA-PAINT163. Schueder et al report 10-fold faster imaging speeds, without 

compromising image quality or spatial resolution, by designing optimised DNA 

sequences and buffer conditions164. Jang et al built upon these principles by 

incorporating direct protein label, HaloTag7, in combination with exchangeable ligands 

and the DeepSTORM neural network (Figure 1.11) to reduce DNA-PAINT acquisition 

time (up to ~25-fold, or in the order of seconds)165. This permits fast, live-cell 

compatible imaging which bypasses photobleaching by providing a constant signal 

over time165. High-resolution and precise molecular quantification make DNA-PAINT 

a particularly advantageous form of SMLM. In Chapter 3, we use DNA-PAINT to 

localise the TCR-CD3 complex on T cell membranes, and in Chapter 4, we introduce 

an adapted ratiometric PAINT modality for use with solvatochromic probes. 

 

1.2.4 Localisation and resolution 

During pre-processing of raw SMLM data, each image frame is analysed 

independently (Figure 1.12a-b). First, correction methods such as rolling ball 

algorithms, difference of Gaussians, thresholding, or wavelet filtering may be used to 

increase contrast between active emitters and the background (Figure 1.12c)166. The 

approximate position of emitters is then determined – this may be achieved by taking 

local maxima in intensity values within a connected 8 neighbouring pixel range96. A 

localisation algorithm is used to estimate the spatial coordinates of the emitters, 

typically by fitting of PSF models to the intensity distributions of point sources (Figure 

1.12d)167. This may be achieved by Maximum Likelihood Estimation (MLE), which 

localises each molecule by identifying the positions for which the likelihood of obtaining 

the observed image is maximised167. The algorithm is computationally more expensive 

than non-iterative algorithms, but advances in graphics processing units mean modern 
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imaging systems can perform MLE in real time167. The precision of MLE depends on 

both the SNR and the accuracy of the model PSF, although PSFs can be calibrated 

experimentally and often outperform models in this case167. The accuracy of PSF 

fitting may be further improved by implementing dynamic spline PSF models168. The 

localisation uncertainty (sometimes denoted localisation precision) refers to the 

degree of uncertainty surrounding true emitter position, and is quantified as the 

difference between the true position and the coordinates returned by the localisation 

algorithm169. This directly influences the achievable spatial resolution and primarily 

depends on setup-dependent experimental conditions (e.g. optics, objectives and 

hardware), sample-dependent experimental conditions (e.g. SNR, photon count and 

blinking) and the registration potency of the algorithm used (Figure 1.12e)169. For a 

PSF with standard deviation 𝜎0 and photon count 𝑁, defined in an image with pixel 

size 𝛼 and mean background intensity 𝛽, the amended Cramér-Rao lower bound 

(CRLB) is given by, 

𝜎𝑙𝑜𝑐 ≥ √(
 2𝜎0

2 + 𝛼2

 2𝑁
)(
 6

9
+
8𝜋𝜎0

2𝛽2

𝛼2𝑁2
), 

where 𝜎𝑙𝑜𝑐 is the uncertainty of the corresponding localisation170. Theoretically, MLE 

approaches the CRLB as SNR increases167. To estimate the precision of an SMLM 

modality experimentally, multiple images can be taken of a fluorescing fiducial marker 

(e.g. TetraSpeck beads), which can be localised across all frames – the spread of all 

localisations then serves as an estimate for localisation uncertainty171. 

The resolution of an SMLM acquisition depends on such parameters as localisation 

precision, labelling density, fitting performances and temporal shifts172. One method 

of estimating resolution is to apply the SMLM modality to a data set where molecules 
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Figure 1.12: Schematic of filtering and localisation workflow. a A simulated data set 

of ground truth localisations. b The impact of blur and noise. c A filtering algorithm 

reduces background, and thresholding binarises the image to highlight PSFs. d 

Localisations are derived from the filtered image to negate the effect of imaging 

artefacts. e The impact of photon count on SNR and the observed PSF. The higher 

the photon count, the more easily identifiable the PSF, and the greater the precision 

of the localisation. Localisation estimates (red) move closer to the true molecule 

position (green) as photon count increases. 

 

are separated by a known distance, such as in nanorulers or nuclear pores. 

Computationally, resolution can be estimated using the Discretised Fourier Transform 

(DFT), which maps the image into a Fourier space173. Taking the resulting space at 

the logarithmic scale highlights an approximately circular central mass, with radius 

equal to the scale at which information content disappears into background noise – 

this serves as an estimate of resolution for the image173. This process is known as 

Fourier Spectral Analysis, and has the advantage that it does not depend on SNR173. 
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Figure 1.13: The impact of drift, and correction with fiducial markers. a A fiducial 

marker (circled in red) is added to a sample with a fluorescing ring-like structure. b As 

a result of drift, the structure appears blurred and stretched in the acquired image. c 

Binarising the image highlights the impact of the artefact on the observe structure. The 

difference in position of the fiducial marker can now be traced backwards (red arrow). 

d By tracing the dynamics of the marker, localisations can be offset to their true 

position. 

 

1.2.5 Artefact correction 

In microscopy, a visual artefact is a structural feature of the data which is not a 

legitimate feature of the sample and instead arises from experimental conditions, data 

acquisition or processing methods96.  Artefacts in SMLM may distort the representation 
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of molecular structures and dynamics. At the nanoscale, small variations in specimen 

position can produce large localisation offsets – this phenomenon, known as drift, 

depends on the speed of the imaging system and typically occurs at the range of tens 

of nanometres (Figure 1.13)174. The offset of drift can be estimated by tracking the 

displacement of fiducial markers across all image frames175. Emitter positions can then 

be more accurately determined by subtracting drift. Alternatively, piezoelectric 

actuators can automatically recalibrate the position of the sample throughout 

acquisition175. 

Stochastic blinking of individual fluorophores across multiple frames may cause 

individual emitters to be localised in multiple times – this process, known as multiple 

blinking, may induce pseudoclusters which skew spatial statistics (Figure 1.14)176. To 

correct this, multiple fluorescent probes may be used to localise the same target 

molecule, then two-colour colocalisation can discriminate against false-positive 

detections97. Alternatively, computational methods may be used to aggregate adjacent 

localisations across frames into a single spatial localisation176.  These techniques may 

yield an increase in precision but can sacrifice sample density if too many emitters are 

merged – if labelling density is too sparse, fine structural properties will not be 

resolved, irrespective of precision147. However, the higher the labelling density, the 

greater the probability of PSF overlap, which may perturb localisation uncertainty and 

alter the number of emitters detected177. This can be difficult to avoid, especially in 

cases when a high activation probability is required for fast imaging177. Depending on 

the imaging modality used, a trade-off between fluorophore density and laser intensity 

can be finetuned177. Alternatively, localisations may be filtered out by multi-emitter 

fitting algorithms, designed to detect overlap and calculate differences between 

consecutive frames178. 
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Figure 1.14: Multiple blinking artefacts that were not present in the ground truth data 

(a) may produce an excess of localisations which may induce pseudoclusters 

(highlighted in b). This arises as a result of the stochastic nature of fluorescence, which 

causes a single fluorescent molecule to emit over consecutive acquisition frames. 

Blink correction algorithms detect instances of blinking (c) and aggregate false positive 

localisations (orange). 

 

1.2.6 Super-resolution image reconstruction 

Once all localisations have been mapped and corrected for artefacts, they may be 

aggregated into a point pattern representing molecule coordinates, for which each 

point has an associated localisation uncertainty. From here, a super-resolution image 

can be reconstructed for the purpose of data visualisation or prior to applying further 

image analysis. One way of achieving this is to generate pixels with size equal to the 

average localisation precision. The intensity of each pixel may be proportional to the 

number or total photon count of all localisations that fall within its volume. Alternatively, 

the image plane may be divided into a fine grid of pixels (typically 5-20nm) and each 

localisation may be represented as a Gaussian with mean position equal to the 

estimated molecule centre, amplitude proportional to the photon count, and standard 

deviation equal to the localisation uncertainty179. Labelling density has a pronounced 

effect on the fidelity and resolution of the reconstructed image138. If we consider the 
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super-resolution image as a series of digitised points which sample a true continuous 

structure, then by the Nyquist-Shannon sampling criterion, the sampling interval must 

be greater than at least twice that of the highest spatial frequency of the sample to 

accurately reconstitute the continuous structure and preserve spatial resolution180,181. 

Therefore, if the labelling density is lower than the Nyquist interval, the structure will 

be under-sampled and the image will appear fragmented. 

 

1.2.7 Machine learning-assisted SMLM 

The magnitude and dimensionality of SMLM data sets makes them appropriate targets 

for augmentation with machine and deep learning methodologies. Speiser et al 

developed DECODE (deep context dependent), a deep learning-based tool which 

assists in localising single molecules at high emitter density182. More recently, Saguy 

et al introduced DBlink, a spatiotemporal interpolation method for generating super-

resolved video reconstructions from SMLM data183. Such techniques have, however, 

garnered concern – as interpolation, although potentially accurate, is often synthetic 

and prone to hallucinations184. Gómez-de-Mariscal et al argue that machine and deep-

learning should be used to extract insights from “gentle” imaging and prioritise 

minimising photodamage instead of recovering compromised data from harsh, 

phototoxic illumination185. The authors propose that this will permit observation of 

undisturbed living systems, and not just synthetic data retrieval185. Notably, a large, 

international consort of researchers, under von Chamier et al, released an entry-level 

platform for training deep learning networks, known as ZeroCostDL4Mic186. This has 

allowed researchers to train analytic tools for microscopy by leveraging free cloud-

based computational resources, in an effort to overcome accessibility barriers186. 
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1.2.8 Insights into lipid rafts from super-resolution microscopy 

Super-resolution microscopy has been used to visualise lipid-mediated protein 

clustering and dynamics, especially in the context of proteins which exhibit ordered-

phase affinity. Sengupta et al used PALM with pair-correlation analysis to image the 

nanoscale organisation of GPI-anchored proteins in COS-7 cells and found 

preferential localisation in raft domains14. The authors determined that these proteins 

form clusters in the ordered phase and that the number of proteins per cluster 

decreased after depletion of cholesterol with methyl-beta cyclodextrin (MβCD)14. 

Eggeling et al used STED-FCS (Stimulated Emission Depletion Fluorescence 

Correlation Spectroscopy) to detect single diffusing lipid molecules in the plasma 

membrane of living epithelial cell line PtK2187. The authors determine that 

sphingolipids and glycosylphosphatidylinositol (GPI)-anchored proteins, which are 

enriched in lipid rafts, are transiently trapped in cholesterol-mediated molecular 

complexes (for ∼10–20ms) within <20nm diameter areas187. On the contrary, Sevcsik 

et al used protein microtracking and single particle tracking with PALM to show that 

phase partitioning is not a fundamental element of GPI-anchored protein organisation 

in the plasma membrane188. Sako et al demonstrated single-molecule imaging and 

tracking of epidermal growth factor receptor (EGFR), which is known to be a raft-

associated protein189, on A431 cell surfaces190. The results suggest that lipid rafts are 

not static entities, but exhibit transient and dynamic behaviour190. Owen et al utilised 

PALM and direct STORM (dSTORM) to quantify the spatial heterogeneity of raft-

associated proteins LAT and Lck in T cells191. The authors find that these proteins 

form distinct nanoclusters within lipid rafts, which is a prerequisite for T cell 

signalling191. Sezgin et al suggest that enabling the efficient use of polarity-sensitive 

probes in super-resolution microscopy will be an important future development in the 
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study of lipid rafts48. In this vein, Bongiovanni et al propose spectrally-resolved PAINT 

microscopy, which works with environmentally-sensitive probes like NileRed to 

acquire both the nanoscale spatial coordinates and emission spectrum of single 

fluorophores171. However, in order to draw further conclusions from super-resolution 

data, appropriate quantification methods must be used, as discussed in the following 

section. 

 

1.3 Spatial statistics 

1.3.1 Spatial point patterns 

The output of SMLM takes the form of a table of values which may include the spatial 

positions of each localisation, photon counts, estimated precision, and information 

derived from environmentally-sensitive dyes147. The spatial coordinates alone 

generate a spatial point pattern – a list of estimated molecule positions which may be 

visualised as a scatter plot or point cloud (Figure 1.15). This information allows for the 

visualisation, quantification and interpretation of molecular organisation on the plasma 

membrane. Analysis methods specific for SMLM extract quantitative information from 

the primary coordinate-based data, including underlying geometry, topology, and 

number of proteins147. Spatially-descriptive statistics can be used to probe the 

underlying geometric properties of the point pattern192. 

 

1.3.2 Spatially-descriptive statistics 

Spatially-descriptive statistics do not necessarily provide a partitioning of the data, but 

can quantify spatial organisation in the point distribution and inform parameters for 

cluster analysis algorithms192. The Ripley’s functions are spatially-descriptive statistics  
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Figure 1.15: Example spatial point patterns displaying a range of cluster geometries, 

including a a completely spatially random or uniform distribution, b Gaussian clusters, 

c fibrous clusters, and d a mixed (compound) distribution of cluster geometries and 

topologies. 

 

which detect deviations from spatial homogeneity192. For an ROI of area 𝐴, containing 

𝑛 points, the Ripley’s K function is defined as, 

𝐾(𝑟)  
𝐴

𝑛(𝑛   )
∑ ∑ 𝛿𝑖𝑗(𝑟)

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

  

Here, 𝛿𝑖𝑗(𝑟) evaluates to 1 if the distance between points 𝑖 and 𝑗 is less than 𝑟, and 0 

otherwise. This is equivalent to counting the number of neighbours at each radius, 

averaging over all points and scaling by area. This result is normalised to the L 

function, 

𝐿(𝑟)  √
𝐾(𝑟)

𝜋
, 

which acts as an intermediary for the H function, 

𝐻(𝑟)  𝐿(𝑟)  𝑟  

Positive values of 𝐻(𝑟) suggest greater point density and clustering at radius 𝑟, while 

negative values suggest dispersion and homogeneity. Values close to 0 suggest a 

completely spatially random (CSR) distribution. The argmax of the H function is known  
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Figure 1.16: Plots of the Ripley’s H function for varying data geometries. a A clustered 

distribution (magenta) presents as a notable peak in the H function. The argmax of 

this peak is known as the radius of maximal aggregation, 𝑟 , and serves as an estimate 

for cluster radius. b A CSR distribution (orange) yields a relatively flat H function with 

no discernible peak, while c a homogeneous distribution (purple) creates a prominent 

dip. 

 

as the radius of maximal aggregation191 and serves as an estimate for true cluster 

size, if clusters are present and known to be circular (Figure 1.16). Owen et al used 
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image analysis based on Ripley's functions to quantify the distribution and 

heterogeneity of raft-associated proteins LAT and Lck in PALM and dSTORM data191. 

The Pair Correlation Function (PCF) is a derivative of the Ripley’s function which 

defines the probability of finding a point at a specific distance from another point, 

relative to what would be expected in a completely random distribution193. This is 

achieved by considering a reference point and counting the number of points which 

fall within distinct concentric rings at increasing distances193. The count in each ring is 

then normalised by the area of the annulus and the average density of points across 

the ROI193. The functional form of the PCF is given by, 

𝑔(𝑟)  
𝐴

𝜋𝑛(𝑛   )𝑟2
∑ ∑

𝛿(Δ𝑟/2  |(𝑟 + Δ𝑟/2  𝑟𝑖𝑗|)

Δ𝑟

𝑛

𝑗=1,𝑗≠𝑖

𝑛

𝑖=1

, 

where 𝑟𝑖𝑗 is the distance between points 𝑖 and 𝑗, and Δ𝑟 is the ring thickness. Here, 𝛿 

evaluates to 1 if 𝑟𝑖𝑗 is within a range Δ𝑟 over the inner annular radius 𝑟, and 0 

otherwise. This provides a relative probability of finding a point at a specific distance 

from a reference point, instead of within a given radius. A higher value of the PCF at 

a particular radius indicates a clustering of points at that distance, while a lower value 

suggests avoidance. In practice, Sengupta et al used pair-correlation to analyse GPI-

anchored protein distributions in PALM data and showed changes in cluster properties 

after depletion of cholesterol with MβCD14. 

 

1.3.3 Overview of cluster analysis and unsupervised machine learning 

The term cluster refers to a non-empty subset of a point pattern in which all members 

share a degree of similarity194. The notion of distance is central to data clustering 

algorithms and represents this degree of similarity between data in a given feature 

space194. A cluster analysis algorithm takes point data as input and aims to output a 
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partitioning of the data such that each point is assigned to a cluster based on some 

pre-defined metric194. Since both the input and output data is unlabelled, cluster 

analysis is considered a form of unsupervised machine learning194. The choice of 

algorithm may depend on the assumptions of the method and the parameters required. 

Quantitative studies of molecule clustering from noisy SMLM data requires accurate, 

unbiased and precise estimation tools195, but it is not always clear which, if any, 

algorithm will be most appropriate for the data set. This decision will usually be made 

on qualitative grounds; however, quantitative comparisons can be made for pre-

determined data geometries, which justify the use of particular algorithms. There are 

generally two forms of cluster analysis: global clustering, which provides spatially-

descriptive statistics regarding the data (e.g. Ripley’s functions or PCF), and complete 

clustering, which deterministically partition each data point into a specific cluster194. 

Complete clustering methods cannot explicitly detect the presence of clusters and can 

give erroneous results if applied to data without spatial structure196. It is therefore 

recommended to first undertake global clustering to determine whether clusters can 

be identified, then apply complete clustering to partition the data. Once a partition is 

identified, within- and between-cluster analysis can be performed. Within-cluster 

analysis may incorporate probing of the size, shape and density of individual clusters, 

while between-cluster analysis can determine relative differences between these 

properties among different clusters from the same data set. A multitude of cellular 

processes are driven by the assembly of biomolecules into clusters, and partitioning 

can highlight the important biological phenomena underpinning molecular 

organisation148,197. 
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Cluster properties and estimation methods 

Cluster analysis algorithms may require information about the expected properties of 

clusters in the data space177. These properties include, but are not limited to, the 

number of clusters, cluster geometry and topology, cluster size, interpoint distances, 

and typical point density within clusters196,198,199. If assumptions are imposed on the 

geometry or organisation of clusters, fewer parameters may be required196. For 

instance, k-means clustering200 assumes that there is a finite number of distinct 

Gaussian clusters present in the data and requires only one parameter, k. This 

parameter, representative of the number of clusters, may be estimated by Monte Carlo 

simulation, non-parametric slope statistics, MLE, prediction-based resampling, or 

persistent homology201,202. However, no choice of parameter will circumvent the 

hyperparameters – that is, the restriction to Gaussian geometry. Other cluster analysis 

methods may require information regarding the expected size or density of clusters, if 

not both. Assuming circularity, the radius of maximal aggregation derived from the 

Ripley’s H function can serve as an estimate for cluster radius, although this has been 

shown to vary non-linearly with true cluster size, bringing increasing inaccuracy at 

larger scales195. Density, in the context it is required for cluster analysis, may be harder 

to quantify203. Even with the true cluster radius known, the density may vary across 

the ROI, in which case the average density may not be a suitable estimate203. 

Furthermore, depending on the algorithm used, both a minimum and maximum density 

may be required199. Density is typically estimated from known experimental outcomes, 

such as the expected number of molecules per cluster203. In terms of outputs, there 

are several statistics used to evaluate the performance of a clustering algorithm on 

simulated data, such as the Adjusted Rand Index, which assesses the proportion of 

points which have the same cluster classification in both the ground truth and output, 
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adjusted for chance204,205. Alternatively, the intersection over union metric determines 

the ratio of the intersection of the convex hulls of output clusters and the convex hulls 

of ground truth clusters, compared to their union196,206. 

 

1.3.4 Geometric cluster analysis 

Geometric clustering methods circumvent parameterisation by imposing assumptions 

on cluster geometry to absorb variability in data. One such method, as discussed, is 

the k-means algorithm200, which assumes a circular or Gaussian distribution for each 

cluster (Figure 1.17). Under this assumption, each cluster pertains a central mean 

position around which each associated point is distributed subject to a quantifiable 

variance. Given an expected number of clusters k, the algorithm starts by initialising k 

centre points, randomly distributed across the data space, and assigning each 

neighbouring point to a centre based on which it is closest to200. Once all points have 

been assigned, a new mean centre is calculated from their positions and the process 

is repeated iteratively until the centres stabilise – the point assignment at convergence 

is taken to be the overall clustering200. However, the method is sensitive to the choice 

of initial cluster centres, and convergence is not always guaranteed. Further, all points 

will eventually be assigned to clusters, including outliers, and so pre-processing may 

be required. In the context of SMLM, k-means clustering has been used, for example, 

to analyse cluster properties of surface receptor HER2 on breast cancer cells imaged 

with PALM and dSTORM207. 

An advanced geometric approach known as Bayesian clustering208 makes use of the 

probabilistic law of Bayes theorem to actively determine the probability of each point 

belonging to a specific cluster. Here, each point is assigned an initial cluster allocation 

known  as  the  prior.  This  allocation  may   be  random,  but   can  also   be  chosen  
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Figure 1.17: A schematic of k-means clustering. a Cluster centres are initialised 

randomly at k positions across the ROI. Here k = 3. b Points are assigned to the cluster 

whose centre they are spatially closest to. The centre is updated to the average 

position of all points within its cluster. c This process is repeated iteratively until no 

change in centre position is produced. 

 

deterministically to improve convergence time208. Given an expected geometric 

distribution for each cluster, each allocation is systematically examined to determine 

whether a more suitable alternative exists – that is, an alternative allocation which 

maximises the probability of correct cluster choice208. After finite iterations, a posterior 

distribution is formed which maximises the probability of appropriate cluster allocation. 

This distribution is then selected as the new partitioning208. In practice, Bayesian 

clustering has been used for analysing distributions of TCR-CD3 subunit CD3ζ in 

STORM data209 and LAT in 3D PALM data210. 

 

1.3.5 Density-based cluster analysis 

Density-based cluster analysis stems from the principle that clusters produce higher 

than average point density relative to the background. Clusters are therefore 

constructed by sequentially aggregating the densest points within the ROI, which may 

be  derived deterministically or through the  use of kernel density estimation211.  While  
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Figure 1.18: A schematic of the DBSCAN cluster analysis algorithm. a An example 

data set with Gaussian clusters. b Zoom in of the square region in a. c For each point, 

the number of neighbours within a search radius ϵ is recorded. d Points which have a 

number of neighbours greater or equal to minPts are denoted as core points, while 

any neighbours of core points are denoted as border points. Here, minPts = 3. All 

remaining points are designated as outliers. e-f Clusters are formed by aggregating 

neighbouring core and border points. 

 

these methods are generally invariant of geometry, they come at the expense of 

additional parameterisation – typically requiring at least one parameter to interpret 

each of distance and density198,212. One such method is known as Density-Based 

Spatial Clustering of Applications with Noise198 (DBSCAN), and requires both a 

distance parameter, ϵ, and density minPts (Figure 1.18). Here, any points with at least 

minPts neighbours in a radius ϵ are denoted as core points and any other points within 

that radius are resigned as border points – clusters are then formed by aggregating all 

neighbouring core and border points198. DBSCAN was shown to achieve the highest 
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IoU scores on simulated data when compared to other common clustering 

algorithms196. DBSCAN has been used, for example, to quantify GPCR 

oligomerisation from DNA-PAINT data213. Topographic approaches measure the 

relative densities of peaks over their surroundings. By interpolating point densities into 

a continuous surface, local maxima, which may correspond to clusters, can be 

identified214. In the context of SMLM, topographic prominence has been used to 

compare lymphocyte function-associated-antigen 1 (LFA-1) distributions in stimulated 

and non-stimulated T cells, imaged via dSTORM214. 

Voronoï tessellation is a method of subdividing space into a number of polygonal 

regions, based on the Euclidean distance, with each region centered on a data 

point215. These regions are denoted as seeds, and each seed defines a region of 

space closer to its point than any other215. As the Voronoï edges are equidistant from 

the two nearest seeds, the simplest way of generating a diagram of seeds is to 

compute the perpendicular bisectors between them – this ensures that there is no 

intersection between any Voronoï polygons215. SR-Tesseler is a density-based cluster 

analysis algorithm which partitions data sets based on the size of these polygons216. 

Adjacent seeds are sequentially connected up until a given area threshold, which 

produces a segmentation of the tessellation, and each connected component is 

analogous to a distinct cluster216. SR-Tesseler, in particular, has been used to analyse 

receptor organisation on neuron cell surfaces, imaged via dSTORM216. 

 

1.3.6 Machine and deep dearning methods 

Machine and deep learning-based methods for cluster analysis are built on pre-trained 

models, which learn and then identify features of clusters in the data space. This is 

achieved by training models on simulated point patterns with known ground truth 
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clusters using frameworks such as self-organising maps, support vectors, or neural 

networks194,217. While the term “machine learning” traditionally encompasses both 

supervised and unsupervised learning, cluster analysis is inherently defined as 

unsupervised, and so the methodologies described here are restricted as such194. One 

such method takes as input an array of values derived from each point's nearest-

neighbour distances and as outputs a binary label indicating the cluster the point 

belongs to218. This model has undergone training via a conventional neural network to 

maximise accuracy by adjusting internal values and comparing the given output with 

the expected output218. The model was tested on novel simulated data, including 

scenarios not encountered during training, and maintained high accuracy218. Deep 

Embedded Clustering (DEC) is a deep learning-based method which simultaneously 

learns feature representations and cluster assignments using neural networks194. This 

method devises a centroid-based probability distribution and aims to minimise the 

Kullback-Liebler (KL) divergence to an auxiliary target distribution to simultaneously 

improve clustering assignment and feature representation. This probability distribution 

is iteratively derived by minimising the KL divergence with respect to a pre-calculated 

probability distribution. Here, the KL divergence serves as a loss function and is 

minimised via Stochastic Gradient Descent194. Methods such as these address the 

limitations of existing computational approaches, such as handling large-scale data 

sets and overparameterisation. However, the resulting partitions will be limited by the 

variability of the simulated input data and, as a black-box approach, it is impossible to 

determine the criteria by which clusters are assigned. 
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1.3.7 Topological data analysis 

Topology is the field of mathematics concerned with the discrete properties of 

shape219. In the context of point patterns, the term “topology” may be used to describe 

the qualitative features of spatial data219. Topological data analysis (TDA) lends itself 

to the theory of density-based clustering, as it presents methods which are inherently 

free of geometric constraints219. One method of performing TDA is to generate a 

simplicial complex over the data – this is a mathematical construct which may be used 

to characterise the topology of a point set220. This complex takes the form of a 

triangulation (Figure 1.19a) and comprises a set of nodes (0-cells), connected by 

edges (1-cells) with spaces between three adjacent edges filled by a face (2-cells), 

and (in three dimensions or higher) with spaces between three adjacent faces filled by 

a volume (3-cells)220. For example, the Vietoris-Rips complex is a subtype of simplicial 

complex which considers two nodes to be adjacent if the distance between them 

(typically Euclidean) does not exceed a given maximum radius parameter (Figure 

1.19b)220. Here, we restrict our discussion to nodes and edges alone, as these suffice 

to generate higher-dimensional constructs220.  

One cluster analysis method, known as Topological Mode Analysis Tool199 (ToMATo), 

builds on the TDA technique of persistent homology (PH). In theory, PH can make use 

of any simplicial complex221, but since our focus here is on spatial point data, we 

consider only the Vietoris-Rips complex220. This complex can be constructed across a 

continuous range of spatial scales up to a pre-defined maximum, 𝑟 (Figure 1.19b). 

Throughout this process, each connected component is formed, and then later 

absorbed by another component, save for the final mode which connects every point 

in the cloud. As such, each root is assigned a birth scale, the scale at which the 

connected component is created, and a death scale, the scale at which the component  
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Figure 1.19: Schematic of persistent homology and the Vietoris-Rips complex. a The 

k-cells which comprise a simplicial complex. Each k-cell is the generalisation of a 

triangle to k dimensions. A 0-cell represents a node, a 1-cell represents an edge 

between 2 adjacent nodes, a 2-cell represents a face between 3 adjacent edges, and 

a 3-cell represents a volume between 4 adjacent faces. b The construction of a 

Vietoris-Rips complex across spatial scales. This is analogous to considering a circle 

of radius 𝑟 around each node and taking any two nodes to be adjacent if their circles 

intersect. The radius at which a connected component is created is called the birth 
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scale, and the radius at which it is connected to a larger component is called the death 

scale. c A persistence barcode characterises each topological feature as a line with 

length equal to the persistence. Longer lines represent persistent features, while 

shorter lines represent low-persistence sub-components. d Birth scales,  , can be 

plotted against death scales, 𝑑, in a persistence diagram. The further a point lies from 

the bisector   𝑑, the higher feature’s persistence. A persistence threshold,   𝑑  

 , can be used to filter out low-persistence features. In both cases, two persistent 

features are identified, corresponding to the clusters in b. 

 

connects to another. The difference between the death and birth scale is denoted as 

the persistence222, which is recorded for each connected component. Topological 

features may be characterised by a persistence barcode (Figure 1.19c), in which each 

component is represented by a straight line initialised at the birth scale, ending at the 

death scale, and plotted on a 1D axis223. Alternatively, a persistence diagram (Figure 

1.19d), which plots the birth scale against the death scale for each connected 

component, may be used223. In both cases, components with greatest persistence (low 

birth scales and high death scales) correspond to regions of the space which form at 

low radii and do not merge with the background until substantially high scales are 

reached. A persistent threshold,  , can be introduced to filter out features which are 

not persistent. It is here that persistence homology derives its namesake, as only 

connected components with persistence greater than   will be returned. 

For ToMATo (Figure 1.20), PH is used to construct a gradient field and identify basins 

of attraction, which may signify the presence of a connected component or topological 

feature within the data224. The gradient field is derived from a density field, which may 

be interpreted as the local density of a point, as determined by kernel density 

estimation or simply counting the number of neighbours within a defined radius222. An 

ordering of points by density produces what is known as a filtration scheme225.  



Page | 62  

3

2

3 1

𝑟

3 3

2

3
4 3

3

1

00

00

3

4 3

a b c

d e f

 

Figure 1.20: A schematic of ToMATo clustering. a An example data set with Gaussian 

clusters. b Zoom in of the square region in a. c The initial steps of ToMATo are 

primarily the same as in DBSCAN, except for a slight change of notation, in which the 

search radius is denoted as 𝑟. d The point with highest density is taken to be a root 

(yellow) and points are sequentially connected to any neighbours whose root density 

is at most   different to their own, where   is the persistence threshold. In this instance, 

the persistence threshold is taken to be 3. e-f Any clusters found with root density less 

that   are filtered out and designated as outliers. 

 

Connected components are constructed by iteratively analysing each filtration entry in 

sequence to determine local maxima, while simultaneously attaching points to their 

neighbours226. In each connected component, the point of greatest density is denoted 

the root or mode and any point adjacent to the component may be attached provided 

its density is no less than   different from the mode227. Two adjacent connected 

components may be aggregated into one provided the difference between their root 

densities is no greater than  . This process is known as mode-seeking and is the 
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principle by which each connected component is identified227. At the conclusion of the 

algorithm, any object with root density less than   is also filtered out to remove 

background227. 

Fundamentally, the construction of simplices on data points induces a graph or 

network. Topological descriptors are numeric quantities which describe structural 

properties of these graphs. This includes the Betti numbers, which count the number 

of topological features (e.g. connected components or holes) at any dimension, and 

the Euler characteristic, a topological invariant which summarises the simplicial 

complex219. These statistics have been used to build machine learning pipelines for 

feature extraction in FM data228. Mapper is an alternative to persistent homology, 

which creates a simplified representation of high-dimensional data by clustering data 

points and mapping these clusters into a graph structure229. First, the data is 

transformed to a lower-dimensional space by methods of dimensionality reduction 

(typically principal component analysis). Then, the data space is covered by a set of 

overlapping intervals, which divides the space into bins. The choice of these intervals 

is user-defined and may be selected for equal size or equal point density. Within each 

bin, a cluster analysis algorithm is used to partition data points – the choice of this 

algorithm depends on user preference. The clusters are mapped to nodes in a graph, 

and edges are formed between nodes if they share any data points across the 

assigned intervals. In culmination, this reduces high-dimensional data into a lower-

dimensional representation that preserves its topological features, which allows for 

some visualisation of data shape and structure. Mapper has been used to analyse 

neuroimaging data230, genetic data in breast-cancer patients231 and biomolecular 

folding pathways232. TDA methods are inherently scalable and can handle large, high-

dimensional data sets219. This is advantageous given that the output of super-
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resolution microscopy is often characterised as big data128. Furthermore, TDA does 

not require a priori knowledge of the data structure, and does not impose strict 

assumptions on data geometry230. PH in particular is robust to noise, making it suitable 

for data that is noisy or incomplete, which may arise from imaging artefacts224. 

Furthermore, PH is relatively stable under small perturbations to the persistence 

threshold, so minor variations will not generally alter the discrete properties of features 

identified224. 

 

1.3.8 Introduction to marked point patterns 

Marked point patterns (MPPs), also known as marked point processes, are an 

extension to traditional point clouds in which each localisation is marked with additional 

values or labels233. Each point in an MPP consists of an an m-tuple in which one or 

more dimensions correspond to spatial coordinates, and all other dimensions 

represent non-spatial data (Figure 1.21). Such patterns can be either categorical, in 

which each mark arises from a finite set, or continuous, in which marks adopt scalar 

numerical values. In SMLM, categorical MPPs may arise from overlaying localisation 

maps of several molecular species, where the mark corresponds to the molecule 

type207. Continuous MPPs may be sourced through the use of environmentally-

sensitive dyes, in which the mark quantifies a property of the probe’s environment42. 

Under polarity-sensitive probes, each localisation is assigned a quantitative label in 

the form of the GP value, which represents the degree of membrane order42. 

 

1.3.9 Existing methods in MPP analysis 

For categorical MPPs, colocalisation analysis refers to any analysis of the spatial 

proximity between different points of distinct categories234. Co-clustering, on the other 

hand, is the  phenomenon by  which molecules  from distinct  categories form  spatial 
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Figure 1.21: Examples of marked point patterns. Spatial organisation may vary 

between MPPs, with some displaying distinct spatial separation in clusters, and others 

presenting as CSR. Points with similar marks may be spatially well-separated, or may 

display a high degree of overlap. 

 

clusters together234. Quantification of colocalisation and co-clustering is the primary 

strategy for determining the potential interactions of dynamic protein complexes in 

biological samples235. Dual-colour FM can be used to detect colocalisation of two 

labelled molecules236. In image data, this can be quantified by the degree of overlap 

in separate colour channels (i.e. by Mander’s coefficient) or by correlation of pixel 

intensities (i.e. by Pearson’s correlation coefficient)166,237. However, colocalisation 

analysis conducted on conventional fluorescence microscopy images may suffer as a 

result of chromatic errors and a limited spatial resolution238. In point pattern data from 

SMLM, two molecules will never occupy the precise same position, and therefore 

colocalisation is instead defined as a measure of intermolecular distance or spatial 
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association239. The simplest approach to determining point pattern colocalisation is to 

use a nearest-neighbour distance analysis237. However, this approach may yield false 

positives in the case of one species being randomly distributed237. The coordinate-

based colocalisation (CBC) value is based on the proportion of points in category B 

within the radius of a point in category A compared to the total count of category B in 

a pre-defined maximum radius239. This is normalised over area and used to calculate 

the Spearman’s rank coefficient, to which the colocalisation index is proportional239. 

This method is, however, highly sensitive to the strategy of labelling, especially when 

the same structure is labelled by two different techniques that may interfere with each 

other. State-of-the-art analysis methods, such as SODA, Clus-DoC and LAMA, probe 

for colocalisation across a range of spatial scales234,240,241. 

While traditional cluster analysis methods can be used for probing the spatial 

organisation of an MPP, they do not typically take account of the mark each point has 

been assigned242. As a result, these techniques cannot be used to determine whether 

proteins of the same value tend to colocalise or co-cluster, and therefore do not offer 

any information about the existence of underlying domains243. Some second-order 

characteristics have been adapted for investigating correlations between the locations 

and labels of MPPs. These represent functions of the distance between two points of 

the pattern, rather than the point pattern itself. Such characteristics include Isham’s 

mark correlation function and Stoyan’s kmm function (normed), as well as the mark 

variogram and the mark covariance function (unnormed)233. 

 

1.4 Outstanding questions in the field 

With the advent of super-resolution microscopy, among other probing techniques, 

more information about the composition and organisation of the plasma membrane is 
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becoming available. There is increasing evidence surmounting to the use of lipid 

domains not just as structural components of the membrane, but as functional 

molecular rafts. However, many of the mechanistic principles guiding membrane 

organisation and behaviour are unknown. Tracking the exact dynamic processes of 

individual molecules is not generally trivial, and requires imaging over several frames 

taken at sufficiently short intervals of time. Therefore, protein and lipid diffusion can 

only be measured under microscopy techniques with high spatial and temporal 

resolution. Current research efforts continue to focus on interpreting dynamic and 

marked point pattern data. Outstanding questions regarding experiments into lipid 

organisation revolve around determining whether lipid rafts are present, how best to 

identify them, and what the link between their organisation and cell function may be. 

Further, there is uncertainty about how lipid domains may vary within cells, between 

cells, and amongst organelles. Understanding how membrane compartmentalisation 

impacts cellular processes requires thorough, reproducible analysis at the nano-, 

micro- and meso-scale. Depending on the imaging target and modality, microscopy 

data can vary in architecture and present features with irregular or unpredictable 

geometries, which can be challenging to quantify. Traditional geometric analyses may 

fail to capture the structure of the data, but TDA could provide a framework to study 

these complexities and perform feature extraction effectively. However, TDA has not 

seen widespread use in analysing super-resolution data, largely owing to difficulty in 

its interpretation, especially for biologists or microscopists who may not be familiar 

with topological concepts. Here, we aim to generalise TDA towards this biological 

context. 
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1.5 Thesis objectives 

In this work, we present a series of analytic tools tailored to multifaceted microscopy 

data. Each methodology is designed to provide specific insights into the biophysical 

properties of a distinct data type, allowing for a comprehensive analysis of cellular 

membranes at varying resolutions and scales. The first of these methods is known as 

Topological Boundary Line Estimation using Recurrence of Neighbouring Emissions 

(TOBLERONE), an image analysis tool which allows for the segmentation of 2D 

images, 3D z-stacks, and spatiotemporal t-stacks. In Chapter 2, this tool is applied to 

identifying cell membranes and organelles in confocal microscopy data, which may 

aid understanding of cellular architecture and membrane properties. Then, magnifying 

to the nanoscale, we introduce a protein aggregation dynamics simulator which learns 

from spatially-descriptive statistics taken directly from SMLM data. The model serves 

a dual purpose: to simulate static protein maps which capture the topological 

properties of point patterns derived from experimental data, and to predict protein 

aggregate behaviour in dynamic systems. This approach, known as Agent-based 

Spatiotemporal Molecular Distributions Evolving Under Simulation (ASMODEUS), is 

explored in Chapter 3. Finally, in Chapter 4, we introduce a software package for 

interpreting marked point pattern data. In this context, we use this package to probe 

for evidence of lipid nanodomains in MPPs arising from ratiometric DNA-PAINT. The 

package, Point Label Analysis for Super-resolved Marked Attributes (PLASMA), 

contains two algorithms for processing SMLM data types, including point patterns with 

non-spatial dimensions. Most notably, we introduce a topological cluster analysis 

technique for partitioning of marked point patterns, which is, to our knowledge, the first 

of its kind.  
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We show that the analytic tools introduced in this work are capable of distinguishing 

the biophysical properties associated with lipid composition and order in these data 

types. Furthermore, we find evidence of regions of homogeneous membrane order at 

nanoscale resolutions. In summary, these methods, combined with multimodal 

fluorescence microscopy and SMLM, may yield a promising avenue for mapping 

membrane biophysical properties at nano- and micro-scale resolutions. This broad 

resolution spectrum facilitates a more comprehensive understanding of cellular 

environments, which may yield new discoveries in cell biology and further study into 

the micro- and nano-environment of the plasma membrane. 
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Chapter 2: Topological image analysis 

The focus of this chapter is on the implementation of persistent homology for 

segmenting visible structures in conventional fluorescence microscopy data. A 

thorough review of associated literature suggests that this is a novel application of 

topological image analysis and, in particular, depicts the first application of persistent 

homology to processing fluorescence microscopy data. 

 

Contributions 

Contributing authors 

L. Panconi1,2,3, M. Makarova4,5, R. C. May4, A. J. Collins6 & D.M. Owen1,3,7. 

 

Affiliations 

1Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, 

UK. 

2College of Engineering and Physical Sciences, University of Birmingham, 

Birmingham, UK. 

3Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, 

Birmingham, UK. 

4School of Biosciences, College of Life and Environmental Science, University of 

Birmingham, Birmingham, UK. 

5Institute of Metabolism and Systems Research, College of Medical and Dental 

Sciences, University of Birmingham, Birmingham, UK. 

6Department of Chemistry, University of Cambridge, Cambridge, UK. 

7School of Mathematics, College of Engineering and Physical Sciences, University of 

Birmingham, Birmingham, UK. 



Page | 71  

 

Author contributions 

L. P. conceptualised the project and methodology, wrote simulation and TOBLERONE 

code, performed simulations and data analysis. C. gattii cell culture was performed by 

R. C. M. HEK293 cell culture and S. pombe cell culture were undertaken by M. M. C. 

gattii, HEK293 and S. Pombe confocal microscopy data were acquired by M. M. 
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2.1 Introduction 

Advances in fluorescence microscopy have allowed for highly-resolved planar, 

volumetric and spatiotemporal imaging, producing 2D images, 3D scans and live-cell 

videos respectively134,144,244,245. Image segmentation algorithms can be used to 

separate fluorescing objects from the background and each other133-135. Without such 

techniques, researchers must undertake time-consuming manual segmentation and 

quantification, which can yield subjective results and impact reproducibility246-248. 

State-of-the-art segmentation algorithms depend on supervised machine or deep 

learning approaches, which learn to interpret patterns in training data to make 

informed predictions on new images249. Such methods include CellSeg, StarDist and 

CellPose, which carry the advantage that they are highly adaptable249-251. With the 

advent of cloud-based models such as Segment Anything252, semi-automatic 2D 

segmentation can be achieved with minimal user input – however, this approach 

requires manual annotation of each object in each image (by clicking on them in a user 

interface) and is not yet suitable for automated image analysis. As supervised learning 
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approaches, these techniques require annotated image repositories for training, which 

must be labelled manually and can be subjective. Furthermore, there is no generalised 

method of extending 2D machine learning algorithms to incorporate variations in 

geometry or higher dimensional data sets without completely retraining new 

algorithms253,254. Developments in convolutional and recurrent neural networks show 

promise for 3D cellular and biomedical image segmentation, but are yet to achieve the 

accuracy of 2D methods255,256. A fundamental drawback of these machine learning 

models is that they are black box approaches, which means there is no insight into the 

algorithm’s quality, maintainability or internal structure253. Therefore, it is impossible to 

generalise performance quality to unseen data253.  

Classical image segmentation methods are algorithms which are not based on 

supervised machine learning257. A range of these algorithms exist for 2D, 3D and 

spatiotemporal cell  segmentation257. Such models typically rely on background-

foreground separation techniques, such as Otsu thresholding258. Provided the 

foreground can be isolated, segmentation must then be undertaken by a separate 

region-based technique, such as seed-point extraction or the Watershed 

algorithm259,260. The success of these methods, in fluorescence microscopy, usually 

depends on cell geometry and image SNR261. Further, while parameter estimation is 

possible for some classical methods, it is not often built in262,263. 3D Simple 

Segmentation performs volume segmentation by binarising z-stacks subject to a given 

threshold, then performing 3D Watershed to separate objects264. 3D Spot 

Segmentation first identifies object seeds, obtained from local intensity maxima, then 

applies a local threshold around each seed and clusters voxels with values higher than 

the local threshold264. All-encompassing algorithms, which achieve true segmentation 

in a single application, probe for specific geometric structures in image data265. This 
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can make them unsuitable for segmentation of cells or organelles with complex 

morphologies, as is often seen in biological data265. Track analysis software, such as 

Trackmate, uses linking algorithms to detect objects across time series data and build 

contours which follow each object over time266. Trackmate offers several linking 

algorithms such as nearest-neighbour tracking, which links objects based on the 

shortest distance to their predicted position in the next frame266. 

Topological analysis techniques have shown promise in decomposing image intensity 

variations across gradient fields, which is a precursor for successful cell and organelle 

segmentation228,267-269. This chapter introduces an alternative segmentation algorithm 

built on the principles of persistent homology and intensity mode seeking, denoted 

Topological Boundary Line Estimation using Recurrence Of Neighbouring Emissions 

(TOBLERONE). Both 2D and 3D volumetric (3DTOBLERONE) implementations are 

introduced. Although structurally similar, spatiotemporal (t-stack) data is analysed 

separately to volumetric (z-stack) data to track dynamic processes such as splitting 

and merging of components. To permit this, a topological segmentation tool for 

temporal FM data (tempTOBLERONE) is introduced. Unlike supervised machine 

learning models, which are trained on labelled data and output labelled data, 

TOBLERONE is unsupervised, and therefore outputs labelled data without the need 

for training. 

In this work, each variant of TOBLERONE is applied to simulated data and, where 

applicable, sensitivity and specificity is compared with existing segmentation 

algorithms under imposed image artefacts. We also quantify the impact of Gaussian 

blur and noise on algorithmic performance. Further, all algorithms are demonstrated 

on experimental confocal microscopy data. We demonstrate 2D TOBLERONE on 

HEK293 cells and map membrane heterogeneity in images of Cryptococcus gattii, 
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stained with polarity-sensitive membrane dye di-4-ANEPPDHQ. We apply 

3DTOBLERONE in practice by segmenting scans of Jurkat T-cells and find that 

segmentation statistics regarding cell geometry agree with existing literature. Finally, 

we demonstrate tempTOBLERONE on dynamic, live-cell data of 

Schizosaccharomyces pombe undergoing nuclear division and GFP-GOWT1 mouse 

stem cell data (taken from the Cell Tracking Challenge270).  

 

2.2 Materials and methods 

HEK293 cell culture 

HEK293 cells were cultured with Dulbecco's Modified Eagle Medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS) at 37°C in a 5% CO2 incubator. 

Cells were passaged and seeded onto Ibidi μ-slide 8-well glass-bottomed chambers 

24h prior to imaging. Cells were stained with either 5mM di-4-ANEPPDHQ from a 5mM 

ethanol stock solution, for cell plasma membranes, or 1X NucBlue, for DNA (as a proxy 

for nuclei), 30 minutes before imaging. All media and dye were sourced from Thermo 

Fisher Life Technologies, Paisley, UK. 

 

Cryptococcus gattii cell culture 

C. gattii cells were cultured with yeast peptone dextrose (YPD) broth at 25°C under 

rotation and stained with di-4-ANEPPDHQ as in HEK293 cell line. Samples were 

treated with either 100µM 2-hydroxyoleic acid (2OHOA) or 20µM 7-ketocholesterol 3 

hours before imaging and staining. All media and dye were sourced from Life 

Technologies. 
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Jurkat T cell culture 

Jurkat E6.1 T cells were cultured in R10 medium (Roswell Park Memorial Institute 

[RPMI] 1640 medium supplemented with 10% FBS, 1mM penicillin and streptomycin 

[PenStrep], 2mM L-glutamine and 1mM sodium pyruvate [all from Sigma-Aldrich, 

Madison, WI]) at 37°C in a 5% CO2 incubator. 1mL of cells were resuspended in 

Nuclear Mask Deep Red solution (1 in 200 dilution from stock, 250X concentrate in 

dimethyl sulfoxide [DMSO]), for DNA, and WGA-AlexaFluor 488 (10 µg/mL 

concentration) for cell plasma membranes (both from Life Technologies). Cells were 

incubated for 15 minutes at 37°C and washed three times in phosphate buffer saline 

(PBS), then resuspended in 4% paraformaldehyde (PFA) for fixation, incubating for a 

further 15 minutes at 37°C, then washing again three times in PBS (PFA and PBS 

supplied by Life Technologies). 

 

Schizosaccaramyces pombe cell culture 

S. pombe was grown in yeast extract with supplements (YES) medium. Media 

preparation and genetic techniques follow protocols given in literature271. An S. pombe 

strain expressing BOP1-mCherry (ribosome biogenesis protein 1) was produced 

through genetic transformation of the wild type strain under homologous 

recombination. Plasmids containing the mCherry gene and 3’UTR fragment of BOP1 

gene (SPAP32A8.03c) were constructed via standard molecular biology methods 

given in literature271. Endogenous BOP1 gene was tagged with mCherry and 

maintained all native regulatory elements. Transformation was performed using lithium 

acetate-based method described in literature271. 
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Static confocal microscopy 

Live HEK293 and C. gattii cells were imaged with a Zeiss LSM 780 laser-scanning 

confocal microscope at 37°C, while Jurkat T cells were imaged with a Zeiss LSM 900 

confocal in confocal scan mode at 37°C. Excitation and emission channels were 

defined as in Table 2.1 for each dye. 4× line averaging was used across all 

acquisitions. For C. gattii cells imaged with di-4-ANEPPDHQ, GP images were 

constructed by calculating GP values for each pixel, as in literature (see Appendix)108. 

 

Dye Name Excitation Wavelength Emission Range 

di-4-ANEPPDHQ 488nm 500-580nm (green), 620-750nm (red) 

NucBlue 405nm 420-500nm 

Deep Red 638nm 650-750nm 

AlexaFluor 488 488nm 500-600nm 

Table 2.1: Excitation wavelength and fluorescence channels for each dye. 

 

S. pombe dynamic imaging 

S. pombe cells were placed in sealed growth chambers containing 2% agarose YES 

medium. Imaging was undertaken using a Zeiss Axiovert 200M microscope with a Plan 

Apochromat 100× 1.4 NA objective. The microscope comprised an UltraView RS-3 

confocal system, with a CSU21 confocal optical scanner, 12-bit digital cooled 

Hamamatsu Orca-ER camera, and krypton-argon triple line laser illumination source. 

Image z-stacks with seven sections and frame depth of 0.5μm were acquired at 

intervals of 1 minute. Then, t-stacks were obtained by undertaking z-stack maximum 

projection using FIJI/ImageJ (v. 2.9.0)272. 

 



Page | 77  

Simulating images and evaluating algorithmic performance for 2DTOBLERONE 

To produce simulated 8-bit images which better represented real cell morphologies, 

all experimental data, including C. gattii, S. pombe, Jurkat T cells and HEK293 images, 

were put through CellPose v3.0.10 to extract cell masks273. In total, 2167 masks were 

identified and each cell mask was converted into a separate binary image. For each 

simulation, an empty 256 by 256 image matrix was initialised (with all pixel intensities 

set to 0). Then, for each image matrix, the following process was repeated until 5 

failures:  

1. Randomly select a cell mask image from the available masks. 

2. Add the mask image to the image matrix at a randomly-selected location. 

3. Check if the max pixel intensity of the image matrix is greater than 2 (i.e. direct 

overlap of two cells). If so, record a failure and reject mask placement, 

otherwise continue. 

This entire process was repeated to give 100 simulated images. Then, each image 

was multiplied by a mask pixel intensity, with intensities ranging between 0.1 and 0.9 

in increments of 0.1. Gaussian blur (with standard deviation σ1 ranging between 0.2 

and 2 in increments of 0.2) was applied in base R (v. 4.2.3) and Gaussian noise (with 

standard deviation σ2 ranging between 3 and 30 in increments of 3) was applied using 

the blur function of the EBImage R package (v. 4.19.13)274. Gaussian distributions 

were chosen to reflect the properties of noise and blur which may arise from 

fluorescence microscopy275. This gave a total of 900 data quality conditions, which 

were considered for each image, giving 90000 simulations in total. 2DTOBLERONE 

was performed on each simulation with the mask pixel intensity as persistence 

threshold. Sensitivity and specificity (see Appendix for formulas) were calculated for 

each simulation within an 11 by 11 pixel grid around mask boundaries. The relative 
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difference between the number of components returned and the number of true cell 

masks in the image was recorded for each image. 

 

Simulating images and evaluating algorithmic performance for 3DTOBLERONE  

For each 8-bit simulation, an empty 256 by 256 by 50 voxel array was initialised (with 

all voxel intensities set to 0). Then, for each array, the following process was repeated 

until 3 failures:  

1. Randomly select a 3D cell mask image from the available masks (as above). 

2. Add the mask image to the array at a randomly-selected location. 

3. Check if the max voxel intensity of the image matrix is greater than 2 (i.e. direct 

overlap of two cells). If so, record a failure and reject mask placement, 

otherwise continue. 

This entire process was repeated to give 100 simulated z-stacks. Each stack was 

multiplied by a mask voxel intensity ranging between 0.4 and 0.9 in increments of 0.1. 

Gaussian blur (with standard deviation σ1 ranging between 0.4 and 2 in increments of 

0.4) was applied in base R (v. 4.2.3) and Gaussian noise (with standard deviation σ2 

ranging between 6 and 30 in increments of 6) was applied using the blur function of 

the EBImage R package (v. 4.19.13)274. This gave a total of 150 data quality 

conditions, which were considered for each z-stack, giving 15000 simulations in total. 

3DTOBLERONE was performed on each simulation with the mask voxel intensity as 

persistence threshold. Sensitivity and specificity (see Appendix for formulas) were 

calculated for each simulation within an 11 by 11 by 11 voxel grid around mask 

boundaries. The relative difference between the number of components returned and 

the number of true cell masks in the image was recorded for each stack. 
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Simulating images and evaluating algorithmic performance for tempTOBLERONE  

First, 2D images were generated as for 2DTOBLERONE above. Then, for each image, 

19 additional time frames were considered, with each frame determined by comparing 

to the image in the previous frame. For each cell mask in the image, the following 

process was repeated until 5 failures: 

1. Randomly select an angle 𝜃 between 0 and 2𝜋 and a step size 𝑠 between 0 

and 10 pixels. 

2. Move the cell mask to the pixels at the end of the path of length 𝑠 in the direction 

of angle 𝜃 (taking ceiling of values for precise integers). 

3. Check if the max pixel intensity of the image is greater than 2 (overlap). If so, 

reject the move and record failure, otherwise proceed to next mask. 

This entire process was repeated to give 100 simulated t-stacks. Mask intensities, 

Gaussian blur and Gaussian noise were simulated and imposed as for 

3DTOBLERONE above, giving 15000 simulations in total. tempTOBLERONE was 

performed on each simulation with the mask pixel intensity as persistence threshold. 

Sensitivity and specificity (see Appendix for formulas) were calculated for each 

simulation within an 11 by 11 by 3 pixel grid around mask boundaries. The relative 

difference between the number of components returned and the number of true cell 

masks in the image was recorded for each stack. 

 

Simulated images for failure cases 

Two C. gattii cells were manually segmented from FM data and overlaid onto an image 

with no background. Three additional copies of this image were made. The first image 

was overlaid with Gaussian noise with standard deviation of 50.  In the second image, 

the distance between cells was reduced such that their mask boundaries overlapped. 
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In the third image, the background signal was increased to reduce image contrast. 

This was achieved by first multiplying all pixel intensities by 0.5, then overlaying 

Gaussian noise with standard deviation of 10 and Gaussian blur with standard 

deviation of 0.5. Finally, all pixel intensities were mapped linearly from a 0-1 intensity 

range to a 0.25-0.75 intensity range. Images were 256 by 256 pixels in size. All image 

processing was undertaken in in FIJI/ImageJ (v. 2.9.0). 

 

Persistent homology in image analysis 

The raw output data of fluorescence microscopy provides an image or stack, 

represented as a numeric matrix or array. TOBLERONE takes such an array as input, 

alongside a persistence threshold  , which determines the algorithm’s sensitivity to 

overlapping components. A density field is interpreted directly as the density of 

photons emitted by fluorescent probes across the ROI, represented in the grayscale 

image as the intensity of each pixel. A filtration scheme is constructed by ordering the 

intensity of each pixel across each frame. In each connected component, the pixel or 

voxel of greatest intensity is denoted the root or mode and any pixel adjacent to the 

component may be attached provided its intensity is no less than   different from the 

mode227. This implementation of persistent homology is analogous to ordering a 

sequence of binarised images by thresholding over all possible intensities (Figure 

2.1a-c). This is achieved by mapping each active pixel onto a node and assigning an 

edge to each pair of adjacent nodes – this representation is referred to as the grid 

topology (Figure 2.1d). The primary assumption of TOBLERONE is that a connected 

component is defined by a set of pixels in which a path between any two pixels can be 

achieved by a finite series of lateral or diagonal movements across nodes within the 

grid topology. This is equivalent to connecting adjacent nodes within a 3 by 3 grid, for  
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Figure 2.1: Schematic of TOBLERONE. a An example image with 25 pixels, 

represented by a matrix in which each entry contains a numeric value between 0 and 

1, denoting fluorescence intensity. b Binarised image at thresholds of t = 1.0, 0.5 and 

0.0, respectively. c The filtration matrix constructed by assigning each pixel a value 

corresponding to the order at which it was activated. Pixels which became active at 

the same threshold are numbered arbitrarily. d The network representation of the 

image at filtration values corresponding to the thresholds above. Here, f denotes the 

maximum filtration value permitted. As the filtration value increases, two connected 

components form and then merge into one component. e The persistence diagram 

constructed from the topological decomposition of the image. This plots the birth 

threshold,  , against the death threshold, 𝑑, for each component identified. The 

persistence of each component is represented by     𝑑. Two prominent points 

are found in region  , given by  ≥     which correspond to the two bright objects in 

the original image. 

 

2DTOBLERONE, and a 3 by 3 by 3 grid, for 3DTOBLERONE (Figure 2.2). The output 

of TOBLERONE is a list of distinct connected components, represented by lists of 
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pixels. See Figure 7.1 (Appendix) for conceptual diagram of 2D and 3D 

TOBLERONE. See Sections 7.2.1 and 7.2.2 for algorithm pseudocode. 

 

Parameter selection 

An appropriate persistence threshold can be estimated by initialising at       and 

perturbing the threshold until the returned number of connected components matches 

the anticipated number. Increasing the threshold results in greater merging and 

reduces the number of connected components found, while decreasing the threshold 

reduces the penalty on segmentation and increases the number of components 

returned (Figure 2.3). For data derived under the same imaging conditions, an 

estimate for the persistence threshold can be derived from a representative image and 

then applied to all images in the data set. 

 

Persistent homology for 2D image + time data 

Since 3D TOBLERONE identifies separate connected components in 3D space, all 

voxels connected to the initial root will be aggregated into one component. This would 

be inappropriate for live-cell video data, as the algorithm would be unable to track 

splitting (e.g. by mitotic division) or merging (e.g. by vesicle fusion) of objects which 

were otherwise distinct. Instead, tempTOBLERONE processes each frame with 

2DTOBLERONE, then collates components across frames. Functionally, this 

determines each temporally-distinct connected component and the corresponding 

spatial roots for each frame. Initialising at the first frame, the algorithm iterates over 

each pixel in each component and compares with pixels occupying the same positions 

in the  following frame  (Figure 2.4). If the  number of  unique roots is  unchanged, the  
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Figure 2.2: Topological representations of a z-stack. a Stacks may be binarised by 

thresholding so that specific voxels become activated. b Each voxel represents a point 

in 4D grayscale colour-space. c The network representation establishes connectivity 

between neighbouring active voxels. Increasing the persistence threshold permits 

connection of lower intensity voxels. 
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Figure 2.3: The impact of changing persistence on the segmentation identified by 

TOBLERONE. a The persistence defines the granularity of the segmentation. b As 

persistence increases, components undergo increased connectivity which reduces the 

number of components returned, but increases size. 

 

spatial root of the spatial component is assigned as the new spatiotemporal root of a 

spatiotemporal component. If two or more unique roots are shared among the same 

pixels in the following frame, the component whose root has brightest intensity absorbs 

all other components and overwrites their roots (Figure 2.5). This allows for a single 

component to split into multiple components in a subsequent frame (Figure 2.5a-b). 

Simultaneously, each spatial root is recorded across all frames and if any root is found 

to be connected to two separate spatiotemporal components, then this implies that the 

components have merged. As such, all spatiotemporal components which share a 

single  spatial  root  are  aggregated,  preserving  the  component  with  the  brightest  
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Figure 2.4: Topological decompositions of videos, or t-stacks. a Videos are comprised 

of a series of distinct frames. b 2D segmentation establishes connectivity within 

frames, but not between frames. c Temporal topological segmentation connects 

components spatially and temporally while tracking addition or deletion. An example 

spatiotemporal component (pink) is formed from a series of spatial components. 

 

spatiotemporal root (Figure 2.5c-d). See Figure 7.2 (Appendix) for conceptual 

diagram of tempTOBLERONE and Section 7.2.3 for algorithm pseudocode. 

 

Image and stack segmentation software 

The TOBLERONE software package (v. 1.0.3) was written in the R programming 

language (v. 4.2.3) and employed in the integrated development environment RStudio, 

(2022.07.1+554). TOBLERONE is available for use under GNU General Public 

License (v. 3.0). Otsu thresholding and the Watershed algorithm were undertaken 

using built-in functions with the EBImage R package (v. 4.19.13)274. Otsu thresholding 

is parameter-free  and so  required no  finetuning. Appropriate  input parameters  were  
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Figure 2.5: Tracking component segmentation over time with tempTOBLERONE. a 

Diagram of one component splitting into five across several time frames. b Schematic 

lineage tree of the spatiotemporal objects given in a. c Diagram of two components 

merging into one. d Schematic lineage tree of the spatiotemporal objects given in d. 

Exemplar stacks taken from Panconi et al277. 

 

determined iteratively for the watershed algorithm. 3D Simple Segmentation and 3D 

Spot Segmentation were undertaken in FIJI/ImageJ (v. 2.9.0) using the 3DSuite plugin 

(v. 4.0.93)264. Suitable input parameters were determined iteratively for both 3D 

classical algorithms. Nearest-neighbour tracking was applied with Trackmate (v. 

7.11.1) in FIJI/ImageJ using pre-defined masks from tempTOBLERONE to determine 

track lines266,276. For C. gattii cells imaged with di-4-ANEPPDHQ, mean GP values 

were taken per-cell and calculated by averaging GP values from all pixels comprising 

the component boundary, as identified by TOBLERONE. 
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2.3 Results 

2.3.1 2D segmentation of simulated images with TOBLERONE 

100 simulated images were generated from cell masks (see Materials and Methods 

for all data simulation methods). Gaussian blur was simulated over each pixel with 

standard deviation 𝜎1   1.2, and Gaussian noise with standard deviation 𝜎2   18. All 

mask pixel intensities were fixed at 0.5. Each image was segmented under 

TOBLERONE, alongside two alternative segmentation approaches, Otsu’s method 

and the Watershed algorithm, to compare performance278,279. For each algorithm, we 

calculated segmentation sensitivity and specificity (see Appendix for formulas). Here, 

sensitivity represents the probability of labelling an individual pixel as active, given that 

the pixel is active in the ground truth image, and specificity represents the probability 

of labelling an individual pixel as inactive, given that the pixel is inactive in the ground 

truth image280. To avoid skewing statistics, we considered pixels only within an 11 by 

11 grid around each pixel comprising the component boundaries (that is, 5 pixels in 

each direction). Each image took no longer than 5 seconds to segment on a single 

processor. Under these image conditions, TOBLERONE achieved a mean sensitivity 

of 0.9412 and a mean specificity of 0.8762. TOBLERONE surpassed the sensitivity of 

Otsu thresholding (0.8726), but did not surpass the specificity (0.9306). Further, 

TOBLERONE showed lower sensitivity than the Watershed algorithm (0.9964) but 

surpassed its specificity (0.4322). In this case, the sensitivity of the watershed 

algorithm was greater on account of oversaturated segmentation. Algorithm 

performance on exemplar images is given in Figure 2.6. 
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Figure 2.6: Segmentation of exemplar image data for visual representation (taken 

from Panconi et al281). a-f A series of toy images exhibiting a range of geometries and 

topologies. Gaussian noise and blur are simulated over each image with standard 

deviations 𝜎1    2 and 𝜎2   8, respectively. TOBLERONE, Otsu thresholding and 

the Watershed algorithm are performed to recover the original segmentation. 
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To further explore the impact of image degradation on TOBLERONE’s performance, 

each of the 100 simulated images was overlaid with varying degrees of Gaussian 

noise and blur (see Materials and Methods for quantification). Each image was 

segmented by TOBLERONE, with sensitivity and specificity calculated as above. 

Results are given in Figure 2.7 and suggest that TOBLERONE yields a small, 

quantifiable decrement in both sensitivity and specificity as either 𝜎1 or 𝜎2 are 

increased. However, segmentation sensitivity shows a greater response to changes 

in noise, while specificity seems more sensitive to changes in blur. 

An overview of common failure cases is given in Figure 2.8. This includes toy images 

with increase shot noise (Figure 2.8b), overlapping cell boundaries (Figure 2.8c), and 

low image contrast (Figure 2.8d). Noise can yield unwanted activation or deactivation 

of nodes in the grid topology. This can both disrupt connectivity within components 

and increase the likelihood of detecting pixels in the background. Increased cell 

proximity, which is more likely to occur as cell density increases, may cause adjacent 

cells to be aggregated into one connected component. This may then require 

additional post-processing (e.g. by Watershed) to get an accurate cell count or 

boundary line profile. As the image contrast decreases, the difference in intensity 

between background and cell pixels also decreases. If pixels in the background 

exceed the intensity of pixels in the cell boundary, they may be connected to the 

component. Under ideal conditions, the lowest intensity pixel across all cells will be 

brighter than the highest intensity pixel in the background. 

 

2.3.2 2D segmentation of fluorescence microscopy data with TOBLERONE  

TOBLERONE was used to segment two cell types: the R265 strain of C. gattii, which 

are typically spherical, and  human embryonic kidney (HEK293) cells, which  exhibit a 
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Figure 2.7: Impact of Gaussian blur and noise on sensitivity and specificity of 

TOBLERONE. a An example simulated image constructed from cell masks. b 
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Gaussian noise and blur are simulated over each image (for this case, with standard 

deviations 𝜎1      and 𝜎2    ). c Cell masks are recovered by TOBLERONE and 

compared to the ground truth to calculate sensitivity and specificity. d-e Heatmaps of 

the mean sensitivity and specificity (as defined above) of TOBLERONE over all 

simulated images. 

 

more complex geometry, incorporating finger-like protrusions (see Materials and 

Methods for all cell culture and imaging methods). Cryptococcal cells were cultured 

in YPD media and HEK293 cells in DMEM media. Both were held in coverslip-

bottomed microscope dishes, stained with di-4-ANEPPDHQ (for cell plasma 

membranes) or Nucblue (for DNA in HEK293 cells) for 20 minutes at 37°C and imaged 

live via a Zeiss LSM 780 laser-scanning confocal microscope. Segmentation was 

performed with TOBLERONE, Otsu thresholding and the Watershed algorithm. 

Example cell and organelle masks from HEK293 data are displayed in Figure 2.9. For 

this example, TOBLERONE seemed to successfully identify the non-convex 

morphology of the HEK293 cell, while also showing discrimination against 

background. Results suggest that both whole cells (Figure 2.9a-d) and organelles 

(Figure 2.9e-h) can be segmented via TOBLERONE. 

Further, GP images (Figure 2.10a-c) were calculated for each C. gattii data set. Line 

profiles were extracted from the boundaries of the cell masks to approximate the 

plasma membrane (Figure 2.10d-f) and the average GP was determined across all 

pixels in each line (Figure 2.10g). This was repeated for control (untreated) cells, as 

well as those treated with 2OHOA or 7-ketocholesterol (Figure 2.10h). Between the 

control and both treatment conditions, we determine a statistically significant 

difference in the average GP value at the 1% significance level, suggesting that both 

2OHOA and 7-ketocholesterol reduce membrane order in C. gattii.  
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Figure 2.8: Common failure cases for TOBLERONE. In each panel, a toy image is 

given (left) alongside the output of TOBLERONE (right) with persistence     9. 

Segmented components are given in red and (where applicable) orange. a Two C. 

gattii cells, segmented manually and overlaid onto an image with no background. b 

The image in a, overlaid with Gaussian noise with standard deviation of 50. c The 

image in a, with cells now in closer proximity of each other such that their boundaries 

overlap. d The image in a, with lower image contrast and higher background signal. 

All images are 256 by 256 pixels. 

 

2.3.3 3D segmentation of simulated z-stacks with 3DTOBLERONE 

As with planar TOBLERONE, a set of 100 z-stacks was simulated from cell masks 

(see Materials and Methods for all data simulation methods). Spherical Gaussian 

blur was simulated over each voxel with standard deviation 𝜎1   1.2, and Gaussian 

noise with standard deviation 𝜎2   18. All mask voxel intensities were fixed at 0.5.  

Each stack was segmented using 3D TOBLERONE, as well as 3D Simple 

Segmentation and 3D Spot Segmentation264. An exemplar segmentation for each 

algorithm is given in Figure 2.11. Sensitivity and specificity were calculated as above 

(see Appendix),  considering only  voxels within  an 11 by  11 by  11 grid (5 voxels in 



Page | 93  

e f

    

g h

a b

    

c d

 

Figure 2.9: Results of segmentation algorithms on experimental data. a Image of a 

HEK293 cell stained with di-4-ANEPPDHQ. b-d Masks of the HEK293 cell as identified 

by TOBLERONE, Otsu thresholding and the Watershed algorithm, respectively. e An 

image of several HEK293 cell nuclei stained with Nucblue. f-h Masks of each nucleus 

as identified by TOBLERONE, Otsu thresholding and the Watershed method, 

respectively. 

 

each direction) of each active voxel comprising the ground-truth object boundaries. 

Each simulation included a 256 by 256 pixel ROI with a depth of up to 50 frames. For 

all stacks, runtime was less than 2 minutes on a single processor. 

3DTOBLERONE achieved a mean sensitivity of 0.9362 and a mean specificity of 

0.9549. The sensitivity of 3DTOBLERONE surpassed the sensitivity of both 3D Simple 

Segmentation and 3D Spot Segmentation (0.2863 and 0.3248 respectively). The 

specificity of 3D Simple Segmentation (0.9998) and 3D Spot Segmentation (0.9977) 

exceeded the specificity of 3DTOBLERONE. To quantify the impact of data quality on 

3DTOBLERONE’s performance, each of the 100 simulated images was overlaid with 

varying  degrees   of  Gaussian  noise  and   blur  (see  Materials  and  Methods   for  
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Figure 2.10: TOBLERONE as a tool for identifying variations in membrane lipid order. 

a-c GP images of C. gattii cells from the control group, those treated with 2OHOA and 

those treated with 7-ketocholesterol, respectively. Cells were stained with di-4-

ANEPPDHQ. Psuedocolour applied to reflect the difference in GP values across the 

membrane. d-f Masks of the same cells, as found by TOBLERONE, overlaid onto the 

grayscale images. Incomplete cells lying on the image periphery have been manually 

excluded. g The GP line profile extracted from the boundary of a C. gattii cell. h Mean 

GP value across all pixels comprising the membrane. Mean values were taken per 

cell. Treatment conditions are as follows: untreated R265 cells (R265), R265 cells 

treated with 2OHOA (R265 2OHOA) or R265 cells treated with 7-ketocholesterol 

(R265 7-Ketosterol). 

 

quantification). Figure 2.12 highlights the change in mean sensitivity and specificity 

across all data for these data quality conditions. Results suggest that the sensitivity 

and specificity of 3DTOBLERONE generally deteriorate as 𝜎1 or 𝜎2 increase. As with 

2DTOBLERONE, segmentation sensitivity shows a greater response to changes in 

noise, while specificity seems to be more sensitive to changes in blur. 
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Figure 2.11: Exemplar cases of 3D segmentation. a A simulated double helix 

structure. Branches between the two main backbone strands have a lower voxel 

intensity than the strands themselves. b Results of 3D Simple Segmentation on helix 

data. The entire structure is returned as one object. c Results of 3D Spot Segmentation 

on helix data. A significant portion of the object is no longer detected. d Results of 3D 

TOBLERONE on helix data. The two main backbone strands and each branch 

between are detected as separate components. Exemplar stacks were adapted from 

Panconi et al277. 

 

2.3.4 3DTOBLERONE for volumetric cell segmentation 

Non-activated Jurkat T-cells were cultured and labelled with both Nuclear Mask 

DeepRed and WGA-AlexaFluor 488 before fixation with 4% PFA. A z-stack was 

recorded for each colour channel using a Zeiss LSM 900 confocal microscope in 

confocal scan mode. This cell line typically exhibits a spherical morphology, with cells 

floating separately in suspension (Figure 2.13a), making them a good candidate for 

testing image segmentation algorithms. Compared to 3D Simple Segmentation 

(Figure 2.13b) and 3D Spot Segmentation (Figure 2.13c), 3DTOBLERONE shows 

appropriate discrimination against background, but may be sensitive to membrane 

perturbations  or blur  at the  cell periphery  (Figure 2.13d). In  this instance,  we have 
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Figure 2.12: Results of 3DTOBLERONE segmentation on simulated data sets. 

Changes in mean sensitivity (a) and specificity (b) for all data sets are recorded against 

the standard deviations of the Gaussian blur (𝜎1) and Gaussian noise (𝜎2) used. 

 

extracted the distribution of cell volumes (Figure 2.13e) for all 31 cells identified. 

Results suggest that the average volume of a Jurkat T-cell is 19 1. μm3, 

corresponding to an average diameter of ~15.5μm (assuming circularity), which is in 

accordance with existing literature282-284. 
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Figure 2.13: Segmentation algorithms on experimental data. a 3D visualisation of 

fluorescing Jurkat T-cells. b Results of 3D Simple Segmentation on cell data. c Results 

of 3D Spot Segmentation on cell data. d Results of 3D TOBLERONE on cell data. e 

Histogram of cell volumes identified by 3D TOBLERONE, the mean volume of 

19 1. μm3 is signified by a dashed line. f Histogram of mean voxel intensity identified 

by 3D TOBLERONE. 

 

2.3.5 Dynamic t-stack segmentation with tempTOBLERONE 

Further to the analyses on volumetric simulations, we generated 100 t-stacks, with cell 

masks moving between frames to simulate cell motility (see Materials and Methods 

for all  data simulation  methods). Here, we  quantify the sensitivity  and specificity  of  
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Figure 2.14: Results of tempTOBLERONE segmentation on simulated data sets. 

Changes in the mean sensitivity (a) and specificity (b) for all data sets are recorded 

against the standard deviations of the Gaussian blur (𝜎1) and Gaussian noise (𝜎2) 

used. 

 

tempTOBLERONE under varying noise and blur (see Materials and Methods for 

quantification). As before, we determine the sensitivity, specificity and number of 

connected components returned for each data set. For t-stacks, an 11 by 11 by 3 pixel 

grid was explored around each active ground-truth pixel. This ensured that each frame 
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would only be compared to the previous and subsequent frames. All simulated data 

sets, each including a 256 by 256 pixel ROI with up to 22 frames, took no longer than 

2 minutes to segment on a single processor. The mean sensitivity and specificity 

scores of the segmentations returned by tempTOBLERONE for all data quality 

conditions are given in Figure 2.14. As above, tempTOBLERONE experiences a drop 

in both sensitivity and specificity as either 𝜎1 or 𝜎2 are increased. Across all data 

quality conditions, tempTOBLERONE achieved an average sensitivity of 0.8606 and 

average specificity of 0.9749. 

 

2.3.6 TIA for cell tracking and trajectory mapping 

S. pombe, expressing BOP1-mCherry, was cultivated and genetically modified under 

standard protocols, with the BOP1 gene tagged with mCherry through homologous 

recombination271. Cells were imaged in sealed growth chambers containing 2% 

agarose YES medium, captured using a Zeiss Axiovert 200M microscope equipped 

with an UltraView RS-3 confocal system, with image z-stacks obtained at 1-minute 

intervals. Then, z-stack maximum projection images were processed using 

FIJI/ImageJ. Images were separated into distinct channels to distinguish nuclei from 

cell membranes and analysis was conducted on the underlying nuclear dye channel 

(taken at 600-710nm wavelength light in accordance with mCherry emission spectrum) 

to isolate nuclear envelopes from cell plasma membranes (Figure 2.15a-b) and 

promote clearer segmentation. Changes in connectivity, here brought about by nuclear 

division, are tracked over time (Figure 2.15c). In particular, an additional component 

was generated between the 12th and 13th minute of acquisition, suggesting that 

progression from telophase to interphase in the nuclear division of S. pombe can occur 

in  under a  minute, in accordance  with existing  literature285. Furthermore, we  apply  
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Figure 2.15: Applications of tempTOBLERONE to cell data. Time series data of S. 

pombe cells (a) and nuclei (b) undergoing nuclear division. c Spatiotemporal 

segmentation of nuclei undergoing division. tempTOBLERONE was performed on 

stacks in b, with masks overlaid onto images in a. A nuclear division is recorded at 

13min. d Snapshot of GFP-GOWT1 mouse stem cell data. e Pre-processing: 

brightness of each pixel is doubled to increase image contrast. f Segmentation results 

from temporal TOBLERONE. g Track lines derived from applying Trackmate to 

segmentation. 
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tempTOBLERONE to GFP-GOWT1 mouse stem cell data (Figure 2.15d), acquired 

under a Leica TCS SP5 with a Plan-Apochromat 63x/1.4 (oil) objective lens, as taken 

from the Cell Tracking Challenge270,286. Following pre-processing (Figure 2.15e), 

results show segmentation with clear background separation (Figure 2.15f). By 

inputting cell masks directly into track analysis software, such as Trackmate, we can 

identify cell trajectories (Figure 2.15g)266,276. This suggests that topological video 

analysis may be a viable avenue for tracking cell motility and mitotic processes. 

 

2.4 Discussion 

This chapter introduces TOBLERONE, an image segmentation algorithm which 

makes use of persistent homology to construct connected components from pixel 

intensity variations. This allowed for generic image segmentation and object 

quantification in 2D spatial, 3D volumetric and 2D + time data. Each algorithm was 

performed on a series of simulated data sets to quantitatively compare segmentation 

sensitivity and specificity against pre-existing classical methods. Then, TOBLERONE 

was applied to conventional FM data sets, comprising a range of cell and organelle 

geometries. This included C. gattii, S. Pombe, Jurkat T cells and GFP-GOWT1 mouse 

stem cells, as well as HEK293 cells and their nuclei. 

 

2.4.1 Summary of results 

2D TOBLERONE achieved a mean sensitivity of 0.9412 and a mean specificity of 

0.8762. Notably, Otsu thresholding showed a sensitivity of 0.8726 and specificity of 

0.9306, while the Watershed algorithm achieved a sensitivity of 0.9964 and specificity 

of 0.4322. Therefore, 2D TOBLERONE may be beneficial to users who prioritise 

segmentation sensitivity without largely compromising specificity. 3DTOBLERONE 

achieved a mean sensitivity of 0.9362 and a mean specificity of 0.9549, which 
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surpassed the sensitivity of 3D Simple Segmentation and 3D Spot Segmentation 

(0.2863 and 0.3248) but did not surpass the specificity (0.9998 and 0.9977). However, 

this may arise from a lack of discrimination against the background. Notably, the 

difference between sensitivity and specificity is lower for 3DTOBLERONE than the 

other algorithms considered here, which may suggest that 3DTOBLERONE provides 

a better trade-off between the segmentation statistics. Across all data sets, 

tempTOBLERONE achieved an average sensitivity of 0.8606 and average specificity 

of 0.9749. For all variants, this implies that most pixels belonging to an object were 

correctly identified and most pixels belonging to the background were correctly 

ignored, respectively. Quantification of algorithmic performance under imposed 

Gaussian blur (with standard deviation 𝜎1) and Gaussian noise (with standard 

deviation 𝜎2) suggests that all TOBLERONE variants yield a small decrement in both 

sensitivity and specificity as either 𝜎1 or 𝜎2 are increased. However, sensitivity 

experiences a greater decrement with changes in noise, while specificity seems to be 

more sensitive to changes in blur. This may be because noisy pixels within the cell 

body may not be detected by the algorithm, while increased Gaussian blur raises the 

intensity of background pixels at the cell periphery (and makes them more likely to be 

aggregated into the cell component). 

In experimental HEK293 data, TOBLERONE showed invariance to cell geometry and 

suitable background-foreground separation. Performance remains consistent across 

both cell plasma membranes and nuclei, suggesting that planar TIA may be a viable 

method for both cell and organelle segmentation. By extracting boundary line profiles 

from cell plasma membranes of C. gattii, we produce quantitative analysis of 

membrane order under varied cell culture conditions. In particular, confocal imaging 

with the polarity-sensitive dye di-4-ANEPPDHQ reveals a decrease in GP value for C. 
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gattii cells supplemented with either 2OHOA or 7-ketocholesterol, compared to control. 

Applications to volumetric experimental data of Jurkat T cells suggests an average 

diameter of approximately ~15.5μm, in line with existing literature282-284. Concurrently, 

in S. pombe t-stack data, we observe progression in nuclear division from telophase 

to interphase in under a minute, in line with existing reports285. These statistics act as 

a proof-of-principle for further use of TOBLERONE in FM data segmentation and 

highlight the qualitative benefits of TIA for cell segmentation. 

 

2.4.2 Considerations for the use of TOBLERONE in cell segmentation 

TOBLERONE permits image segmentation without parameterisation of geometric 

object properties and, in the case of supervised machine learning, the requirement of 

training data sets. The persistence parameter quantifies the difference between the 

minimum and maximum intensities of pixels within any component. However, if the 

background intensity is greater than the minimum object intensity, TOBLERONE is 

liable to overestimate object size. In this case, a lower persistence threshold may be 

required, but this may lead to over-segmentation – in which single objects are 

segmented into several fragments. Further, since each connected component is 

considered separately, a new entry must be generated in the data structure for every 

component identified. When appending this new entry to the list, the R programming 

language will copy the entire list to a new location in memory to accommodate the new 

element287. This can slow data processing, leading to longer execution times and 

increased memory usage287. Deterioration of signal within the cell by noise may also 

lead to sparser segmentation. TOBLERONE may aggregate multiple cells into one 

component in image data which presents many cells in close proximity. To avoid this 

drawback, there needs to be at least a one-pixel gap of “background” (i.e. pixels with 
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intensity more than   different from brightest cell pixel intensity) between all pixels in 

one cell and all pixels in any other cell.  

Video segmentation may require separate algorithms for the purposes of binarisation, 

segmentation and tracking, which themselves depends on user preferences and 

parameterisation. Traditional tracking algorithms, such as nearest-neighbour 

approach, suffice for the purposes of establishing temporal connectivity, but may not 

handle object appearance and disappearance266. Linear assignment problem tracking 

links objects across frames by solving a cost matrix that minimises the overall distance 

between detected positions288. This permits object appearance and disappearance, 

but may not explicitly track lineage without adaptation288. tempTOBLERONE traces 

the behaviour of dynamic components through changes in connectivity and accounts 

for the appearance, disappearance, and lineage of components. However, it should 

be noted that tempTOBLERONE is unsuitable for t-stacks in which each cell’s position 

does not overlap with its position in the following frame. This depends largely on the 

temporal resolution of the microscope, the imaging setup (drift), and cell motility. In 

particular, if the total displacement of a cell across any two consecutive frames 

exceeds the cell length, tempTOBLERONE will not correctly track the cell. 

 

2.4.3 Concluding remarks 

In summary, this work presents a novel application of TIA for segmenting fluorescence 

microscopy data which is, in accordance with literature, the first of its kind. 

TOBLERONE presents a complementary approach to image analysis, which 

circumvents the constraints of geometric or machine-learning based image 

segmentation. As discussed, images from conventional microscopy cannot resolve 

below the diffraction limit of light, which means we cannot fully distinguish nanoscale 
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lipid compartmentalisation or molecular interactions. However, SMLM, can be used to 

determine GP values at individual molecule localisations with nanoscale precision. As 

above, topological data analysis tools may prove beneficial in segmentation and 

quantification of this alternate coordinate-based data type. However, in order to 

validate these analytic techniques, ample simulated data is required. In the next 

chapter, we introduce a computational framework for simulating protein aggregation 

dynamics which can recapitulate static spatial and marked point patterns from 

experimental data. 
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Chapter 3: In silico protein aggregation dynamics 

As discussed in Chapter 2, a TDA framework can be used for feature extraction in 

conventional FM images. The output of SMLM may also take the form of a marked 

data type, with individual molecules localised across a continuous range of spatial 

coordinates. Therefore, topological feature extraction may also be applicable to SMLM 

data. However, to determine whether topological methodologies generalise to SMLM 

data, it is necessary to validate against ground truth data with a range of point pattern 

geometries. This data could arise from a mathematical model which approximates 

experimental data. Furthermore, the dynamic reorganisation of some transmembrane 

proteins into nanoscale clusters is hypothesised to regulate downstream signalling. As 

such, this model could serve a dual purpose: to simulate SMLM data which represents 

the geometric properties of experimental data, and to predict protein aggregate 

behaviour in dynamic systems. The following chapter concerns the development of a 

computational framework (termed ASMODEUS) for modelling protein aggregation 

dynamics on the plasma membrane. ASMODEUS is validated on simulated data 

presenting a range of cluster properties. We demonstrate how the model could be 

used to recapitulate the varied point pattern geometries arising from SMLM. Further, 

we highlight how ASMODEUS can be used to model dynamic receptor aggregation in 

both simulated data and in experimentally-derived DNA-PAINT localisation data for 

the model protein complex TCR. 
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3.1 Introduction 

Membrane protein dynamics are highly organised and play a role in regulating cellular 

signalling processes130,195,289. A range of biophysical processes, with interacting and 

competing effects, are hypothesised to govern protein aggregation dynamics (PAD) at 
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the plasma membrane29,31,197,242. These biophysical phenomena culminate in the 

restriction of free molecular diffusion and typically promote non-random re-

organisation of proteins into spatial clusters64. It is hypothesised that these clusters 

convert analogue extracellular signals into digital intracellular signals, in a process 

known as digitisation, and that this conversion increases signalling fidelity16. As such, 

the formation of such nanodomains is a key membrane property affecting cellular 

behaviour and signalling pathway functionality290-292. 

For example, nanoscale TCR clustering is largely responsible for initiating T cell early 

activation and the development of the immune response293. When contact occurs 

between a T cell and an antigen presenting cell, a close-contact zone forms, TCRs 

are engaged, and the local organisation of the receptors and their associated 

membrane proteins shifts. For instance, the glycoprotein CD3ζ organises into 

nanoclusters during assembly of the TCR–CD3 complex293,294, and the formation of 

this complex is the primary determinant of T cell activation and the immune 

response295. There is ongoing research into whether therapeutic mediators which 

induce or disrupt TCR aggregation could be used in immunotherapy or the treatment 

of autoimmune disorders13,296,297. 

Accurate characterisation of nanoscale clustering is essential for interpreting the 

biological systems which regulate cell behaviour. Recently, analyses tailored to protein 

maps derived from super-resolution modalities have seen widespread advancement 

and implementation. As such, there is a requirement for a simulator that can model 

protein aggregation dynamics, with nanoscale spatial resolution, corresponding to the 

data type of this class of microscope. This model could present a dual purpose: to 

generate static distributions which recapitulate SMLM data, and to model emergent 

protein aggregate behaviour in dynamic systems. However, the presence of multiple 
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interacting biophysical processes yields increasing computational complexity, and a 

practical simulator would recapitulate experimentally-derived protein distributions 

without requiring a detailed knowledge of the myriad of biophysical influences. 

Research into the mechanistic properties of biophysical systems has found increasing 

success in the development of computational models of cellular signalling and 

metabolic control298. Advanced simulation techniques (such as SuReSim299, 

FluoSim300, SMeagol301, TestSTORM302, ThunderSTORM179, LocMoFit167 and 

SMIS303) generate localisations by simulating the photophysical properties of 

fluorescent molecules. Traditionally, these models assume the spatial distribution of 

points and then recapitulate them from an analogous probability distribution, typically 

Gaussian, with clusters and structures placed at defined intervals212,214,243. However, 

this imposes strict geometric properties on simulation, whereas molecular distributions 

observed through bio-imaging could express highly varied shapes and densities304,305. 

Ripley’s K function, which measures point density within concentric circles, can be 

used to compare cluster properties across a range of spatial scales and estimate 

ensemble cluster parameters306. State-of-the-art simulators have used the linearised, 

localised Ripley’s function, 𝐿𝑅 (a scalar value assigned to each localisation), to 

measure cluster affinity and influence PAD in ABMs214,307. In this work, we expand 

upon this model, incorporating the full range of the global Ripley’s K-function to guide 

system evolution. 

Here, we introduce Agent-based Spatiotemporal Molecular Distributions Evolving 

Under Simulation (ASMODEUS), an agent-based model (ABM) designed for 

simulating PAD. ASMODEUS is invariant of input data geometry and relies only on a 

measure of local density. This permits emulation of experimentally-derived protein 

maps without imposing restrictions on data structure. By learning topological features 
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directly from data, we circumvent simplifying assumptions and generate model 

simulations which better capture the distribution, density and dynamics of protein 

aggregates. Within this framework, we include a method for introducing nucleation 

sites, which aggregate a fixed number of nearby agents and can represent cross-

linking or forcible aggregation of proteins (induced, for instance, by therapeutic 

strategies).  We apply the model to investigating the role of the CD3ζ distribution, 

validated against experimental data acquired from DNA-PAINT microscopy in 

activated and non-activated T cells. We deduce the receptor cross-linking conditions 

required to maximise the probability of sustained CD3ζ cluster formation as a proxy 

for T cell activation. Further, we demonstrate a proof-of-concept for ABMs of multiple 

interacting molecular species – which, to the best of our knowledge, is the first of its 

kind. 

 

3.2 Materials and methods 

Jurkat T cell culture 

Jurkat E6.1 T cells were cultured in R10 medium (Roswell Park Memorial Institute 

[RPMI] 1640 medium supplemented with 10% FBS, 1mM penicillin and streptomycin 

[PenStrep], 2mM L-glutamine and 1mM sodium pyruvate [all from Sigma-Aldrich, 

Madison, WI]) at 37°C in a 5% CO2 incubator. 

 

Bilayer preparation 

0.4mM liposome solution with a lipid molar ratio of 97.4% DOPC (Avanti Polar Lipids, 

850375C), 2% DGS-NTA(Ni) (Avanti Polar Lipids, 790404C), 0.1% Biotinyl-Cap-PE 

(Avanti Polar Lipids, 870273C) and 0.5% PEG5,000-PE (Merck, Kenilworth, NJ, USA, 

880220P-200MG) was produced by vesicle extrusion through a 100nm pore-size 
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polycarbonate filter. Glass coverslips were cleaned via sonication with 2% Hellmanex 

detergent for 30 minutes at 37kHz, 70% power, before rinsing with deionised water. 

Coverslips were then washed with 70% ethanol and dried under N2. Dry coverslips 

were plasma cleaned immediately prior to use (Diener Zepto plasma cleaner, 40kHz 

generator, 90s at 70W power). Ibidi sticky chamber slides (Ibidi Sticky-Slide VI 0.4, 

80608) were attached to the cleaned coverslip and 0.4mM liposome solution was 

added to each well for 20 minutes, then washed three times with lipid buffer (0.1% 

Bovine Serum Albumin (BSA), 2mM MgCl2 and 1mM CaCl2 in PBS). 0.1mM of NiCl2 

in 2% BSA in PBS was added for 20 minutes to recharge NTA groups and block 

surface prior to protein addition. Surfaces were subsequently washed three times with 

lipid buffer. Disruption of the lipid bilayer was avoided by maintaining 50µL of lipid 

buffer in wells. For functionalisation of the bilayer with biotinylated proteins, 12.5µg/mL 

of streptavidin (Cambridge Bioscience RayBiotech, 228-11469-2) in lipid buffer was 

added for 20 minutes and then washed three times with lipid buffer. The streptavidin 

coated bilayer was functionalised with addition of 3.4µg/mL biotinylated aCD3 

(Biolegend, 317320), 3.4µg/mL biotinylated aCD28 (Biolegend, 302904) and 

200ng/mL His-tagged ICAM-1 (Thermo Fisher Scientific, A42524) in lipid buffer for 

activated conditions, or 200ng/mL His-tagged ICAM-1 alone in lipid buffer for non-

activated conditions. After 20 minutes, the bilayer was washed three times with lipid 

buffer to remove unbound proteins. 

 

DNA-Fab conjugation 

A malemide-PEG2-succinimidyl ester coupling reaction was used for DNA labelling of 

Fab Fragment Donkey Anti-Rabbit IgG (Jackson ImmunoResearch, 711-007-003). 

Thiolated-DNA 5’-Thiol-ACACACACACACACACACA-3’ (Eurofins Genomics, 
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Ebersberg, Germany) (13μL, 1mM) was reduced for 2h by incubating with DTT 

solution (30μL, 250mM) (Thermo Fisher Scientific, Waltham, MA, USA, A39255) at 

room temperature on a shaker in darkness. Maleimide-PEG2-succinimidyl ester 

crosslinker solution (1μL, 23.5mM) (Sigma-Aldrich, St. Louis, MO, USA) was 

incubated with anti-rabbit Fab fragment (50μL, 2 μM) for 90 min at  °C on a shaker in 

darkness. Excess DTT and crosslinker were removed under spin filtration by Microspin 

Illustra G-25 columns (GE Health-care, Chicago, IL, USA) and Zeba spin desalting 

columns (7K MWCO, Thermo Fisher Scientific), respectively. Resultant products were 

mixed and incubated overnight at 4°C on a shaker in darkness. Residual unbound 

DNA was removed by Amicon spin filtration (Merck) and DNA-Fab concentration was 

measured using a NanoDrop One spectrophotometer (Thermo Fisher Scientific). 

Quantification of DNA-Fab coupling ratio through spectrophotometric analysis 

revealed a ratio of ~1. 

 

T cell activation on bilayer 

Wells containing functionalised bilayers were washed with sterile 1X PBS then 

warmed at 37°C for 15 minutes prior to adding Jurkat T cells. Cells were added to the 

bilayer at a density of 106 cells/chamber and left to incubate for 15 minutes at 37°C. 

Cell fixation was achieved using 4% PFA in PBS warmed to 37°C, then leaving cells 

for 30 minutes at room temperature before washing with 60mM Glycine in PBS. Cells 

were permeabilized with Triton X-100 (VWR, 28817.295) at 0.1% for 5 minutes at room 

temperature and washed with 60mM Glycine in PBS before immunostaining. Cells 

were then blocked with 5% BSA in PBS for 1h at room temperature. 
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CD3ζ immunostaining 

Cell staining was performed with a primary antibody against CD3ζ (Abcam, ab 0 0 ), 

achieved with 5% BSA in PBS at a concentration of 1.7µg/mL for 1h at 37°C, then 

washing with PBS. Secondary staining was performed with the DNA conjugated 

Rabbit Fab in 5% BSA in PBS at a concentration of 4µg/mL, this was left for 1h at 

room temperature, and washed with PBS. For drift correction, 90nm gold nanoparticles 

(Cytodiagnostics, G-90-100) were added to each well for 10 minutes then washed with 

PBS. Imager DNA 5’-TGTGTGT-Cy3B-3’ (Eurofins Genomics) was added at 0.5nM in 

a solution of 500mM NaCl, 1mM EDTA in 1X PBS, immediately prior to imaging. 

 

DNA-PAINT imaging and image reconstruction 

Imaging of Jurkat E6.1 T cells was undertaken on a custom-built TIRF microscope, 

based on a Nikon Eclipse Ti-2 microscope (Nikon Instruments, Tokyo, Japan) 

equipped with a 100× 1.49 NA oil immersion TIRF objective (Apo TIRF) and a Perfect 

Focus System. A 560nm excitation laser (MPB Communications, 1 W) was used with 

a polarised and quarter lambda waveplate to ensure circular polarisation. The 

excitation beam was passed through a clean-up filter (FF01-390/482/563/640-25, 

Semrock, Rochester, NY, USA) and coupled into the objective via a beam splitter 

(Di03-R405/488/561/635-t1-25×36, Semrock). Fluorescence light was spectrally 

filtered by an emission filter (FF01-446/523/600/677-25, Semrock), imaged with an 

sCMOS camera (ORCA-Flash4.0 V3 Digital, Hamamatsu, Hamamatsu City, Japan) 

and subject to 2 × 2 binning, yielding a final pixel size of 130nm in the focal plane. 

10000 frames were taken per acquisition with 100ms integration time and a laser 

power density of 1.6kW/cm2 over the sample. Post-processing of raw fluorescence 

data was performed in Picasso (v. 0.6.4) and MATLAB (R2022a)308. Drift correction 
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was undertaken via redundant cross-correlation using 90nm gold nanoparticles 

(Cytodiagnostics, G-90-100) as fiducials. 

 

CD3ζ post-processing and cluster analysis 

After filtering and drift-correction, super-resolved Jurkat E6.1 T cell images were 

analysed with DBSCAN cluster analysis under the Picasso Render module. DBSCAN 

parameters were set as minPts = 5 and ϵ = 13nm. The ϵ parameter was taken to be 

the localisation precision of the DNA-PAINT images, determined via nearest-

neighbour based analysis, and commensurate with author suggestions. The minPts 

parameter was selected for 5 localisations, in accordance with binding kinetics of the 

imager–docking pair, the DNA imager concentration, the number of recorded frames, 

and statistical considerations for the distribution of single-molecule localisations. 

 

qPAINT analysis 

A custom-written MATLAB code was used to analyse the fluorescence time series of 

each detected cluster and estimate the per-cluster number of CD3ζ molecules via 

qPAINT analysis, as described in literature158,213. Frame numbers of each localisation 

within the same cluster, as determined by DBSCAN, were used to recover the dark 

state times per cluster – that is, the continuous amount of time in which single molecule 

localisations were absent. All per-cluster dark times were pooled to obtain a 

normalised cumulative histogram, which was then fitted to the exponential function: 1 

– exp(t/τd) to estimate the per-cluster dark time, τd. The qPAINT index of each cluster 

(qi) was taken as the inverse of the corresponding dark time. The qPAINT indices of 

clusters with a maximum point distance of 50nm were plotted as a cumulative 

histogram and fitted via a multi-peak Gaussian. Peaks were found with a frequency of 
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0.0075Hz. This corresponds to the qPAINT index of a cluster of localisations 

representing one binding site, that is, CD3ζ monomers (qi1). The number of proteins 

within a cluster of localisations was defined by the ratio between qi1 and the 

corresponding qPAINT index (qi1/qi). Protein positions were plotted by recovering a 

likely distribution of CD3ζ receptors in each cluster via k-means clustering, where k is 

equivalent to the ratio between qi1 and qi. 

 

Point cloud simulation 

Spatial point patterns were simulated by generating a fixed number of circular clusters, 

𝑛𝑡, with pre-determined cluster radius, 𝑟𝑡, and number of points per cluster, 𝑝𝑡, and 

then overlaying outliers subject to a given background-to-cluster ratio,  𝑡. Central 

cluster coordinates were randomly selected such that all clusters would be contained 

within the 3µm × 3µm ROI. Then, 𝑝𝑡 points were uniformly generated around each 

centre at distances of 𝑟𝑡 
2, where  ~𝑈𝑛𝑖 ( , ). The choice of parameter values 

used in point pattern simulations (unless otherwise specified) is given in Table 3.1. 

 

Parameter Function Values 

𝑛𝑡 Number of clusters 10 

𝑟𝑡 Cluster radius. 10nm, 30nm, 50nm 

𝑝𝑡 Number of points per cluster. 5, 15, 30 

 𝑡 Background to cluster ratio. 0, 0.33, 0.66 

Table 3.1: Parameters used to simulate target distributions. 
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Figure 3.1: Simulating PAD with ASMODEUS. a Example target point cloud. b 

Calculating density for each point. c Formulation of Ripley’s K function and calculation 

of ratiometric error. Error is defined between 0 and 1 for each discrete radial value, 

with the maximum value of 1 assigned below the CSR baseline. d Step size is bound 

between minimum and maximum step size parameters (𝐷 𝑖𝑛 and 𝐷  𝑥) and 

increases quadratically with average error. e Zoomed region centred around the 

orange point marked in b. From one frame to the next, the point is offset in the direction 

of angle 𝜃, where 𝜃 ~ 𝑈𝑛𝑖 ( , 2𝜋) is chosen randomly, with step size calculated from 

d. This process is repeated for each point at each time frame. 

 

Simulating PAD through agent-based modelling 

The ABM is defined under the assumption that proteins are represented by 

infinitesimal points, which move laterally across the plasma membrane, approximated 

by a 2D surface. In order to carry out the simulation, a target point pattern must first 

be provided – this may be taken from protein localisation data, as output by SMLM. 

Simulation parameters must also be given: these include a maximum permissible step 

size, 𝐷  𝑥, a minimum permissible step size, 𝐷 𝑖𝑛, an ROI size, and a time frame 
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over which to run the simulation (for guidance on parameter selection, see below). 

Protein motility is stochastic, with each agent moving in a random direction subject to 

a deterministic step size across each time frame. For each point in the cloud, the error 

between the localised K function and global target K function (Figure 3.1a-c) is 

determined, and then used to calculate the step size (for error and step size formulas, 

see Appendix). Each point is transposed in a random direction along a path of length 

equal to its step size (Figure 3.1d-e). If any point is transposed out of the bounds of 

the ROI, it will be reflected back at the angle of incidence with distance equal to the 

length of the path not yet traversed. This process is iterated over all time frames. See 

Figure 7.3 (Appendix) for conceptual diagram of ASMODEUS and Section 7.2.4 for 

algorithm pseudocode. 

 

Parameter selection 

The molecular counts, ROI size and K function are automatically determined from the 

input point pattern. The minimum and maximum molecular velocities are proportional 

to the expected diffusion coefficient of the protein embedded in the plasma membrane, 

which can be derived experimentally or mathematically309. Average diffusivity can be 

quantified from imaging methods such as single particle tracking or fluorescence 

correlation spectroscopy108. The expected step size 𝛥𝑥 taken in time 𝛥  can be 

estimated through the equation 𝛥𝑥   2(𝐷𝛥 )1/2, where 𝐷 is the diffusion 

coefficient310. 

 

Generalised PAD simulations 

The ROI size was fixed at 2µm × 2µm, in accordance with a standard ROI size for 

super-resolution microscopy. A diffusion coefficient of 𝐷 ≈ 0.1μm2/s was selected – 
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this represents the diffusion coefficient of a T cell receptor (0.0 2μm2/s, rounded to 

the nearest 10-1), taken as a model molecular species79,296. Note that this framework 

could be applied to any protein with known diffusivity coefficient and TCR serves only 

as an exemplar here. This equated to a maximum step size of 𝛥𝑥 ≈ 63nm per each 

10ms time frame, and so 𝐷  𝑥   63nm was selected. The average error across all 

points was recorded at each frame. The convergence time was defined as the first 

time frame in which the variance in the error of all future frames fell below 0.05. When 

applicable, DBSCAN cluster analysis was performed to extract cluster descriptors, for 

comparison with the original target parameters198. Changes in the point pattern 

distribution and global K function were tracked for all simulations (Figure 3.2). First, 

100 simulations were run over 100000 frames and the maximum time taken to achieve 

convergence was measured at 7529 frames. As such, the maximum frame number for 

all future simulations was taken at double this value, rounded to the nearest 1000, to 

increase the probability of convergence. Therefore, unless otherwise specified, each 

simulation was run over 15000 frames, with each frame representing 10ms of real 

time, yielding a total simulated time of 2.5 minutes. All simulations converged within 

the allocated time. 

 

Evaluating algorithmic performance 

The error (see Appendix for formulas) serves as a measure of difference between the 

target and true Ripley’s function, but does not necessarily determine whether the 

algorithm has recapitulated the cluster properties present in the target data. As such, 

we also record the difference in three cluster properties (cluster radius, number of 

clusters, and  points per cluster)  between target and  simulated data at each  discrete  
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Figure 3.2: Example simulation. a Initial distribution starting at CSR gradually 

converges to a clustered distribution over 2.5 minutes. b Corresponding Ripley’s K 

function of simulation (magenta) gradually converges to target K function (orange). 

Error (blue) decreases with time. 

 

time frame. These properties are averaged over all simulations, then quantified as rdif, 

ndif and pdif, respectively. 

 

Modelling receptor nucleation 

Multiple target distributions may be provided simultaneously – here, the error of each 

point is taken to be the minimum of the errors between all target functions. Given a 

cross-link radius rc and number of proteins to recruit nc, the following process is 

repeated for each nucleation site: select the densest point (that is, the point with most 

neighbours in a radius rc) which has not yet been visited by the algorithm, this is 

chosen  to  be  the  central  cross-linked  protein. Then,  determine  the  nc   1  closest  
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Figure 3.3: Convergence of cluster properties. a-b Simulations at convergence with 

pseudo-coloured clusters. Global Ripley’s K function (magenta) approaches the target 

function (orange) in both cases. c Average ratiometric error between target and actual 

Ripley’s K over time. Convergence is defined at the first point where there is less than 

5% variability in the error (purple). Convergence of d cluster radius, e number of 

clusters and f points per cluster over time. Ground truth target is given in orange for 

all plots. 

 

neighbours and move each to within an rcnm radius of the central protein. Record each 

point used in the above step and exclude them from the creation of any further 

nucleation sites. 
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Figure 3.4: Simulation outputs under varying target cluster radii (rt) and points per 

cluster (pt). For each simulation, 10 clusters were simulated with a background to 

cluster ratio of 0. 

 

Simulating multiple populations 

Each simulation can incorporate an arbitrary number of distinct molecular species 

within the same ROI. Species may be simulated separately, by giving each population 

a separate target and ignoring species outside their own, or co-clustered with other 

populations, by giving a subset of the populations the same target and only 

considering the density of species within that subset. Interactions between populations 
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are recorded and tracked across consecutive frames. Here, we consider a three-

protein, four-population model comprising activators, inhibitors and agents, which may 

be active or inactive (inhibited), depending on interactions with the first two molecular 

species. In particular, agents become active when within 5nm of an activator and 

inhibited when within 5nm of an inhibitor. All agents are initialised as inactive and the 

percentage of active agents is recorded over all time frames. In this context, activators 

may co-cluster with agents, or inhibitors may co-cluster with agents, but both do not 

occur simultaneously. By outputting the final point pattern of any simulation into 

another, any of the above regimes can be concatenated. 

 

3.3 Results 

3.3.1 Agent-based simulations conserve cluster properties 

To validate model efficiency, a series of simulated point clouds, with varying cluster 

properties, were input to ASMODEUS. For each simulation, the change in error was 

recorded over time (Figure 3.3c). Further, the number or clusters, average cluster 

radius, and points per cluster, as defined by input parameters, were tracked (Figure 

3.3d-f). All ABM simulations were initiated at CSR, with an error of 1.0 at time point 0 

(see Appendix). The average error over all simulations reduced to a value of 0.163 at 

convergence, representing a 6-fold reduction, and all simulations reached 

convergence within the model runtime of 2.5 minutes. Furthermore, both the number 

of clusters and points per cluster fell to within 10% of their input target values (relative 

to peak deviation) at convergence, while the slope of the cluster radius depicts closer 

radii at greater runtime. Example simulations show that ASMODEUS can achieve a 

range of cluster radii and densities (Figure 3.4). However, caution should be taken for  
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Figure 3.5: The impact of increasing background to cluster ratio on simulation output. 

For each simulation, the following panels are shown: (i) the target distribution, (ii) static 

plot of the simulation at convergence and (iii) difference between target (orange) and 

global (magenta) K function. Corresponding background to cluster ratios for a-c are 

0.0, 0.33 and 0.66, respectively. In this case, the simulator favours local cluster density 

over distribution of outliers. 

 

point patterns of particularly high background (Figure 3.5), as the model favours local 

point density. 

It should be noted that variance or inconsistency among cluster properties in the target 

distribution, particularly regarding cluster radius and density, can produce undesirable 

simulation outputs which deviate from the target cluster properties. Figure 3.6 depicts  
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Figure 3.6: Exemplar failure cases for ASMODEUS. a Mixed cluster sizes. A 

distribution of 5 clusters of radius 25nm overlaid with 5 clusters of radius 50nm. All 

clusters contain 30 points. Background-to-cluster ratio is set to 0.1. b Clusters 

identified from the point cloud in a using DBSCAN cluster analysis with parameters 

   50nm and  𝑖𝑛𝑃 𝑠   25. c Global Ripley’s K function (magenta) versus the target 

function (orange). d The final point cloud output by the simulation. e Histogram of 

cluster radii (half-max of all intra-cluster distances) from all clusters given in b. Cluster 

radii appear to aggregate around two local maxima at 25nm and 50nm, respectively. 

f Histogram of cluster radii from all clusters given in d. The distribution of radii is 

skewed towards larger cluster sizes and does not seem to show clear partitioning. All 

binsizes: 8nm. g Mixed cluster sizes with high density. A cluster with radius 50nm 

adjacent to a cluster with radius 100nm. Both clusters contain 200 points. Background-

to-cluster ratio is set to 0.1. h Clusters identified from the point cloud in g using 

DBSCAN cluster analysis with parameters    100nm and  𝑖𝑛𝑃 𝑠   100. i Global 
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Ripley’s K function (magenta) versus the target function (orange). j The final point 

cloud output by the simulation. ASMODEUS is unable to aggregate 200 points into a 

relatively small region of space (circles of ~50nm and ~100nm) within the simulation 

runtime, and so the distribution appears CSR. 

 

some exemplar failure cases, the first of which is for a target distribution with mixed 

cluster sizes (Figure 3.6a-b) – half of which are 25nm, and the remainder 50nm. In 

spite of the global Ripley’s K function appearing to converge to the target K function 

(Figure 3.6c), the output distribution presents cluster radii which do not appear to be 

present in the target distribution. A histogram of recorded cluster radii (taken here as 

half the maximum distance between all points in the same cluster) show that the target 

distribution presents clusters with radii which seem to aggregate around two local 

maxima, corresponding to 25nm and 50nm respectively (Figure 3.6e). However, the 

histogram of simulated cluster radii (Figure 3.6f) seems to suggest a skew towards 

larger cluster sizes and does not show the same partitioning. The second example 

(Figure 3.6g-j) presents relatively dense clusters (200 points per cluster in two 

clusters of radius 50nm and 100nm). Here, ASMODEUS is unable to aggregate 

enough points within the expected cluster radii by the end of simulation runtime, and 

so the output distribution remains CSR. 

 

3.3.2 Modelling receptor nucleation 

Single-population simulations may be subjected to multiple target functions 

simultaneously, which permits convergence towards one of several possible 

distributions. Distributions may be perturbed by a sudden forced aggregation of points 

into nucleation sites (see Materials and Methods). For PAD simulations, the case of 

simultaneously  targeting  one  CSR  and  one  clustered  target  (Figure 3.7a-b)  is of  
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Figure 3.7: Modelling receptor nucleation. a ASMODEUS can map a distribution to 

multiple targets simultaneously. We consider a single population with two possible 

target distributions, one clustered (magenta) and one CSR (orange). b Multiple target 

functions are provided, and the target with lowest error is selected. c Formation of 

cross-linked cluster (nucleation site) in simulated data. d Global clustering induced as 

a result of cross-linking. e Cluster maximiser for the whole system (N) versus the 

number of points per cluster in the target distribution (p). Line of best fit is given in 

orange. f Formation of multiple nucleation sites in simulated data. g Global clustering 

induced as a result of nucleation. h Estimated probability of converging to clusters 

versus number of nucleation sites and number of recruited proteins. Simulated target 

distribution is defined by 10 clusters each containing 20 points. 
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particular interest, as a shift in receptor organisation to form nanoclusters can bring 

about signal digitisation148 and dictate several important biological processes, such as 

formation of the immunological synapse210. We tested the impact of nucleation on 

system convergence by first inducing a single cross-linked cluster of proteins to each 

simulation (Figure 3.7c-d). After 1 second of simulation time, we randomly designate 

one agent to be a cross-linker and forcibly aggregate proteins into a cluster. Target 

distributions were generated such that each cluster contained a given number of 

points, p. We define the cluster maximiser, N, as the number of cross-linked proteins 

required to maximise the probability of the simulation converging to a clustered 

distribution, as opposed to CSR. We repeat 10 simulations for each condition and 

estimate the probability as the proportion of these simulations which converged to 

clusters. 

Results suggest an approximately linear relationship between p and N (Figure 3.7e), 

suggesting that one cross-linker may be sufficient to induce clustering within the ROI 

and that the likelihood of global clustering increases as the number of proteins 

recruited increases. By incorporating several nucleation sites (Figure 3.7f-g), we can 

further increase the probability of convergence. Here, we track convergence against 

both the number of nucleation sites and proteins recruited on a target distribution 

defined by 10 clusters of 20 points (Figure 3.7h). We repeat these experiments for 

target distributions with varied cluster parameters (Figure 3.8), and find that the 

probability of convergence increases as protein recruitment increases, even at a 

relatively low number of nucleation sites. 
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Figure 3.8: Estimated probabilities of converging to clusters under target distributions 

with a 4 clusters, b 6 clusters, c 8 clusters and d 10 clusters containing (i) 5, (ii) 10, 

(iii) 20 or (iv) 30 points per cluster. 

 

3.3.3 Simulating CD3ζ distributions in pre- and post-activation T cells 

To model nucleation of CD3ζ, we applied our methodology to point pattern data 

acquired from DNA-PAINT microscopy. Jurkat E6.1 T cells were fixed over 

functionalised lipid bilayers and immunostained with a primary antibody against CD3ζ.  
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a b c

d e

 

Figure 3.9: Overview of DNA-PAINT imaging and qPAINT analysis. a DNA-PAINT 

representative image of CD3ζ molecules in an activated Jurkat T cell. The white box 

indicates a zoom-in region to highlight subsequent cluster analysis and protein map 

conversion. Scale bar: 5µm b Zoom view of the selected ROI in previous panel. Scale 

bar: 500nm. c DBSCAN cluster analysis and protein map output for selected ROI. 

Each colour represents a different cluster selected by DBSCAN. Black dots on top of 

each cluster represent the position of CD3ζ monomers using k-means clustering, 

where k is equal to qi1/qi. d Overview of qPAINT analysis pipeline. T-cell receptors are 

stained with a primary antibody against CD3ζ and then with a DNA conjugated rabbit 

Fab as a secondary staining. The Cy3B-labeled imager strands bond transiently from 

solution to the complementary docking strands attached to the Fab. Lower panel 

shows schematic representation of the number of localisations and intensity traces for 

example clusters of 1, 2 and 3 CD3ζ molecules. These traces show characteristic 

fluorescence on- and off-times (τd) depending on the amount of docking strands in 

each cluster. The frequency of the imagers binding to their docking strand scales 

linearly with the number of docking strands, and this is the principle of qPAINT. When 

the number of monomers in the cluster increases, the dark time decreases. e 

Histogram of internal calibration qPAINT indexes per cluster pooled from all data 
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samples fit with a multi-Gaussian function. This was achieved by selecting very small 

clusters in the biological data set. This behaviour is consistent with the presence of 1, 

2, or 3 DNA docking strand units within a cluster of localisations. Dark line represents 

the 3-Gaussian fit exhibiting peaks at multiples of qPAINT index of 0.0075 Hz. Each 

dash line represents a Gaussian centered at 1, 2 and 3 times the qPAINT index (see 

Materials and Methods). 

 

Secondary staining was performed immediately after with DNA conjugated Rabbit Fab 

and imaged on a custom-built microscope (Figure 3.9). Image reconstruction, post-

processing and quantitative analyses were undertaken in Picasso and MATLAB (see 

Materials and Methods). ROIs for non-activated (Figure 3.10a) and activated 

(Figure 3.10b) conditions were segmented and the target K functions were averaged 

across each condition (Figure 3.10c-d). Simulations were run over a range of 

nucleation parameters with 10 repeats for each condition, yielding 9600 simulations in 

total (Figure 3.10e-f). Figure 3.10i suggests that nucleation parameters could be 

optimised to increase the likelihood of inducing global clustering. Generally, the 

greater the number of nucleation sites and proteins recruited, the higher the probability 

of simulating T cell activation.  As in the simulated data, the activation outcome 

depends most significantly on the number of proteins recruited, with at least 20 

proteins required to maximise the probability in most conditions. 

 

3.3.4 Modelling interacting molecular species 

Building on the single-population model, we developed a system for simultaneously 

modelling several interacting molecular species (see Materials and Methods). The 

distributions of each underlying population may be aggregated separately (Figure 

3.11a) or co-clustered (Figure 3.11b). A four-population model was proposed, 

including  activators, inhibitors  and agents (which  may be active  or inactive). Agents 
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Figure 3.10: Simulated T cell activation via induced nucleation. Protein maps of CD3ζ 

distributions were acquired from a non-activated and b activated Jurkat T cells 

(dimensions: 30μm by 30μm). Ripley’s H functions taken from CD3ζ distributions in c 

non-activated and d activated conditions. e A point pattern was first fitted to a non-

activated target. The simulated H function (purple) can fit to either the non-activated 
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(magenta) or activated (orange) target functions. Nucleation was induced after 10s. f 

Resulting distribution in final simulation frame. Depending on the degree of nucleation, 

the point pattern will shift to the activated target and induce pronounced global 

clustering. The simulated H function now aligns with the activated target. A 3µm by 

3µm ROI shows CD3ζ distribution on Jurkat T-cell plasma membrane g before 

activation and h after activation. Denser clusters are highlighted in the post-activation 

ROI. i Probability of inducing whole system aggregation versus number of nucleation 

sites and number of recruited proteins. 

 

become activated or inhibited when within a pre-assigned range of activators or 

inhibitors respectively – here, the range is taken to be 5nm (Figure 3.11c). Populations 

may be simulated under a co-clustered regime (Figure 3.11d), a CSR regime (Figure 

3.11e) or an isolated cluster regime (Figure 3.11f). We record the change in proportion 

of active agents across the simulation (Figure 3.11g). 

 

3.3.5 Simulating varied dynamics across multiple populations 

To validate the impact of co-clustering on signal digitisation, we emulate an activator-

inhibitor-agent model, in which activators are first clustered independently of inhibitors 

and agents, which are themselves co-clustered (Figure 3.12a). Halfway through the 

simulation, the regime was switched, and activators were co-clustered with agents 

while inhibitors were left isolated (Figure 3.12b). Target distributions were kept 

consistent throughout analysis (see Materials and Methods) the percentage of 

activated agents was tracked across all simulation frames. Only the step size 

parameter, 𝐷  𝑥, was varied between simulations (Figure 3.12c-d). Results suggest 

that simulations with lower step sizes consistently show a greater proportion of 

activated agents prior to the regime switch, rather than after, when compared to 

simulations with larger step sizes (Figure 3.12e). In addition, a shift in the percentage  
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Figure 3.11: Multiple population modelling. Each population can be simulated a 

separately or b co-clustered with other populations. c Interactions between 

populations can be recorded and tracked across consecutive frames. We consider a 

four-population model, including activators, inhibitors and agents (active or inactive). 

Agents are activated or inhibited within 5nm of activators or inhibitors respectively. 

Example cluster variations for multiple species: d a co-clustered regime e a CSR 

regime and f an isolated cluster regime. g The percentage of activated agents in the 

co-clustered regime (purple) consistently exceeds the percentage activated in the 

CSR (magenta) and isolated cluster case (orange), even with the same population 

sizes. 

 

of activated agents can be observed at the halfway point, when the regime switch 

occurs. 

 

3.4 Discussion 

In this work, we introduced ASMODEUS, an agent-based model for simulating 

dynamics of transmembrane proteins and generating toy protein maps, which could 

be used to  simulate SMLM data. We  applied this framework  to re-deriving simulated 
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Figure 3.12: Proof-of-concept for modelling PAD with multiple molecular species. a 

Activators are first simulated independently of inhibitors and agents, which are co-

clustered. b Halfway through the simulation, the regime is switched, and activators are 

co-clustered with agents, while inhibitors are considered separately. The percentages 

of activated proteins are recorded over time. c Example case with step size of 20, in 

which activation is more prevalent prior to switch. d Example case with high step size 

of 60, in which activation is more prevalent after switch. e Average percentage 

activated before (magenta) and after (orange) switch across a range of step sizes. 

 

distributions with known ground truth clusters and extended this model to incorporate 

several interacting molecular species. Furthermore, we presented a proof-of-concept 

for the use of ASMODEUS in simulating the receptor oligomerisation or cross-linking 

required to induce a phase shift in protein distribution. 
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3.4.1 Simulating static protein maps with ASMODEUS 

ASMODEUS was tested on a series of simulated point clouds with varying cluster 

properties. All simulations reached convergence within the model runtime of 2.5 

minutes and, on average, the error showed a 6-fold reduction at convergence. The 

number of clusters and points per cluster fell to within 10% of their target values. The 

slope of the cluster radius shows slower convergence, which may improve at greater 

runtime. This suggests that an agent-based modelling approach, using the Ripley’s K 

function as target for reinforcement learning, may suffice for simulating cluster affinity 

in point patterns and can induce aggregation with pre-defined cluster properties. 

However, ASMODEUS may not be suitable for point patterns of particularly high 

background density, as the model favours local point density over global point density 

and may unexpectedly increase the total number of clusters. For target distributions 

with mixed cluster properties, ASMODEUS may output unpredictable cluster 

geometries, despite converging to the K function, or fail to converge altogether. This 

suggests that ASMODEUS may perform best on target data with consistent cluster 

properties. 

Since system dynamics depend on pairwise interactions between agents, the 

computational complexity of running a simulation increases quadratically as the 

number of agents increases linearly311. That said, the software presented here has 

been computationally optimised and is integrated in a compiled programming 

language where possible. As a reference, a simulation of 500 points running over 

simulated 150 seconds takes no more than 5 real-time minutes to complete on a single 

processor. 
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3.4.2 Modelling signal digitisation and molecular interactions with ASMODEUS 

If a simulation is provided with two possible targets – one of which represents a 

clustered distribution and the other CSR – then the PAD model may converge to either 

distribution and enter into a steady state.  If the dynamic distribution has converged 

towards the CSR target, in which receptor density is approximately homogeneous, 

then we have shown here that a small perturbation to the density distribution, by 

spontaneous clustering of agents, may force the distribution out of its steady state. 

Depending on the number of nucleation sites or proteins per nucleation site, the PAD 

model may undergo a phase shift and converge towards the clustered target, in which 

receptor density is heterogeneous. By repeating simulations, we are able to estimate 

the probability of convergence to the clustered target after nucleation. Therefore, 

ASMODEUS may provide a framework for estimating the optimal nucleation 

parameters required to induce receptor clustering in dynamic simulations. In 

applications to TCR-CD3 distributions from DNA-PAINT, we find that receptor 

nucleation selectively elicits a phase shift – this depends on the number of nucleation 

sites and proteins recruited, but generally requires each nucleation site to recruit 20 

proteins. This could inform choices for therapeutic mediators which induce or disrupt 

TCR aggregation in immunotherapy or the treatment of autoimmune disorders – 

however, this remains to be validated in vitro. 

In multiple population models, we determine that larger step sizes promote increased 

activation after inducing a change to receptor co-clustering. In addition, we observe a 

sudden shift in the percentage of activated agents after the clustering regime switch 

occurs. Primarily, this acts as a proof-of-concept for ABMs in modelling dynamic, 

interacting protein species – which, to the best of our knowledge, is the first of its kind. 

Results may suggest that changes to molecular organisation between members of 
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interacting species can bring about a phase shift in system-wide activation. With a 

small change in organisation rules, governed by the degree of membrane order, a 

digital response can be induced in simulations. This approach may help estimate and 

quantify the effect of interacting species distributions, which may be used as a 

predictor of digitisation under variable clustering regimes. 

 

3.4.3 Concluding remarks 

Traditional mathematical models are derived from systems of continuous differential 

equations, which aim to capture biophysical interactions and biochemical kinetics 

through geometric constraints and parameterisation. Despite the capabilities of 

modern microscopy techniques, these parameters and hyperparameters are difficult 

to determine in the context of transmembrane protein dynamics300. Point pattern 

simulation typically requires knowledge of an expected point distribution, derived from 

constraints on pattern geometry. Agent-based approaches are modular, easy to 

aggregate and designed to predict dynamic system behaviour under a set of 

postulated mechanisms298. As such, ABMs are well-suited to capturing the biophysical 

processes that bring about macro-scale responses, such as nucleation, digitisation, or 

activation312,313. In this work, we have presented an agent-based modelling approach 

for simulating the dynamics of transmembrane proteins and generating realistic toy 

SMLM data. The model can integrate several interacting molecular species and 

introduce perturbations to serve as proxies for natural and induced biophysical 

disruptions. This platform could be used to determine the nucleation conditions 

required to promote clustering of specific transmembrane proteins, and the simulations 

derived may provide a system for evaluating and comparing emergent phenomena in 

PAD ABMs. Notably, we have used our method to estimate the biophysical parameters 
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of receptor nucleation required to maximise the probability of TCR oligomerisation. As 

such, ASMODEUS could be used to simulate static protein maps for validating analytic 

techniques, to model the impact of perturbations on PAD systems, or to offer insight 

into the design of therapeutics which modify or induce receptor clustering314-316. In the 

following chapter, we use ASMODEUS as an SMLM data simulator to generate spatial 

point distributions, which are overlaid with marked point patterns. This provides ground 

truth data for testing and validating topological data analysis techniques for partitioning 

coordinate-based MPP data. 
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Chapter 4: Marked point pattern analysis 

The focus of this chapter is on the development of two algorithms for identifying and 

extracting topological features from marked point pattern data. The first algorithm, P-

Check, determines whether there is statistically significant evidence of non-random 

colocalisation in discrete MPPs. The second algorithm, JOSEPH, partitions 

continuous marked point pattern data into clusters defined by both a given spatial 

scale and a quantifiable distribution of marked values. By performing this analysis on 

MPPs from SMLM with polarity-sensitive probes, these tools may determine if and 

where lipid domains exist in ROIs from membrane data. 
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4.1 Introduction 

Partitioning of the plasma membrane into lipid-ordered and lipid-disordered phase 

regions is hypothesised to play an essential role in regulating cell signalling 

processes317. This phase separation may be characterised by nanoscale regions of 

the membrane, denoted here as lipid domains or nanodomains, which are locally 

homogeneous in lipid packing317. However, while microscale ordered lipid domains 

can be readily observed in synthetic bilayers, there is still ongoing debate about the 
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existence and nature of nanodomains in mammalian cell membranes318. Super-

resolution methods can localise fluorescent molecules at the nanoscale and may be 

adapted to work with environmentally-sensitive membrane probes319-321. By using 

PAINT microscopy with polarity-sensitive probe di-4-ANEPPDHQ, we resolve marked 

point patterns of nanoscale GP distributions in live cells and synthetic membranes. 

However, the precise geometry of lipid nanodomains is not yet known and may vary 

across data sets. 

As such, we have developed a TDA software package, PLASMA (Point Label Analysis 

of Super-resolved Marked Attributes), designed for identifying underlying domains in 

marked point pattern data. The first goal of our analysis is to determine whether 

underlying domains, defined by non-random subsets of data points with approximately 

equal marks, are present within the data. For this, we have developed an algorithm, 

P-Check, to determine if a point pattern expresses spatial heterogeneity in binary 

marked points, which may suggest the presence of domains. Although P-Check is 

suitable for detecting nanodomains, it does not offer any information as to their location 

within the ROI. To expand upon this, we developed a data segmentation approach, 

termed Justification of Separation by Employed Persistent Homology (JOSEPH). In 

JOSEPH, persistent homology is used to construct clusters in which points colocalise 

spatially and whose marks lie within a quantifiable, pre-determined range.  In this 

context, P-Check is first used to determine the presence of membrane lipid 

nanodomains in artificial membranes and live cells, and then JOSEPH is used to 

partition the set of localisations and pinpoint nanodomains within the ROI. By 

leveraging this analysis over multi-modal SMLM with environmentally-sensitive 

fluorophores, we achieve nanometre-resolution mapping of membrane properties and 

measure changes in response to external perturbation with methyl--cyclodextrin 
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(MβCD). This methodology may present a useful tool for processing MPPs and 

identifying nanodomains in SMLM data. 

 

4.2 Materials and methods 

Rat mammary fibroblast cell culture and sample preparation 

Rat mammary fibroblast (RAMA27) cells were gifted by Prof. David G. Fernig 

(University of Liverpool, UK). Cell culture was performed as in literature322. RAMA27 

cells were cultured in phenol red free DMEM supplemented with 10% PBS, 50 ng/mL 

insulin and 50 ng/mL hydrocortisone (all from Life Technologies) at 37°C in 10% CO2. 

2 h prior to imaging, cells were trypsinized, passaged and seeded onto Ibidi μ-slide 

8-well glass-bottomed chambers pre-coated with 1 μg/mL fibronectin (Sigma-Aldrich), 

at 20,000 cells per well. Cells were left overnight in culture medium to adhere and 

spread. Samples were incubated for 30 minutes with 80 nM di-4-ANEPPDHQ in 

phenol red free DMEM to permit binding of single di-4-ANEPPDHQ molecules. Eight 

cells were imaged in total. 

 

RAMA27 treatment with methyl-β-cyclodextrin 

Seeded cells were exposed to 15 mM methyl-β-cyclodextrin (Sigma Aldrich, cat.no: 

C4555) in culture medium without FBS for 30 minutes. Cells were then washed 3 times 

with 1x PBS to remove MβCD and prepared for imaging. 

 

Giant unilamellar vesicle (GUV) preparation 

GUVs were prepared by electroformation, as described in literature323. Lipid film was 

formed by deposing chloroform solution of either DOPC (Avanti Polar Lipids) or a 

mixture of DPPC (Avanti Polar Lipids) with 30% cholesterol (Sigma-Aldrich) onto 
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indium tin oxide (ITO)-coated glass slides, such that 100μg of lipid was deposed in 

total. Lipid films were then dried under an air hood for 4h. GUVs were formed in a 200 

mM sucrose solution at 50°C using 11 Hz, 1V of alternating electric current for 2h. 

 

Artificial membrane patch preparation 

A 1 in 200 dilution of GUVs was made in 1X PBS and added to an Ibidi μ-slide 8-well 

glass-bottomed chamber. GUVs settled in solution and burst in contact with the glass 

bottom under osmotic pressure of the 1X PBS, forming a patch of lipid bilayer. 

Samples were incubated for 30 minutes with 20 nM di-4-ANEPPDHQ in 1X PBS buffer 

to permit binding of single di-4-ANEPPDHQ molecules. 

 

Ratiometric PAINT imaging with di-4-ANEPPDHQ 

Imaging of artificial membranes and RAMA27 cells was undertaken on a custom-built 

fluorescence microscope (RAMM system, ASI) using a 100× 1.49 NA oil immersion 

objective (Apo TIRF; Nikon), using a beam shaper for homogeneous illumination 

(piShaper, AdlOptica). A 488nm laser excitation under highly inclined and laminated 

optical sheet (HILO) illumination and z-focus lock (CRISP, ASI). Fluorescence 

emission from binding of di-4-ANEPPDHQ to membranes was spectrally split by a 

LP640 dichroic mirror (FF640-FDi02-t3, Semrock) and imaged with two sCMOS 

cameras (Prime 95B, Photometrics) over a 130µm × 130µm field of view. Hardware 

was controlled using µManager 2.0 with additional custom microcontroller boards. 

20000 frames were taken per acquisition with 50ms integration time and a laser power 

density of 50W/cm2 over the sample. Emission fluorescence of < 640nm was filtered 

using a custom bandpass filter (552/96). All image stacks were retained for further 

analyses. 
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Post-processing and ratiometric analysis for di-4-ANEPPDHQ data 

Image stacks were combined and single molecule localisations were fitted via a 

Gaussian PSF model. All post-processing prior to GP calculation was undertaken in 

SMAP/MATLAB131. Localisations within 50nm and 1 off-frame were grouped and then 

filtered by precision (0-50nm), PSF size (100-300nm), PSF asymmetry (0-0.2) and 

frame (400-Inf). The projective transformation matrix was calculated between 

channels. Image stacks were re-analysed using a Gaussian PSF fitting to assign 

emission intensities across both channels. Localisations were then filtered by photon 

count in both channels (50-5000 per ungrouped localisation and 100-5000 photons 

per grouped localisation). Localisations from the second channel were then 

transformed onto the first channel and corrected for drift. Finally, the GP value for each 

grouped localisation was recorded (see Appendix for formula). 

 

Marked point pattern simulation 

2000 spatial point patterns were simulated via agent-based modelling, under the 

ASMODEUS R package v. 1.0.0 (see Chapter 3), and ToMATo cluster analysis was 

performed, under the RSMLM R package (v. 1.0.0)199,221. For each ROI, the convex 

hulls of all clusters were calculated and designated as domains. The ROI was 

discretised into square bins, with each bin comprising either a domain or part of the 

background. ⌈𝑛𝑝⌉ points were randomly allocated to a domain bin and their positions 

were distributed uniformly across that bin (for parameter choices, see Table 4.1). All 

remaining 𝑛  ⌈𝑛𝑝⌉ points were uniformly distributed across the background. For CSR 

distributions, all 𝑛 points were uniformly distributed, irrespective of domain placement. 

Each point was then assigned a mark value determined from one of two Normal 
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distributions, depending on whether they fell into a domain or the background324. 

Normal distribution parameters (described in Table 4.1) were selected randomly via 

Latin Hypercube Sampling325. 1000 additional CSR data sets were then generated 

with marked values selected as above. The ROI used in each simulation was 3µm × 

3µm in size and overlaid with convex domains. Marked values were assigned so that 

the average value of all points inside any domain was positive, and the average 

outside all domains was negative. 

 

Parameter Meaning Min Max 

𝑅 Target domain radius (assuming circularity). 20 250 

 1 Mean mark value in simulated domains. 0.01 1 

 2 Mean mark value outside simulated domains. -1 -0.01 

𝜎1 Standard deviation of marks in simulated domains. 0.01 0.5 

𝜎2 Standard deviation of marks outside simulated 

domains. 

0.01 0.5 

𝑝𝑑 Proportion of points assigned to domains. 0.2 0.8 

𝑛 Number of points in marked point pattern. 100 5000 

Table 4.1: Input parameters for simulated data sets and the range of values they were 

randomly generated from. 

 

P-Check 

We take as input a discrete marked point pattern – that is, a point pattern with marks 

assigned from a finite number of categories. For each point, construct a 

neighbourhood comprised of all other points within the chosen search radius (𝑟), 

record the total number of neighbours (within the radius 𝑟) and the number of 
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neighbours which have the same mark as the point itself (Figure 4.1a-c). Summing 

these values over all points, we determine the weighted proportion, 𝑃𝑘, which serves 

as an estimate for the probability that a randomly-selected point and any randomly-

selected neighbour share the same label (see Appendix for formula). The value of 𝑃𝑘 

is maximised if points belonging to the same category form distinct, spatial clusters – 

specifically, if there is no mixing between points of different categories, and clusters of 

each category are spatially separated. By convention, we denote the weighted 

proportion of the original marked point pattern as 𝑃0. A permutation test is then 

performed over 𝑁 trials by randomly shuffling the categorical marks of all points and 

recalculating the proportion 𝑃𝑘 for each trial 𝑘   ,2, … ,𝑁 (Figure 4.1d). If 𝑃0 falls 

within the top 𝛼% of all 𝑃𝑘 values, then the significance level can be estimated as 𝛼% 

(Figure 4.1e). This suggests statistically significant evidence, at the 𝛼% level, of non-

random colocalisation of identically-marked points, which may correspond to specific 

domains326. See Figure 7.4 (Appendix) for conceptual diagram of P-Check and 

Section 7.2.5 for algorithm pseudocode. A search radius may be automatically 

estimated from the data (see below). 

 

Justification of Separation by Employed Persistent Homology (JOSEPH) 

Take a marked point pattern as input. For each point, a neighbourhood comprised of 

all other points within the chosen search radius, 𝑟, is constructed (Figure 4.2a-b). 

Each point is designated a similarity value defined as the difference between the 

point’s own mark and the average mark of its neighbourhood. This value is normalised 

so  that points  which are most  like their  neighbourhood  are given a  similarity value  
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Figure 4.1: Schematic of P-Check. a A discrete point pattern can be segmented into 

subset point patterns for each category (green and orange; b-c). Frequencies can be 

calculated from both categories to determine the total number of neighbours and 

neighbours of shared category. These values are summed over all points and the ratio 

gives the weighted proportion. d A permutation test is performed, which randomises 

the mark of each point. Panels i-iv show example permutations. e The weighted 

proportion 𝑃𝑘 can be calculated for each permutation 𝑘 and compared 𝑃0. If 𝑃0 falls 

within the top 𝛼% of all permutations, then the significance level can be estimated as 

𝛼%. Binsize: 0.005. f Example data set with low overlap and pronounced clustering. 

Binsize: 0.005. g Example data set with high overlap over a CSR distribution. Binsize: 

0.01. All ROI sizes: 1μm by 1μm. The box marked in red signifies the top 5% of 

weighted proportions and represents the region at which the value of 𝑃0 (blue dashed 

line) is statistically significant at the 5% level. 

 

ranging from 0-1, representing highest similarity and lowest similarity, respectively 

(Figure 4.2c). A filtration is constructed by ordering points from highest to lowest 

similarity, which can be used in persistent homology. A deviance threshold, denoted 

 , defines the maximum acceptable difference between the marks of the root (starting 

point) and any other point in the cluster. Each point is connected to all neighbouring 

points whose similarity values are higher than its own and whose roots’ marks are at 

most   higher in value. In scenarios where two distinct clusters overlap, the cluster 

whose root has lowest similarity is absorbed by the opposing cluster. The convex hull 

of the identified clusters can be used as an estimate of the domain. See Figure 7.5 

(Appendix) for conceptual diagram of JOSEPH and Section 7.2.6 for algorithm 

pseudocode. Estimates for both parameters may be automatically calculated from the 

data (see below). 
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Figure 4.2: Workflow of JOSEPH. a Simulated marked point pattern with a highlighted 

region. b The highlighted region of the point pattern, each point’s mark is compared to 

its neighbours. c Each point is assigned a similarity score. Points on the boundaries 

of clusters typically display the lowest similarity scores. d Clusters are constructed by 

iteratively attaching points to neighbours of higher similarity until the deviance 

threshold is met. e JOSEPH performance on a simulated clustered distribution. 

Ground truth underlying domains are given in purple. Points are randomly added onto 

the ROI with a 90% chance of being added inside a domain. Marks are pulled from a 

Normal distribution with mean 0.25 for points inside domains and -0.25 for points 

outside domains (standard deviation is 0.1 in both cases). Clusters are recovered by 

JOSEPH and convex hulls of these clusters are coloured by the average mark within 
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the cluster. f JOSEPH performance on a simulated CSR distribution. Simulation 

protocol is the same as in e, except a CSR distribution is overlaid across the whole 

ROI. 

 

Calculation of intersection over union 

Algorithmic performance was quantified by intersection over union (IoU), compared 

between ground truth domain hulls and hulls of clusters returned by JOSEPH. IoU 

scores were calculated between pairs of hulls by taking both the intersection and union 

of the areas of all hulls, then dividing the area of the intersection by the area of the 

union (see Appendix for formula). Intersection and union areas were calculated using 

the sf (Simple Features) R package (v1.0-16)327. 

 

Parameter estimation: search radius 

The analytic techniques presented here require two key parameters: the search radius 

and the deviance. The search radius refers to the maximum distance permitted 

between any two neighbouring points of the same cluster. The cluster radius serves 

as a proxy for the search radius and can be estimated from the maximising value of 

the Ripley’s H-function, as this represents the spatially-averaged distance at which the 

number of neighbours is maximised (Figure 4.3a-b)192,328. If the spatial distribution of 

the point pattern is known to be CSR, it should first be discretised and then partitioned 

into separate categories. Discretisation could be achieved by established methods of 

pattern classification329. In this instance, it can be shown that GP values taken from 

the ordered and disordered phases will approximate two distinct Gaussian 

distributions (see Section 4.3.5). As such, a Gaussian decision boundary, as 

described in the literature, is used to discretise the point pattern329. 
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Figure 4.3: Techniques for parameter estimation. a-b The Ripley’s H function depicts 

the spatially-averaged density of points at varying radii. The maximising value yields 

the most likely cluster radius. c Histogram of the distribution of all GP values acquired 

from artificial membrane data. Binsize: 0.02. d Results of fitting two Gaussian 

distributions to the histogram. The deviance   is taken to be the minimum distance 

from either peak to the point of intersection. 

 

Parameter estimation: deviance 

As above, we assume that the distribution of marks is represented by the sum of two 

Normal curves, given as  1 +  2  𝑐𝑁( 1, 𝜎1) + (  𝑐)𝑁( 2, 𝜎2), and use Gaussian 

mixture modelling with maximum likelihood estimation to approximate the five 

unknowns330. Assuming the search radius does not exceed true domain size, the 

expected mark of any root in an ordered or disordered cluster will be approximately 

equal to the mean of the corresponding distribution. This is because a neighbourhood 

around this point will have an average mark that approximates the mean of the 

Gaussian, and therefore minimises the absolute difference. The deviance quantifies 
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the maximum permissible difference between the root mark (expected to be the mean) 

and any other point in the cluster. We therefore aim to maximise the deviance without 

absorbing outliers or points from other domains into the clusters. As such, we calculate 

the deviance as the minimum difference between the peaks  1,  2 and the point of 

intersection between  1 and  2 (Figure 4.3c-d). If the mark distributions are known to 

not be Gaussian, then a different sum of probability distributions can be fit. A 

distribution may be estimated visually by plotting a histogram of all marks. Once an 

estimate is known, a Kolmogorov-Smirnov test can be used to determine goodness-

of-fit331. 

 

Marked point pattern analysis software 

All simulations and analyses with P-Check and JOSEPH were conducted in the R 

programming language (v. 4.2.3). The PLASMA software package (v. 1.0.0) was 

written in R (v. 4.2.3) and employed in the integrated development environment 

RStudio, (2022.07.1+554). PLASMA is available for use under GNU General Public 

License (v. 3.0). 

 

4.3 Results 

4.3.1 Di-4-ANEPPDHQ-based ratiometric PAINT for generating marked point 

data 

In order to generate marked point pattern data from SMLM, each fluorescent molecule 

must encode both its spatial position and some property of its environment within its 

fluorescent emission. di-4-ANEPPDHQ yields a large spectral blue shift in its emission, 

reflecting the decreased polarity and reduced hydration of the membrane, even for 

single emitters, in line with literature on bulk measurments119. To discriminate between 
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the spectral shifts of single di-4-ANEPPDHQ probes, two channels were used to detect 

emission, with channel 1 corresponding to wavelengths of 505-600nm and channel 2 

corresponding to wavelengths of > 640nm. At di-4-ANEPPDHQ concentrations 

between 20-80nM, an average of 1825±688 molecules were localised per µm2 with 

negligible background binding. For both channels, 50-5000 photons were collected 

per localisation and photon yields were used to calculate the GP value at the emitter 

position. This encoded both spatial position and the degree of membrane order for all 

detected molecules, which were aggregated to produce a marked point pattern. 

 

4.3.2 Detecting domains in simulated marked point patterns and determining 

statistical significance 

To validate the algorithmic performance of P-Check, 1000 distributions were simulated 

from which each mark was assigned from one of two possible Normal distributions 

(see Materials and Methods). The overlap was recorded for each pair of distributions 

(see Appendix for formula). A Gaussian decision boundary was calculated from the 

distribution of all marks and the point pattern was binarised by thresholding, subject to 

this decision boundary. For each simulated data set, we recorded the overlap, the 

domain radius, the value of 𝑃0, and whether or not the ROI passed P-Check. Results 

suggest that the value of 𝑃0 tends to decrease with higher overlap (Figure 4.4a-c). 

Linear regression analysis suggests a linear relationship with intercept at 0.878 and 

coefficient -0.108 (Figure 4.4d). Simultaneously, the probability of passing P-Check 

becomes lower, and results suggest a linear trendline with intercept 0.999 and 

coefficient -0.136 (Figure 4.4e). The value of 𝑃0 was found to increase approximately 

with domain radius (Figure 4.5a-c), suggesting a linear trendline with intercept 0.768 

and  coefficient  2.2 2 × 10
 5

  (Figure 4.5d). Analogously,  the  probability  of  passing  
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Figure 4.4: The results of P-Check on simulated MPP data sets with increasing 

overlap between the background and domain GP distributions. Overlaps for a-c are 

0.5, 1.0 and 2.0, respectively. In each simulation, the discretised marked point pattern 
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(i) and histogram of weighted proportions derived from P-Check (ii) is shown. All ROI 

sizes: 1μm by 1μm. Binsize for all histograms: 0.001. The box marked in red signifies 

the top 5% of weighted proportions and represents the region at which the value of 𝑃0 

is statistically significant at the 5% level. As overlap increases, the value of 𝑃0 (blue 

dashed line) shifts closer to the centre of the histogram. For the highest overlap, there 

is no statistically significant evidence of partitioning at the 5% level. d Mean value of 

𝑃0 returned from simulated data sets versus overlap (magenta). Orange dashed line 

represents line of best fit recovered from linear regression, with intercept at 0.878 and 

coefficient -0.108. e Probability of ROI passing P-Check versus overlap (magenta). 

Orange dashed line represents line of best fit with intercept 0.999 and coefficient -

0.136. 

 

P-Check increased linearly with intercept 0.933 and coefficient 3. 03 × 10
 5

 (Figure 

4.5e). In general, statistical significance is more likely to be detected over point clouds 

with larger domains and lower overlap between the distribution of marks in each 

phase. Notably, for all domains below 200nm, there was at least a 93% chance that 

they would be detected by P-Check. Furthermore, for all overlap values between 0 

and 2, there was at least a 64% chance that domains would be detected. For a 

simulated data set comprising 2000 points, P-Check took no longer than 1 minute to 

run on a single processor. 

 

4.3.3 Demonstration of P-Check on artificial membrane data 

Synthetic membranes were generated using established GUV preparation methods323 

for liquid-ordered and liquid-disordered phases using DPPC with 30 mol% cholesterol 

and pure DOPC, respectively. GUVs were osmotically popped to give a planar 

membrane patch323. Di-4-ANEPPDHQ was added to membrane patches at a 

concentration of 20nM. At each insertion, a blink is detected by the camera in both red 

and green  channels. Molecules are  localised to determine  x,y-coordinates, and  GP  
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Figure 4.5: The results of P-Check on simulated MPP data sets with increasing 

domain radii. Domain radii for a-c are 40nm, 60nm and 80nm, respectively. In each 

simulation, the discretised marked point pattern (i) and histogram of weighted 

proportions derived from P-Check (ii) is shown. All ROI sizes: 1μm by 1μm. Binsize for 
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all histograms: 0.001. The box marked in red signifies the top 5% of weighted 

proportions and represents the region at which the value of 𝑃0 is statistically significant 

at the 5% level. d Mean value of 𝑃0 returned from simulated data sets versus domain 

radius (magenta). Orange dashed line represents line of best fit recovered from linear 

regression, with intercept 0.768 and coefficient 2.2 2 × 10
 5

. e Probability of ROI 

passing P-Check versus domain radius (magenta). Orange dashed line represents 

linear line of best fit with intercept 0.933 and coefficient 3. 03 × 10
 5

. 

 

values are calculated for each localisation from the derived photon count in the two 

channels. GP values determined from both DPPC and DOPC membrane patches form 

two distinct Gaussian distributions (Figure 4.6a-b). The point of intersection of these 

Gaussians was taken as the threshold for discretisation, and all marked point patterns 

were binarised. Notably, the overlap of the distributions corresponding to these phases 

was 1.455. Spatially-averaged 2D histograms (included in the PLASMA software 

package) from DOPC and DPPC point patterns are given in Figure 4.6c and 4.6e, 

respectively. The corresponding distributions of P-Check proportional values, 𝑃𝑘, are 

given in Figure 4.6d and 4.6f and do not suggest statistically significant heterogeneity. 

This is in line with expectation, since monophase model bilayers are homogeneous in 

lipid composition, with little variation in hydration across the membrane patches. 

Therefore, in model bilayers where large differences in GP are not expected, P-Check 

does not detect domains. 

 

 

4.3.4 Detecting domains in marked point patterns from RAMA27 data 

Having demonstrated P-Check on synthetic membranes, the next step was to probe 

nanoscale membrane order of live cells. Ratiometric PAINT data was acquired 

analogously  on  RAMA27  cells  in  the presence  of an  80nM  concentration of  di-4- 
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Figure 4.6: Applications to synthetic membranes. a Distribution of GP values from 

both the DOPC data (magenta) and DPPC (orange) data. Binsize: 0.02. b Gaussian 

fit for distributions of GP values from DOPC (magenta) and DPPC (orange) data. c-d 

The membrane order map (GP histogram) of an example DOPC data set and the 

corresponding P-Check results. e-f The GP histogram of an example DPPC data set 

and the corresponding P-Check results. Analysis does not find any statistically 

significant evidence of separation in either case. All ROI sizes: 3μm by 3μm. For b, d, 

the box marked in red signifies the top 5% of weighted proportions and represents the 

region at which the value of 𝑃0 (blue dashed line) is statistically significant at the 5% 

level. Binsize for all P-Check histograms: 0.001. 
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Figure 4.7: The results of JOSEPH on simulated MPP data sets with increasing 

overlap between the background and domain GP distributions. a Mean IoU returned 

from simulated data sets versus overlap (magenta). Orange dashed line represents 
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logarithmic line of best fit, with intercept 0.322 and coefficient -0.215. b Ground truth 

hulls over which exemplar MPPs are simulated. Example MPPs are given in panels c-

e, with overlaps 0.5, 1.0, and 2.0, respectively. Each row depicts (i) the MPP simulated 

over the ground truth hulls in b, (ii) the clusters identified by JOSEPH (with low-GP 

background of GP < 0.0 filtered out) and (iii) the convex hulls of the clusters, with each 

hull’s colour corresponding to its average GP. All ROI sizes: 1μm by 1μm. Each 

simulation is comprised of 3000 points with an average domain radius of ~60nm. Mean 

background GP = -0.25, mean domain GP = 0.25, with standard deviation of both = 

0.03125, giving an overlap value of 0.5. Colour bars represent simulated GP value. 

 

 

ANEPPDHQ in DMEM.  In all other aspects, the microscope setup and analysis 

pipeline were the same as for synthetic membranes. P-Check identified non-random 

heterogeneity in 194 of 316 ROIs from RAMA27 cell data. This suggests that 

statistically significant non-random distributions of GP values are present across most 

ROIs, and that there is heterogeneity in lipid order across RAMA27 cell plasma 

membranes. 

 

4.3.5 Quantitative mapping of domains in simulated marked point patterns 

JOSEPH’s performance was validated on simulated data sets with varied mark overlap 

values (Figure 4.7), domain radii (Figure 4.8) and point densities (Figure 4.9) as 

ground truth (see Materials and Methods for quantification). For each simulation, the 

domains identified by JOSEPH were recorded and the IoU score was calculated 

between results and the ground truth332. The IoU quantifies the degree of overlap 

between domains and the ground truth, while penalising overfitting (see Appendix for 

formula)196. Here, a complete lack of overlap yields a value of 0, while perfect overlap 

gives a value of 1. From this, we identify three variables which impact JOSEPH’s 

performance. Firstly, the IoU score decreases as mark overlap increases, and results  
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Figure 4.8: The results of JOSEPH on simulated MPP data sets of varied domain size. 

a Mean IoU returned from simulated data sets versus domain radius (magenta). 

Orange dashed line represents line of best fit recovered from linear regression, with 

intercept 0.066 and coefficient 0.003. Average cluster sizes for b-d are 40nm, 50nm, 

and 60nm, respectively. Each row depicts (i) the convex hulls of the ground truth 

domains, (ii) the simulated MPP, and (iv) the convex hulls of the clusters, with each 

hull’s colour corresponding to its average GP (low-GP background hulls of GP < 0.0 

are filtered out). All ROI sizes: 1μm by 1μm. Each simulation is comprised of 3000 

points. Mean background GP = -0.25, mean domain GP = 0.25, with standard 

deviation of both = 0.03125, giving an overlap value of 0.5. Colour bars represent 

simulated GP value. 

 

suggest a logarithmic trendline with intercept 0.322 and coefficient -0.215 (Figure 

4.7a). This suggests that the quality of the partition becomes increasingly poor at 

higher overlap values. Exemplar simulated data sets of varied overlap are visualised 

in Figure 4.7b-e, alongside the outputs of JOSEPH. Secondly, the IoU value tends to 

increase with greater domain radius, and regression analysis suggests a linear 

relationship with intercept at 0.066 and coefficient 0.003 (Figure 4.8a). Exemplar 

simulated data sets with varied domain sizes are visualised in Figure 4.8b-d, 

alongside the outputs of JOSEPH. This relationship may arise as a result of lower point 

counts within smaller domains, which is inherent of CSR distributions. To quantify the 

impact of point density, we recorded the IoU versus proportion of points assigned to 

domains, 𝑝𝑑, on non-CSR data sets only. As the value of 𝑝𝑑 increases, so too does 

the IoU (Figure 4.9a), suggesting a logarithmic trendline with intercept 0.688 and 

coefficient 0.232. These results suggest that domains are less likely to be detected if 

the density of points within them is low. Exemplar simulated data sets with varied 

values of 𝑝𝑑 are visualised in Figure 4.9b-e, alongside the outputs of JOSEPH. In 

summary, the quality of the partition returned from JOSEPH (as quantified by the IoU  
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Figure 4.9: The results of JOSEPH on simulated MPP data sets, varying the 

proportion of points assigned to domains, 𝑝𝑑. a Mean IoU returned from simulated 

data sets versus 𝑝𝑑 (magenta). Orange dashed line represents logarithmic line of best 
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fit, with intercept 0.688 and coefficient 0.232. b Ground truth hulls over which exemplar 

MPPs are simulated. Example MPPs are given in panels c-e, with 𝑝𝑑   0.5, 0.75, and 

1.0, respectively. Each row depicts (i) the MPP simulated over the ground truth hulls 

in b, (ii) the clusters identified by JOSEPH (with low-GP background of GP < 0.0 

filtered out) and (iii) the convex hulls of the clusters, with each hull’s colour 

corresponding to its average GP. All ROI sizes: 1μm by 1μm. Each simulation is 

comprised of 3000 points with an average domain radius of ~60nm. Mean background 

GP = -0.25, mean domain GP = 0.25, with standard deviation of both = 0.03125, giving 

an overlap value of 0.5. Colour bars represent simulated GP value. 

 

 

score) improves with lower overlap and greater point density within domains. For a 

simulated data set comprising 2000 points, JOSEPH took no longer than 10 second 

to run on a single processor. 

 

4.3.6 Measuring nanoscale membrane order in live cell membranes with 

PLASMA 

ROIs from live RAMA27 cell data which exhibited statistically significant evidence of 

mark heterogeneity at the 5% level (determined via P-Check) were carried forward 

and analysed with JOSEPH (Figure 4.10a-c). For each cluster found, the average GP 

of all cluster points was compared to the global average GP within the ROI to 

determine the difference in GP values across domains (Figure 4.10d). Results show 

two peaks comprising clusters with GP values above and below the global average, 

respectively. Furthermore, the area of each convex hull was recorded across all 

analysed ROIs (Figure 4.10e). On average, domains occupied an area of 

approximately 0.15μm2 with 90% of all domains falling between 0.03 μm2 and 

0.293μm2. Assuming domain circularity, this corresponds to radial values of around 

100-300nm. This may suggest that both lipid-ordered and lipid-disordered 

nanodomains are present within RAMA27 cells. 
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Figure 4.10: Live cell membrane results. a A marked point pattern acquired from 2-

channel PAINT SMLM on RAMA27 cell lines. b Clusters identified by JOSEPH with 

average GP values which were significantly different to the global mean. c The 

membrane order map of the ROI. d Histogram of the relative frequency which domains 

identified by JOSEPH fell into intervals above (ordered) or below (disordered) the 

global average GP value (~0.22) for untreated cells. e The areas (in μm2) of all 

domains identified by JOSEPH in untreated cells. f Histogram of the relative frequency 

of domains identified by JOSEPH which fell into intervals above (ordered) or below 

(disordered) the global average GP value (~0.17) for cells treated with MCD. g 

Beeswarm plot of mean GP value for all domains within selected ROIs for untreated 

(Control, magenta) and methyl--cyclodextrin (MCD, orange).  Statistical significance 

was determined via two sample t-test over 57 control ROIs and 52 MCD ROIs. 
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Significance ranking: n.s - not significant, * - p < 0.05, ** - p < 0.01, *** - p < 0.001. All 

binsizes: 0.02. 

 

Further, to demonstrate the method’s sensitivity to changes in lipid order, we used a 

well-established cholesterol binding molecule, methyl-β-cyclodextrin (MβCD)333, to 

remove cholesterol from the plasma membrane. Cells were treated with MβCD and 

compared to untreated (control) cells using P-Check and JOSEPH (Figure 4.10f-g). 

P-Check identified non-random heterogeneity in 49 of 57 ROIs from untreated cell 

data and 46 of 52 ROIs from MβCD-treated cell data.  We recorded the difference 

between global mean GP and the mean GP of domains identified by JOSEPH for 

MβCD-treated cells (Figure 4.10f). In this case, we observed that domains now 

elicited a central peak and two smaller lobes relating to the lower and higher order 

domains identified. Notably, the relative frequency of domains above the global mean 

GP has decreased when compared with Figure 4.10d. Further, we observed a 

decrease in the average GP value per ROI for MβCD treated cells when compared 

with the untreated cells (Figure 4.10g). A relative shift towards low-order domains is 

observed upon treatment with MβCD, which suggests greater lipid disorder within both 

the domains and the whole membrane. 

 

4.4 Discussion 

In this work, we have introduced a series of topological data analysis techniques, 

under the PLASMA umbrella package, for detecting heterogeneity in marked point 

patterns. By applying these methods to simulated data with known ground truths, we 

have demonstrated their capacity to determine the existence and location of 

underlying domains. In particular, we find that P-Check is more likely to detect 

statistically significant heterogeneity over point patterns with larger domains and lower 
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overlap between the distribution of marks in each phase. Among these simulations, 

for all domains below 200nm, there was at least a 93% chance of detection, and for 

all overlap values between 0 and 2, there was at least a 64% chance of detection. For 

JOSEPH, we find that the quality of the partition returned (as quantified by the IoU 

score) improves with lower overlap and greater point density within domains. 

 

4.4.1 Results from ratiometric PAINT data of GUVs and RAMA27 cells 

Using a ratiometric PAINT approach with the solvatochromic probe di-4-ANEPPDHQ, 

we produced marked point patterns of the distribution of membrane order, represented 

by GP values, in GUVs and RAMA27 cells. Notably, the overlap of the distributions 

corresponding to ordered and disordered phases in GUVs was 1.455, which 

(according to simulations) would suggest a ~65% of detecting domains. We applied 

P-Check to live-cell RAMA27 data and identified non-random heterogeneity in 194 of 

316 ROIs (~62%) at the 5% significance level. Then, after passing these ROIs through 

JOSEPH, we find significant deviation between the average GP values of identified 

domains and the global average GP. Furthermore, we calculate the area of all convex 

hulls and find that 90% of all domains are characterised by a radius between 100-

300nm. However, since these quantities were derived from convex hulls, rather than 

concave, they may be overestimates of the true size. Ultimately, this could suggest a 

degree of regulated lipid heterogeneity across the plasma membrane. Furthermore, 

we are able to quantify changes in membrane order upon manipulation of the plasma 

membrane with methyl--cyclodextrin, where a shift towards the disordered domain 

population was observed. 
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4.4.2 Applicability of PLASMA and advances in bioinformatics 

As discussed, methods for partitioning marked point patterns have yet to keep pace 

with more generalised spatial cluster analysis algorithms. The PLASMA package could 

bridge this gap by providing a segmentation pipeline for marked pattern data. Only two 

input parameters are required for PLASMA analysis: a search radius and a mark 

deviance threshold, for which we have supplied additional methods for parameter 

estimation, built into the software package by default. As a TDA tool, JOSEPH is 

applicable to MPPs which are spatially anisotropic. Notably, JOSEPH relies on the 

local mean of each point’s neighbourhood as a measure of similarity, although this 

may not provide an accurate summary statistic for data sets of particularly low density. 

However, in this specific application to SMLM, data sets are often sufficiently dense, 

so it is easy to overcome this limitation129,130. JOSEPH is an unsupervised machine 

learning approach, which may be prone to hallucinate clusters. Since JOSEPH does 

not filter the connected components returned from persistent homology, every point is 

assigned to a cluster by default. Therefore, it is recommended to first conduct P-Check 

in order to determine if domains may actually be present within the data. For this 

reason, it is important to consider both algorithms in the PLASMA package. 

 

4.4.3 Concluding remarks 

In conclusion, we have developed a software package for detecting heterogeneity in 

marked point patterns and partitioning marked data sets in the style of traditional 

cluster analysis. We find these methods are applicable to data extracted from 2-

channel ratiometric PAINT SMLM acquisition using the solvatochromic probe di-4-

ANEPPDHQ. In conjunction with cluster and colocalisation analysis, PLASMA may 

serve as a basis for probing, mapping and quantifying the nanoscale spatial 
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organisation of lipid phase domains in the cell plasma membrane. The data presented 

suggest that large scale segregation of domains may not be ubiquitous, but that both 

liquid-ordered and liquid-disordered lipid domains are present at the nanoscale (~100-

300nm) in RAMA27 cells. Notably, the ordered domains identified here may be 

characteristic of lipid rafts. As imaging modalities become increasingly optimised, 

ratiometric SMLM methods produce greater precision in localisation and GP 

determination. Therefore, analysis packages such as PLASMA could play a central 

role in determining the existence and distribution of nanoscale lipid phase domains 

and may offer an avenue for visualising and quantifying lipid raft properties. By 

employing PLASMA over SMLM data acquired with different environmentally-sensitive 

probes, we may be able to map other properties of interest (e.g., membrane charge 

or tension334), and give insights into how these properties interplay with the lipidome. 

This work summarises a novel approach for MPP analysis and highlights the potential 

for further membrane mapping techniques, specifically towards SMLM with 

environmentally-sensitive dyes. 
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Chapter 5: Discussion and conclusion 

The development of analytic techniques for quantifying biophysical membrane 

properties remains at the forefront of active research for biologists, immunologists, 

data scientists and microscopists. Protein aggregation on the plasma membrane 

underpins essential cellular processes, such as signalling and communication, and it 

is now known that lipid packing correlates with transmembrane protein motility64,148. 

Central to this notion is the spatial oligomerisation or clustering of transmembrane 

proteins, which is hypothesised to convert analogue extracellular signals into digital 

intracellular counterparts78,289. While the existence, prevalence and function of lipid 

rafts remain controversial topics, it is now generally accepted that oligomerisation 

associates with membrane lipid order and that protein clusters are tuned to optimise 

the transmission of signalling information335. To further research into the morphological 

properties and physiological relevance of ordered lipid domains, it is essential to 

devise scalable spatially-descriptive statistics to interpret the complex data of SMLM 

and its evolving imaging modalities. This thesis presents a series of topology-based 

analytic tools for image segmentation, modelling protein aggregation, and point pattern 

partitioning, designed for use with conventional and super-resolved FM under 

environmentally-sensitive probes. TOBLERONE, a topological image analysis tool, is 

developed for classical cell segmentation in confocal microscopy (Chapter 2) and 

identifies regions of varied lipid packing across members of the fungal species C. gattii. 

Moving towards the nanoscale, ASMODEUS is introduced as a PAD simulator with 

applications to generalising transmembrane protein motility and generating realistic 

SMLM data (Chapter 3). These simulations are then implemented in Chapter 4 to 

validate the analytic methods comprising the PLASMA package, which are used to 

identify heterogeneity in MPP data. The techniques presented here may serve as 



Page | 171  

platforms for studying properties of the membrane nano-environment in the evolving 

landscape of SMLM and big data quantification. 

 

5.1 Summary of results 

The central contributions of this thesis come in the form of novel topological data 

analysis techniques for probing biophysical data, derived from different forms of 

microscopy, with specific applications to the cell plasma membrane. In Chapter 2, we 

show that TOBLERONE segmentation offers a trade-off between sensitivity and 

specificity which may not be achievable with pre-existing classical methods. We 

quantify algorithmic performance under simulated image artefacts, Gaussian noise 

and blur, and determine that sensitivity experiences a greater decrement with noise, 

while specificity is more sensitive to blur. Generally, we find that most pixels belonging 

to an object are correctly identified and most pixels belonging to the background are 

correctly ignored by TOBLERONE. In addition, we demonstrate TOBLERONE on 

confocal FM data. We quantify membrane order in C. gattii with di-4-ANEPPDHQ and 

find statistically significant evidence at the 1% level that treatment with 2OHOA or 7-

ketosterol can lower the average GP value across the C. gattii cell plasma membrane. 

For 3D cell segmentation, we find that Jurkat T cells span a diameter of approximately 

15.5μm on average, in accordance with existing literature282-284. Further, we track S. 

pombe dynamics using tempTOBLERONE, and determine that progression from 

telophase to interphase in the nuclear division of S. pombe can occur in under a 

minute, in line with existing reports285. 

In Chapter 3, we shift focus to nanoscale protein aggregation and develop a simulator 

for protein map data. We find that an ABM approach, using the Ripley’s K function as 

a metric of cluster affinity, can induce point pattern aggregation with pre-defined 
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cluster properties. For single populations of molecular species, all 9600 simulations 

reached convergence within the model runtime of 2.5 minutes, and experienced a 6-

fold reduction in error. In addition, all associated cluster properties fell to within 10% 

of their target values at convergence. Furthermore, we find that nucleation can 

increase the likelihood of cluster formation and that the probability of convergence 

increases with greater protein recruitment, even at a relatively low number of 

nucleation sites. This same result holds true for simulations of CD3ζ distributions in 

Jurkat T cells, with induced nucleation increasing the likelihood of favouring a 

distribution associated with activated conditions as opposed to non-activated. For 

multiple population models, we find that an instantaneous switch in clustering regime 

can cause simulated activators and agents to co-cluster or disperse. This elicits a 

sudden shift in agent activation, and induces a response analogous to digitisation. 

ASMODEUS therefore offers a dual purpose in generating static point clouds for 

validating analytic techniques and dynamic simulations for comparing molecular 

interactions across hypothetical distributions. 

In Chapter 4, we implemented 2-channel PAINT SMLM with solvachromatic probes 

to explore the distribution of membrane order, represented by point patterns marked 

with GP values, at resolutions below the diffraction limit of light. We implemented a 

software package, PLASMA, for identifying heterogeneity and partitioning these data 

sets. Results on simulated data, derived from ASMODEUS, suggest that P-Check has 

a 93% chance of detecting domains below 200nm in size, and at least a 64% chance 

of detecting domains with overlap values between 0 and 2. Further, we find that the 

quality of the partition returned by JOSEPH (quantified by the IoU score) improves 

with lower overlap and greater point density within domains. In experimental data, 

results suggest that lipid domains exist in RAMA27 membranes and are more 
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abundant than in synthetic membrane data. The domains identified in live cells 

exhibited mean GP values that deviated significantly from the global average of their 

host ROI. This could suggest a degree of regulated heterogeneity in lipid packing 

across the plasma membrane. Domains ranged in sizes between 0.03 μm2 and 

0.293μm2 in area, suggesting radii of around 100-300nm, assuming circularity. As 

these length scales are typically observed close to the diffraction limit of light, this form 

of analysis may offer a unique and detailed insight into membrane heterogeneity and 

the lipidome. 

 

5.2 Suitability of methods 

5.2.1 TOBLERONE 

State-of-the-art methods in cell and organelle segmentation rely on machine and deep 

learning frameworks. Such frameworks are typically built upon convolutional neural 

networks (CellSeg250, CellPose251,273 and 3DCellSeg217) and may impose explicit cell 

geometries (StarDist249 and 3DStarDist336). With the advent of weakly-supervised 

training regimes337 and efficient image processing tools, such as SegmentAnything252, 

it is likely that artificial intelligence (AI) will see increased integration into desktop 

analysis pipelines in future. However, AI-based models warrant greater processing 

power and annotated training data, which may not always be available. Classical 

methods may be used in lieu of machine learning (ML), and may involve either simple 

binarisation methods (Otsu, Huang or Ray thresholding338,339), binary map post-

processing (seed-point extraction340, Watershed algorithm278,341, gradient-based 

detection338), or some combination of both (Spot Segmentation and 3D Simple 

Segmentation264). That said, classical methods can present analogous drawbacks, in 

terms of increased parameterisation and geometric specificity. 
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As discussed in Chapter 2, TOBLERONE draws topological image processing to the 

attention of biologists and microscopists, as an alternative to existing classical 

segmentation methods. This allows for complete, geometry-free cell segmentation on 

the images, z-stacks and t-stacks acquired from conventional fluorescence 

microscopy. We note that the algorithmic performance of TOBLERONE is dependent 

on image quality, meaning that imaging artefacts may skew results. However, this is 

a shared property among all image analysis tools and can be improved with pre-

processing techniques, such as denoising, image smoothing and image sharpening. 

All implementations of TOBLERONE require a single parameter, and detailed 

instructions for parameter estimation are listed in the methods (see Chapter 2). As a 

method of TIA, TOBLERONE is invariant of geometric object properties and applicable 

to images with a high degree of between-cell variation342,343. 

TOBLERONE’s capacity to detect objects across a range of fluorescence intensities 

is particularly applicable to segmenting FM under polarity-sensitive dyes. Such images 

present a unique data type in that fluorescent emissions are taken from two channels 

and are heterogeneous across both. As seen in Chapter 2, the algorithm has already 

been used to compare differences in membrane order across C. gattii under different 

growth media. Further, since development, TOBLERONE has been used in probing 

membrane order among the fission yeast, Schizosaccharomyces japonicus and its 

sister species Schizosaccharomyces pombe37. The production of unsaturated acyl 

tails relies on eukaryotic desaturases, which require molecular oxygen, and therefore 

only occurs in aerobic environments37. TOBLERONE has shown that S. japonicus can 

regulate its own membrane fluidity by exploiting phospholipid acyl tail length 

asymmetry, in the absence of unsaturated fatty acids in the membrane lipidome37. This 
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evolutionary principle allows S. japonicus to grow in both aerobic and anaerobic 

conditions, whereas S. pombe cannot37. 

To summarise, we have here shown that topological image analysis techniques can 

be used for segmentation of FM data. As a subset of TDA, the algorithms introduced 

can probe for arbitrarily-shaped biological structures of any underlying topology. This 

permits semi-automatic, reproducible segmentation of stainable cellular components 

even in data sets with varying pixel intensities. While TOBLERONE and its 

subsidiaries require greater parameter tuning and are less capable of distinguishing 

adjacent cells than ML methods, the algorithms provide a suitable alternative for 

researchers who lack computational resources and want to avoid the black box 

approach presented by ML. 

 

5.2.2 ASMODEUS 

In Chapter 3, we introduce a novel method for simulating transmembrane PAD which 

generates protein maps that match spatially-descriptive statistics derived from 

experimental data. Existing SMLM simulation models (such as SuReSim299, 

FluoSim300, SMeagol301, TestSTORM302, ThunderSTORM179, LocMoFit167 and 

SMIS303) generate localisations built on underlying geometries and ground truth 

structures specified by user input. These methods simulate artefacts based on the 

photophysical properties of fluorescent molecules to derive realistic SMLM data, 

however, they require manual user input regarding point pattern distribution. Virtual-

SMLM344 offers an interactive simulator for SMLM acquisition, rather than simply 

creating data, but is also limited to known ground-truth geometries. Simulators of this 

form are specific to certain SMLM imaging modalities and require understanding of 
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photophysical properties, such as photo-activation, bleaching and switching rates. 

These are often taken to be constant, which is not necessarily a valid assumption93. 

ABMs model PAD by imposing biophysical behaviours on the trajectories of individual 

agents, such as fixed-rate or variable diffusivity300,301,303. Other agent-based modelling 

approaches have directly simulated lipid rafts as regions of the membrane which inhibit 

protein diffusivity across multiple molecular species345. These simulations found 

success in simulating dimerisation of the platelet- and megakaryocyte- specific 

receptor for collagen glycoprotein VI, however, they are limited by the binary diffusivity 

coefficient used in the model345. Additionally, they assume that lipid domains are fixed 

in space and time, which contrasts with the literature346-348. These models also require, 

at minimum, knowledge of biophysical parameters such as molecule size345. Very few 

of these simulators take account of molecular interactions, but even then, they are still 

limited by imposed geometry300,345. 

With the advent of ASMODEUS, we can simulate localisation data with generalisable 

geometries. We show that the simulator is capable of recapitulating the cluster 

properties of input target distributions from simulated data. Further, the model can 

track multiple populations of interacting molecular species and generate perturbations 

which serve as proxies for natural and induced biophysical disruptions. Using 

ASMODEUS as a spatiotemporal PAD simulator, we can optimise nucleation 

parameters required to elicit clustering or a phase shift of distribution in simulated data. 

This simulation technique can be used to generate SMLM data that represents both 

non-activated and activated distributions, whilst also modelling a shift from one 

distribution to another during simulation. Research into therapeutic mediators which 

induce or disrupt TCR aggregation is ongoing13,296,297, and in silico modelling platforms 

such as ASMODEUS could be used to inform mediator structure. 
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In order to improve generalisability, we would need to take account of the explicit 

biophysical processes, occurring on the plasma membrane, which force molecules to 

adopt configurations defined by Ripley’s K function and other spatially-descriptive 

statistics. As the temporal resolution of SMLM is increasingly improved, we afford 

greater availability of data to validate new agent-based models and predict PAD. With 

these developments, we may be able to determine important factors leading to lipid 

raft formation and redistribution, while also predicting protein dynamics based on 

phase affinity. With further finetuning, in silico modelling could be used for simulating 

the effect of nanotherapeutics, which may lead to novel clinical applications. 

 

5.2.3 PLASMA 

Current methods of marked point pattern analysis rely on mark discretisation and 

measures of colocalisation. This may be achieved through nearest-neighbour distance 

analysis, the coordinate-based colocalisation value239, or scalable metrics such as 

SODA234, Clus-DoC349 and LAMA241. The principle drawback of this approach is that 

the quantitative information associated with each GP value, and therefore the relative 

differences between adjacent molecules, is lost upon discretisation. Some second-

order characteristics can be used to determine correlations between the spatial 

positions and marks of points in MPPs, such as Isham’s mark correlation function, 

Stoyan’s kmm function (normed), the mark variogram and the mark covariance function 

(unnormed)233. These determine relative association between marked points as a 

function of both distance and difference in marks. In general, the problem of non-

spatial clustering remains an open question in point pattern analysis. As such, in 

Chapter 4, we introduce the PLASMA package, which offers a method of MPP 

partitioning and systems for parameter estimation. This allows for parameter-free 
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cluster analysis of marked point patterns, characterised by data with three or more 

dimensions, of which not all are necessarily spatial. 

We have endeavoured to overcome any drawbacks associated with the algorithms 

introduced through PLASMA. Only two input parameters are required across the 

analysis pipeline, which are automatically estimated from the input data by Gaussian 

mixture modelling. P-Check is used as a measure of co-clustering, which functions on 

discrete point patterns, and can determine whether underlying domains are present 

within a data set. Furthermore, we develop a framework for applying TDA, and 

specifically persistent homology, to marked point patterns. This is summarised in the 

second algorithm, JOSEPH, which interprets the local mean mark value as a measure 

of similarity between points. Notably, this summary statistic loses precision in sparser 

data sets – however, SMLM often provides rich data sets129,130. Although the workflow 

presented here was initially developed for SMLM data, all algorithms in PLASMA are 

applicable to generic MPP data, such as those acquired in seismology, agriculture and 

spatial omics350-352. 

With advancements in super-resolution imaging, SMLM methods are producing 

increasingly information-rich data sets. Owing to the development of new 

environmentally-sensitive probes and imaging methods, localisation data can now be 

encoded with biophysical membrane properties, such as pH, membrane tension, and 

quantification of lipid packing. As new polarity-sensitive fluorescent probes are 

continuously developed and improved, there is greater potential for generating marked 

point patterns which exceed the standard structural information typically obtained via 

SMLM and allow for real-time visualisation of lipid-ordered nanodomains. This 

archetype of big data necessitates specialised analytic techniques for quantification of 
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marked point patterns, and so the methodologies introduced in PLASMA may be of 

increasing interest in the foreseeable future. 

In order to fully understand the nature of lipid rafts, SMLM modalities must be finetuned 

to achieve greater precision and accuracy, in terms of both spatial localisation and in 

photon detection across multiple channels. Further, by developing polarity-sensitive 

probes with improved quantum efficiency, we will be better able to estimate lipid 

packing across the plasma membrane, which will ultimately permit more accurate data 

partitioning and nanodomain identification. As membrane probes with greater balance 

between binding and dissociation rates are developed, and methods in SMLM become 

increasingly computationally-efficient, image acquisition times are reduced. This will 

allow for faster imaging of dense marked point patterns, which provides a clearer 

representation of atypical lipid packing in live cells, without the bias of experimental 

artefacts such as drift. In turn, this allows for more precise detection and localisation 

of lipid nanodomains, and for tracking their dynamics. Through this, we may be able 

to determine the role and behaviour of lipid rafts in biophysical processes, such as 

signal transduction, mounting of the immune response and cancer progression, which 

could have notable clinical impact. 

 

5.3 Long-term outlook 

Despite advances in experimental and analytic methods, several fundamental 

questions regarding the extent and impact of membrane order remain unanswered. 

The complex interactions between lipid packing, membrane order and membrane 

curvature, among other biophysical and continuum properties, remain largely 

unmapped. To further advancement in theoretical and computational membrane 

modelling, a precise functional relationship must be derived. This is complicated by 
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the impact of substance and signal transport, across and along the membrane, on 

membrane lipid order. Cholesterol has recently been shown to have a differential effect 

on phospholipid and protein classes, with some molecules more sensitive than 

others89. A detailed analysis of the molecular mechanisms underlying the effect of 

cholesterol-induced membrane re-ordering, inter-leaflet translocation, and membrane 

asymmetry stabilisation awaits future investigations. To provide in-depth studies of 

these principles, further development of microscopic, computational, and experimental 

systems is required. There is no universal solution for experimental design, and each 

target requires careful probe selection and workflow optimisation – from a biochemical 

perspective, systemic microscopy would benefit from small, efficient, and quantitative 

labels, and this will require major collaborative efforts353. The increase in spatial 

resolution afforded by super-resolution microscopy brings trade-offs in other image 

quality metrics that are equally important for dissecting bioprocesses, such as 

temporal resolution, sensitivity, imaging speed and phototoxicity354. For SMLM, further 

research is required to increase speed and live cell compatibility, validate deep 

learning approaches and develop unsupervised machine learning for generalised 

image reconstruction355. 

The implementation of intelligent hardware systems, such as adaptive optics, may 

compensate for aberration and prevent excessive imaging artefacts by reducing light 

doses through selective illumination of the relevant parts of the sample. Self-driving 

microscopes, which make use of deep reinforcement algorithms and probabilistic 

optimisation methods, show promise for long-term assay planning and optimal 

decision making. This will enable rapid, real-time modulation of acquisitions and 

ensure that sufficient data are captured for all cell states, regardless of underlying 

heterogeneity354. Synergising hardware with deep-learning models will enable 
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superior pattern recognition, image reconstruction, denoising and information 

inference. However, more rigorous validation methodologies will be required to 

establish biological authenticity of computationally-augmented images and the 

integrity of recovered signal intensities from techniques that enhance data 

synthetically. Furthermore, strategies to effectively combine diverse datasets, while 

retaining the specificity of individual experimental conditions, must be developed. This 

will require major concerted efforts across interdisciplinary research domains. At the 

very least, these studies await the advancement of both microscope hardware designs 

and computational software systems, which can leverage deep learning while 

accurately interpreting model outputs185. As modern bio-image data becomes 

increasingly complex, quantitative analyses and machine learning models are quickly 

becoming the primary viable avenue for objective study. 

The advancement of experimental and computational methods is necessary for further 

derivation of clinically-relevant results. For instance, correlative analysis may enable 

research into disorders such as multiple sclerosis, which are characterised by defects 

in T cell signalling, as well as lipid, cholesterol, and glycosphingolipid metabolism121. 

The precise mechanism by which lipid packing disrupts and engages antigen sensing 

and receptor signalling remains unclear. Future studies are required to determine the 

relative contribution of associated cholesterol and lipid species in orchestrating 

membrane order. Dynamic marked point pattern analysis may enable tracking of lipid 

rafts, shedding light on the principles of domain migration in the immunological 

synapse and how this influences the immune response. Further, accurate mapping of 

receptor nanodomains which interact with cytoskeletal structures, related to the 

synaptic scaffold, may elucidate understanding of signalling cascades353. How 

membrane remodelling impacts the frequency of interactions between 
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immunostimulatory receptors, such as Lck, and negative regulators, such as Lck-

inhibiting protein Csk, remains to be determined70. These experimental challenges will 

only be overcome with advances to imaging, spectroscopy and controlled cell-

activating systems. The aforementioned results would help establish the degree to 

which lipid-mediated receptor organisation can influence signalling outcome in T cells, 

and perhaps even its relation to malfunctions such as immune disorders. The impact 

of receptor nanoscale organisation is now well-established, but immunomodulatory 

nanomedicine analogues lag behind. Dynamic mathematical modelling of T cell 

receptors, parameterised by real experimental data, could present clinical 

applications, such as computationally-optimised immunotherapies. 

 

5.4 Concluding remarks 

In this work, we have aimed to develop TDA techniques for microscopy data from 

micro- to nano-scales and to highlight the benefits of TDA in bioinformatics and 

microscopy. Analytic method have been introduced for segmenting, modelling and 

quantifying FM data across the range of spatial resolutions afforded by state-of-the-

art imaging modalities. We find that topological image analysis is a viable avenue for 

segmentation and analysis of data derived from diffraction-limited fluorescence 

microscopy. With ASMODEUS, we use agent-based modelling to produce advanced 

PAD simulations which match distributions to target statistics derived from real data. 

This generates new spatial point patterns which recapitulate the cluster properties of 

realistic SMLM data and can be used as a framework for predicting hypothetical 

interactions between molecular species. We have demonstrated that 2-channel 

ratiometric PAINT SMLM acquisition combined with statistical cluster and 

colocalisation analysis can serve as a basis for probing and mapping the nanoscale 
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spatial organisation of ordered lipid domains in mammalian cell membranes. Results 

suggest that ordered lipid domains segregate from lipid-disordered regions at the 

nanoscale (~100-300nm). This highlights the potential for further membrane mapping 

approaches and lays the groundwork for analysis of generalised marked point patterns 

acquired by SMLM. In summary, this work highlights the importance of topological 

quantification in non-spatial microscopy data, introduces novel analytic techniques for 

identifying variations in biophysical membrane properties, and offers further insight 

into both protein aggregation dynamics and the impact of lipid packing on the plasma 

membrane. 
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Appendix 

7.1 Formulas 

Calculation of Generalised Polarisation in Fluorescence Microscopy 

The GP image is calculated under the following equation: 

𝐺𝑃  
𝐼1  𝐺 × 𝐼2
𝐼1 + 𝐺 × 𝐼2

  

Here 𝐼𝑗 is the intensity profile in the image acquired in spectral channel 𝑗, with the first 

channel corresponding to the ordered phase, and 𝐺 is the calibration factor or 𝐺 factor. 

This is equivalent to, 

𝐺𝑃  
𝐼 00−  0  𝐺 × 𝐼 70−  0
𝐼 00−  0 + 𝐺 × 𝐼 70−  0

 and 𝐺𝑃  
𝐼 00− 80  𝐺 × 𝐼 20−7 0
𝐼 00− 80 + 𝐺 × 𝐼 20−7 0

, 

for Laurdan and di-4-ANEPPDHQ respectively356. The 𝐺 factor is used in the GP value 

calculation to compensate for differences in the efficiency of photon collection in the 

two channels. This calibration is performed by imaging dyes in a standard solution 

under standard conditions such that the ratio of fluorescence in each channel is always 

constant. The 𝐺 factor is then calculated as, 

𝐺  
𝐺𝑃𝑟𝑒𝑓 + 𝐺𝑃𝑟𝑒𝑓𝐺𝑃 𝑒𝑠  𝐺𝑃 𝑒𝑠   

𝐺𝑃 𝑒𝑠 + 𝐺𝑃𝑟𝑒𝑓𝐺𝑃 𝑒𝑠  𝐺𝑃𝑟𝑒𝑓   
, 

where 𝐺𝑃 𝑒𝑠 is the GP value of the respective dye in pure dimethyl sulfoxide (DMSO 

– a chemical which dissolves polar and non-polar compounds), measured with the 

same microscope setup and settings as those used for the real sample, and 𝐺𝑃𝑟𝑒𝑓 is 

a reference value for the dye in DMSO356. The 𝐺𝑃𝑟𝑒𝑓 may have a conventional value 

already assigned. For example, under Laurdan, 𝐺𝑃𝑟𝑒𝑓 = 0.207356. Generally, this value 
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must be chosen so that the 𝐺𝑃 values for model membranes with liquid-ordered and 

-disordered phases are separated at around 𝐺𝑃 = 0. 

 

Calculation of sensitivity and specificity 

Consider the matrix representation of a binary image, 𝐼. For each pixel (𝑖, 𝑗), we 

denote the pixel intensity in the matrix representation as 𝐼𝑖𝑗. We denote pixel (𝑖, 𝑗) as 

active if 𝐼𝑖𝑗    and inactive if 𝐼𝑖𝑗   . Consider a ground-truth image matrix 𝐺 and a 

binarised segmentation of 𝐺, denoted 𝑆. Then we define pixel (𝑖, 𝑗) as a true positive 

if 𝐺𝑖𝑗    and 𝑆𝑖𝑗   , true negative if 𝐺𝑖𝑗    and 𝑆𝑖𝑗   , false positive if 𝐺𝑖𝑗    

and 𝑆𝑖𝑗   , and false negative if 𝐺𝑖𝑗    and 𝑆𝑖𝑗   . Let 𝑇𝑃, 𝑇𝑁, 𝐹𝑃 and 𝐹𝑁 denote 

the number of true positives, true negatives, false positives and false negatives, 

respectively. Then we define sensitivity as, 

𝑆 𝑛𝑠  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 

or the fraction of true positive pixels over all active pixels, and define specificity as, 

𝑆𝑝 𝑐  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
, 

or the fraction of true negative pixels over all inactive pixels281. 

 

Derivation of error and step size for ASMODEUS 

The average ratiometric error of point 𝑖 is given by, 

𝐸𝑖  
 

|𝑅|
∑ 𝑖(𝑟)

𝑟∈𝑅

, 

where 𝑅 is the set of radial values to iterate over (derived during calculation of the 

Ripley’s K function357) and  𝑖(𝑟) is the scalar error at radius 𝑟, given by, 
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 𝑖(𝑟)  

{
 
 

 
 
|𝐾𝑡(𝑟)  𝐾𝑖(𝑟)|

𝐾𝑡(𝑟) + 𝐾𝑖(𝑟)
, 𝐾𝑖(𝑟) > 𝐾𝑡(𝑟)

  
𝐾𝑖(𝑟)  𝜋𝑟

2

𝐾𝑡(𝑟)  𝜋𝑟
2
𝐾𝑡(𝑟) ≥ 𝐾𝑖(𝑟) > 𝜋𝑟

2

 , 𝐾𝑖(𝑟) ≤ 𝜋𝑟
2

  

Here, 𝐾𝑡(𝑟) is the global target K function. The lower bound is set at 𝜋𝑟2 as this is the 

expected distribution of the K function for a CSR point pattern328. The step size of point 

𝑖 is then calculated as, 

𝐷𝑖  (𝐷  𝑥  𝐷 𝑖𝑛)𝐸𝑖
2 + 𝐷 𝑖𝑛  

A quadratically decreasing step size was chosen based on preliminary results307. 

 

Weighted proportion for P-Check 

Let 𝑁 ∈ ℕ be a finite number (here, the total number of random trials used in the 

permutation test of P-Check). Then, for each 𝑘   , , … ,𝑁, let 𝑀𝑘 ⊂ ℝ
  be a marked 

point pattern such that |𝑀𝑘|  𝑛 (𝑀𝑘 contains 𝑛 points) and let  𝑘  

{(𝑥, 𝑦): (𝑥, 𝑦, ) ∈ 𝑀𝑘} be the spatial point pattern over which 𝑀𝑘 is defined. Then we 

define the weighted proportion of 𝑀𝑘 as, 

𝑃𝑘  
∑ ∑ ℋ(|𝒙𝑖  𝒙𝑗|  𝑟)(  ℋ(| 𝑖   𝑗|))

𝑛
𝑗=1

𝑛
𝑖=1

∑ ∑ ℋ(|𝒙𝑖  𝒙𝑗|  𝑟)
𝑛
𝑗=1

𝑛
𝑖=1

 , 

where 𝒙𝑖 ∈  𝑘 is the spatial coordinate of point 𝑖,  𝑖 is the associated mark of point 𝑖, 

𝑟 is the search radius, and ℋ is the Heaviside function, which equates to 1 when its 

input is positive and 0 otherwise358. 

 

Intersection over union 

Let 𝑀 ⊂ ℝ  be a marked point pattern and let   {(𝑥, 𝑦): (𝑥, 𝑦, ) ∈ 𝑀} be the 

spatial point pattern over which 𝑀 is defined. Suppose 𝑔1, 𝑔2, … , 𝑔𝑘 ⊆   and 
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𝑐1, 𝑐2, … , 𝑐𝑛 ⊆   (for finite 𝑘, 𝑛), with 𝑔𝑖 ∩ 𝑔𝑗  ∅ ∀ 𝑖 ≠ 𝑗 and 𝑐𝑖 ∩ 𝑐𝑗  ∅ ∀ 𝑖 ≠ 𝑗. 

Here, we may interpret 𝑔1, 𝑔2, … , 𝑔𝑘 to be the ground truth clusters in   and 

𝑐1, 𝑐2, … , 𝑐𝑛 to be the clusters recovered from 𝑀 (e.g. by JOSEPH). For any subset 

𝑦  {𝑝1, 𝑝2, … , 𝑝𝑁} ⊆  , we define the convex hull336 of 𝑦 as the set, 

𝐶𝑜𝑛𝑣(𝑦)  {∑ 𝜆𝑗𝑝𝑗
𝑁

𝑗=1
: 𝜆𝑗 ≥   ∀ 𝑗   d ∑ 𝜆𝑗

𝑁

𝑗=1
  }  

Let 𝐺 and 𝐶 be the union of all convex hulls of 𝑔1, 𝑔2, … , 𝑔𝑘 and 𝑐1, 𝑐2, … , 𝑐𝑛, 

respectively. That is, 

𝐺  ⋃𝐶𝑜𝑛𝑣(𝑔𝑖)

𝑘

𝑖=1

, 

𝐶  ⋃𝐶𝑜𝑛𝑣(𝑐𝑖)

𝑛

𝑖=1

  

Then we define the intersection over union, 𝐼, of subsets 𝑔1, 𝑔2, … , 𝑔𝑘 and 𝑐1, 𝑐2, … , 𝑐𝑛 

as, 

𝐼  
𝐺 ∩ 𝐶

𝐺 ∪ 𝐶
  

 

Formula for overlap of two Normal distributions 

For two Normal distributions defined by  1  𝑁( 1, 𝜎1) and  2  𝑁( 2, 𝜎2) the overlap 

between  1 and  2 is quantified as, 

𝑜  
√𝜎1 + 𝜎2
| 1   2|
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7.2 Schematics 

Figure 7.1: Conceptual diagram of 2D and 3D TOBLERONE algorithm. 
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Figure 7.2: Conceptual diagram of tempTOBLERONE algorithm. 
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Figure 7.3: Conceptual diagram of ASMODEUS algorithm. 
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Figure 7.4: Conceptual diagram of P-Check algorithm. 
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Figure 7.5: Conceptual diagram of JOSEPH algorithm. 
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7.3 Pseudocode 

7.2.1 2DTOBLERONE 

#Initialise: 

#image is a matrix, for which each entry contains the intensity 

of a pixel. 

#p is the persistence threshold. 

INPUT image, p 

CALL rescale on image, setting minimum intensity to 0 and maximum 

intensity to 1 

#Calculate filtration - order pixels by intensity. 

CALL as.vector on image to get imageVector 

CALL order on imageVector to get filtration  

CALL as.matrix on filtration to get filtrationMatrix 

#Initialise union-find data structure: 

#Segmentation stores several lists of pixels, with each list 

corresponding to one connected component. 

#r stores the root pixel of all pixels in a connected component. 

#e stores the index in Segmentation of all pixels in a connected 

component. 

#m stores the total number of connected components. 

INITIALISE empty list Segmentation  

INITIALISE zero vectors r and e with length equal to number of 

pixels in image 

INITIALISE m to 0 

#Perform persistent homology. 

FOR each pixel index i in filtration  

GET pixel coordinates of i from image  

GET coordinates of all pixels in 3 by 3 neighbourhood around 

pixel i  

SET filtrationValues as values of all neighbouring pixels 

from filtrationMatrix 

SET N to be the set of neighbours of i with entries in 

filtrationValues lower than i  

IF N is empty 

#This pixel is a root. 

INCREMENT m by 1 

INITIALISE new list at index m in Segmentation 

containing pixel i 

SET value of e at position i to be m 

SET value of r at position i to be i 

ELSE  

#This pixel may be a root. 

SET R to be the set of roots for all pixels in N (i.e. R = 

r[N]) 

SET potentials to be the set of all roots in R whose intensity 

in image is at most p different from the intensity of i in 

image  

IF potentials is empty 
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#This pixel cannot connect to any existing 

component in Segmentation. 

IF intensity of pixel i in image is greater than 

p 

#This pixel is a root. 

INCREMENT m by 1 

INITIALISE new list at index m in 

Segmentation containing pixel i 

SET value of e at position i to be m 

SET value of r at position i to be i 

ELSE 

#This pixel connects to the root of highest 

intensity. 

SET j to be the argmax of the intensities of all 

roots in R (i.e. the root with highest intensity 

in image)  

SET n to be the entry of j in e (i.e. n = e[j]) 

APPEND i to the list in Segmentation at index n  

SET value of e at position i to be n 

SET value of r at position i to be j 

#Merge all other components represented by roots 

in R. 

FOR each other root k in R  

SET q to be the entry of k in e (i.e. q = e[k]) 

SET P to be the list in Segmentation at index 

q 

APPEND P to the list in Segmentation at index 

n 

SET the list in Segmentation at index q to be 

empty 

FOR each pixel z in P 

SET value of e at position z to be n 

SET value of r at position z to be j 

#Delete empty lists. 

FOR each entry k in Segmentation 

IF k is empty 

DELETE k from Segmentation 

#Each entry in Segmentation now contains a list of pixels, 

corresponding to each connected component. 

#The vector r is returned for tempTOBLERONE, and may otherwise 

be ignored. 

RETURN Segmentation, r  
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7.2.2 3DTOBLERONE 

#Initialise: 

#stack is a three-dimensional array (x, y, z), for which each 

entry contains the intensity of a voxel. 

#p is the persistence threshold. 

INPUT stack, p 

CALL rescale on stack, setting minimum intensity to 0 and maximum 

intensity to 1 

#Calculate filtration - order voxels by intensity. 

CALL as.vector on stack to get stackVector 

CALL order on stackVector to get filtration  

CALL as.array on filtration to get filtrationArray 

#Initialise union-find data structure: 

#Segmentation stores several lists of voxels, with each list 

corresponding to one connected component. 

#r stores the root voxel of all voxels in a connected component. 

#e stores the index in Segmentation of all voxels in a connected 

component. 

#m stores the total number of connected components. 

INITIALISE empty list Segmentation  

INITIALISE zero vectors r and e with length equal to number of 

voxels in stack 

INITIALISE m to 0 

#Perform persistent homology. 

FOR each voxel index i in filtration  

GET voxel coordinates of i from stack  

GET coordinates of all voxels in 3 by 3 by 3 neighbourhood 

around voxel i  

SET filtrationValues as values of all neighbouring voxels 

from filtrationArray 

SET N to be the set of neighbours of i with entries in 

filtrationValues lower than i  

IF N is empty 

#This voxel is a root. 

INCREMENT m by 1 

INITIALISE new list at index m in Segmentation 

containing voxel i 

SET value of e at position i to be m 

SET value of r at position i to be i 

ELSE  

#This voxel may be a root. 

SET R to be the set of roots for all voxels in N (i.e. 

R = r[N]) 

SET potentials to be the set of all roots in R whose 

intensity in stack is at most p different from the 

intensity of i in stack  

IF potentials is empty 

#This voxel cannot connect to any existing 

component in Segmentation. 



Page | 218  

IF intensity of voxel i in stack is greater than 

p 

#This voxel is a root. 

INCREMENT m by 1 

INITIALISE new list at index m in 

Segmentation containing voxel i 

SET value of e at position i to be m 

SET value of r at position i to be i 

ELSE 

#This voxel connects to the root of highest 

intensity. 

SET j to be the argmax of the intensities of all 

roots in R (i.e. the root with highest intensity 

in stack)  

SET n to be the entry of j in e (i.e. n = e[j]) 

APPEND i to the list in Segmentation at index n  

SET value of e at position i to be n 

SET value of r at position i to be j 

#Merge all other components represented by roots 

in R. 

FOR each other root k in R  

SET q to be the entry of k in e (i.e. q = e[k]) 

SET P to be the list in Segmentation at index 

q 

APPEND P to the list in Segmentation at index 

n 

SET the list in Segmentation at index q to be 

empty 

FOR each voxel z in P 

SET value of e at position z to be n 

SET value of r at position z to be j 

#Delete empty lists. 

FOR each entry k in Segmentation 

IF k is empty 

DELETE k from Segmentation 

#Each entry in Segmentation now contains a list of voxels, 

corresponding to each connected component. 

RETURN Segmentation  
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7.2.3 tempTOBLERONE 

#Initialise: 

#stack is a three-dimensional array (x, y, frame). The first two 

dimensions correspond to pixel coordinates. The third dimension 

is frame number (time). 

#p is the persistence threshold. 

INPUT stack, p 

INITIALISE empty list frameSegmentations 

INITIALISE empty list frameRoots 

#Perform 2DTOBLERONE on all frames separately. 

FOR each time t 

SET image as the two-dimensional matrix in stack 

corresponding to the frame at time t 

CALL 2DTOBLERONE with inputs image, p 

GET outputs Segmentation and r 

APPEND Segmentation to frameSegmentations 

APPEND r to frameRoots 

#Initialise union-find data structure: 

#spatiotemporalSegmentation stores several lists of pixels and 

the times they are active, with each list corresponding to one 

connected component. 

#spatiotemporalRoots stores the spatiotemporal root pixel of all 

pixels in a connected component. 

#e stores the index in spatiotemporalSegmentation of all pixels 

in a connected component. 

#m stores the total number of connected components. 

INITIALISE empty list spatiotemporalSegmentation  

INITIALISE empty zero vectors e and spatiotemporalRoots with 

length equal to number of pixels across all frames in stack 

INITIALISE m to 0 

FOR each time t 

#Compare each frame to the next frame in series. 

SET Segmentation as the entry in frameSegmentations at index 

t   

SET Roots as the entry in frameRoots at index t  

SET nextSegmentation as the entry in frameSegmentations at 

index t + 1 (the next frame) 

SET nextRoots as the entry in frameRoots at index t + 1 (the 

next frame) 

#Iterate over all components in Segmentation. 

FOR each object in Segmentation  

GET the root r of the object from Roots  

SET N to be the set of all pixels corresponding to the 

object 

IF entry of r in spatiotemporal roots is 0 (i.e. r has 

not been visited before) 

INCREMENT m by 1 

INITIALISE new list at index m in 

spatiotemporalSegmentation  

FOR each pixel i in N 
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SET value of spatiotemporalRoots at position 

i to r 

SET value of e at position i to be m 

APPEND i to list at index m in 

spatiotemporalSegmentation  

SET sr to be the spatiotemporal root of r (i.e. sr = 

spatiotemporalRoots[r]) 

SET sm to be the entry of r in e (i.e. sm = e[r]) 

SET nextN to be the set of all pixels in N at the next 

frame (at time t + 1) 

GET the roots of all pixels in nextN from nextRoots and 

SET to R 

GET the spatiotemporal roots of all pixels in nextN 

from spatiotemporalRoots and SET to sR 

#Check whether a spatiotemporal root has already been 

established. 

IF sR is empty 

#Check whether number of roots has changed. 

IF R is empty 

#Do nothing, object has disappeared. 

ELSE IF there is only one root in R 

#Connect object across frames by assigning 

the same spatiotemporal root. 

FOR each pixel i connected to this root 

SET value of spatiotemporalRoots at 

position i to sr 

SET value of e at position i to be sm 

APPEND i to list at index sm in 

spatiotemporalSegmentation  

ELSE 

#Multiple objects are present in next frame, 

object may have split. 

SET n to be the root in R with brightest 

intensity in stack 

FOR each pixel i connected to n 

SET value of spatiotemporalRoots at 

position i to sr 

SET value of e at position i to be sm 

APPEND i to list at index sm in 

spatiotemporalSegmentation 

DELETE n from R 

#Create a new spatiotemporal root for all 

other objects. 

FOR each other root k in R 

INCREMENT m by 1 

INITIALISE new list at index m in 

spatiotemporalSegmentation  

FOR each pixel i connected to k 

SET value of spatiotemporalRoots 

at position i to k 
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SET value of e at position i to be 

m 

APPEND i to list at index m in 

spatiotemporalSegmentation 

#Each entry in spatiotemporalSegmentation now contains a list 

of pixels and the times they are active, corresponding to each 

connected component.        

RETURN spatiotemporalSegmentation  
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7.2.4 ASMODEUS 

#Initialise: 

#Dmin - Minimum step size. 

#Dmax - Maximum step size. 

#ROI - A vector of two values representing the width and height 

of the region of interest, respectively. The region of interest 

is considered from the origin, so pointCloud coordinates must 

be translated accordingly. 

#times - Number of time steps or iterations of the simulation. 

#pointCloud - A matrix or data frame with two columns: x and y 

coordinates of each point. Used as a target distribution from 

which target K function is drawn. 

#rmax - Numeric value, the maximum radius for each K function 

to be calculated at. 

#nrval - Numeric value, the number of equally-spaced radial 

values for each K function to be calculated over. 

#target - Manual input for target function. Can be left as null 

as long as a target pointCloud is provided. 

#numberOfPoints - Number of points to use in simulation. 

#initialDistribution - The initial frame of the simulation, used 

to specify pre-determined spatial organisation. If left null, a 

uniform random distribution will be used. 

INPUT Dmin, Dmax, ROI, times, pointCloud, rmax, nrval, target, 

numberOfPoints, initialDistribution  

#Calculate target K function from pointCloud (if pointCloud is 

given). 

IF pointCloud is given (not null) 

CALL RipleyKFunction on pointCloud, with r-axis defined on 

the range of 0 to rmax spaced by nrval intervals (see 

Introduction for formula) 

SET output as target  

SET numberOfPoints as number of rows in pointCloud  

IF target is not given (null) 

END: not enough information to perform simulation 

#Generate initial distribution. 

IF initialDistribution is given (not null) 

SET currentCloud as initialDistribution  

SET numberOfPoints as number of rows in initialDistribution 

ELSE 

SET currentCloud as a completely spatially random 

distribution, defined over ROI with numberOfPoints points 

#Initialise list of frames to store the point pattern at each 

time frame. 

INITIALISE empty list frames 

#Iterate over each time frame. 

FOR each time t in times  

#Calculate the K function of currentCloud. 

CALL RipleyKFunction on currentCloud, with r-axis defined on 

the range of 0 to rmax spaced by nrval intervals (see 

Introduction for formula) 
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SET output as currentKFunction  

#Calculate error between currentKFunction and target for 

each point. 

#currentErrors is a list containing the average error for 

each point in currentCloud. 

CALL errorFunction on currentKFunction to calculate error 

between currentKFunction and target for each point (see 

Appendix for formula) 

SET output as currentErrors  

#Offset position of each point in currentCloud. 

FOR each point in currentCloud  

#Calculate offset for each point using stepSize. 

GET error e of point from currentErrors 

CALL stepSize on e with parameters Dmin and Dmax (see 

Appendix for formula) 

SET output as step 

SET randomAngle to be a random number between 0 and 2 * 

pi 

SET coordinates of the point in currentCloud by moving 

point along a path of length step in the direction of 

randomAngle  

#Once all points have been updated, append this new 

cloud to the list of frames. 

APPEND currentCloud to frames 

#At the end of this process, frames contains a point cloud for 

each time frame. 

RETURN frames  
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7.2.5 P-Check 

#Initialise: 

#markedPointPattern - A marked point pattern. Matrix or data 

frame with first three columns corresponding to x, y and discrete 

mark. 

#radius - Suspected domain radius. 

#numberOfTrials - Number of trials to run in the permutation 

test. 

INPUT markedPointPattern, radius, numberOfTrials  

#Calculate the distance matrix of all points. 

INITIALISE zero matrix distanceMatrix which will store the 

distance between all pairs of points 

FOR each point in markedPointPattern 

FOR each other point in markedPointPattern  

SET corresponding entries in distanceMatrix equal to 

distance between the points 

#Calculate weighted proportion of markedPointPattern. 

CALL calculateWeightedProportion with distanceMatrix, radius and 

marks from markedPointPattern (see Appendix for formula) 

SET output as P0  

#Perform permutation test: 

#Create an empty list to store the weighted proportion of each 

random trial. 

INITIALISE empty list allProportions 

#Iterate over all trials. 

FOR trial k in numberOfTrials  

CALL sample on third column of markedPointPattern - this 

randomises the marks 

CALL calculateWeightedProportion with distanceMatrix, 

radius and marks from markedPointPattern (see Appendix for 

formula) 

SET output as Pk  

APPEND Pk to allProportions  

#Calculate and return p-value. 

SET pvalue as percentage of values in allProportions which are 

greater than P0  

RETURN pvalue  

 

 

  



Page | 225  

7.2.6 JOSEPH 

#Initialise: 

#markedPointPattern - A marked point pattern. Matrix or data 

frame with first three columns corresponding to x, y and 

quantitative mark. 

#radius - Suspected domain radius. 

#deviance - Acceptable difference from mean mark value of 

cluster. 

INPUT markedPointPattern, radius, deviance 

#Calculate the distance matrix of all points. 

INITIALISE zero matrix distanceMatrix which will store the 

distance between all pairs of points 

FOR each point in markedPointPattern 

FOR each other point in markedPointPattern  

SET corresponding entries in distanceMatrix equal to 

distance between the points 

#Determine adjacency matrix of all points. 

INITIALISE zero matrix adjacencyMatrix, a logical matrix which 

stores whether the distance between each pair of points is less 

than the given radius 

FOR each index in distanceMatrix  

IF the entry at the index in distanceMatrix is less than 

radius  

SET the entry at the same index in adjacencyMatrix to 

be 1 

#The neighbourhood of each point is now stored in 

adjacencyMatrix. 

INITIALISE empty vector differencesVector  

FOR each point in markedPointPattern 

GET the point's neighbourhood from adjacencyMatrix  

GET average mark m1 of all points in the neighbourhood 

GET the point's mark m2 from markedPointPattern 

APPEND absolute difference between m1 and m2 to 

differencesVector  

#Calculate filtration - order points by value in 

differencesVector. 

CALL order on differencesVector to get filtration  

#Initialise union-find data structure: 

#Clusters stores several lists of points, with each list 

corresponding to one connected component (cluster). 

#r stores the root of all points in a connected component. 

#e stores the index in Clusters of all points in a connected 

component. 

#m stores the total number of connected components. 

INITIALISE empty list Clusters  

INITIALISE zero vectors r and e with length equal to number of 

points in markedPointPattern 

INITIALISE m to 0 

#Perform persistent homology. 

FOR each point index i in filtration  
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GET neighbourhood of point i from adjacencyMatrix  

SET N to be the set of neighbours of point i with entries in 

filtrationValues lower than i  

IF N is empty 

#This point is a root. 

INCREMENT m by 1 

INITIALISE new list at index m in Clusters containing 

point i  

SET value of e at position i to be m 

SET value of r at position i to be i 

ELSE  

#This point may be a root. 

SET R to be the set of roots for all points in N (i.e. 

R = r[N]) 

SET potentials to be the set of all roots k in R such 

that the absolute difference between the mark of k and 

the mark of i is at most deviance  

IF potentials is empty 

#This point cannot connect to any existing 

component in Clusters. This point is a root. 

INCREMENT m by 1 

INITIALISE new list at index m in Clusters 

containing point i  

SET value of e at position i to be m 

SET value of r at position i to be i 

ELSE 

#This point connects to the root with lowest 

value in differencesVector. 

SET j to be the argmin of the values of 

differencesVector for all roots in R  

SET n to be the entry of j in e (i.e. n = e[j]) 

APPEND i to the list in Clusters at index n  

SET value of e at position i to be n 

SET value of r at position i to be j 

#Merge all other components represented by roots 

in R. 

FOR each other root k in R  

SET q to be the entry of k in e (i.e. q = e[k]) 

SET P to be the list in Clusters at index q 

APPEND P to the list in Clusters at index n 

SET the list in Clusters at index q to be 

empty 

FOR each point z in P 

SET value of e at position z to be n 

SET value of r at position z to be j 

#Each entry in Clusters now contains a list of points, 

corresponding to each connected component. 

RETURN Clusters  
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