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Abstract

Modern fluorescence microscopy techniques can visualise biological samples from
micro- to nano-scale resolutions. Conventional microscopy produces images of
cellular structures, while single molecule localisation microscopy (SMLM) localises
individual molecules, which are represented as spatial or marked point pattern data.
Depending on the imaging target and modality, the data arising from fluorescence
microscopy can vary in architecture and present features with irregular or
unpredictable geometries, which can be challenging to quantify. Topological data
analysis is invariant of geometry and lends itself well to this form of feature extraction,
but is yet to see widespread adaptation in quantifying biophysical properties of cellular
structures. The cell plasma membrane is of particular interest, as the dynamic
reorganisation of transmembrane proteins plays a crucial role in regulating cell
signalling. Dysfunction in this process is associated with several human disorders,
such as autoimmune diseases and cancer. Further, it is hypothesised that this
reorganisation is influenced by the biophysical properties of the membrane, such as
lipid composition. As such, this thesis concerns the development of novel topological
data analysis techniques for feature extraction in image and point pattern data, with
an emphasis on investigating membrane properties across acquisition scales. For
conventional fluorescence microscopy, we present a topological image analysis tool
(TOBLERONE) for cell and organelle segmentation. Then, we produce a framework
for agent-based modelling of molecular aggregation on the plasma membrane
(ASMODEUS), which simulates transmembrane protein dynamics. Furthermore, we
introduce a software package (PLASMA) for partitioning marked point patterns and
identify nano-scale lipid heterogeneity in RAMA27 SMLM data. These techniques may

yield a promising avenue for mapping multiscale membrane properties.
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Chapter 1: Introduction

The focus of this thesis is on the development of topological data analysis techniques
for processing image and marked point pattern data, with applications to investigating
the cell plasma membrane. This chapter serves as an introduction to the properties of
the plasma membrane, the microscopy systems used for visualising these properties,
and techniques for analysing the data which arise from those systems. Here, we
discuss biophysical membrane properties, taking lipid order as a specific example, and
introduce the concept of the lipid raft hypothesis. An overview of membrane phase
separation and the role of spatiotemporal molecular organisation is given. Further, we
explore the principles of fluorescence microscopy (FM), with an emphasis on SMLM
and its applications in quantifying properties of the plasma membrane. We discuss
methods for processing image and point pattern data arising from FM, focussing on
spatially-descriptive statistics and methods of cluster analysis. Fundamentally, we
explore existing topological data analysis techniques, and in particular persistent
homology, which underpins the methods presented herein. Specifically, in Chapter 2,
we present an implementation of persistent homology for segmenting images from
conventional FM. Then, in Chapter 3, we develop a computational framework for
modelling transmembrane protein aggregation. This model could serve a dual
purpose: to simulate static protein maps which recapitulate the topological properties
seen in experimental data, and to predict protein aggregate behaviour in dynamic
systems. Finally, in Chapter 4, we introduce algorithms for identifying and extracting
topological features in marked point pattern data. Primarily, these methods can
partition marked point patterns into clusters defined by both a given spatial scale and
a quantifiable distribution of marked values. However, in this chapter, we first explore

the motivation of this work with a discussion on the plasma membrane.
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1.1 The plasma membrane

1.1.1 Plasma membrane structure and function

Membrane composition and structure

The plasma membrane is the barrier that separates the aqueous compartments which
form the cell interior from the surrounding extracellular medium. While the full extent
of the plasma membrane’s function varies across cell types, its primary role is for
maintaining cell structure and survivall. The membrane is the principle site for
conducting cell-cell communication and regulating interactions with the surrounding
medium!. This is owed to its highly specialised nano-environment, comprising a
heterogeneous ecosystem of biological molecules!. One of the most prevalent
biological molecules in the plasma membrane is the phospholipid, which comprises a
phosphate head, with an attached variable group, connected to two acyl lipid (or fatty
acid) tails by a glycerol or alcohol backbone (Figure 1.1a)?. The lipidome of
mammalian plasma membranes is primarily composed of four phospholipids,
phosphatidylcholine (PC), phosphatidylinositol (Pl), phosphatidylethanolamine (PE)
and phosphatidylserine (PS), as well as the sphingolipid sphingomyelin (SM)2. Here,
the variable group dictates phospholipid type — for example, PC presents a choline
group, while PS presents serine?. In sphingolipids, such as SM, the glycerol
component is replaced by a long-chain amino alcohol known as sphingosine, which is
amide-linked to a fatty acid and phosphate group (Figure 1.1b)?. The membrane itself
is composed of two layers of phospholipids, known as leaflets, which together form
the phospholipid bilayer3. Here, the hydrophilic phosphate heads face towards the
aqueous medium on either side of the membrane, while hydrophobic acyl lipid tails
are sheltered behind them facing inwards (Figure 1.1c)* Each acyl tail contains a

hydrocarbon chain, which is composed of carbon and hydrogen atoms, held together
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Figure 1.1: Lipids in the plasma membrane. a Diagram of a phospholipid. The
hydrophobic head is comprised of a phosphate group attached to a glycerol moiety.
Variable groups may be attached at the position labelled R. The hydrophilic fatty acid
tails are hydrocarbons, which may be either saturated or unsaturated. b Diagram of
sphingomyelin, which generally consists of a sphingosine base, with an 18-carbon
chain and a double bond at position 4, attached to a phosphorylcholine fatty acid. c

The position of the phospholipid within the phospholipid bilayer of a cell membrane.
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by attractive forces called bonds?. In the context of acyl tail structure, adjacent carbon
atoms may form single or double bonds — these tails are referred to as saturated and
unsaturated fatty acids, respectively*. The fluid mosaic model, first coined by Singer
and Nicolson in 1972, describes the bilayer as a two-dimensional fluid with associated
biological molecules embedded (Figure 1.2)°. Eukaryotic cells contain glycolipids,
another class of lipids, which are composed of two major moieties: a carbohydrate (a
mono- or oligosaccharide group) and a lipid®. Glycolipids are found only on the outer
(or exoplasmic) leaflet, the exterior surface of the membrane, acting as receptors to
the extracellular medium (ECM) and inducing signal transduction®. The plasma
membrane may also contain glycoproteins, which, like their glycolipid counterparts,
also contain a carbohydrate group, but with the substitution of a peptide in place of a
lipid®.

Sterols (steroid alcohols) are another subtype of amphipathic lipids present in the
mammalian plasma membrane. One such sterol is cholesterol, a 27-carbon compound
composed of a hydrocarbon tail, four hydrocarbon rings (known as the sterol nucleus)
and a polar hydroxyl group (Figure 1.3)’. Cholesterol is synthesised in the
endoplasmic reticulum of the cell®, but is noticeably sparse here, and most commonly
localised with the plasma membrane (representing around 30% of all membrane-
associated molecules)’. Owing to its hydrophilic head group and flat structure,
cholesterol fits between the phospholipids in each monolayer, with its polar hydroxyl

group close to the phospholipid head groups®°.
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foundation in which peripheral proteins, integral (transmembrane) proteins,
glycoproteins and glycolipids are embedded. Cholesterol is present within the bilayer

of mammalian cells. This is representative of the Singer-Nicolson (fluid mosaic) model.

Proteins associated with the plasma membrane may be integral (embedded) or
peripheral (attached to the surface via protein-protein interactions) and are largely
responsible for regulating membrane processes and cellular function!!. Some
proteins, such as Lck or Ras proteins, may be affiliated with post-translational
modifications!?. This changes the structure and properties of the protein by proteolytic
cleavage, adding a modifying group, such as phosphoryl, glycosyl or methyl, to one or
more amino acids'?. Integral proteins are typically transmembrane, with structures
exposed on both the outer and inner leaflets. Such transmembrane proteins are held
in the membrane by the hydrophobic amino acids present within their membrane-
spanning component!l. Membrane receptors are one class of integral protein, which
are largely responsible for regulating cell signalling and communication!*. Of particular

note in this thesis is the T cell receptor complex, which mediates recognition of peptide
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Figure 1.3: Diagram of cholesterol, a 27-carbon compound composed of a

hydrocarbon tail, a sterol nucleus and a hydroxyl group.

fragments on antigen-presenting cells, and undergoes spatial reorganisation to elicit
T cell activation'3. Although the molecular composition differs on a cell-to-cell basis,
all membranes possess lipids and proteins in roughly equal masses!4. However, since
protein molecules are larger than lipids, they only make up around 1-2% of all

membrane molecules!.

Membrane function

The structural role of the cell plasma membrane is to keep all cellular features, such
as the cytoplasm and organelles, isolated from extracellular solvents and foreign
biological structures®®. Itis also the primary site for complex biological processes, such
as cell-cell recognition, cell communication, and active transport of molecules from the
surrounding medium?®®, Cell signalling is the mechanism by which the plasma
membrane receives or processes information from the cell’s local environment?é. Cell

surface receptors, comprised of proteins or glycoproteins with highly specialised active
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sites, bind to specific extracellular ligands?®. This binding brings about activation of
enzymes associated with the membrane, altering cell metabolism and ultimately giving
rise to a cascade of chemical interactions'®. Cell recognition, although functionally
similar to cell signalling, is governed by binding of complementary molecules on
opposing cell surfaces!’. This mechanism allows the membrane to distinguish
between neighbouring cells and is used to bring about behavioural changes of whole
cells or tissues, such as during angiogenesis or adhesion?’.

The medium surrounding the cell contains nutrients required for cell survival, growth
and proliferation, alongside other harmful or toxic substances, such as metabolic by-
products®®. The bilayer is populated with a range of specialised transmembrane
proteins known as channels, which open in the presence of complementary
substrates, and facilitate diffusion of small ions or molecules through the membrane?,
Other proteins, termed pumps, force solutes across the membrane and into the cell
via a process called active transport!®. Both transporters may be gated by ligands,
voltage or mechanical force!®. Other membrane functions include endocytosis, in
which a region of the extracellular space is internalised by the cell, and exocytosis, in
which vesicles of molecules are brought to the inner leaflet and their contents are

externalised?°.

Lipid packing and membrane order

Under the fluid mosaic model, the membrane exists in a state of thermodynamic
equilibrium, afforded by the relative biophysical properties of the fluid membrane
compartments?l. One such property is membrane lipid order, which is characterised
by lipid acyl chain structure, and can be measured directly through nuclear magnetic

resonance (NMR) spectroscopy??. Steinkuhler et al showed that membrane order is
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proportional to membrane viscosity (resistance to change in shape or flow), and
therefore inversely proportional to membrane fluidity (the reciprocal of viscosity)23.
Heterogeneity in membrane order establishes a degree of varying fluidity across the
membrane, which is essential for dynamics of lipids and proteins?l. Several models
have been proposed to describe these dynamics, including the picket fence theory?*2°,
in which the maotility of transmembrane proteins with large intracellular domains is
obstructed by the dense cortical actin meshwork, the lipid raft hypothesis?6:27, in which
protein affinity for ordered or disordered membrane regions dictates dynamics (see
Section 1.1.2), and the size exclusion model?®, in which membrane protein distribution
is influenced by extracellular domains interacting with the crowded extracellular space.
Generally, transmembrane proteins move laterally across the plasma membrane, but
motion may be restricted by the presence of intracellular proteins (such as membrane
actin-myosin or the cytoskeleton)?®, contractiie mechanisms of dynamic polar
filaments?439, electrostatic interactions between proteins and lipids®!, obstruction by
ligands?8, variation in membrane order®?, or post-translational modifications of

proteins®3,

1.1.2 The lipid raft hypothesis

Membrane phases

The phospholipid bilayer can exist in a liquid-disordered, liquid-ordered or gel phase,
although the latter is only observed in model membranes without cholesterol®. In the
liquid-ordered phase, there is greater lipid packing, which reduces membrane
permeability, obstructing the passage of ions and water-soluble molecules which
otherwise would diffuse across the membrane and enter the cell®®. But in the liquid-

disordered phase, there is greater fluidity and lateral mobility in the plane of the bilayer.
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These phases depend on phospholipid composition and are mainly dictated by the
structure of the acyl lipid tails (Figure 1.4)%4. From a biochemical perspective, the
saturated tails generally adopt trans configurations and pack tightly together in an
ordered array, promoting the liquid-ordered phase3f. Unsaturated lipid tails are more
likely to form cis configurations and become kinked®’. In this case, the acyl tail loses
its linearity and protrudes off-centre, making it less likely to fit neatly into the membrane
beside other phospholipid molecules®’. As such, the membrane becomes highly
disordered and packing is less efficient, promoting the liquid-disordered phase?’.
Acyl tail length correlates with increased lipid order, which increases the melting
temperature of the ordered phase over the disordered phase®®. In thermodynamics,
entropy is defined as the measure of a system’s thermal energy per unit temperature
that is unavailable for doing mechanical work3®. In this context, entropy is interpreted
as a measure of molecular disorder or randomness, and correlates with the number
of geometric conformations (the three-dimensional arrangement of atoms) a molecule
can attain*®. Within unsaturated fatty acid molecules, an increase in temperature yields
greater kinetic energy, which increases entropy and promotes lipid disorder#. Unlike
unsaturated acyl tails, the four carbon rings which comprise the body of cholesterol
give the molecule a rigid structure, which intercalates between phospholipid
molecules*'. This presents a dual functionality: at low temperatures, cholesterol
prevents phospholipid molecules from clustering and stiffening, while at high
temperatures, cholesterol reduces the entropy of acyl tails**. In either case, cholesterol
plays a role in intra-cellular homeostasis by regulating membrane fluidity and
counteracting the effect of changes in temperature on the nano-environment*2.

Lipids and membrane-bound molecules may present an affinity for a particular phase,

and aggregate correspondingly*3. Transmembrane proteins contain a hydrophobic
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Figure 1.4: Saturated lipids and cholesterol interact more favourably with each other

than with unsaturated lipids. Figure adapted from Levental et al?®.

region, known as a transmembrane domain, which embeds itself into the bilayer to
evade water®3, Lorent et al find that an increase in transmembrane domain length and
total solvent-accessible surface area correlates with increased ordered phase
affinity*4. Recently, Gurdap et al showed that increasing the mass or glycosylation — a
post-translational modification — of the extracellular protein domain (ECD) can
decrease molecular diffusivity and affinity towards the ordered phase®. Initiation of
cellular signalling has been attributed to the ECD, and many proteins undergo post-
translational modifications or ligand binding during signalling events*®,

It is hypothesised that the membrane organises itself into liquid-ordered domains of
sub-200nm size, enriched with clusters of cholesterol and saturated lipids
(phospholipids and sphingolipids), that move laterally within the plasma membrane as
a unit®®. These domains, called lipid rafts (Figure 1.5), may underpin cell signalling

and communication processes?®. The pertinence of bio-membrane lipid order came to
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light when Baumgart et al demonstrated spontaneous lipid phase separation in giant
plasma membrane vesicles (GPMVs), in which co-existing liquid phases promoted
plasma membrane organisation into “raft-like” lipid domains*’. Sezgin et al reported
greater lipid packing in this raft-like phase, which associated with higher viscosity and
enrichment with saturated lipids, sterol analogues and lipidated proteins®. This,
fundamentally, validated the principle that ordered, lipid-driven phases can elicit
functional organisation of the plasma membrane?’. From an evolutionary perspective,
this supports the notion that the plasma membrane, with minimal energy expenditure,
could concentrate specific reactants, exclude negative regulators, induce
conformational changes, and regulate local membrane properties?. However,
Levental et al determine an absence of most transmembrane proteins from lipid rafts
in GPMVs, and find that even those proteins which are included are rarely enriched.
Further, Saka et al observe protein-depleted membrane domains in live cells under
super-resolution microscopy®®. The biophysical properties (such as size, lifetime and
stability) and compositions of lipid rafts are context-dependent and reflect the specifics
of the membrane in which they arise — the full impact of this heterogeneity is yet to be
fully accounted for®l. Adding to this complexity, Tulodziecka et al propose that
immobilised order-preferring proteins could recruit a dynamic assembly of raft-forming
lipids, rather than lipid-driven domains recruiting freely-diffusing proteins®2. The
interplay of lipids and proteins through cooperative clustering is fundamental to raft

function, though the cause cannot be so easily distinguished from the effect.
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Figure 1.5: A lipid raft within a mammalian cell plasma membrane. Increased
cholesterol promotes rigidity in the ordered phase and lipid packing excludes water
molecules. As a result, water content is increased in the disordered phase. The
transmembrane domain dictates protein affinity for lipid order, which may cause

transmembrane proteins to aggregate into lipid rafts.
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Phase separation and biomolecular condensates

Phase separation is the physicochemical process by which a homogenous mixture
separates into distinct phases®3. Phase separation in membrane lipids can result in
the formation of lipid rafts®3. Generally, phase separation among lipids is influenced
by factors such as lipid composition, temperature and membrane curvature®3,
Biomolecular condensates are a class of membrane-less organelles and organelle
subdomains — including, for instance, clusters of signalling molecules at the membrane
— which concentrate specific collections of proteins and nucleic acids®®. These
dynamic assemblies arise from the condensation of cellular material through liquid-
liquid phase separation and are hypothesised to play a role in protein assembly and
signalling®®. Furthermore, the crosstalk between membranes and condensates can
promote phase separation in lipids and proteins®. Condensates often present as
relatively small assemblies (ranging from nanometres to micrometres in scale) that do
not coarsen into a single droplet despite their known proclivity to fuse®®. Furthermore,
membranes have been reported to control the size of intracellular condensates and
modify their material properties®. It has been shown that the interaction between
condensates and membranes can lead to the complex remodelling of the membrane-
condensate interface, producing microscopic membranous protrusions®’.
Furthermore, Mangiarotti et al suggest that condensate wetting is a mechanism to tune
lipid packing®®. These observations offer some insight into the interaction between
membranes and condensates at the micro-scale, but the underlying molecular
mechanisms remain elusive and largely unexplored®®. The relationship between the
microscopic properties of the component molecules and the macroscopic properties

of condensates is not fully understood®. Furthermore, it is not known how these
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properties relate to biochemical and cellular functions, or if cells regulate these

properties to achieve a functional effect®®.

Functional roles of lipid rafts

Lipid rafts modulate the aggregation and mobility of transmembrane proteins, through
lipid-mediated interactions in membrane-hosted signalling events, and regulate the
frequency of protein encounters to determine signalling outcomes®8. These rafts play
a role in several cell survival signalling pathways, motility of transporters and ion
channels, and death receptor signalling!®°l. Alteration of the composition or
distribution of ordered domains can disrupt cell function, up to and including cell
death®%89, For instance, Ros-Bar6 et al showed that lipid rafts underpin redistribution
and translocation of the glucose channel GLUT4 in adipose cells®:. This promotes
insulin-regulated glucose uptake into muscle cells, which is foundational for physical
movement®l. Chamberlain et al found that SNARE proteins, which mediate fusion of
vesicles during exocytosis, associate with glycosphingolipids and cholesterol in lipid
rafts®2. This association acts to concentrate SNARE proteins at defined exocytosis
sites on the plasma membrane, and depends heavily on membrane lipid composition
and organisation®. Analogously, Lajoie et al found that lipid rafts regulate caveolin-1
and dynamin-1 distribution, which is an essential prerequisite of vesicle formation in
receptor-mediated endocytosis®s.

Lymphocytes, such as T cells, must strike a delicate balance between activating in
response to signals from potentially pathogenic organisms and avoiding activation
from stimuli emanating from the body’s own cells®. It is well-documented that the raft-
mediated oligomerisation, or clustering, of T cell receptors facilitates T cell activation

and immunological specificity®>-67. Upon activation, the T lymphocyte cell surface is

Page | 14



restructured, forming membrane domains at TCR-signalling foci and immunological
synapses®. The plasma membrane condenses into the liquid-ordered phase at TCR
activation sites, and TCR engagement promotes aggregation of lipid rafts®®. The
protein tyrosine phosphatase CD45 has been reported to both activate the Src family
kinase Lck, which phosphorylates the TCR complex, and conversely to
dephosphorylate TCR signalling motifs®®. These mechanisms are hypothesised to
grant CD45 both an immunoenhancing and immunosuppressive function, which
enables graded signalling outputs while filtering weak or spurious signalling events®.
CD45 and TCR bear large ECDs, and express affinity for disordered phase, whereas
Lck is a small protein, which exhibits a strong affinity for the ordered phase®. Urbanci¢
et al report that partial immobilisation of TCR, through aggregation or ligand binding,
changes the complex’s preference towards a more ordered lipid environment’®. This
leads to preferential partitioning of TCR with Lck, while segregating CD45, which
promotes immunological activation”. Aggregation of lipid rafts results in colocalisation
of Lck and raft-associated protein LAT (linker for activation of T cells) and exclusion of
CD4571, Wang et al report that coupling of LAT protein condensates to ordered lipid
domains is a prerequisite to functional membrane organisation in T cells’?. Schiefer et
al found that cholesterol depletion, and therefore lipid raft disruption, inhibited CD4+ T
cell responses’.

Analogously, receptor organisation plays a role in suppression of T cell signalling and
effector functions. Programmed death ligand-1 (PDL1), expressed on antigen
presenting cells, induces spatial reorganisation of programmed death-1 (PD1), a
coinhibitory receptor expressed on activated T cells, into nanoscale clusters, which
elicit an immunosuppressive response’. Fang et al showed that PDL1-presenting

DNA origami flat sheets inhibited T cell signalling with two ligands separated by
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200nm, but not at 13nm or 40nm”4. The spatial organisation PDL1 regulates T cell
signalling and is currently being investigated for intelligent nanotherapeutic design in
immunotherapy’#. Fernandes et al found that ligand discrimination depends crucially
on individual contacts being ~200 nm in radius, matching the dimensions of the
surface protrusions used by T cells to interrogate their targets, which suggests that
cell topography and curvature influences signalling outcomes’®. These results are not
exclusive to just T cells and suggest that protein oligomerisation, lipid ordering and
signal initiation are indeed linked via passive biophysical concepts’®. Lipid
nanodomains are generally heterogeneous and their characteristics depend on
specific cell, lipid and environmental conditions, although it is generally regarded that

protein clusters are tuned to optimise the transmission of signalling information’”:".

1.1.3 Interplay between lipid rafts and membrane biophysical properties
Thermodynamics of membrane phases

Acyl tail length correlates with increased lipid order, which increases the melting
temperature of the ordered phase over the disordered phase®®. In thermodynamics,
entropy is defined as the measure of a system’s thermal energy per unit temperature
that is unavailable for doing mechanical work3?. In this context, entropy is interpreted
as a measure of molecular disorder or randomness, and correlates with the number
of geometric conformations (the three-dimensional arrangement of atoms) a molecule
can attain*°. Within unsaturated fatty acid molecules, an increase in temperature yields
greater kinetic energy, which increases entropy and promotes lipid disorder#°. Unlike
unsaturated acyl tails, the four carbon rings which comprise the body of cholesterol
give the molecule a rigid structure, which intercalates between phospholipid

molecules*'. This presents a dual functionality: at low temperatures, cholesterol
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prevents phospholipid molecules from clustering and stiffening, while at high
temperatures, cholesterol reduces the entropy of acyl tails*1. In either case, cholesterol
plays a role in intra-cellular homeostasis by regulating membrane fluidity and

counteracting the effect of changes in temperature on the nano-environment*?.

Lipid order and diffusivity

The diffusion coefficient will typically be lower in the ordered phase, due to increased
viscosity, which correlates with tighter lipid packing”®. Filipov et al found that the lateral
diffusion coefficient decreases linearly with molecular cholesterol percentage and
increases exponentially with temperature®®, with coefficient D =~ 1.25 X 1013 m?/s for
30% cholesterol content at 313°K. Dietrich et al reports that the ratio of coefficients
between the liquid-disordered (D;) and liquid-ordered (D,) phase is measured as
D;/D, = 3 in model membranes®. Further, Beckers et al found a near-linear
correlation between membrane order and diffusion coefficient in GUVs (giant
unilamellar vesicles) and GPMVs, which reconstitute lipid bilayers, but not in
supported lipid bilayers, which present nanoscale differences in surface topology?2.
This suggests a relationship between lipid order, melting temperature, viscosity,
diffusivity and membrane curvature, although a functional form has yet to be fully
quantified®2. Furthermore, these properties can differ significantly across and between

leaflets.

Membrane asymmetry
The lipid subtypes PC and SM are found predominantly in the exterior leaflet while PE,
Pl and PS are typically associated with the inner leaflet®. This difference in leaflet

composition, alongside a variation in curvature, characterises the property of
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membrane asymmetry?l. Such asymmetry is advantageous because it ensures that
membrane proteins are correctly oriented for their specific functions?. Lorent et al
performed comprehensive lipidomic analysis and determine lipid species
concentrations across the inner and outer leaflets®. The authors found discrepancies
between lipid concentrations pertaining to both the head groups and acyl chain
formations?, as summarised in Figure 1.6. Notably, they report that lipid tails in the
cytoplasmic leaflet are approximately 2-fold more unsaturated than the exoplasmic
leaflet3. Variation in cholesterol content can differ across the plasma membranes of
mammalian cells, and may depend on cell line or primary cell origin®. For example,
Buwaneka et al determine molecular cholesterol composition of 44.0% in the outer
leaflet of HeLa cells and 3.6% in the inner leaflet®3. In the same study, the authors find
49.0% content in the outer leaflet of Human Pulmonary Artery Endothelial Cells
(HPAEC) and 0.6% in the inner leaflet®. It is, however, generally regarded that the
exoplasmic monolayer comprises a higher molecular cholesterol content and exhibits
greater lipid packing than the cytoplasmic monolayer84. Pinkwart et al found that the
diffusion coefficient of cholesterol was approximately twice as large as the diffusion
coefficients of phospholipids and sphingolipids in live cells, but only in the inner leaflet
of the bilayer®. Buyan et al report increased cholesterol concentration in the outer
leaflet, especially in regions of relatively high curvature, whereas PC and SM
concentrations are reduced®. Owing to these differences, it is not necessarily the case

that lipid domains or rafts must match up in position across the leaflets?.
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Figure 1.6: The asymmetric lipidome of the plasma membrane. Molecular content of
lipid species present in a the exoplasmic and b the cytoplasmic plasma membrane
leaflets. Numeric percentiles are given for each molecular species in c. Figure adapted
from Lorent et al®.

Girard and Bereau showed that membrane asymmetry may arise as a natural

consequence of differences in phospholipid and sphingomyelin count across the
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leaflets®”. Asymmetry in composition is stabilised by the presence of a high free energy
barrier against transverse diffusion of constituents (flip-flops) and the controlled
abundance of flippase and floppase proteins, which translocate lipids from the outer
leaflet to the inner leaflet, and vice versa, respectively®®. Menon et al find that
phospholipid scramblases, a class of proteins responsible for translocation of
phospholipids between the monolayers of the membrane, are impaired upon
cholesterol loading, and therefore cholesterol acts to stabilise asymmetry®°. Levental
et al find that mammalian membranes incorporate dietary polyunsaturated fatty acids,
which induce a reduction in membrane order*. These effects are rapidly compensated
through upregulation of saturated lipids and cholesterol, which promotes robust
lipidomic remodelling and recovers homeostatic membrane packing and permeability*.
Notably, inhibition of this response leads to cytotoxicity4, which was also reported by
Castillo et al, who showed that mitochondria-targeting cancer drugs can disrupt

membrane asymmetry, alter membrane permeabilisation and elicit cell death®°,

1.1.4 Techniques to study membrane biophysical properties and lipid order
Non-optical methods for studying membrane order

The extent of lipidomic organisation, and even the existence of lipid rafts, is often
drawn into question. Part of this scepticism arises from an absence of direct
observation of lipid rafts in live cells, even with modern imaging modalities. The
necessity for studying heterogeneity in membrane composition and biophysical
properties has guided technological innovation. For example, electron microscopy
(EM) is one such method for probing membrane order which makes use of electron
optics®:. When a focused beam of electrons is directed onto a coated sample, the

metal ejects X-rays and backscattered electrons, which can be traced by a detector to
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produce signal®l. The wavelength of an electron used in EM depends on the voltage
with which the microscope is operated, although this wavelength (~2-4pm) is typically
far below the wavelength of visible light (~400-700nm)®. Since image resolution is
proportional to imaging wavelength, this permits sub-1nm resolution®!. However, EM
only functions in samples coated with conductive metals, making the method
unsuitable for live cell imaging®'. Atomic force microscopy (AFM) can also probe
membrane thickness by mechanically scanning the cell surface with a sharp probe
and tracing motion®?. Studies in artificial membranes have identified decreases in
membrane thickness of up to 1nm in the liquid-disordered phase, when compared to
the gel phase, using AFM®2. However, AFM presents a slow rate of scanning which
can lead to pronounced sample drift®2. This is highly detrimental to live-cell image

quality, especially when viewing lipid domains at the nanoscale.

Optical methods for studying membrane order

Optical imaging methods typically make use of fluorescence, which is the
photophysical process of absorbing light and then producing light at a longer
wavelength®. Quantitative fluorescence microscopy can be used for imaging lipid
environments and measuring membrane lipid order in live and fixed cells, as well as
in intact tissues (see Section 1.2). Substances which exhibit fluorescence are known
as fluorophores®3. The distribution of photonic emissions from a fluorophore is defined
as the emission spectrum, which determines the relative intensity of each wavelength
of light emitted®. In its ground state, a fluorophore rests in a relatively low-energy,
stable configuration, and does not fluoresce®. When light from an external source hits
the molecule, energy may be absorbed, and if the energy absorbed is sufficient, the

molecule reaches a higher-energy state called an excited state®*. The fluorophore
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returns to the ground state and the excess energy is released, emitted as light — the
length of time that the fluorophore remains in the excited state is called
the fluorescence lifetime, which is typically around 10® seconds®. The excitation
spectrum represents the relative emission of the fluorophore at each excitation
wavelength®. Since the emission is of lower energy than the absorption, the light
emitted is of longer wavelength%. Artificial fluorophores are usually designed for
staining of specific cellular components or biological constructs®®. Those used in
imaging the plasma membrane must be amphipathic but not permeated by the
membrane itself®>. An example fluorophore, Alexa Fluor 488, is given in Figure 1.7.
Each fluorophore presents inherent photophysical properties, which must be
appropriately selected for, depending on target structure and imaging modality. This
may include:

e Stokes shift — The difference between absorption and emission maximum,
measured in either wavelength or wavenumber®®.

e Absorption cross-section (onet) — The probability that a photon will be absorbed
by the fluorophore multiplied by the average cross-sectional area of the
molecule®.

e Quantum efficiency — The ratio of the number of photons absorbed to number
of photons emitted, often measured as a percentage®’. Probes are generally
selected for high absorption cross section and quantum efficiency, as this
increases contrast against background signals and noise®’.

e Switching cycle — The average number of times the fluorophore can switch
between dark and fluorescent states®. This should be optimised to balance the
trade-off between reducing the impact of imaging artefacts and ensuring

sufficient fluorophore blinking®®.
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e Photostability — In an excited state, fluorophores are more likely to react with
oxygen in their environment, which may cause them to denature and lose their
ability to fluoresce (photobleaching)®. The number of photons a fluorophore
can emit before becoming photobleached varies between molecular species,
but is typically between 10* and 10° for fluorescent proteins and between 10°
and 106 for organic dyes®8.

Furthermore, the buffers, imaging conditions and laser intensity required by the
fluorophore must not impact cellular physiology throughout the acquisition®. Anti-
photobleaching solutions can obstruct photobleaching by reducing the oxygen
available to fluorophores, but may be toxic to living cells®.

Optical probes used in model membranes can discern the liquid-ordered and liquid-
disordered phases by preferential partitioning®®. These fluorescent molecules, known
as partitioning probes, are lipophilic and therefore colocalise with specific lipid
domains®®. Such probes can be viewed under conventional fluorescence microscopy
(see Section 1.2.1) in artificial membranes where domains form at the macroscale®.
However, conventional portioning probes would need to be mixed into the lipids prior
to membrane formation, making them unsuitable for imaging rafts in cells®.
Traditionally, probes used in cell studies would bind to membrane components that
aggregate in rafts®. This could be used to determine clustering of intrinsically raft-
associated molecules, but would not demonstrate the physicochemical properties of
the environment of the raft, unlike modern fluorescent probes!®. In order to map the
impact of lipid order on cellular function, dynamic visualisation and quantification of
lipid packing in live cells is required. The aforementioned methods are either
inapplicable to live-cell imaging or incapable of explicitly tracking lipid properties®:1.

Further, the liquid-ordered phase is itself defined by structural arrangements of tight,
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Figure 1.7: The chemical composition of the fluorescent probe Alexa Fluor 488
alongside the molecule’s excitation and emission spectra. Stokes shift is defined as

the difference between excitation and emission peaks.

highly specific lipid packing, and tagging of raft lipids with a bulky, hydrophilic label —
such as those used in domain-specific probes — would reduce affinity for raft
domainst®, Accordingly, Sezgin et al finds that most fluorescent lipids are excluded
from ordered phases!®l. However, smaller, quantitative, environmentally-sensitive

probes offer a more practical method of probing live-cell membrane properties.

Environmentally-sensitive fluorescent probes

Fluorophores which alter their emission spectra, fluorescence intensity or
fluorescence lifetime in response to the specific properties of their surrounding
medium are known as environmentally-sensitive fluorescent probes®®. Multi-channel
fluorescent microscopy techniques image over several channels in sequence,

detecting distinct ranges of wavelengths. The spatially-averaged intensity in each
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channel can then be used as a proxy for the target membrane property. Such

fluorescent probes include:

Viscosity sensors, which measure the membrane’s resistance to changes in
shape. Some BODIPY dyes depict changes in viscosity by altering their
fluorescence intensity and lifetime'%2,

pH sensors alter their fluorescence properties in response to acidity across the
membrane, which is defined by the abundance of hydrogen ions (protons)°3,
pHrodo dyes are some of the most commonly used indicators of pH, for which
green, red and deep red variants exist193,

Surface tension sensors are mechanosensitive. One such tension biosensor is
Flipper-TR, which prefers a twisted molecular conformation in relaxed
membranes'®*. Local lipid reorganisation stretches the probe into a planarised
conformation as membrane tension increases — for this reason, Flipper-TR is
called a push-pull probe'®. This change of structure alters the distribution of
electrons within the molecule, inducing a red-shift in excitation spectra and an

increase in fluorescence lifetime1%4,

1.1.5 Polarity-sensitive fluorescent probes

Efficient lipid packing in the ordered phase excludes polar water molecules from the

otherwise non-polar bilayer, resulting in a change in local environmental polarity%. As

a result, polarity-sensitive fluorescent probes alter their emission spectra depending

on the polarity of the surrounding medium, and can therefore be used as a proxy for

the degree of membrane lipid order'®. These probes are solvatochromic and show an

increase in charge separation when excited in polar solvents, which results in a larger

dipole moment?’, The transitions from locally excited state in non-polar solvents to
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internal charge transfer state in polar solvents shifts the emission maxima'®. This shift
in emission profile between liquid-disordered and liquid-ordered phases allows for
guantitative assessment of membrane order#2. This is typically achieved by calculating
a ratiometric measurement of the fluorescence intensity recorded in two spectral
channels, known as a generalised polarisation (GP) value*?. Leung et al showed that
the order parameter derived from NMR correlates linearly with GP from fluorescence

microscopy with polarity-sensitive dyes??.

Nile Red

Nile Red is a solvatochromic dye, used for imaging lipid droplets and membranous
structures in cells, which carries a quantum yield of 70% °°, The structure of Nile Red
includes a hydrophobic phenoxazine ring, which allows the molecule to integrate into
the plasma membrane®. In the disordered phase, Nile Red fluoresces with an
emission maximum of 630nm, which drops to approximately 550nm in the polar
environment of the ordered phase!*°. This exhibits a blue shift of 80nm and represents
a chromatic shift from yellow to deep red*!, however, Moon et al showed that the
average Stokes shift of Nile Red molecules increased linearly with cholesterol content
in model lipid vesicles!*?. Using spectrum and polarisation optical tomography,
Zhanghao et al recorded the full spectra of Nile Red emissions, tracked dynamic lipid
properties in subcellular membranes, and determined an increase in polarity from early
to late endosomes!!®. laea et al used Nile Red-based probe NR12S to compare
differences in lipid order between the cell plasma membrane and the endocytic

recycling compartment of model cell line U2-OS*13,
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Laurdan

The polarity-sensitive probe Laurdan comprises an aliphatic tail of 12 carbons!!4. As
such, Laurdan embeds within the plasma membrane, exposing its fluorescent moiety
to the surrounding aqueous medium*>. As a derivative of the fluorescent hydrocarbon
diphenylhexatriene, this dye has been shown to report local phase separation when
inserted in GUVs and live cell membranes, resulting in a 50nm blue shift in the ordered
phase, from 490nm to 440nm (blue to violet), with a quantum yield of 61%?%6.117,
Laurdan has been used to demonstrate that HeLa and B35 neuroblastoma cell plasma
membranes could be forced to undergo broad order-disorder phase transitions when
subjected to variation in cholesterol and pH or treatment with anaesthetic'!8. Gaus et
al pioneered the use of Laurdan to measure condensation of the plasma membrane
at the site of T lymphocyte activation®®. It was determined that membrane
condensation occurs upon TCR stimulation but is prolonged by CD28 co-stimulation,

which suggests a role of lipid rafts in mounting of the immune response®8.

Di-4-ANEPPDHQ

Di-4-ANEPPDHQ is a polarity-sensitive styryl dye, which has been used to visualise
cholesterol-rich lipid domains (Figure 1.8)'1%. The molecular structure of di-4-
ANEPPDHQ includes a hydrophobic polyene chain which nestles into the plasma
membrane, parallel to lipid acyl chains, positioning its fluorescent core to interact with
the local lipid environment!'®, Variations in polarity induce a 60nm blue shift in
emission spectra (from 630 to 570nm) between membranes in the cholesterol-
containing liquid-ordered state to the cholesterol-free liquid-disordered state©%.119,
Building on previous membrane order comparisons with Laurdan, Sengupta et al used

di-4-ANEPPDHQ to show that cholesterol-dependent membrane order is critical for
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Figure 1.8: An example polarity-sensitive probe, di-4-ANEPPDHQ. a The chemical
structure of di-4-ANEPPDHQ. b Schematic of emission spectra within the ordered
(green) and disordered (red) phase. Variations in intensity are tracked across two
image channels, corresponding to the ¢ ordered and d disordered phase. e The GP
image is taken as a ratiometric sum of ¢ and d. C gattii cells stained with di-4-

ANEPPDHQ were imaged under confocal microscopy as in Panconi et al*??,

responses generated by CD4+ T cells?°, Waddington et al measured lipid order at the
immune synapse with di-4-ANEPPDHQ and found that activation of liver X receptor
(LXR), a key transcriptional regulator of cholesterol and phospholipid metabolism,

significantly reduced lipid order and dampened proinflammatory T cell function®?*.
Considerations for probe selection
As discussed, the collective biophysical properties which induce membrane order are

determined by the structural diversity of lipid species within the membrane!?3, With GP
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as a metric of lipid-packing, the next task is in quantifying the difference between
domains and their surrounding bulk, and determining whether this difference is even
large enough to be detectable. Feigenson et al report that model membranes express
relatively small differences in cholesterol concentration between the ordered and
disordered phases'?*. Furthermore, Sezgin et al has shown that differences in lipid
packing are much smaller in natural membrane models than in the synthetic models
which are typically used to calibrate analytical methods'%t. Even with state-of-the-art
imaging modalities, the limitation of discernible lipid packing would require sensitive,
or at least highly tuneable statistical analysis. Furthermore, it has been shown that
polarity-sensitive dyes exhibit varying sensitivity to the biological parameters which
underpin membrane order!?®. For instance, Ragaller et al determine that Pro12A (a
Laurdan derivative) performs well at sensing cholesterol content, while NR12S (a Nile
Red derivative) is preferable for differentiating the degree of acyl tail saturation and
the properties of the phospholipid headgroup®?®. Alternatively, the authors find that
NR12A (another Nile Red derivative) is best suited for differentiating between positions
and configurations of the double bond in unsaturated lipids*?°. Unlike other polarity-
sensitive dyes, di-4-ANEPPDHQ does not require multiphoton excitation and exhibits
complex photophysics (sensitivity to multiple biophysical properties)'%8123, Further, it
has been shown that di-4-ANEPPDHQ is unaffected by membrane proteins, including
inserted peptides, making it an ideal probe for assessing lipid packing in both live cells

and artificial membranes!2,

1.2 Microscopy

Cells are generally only visible at sub-100um scales, and therefore microscopy

systems must be used to examine the structure, composition and function of the
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plasma membrane?’. Conventional fluorescence microscopy (FM) permits research
into the biophysical properties of the plasma membrane at a diffraction-limited
resolution of ~200nm*??, With the introduction of super-resolution microscopy, it is
possible to visualise and study structures at resolutions below the diffraction limit of
light'28-130, However, the output data of FM can range from simple grayscale images
to highly multivariate datasets*'"13%, This data does not necessarily represent strictly
spatial information about cellular structures and can encompass an array of membrane

properties!?®,

1.2.1 Introduction to fluorescence microscopy and justification for use

The basic fluorescence microscope

The term “fluorescence microscope” refers to any microscope which uses
fluorescence to generate an image®®’. In practice, a fluorescence microscope is an
optical instrument, which can perform selective excitation and detection of fluorescent
molecules within organic and inorganic samples'38, This process can be performed
over a range of spatial and time scales, depending on the instrument setup®®. A
fluorescence microscope requires a near-monochromatic illumination source, which
presents a higher light intensity than some widespread light sources such as halogen
lamps*3, Such light sources could include lasers, high-power LEDs, or xenon arc and
mercury-vapour lamps with an excitation filter'3°. This near-monochromatic light may
be filtered through dichroic mirrors, which are specifically designed to transmit
particular wavelengths of light and reflect others®. A tube lens may be used to refocus
non-converging rays from the objective lens to form an image, or collimate light, which
is then collected by the objective lens and focused on a sample stained with

fluorophores®. Light emitted from fluorescent molecules is then filtered back through

Page | 30



Detector

?ht Source Barrier Filter
QCADQ Dichroic Mi
/V\ ichroic Mirror

Excitation Filter Tube Lens

Objective Lens

Specimen

Figure 1.9: Optical diagram of a conventional fluorescence microscope. A light source
is filtered through an excitation filter to isolate the excitation wavelength. The laser is
reflected by a dichroic mirror, specific to the excitation wavelength, through the tube
lens, the objective lens, and then onto the sample. Fluorophores are excited and emit
light at a higher wavelength. Fluorescence is passed back through the dichroic mirror
and transmitted across a barrier filter, which blocks reflected excitation light. Variations

in intensity are recorded by a detector.

a barrier or emission filter, to block out any unwanted wavelengths, and onto a detector
for image digitisation (Figure 1.9)%. In an idealised fluorescence microscope, only

emitted light should reach the detector — the type of detector used, such as a charge-
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coupled device (CCD) or scientific compound metal-oxide semiconductor (sCMOS)

camera, will depend on the imaging hardware®.

The diffraction limit and resolution

When a single molecule (a point source) fluoresces, photons are emitted isotropically
in a spherical wavefront!4°. As the wavefront approaches the circular aperture of an
objective lens, it experiences Fraunhofer diffraction, and the resultant intensity
distribution at the back focal (Fourier) plane of the objective presents as a top-hat
function in frequency space!“?. The inverse Fourier transform of a top-hat function
produces an amplitude which is a sinc function, and the intensity is a sinc squared
function at the detector — this is known as an Airy disk*®. As a result, fluorescing
molecules appear as a diffraction pattern of light instead of an infinitely small point,
which creates blur when several fluorophores are imaged in close proximity'4t. The
functional form of the three-dimensional intensity distribution of this diffraction pattern
is termed the point spread function (PSF)4. The resolution of FM is defined as the
smallest distance at which two point sources can be distinguished as independent
objects and is fundamentally limited by the diffraction of light'?”. The diffraction limit of
an objective is dependent on its ability to collect light and resolve detail at a fixed
distance from the sample — this property is known as the numerical aperture'#? (NA),
typically quantified between 0.5 and 1.5. The diffraction-limited resolution of an optical

system was characterised by Ernst Abbe in 1873 and is given by,

4 A
XY T 2NA’
4 21
Z 7 NA?

where 1 is the wavelength of light, d,, is the lateral resolution, and d, is the axial

resolution'#?. Note that the PSF is elongated along the optical axis (z), owing to the
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asymmetry of the wavefront originating from the microscope objective and, as a result,
axial resolution is typically worse than lateral’®. Even with an idealised NA of
approximately 1.5, visible light is constrained to a wavelength of at least 380nm93,
which places a theoretical lower bound on the axial resolution of approximately 130nm.
In practice, this is rarely achieved, with modern optics systems consistently resolving

at 200nm or more across the focal plane®*3.

Variants of conventional fluorescence microscopy

To capture the depth of a specimen, the sample must be imaged over several thin
slices'#4, Optical sectioning is a system for achieving 3D imaging which works by
removing fluorescence detected from regions outside of the focal plane!44. By
repeating this process over a subset of axial positions, a sample can be split into
several planes and reconstructed into a scan or z-stack!44. FM can also be used for
live-cell imaging provided phototoxicity is accounted for and a hospitable environment
is provided for cells to carry out their metabolic and physiological functions4.
Lowering the laser intensity will counteract the effect of phototoxicity, but also
deteriorate the visible distinction between the sample and the background4®. This may
reduce the signal-to-noise ratio (SNR) of the system, which can lower image
contrast#®. Further, built-in image processing technigues such as line averaging may
also require additional computation time, which increases the acquisition time between
frames!#. As such, temporal resolution generally comes at the expense of spatial
resolution, and can range between microseconds and minutes4>.

FM systems will typically be selected to optimise particular optical or experimental
parameters. For instance, laser scanning confocal microscopy illuminates one

diffraction-limited volume of the image at a time, accepting signal only from that region,
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which may then be averaged over a given period of time to improve SNR#6, This
excludes secondary fluorescence from regions outside the focal plane while achieving
maximum resolutions of ~180nm laterally and ~500nm axially'46. However, confocal
suffers from longer acquisition times and may be inappropriate for imaging with
pronounced cellular motility or drift®®. As light transitions from a medium of greater
refractive index (such as the sample) to one of lesser refractive index (such as the
glass coverslip) at a specific incident angle, it undergoes reflection instead of
refraction®?. Total internal reflection fluorescence (TIRF) microscopy exploits this
principle to produce an evanescent field, which penetrates no more than 100nm into
the sample and diminishes rapidly with distance, confining fluorophore excitation to
those in close proximity®2. This enhances axial resolution (~100nm isotropically) and
improves SNR, but is limited by a shallow penetration depth and stringent sample

preparation requirements®2.

1.2.2 Single molecule localisation microscopy

Conventional FM is a fast and relatively cheap imaging modality, which gives suitable
spatial and temporal resolution for studying microscale cellular processes!*’.
However, colocalisation and co-clustering of membrane proteins typically occurs at
scales below the diffraction-limited resolution®, Methods in super-resolution
microscopy, such as single molecule localisation microscopy (SMLM), can overcome
this limit'48, Instead of the grid-like images derived from conventional FM, SMLM can
provide a series of molecule localisations as output®. These localisations are
aggregated into point clouds which may also express additional information, such as
localisation precision, photon count, or data regarding quantitative properties of the

fluorophore environment®.
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The principles of single molecule localisation microscopy

The fundamental principle of localisation-based super-resolution microscopy is to
temporally separate individual PSFs, avoiding ensemble activation of multiple
fluorophores, estimate each molecule position, and reconstruct the underlying
structure by painting fluorophores in a pointillist fashion 13, By exploiting the
fluorescence intermittency or blinking properties of point sources, it is possible to
image individual fluorescing point sources!4°. Furthermore, it has been shown that the
pixelated PSF of an individual point source can be recapitulated by a Gaussian or Airy
function, whose central position estimates the spatial position of the emitter, and
whose standard deviation is a measure of the localisation uncertainty!®®. By
stochastically activating sparse subsets of fluorophores in each image frame, SMLM
can achieve temporal separation of PSFs and limit the probability of PSF overlap°?.
Once acquisition is complete, each frame is processed individually to localise all
fluorescing molecules'®. Molecule positions (taken as point coordinates) and
localisation uncertainties are recovered from each frame, with all points overlaid and

aggregated into one distribution?8,

Methods in SMLM

Diversity in target structures and experimental conditions has given rise to a range of
methods in SMLM, in which each modality presents its own advantages and
disadvantages, depending largely on the type of acquisition required. For example,
photoactivated localisation microscopy (PALM) makes use of photoactivatable
fluorophores, which switch to an active state under UV illumination and then become

irreversibly photobleached!%31%4, By exciting a small region at low UV power, only a
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sparse subset of fluorophores will reach emission simultaneously — this process is
repeated until a sufficient number of localisations has been recorded'®3. Labelling in
PALM is typically undertaken by genetically encoding fluorescent proteins, such as
EosFP, mEos, GFP or PS-CFP2'%4, Since only low power irradiation is used, PALM is
suitable for live cell imaging and can achieve resolutions of ~20nm laterally and ~50nm
axially®®. In fluorescence, the process of transitioning from an active (emitting) state to
an inactive (dark) state, or vice versa, is known as photoswitching®. Stochastic optical
reconstruction microscopy (STORM) uses photoswitchable fluorophores, which are
forced into a stable dark state, in the presence of buffers containing thiol reducing
agents and oxygen scavengers, by laser illumination®. Then, in the presence of redox
buffers, a low powered UV laser activates a small subset of fluorophores®. Pairs of
dyes are often used, with one molecule acting as a primary fluorophore, while the other
is used as a facilitator, which induces photoswitching of the primary®. In STORM,
labelling is often achieved with immunolabelling (Figure 1.10). Direct STORM
(dSTORM) is a variant of STORM which uses a single photoswitchable fluorophore
that reversibly switches between active and inactive states, depending on the
wavelength of irradiation. dSTORM can image cellular structures with resolutions of
approximately 20nm, without the use of a facilitator'®. In this instance, laser
illumination induces an inactive dark state in fluorophores, which then stochastically

return to their fluorescent ground state!®®,
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Figure 1.10: The workflow of stochastic optical reconstruction microscopy (STORM).
a Fluorophores are attached to membrane proteins by immunofluorescence labelling.
b Individual PSFs are recorded over several frames with Gaussian fitting used to
localise molecules in each image. Localisations are combined to give a point cloud.

1.2.3 DNA-PAINT

Point accumulation for imaging nanoscale topography (PAINT) is a form of SMLM
which makes use of fluorescent ligands which diffuse freely unless bound to a target
molecule and immobilised'#!. A standard variant of PAINT, known as DNA-PAINT,
uses a hybridisation probe comprised of a fluorescently-labelled DNA fragment!®.
These fragments are termed as imager strands and bind specifically to their
complements, known as docking strands, which are attached to target molecules*6,
Dye-labelled ligands diffuse rapidly, and may cross a space corresponding to several

pixels between acquisition frames, giving them the appearance of low-intensity blurred
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streaks, which can be filtered out of image frames by thresholding*®. When the probe
is immobilised for a prolonged period of time, the detector can accumulate a emitted
photons for detection, which produces a stable PSF'#!. PAINT microscopy is
advantageous for circumventing photobleaching, since stable fluorophores can be
continuously replenished in the sample, but suffers from high background
fluorescence signal and long acquisition times in dense samples®’. DNA-PAINT
depends on stochastic binding and unbinding of imager and docking strands — these
binding events are predictable, and imager strands exhibit characteristic fluorescence
on- and off-times!®®. PSF separation is therefore regulated by controlling the
concentration of the dye, rather than by exploiting the complex photophysical

properties of fluorophores®®®.

Advancements in DNA-PAINT

In 2014, Jungmann et al introduce Exchange-PAINT, a multiplex imaging approach
wherein orthogonal imager strands are sequentially applied to the same sample®®°.
This allows for sequential imaging of multiple targets using only a single dye and a
single laser source!®®. This was succeeded by the development of qPAINT, which
uses the predictable second-order association kinetics of imager strands to their
docking strands to obtain absolute quantification of molecule numbers!®8, More
recently, Schueder et al developed proximity PAINT (pPAINT), an extension to DNA-
PAINT, which uses a split-docking site configuration to detect spatial proximity
between target biomolecules'®®. This modality can used to detect interacting protein
pairs with both high sensitivity and accuracy®®. Ostersehlt et al demonstrated an
analogous DNA-labelling principle for use with MINFLUX (minimal fluorescence

photon fluxes) SMLM for 3D nanoscale (<5nm) imaging of multiple molecular
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Figure 1.11: An example of SMLM supplemented by machine learning. Fast DNA-
PAINT of cellular proteins a Vimentin, b TOM20 (mitochondria) ¢ CalR-KDEL
(endoplasmic reticulum), imaged in fixed U-2 OS cells. Cells and organelles were
labelled with fluorescent probes JFe3s-S5 (a and ¢) and 5 nM SiR-Hy4 (b). Wide-field
and conventional PAINT (ground truth) images are given for each data set. Predicted
super-resolution images were generated by neural network-assisted DNA-PAINT (HT-
PAINT). Zoomed regions for each image are marked with corresponding numerals and
show the relative similarities between ground truth and HT-PAINT output. HT-PAINT
images were acquired ~25-fold faster than conventional PAINT. Scale bars are 5um

(overview) and 2um (zoom-in). Figure adapted from Jang et al'®.

targets'®l, Recently, Narayanasamy et al developed a neural network-based approach
which can predict fluorophore positions from high emitter density DNA-PAINT and
reduce image acquisition time'®2. Further, Kessler et al introduced a short-distance

self-quenching mechanism for fluorophore dimers to reduce background fluorescence
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signal in DNA-PAINT63, Schueder et al report 10-fold faster imaging speeds, without
compromising image quality or spatial resolution, by designing optimised DNA
sequences and buffer conditions!®4. Jang et al built upon these principles by
incorporating direct protein label, HaloTag7, in combination with exchangeable ligands
and the DeepSTORM neural network (Figure 1.11) to reduce DNA-PAINT acquisition
time (up to ~25-fold, or in the order of seconds)'®®. This permits fast, live-cell
compatible imaging which bypasses photobleaching by providing a constant signal
over time'%5, High-resolution and precise molecular quantification make DNA-PAINT
a particularly advantageous form of SMLM. In Chapter 3, we use DNA-PAINT to
localise the TCR-CD3 complex on T cell membranes, and in Chapter 4, we introduce

an adapted ratiometric PAINT modality for use with solvatochromic probes.

1.2.4 Localisation and resolution

During pre-processing of raw SMLM data, each image frame is analysed
independently (Figure 1.12a-b). First, correction methods such as rolling ball
algorithms, difference of Gaussians, thresholding, or wavelet filtering may be used to
increase contrast between active emitters and the background (Figure 1.12¢)!¢6. The
approximate position of emitters is then determined — this may be achieved by taking
local maxima in intensity values within a connected 8 neighbouring pixel range®. A
localisation algorithm is used to estimate the spatial coordinates of the emitters,
typically by fitting of PSF models to the intensity distributions of point sources (Figure
1.12d)'%7. This may be achieved by Maximum Likelihood Estimation (MLE), which
localises each molecule by identifying the positions for which the likelihood of obtaining
the observed image is maximised'®’. The algorithm is computationally more expensive

than non-iterative algorithms, but advances in graphics processing units mean modern
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imaging systems can perform MLE in real time'®’. The precision of MLE depends on
both the SNR and the accuracy of the model PSF, although PSFs can be calibrated
experimentally and often outperform models in this case'®’. The accuracy of PSF
fitting may be further improved by implementing dynamic spline PSF models®®. The
localisation uncertainty (sometimes denoted localisation precision) refers to the
degree of uncertainty surrounding true emitter position, and is quantified as the
difference between the true position and the coordinates returned by the localisation
algorithm?®°. This directly influences the achievable spatial resolution and primarily
depends on setup-dependent experimental conditions (e.g. optics, objectives and
hardware), sample-dependent experimental conditions (e.g. SNR, photon count and
blinking) and the registration potency of the algorithm used (Figure 1.12e)%°. For a

PSF with standard deviation g, and photon count N, defined in an image with pixel
size a and mean background intensity [, the amended Cramér-Rao lower bound

(CRLB) is given by,

120¢ + a?\ (16 8malp?
Oloc = — v a1t )
12N 9 a’N?

where gy, is the uncertainty of the corresponding localisation'’?. Theoretically, MLE

approaches the CRLB as SNR increases'®’. To estimate the precision of an SMLM
modality experimentally, multiple images can be taken of a fluorescing fiducial marker
(e.g. TetraSpeck beads), which can be localised across all frames — the spread of all
localisations then serves as an estimate for localisation uncertainty’?,

The resolution of an SMLM acquisition depends on such parameters as localisation
precision, labelling density, fitting performances and temporal shifts1’2, One method

of estimating resolution is to apply the SMLM modality to a data set where molecules
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Figure 1.12: Schematic of filtering and localisation workflow. a A simulated data set
of ground truth localisations. b The impact of blur and noise. ¢ A filtering algorithm
reduces background, and thresholding binarises the image to highlight PSFs. d
Localisations are derived from the filtered image to negate the effect of imaging
artefacts. e The impact of photon count on SNR and the observed PSF. The higher
the photon count, the more easily identifiable the PSF, and the greater the precision
of the localisation. Localisation estimates (red) move closer to the true molecule

position (green) as photon count increases.

are separated by a known distance, such as in nanorulers or nuclear pores.
Computationally, resolution can be estimated using the Discretised Fourier Transform
(DFT), which maps the image into a Fourier space’3. Taking the resulting space at
the logarithmic scale highlights an approximately circular central mass, with radius
equal to the scale at which information content disappears into background noise —
this serves as an estimate of resolution for the image!’3. This process is known as

Fourier Spectral Analysis, and has the advantage that it does not depend on SNR*"3,
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Figure 1.13: The impact of drift, and correction with fiducial markers. a A fiducial
marker (circled in red) is added to a sample with a fluorescing ring-like structure. b As
a result of drift, the structure appears blurred and stretched in the acquired image. c
Binarising the image highlights the impact of the artefact on the observe structure. The
difference in position of the fiducial marker can now be traced backwards (red arrow).
d By tracing the dynamics of the marker, localisations can be offset to their true

position.

1.2.5 Artefact correction
In microscopy, a visual artefact is a structural feature of the data which is not a
legitimate feature of the sample and instead arises from experimental conditions, data

acquisition or processing methods®. Artefacts in SMLM may distort the representation

Page | 43



of molecular structures and dynamics. At the nanoscale, small variations in specimen
position can produce large localisation offsets — this phenomenon, known as drift,
depends on the speed of the imaging system and typically occurs at the range of tens
of nanometres (Figure 1.13)74. The offset of drift can be estimated by tracking the
displacement of fiducial markers across all image frames*’>. Emitter positions can then
be more accurately determined by subtracting drift. Alternatively, piezoelectric
actuators can automatically recalibrate the position of the sample throughout
acquisitiont.

Stochastic blinking of individual fluorophores across multiple frames may cause
individual emitters to be localised in multiple times — this process, known as multiple
blinking, may induce pseudoclusters which skew spatial statistics (Figure 1.14)76. To
correct this, multiple fluorescent probes may be used to localise the same target
molecule, then two-colour colocalisation can discriminate against false-positive
detections®’. Alternatively, computational methods may be used to aggregate adjacent
localisations across frames into a single spatial localisation'’®. These techniques may
yield an increase in precision but can sacrifice sample density if too many emitters are
merged — if labelling density is too sparse, fine structural properties will not be
resolved, irrespective of precision'#’. However, the higher the labelling density, the
greater the probability of PSF overlap, which may perturb localisation uncertainty and
alter the number of emitters detected!’”. This can be difficult to avoid, especially in
cases when a high activation probability is required for fast imaging!’’. Depending on
the imaging modality used, a trade-off between fluorophore density and laser intensity
can be finetuned!’’. Alternatively, localisations may be filtered out by multi-emitter
fitting algorithms, designed to detect overlap and calculate differences between

consecutive framesi’s,
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Figure 1.14: Multiple blinking artefacts that were not present in the ground truth data
(@) may produce an excess of localisations which may induce pseudoclusters
(highlighted in b). This arises as a result of the stochastic nature of fluorescence, which
causes a single fluorescent molecule to emit over consecutive acquisition frames.
Blink correction algorithms detect instances of blinking (c) and aggregate false positive

localisations (orange).

1.2.6 Super-resolution image reconstruction

Once all localisations have been mapped and corrected for artefacts, they may be
aggregated into a point pattern representing molecule coordinates, for which each
point has an associated localisation uncertainty. From here, a super-resolution image
can be reconstructed for the purpose of data visualisation or prior to applying further
image analysis. One way of achieving this is to generate pixels with size equal to the
average localisation precision. The intensity of each pixel may be proportional to the
number or total photon count of all localisations that fall within its volume. Alternatively,
the image plane may be divided into a fine grid of pixels (typically 5-20nm) and each
localisation may be represented as a Gaussian with mean position equal to the
estimated molecule centre, amplitude proportional to the photon count, and standard
deviation equal to the localisation uncertainty!’®. Labelling density has a pronounced

effect on the fidelity and resolution of the reconstructed image!38. If we consider the
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super-resolution image as a series of digitised points which sample a true continuous
structure, then by the Nyquist-Shannon sampling criterion, the sampling interval must
be greater than at least twice that of the highest spatial frequency of the sample to
accurately reconstitute the continuous structure and preserve spatial resolution'8%182,
Therefore, if the labelling density is lower than the Nyquist interval, the structure will

be under-sampled and the image will appear fragmented.

1.2.7 Machine learning-assisted SMLM

The magnitude and dimensionality of SMLM data sets makes them appropriate targets
for augmentation with machine and deep learning methodologies. Speiser et al
developed DECODE (deep context dependent), a deep learning-based tool which
assists in localising single molecules at high emitter density'®2. More recently, Saguy
et al introduced DBIlink, a spatiotemporal interpolation method for generating super-
resolved video reconstructions from SMLM data®®. Such techniques have, however,
garnered concern — as interpolation, although potentially accurate, is often synthetic
and prone to hallucinations!84. Gémez-de-Mariscal et al argue that machine and deep-
learning should be used to extract insights from “gentle” imaging and prioritise
minimising photodamage instead of recovering compromised data from harsh,
phototoxic illumination'®®. The authors propose that this will permit observation of
undisturbed living systems, and not just synthetic data retrieval'®>. Notably, a large,
international consort of researchers, under von Chamier et al, released an entry-level
platform for training deep learning networks, known as ZeroCostDL4Mic'®, This has
allowed researchers to train analytic tools for microscopy by leveraging free cloud-

based computational resources, in an effort to overcome accessibility barriers®e.
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1.2.8 Insights into lipid rafts from super-resolution microscopy

Super-resolution microscopy has been used to visualise lipid-mediated protein
clustering and dynamics, especially in the context of proteins which exhibit ordered-
phase affinity. Sengupta et al used PALM with pair-correlation analysis to image the
nanoscale organisation of GPIl-anchored proteins in COS-7 cells and found
preferential localisation in raft domains!4. The authors determined that these proteins
form clusters in the ordered phase and that the number of proteins per cluster
decreased after depletion of cholesterol with methyl-beta cyclodextrin (MBCD).
Eggeling et al used STED-FCS (Stimulated Emission Depletion Fluorescence
Correlation Spectroscopy) to detect single diffusing lipid molecules in the plasma
membrane of living epithelial cell line Ptk2'%7. The authors determine that
sphingolipids and glycosylphosphatidylinositol (GPI)-anchored proteins, which are
enriched in lipid rafts, are transiently trapped in cholesterol-mediated molecular
complexes (for ~10-20ms) within <20nm diameter areas'®’. On the contrary, Sevcsik
et al used protein microtracking and single particle tracking with PALM to show that
phase partitioning is not a fundamental element of GPI-anchored protein organisation
in the plasma membrane!®. Sako et al demonstrated single-molecule imaging and
tracking of epidermal growth factor receptor (EGFR), which is known to be a raft-
associated protein'®®, on A431 cell surfaces'®. The results suggest that lipid rafts are
not static entities, but exhibit transient and dynamic behaviour'®®. Owen et al utilised
PALM and direct STORM (dSTORM) to quantify the spatial heterogeneity of raft-
associated proteins LAT and Lck in T cells'®t. The authors find that these proteins
form distinct nanoclusters within lipid rafts, which is a prerequisite for T cell
signalling!®!. Sezgin et al suggest that enabling the efficient use of polarity-sensitive

probes in super-resolution microscopy will be an important future development in the
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study of lipid rafts*®. In this vein, Bongiovanni et al propose spectrally-resolved PAINT
microscopy, which works with environmentally-sensitive probes like NileRed to
acquire both the nanoscale spatial coordinates and emission spectrum of single
fluorophores!’t. However, in order to draw further conclusions from super-resolution
data, appropriate quantification methods must be used, as discussed in the following

section.

1.3 Spatial statistics

1.3.1 Spatial point patterns

The output of SMLM takes the form of a table of values which may include the spatial
positions of each localisation, photon counts, estimated precision, and information
derived from environmentally-sensitive dyes'#’. The spatial coordinates alone
generate a spatial point pattern — a list of estimated molecule positions which may be
visualised as a scatter plot or point cloud (Figure 1.15). This information allows for the
visualisation, quantification and interpretation of molecular organisation on the plasma
membrane. Analysis methods specific for SMLM extract quantitative information from
the primary coordinate-based data, including underlying geometry, topology, and
number of proteins!4’. Spatially-descriptive statistics can be used to probe the

underlying geometric properties of the point patternt®2.

1.3.2 Spatially-descriptive statistics
Spatially-descriptive statistics do not necessarily provide a partitioning of the data, but
can quantify spatial organisation in the point distribution and inform parameters for

cluster analysis algorithms'%2, The Ripley’s functions are spatially-descriptive statistics
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Figure 1.15: Example spatial point patterns displaying a range of cluster geometries,
including a a completely spatially random or uniform distribution, b Gaussian clusters,
c fibrous clusters, and d a mixed (compound) distribution of cluster geometries and

topologies.

which detect deviations from spatial homogeneity*®?. For an ROI of area A, containing
n points, the Ripley’s K function is defined as,
y n n
K(r) = m; jﬂzjii 8;; (7).
Here, §;; (r) evaluates to 1 if the distance between points i and j is less than r, and 0

otherwise. This is equivalent to counting the number of neighbours at each radius,
averaging over all points and scaling by area. This result is normalised to the L

function,

L= 29

which acts as an intermediary for the H function,
H(r)=L(r) —r.
Positive values of H(r) suggest greater point density and clustering at radius r, while

negative values suggest dispersion and homogeneity. Values close to 0 suggest a

completely spatially random (CSR) distribution. The argmax of the H function is known
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Figure 1.16: Plots of the Ripley’s H function for varying data geometries. a A clustered
distribution (magenta) presents as a notable peak in the H function. The argmax of
this peak is known as the radius of maximal aggregation, ,,, and serves as an estimate
for cluster radius. b A CSR distribution (orange) yields a relatively flat H function with
no discernible peak, while ¢ a homogeneous distribution (purple) creates a prominent
dip.

as the radius of maximal aggregation'®® and serves as an estimate for true cluster

size, if clusters are present and known to be circular (Figure 1.16). Owen et al used
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image analysis based on Ripley's functions to quantify the distribution and
heterogeneity of raft-associated proteins LAT and Lck in PALM and dSTORM data®®*.
The Pair Correlation Function (PCF) is a derivative of the Ripley’s function which
defines the probability of finding a point at a specific distance from another point,
relative to what would be expected in a completely random distribution!®3. This is
achieved by considering a reference point and counting the number of points which
fall within distinct concentric rings at increasing distances®3. The count in each ring is
then normalised by the area of the annulus and the average density of points across

the ROI'%, The functional form of the PCF is given by,

B 6(Ar/2—|(r+Ar/2 rl]|)
9(r) = an(n — 1)rZZ]ZJ:¢l

where 7;; is the distance between points i and j, and Ar is the ring thickness. Here, §

evaluates to 1 if r;; is within a range Ar over the inner annular radius r, and O

ij
otherwise. This provides a relative probability of finding a point at a specific distance
from a reference point, instead of within a given radius. A higher value of the PCF at
a particular radius indicates a clustering of points at that distance, while a lower value
suggests avoidance. In practice, Sengupta et al used pair-correlation to analyse GPI-
anchored protein distributions in PALM data and showed changes in cluster properties

after depletion of cholesterol with MBCD*4.

1.3.3 Overview of cluster analysis and unsupervised machine learning

The term cluster refers to a non-empty subset of a point pattern in which all members
share a degree of similarity!®*. The notion of distance is central to data clustering
algorithms and represents this degree of similarity between data in a given feature

space’®. A cluster analysis algorithm takes point data as input and aims to output a
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partitioning of the data such that each point is assigned to a cluster based on some
pre-defined metric'®4. Since both the input and output data is unlabelled, cluster
analysis is considered a form of unsupervised machine learning'®4. The choice of
algorithm may depend on the assumptions of the method and the parameters required.
Quantitative studies of molecule clustering from noisy SMLM data requires accurate,
unbiased and precise estimation tools!®®, but it is not always clear which, if any,
algorithm will be most appropriate for the data set. This decision will usually be made
on qualitative grounds; however, quantitative comparisons can be made for pre-
determined data geometries, which justify the use of particular algorithms. There are
generally two forms of cluster analysis: global clustering, which provides spatially-
descriptive statistics regarding the data (e.g. Ripley’s functions or PCF), and complete
clustering, which deterministically partition each data point into a specific cluster'®,
Complete clustering methods cannot explicitly detect the presence of clusters and can
give erroneous results if applied to data without spatial structure'®®. It is therefore
recommended to first undertake global clustering to determine whether clusters can
be identified, then apply complete clustering to partition the data. Once a patrtition is
identified, within- and between-cluster analysis can be performed. Within-cluster
analysis may incorporate probing of the size, shape and density of individual clusters,
while between-cluster analysis can determine relative differences between these
properties among different clusters from the same data set. A multitude of cellular
processes are driven by the assembly of biomolecules into clusters, and partitioning
can highlight the important biological phenomena underpinning molecular

organisation48.197,

Page | 52



Cluster properties and estimation methods

Cluster analysis algorithms may require information about the expected properties of
clusters in the data space!’’. These properties include, but are not limited to, the
number of clusters, cluster geometry and topology, cluster size, interpoint distances,
and typical point density within clusters!®:198.199 |f assumptions are imposed on the
geometry or organisation of clusters, fewer parameters may be required'®®. For
instance, k-means clustering?® assumes that there is a finite number of distinct
Gaussian clusters present in the data and requires only one parameter, k. This
parameter, representative of the number of clusters, may be estimated by Monte Carlo
simulation, non-parametric slope statistics, MLE, prediction-based resampling, or
persistent homology?°'2°2, However, no choice of parameter will circumvent the
hyperparameters — that is, the restriction to Gaussian geometry. Other cluster analysis
methods may require information regarding the expected size or density of clusters, if
not both. Assuming circularity, the radius of maximal aggregation derived from the
Ripley’s H function can serve as an estimate for cluster radius, although this has been
shown to vary non-linearly with true cluster size, bringing increasing inaccuracy at
larger scales'®®. Density, in the context it is required for cluster analysis, may be harder
to quantify?°3. Even with the true cluster radius known, the density may vary across
the ROI, in which case the average density may not be a suitable estimate23.
Furthermore, depending on the algorithm used, both a minimum and maximum density
may be required!®. Density is typically estimated from known experimental outcomes,
such as the expected number of molecules per cluster?®. In terms of outputs, there
are several statistics used to evaluate the performance of a clustering algorithm on
simulated data, such as the Adjusted Rand Index, which assesses the proportion of

points which have the same cluster classification in both the ground truth and output,
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adjusted for chance?042%5, Alternatively, the intersection over union metric determines
the ratio of the intersection of the convex hulls of output clusters and the convex hulls

of ground truth clusters, compared to their union6.206,

1.3.4 Geometric cluster analysis

Geometric clustering methods circumvent parameterisation by imposing assumptions
on cluster geometry to absorb variability in data. One such method, as discussed, is
the k-means algorithm?°, which assumes a circular or Gaussian distribution for each
cluster (Figure 1.17). Under this assumption, each cluster pertains a central mean
position around which each associated point is distributed subject to a quantifiable
variance. Given an expected number of clusters k, the algorithm starts by initialising k
centre points, randomly distributed across the data space, and assigning each
neighbouring point to a centre based on which it is closest t02%°. Once all points have
been assigned, a new mean centre is calculated from their positions and the process
is repeated iteratively until the centres stabilise — the point assignment at convergence
is taken to be the overall clustering®®. However, the method is sensitive to the choice
of initial cluster centres, and convergence is not always guaranteed. Further, all points
will eventually be assigned to clusters, including outliers, and so pre-processing may
be required. In the context of SMLM, k-means clustering has been used, for example,
to analyse cluster properties of surface receptor HER2 on breast cancer cells imaged
with PALM and dSTORM?27,

An advanced geometric approach known as Bayesian clustering?®® makes use of the
probabilistic law of Bayes theorem to actively determine the probability of each point
belonging to a specific cluster. Here, each point is assigned an initial cluster allocation

known as the prior. This allocation may be random, but can also be chosen
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Figure 1.17: A schematic of k-means clustering. a Cluster centres are initialised
randomly at k positions across the ROI. Here k = 3. b Points are assigned to the cluster
whose centre they are spatially closest to. The centre is updated to the average
position of all points within its cluster. ¢ This process is repeated iteratively until no

change in centre position is produced.

deterministically to improve convergence time?%8, Given an expected geometric
distribution for each cluster, each allocation is systematically examined to determine
whether a more suitable alternative exists — that is, an alternative allocation which
maximises the probability of correct cluster choice?®. After finite iterations, a posterior
distribution is formed which maximises the probability of appropriate cluster allocation.
This distribution is then selected as the new partitioning?®®. In practice, Bayesian
clustering has been used for analysing distributions of TCR-CD3 subunit CD3C in

STORM data?®® and LAT in 3D PALM data?10,

1.3.5 Density-based cluster analysis

Density-based cluster analysis stems from the principle that clusters produce higher
than average point density relative to the background. Clusters are therefore
constructed by sequentially aggregating the densest points within the ROI, which may

be derived deterministically or through the use of kernel density estimation?!t, While
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Figure 1.18: A schematic of the DBSCAN cluster analysis algorithm. a An example
data set with Gaussian clusters. b Zoom in of the square region in a. ¢ For each point,
the number of neighbours within a search radius € is recorded. d Points which have a
number of neighbours greater or equal to minPts are denoted as core points, while
any neighbours of core points are denoted as border points. Here, minPts = 3. All
remaining points are designated as outliers. e-f Clusters are formed by aggregating

neighbouring core and border points.

these methods are generally invariant of geometry, they come at the expense of
additional parameterisation — typically requiring at least one parameter to interpret
each of distance and density'%22, One such method is known as Density-Based
Spatial Clustering of Applications with Noise!®® (DBSCAN), and requires both a
distance parameter, €, and density minPts (Figure 1.18). Here, any points with at least
minPts neighbours in a radius € are denoted as core points and any other points within
that radius are resigned as border points — clusters are then formed by aggregating all

neighbouring core and border points®®. DBSCAN was shown to achieve the highest
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loU scores on simulated data when compared to other common clustering
algorithms?®¢, DBSCAN has been used, for example, to quantify GPCR
oligomerisation from DNA-PAINT data?!®. Topographic approaches measure the
relative densities of peaks over their surroundings. By interpolating point densities into
a continuous surface, local maxima, which may correspond to clusters, can be
identified?'4. In the context of SMLM, topographic prominence has been used to
compare lymphocyte function-associated-antigen 1 (LFA-1) distributions in stimulated
and non-stimulated T cells, imaged via dSTORM?%4,

Voronoi tessellation is a method of subdividing space into a number of polygonal
regions, based on the Euclidean distance, with each region centered on a data
point?>. These regions are denoted as seeds, and each seed defines a region of
space closer to its point than any other?'>. As the Voronoi edges are equidistant from
the two nearest seeds, the simplest way of generating a diagram of seeds is to
compute the perpendicular bisectors between them — this ensures that there is no
intersection between any Voronoi polygons?!>. SR-Tesseler is a density-based cluster
analysis algorithm which partitions data sets based on the size of these polygons?216.
Adjacent seeds are sequentially connected up until a given area threshold, which
produces a segmentation of the tessellation, and each connected component is
analogous to a distinct cluster?16, SR-Tesseler, in particular, has been used to analyse

receptor organisation on neuron cell surfaces, imaged via dSTORM?16,

1.3.6 Machine and deep dearning methods
Machine and deep learning-based methods for cluster analysis are built on pre-trained
models, which learn and then identify features of clusters in the data space. This is

achieved by training models on simulated point patterns with known ground truth
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clusters using frameworks such as self-organising maps, support vectors, or neural
networks!®4217 While the term “machine learning” traditionally encompasses both
supervised and unsupervised learning, cluster analysis is inherently defined as
unsupervised, and so the methodologies described here are restricted as such!®4. One
such method takes as input an array of values derived from each point's nearest-
neighbour distances and as outputs a binary label indicating the cluster the point
belongs to?8. This model has undergone training via a conventional neural network to
maximise accuracy by adjusting internal values and comparing the given output with
the expected output?'®, The model was tested on novel simulated data, including
scenarios not encountered during training, and maintained high accuracy?!®. Deep
Embedded Clustering (DEC) is a deep learning-based method which simultaneously
learns feature representations and cluster assignments using neural networks'®4. This
method devises a centroid-based probability distribution and aims to minimise the
Kullback-Liebler (KL) divergence to an auxiliary target distribution to simultaneously
improve clustering assignment and feature representation. This probability distribution
is iteratively derived by minimising the KL divergence with respect to a pre-calculated
probability distribution. Here, the KL divergence serves as a loss function and is
minimised via Stochastic Gradient Descent'%. Methods such as these address the
limitations of existing computational approaches, such as handling large-scale data
sets and overparameterisation. However, the resulting partitions will be limited by the
variability of the simulated input data and, as a black-box approach, it is impossible to

determine the criteria by which clusters are assigned.
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1.3.7 Topological data analysis

Topology is the field of mathematics concerned with the discrete properties of
shape?'®. In the context of point patterns, the term “topology” may be used to describe
the qualitative features of spatial data?'°. Topological data analysis (TDA) lends itself
to the theory of density-based clustering, as it presents methods which are inherently
free of geometric constraints?®. One method of performing TDA is to generate a
simplicial complex over the data — this is a mathematical construct which may be used
to characterise the topology of a point set??. This complex takes the form of a
triangulation (Figure 1.19a) and comprises a set of nodes (0-cells), connected by
edges (1-cells) with spaces between three adjacent edges filled by a face (2-cells),
and (in three dimensions or higher) with spaces between three adjacent faces filled by
a volume (3-cells)??°. For example, the Vietoris-Rips complex is a subtype of simplicial
complex which considers two nodes to be adjacent if the distance between them
(typically Euclidean) does not exceed a given maximum radius parameter (Figure
1.19b)?%°, Here, we restrict our discussion to nodes and edges alone, as these suffice
to generate higher-dimensional constructs??°.

One cluster analysis method, known as Topological Mode Analysis Tool'%° (ToMATO0),
builds on the TDA technique of persistent homology (PH). In theory, PH can make use
of any simplicial complex??, but since our focus here is on spatial point data, we
consider only the Vietoris-Rips complex??°. This complex can be constructed across a

continuous range of spatial scales up to a pre-defined maximum, r (Figure 1.19b).

Throughout this process, each connected component is formed, and then later
absorbed by another component, save for the final mode which connects every point
in the cloud. As such, each root is assigned a birth scale, the scale at which the

connected component is created, and a death scale, the scale at which the component
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Figure 1.19: Schematic of persistent homology and the Vietoris-Rips complex. a The
k-cells which comprise a simplicial complex. Each k-cell is the generalisation of a
triangle to k dimensions. A O-cell represents a node, a 1-cell represents an edge
between 2 adjacent nodes, a 2-cell represents a face between 3 adjacent edges, and
a 3-cell represents a volume between 4 adjacent faces. b The construction of a
Vietoris-Rips complex across spatial scales. This is analogous to considering a circle
of radius r around each node and taking any two nodes to be adjacent if their circles

intersect. The radius at which a connected component is created is called the birth
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scale, and the radius at which it is connected to a larger component is called the death
scale. ¢ A persistence barcode characterises each topological feature as a line with
length equal to the persistence. Longer lines represent persistent features, while
shorter lines represent low-persistence sub-components. d Birth scales, b, can be
plotted against death scales, d, in a persistence diagram. The further a point lies from
the bisector b = d, the higher feature’s persistence. A persistence threshold, T = d —

b, can be used to filter out low-persistence features. In both cases, two persistent

features are identified, corresponding to the clusters in b.

connects to another. The difference between the death and birth scale is denoted as
the persistence???, which is recorded for each connected component. Topological
features may be characterised by a persistence barcode (Figure 1.19c), in which each
component is represented by a straight line initialised at the birth scale, ending at the
death scale, and plotted on a 1D axis?23. Alternatively, a persistence diagram (Figure
1.19d), which plots the birth scale against the death scale for each connected
component, may be used?23, In both cases, components with greatest persistence (low
birth scales and high death scales) correspond to regions of the space which form at
low radii and do not merge with the background until substantially high scales are
reached. A persistent threshold, 7, can be introduced to filter out features which are
not persistent. It is here that persistence homology derives its namesake, as only

connected components with persistence greater than t will be returned.

For ToMATo (Figure 1.20), PH is used to construct a gradient field and identify basins
of attraction, which may signify the presence of a connected component or topological
feature within the data??*. The gradient field is derived from a density field, which may
be interpreted as the local density of a point, as determined by kernel density
estimation or simply counting the number of neighbours within a defined radius???. An

ordering of points by density produces what is known as a filtration scheme?25,
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Figure 1.20: A schematic of TOMAToO clustering. a An example data set with Gaussian
clusters. b Zoom in of the square region in a. ¢ The initial steps of TOMATo are
primarily the same as in DBSCAN, except for a slight change of notation, in which the
search radius is denoted as r. d The point with highest density is taken to be a root
(yellow) and points are sequentially connected to any neighbours whose root density
is at most 7 different to their own, where 7 is the persistence threshold. In this instance,
the persistence threshold is taken to be 3. e-f Any clusters found with root density less

that T are filtered out and designated as outliers.

Connected components are constructed by iteratively analysing each filtration entry in
sequence to determine local maxima, while simultaneously attaching points to their
neighbours??®. In each connected component, the point of greatest density is denoted
the root or mode and any point adjacent to the component may be attached provided
its density is no less than t different from the mode??’. Two adjacent connected
components may be aggregated into one provided the difference between their root

densities is no greater than 7. This process is known as mode-seeking and is the
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principle by which each connected component is identified??”. At the conclusion of the
algorithm, any object with root density less than t is also filtered out to remove
background??’.

Fundamentally, the construction of simplices on data points induces a graph or
network. Topological descriptors are numeric quantities which describe structural
properties of these graphs. This includes the Betti numbers, which count the number
of topological features (e.g. connected components or holes) at any dimension, and
the Euler characteristic, a topological invariant which summarises the simplicial
complex?'®. These statistics have been used to build machine learning pipelines for
feature extraction in FM data??®. Mapper is an alternative to persistent homology,
which creates a simplified representation of high-dimensional data by clustering data
points and mapping these clusters into a graph structure??®. First, the data is
transformed to a lower-dimensional space by methods of dimensionality reduction
(typically principal component analysis). Then, the data space is covered by a set of
overlapping intervals, which divides the space into bins. The choice of these intervals
is user-defined and may be selected for equal size or equal point density. Within each
bin, a cluster analysis algorithm is used to partition data points — the choice of this
algorithm depends on user preference. The clusters are mapped to nodes in a graph,
and edges are formed between nodes if they share any data points across the
assigned intervals. In culmination, this reduces high-dimensional data into a lower-
dimensional representation that preserves its topological features, which allows for
some visualisation of data shape and structure. Mapper has been used to analyse
neuroimaging data®, genetic data in breast-cancer patients?*! and biomolecular
folding pathways?32. TDA methods are inherently scalable and can handle large, high-

dimensional data sets?!®. This is advantageous given that the output of super-
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resolution microscopy is often characterised as big data'?®. Furthermore, TDA does
not require a priori knowledge of the data structure, and does not impose strict
assumptions on data geometry?3°, PH in particular is robust to noise, making it suitable
for data that is noisy or incomplete, which may arise from imaging artefacts??.
Furthermore, PH is relatively stable under small perturbations to the persistence
threshold, so minor variations will not generally alter the discrete properties of features

identified?24.

1.3.8 Introduction to marked point patterns

Marked point patterns (MPPs), also known as marked point processes, are an
extension to traditional point clouds in which each localisation is marked with additional
values or labels?3. Each point in an MPP consists of an an m-tuple in which one or
more dimensions correspond to spatial coordinates, and all other dimensions
represent non-spatial data (Figure 1.21). Such patterns can be either categorical, in
which each mark arises from a finite set, or continuous, in which marks adopt scalar
numerical values. In SMLM, categorical MPPs may arise from overlaying localisation
maps of several molecular species, where the mark corresponds to the molecule
type?’. Continuous MPPs may be sourced through the use of environmentally-
sensitive dyes, in which the mark quantifies a property of the probe’s environment*?.
Under polarity-sensitive probes, each localisation is assigned a quantitative label in

the form of the GP value, which represents the degree of membrane order*2.

1.3.9 Existing methods in MPP analysis
For categorical MPPs, colocalisation analysis refers to any analysis of the spatial
proximity between different points of distinct categories?34. Co-clustering, on the other

hand, is the phenomenon by which molecules from distinct categories form spatial
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Figure 1.21: Examples of marked point patterns. Spatial organisation may vary
between MPPs, with some displaying distinct spatial separation in clusters, and others
presenting as CSR. Points with similar marks may be spatially well-separated, or may

display a high degree of overlap.

clusters together?3*. Quantification of colocalisation and co-clustering is the primary
strategy for determining the potential interactions of dynamic protein complexes in
biological samples?3®. Dual-colour FM can be used to detect colocalisation of two
labelled molecules?3®. In image data, this can be quantified by the degree of overlap
in separate colour channels (i.e. by Mander’s coefficient) or by correlation of pixel
intensities (i.e. by Pearson’s correlation coefficient)!66.237, However, colocalisation
analysis conducted on conventional fluorescence microscopy images may suffer as a
result of chromatic errors and a limited spatial resolution?38. In point pattern data from
SMLM, two molecules will never occupy the precise same position, and therefore

colocalisation is instead defined as a measure of intermolecular distance or spatial
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association?®. The simplest approach to determining point pattern colocalisation is to
use a nearest-neighbour distance analysis?3’. However, this approach may yield false
positives in the case of one species being randomly distributed?3’. The coordinate-
based colocalisation (CBC) value is based on the proportion of points in category B
within the radius of a point in category A compared to the total count of category B in
a pre-defined maximum radius?3°. This is normalised over area and used to calculate
the Spearman’s rank coefficient, to which the colocalisation index is proportional®®.
This method is, however, highly sensitive to the strategy of labelling, especially when
the same structure is labelled by two different techniques that may interfere with each
other. State-of-the-art analysis methods, such as SODA, Clus-DoC and LAMA, probe
for colocalisation across a range of spatial scales?34240.241,

While traditional cluster analysis methods can be used for probing the spatial
organisation of an MPP, they do not typically take account of the mark each point has
been assigned?*. As a result, these techniques cannot be used to determine whether
proteins of the same value tend to colocalise or co-cluster, and therefore do not offer
any information about the existence of underlying domains?*3. Some second-order
characteristics have been adapted for investigating correlations between the locations
and labels of MPPs. These represent functions of the distance between two points of
the pattern, rather than the point pattern itself. Such characteristics include Isham’s
mark correlation function and Stoyan’s kmm function (normed), as well as the mark

variogram and the mark covariance function (unnormed)?33,

1.4 Outstanding questions in the field

With the advent of super-resolution microscopy, among other probing techniques,

more information about the composition and organisation of the plasma membrane is
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becoming available. There is increasing evidence surmounting to the use of lipid
domains not just as structural components of the membrane, but as functional
molecular rafts. However, many of the mechanistic principles guiding membrane
organisation and behaviour are unknown. Tracking the exact dynamic processes of
individual molecules is not generally trivial, and requires imaging over several frames
taken at sufficiently short intervals of time. Therefore, protein and lipid diffusion can
only be measured under microscopy techniques with high spatial and temporal
resolution. Current research efforts continue to focus on interpreting dynamic and
marked point pattern data. Outstanding questions regarding experiments into lipid
organisation revolve around determining whether lipid rafts are present, how best to
identify them, and what the link between their organisation and cell function may be.
Further, there is uncertainty about how lipid domains may vary within cells, between
cells, and amongst organelles. Understanding how membrane compartmentalisation
impacts cellular processes requires thorough, reproducible analysis at the nano-,
micro- and meso-scale. Depending on the imaging target and modality, microscopy
data can vary in architecture and present features with irregular or unpredictable
geometries, which can be challenging to quantify. Traditional geometric analyses may
fail to capture the structure of the data, but TDA could provide a framework to study
these complexities and perform feature extraction effectively. However, TDA has not
seen widespread use in analysing super-resolution data, largely owing to difficulty in
its interpretation, especially for biologists or microscopists who may not be familiar
with topological concepts. Here, we aim to generalise TDA towards this biological

context.
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1.5 Thesis objectives

In this work, we present a series of analytic tools tailored to multifaceted microscopy
data. Each methodology is designed to provide specific insights into the biophysical
properties of a distinct data type, allowing for a comprehensive analysis of cellular
membranes at varying resolutions and scales. The first of these methods is known as
Topological Boundary Line Estimation using Recurrence of Neighbouring Emissions
(TOBLERONE), an image analysis tool which allows for the segmentation of 2D
images, 3D z-stacks, and spatiotemporal t-stacks. In Chapter 2, this tool is applied to
identifying cell membranes and organelles in confocal microscopy data, which may
aid understanding of cellular architecture and membrane properties. Then, magnifying
to the nanoscale, we introduce a protein aggregation dynamics simulator which learns
from spatially-descriptive statistics taken directly from SMLM data. The model serves
a dual purpose: to simulate static protein maps which capture the topological
properties of point patterns derived from experimental data, and to predict protein
aggregate behaviour in dynamic systems. This approach, known as Agent-based
Spatiotemporal Molecular Distributions Evolving Under Simulation (ASMODEUS), is
explored in Chapter 3. Finally, in Chapter 4, we introduce a software package for
interpreting marked point pattern data. In this context, we use this package to probe
for evidence of lipid nanodomains in MPPs arising from ratiometric DNA-PAINT. The
package, Point Label Analysis for Super-resolved Marked Attributes (PLASMA),
contains two algorithms for processing SMLM data types, including point patterns with
non-spatial dimensions. Most notably, we introduce a topological cluster analysis
technique for partitioning of marked point patterns, which is, to our knowledge, the first

of its kind.
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We show that the analytic tools introduced in this work are capable of distinguishing
the biophysical properties associated with lipid composition and order in these data
types. Furthermore, we find evidence of regions of homogeneous membrane order at
nanoscale resolutions. In summary, these methods, combined with multimodal
fluorescence microscopy and SMLM, may yield a promising avenue for mapping
membrane biophysical properties at nano- and micro-scale resolutions. This broad
resolution spectrum facilitates a more comprehensive understanding of cellular
environments, which may yield new discoveries in cell biology and further study into

the micro- and nano-environment of the plasma membrane.
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Chapter 2: Topological image analysis

The focus of this chapter is on the implementation of persistent homology for
segmenting visible structures in conventional fluorescence microscopy data. A
thorough review of associated literature suggests that this is a novel application of
topological image analysis and, in particular, depicts the first application of persistent

homology to processing fluorescence microscopy data.
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2.1 Introduction

Advances in fluorescence microscopy have allowed for highly-resolved planar,
volumetric and spatiotemporal imaging, producing 2D images, 3D scans and live-cell
videos respectively!3+144244.245  |mgge segmentation algorithms can be used to
separate fluorescing objects from the background and each other33-135, Without such
techniques, researchers must undertake time-consuming manual segmentation and
guantification, which can yield subjective results and impact reproducibility46-248,

State-of-the-art segmentation algorithms depend on supervised machine or deep
learning approaches, which learn to interpret patterns in training data to make
informed predictions on new images?*°. Such methods include CellSeg, StarDist and
CellPose, which carry the advantage that they are highly adaptable?#°-251, With the
advent of cloud-based models such as Segment Anything?®?, semi-automatic 2D
segmentation can be achieved with minimal user input — however, this approach
requires manual annotation of each object in each image (by clicking on them in a user

interface) and is not yet suitable for automated image analysis. As supervised learning
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approaches, these techniques require annotated image repositories for training, which
must be labelled manually and can be subjective. Furthermore, there is no generalised
method of extending 2D machine learning algorithms to incorporate variations in
geometry or higher dimensional data sets without completely retraining new
algorithms?°3.254, Developments in convolutional and recurrent neural networks show
promise for 3D cellular and biomedical image segmentation, but are yet to achieve the
accuracy of 2D methods?®>2%, A fundamental drawback of these machine learning
models is that they are black box approaches, which means there is no insight into the
algorithm’s quality, maintainability or internal structure?®2. Therefore, it is impossible to
generalise performance quality to unseen data?,

Classical image segmentation methods are algorithms which are not based on
supervised machine learning?®’. A range of these algorithms exist for 2D, 3D and
spatiotemporal cell segmentation®®’. Such models typically rely on background-
foreground separation techniques, such as Otsu thresholding®®. Provided the
foreground can be isolated, segmentation must then be undertaken by a separate
region-based technique, such as seed-point extraction or the Watershed
algorithm?5%:260, The success of these methods, in fluorescence microscopy, usually
depends on cell geometry and image SNR?61. Further, while parameter estimation is
possible for some classical methods, it is not often built in?52263, 3D Simple
Segmentation performs volume segmentation by binarising z-stacks subject to a given
threshold, then performing 3D Watershed to separate objects?%4. 3D Spot
Segmentation first identifies object seeds, obtained from local intensity maxima, then
applies a local threshold around each seed and clusters voxels with values higher than
the local threshold?%4. All-encompassing algorithms, which achieve true segmentation

in a single application, probe for specific geometric structures in image data?®®. This
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can make them unsuitable for segmentation of cells or organelles with complex
morphologies, as is often seen in biological data?®®. Track analysis software, such as
Trackmate, uses linking algorithms to detect objects across time series data and build
contours which follow each object over time2%. Trackmate offers several linking
algorithms such as nearest-neighbour tracking, which links objects based on the
shortest distance to their predicted position in the next frame?2¢®,

Topological analysis techniques have shown promise in decomposing image intensity
variations across gradient fields, which is a precursor for successful cell and organelle
segmentation??8.267-269 This chapter introduces an alternative segmentation algorithm
built on the principles of persistent homology and intensity mode seeking, denoted
Topological Boundary Line Estimation using Recurrence Of Neighbouring Emissions
(TOBLERONE). Both 2D and 3D volumetric (3DTOBLERONE) implementations are
introduced. Although structurally similar, spatiotemporal (t-stack) data is analysed
separately to volumetric (z-stack) data to track dynamic processes such as splitting
and merging of components. To permit this, a topological segmentation tool for
temporal FM data (tempTOBLERONE) is introduced. Unlike supervised machine
learning models, which are trained on labelled data and output labelled data,
TOBLERONE is unsupervised, and therefore outputs labelled data without the need
for training.

In this work, each variant of TOBLERONE is applied to simulated data and, where
applicable, sensitivity and specificity is compared with existing segmentation
algorithms under imposed image artefacts. We also quantify the impact of Gaussian
blur and noise on algorithmic performance. Further, all algorithms are demonstrated
on experimental confocal microscopy data. We demonstrate 2D TOBLERONE on

HEK293 cells and map membrane heterogeneity in images of Cryptococcus gattii,

Page | 73



stained with polarity-sensitive membrane dye di-4-ANEPPDHQ. We apply
3DTOBLERONE in practice by segmenting scans of Jurkat T-cells and find that
segmentation statistics regarding cell geometry agree with existing literature. Finally,
we demonstrate tempTOBLERONE on dynamic, live-cell data of
Schizosaccharomyces pombe undergoing nuclear division and GFP-GOWT1 mouse

stem cell data (taken from the Cell Tracking Challenge?°).

2.2 Materials and methods

HEK?293 cell culture

HEK293 cells were cultured with Dulbecco's Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) at 37°C in a 5% COz2 incubator.
Cells were passaged and seeded onto Ibidi p-slide 8-well glass-bottomed chambers
24h prior to imaging. Cells were stained with either 5mM di-4-ANEPPDHQ from a 5mM
ethanol stock solution, for cell plasma membranes, or 1X NucBlue, for DNA (as a proxy
for nuclei), 30 minutes before imaging. All media and dye were sourced from Thermo

Fisher Life Technologies, Paisley, UK.

Cryptococcus gattii cell culture

C. gattii cells were cultured with yeast peptone dextrose (YPD) broth at 25°C under
rotation and stained with di-4-ANEPPDHQ as in HEK293 cell line. Samples were
treated with either 100uM 2-hydroxyoleic acid (20HOA) or 20uM 7-ketocholesterol 3
hours before imaging and staining. All media and dye were sourced from Life

Technologies.
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Jurkat T cell culture

Jurkat E6.1 T cells were cultured in R10 medium (Roswell Park Memorial Institute
[RPMI] 1640 medium supplemented with 10% FBS, 1mM penicillin and streptomycin
[PenStrep], 2mM L-glutamine and 1mM sodium pyruvate [all from Sigma-Aldrich,
Madison, WI]) at 37°C in a 5% CO2 incubator. 1mL of cells were resuspended in
Nuclear Mask Deep Red solution (1 in 200 dilution from stock, 250X concentrate in
dimethyl sulfoxide [DMSOQ]), for DNA, and WGA-AlexaFluor 488 (10 pg/mL
concentration) for cell plasma membranes (both from Life Technologies). Cells were
incubated for 15 minutes at 37°C and washed three times in phosphate buffer saline
(PBS), then resuspended in 4% paraformaldehyde (PFA) for fixation, incubating for a
further 15 minutes at 37°C, then washing again three times in PBS (PFA and PBS

supplied by Life Technologies).

Schizosaccaramyces pombe cell culture

S. pombe was grown in yeast extract with supplements (YES) medium. Media
preparation and genetic techniques follow protocols given in literature?’*. An S. pombe
strain expressing BOP1-mCherry (ribosome biogenesis protein 1) was produced
through genetic transformation of the wild type strain under homologous
recombination. Plasmids containing the mCherry gene and 3’'UTR fragment of BOP1
gene (SPAP32A8.03c) were constructed via standard molecular biology methods
given in literature?’t. Endogenous BOP1 gene was tagged with mCherry and
maintained all native regulatory elements. Transformation was performed using lithium

acetate-based method described in literature?’?,
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Static confocal microscopy

Live HEK293 and C. gattii cells were imaged with a Zeiss LSM 780 laser-scanning
confocal microscope at 37°C, while Jurkat T cells were imaged with a Zeiss LSM 900
confocal in confocal scan mode at 37°C. Excitation and emission channels were
defined as in Table 2.1 for each dye. 4x line averaging was used across all
acquisitions. For C. gattii cells imaged with di-4-ANEPPDHQ, GP images were

constructed by calculating GP values for each pixel, as in literature (see Appendix)!°,

Dye Name Excitation Wavelength | Emission Range

di-4-ANEPPDHQ | 488nm 500-580nm (green), 620-750nm (red)
NucBlue 405nm 420-500nm

Deep Red 638nm 650-750nm

AlexaFluor 488 | 488nm 500-600nm

Table 2.1: Excitation wavelength and fluorescence channels for each dye.

S. pombe dynamic imaging

S. pombe cells were placed in sealed growth chambers containing 2% agarose YES
medium. Imaging was undertaken using a Zeiss Axiovert 200M microscope with a Plan
Apochromat 100x 1.4 NA objective. The microscope comprised an UltraView RS-3
confocal system, with a CSU21 confocal optical scanner, 12-bit digital cooled
Hamamatsu Orca-ER camera, and krypton-argon triple line laser illumination source.
Image z-stacks with seven sections and frame depth of 0.5um were acquired at
intervals of 1 minute. Then, t-stacks were obtained by undertaking z-stack maximum

projection using FIJI/ImageJ (v. 2.9.0)%72,
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Simulating images and evaluating algorithmic performance for 2DTOBLERONE

To produce simulated 8-bit images which better represented real cell morphologies,
all experimental data, including C. gattii, S. pombe, Jurkat T cells and HEK293 images,
were put through CellPose v3.0.10 to extract cell masks?”3. In total, 2167 masks were
identified and each cell mask was converted into a separate binary image. For each
simulation, an empty 256 by 256 image matrix was initialised (with all pixel intensities
set to 0). Then, for each image matrix, the following process was repeated until 5
failures:

1. Randomly select a cell mask image from the available masks.

2. Add the mask image to the image matrix at a randomly-selected location.

3. Check if the max pixel intensity of the image matrix is greater than 2 (i.e. direct
overlap of two cells). If so, record a failure and reject mask placement,
otherwise continue.

This entire process was repeated to give 100 simulated images. Then, each image
was multiplied by a mask pixel intensity, with intensities ranging between 0.1 and 0.9
in increments of 0.1. Gaussian blur (with standard deviation o1 ranging between 0.2
and 2 in increments of 0.2) was applied in base R (v. 4.2.3) and Gaussian noise (with
standard deviation o2 ranging between 3 and 30 in increments of 3) was applied using
the blur function of the EBImage R package (v. 4.19.13)?’4. Gaussian distributions
were chosen to reflect the properties of noise and blur which may arise from
fluorescence microscopy?’®. This gave a total of 900 data quality conditions, which
were considered for each image, giving 90000 simulations in total. 2DTOBLERONE
was performed on each simulation with the mask pixel intensity as persistence
threshold. Sensitivity and specificity (see Appendix for formulas) were calculated for

each simulation within an 11 by 11 pixel grid around mask boundaries. The relative
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difference between the number of components returned and the number of true cell

masks in the image was recorded for each image.

Simulating images and evaluating algorithmic performance for SDTOBLERONE

For each 8-bit simulation, an empty 256 by 256 by 50 voxel array was initialised (with
all voxel intensities set to 0). Then, for each array, the following process was repeated
until 3 failures:

1. Randomly select a 3D cell mask image from the available masks (as above).

2. Add the mask image to the array at a randomly-selected location.

3. Check if the max voxel intensity of the image matrix is greater than 2 (i.e. direct
overlap of two cells). If so, record a failure and reject mask placement,
otherwise continue.

This entire process was repeated to give 100 simulated z-stacks. Each stack was
multiplied by a mask voxel intensity ranging between 0.4 and 0.9 in increments of 0.1.
Gaussian blur (with standard deviation o1 ranging between 0.4 and 2 in increments of
0.4) was applied in base R (v. 4.2.3) and Gaussian noise (with standard deviation o2
ranging between 6 and 30 in increments of 6) was applied using the blur function of
the EBImage R package (v. 4.19.13)?’4. This gave a total of 150 data quality
conditions, which were considered for each z-stack, giving 15000 simulations in total.
3DTOBLERONE was performed on each simulation with the mask voxel intensity as
persistence threshold. Sensitivity and specificity (see Appendix for formulas) were
calculated for each simulation within an 11 by 11 by 11 voxel grid around mask
boundaries. The relative difference between the number of components returned and

the number of true cell masks in the image was recorded for each stack.
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Simulating images and evaluating algorithmic performance for tempTOBLERONE
First, 2D images were generated as for 2DTOBLERONE above. Then, for each image,
19 additional time frames were considered, with each frame determined by comparing
to the image in the previous frame. For each cell mask in the image, the following
process was repeated until 5 failures:
1. Randomly select an angle 6 between 0 and 2 and a step size s between 0
and 10 pixels.
2. Move the cell mask to the pixels at the end of the path of length s in the direction
of angle 6 (taking ceiling of values for precise integers).
3. Check if the max pixel intensity of the image is greater than 2 (overlap). If so,
reject the move and record failure, otherwise proceed to next mask.
This entire process was repeated to give 100 simulated t-stacks. Mask intensities,
Gaussian blur and Gaussian noise were simulated and imposed as for
3DTOBLERONE above, giving 15000 simulations in total. tempTOBLERONE was
performed on each simulation with the mask pixel intensity as persistence threshold.
Sensitivity and specificity (see Appendix for formulas) were calculated for each
simulation within an 11 by 11 by 3 pixel grid around mask boundaries. The relative
difference between the number of components returned and the number of true cell

masks in the image was recorded for each stack.

Simulated images for failure cases

Two C. gattii cells were manually segmented from FM data and overlaid onto an image
with no background. Three additional copies of this image were made. The first image
was overlaid with Gaussian noise with standard deviation of 50. In the second image,

the distance between cells was reduced such that their mask boundaries overlapped.
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In the third image, the background signal was increased to reduce image contrast.
This was achieved by first multiplying all pixel intensities by 0.5, then overlaying
Gaussian noise with standard deviation of 10 and Gaussian blur with standard
deviation of 0.5. Finally, all pixel intensities were mapped linearly from a 0-1 intensity
range to a 0.25-0.75 intensity range. Images were 256 by 256 pixels in size. All image

processing was undertaken in in FIJI/ImageJ (v. 2.9.0).

Persistent homology in image analysis

The raw output data of fluorescence microscopy provides an image or stack,
represented as a numeric matrix or array. TOBLERONE takes such an array as input,
alongside a persistence threshold t, which determines the algorithm’s sensitivity to
overlapping components. A density field is interpreted directly as the density of
photons emitted by fluorescent probes across the ROI, represented in the grayscale
image as the intensity of each pixel. A filtration scheme is constructed by ordering the
intensity of each pixel across each frame. In each connected component, the pixel or
voxel of greatest intensity is denoted the root or mode and any pixel adjacent to the
component may be attached provided its intensity is no less than t different from the
mode??’. This implementation of persistent homology is analogous to ordering a
sequence of binarised images by thresholding over all possible intensities (Figure
2.1a-c). This is achieved by mapping each active pixel onto a node and assigning an
edge to each pair of adjacent nodes — this representation is referred to as the grid
topology (Figure 2.1d). The primary assumption of TOBLERONE is that a connected
component is defined by a set of pixels in which a path between any two pixels can be
achieved by a finite series of lateral or diagonal movements across nodes within the

grid topology. This is equivalent to connecting adjacent nodes within a 3 by 3 grid, for
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Figure 2.1: Schematic of TOBLERONE. a An example image with 25 pixels,
represented by a matrix in which each entry contains a numeric value between 0 and
1, denoting fluorescence intensity. b Binarised image at thresholds of t = 1.0, 0.5 and
0.0, respectively. ¢ The filtration matrix constructed by assigning each pixel a value
corresponding to the order at which it was activated. Pixels which became active at
the same threshold are numbered arbitrarily. d The network representation of the
image at filtration values corresponding to the thresholds above. Here, f denotes the
maximum filtration value permitted. As the filtration value increases, two connected
components form and then merge into one component. e The persistence diagram
constructed from the topological decomposition of the image. This plots the birth
threshold, b, against the death threshold, d, for each component identified. The
persistence of each component is represented by T = b — d. Two prominent points
are found in region Y, given by 7 = 0.5 which correspond to the two bright objects in

the original image.

2DTOBLERONE, and a 3 by 3 by 3 grid, for SDTOBLERONE (Figure 2.2). The output

of TOBLERONE is a list of distinct connected components, represented by lists of
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pixels. See Figure 7.1 (Appendix) for conceptual diagram of 2D and 3D

TOBLERONE. See Sections 7.2.1 and 7.2.2 for algorithm pseudocode.

Parameter selection
An appropriate persistence threshold can be estimated by initialising at T = 0.5 and

perturbing the threshold until the returned number of connected components matches
the anticipated number. Increasing the threshold results in greater merging and
reduces the number of connected components found, while decreasing the threshold
reduces the penalty on segmentation and increases the number of components
returned (Figure 2.3). For data derived under the same imaging conditions, an
estimate for the persistence threshold can be derived from a representative image and

then applied to all images in the data set.

Persistent homology for 2D image + time data

Since 3D TOBLERONE identifies separate connected components in 3D space, all
voxels connected to the initial root will be aggregated into one component. This would
be inappropriate for live-cell video data, as the algorithm would be unable to track
splitting (e.g. by mitotic division) or merging (e.g. by vesicle fusion) of objects which
were otherwise distinct. Instead, tempTOBLERONE processes each frame with
2DTOBLERONE, then collates components across frames. Functionally, this
determines each temporally-distinct connected component and the corresponding
spatial roots for each frame. Initialising at the first frame, the algorithm iterates over
each pixel in each component and compares with pixels occupying the same positions

in the following frame (Figure 2.4). If the number of unique roots is unchanged, the
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Figure 2.2: Topological representations of a z-stack. a Stacks may be binarised by
thresholding so that specific voxels become activated. b Each voxel represents a point
in 4D grayscale colour-space. ¢ The network representation establishes connectivity
between neighbouring active voxels. Increasing the persistence threshold permits

connection of lower intensity voxels.
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Figure 2.3: The impact of changing persistence on the segmentation identified by
TOBLERONE. a The persistence defines the granularity of the segmentation. b As
persistence increases, components undergo increased connectivity which reduces the

number of components returned, but increases size.

spatial root of the spatial component is assigned as the new spatiotemporal root of a
spatiotemporal component. If two or more unique roots are shared among the same
pixels in the following frame, the component whose root has brightest intensity absorbs
all other components and overwrites their roots (Figure 2.5). This allows for a single
component to split into multiple components in a subsequent frame (Figure 2.5a-b).
Simultaneously, each spatial root is recorded across all frames and if any root is found
to be connected to two separate spatiotemporal components, then this implies that the
components have merged. As such, all spatiotemporal components which share a

single spatial root are aggregated, preserving the component with the brightest

Page | 84



Figure 2.4: Topological decompositions of videos, or t-stacks. a Videos are comprised
of a series of distinct frames. b 2D segmentation establishes connectivity within
frames, but not between frames. ¢ Temporal topological segmentation connects
components spatially and temporally while tracking addition or deletion. An example

spatiotemporal component (pink) is formed from a series of spatial components.

spatiotemporal root (Figure 2.5c-d). See Figure 7.2 (Appendix) for conceptual

diagram of tempTOBLERONE and Section 7.2.3 for algorithm pseudocode.

Image and stack segmentation software

The TOBLERONE software package (v. 1.0.3) was written in the R programming
language (v. 4.2.3) and employed in the integrated development environment RStudio,
(2022.07.1+554). TOBLERONE is available for use under GNU General Public
License (v. 3.0). Otsu thresholding and the Watershed algorithm were undertaken
using built-in functions with the EBImage R package (v. 4.19.13)274. Otsu thresholding

is parameter-free and so required no finetuning. Appropriate input parameters were
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Figure 2.5: Tracking component segmentation over time with tempTOBLERONE. a
Diagram of one component splitting into five across several time frames. b Schematic
lineage tree of the spatiotemporal objects given in a. ¢ Diagram of two components
merging into one. d Schematic lineage tree of the spatiotemporal objects given in d.
Exemplar stacks taken from Panconi et al?’’.

determined iteratively for the watershed algorithm. 3D Simple Segmentation and 3D
Spot Segmentation were undertaken in FIJl/ImageJ (v. 2.9.0) using the 3DSuite plugin
(v. 4.0.93)%%4, Suitable input parameters were determined iteratively for both 3D
classical algorithms. Nearest-neighbour tracking was applied with Trackmate (v.
7.11.1) in FIJI/lmageJ using pre-defined masks from tempTOBLERONE to determine
track lines?6%:276, For C. gattii cells imaged with di-4-ANEPPDHQ, mean GP values

were taken per-cell and calculated by averaging GP values from all pixels comprising

the component boundary, as identified by TOBLERONE.
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2.3 Results

2.3.1 2D segmentation of simulated images with TOBLERONE
100 simulated images were generated from cell masks (see Materials and Methods
for all data simulation methods). Gaussian blur was simulated over each pixel with

standard deviation g; = 1.2, and Gaussian noise with standard deviation o, = 18. All

mask pixel intensities were fixed at 0.5. Each image was segmented under
TOBLERONE, alongside two alternative segmentation approaches, Otsu’s method
and the Watershed algorithm, to compare performance?’8279, For each algorithm, we
calculated segmentation sensitivity and specificity (see Appendix for formulas). Here,
sensitivity represents the probability of labelling an individual pixel as active, given that
the pixel is active in the ground truth image, and specificity represents the probability
of labelling an individual pixel as inactive, given that the pixel is inactive in the ground
truth image?8°. To avoid skewing statistics, we considered pixels only within an 11 by
11 grid around each pixel comprising the component boundaries (that is, 5 pixels in
each direction). Each image took no longer than 5 seconds to segment on a single
processor. Under these image conditions, TOBLERONE achieved a mean sensitivity
of 0.9412 and a mean specificity of 0.8762. TOBLERONE surpassed the sensitivity of
Otsu thresholding (0.8726), but did not surpass the specificity (0.9306). Further,
TOBLERONE showed lower sensitivity than the Watershed algorithm (0.9964) but
surpassed its specificity (0.4322). In this case, the sensitivity of the watershed
algorithm was greater on account of oversaturated segmentation. Algorithm

performance on exemplar images is given in Figure 2.6.
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Figure 2.6: Segmentation of exemplar image data for visual representation (taken

from Panconi et al?8t). a-f A series of toy images exhibiting a range of geometries and

topologies. Gaussian noise and blur are simulated over each image with standard
deviations g, = 1.2 and o, = 18, respectively. TOBLERONE, Otsu thresholding and

the Watershed algorithm are performed to recover the original segmentation.
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To further explore the impact of image degradation on TOBLERONE’s performance,
each of the 100 simulated images was overlaid with varying degrees of Gaussian
noise and blur (see Materials and Methods for quantification). Each image was
segmented by TOBLERONE, with sensitivity and specificity calculated as above.
Results are given in Figure 2.7 and suggest that TOBLERONE vyields a small,
guantifiable decrement in both sensitivity and specificity as either o; or o, are
increased. However, segmentation sensitivity shows a greater response to changes
in noise, while specificity seems more sensitive to changes in blur.

An overview of common failure cases is given in Figure 2.8. This includes toy images
with increase shot noise (Figure 2.8b), overlapping cell boundaries (Figure 2.8c), and
low image contrast (Figure 2.8d). Noise can yield unwanted activation or deactivation
of nodes in the grid topology. This can both disrupt connectivity within components
and increase the likelihood of detecting pixels in the background. Increased cell
proximity, which is more likely to occur as cell density increases, may cause adjacent
cells to be aggregated into one connected component. This may then require
additional post-processing (e.g. by Watershed) to get an accurate cell count or
boundary line profile. As the image contrast decreases, the difference in intensity
between background and cell pixels also decreases. If pixels in the background
exceed the intensity of pixels in the cell boundary, they may be connected to the
component. Under ideal conditions, the lowest intensity pixel across all cells will be

brighter than the highest intensity pixel in the background.

2.3.2 2D segmentation of fluorescence microscopy data with TOBLERONE

TOBLERONE was used to segment two cell types: the R265 strain of C. gattii, which

are typically spherical, and human embryonic kidney (HEK293) cells, which exhibit a
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Figure 2.7: Impact of Gaussian blur and noise on sensitivity and specificity of

TOBLERONE. a An example simulated image constructed from cell masks. b
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Gaussian noise and blur are simulated over each image (for this case, with standard
deviations g; = 1.0 and o, = 15). ¢ Cell masks are recovered by TOBLERONE and
compared to the ground truth to calculate sensitivity and specificity. d-e Heatmaps of
the mean sensitivity and specificity (as defined above) of TOBLERONE over all

simulated images.

more complex geometry, incorporating finger-like protrusions (see Materials and
Methods for all cell culture and imaging methods). Cryptococcal cells were cultured
in YPD media and HEK293 cells in DMEM media. Both were held in coverslip-
bottomed microscope dishes, stained with di-4-ANEPPDHQ (for cell plasma
membranes) or Nucblue (for DNA in HEK293 cells) for 20 minutes at 37°C and imaged
live via a Zeiss LSM 780 laser-scanning confocal microscope. Segmentation was
performed with TOBLERONE, Otsu thresholding and the Watershed algorithm.
Example cell and organelle masks from HEK293 data are displayed in Figure 2.9. For
this example, TOBLERONE seemed to successfully identify the non-convex
morphology of the HEK293 cell, while also showing discrimination against
background. Results suggest that both whole cells (Figure 2.9a-d) and organelles
(Figure 2.9e-h) can be segmented via TOBLERONE.

Further, GP images (Figure 2.10a-c) were calculated for each C. gattii data set. Line
profiles were extracted from the boundaries of the cell masks to approximate the
plasma membrane (Figure 2.10d-f) and the average GP was determined across all
pixels in each line (Figure 2.10g). This was repeated for control (untreated) cells, as
well as those treated with 20HOA or 7-ketocholesterol (Figure 2.10h). Between the
control and both treatment conditions, we determine a statistically significant
difference in the average GP value at the 1% significance level, suggesting that both

20HOA and 7-ketocholesterol reduce membrane order in C. gattii.
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Figure 2.8: Common failure cases for TOBLERONE. In each panel, a toy image is
given (left) alongside the output of TOBLERONE (right) with persistence 7 = 0.9.
Segmented components are given in red and (where applicable) orange. a Two C.
gattii cells, segmented manually and overlaid onto an image with no background. b
The image in a, overlaid with Gaussian noise with standard deviation of 50. ¢ The
image in a, with cells now in closer proximity of each other such that their boundaries
overlap. d The image in a, with lower image contrast and higher background signal.

All images are 256 by 256 pixels.

2.3.3 3D segmentation of simulated z-stacks with SBDTOBLERONE

As with planar TOBLERONE, a set of 100 z-stacks was simulated from cell masks
(see Materials and Methods for all data simulation methods). Spherical Gaussian
blur was simulated over each voxel with standard deviation o; = 1.2, and Gaussian
noise with standard deviation g, = 18. All mask voxel intensities were fixed at 0.5.
Each stack was segmented using 3D TOBLERONE, as well as 3D Simple
Segmentation and 3D Spot Segmentation?%*. An exemplar segmentation for each
algorithm is given in Figure 2.11. Sensitivity and specificity were calculated as above

(see Appendix), considering only voxels within an 11 by 11 by 11 grid (5 voxels in
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Figure 2.9: Results of segmentation algorithms on experimental data. a Image of a
HEK293 cell stained with di-4-ANEPPDHQ. b-d Masks of the HEK293 cell as identified
by TOBLERONE, Otsu thresholding and the Watershed algorithm, respectively. e An
image of several HEK293 cell nuclei stained with Nucblue. f-h Masks of each nucleus
as identified by TOBLERONE, Otsu thresholding and the Watershed method,

respectively.

each direction) of each active voxel comprising the ground-truth object boundaries.
Each simulation included a 256 by 256 pixel ROl with a depth of up to 50 frames. For
all stacks, runtime was less than 2 minutes on a single processor.

3DTOBLERONE achieved a mean sensitivity of 0.9362 and a mean specificity of
0.9549. The sensitivity of 3DTOBLERONE surpassed the sensitivity of both 3D Simple
Segmentation and 3D Spot Segmentation (0.2863 and 0.3248 respectively). The
specificity of 3D Simple Segmentation (0.9998) and 3D Spot Segmentation (0.9977)
exceeded the specificity of SDTOBLERONE. To quantify the impact of data quality on
3DTOBLERONE's performance, each of the 100 simulated images was overlaid with

varying degrees of Gaussian noise and blur (see Materials and Methods for
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Figure 2.10: TOBLERONE as a tool for identifying variations in membrane lipid order.
a-c GP images of C. gattii cells from the control group, those treated with 20HOA and
those treated with 7-ketocholesterol, respectively. Cells were stained with di-4-
ANEPPDHQ. Psuedocolour applied to reflect the difference in GP values across the
membrane. d-f Masks of the same cells, as found by TOBLERONE, overlaid onto the
grayscale images. Incomplete cells lying on the image periphery have been manually
excluded. g The GP line profile extracted from the boundary of a C. gattii cell. h Mean
GP value across all pixels comprising the membrane. Mean values were taken per
cell. Treatment conditions are as follows: untreated R265 cells (R265), R265 cells
treated with 20HOA (R265 20HOA) or R265 cells treated with 7-ketocholesterol
(R265 7-Ketosterol).

guantification). Figure 2.12 highlights the change in mean sensitivity and specificity

across all data for these data quality conditions. Results suggest that the sensitivity
and specificity of SDTOBLERONE generally deteriorate as ag; or g, increase. As with

2DTOBLERONE, segmentation sensitivity shows a greater response to changes in

noise, while specificity seems to be more sensitive to changes in blur.
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Figure 2.11: Exemplar cases of 3D segmentation. a A simulated double helix
structure. Branches between the two main backbone strands have a lower voxel
intensity than the strands themselves. b Results of 3D Simple Segmentation on helix
data. The entire structure is returned as one object. ¢ Results of 3D Spot Segmentation
on helix data. A significant portion of the object is no longer detected. d Results of 3D
TOBLERONE on helix data. The two main backbone strands and each branch
between are detected as separate components. Exemplar stacks were adapted from

Panconi et al?”’.

2.3.4 3DTOBLERONE for volumetric cell segmentation

Non-activated Jurkat T-cells were cultured and labelled with both Nuclear Mask
DeepRed and WGA-AlexaFluor 488 before fixation with 4% PFA. A z-stack was
recorded for each colour channel using a Zeiss LSM 900 confocal microscope in
confocal scan mode. This cell line typically exhibits a spherical morphology, with cells
floating separately in suspension (Figure 2.13a), making them a good candidate for
testing image segmentation algorithms. Compared to 3D Simple Segmentation
(Figure 2.13b) and 3D Spot Segmentation (Figure 2.13c), 3DTOBLERONE shows
appropriate discrimination against background, but may be sensitive to membrane

perturbations or blur at the cell periphery (Figure 2.13d). In this instance, we have
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Figure 2.12: Results of 3DTOBLERONE segmentation on simulated data sets.
Changes in mean sensitivity (a) and specificity (b) for all data sets are recorded against

the standard deviations of the Gaussian blur (g;) and Gaussian noise (g,) used.

extracted the distribution of cell volumes (Figure 2.13e) for all 31 cells identified.
Results suggest that the average volume of a Jurkat T-cell is 1961.6um?3,
corresponding to an average diameter of ~15.5um (assuming circularity), which is in

accordance with existing literature?82-284,
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Figure 2.13: Segmentation algorithms on experimental data. a 3D visualisation of
fluorescing Jurkat T-cells. b Results of 3D Simple Segmentation on cell data. ¢ Results
of 3D Spot Segmentation on cell data. d Results of 3D TOBLERONE on cell data. e
Histogram of cell volumes identified by 3D TOBLERONE, the mean volume of
1961.6um? is signified by a dashed line. f Histogram of mean voxel intensity identified
by 3D TOBLERONE.

2.3.5 Dynamic t-stack segmentation with tempTOBLERONE
Further to the analyses on volumetric simulations, we generated 100 t-stacks, with cell
masks moving between frames to simulate cell motility (see Materials and Methods

for all data simulation methods). Here, we quantify the sensitivity and specificity of
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Figure 2.14: Results of tempTOBLERONE segmentation on simulated data sets.
Changes in the mean sensitivity (a) and specificity (b) for all data sets are recorded
against the standard deviations of the Gaussian blur (g;) and Gaussian noise (g,)

used.

tempTOBLERONE under varying noise and blur (see Materials and Methods for
guantification). As before, we determine the sensitivity, specificity and number of
connected components returned for each data set. For t-stacks, an 11 by 11 by 3 pixel

grid was explored around each active ground-truth pixel. This ensured that each frame
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would only be compared to the previous and subsequent frames. All simulated data
sets, each including a 256 by 256 pixel ROI with up to 22 frames, took no longer than
2 minutes to segment on a single processor. The mean sensitivity and specificity
scores of the segmentations returned by tempTOBLERONE for all data quality
conditions are given in Figure 2.14. As above, tempTOBLERONE experiences a drop
in both sensitivity and specificity as either o; or g, are increased. Across all data
guality conditions, tempTOBLERONE achieved an average sensitivity of 0.8606 and

average specificity of 0.9749.

2.3.6 TIA for cell tracking and trajectory mapping

S. pombe, expressing BOP1-mCherry, was cultivated and genetically modified under
standard protocols, with the BOP1 gene tagged with mCherry through homologous
recombination?’, Cells were imaged in sealed growth chambers containing 2%
agarose YES medium, captured using a Zeiss Axiovert 200M microscope equipped
with an UltraView RS-3 confocal system, with image z-stacks obtained at 1-minute
intervals. Then, z-stack maximum projection images were processed using
FlJlI/Imaged. Images were separated into distinct channels to distinguish nuclei from
cell membranes and analysis was conducted on the underlying nuclear dye channel
(taken at 600-710nm wavelength light in accordance with mCherry emission spectrum)
to isolate nuclear envelopes from cell plasma membranes (Figure 2.15a-b) and
promote clearer segmentation. Changes in connectivity, here brought about by nuclear
division, are tracked over time (Figure 2.15c). In particular, an additional component
was generated between the 12" and 13" minute of acquisition, suggesting that
progression from telophase to interphase in the nuclear division of S. pombe can occur

in under a minute, in accordance with existing literature?®®. Furthermore, we apply
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Figure 2.15: Applications of tempTOBLERONE to cell data. Time series data of S.
pombe cells (a) and nuclei (b) undergoing nuclear division. ¢ Spatiotemporal
segmentation of nuclei undergoing division. tempTOBLERONE was performed on
stacks in b, with masks overlaid onto images in a. A nuclear division is recorded at
13min. d Snapshot of GFP-GOWT1 mouse stem cell data. e Pre-processing:
brightness of each pixel is doubled to increase image contrast. f Segmentation results
from temporal TOBLERONE. g Track lines derived from applying Trackmate to

segmentation.

Page | 100



tempTOBLERONE to GFP-GOWT1 mouse stem cell data (Figure 2.15d), acquired
under a Leica TCS SP5 with a Plan-Apochromat 63x/1.4 (oil) objective lens, as taken
from the Cell Tracking Challenge?7%286, Following pre-processing (Figure 2.15e),
results show segmentation with clear background separation (Figure 2.15f). By
inputting cell masks directly into track analysis software, such as Trackmate, we can
identify cell trajectories (Figure 2.159)%%6276. This suggests that topological video

analysis may be a viable avenue for tracking cell motility and mitotic processes.

2.4 Discussion

This chapter introduces TOBLERONE, an image segmentation algorithm which
makes use of persistent homology to construct connected components from pixel
intensity variations. This allowed for generic image segmentation and object
guantification in 2D spatial, 3D volumetric and 2D + time data. Each algorithm was
performed on a series of simulated data sets to quantitatively compare segmentation
sensitivity and specificity against pre-existing classical methods. Then, TOBLERONE
was applied to conventional FM data sets, comprising a range of cell and organelle
geometries. This included C. gattii, S. Pombe, Jurkat T cells and GFP-GOWT1 mouse

stem cells, as well as HEK293 cells and their nuclei.

2.4.1 Summary of results

2D TOBLERONE achieved a mean sensitivity of 0.9412 and a mean specificity of
0.8762. Notably, Otsu thresholding showed a sensitivity of 0.8726 and specificity of
0.9306, while the Watershed algorithm achieved a sensitivity of 0.9964 and specificity
of 0.4322. Therefore, 2D TOBLERONE may be beneficial to users who prioritise
segmentation sensitivity without largely compromising specificity. 3DTOBLERONE

achieved a mean sensitivity of 0.9362 and a mean specificity of 0.9549, which
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surpassed the sensitivity of 3D Simple Segmentation and 3D Spot Segmentation
(0.2863 and 0.3248) but did not surpass the specificity (0.9998 and 0.9977). However,
this may arise from a lack of discrimination against the background. Notably, the
difference between sensitivity and specificity is lower for 3SDTOBLERONE than the
other algorithms considered here, which may suggest that 3DTOBLERONE provides
a better trade-off between the segmentation statistics. Across all data sets,
tempTOBLERONE achieved an average sensitivity of 0.8606 and average specificity
of 0.9749. For all variants, this implies that most pixels belonging to an object were
correctly identified and most pixels belonging to the background were correctly
ignored, respectively. Quantification of algorithmic performance under imposed
Gaussian blur (with standard deviation o0;) and Gaussian noise (with standard
deviation og,) suggests that all TOBLERONE variants yield a small decrement in both
sensitivity and specificity as either o; or o, are increased. However, sensitivity
experiences a greater decrement with changes in noise, while specificity seems to be
more sensitive to changes in blur. This may be because noisy pixels within the cell
body may not be detected by the algorithm, while increased Gaussian blur raises the
intensity of background pixels at the cell periphery (and makes them more likely to be
aggregated into the cell component).

In experimental HEK293 data, TOBLERONE showed invariance to cell geometry and
suitable background-foreground separation. Performance remains consistent across
both cell plasma membranes and nuclei, suggesting that planar TIA may be a viable
method for both cell and organelle segmentation. By extracting boundary line profiles
from cell plasma membranes of C. gatti, we produce quantitative analysis of
membrane order under varied cell culture conditions. In particular, confocal imaging

with the polarity-sensitive dye di-4-ANEPPDHQ reveals a decrease in GP value for C.
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gattii cells supplemented with either 20HOA or 7-ketocholesterol, compared to control.
Applications to volumetric experimental data of Jurkat T cells suggests an average
diameter of approximately ~15.5um, in line with existing literature?®2-284, Concurrently,
in S. pombe t-stack data, we observe progression in nuclear division from telophase
to interphase in under a minute, in line with existing reports?®°. These statistics act as
a proof-of-principle for further use of TOBLERONE in FM data segmentation and

highlight the qualitative benefits of TIA for cell segmentation.

2.4.2 Considerations for the use of TOBLERONE in cell segmentation

TOBLERONE permits image segmentation without parameterisation of geometric
object properties and, in the case of supervised machine learning, the requirement of
training data sets. The persistence parameter quantifies the difference between the
minimum and maximum intensities of pixels within any component. However, if the
background intensity is greater than the minimum object intensity, TOBLERONE is
liable to overestimate object size. In this case, a lower persistence threshold may be
required, but this may lead to over-segmentation — in which single objects are
segmented into several fragments. Further, since each connected component is
considered separately, a new entry must be generated in the data structure for every
component identified. When appending this new entry to the list, the R programming
language will copy the entire list to a new location in memory to accommodate the new
element?®’. This can slow data processing, leading to longer execution times and
increased memory usage?®’. Deterioration of signal within the cell by noise may also
lead to sparser segmentation. TOBLERONE may aggregate multiple cells into one
component in image data which presents many cells in close proximity. To avoid this

drawback, there needs to be at least a one-pixel gap of “background” (i.e. pixels with
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intensity more than t different from brightest cell pixel intensity) between all pixels in
one cell and all pixels in any other cell.

Video segmentation may require separate algorithms for the purposes of binarisation,
segmentation and tracking, which themselves depends on user preferences and
parameterisation. Traditional tracking algorithms, such as nearest-neighbour
approach, suffice for the purposes of establishing temporal connectivity, but may not
handle object appearance and disappearance?®. Linear assignment problem tracking
links objects across frames by solving a cost matrix that minimises the overall distance
between detected positions?8. This permits object appearance and disappearance,
but may not explicitly track lineage without adaptation?®8. tempTOBLERONE traces
the behaviour of dynamic components through changes in connectivity and accounts
for the appearance, disappearance, and lineage of components. However, it should
be noted that tempTOBLERONE is unsuitable for t-stacks in which each cell’s position
does not overlap with its position in the following frame. This depends largely on the
temporal resolution of the microscope, the imaging setup (drift), and cell motility. In
particular, if the total displacement of a cell across any two consecutive frames

exceeds the cell length, tempTOBLERONE will not correctly track the cell.

2.4.3 Concluding remarks

In summary, this work presents a novel application of TIA for segmenting fluorescence
microscopy data which is, in accordance with literature, the first of its kind.
TOBLERONE presents a complementary approach to image analysis, which
circumvents the constraints of geometric or machine-learning based image
segmentation. As discussed, images from conventional microscopy cannot resolve

below the diffraction limit of light, which means we cannot fully distinguish nanoscale
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lipid compartmentalisation or molecular interactions. However, SMLM, can be used to
determine GP values at individual molecule localisations with nanoscale precision. As
above, topological data analysis tools may prove beneficial in segmentation and
guantification of this alternate coordinate-based data type. However, in order to
validate these analytic techniques, ample simulated data is required. In the next
chapter, we introduce a computational framework for simulating protein aggregation
dynamics which can recapitulate static spatial and marked point patterns from

experimental data.
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Chapter 3: In silico protein aggregation dynamics

As discussed in Chapter 2, a TDA framework can be used for feature extraction in
conventional FM images. The output of SMLM may also take the form of a marked
data type, with individual molecules localised across a continuous range of spatial
coordinates. Therefore, topological feature extraction may also be applicable to SMLM
data. However, to determine whether topological methodologies generalise to SMLM
data, it is necessary to validate against ground truth data with a range of point pattern
geometries. This data could arise from a mathematical model which approximates
experimental data. Furthermore, the dynamic reorganisation of some transmembrane
proteins into nanoscale clusters is hypothesised to regulate downstream signalling. As
such, this model could serve a dual purpose: to simulate SMLM data which represents
the geometric properties of experimental data, and to predict protein aggregate
behaviour in dynamic systems. The following chapter concerns the development of a
computational framework (termed ASMODEUS) for modelling protein aggregation
dynamics on the plasma membrane. ASMODEUS is validated on simulated data
presenting a range of cluster properties. We demonstrate how the model could be
used to recapitulate the varied point pattern geometries arising from SMLM. Further,
we highlight how ASMODEUS can be used to model dynamic receptor aggregation in
both simulated data and in experimentally-derived DNA-PAINT localisation data for

the model protein complex TCR.
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3.1 Introduction

Membrane protein dynamics are highly organised and play a role in regulating cellular
signalling processes!30195.289 A range of biophysical processes, with interacting and

competing effects, are hypothesised to govern protein aggregation dynamics (PAD) at
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the plasma membrane?®31.197.242 " These biophysical phenomena culminate in the
restriction of free molecular diffusion and typically promote non-random re-
organisation of proteins into spatial clusters®. It is hypothesised that these clusters
convert analogue extracellular signals into digital intracellular signals, in a process
known as digitisation, and that this conversion increases signalling fidelity'®. As such,
the formation of such nanodomains is a key membrane property affecting cellular
behaviour and signalling pathway functionality?29-2%2,

For example, nanoscale TCR clustering is largely responsible for initiating T cell early
activation and the development of the immune response?®3, When contact occurs
between a T cell and an antigen presenting cell, a close-contact zone forms, TCRs
are engaged, and the local organisation of the receptors and their associated
membrane proteins shifts. For instance, the glycoprotein CD3( organises into
nanoclusters during assembly of the TCR-CD3 complex232%4 and the formation of
this complex is the primary determinant of T cell activation and the immune
response?®. There is ongoing research into whether therapeutic mediators which
induce or disrupt TCR aggregation could be used in immunotherapy or the treatment
of autoimmune disorders?3:296:297,

Accurate characterisation of nanoscale clustering is essential for interpreting the
biological systems which regulate cell behaviour. Recently, analyses tailored to protein
maps derived from super-resolution modalities have seen widespread advancement
and implementation. As such, there is a requirement for a simulator that can model
protein aggregation dynamics, with nanoscale spatial resolution, corresponding to the
data type of this class of microscope. This model could present a dual purpose: to
generate static distributions which recapitulate SMLM data, and to model emergent

protein aggregate behaviour in dynamic systems. However, the presence of multiple
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interacting biophysical processes yields increasing computational complexity, and a
practical simulator would recapitulate experimentally-derived protein distributions
without requiring a detailed knowledge of the myriad of biophysical influences.
Research into the mechanistic properties of biophysical systems has found increasing
success in the development of computational models of cellular signalling and
metabolic control>®®. Advanced simulation techniques (such as SuReSim?%,
FluoSim3%, SMeagol®®!, TestSTORM?3%2, ThunderSTORM"® LocMoFit'%” and
SMIS303) generate localisations by simulating the photophysical properties of
fluorescent molecules. Traditionally, these models assume the spatial distribution of
points and then recapitulate them from an analogous probability distribution, typically
Gaussian, with clusters and structures placed at defined intervals?12214.243 However,
this imposes strict geometric properties on simulation, whereas molecular distributions
observed through bio-imaging could express highly varied shapes and densities304395,
Ripley’s K function, which measures point density within concentric circles, can be
used to compare cluster properties across a range of spatial scales and estimate
ensemble cluster parameters®°®, State-of-the-art simulators have used the linearised,
localised Ripley’s function, L, (a scalar value assigned to each localisation), to
measure cluster affinity and influence PAD in ABMs?43%7 In this work, we expand
upon this model, incorporating the full range of the global Ripley’s K-function to guide
system evolution.

Here, we introduce Agent-based Spatiotemporal Molecular Distributions Evolving
Under Simulation (ASMODEUS), an agent-based model (ABM) designed for
simulating PAD. ASMODEUS is invariant of input data geometry and relies only on a
measure of local density. This permits emulation of experimentally-derived protein

maps without imposing restrictions on data structure. By learning topological features
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directly from data, we circumvent simplifying assumptions and generate model
simulations which better capture the distribution, density and dynamics of protein
aggregates. Within this framework, we include a method for introducing nucleation
sites, which aggregate a fixed number of nearby agents and can represent cross-
linking or forcible aggregation of proteins (induced, for instance, by therapeutic
strategies). We apply the model to investigating the role of the CD3( distribution,
validated against experimental data acquired from DNA-PAINT microscopy in
activated and non-activated T cells. We deduce the receptor cross-linking conditions
required to maximise the probability of sustained CD3( cluster formation as a proxy
for T cell activation. Further, we demonstrate a proof-of-concept for ABMs of multiple
interacting molecular species — which, to the best of our knowledge, is the first of its

kind.

3.2 Materials and methods

Jurkat T cell culture

Jurkat E6.1 T cells were cultured in R10 medium (Roswell Park Memorial Institute
[RPMI] 1640 medium supplemented with 10% FBS, 1mM penicillin and streptomycin
[PenStrep], 2mM L-glutamine and 1mM sodium pyruvate [all from Sigma-Aldrich,

Madison, WI]) at 37°C in a 5% CO: incubator.

Bilayer preparation

0.4mM liposome solution with a lipid molar ratio of 97.4% DOPC (Avanti Polar Lipids,
850375C), 2% DGS-NTA(Ni) (Avanti Polar Lipids, 790404C), 0.1% Biotinyl-Cap-PE
(Avanti Polar Lipids, 870273C) and 0.5% PEG5,000-PE (Merck, Kenilworth, NJ, USA,

880220P-200MG) was produced by vesicle extrusion through a 100nm pore-size
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polycarbonate filter. Glass coverslips were cleaned via sonication with 2% Hellmanex
detergent for 30 minutes at 37kHz, 70% power, before rinsing with deionised water.
Coverslips were then washed with 70% ethanol and dried under N2. Dry coverslips
were plasma cleaned immediately prior to use (Diener Zepto plasma cleaner, 40kHz
generator, 90s at 70W power). Ibidi sticky chamber slides (Ibidi Sticky-Slide VI 0.4,
80608) were attached to the cleaned coverslip and 0.4mM liposome solution was
added to each well for 20 minutes, then washed three times with lipid buffer (0.1%
Bovine Serum Albumin (BSA), 2mM MgClz and 1mM CacClz in PBS). 0.1mM of NiCl2
in 2% BSA in PBS was added for 20 minutes to recharge NTA groups and block
surface prior to protein addition. Surfaces were subsequently washed three times with
lipid buffer. Disruption of the lipid bilayer was avoided by maintaining 50uL of lipid
buffer in wells. For functionalisation of the bilayer with biotinylated proteins, 12.5ug/mL
of streptavidin (Cambridge Bioscience RayBiotech, 228-11469-2) in lipid buffer was
added for 20 minutes and then washed three times with lipid buffer. The streptavidin
coated bilayer was functionalised with addition of 3.4pg/mL biotinylated aCD3
(Biolegend, 317320), 3.4ug/mL biotinylated aCD28 (Biolegend, 302904) and
200ng/mL His-tagged ICAM-1 (Thermo Fisher Scientific, A42524) in lipid buffer for
activated conditions, or 200ng/mL His-tagged ICAM-1 alone in lipid buffer for non-
activated conditions. After 20 minutes, the bilayer was washed three times with lipid

buffer to remove unbound proteins.

DNA-Fab conjugation
A malemide-PEG2-succinimidyl ester coupling reaction was used for DNA labelling of
Fab Fragment Donkey Anti-Rabbit IgG (Jackson ImmunoResearch, 711-007-003).

Thiolated-DNA  5’-Thiol-ACACACACACACACACACA-3* (Eurofins  Genomics,
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Ebersberg, Germany) (13pL, 1mM) was reduced for 2h by incubating with DTT
solution (30uL, 250mM) (Thermo Fisher Scientific, Waltham, MA, USA, A39255) at
room temperature on a shaker in darkness. Maleimide-PEG2-succinimidyl ester
crosslinker solution (1pL, 23.5mM) (Sigma-Aldrich, St. Louis, MO, USA) was
incubated with anti-rabbit Fab fragment (50uL, 26uM) for 90 min at 4°C on a shaker in
darkness. Excess DTT and crosslinker were removed under spin filtration by Microspin
lllustra G-25 columns (GE Health-care, Chicago, IL, USA) and Zeba spin desalting
columns (7K MWCO, Thermo Fisher Scientific), respectively. Resultant products were
mixed and incubated overnight at 4°C on a shaker in darkness. Residual unbound
DNA was removed by Amicon spin filtration (Merck) and DNA-Fab concentration was
measured using a NanoDrop One spectrophotometer (Thermo Fisher Scientific).
Quantification of DNA-Fab coupling ratio through spectrophotometric analysis

revealed a ratio of ~1.

T cell activation on bilayer

Wells containing functionalised bilayers were washed with sterile 1X PBS then
warmed at 37°C for 15 minutes prior to adding Jurkat T cells. Cells were added to the
bilayer at a density of 108 cells/chamber and left to incubate for 15 minutes at 37°C.
Cell fixation was achieved using 4% PFA in PBS warmed to 37°C, then leaving cells
for 30 minutes at room temperature before washing with 60mM Glycine in PBS. Cells
were permeabilized with Triton X-100 (VWR, 28817.295) at 0.1% for 5 minutes at room
temperature and washed with 60mM Glycine in PBS before immunostaining. Cells

were then blocked with 5% BSA in PBS for 1h at room temperature.
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CD3{ immunostaining

Cell staining was performed with a primary antibody against CD3¢ (Abcam, ab40804),
achieved with 5% BSA in PBS at a concentration of 1.7ug/mL for 1h at 37°C, then
washing with PBS. Secondary staining was performed with the DNA conjugated
Rabbit Fab in 5% BSA in PBS at a concentration of 4pug/mL, this was left for 1h at
room temperature, and washed with PBS. For drift correction, 90nm gold nanopatrticles
(Cytodiagnostics, G-90-100) were added to each well for 10 minutes then washed with
PBS. Imager DNA 5’-TGTGTGT-Cy3B-3’ (Eurofins Genomics) was added at 0.5nM in

a solution of 500mM NaCl, 1ImM EDTA in 1X PBS, immediately prior to imaging.

DNA-PAINT imaging and image reconstruction

Imaging of Jurkat E6.1 T cells was undertaken on a custom-built TIRF microscope,
based on a Nikon Eclipse Ti-2 microscope (Nikon Instruments, Tokyo, Japan)
equipped with a 100x 1.49 NA oil immersion TIRF objective (Apo TIRF) and a Perfect
Focus System. A 560nm excitation laser (MPB Communications, 1 W) was used with
a polarised and quarter lambda waveplate to ensure circular polarisation. The
excitation beam was passed through a clean-up filter (FF01-390/482/563/640-25,
Semrock, Rochester, NY, USA) and coupled into the objective via a beam splitter
(Di03-R405/488/561/635-11-25%36, Semrock). Fluorescence light was spectrally
fillered by an emission filter (FF01-446/523/600/677-25, Semrock), imaged with an
SCMOS camera (ORCA-Flash4.0 V3 Digital, Hamamatsu, Hamamatsu City, Japan)
and subject to 2 x 2 binning, yielding a final pixel size of 130nm in the focal plane.
10000 frames were taken per acquisition with 100ms integration time and a laser
power density of 1.6kW/cm? over the sample. Post-processing of raw fluorescence

data was performed in Picasso (v. 0.6.4) and MATLAB (R2022a)3%. Drift correction
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was undertaken via redundant cross-correlation using 90nm gold nanoparticles

(Cytodiagnostics, G-90-100) as fiducials.

CD3(¢ post-processing and cluster analysis

After filtering and drift-correction, super-resolved Jurkat E6.1 T cell images were
analysed with DBSCAN cluster analysis under the Picasso Render module. DBSCAN
parameters were set as minPts = 5 and € = 13nm. The € parameter was taken to be
the localisation precision of the DNA-PAINT images, determined via nearest-
neighbour based analysis, and commensurate with author suggestions. The minPts
parameter was selected for 5 localisations, in accordance with binding kinetics of the
imager—docking pair, the DNA imager concentration, the number of recorded frames,

and statistical considerations for the distribution of single-molecule localisations.

gPAINT analysis

A custom-written MATLAB code was used to analyse the fluorescence time series of
each detected cluster and estimate the per-cluster number of CD3{ molecules via
gPAINT analysis, as described in literature%823, Frame numbers of each localisation
within the same cluster, as determined by DBSCAN, were used to recover the dark
state times per cluster —that is, the continuous amount of time in which single molecule
localisations were absent. All per-cluster dark times were pooled to obtain a
normalised cumulative histogram, which was then fitted to the exponential function: 1
— exp(t/td) to estimate the per-cluster dark time, 1d. The gPAINT index of each cluster
(i) was taken as the inverse of the corresponding dark time. The gPAINT indices of
clusters with a maximum point distance of 50nm were plotted as a cumulative

histogram and fitted via a multi-peak Gaussian. Peaks were found with a frequency of
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0.0075Hz. This corresponds to the gPAINT index of a cluster of localisations
representing one binding site, that is, CD3¢ monomers (qi1). The number of proteins
within a cluster of localisations was defined by the ratio between qil and the
corresponding gPAINT index (qil/qi). Protein positions were plotted by recovering a
likely distribution of CD3( receptors in each cluster via k-means clustering, where Kk is

equivalent to the ratio between qil and qi.

Point cloud simulation

Spatial point patterns were simulated by generating a fixed number of circular clusters,
ng, with pre-determined cluster radius, 1, and number of points per cluster, p;, and
then overlaying outliers subject to a given background-to-cluster ratio, b,. Central
cluster coordinates were randomly selected such that all clusters would be contained
within the 3um x 3um ROI. Then, p; points were uniformly generated around each
centre at distances of r,.X?2, where X~Unif (0,1). The choice of parameter values

used in point pattern simulations (unless otherwise specified) is given in Table 3.1.

Parameter | Function Values
ng Number of clusters 10
T Cluster radius. 10nm, 30nm, 50nm
i Number of points per cluster. | 5, 15, 30
b, Background to cluster ratio. | 0, 0.33, 0.66

Table 3.1: Parameters used to simulate target distributions.
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Figure 3.1: Simulating PAD with ASMODEUS. a Example target point cloud. b
Calculating density for each point. ¢ Formulation of Ripley’s K function and calculation
of ratiometric error. Error is defined between 0 and 1 for each discrete radial value,
with the maximum value of 1 assigned below the CSR baseline. d Step size is bound
between minimum and maximum step size parameters (D,,;, and D,,,,) and
increases quadratically with average error. e Zoomed region centred around the
orange point marked in b. From one frame to the next, the point is offset in the direction

of angle 6, where 8 ~ Unif (0, 2m) is chosen randomly, with step size calculated from

d. This process is repeated for each point at each time frame.

Simulating PAD through agent-based modelling

The ABM is defined under the assumption that proteins are represented by
infinitesimal points, which move laterally across the plasma membrane, approximated
by a 2D surface. In order to carry out the simulation, a target point pattern must first
be provided — this may be taken from protein localisation data, as output by SMLM.
Simulation parameters must also be given: these include a maximum permissible step

size, D,qx, @ minimum permissible step size, D,,;,, an ROI size, and a time frame
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over which to run the simulation (for guidance on parameter selection, see below).
Protein motility is stochastic, with each agent moving in a random direction subject to
a deterministic step size across each time frame. For each point in the cloud, the error
between the localised K function and global target K function (Figure 3.1a-c) is
determined, and then used to calculate the step size (for error and step size formulas,
see Appendix). Each point is transposed in a random direction along a path of length
equal to its step size (Figure 3.1d-e). If any point is transposed out of the bounds of
the ROI, it will be reflected back at the angle of incidence with distance equal to the
length of the path not yet traversed. This process is iterated over all time frames. See
Figure 7.3 (Appendix) for conceptual diagram of ASMODEUS and Section 7.2.4 for

algorithm pseudocode.

Parameter selection

The molecular counts, ROI size and K function are automatically determined from the
input point pattern. The minimum and maximum molecular velocities are proportional
to the expected diffusion coefficient of the protein embedded in the plasma membrane,
which can be derived experimentally or mathematically3%°. Average diffusivity can be
guantified from imaging methods such as single particle tracking or fluorescence

correlation spectroscopy'®. The expected step size Ax taken in time At can be

estimated through the equation Ax = 2(DAt)'/?, where D is the diffusion

coefficient319,

Generalised PAD simulations
The ROI size was fixed at 2um x 2um, in accordance with a standard ROI size for

super-resolution microscopy. A diffusion coefficient of D =~ 0.1um?/s was selected —
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this represents the diffusion coefficient of a T cell receptor (0.082um?/s, rounded to
the nearest 101), taken as a model molecular species’®2%. Note that this framework
could be applied to any protein with known diffusivity coefficient and TCR serves only
as an exemplar here. This equated to a maximum step size of Ax ~ 63nm per each
10ms time frame, and so D,,,, = 63nm was selected. The average error across all
points was recorded at each frame. The convergence time was defined as the first
time frame in which the variance in the error of all future frames fell below 0.05. When
applicable, DBSCAN cluster analysis was performed to extract cluster descriptors, for
comparison with the original target parameters'®®. Changes in the point pattern
distribution and global K function were tracked for all simulations (Figure 3.2). First,
100 simulations were run over 100000 frames and the maximum time taken to achieve
convergence was measured at 7529 frames. As such, the maximum frame number for
all future simulations was taken at double this value, rounded to the nearest 1000, to
increase the probability of convergence. Therefore, unless otherwise specified, each
simulation was run over 15000 frames, with each frame representing 10ms of real
time, yielding a total simulated time of 2.5 minutes. All simulations converged within

the allocated time.

Evaluating algorithmic performance

The error (see Appendix for formulas) serves as a measure of difference between the
target and true Ripley’s function, but does not necessarily determine whether the
algorithm has recapitulated the cluster properties present in the target data. As such,
we also record the difference in three cluster properties (cluster radius, number of

clusters, and points per cluster) between target and simulated data at each discrete
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Figure 3.2: Example simulation. a Initial distribution starting at CSR gradually
converges to a clustered distribution over 2.5 minutes. b Corresponding Ripley’s K
function of simulation (magenta) gradually converges to target K function (orange).
Error (blue) decreases with time.

time frame. These properties are averaged over all simulations, then quantified as rair,

ngit and pair, respectively.

Modelling receptor nucleation

Multiple target distributions may be provided simultaneously — here, the error of each
point is taken to be the minimum of the errors between all target functions. Given a
cross-link radius rc and number of proteins to recruit nc, the following process is
repeated for each nucleation site: select the densest point (that is, the point with most
neighbours in a radius rc) which has not yet been visited by the algorithm, this is

chosen to be the central cross-linked protein. Then, determine the nc — 1 closest
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Ripley’s K over time. Convergence is defined at the first point where there is less than

5% variability in the error (purple). Convergence of d cluster radius, e number of

clusters and f points per cluster over time. Ground truth target is given in orange for

all plots.

neighbours and move each to within an renm radius of the central protein. Record each

point used in the above step and exclude them from the creation of any further

nucleation sites.
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Figure 3.4: Simulation outputs under varying target cluster radii (r) and points per
cluster (py). For each simulation, 10 clusters were simulated with a background to

cluster ratio of 0.

Simulating multiple populations

Each simulation can incorporate an arbitrary number of distinct molecular species
within the same ROI. Species may be simulated separately, by giving each population
a separate target and ignoring species outside their own, or co-clustered with other
populations, by giving a subset of the populations the same target and only

considering the density of species within that subset. Interactions between populations
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are recorded and tracked across consecutive frames. Here, we consider a three-
protein, four-population model comprising activators, inhibitors and agents, which may
be active or inactive (inhibited), depending on interactions with the first two molecular
species. In particular, agents become active when within 5nm of an activator and
inhibited when within 5nm of an inhibitor. All agents are initialised as inactive and the
percentage of active agents is recorded over all time frames. In this context, activators
may co-cluster with agents, or inhibitors may co-cluster with agents, but both do not
occur simultaneously. By outputting the final point pattern of any simulation into

another, any of the above regimes can be concatenated.

3.3 Results

3.3.1 Agent-based simulations conserve cluster properties

To validate model efficiency, a series of simulated point clouds, with varying cluster
properties, were input to ASMODEUS. For each simulation, the change in error was
recorded over time (Figure 3.3c). Further, the number or clusters, average cluster
radius, and points per cluster, as defined by input parameters, were tracked (Figure
3.3d-f). All ABM simulations were initiated at CSR, with an error of 1.0 at time point O
(see Appendix). The average error over all simulations reduced to a value of 0.163 at
convergence, representing a 6-fold reduction, and all simulations reached
convergence within the model runtime of 2.5 minutes. Furthermore, both the number
of clusters and points per cluster fell to within 10% of their input target values (relative
to peak deviation) at convergence, while the slope of the cluster radius depicts closer
radii at greater runtime. Example simulations show that ASMODEUS can achieve a

range of cluster radii and densities (Figure 3.4). However, caution should be taken for
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Figure 3.5: The impact of increasing background to cluster ratio on simulation output.
For each simulation, the following panels are shown: (i) the target distribution, (ii) static
plot of the simulation at convergence and (iii) difference between target (orange) and
global (magenta) K function. Corresponding background to cluster ratios for a-c are

0.0, 0.33 and 0.66, respectively. In this case, the simulator favours local cluster density

over distribution of outliers.

point patterns of particularly high background (Figure 3.5), as the model favours local
point density.

It should be noted that variance or inconsistency among cluster properties in the target
distribution, particularly regarding cluster radius and density, can produce undesirable

simulation outputs which deviate from the target cluster properties. Figure 3.6 depicts
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Figure 3.6: Exemplar failure cases for ASMODEUS. a Mixed cluster sizes. A
distribution of 5 clusters of radius 25nm overlaid with 5 clusters of radius 50nm. All
clusters contain 30 points. Background-to-cluster ratio is set to 0.1. b Clusters
identified from the point cloud in a using DBSCAN cluster analysis with parameters
€ = 50nm and minPts = 25. ¢ Global Ripley’s K function (magenta) versus the target
function (orange). d The final point cloud output by the simulation. e Histogram of
cluster radii (half-max of all intra-cluster distances) from all clusters given in b. Cluster
radii appear to aggregate around two local maxima at 25nm and 50nm, respectively.
f Histogram of cluster radii from all clusters given in d. The distribution of radii is
skewed towards larger cluster sizes and does not seem to show clear partitioning. All
binsizes: 8nm. g Mixed cluster sizes with high density. A cluster with radius 50nm
adjacent to a cluster with radius 100nm. Both clusters contain 200 points. Background-
to-cluster ratio is set to 0.1. h Clusters identified from the point cloud in g using

DBSCAN cluster analysis with parameters € = 100nm and minPts = 100. i Global
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Ripley’s K function (magenta) versus the target function (orange). j The final point
cloud output by the simulation. ASMODEUS is unable to aggregate 200 points into a
relatively small region of space (circles of ~50nm and ~100nm) within the simulation

runtime, and so the distribution appears CSR.

some exemplar failure cases, the first of which is for a target distribution with mixed
cluster sizes (Figure 3.6a-b) — half of which are 25nm, and the remainder 50nm. In
spite of the global Ripley’s K function appearing to converge to the target K function
(Figure 3.6c¢), the output distribution presents cluster radii which do not appear to be
present in the target distribution. A histogram of recorded cluster radii (taken here as
half the maximum distance between all points in the same cluster) show that the target
distribution presents clusters with radii which seem to aggregate around two local
maxima, corresponding to 25nm and 50nm respectively (Figure 3.6e). However, the
histogram of simulated cluster radii (Figure 3.6f) seems to suggest a skew towards
larger cluster sizes and does not show the same partitioning. The second example
(Figure 3.6g-j) presents relatively dense clusters (200 points per cluster in two
clusters of radius 50nm and 100nm). Here, ASMODEUS is unable to aggregate
enough points within the expected cluster radii by the end of simulation runtime, and

so the output distribution remains CSR.

3.3.2 Modelling receptor nucleation

Single-population simulations may be subjected to multiple target functions
simultaneously, which permits convergence towards one of several possible
distributions. Distributions may be perturbed by a sudden forced aggregation of points
into nucleation sites (see Materials and Methods). For PAD simulations, the case of

simultaneously targeting one CSR and one clustered target (Figure 3.7a-b) is of
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Figure 3.7: Modelling receptor nucleation. a ASMODEUS can map a distribution to
multiple targets simultaneously. We consider a single population with two possible
target distributions, one clustered (magenta) and one CSR (orange). b Multiple target
functions are provided, and the target with lowest error is selected. ¢ Formation of
cross-linked cluster (nucleation site) in simulated data. d Global clustering induced as
a result of cross-linking. e Cluster maximiser for the whole system (N) versus the
number of points per cluster in the target distribution (p). Line of best fit is given in
orange. f Formation of multiple nucleation sites in simulated data. g Global clustering
induced as a result of nucleation. h Estimated probability of converging to clusters
versus number of nucleation sites and number of recruited proteins. Simulated target

distribution is defined by 10 clusters each containing 20 points.
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particular interest, as a shift in receptor organisation to form nanoclusters can bring
about signal digitisation!#® and dictate several important biological processes, such as
formation of the immunological synapse?°. We tested the impact of nucleation on
system convergence by first inducing a single cross-linked cluster of proteins to each
simulation (Figure 3.7c-d). After 1 second of simulation time, we randomly designate
one agent to be a cross-linker and forcibly aggregate proteins into a cluster. Target
distributions were generated such that each cluster contained a given number of
points, p. We define the cluster maximiser, N, as the number of cross-linked proteins
required to maximise the probability of the simulation converging to a clustered
distribution, as opposed to CSR. We repeat 10 simulations for each condition and
estimate the probability as the proportion of these simulations which converged to
clusters.

Results suggest an approximately linear relationship between p and N (Figure 3.7e),
suggesting that one cross-linker may be sufficient to induce clustering within the ROI
and that the likelihood of global clustering increases as the number of proteins
recruited increases. By incorporating several nucleation sites (Figure 3.7f-g), we can
further increase the probability of convergence. Here, we track convergence against
both the number of nucleation sites and proteins recruited on a target distribution
defined by 10 clusters of 20 points (Figure 3.7h). We repeat these experiments for
target distributions with varied cluster parameters (Figure 3.8), and find that the
probability of convergence increases as protein recruitment increases, even at a

relatively low number of nucleation sites.
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Figure 3.8: Estimated probabilities of converging to clusters under target distributions
with a 4 clusters, b 6 clusters, ¢ 8 clusters and d 10 clusters containing (i) 5, (ii) 10,
(i) 20 or (iv) 30 points per cluster.

3.3.3 Simulating CD3( distributions in pre- and post-activation T cells
To model nucleation of CD3(, we applied our methodology to point pattern data
acquired from DNA-PAINT microscopy. Jurkat E6.1 T cells were fixed over

functionalised lipid bilayers and immunostained with a primary antibody against CD3C.
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Figure 3.9: Overview of DNA-PAINT imaging and gPAINT analysis. a DNA-PAINT
representative image of CD3¢ molecules in an activated Jurkat T cell. The white box
indicates a zoom-in region to highlight subsequent cluster analysis and protein map
conversion. Scale bar: 5um b Zoom view of the selected ROI in previous panel. Scale
bar: 500nm. ¢ DBSCAN cluster analysis and protein map output for selected ROI.
Each colour represents a different cluster selected by DBSCAN. Black dots on top of
each cluster represent the position of CD3{ monomers using k-means clustering,
where k is equal to gi1/qgi. d Overview of qPAINT analysis pipeline. T-cell receptors are
stained with a primary antibody against CD3 and then with a DNA conjugated rabbit
Fab as a secondary staining. The Cy3B-labeled imager strands bond transiently from
solution to the complementary docking strands attached to the Fab. Lower panel
shows schematic representation of the number of localisations and intensity traces for
example clusters of 1, 2 and 3 CD3 molecules. These traces show characteristic
fluorescence on- and off-times (rd) depending on the amount of docking strands in
each cluster. The frequency of the imagers binding to their docking strand scales
linearly with the number of docking strands, and this is the principle of gPAINT. When
the number of monomers in the cluster increases, the dark time decreases. e

Histogram of internal calibration gPAINT indexes per cluster pooled from all data
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samples fit with a multi-Gaussian function. This was achieved by selecting very small
clusters in the biological data set. This behaviour is consistent with the presence of 1,
2, or 3 DNA docking strand units within a cluster of localisations. Dark line represents
the 3-Gaussian fit exhibiting peaks at multiples of gPAINT index of 0.0075 Hz. Each
dash line represents a Gaussian centered at 1, 2 and 3 times the qPAINT index (see
Materials and Methods).

Secondary staining was performed immediately after with DNA conjugated Rabbit Fab
and imaged on a custom-built microscope (Figure 3.9). Image reconstruction, post-
processing and quantitative analyses were undertaken in Picasso and MATLAB (see
Materials and Methods). ROIs for non-activated (Figure 3.10a) and activated
(Figure 3.10b) conditions were segmented and the target K functions were averaged
across each condition (Figure 3.10c-d). Simulations were run over a range of
nucleation parameters with 10 repeats for each condition, yielding 9600 simulations in
total (Figure 3.10e-f). Figure 3.10i suggests that nucleation parameters could be
optimised to increase the likelihood of inducing global clustering. Generally, the
greater the number of nucleation sites and proteins recruited, the higher the probability
of simulating T cell activation. As in the simulated data, the activation outcome
depends most significantly on the number of proteins recruited, with at least 20

proteins required to maximise the probability in most conditions.

3.3.4 Modelling interacting molecular species

Building on the single-population model, we developed a system for simultaneously
modelling several interacting molecular species (see Materials and Methods). The
distributions of each underlying population may be aggregated separately (Figure
3.11a) or co-clustered (Figure 3.11b). A four-population model was proposed,

including activators, inhibitors and agents (which may be active or inactive). Agents
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Figure 3.10: Simulated T cell activation via induced nucleation. Protein maps of CD3(
distributions were acquired from a non-activated and b activated Jurkat T cells
(dimensions: 30um by 30um). Ripley’s H functions taken from CD3( distributions in ¢
non-activated and d activated conditions. e A point pattern was first fitted to a non-

activated target. The simulated H function (purple) can fit to either the non-activated
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(magenta) or activated (orange) target functions. Nucleation was induced after 10s. f
Resulting distribution in final simulation frame. Depending on the degree of nucleation,
the point pattern will shift to the activated target and induce pronounced global
clustering. The simulated H function now aligns with the activated target. A 3um by
3um ROI shows CD3¢ distribution on Jurkat T-cell plasma membrane g before
activation and h after activation. Denser clusters are highlighted in the post-activation
ROI. i Probability of inducing whole system aggregation versus number of nucleation

sites and number of recruited proteins.

become activated or inhibited when within a pre-assigned range of activators or
inhibitors respectively — here, the range is taken to be 5nm (Figure 3.11c). Populations
may be simulated under a co-clustered regime (Figure 3.11d), a CSR regime (Figure
3.11e) or anisolated cluster regime (Figure 3.11f). We record the change in proportion

of active agents across the simulation (Figure 3.119).

3.3.5 Simulating varied dynamics across multiple populations

To validate the impact of co-clustering on signal digitisation, we emulate an activator-
inhibitor-agent model, in which activators are first clustered independently of inhibitors
and agents, which are themselves co-clustered (Figure 3.12a). Halfway through the
simulation, the regime was switched, and activators were co-clustered with agents
while inhibitors were left isolated (Figure 3.12b). Target distributions were kept
consistent throughout analysis (see Materials and Methods) the percentage of
activated agents was tracked across all simulation frames. Only the step size
parameter, D,,,,, was varied between simulations (Figure 3.12c-d). Results suggest
that simulations with lower step sizes consistently show a greater proportion of
activated agents prior to the regime switch, rather than after, when compared to

simulations with larger step sizes (Figure 3.12e). In addition, a shift in the percentage
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Figure 3.11: Multiple population modelling. Each population can be simulated a
separately or b co-clustered with other populations. ¢ Interactions between
populations can be recorded and tracked across consecutive frames. We consider a
four-population model, including activators, inhibitors and agents (active or inactive).
Agents are activated or inhibited within 5nm of activators or inhibitors respectively.
Example cluster variations for multiple species: d a co-clustered regime e a CSR
regime and f an isolated cluster regime. g The percentage of activated agents in the
co-clustered regime (purple) consistently exceeds the percentage activated in the
CSR (magenta) and isolated cluster case (orange), even with the same population

sizes.

of activated agents can be observed at the halfway point, when the regime switch

occurs.

3.4 Discussion

In this work, we introduced ASMODEUS, an agent-based model for simulating
dynamics of transmembrane proteins and generating toy protein maps, which could

be used to simulate SMLM data. We applied this framework to re-deriving simulated
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Figure 3.12: Proof-of-concept for modelling PAD with multiple molecular species. a

Activators are first simulated independently of inhibitors and agents, which are co-

clustered. b Halfway through the simulation, the regime is switched, and activators are

co-clustered with agents, while inhibitors are considered separately. The percentages

of activated proteins are recorded over time. ¢ Example case with step size of 20, in

which activation is more prevalent prior to switch. d Example case with high step size

of 60, in which activation is more prevalent after switch. e Average percentage

activated before (magenta) and after (orange) switch across a range of step sizes.

distributions with known ground truth clusters and extended this model to incorporate

several interacting molecular species. Furthermore, we presented a proof-of-concept

for the use of ASMODEUS in simulating the receptor oligomerisation or cross-linking

required to induce a phase shift in protein distribution.
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3.4.1 Simulating static protein maps with ASMODEUS

ASMODEUS was tested on a series of simulated point clouds with varying cluster
properties. All simulations reached convergence within the model runtime of 2.5
minutes and, on average, the error showed a 6-fold reduction at convergence. The
number of clusters and points per cluster fell to within 10% of their target values. The
slope of the cluster radius shows slower convergence, which may improve at greater
runtime. This suggests that an agent-based modelling approach, using the Ripley’s K
function as target for reinforcement learning, may suffice for simulating cluster affinity
in point patterns and can induce aggregation with pre-defined cluster properties.
However, ASMODEUS may not be suitable for point patterns of particularly high
background density, as the model favours local point density over global point density
and may unexpectedly increase the total number of clusters. For target distributions
with mixed cluster properties, ASMODEUS may output unpredictable cluster
geometries, despite converging to the K function, or fail to converge altogether. This
suggests that ASMODEUS may perform best on target data with consistent cluster
properties.

Since system dynamics depend on pairwise interactions between agents, the
computational complexity of running a simulation increases quadratically as the
number of agents increases linearly®'!. That said, the software presented here has
been computationally optimised and is integrated in a compiled programming
language where possible. As a reference, a simulation of 500 points running over
simulated 150 seconds takes no more than 5 real-time minutes to complete on a single

processor.
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3.4.2 Modelling signal digitisation and molecular interactions with ASMODEUS
If a simulation is provided with two possible targets — one of which represents a
clustered distribution and the other CSR — then the PAD model may converge to either
distribution and enter into a steady state. If the dynamic distribution has converged
towards the CSR target, in which receptor density is approximately homogeneous,
then we have shown here that a small perturbation to the density distribution, by
spontaneous clustering of agents, may force the distribution out of its steady state.
Depending on the number of nucleation sites or proteins per nucleation site, the PAD
model may undergo a phase shift and converge towards the clustered target, in which
receptor density is heterogeneous. By repeating simulations, we are able to estimate
the probability of convergence to the clustered target after nucleation. Therefore,
ASMODEUS may provide a framework for estimating the optimal nucleation
parameters required to induce receptor clustering in dynamic simulations. In
applications to TCR-CD3 distributions from DNA-PAINT, we find that receptor
nucleation selectively elicits a phase shift — this depends on the number of nucleation
sites and proteins recruited, but generally requires each nucleation site to recruit 20
proteins. This could inform choices for therapeutic mediators which induce or disrupt
TCR aggregation in immunotherapy or the treatment of autoimmune disorders —
however, this remains to be validated in vitro.

In multiple population models, we determine that larger step sizes promote increased
activation after inducing a change to receptor co-clustering. In addition, we observe a
sudden shift in the percentage of activated agents after the clustering regime switch
occurs. Primarily, this acts as a proof-of-concept for ABMs in modelling dynamic,
interacting protein species — which, to the best of our knowledge, is the first of its kind.

Results may suggest that changes to molecular organisation between members of
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interacting species can bring about a phase shift in system-wide activation. With a
small change in organisation rules, governed by the degree of membrane order, a
digital response can be induced in simulations. This approach may help estimate and
guantify the effect of interacting species distributions, which may be used as a

predictor of digitisation under variable clustering regimes.

3.4.3 Concluding remarks

Traditional mathematical models are derived from systems of continuous differential
equations, which aim to capture biophysical interactions and biochemical kinetics
through geometric constraints and parameterisation. Despite the capabilities of
modern microscopy techniques, these parameters and hyperparameters are difficult
to determine in the context of transmembrane protein dynamics3®. Point pattern
simulation typically requires knowledge of an expected point distribution, derived from
constraints on pattern geometry. Agent-based approaches are modular, easy to
aggregate and designed to predict dynamic system behaviour under a set of
postulated mechanisms?%, As such, ABMs are well-suited to capturing the biophysical
processes that bring about macro-scale responses, such as nucleation, digitisation, or
activation323%3, In this work, we have presented an agent-based modelling approach
for simulating the dynamics of transmembrane proteins and generating realistic toy
SMLM data. The model can integrate several interacting molecular species and
introduce perturbations to serve as proxies for natural and induced biophysical
disruptions. This platform could be used to determine the nucleation conditions
required to promote clustering of specific transmembrane proteins, and the simulations
derived may provide a system for evaluating and comparing emergent phenomena in

PAD ABMs. Notably, we have used our method to estimate the biophysical parameters
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of receptor nucleation required to maximise the probability of TCR oligomerisation. As
such, ASMODEUS could be used to simulate static protein maps for validating analytic
techniques, to model the impact of perturbations on PAD systems, or to offer insight
into the design of therapeutics which modify or induce receptor clustering3!4-316, In the
following chapter, we use ASMODEUS as an SMLM data simulator to generate spatial
point distributions, which are overlaid with marked point patterns. This provides ground
truth data for testing and validating topological data analysis techniques for partitioning

coordinate-based MPP data.
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Chapter 4: Marked point pattern analysis

The focus of this chapter is on the development of two algorithms for identifying and
extracting topological features from marked point pattern data. The first algorithm, P-
Check, determines whether there is statistically significant evidence of non-random
colocalisation in discrete MPPs. The second algorithm, JOSEPH, partitions
continuous marked point pattern data into clusters defined by both a given spatial
scale and a quantifiable distribution of marked values. By performing this analysis on
MPPs from SMLM with polarity-sensitive probes, these tools may determine if and

where lipid domains exist in ROIs from membrane data.
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4.1 Introduction

Partitioning of the plasma membrane into lipid-ordered and lipid-disordered phase
regions is hypothesised to play an essential role in regulating cell signalling
processes®!’. This phase separation may be characterised by nanoscale regions of
the membrane, denoted here as lipid domains or nanodomains, which are locally
homogeneous in lipid packing®’. However, while microscale ordered lipid domains

can be readily observed in synthetic bilayers, there is still ongoing debate about the
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existence and nature of nanodomains in mammalian cell membranes®!®, Super-
resolution methods can localise fluorescent molecules at the nanoscale and may be
adapted to work with environmentally-sensitive membrane probes3'%-321, By using
PAINT microscopy with polarity-sensitive probe di-4-ANEPPDHQ, we resolve marked
point patterns of nanoscale GP distributions in live cells and synthetic membranes.
However, the precise geometry of lipid nanodomains is not yet known and may vary
across data sets.

As such, we have developed a TDA software package, PLASMA (Point Label Analysis
of Super-resolved Marked Attributes), designed for identifying underlying domains in
marked point pattern data. The first goal of our analysis is to determine whether
underlying domains, defined by non-random subsets of data points with approximately
equal marks, are present within the data. For this, we have developed an algorithm,
P-Check, to determine if a point pattern expresses spatial heterogeneity in binary
marked points, which may suggest the presence of domains. Although P-Check is
suitable for detecting nanodomains, it does not offer any information as to their location
within the ROI. To expand upon this, we developed a data segmentation approach,
termed Justification of Separation by Employed Persistent Homology (JOSEPH). In
JOSEPH, persistent homology is used to construct clusters in which points colocalise
spatially and whose marks lie within a quantifiable, pre-determined range. In this
context, P-Check is first used to determine the presence of membrane lipid
nanodomains in artificial membranes and live cells, and then JOSEPH is used to
partition the set of localisations and pinpoint nanodomains within the ROI. By
leveraging this analysis over multi-modal SMLM with environmentally-sensitive
fluorophores, we achieve nanometre-resolution mapping of membrane properties and

measure changes in response to external perturbation with methyl-B-cyclodextrin
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(MBCD). This methodology may present a useful tool for processing MPPs and

identifying nanodomains in SMLM data.

4.2 Materials and methods

Rat mammary fibroblast cell culture and sample preparation

Rat mammary fibroblast (RAMA27) cells were gifted by Prof. David G. Fernig
(University of Liverpool, UK). Cell culture was performed as in literature3?2. RAMA27
cells were cultured in phenol red free DMEM supplemented with 10% PBS, 50 ng/mL
insulin and 50 ng/mL hydrocortisone (all from Life Technologies) at 37°C in 10% COz-.
24h prior to imaging, cells were trypsinized, passaged and seeded onto Ibidi p-slide
8-well glass-bottomed chambers pre-coated with 1 pg/mL fibronectin (Sigma-Aldrich),
at 20,000 cells per well. Cells were left overnight in culture medium to adhere and
spread. Samples were incubated for 30 minutes with 80 nM di-4-ANEPPDHQ in
phenol red free DMEM to permit binding of single di-4-ANEPPDHQ molecules. Eight

cells were imaged in total.

RAMAZ27 treatment with methyl-B-cyclodextrin
Seeded cells were exposed to 15 mM methyl-B-cyclodextrin (Sigma Aldrich, cat.no:
C4555) in culture medium without FBS for 30 minutes. Cells were then washed 3 times

with 1x PBS to remove MBCD and prepared for imaging.

Giant unilamellar vesicle (GUV) preparation
GUVs were prepared by electroformation, as described in literature323, Lipid film was
formed by deposing chloroform solution of either DOPC (Avanti Polar Lipids) or a

mixture of DPPC (Avanti Polar Lipids) with 30% cholesterol (Sigma-Aldrich) onto
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indium tin oxide (ITO)-coated glass slides, such that 100ug of lipid was deposed in
total. Lipid films were then dried under an air hood for 4h. GUVs were formed in a 200

mM sucrose solution at 50°C using 11 Hz, 1V of alternating electric current for 2h.

Artificial membrane patch preparation

A 1 in 200 dilution of GUVs was made in 1X PBS and added to an Ibidi u-slide 8-well
glass-bottomed chamber. GUVs settled in solution and burst in contact with the glass
bottom under osmotic pressure of the 1X PBS, forming a patch of lipid bilayer.
Samples were incubated for 30 minutes with 20 nM di-4-ANEPPDHQ in 1X PBS buffer

to permit binding of single di-4-ANEPPDHQ molecules.

Ratiometric PAINT imaging with di-4-ANEPPDHQ

Imaging of artificial membranes and RAMAZ27 cells was undertaken on a custom-built
fluorescence microscope (RAMM system, ASI) using a 100x 1.49 NA oil immersion
objective (Apo TIRF; Nikon), using a beam shaper for homogeneous illumination
(piShaper, AdIOptica). A 488nm laser excitation under highly inclined and laminated
optical sheet (HILO) illumination and z-focus lock (CRISP, ASI). Fluorescence
emission from binding of di-4-ANEPPDHQ to membranes was spectrally split by a
LP640 dichroic mirror (FF640-FDi02-t3, Semrock) and imaged with two sCMOS
cameras (Prime 95B, Photometrics) over a 130pum x 130um field of view. Hardware
was controlled using pManager 2.0 with additional custom microcontroller boards.
20000 frames were taken per acquisition with 50ms integration time and a laser power
density of 50W/cm? over the sample. Emission fluorescence of < 640nm was filtered
using a custom bandpass filter (552/96). All image stacks were retained for further

analyses.
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Post-processing and ratiometric analysis for di-4-ANEPPDHQ data

Image stacks were combined and single molecule localisations were fitted via a
Gaussian PSF model. All post-processing prior to GP calculation was undertaken in
SMAP/MATLAB?3!, Localisations within 50nm and 1 off-frame were grouped and then
filtered by precision (0-50nm), PSF size (100-300nm), PSF asymmetry (0-0.2) and
frame (400-Inf). The projective transformation matrix was calculated between
channels. Image stacks were re-analysed using a Gaussian PSF fitting to assign
emission intensities across both channels. Localisations were then filtered by photon
count in both channels (50-5000 per ungrouped localisation and 100-5000 photons
per grouped localisation). Localisations from the second channel were then
transformed onto the first channel and corrected for drift. Finally, the GP value for each

grouped localisation was recorded (see Appendix for formula).

Marked point pattern simulation

2000 spatial point patterns were simulated via agent-based modelling, under the
ASMODEUS R package v. 1.0.0 (see Chapter 3), and ToOMATo cluster analysis was
performed, under the RSMLM R package (v. 1.0.0)19%22%, For each ROI, the convex
hulls of all clusters were calculated and designated as domains. The ROI was
discretised into square bins, with each bin comprising either a domain or part of the
background. [np] points were randomly allocated to a domain bin and their positions
were distributed uniformly across that bin (for parameter choices, see Table 4.1). All

remaining n — [np] points were uniformly distributed across the background. For CSR
distributions, all n points were uniformly distributed, irrespective of domain placement.

Each point was then assigned a mark value determined from one of two Normal
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distributions, depending on whether they fell into a domain or the background3?4,
Normal distribution parameters (described in Table 4.1) were selected randomly via
Latin Hypercube Sampling®?®. 1000 additional CSR data sets were then generated
with marked values selected as above. The ROI used in each simulation was 3um X
3um in size and overlaid with convex domains. Marked values were assigned so that
the average value of all points inside any domain was positive, and the average

outside all domains was negative.

Parameter | Meaning Min Max
R Target domain radius (assuming circularity). 20 250
Uy Mean mark value in simulated domains. 001 |1
Uy Mean mark value outside simulated domains. -1 -0.01
0, Standard deviation of marks in simulated domains. 0.01 |05
o, Standard deviation of marks outside simulated 0.01 |05

domains.

Pa Proportion of points assigned to domains. 0.2 0.8
n Number of points in marked point pattern. 100 5000

Table 4.1: Input parameters for simulated data sets and the range of values they were

randomly generated from.

P-Check
We take as input a discrete marked point pattern — that is, a point pattern with marks
assigned from a finite number of categories. For each point, construct a

neighbourhood comprised of all other points within the chosen search radius (r),

record the total number of neighbours (within the radius r) and the number of
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neighbours which have the same mark as the point itself (Figure 4.1a-c). Summing
these values over all points, we determine the weighted proportion, P, which serves
as an estimate for the probability that a randomly-selected point and any randomly-
selected neighbour share the same label (see Appendix for formula). The value of P,
is maximised if points belonging to the same category form distinct, spatial clusters —
specifically, if there is no mixing between points of different categories, and clusters of
each category are spatially separated. By convention, we denote the weighted
proportion of the original marked point pattern as P,. A permutation test is then
performed over N trials by randomly shuffling the categorical marks of all points and
recalculating the proportion P, for each trial k = 1,2, ..., N (Figure 4.1d). If P, falls
within the top a% of all P, values, then the significance level can be estimated as a%
(Figure 4.1e). This suggests statistically significant evidence, at the a% level, of non-
random colocalisation of identically-marked points, which may correspond to specific
domains3?, See Figure 7.4 (Appendix) for conceptual diagram of P-Check and
Section 7.2.5 for algorithm pseudocode. A search radius may be automatically

estimated from the data (see below).

Justification of Separation by Employed Persistent Homology (JOSEPH)

Take a marked point pattern as input. For each point, a neighbourhood comprised of
all other points within the chosen search radius, r, is constructed (Figure 4.2a-b).
Each point is designated a similarity value defined as the difference between the
point’'s own mark and the average mark of its neighbourhood. This value is normalised

so that points which are most like their neighbourhood are given a similarity value
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Figure 4.1: Schematic of P-Check. a A discrete point pattern can be segmented into
subset point patterns for each category (green and orange; b-c). Frequencies can be
calculated from both categories to determine the total number of neighbours and
neighbours of shared category. These values are summed over all points and the ratio
gives the weighted proportion. d A permutation test is performed, which randomises
the mark of each point. Panels i-iv show example permutations. e The weighted
proportion P, can be calculated for each permutation k and compared P,. If P, falls

within the top a% of all permutations, then the significance level can be estimated as

a%. Binsize: 0.005. f Example data set with low overlap and pronounced clustering.
Binsize: 0.005. g Example data set with high overlap over a CSR distribution. Binsize:
0.01. All ROI sizes: 1uym by 1um. The box marked in red signifies the top 5% of
weighted proportions and represents the region at which the value of P, (blue dashed

line) is statistically significant at the 5% level.

ranging from 0-1, representing highest similarity and lowest similarity, respectively
(Figure 4.2c). A filtration is constructed by ordering points from highest to lowest
similarity, which can be used in persistent homology. A deviance threshold, denoted
7, defines the maximum acceptable difference between the marks of the root (starting
point) and any other point in the cluster. Each point is connected to all neighbouring
points whose similarity values are higher than its own and whose roots’ marks are at
most T higher in value. In scenarios where two distinct clusters overlap, the cluster
whose root has lowest similarity is absorbed by the opposing cluster. The convex hull
of the identified clusters can be used as an estimate of the domain. See Figure 7.5
(Appendix) for conceptual diagram of JOSEPH and Section 7.2.6 for algorithm
pseudocode. Estimates for both parameters may be automatically calculated from the

data (see below).

Page | 148



** P value P . .. TGPVale© W AR similarity
: 075 Y . 0.75 s Y 1.00
S T S . et _._i R
1] b . ie e :
0.50 o ot 0.50 e T 0.75
\ 7 J ) ‘.‘.' :.':-':: r
0.25 N s e S 0.25 AR S 0.50
l\_— L .. :;. o " :
. . LR
0.00 e . ot 000 |i SRR SR 0.25
0.25 400nm "5, " % ) lum e ;
L. 025 | M.y o s 0.00
d
— —

| GP Value v
' @
0.4 '
0.0 .
@ -
PV 4
A

-0.4

" GP Value ‘
2 04 .

0.0 ‘ ‘

4

-0.4

Figure 4.2: Workflow of JOSEPH. a Simulated marked point pattern with a highlighted
region. b The highlighted region of the point pattern, each point’s mark is compared to
its neighbours. ¢ Each point is assigned a similarity score. Points on the boundaries
of clusters typically display the lowest similarity scores. d Clusters are constructed by
iteratively attaching points to neighbours of higher similarity until the deviance
threshold is met. e JOSEPH performance on a simulated clustered distribution.
Ground truth underlying domains are given in purple. Points are randomly added onto
the ROI with a 90% chance of being added inside a domain. Marks are pulled from a
Normal distribution with mean 0.25 for points inside domains and -0.25 for points
outside domains (standard deviation is 0.1 in both cases). Clusters are recovered by

JOSEPH and convex hulls of these clusters are coloured by the average mark within
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the cluster. f JOSEPH performance on a simulated CSR distribution. Simulation
protocol is the same as in e, except a CSR distribution is overlaid across the whole
ROI.

Calculation of intersection over union

Algorithmic performance was quantified by intersection over union (loU), compared
between ground truth domain hulls and hulls of clusters returned by JOSEPH. IoU
scores were calculated between pairs of hulls by taking both the intersection and union
of the areas of all hulls, then dividing the area of the intersection by the area of the
union (see Appendix for formula). Intersection and union areas were calculated using

the sf (Simple Features) R package (v1.0-16)3%7.

Parameter estimation: search radius

The analytic techniques presented here require two key parameters: the search radius
and the deviance. The search radius refers to the maximum distance permitted
between any two neighbouring points of the same cluster. The cluster radius serves
as a proxy for the search radius and can be estimated from the maximising value of
the Ripley’s H-function, as this represents the spatially-averaged distance at which the
number of neighbours is maximised (Figure 4.3a-b)°%328_|f the spatial distribution of
the point pattern is known to be CSR, it should first be discretised and then partitioned
into separate categories. Discretisation could be achieved by established methods of
pattern classification3?. In this instance, it can be shown that GP values taken from
the ordered and disordered phases will approximate two distinct Gaussian
distributions (see Section 4.3.5). As such, a Gaussian decision boundary, as

described in the literature, is used to discretise the point pattern32°.
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Figure 4.3: Techniques for parameter estimation. a-b The Ripley’s H function depicts
the spatially-averaged density of points at varying radii. The maximising value yields
the most likely cluster radius. ¢ Histogram of the distribution of all GP values acquired
from artificial membrane data. Binsize: 0.02. d Results of fitting two Gaussian
distributions to the histogram. The deviance t is taken to be the minimum distance

from either peak to the point of intersection.

Parameter estimation: deviance

As above, we assume that the distribution of marks is represented by the sum of two
Normal curves, given as f; + f, = cN(uy, 01) + (1 — ¢)N(u,, 0,), and use Gaussian
mixture modelling with maximum likelihood estimation to approximate the five
unknowns330, Assuming the search radius does not exceed true domain size, the
expected mark of any root in an ordered or disordered cluster will be approximately
equal to the mean of the corresponding distribution. This is because a neighbourhood
around this point will have an average mark that approximates the mean of the

Gaussian, and therefore minimises the absolute difference. The deviance quantifies
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the maximum permissible difference between the root mark (expected to be the mean)
and any other point in the cluster. We therefore aim to maximise the deviance without
absorbing outliers or points from other domains into the clusters. As such, we calculate

the deviance as the minimum difference between the peaks p,, u, and the point of
intersection between f; and f, (Figure 4.3c-d). If the mark distributions are known to

not be Gaussian, then a different sum of probability distributions can be fit. A
distribution may be estimated visually by plotting a histogram of all marks. Once an
estimate is known, a Kolmogorov-Smirnov test can be used to determine goodness-

of-fit33L,

Marked point pattern analysis software

All simulations and analyses with P-Check and JOSEPH were conducted in the R
programming language (v. 4.2.3). The PLASMA software package (v. 1.0.0) was
written in R (v. 4.2.3) and employed in the integrated development environment
RStudio, (2022.07.1+554). PLASMA is available for use under GNU General Public

License (v. 3.0).

4.3 Results

4.3.1 Di-4-ANEPPDHQ-based ratiometric PAINT for generating marked point
data

In order to generate marked point pattern data from SMLM, each fluorescent molecule
must encode both its spatial position and some property of its environment within its
fluorescent emission. di-4-ANEPPDHQ yields a large spectral blue shift in its emission,
reflecting the decreased polarity and reduced hydration of the membrane, even for

single emitters, in line with literature on bulk measurments'®. To discriminate between
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the spectral shifts of single di-4-ANEPPDHQ probes, two channels were used to detect
emission, with channel 1 corresponding to wavelengths of 505-600nm and channel 2
corresponding to wavelengths of > 640nm. At di-4-ANEPPDHQ concentrations
between 20-80nM, an average of 1825+688 molecules were localised per pm? with
negligible background binding. For both channels, 50-5000 photons were collected
per localisation and photon yields were used to calculate the GP value at the emitter
position. This encoded both spatial position and the degree of membrane order for all

detected molecules, which were aggregated to produce a marked point pattern.

4.3.2 Detecting domains in simulated marked point patterns and determining
statistical significance

To validate the algorithmic performance of P-Check, 1000 distributions were simulated
from which each mark was assigned from one of two possible Normal distributions
(see Materials and Methods). The overlap was recorded for each pair of distributions
(see Appendix for formula). A Gaussian decision boundary was calculated from the
distribution of all marks and the point pattern was binarised by thresholding, subject to
this decision boundary. For each simulated data set, we recorded the overlap, the

domain radius, the value of Py, and whether or not the ROI passed P-Check. Results
suggest that the value of P, tends to decrease with higher overlap (Figure 4.4a-c).
Linear regression analysis suggests a linear relationship with intercept at 0.878 and
coefficient -0.108 (Figure 4.4d). Simultaneously, the probability of passing P-Check
becomes lower, and results suggest a linear trendline with intercept 0.999 and
coefficient -0.136 (Figure 4.4e). The value of P, was found to increase approximately

with domain radius (Figure 4.5a-c), suggesting a linear trendline with intercept 0.768

and coefficient 2.272 x 107 (Figure 4.5d). Analogously, the probability of passing
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(i) and histogram of weighted proportions derived from P-Check (ii) is shown. All ROI
sizes: 1um by 1um. Binsize for all histograms: 0.001. The box marked in red signifies
the top 5% of weighted proportions and represents the region at which the value of P,
is statistically significant at the 5% level. As overlap increases, the value of P, (blue
dashed line) shifts closer to the centre of the histogram. For the highest overlap, there
is no statistically significant evidence of partitioning at the 5% level. d Mean value of
P, returned from simulated data sets versus overlap (magenta). Orange dashed line
represents line of best fit recovered from linear regression, with intercept at 0.878 and
coefficient -0.108. e Probability of ROI passing P-Check versus overlap (magenta).
Orange dashed line represents line of best fit with intercept 0.999 and coefficient -
0.136.

P-Check increased linearly with intercept 0.933 and coefficient 3.803 x 10 (Figure
4.5e). In general, statistical significance is more likely to be detected over point clouds
with larger domains and lower overlap between the distribution of marks in each
phase. Notably, for all domains below 200nm, there was at least a 93% chance that
they would be detected by P-Check. Furthermore, for all overlap values between 0
and 2, there was at least a 64% chance that domains would be detected. For a
simulated data set comprising 2000 points, P-Check took no longer than 1 minute to

run on a single processor.

4.3.3 Demonstration of P-Check on artificial membrane data

Synthetic membranes were generated using established GUV preparation methods323
for liquid-ordered and liquid-disordered phases using DPPC with 30 mol% cholesterol
and pure DOPC, respectively. GUVs were osmotically popped to give a planar
membrane patch3?3. Di-4-ANEPPDHQ was added to membrane patches at a
concentration of 20nM. At each insertion, a blink is detected by the camera in both red

and green channels. Molecules are localised to determine x,y-coordinates, and GP
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Figure 4.5: The results of P-Check on simulated MPP data sets with increasing
domain radii. Domain radii for a-c are 40nm, 60nm and 80nm, respectively. In each
simulation, the discretised marked point pattern (i) and histogram of weighted
proportions derived from P-Check (ii) is shown. All ROl sizes: 1um by 1um. Binsize for
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all histograms: 0.001. The box marked in red signifies the top 5% of weighted
proportions and represents the region at which the value of P, is statistically significant
at the 5% level. d Mean value of P, returned from simulated data sets versus domain
radius (magenta). Orange dashed line represents line of best fit recovered from linear

regression, with intercept 0.768 and coefficient 2.272 x 10°. e Probability of ROI

passing P-Check versus domain radius (magenta). Orange dashed line represents

linear line of best fit with intercept 0.933 and coefficient 3.803 x 10°°.

values are calculated for each localisation from the derived photon count in the two
channels. GP values determined from both DPPC and DOPC membrane patches form
two distinct Gaussian distributions (Figure 4.6a-b). The point of intersection of these
Gaussians was taken as the threshold for discretisation, and all marked point patterns
were binarised. Notably, the overlap of the distributions corresponding to these phases
was 1.455. Spatially-averaged 2D histograms (included in the PLASMA software
package) from DOPC and DPPC point patterns are given in Figure 4.6¢c and 4.6e,
respectively. The corresponding distributions of P-Check proportional values, Py, are
given in Figure 4.6d and 4.6f and do not suggest statistically significant heterogeneity.
This is in line with expectation, since monophase model bilayers are homogeneous in
lipid composition, with little variation in hydration across the membrane patches.
Therefore, in model bilayers where large differences in GP are not expected, P-Check

does not detect domains.

4.3.4 Detecting domains in marked point patterns from RAMA27 data
Having demonstrated P-Check on synthetic membranes, the next step was to probe
nanoscale membrane order of live cells. Ratiometric PAINT data was acquired

analogously on RAMA27 cells in the presence of an 80nM concentration of di-4-
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Figure 4.6: Applications to synthetic membranes. a Distribution of GP values from
both the DOPC data (magenta) and DPPC (orange) data. Binsize: 0.02. b Gaussian
fit for distributions of GP values from DOPC (magenta) and DPPC (orange) data. c-d
The membrane order map (GP histogram) of an example DOPC data set and the
corresponding P-Check results. e-f The GP histogram of an example DPPC data set
and the corresponding P-Check results. Analysis does not find any statistically
significant evidence of separation in either case. All ROl sizes: 3um by 3um. For b, d,
the box marked in red signifies the top 5% of weighted proportions and represents the

region at which the value of P, (blue dashed line) is statistically significant at the 5%

level. Binsize for all P-Check histograms: 0.001.
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Figure 4.7: The results of JOSEPH on simulated MPP data sets with increasing
overlap between the background and domain GP distributions. a Mean loU returned

from simulated data sets versus overlap (magenta). Orange dashed line represents
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logarithmic line of best fit, with intercept 0.322 and coefficient -0.215. b Ground truth
hulls over which exemplar MPPs are simulated. Example MPPs are given in panels c-
e, with overlaps 0.5, 1.0, and 2.0, respectively. Each row depicts (i) the MPP simulated
over the ground truth hulls in b, (ii) the clusters identified by JOSEPH (with low-GP
background of GP < 0.0 filtered out) and (iii) the convex hulls of the clusters, with each
hull’s colour corresponding to its average GP. All ROI sizes: 1um by 1um. Each
simulation is comprised of 3000 points with an average domain radius of ~60nm. Mean
background GP = -0.25, mean domain GP = 0.25, with standard deviation of both =

0.03125, giving an overlap value of 0.5. Colour bars represent simulated GP value.

ANEPPDHQ in DMEM. In all other aspects, the microscope setup and analysis
pipeline were the same as for synthetic membranes. P-Check identified non-random
heterogeneity in 194 of 316 ROIs from RAMA27 cell data. This suggests that
statistically significant non-random distributions of GP values are present across most
ROIs, and that there is heterogeneity in lipid order across RAMA27 cell plasma

membranes.

4.3.5 Quantitative mapping of domains in simulated marked point patterns

JOSEPH’s performance was validated on simulated data sets with varied mark overlap
values (Figure 4.7), domain radii (Figure 4.8) and point densities (Figure 4.9) as
ground truth (see Materials and Methods for quantification). For each simulation, the
domains identified by JOSEPH were recorded and the loU score was calculated
between results and the ground truth332, The loU quantifies the degree of overlap
between domains and the ground truth, while penalising overfitting (see Appendix for
formula)®6. Here, a complete lack of overlap yields a value of 0, while perfect overlap
gives a value of 1. From this, we identify three variables which impact JOSEPH’s

performance. Firstly, the loU score decreases as mark overlap increases, and results
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Figure 4.8: The results of JOSEPH on simulated MPP data sets of varied domain size.
a Mean loU returned from simulated data sets versus domain radius (magenta).
Orange dashed line represents line of best fit recovered from linear regression, with
intercept 0.066 and coefficient 0.003. Average cluster sizes for b-d are 40nm, 50nm,
and 60nm, respectively. Each row depicts (i) the convex hulls of the ground truth
domains, (ii) the simulated MPP, and (iv) the convex hulls of the clusters, with each
hull’s colour corresponding to its average GP (low-GP background hulls of GP < 0.0
are filtered out). All ROI sizes: 1um by 1um. Each simulation is comprised of 3000
points. Mean background GP = -0.25, mean domain GP = 0.25, with standard
deviation of both = 0.03125, giving an overlap value of 0.5. Colour bars represent

simulated GP value.

suggest a logarithmic trendline with intercept 0.322 and coefficient -0.215 (Figure
4.7a). This suggests that the quality of the partition becomes increasingly poor at
higher overlap values. Exemplar simulated data sets of varied overlap are visualised
in Figure 4.7b-e, alongside the outputs of JOSEPH. Secondly, the loU value tends to
increase with greater domain radius, and regression analysis suggests a linear
relationship with intercept at 0.066 and coefficient 0.003 (Figure 4.8a). Exemplar
simulated data sets with varied domain sizes are visualised in Figure 4.8b-d,
alongside the outputs of JOSEPH. This relationship may arise as a result of lower point
counts within smaller domains, which is inherent of CSR distributions. To quantify the
impact of point density, we recorded the loU versus proportion of points assigned to

domains, p;, on non-CSR data sets only. As the value of p,; increases, so too does

the loU (Figure 4.9a), suggesting a logarithmic trendline with intercept 0.688 and
coefficient 0.232. These results suggest that domains are less likely to be detected if
the density of points within them is low. Exemplar simulated data sets with varied

values of p,; are visualised in Figure 4.9b-e, alongside the outputs of JOSEPH. In

summary, the quality of the partition returned from JOSEPH (as quantified by the loU
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Figure 4.9: The results of JOSEPH on simulated MPP data sets, varying the
proportion of points assigned to domains, p;. @ Mean loU returned from simulated

data sets versus p,; (magenta). Orange dashed line represents logarithmic line of best
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fit, with intercept 0.688 and coefficient 0.232. b Ground truth hulls over which exemplar
MPPs are simulated. Example MPPs are given in panels c-e, with p; = 0.5, 0.75, and
1.0, respectively. Each row depicts (i) the MPP simulated over the ground truth hulls
in b, (ii) the clusters identified by JOSEPH (with low-GP background of GP < 0.0
fillered out) and (iii) the convex hulls of the clusters, with each hull’'s colour
corresponding to its average GP. All ROI sizes: 1um by 1um. Each simulation is
comprised of 3000 points with an average domain radius of ~60nm. Mean background
GP =-0.25, mean domain GP = 0.25, with standard deviation of both = 0.03125, giving

an overlap value of 0.5. Colour bars represent simulated GP value.

score) improves with lower overlap and greater point density within domains. For a
simulated data set comprising 2000 points, JOSEPH took no longer than 10 second

to run on a single processor.

4.3.6 Measuring nanoscale membrane order in live cell membranes with
PLASMA

ROIs from live RAMA27 cell data which exhibited statistically significant evidence of
mark heterogeneity at the 5% level (determined via P-Check) were carried forward
and analysed with JOSEPH (Figure 4.10a-c). For each cluster found, the average GP
of all cluster points was compared to the global average GP within the ROI to
determine the difference in GP values across domains (Figure 4.10d). Results show
two peaks comprising clusters with GP values above and below the global average,
respectively. Furthermore, the area of each convex hull was recorded across all
analysed ROIs (Figure 4.10e). On average, domains occupied an area of
approximately 0.15um? with 90% of all domains falling between 0.034um? and
0.293um?2. Assuming domain circularity, this corresponds to radial values of around
100-300nm. This may suggest that both lipid-ordered and lipid-disordered

nanodomains are present within RAMA27 cells.
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Figure 4.10: Live cell membrane results. a A marked point pattern acquired from 2-
channel PAINT SMLM on RAMA27 cell lines. b Clusters identified by JOSEPH with
average GP values which were significantly different to the global mean. ¢ The
membrane order map of the ROI. d Histogram of the relative frequency which domains
identified by JOSEPH fell into intervals above (ordered) or below (disordered) the
global average GP value (~0.22) for untreated cells. e The areas (in uym?) of all
domains identified by JOSEPH in untreated cells. f Histogram of the relative frequency
of domains identified by JOSEPH which fell into intervals above (ordered) or below
(disordered) the global average GP value (~0.17) for cells treated with MBCD. g
Beeswarm plot of mean GP value for all domains within selected ROIs for untreated
(Control, magenta) and methyl-B-cyclodextrin (MBCD, orange). Statistical significance

was determined via two sample t-test over 57 control ROIs and 52 MBCD ROils.
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Significance ranking: n.s - not significant, * - p < 0.05, ** - p < 0.01, *** - p < 0.001. All
binsizes: 0.02.

Further, to demonstrate the method’s sensitivity to changes in lipid order, we used a
well-established cholesterol binding molecule, methyl-B-cyclodextrin (MBCD)333, to
remove cholesterol from the plasma membrane. Cells were treated with MBCD and
compared to untreated (control) cells using P-Check and JOSEPH (Figure 4.10f-g).
P-Check identified non-random heterogeneity in 49 of 57 ROIs from untreated cell
data and 46 of 52 ROIs from MBCD-treated cell data. We recorded the difference
between global mean GP and the mean GP of domains identified by JOSEPH for
MBCD-treated cells (Figure 4.10f). In this case, we observed that domains now
elicited a central peak and two smaller lobes relating to the lower and higher order
domains identified. Notably, the relative frequency of domains above the global mean
GP has decreased when compared with Figure 4.10d. Further, we observed a
decrease in the average GP value per ROI for MBCD treated cells when compared
with the untreated cells (Figure 4.10g). A relative shift towards low-order domains is
observed upon treatment with MBCD, which suggests greater lipid disorder within both

the domains and the whole membrane.

4.4 Discussion

In this work, we have introduced a series of topological data analysis techniques,
under the PLASMA umbrella package, for detecting heterogeneity in marked point
patterns. By applying these methods to simulated data with known ground truths, we
have demonstrated their capacity to determine the existence and location of
underlying domains. In particular, we find that P-Check is more likely to detect

statistically significant heterogeneity over point patterns with larger domains and lower
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overlap between the distribution of marks in each phase. Among these simulations,
for all domains below 200nm, there was at least a 93% chance of detection, and for
all overlap values between 0 and 2, there was at least a 64% chance of detection. For
JOSEPH, we find that the quality of the partition returned (as quantified by the loU

score) improves with lower overlap and greater point density within domains.

4.4.1 Results from ratiometric PAINT data of GUVs and RAMAZ27 cells

Using a ratiometric PAINT approach with the solvatochromic probe di-4-ANEPPDHQ,
we produced marked point patterns of the distribution of membrane order, represented
by GP values, in GUVs and RAMA27 cells. Notably, the overlap of the distributions
corresponding to ordered and disordered phases in GUVs was 1.455, which
(according to simulations) would suggest a ~65% of detecting domains. We applied
P-Check to live-cell RAMA27 data and identified non-random heterogeneity in 194 of
316 ROIs (~62%) at the 5% significance level. Then, after passing these ROIs through
JOSEPH, we find significant deviation between the average GP values of identified
domains and the global average GP. Furthermore, we calculate the area of all convex
hulls and find that 90% of all domains are characterised by a radius between 100-
300nm. However, since these quantities were derived from convex hulls, rather than
concave, they may be overestimates of the true size. Ultimately, this could suggest a
degree of regulated lipid heterogeneity across the plasma membrane. Furthermore,
we are able to quantify changes in membrane order upon manipulation of the plasma
membrane with methyl-B-cyclodextrin, where a shift towards the disordered domain

population was observed.
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4.4.2 Applicability of PLASMA and advances in bioinformatics

As discussed, methods for partitioning marked point patterns have yet to keep pace
with more generalised spatial cluster analysis algorithms. The PLASMA package could
bridge this gap by providing a segmentation pipeline for marked pattern data. Only two
input parameters are required for PLASMA analysis: a search radius and a mark
deviance threshold, for which we have supplied additional methods for parameter
estimation, built into the software package by default. As a TDA tool, JOSEPH is
applicable to MPPs which are spatially anisotropic. Notably, JOSEPH relies on the
local mean of each point’s neighbourhood as a measure of similarity, although this
may not provide an accurate summary statistic for data sets of particularly low density.
However, in this specific application to SMLM, data sets are often sufficiently dense,
so it is easy to overcome this limitation!?®1%0, JOSEPH is an unsupervised machine
learning approach, which may be prone to hallucinate clusters. Since JOSEPH does
not filter the connected components returned from persistent homology, every point is
assigned to a cluster by default. Therefore, it is recommended to first conduct P-Check
in order to determine if domains may actually be present within the data. For this

reason, it is important to consider both algorithms in the PLASMA package.

4.4.3 Concluding remarks

In conclusion, we have developed a software package for detecting heterogeneity in
marked point patterns and partitioning marked data sets in the style of traditional
cluster analysis. We find these methods are applicable to data extracted from 2-
channel ratiometric PAINT SMLM acquisition using the solvatochromic probe di-4-
ANEPPDHQ. In conjunction with cluster and colocalisation analysis, PLASMA may

serve as a basis for probing, mapping and quantifying the nanoscale spatial
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organisation of lipid phase domains in the cell plasma membrane. The data presented
suggest that large scale segregation of domains may not be ubiquitous, but that both
liquid-ordered and liquid-disordered lipid domains are present at the nanoscale (~100-
300nm) in RAMA27 cells. Notably, the ordered domains identified here may be
characteristic of lipid rafts. As imaging modalities become increasingly optimised,
ratiometric SMLM methods produce greater precision in localisation and GP
determination. Therefore, analysis packages such as PLASMA could play a central
role in determining the existence and distribution of nanoscale lipid phase domains
and may offer an avenue for visualising and quantifying lipid raft properties. By
employing PLASMA over SMLM data acquired with different environmentally-sensitive
probes, we may be able to map other properties of interest (e.g., membrane charge
or tension334), and give insights into how these properties interplay with the lipidome.
This work summarises a novel approach for MPP analysis and highlights the potential
for further membrane mapping techniques, specifically towards SMLM with

environmentally-sensitive dyes.
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Chapter 5: Discussion and conclusion

The development of analytic techniques for quantifying biophysical membrane
properties remains at the forefront of active research for biologists, immunologists,
data scientists and microscopists. Protein aggregation on the plasma membrane
underpins essential cellular processes, such as signalling and communication, and it
is now known that lipid packing correlates with transmembrane protein motility64148,
Central to this notion is the spatial oligomerisation or clustering of transmembrane
proteins, which is hypothesised to convert analogue extracellular signals into digital
intracellular counterparts’®28, While the existence, prevalence and function of lipid
rafts remain controversial topics, it is now generally accepted that oligomerisation
associates with membrane lipid order and that protein clusters are tuned to optimise
the transmission of signalling information33%. To further research into the morphological
properties and physiological relevance of ordered lipid domains, it is essential to
devise scalable spatially-descriptive statistics to interpret the complex data of SMLM
and its evolving imaging modalities. This thesis presents a series of topology-based
analytic tools for image segmentation, modelling protein aggregation, and point pattern
partitioning, designed for use with conventional and super-resolved FM under
environmentally-sensitive probes. TOBLERONE, a topological image analysis tool, is
developed for classical cell segmentation in confocal microscopy (Chapter 2) and
identifies regions of varied lipid packing across members of the fungal species C. gattii.
Moving towards the nanoscale, ASMODEUS is introduced as a PAD simulator with
applications to generalising transmembrane protein motility and generating realistic
SMLM data (Chapter 3). These simulations are then implemented in Chapter 4 to
validate the analytic methods comprising the PLASMA package, which are used to

identify heterogeneity in MPP data. The techniques presented here may serve as
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platforms for studying properties of the membrane nano-environment in the evolving

landscape of SMLM and big data quantification.

5.1 Summary of results

The central contributions of this thesis come in the form of novel topological data
analysis techniques for probing biophysical data, derived from different forms of
microscopy, with specific applications to the cell plasma membrane. In Chapter 2, we
show that TOBLERONE segmentation offers a trade-off between sensitivity and
specificity which may not be achievable with pre-existing classical methods. We
guantify algorithmic performance under simulated image artefacts, Gaussian noise
and blur, and determine that sensitivity experiences a greater decrement with noise,
while specificity is more sensitive to blur. Generally, we find that most pixels belonging
to an object are correctly identified and most pixels belonging to the background are
correctly ignored by TOBLERONE. In addition, we demonstrate TOBLERONE on
confocal FM data. We quantify membrane order in C. gattii with di-4-ANEPPDHQ and
find statistically significant evidence at the 1% level that treatment with 20HOA or 7-
ketosterol can lower the average GP value across the C. gattii cell plasma membrane.
For 3D cell segmentation, we find that Jurkat T cells span a diameter of approximately
15.5um on average, in accordance with existing literature?82-284, Further, we track S.
pombe dynamics using tempTOBLERONE, and determine that progression from
telophase to interphase in the nuclear division of S. pombe can occur in under a
minute, in line with existing reports2es,

In Chapter 3, we shift focus to nanoscale protein aggregation and develop a simulator
for protein map data. We find that an ABM approach, using the Ripley’s K function as

a metric of cluster affinity, can induce point pattern aggregation with pre-defined
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cluster properties. For single populations of molecular species, all 9600 simulations
reached convergence within the model runtime of 2.5 minutes, and experienced a 6-
fold reduction in error. In addition, all associated cluster properties fell to within 10%
of their target values at convergence. Furthermore, we find that nucleation can
increase the likelihood of cluster formation and that the probability of convergence
increases with greater protein recruitment, even at a relatively low number of
nucleation sites. This same result holds true for simulations of CD3¢ distributions in
Jurkat T cells, with induced nucleation increasing the likelihood of favouring a
distribution associated with activated conditions as opposed to non-activated. For
multiple population models, we find that an instantaneous switch in clustering regime
can cause simulated activators and agents to co-cluster or disperse. This elicits a
sudden shift in agent activation, and induces a response analogous to digitisation.
ASMODEUS therefore offers a dual purpose in generating static point clouds for
validating analytic techniques and dynamic simulations for comparing molecular
interactions across hypothetical distributions.

In Chapter 4, we implemented 2-channel PAINT SMLM with solvachromatic probes
to explore the distribution of membrane order, represented by point patterns marked
with GP values, at resolutions below the diffraction limit of light. We implemented a
software package, PLASMA, for identifying heterogeneity and partitioning these data
sets. Results on simulated data, derived from ASMODEUS, suggest that P-Check has
a 93% chance of detecting domains below 200nm in size, and at least a 64% chance
of detecting domains with overlap values between 0 and 2. Further, we find that the
quality of the partition returned by JOSEPH (quantified by the loU score) improves
with lower overlap and greater point density within domains. In experimental data,

results suggest that lipid domains exist in RAMA27 membranes and are more
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abundant than in synthetic membrane data. The domains identified in live cells
exhibited mean GP values that deviated significantly from the global average of their
host ROI. This could suggest a degree of regulated heterogeneity in lipid packing
across the plasma membrane. Domains ranged in sizes between 0.034um? and
0.293um? in area, suggesting radii of around 100-300nm, assuming circularity. As
these length scales are typically observed close to the diffraction limit of light, this form
of analysis may offer a unique and detailed insight into membrane heterogeneity and

the lipidome.

5.2 Suitability of methods

5.2.1 TOBLERONE

State-of-the-art methods in cell and organelle segmentation rely on machine and deep
learning frameworks. Such frameworks are typically built upon convolutional neural
networks (CellSeg?°, CellPose?°1273 and 3DCellSeg?'’) and may impose explicit cell
geometries (StarDist?*® and 3DStarDist®%6). With the advent of weakly-supervised
training regimes®®” and efficient image processing tools, such as SegmentAnything?>?,
it is likely that artificial intelligence (Al) will see increased integration into desktop
analysis pipelines in future. However, Al-based models warrant greater processing
power and annotated training data, which may not always be available. Classical
methods may be used in lieu of machine learning (ML), and may involve either simple
binarisation methods (Otsu, Huang or Ray thresholding33®339), binary map post-
processing (seed-point extraction®*°, Watershed algorithm?78341  gradient-based
detection®38), or some combination of both (Spot Segmentation and 3D Simple
Segmentation?®4). That said, classical methods can present analogous drawbacks, in

terms of increased parameterisation and geometric specificity.
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As discussed in Chapter 2, TOBLERONE draws topological image processing to the
attention of biologists and microscopists, as an alternative to existing classical
segmentation methods. This allows for complete, geometry-free cell segmentation on
the images, z-stacks and t-stacks acquired from conventional fluorescence
microscopy. We note that the algorithmic performance of TOBLERONE is dependent
on image quality, meaning that imaging artefacts may skew results. However, this is
a shared property among all image analysis tools and can be improved with pre-
processing techniques, such as denoising, image smoothing and image sharpening.
All implementations of TOBLERONE require a single parameter, and detailed
instructions for parameter estimation are listed in the methods (see Chapter 2). As a
method of TIA, TOBLERONE is invariant of geometric object properties and applicable
to images with a high degree of between-cell variation342:343,

TOBLERONE’s capacity to detect objects across a range of fluorescence intensities
is particularly applicable to segmenting FM under polarity-sensitive dyes. Such images
present a unique data type in that fluorescent emissions are taken from two channels
and are heterogeneous across both. As seen in Chapter 2, the algorithm has already
been used to compare differences in membrane order across C. gattii under different
growth media. Further, since development, TOBLERONE has been used in probing
membrane order among the fission yeast, Schizosaccharomyces japonicus and its
sister species Schizosaccharomyces pombe3’. The production of unsaturated acyl
tails relies on eukaryotic desaturases, which require molecular oxygen, and therefore
only occurs in aerobic environments®’. TOBLERONE has shown that S. japonicus can
regulate its own membrane fluidity by exploiting phospholipid acyl tail length

asymmetry, in the absence of unsaturated fatty acids in the membrane lipidome?’. This
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evolutionary principle allows S. japonicus to grow in both aerobic and anaerobic
conditions, whereas S. pombe cannot®’.

To summarise, we have here shown that topological image analysis techniques can
be used for segmentation of FM data. As a subset of TDA, the algorithms introduced
can probe for arbitrarily-shaped biological structures of any underlying topology. This
permits semi-automatic, reproducible segmentation of stainable cellular components
even in data sets with varying pixel intensities. While TOBLERONE and its
subsidiaries require greater parameter tuning and are less capable of distinguishing
adjacent cells than ML methods, the algorithms provide a suitable alternative for
researchers who lack computational resources and want to avoid the black box

approach presented by ML.

5.2.2 ASMODEUS

In Chapter 3, we introduce a novel method for simulating transmembrane PAD which
generates protein maps that match spatially-descriptive statistics derived from
experimental data. Existing SMLM simulation models (such as SuReSim?2%°,
FluoSim3®, SMeagol*®!, TestSTORM?3?, ThunderSTORM"®, LocMoFit'®’ and
SMIS303) generate localisations built on underlying geometries and ground truth
structures specified by user input. These methods simulate artefacts based on the
photophysical properties of fluorescent molecules to derive realistic SMLM data,
however, they require manual user input regarding point pattern distribution. Virtual-
SMLM344 offers an interactive simulator for SMLM acquisition, rather than simply
creating data, but is also limited to known ground-truth geometries. Simulators of this

form are specific to certain SMLM imaging modalities and require understanding of
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photophysical properties, such as photo-activation, bleaching and switching rates.
These are often taken to be constant, which is not necessarily a valid assumption®s.
ABMs model PAD by imposing biophysical behaviours on the trajectories of individual
agents, such as fixed-rate or variable diffusivity300:301.393  Other agent-based modelling
approaches have directly simulated lipid rafts as regions of the membrane which inhibit
protein diffusivity across multiple molecular species3#®. These simulations found
success in simulating dimerisation of the platelet- and megakaryocyte- specific
receptor for collagen glycoprotein VI, however, they are limited by the binary diffusivity
coefficient used in the model3*°. Additionally, they assume that lipid domains are fixed
in space and time, which contrasts with the literature3#¢-348, These models also require,
at minimum, knowledge of biophysical parameters such as molecule size3*. Very few
of these simulators take account of molecular interactions, but even then, they are still
limited by imposed geometry300:345,

With the advent of ASMODEUS, we can simulate localisation data with generalisable
geometries. We show that the simulator is capable of recapitulating the cluster
properties of input target distributions from simulated data. Further, the model can
track multiple populations of interacting molecular species and generate perturbations
which serve as proxies for natural and induced biophysical disruptions. Using
ASMODEUS as a spatiotemporal PAD simulator, we can optimise nucleation
parameters required to elicit clustering or a phase shift of distribution in simulated data.
This simulation technique can be used to generate SMLM data that represents both
non-activated and activated distributions, whilst also modelling a shift from one
distribution to another during simulation. Research into therapeutic mediators which
induce or disrupt TCR aggregation is ongoing*32%:297 and in silico modelling platforms

such as ASMODEUS could be used to inform mediator structure.
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In order to improve generalisability, we would need to take account of the explicit
biophysical processes, occurring on the plasma membrane, which force molecules to
adopt configurations defined by Ripley’s K function and other spatially-descriptive
statistics. As the temporal resolution of SMLM is increasingly improved, we afford
greater availability of data to validate new agent-based models and predict PAD. With
these developments, we may be able to determine important factors leading to lipid
raft formation and redistribution, while also predicting protein dynamics based on
phase affinity. With further finetuning, in silico modelling could be used for simulating

the effect of nanotherapeutics, which may lead to novel clinical applications.

5.2.3 PLASMA

Current methods of marked point pattern analysis rely on mark discretisation and
measures of colocalisation. This may be achieved through nearest-neighbour distance
analysis, the coordinate-based colocalisation value?3®, or scalable metrics such as
SODA?34, Clus-DoC3*° and LAMA?4t, The principle drawback of this approach is that
the quantitative information associated with each GP value, and therefore the relative
differences between adjacent molecules, is lost upon discretisation. Some second-
order characteristics can be used to determine correlations between the spatial
positions and marks of points in MPPs, such as Isham’s mark correlation function,
Stoyan’s kmm function (normed), the mark variogram and the mark covariance function
(unnormed)?33, These determine relative association between marked points as a
function of both distance and difference in marks. In general, the problem of non-
spatial clustering remains an open question in point pattern analysis. As such, in
Chapter 4, we introduce the PLASMA package, which offers a method of MPP

partitioning and systems for parameter estimation. This allows for parameter-free
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cluster analysis of marked point patterns, characterised by data with three or more
dimensions, of which not all are necessarily spatial.

We have endeavoured to overcome any drawbacks associated with the algorithms
introduced through PLASMA. Only two input parameters are required across the
analysis pipeline, which are automatically estimated from the input data by Gaussian
mixture modelling. P-Check is used as a measure of co-clustering, which functions on
discrete point patterns, and can determine whether underlying domains are present
within a data set. Furthermore, we develop a framework for applying TDA, and
specifically persistent homology, to marked point patterns. This is summarised in the
second algorithm, JOSEPH, which interprets the local mean mark value as a measure
of similarity between points. Notably, this summary statistic loses precision in sparser
data sets — however, SMLM often provides rich data sets'2%130, Although the workflow
presented here was initially developed for SMLM data, all algorithms in PLASMA are
applicable to generic MPP data, such as those acquired in seismology, agriculture and
spatial omics350-352,

With advancements in super-resolution imaging, SMLM methods are producing
increasingly information-rich data sets. Owing to the development of new
environmentally-sensitive probes and imaging methods, localisation data can now be
encoded with biophysical membrane properties, such as pH, membrane tension, and
guantification of lipid packing. As new polarity-sensitive fluorescent probes are
continuously developed and improved, there is greater potential for generating marked
point patterns which exceed the standard structural information typically obtained via
SMLM and allow for real-time visualisation of lipid-ordered nanodomains. This

archetype of big data necessitates specialised analytic techniques for quantification of
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marked point patterns, and so the methodologies introduced in PLASMA may be of
increasing interest in the foreseeable future.

In order to fully understand the nature of lipid rafts, SMLM modalities must be finetuned
to achieve greater precision and accuracy, in terms of both spatial localisation and in
photon detection across multiple channels. Further, by developing polarity-sensitive
probes with improved quantum efficiency, we will be better able to estimate lipid
packing across the plasma membrane, which will ultimately permit more accurate data
partitioning and nanodomain identification. As membrane probes with greater balance
between binding and dissociation rates are developed, and methods in SMLM become
increasingly computationally-efficient, image acquisition times are reduced. This will
allow for faster imaging of dense marked point patterns, which provides a clearer
representation of atypical lipid packing in live cells, without the bias of experimental
artefacts such as drift. In turn, this allows for more precise detection and localisation
of lipid nanodomains, and for tracking their dynamics. Through this, we may be able
to determine the role and behaviour of lipid rafts in biophysical processes, such as
signal transduction, mounting of the immune response and cancer progression, which

could have notable clinical impact.

5.3 Long-term outlook

Despite advances in experimental and analytic methods, several fundamental
guestions regarding the extent and impact of membrane order remain unanswered.
The complex interactions between lipid packing, membrane order and membrane
curvature, among other biophysical and continuum properties, remain largely
unmapped. To further advancement in theoretical and computational membrane

modelling, a precise functional relationship must be derived. This is complicated by
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the impact of substance and signal transport, across and along the membrane, on
membrane lipid order. Cholesterol has recently been shown to have a differential effect
on phospholipid and protein classes, with some molecules more sensitive than
others®. A detailed analysis of the molecular mechanisms underlying the effect of
cholesterol-induced membrane re-ordering, inter-leaflet translocation, and membrane
asymmetry stabilisation awaits future investigations. To provide in-depth studies of
these principles, further development of microscopic, computational, and experimental
systems is required. There is no universal solution for experimental design, and each
target requires careful probe selection and workflow optimisation — from a biochemical
perspective, systemic microscopy would benefit from small, efficient, and quantitative
labels, and this will require major collaborative efforts®>3. The increase in spatial
resolution afforded by super-resolution microscopy brings trade-offs in other image
quality metrics that are equally important for dissecting bioprocesses, such as
temporal resolution, sensitivity, imaging speed and phototoxicity®**. For SMLM, further
research is required to increase speed and live cell compatibility, validate deep
learning approaches and develop unsupervised machine learning for generalised
image reconstruction3,

The implementation of intelligent hardware systems, such as adaptive optics, may
compensate for aberration and prevent excessive imaging artefacts by reducing light
doses through selective illumination of the relevant parts of the sample. Self-driving
microscopes, which make use of deep reinforcement algorithms and probabilistic
optimisation methods, show promise for long-term assay planning and optimal
decision making. This will enable rapid, real-time modulation of acquisitions and
ensure that sufficient data are captured for all cell states, regardless of underlying

heterogeneity3®4. Synergising hardware with deep-learning models will enable
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superior pattern recognition, image reconstruction, denoising and information
inference. However, more rigorous validation methodologies will be required to
establish biological authenticity of computationally-augmented images and the
integrity of recovered signal intensities from techniques that enhance data
synthetically. Furthermore, strategies to effectively combine diverse datasets, while
retaining the specificity of individual experimental conditions, must be developed. This
will require major concerted efforts across interdisciplinary research domains. At the
very least, these studies await the advancement of both microscope hardware designs
and computational software systems, which can leverage deep learning while
accurately interpreting model outputs!®. As modern bio-image data becomes
increasingly complex, quantitative analyses and machine learning models are quickly
becoming the primary viable avenue for objective study.

The advancement of experimental and computational methods is necessary for further
derivation of clinically-relevant results. For instance, correlative analysis may enable
research into disorders such as multiple sclerosis, which are characterised by defects
in T cell signalling, as well as lipid, cholesterol, and glycosphingolipid metabolism?*?*,
The precise mechanism by which lipid packing disrupts and engages antigen sensing
and receptor signalling remains unclear. Future studies are required to determine the
relative contribution of associated cholesterol and lipid species in orchestrating
membrane order. Dynamic marked point pattern analysis may enable tracking of lipid
rafts, shedding light on the principles of domain migration in the immunological
synapse and how this influences the immune response. Further, accurate mapping of
receptor nanodomains which interact with cytoskeletal structures, related to the
synaptic scaffold, may elucidate understanding of signalling cascades®%2. How

membrane remodelling impacts the frequency of interactions between
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immunostimulatory receptors, such as Lck, and negative regulators, such as Lck-
inhibiting protein Csk, remains to be determined’®. These experimental challenges will
only be overcome with advances to imaging, spectroscopy and controlled cell-
activating systems. The aforementioned results would help establish the degree to
which lipid-mediated receptor organisation can influence signalling outcome in T cells,
and perhaps even its relation to malfunctions such as immune disorders. The impact
of receptor nanoscale organisation is now well-established, but immunomodulatory
nanomedicine analogues lag behind. Dynamic mathematical modelling of T cell
receptors, parameterised by real experimental data, could present clinical

applications, such as computationally-optimised immunotherapies.

5.4 Concluding remarks

In this work, we have aimed to develop TDA techniques for microscopy data from
micro- to nano-scales and to highlight the benefits of TDA in bioinformatics and
microscopy. Analytic method have been introduced for segmenting, modelling and
guantifying FM data across the range of spatial resolutions afforded by state-of-the-
art imaging modalities. We find that topological image analysis is a viable avenue for
segmentation and analysis of data derived from diffraction-limited fluorescence
microscopy. With ASMODEUS, we use agent-based modelling to produce advanced
PAD simulations which match distributions to target statistics derived from real data.
This generates new spatial point patterns which recapitulate the cluster properties of
realistic SMLM data and can be used as a framework for predicting hypothetical
interactions between molecular species. We have demonstrated that 2-channel
ratiometric PAINT SMLM acquisition combined with statistical cluster and

colocalisation analysis can serve as a basis for probing and mapping the nanoscale
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spatial organisation of ordered lipid domains in mammalian cell membranes. Results
suggest that ordered lipid domains segregate from lipid-disordered regions at the
nanoscale (~100-300nm). This highlights the potential for further membrane mapping
approaches and lays the groundwork for analysis of generalised marked point patterns
acquired by SMLM. In summary, this work highlights the importance of topological
guantification in non-spatial microscopy data, introduces novel analytic techniques for
identifying variations in biophysical membrane properties, and offers further insight
into both protein aggregation dynamics and the impact of lipid packing on the plasma

membrane.
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Appendix

7.1 Formulas

Calculation of Generalised Polarisation in Fluorescence Microscopy
The GP image is calculated under the following equation:

Il_GXIZ

GP=+—"2
L+GxI,

Here [; is the intensity profile in the image acquired in spectral channel j, with the first

channel corresponding to the ordered phase, and ( is the calibration factor or G factor.
This is equivalent to,

L400-460 — G X 1470530 Ispo-580 — G X Ig30-750
= and GP =

GP = 2
I400-460 T G X 1470530 Is00-580 + G X Ig20-750

for Laurdan and di-4-ANEPPDHQ respectively®>6. The G factor is used in the GP value
calculation to compensate for differences in the efficiency of photon collection in the
two channels. This calibration is performed by imaging dyes in a standard solution
under standard conditions such that the ratio of fluorescence in each channel is always

constant. The G factor is then calculated as,

 GPros + GProfGPros — GPres — 1
GPros + GProfGPrgs — GProp — 1

where G P, is the GP value of the respective dye in pure dimethyl sulfoxide (DMSO

— a chemical which dissolves polar and non-polar compounds), measured with the

same microscope setup and settings as those used for the real sample, and G P,y is
a reference value for the dye in DMSO%®. The G P,., may have a conventional value

already assigned. For example, under Laurdan, G P, = 0.207%¢. Generally, this value
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must be chosen so that the GP values for model membranes with liquid-ordered and

-disordered phases are separated at around GP = 0.

Calculation of sensitivity and specificity

Consider the matrix representation of a binary image, I. For each pixel (i,j), we
denote the pixel intensity in the matrix representation as [;;. We denote pixel (i,j) as
active if I;; = 1 and inactive if I;; = 0. Consider a ground-truth image matrix G and a
binarised segmentation of G, denoted S. Then we define pixel (i, j) as a true positive
if G;; =1 and §;; = 1, true negative if G;; = 0 and S;; = 0, false positive if G;; = 0
and S;; = 1, and false negative if G;; = 1 and S;; = 0. LetTP, TN, FP and FN denote

the number of true positives, true negatives, false positives and false negatives,
respectively. Then we define sensitivity as,

TP

Sens = ——
S = TP Y FN

or the fraction of true positive pixels over all active pixels, and define specificity as,

TN

Spec = TN T FP

or the fraction of true negative pixels over all inactive pixels?8l.

Derivation of error and step size for ASMODEUS

The average ratiometric error of point i is given by,

1
E; = WZ e;(r),

TER

where R is the set of radial values to iterate over (derived during calculation of the

Ripley’s K function®5”) and e;(r) is the scalar error at radius r, given by,
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(1K (r) — K ()]
K.(r) + K;(r) ’
e;(r) = . K;(r) — mr?
B K.(r) —mr?
\ 1, K;(r) < mr?

K;(r) > K. (r)

K.(r) = K;(r) > nr?

Here, K, (r) is the global target K function. The lower bound is set at rr? as this is the
expected distribution of the K function for a CSR point patterns?8, The step size of point

i is then calculated as,
D; = (Dmax - Dmin)Ei2 + Dpyin.

A guadratically decreasing step size was chosen based on preliminary results3°7.

Weighted proportion for P-Check

Let N € N be a finite number (here, the total number of random trials used in the
permutation test of P-Check). Then, for each k = 0,1, ..., N, let M,, € R3 be a marked
point pattern such that |My|=n (M, contains n points) and let X, =
{(x,y): (x,y,m) € M} be the spatial point pattern over which M, is defined. Then we
define the weighted proportion of M;, as,

_ Uim Y= H(x — x| = )1 = H(Imy; — my]))
i1 27=1H(|xi - x| - r)

Py

)

where x; € X, is the spatial coordinate of point i, m; is the associated mark of point i,
7 is the search radius, and H is the Heaviside function, which equates to 1 when its

input is positive and 0 otherwise3%8.

Intersection over union
Let M c R® be a marked point pattern and let X = {(x,v): (x,y,m) € M} be the

spatial point pattern over which M is defined. Suppose gi,92, ..,9x & X and
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C1,Cz, -y €y © X (for finite k,n), with g;Ng; =@Vi#j and ¢;N¢;=0Vi+j.
Here, we may interpret g,,9,,...,9gx to be the ground truth clusters in X and
¢y, Cy, ..., Cy, t0 be the clusters recovered from M (e.g. by JOSEPH). For any subset

y = {p1, P2 -, Pn} E X, we define the convex hull33 of y as the set,

N N
Conv(y) = {Z Aipj:A; =2 0V jand z A= 1}.
j=1 j=1

Let G and C be the union of all convex hulls of g4,9,,...,9x and cyq,¢, ..., Cp,

respectively. That is,

Then we define the intersection over union, I, of subsets g4, g2, ---, gx and ¢4, ¢, ..., Cp,

as,

o)
D)
a

Q
-
a

Formula for overlap of two Normal distributions
For two Normal distributions defined by f; = N(u4, 07) and f, = N(u,, o,) the overlap

between f; and f, is quantified as,

\op + 0y

0 = .
lpy — pal
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7.2 Schematics

Figure 7.1: Conceptual diagram of 2D and 3D TOBLE

RONE algorithm.
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Figure 7.2: Conceptual diagram of tempTOBLERONE algorithm.
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Figure 7.3: Conceptual diagram of ASMODEUS algorithm.
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Figure 7.4: Conceptual diagram of P-Check algorithm.
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Figure 7.5: Conceptual diagram of JOSEPH algorithm.
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7.3 Pseudocode

7.2.1 2DTOBLERONE

#Initialise:
#image is a matrix, for which each entry contains the intensity
of a pixel.
#p is the persistence threshold.
INPUT image, p
CALL rescale on image, setting minimum intensity to 0 and maximum
intensity to 1
#Calculate filtration - order pixels by intensity.
CALL as.vector on image to get imageVector
CALL order on imageVector to get filtration
CALL as.matrix on filtration to get filtrationMatrix
#Initialise union-find data structure:
#Segmentation stores several lists of pixels, with each list
corresponding to one connected component.
#r stores the root pixel of all pixels in a connected component.
#fe stores the index in Segmentation of all pixels in a connected
component.
#m stores the total number of connected components.
INITIALISE empty list Segmentation
INITIALISE zero vectors r and e with length equal to number of
pixels in image
INITIALISE m to O
#Perform persistent homology.
FOR ecach pixel index i in filtration
GET pixel coordinates of 1 from image
GET coordinates of all pixels in 3 by 3 neighbourhood around
pixel 1
SET filtrationValues as values of all neighbouring pixels
from filtrationMatrix
SET N to be the set of neighbours of i with entries in
filtrationValues lower than 1
IF N is empty
#This pixel is a root.
INCREMENT m by 1
INITIALISE new 1list at index m 1in Segmentation
containing pixel 1
SET value of e at position i to be m
SET value of r at position 1 to be 1
ELSE
#This pixel may be a root.
SET R to be the set of roots for all pixels in N (i.e. R =
r[N])
SET potentials to be the set of all roots in R whose intensity
in image is at most p different from the intensity of i in
image
IF potentials is empty
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#This pixel cannot connect to any existing
component in Segmentation.
IF intensity of pixel 1 in image is greater than

p
#This pixel is a root.
INCREMENT m by 1
INITIALISE new list at index m in
Segmentation containing pixel 1
SET value of e at position i to be m
SET value of r at position 1 to be 1
ELSE
#This pixel connects to the root of highest
intensity.

SET j to be the argmax of the intensities of all
roots in R (i.e. the root with highest intensity
in image)
SET n to be the entry of 7 in e (i.e. n = e[j])
APPEND i to the list in Segmentation at index n
SET value of e at position i to be n
SET value of r at position 1 to be j
#Merge all other components represented by roots
in R.
FOR each other root k in R
SET g to be the entry of kK in e (i.e. g= elk])
SET P to be the list in Segmentation at index

q

APPEND P to the list in Segmentation at index
n

SET the list in Segmentation at index g to be
empty

FOR each pixel z in P
SET value of e at position z to be n
SET value of r at position z to be j
#Delete empty lists.
FOR each entry k in Segmentation
IF k is empty
DELETE k from Segmentation
#Each entry in Segmentation now contains a list of pixels,
corresponding to each connected component.
#The vector r is returned for tempTOBLERONE, and may otherwise
be ignored.
RETURN Segmentation, r
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7.2.2 3DTOBLERONE

#Initialise:
#stack is a three-dimensional array (x, vy, z), for which each
entry contains the intensity of a voxel.
#p is the persistence threshold.
INPUT stack, p
CALL rescale on stack, setting minimum intensity to 0 and maximum
intensity to 1
#Calculate filtration - order voxels by intensity.
CALL as.vector on stack to get stackVector
CALL order on stackVector to get filtration
CALL as.array on filtration to get filtrationArray
#Initialise union-find data structure:
#Segmentation stores several lists of voxels, with each list
corresponding to one connected component.
#r stores the root voxel of all voxels in a connected component.
#e stores the index in Segmentation of all voxels in a connected
component.
#m stores the total number of connected components.
INITIALISE empty list Segmentation
INITIALISE zero vectors r and e with length equal to number of
voxels in stack
INITIALISE m to O
#Perform persistent homology.
FOR each voxel index i in filtration
GET voxel coordinates of i from stack
GET coordinates of all voxels in 3 by 3 by 3 neighbourhood
around voxel 1
SET filtrationValues as values of all neighbouring voxels
from filtrationArray
SET N to be the set of neighbours of i with entries in
filtrationValues lower than 1
IF N is empty
#This voxel is a root.
INCREMENT m by 1
INITIALISE new list at index m 1in Segmentation
containing voxel 1
SET value of e at position i to be m
SET value of r at position 1 to be 1
ELSE
#This voxel may be a root.
SET R to be the set of roots for all voxels in N (i.e.
R = riN])
SET potentials to be the set of all roots in R whose
intensity in stack 1s at most p different from the
intensity of i in stack
IF potentials is empty
#This wvoxel cannot connect to any existing
component in Segmentation.
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IF intensity of voxel i in stack is greater than

p
#This voxel is a root.
INCREMENT m by 1
INITIALISE new list at index m 1in
Segmentation containing voxel 1
SET value of e at position i to be m
SET value of r at position i to be 1
ELSE
#This wvoxel connects to the root of highest
intensity.

SET j to be the argmax of the intensities of all
roots in R (i.e. the root with highest intensity
in stack)
SET n to be the entry of 7 in e (i.e. n = e[j])
APPEND i to the list in Segmentation at index n
SET value of e at position i to be n
SET value of r at position 1 to be j
#Merge all other components represented by roots
in R.
FOR each other root k in R
SET g to be the entry of kK in e (i.e. g= elk])
SET P to be the list in Segmentation at index

q

APPEND P to the list in Segmentation at index
n

SET the list in Segmentation at index g to be
empty

FOR each voxel z in P
SET value of e at position z to be n
SET value of r at position z to be j
#Delete empty lists.
FOR each entry k in Segmentation
IF k is empty
DELETE k from Segmentation
#Each entry in Segmentation now contains a 1list of voxels,
corresponding to each connected component.
RETURN Segmentation
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7.2.3tempTOBLERONE

#Initialise:
#stack is a three-dimensional array (x, y, frame). The first two
dimensions correspond to pixel coordinates. The third dimension
is frame number (time).
#p 1is the persistence threshold.
INPUT stack, p
INITIALISE empty list frameSegmentations
INITIALISE empty list frameRoots
#Perform 2DTOBLERONE on all frames separately.
FOR each time t
SET image as the two-dimensional matrix 1in stack
corresponding to the frame at time t
CALL 2DTOBLERONE with inputs image, p
GET outputs Segmentation and r
APPEND Segmentation to frameSegmentations
APPEND r to frameRoots
#Initialise union-find data structure:
#fspatiotemporalSegmentation stores several lists of pixels and
the times they are active, with each list corresponding to one
connected component.
#fspatiotemporalRoots stores the spatiotemporal root pixel of all
pixels in a connected component.
#fe stores the index in spatiotemporalSegmentation of all pixels
in a connected component.
#m stores the total number of connected components.
INITIALISE empty list spatiotemporalSegmentation
INITIALISE empty zero vectors e and spatiotemporalRoots with
length equal to number of pixels across all frames in stack
INITIALISE m to O
FOR each time t
#Compare each frame to the next frame in series.
SET Segmentation as the entry in frameSegmentations at index
t
SET Roots as the entry in frameRoots at index t
SET nextSegmentation as the entry in frameSegmentations at
index t + 1 (the next frame)
SET nextRoots as the entry in frameRoots at index t + 1 (the
next frame)
#Iterate over all components in Segmentation.
FOR each object in Segmentation
GET the root r of the object from Roots
SET N to be the set of all pixels corresponding to the
object
IF entry of r in spatiotemporal roots is 0 (i.e. r has
not been visited before)
INCREMENT m by 1
INITIALISE new list at index m in
spatiotemporalSegmentation
FOR ecach pixel i in N
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SET value of spatiotemporalRoots at position
ito r
SET value of e at position i to be m
APPEND 1 to list at index m in
spatiotemporalSegmentation
SET sr to be the spatiotemporal root of r (i.e. sr =
spatiotemporalRoots[r])
SET sm to be the entry of r in e (i.e. sm = elr])
SET nextN to be the set of all pixels in N at the next
frame (at time t + 1)
GET the roots of all pixels in nextN from nextRoots and
SET to R
GET the spatiotemporal roots of all pixels in nextN
from spatiotemporalRoots and SET to sR
#Check whether a spatiotemporal root has already been
established.
IF sR is empty
#Check whether number of roots has changed.
IF R is empty
#Do nothing, object has disappeared.
ELSE IF there is only one root in R
#Connect object across frames by assigning
the same spatiotemporal root.
FOR each pixel i connected to this root
SET value of spatiotemporalRoots at
position i to sr
SET value of e at position i to be sm
APPEND i to list at index sm in
spatiotemporalSegmentation
ELSE
#Multiple objects are present in next frame,
object may have split.
SET n to be the root in R with brightest
intensity in stack
FOR each pixel i connected to n
SET value of spatiotemporalRoots at
position i to sr
SET value of e at position i to be sm
APPEND i to 1list at index sm in
spatiotemporalSegmentation
DELETE n from R
#Create a new spatiotemporal root for all
other objects.
FOR each other root k in R
INCREMENT m by 1
INITIALISE new list at index m 1in
spatiotemporalSegmentation
FOR each pixel i connected to k
SET value of spatiotemporalRoots
at position i to k
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SET value of e at position 1 to be
m
APPEND i to 1list at index m in
spatiotemporalSegmentation
#Each entry in spatiotemporalSegmentation now contains a list
of pixels and the times they are active, corresponding to each
connected component.
RETURN spatiotemporalSegmentation
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7.2.4 ASMODEUS

#Initialise:
#Dmin - Minimum step size.
#Dmax - Maximum step size.

#ROI - A vector of two values representing the width and height
of the region of interest, respectively. The region of interest
is considered from the origin, so pointCloud coordinates must
be translated accordingly.

#times - Number of time steps or iterations of the simulation.

#pointCloud - A matrix or data frame with two columns: x and vy
coordinates of each point. Used as a target distribution from
which target K function is drawn.

#rmax - Numeric value, the maximum radius for each K function
to be calculated at.
#nrval - Numeric value, the number of equally-spaced radial

values for each K function to be calculated over.
#target - Manual input for target function. Can be left as null
as long as a target pointCloud is provided.
#numberOfPoints - Number of points to use in simulation.
#initialDistribution - The initial frame of the simulation, used
to specify pre-determined spatial organisation. If left null, a
uniform random distribution will be used.
INPUT Dmin, Dmax, ROI, times, pointCloud, rmax, nrval, target,
numberOfPoints, initialDistribution
#Calculate target K function from pointCloud (if pointCloud is
given) .
IF pointCloud is given (not null)
CALL RipleyKFunction on pointCloud, with r-axis defined on
the range of 0 to rmax spaced by nrval intervals (see
Introduction for formula)
SET output as target
SET numberOfPoints as number of rows in pointCloud
IF target is not given (null)
END: not enough information to perform simulation
#Generate initial distribution.
IF initialDistribution is given (not null)
SET currentCloud as initialDistribution
SET numberOfPoints as number of rows in initialDistribution
ELSE
SET currentCloud as a completely spatially random
distribution, defined over ROI with numberOfPoints points
#Initialise list of frames to store the point pattern at each
time frame.
INITIALISE empty list frames
#Iterate over each time frame.
FOR each time t in times
#Calculate the K function of currentCloud.
CALL RipleyKFunction on currentCloud, with r-axis defined on
the range of 0 to rmax spaced by nrval intervals (see
Introduction for formula)
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SET output as currentKFunction
#Calculate error between currentKFunction and target for
each point.
#fcurrentErrors is a list containing the average error for
each point in currentCloud.
CALL errorFunction on currentKFunction to calculate error
between currentKFunction and target for each point (see
Appendix for formula)
SET output as currentErrors
#O0ffset position of each point in currentCloud.
FOR each point in currentCloud
#Calculate offset for each point using stepSize.
GET error e of point from currentErrors
CALL stepSize on e with parameters Dmin and Dmax (see
Appendix for formula)
SET output as step
SET randomAngle to be a random number between 0 and 2 *
pi
SET coordinates of the point in currentCloud by moving
point along a path of length step in the direction of
randomAngle
#Once all points have been updated, append this new
cloud to the list of frames.
APPEND currentCloud to frames
#At the end of this process, frames contains a point cloud for
each time frame.
RETURN frames
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7.2.5 P-Check

#Initialise:

#markedPointPattern - A marked point pattern. Matrix or data
frame with first three columns corresponding to x, y and discrete
mark.

#radius - Suspected domain radius.
#numberOfTrials - Number of trials to run in the permutation
test.

INPUT markedPointPattern, radius, numberOfTrials
#Calculate the distance matrix of all points.
INITIALISE zero matrix distanceMatrix which will store the
distance between all pairs of points
FOR each point in markedPointPattern
FOR each other point in markedPointPattern
SET corresponding entries in distanceMatrix equal to
distance between the points
#Calculate weighted proportion of markedPointPattern.
CALL calculateWeightedProportion with distanceMatrix, radius and
marks from markedPointPattern (see Appendix for formula)
SET output as PO
#Perform permutation test:
#Create an empty list to store the weighted proportion of each
random trial.
INITIALISE empty list allProportions
#Iterate over all trials.
FOR trial k in numberOfTrials
CALL sample on third column of markedPointPattern - this
randomises the marks
CALL calculateWeightedProportion with distanceMatrix,
radius and marks from markedPointPattern (see Appendix for
formula)
SET output as Pk
APPEND Pk to allProportions
#Calculate and return p-value.
SET pvalue as percentage of values in allProportions which are
greater than PO
RETURN pvalue
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7.2.6 JOSEPH

#Initialise:

#markedPointPattern - A marked point pattern. Matrix or data
frame with first three columns corresponding to x, vy and
quantitative mark.

#radius - Suspected domain radius.
#deviance - Acceptable difference from mean mark wvalue of
cluster.

INPUT markedPointPattern, radius, deviance
#Calculate the distance matrix of all points.
INITIALISE zero matrix distanceMatrix which will store the
distance between all pairs of points
FOR each point in markedPointPattern
FOR each other point in markedPointPattern
SET corresponding entries in distanceMatrix equal to
distance between the points
#Determine adjacency matrix of all points.
INITIALISE zero matrix adjacencyMatrix, a logical matrix which
stores whether the distance between each pair of points is less
than the given radius
FOR ecach index in distanceMatrix
IF the entry at the index in distanceMatrix is less than
radius
SET the entry at the same index in adjacencyMatrix to
be 1
#The neighbourhood of each point is now stored in
adjacencyMatrix.
INITIALISE empty vector differencesVector
FOR each point in markedPointPattern
GET the point's neighbourhood from adjacencyMatrix
GET average mark ml of all points in the neighbourhood
GET the point's mark m2 from markedPointPattern
APPEND absolute difference between mlI and m2 to
differencesVector
#Calculate filtration - order points by value in
differencesVector.
CALL order on differencesVector to get filtration
#Initialise union-find data structure:
#Clusters stores several 1lists of points, with each 1list
corresponding to one connected component (cluster).
#r stores the root of all points in a connected component.
#e stores the index in Clusters of all points in a connected
component.
#m stores the total number of connected components.
INITIALISE empty list Clusters
INITIALISE zero vectors r and e with length equal to number of
points in markedPointPattern
INITIALISE m to O
#Perform persistent homology.
FOR each point index i in filtration
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GET neighbourhood of point i from adjacencyMatrix
SET N to be the set of neighbours of point i with entries in
filtrationValues lower than 1
IF N is empty
#This point is a root.
INCREMENT m by 1
INITIALISE new list at index m in Clusters containing
point 1
SET value of e at position i1 to be m
SET value of r at position 1 to be 1
ELSE
#This point may be a root.
SET R to be the set of roots for all points in N (i.e.
R = r[NJ])
SET potentials to be the set of all roots k in R such
that the absolute difference between the mark of k and
the mark of i is at most deviance
IF potentials is empty
#This point cannot connect to any existing
component in Clusters. This point is a root.
INCREMENT m by 1
INITIALISE new list at index m in Clusters
containing point 1
SET value of e at position i to be m
SET value of r at position i to be 1
ELSE
#This point connects to the root with lowest
value in differencesVector.
SET j to Dbe the argmin of the wvalues of
differencesVector for all roots in R
SET n to be the entry of 7 in e (i.e. n = e[j])
APPEND i to the list in Clusters at index n
SET value of e at position i to be n
SET value of r at position 1 to be j
#Merge all other components represented by roots
in R.
FOR each other root k in R
SET g to be the entry of kK in e (i.e. g = e[k])
SET P to be the list in Clusters at index g
APPEND P to the list in Clusters at index n
SET the list in Clusters at index g to be
empty
FOR each point z in P
SET value of e at position z to be n
SET value of r at position z to be j
#Each entry 1in Clusters now contains a 1list of points,
corresponding to each connected component.
RETURN Clusters

Page | 226



	CC_BY_UoB_eTheses_copyright_notice_A4.pdf
	Panconi2024PhD_submitted.pdf

