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Abstract

In this thesis we study the noise in Coulomb blockaded quantum dots in the vicinity of the

peak of conductance in a full quantum treatment using the Keldysh technique. In previous

work on this system, the emphasis have been on master equation approaches in the shot

noise regime. In the vicinity of the peak of conductance it remained unclear if this classical

approach is valid since we have two strongly interacting charging states and a full quantum

treatment is necessary. Using our full, quantum mechanical approach we find an analytical

expression for the noise valid from the low bias regime all the way to the shot noise regime

valid in the vicinity of peak of conductance. In the shot noise regime we recover the result

from the master equation approach.
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Chapter 1

INTRODUCTION

1.1 Structure of the thesis

This thesis is focused on noise in mesoscopic systems. In chapter 1 we give a non-technical

introduction to the basic concepts covered in this thesis. The basic knowledge needed

about path integrals and Green functions is covered in chapter 2. The first new results are

introduced in chapter 3, where the tunneling density of states is derived in an approach

introduced by Sedlmayr et al. [1], and then re-derived within a new approach developed for

making the generalisation to noise possible. Chapter 4 is the core of this thesis, where the

noise of a Coulomb blockaded quantum dot in calculated using the method developed in

chapter 3. Constructive bosonisation is introduced in chapter 5 and will be used in chapter

6 where we discuss noise in Kondo system and suggest a new interesting problem for the

future. We will in this thesis set ~ = kB = 1. We have also used the standard notation that

unless the limits of the integrals are given they are from -∞ to ∞.

1.2 Mesoscopic systems

In this thesis we will study quantum transport in mesoscopic systems. These are systems

that are sufficiently big for statistical physics to hold, but small enough to contain signifi-

cant fluctuations. These length scales are today accessible thanks to the great development
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in nano-fabrication technologies [2, 3, 4, 5]. In these structures the most important type

of experiments are transport measurements. These experiments are an average of many

readings from a measuring device. In these experiments each individual reading is random.

This randomness has several sources, for example imperfections in the measuring device,

temperature fluctuations or fluctuations that are due to quantum effects. The last type of

fluctuations are the most interesting ones and the source of a lot of information about the

correlations in electron systems.

1.3 Counting electrons

At this stage there are two approaches: either we average out all fluctuations or we study

the whole statistics. The first alternative is the most common since it is the simpler to per-

form experimentally. For transport it gives the average current in the system. The second

approach is to measure the statistics of the transported charge. This requires a lot more

data, but has the benefit that it provides a lot more information about the system than the

average current.

1.3.1 Some probability theory

To build a theory of the statistics of the fluctuations in the electron transfer in nano-

structures [6] we start with reminding the reader about some basic concepts from probability

theory. If we want to perform a measurement counting a random event during a time

interval ∆t, the outcome of the measurement, N , is a random number. If we perform several

experiments we can obtain the average, 〈N〉, by adding all the outcomes and dividing by the

number of measurements. Even more useful than the average is the probability distribution

of the outcomes. The distribution gives the probability PN to obtain an outcome N if a
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measurement is performed on the system. The distribution is obtained by performing a

number of experiments Mtot on a system. The probability to obtain outcome N is then the

number of experiments, MN , with the outcomeN divided by the total number of experiments

Mtot, I.e. PN = MN/Mtot.

∑
N

PN = 1. (1.3.1)

Using the distribution we can now calculate the average

〈N〉 =
∑
N

NPN , (1.3.2)

and the variance of the distribution also know as the second cumulant is given as

〈〈N2〉〉 = 〈(N − 〈N〉)2〉 =
∑
N

N2PN −
(∑

N

NPN

)2

. (1.3.3)

In quantum transport theory, where N refers to the number of electrons that passes through

the system in a given time interval ∆t, the variance is usually referred to as the noise.

In most situations this description of the distribution is not the most convenient. Let us

introduce the characteristic function

Λ(χ) =
〈
eiχN

〉
=
∑
N

PNe
iχN , (1.3.4)

where we have introduced the measuring field χ. We can now obtain all the cumulants by

taking derivatives of ln Λ(χ) with respect to χ at the point χ = 0. In appendix B we discuss

what information can be gained from the different cumulants for a non-interacting electron

systems. The characteristic function also has the convenient property that if two processes
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are statistically independent, i.e.

P tot
N =

N∑
M=0

P 2
MP

1
N−M , (1.3.5)

where P i
M denotes the probability to obtain the value M in a measurement of process,

i = 1, 2. The total characterisitic function is given by the product of the two characteristic

functions, Λtot(χ) = Λ1(χ)Λ2(χ).

1.4 Noise

In a nano-structure we are interested in counting the number of electrons that transfer from

one reservoir to another during a time interval ∆t. The quantity we count is the charge Q

and on average Q = ∆tI where I is the average current. We start with a simple system

where electrons can only be transferred from the left to the right. The probability for one

electron to be transferred during a small time interval, dt, is Γdt � 1, and the probability

that it will be reflected is 1 − Γdt, where we have introduced the transfer rate Γ. In this

simple example we chose to neglect processes where more than one electron is transferred

at the same time. The characteristic function is now given by

Λdt(χ) =
〈
eiχQ/e

〉
= (1− Γdt) + Γdteiχ. (1.4.1)

Since the electrons, with charge e, pass through independently, we can rewrite the charac-

teristic function as a products of the individual events,

Λ∆t(χ) = (Λdt(χ))∆t/dt = exp
(
Γ∆t

(
eiχ − 1

))
= exp

(
Ñ
(
eiχ − 1

))
, (1.4.2)

where Ñ = Γ∆t is the average number of electrons transferred. If we go back to the

probabilities PN by taking the inverse Fourier transform on the characteristic function we

4



obtain

PN =

∫ 2π

0

dχ

2π
Λ(χ)e−iNχ ≈

∫ 2π

0

dχ

2π
e−iχN+Ñ(eiχ−1)

=
ÑN

N !
e−iÑ∆tθ(N), (1.4.3)

which is the Poisson distribution. Here θ(N) is the unit step function. This idealised system

does is fact exist in the form of tunneling junctions where the intervals between successive

tunneling events are so long that the electrons are effectively non-interacting. The opposite

limit is where we have perfect transmission T=1. In this situation the noise is zero. In

this thesis we are interested in the intermediate regime where the tunneling is small but

interactions play a large role. We start by defining the noise power spectrum [7, 8, 9] in

terms of the current operator, I,

S(ω) =

∫ ∞
−∞

dteiωt〈{δI(t), δI(0)}〉. (1.4.4)

Where {., .} denotes the anti commutator. The noise power spectrum consists of two parts

one coming from thermal fluctuations called Nyquist-Johson noise [10, 11]. The other is the

shot noise that originates the discreteness of the charge of the electrons [12]. Thermal noise

in equilibrium is related to the conductance G by the fluctuation-dissipation relation

S = 4kBTG, (1.4.5)

as long as ~ω � kBT . From this it is clear that beyond the conductance we cannot obtain

any new information about the transport from the thermal noise.

In contrast to the thermal noise, shot noise in a system driven out of equilibrium by an

applied bias voltage V contains useful information about the correlations of the electrons

which is not included in the conductance. In non-interacting fermionic systems we obtain
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the maximal shot noise value

SPoisson = 2eI, (1.4.6)

which is proportional to the average current I. This Poisson limit is used as a reference

point in interacting systems, and the Fano factor is defined as

f =
S(0)

2eI
. (1.4.7)

In most systems the interactions suppress the noise, and we obtain a Fano factor less then 1.

For instance, macroscopic conductors have zero shot noise because inelastic electron-phonon

scattering averages out the current fluctuations. It is also common that the deviation from

Poisson statistics is characterised by an effective charge

e∗ =
S(0)

2I
. (1.4.8)

This is discussed in more detail in chapter 6, where Kondo systems are studied. For non-

interacting systems the Pauli principle, which forbids multiple occupancy of the same single-

particle state, will introduce correlations. A typical example is a ballistic point contact where

S = 0 because the stream of incoming electrons is completely correlated by the Pauli prin-

ciple.

Over a very wide range, both the thermal and shot noise power do not depend on fre-

quency, also known as a white noise spectrum. At low frequencies there is a third source of

noise, the 1/f noise (or flicker noise) caused by random motion of impurities, which produce

time-dependent fluctuations in the conductance. For low frequencies this noise is completely

dominant and thus it is important to take into account when experiments are performed.

But of course other types of noise will of also be present in experiments, and should be taken

6



into account.

1.5 Quantum dots

A quantum dot [4, 5, 6, 13, 14] is a small conducting device where up to several thousands

electrons are confined in a region of linear size of about 0.1−1µm. It is constructed by form-

ing a two-dimensional electron gas in the interface region of a semiconductor heterostructure

and applying metallic gates to further confine the electron number and size of the dot, see

Fig. 1.1. Since the electron motion is confined in all spatial directions we will consider the

dot zero-dimensional in this thesis. To measure the transport properties of the dot it will

be coupled to leads, and a current will be driven through the system by an applied bias

voltage V . The coupling to the leads can be experimentally controlled. There are two in-

teresting situations, open and closed dots. In an open dot the coupling to the leads is very

strong and the transport of electrons through the dot is classically allowed. In the closed or

isolated quantum dot the point contacts are pinched off and effective barriers are formed,

so that transport is only possible through tunneling. The number of electrons on the dot

is described classically by the capacitance, C, of the dot. The energy required to add one

electron is given by e2/C. In a typical quantum dot made of GaAs, the charging energy for

adding one additional electron Ec = e2/C ≈ 1meV [13].

In this thesis we will focus on closed quantum dots, where the barriers are big enough

for the transmission to be small, i.e. G � e2/~. The second condition that kT � Ec ≈

1meV = 12K is to guarantee that the charging energy is not washed away. This condition

is always fulfilled in the low temperatures used in experiments.

The quantisation of the energy levels in the closed quantum dot is one of the key differ-

ences between classical and quantum mechanics. We will take a look at the statistics of the

7



common lateral dot, the current flows within the plane
to which the electrons are confined; in a vertical dot
(Reed et al., 1988), the current flows perpendicular to
the plane. Quantum dots are produced by several tech-
niques. A typical example of a lateral dot and its fabri-
cation method are illustrated in Fig. 1(a): on the right
is an electron micrograph of the dot and on the left is
a schematic drawing. A layer of AlGaAs is grown on
top of a layer of GaAs by molecular-beam epitaxy. Elec-
trons accumulate at the GaAs/AlGaAs interface to form
a two-dimensional electron gas (their motion in the verti-
cal direction is confined to the lowest state of a quantum
well). Metal gates (lighter regions in the micrograph)
are created at the top of the structure by electron-beam
lithography. A negative bias applied to the top metal
gate depletes the electrons under the gate and restricts
them to a small region (the dark central region in the
micrograph). The dot is coupled to the bulk 2D electron-
gas regions by two individually adjustable point contacts.
A voltage Vsd applied between the source and the drain
drives a current I through the device. The linear conduc-
tance is determined from G = I/Vsd in the limit of small
Vsd. The shape and size of the dot can be controlled
by voltages Vg1 and Vg2 applied to two shape-distorting
gates. The ability to control the dot-lead couplings as
well as the dot’s shape and area allows us to study a
continuous range of physically interesting situations.

A schematic view of another lateral dot (Oost-
erkamp et al., 1997) is shown in Fig. 1(b). The lighter
areas represent the metal gates. The darker area con-
tains the electrons: the central region is the dot itself,
connected by point contacts to the large 2D electron-gas
regions on the left and right. The left and right pairs of
gates control the dot’s barriers (i.e., its degree of open-
ness), while the central pair of gates is used to vary its
shape and size.

The confined electrons are typically ∼ 50−100 nm be-
low the surface. The effective mass of an electron in GaAs
is rather low: m∗ = 0.067 me. A typical sheet density of
ns ∼ 4 × 1011 cm−2 corresponds to a Fermi wavelength
of λF = (2π/ns)1/2 ∼ 40 nm (about two orders of mag-
nitude larger than in a metal) and Fermi energy of EF ∼
14 meV. The mobility of GaAs/AlGaAs heterostructures
is in the range µe ∼ 104− 106 cm2/V·s, leading to a typ-
ical mean free path of l = vF m∗µe/e ∼ 0.1− 10 µm (vF

is the Fermi velocity). Electron transport in submicron
dots with the higher mobility values is thus ballistic. To
observe quantum coherence effects it is usually necessary
to have a mean single-particle level spacing ∆ in the dot
that is comparable to or larger than the temperature. For
a dot with an effective area of A ∼ 0.3 µm2, the spacing
∆ = πh̄2/m∗A ∼ 11 µeV can be resolved at temper-
atures of ∼ 100 mK (corresponding to kT = 8.6 µeV).
The lowest effective electron temperatures attained using
dilution refrigerators are ∼ 50 mK.

FIG. 1. Quantum dots: (a) a quantum dot used by Folk et al.
(1996). On the right is a scanning electron micrograph of the
dot (top view), and on the left is a schematic drawing of the
device. Electrons are trapped vertically in the interface of a
GaAs/AlGaAs heterostructure, and form a 2D electron gas
(darker area). Their lateral confinement to the dot region
is achieved by applying a negative voltage to the top metal
gate (lighter shade), depleting the electrons underneath. The
dot is coupled to two leads (source and drain) through point
contacts. Two gate voltages Vg1 and Vg2 can be varied to
change the shape and area of the dot. (b) A diagram of a
micrograph of another dot by Oosterkamp et al. (1997). The
darker area includes the dot region (center) and the two large
2D electron-gas areas on the left and right (source and drain
regions). The lighter shade represents the metal gates. The
dot’s size is controlled by the middle pair of gates, and its
tunnel barriers can be varied by the pairs of gates on the left
and on the right.

To observe charge quantization in the dot, two condi-
tions must be satisfied. First, the barriers must be large
enough that the transmission is small. This gives the con-
dition G$ e2/h (i.e., the dot is almost isolated). Second,
the temperature must be low enough that the effects of
charge quantization are not washed out. The dot’s abil-
ity to hold charge is described classically by its average
capacitance C. Since the energy required to add a single
electron is ≈ e2/C per electron in the dot, we have the
condition kT $ e2/C. A typical charging energy of a
GaAs disk of radius 0.2 µm is EC = e2/C ∼ 1000 µeV,
and the condition kT $ e2/C is always satisfied at the
low temperatures used in experiments. The tunneling of
an electron into the dot is usually blocked by the clas-
sical Coulomb repulsion of the electrons already in the
dot, and the conductance is small. This phenomenon is
known as Coulomb blockade. But by changing the gate
voltage Vg we can compensate for this repulsion, and at
the appropriate value of Vg the charge on the dot will
fluctuate between N and N + 1 electrons, leading to a
maximum in the conductance. This leads to so-called
Coulomb-blockade oscillations of the conductance as a

3

Figure 1.1: Micrograph of a quantum dot, taken from [15]. Here Vg1 and Vg2 are gate voltages
used to control the size and number of electrons on the dot. To drive the system out of
equilibrium we will later add a bias difference over the point contacts, that are connected
to the leads.

quantum states of a quantum dot consisting of many electrons. We will start by analysing

how non-interacting electrons distribute over the quantum dot. Each level, k, is either empty

or filled, with occupancy nk = 0, 1: all other occupancies are forbidden by the Pauli princi-

ple. A many-electron state is now described by the set {nk}, and the energy of many particle

the state is E =
∑

k Eknk where Ek is the energy of each level. In the ground state the elec-

trons occupy the lowest available energy levels. To create excitations in a dot with a fixed

number of electrons we take one electron in state k and move it to an empty level k′. This

gives an excitation energy Es = Ek′ − Ek. In the first generation we have one electron-hole

pair excitation, in the second generation we add one more particle-hole excitation, and so

on. If the lowest excitation has excitation energy δs, a basic question is how fast the number

of states grows, when we allow a certain excitation energy E? The answer to this question

is that this number grows exponentially. So far we have only considered non-interacting

systems and the next question is of course what happens when we allow interactions? For a

system with weak interactions the answer is not much. The reason for this is that there are

still discrete states when interactions are taken into account, and the rules for occupation

is essentially the same as for non-interacting systems. So at an increasing number of levels

the excitation spectrum becomes continuous, and the dot is nothing but an isolated piece of

metal. We know from Fermi liquid theory that the interaction effects can be disregarded and
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we can expect the same behaviour as for a non interacting system. To see when interactions

do play a role [13, 14] let us start from a formal Hamiltonian where the interactions are

taken into account and spin degeneracy is assumed,

H =
∑
iσ

Eic
†
iσciσ +

∑
ijlm

∑
σσ′

c†iσcjσUijlmc
†
lσ′cmσ′ , (1.5.1)

where i, j, l and m are orbital levels of the dot and ciσ is the electron annihilations operator in

the level i with spin σ. The first sum gives the contribution of the non-interacting electrons

and Ei is the energy of level i. The second sum gives the contribution from the Coulomb

interaction and Uijlm is the matrix element of the interaction U(r1 − r2):

Uijlm =

∫
dr1dr2ψ(r1)ψ∗(r1)U(|r1 − r2|)ψ(r2)ψ∗(r2), (1.5.2)

where ψ(ri) are the wave functions of the corresponding levels. To simplify the interaction

we assume that the energy spectrum consists of a randomly spaced set of levels with a mean

level spacing ∆, which is small compared to all other relevant energy scales. We start by

neglecting all the off-diagonal terms of U , which is a good approximation if the dimensionless

conductance g = ET/∆ ≈
√
N →∞ [14, 16], where ET is the Thouless energy. Neglecting

the off-diagonal terms means that we have three types of interactions left: spin interaction,

Cooper interactions and finally charging effects. Of these the first two can be neglected if

the level spacing is larger than the energy of these interactions. Then the most important

interaction is the charging energy. It provides the dominant energy difference between states

that differ in the number of particles. Hence the interacting part of the Hamiltonian now

takes the form

Hint =
1

2
EcN̂

2, (1.5.3)
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where N̂ is the total number operater and Ec = e2/2C is the charging energy of the dot

from the total capacitance C. In term of eq. (1.5.2) we can write Ec in the form

Ec ∼
1

2

∫
d2r

L2
V (r), (1.5.4)

where V (r) is the Coulomb interaction. We now recover the expression in terms of the

capacitance if we insert the Coulomb potential into the integral. The total Hamiltonian of

the system is now

H− µN̂ =
∑
i

Eic
†
ici +

Ec
2
N̂2, (1.5.5)

where µ is the chemical potential.

1.5.1 Coulomb blockade

The tunneling of one electron onto the dot is usually blocked by the classical Coulomb re-

pulsion of electrons already on the dot, and the conductance is exponentially suppressed.

This phenomenon is known as Coulomb blockade. By tuning the gate voltage, Vg, we can

reach the situation where the energy of having N or N+1 electrons on the dot is degenerate.

At the degeneracy point, the charge of the dot will fluctuate between N and N + 1, and at

this point we will obtain a finite conductance. In Fig. 1.2 we see the dependence of the con-

ductance on the gate voltage. Each peak corresponds to a degeneracy point. At sufficiently

low temperature these peaks will be spaced almost uniformly in the gate voltage, Vg, by an

amount essentially proportional to the charging energy, Ec.

Coulomb blockade was first observed in tunneling junctions containing a small metallic

particle which corresponds to the classical regime ∆ � T � EC . In this regime where

the tunneling occurs through a large number of levels, (∼ T/∆), a transport theory was

introduced by Kulik and Shekhter [17] and further developed by Averin and Likharev [18].
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We study atomiclike properties of artificial atoms by measuring Coulomb oscillations in vertical
quantum dots containing a tunable number of electrons starting from zero. At zero magnetic field
the energy needed to add electrons to a dot reveals a shell structure for a two-dimensional harmonic
potential. As a function of magnetic field the current peaks shift in pairs, due to the filling of electrons
into spin-degenerate single-particle states. When the magnetic field is sufficiently small, however,
the pairing is modified, as predicted by Hund’s rule, to favor the filling of parallel spins. [S0031-
9007(96)01418-4]

PACS numbers: 73.20.Dx, 72.20.My, 73.40.Gk

The “addition energy” needed to place an extra elec-
tron in a semiconductor quantum dot is analogous to the
electron affinity for a real atom [1]. For a fixed number of
electrons, small energy excitations can take these electrons
to a higher single-particle state. However, due to Coulomb
interactions between the electrons, the addition energy is
greater than the energy associated with these excitations.
Both the addition energy spectrum and the excitation en-
ergy spectrum are discrete when the Fermi wavelength and
the dot size are comparable. Until now a direct mapping of
the observed addition energy, and the single-particle exci-
tation energy, to a calculated spectrum has been hampered,
probably due to sample specific inhomogeneities [2].
The three-dimensional spherically symmetric potential

around atoms gives rise to the shell structure 1s, 2s, 2p,
3s, 3p, . . . . The ionization energy has a large maximum
for atomic numbers 2, 10, 18, . . . . Up to atomic number
23 these shells are filled sequentially, and Hund’s rule
determines whether a spin-down or a spin-up electron is
added [3]. Vertical quantum dots have the shape of a
disk with a diameter roughly 10 times the thickness [2,4].
The lateral potential has a cylindrical symmetry with a
rather soft boundary profile, which can be approximated
by a harmonic potential. The symmetry of this two-
dimensional (2D) harmonic potential leads to a complete
filling of shells for 2, 6, 12, . . . electrons. The numbers
in this sequence can be regarded as “magic numbers” for
a 2D harmonic dot. The shell filling in this manner is
previously predicted by self-consistent calculations of a
circular dot [5]. In this Letter we report the observation
of atomiclike properties in the conductance characteristics
of a vertical quantum dot. We find an unusually large
addition energy when the electron number coincides with
a magic number. We can identify the quantum numbers
of the single-particle states by studying the magnetic
field dependence. At a sufficiently small magnetic field
!B , 0.4 T) we see that spin filling obeys Hund’s rule.
At higher magnetic fields !B . 0.4 T) we observe the

consecutive filling of states by spin-up and spin-down
electrons, which arises from spin degeneracy.
The gated vertical quantum dot shown schematically

in Fig. 1 is made from a double-barrier heterostructure
(DBH). The use of well-defined heterostructure tunnel
junctions allows us to vary the number of electrons in the
dot N one by one from 0 to more than 40 by changing

FIG. 1. (a) Coulomb oscillations in the current vs gate votage
at B ! 0 T observed for a D ! 0.5 mm dot. (b) Addition
energy vs electron number for two different dots with D ! 0.5
and 0.44 mm. The inset shows a schematic diagram of the
device. The dot is located between the two heterostructure
barriers.

0031-9007"96"77(17)"3613(4)$10.00 © 1996 The American Physical Society 3613

Figure 1.2: Conductance peaks in a Coulomb blockaded quantum dot, taken from [20]

In this thesis we are mainly interested in the quantum Coulomb blockade regime, which

today is accessible in low temperature experiments in semiconductor quantum dots. In the

quantum regime the tunneling takes place through a single resonance in the dot, see Fig. 1.3,

which requires a different treatment.

Using Fermi’s golden rule we will now calculate the conductance [19] for the quantum

dot attached to non-interacting leads is described by a Hamiltonian

H = Hlead +Hdot +Ht, (1.5.6)

where Hdot describes the isolated quantum dot

∑
n

εnd
†
ndn +

EC
2

(N̂ −Ng)
2. (1.5.7)

Where eNg is the neutralising background charge (governed by the gate voltage, Vg, for

the standard quantum dot), εn is the energy of the levels on the dot and dn the associated

annihilation operator. The tunneling and the leads are described by

Ht =
∑
αkn

(
tαnc

†
αkdn + h.c.

)
, (1.5.8)
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Figure 1.3: On the left we have the situation in a conductance valley, with N electrons on
the dot. The cost of adding or removing one electron from the dot is very large. On the right
we have the situation around one of the peaks of conductance, see Fig. 1.2, where having
N or N + 1 electrons on the dot is energetically degenerate. The electrons can now easily
tunnel through the dot.

and

Hlead =
∑
αk

ξkc
†
αkcαk, (1.5.9)

respectively, where tαn is the tunneling coefficiaent, ξk = εn − µ, and α = L,R signifies the

left or right lead. We will now calculate the conductance near the degeneracy point [19] ,

where Ng is a half integer, so that

|EN − EN+1| < T, (1.5.10)

where EN is the charging energy of a state with N electrons. This will be calculated in the

region

∆� T � Ec, (1.5.11)
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where Ec is the charging energy, and ∆ the level spacing. The condition in eq. (1.5.10) means

that we only need to take two charge states into consideration and eq. (1.5.11) enables us to

treat the discrete set of particle states as a continuum with the density of states 1/∆. We

also assume that we are in the sequential tunneling regime where transitions between the

discrete levels happen before the electron has the chance to escape into the dot. This means

that tunneling events between the two junctions are independent. Using Fermi’s golden rule

the current can now be written as

Iα = e
2π

~
∑
kn

|t2αn|δ(ξk + eVα − εn + EN − EN+1)

×{PNf(ξk)(1− f(εn))− PN+1f(εn)(1− f(ξk))}, (1.5.12)

where PN is the probability to find N electrons on the dot, V is the applied bias voltage

and f is the Fermi distribution. If we replace the summation over k and n with integrals

and integrate over the corresponding continuum we obtain the following expression

Iα =
4e

~
Γα
∆

(PNF (EN − EN+1 − eVα)− PN+1F (eVα + EN+1 − EN) , (1.5.13)

where Γ1 = πν0|tL|2 and Γ2 = πν0|tR|2 with ν0 is the mean Tunneling density of states for

non-interacting electrons and

F (ω) =
ω

eω/T − 1
. (1.5.14)

In the Coulomb blockade regime the dot cannot acumulate charge and therefore current

conservation holds,

I = IL = −IR. (1.5.15)
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where IL/R is the current through the left/right contact, respectively. Combining eqs. (1.5.13)

and (1.5.15) and the obvious normalisation condition PN + PN+1 = 1 we can calculate the

current through the system in response to the applied bias voltage V = VL − VR. In our

system we add the bias voltage symmetrically so the bias voltage in the left, VL, and right

lead, VR, have the same magnitude but different size, i.e. VL = −VR = V/2. This give us

the linear conductance through the dot,

G = lim
V→0

dI

dV
=

4π

~
Γ1Γ2

Γ

(EN − EN+1)/T

sinh (2(EN − EN+1)) /T
, (1.5.16)

where Γ = Γ1 + Γ2 In chapter 3 we reproduce this result of the conductance with the

help of tunneling density of states. A gap in the tunneling density of states corresponds

to a suppression of the conductance, since there are no states to tunnel into. Around the

degeneracy point this gap is starting to close, and this corresponds to a finite conductance.

1.6 Kondo effect

In 1936 de Haas and van den Berg [21] found a resistance minimum as a function of tempera-

ture in a disordered metal with a finite concentration of magnetic impurities. This was very

surprising since theory stated that resistance in metals was due to phonon and impurity

scattering. While impurity scattering is strongly temperature independent we know that

phonon scattering is temperature dependent and can be estimated by the Debye model. At

low temperatures the phonon scattering is suppressed and it vanishes at zero temperature.

Later experiments showed that the effect had to depend on magnetic impurities since chang-

ing this concentration made the effect more or less pronounced.

A step forward to understand the phenomena was done when Anderson introduced an impu-

rity model [22] that was designed to model isolated magnetic impurities in a non-magnetic

environment. Using this model Anderson succeeded in estimating a parameter range where

14



such isolated impurities could exist in a metallic environment. The big breakthrough came

in 1964 when Kondo [23] did perturbation theory on a model of a localised magnetic moment

represented by an isolated spin which interacts with the collective spin of the conduction

electrons via a Heisenberg coupling. By performing perturbation theory in the coupling

strength J , he found that for low temperatures the scattering amplitude for electrons in-

creases sharply towards the Fermi energy. This increases the electron scattering, which in

a metal increases the resistance. Kondo also succeed in explaining the connection to the

impurity concentration and obtained agreement with the experimental results.

In the original solution there is a logarithmic divergence in the perturbation theory at

T = 0. This problem turned out to be very hard to solve. The first progress towards the

solution was done by Abrikosov who identified the most divergent diagrams of each order

of the perturbation theory and did a resummation of these terms. This solved the problem

for the ferromagnetic case, J > 0, but for the anti-ferromagnetic case the divergence now

occurred at a finite temperature, TK , which is known as the Kondo temperature.

The explanation for the failure of perturbation theory was provided by Anderson in his

poor man’s scaling approach [24]. Anderson reduced the bandwith cut-off in J and found

that this increased the coupling strength for the anti-feromagnetic case. Roughly speaking

this means that the low temperature physics is dominated by virtual scattering processes

and these processes get more and more profound when T → 0. From this analysis it is clear

that perturbation theory in J is doomed in this limit.

Wilson refined this result using a numerical approach [25]. Nozières derived an effective

low energy theory [26] that reproduces the results of Wilson. He used a simple scattering

description close to the strong coupling fixed point of the Kondo model and obtained an

effective Fermi liquid theory.
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Finally a non-pertubative solution of the problem was derived using the Bethe ansatz by

Andrei [27], Wiegman and Tsvelik [28, 29, 30]. From the Bethe ansatz solution it is possible

to extract thermodynamic properties such as the magnetic susceptibility and heat capacity.

The downside is that it is not possible to extract dynamic or non-equilibrium properties.

The Kondo effect was predicted theoretically in quantum dots in 1988 [31, 32] and verified

experimentally 10 years later [3, 33]. The Kondo effect is very different in quantum dots and

metals. The reason for this is that in a metal, electron scattering lowers the conductivity.

Hence the Kondo result explains why we obtain an increase in the resistivity. In a quantum

dot the only accessible transport mechanism is electron scattering. Hence in a quantum dot

the increased scattering leads to an increase in the conductivity.
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Chapter 2

GREEN FUNCTIONS

An exact solution of a quantum field theory corresponds to knowing all the correlation

functions of the field variables. A correlation function measures the overlap between our

initial state and a state where we insert a particle or a hole at a specific time t and place x

and try to extract it at a later time t′ and position x′. With the knowledge of all the cor-

relation functions of a system we know how the correlations in the system will evolve in time.

There are three different main types of Green functions that are useful for different prob-

lems in condensed matter theory. For zero temperature we have zero temperature Green

functions [34], for finite temperature in equilibrium we have Matsubara Green functions

[34] and for a non-equilibrium system at finite temperature we have Keldysh Green func-

tions [35, 36, 37, 38]. Keldysh Green functions of course work also for equilibrium and

zero temperature problems but their algebraic structure is slightly more complicated then

the other two Green functions which, often makes them unsuitable for equilibrium problems.

We will in this chapter introduce the different types of Green functions, but the emphasis in

the remaining part of this thesis will be on non-equilibrium systems, so we will concentrate

on the Keldysh formulation.
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2.1 Green functions: the basics

We start from the basics with the definition of the single particle zero temperature time

ordered Green function, also known as the causal Green function,

G(x, t;x′, t′) = −i0〈ψ0|T ψ̂H(x, t)ψ̂†H(x′, t′)|ψ0〉0
0〈ψ0|ψ0〉0

. (2.1.1)

Here |ψ0〉0 is the ground state in the interacting system and T is the time ordering operator.

The time ordering operator always moves the operator with the earlier time to the right

TA(t)B(t′) = θ(t− t′)A(t)B(t′)± θ(t′ − t)B(t′)A(t), (2.1.2)

where +/− corresponds to bosons/fermions. The operator ψ̂H(t) is in the Heisenberg rep-

resentation, and so its time dependence has the form

ψ̂H(t) = eiHtψ̂(t = 0)e−iHt. (2.1.3)

This definition can be extended to equilibrium systems at finite temperature

G(x, t;x′, t′) = −iT r
(
ρT ψ̂H(x, t)ψ̂†H(x′, t′)

)
., (2.1.4)

where ρ is the density matrix operator and Tr is the sum over all diagonal elements. Now

that we have introduced the Green function in an equilibrium system it is time to show that

it is useful for calculating real physical quantitites such as the particle density

〈n(x)〉 = 〈ψ†(x)ψ(x)〉. (2.1.5)
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This is equivalent to eq. (2.1.4) if t is before t′. So we can now define the particle density as

〈n(x)〉 = −iG(x, t;x, t+), (2.1.6)

where

t+ = lim
ε→0

(t+ ε). (2.1.7)

This fixes the time ordering since t+ is always infinitesimally larger then t. In an homogenous

system the Green functions always depend only on the difference in time and space and not

on each variable individually. So we write the Green function as

G(x, t;x′, t′) = G(x− x′, t− t′). (2.1.8)

In this case it is more convenient to work in Fourier space

G(k, ω) =

∫
d3x

∫
dteiω(t−t′)e−ik(x−x′)G(x− x′, t− t′). (2.1.9)

We will now introduce 4 additional Green functions, the retarded, advanced, lesser than and

greater than:

GR(x, t;x′, t′) = −iθ(t− t′)〈{ψ̂(x, t), ψ̂†(x′, t′)}〉, (2.1.10)

GA(x, t;x′, t′) = iθ(t′ − t)〈{ψ̂(x, t), ψ̂†(x′, t′)}〉, (2.1.11)

G<(x, t;x′, t′) = i〈ψ̂†(x′, t′)ψ̂(x, t)〉, (2.1.12)

G>(x, t;x′, t′) = −i〈ψ̂(x, t)ψ̂†(x′, t′)〉. (2.1.13)
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where {., .} is the anti-commutator. The four Green functions are not independent and can

easily be seen to fulfil the relation

GR −GA = G> −G<. (2.1.14)

The reason we bother with introducing all four of them is that they have different properties

and are useful in different situations. GR,A have a nice analytic structure and are well suited

to calculate physical response. Information about spectral properties, density of states and

scattering rates are all contained in the retarded and advanced Green functions. The lesser

and greater Green functions are linked to physical variables such as particle densities and

currents. The benefit of the time ordered Green function, G, is that is has a systematic

perturbation theory. We note that the time ordered Green function can be written in terms

or lesser and greater Green functions

G(x, t;x′, t′) = θ(t− t′)G>(x, t;x′, t′) + θ(t′ − t)G<(x, t;x′, t′). (2.1.15)

Also the retarded and advanced Green functions be can expressed in terms of lesser and

greater Green functions:

GR,A(x, t;x′, t′) = ±θ(±t∓ t′) (G>(x, t;x′, t′)−G<(x, t;x′, t′)) . (2.1.16)

where the upper/lower sign in in eq. (2.1.16) corresponds to the retarded/advanced Green

function, respectively.

2.2 Keldysh Green functions

The building block of constructing a perturbation theory in an equilibrium system is that

both the initial and final states are the same. In a non-equilibrium system this can no longer
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Figure 2.1: The standard closed Keldysh time contour. The upper/lower branch is the
forward/backward branch

be assumed. To construct a non-equilibrium theory one therefore needs to avoid reference to

asymptotically large times. In the Keldysh technique [35, 36, 37] we start at a distant past

and evolve the system forward to a time t and and then evolve the time backwards so that

we end up at our initial state. In this way we will construct a more abstract time evolution

since we can have evolution along both the forward part , ψ+, and backward part, ψ−, of

the time contour, see Fig. 2.1. We can now introduce contour ordered Green function with

matrix structure

G(t, t′) =

 G++(t, t′) G+−(t, t′)

G−+(t, t′) G−−(t, t′)

 , (2.2.1)

where

G<(t, t′) = G+−(t, t′) = −i〈ψ̂+(t)ψ̂†−(t′)〉, (2.2.2)

G>(t, t′) = G−+(t, t′) = −i〈ψ̂−(t)ψ̂†+(t′)〉,

GT (t, t′) = G++(t, t′) = −i〈T ψ̂+(t)ψ̂†+(t′)〉, (2.2.3)

GT̄ (t, t′) = G−−(t, t′) = −i〈T̄ ψ̂−(t)ψ̂†−(t′)〉. (2.2.4)

where T̄ denotes anti-time ordering. If we now note that

GT (t, t′) = θ(t− t′)G>(t, t′) + θ(t′ − t)G<(t, t′), (2.2.5)

GT̄ (t, t′) = θ(t− t′)G<(t, t′) + θ(t′ − t)G>(t, t′), (2.2.6)
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we obtain the relation

GT +GT̄ = G> +G<. (2.2.7)

So the four components are not independent. This redundancy can be removed by perform-

ing the Keldysh rotation to the Larkin-Ovchinnikov basis [39]:

ψ̂1(t) =
1√
2

(ψ̂+(t) + ψ̂−(t)) ψ̂2(t) =
1√
2

(ψ̂+(t)− ψ̂−(t)),

ψ̂†1(t) =
1√
2

(ψ̂†+(t)− ψ̂†−(t)) ψ̂†2(t) =
1√
2

(ψ̂†+(t) + ψ̂†−(t)). (2.2.8)

Performing the Keldysh rotation eq. (2.2.8) on eq. (2.2.4) we obtain

G =

 GR(t, t′) GK(t, t′)

0 GA(t, t′)

 , (2.2.9)

where

GR =
1

2

(
GT +G< −G> −GT̄

)
= θ(t− t′) (G<(t, t′)−G>(t, t′)) , (2.2.10)

GA =
1

2

(
GT −G< +G> −GT̄

)
= −θ(t′ − t) (G<(t, t′)−G>(t, t′)) , (2.2.11)

GK = G<(t, t′) +G>(t, t′). (2.2.12)

The form of the Green function in eq. (2.2.9) can also be obtained directly from eq. (2.2.1)

by performing the operation [37, 39]

G = LσzGL, where L =
1√
2

(I− iσy) , (2.2.13)

and using the relation eq. (2.2.7). In equilibrium the situation is simplified and we can find

a relation between the three Green functions GR, GA and GK . To do this we make the

observation that in equilibrium the Hamiltonian does not dependent on t directly so all our
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Green functions depend on t− t′ only, rather than on both times independently. If we now

take the Fourier transform with respect to t− t′ we obtain

i
(
GR(ω)−GA(ω)

)
=

∫ ∞
−∞

dteiωtTr
(
e−βH

{
eiHtψ̂e−iHt, ψ̂†

})
, (2.2.14)

iGK(ω) =

∫ ∞
−∞

dteiωtTr
(
e−βH

[
eiHtψ̂e−iHt, ψ̂†

])
. (2.2.15)

We now take a closer look at eq. (2.2.14), by splitting the integrals into two parts I1 =∫∞
−∞ dte

iωtTr
(
e−βHeiHtψ̂e−iHtψ̂†

)
and I2 =

∫∞
−∞ dte

iωtTr
(
e−βHψ̂†eiHtψ̂e−iHt

)
. We start

with I1 and make the substitution t → t − iβ and use the property tr(XY ) = tr(Y X)

of the trace to obtain

∫ ∞
−∞

dteiωtTr
(
e−βHeiHtψ̂e−iHtψ̂†

)
= eβω

∫ ∞
−∞

dteiωttr
(
eiHtψ̂e−iHtψ̂†

)
= eβω

∫ ∞
−∞

dteiωttr
(
e−βHa†eiHtae−iHT

)
.(2.2.16)

We see that eq. (2.2.16) is equivalent to the statement I1 = eβωI2. By using this relation we

obtain

I1 − I2

I1 + I2

=
eβω − 1

eβω + 1
= tanh

(
βω

2

)
. (2.2.17)

Using eqs. (2.2.14) and (2.2.15) we can rewrite eq. (2.2.17) as

GK(ω) = tanh

(
βω

2

)(
GR(ω)−GA(ω)

)
. (2.2.18)

In general we can write the Keldysh component:

GK = GR · F − F ·GA, (2.2.19)

where F is a Hermitian matrix that can be found from a quantum kinetic equation [36, 38].
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2.3 Functional field integrals

Quantum field theory can be formulated in two different ways: the formalism of canonically

quantised field operators [34] and functional integration. Functional path integrals provide

an entire spectrum of novel routes toward approaches to quantum mechanical problems (con-

trolled semi-classical limits, analogies to classical mechanics, statistical mechanics, concepts

of topology and geometry, etc.), for a review of this topic see the recent book by Altland

and Simons [40]. In this section our goal is to construct the many-body path integral [40].

The basic idea is to segment the time evolution of our system into infinitesimal time slices

and absorb as much of the quantum dynamical phase accumulated during the short-time

propagation into a set of suitably chosen eigenstates.

2.3.1 Coherent states

A coherent state is an eigenstate of the annihilation operator

âi|η〉 = ηi|η〉, (2.3.1)

where ηi is the eigenvalue of âi. We can write the general state

|η〉 = exp

(∑
i

ηiâ
†
i

)
|0〉. (2.3.2)

One thing that complicates things at this stage is the anticommuting properties of the

fermionic operators {âi, âj} = 0 if i 6= j, since this implies that the eigenvalues of the

coherent states also have to anti-commute

ηiηj = −ηjηi. (2.3.3)
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Clearly these objects, called Grassmannn variables, cannot be normal numbers. To be able

to define the coherent states we first have to define the Grassmann numbers and study

their properties more carefully. Grassmann numbers are elements of the Grassmann algebra

which consists of elements that all anti-commute. This condition implies that the square of

a Grassmann number is zero since

{ηi, ηi} = η2
i + η2

i = 0. (2.3.4)

Functions of Grassmann numbers are defined via their Taylor expansion

f(ξ1, ξ2, · · · , ξk) =
∞∑
n=0

k∑
i1,··· ,in=1

1

n!

∂nf

∂ξi1 · · · ∂in

∣∣∣∣∣
ξ=0

ξi1 · · · ξin , ξi1 , · · · ξik ∈ A, (2.3.5)

where f is an analytic function and A is the Grassman algebra. From eq. (2.3.4) it follows

that any function of a Grassmann number is must be linear. So in the one variable case

f(η) = f(0) + f ′(0)η. (2.3.6)

Now let us turn to differentiation of Grassman numbers, which is defined by

∂ηiηj = δij. (2.3.7)

If this definition is to be consistent with the anti-commutation relations, the derivative has to

be anti-commutative itself. In particular ∂ηiηjηi = −ηj if i 6= j. Finally we have integration

over Grassmann fields [40]

∫
dηi = 0,

∫
dηiηi = 1. (2.3.8)
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If we take a closer look at eqs. (2.3.5)-(2.3.8) we observe that the action of Grassmann

integration and differentiation is the same,

∫
dηf(η) =

∫
dη(f(0) + f ′(0)η) = f ′(0) = ∂η(η). (2.3.9)

The Grassman version of the Gaussian integral
∫
dηdη̄e−η̄η = 1 does not contain the factors

of π of the standard Gaussian integrals. We end the introduction of coherent states with

some useful indentities

∫
dηdη̄e−η̄aη = a, (2.3.10)

and the multidimensional generalisation of the Gaussian integral

∫
d(φ̄, φ)eφ̄

TAφ = detA. (2.3.11)

2.3.2 The functional integral Green function

In the two coming chapters we will work in the functional integral approach, so we will need

to define Green functions within this approach. This will be done in this section using the

knowledge we have just gained about Grassmann numbers. Let us start from the standard

definition of a Green function

G(t, t′) =
1

Z
∑
n

〈n|Tcψ̂ψ̂†ei
R
C H(t)dt|n〉, (2.3.12)

where the time integral is over the Kelsdysh contour C in Fig. 2.1. Now we insert the

resolution of identity

1̂ =

∫
Πndη̄ndηne

P
n η̄nηn|η〉〈η|, (2.3.13)
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into the definition in eq. (2.3.12)

G(t, t′) =
1

Z

∫
Πmdη̄mdηme

P
m η̄mηm

∑
n

〈n|Tcψ̂ψ̂†ei
R
C H(t)dt|η〉〈η|n〉. (2.3.14)

The next step is to get rid of the sum over n by swapping the order 〈n|Tcψ̂ψ̂†ei
R
C H(t)dt|η〉〈η|n〉

and using that

∑
n

|n〉〈n| = 1̂. (2.3.15)

Since there are elements of anti-commuting Grassmann variables

〈n|Tcψ̂ψ̂†ei
R
C H(t)dt|η〉〈η|n〉 6= 〈η|n〉〈n|Tcψ̂ψ̂†ei

R
C H(t)dt|η〉, (2.3.16)

and we have to be a bit more careful. We start with calculating the overlap 〈η(0)|n〉. Using

the definitions eq. (2.3.2) and defining the state

|n〉 = â†p1 â
†
p2
· · · â†pn|0〉 (2.3.17)

we can write the overlap

〈η̄(0)|n〉 = 〈0|e−
P
p âpη̄p â†p1 â

†
p2
· · · â†pn|0〉

= 〈0|(−âp1 η̄(0)
p1

) · · · (−âpn η̄(0)
pn )â†p1 â

†
p2
· · · â†pn|0〉

= (−1)n(−1)n(n−1)/2η̄p1 · · · η̄pn〈0|âp1 · · · âpn â†p1 · · · â†pn|0〉

= (−1)n(−1)n(n−1)/2η̄(0)
p1
· · · η̄(0)

pn . (2.3.18)

So when we want to pull eq. (2.3.18) through the expression

〈n|Tcψ̂ψ̂†ei
R
C H(t)dt|η〉, (2.3.19)
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we see that the expansions of all parts contain pairs of elements that anti-commute with the

ηpi terms with one exception 〈n|, which has n annihilation operators which each contribute

a (−1)n when we pull then ηi through. So in total we get a sign of (−1)n
2
. We obtain

G(t, t′) =
1

Z

∫
Πmdη̄mdηme

P
m η̄mηm

∑
n

〈n|Tcψ̂ψ̂†ei
R
C H(t)dt|η〉〈η|n〉

=
1

Z

∫
Πmdη̄mdηme

P
m η̄mηm

∑
n

(−1)n〈η|n〉〈n|Tcψ̂ψ̂†ei
R
C H(t)dt|η〉

=
1

Z

∫
Πmdη̄mdηme

P
m η̄mηm〈−η|Tcψ̂ψ̂†ei

R
C H(t)dt|η〉. (2.3.20)

We now split the time contour into N parts with the width δi

G(t, t′) = − i

Z

∫
Dη̄Dηeη̄η〈−η|Tcψ̂ψ̂e−i

P
i δiH |η〉. (2.3.21)

We now split the exponential into N parts and insert a resolution of identity in between

each term,

G(t, t′) = − i

Z

∫
DN+1ψDN+1ψ̄eψ̄0ψ0−

PN
i=1 ψ̄iψi

〈ψN+1|eiδiH |ψN〉〈ψN |eiδiH |ψN−1〉 · · · 〈ψn+m+1|eiδiHψ̂|ψn+m〉 (2.3.22)

〈ψn+m|eiδiH |ψn+m−1〉 · · · 〈ψn|eiδiH |ψN〉〈ψm+1|ψ̂†eiδiH |ψm〉

〈ψm|eiδiH |ψm−1〉 · · · 〈ψ1|eiδiH |ψ0〉.

If we demand that the Hamiltonian is normal ordered we can now write the element

〈ψn+1|eiδH |ψn〉 = 〈ψn+1|1− iδiH|ψn〉 = eiδH(ψ̄n+1,ψn)eψ̄n+1ψn . (2.3.23)

We can now write the Keldysh Green function in the functional integral representation

G(t, t′) =
i

Z

∫
DN+1ψDN+1ψ̄ψψ̄eiS, (2.3.24)
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where

iS =
N∑
i=0

δi

{
ψ̄i+1

ψi − ψi+1

δi
− iH(ψ̄i+1, ψ)

}
(2.3.25)

= i

∫
C

dt
{
ψ̄i∂ψ −H(ψ̄(t), ψ(t))

}
. (2.3.26)

2.4 Some matrix identities

In the previous section we derived the functional integral form of the Keldysh Green function.

A typical functional integral takes the form

∫
DψDψ̄e−ψ̄αMαβψβ . (2.4.1)

We know from the basic theory of Grassmann algebra that this takes the form

∫
DψDψ̄e−ψ̄αMαβψβ = det M. (2.4.2)

We will in this section have a look at some special cases that will turn out to be useful in

the later chapters. We assume that M is a Matrix of the form

M =



−1 0 0 · · · aN+1

a1 1 0 · · · 0

0 −a2 1 · · · 0

· · · · · · · · · · · · · · ·

· · · · · · · · · −aN 1


, (2.4.3)

where the matrix element ai = 1− iδiφi, i labels the time and φi is the Hamiltonian at time

ti. Using eq. (2.4.2) we can write the path integrals as a function of the M matrix in the
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form:

−
∫
DψDψ̄e−ψ̄Mψ = − det M = 1 +

N+1∏
i=1

ai, (2.4.4)

−
∫
DψDψ̄e−ψ̄Mψψkψ̄l =

 −
∏N+1

i=1 ai if k > l∏k−1
i=1

∏N+1
l ai if k < l

. (2.4.5)

Look at how the typical example where ai = 1 − iδiφi ≈ eiδiφi . Inserting this relation into

eqs. (2.4.4) and (2.4.5) we obtain the very usual path integral relations

∫
DψDψ̄e−ψ̄Mψ = 1 + e−i

R
φ(t)dt, (2.4.6)

−
∫
DψDψ̄ψ(t)ψ̄(t′)e−ψ̄Mψ =

 e−i
R t
t′ φ(t′′)dt′′ if t > t′

−e−i
R t
t0
φ(t′′)dt′′−i

R tN+1
t′ φ(t′′)dt′′

if t < t′
. (2.4.7)

2.4.1 Analytic continuation

In coming chapters we will encounter many terms with the structure

C(t, t′) =

∫
C

dt1A(t, t1)B(t1, t
′). (2.4.8)

In this section we will derive rules about how we can write C< in terms of lesser, greater,

advanced or retarded A and B components [38]. We will start to derive the identity for C<.

This means that we have fixed t on the forward branch and t′ on the backward branch. The

first step is to deform the standard contour in the way illustrated in Fig. 2.2 so that we can

now write eq. (2.4.8) in the form
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C

C

2

1
t

t'

Figure 2.2: The deformed Keldysh time contour split in two parts C1 and C2. Time ordering
is such that all times on C1 are before any time on C2.

C<(t, t′) =

∫
C1

dt1A(t, t1)B<(t1, t
′) +

∫
C2

dt1A
<(t, t1)B(t1, t

′). (2.4.9)

Here we have used that if t1 is on the C1 contour then it is always less than t′ in the contour

sense. In the same way anything on contour C2 is greater than t. Taking the first term in

eq. (2.4.9) we can split the integration into two parts

C<(t, t′) =

∫ t

−∞
A>(t, t1)B<(t1, t

′) +

∫ −∞
t

A<(t, t1)B<(t1, t
′)

≡
∫ ∞
−∞

AR(t, t1)B<(t1, t
′), (2.4.10)

where we used the definition of GR in eq. (2.1.16). Using a similar argument on the second

term we obtain the following relation

C<(t, t′) =

∫ ∞
−∞

dt1
[
AR(t, t1)B<(t1, t

′) + A<(t, t1)BA(t1, t
′)
]
. (2.4.11)

It is easy to see that if we swap the order of the external times to obtain C> we just need

to swap < for > in eq. (2.4.11) so that

C>(t, t′) =

∫ ∞
−∞

dt1
[
AR(t, t1)B>(t1, t

′) + A>(t, t1)BA(t1, t
′)
]
. (2.4.12)
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For the case of products of three, i.e. D = ABC, we obtain [38]

D< = ARBRC< + ARB<CA + A<BACA. (2.4.13)

2.5 Noise in a resonant level model

We will close this chapter by calculating the noise in a resonant level model. This will enable

us to use most of the theory introduced in this section. The key motivation for doing this

calculation is that the result will be used when we study the noise in a Coulomb blockaded

quantum dot. In this strongly interacting system we can rewrite part of the problem as a

resonant level model and use the results from this section with small modifications. But

more about this in chapter 4. We start by defining the model

H = H0 +Ht +Hc, (2.5.1)

where

H0 =
∑
α,k

εkc
†
αkcαk, (2.5.2)

Ht =
∑
α,k

(
tαkc

†
αkd+ h.c.

)
, (2.5.3)

Hc = εnd
†d. (2.5.4)

where εn is the energy of the resonant level. We start from the current operator:

IL = ie
∑
k

[
tLkĉ

†
Lkd̂− t∗kd̂†ĉLk

]
. (2.5.5)

We want to calculate the noise power spectrum

S(ε) =

∫ ∞
−∞

d(t− t′)eiε(t−t′)S(t− t′), (2.5.6)
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so we start calculating the non-equilibrium noise correlator given by

S(t, t′) = 〈{δIL(t), δIL(t′)}〉

= 〈{IL(t), IL(t′)}〉 − 2〈IL〉2

= (ie)2
∑
k,k′

[
tkt
′
k〈ĉ†k(t)d̂(t)ĉ†k′(t

′)d̂(t′)〉 − tkt∗k′〈ĉ†k(t)d̂(t)d̂†(t′)ĉk′(t
′)〉 (2.5.7)

− t∗ktk′〈d̂†(t)ĉk(t)ĉ†k′(t)d̂(t′)〉+ t∗kt
∗
k′〈d̂†(t)ĉk(t)d̂†(t′)ĉk′(t′)〉+ h.c.

]
− 2〈IL〉2,

and

δI = I − 〈I〉. (2.5.8)

From now on we drop the the index L on the operators of the leads and put it back on in the

end of the calculation when it is needed. We now define the two particle Green functions

G1(t, t′) = −〈T ĉ†k(t)d̂(t)ĉ†k′(t
′)d̂(t′)〉, (2.5.9)

G2(t, t′) = −〈T ĉ†k(t)d̂(t)d̂†(t′)ĉk′(t
′)〉, (2.5.10)

G3(t, t′) = −〈T d̂†(t)ĉk(t)ĉ†k′(t′)d̂(t′)〉, (2.5.11)

G4(t, t′) = −〈T d̂†(t)ĉk(t)d̂†(t′)ĉk′(t′)〉. (2.5.12)

Now we can rewrite the noise in the form

S(t, t′) = (ie)2
∑
k,k′

[tkt
′
kG1(t, t′)− tkt∗k′G2(t, t′)

− t∗ktk′G3(t, t′) + t∗kt
∗
k′G4(t, t′)] + h.c.− 〈IL〉2. (2.5.13)

We start by writing the operators in the interaction picture such that we can perform an S

matrix expansion. We perform the calculations on G2 but the treatment of all other terms
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is identical. We start from the definition

G2(t, t′) = −〈TC ĉ†k(t)d̂(t)d̂†(t′)ĉk′(t
′)〉

= −〈TC c̃†k(t)d̃(t)d̃†(t′)c̃k′(t
′)S〉, (2.5.14)

where c̃k indicates that we have written the operator in the interaction picture and TC is

the timer ordering operator that orders over the Keldysh contour in Fig. 2.1. The S-matrix

is given by

S =
∞∑
j=0

(−i)j
j!

∫
C

dt1 · · ·
∫
dtj〈TCHt(t1) · · ·Ht(t2)〉, (2.5.15)

where Ht is the tunneling Hamiltonian in eq. (2.5.4). We expand the S-matrix to the second

order in the tunneling Hamiltonian and the Green function takes the form

G2(t, t′) = −〈TC c̃†k(t)d̃(t)d̃†(t′)c̃k′(t
′)〉

+
1

2
〈c̃†k(t)d̃(t)d̃†(t′)c̃k′(t

′)

×
∫
dt1

∫
dt2
∑
k1k2

(
tk1 c̃

†
k1

(t1)d̃(t1) + t∗k1 d̃
†(t1)c̃k1(t1)

)
(2.5.16)

×
(
tk2 c̃

†
k2

(t2)d̃(t2) + t∗k2 d̃
†(t2)c̃k2(t2)

)
〉.

In the interaction picture the operators acting on the level and on the leads are independent

and we can therefore split up the expectation value in a resonant level and a lead part. So

eq. (2.5.16) can be simplified as

G2(t, t′) = −δkk′Gk(t
′, t)G̃(t, t′)

+

∫
dt1

∫
dt2
∑
k1k2

〈TC c̃†k(t)c̃k′(t′)c̃†k1(t1)c̃k2(t2)〉 (2.5.17)

× 〈TC d̃†(t)d̃(t′)d̃†(t1)d̃(t2)〉.
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We have also introduced the full single particle Green Gk(t, t
′) ≡ −i〈Tc†k(t)ck(t′)〉 and the

expanded Green function G̃k(t, t
′) ≡ −i〈T c̃†k(t)c̃k(t′)〉 . The definitions of the single particle

Green functions of the dot are equivalent. Up to this point the noise calculation is the same

for both non-interacting systems and interacting systems. The change comes when start to

try to split up the two particle Green functions into single particle Green functions. In this

section we deal with non-interacting electrons: so we can just split them up using Wick’s

theorem without complication. For the interacting problem things are more complicated

but we get to that in chapter 4. In both cases we have non-interacting leads so we start by

factorising the two particle Green function for the leads:

〈TC c̃†k(t)c̃k′(t′)c̃†k1(t1)c̃k2(t2)〉 = 〈TC c̃†k(t)c̃k′(t′)〉〈TC c̃†k1(t1)c̃k2(t2)〉

− 〈TC c̃†k(t)c̃k2(t2)〉〈TC c̃†k1(t1)c̃k′(t
′)〉

= −δkk′δk1k2G̃k(t
′, t)G̃k1(t2, t2) (2.5.18)

+ δkk2δk′k1G̃k(t2, t)G̃k′(t
′, t1).

We can now combine the first term of eq. (2.5.18) and combine it with eq. (2.5.17) to obtain

−δkk′Gk(t
′, t)

[
G̃(t, t′)−

∑
k1

|tk1|2
∫
dt1

∫
dt2Gk1(t2, t1)〈TC d̃†k(t)d̃k′(t′)d̃†k1(t1)d̃k2(t2)〉

]
.

The terms in the square bracket we recognise as the first two terms of a series expansion of the

full Green function of an interacting central region. If one carefully does the combinatorics

of the terms of the full expansion of the tunneling Hamiltonian one obtains the full series

expansion G(t, t′). So these terms sum up to Gk(
′t, t)G(t, t′). The second term in eq. (2.5.18)

gives the zeroth order term of the expansion of the full two particle Green function and the

higher order terms of the S-matrix expansion will give the full two particle Green function.
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Putting all this together we now write eq. (2.5.17) in the form:

G2(t, t′) = −δkk′Gk(t
′, t)G(t, t′)

−
∫
dt1

∫
dt2tk′t

∗
kGk(t2, t)Gk′(t, t

′)Gdd
2 (t, t′, t1, t2), (2.5.19)

where

Gdd
2 (t, t′, t1, t2) = 〈TC d̂(t)d̂†(t′)d̂(t1)d̂†(t2)〉. (2.5.20)

Performing the same analysis for the other terms in eq. (2.5.13) and introducing the two

particle Green functions:

Gdd
1 (t, t′, t1, t2) = 〈TC d̂(t)d̂(t′)d̂†(t1)d̂†(t2)〉, (2.5.21)

Gdd
3 (t, t′, t1, t2) = 〈TC d̂†(t)d̂(t′)d̂(t1)d̂†(t2)〉, (2.5.22)

Gdd
4 (t, t′, t1, t2) = 〈TC d̂†(t)d̂†(t′)d̂(t1)d̂(t2)〉, (2.5.23)

we can now write the noise in the form:

S(t, t′) = 4

{∑
k

|tk|2 [Gk(t
′, t)Gn(t, t′) +Gk(t, t

′)Gn(t′, t)]

+
∑
k,k′

|tk|2|tk′|2
∫
dt1

∫
dt2

×
[
−Gk(t1, t)Gk(t2, t

′)Gdd
1 (t, t′, t1, t2)

+ Gk(t2, t)Gk(t
′, t1)Gdd

2 (t, t′, t1, t2) (2.5.24)

− Gk(t, t1)Gk(t2, t
′)Gdd

1 (t, t′, t1, t2)

− Gk(t, t1)Gk(t
′, t2)Gdd

1 (t, t′, t1, t2)
]}

+ h.c.− 2〈IL〉2.

where we have introduced the index n on the single particle Green functions of the dot to

make them easier to separate from the lead Green functions. Using Wick’s theorem we can
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now split the two particle Green functions into single particle Green functions

Gdd
1 (t, t′, t1, t2) = Gn(t, t2)Gn(t′, t1)−Gn(t, t1)Gn(t′, t2), (2.5.25)

Gdd
2 (t, t′, t1, t2) = Gn(t, t′)Gn(t1, t2)−Gn(t, t2)Gn(t1, t

′), (2.5.26)

Gdd
3 (t, t′, t1, t2) = Gn(t1, t)Gn(t′, t2)−Gn(t′, t)Gn(t1, t2), (2.5.27)

Gdd
4 (t, t′, t1, t2) = Gn(t2, t)Gn(t1, t

′)−Gn(t1, t)Gn(t2, t
′). (2.5.28)

Inserting eqs. (2.5.25)-(2.5.28) into eq. (2.5.24) we obtain a large group of unconnected terms

and a large group of connected terms. The treatment of both types of terms are similar with

the difference that the unconnected terms are cancelled exactly with the −2〈IL〉2 and the

connected terms give interesting contributions to the noise.

2.5.1 Unconnected terms

We start with analysing the unconnected terms

Sun(t, t′) = e2

{∑
k,k′

|tk|2|tk′|2
∫
dt1

∫
dt2

× [Gk(t1, t)Gk(t2, t
′)Gn(t, t1)Gn(t′, t2)

−Gk(t2, t)Gk(t
′, t1)Gn(t, t2)Gn(t1, t

′) (2.5.29)

−Gk(t, t1)Gk(t2, t
′)Gn(t1, t)Gn(t′, t2)

+Gk(t, t1)Gk(t
′, t2)Gn(t1, t)Gn(t2, t

′)]} ,

where the standard analytic continuation rules are ill-defined since we only have one time

label. This can be solved by carefully taking a look at the origin of each term. Take the

term

∫
dt1Gk(t1, t)Gn(t, t1), (2.5.30)
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as an example, we see that t in Gk has to be greater than t in G since c†k(t) should be left

of d(t). We can now rewrite eq. (2.5.30) as

∫
dt1Gk(t1, t

+)G(t, t1). (2.5.31)

Rearranging the terms we once again have a form where we can use the analytic continuation

rules

[∫
dt1Gn(t, t1)Gk(t1, t

+)

]<
=

∫
dt1
(
GR(t, t1)G<

k (t1, t) +G<(t, t1)GA
k (t1, t)

)
≡ G<

n,k(t, t
′). (2.5.32)

Performing this analysis on all the terms in the eq. (2.5.30) we obtain the final results for

the unconnected terms

Sun(t, t′) = e2
∑
k,k′

|tk|2|t′k|2 {G<
nk(t, t)G

<
nk′(t

′, t′)−G<
nk(t, t)G

<
k′n(t′, t′)

− G<
kn(t, t)G<

nk′(t
′, t′) +G<

kn(t, t)G<
k′n(t′, t′)} (2.5.33)

= 2e2
∑
k,k′

|tk|2|t′k|2 {[G<
nk(t, t)−G<

kn(t, t)] [G<
nk′(t

′, t′)−G<
k′n(t′, t′)]}

≡ 2〈IL〉2.

Wee see that the unconnected terms exactly cancel with the 2〈IL〉2 term in the definition of

the noise. This is an important result since without this cancelation the unconnected terms

would cause a anomalous zero frequency delta peak. This is equivalent to the cancellation of

the diamagnetic terms in the Kubo formula by the unconnected current-current correlators.
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2.5.2 Connected terms

What now remains are the connected terms which are the terms that will contribute to the

noise:

S(t, t′) = e2

[∑
k

|tk|2 (Gk(t, t
′)Gn(t′, t) +Gn(t, t′)Gk(t

′, t))

+
∑
k,k′

|tk|2|tk′ |2
∫
dt1dt2

× {−Gk(t1, t)Gk′(t2, t
′)Gn(t, t2)Gn(t′, t1)

+ Gk(t2, t)Gk′(t
′, t1)Gn(t, t′)Gn(t1, t2) (2.5.34)

+ Gk(t, t1)Gk′(t2, t
′)Gn(t′, t)Gn(t1, t2)

− Gk(t, t1)Gk′(t
′, t2)Gn(t2, t)Gn(t1, t

′)}+ h.c.]

Fixing t > t′ we can use the analytic continuation rules derived in the previous section. We

start with the trivial case

[Gk(t, t
′)Gn(t′, t) +Gn(t, t′)Gk(t

′, t)]t>t′ = G<
k (t′, t)G>

n (t, t′) +G>
k (t, t′)G<

n (t′, t). (2.5.35)

In the case of terms that have products of 4 Green functions we have two type terms. The

first type is of the form

[∫
dt1Gn(t′, t1)Gk(t1, t)

∫
dt2Gn(t, t2)Gk(t2, t

′)

]
t>t′

. (2.5.36)

In this case we can treat the product as two separate integrals and use the relationship

eq. (2.4.11) to obtain

[∫
dt1Gn(t′, t1)Gk(t1, t)

∫
dt2Gn(t, t2)Gk(t2, t

′)

]
t>t′

(2.5.37)

=

∫
dt1
[
GR
n (t′, t1)GR

k (t1, t) +G<
n (t′, t1)GA

k (t1, t)
]
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×
∫
dt2
[
GR
n (t, t2)G>

k (t2, t
′) +G>

n (t, t2)GA
k (t2, t

′)
]
. (2.5.38)

The second type is of the form

[
Gn(t, t′)

∫
dt1

∫
dt2Gk(t

′, t1)Gn(t1, t2)Gk(t2, t)

]
t>t′

, (2.5.39)

which is of the structure D = ABC, so we insert eq. (2.4.13) into eq. (2.5.39) and obtain

[
Gn(t, t′)

∫
dt1

∫
dt2Gk(t

′, t1)Gn(t1, t2)Gk(t2, t)

]
t>t′

= G>(t, t′)

∫
dt1

∫
dt2
[
GR
k (t′, t1)GR

n (t1, t2)G<
k (t2, t)

+GR
k (t′, t1)G<

n (t1, t2)GA
k (t2, t)

+G<
k (t′, t1)GA

n (t1, t2)GA
k (t2, t). (2.5.40)

Applying the analytic continuation techniques on eq. (2.5.34) and taking the Fourier trans-

form and then the zero frequency limit we obtain

S(0) = 2e2

∫
dε

2π

{
ifLΓL

[
GR(ε)−GA(ε)

]
+ i [2fL(ε)− 1]G<(ε)

+
[
GR(ε)−GA(ε)

]
fL(ε)ΓL

[
GR(ε)−GA(ε)

]
ΓL

+
[
GR(ε)−GA(ε)

]
(2fL(ε)− 1)ΓLG

<(ε)ΓL

− fL(ε)[1− fL(ε)]
[
GA(ε)ΓLG

A(ε)ΓL +GR(ε)ΓLG
R(ε)ΓL

]
(2.5.41)

+ G<(ε)ΓL
[
GR(ε)−GA(ε)

]
ΓL

+ G<(ε)ΓLG
<(ε)ΓL} ,

where we have introduced

ΓL = 2π
∑
k

|tk|2δ(ε− εk), (2.5.42)
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and inserted the non-interacting lead Green functions [38]

ΣR,A
α,m,n(ε) ≡

∑
k

|tk|2GR,A
k = ∆α

m,n ∓
i

2
ΓLmn, (2.5.43)

Σ<
α,m,n(ε) ≡

∑
k

|tk|2G<
k = iΓLmnfL(ε), (2.5.44)

Σ>
α,m,n(ε) ≡

∑
k

|tk|2G>
k = −iΓLmn(1− fL(ε)). (2.5.45)

Introducing the identities

G<(ε) = iGR [fL(ε)ΓL + fRΓR]GA(ε), (2.5.46)

GR(ε)−GA(ε) = −iGR(ε)[ΓL + ΓR]GA(ε), (2.5.47)

GA(ε)ΓLG
A(ε)ΓL +GR(ε)ΓLG

R(ε)ΓL (2.5.48)

= [GR(ε)−GA(ε)]ΓL[GR(ε)−GA(ε)]ΓL + 2GR(ε)ΓLG
A(ε)ΓL, (2.5.49)

T (ε) = ΓLG
A(ε)ΓRG

R(ε). (2.5.50)

where T (ε) is the transmission probability. The results can finally be written in the standard

form [8]

S(0) = 2e2

∫
dε

2π
{{fL(ε)(1− fL(ε)) + fR(ε)(1− fR(ε))}T (ε)

+ (fL(ε)− fR(ε))2 T (ε)(1− T (ε))
}
. (2.5.51)

The first term is the thermal noise since it vanishes at zero temperature, and the second

part is the non-equilibrium contribution that vanishes at zero bias.

2.6 Summary

In this chapter we have introduced the basic theory of Green functions. The focus was

on non-equlibrium Green functions and we derived the functional integral form of Keldysh
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Green functions. We also introduced analytic continuation rules and closed the chapter by

calculating the noise in a resonant level model. The noise consists of two parts: one that

comes from thermal fluctuations and one that comes from non-equilibrium effects. The

second type of noise is the important type and will give us important information about the

interactions in the chapters to come. The main formula of this section, eq. (2.5.51), will be

very useful in chapter 4 when we study the noise of a Coulomb blockaded quantum dot.
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Chapter 3

TUNNELING DENSITY OF STATES

The goal of this chapter is to calculate the tunneling density of states (TDoS) near the

degeneracy point in a Coulomb blockaded quantum dot using two different approaches. The

first method, developed by Sedlmayr et al. [1], is defined using a functional integral approach

in the Keldysh technique. This reproduction of the key results from Sedlmayr et al.[1] will

then be used as a reference point when we develop a new method to calculate the Green

functions and TDoS for this system. This new technique will be crucial in the next chapter,

for our ability to find the pair correlations functions that appear in the noise of a Coulomb

blockaded quantum dot.

3.1 The Sedlmayr-Yurkevich-Lerner method

Keeping only the charging term in the universal Hamiltonian [14] of a zero dimensional

system our Hamiltonian takes the form

H = H0 +
Ec
2

(
N̂ −Ng

)2

. (3.1.1)

Where

H0 =
∑
n

εnψ
†
nψn, (3.1.2)
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Figure 3.1: The interaction Keldysh contour.

is the Hamiltonian of free electrons in a random potential, due to electron motion, V , N̂ is

the number operator and eNg is the neutralising background charge (governed by the gate

voltage, Vg). This system can also be described in terms of its action S[ψ] = S0[ψ] + Sc[ψ]

given by

S0[ψ] =

∫
K

dt

∫
drψ̄(r, t)

[
i∂t − ξ̂

]
ψ(r′, t′), ξ̂ ≡ p2

2m
+ V − µ̃, (3.1.3)

Sc[ψ] = −Ec
2

∫
K

dtN2(t), N(t) =

∫
drψ̄(r, t)ψ(r, t). (3.1.4)

where K is the interaction Keldysh contour [37], see Fig. 3.1. To calculate the observables

of the system we start from the definition of the Green functions in the functional integral

formulation in the Keldysh technique

iG(r, t; r′, t′) = Z−1

∫
Dψ̄Dψψ(r, t)ψ̄(r′, t′)eiS[ψ], (3.1.5)

where

Z =

∫
Dψ̄DψeiS[ψ], (3.1.6)
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is the partition function. In the zero-dimensional regime we can expand the Grassmann

fields in terms of free electron eigenfunctions cn(t) and c̄n(t) that depend on time only,

ψ(r, t) =
∑
n

ψn(r)cn(t), ξ̂ψn(r) = ξnψn(r), ξn = εn − µ̃. (3.1.7)

We can now rewrite the Green function as

G(r, t; r′, t′) =
∑
n

ψn(r)ψ̄n(r′)Gn(t, t′). (3.1.8)

Since we are considering the quantum dot as a zero dimensional object the two positions r

and r′ are indistinguishable so the observable quantities can be found from

G(t, t′) ≡
∫
ddrG(r, t; r′, t′) =

∑
n

Gn(t, t′). (3.1.9)

To be able to calculate the Green functions we have to decouple the charging term in the

action and make it quadratic. This is done by the Hubbard-Stratonovich transformation by

introducing the identity

1 =
Ec
2π

∫
dφ exp

(
− i

2
φ

1

Ec
φ

)
, (3.1.10)

and we make a shift in the bosonic field φ→ φ+ iEcN to rewrite Eq.(3.1.10) as

1 =
Ec
2π

∫
dφ exp

(
− i

2Ec
φ2 − i2φN +

Ec
2
N2

)
. (3.1.11)

Multiplying the Green function by eq. (3.1.11) we obtain a quadratic form of the Green

function

iGn(t, t′) =

∫
DφeiSc[φ]

∫
DψDψ̄ψn(t)ψn(t′)eiS[ψ̄,ψ,φ]∫

DφeiSc[φ]
∫
DψDψ̄eiS[ψ̄,ψ,φ]

, (3.1.12)
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where we have split the action into two parts. One that contains both a fermionic and

bosonic part

S0[φ, c̄n, cn] =

∫
K

dtc̄n(t) [i∂t − iφ− ξn] cn(t), (3.1.13)

and one contains a purely bosonic part:

Sc[φ] = − 1

2Ec

∫
K

dtφ2(t), (3.1.14)

where K is the interacting Keldysh contour, see Fig. 3.1. We now have an action that is

quadratic in the fermionic fields so we can integrate them out and leaving only the bosonic

part to be solved. In the previous chapter, see eq. (2.4.6), we proved the following identities

Z−1
0

∫
Dc̄nDcnei

R
K dtc̄n[iδt+ϕ]cn(t) = 1 + ei

R
K dtϕ(t), (3.1.15)

Z−1
0

∫
Dc̄nDcncn(t)c̄n(t′)ei

R
K dtc̄n[iδt+ϕ]cn(t) = sgn(t, t′)ei

R t
t′ dτϕ(τ). (3.1.16)

Using these identities we see that after doing the fermionic field integrals we can write

eq. (3.1.12) in the form

Gn(t, t′) = −isgn(t, t′)

Z

∫
Dφei

R t
t′ dτ(−ξn−iφ(τ))eiS[φ]

∏
m6=n

(
1 + ei

R
K dt(−iφ(t)−ξn)

)
= −isgn(t, t′)

Z

∫
Dφe

R t
t′ (−iξn+φ)Ξn(φ0)eiS[φ], (3.1.17)

where

Z =

∫
DφeiS[φ]Ξ(φ0). (3.1.18)

Here we have defined the grand-canonical partition function, Ξ(φ0), and the grand canonical

partition function with the n-th level excluded, Ξn(φ0), with energy levels in both shifted
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by the charging effects:

Ξ(φ0) ≡
∏
m

(
1 + e−βξm+φ0

)
Ξn(φ0) ≡ Ξ(φ0)

(
1 + e−βξn+φ0

)−1
, (3.1.19)

where

φ0 =

∫
K

dtφ(t). (3.1.20)

It is now convenient to expand the grand canonical partition functions in terms of the

canonical partition functions

Ξ(φ0) =
∞∑
N=0

ZNe
(βµ̃+φ0)N , ZN =

∮
dθ

2π
e−iNθ

∏
m

(
1 + e−βε+iθ

)
, (3.1.21)

Ξn(φ0) =
∞∑
N=0

ZN(εn)e(βµ̃+φ0)N , ZN(εn) =

∮
dθ

2π
e−iNθ

∏
m6=n

(
1 + e−βε+iθ

)
. (3.1.22)

Inserting the canonical partition functions into the Green functions in eq. (3.1.17) we obtain

Gn(t, t′) = −isgn(t, t′)

Z

∞∑
N=0

∫
Dφe

R t
t′ dτ(−iξ+φ(τ))

∮
dθ

2π
e−iNθ

∏
m6=n

(
1 + e−βεm+iφ0

)
e(βµ̃+φ0)NeiS[φ0]

= −isgn(t, t′)

Z

∞∑
N=0

ZN(εn)eβµ̃N (3.1.23)∫
Dφe

R t
t′ dτ(−iξ+φ(τ))ei

R
K dτ(−iφ(τ)N− 1

2Ec
φ2(τ)).

We now just have to make the bosonic field integral Gaussian. This is straightforward to do

if we define the order of the time components t and t′. For the TDoS we are interested in
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G> and G< so we define

G(t, t′) ≡
∑
n

Gn(t, t′) ≡

 G<(t, t′) t′ > t

G>(t, t′) t > t′
, (3.1.24)

the time ordered Green function. Let’s start with the G> and we complete the square

G>
n (t, t′) = − i

Z

∞∑
N=0

ZN(εn)eβµ̃N

×
∫
Dφei

R
K dτ(−iφ(τ)N−i(θ(τ−t′)−θ(τ−t))(−iξ+φ(τ))− 1

2Ec
φ2(τ))

= − i

Z

∞∑
N=0

ZN(εn)eβN(µ̃− 1
2
NEc)e−i(t−t

′)(ξ+EcN+Ec
2 ) (3.1.25)

×
∫
Dφe− i

2Ec

R
K dτ{φ(τ)+iEc(N+(θ(τ−t′)−θ(τ−t))}2 .

Then we can now easily do the φ integral since it is Gaussian and we then take the Fourier

transform and obtain

G>
n (ε) = − i

Z

∞∑
N=0

ZN(εn)eβN(µ̃− 1
2
NEc)

∫
dteit(ε−ξ−EcN−

Ec
2 )

= − i

Z

∞∑
N=0

ZN(εn)eβN(µ̃− 1
2
NEc)δ

(
ε− ξ − EcN −

Ec
2

)
(3.1.26)

= − i

Z

∞∑
N=0

ZN(ε− ΩN)e−βEN δ (ε− εn − ΩN) ,

where

EN ≡
Ec
2

(N −Ng)
2 − µ,N ΩN ≡ Ec

(
N +

1

2
−Ng

)
. (3.1.27)

The calculation for G< is identical but we will instead use a trick to get it from the greater

then Green function instead. In equilibrium we know that G<
n (ε) = −e−β(ε−µ)G>

n (ε). But in

the Coulomb blockade regime both of these functions are very sharp so it is not a very good
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relationship to use. Instead we use that ZN = ZN(εn) + e−βεnZN−1(εn) which follows from

eqs. (3.1.21) and (3.1.22). After a straightforward transformation we arrive at the result

G<
n (ε) = − i

Z

∞∑
N=0

ZN(ε− ΩN−1)e−βEN−β(ε−µ)δ (ε− εn − ΩN−1) . (3.1.28)

The formal definition of ZN(εn) is

ZN(εn)

ZN
=
TrN

(
cnc
†
ne
−βH0

)
TrNe−βH0

= 1− FN(εn), (3.1.29)

where FN(εn) is the distribution function of a system of N non-interacting electrons. Now

we can average over disorder simply by replacing the mean TDoS of non-interacting electrons

ν0, with
∑

n δ(ε−εn−ΩN), with the assumption that the TDoS is smooth in any realisation

of disorder, which is valid when the mean level spacing is much smaller then T. We now

obtain

G>(ε) =
2πν0

Z

∑
N

e−βEN (1− FN(ε− ΩN)) . (3.1.30)

Since the number of electrons is large, N � 1, the distribution function is approximatively

the same as the Fermi-Dirac distribution function f(ε − ΩN) with the chemical potential

of order Nδ, which is negligible compared to ΩN . This gives the final form of the Green

functions of the dot,

G>(ε) = −2πν0

Z

∑
N

e−βEN (1− f(ε− ΩN)), (3.1.31)

G<(ε) =
2πν0

Z

∑
N

e−βEN (f(ε− ΩN−1)). (3.1.32)

The TDoS can now be obtained from the standard relationship

ν(ε) =
i

2π

(
GR(ε)−GA(ε)

)
=

i

2π
(G>(ε)−G<(ε)) . (3.1.33)
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Figure 3.2: The dependence of the TDoS on the energy, measured in Ec, is plotted in three
different regions: (a) in the valley, (b) through an intermediate region, and (c) at the peak.
Taken from [1]

Substituting the Green functions eqs. (3.1.31) and (3.1.32) into eq. (3.1.33) we obtain

ν(ε)

ν0

=
1

Z

∑
N

e−βEN (f(ε− Ec(N − 1/2−Ng)) + 1− f(ε− Ec(N + 1/2−Ng))) .(3.1.34)

We keep the leading order terms in the sum over N since all other terms will be exponentially

suppressed,

ν(ε)

ν0

=
U(ε− ΩN) + e−βδµU(ε− ΩN+1)

1 + e−βδµ
, (3.1.35)

where we have defined U(ε − ΩN) = f(ε − ΩN−1) + 1 − f(ε − ΩN). In figure Fig. 3.2(a)

we are away from the degeneracy point and we are down in the conductance valley. At

this point the e−βδµ term is suppressed so we only get contributions from one of the terms

in eq. (3.1.35), this give us the gap that we see in Fig. 3.2(a). This gap is them smeared

when we approach the degeneracy point when we get contributions from both the terms in

eq. (3.1.35), as can be seen in Fig. 3.2(b). At the peak of conductance the TDoS is finite for

all energies but shows a half gap at |ε| < Ec.
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3.2 The new approach

For the TDoS this approach works very well, but for the noise the bosonic field introduced

in the Hubbard-Stratonovich transformation cause problems. In the next chapter we will

discuss how this happens in detail. But in this section we will introduce a new method to

calculate the Green functions without doing a Hubbard-Stratonovich transformation. This

can be used to circumvent the problems caused by it when we calculate the noise in the next

chapter.

The starting point is to rewrite the universal Hamiltonian [14] by connect the tunneling

to a single level of the quantum dot and separate this level from the rest of the Hamiltonian

in the following way:

H0 =
∑
m 6=n

ξmdm(t)dm(t), (3.2.1)

H(EN) =
Ec
2

(N −Ng)
2 , (3.2.2)

Hn = ξnd
†
ndn(t) + Ω(N ′)dn(t)†dn(t) +

∑
α,k

tα,ndn(t)†cαk(t) + h.c. (3.2.3)

Hlead
0 =

∑
αk

εkc
†
αkcαk (3.2.4)

The point of the Hamiltonian in this form is that we get two parts: one that depends on

the number of particles and one that depends on the distribution of the quantum dot. To

illustrate how this redefinition can be used we start from the definition of the Green function

of the dot:

Gn(t, t′) =
Tr
(
e−βHdn(t)d†n(t′)

)
Tr (e−βH)

. (3.2.5)

Since the term H(EN) is the only term that depends on the number of electrons on the dot

it will commute with the rest of the Hamiltonian and we can use the properties of the trace,
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i.e. Tr(X ⊗ Y ) = Tr(X)Tr(Y ), and pull the interaction term out front. Using the result

that

Tr(e−βH(EN )) =
∑
N

e−βEN , (3.2.6)

we can write the Green function of the dot as

Gn(t, t′) =
1

Z

∑
N

e−βENTrN
(
e−βH0

)
Trn

(
e−β(Hlead0 +Hn)dn(t)d†n(t′)

)
. (3.2.7)

The first trace is a sum over all the levels except level n and this is equivalent to the canonical

partition function with level n removed, i.e.,

ZN(εn) = TrN
(
e−βH0

)
. (3.2.8)

In the second trace we can multiply and divide by the canonical partition function of a

resonant level model to obtain

Trn

(
e−β(Hlead0 +Hn)dn(t)d†n(t′)

)
Tr
(
e−β(Hlead0 +Hn)

) ZRL = GRL(t, t′)ZRL. (3.2.9)

where ZRL is the partition function of the resonant level model and GRL is the Green function

of the resonant level discussed in chapter 2. At this stage we see that we have succeed in

rewriting the problem as a resonant level model and the interaction plays the role of weights

of the different charge states. We can now rewrite eq. (3.2.7) in the form

Gnn(t, t′) =
1

Z

∑
N

e−βENZN(εn)GRL(t, t′)ZRL, (3.2.10)
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where the partition function now can be written as

Z =
∑
N

e−βENZN(ε)ZRL. (3.2.11)

Using this form of the Green functions, we can now calculate the TDoS and compare this

to the results of Sedlmayr et al. [1]. The starting point is to neglect the off diagonal terms

of the Green function i.e. we define the retarded Green function as

GR(ε) =
∑
n

GR
nn(ε). (3.2.12)

This assumption is reasonable for a non-interacting system where this is simply equivalent

to resonant tunneling [13]. When we have a weak coupling to the dot resonant tunneling is

the regime where the average distance between the resonances, ∆, is much greater than the

width of the resonance. Only the level that is closest to the scattering energy is contributing

to the transport. The partition function of the resonant level model can be written

Z = 1 + e−β(ξn+ΩN ). (3.2.13)

We now split the Green function into the two situations where the nth level is either empty

or occupied.

GR(ε) =
∑
n

1

Z

{∑
N

ZN(εn)
(
e−βENGR

RL(ε,ΩN) + e−β(EN+1+εn)GR
RL(ε,ΩN)

)}
, (3.2.14)

where

Z =
∑
N

ZN(ε)
(
e−βEN + e−β(EN+1εN )

)
. (3.2.15)
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We remind the reader about the relationship between the energy of N and N + 1 electrons

on the dot

EN+1 = EN + δµ, (3.2.16)

where we have defined δµ = ΩN − µ. We tune the gate voltage near the degeneracy point

which means that the energy is the same for having N or N + 1 electrons on the dot. All

other electron numbers of the dot are exponentially suppressed, so these terms are neglected.

The Green functions have 4 terms in total since each electron number N or N + 1 has two

possibilities that energy level εn is empty or filled. The retarded Green function of the dot

can now be written

GR(ε) =
∑
n

1

Z
{
e−βεnGR

RL(ε,ΩN−1) (3.2.17)

+ (1 + e−β(εn+δµ))GR
RL(ε,ΩN) + e−βδµGR

RL(ε,ΩN+1)
}
, (3.2.18)

where

Z =
(
1 + e−βεn

) (
1 + e−βδµ

)
. (3.2.19)

The standard resonant level retarded Green functions is given by [38, 34]

GR
RL(ε,ΩN) =

1

ε− εn − ΩN + iΓn
(3.2.20)

where Γn is the the tunneling rate for the resonant level. Inserting this into eq. (3.2.18) we

obtain the final expression for the retarded Green function

GR(ε) =
∑
n

1

Z

{
e−βεn

ε− εn − ΩN−1 + iΓn

+
1 + e−β(ε+δµ

ε− εn − ΩN + iΓn
+

e−βδµ

ε− εn − ΩN+1 + iΓn

}
. (3.2.21)
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Now we can do the same calculation for GA. Inserting the result into the standard definition

of TDoS, we obtain

ν(ε) =
i

2π

(
GR(ε)−GA(ε)

)
=

1

π

∑
n

1

Z

{
Γne

−βεn

(ε− εn − ΩN−1)2 + Γ2
n

(3.2.22)

+
Γn(1 + e−β(εn+δµ))

(ε− εn − ΩN)2 + Γ2
n

+
Γne

−βδµ

(ε− εn − ΩN+1)2 + Γ2
n

}
.

In the limit we are interested in, Γn � ∆ � T � Ec , we are allowed to approximate the

Lorentzian with a delta function,

1

π

Γn
(ε− εn − ΩN)2 + Γ2

n

=
∑
n

δ(ε− εn − ΩN). (3.2.23)

Performing the sum over n and taking temperature smearing into account we can substitute

the sum over the delta functions with the TDoS of non-interacting electrons, ν0, which is

valid when the mean level spacing, ∆, is much smaller then the temperature. Putting it all

together we can now write the TDoS in the form

ν(ε)

ν0

=
1

1 + e−βδµ

{
e−β(ε−ΩN−1)

1 + e−β(ε−ΩN−1)
+

1 + e−β(ε−ΩN+δµ)

1 + e−β(ε−ΩN )
+

e−βδµ

1 + e−β(ε−ΩN+1)

}
. (3.2.24)

Using the definition of the Fermi-function we can rewrite this in the more compact from

ν(ε)

ν0

=
U(ε− ΩN) + e−βδµU(ε− ΩN+1)

1 + e−βδµ
, (3.2.25)

where

U(ε− ΩN) = f(ε− ΩN−1) + 1− f(ε− ΩN). (3.2.26)
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Comparing the result to the one obtained by Sedlmayr et al. [1], eq. (3.1.35), we see that

we have successfully reproduced the correct result of the TDoS in the vicinity of the peak of

conductance. We will now use this technique to calculate the noise in a Coulomb blockaded

quantum dot in the next chapter.

3.3 Conclusion

In this chapter we have developed a new method to calculate the TDoS. We have compared

to and found a complete agreement with the result rigorously derived by Sedlmayr et al. [1].

We have now built the foundation necessary to tackle the much harder question about noise

in a Coulomb blockaded quantum dot.

56



Chapter 4

NOISE IN A COULOMB BLOCKADED QUANTUM

DOT

We have now reached the core chapter of this thesis where we will calculate the noise power

spectrum in a Coulomb blockaded quantum dot. As we discussed in the introduction and in

the previous chapter there are a number of different parameters that describe the quantum

dot. The key parameters that are of interest in this chapter are the charging energy Ec,

temperature T, applied bias eV = µ1 − µ2, level spacing ∆ and level width Γ = Γ1 + Γ2 of

the quantum dot and the tunneling rates Γα = πν0|tα|2. All these parameters give a large

number of different regimes and some of them have already been studied. We will start by

discussing the current state of the literature on this topic.

In the zero bias regime the noise follows the fluctuation dissipation theorem, S(0) = 4kTG,

where G is the linear conductance. In the coming examples we set T = 0 and will focus on

the dimensionless Fano factor in the zero frequency limit, f = S(0)/2eI. Without interac-

tions the noise follows Poisson statistics and the Fano factor is 1. In the large bias limit,

Ec � eV , the quantum dot can be viewed as two tunneling junctions in series. In this limit

the Fano factor is given by [41, 42, 43]

f =
G2

1 +G2
2

G2
, (4.0.1)

57



where G = G1+G2 with Gα = πe2ν0νd|tα|2, with ν0 the bare density of states of the leads and

νD the density of the dot states. This implies that the noise is suppressed below the Poisson

statistics value and we have a Fano factor in the interval, 1/2 ≤ f < 1, with the minimum

for a symmetric coupling to the leads, G1 = G2. The low bias regime ∆ � eV � Ec

is normally treated using the so called single particle “orthodox” theory. It is a method

based on a classical master equation approach. The assumption necessary for this approach

is that ∆ � eV . The Fano factor in this limit at the peak of conductance is given by

[42, 43, 44, 45, 46]

f =
γ2

1 + γ2
2

γ2
, (4.0.2)

where γ = γ1 + γ2 and

γ1 =
G1

e2
|∆+(1, N)|, (4.0.3)

γ2 =
G2

e2
|∆−(2, N + 1)|, (4.0.4)

with

∆±(α,N) = E(N ± 1)− E(N)∓ µα. (4.0.5)

So in our model, when we apply the bias voltage symmetrically around the dot, the Fano

factors in eqs. (4.0.1) and (4.0.2) are identical. In the limit of very low bias Γ � eV � ∆

the spectrum of the dot is now discrete. In this limit the single-particle picture still applies

and a master equation approach is used in [47] to calculate the Fano factor

f =
Γ2

1 + Γ2
2

Γ2
. (4.0.6)
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In this chapter we will calculate the noise in the Coulomb blockaded regime using a full

quantum treatment of the problem in the Keldysh technique. The motivation for this is

that around the peak of conductance the charging levels are degenerate and interacting. It

is therefore not clear that the classical master equation approach will work for this situa-

tion. This work will give an answer whether or not the master equation approach gives a

reasonable result and we will also be able to study the intermediate region in between the

low bias regime and shot noise regime.

As a starting point we begin by calculating the current and the conductance. This will

be useful for the checking the noise in some standard limits. Next we show why a naive

extension of the method developed by Sedlmayr et al. [1] doesn’t work for the noise. We

then go on to calculate the noise using the new approach developed in section 3.2.

4.1 Current and conductance

We start from the universal Hamiltonian [14]

H = H0 +
Ec
2

(
N̂ −Ng

)2

. (4.1.1)

Here H0 is the non-interacting Hamiltonian of the electrons confined to the dot in a random

potential. Ec is the charging energy of the dot, N̂ is the number of electrons on the the dot

and Ng is proportional to the gate voltage that is used to control the number of electrons

of the dot. To be able to drive the system out of equilibrium we attach two non-interacting

leads to the quantum dot and connect them through tunneling contacts

Ht =
∑
α,k,n

(
tαnc

†
α,kdn + h.c.

)
. (4.1.2)
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Here c†α,k/cα,k creates/annihilates one electron with momentum k in lead α = 1, 2 and

d†α,k/dα,k creates/anhiliates a electron on level n on the dot. The parameter tαn is the tun-

neling rate and we assume that it is independent of the momentum of the electron, k and

what energy level, n, involved in the tunneling.

In this chapter we are interested in the strong Coulomb blockaded regime. This means

that the charging energy dominates over all other energy scales and we also require that the

temperature is greater than the mean level spacing, ∆, which in turn is greater than the

tunneling rate, Γα. To summarise we are in the regime Γα � ∆� T � Ec. When we start

driving a current through the system we apply a bias voltage eV . In this chapter we will not

put any restrictions on the bias voltage but we will mainly be interested in the shot noise

regime, T � eV , which is the regime where thermal fluctuations are small and quantum

fluctuations the most important.

The definition of the current is

Iα = i
∑
n,k

(
tαnc

†
α,kdn + h.c.

)
. (4.1.3)

In appendix A we derive the following standard expression for the current in the Keldysh

technique from [74, 75],

Iα = eΓα

∫ ∞
−∞

dε

4π

(
Tr
{
GK(ε)− (1− 2fα(ε))

(
GR(ε)−GA(ε)

)})
, (4.1.4)

where Γα = 2πνα|tαn|2 and να is the bare density of states for the non-interacting lead

electrons. We can now use the fact that we are in the strong Coulomb blockade regime where

the dot is not allowed to accumulate charge. Since we only have two leads we have current
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conservation, I1 + I2 = 0, which we use to remove the Keldysh component in eq. (4.1.4),

I = e
Γ1Γ2

Γ

∫ ∞
−∞

dε

2πi
(f2(ε)− f1(ε))

(
GR(ε)−GA(ε)

)
=

eν0Γ1Γ2

Γ

∫ ∞
−∞

dε (f1(ε)− f2(ε))
ν(ε)

ν0

, (4.1.5)

where we have introduced Γ = Γ1 + Γ2. In the linear response regime we can also calculate

the differential conductance

G =
dI

dV
= e2ν0

Γ1Γ2

Γ

∫ ∞
−∞

dε

(
−∂f(ε)

∂ε

)
ν(ε)

ν0

. (4.1.6)

At this stage in the calculation it is clear that we so far have not needed the new ap-

proach derived in the previous chapter since we can insert the result from either of the two

eqs. (3.1.35) or (3.2.25) above and we obtain the result without problems. So it is time to

take a closer look at where the old approach developed by Sedlmayr et al. [1] goes wrong

when we calculate the noise.

4.2 Why the Sedlmayr-Yurkevich-Lerner approach to

TDoS does not work for noise

In section 3.1 we calculated the isolated Green functions for a Coulomb blockaded quan-

tum dot. To make the action quadratic in the fermionic fields we performed a Hubbard-

Stratonovich transformation and made the fermionic fields quadratic at the expense of in-

troducing a bosonic field. In the single particle Green function case this doesn’t cause any

problems. But in the case of the noise we also have two particle Green functions and in this

case the bosonic field causes problems and the method becomes more or less impossible to

use. The reason for this comes when we have introduced the bosonic field and we now have

a quadratic action in the fermionic field. We can pull the integral over the bosonic fields out
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front to use Wick’s theorem and split the two particle Green function into two single particle

Green functions. The problem that now occurs is that we don’t have two independent single

particle Green functions since the bosonic field couples the Green function together. More

problematic is that this also cause all the 4 times to be connected and when we have to

time order the 4 times over the Keldysh contour, the number of terms explodes. We also

have the problems that the standard single particle Green function relations are not valid

anymore. We now focus on using the new method we developed in chapter 3 to calculate

the noise instead. In this approach we don’t have to introduce the bosonic field to make the

action quadratic and we can therefore circumvent all the problems caused by it.

4.3 The Model

We simplify the universal Hamiltonian of a quantum dot in eq. (4.1.1) by connecting the tun-

neling to only one level of the dot. This level is then removed from the universal Hamiltonian

and treated separately. Putting this together lead to the following form of the Hamiltonian:

H = H0 +H(EN ′) +Hn +Hleads
0 , (4.3.1)

where

H0 =
∑
m6=n

ξd†m(t)dm(t), (4.3.2)

is the kinetic part of the dot with level n removed. The charging term

H(EN ′) =
Ec
2

(N ′ −Ng)
2
, (4.3.3)
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only cares about the number of electrons on the dot and not their configuration. Finally the

part of the Hamiltonian depending on n is given by

Hn = ξnd
†
ndn(t) + Ω(N ′)d†n(t)dn(t) +

∑
α,k

tα,nd
†
n(t)cαk(t) + h.c. (4.3.4)

4.4 Noise

The first step in the calculation of the noise is the same in the interacting case as for the

resonant level in section 2.5. The resonant level result will also be part of the interacting

system calculation since we will succeed in writing part of the noise as a resonant level

model. We once again start from the current operator:

IL = ie
∑
k

[
tkc
†
kdn − t∗kd†nck

]
. (4.4.1)

we suppose the index α = L in the following and suppress it. In terms of the current operator

IL the noise is now given by

S(t, t′) = 〈{δIL(t), δIL(t′)}〉

= 〈{IL(t), IL(t′)}〉 − 2〈IL〉2

= (ie)2
∑
k,k′

[
tkt
′
k〈c†k(t)dn(t)c†k′(t

′)dn(t′)〉 − tkt∗k′〈c†kdn(t)d†n(t′)ck′(t
′)〉

− t∗ktk′〈d†nck(t)c†k′(t)dn(t′)〉+ t∗kt
∗
k′〈d†n(t)ck(t)d

†
n(t′)ck′(t

′)〉
]
− 2〈IL〉2, (4.4.2)

where

δI = I − 〈I〉. (4.4.3)
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The next step is to define the two particle Green functions:

G1,nm(t, t′) = −〈Tc†k(t)dn(t)c†k′(t
′)dm(t′)〉, (4.4.4)

G2,nm(t, t′) = −〈Tc†k(t)dn(t)dm(t′)†ck′(t
′)〉, (4.4.5)

G3,nm(t, t′) = −〈Tdn(t)†ck(t)c
†
k′(t
′)dm(t′)〉, (4.4.6)

G4,nm(t, t′) = −〈Tdn(t)†ck(t)dm(t′)†ck′(t
′)〉. (4.4.7)

To be able to solve the Greens functions we need to make the approximation

∑
n,m

Gnm(t, t′) =
∑
n

Gnn(t, t′). (4.4.8)

As we argued in section 3.2, this assumption is reasonable for a non-interacting system. We

can now write the two particle Green functions in the same form as the single-particle Green

function in section 3.2,

Gnn(t, t′) =

(
Tre−βHc†k(t)dn(t)ck′(t

′)dn(t′)
)

Tr (e−βH)
. (4.4.9)

We see that EN once again provides weights to the different charging states of the quantum

dot. Using the same method developed in the previous chapter we can now write the two

particle Green’s function in one resonant level part and one interacting part

Gnn(ε) =
1

Z
∑
N

e−βENZN(εn)GRL(ε,ΩN)ZRL, (4.4.10)

where

Z =
∑
N

e−βENZNZRL. (4.4.11)
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Using the same technique for all the Green functions, eqs. (4.4.4)-(4.4.7) we can rewrite the

noise in the form:

S(0) =
1∑

N e
−βENZRL(εn,ΩN)

∑
N

e−βENZRL(εn)SRL(εn,ΩN). (4.4.12)

This makes things much simpler since we can now use the results from section 2.5 about the

resonant level noise with small modifications. Assuming that we are in the vicinity of the

peak we can truncate the sum over N to the two terms closest to Ng + 1/2, and all other

terms will be exponentially suppressed. After this truncation we can write the noise in the

form

S(0) =
∑
n

1

Z

{
e−βεnSRL(εn,ΩN−1) +

(
1 + e−β(εn+δµ)

)
SRL(ε,ΩN)

+ e−βδµSRL(ε,ΩN+1)
}
, (4.4.13)

where the partition function is now given by

Z =
(
1 + e−βεn

) (
1 + e−βΩN

)
. (4.4.14)

Using the definition of the Fermi functions we can now write the noise in the much nicer

form

S(0) =
∑
n

1

1 + e−βΩN
{f(εn)SnRL(0,ΩN−1) (4.4.15)

+ (1− f(εn) + e−βΩNf(εn))SnRL(0,ΩN) + e−βΩN (1− f(εn))SnRL(0,ΩN+1

}
.

Here SnRL is the standard result for the noise in a resonant level that was derived in section

2.5,

SnRL(0,ΩN) = 2e2

∫
dε

2π
{[fL(ε)(1− fL(ε)) + fR(ε)(1− fR(ε))]Tn(ε,ΩN)
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+ [fL(ε)− fR(ε)]2 Tn(ε,ΩN)(1− Tn(ε,ΩN))
}
. (4.4.16)

In eq. (4.4.15) the strength of the method becomes clear since we can easily see the origin of

each terms in the noise. In the first term we have the configuration of the dot that level n is

occupied and we have N−1 electrons on the remaining levels of the dot. In the second term

we have N electrons on the dot if we don’t count level n, we therefore have two situations

for level n, it can be either empty or filled. If it is filled we get a N+1 electrons on the dot

and therefore this terms get the weight, e−βΩN . The empty n level get the weight 1. Finally

we have an empty level n and N + 1 electrons on the remaining of the levels. Now that we

have a full expression for the noise we need to take a closer look at the tunneling rates to

see if we can simplify the noise expression. We start with the linear term

∑
n

Tn(ε,ΩN) = Γ1Γ2

∑
n

GR
nRL(ε,ΩN)GA

nRL(ε,ΩN) (4.4.17)

=
Γ1Γ2

Γ
2π
∑
n

νnRL(ε,ΩN), (4.4.18)

where

∑
n

νnRL(ε,ΩN) =
1

π

∑
n

Γ/2

(ε− εn − ΩN)2 + (Γ/2)2
=
∑
n

δ(ε− εn − ΩN) = ν0. (4.4.19)

In this approximation we write the Lorentzian as a delta function which is valid, if Γ is

small, Γ � ∆ � T � Ec. Substituting eq. (4.4.19) into eq. (4.4.18) we now find a simple

form for the tunneling rate

∑
n

Tn(ε,ΩN) = 2πν0
Γ1Γ2

Γ
. (4.4.20)

We now evaluate the quadratic term in a similar fashion

∑
n

(Tn(ε,ΩN))2 =

(
Γ1Γ2

Γ

)2

4π2
∑
n

(νnRL(ε.ΩN))2 , (4.4.21)
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Here the square density of states can be written in the form

∑
n

(νnRL(ε.ΩN))2 =
1

π2

∑
n

(Γ/2)2

((ε− εn − ΩN) + (Γ/2)2)2

= −
(

Γ

2

)2
1

π2

d

d(Γ/2)2

∑
n

1

(ε− εn − ΩN)2 + (Γ/2)2

= −
(

Γ

2

)2
1

π2

d

d(Γ/2)2

2

Γ

∑
n

δ(ε− εn − ΩN)

= ν0
1

πΓ
. (4.4.22)

Comparing this result to eq. (4.4.21) we otain the relation

∑
n

(Tn(ε,ΩN))2 = 4πν0
(Γ1Γ2)2

Γ3
= 2

(Γ1Γ2)

Γ2

∑
n

Tn(ε,ΩN). (4.4.23)

From this relation it is also clear why there are potential dangers in just expanding to t2

order and throwing away all other terms. Since terms that appear to be of t4 can in fact

be of t2 due to eq. (4.4.23). Inserting eqs. (4.4.16), (4.4.20) and (4.4.23) into, eq. (4.4.15),

we obtain the final form of the noise we calculated in the previous chapter and where

U(ε− ΩN) = f(ε− ΩN−1) + 1− f(ε− ΩN).

S(0) = 2e2ν0
Γ1Γ2

Γ

∫
dε
ν(ε)

ν0

{[
fL(ε)(1− fL(ε)) + fR(ε)(1− fR(ε)) + (fL(ε)− fR(ε))2

]
− 2

Γ1Γ2

Γ2
[fL(ε)− fR(ε)]2

}
. (4.4.24)

To obtain the tunneling density of states

ν(ε)

ν0

=
U(ε− ΩN) + e−β(ΩN−µ)U(ε− ΩN+1)

1 + e−β(ΩN−µ)
, (4.4.25)

we use the delta functions
∑

n δ(ε − εn − ΩN) and combine them with the Fermi function

depending on εn in eq. (4.4.15). The Fano factor, f = S(0)/2eI, can now be expressed in
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the general case as

f =

∫
dεν(ε)

ν0

{
fL(ε)(1− fL(ε)) + fR(ε)(1− fR(ε)) + (fL(ε)− fR(ε))2

(
Γ2

1+Γ2
2

Γ2

)}
∫
dεν(ε)

ν0
(fL(ε)− fR(ε))

.(4.4.26)

We will start by looking at the noise and the Fano factor in two simple limits T = 0 and

V = 0. We start with T = 0 where the noise takes the simple form

S(0) = 2e2ν0
Γ1Γ2

Γ

∫
dε
ν(ε)

ν0

{[
(fL(ε)− fR(ε))2

(
Γ2

1 + Γ2
2

Γ2

)]}
. (4.4.27)

At zero temperature we can approximate the Fermi function with a unit step function and

using that (θ(x)− θ(y))2 = θ(x)− θ(y). We can now write the Fano factor eq. (4.4.26) as:

f =
Γ2

1 + Γ2
2

Γ2
. (4.4.28)

This is the standard result obtained in the shot noise limit at using the two state approxi-

mation in the orthodox theory [42, 43, 44, 45]. In this limit the noise is always suppressed

below the Poisson value, 1/2 ≤ f < 1, with the maximal suppression taking place in the

symmetric dot, i.e. Γ1 = Γ2. Next we look at the zero bias limit of the noise where we only

have thermal noise. We start by writing the noise in this limit in the form

S(0) = 2e2ν0
Γ1Γ2

Γ

∫
dε
ν(ε)

ν0

{[fL(ε)(1− fL(ε)) + fR(ε)(1− fR(ε))]} . (4.4.29)

When we applied the bias voltage we did it in the form eV/2 on the left and subtracted

eV/2 on the right so that we can write the fermi functions as

fL(ε) =
1

2
− 1

2
tanh

(
β(ε− (µ+ eV/2))

2

)
, (4.4.30)

fR(ε) =
1

2
− 1

2
tanh

(
β(ε− (µ− eV/2))

2

)
. (4.4.31)
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The noise in equilibrium, i.e. when eV = 0, reduces to

S(0) = e2ν0
Γ1Γ2

Γ

∫
dε
ν(ε)

ν0

(
1− tanh2

(
βε

2

))
=

4e2

β
ν0

Γ1Γ2

Γ

∫
dε
ν(ε)

ν0

(
−∂f(ε)

∂ε

)
, (4.4.32)

which is exactly the fluctuation dissipation theorem, i.e. S(0) = 4kTG, where G is the

conductance. We see that in these two simple limits the standard results are reproduced,

we now take a look at the general case. Inserting eqs. (4.4.25), (4.4.30), and (4.4.31) into

eq. (4.4.24) we obtain the full expression for the noise

S(0) = 2e2ν0
Γ1Γ2

Γ

∫
dε

×

1 +
1

2
tanh

(
βδµ
2

) tanh
(
βε
2

)
− tanh

(
βδµ

2

)
1− tanh

(
βε
2

)
tanh

(
βδµ

2

)
+

1

2(1 + e−βδµ)

 tanh
(
βε
2

)
− tanh

(
β(δµ+Ec)

2

)
1− tanh

(
βε
2

)
tanh

(
β(δµ+Ec)

2

)
−e−βδµ

tanh
(
βε
2

)
− tanh

(
β(δµ−Ec)

2

)
1− tanh

(
βε
2

)
tanh

(
β(δµ−Ec)

2

)
 (4.4.33)

×
{

1

2

[
1− tanh2

(
βε
2

)
− tanh2

(
βeV

4

)
1− tanh2

(
βε
2

)
tanh2

(
βeV

4

)]

− Γ1Γ2

Γ2

[
tanh

(
βeV

4

)
1− tanh2

(
βε
2

)
1− tanh2

(
βε
2

)
tanh2

(
βeV

4

)]2
 .

This general expression is to complicated to simplify analytically, so we will investigate a

couple of limits and then plot the Fano factor at the peak of conductance, δµ = 0. We start

by writing the current by substituting A = tanh(βeV/4) and x = tanh(βε/2). We can write

the current in the form

I = e
Γ1Γ2

Γ

∫ 1

−1

dx
ν(x)

ν0

A

1− A2x2
, (4.4.34)
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where we have written the TDoS in the form

ν(x)

ν0

=

1 +
1

2
tanh

(
βδµ
2

) x− tanh
(
βδµ

2

)
1− x tanh

(
βδµ

2

) (4.4.35)

+
1

2(1 + e−βδµ)

 x− tanh
(
β(δµ+Ec)

2

)
1− x tanh

(
β(δµ+Ec)

2

) − e−βδµ x− tanh
(
β(δµ−Ec)

2

)
1− x tanh

(
β(δµ−Ec)

2

)
 .

We can now write the full expression for the noise in the form

S(0) = 2
e22

β
ν0

Γ1Γ2

Γ

∫ 1

−1

dx
ν(x)

ν0

×
{

1

2

[
1 + A2

1− x2A2

]
− 2

Γ1Γ2

Γ2

[
A2 1− x2

(1− x2A2)2

]}
. (4.4.36)

4.4.1 At the peak of conductance

Our original motivation for using this full quantum treatment of the noise was to check if

the master equation approach was this valid at degeneracy point where the charging levels

are strongly correlated. We will in this section calculate the Fano factor at this point in the

shot noise regime and compare this to the master equation result [47],

f =
Γ2

1 + Γ2
2

Γ2
. (4.4.37)

At the degenarcy point, i.e. δµ = 0, the TDoS take on the much simpler form

ν(ε)

ν0

= 1 +
1

2

[
tanh

(
β(ε− Ec)

2

)
− tanh

(
β(ε+ Ec)

2

)]
. (4.4.38)

Inserting eq. (4.4.38) into eq. (4.4.36) we obtain the noise as

S(0) = 2
e22

β
ν0

Γ1Γ2

Γ

∫ 1

−1

dx

{
1 +

1

2

(
x− tanh

(
βEc

2

)
1− x tanh

(
βEc

2

) − x+ tanh
(
βEc

2

)
1 + x tanh

(
βEc

2

))}
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Figure 4.1: Fano factor at the peak of conductance with the thermal noise removed as a
function of eV/T the lower curve is for Γ1 = Γ2 and the upper is Γ1 = 10Γ2. In both cases
we have chosen the charging energy in units of temperature as, Ec/T = 100.

×
{

1

2

[
1 + A2

1− x2A2

]
− 2

Γ1Γ2

Γ2

[
A2 1− x2

(1− x2A2)2

]}
. (4.4.39)

We start by plotting the Fano factor in Fig. 4.1 for different two different couplings to the

leads. In the shot noise limit, T � eV , we obtain the expected 1/2 for a symmetric coupling

to the leads, Γ1 = Γ2. In the shot noise limit A = tanh(βeV/4) → 1 so we take the

asymptotic limit and insert A = 1 in the expression for the noise and the current at the

degeneracy point and we now see that the Fano factor in this point is

f =
Γ2

1 + Γ2
2

Γ2
. (4.4.40)

The master equation give the correct result also for these strongly correlated levels, so the

master equation is valid both in the valley of conductance and at the peak of conductance in

the shot noise regime. The strength of the full quantum treatment is that we can calculate

the noise for any value of the bias voltage.

4.5 Conclusion

In this chapter we have used the method developed in chapter 3 to analytically calculate

the noise in a Coulomb blockaded quantum dot. We obtain an exact solution valid in the
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parameter range ∆ � T � Ec as a function of distance to the peak and bias voltage. In

equilibrium we recover the fluctuation dissipation theorem and at the degeneracy point the

Fano factor is suppressed to 1/2 compared to the Poisson value (if the coupling to the leads

are symmetric).
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Chapter 5

BOSONISATION

We will in this chapter move to one-dimensional systems. One can easily realise without

calculations that these are systems where interactions are important. The reason for this is

simple, in one dimension as electrons cannot propagate through the system without push-

ing other electrons due to electron-electron interactions. Therefore no individual motion is

possible and any individual excitation has to become a collective excitation. This is very

different from higher dimensions where almost free quasi particle excitations are possible.

The early contributions to bosonisation were done by Tomonaga [48] and Luttinger [49]

who introduced one of the first exactly solvable models in one dimension. It was later solved

by Mattis and Lieb [50]. Other important contributions to the basic understanding of 1D sys-

tems was made by Dzyaloshinskii and Larkin [51], Efetov and Larkin [52] and Haldane [53].

The foundation of modern bosonisation, also known as the operator approach, started with

the paper by Haldane in 1981 [53] where he proved rigourously how to construct Fermion

creation-anihilation operators out of Bose ones. In this paper the concept of a Luttinger

liquid was also coined and an interacting four-fermionic part was diagonalised in the bosonic

description.

There are today several flavours of bosonisation and a number of good reviews [54, 55, 56, 57].
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Figure 5.1: In the left figure we see an illustration of a simple particle hole excitation where
we move one particle from below the Fermi energy to above. The excitation energy for this
type of excitations is illustrated in the right hand figure and we see that for low energy and
momentum the spectrum is linear. Taken from [55]

We will work with the version developed by von Delft and Scholler [54] also known as con-

structive bosonisation. In the remaining of this chapter we will start by diagonalising a

generic interacting model of spinless fermions by rewriting them in terms of bosonic oper-

ators. This will provide a good introduction to why and how bosonisation work but to be

able to calculate the correlation functions in the next chapter we also need to introduce and

prove the identities for the fermionic operators described by bosonic operators.

The basic idea of bosonisation is that particle-hole excitations are bosonic in character

and that most of the low lying excitations can be exhausted from these excitations. The

reason for this is simple: If we take a look at Fig. 5.1 a particle-hole excitation is illustrated

in the left hand figure and k is measure from the Fermi level, kF . In the right of Fig. 5.1

wee see that this excitation has a linear spectrum. Because of this linear one-particle dis-

persion near the Fermi-level, the pairs have a narrow quasi-particle like dispersion near zero

momentum, they can propagate coherently. This means that the particle and the hole have

nearly the same group velocity and can propagate together. Any weak particle-hole attrac-

tion is bound to have a dramatic effect, i.e. bind the particles together into a coherently

propagating entity: a new particle that will behave as a boson.
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Figure 5.2: In two dimension the picture is very different and we see that it is possible create
an excitation with momentum k that has a continuous spectrum of energies starting from
zero. Taken from [55]

In higher dimension the situation is very different. For example in two dimensions we

have a circular Fermi surface, illustrated in Fig. 5.2, which implies that a particle-hole pair

with momentum k can have a continous spectrum of energies, starting from zero. Thus,

the particle-hole spectrum is a continuum throughout and interactions have a harder time

forming coherently propagating particle-hole pairs. All this implies that we can’t construct

a theory where we can rewrite fermionic fields as bosonic fields in 2D.

5.1 Some basic properties of fermions and bosons

Before we start introducing bosonisation we will start by introducing some basic properties

of bosons and fermions that will be of importance later in this chapter.

The prerequisites that all the fermion creation and annihilation operators have to fulfil
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to enable us to bosonise the theory, is the canonical anti-commutation relations

{ckη, c†k′η′} = δηη′δkk′ , (5.1.1)

where k is the unbounded momentum index, k ∈ [∞,∞], and η = 1, 2, · · ·M is the species

index. The momentum index has the discrete form

k =
2π

L

(
nk −

1

2
δb

)
, (5.1.2)

with nk ∈ Z, δb ∈ [0, 2) determines the boundary condition and L is the length of the system.

Where the simplest cases are δb = 0, 1 for periodic and anti-periodic boundary conditions.

Starting from a given set of creation and annihilation operators that fulfils eqs. (5.1.1) and

(5.1.2) we define the fermionic field operators as follows:

ψη(x) ≡
(

2π

L

)1/2 k=∞∑
k=−∞

e−ikxckη, (5.1.3)

with the inverse

ckη ≡
1

(2πL)1/2

∫ L/2

−L/2
dxeikxψη(x). (5.1.4)

Given a set of given discrete k’s, the field operators satisfy the boundary condition

ψη(x+ L/2) = eiδbψ(x− L/2), (5.1.5)

The vacuum state |0〉0 is defined as the state that fulfils the relation

ĉkη|~0〉0 ≡ 0 for k > 0, (5.1.6)

ĉ†kη|~0〉0 ≡ 0 for k < 0. (5.1.7)
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So all states up to the Fermi level are filled and all above are empty. A function of c†kη/ckη

operators is normal ordered, denoted : :, with respect to the vacuum state if we move all

operators ckη with k > 0 and c†kη with k < 0 to the right of all other operators so that

: ABC · · · :≡ ABC · · · − 0〈~0|ABC · · · |~0〉0 for A,B,C ∈ {ckη; c†kη}. (5.1.8)

We now define the number operator, Nη, that counts the number of electrons relative to the

vacuum state

Nη ≡
∞∑

k=−∞

: c†kηckη :=
∞∑

k=−∞

c†kηckη − 0〈~0|c†kηckη|~0〉0. (5.1.9)

The set of states that have the same N̂η-eigenvalue, ~N = (N1, N2, · · · , NM) ∈ Z, is defined

as the ~N particle Hilbert space, H ~N . This space contains an infinite number of states that

correspond to different configurations of particle-hole excitations. A general state in this

space will be denoted | ~N〉 while the ground state in this space is the state, | ~N〉0, that

contains no particle-hole excitations and therefore is lowest energy state. This state is

defined as follows:

| ~N〉0 = (C1)N1(C2)N2 · · · (CM)NM |~0〉0, (5.1.10)

where

(CN)Nη =


cNη ,ηcNη−1,η · · · c1,η for Nη > 0

1 for Nη = 0

cNη ,ηcNη−1,η · · · c1,η for Nη < 0

. (5.1.11)

From this ground state we can create all other states through particle-hole excitations.

For this purpose it is sufficient to consider the following bosonic creation and annihilation
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operators.

b̂†qη ≡
i
√
nq

∑
k

ĉ†k+q,η ĉkη, b̂qη ≡ −i√
nq

∑
k ĉ
†
k−q,η ĉkη, q > 0. (5.1.12)

We now have the necessary tools to prove some properties of the operators b†αq/bαq and we

start by the commutation relation for two operators on the same branch

[bqη, b
†
q′η] = δηη′

∞∑
k=−∞

1
√
nqnq′

(
c†k+q−q′,ηckη − c†k+q,ηck+q′,η

)
. (5.1.13)

We now have two cases q = q′ and q 6= q′. In the case when q 6= q′ both of the terms in

eq. (5.1.13) are normal ordered and no subtleties can arise when we shift k → k − q′ in the

second term to cancel out the two terms. When q=q’ we have to be more careful and first

we have to normal order the two terms

[bqη, b
†
q′η′ ] = δηη′δqq′

∞∑
k=−∞

1

nq

{(
: c†kηckη : − : c†k+q,ηck+q,η :

)
(5.1.14)

+
(

0〈~0|c†kηckη|~0〉0 − 0〈~0|c†k+q,ηck+qη|~0〉0
)}

.

The first terms are now normal ordered so we can now cancel them out. From the definition

of the vacuum in eqs. (5.1.6) and (5.1.7) we obtain

[bqη, b
†
q′,η′ ] = δηη′δqq′

1

nq

(
0∑

nk=−∞

−
−nq∑

nk=−∞

)
= δηη′δqq′

1

nq
nq = δηη′δqq′ . (5.1.15)

It is also straightforward to prove that the b̂qη and b̂†qη obey the remaining commutation

relations

[b̂qη, b̂q′η′ ] = [b̂†qη, b̂
†
q′η′ ] = 0 for all q, q′, η, η′, (5.1.16)
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[N̂qη, b̂q′η′ ] = [N̂qη, b̂†q′η′ ] for all q, q′, η, η′, (5.1.17)

where N̂ is the number operator.

From eq. (5.1.10) it is easy to verify that | ~N〉0 serves as a vacuum state for each ~N in

~N -particle Hilbert space, H ~N for the bosonic excitations

bqη| ~N〉0 = 0 for all q, η. (5.1.18)

We can now define normal ordering also for bosonic operators

: ABC · · · := ABC · · · − 0〈 ~N |ABC · · · | ~N〉0 for A,B,C, · · · {bqη, b†qη}. (5.1.19)

It is obvious that every state in H ~N can be created by acting with a bilinear combination

of fermion operator | ~N〉 = f(c†kη, ckη)| ~N〉0. It is much les obvious that the same is true for

bosonic operators but in fact there exist a function f(b†) for every | ~N〉 such that

| ~N〉 = f(b†)| ~N〉0. (5.1.20)

We will not prove this highly non-trivial statement here but the interested reader can consult

[54].

5.1.1 Bosonic fields

When we bosonise the fermionic operator ψη(x) later in this chapter the bosonic field we will

introduce in this chapter will be extremely useful. We start by defining the bosonic fields

ϕη(x) ≡ −
∑
q>0

1
√
nq
e−iqxbqηe

−aq/2, (5.1.21)
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ϕ†η(x) ≡ −
∑
q>0

1
√
nq
eiqxb†qηe

−aq/2, (5.1.22)

and their Hermitian combination

φη ≡ ϕη(x) + ϕ†η(x) = −
∑
q>0

1
√
nq

(
e−iqxbqη + eiqxb†qη

)
e−aq/2. (5.1.23)

Here a is a mathematical regularisation parameter that is useful to prevent ultraviolet di-

vergent momentum sums that occur in non-normal ordered expression and commutators.

Using these definitions we can now write the normal-ordered electron densities using these

bosonic operators

ρη(x) ≡ : ψ†η(x)ψη(x) :=
2π

L

∑
q

e−iqx
∑
k

: c†k−q,ηckη : (5.1.24)

=
2π

L

∑
q>0

i
√
nq
(
e−iqxbqη − eiqxb†qη

)
+

2π

L

∑
k

: c†kηckη : (5.1.25)

= ∂xφη(x) +
2π

L
N̂η, (5.1.26)

where the last equality is valid if we insert the a→ 0 limit in eq. (5.1.23). The bosonic fields

obey the commutation relations

[ϕη(x), ϕη′(x
′)] = [ϕ†η(x), ϕ†η′(x

′)] = 0, (5.1.27)

and

[ϕη(x), ϕ†η′(x
′)] = δηη′

∑
q>0

1

nq
e−q[i(x−x

′)+a] (5.1.28)

= −δηη′ ln
(

1− e−i 2πL [(x−x′]−ia]
)

(5.1.29)

→ −δηη′ ln
(
i
2π

L
[(x− x′)− ia]

)
, (5.1.30)

where the last limit is valid when L→∞.
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5.2 Luttinger model

It is now time to introduce the Luttinger model which is one of the basic and most important

1D models for interacting electrons

H =

∫
dxψ̂†(x)

(
− 1

2m

∂2

∂x2
− µ

)
ψ(x) +

1

2

∫
dxdx′V (x− x′)ρ̂(x)ρ̂(x′). (5.2.1)

Where ψ̂†/ψ̂ are the standard creation/annhiliation field operators, ρ̂(x) = ψ̂†(x)ψ̂(x) is the

electron density operator and finally V (x − x′) describes the electron-electron interaction.

In one dimension we have two Fermi points, ±kF , and near these two points the parabolic

spectrum of our generic model can be described as linear

ε(k) = vF (k − kF ), around k = kF , (5.2.2)

ε(k) = −vF (k + kF ), around k = −kF . (5.2.3)

The first step towards the Luttinger model is to linearise the spectrum. This provides a good

approximation around the Fermi points but we add an infinite number of energy states, see

Fig. 5.3. Since the chemical potential is fixed this also means that we add an infinite number

of particles to the model. However as long as the temperature is less then the Fermi energy

the low lying excitations will be unaffected by states far away from the Fermi level. We will

now introduce the index R and L to distinguish between electrons which live on the left or

right moving branch. Right moving electrons count their momentum from the right Fermi

point and left moving electrons count it from the left Fermi point

ĉkR = ĉkF+k, (5.2.4)

ĉkL = ĉ−kF−k. (5.2.5)
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Figure 5.3: Illustration of the linearised spectrum of the Luttinger model. In the darkly
shaded area in the negative energy sector we see the infinite number of negative states that
we added when we linearised the spectrum.

The original field operators can now be written

ψ̂(x) = ψ̂R(x)eikF x + ψ̂L(x)e−ikF x, (5.2.6)

where

ψ̂R(x) =
∑
k

ĉkR
eikx√
L
, (5.2.7)

ψ̂L(x) =
∑
k

ĉkL
e−ikx√
L
, (5.2.8)

and L is the length of the system. For the low lying excitations in the vicinity of the Fermi

points the fields ψR/L varies slowly on the scale of 1/kF . We can therefore throw away all

the rapidly oscillating terms of the type e±2ikF x since they will only provide small corrections
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when they are integrated. With this assumption we arrive at the Luttinger model

H = ivF
∑

η=R/L=±

∫
dxψ̂†η(x)η

∂

∂x
ψη(x) (5.2.9)

+
1

2

∑
η,η′=R/L=±

∫
dxdx′V (x− x′)ρ̂η(x)ρ̂η′(x

′),

where ρη = ψ̂†η(x)ψ̂η(x), η = R/L = ±.

5.3 Diagonalisation of the Luttinger model

We will now illustrate that we use bosonic operators to rewrite the interacting electron

Hamiltonian as a quadratic bosonic Hamiltonian. We start by writing the Luttinger model

in the form H = H0 +Hint where H0 is the Kinetic part

H0 = vF
∑
k,η

kĉ†kη ĉkη, (5.3.1)

and Hint is the interacting part

Hint =
π

L

∑
k,k,q

V (q)
{
ĉ†k+q,RĉkRĉ

†
k′Rĉk′+q,R + ĉ†k+q,RĉkRĉ

†
k′Lĉk′−q,L

+ĉ†k−qLĉkLĉ
†
k′Rĉk′+q,R + ĉ†k−q,Lĉk,Lĉ

†
k′,Lĉk′−q,L

}
, (5.3.2)

of the Hamiltonian and V (q) = (1/2π)
∫
V (x)e−iqx. Next step is to introduce the operators

b̂†qη ≡ i√
nq

∑
k ĉ
†
k+q,η ĉk,η, q > 0 (5.3.3)

b̂q,η ≡ − i√
nq

∑
k ĉ
†
k−q,η ĉk,η, q > 0, (5.3.4)
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where q = 2πn/L and nq is an integer. In these operators the interacting part of the

Hamiltonian is quadratic

Hint =
2π

L

∑
q>0

V (q)nq

(
b̂†qRb̂qR + b̂†Lq b̂qL − b̂†qRb̂†qL − b̂qLb̂qR

)
+
πV (q = 0)

L
(NL +NR)2 ,

(5.3.5)

where NL and NR are the number of left and right moving electrons. We have also omit-

ted the operator independent constant in the Hamiltonian. The fact that the Hamiltonian

is quadratic in these new operators is encouraging.This shows that the interacting part of

the Hamiltonian can be written in terms of bosonic operators that make the Hamiltonian

quadratic. The remaining question is whether we can write the kinetic part of the Hamilto-

nian in these operators. The starting point is the Hamiltonian

H0 =
∑
η

Hη0, (5.3.6)

where the Hamiltonian on each branch is

Hη0 =
∞∑

k=−∞

kc†kηckη. (5.3.7)

Since [H0η, N̂η′ ] = 0 for all η, η′ every particle ground state is an eigenstate to Hη0, i.e.

Hη0|N〉0 = EN
η0|N〉0. By simple inspection we see that the eigenvalue in the ground state is

EN
α0 = 〈N |Hα0|N〉0 =

2π

L


∑Nη

n=1(n− δb/2) = 1
2
N2
η + 1

2
Nη(1− δb) if Nη > 0∑Nη

n=1−(n− δb/2) = 1
2
N2
η + 1

2
|Nη|(1− δb) if Nη < 0

=
π

L
Nη(Nη + 1− δb). (5.3.8)
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We now note that the operator b†qη increases the energy of any eigenstate |Eη〉 by q units.

This yields that

[Hη0, b
†
qη′ ] = qb†qηδη,η′ , (5.3.9)

which implies

Hη0b
†
qη|Eη〉 = (Eη + q)|Eη〉. (5.3.10)

Since the Hilbert space HN is completely spanned by operators b†qη acting on the ground

state |N〉0 it follows that Hη0 must have a representation purely in bosonic operators. From

eqs. (5.3.8) and (5.3.10) it is clear that the only representation that fulfills both these con-

ditions is

Hη0 =
∑
q>0

qb†qηbqη +
π

L
Nη(Nη + 1− δb). (5.3.11)

We now finally have a Hamiltonian that only depends on bosonic operators and before

we find a Bogoljubov transformation to make it quadratic we neglect the constant term

in eq. (5.3.11) and the V (q = 0) since these terms only contribute to processes that don’t

exist in the pure Luttinger liquid. It is backscattering processes turns left movers into right

movers and vice versa and this requires impurity scattering which we will treat later in this

thesis. So the final form of the Hamiltonian for the Luttinger model is

H =
2πvF
L

∑
q>0

nq

[
b†qRbqR + b†qLbqL +

V (q)

vF

(
b†qRbqR − b†qLbqR − b†qRbqL + b†qLbqL

)]
.(5.3.12)

85



This Hamiltonian is quadratic in the boson operators b†qη/bqη and we can diagonalise it by

the following Bogoljubov transformation

Bq± =
1√
8

[(
1√
g

+
√
g

)
(bqL ∓ bqR)±

(
1√
g
−√g

)(
b†qL ∓ b†qR

)]
, (5.3.13)

where g = vf/v and v = vF
√

1 + 2V (q = 0)/vF . We can now write the Hamiltonian in

terms of these new operators in the diagonal form

H = v
2π

L

∑
ν=±

∑
q>0

nqB̂
†
qνB̂qν . (5.3.14)

To summarise we have showed that it is possible to take a strongly interacting electron

model and rewrite it as a non-interacting bosonic theory.

5.4 Bosonisation identities

In the previous section we diagonalised the Tomonaga-Luttinger model, but to be able to cal-

culate correlation functions we have to be able to express the Fermionic creation/anhiliation

operators in terms of bosonic ones. From the definition of the operators

ψη(x) ≡ 2π

L

∞∑
k=−∞

e−ikxckη, (5.4.1)

and

bqη ≡ −
i
√
nq

∞∑
k=−∞

c†k−q,ηckη, (5.4.2)

it follows that

[bqη′ , ψη(x)] = δηη′αηψη(x), (5.4.3)
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[
b†η′q, ψη(x)

]
= δηη′α

∗
ηψη(x), (5.4.4)

where αq = i√
nq
eiqx. From the definition of the N-particle ground state, |N〉0, it follows that

bqη|N〉0 = 0. Starting from the commutation relation eq. (5.4.3) we see that

[bqη′ , ψη(x)] |N〉o = bqη′ψη|N〉0 = δηη′αqψη(x)|N〉0, (5.4.5)

from which it follows that ψη(x)|N〉0 is an eigenstate of bqη with the eigenvalue αq. This

implies that ψη(x)|N〉0 has an coherent state expansion in the form [58]

ψη(x)|N〉0 = exp

(∑
q>0

αq(x)b†qη

)
Fηλ̂η|N〉0 = e−iϕ

†(x)Fηλ̂η|N〉0. (5.4.6)

Where we have introduced Klein factors, Fη, that satisfy the commutation relations

[bqη, F
†
η′ ] = [b†qη, F

†
η′ ] = [bqη, Fη′ ] = [b†qη, Fη′ ] = 0 for all η, η′, q. (5.4.7)

Taking a careful look at what this actually implies, one can start by writing ψη(x) in the

Fourier expansion form

ψη(x) =

(
2π

L

)1/2∑
k

e−ikxckη. (5.4.8)

Applying this to the state |N〉0 we create a infinite linear combination of states ψη(x) =(
2π
L

)1/2∑
k e
−ikxckη|N〉0. In the right hand side of eq. (5.4.6) Fη removes the top η-electron to

form the new state cNηk|N〉0 and we form an infinite linear combination of states by operating

with e−iϕ
†(x). The statement that these set of states are equivalent is highly non-trivial since

naively one would expect that the exponential e−iϕ
†(x) would create a much larger set of

states. However exploiting the properties of coherent states eq. (5.4.6) guarantees that of all

the combinations of particle-hole states combined in e−iϕn(x) only those states contribute,
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when acting on cNηη|N〉0, that fills its empty Nη-level by moving to the later a single η-

electron from a lover filled state. Remarkably all other combinations (that would leave

a η-electron above Nη) cancel out to zero. To evaluate the operator λ̂η we calculate the

expectation value

0〈N |F †ηψη(x)|N〉0 = λη(x), (5.4.9)

where we have used eq. (5.4.6) for ψη(x), commuted e−iϕ
†(x) past Fη and finally used 0〈N |e−iϕ†(x) =

0〈N | by eq. (5.1.18). If we insted use the Fourier expansion of ψη(x) and insert it into

eq. (5.4.9) we note that neither |N〉0 nor 0〈N |F †η contain any particle-hole pairs, we realise

that only terms in the sum with nk = Nk can contribute, i.e. k = 2π
L

(Nη − 1
2
δb),

〈N |F †ηψη(x)|N〉0 =

(
2π

L

)1/2

e−i
2π
L

(Nη− 1
2
δb)x. (5.4.10)

So we can conclude

λη(x) =

(
2π

L

)1/2

e−i
2π
L

(Nη− 1
2
δb)x. (5.4.11)

The next step in the derivation of the Bosonisation indentities is to investigate the action

of ψη on a arbritary state |N〉 in the Fock space which by eq. (5.1.20) we can write as

|N〉 = f({b†qη′})|N〉. Before we start we introduce two very useful idenities

ψηf({b†qη′}) = f({b†qη′ − δηη′α∗q(x)})ψη(x), (5.4.12)

f({b†qη′ − δηη′α∗q(x)}) = e−iϕ(x)f({b†qη′})eiϕ(x). (5.4.13)
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We start by applying the fermionic field operator on a arbitrary state, |N〉, in Fock space

and then we use eq. (5.1.20) to obtain:

ψη(x)|N〉 = ψη(x)f({b†qη′})|N〉0 (5.4.14)

= f({b†qη′ − δηη′α∗q(x)})ψη(x)|N〉0 (5.4.15)

= f({b†qη′ − δηη′α∗q(x)})e−iϕ†η(x)Fηλ̂η|N〉0, (5.4.16)

where eq. (5.4.15) follows by inserting eq. (5.4.12) into eq. (5.4.14) and then we obtain eq. (5.4.16)

from eq. (5.4.6). We now use the commutation relations for the Klein factors eq. (5.4.7) to

move the Klein factor up front:

ψη(x)|N〉 = Fηλ̂ηe
−iϕ†η(x)f({b†qη′ − δηη′α∗q(x)})|N〉0 (5.4.17)

= Fηλ̂ηe
−iϕ†η(x)e−iϕη(x)f({b†qη′})eiϕη(x)|N〉0 (5.4.18)

= Fηλ̂ηe
−iϕ†η(x)e−iϕη(x)f({b†qη′})|N〉0 (5.4.19)

= Fηλ̂ηe
−iϕ†η(x)e−iϕη(x)|N〉. (5.4.20)

Eq. (5.4.18) follows from eq. (5.4.13) and next we use the definition of the vacuum state,

eq. (5.1.18), to see that eq. (5.4.18) can be rewritten into eq. (5.4.19). Finally eq. (5.4.20)

follows from eq. (5.1.20). Since |N〉 is an arbitrary state in Fock space these formulas, also

known as bosonisation formulas for ψη, hold as operator identities in Fock space valid for

all L.

ψη(x) = Fηλ̂ηe
−iϕ†η(x)e−iϕη(x) (5.4.21)

= Fη

(
2π

L

)1/2

e−i
2π
L

(N̂η− 1
2
δb)xe−iϕ

†
η(x)e−iϕη(x) (5.4.22)

= Fηa
−1/2e−i

2π
L

(N̂η− 1
2
δb)xe−iφη(x) (5.4.23)

= Fηa
−1/2e−iΦη(x). (5.4.24)
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Where eq. (5.4.22) follows from eq. (5.4.11). To show eq. (5.4.23) we need to use the Baker-

Hausdorff formula from which it follows

e−iϕ
†
η(x)e−iϕη(x) = e−i(ϕ

†
η+ϕη)(x)e−[iϕη(x),iϕ†η(x)] =

(
L

2πa

)2

e−iφ(x). (5.4.25)

using the commutations relation eq. (5.1.29). This concludes the derivation of the Bosoni-

sation identities and they are all equivalent. The strength of the constructive bosonisation

approach is that since we derived the formulas step by step from first principles there is no

need to check their validity by calculating correlators ,〈ψηψ†η〉 or anti-commutators, {ψη, ψ†η}.

5.5 Summary

In this chapter we have studied the basic properties of electrons and bosons in one dimension.

The first main result we derived was the introduction of the Luttinger model a strongly in-

teracting electron model which can be rewritten using bosonic operators as a non-interacting

bosonic theory. The main achievement was the derivation of the bosonic identities. This

method of writing fermionic creation and annihilation operators in terms of bosonic ones

will be used in the chapter to come.
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Chapter 6

NOISE IN KONDO SYSTEMS

In this chapter we will discuss noise in Kondo systems. We start by familiarising ourselves

with Kondo systems and how to deal with impurities in one dimension by studying the

Schiller and Hershfield [59] solution of a non-equilibrium Kondo system. We start by map-

ping this system on to a solvable resonant level model. After we find a solvable model we

discuss how the mapping of the original system affects the noise calculations. Since much

of the principles involved in calculating the noise in this system is similar to the Coulomb

dot we focus on discussing how to calculate the noise and the results rather then giving all

the details. The next step is to discuss the results of Sela et al. [60] and the generalisation

of this result by Fujii [61]. Finally we discuss a new system that would be interesting to

generalise these results to.

6.1 The solvable model

We will in this section reproduce the derivation by Schiller and Hersfield [59] of a solvable

non-equilibrium Kondo model in the Toulouse limit. The starting point is a spin 1/2 impurity

that we place in between two one dimensional non-interacting leads that are attached via

tunneling. The one dimensional fields, ψασ, interact with the impurity via the conduction-
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electron spin densities

~Sαβ =
1

2

∑
σσ′

ψ†ασ~σσσ′ψβσ′ . (6.1.1)

The operators SLL and SRR are independent spin densities of the left and rights leads while

SRL and SLR induce tunneling in between the leads. The full Hamiltonian of the system has

the form:

H = H0 +HB + Y0 +HK , (6.1.2)

where

H0 = i
∑
α=R,L

∑
σ=↑,↓

∫
dxψ†ασ(x)∂xψασ, (6.1.3)

HB = −hτ z, (6.1.4)

Y0 =
V

2

∑
σ=↑,↓

∫
dx
[
ψ†Lσ(x)ψLσ(x)− ψ†Rσ(x)ψRσ(x)

]
, (6.1.5)

HK =
∑

αβ=L,R

∑
ν=x,y,z

JνS
ν
αβτ

ν , (6.1.6)

where ~τ = ~σ/2 and ~σ = (σx, σy, σz) is the vector of Pauli matrices

σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 . (6.1.7)

We have also introduce a magnetic field, h, and an applied bias voltage, V , to drive the

system out of euilibrium. Schiller and Hershfield [59] showed that this model is solvable also

for non-equilibrium situations if we choose the following set of parameters:

Jαβx = Jαβy = Jαβ⊥ , (6.1.8)

JLR⊥ = Jαβ⊥ , (6.1.9)
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JLRz = JRLz = 0, (6.1.10)

JLLz = JRRz = Jz = 2π. (6.1.11)

Why this set of parameters, known as the Toulouse limit, is special will be clear as we

continue diagonalising the Hamiltonian and this set of parameters will guarantee that the

final Hamiltonian is quadratic. We can now rewrite the Kondo part of the Hamiltonian in

the more convenient form

HK = H||K +H⊥K , (6.1.12)

where

H||K =
1

2

[
Ψ†↑(0)ĴzΨ↑(0)−Ψ†↓(0)ĴzΨ↓(0)

]
τ z,

H⊥K =
1

2
Ψ†↑(0)Ĵ⊥Ψ↓(0)τ− +

1

2
Ψ†↓(0)Ĵ⊥Ψ↑(0)τ+, (6.1.13)

and

Ĵz =

 JRRz JRLz

JLRz JLLz

 , Ĵ⊥ =

 JRR⊥ JRL⊥

JLR⊥ JLL⊥

 . (6.1.14)

We have also introduced the spinor notation

Ψσ(x) =

 ψLσ(x)

ψRσ(x)

 , (6.1.15)

and the standard raising and lowering operators for impurity spins, τ± = τx± iτ y. The non-

equilibrium term of the Hamiltonian, Y0, means that we have to be careful when we map this

problem on to a non-interacting one. Normally this requires a canonical transformation that

reduces the Hamiltonian to a quadratic form. In the non-equilibrium situation the transfor-
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mation also has to preserve the quadratic form of Y0 otherwise the problem will remain a

truly many-body problem. For our Hamiltonian we will use the bosonisation identities that

we derived in the previous chapter. We will follow the tranformation introduced by Emery

and Kivelson [62] and we start by introducing four bosonic fields Ψασ where α = L,R and

σ =↑, ↓. Using eq. (5.4.24) we can now write the fermionic operators in the form

ψασ =
eiϕασ

2πa
e−iΦασ(x), (6.1.16)

where we have written the Klein factor in the form Fασ = eiϕασ which is a standard notation

in field theoretical bosonisation. Writing the Klein factor in this form can lead to some

subtleties but we refer the reader to [54] for details. Driving the system out of equilibrium

can also cause problems for the validity of the bosonisation identities since it can make

the assumption that the spectrum is linear invalid. In our case this is not the case and

we can safely use the bosonisation technique since we have the whole system at the same

temperature. For an introduction to what happens if one starts to drive one dimensional

systems out of the linear spectrum regime we recommend the work by Gutman et al. [63,

64, 65]. We choose the following phases of the Klein factors

ϕL↑ =

∫ ∞
−∞

[
ψ†L,↓ψL↓ + ψ†R,↑ψR↑ + ψ†L,↓ψL↓

]
dx, (6.1.17)

ϕL↓ =

∫ ∞
−∞

[
ψ†R,↑ψR↑ + ψ†L,↓ψL↓

]
dx, (6.1.18)

ϕR↑ =

∫ ∞
−∞

ψ†L,↓ψL↓dx, (6.1.19)

ϕR↓ = 0. (6.1.20)

We also introduce new bosonic fields from the four bosonic field, Φα,σ,

Φc =
1

2
(ΦL↑ + ΦL↓ + ΦR↑ + ΦR↓) , (6.1.21)

Φs =
1

2
(ΦL↑ − ΦL↓ + ΦR↑ − ΦR↓) , (6.1.22)
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Φf =
1

2
(ΦL↑ + ΦL↓ − ΦR↑ − ΦR↓) , (6.1.23)

Φsf =
1

2
(ΦL↑ − ΦL↓ − ΦR↑ + ΦR↓) , (6.1.24)

where the new bosonic fields correspond to collective charge, spin, flavour and spin flavour

respectively. Doing the rotation also in the Klein factor phase fields and writing them in

terms of the bosonic fields [59] we obtain:

ϕc =
1

4

∫
[3∇Φc(x)−∇Φs(x)− 2∇Φf (x)] dx, (6.1.25)

ϕs =
1

4

∫
[∇Φc(x)−∇Φs(x)] dx, (6.1.26)

ϕf =
1

4

∫
[2∇Φc(x)−∇Φf (x)−∇Φsf (x)] dx, (6.1.27)

ϕsf =
1

4

∫
[∇Φf (x)−∇Φsf (x)] dx. (6.1.28)

It is now time to insert the bosonic identities 6.1.16 into the Hamiltonian and using the short

hand notation χν = Φν(0)−ϕν and writing the bosonic field in the charge, spin, flavour and

spin flavour form we obtain the bosonic version of the Hamiltonian

H =
~vF
4π

∑
ν=c,s,f,fs

∫ ∞
−∞

(∇Φν)
2 dx

+
J+

πa
[−τx sin(χs) + τ y cos(χs)] cos(χsf )

−J
−

πa
[τx cos(χs) + τ y sin(χs)] sin(χsf ) (6.1.29)

−J
LR
⊥
πa

[τx cos(χs) + τ y sin(χs)] sin(χf )

+
Jz
2π
∇Φs(x)τ z − hτ z,

and

Y0 =
eV

2π

∫
∇Φf (x)dx, (6.1.30)
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where we have introduced

J± =
1

2

(
JLL⊥ ± JRR⊥

)
. (6.1.31)

We see that the Hamiltonian only depends on the bosonic field χs in certain angles. Perform-

ing a rotation of the system we can get rid of χs. The rotation we use is [62]: H′ = UHU †,

Y ′ = UYU †, with U = exp(iχsτ
z). Since Y is proportional to ∇Φf (x) it is unaffacted by

the canonical transformation and we can rewrite the Hamiltonian in the simpler form

H =
~vF
4π

∑
ν=c,s,f,fs

∫ ∞
−∞

(∇Φν)
2 dx

+
J+

πa
τ y cos(χsf )−

J−

πa
τx sin(χsf )−

JLR⊥
πa

τx sin(χf ) (6.1.32)

+

(
Jz
2π
− ~vF

)
∇Φs(x)τ z − hτ z.

The goal of this rotation is not only to make the Hamiltonian look nicer it also makes the

equivalent fermionic model quadratic. So we now take a step back to a fermionic description

with the use of the refermionisation identities:

ψν(x) =
eiπd

†d

√
2πa

e−iχν , (6.1.33)

ψν(x) =
e−iπd

†d

√
2πa

eiχν , (6.1.34)

where

d = iτx − τ y = iτ+, (6.1.35)

describes the impurity spin. For a spin 1/2 eq. (6.1.35) assures that d and d† satisfy the

anti-commutation relationship {d, d†} = 1. The phase factors in eqs. (6.1.33) and (6.1.34)

takes care of different species ψν anti-commutation with d and d†, while χν guarantees that
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the ψν obey the commutation relations. We now obtain a Hamiltonian in a new fermionic

form

H′ = i~vF
∑

ν=c,s,f,sf

∫
dxψ†ν(x)

∂

∂x
ψν(x)dx

+
J+

2
√

2πa

(
ψ†sf (0) + ψsf (0)

)
(d† − d)

+
JLR⊥

2
√

2πa

(
ψ†f (0)− ψf (0)

)
(d† + d) (6.1.36)

+
J−

2
√

2πa

(
ψ†sf (0)− ψsf (0)

)
(d† + d)

+
[
h− (Jz − 2πvF ) : ψ†sψs(0) :

]
(d†d− 1/2),

and

Y ′0 = eV

∫
ψ†f (x)ψf (x)dx. (6.1.37)

If we set Jz = 2πvF both the non-equilibrium component Y ′ and the full Hamiltonian H′

reduce to a quadratic form. In this limit the ψc and ψs fields de-couple from the d-fermions

and we just need to consider ψf and ψsf when we want to study impurity quantities such as

the charge and spin current. Restricting our attention to the flavour and spin flavour field

we introduce the Fourier transform

ψ†ν =
1√
L

∑
k

ψ†ν,ke
ikx ν = f, sf, (6.1.38)

where k = 2πn/L and L is the length of the system. The fermionic operators satisfy the

standard anti-commutator relationship

{ψ†ν,k, ψν′,k′} = δk,k′δν,ν′ . (6.1.39)
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We now introduce the Majorana Fermions

â =
d+ d†√

2
, b̂ =

d† − d
i
√

2
, (6.1.40)

which satisfy the relationship â2 = b̂2 = 1/2 instead of zero which is the case for standard

fermions. Combining eqs. (6.1.38) and (6.1.40) we can rewrite the Hamiltonian in the form

H =
∑
ν=f,sf

∑
k

εkψ
†
ν,kψν,k − hâb̂

+
J+

2
√

2πaL

∑
k

(
ψ†sf,k + ψsf,k

)
b̂

+
JLR⊥

2
√

2πaL

∑
k

(
ψ†f,k − ψf,k

)
â (6.1.41)

+
J−

2
√

2πaL

∑
k

(
ψ†sf,k − ψsf,k

)
â,

and

Y ′0 = eV
∑
k

ψ†f,kψf,k. (6.1.42)

6.1.1 Noise in the Toulouse limit

The spin and charge number operators are given by

Nc =
1

2

∑
α

∑
σ

α

∫
dxψ†ασ(x)ψασ(x), (6.1.43)

Ns =
1

2

∑
α

∑
σ

ασ

∫
dxψ†ασ(x)ψασ(x), (6.1.44)

where α = L,R = ±1. We now obtain the spin and charge currents from the Heisenberg

equation of motion

Ic/s = −i[H, Nc/s]. (6.1.45)
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Performing the commutation relation we see that the charge current is given by

Ic =
JLR⊥

2

(
ψ†R↑(t)ψL↓(t

′) + ψ†R↓(t)ψL↑(t
′)− ψ†L↑(t)ψR↓(t′)− ψ†L↓(t)ψR↑(t′)

)
. (6.1.46)

The noise is now defined in terms of the charge current

S(ω) =

∫ ∞
−∞

eiωt
[
〈{Ic(t), Ic(t′)}〉 − 2〈Ic〉2

]
dt. (6.1.47)

We are now interested in how this original problem maps under the transformation that

mapped the original Hamiltonian into the solvable model. Taking a look at the charge

current operator it is clear that it maps into

i
eJLR⊥

2~
√
πaL

∑
k

(
ψ†f,k + ψf,k

)
â, (6.1.48)

which can be seen from eq. (6.1.13) and using eqs. (6.1.41). So after mapping the model to a

non-interacting model we can now write the current-current correlator in terms of the single

particle Green functions Gaa(t, t
′), Gfk,a(t, t

′) and Gfk,fk′(t, t). Since much of the analysis

of the noise at this stage is similar to previous chapters we will only quote the results and

much of the details can be found in [59]. A careful analysis of the current-current correlator

gives us

I>(t, t′) = 〈Ic(t)Ic(t′)〉 (6.1.49)

= 〈Ic〉2 +
e2

~
Γ1νF

1

L

∑
k,k′

[
G>
fk,fk′(t, t

′)G>
aa(t, t

′)−G>
fk,a(t, t

′)G>
a,fk(t, t

′)
]
.

Where the single particle Green functions of the different field species are given by

Gfk,fk′(t, t
′) = 〈

(
ψ†f,k(t) + ψf,k(t)

)(
ψ†f,k′(t

′) + ψf,k′(t
′)
)
〉, (6.1.50)
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and

Ga,fk = 〈a(t)
(
ψ†f,k′(t

′) + ψf,k′(t
′)
)
〉. (6.1.51)

We see from eq. (6.1.49) that we get cancellation of the disconnected terms and what remains

is to calculate the Green functions explicitly. Since the goal of this chapter is to motivate

future work we choose to omit technical details and instead we choose to discuss the results

and the physics they imply. For an explicit calculation of the Green functions the interested

reader can consult the article written by Schiller and Hershfield [59] and for a discussion of

the full counting statistics of this problem see the work by Schmidt [66], Schmidt et al. [67]

and Gogolin et al. [68]

6.1.2 The zero field limit

In the limit where the external magnetic field is zero we have single particle transport

processes that involve the magnetic impurity. This implies that the effective charge is

bounded from above by the Poisson statistics result e∗ = e. The noise in this limit is given

by [59]

S(0)

2Ic
= e

(
1− Γ1eV

arctan(eV/Γ1)[(eV )2 + Γ2
a]

)
. (6.1.52)

So in the shot noise regime we obtain the Poison statistics result and an effective charge of

e∗ = e

6.1.3 Large field limit

In the large external magnetic field limit we can no longer have single particle spin flip

processes of the spin on the impurity since these states would have too high an energy. So

the only processes that are allowed are virtual double spin flips that in one step moves two
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particles and give us the effective charge e∗ = 2e. This result is also what is obtained in the

shot noise regime in the strong magnetic field limit [59].

6.2 Effective charge

In the previous sections we saw what happens to the effective charge in two extreme limits

where only one type of scattering process is responsible for the transport. In this section

we will discuss a more realistic situation where we have multiple scattering processes taking

place. In a recent article, Sela and co-workers [60] study shot noise in a quantum dot in

the Kondo regime. This is done using Nozières Fermi liquid theory [26]. In this work a

quantum dot with a symmetric coupling to the leads is considered near the unitary limit

and the mixture of left and right movers is controlled by the applied bias voltage. Due to

the left and right symmetry we can write the low energy Hamiltonian of the system[19, 69]

H =
∑
kσ

ξkψ
†
kσψkσ −

α

2πνTK

∑
k,k′σ

(ξk + ξk′)ψ
†
kσψk′σ

+
β

πνTK

∑
k1,k2,k3,k4

ψ†k1↑ψk2↑ψ
†
k3↓ψk4↓, (6.2.1)

in terms of left and right moving electrons ψkσ = 1√
2

(Lkσ +Rkσ). The term that is propor-

tional to α is proportional to the energy of the phase shift and the terms proportional to β

describes the quasiparticle interactions. The current transmitted through the dot consists

of two parts: the maximal unitary limit Iu = 2 e
2

h
V and the back scattering term Ib. The

back scattering terms are due to the interaction of the dot. In [60] the effective charge is

calculated in the back scattering current through the relation

e∗ =
S(0)

2Ib
, (6.2.2)
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where S(0) is the shot noise. Performing this longwinded calculation one obtains the follow-

ing result for the current and the noise [60]:

I = Iu − Ib =
2e2

h
V

[
1− α2 + β2

12

(
V

TK

)2
]
, (6.2.3)

S(0) =
4e3

h
V
α2 + β2

12

(
V

TK

)2

. (6.2.4)

Inserting eqs. (6.2.3) and (6.2.4) into eq. (6.2.2) we obtain

e∗ =
α2 + 9β2

α2 + 5β2
. (6.2.5)

It is a central result in Nozières Fermi Liquid theory that for the Kondo effect α = β and

for this value we obtain the Wilson ratio

W =

(
δχ

χ

)
/

(
δCv
Cv

)
= 1 +

β

α
= 2, (6.2.6)

where χ is the susceptibility and Cv is the specific heat. The Wilson ratio is very useful for

characterisation of strongly correlated Fermi liquids, for a detailed discussion of this topic

see [70]. These values for α and β give us the effective charge e∗ = 5/3. This result can be

understood by looking at the part of the Hamiltonian related to β:

Hβ =
β

πνTK

∑
k1,k2,k3,k4

ψ†k1ψk2ψ
†
k3
ψk4 . (6.2.7)

Splitting the field ψ into left and right movers,

ψkσ =
1√
2

(ψLkσ + ψRkσ) , (6.2.8)
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we obtain a Hamiltonian that contains scattering processes that will back scatter 0, 1 and

2 particles. We choose the term

∑
ψ†Lk1↑ψRk2↑ψ

†
Lk3↓ψRk4↓, (6.2.9)

that backscatters two right movers into two left movers. The contribution this process will

make to the backscattering current is I2β = 2eΓ2β, where we have introduced the scattering

rate

Γ2β =
2π

h

∑
k1k2k3k4

|〈ψLk1↑ψ†Rk2↑ψLk3↓ψ
†
Rk4↓Hβ〉|2δ(ξk1 + ξk2 − ξk3 − ξk4). (6.2.10)

Now using the relationships

〈ψLkσψ†Lk′σ′〉 = δkk′δσσ′(1− fL(ξk)), (6.2.11)

〈ψRkσψ†Rk′σ′〉 = δkk′δσσ′(fR(ξk)), (6.2.12)

we obtain the following two particle backscattering contribution to the backscattering current

I2β =
e2

h

2

3

(
V

TK

)2

V β2. (6.2.13)

In a similar fashion we can now obtain the contribution from the single particle scattering

processes that consist of the elastic processes from the terms proportional to α,

I1α =
e2

h

1

6

(
V

TK

)2

V α2, (6.2.14)

in the Hamiltonian and the inelastic processes proportional to β,

I1β =
e2

h

1

6

(
V

TK

)2

V β2. (6.2.15)
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Since the rates are very low, (V/TK)2 � 1, we can assume that the rates are uncorrelated

and we get the total contribution to the noise given by

S(0) = 2e(I1α + I1β + 2I2β), (6.2.16)

which gives an effective charge

e∗ = e
α2

6
+ β2

6
+ 22β2

3

α2

6
+ β2

6
+ 2β2

3

. (6.2.17)

This result give us e∗ = 5e/3 for α = β. Sela and co-workers [60] claim that this is a

universal result and more general then the Wilson ratio. An important question is of course

if there exists a relationship between the Wilson ratio and the effective charge. In a recent

work Fujii [61] finds the following relationship between the shot noise and the Wilson ratio:

e∗ = e

(
1 +

4(W − 1)2

1 + 5(W − 1)2

)
. (6.2.18)

for a quantum dot. For our system with the Wilson ratio 2 thus give the expected e∗ = 5e/3.

6.3 Magnetic impurities in a Luttinger liquid

In the previous two chapters we have introduced the theory necessary to calculate the ef-

fective charge in 1D systems and discussed the current state of research in this field. We

will now close this chapter by suggesting a new direction of research for this field. We have

earlier in this chapter studied a model with non-interacting one-dimensional electrons cou-

pled to a impurity. The next step will be to add interactions to the system and study a

Luttinger liquid connected to a magnetic impurity [71, 72, 73]. This model was originally

studied by Furusaki and Nagaosa [72] and Fröjd and Johannesson [73]. The Luttinger liquid
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is described by the Hamiltonian

HLL =
νρ
4π

∫
dx

[
1

Kc

(
dΦc

dx

)2

+Kc

(
dΦf

dx

)2
]

(6.3.1)

+
νσ
4π

∫
dx

[
1

Ks

(
dΦs

dx

)2

+Ks

(
dΦsf

dx

)2
]
, (6.3.2)

where

Φc =
1

2
(ΦL↑ + ΦL↓ + ΦR↑ + ΦR↓) , (6.3.3)

Φs =
1

2
(ΦL↑ − ΦL↓ + ΦR↑ − ΦR↓) , (6.3.4)

Φcf =
1

2
(ΦL↑ + ΦL↓ − ΦR↑ − ΦR↓) , (6.3.5)

Φsf =
1

2
(ΦL↑ − ΦL↓ − ΦR↑ + ΦR↓) , (6.3.6)

are bosonic fields and Kc and Ks are the Luttinger liquid parameters that control the charge

and spin sectors respectively. We now attach an impurity spin (S=1/2) at the origin. We now

need to consider two types of Kondo exchange couplings: forward and backward scattering.

These two processes are described by the Hamiltonian

Himp =
JF
2
~S ·
[
ψ†Rσ(0)~σαβψRβ(0) + ψ†Lσ(0)~σαβψLβ(0)

]
+
JB
2
~S ·
[
ψ†Rσ(0)~σαβψLβ(0) + ψ†Lσ(0)~σαβψRβ(0)

]
, (6.3.7)

where ~σ = (σx, σy, σz) are the Pauli matrices. In this model the Wilson ratio has been

calculated by Fröjdh and Johannesson [73] to be

W =
4

3

(
1 +

νc
νs

)
, (6.3.8)

where νc is the velocity of charge excitations and νs the spin velocity. This model is also

solvable in the Toulouse limit with the use of bosonisation and will provide a good test of
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how general the results of Sela et al. [60] really are. Therefore we believe that it is a natural

extension of the theory presented in this thesis and provides a good project for future work.

6.4 Conclusion

In this chapter we have studied how to deal with Kondo impurities in a one dimensional

system in the Toulouse limit. This was done by bosonisation and Emery-Kivelson rotation.

Then the system was refermionised and we obtained a solvable model in the Toulouse limit.

We then discussed the limits of this model when we obtain an effective charge of e and 2e

and what kind of processes that are responsable for this. Finally we discussed the recent

result where the effective charge of, e∗ = 5e/3, of a Kondo dot was derived, and we suggested

a system where a further investigation of this result would be interesting.
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Chapter 7

CONCLUSION

In this thesis the main topic has been Coulomb blockaded quantum dots and the goal has

been to calculate the noise in this system. The motivation for this work is that most work

in this systems has been done using the single particle tunneling “orthodox” theory. This

theory is based on a classical master equation approach. The validity of this approach at the

peak of conductance is unclear. The reason for this is that we have two strongly interacting

charging levels and to figure out if the results from the “orthodox” theory are valid, a full

quantum treatment using the Keldysh technique is necessary.

The first part of this thesis has been dedicated to understanding the basic theory of Coulomb

blockaded quantum dots and the methods that today are accessible to study the properties

of these systems. Much of this work is a direct extension to the work done by Sedlmayr et

al. [1] where the TDoS is calculated for a Coulomb blockaded quantum dot. This method

developed and used in this work runs into problems when we start to study noise. The rea-

son for this is that the bosonic field introduced in the Hubbard-Stratonovich transformation

makes it extremely difficult to calculate the two particle Green functions of the dot that

appear in the noise. We therefore devote chapter 3 to introduce the method developed by

Sedlmayr et al. [1] and use it to calculate the TDoS. We then go on and develop a new

method to calculate the single particle Green functions and the TDoS without the need to
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perform a Hubbard-Stratonovich transformation. The key in this new method is to rewrite

the Hamiltonian such that we can separate parts depending on the particle number of the

dot and the distribution of the levels of the dot. We then attach the tunneling to one of the

levels of the dot and we can treat the problem as a resonant level problem and the interac-

tions play the role of weights to the charge states. This is easily generalised to two particle

Green functions and we can now treat most of the problem of the noise in the Coulomb

blockaded quantum dot as a resonant level and the interactions once again enter as weights

to the charge states.

Using this new method we can rewrite the noise calculations in two parts: one that treats

the interactions of the charge states and another that turns in to a resonant level model.

For the second problem we can use the results of section 2.5 with small modifications. The

main result is that we succeed in finding an analytic expression for the noise valid in the

region Γ � ∆ � T � Ec. We have checked the result in a couple of trivial limits such

as zero bias and zero temperature and we have found complete agreement with the known

results in these limits. In the shot noise regime T � eV at the peak of conductance we

obtain the same Fano factor, f = (Γ2
1 + Γ2

2)/Γ2 as the master equation approach. We also

obtain results that are valid in the intermediate regime from the linear response regime up

to the shot noise noise regime.

The final chapter was motivated by recent work by Sela et al.[60] where it is shown that the

effective charge in a Kondo dot is e∗ = 5/3. There have also been generalisations of this work

made by Fujii [61] where the effective charge as a function of the Wilson ratio is calculated.

This is claimed to be a universal result and we introduce a new system where we think it

would be interesting to study if this is universal or not in a future project. We believe that

a natural choice for a generalisation of the results by Sela et al. [60] is a Luttinger liquid

with a magnetic impurity. The reason this is a good choice is that it is a strongly interacting
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system in 1D where we can find an exact solution of the problem.
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Appendix A

CURRENT IN A QUANTUM DOT

In this appendix we will derive the general current expression in a quantum dot [38, 74, 75].

This expressions will be used in chapter 4 as a reference point when we calculate the noise

in chapter 4. We start from the current operator

IL = −ie〈[H, NL]〉, (A.0.1)

where

NL =
∑
k

c†kLckL. (A.0.2)

The Hamiltonian H consists of three parts: the standard non-interacting leads H0, the

tunneling Hamiltonian, HT , and the central region with a non-interacting kinetic part and

the interactions of the central region, Hcen. Since H0 and Hcen commute with NL the current

obtains the form

IL = ie
∑
k

[
tkα〈c†kαdn〉 − t∗kα〈d†nckα〉

]
. (A.0.3)

Performing a S-matrix expansion in the same way as in section 2.5 but to first order in HT ,

we obtain the following expression for the current in terms of single particle Green functions
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of the non-interacting leads and the interacting central region,

Gnkα(t, t′) =
∑
m

∫
Gnm(t, t1)t∗kαmgkα(t1, t

′). (A.0.4)

Using the analytic continuation rules we obtain

G<
nk(t, t

′) =
∑
m

∫
dt1
[
GR
nm(t, t1)G<

kα(t1, t
′) +G<

nm(t, t1)GA
kα(t1, t

′)
]
. (A.0.5)

Performing the Fourier transform we obtain the result in frequency space

G<
nk(ε) =

∑
m

GR
nm(ε)G<

kα(ε) +G<
nm(ε)GA

kα(ε). (A.0.6)

Inserting the non-interacting Green functions of the leads and using the relationship between

the single particle Green functions, we find

IL = ie

∫
dε

2π
Tr
(
ΓL
{
G<(ε) + fL(ε)[GR(ε)−GA(ε)]

})
. (A.0.7)

Using GK = G> +G< we can write this also in the equivalent form

Iα = eΓα

∫ ∞
−∞

dε

4π

(
Tr
{
GK(ε)− [1− 2fα(ε)]

[
GR(ε)−GA(ε)

]})
. (A.0.8)

In the steady state the current will be uniform and we can write the current in the form

I = (IL + IL)/2 = (IL − IR)/2. Using this relationship we can write the current in the

standard expression for the dc current

I = ie

∫
dε

2π
Tr
{

(ΓL − ΓR) G<(ε) + (ΓLfL(ε)− ΓRfR(ε)) [GR(ε)−GA(ε)]
}
. (A.0.9)
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Using current conservation, IL = −IR, we can rewrite this expression on the form

I = ie

∫
dε

2π
[fL(ε)− fR(ε)] T (ε), (A.0.10)

where

T (ε) = Tr

{
Γ1Γ2

Γ1 + Γ2

(
GR(ε)−GA(ε)

)}
. (A.0.11)
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Appendix B

FULL COUNTING STATISTICS

In this thesis we have focused on studying the noise and average current in strongly in-

teracting systems. These are both properties that can be extracted from the full counting

statistics of the system [76, 77]. So in this appendix we will discuss some basic properties

of full counting statistics such that it will be easier to understand and compare the results

in this thesis to the literature. This is especially important in chapter 6 where the effective

charge is studied, as this is a property that can be calculated both from the noise/second

cumulant and as the square root of the third cumulant [78].

The starting point is to introduce the characteristic function of a simple electron system

where the transmission is in the region 0 < Tn < 1. We introduce this without a proof since

the derivation is rather involved [76] and we believe the derivation itself will not add much

to the understanding of what information can be extracted from the first few cumulants.

For this system the characteristic function, also known as the Levitov-Lesovik formula, is

given by

ln Λ(χ) = 2∆t

∫
dε

2π~
∑
n

ln
{

1 + Tn
(
eiχ − 1

)
fL(ε) (1− fR(ε)) (B.0.1)

+Tn
(
eiχ − 1

)
fR(ε) (1− fR(ε))

}
. (B.0.2)
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The logarithm in eq. (B.0.2) comes with certain assumptions since it implies sum over the

channels which means that transmissions in different channels are independent, and the

integral over the energy implies that electrons are transmitted independently in different

energy intervals. The first derivative gives us the first cumulant as follows:

〈q〉 = e
∂ ln Λ

∂(iχ)

∣∣∣∣
χ=0

=
2e∆t

2π~
∑
n

∫
dεTn(ε) (fL(ε)− fR(ε)) . (B.0.3)

A quick comparison with the Landauer formula [6, 38], gives the relationship

〈q〉 = 〈I〉∆t. (B.0.4)

The second cumulant is given by

〈〈q2〉〉 =
e2∆t

π~
∑
n

∫
dε {Tn(ε) [fL(ε)(1− fL(ε)) + fR(ε)(1− fR(ε))]

+ Tn(ε)(1− Tn(ε))(fL(ε)− fR(ε))2
}
. (B.0.5)

To understand what this means we start by investigating the equilibrium situation, i.e.

fL = fR. The second cumulant now has the form

〈〈q2〉〉 =
2se

2kBT

π~
∑
n

Tn. (B.0.6)

Comparing this to eq. (1.4.5) we obtain the relationship

〈〈q2〉〉 =
∆tS(0)

2
. (B.0.7)

In the shot noise limit, kBT � eV , we obtain

〈〈q2〉〉 = ∆tGeV
∑
n

Tn(1− Tn). (B.0.8)
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If we compare this with the standard result for shot noise [7], we obtain the relationship

〈〈q2〉〉 =
∆tS(0)

2
. (B.0.9)

The third cumulant in the shot noise regime is given by

〈〈q3〉〉 = e2V G∆t
∑
n

Tn(1− Tn). (B.0.10)

If we now take the low transmission limit, T � 1, this can be reduced to the simple

relationship

〈〈q3〉〉 = e2∆t〈I〉. (B.0.11)

It has been suggested by Levitov and Reznikov [78] that the third cumulant is better to use

than the shot noise when it comes to detecting the charge of quasi-particles, through the

relation

(e∗)2 =
〈〈q3〉〉
〈q〉 . (B.0.12)

The reason that this is a better measure now that the third cumulant is experimentally

accessible [78, 79, 80] is that it is less sensitive to thermal fluctuations.
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