
Static Analysis Learning
of Annotations
in Microservices

By

Francisco Miguel Ramírez Méndez

A thesis submitted to
the University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

Software Engineering Research Group
School of Computer Science

College of Engineering and Physical Sciences
University of Birmingham

December 2023

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

© Copyright by FRANCISCO MIGUEL RAMÍREZ MÉNDEZ, 2023

All Rights Reserved

ABSTRACT

In microservices, an architectural style for building large-scale software applications,

annotations play a crucial role in adding essential features for structuring and maintaining

system settings. However, incorrect configurations and missing annotations impact the per-

formance, quality and system complexity, posing significant concerns to developers. More-

over, the wrong usage of annotations generates potential bugs, and their detection may take

days or even weeks due to the analysis of multiple logs and source code files.

To mitigate this, we advocate an approach to make suggestions for adding and keeping

annotations according to similarities between microservice operations. The approach learns

semantic relations between annotations and operations based on a database of code frag-

ments with annotated operations. The learning process pursues converting operations into

numerical vectors to find similar operations. Additionally, we extend the learning approach

for creating clusters and identifying their granularity. Then, our approach predicts to which

cluster an annotated operation belongs to identify its range of granularity values.

This thesis contributes to (i) a comprehensive systematic review of annotations in mi-

croservice construction, complemented by an empirical study that highlights the relevance of

annotations in microservice software development; (ii) a semantics-driven learning approach

that captures the relation between code fragments and annotations; and (iii) an extension

of our learning approach that mines the granularity limits of new annotated operations.

Keywords: Microservices, Annotations, Static Analysis, Semantics Learning

i

DEDICATION

Dedicate to my daughters Franchesca and Isabella, my beloved wife Jessica, and our

soon-to-arrive son Francisco. Their unwavering love and support have given me the energy

and strength to navigate this challenging journey. Your presence has been my inspiration.

To my beloved mother, Martha Cecilia Méndez Chávez. I am eternally grateful for your

endless dedication to providing me with the education and guidance required to achieve my

aspirations. You instilled in me the sacrifices and values that shaped the person I am today.

In memory of my wise father, Francisco de Sales Ramírez Sánchez. Though you’ve passed

away, your wisdom and support remain a guiding light in our life. I am committed to

providing my children with the same love and education, ensuring your legacy lives on.

To my brothers, Jaime Enrique and Gabriel Andrés, your unwavering support and

assistance during the toughest days have been a source of comfort and encouragement,

demonstrating the strength of our familial ties.

This dedication is a small token of my appreciation for the immense role each of you has

played in shaping my journey and contributing to the achievement of my goals. Your

presence and love have been my greatest blessings.

ii

ACKNOWLEDGMENTS

I want to express my heartfelt gratitude to the individuals who have been instrumental in

completing this PhD thesis. First and foremost, I am deeply indebted to my close friend

and dedicated colleague, Dr. Carlos Mera, for his resolute encouragement during the most

challenging times. His unwavering belief in my capabilities and continuous motivation has

been a driving force that propelled me forward, even in the face of adversity.

I also extend a sincere and special appreciation to my dedicated supervisor, Dr. Rami

Bahsoon, who has been with me since my master’s degree. His mentorship, encouragement,

and pragmatic advice on striking a harmonious balance between academic pursuits and

family responsibilities have been pivotal in shaping my academic trajectory.

Furthermore, I sincerely thank Dr Yuqun Zhang, supervisor from SUSTech University,

for providing the incredible opportunity to participate in the Joint Split program that made

this academic journey possible. This journey begins in Ecuador and continues between the

United Kingdom and China. I also acknowledge the Government of Ecuador, which gave me

an initial scholarship for my master’s degree, which unfolds unlimited opportunities.

To all those who have supported, encouraged, and believed in me throughout this

journey, your contributions have been truly remarkable and deeply appreciated.

iii

iv

Perseverance is not

a long race; it is

many short races

one after the other

Walter Elliot

ii

Contents

Page

1 Introduction 1

1.1 Overview . 1

1.2 Problem Statement . 3

1.2.1 Definition of Annotations, Types and Examples 4

1.2.2 Definition of Granularity . 6

1.2.3 Abstract Syntax Tree, Definition and Usability 7

1.2.4 Prediction of Annotations . 8

1.2.5 Prediction of Actions . 9

1.2.6 Determining Typical Granularity . 10

1.2.7 Importance of These Problems . 11

1.2.8 Semantics-Driven Learning Algorithm 12

1.3 Research Methodology . 14

1.4 Research Questions . 15

1.5 Thesis Contributions . 16

1.6 Publications Linked to this Thesis . 18

1.7 Thesis Roadmap . 19

2 Systematic Review of Annotations in Microservice Construction 21

2.1 Overview . 21

2.2 Research Methodology . 23

iii

CONTENTS

2.2.1 Review Protocol . 23

2.2.2 Research Goal . 23

2.2.3 Research Questions . 24

2.2.4 Literature Search Strategy . 25

2.2.5 Publication Quality Assessment . 27

2.2.6 Data Extraction and Synthesis . 27

2.3 Results . 29

2.3.1 Description of Studies . 30

2.3.2 Description of Categories . 31

2.3.3 Annotations in Microservices Construction 36

2.3.4 Specific Uses in Static Analysis-based Techniques 40

2.4 Discussion . 44

2.4.1 Future Outlook for Research . 47

2.4.2 Threats to Validity . 50

2.5 Gap Analysis . 51

2.6 Related Work . 53

2.6.1 Annotations in Microservices . 53

2.6.2 Static Analysis-based Techniques . 54

2.7 Summary . 55

3 Classification of Microservice-Based Development Concerns 57

3.1 Overview . 57

3.2 The Life Cycle of Microservices at Runtime 59

3.3 Study Design . 60

3.3.1 Research Question . 61

3.3.2 Search and Selection Process . 61

3.3.3 Data Extraction and Synthesis . 63

iv

CONTENTS

3.4 Results . 64

3.4.1 Years vs Life Cycle Activities . 64

3.4.2 Findings per Life Cycle Activities . 65

3.4.3 Further Categorisation . 74

3.4.4 Threats to Validity . 76

3.5 Complementing the Systematic Literature Review 77

3.6 Related Work . 78

3.7 Summary . 79

4 A Semantics-Driven Learning for Annotations in Microservices 81

4.1 Overview . 81

4.2 Proposed Approach . 83

4.2.1 Pre-processor . 85

4.2.2 Learner . 87

4.2.3 Predictor . 92

4.2.4 Similarity Finder and Adviser . 96

4.3 Evaluation . 97

4.3.1 Hyper-parameters . 99

4.3.2 Experiment Setup . 100

4.3.3 Results and Discussion . 101

4.3.4 Threats to Validity . 105

4.4 Related Work . 107

4.5 Summary . 108

5 A Mining Approach to Limit Granularity of Annotated Operations 109

5.1 Overview . 109

5.2 Proposed Approach . 111

5.2.1 Operations with Annotations . 111

v

CONTENTS

5.2.2 Abstract Syntax Tree of Operations 112

5.2.3 Approach Components . 113

5.3 Evaluation . 122

5.3.1 Experiment Design . 124

5.3.2 Hyper-parameters . 125

5.3.3 Experiment Setup . 126

5.3.4 Results and Discussion . 127

5.3.5 Threats to Validity . 131

5.4 Related Work . 132

5.5 Summary . 134

6 Reflection and Appraisal 135

6.1 Overview . 135

6.2 How the Research Questions are Addressed 135

6.3 Reflection on the Research . 140

6.3.1 Selection of Operations and Annotations 140

6.3.2 Evaluation Using Natural Language Processing 141

6.3.3 Integrity in the Operation Database 142

6.3.4 Overhead . 143

6.4 Concluding Remark . 144

7 Conclusion and Future Work 145

7.1 Overview . 145

7.2 Contributions of the Thesis . 146

7.3 Future Work . 147

7.3.1 Enhanced Annotations Semantics. 147

7.3.2 Annotation Impact on Non-Functional Aspects. 148

7.3.3 Dynamic Granularity Adjustment. 148

vi

7.4 Closing Remarks . 148

References 151

vii

List of Figures

1.1 Code to AST Representation . 8

2.1 Collection of Papers Metadata. 27

2.2 Distribution of Studies per Year. 29

2.3 Distribution of Studies per Categories. 32

2.4 Distribution of Purposes for Using Annotations. 39

2.5 Distribution of Purposes Grouped by Context. 40

2.6 Static Analysis-based Techniques and Tools in Purposes. 41

2.7 Specific Uses of Annotations and their Relation in Microservice Construction. 42

2.8 Specific Uses of Annotations and Static Analysis-based Techniques. 43

3.1 Microservice-based System Lifecycle at Runtime 59

3.2 Numbers and Stages of our Search and Selection Process 62

3.3 Life Cycle Activities Over Time . 64

4.1 Conceptual Model of Semantics-Driven Learning Approach 83

4.2 Nodes of an AST Representation . 86

4.3 Neural Network Architecture . 88

4.4 Encoder and Decoder . 93

4.5 Numerical Representation from Encoder . 94

4.6 Performance and Quality of our Approach 102

4.7 Accuracy of Actions and Annotations . 103

4.8 Analysis of Wrong Suggestions . 104

viii

5.1 Operation Selection and Granularity Exploration 112

5.2 The Components of our Approach . 114

5.3 Isolated and Linked Annotations . 127

5.4 Mining Operations . 129

5.5 Granularity Limits . 130

5.6 Overall Results . 131

ix

List of Tables

1.1 Type of annotations and examples. 5

1.2 Annotations and examples utilised in this thesis. 5

2.1 Digital Repositories for SLR . 25

2.2 Inclusion and Exclusion Criteria for Study Selection 26

2.3 Quality Questions for Paper Assessment . 28

2.4 Data Extraction . 28

2.5 Number of Studies per Publication Name (Top 10). 30

2.6 Number of Studies per Publisher. 31

2.7 Catalogue: Purpose of Using Annotations. 34

2.8 Catalogue: Specific Uses of Static Analysis-based Techniques. 35

2.9 Annotations in Microservice Construction 36

2.10 Related Work . 53

3.1 Inclusion and Exclusion Criteria for Post Selection 63

3.2 Classification of Posts . 66

3.3 Classification of Posts (Continued from previous page) 67

3.4 Further Categorisation . 75

4.1 Semantics-Driven Learning Settings . 100

4.2 Related Work . 107

5.1 Limits of Granularity Settings . 125

x

LIST OF TABLES

5.2 Related Work . 133

xi

LIST OF TABLES

xii

LIST OF TABLES

xiii

LIST OF TABLES

xiv

Chapter One

Introduction

1.1 Overview

A microservice architectural style is a software development approach that implements

a set of refined and highly cohesive services [34, 53]. This approach offers benefits to im-

prove scalability, flexibility, and maintainability. Unlike traditional monolithic architecture,

microservices enable developers to concentrate on small and dedicated business domains.

Thus, developers do programming and testing faster and more efficiently. Deploying mi-

croservices across a network makes the application more resilient to failures [109] because

failures in one service do not necessarily lead to a failure of the entire system. In this con-

text, code annotations or annotations provide additional information attached to classes,

methods, fields, and parameters for assisting architectures in implementing services [86].

Microservice involves the usage of annotations, which are essential for architecture

recovery, vulnerability detection and recognising which annotations are missing. In this

1

Introduction

sense, annotations in microservice construction refer to a set of specific uses of annotations

that involve static analysis techniques to achieve related purposes in software development

and improve the overall quality of the applications, leading to more efficient and reliable

microservices. However, despite the importance of annotations, their incorrect usage and

inadequate settings negatively impact the quality of services, which may reduce performance

for high availability and fault tolerance [84]. Moreover, as the adoption of microservices

continues to grow, the challenges of annotations in microservice construction become crucial,

considering that developers struggle to identify and predict annotations.

This thesis proposes an approach that utilizes annotations to group operations based

on similar behaviour. Our approach performs semantics learning to convert operations into

their vector representation. With a sequence-to-sequence model, our approach can predict

annotations of operations, predict actions over annotations and identify the typical granu-

larity for unseen operations. Semantics learning extracts features from a text by focusing

on its syntax and semantics. Our approach requires a collection of operations with their

respective text representation. Since code clone detection algorithms have shown promis-

ing results with Abstract Syntax Tree (AST) representation, we rely on an AST of source

code. Considering the characteristics of grouping operations of our approach, we can extend

it to compare granularity levels and other properties of operations, helping to reduce the

inadequate granularity selection by observing levels in similar operations applied in other

applications.

Whilst annotations help evaluate test cases and detect bad smells in microservices [94,

93], there exists discussion on using annotations in microservices projects for detecting clones

of code fragments. Pigazzini et al. form groups of similar methods where distant groups

mean different functionalities [92]. Perez et al. use a syntax tree-based skip-gram algorithm

on different programming languages [90]. Unlike those works, our approach centres on using

annotations by extracting terms and learning their relation with the code. In this thesis,

2

Introduction

we explore the relevance of annotations and evaluate the importance of learning semantics

information to predict annotations and find typical granularity.

1.2 Problem Statement

The employment of microservices grows for building large-scale software applications due to

their flexibility and scalability. Microservices implement refined and highly cohesive services

that depend on each other across multiple service instances to ensure high availability and

fault tolerance [34, 53]. These services generally utilise load balancers and circuit breakers to

run their instances effectively [118]. Specifically, Spring Boot framework provides program

metadata named annotations to facilitate implementations of these features without changing

the primary functionality [24]. Thus, annotations play a crucial role in microservices to the

extent that a developer community positions missing annotations as a top concern [96].

However, using annotations in microservices presents several challenges, including

choosing appropriate annotations, their correct usage, and their proper changes over time.

These challenges affect the microservice quality, introduce errors, and increase maintenance

costs. In particular, the size of microservices plays a critical role in exacerbating these

challenges. Tiny microservices introduce managing issues into the whole architecture, and

huge microservices affect the quality attributes, especially performance, which reduces the

overall system quality [121]. In the face of these challenges, there is no agreement on the

right size of microservices because project teams interpret the size in terms of line of code,

number of classes, and entities, among others [53].

We advocate that microservice construction can benefit from semantic information

by learning the relation between annotated operations. For example, detecting annotation-

related defects may benefit from the semantic information to analyse annotation usage and

3

Introduction

identify incorrect and missing annotations. Another example would be the collection of

granularity values of annotated operations, grouped by their similar behaviour and choice of

the granularity boundaries for a new operation. Additionally, Natural Language Processing

(NLP) techniques may enrich the analysis of annotated operations by extracting valuable

information to detect patterns of operation similarity and annotation usage.

In this thesis, we propose a semantics-driven learning to demonstrate its feasibility

for detecting missing annotations and identifying granularity of annotated operations. In

summary, these concerns encompass the purposes of using annotations and their impact

in overall quality of microservices. Our approach addresses these concerns effectively by

recognising and clustering similar operations. Moreover, the integration of NLP techniques

contributes to the understanding of annotations and managing of granularity.

1.2.1 Definition of Annotations, Types and Examples

Annotations are program metadata that add features to the source code without changing

behaviour. These annotations provide additional information about classes, methods and

fields that support the reuse of features and software evolution. Additionally, developers

commonly utilise frameworks which offer stacks of reusable components to improve produc-

tivity and maintain consistency. Furthermore, microservice frameworks provide annotations

to facilitate the implementation of cloud-based applications.

Type of annotations refers to a classification based on their characteristics and be-

haviour. Common types include marker annotations, which do not contain any element;

single-valued annotations, which have only one element; multi-valued annotations, which

have multiple elements, each one with one value; meta-annotations, which annotate other

annotations to specify how an annotation should be treated; standard annotations, which

4

Introduction

are commonly used across different frameworks; and custom annotations, which are defined

to tailor specific requirements. Table 1.1 presents examples of annotations and their types.

Table 1.1: Type of annotations and examples.

Type Annotation Description

Marker Override Indicates that a method overrides a superclass meethod.

Single-valued Depricated Marks a program element that is no longer recommeded for use.

Multi-valued RequestMapping Maps HTTP requests to handler methods.

Meta Retention Sets how long an annotation should be retained.

Custom Auditted Indicates that a method or class should be audited for a logging framework.

Standard SupressWarnings Suppresses compiler warnings due to code constructs.

Table 1.2 presents the annotations utilised during the experimentation in this thesis.

These annotations belong to the following frameworks: JUnit to write and run unit tests,

Java EE to build enterprise applications, Spring MVC to develop web applications based on

model-view-controller pattern, and JAX-RS to create RESTful web services. These specific

annotations represent the annotations with enough operations available in the source code

repositories explored to build the datasets for the experiments in Chapter 4 and Chapter 5.

Table 1.2: Annotations and examples utilised in this thesis.

Framework Annotation Description and example

JUnit Before Executes a method before running each test method. For example: @Before

Java EE PostConstruct Executes a method after initialising the bean. For example: @PostConstruct

Spring Bean Returns a bean instance to be managed by Spring container. For example: @Bean

Spring MVC RequestMapping
Maps HTTP a request to a method. For example: @RequestMapping("/home") or

@RequestMapping(value = "/hello", method = RequestMethod.GET)

Spring MVC GetMapping
Maps HTTP GET requests onto specific handler methods. For example:

@GetMapping("/welcome") or @GetMapping("/dashboard/{id}")

JAX-RS GET
Indicates that the annotated method responds to HTTP GET requests.

For example: @GET("/users/{id}") or @GET("/dashboard")

JAX-RS POST
Indicates that the annotated method responds to HTTP POST requests.

For example: @POST("/login") or @POST("/upload")

5

Introduction

Listing 1.1 shows a Java code fragment which defines a microservice operation using

Spring framework. The code fragment contains two annotations each one at two different

levels. @RestController creates a web service and indicates that a class will handle incoming

requests. @GetMapping maps HTTP requests to a specific operation; in this case, the

greeting request calls the greeting method, which performs business logic and returns data

to the client.

1 package com . example . annotat ions ;

2

3

4 import org . springframework . web . b l ind . annotat ion . Res tCont ro l l e r ;

5 import org . springframework . web . b l ind . annotat ion . GetMapping ;

6

7 @RestControl ler

8 pub l i c c l a s s Gree t ingCont ro l l e r {

9

10

11 @GetMapping ("/ g r e e t i ng ")

12 pr i va t e Greet ing g r e e t i ng () {

13

14 St r ing name = "World" ;

15

16 return new Greet ing (St r ing . format ("Hel lo , %s ! " , name)) ;

17 }

18 }

19

Listing 1.1: Source Code of Annotations

1.2.2 Definition of Granularity

Granularity is the size of the functionality in a microservice. It can encompass the services

with the complexity and dependencies of their operations [53]. This granularity is measured

by the number of published operations, microservices, code lines, and complexity. In this

sense, various types of granularity metrics can be used to evaluate and measure the extent

of decomposition. In this thesis, we categorise the granularity according to the scope in:

• Operational granularity, which quantifies the number and complexity of operations exposed

6

Introduction

by individual microservices. For instance, a fine-grained service can offer a single operation

to perform a specific task, while a coarse-grained service can encompass multiple operations

handling a broader set of functionalities.

• Service granularity, which relates to the number of individual microservices composing

the application and their interdependencies. For instance, a fine-grained architecture can

consist of numerous narrowly-focused microservices, each responsible for a single business

capability, whereas a coarse-grained architecture can feature fewer, more comprehensive

microservices encompassing multiple functionalities.

Considering that granularity can be assessed in terms of code lines and complexity,

where finer granularity implies smaller, more concise units of code with lower complexity,

while coarser granularity involves larger, more intricate units of code spanning multiple

functionalities. In this thesis, we propose the number of tokens as an operational granularity

measure. In terms of Natural Language Processing (NLP), a token is the smallest unit of

text that has been segmented from a larger body of text; each token represents a discrete

unit of meaning within the text and serves as the basis for various NLP tasks such as parsing,

sentiment analysis, or machine translation.

1.2.3 Abstract Syntax Tree, Definition and Usability

An Abstract Syntax Tree (AST) is a tree representation of source code that provides syntac-

tic knowledge on using adopted frameworks [30]. Specifically, an AST contains additional

semantic information, and a reading process expresses the tree nodes as a statement. Figure

1.1 presents the AST representation of a code fragment. The most common reading process

is the traversal algorithm, which offers three ways to read the tree: inorder, preorder, and

postorder. Of these, the preorder is the most employed to read an AST [143, 51].

7

Introduction

Figure 1.1: Code to AST Representation

After reading the AST representation in preorder, we can derive a text representation

of a code fragment named an AST statement. Subsequently, employing tokenization, a fun-

damental task in Natural Language Processing (NLP), allows us to extract tokens from this

statement. These tokens, representing the smallest units of text, provide valuable insights

into the structure and semantics of the code, facilitating further analysis and processing.

Here, a token is essentially a numerical representation of an AST element, and a sequence

of tokens is a numerical vector representation of the whole AST statement.

1.2.4 Prediction of Annotations

Developers frequently need to comprehend a reduced amount of code functionality, often

relying on code fragments [73, 51], which is time-consuming due to outdated or missing

comments [132]. Additionally, incorrect annotation usage introduces errors, leading to un-

expected behaviour. Despite the importance of annotations, only some approaches exist

8

Introduction

to detect annotation issues, like cycle dependency and misuse [93, 94]. However, these ap-

proaches are limited to specific patterns and rules without offering mechanisms for predicting

annotations. Addressing this gap requires learning from annotated code fragments to predict

annotations effectively.

The prediction problem investigated in this thesis revolves around the annotation that

best matches the purpose or functionality of a given code fragment. This objective entails

identifying distinct annotations, such as Before, PostConstruct, or RequestMapping. The

prediction task is based on numerical vectors corresponding to the AST representation of code

fragments extracted from open-source repositories. Each annotation has a unique number

associated with a label for each numerical vector of a code fragment. We use machine learning

algorithms to train predictive models capable of classifying code fragments into predefined

annotations.

To address the prediction problem, the thesis focuses on harnessing the structural and

semantic information encoded within AST representations of code fragments. These ASTs

are the primary data source for training a learning model that converts the code fragment

into numerical vectors. Then, the numerical vectors serve as the primary input for training

and evaluating predictive models. By parsing code fragments into ASTs, the thesis extracts

meaningful features and patterns that capture the essence of each piece of code. These

features may include node types, hierarchical relationships, token sequences, or syntactic

structures inherent to the code.

1.2.5 Prediction of Actions

The problem of predicting actions regarding annotations involves determining whether to

add or keep an annotation within a given code fragment based on its corresponding Abstract

9

Introduction

Syntax Tree (AST) representation. This task goes beyond merely predicting an annotation

associated with a piece of code; instead, it focuses on providing actionable recommendations

for developers to enhance code quality and maintainability.

To address the problem of predicting actions, we adopt a heuristic algorithm that

leverages the predictive model described in Section 1.2.4. This model learns the rich infor-

mation encoded within AST representations to predict annotation. The prediction can be

evaluated with the original piece of code; if the original code does not have annotations, then

the action is to ADD the predicted annotations. On the other hand, if the original code has

annotation and is the same as the predicted annotations, then the action is to KEEP the

predicted annotation. By integrating these actions into development workflows, developers

can make informed decisions regarding managing and utilising annotations.

1.2.6 Determining Typical Granularity

Microservice-based applications have different granularity because there is no agreement

on the right granularity, which can produce issues. For instance, applications with tiny

microservices introduce managing issues into the whole architecture. On the other hand,

large microservices affect the system performance and reduce the overall system quality [121].

Then, inadequate granularity can introduce defects where fixing them is time-consuming.

Moreover, the detection effort to solve the above issues and debugging microservices may

take days or weeks [131].

We determine the typical granularity of annotated operations by exploring the dif-

ferent numbers of tokens available in similar operations from open-source projects. The

whisker and box charts present the distribution of different granularity values and show the

outlines and percentiles for each group of similar operations. After examining the distribu-

10

Introduction

tion of granularity values for a given group of operations with similar behaviour, we define

the granularity limits as the low value for percentile 25 and the high value for percentile 75.

1.2.7 Importance of These Problems

The problems addressed in the thesis, including the prediction of annotations, prediction

of actions regarding annotations, and determining typical granularity in microservice oper-

ations, are crucial for enhancing software development practices and improving the quality

of microservice-based applications.

Firstly, the prediction of annotations is essential as it provides developers with au-

tomated assistance in annotating code fragments accurately. By accurately determining

the most appropriate annotations for code segments, developers can enhance code clarity

and maintainability. This prediction capability streamlines the software development pro-

cess, especially in large-scale projects where manual annotation can be time-consuming and

error-prone. Additionally, accurate annotation prediction aids in standardising code prac-

tices and ensuring adherence to coding conventions and best practices, thereby improving

overall code quality and reducing the likelihood of errors and bugs.

Secondly, the prediction of actions regarding annotations is crucial for providing ac-

tionable recommendations to developers regarding the management and utilisation of anno-

tations within code fragments. By determining whether to add or keep annotations based

on similar code fragments, developers can optimise code quality, maintainability, and perfor-

mance. This predictive capability enables developers to proactively address potential issues

related to annotation misuse, redundancy, or inconsistency, thereby minimising technical

debt and improving software reliability and scalability. Furthermore, integrating predictive

actions into development workflows facilitates a seamless and efficient development process,

11

Introduction

where developers can make informed decisions regarding annotation management without

disrupting their workflow.

Finally, determining the typical granularity in microservices is crucial for guiding ar-

chitectural decisions, optimising system design, and ensuring the scalability and reliability

of microservice-based applications. The granularity of microservices directly impacts vari-

ous aspects of application design, performance, and scalability. Fine-grained microservices

offer greater flexibility, agility, and autonomy, while coarse-grained microservices reduce

management overhead and simplify communication between components. By analysing the

distribution of granularity values based on percentiles, developers can identify outliers and

anomalies in microservice design, enabling them to refactor or optimise operation boundaries

to enhance system performance, scalability, and maintainability.

1.2.8 Semantics-Driven Learning Algorithm

Algorithm 1 describes the overall steps with description of inputs and output for a semantics-

driven learning approach. The main inputs of the algorithm are (i) a list of microservice

annotations, (ii) a dataset of classes in text files with annotations for training, (iii) a database

of code fragments with or without annotations to find the best set of microservice annota-

tions, and (iv) a list of queries to perform the experiments by predicting annotations and

suggesting actions.

From the inputs, the list of annotations limits the scope of annotations under analysis.

This limitation is according to the collection of code fragments. For instance, Chapter 4

focuses on annotations like Bean, Before, PostConstruct, RequestMapping and GetMapping.

In contrast, Chapter 5 focuses on annotations like RequestMapping, GetMapping, GET and

POST. The dataset of classes, the database of code fragments, and the list of queries are

instructions in a programming language such as Java.

12

Introduction

The main components of our algorithm are (i) the pre-processor, which receives the

datasets as row data and prepares them for the other components; (ii) the learner, which

trains the model and returns an encoder to convert code fragments into numerical vectors;

(iii) the finderAdviser where the finder returns for the closets code fragments given a query;

(iv) the predictor component, which predicts annotations; and (v) the finderAdviser where

the adviser receives predicted annotations to create suggestions of actions.

The main output of our algorithm is a set of suggestions in terms of actions, each

followed by the annotation name, e.g., KEEP PostConstruct. The ADD action advises the

incorporation of an annotation, and the KEEP action suggests no change in the usage of an

annotation. With this information, we evaluate the accuracy of predictions for annotations

and actions. Finally, the algorithm requires an adaptation to find the typical granularity

values, which is part of Chapter 5.

Algorithm 1 Semantics-Driven Learning Algorithm
Input: datasets // contains the datasets for training, validate and testing the learning model

Input: database // Java database to search similar code fragments

Input: queries // List of queries to predict annotations and suggest actions

Output: allActions

1: preProcessor ← new PreProcessor()

2: learner ← newLearner()

3: predictor ← newPredictor()

4: finderAdviser ← newFinderAdviser()

5: allActions ← newList()

6: trainingDataset ← preProcessor .prepare(datasets)

7: encoder ← learner .buildModel(trianingDataset).getEncoder()

8: finderAdviser .setDatabase(database)

9: finderAdviser .setEncoder(encoder)

10: for each query ∈ queries do

11: encodedSubset ← finderAdviser .getClosestCodeFragments(query)

12: predictor .train(encodedSubset)

13: predictedAnnotation ← predictor .predictAnnotation(query)

14: actions ← finderAdviser .suggestAction(predictedAnnotation)

15: allActions.add(actions)

16: end for

13

Introduction

1.3 Research Methodology

The challenges and concerns surrounding the microservice construction motivate this thesis.

Problem identification and motivation: The research begins with a comprehen-

sive Systematic Literature Review (SLR), aimed at gaining insights into annotations and

their relation to microservice construction. Through this review, we aim to boost our un-

derstanding of the field and allows us to identify open challenges. Additionally, we analyse

posts from one of the largest sources for developers to measure the practical relevance of

annotations in real-world development scenarios.

Objective definition for a solution: The primary focus of this thesis is addressing

the challenges associated with annotations in microservice construction. To achieve this,

we propose a semantics-driven learning approach designed to support the specific uses of

annotations. Our key objectives include the development of predictive models that learn the

relation between annotations and operations, facilitating the automated prediction of an-

notations based on code characteristics. Furthermore, we attempt to explore the semantics

length of operations to mine the typical granularity of annotated operations. By accom-

plishing these objectives, we aim to provide valuable insights that empower researchers and

practitioners in optimising the usage of annotations.

Design and development: We conduct a systematic literature review for annota-

tions in microservice construction. The results show that defect prediction is the top purpose

of using annotations; and that graph theory and tools help identify annotations mainly for

defect prediction and architecture evaluation. Moreover, we classify specific use of anno-

tations and static analysis techniques to identify top relations. The review revealed that

mining annotations and constraints played a crucial role in verifying annotations, commonly

used to detect annotation misuse. In light of this, we elaborate a semantic-driven approach

14

Introduction

to predict annotations by learning their relation to operations.

Demonstration and evaluation: We implement a similarity finder tool that mim-

ics a development environment using real open-source projects. We build semantics learning

in PyTorch [58], a library for implementing deep learning solutions. We also add the SciKit

Learn library [18], which implements cluster algorithms based on Numpy arrays, another

library to manage data. Our experimental operations database collects real exposed oper-

ations from GitHub with annotations: RequestMapping, GetMapping, POST, and GET.

The quantitative evaluation of the experiments for our approach targets the effectiveness of

searching operations within similar behaviour.

1.4 Research Questions

Inspired by the challenges and complexities inherent in microservice construction, this thesis

endeavours to address critical concerns surrounding the utilisation of annotations. Specif-

ically, it seeks to delve into the purposes behind employing annotations in microservice

development and evaluate their prevalence as a common concern within this domain. Addi-

tionally, the thesis aims to identify potential gaps in existing techniques derived from static

code analysis. To the best of our knowledge, this thesis is the first to identify the purposes

of using annotations, predict annotations for code fragments, and group similar operations

by annotation to determine typical granularity. This thesis proposes solutions to address the

following Research Questions (RQs):

• RQ1: What are the purposes of using annotations in microservice construction? How do

static analysis-based techniques support the purpose of using annotations? To what extent

is the use of annotations is one of the most common concerns in microservice development?

Answering RQ1 guide us to gain insights into existing literature of annotations in mi-

15

Introduction

croservice construction, identify purposes and gaps in the scope of existing techniques for

static code analysis applied in academia and highlight further research areas.

• RQ2: How can we leverage semantic connections between code fragments and microservice

annotations to predict annotations?

Answering RQ2 guide us to gain a deeper understanding of the opportunities in a static

analysis approach that identifies the lack or misuse of annotations.

• RQ3: How can annotations contribute to the understanding of typical granularity degree

within existing microservices?

Answering RQ3 guide us in understanding the best granularity boundaries in practices to

improve the overall quality of microservice-based systems.

Next chapters address these questions.

1.5 Thesis Contributions

The research contributes to the broader area of annotations in microservice construction.

In particular, the thesis contributes to a novel annotations-driven approach. The approach

leverages cloning detection to implement semantics-driven learning for clustering similar

annotated operations. Specifically, we plan a thesis based on the following contributions:

A Systematic Literature Review (SLR) on Annotations in Microservice Con-

struction:

We conduct a comprehensive SLR to investigate the role of annotations in microservice

construction [99]. Our review aims to analyse the existing state-of-the-art approaches that

16

Introduction

employ static analysis-based techniques to enhance the use of annotations. Through this

review, we propose a catalogue of purposes for using annotations and explore the specific

uses of annotations that contribute to microservice construction.

An Empirical Study on Microservice Software Development:

In addition to the SLR, we conduct a new empirical study [96] that identifies concerns in

microservice software development and presents the relevance of annotations. The study

results can help researchers consider new mechanisms for recognising and fixing misuse of

annotations. Furthermore, our empirical study enlightens the practical challenges developers

face when utilising annotations in microservices. Additionally, our insights offer valuable

guidance for practitioners seeking practical solutions for microservice concerns.

A Semantics-Driven Learning for Microservice Annotations:

We develop a novel semantic learning approach [98] to suggest actions for correcting the

wrong usage of microservice annotations by extending the implementation of natural lan-

guage processing for code clone detection. Our approach analyses the annotations of code

fragments from open-source repositories. The learning approach pursues annotation pre-

diction after finding similar code fragments that guide the adviser in adding or keeping an

annotation. Researchers can benefit from our results and analyse other software engineering

features to reduce the complexity of microservice applications.

A Mining Approach to Limit Granularity of Annotated Operations:

We elaborate a new semantic learning approach [97] to mine the relation between annota-

tions and the granularity of operations. The learning process pursues building a mechanism

17

Introduction

to measure the granularity based on the semantic information length of operations. Then,

we cluster similar annotated operations to facilitate the identification of granularity limits.

Operations with different lengths and similar behaviour have different granularity, which pro-

vides boundaries for unseen operations. Our findings offer a valuable resources for researchers

aiming to determine typical granularity values given the behaviour of similar operations.

1.6 Publications Linked to this Thesis

The research compiled in this thesis is based on three papers published [96, 98, 97] and

a systematic literature review [99]. This thesis serves as the primary source of ideas and

contributions presented in the following works;

Conferences

• Ramírez, F., Mera-Gómez, C., Bahsoon, R., & Zhang, Y. (2021, June). An empirical study

on microservice software development. In 2021 IEEE/ACM Joint 9th International Work-

shop on Software Engineering for Systems-of-Systems and 15th Workshop on Distributed

Software Development, Software Ecosystems and Systems-of-Systems (SESoS/WDES)

(pp. 16-23). IEEE.

• Ramírez, F., Mera-Gómez, C., Chen, S., Bahsoon, R., & Zhang, Y. (2022, November).

Semantics-Driven Learning for Microservice Annotations. In Service-Oriented Comput-

ing: 20th International Conference, ICSOC 2022, Seville, Spain, November 29–December

2, 2022, Proceedings (pp. 255-263). Cham: Springer Nature Switzerland.

• Ramírez, F., Mera-Gómez, C., Bahsoon, R., & Zhang, Y. (2022, November). Mining the

Limits of Granularity for Microservice Annotations. In Service-Oriented Computing: 20th

18

Introduction

International Conference, ICSOC 2022, Seville, Spain, November 29–December 2, 2022,

Proceedings (pp. 273-281). Cham: Springer Nature Switzerland.

Journals

• (To be submitted) Ramírez, F., Mera-Gómez, C., Bahsoon, R., & Zhang, Y. (2024). Sys-

tematic Review of Annotations in Microservice Construction. ACM Computing Surveys

(CSUR).

1.7 Thesis Roadmap

This section presents the remainder of the thesis as structured below.

Chapter 2 conducts an SLR of existing studies about annotations and their impact

on microservices construction. This chapter also analyses the connection between anno-

tations and software quality. In particular, it investigates static analysis techniques that

support specific uses of annotations. As a result, we construct (i) a catalogue of purposes

of using annotations; and (ii) a catalogue of specific uses of annotations that benefit from

static analysis techniques. Based on our findings, we advocate an annotations approach to

microservice construction and outline future research directions. The content in this chapter

is derived from our work presented in [99].

Chapter 3 presents an empirical study that analyses posts from one of the largest

sources for developers, StackOverflow. Specifically, we collect the bug symptoms and root

causes to link them with the activities in the microservice life cycle, quality attributes, soft-

ware construction activities, and fault classes. The study investigates the common concerns

in microservice development and positions missing/misusing annotations as a top concern.

19

Introduction

The content in this chapter is derived from our work presented in [96].

Chapter 4 evaluates a semantics-driven learning approach to identify misuse of an-

notations by learning from a dataset of code fragments with annotations. In general, we

extend the benefit of natural language processing over AST on clone detection to predict

which annotation is suitable for a code fragment. The approach finds similar code fragments

to generate suggestions for adding or keeping annotations. The content in this chapter is

derived from our work presented in [98].

Chapter 5 proposes an approach to mine the relation between annotations and the

granularity of operations. The approach measures the granularity based on the semantic

information length of operations. Then, we evaluate clusters of similar operations that share

levels of granularity. This chapter shows how annotations help to detect the granularity

limits of operations by training a learning model with a dataset of similar operations. The

content in this chapter is derived from our work presented in [97].

Chapter 6 summarises the main contributions and discusses possible future research

directions of annotations in microservice construction and the potential usage of semantics-

driven learning for other areas.

20

Chapter Two

Systematic Review of Annotations in

Microservice Construction

2.1 Overview

Annotations facilitate the construction of microservices by adding features without modifying

their behaviour. Annotations also help to trace a change in microservice structures and their

dependencies. Moreover, the usage of annotations for identifying microservice structures

supports the detection of potential issues over time [94, 84]. As the microservice architectural

style continues to grow, the utilisation of annotations streamlines the effective construction

of flexible, scalable and modular systems [100, 11].

Constructing microservices has become increasingly challenging due to their increased

operational complexity and insufficient mechanisms to detect problems [10]. This detection

effort is not trivial, considering that comprehension of programs takes around 58% of the

time spent on software maintenance [51]. Therefore, microservice construction calls for

an exploration of the landscape of annotations usages to detect and address development

and maintenance issues [138]. This exploration becomes more relevant since the misuse of

21

Systematic Review of Annotations in Microservice Construction

annotations is at the top of concerns for microservice development [96].

This Systematic Literature Review (SLR) collects the different purposes for which

the authors of primary studies utilised annotations and their relevance in microservices. The

study gathers purposes and specific uses of annotations as guidelines to discuss the benefits

of static analysis techniques. This chapter contributes to (i) a catalogue outlining the various

purposes of annotation used in microservice construction and (ii) an overview of the relation

between purposes and specific uses of annotations, including the static analysis techniques

observed in studies. Both contributions provide a comprehensive collection of how researchers

incorporate annotations when performing microservice development and maintenance.

From the perspective of annotations in microservices, previous works have contributed

to detect the scenario of missing annotations [7, 138]. Additionally, some studies have

focused on static analysis-based techniques and annotations by investigating graph theory,

machine learning, deep learning, and application of rules [14, 33, 65]. Additionally, one

previous study have discussed the evolution and usage of annotations without categorising

the techniques [138]. However, the previous studies have missed the purpose and specific

use of annotations which are part of microservice construction, despite using contextual

annotations [110, 149, 81]. Those studies are also missing techniques based on machine

learning that use annotations. In contrast, this work performs a catalogue of purposes and

their relation to the specific uses of annotations that match static analysis-based techniques.

The remainder of this chapter is organised as follows. Section 2.2 introduces the

research methodology with the protocol, goal, research questions, search strategy and data

synthesis. Section 2.3 presents the outcomes of this work. Section 2.4 discusses findings,

future research and threats to validity, followed by a gap analysis in Section 2.5. Section 2.6

situates our work within the related literature. Finally, Section 2.7 concludes the chapter.

22

Systematic Review of Annotations in Microservice Construction

2.2 Research Methodology

This study was guided by the systematic review procedures proposed by Kitchenham et al.

[62]. We also examined the studies of Bhuiyan et al. and Pan et al. [17, 88] that contain

procedures for publication-quality assessment in a similar research topic. We aimed to in-

crease the probability of producing an unbiased study on the field by selecting representative

articles with a perspective towards annotations in microservice construction. The following

subsections describe the details of the adopted methodology.

2.2.1 Review Protocol

To systematically conduct our literature review, the protocol consists of the following com-

ponents: (i) background of research to motivate our SLR; (ii) identification of research to

define research questions; (iii) selection of searching platforms to search prior research; (iv)

definition of inclusion and exclusion criteria to compile papers; and (v) selection procedure

of studies to filter retrieved entries with the most relevant papers.

2.2.2 Research Goal

The high-level goal of this research is to investigate the specific uses and purposes of using

annotations in the construction of microservices, particularly within the context of academic

literature. We aim to systematically collect and classify the existing empirical evidence from

academic papers that discuss annotations and static analysis-based techniques in microser-

vices. Additionally, in response to the division of RQ1 from the thesis, we focus our efforts

on the two initial parts of RQ1.

23

Systematic Review of Annotations in Microservice Construction

2.2.3 Research Questions

We intend to analyse the mechanisms that utilise the source code of systems during con-

struction of microservices and their application with annotations by summarising the relevant

purposes and uses of annotations. To achieve this, we identify all relevant studies to answer

the following clear and focused Research Questions (RQ):

RQ1.1: What are the purposes of using annotations in microservice construction?

Researchers benefit from annotations by adding characteristics without changing the

behaviour of operations. Annotated operations contain information of structures and connec-

tions between microservices. The dynamic nature of microservices changes the structures and

therefore may impact system performance over time. Thus, annotations assist researchers in

understanding the structure of microservices. The objective of RQ1.1 is to investigate the

purpose for the utilisation of annotations in the context of microservice construction.

RQ1.2: How do the static analysis-based techniques support the purpose of using

annotations?

The static analysis-based techniques support the purpose of using annotations through

an assisted reorganisation of microservice operations that we categorise as the specific uses

of annotations. Academic papers make specific uses of annotations such as identifying an-

notations to evaluate architectures, adding annotations to refactor microservices, verifying

annotations to detect vulnerabilities, among others. RQ1.2 aims to collect the landscape of

specific uses of annotations and the adopted static analysis-based techniques.

Additionally, answering both research questions benefits researchers in enhancing their

understanding of the connections between annotations, their purpose of usage, and the tech-

niques applied for each specific use of annotations. Moreover, by comprehensively exploring

these aspects, researchers can identify potential gaps in current practices and propose novel

24

Systematic Review of Annotations in Microservice Construction

approaches to address them.

2.2.4 Literature Search Strategy

Search Criteria

We conducted the SLR with the following search query that retrieves entries of papers

with their publication title, year, abstract and keywords: (Microservice OR service) AND

(development OR maintenance OR construction) AND (annotation OR annotations) AND

("static analysis"). The term development avoided missing studies that refer to annotations.

We also performed a manual search to check for any missed paper. This query informed

publications by experience and cross-referencing, considering the citations of seminal papers.

The insights gained in this study help to address subsequent research questions.

Search Platforms

We identified and selected the relevant digital repositories to ensure that the search terms

would yield studies related to annotations in microservice development. Table 2.1 lists the

names and links of representative repositories for software engineering research [13].

Table 2.1: Digital Repositories for SLR

Digital repository Link

IEEEXplore https://ieeexplore.ieee.org/

ACM Digital Library https://dl.acm.org/

Springer https://link.springer.com/

Science Direct https://www.sciencedirect.com/

Scopus https://www.scopus.com

Web of Science https://www.webofscience.com/wos/woscc/basic-search

25

https://ieeexplore.ieee.org/
https://dl.acm.org/
https://link.springer.com/
https://www.sciencedirect.com/
https://www.scopus.com
https://www.webofscience.com/wos/woscc/basic-search

Systematic Review of Annotations in Microservice Construction

Study Selection Criteria

To ensure that the studies selected for our systematic literature review were relevant and of

high quality, we built the following Table 2.2 with (i) inclusion criteria for the search process

based on the electronic databases; and (ii) exclusion criteria to filter the irrelevant studies for

the objective of our SLR. The inclusion and exclusion criteria consider when microservices

appeared in GitHub and when annotations appeared in Java Specification Request JSR-175.

Table 2.2: Inclusion and Exclusion Criteria for Study Selection

Inclusion criteria (Is) Exclusion criteria (Es)

I1 Papers published in journal, conference,

workshop, report, or book chapter.

E1 Papers in another language than English.

I2 Papers explicitly related to service even though

they do not refer to code annotations.

E2 Papers with similar title or content published in

different venues are duplicated entries.

I3 Papers extended software engineering practices

for annotations.

E3 Papers published without providing sufficient

pages like short papers with less than 8 pages.

I4 Paper discussing aspects influencing annotations. E4 Papers in disciplines different from

computer science.

E5 Papers published before September 2004.

Study Selection Procedure

The selection procedure involves executing the criteria, performing this procedure, and de-

termining the relation between the paper and the studies [62]. The publications collected

with the selection criteria from the digital databases may contain irrelevant entries. The

removal of results that were out of the scope of our study required applying the inclusion

and exclusion criteria in three rounds. In the first round, we collected the metadata of papers

to choose those papers with titles belonging to our full scope. The second round filtered the

papers whose abstracts belong to our scope. The third round required a full-text reading

to filter papers related to the scope of annotations. Finally, we identified additional papers

with a snowballing strategy which utilises citations (forwards) and reference lists (backwards)

26

Systematic Review of Annotations in Microservice Construction

[129]. Figure 2.1 presents the number of papers for each round after following the inclusion

and exclusion criteria applied in each step.

Figure 2.1: Collection of Papers Metadata.

2.2.5 Publication Quality Assessment

After selecting the publications, we evaluate the quality of primary studies by assessing their

relevance to the objective of this SLR. Our quality questions follow the criteria proposed by

Kitchenham et al. for quality assessment [63]. Table 2.3 presents the quality questions that

guide our assessment. Each question may have answered with either No, Partially or Yes. If

there is implicit information that could be derived from the text, the question has a Partially

score. We score each question with values from 0 to 5, where No is 0, 3 is Partially, and 5 is

Yes. The quality score of each selected primary study sums all the scores of each question 1.

2.2.6 Data Extraction and Synthesis

Table 2.4 presents the relevant items to consider for answering the research questions. The

primary demographic information to extract from each study is the search platform, title,

1This assessment is to know the quality of our findings and not to exclude any paper.

27

Systematic Review of Annotations in Microservice Construction

Table 2.3: Quality Questions for Paper Assessment

Design Is the paper based on empirical research with a clearly stated study con-

text?

Aim Does the paper have a clear description and presentation of the research

objectives?

Validity Does the methodology successfully approach the objectives of the re-

search?

Data collection and analysis Does the paper fully describe the data collection method and the data

analysis?

Clarity Does the paper have a clear description and presentation of the results?

Limitations Do the researchers include threats to validity or limitations of the results?

keywords, year and venue. Additionally, the purpose of using annotations and type of static

analysis technique help answer RQ1.1, and the specific use of annotations help answer RQ1.2.

Table 2.4: Data Extraction

Item Association

Search platform of the study Demographic

Title and keywords of the study Demographic

Year and venue of the study Demographic

Purpose of using annotations RQ1.1

Type of static analysis-based techniques RQ1.1

Specific use of annotations RQ1.2

We took the software development categories as a guide for classification and included

relevant processes related to microservices. We classified by following specific purposes for

using annotations: architecture evaluation, bad-smell detection, vulnerability detection, mi-

croservice identification, defect prediction, performance assessment, access control, refactor-

ing, and others.

For answering RQ1.1, the purposes of using annotations will be classified by similar

characteristics related to microservice construction. The catalogue of purposes will aid in

explaining their connection. A catalogue of static analysis-based techniques is required to

28

Systematic Review of Annotations in Microservice Construction

collect researchers concerns. For answering RQ1.2, we group similar techniques and match

them with the purposes of using annotations while comparing the specific use for identifying

annotation against the others to elaborate an approach toward annotations in microservice

construction.

For the sake of the replicability of our study, a replication package 2 is available for

interested readers. The package includes the research protocol, the selected papers, the

extracted and categorised data, and the scripts for generating the information charts.

2.3 Results

This section describes the primary studies and shows the results of this SLR in light of

the research questions. By analysing a comprehensive set of primary studies, this section

provides valuable insights into the diverse purposes and uses of annotations that facilitate

the development and maintenance of microservices.

Figure 2.2: Distribution of Studies per Year.

2http://www.research.propio.click/paper-slr/replication-package/

29

Systematic Review of Annotations in Microservice Construction

2.3.1 Description of Studies

This SLR collects 65 primary studies and describes the publications from the perspective of

time and source.

Publication Time

Figure 2.2 presents the number of studies per year from 2005 to 2022. The chart represents

the distribution of primary studies across different years and shows an increasing trend with

a significant rise in 2021. From this Figure, we can observe that annotations in microservice

construction as a hot topic for the last few years.

Publication Source

Table 2.5: Number of Studies per Publication Name (Top 10).

ID Publication Name Type No.

1 IEEE Access Journal 4

2 International Conference on Software Engineering Conference 3

3 Journal of Systems and Software Journal 3

4 Information and Software Technology Journal 3

5 International Conference on Software Engineering: Software Engineering in Practice Track Conference 3

6 Transactions on Software Engineering and Methodology Journal 2

7 Symposium on Applied Computing Conference 2

8 Journal of Systems Architecture Journal 2

9 Information Science and Applications Conference 2

10 International conference on Software Architecture Conference 2

Table 2.5 shows the top 10 publication names with the publication type and the

number of studies. This top 10 list selects the publication names with more than one article,

containing 42% of all primary studies. This table shows that journals contains more articles

than conferences and represents 54% of the top 10 list. The International Conference on

30

Systematic Review of Annotations in Microservice Construction

Software Engineering (ICSE) and Software Engineering in Practice Track (ICSE-SEIP) are

two top conferences with six papers. The ASE conference has just two papers; however,

there are no papers from ICSOC and ICWS, which are conferences related to services. We

observe that annotations stabilise in the software engineering context during 2021, while

service conferences focus on other contexts.

Table 2.6 presents the type of studies (conferences, journals, thesis, book chapters)

per publisher. IEEE is the publisher with the most amount of studies. It has 13 conference

papers plus four journal articles, which is a total of 17 studies. Springer is the second top

publisher with 13 studies, where eight are conference papers, four are journal articles and

one book chapter. ScienceDirect, ACM and ACM Journal are the other publishers, with 13,

nine and four studies. This top five publisher contains 82% of all primary studies.

Table 2.6: Number of Studies per Publisher.

ID Publisher Conference Journal Thesis Book Chapter Total

1 ACM 9 9

2 ACM Journal 4 4

3 Hindaw 1 1

4 IEEE 13 4 17

5 MDPI 1 1

6 Peerj 1 1

7 ScienceDirect 10 10

8 SciTePress 1 1

9 Springer 8 4 1 13

10 University 5 5

11 Usenix 1 1

12 Wiley 2 2

2.3.2 Description of Categories

After providing the distribution of primary studies, the focus shifts to the diverse purposes

of using annotations in microservices. Contextual annotations are the text introduced into

comments, commits and software documentation, which categorise and provide valuable

31

Systematic Review of Annotations in Microservice Construction

information for vulnerability detection, refactoring, and others. This study emphasises code

annotations, specifically Java Annotations, that are metadata added to code fragments.

Thus, annotations could bind to classes, fields, methods, and parameters.

A catalogue of purposes extracted from the primary studies is available in Table 2.7,

which matches the purposes of using annotations in the context of development and main-

tenance. The provided catalogue offers a valuable resource for practitioners and researchers

Figure 2.3: Distribution of Studies per Categories.

32

Systematic Review of Annotations in Microservice Construction

to guide the decision-making for effective microservice construction. Figure 2.3 presents the

studies grouped by their purposes, specific uses and static analysis-based techniques.

Two related purposes that contribute to the improvement of modularisation and scal-

ability during microservice construction are: (i) architecture evaluation aims to assess the

overall architecture and identify design decisions that may have been lost during construc-

tion; and (ii) microservice identification involves clustering business entities and analysing

their coupling, cohesion and microservice metrics.

Additionally, four purposes that ensure the reliability and code quality of microser-

vices are: (iii) defect prediction leads to a more reliable and robust system and aims to detect

patterns or indicators that may affect the quality attributes of a system; (iv) performance

assessment covers the evaluation of various performance metrics that improve the reliabil-

ity of the system through the optimisation of critical components; (v) bad-smell detection

involves identifying architectural smells, which may indicate potential architectural degra-

dation; and (vi) refactoring involves detecting antipatterns and providing recommendations

for improving the code quality.

Regarding security reasons: (vii) vulnerability detection focuses on identifying secu-

rity weaknesses to mitigate potential breaches through actively scanning methods; and (viii)

access control evaluates protection mechanisms of sensitive data through a proper authorisa-

tion and authentication process that ensures the appropriate privileges for authorised users.

Other categories encompasses documentation, testing, and library compatibility, which in-

volve development and maintenance processes for microservices.

Table 2.8 presents the specific uses of annotations in microservice construction. An-

notations offer a versatile set of specific uses that researchers can perform on code fragments

to enhance their functionality and analysis. The static analysis-based techniques considers

the execution of these specific uses of annotations to accomplish the above purposes.

33

Systematic Review of Annotations in Microservice Construction

Table 2.7: Catalogue: Purpose of Using Annotations.

Category Purpose Description Studies

Modularisation

and scalability

Architecture evalu-

ation

Assess the architecture to detect lost ar-

chitectural design decisions.

[10] [74] [140] [25] [32] [126] [23]

[114] [9] [16]

Microservice

identification

Cluster business entities to improve cou-

pling, cohesion and microservice metrics.

[44] [31] [21] [139] [100] [40]

[36]

Reliability and

code quality

Defect prediction Detect patterns that may affect the quality

attributes.

[117] [83] [12] [59] [69] [65] [29]

[84] [94] [75] [14] [113] [104] [35]

[71] [72] [46] [27]

Performance

assessment

Analyse the performance to identify areas

for improvement.

[134] [22]

Refactoring Detect antipatterns to provide recommen-

dations for improving the code quality.

[133] [5] [11] [6] [64] [52]

Bad-smell

detection

Identify architectural smells to prevent

degradation.

[107] [124] [125] [13]

Security
Vulnerability

detection

Detect security weakness to mitigate po-

tential security breaches.

[111] [142] [88] [38] [78] [127]

[17] [39] [26]

Access control Evaluate mechanisms to ensure proper au-

thorisation and authentication processes.

[7] [33] [106] [66] [67] [80]

Others Others

(documentation,

testing and library

compatibility)

Refer to a comprehensive understanding

of source code through good documenta-

tion and effective implementation of anno-

tations by testing and checking library

compatibility.

[144] [56] [50]

Specific uses to effectively manage and comprehend code structure are: (i) identify

annotations to use search criteria for locating entities, methods or components; (ii) add

annotations to some specific part of code; (iii) verify annotations to check constraints in

the usage of annotations; (iv) modify annotations to remove or change their parameters or

the values of parameters of annotated code; and (v) predict annotations to assigning one

annotation to a new code fragment.

Table 2.8 also contains the category for static analysis-based techniques in microser-

vice construction, which is based on the following techniques: (i) machine learning; (ii)

deep learning; (iii) graph theory; (iv) genetic algorithms; (v) syntax-based methods; (vi)

34

Systematic Review of Annotations in Microservice Construction

Table 2.8: Catalogue: Specific Uses of Static Analysis-based Techniques.

Specific use Static analysis-based technique Studies

Identify annotations

Machine learning [44] [66] [59] [69] [65] [139] [13] [100] [36]

Deep learning [21]

Genetic algorithm [144] [52]

Graph theory [88] [124] [67] [25] [32] [126] [23] [127] [80]

[14] [16] [72]

Syntax-based method [107] [12] [50] [40]

Rule-based method [11] [114] [39]

Static analysis tools [10] [7] [106] [125] [29] [5] [9] [26]

Add annotations

Machine learning [31] [140]

Deep learning [111] [33]

Graph theory [133] [78] [71]

Static analysis tools [142] [117] [17] [22] [46] [27]

Modify annotations

Syntax-based method [75]

Rule-based method [74] [94]

Static analysis tools [6] [64]

Predict annotations Deep learning [134]

Verify annotations

Deep learning [38]

Syntax-based method [104]

Rule-based method [59] [35]

Static analysis tools [56] [84] [113]

rule-based methods; and (vii) static analysis tools.

Machine learning, which uses traditional statistical methods to analyse the source code

[31]; deep learning, which employs artificial intelligence based on neural networks for patterns

detection [21]; graph theory, which searches paths between the nodes of graph structure for

software architecture reconstruction [23]; genetic algorithms, which employ the principle of

natural selection to improve code maintainability [52]; syntax-based methods, which use

abstract syntax tree to identify patterns [75]; rule-based methods, which check constraints

to detect changes in architecture [114]; and static analysis tools, which consolidate various

techniques for conducting general code analysis [106].

35

Systematic Review of Annotations in Microservice Construction

Table 2.9 provides a comprehensive overview of the relations between purposes and

specific uses of annotations. It includes the static analysis-based techniques observed in

the primary studies; it also shows a variety of purposes for using annotations in microser-

vice construction. Each purpose is linked to the specific use of annotations with the static

analysis-based technique employed to achieve the purpose. Compiling the purposes, specific

uses and static analysis-based techniques highlights the different aspects of annotations and

their relation in microservice construction.

2.3.3 Annotations in Microservices Construction

Answer to RQ1.1: What are the purposes of using annotations in microservice

construction?

The catalogue of purposes reveals that defect prediction is the top category with

28% followed by architecture evaluation (15%), vulnerability detection (14%), microservice

identification (11%), refactoring (9%), access control (9%). The last three categories are

bad-smell detection, performance assessment and others.

Table 2.9: Annotations in Microservice Construction

Study Specific Use Purpose Static Analysis-based

Technique

Cuomo et al. [29] Identify annotations Defect prediction Tools

Bakhtin et al. [14] Identify annotations Defect prediction Graph theory

Ma et al. [72] Identify annotations Defect prediction Graph theory

Kim et al. [59] Identify annotations Defect prediction Machine learning

Lopes et al. [69] Identify annotations Defect prediction Machine learning

Laigner et al. [65] Identify annotations Defect prediction Machine learning

Araujo et al. [12] Identify annotations Defect prediction Syntax-based method

Continued on next page

36

Systematic Review of Annotations in Microservice Construction

Table 2.9 Annotations in Microservice Construction (Continued from previous page)

Study Specific Use Purpose Static Analysis-based

Technique

Apolinario et al. [10] Identify annotations Architecture evaluation Tools

Alshuqayran et al. [9] Identify annotations Architecture evaluation Tools

Cerny et al. [25] Identify annotations Architecture evaluation Graph theory

Das et al. [32] Identify annotations Architecture evaluation Graph theory

Walker et al. [126] Identify annotations Architecture evaluation Graph theory

Bushong et al. [23] Identify annotations Architecture evaluation Graph theory

Bersani et al. [16] Identify annotations Architecture evaluation Graph theory

Streekmann et al. [114] Identify annotations Architecture evaluation Rule-based method

Chowdhury et al. [26] Identify annotations Vulnerability detection Tools

Pan et al. [88] Identify annotations Vulnerability detection Graph theory

Wang et al. [127] Identify annotations Vulnerability detection Graph theory

Ferrara et al. [39] Identify annotations Vulnerability detection Rule-based method

Qiwen Gu [44] Identify annotations Microservice identification Machine learning

Zaragoza et al. [139] Identify annotations Microservice identification Machine learning

Ren et al. [100] Identify annotations Microservice identification Machine learning

Escobar et al. [36] Identify annotations Microservice identification Machine learning

Freitas et al. [40] Identify annotations Microservice identification Syntax-based method

Brito et al. [21] Identify annotations Microservice identification Deep learning

AlOmar et al. [5] Identify annotations Refactoring Tools

Arachchi [11] Identify annotations Refactoring Rule-based method

Ivers et al. [52] Identify annotations Refactoring Genetic algorithm

Alshemaimri et al. [7] Identify annotations Access control Tools

Scherzinger et al. [106] Identify annotations Access control Tools

Meurice et al. [80] Identify annotations Access control Graph theory

Li et al. [67] Identify annotations Access control Graph theory

Le et al. [66] Identify annotations Access control Machine learning

Walker et al. [125] Identify annotations Bad-smell detection Tools

Walker et al. [124] Identify annotations Bad-smell detection Graph theory

Azeem et al. [13] Identify annotations Bad-smell detection Machine learning

Schiewe et al. [107] Identify annotations Bad-smell detection Syntax-based method

Continued on next page

37

Systematic Review of Annotations in Microservice Construction

Table 2.9 Annotations in Microservice Construction (Continued from previous page)

Study Specific Use Purpose Static Analysis-based

Technique

Hobmaier [50] Identify annotations Documentation (Others) Syntax-based method

Zhang et al. [144] Identify annotations Testing (Others) Genetic algorithm

Tang et al. [117] Add annotations Defect prediction Tools

Christakis et al. [27] Add annotations Defect prediction Tools

Gunawi et al. [46] Add annotations Defect prediction Tools

Ma et al. [71] Add annotations Defect prediction Graph theory

Zdun et al. [140] Add annotations Architecture evaluation Machine learning

Zhang et al. [142] Add annotations Vulnerability detection Tools

Bhuiyan et al. [17] Add annotations Vulnerability detection Tools

Andrea Melis [78] Add annotations Vulnerability detection Graph theory

Shen et al. [111] Add annotations Vulnerability detection Deep learning

Daoud et al. [31] Add annotations Microservice identification Machine learning

Xu et al. [133] Add annotations Refactoring Graph theory

Del Alamo et al. [33] Add annotations Access control Deep learning

Bureš et al. [22] Add annotations Performance assessment Tools

Nuryyev et al. [84] Verify annotations Defect prediction Tools

Spoto, Fausto [113] Verify annotations Defect prediction Tools

Noguera et al. [83] Verify annotations Defect prediction Rule-based method

Eichberg et al. [35] Verify annotations Defect prediction Rule-based method

Sadowski et al. [104] Verify annotations Defect prediction Syntax-based method

Feng et al. [38] Verify annotations Vulnerability detection Deep learning

Jezek et al. [56] Verify annotations Library compatibility

(Others)

Tools

Pinheiro et al. [94] Modify annotations Defect prediction Rule-based method

Marcilio et al. [75] Modify annotations Defect prediction Syntax-based method

Kollegger [74] Modify annotations Architecture evaluation Rule-based method

AlOmar et al. [6] Modify annotations Refactoring Tools

Ksontini et al. [64] Modify annotations Refactoring Tools

Yang et al. [134] Predict annotations Performance assessment Deep learning

38

Systematic Review of Annotations in Microservice Construction

Figure 2.4a focuses on the six significant purposes. It reveals how the number of

studies increased over time. Defect prediction begins with a constant increment of nearly

1 study per year from 2005 to 2022. Vulnerabilities and refactoring are stable until 2020

and 2021, respectively, when they increase near the architecture evaluation and microser-

vice identification. Figure 2.4b provides a detailed subcategory of defect prediction, which

encompasses four types of defects: misuse of annotations (39%), code quality (33%), depen-

dency analysis (17%), and anomaly detection (11%). Thus, misusing annotations results in

inaccurate behaviour affecting the functioning of the system and its overall quality.

Figure 2.5 presents the number of studies for each purpose by grouping the studies

into (i) microservices and (ii) services. Then, comparing these two groups helps to observe

the importance and evolution of the usage of annotations in microservices.

(a) Top Purposes Over Time. (b) Defect Prediction.

Figure 2.4: Distribution of Purposes for Using Annotations.

If we consider microservices, then architecture evaluation and microservice identifi-

cation are the top purposes, instead of refactoring is near the last place. However, defect

prediction and vulnerability detection emerge as the top purposes if we group the studies

considering their importance to the service context.

Microservices group shows us a clear trend of purposes for using annotations in the

39

Systematic Review of Annotations in Microservice Construction

studies. Architecture evaluation and microservice identification are at the top, with six-

teen studies. For instance, some architecture evaluation studies consider reverse engineering

techniques to discover the changes in the initial concept. Then, defect prediction and bad-

smell detection have ten studies. On the other hand, vulnerability detection and refactoring

reduces up to two studies each, taking the last position of all purposes.

Services group provides evidence that defect prediction is the top reason with 11

studies. Vulnerability detection follows second place with seven studies. The research com-

munity prefers defect prediction instead of architecture evolution in the context of services.

Refactoring with four studies is also preferred in the services group.

Figure 2.5: Distribution of Purposes Grouped by Context.

2.3.4 Specific Uses in Static Analysis-based Techniques

Answer to RQ1.2: How the static analysis-based techniques support the purpose

of using annotations?

Our work also classifies the primary studies by the following static analysis-based

techniques (SAT): tools (29%), graph theory (23%), machine learning (17%), rule-based

methods (11%), syntax-based methods (9%), deep learning (8%) and genetic algorithms

(3%). Figure 2.6a shows the percentage of studies per category of static analysis-based

techniques. Since tools contain different techniques, we analyse the other categories and

40

Systematic Review of Annotations in Microservice Construction

their relation with purposes.

The relation between static analysis-based techniques and the purposes of using an-

notations is visible in Figure 2.6b, which presents the distribution of static analysis-based

techniques. In comparison, the tools category has more studies in defect prediction. Ma-

chine learning has more presence in microservice identification. Graph theory is present

in architecture evaluation, defect prediction and vulnerability detection. Deep learning ap-

pears in vulnerability detection, microservice identification, access control and performance

assessment.

(a) Static Analysis-based Techniques and Tools. (b) Techniques in Purposes.

Figure 2.6: Static Analysis-based Techniques and Tools in Purposes.

Figure 2.6b also presents interesting results of the relation between static analysis tools

and purposes for using annotations. Defect prediction is the top purpose, with 30% of studies.

Refactoring and vulnerability detection have 16% of studies each. Architecture evaluation

and access control have 11% of studies. Bad-smell detection, performance assessment and

others are in the last position with 5% of studies each. Then, solving issues emerges as the

main purpose when using static analysis tools.

Near 6.55% of primary studies are focus on (i) migration to microservices by gathering

system documentation and inspecting the source code without considering the annotations

[44]; (ii) detection of code smells by using contextual annotation instead of code annotation

41

Systematic Review of Annotations in Microservice Construction

[13]; and (iii) extraction of keywords from commit messages related to refactoring [6] and

from contextual annotations added by tools instead of code annotations [26].

(a) Specific Uses of Annotations (b) Specific Uses by Purposes.

Figure 2.7: Specific Uses of Annotations and their Relation in Microservice Construction.

Figure 2.7a shows that identifying annotations is a top specific use in microservices,

with around 59% of the studies. Identifying annotations helps with coupling metrics [10],

data entity detection [144, 107, 80], communication detection [12, 72], feature classification

[69], and dependency detection [5, 36]. Adding annotations is the second top specific use with

21% of the studies. This specific use helps migration to microservice architecture by exposing

new operations, creating new services [31], suppressing warnings for reliability errors [27],

monitoring performance [22], and measuring the impact of API changes [56]. Modifying

annotations appears in nearly 7% of studies with the following scenarios: (i) changing the

values of parameters for basic shell script practices [64, 75]; (ii) removing annotations from

a code fragment [74]; and (iii) changing annotations to inject faults for testing [94].

In the case of verifying annotations, we can mention that (i) domain models support

the validation of annotation frameworks [83]; (ii) system security benefits from detecting

password leaks [38, 35]; and (iii) data race detection is also possible by verifying the anno-

tation constraints [113, 104]. Thus, verifying annotation is the third top specific use in 11%

of the primary studies. Predicting annotation has fewer studies by nearly 2%, where Deep

42

Systematic Review of Annotations in Microservice Construction

Neural Networks (DNN) help learn semantics from source code to find patterns, predict

function types, and recommend the most relevant code for solving issues [134].

Figure 2.7b presents how identifying, adding, modifying, verifying and predicting

annotations are considered during microservice construction. The second most specific use,

adding annotation, occurs mainly in defect prediction and vulnerability detection to solve

issues related to missing annotations. The next top specific use is verifying annotation,

mainly in defect prediction. We notice that modifying annotation occurs in defect prediction

and refactoring in the same proportion. We infer that refactoring changes source code to

create new microservices, while defect prediction solves missing annotations.

(a) Specific Uses in Static Analysis-based

Techniques.

(b) Identifying Annotations in Static

Analysis-based Techniques.

Figure 2.8: Specific Uses of Annotations and Static Analysis-based Techniques.

Figure 2.8a presents the specific uses related to static analysis-based techniques.

Adding annotation appears in all the static analysis-based techniques except syntax-based

and rule-based algorithms, which are mainly related to verifying annotation. Deep learning

also have a small presence for predicting annotation and verifying annotation. Additionally,

Figure 2.8b presents identifying annotations and its relation to static analysis-based tech-

niques. Graph theory are the top category with 39%, followed by machine learning with

29%. Syntax-based occupied the third place with 13%.

43

Systematic Review of Annotations in Microservice Construction

2.4 Discussion

Based on the review, specific uses closely connect to the purposes for using annotations and

static analysis-based techniques. This review identified the following major findings:

Defect prediction is the top purpose for microservices and services with a difference

of four studies on favor of services. This distinction implies a different set of purposes for

comparing their specific uses of annotations and their static analysis-based techniques. Our

review showed that tools and rule-based methods are mainly for verifying annotations.

Also, defect prediction is mainly for solving misuse annotations and code quality

issues. Misuse annotations appear first, then dependencies detection and code quality in

microservices. At the same time, code quality is only one study greater than misuse anno-

tations, and there is only one study for dependencies detection in services.

Finding 1: Defect prediction for detecting misuse of annotations is the most popular purpose

for using annotations. Results suggest that mining annotations and their constraints support

the validation of annotations.

Implication: Researchers need to fix misusing annotations, which may contribute to the reli-

ability of microservices by ensuring that annotations correspond to the functionality.

Although defect prediction is a top purpose, architecture evaluation and vulnerability

detection emerge when researchers require to identify annotations. In those cases, researchers

prefer to use graph theory, however the usage of static analysis tools are mainly for adding

annotations. Graph theory positions vulnerability detection in the third position, where

adding annotations is mainly used instead of verifying annotations. Thus, the advice is to

research more verifying annotations for vulnerability detection.

Addressing misusing annotations is essential for successfully implementing microser-

vices. Annotated code serves as a reference for understanding the behaviour and depen-

44

Systematic Review of Annotations in Microservice Construction

dencies of microservices. Researchers facilitate the smooth transition and integration of

microservices by ensuring that annotations are used appropriately. Thus, fixing misused an-

notations enhances the reliability of microservices and plays a significant role in the successful

execution of defect prediction, architecture evaluation and vulnerability detection.

Finding 2: Architecture evaluation is the second most popular purpose of using annotations

when comparing graph theory with other static analysis-based techniques. Vulnerability detection

follows closely when researchers use tools and graph theory. However, verifying annotations is

underrepresented in these two purposes considering its importance in the top purpose.

Implication: The lack of focus on verifying annotations in architecture evaluation and vul-

nerability detection indicates a gap in current research. Researchers need to investigate the

potential of machine learning for verifying annotations, which could enhance the architecture

evaluation and vulnerability detection and lead to more robust and secure microservices.

Vulnerability detection and refactoring appear as second and third purposes that im-

prove the microservice when comparing the purposes with all the uses of annotations except

for identifying annotations. Prioritising the research in deep learning during refactoring

helps reduce the gap of missing the specific use of verifying annotations. Thus, the recom-

mendations are (i) including more research on verifying annotation, (ii) explicitly reducing

the usage of tools, and (iii) increasing deep learning for refactoring.

It is important to note that predicting annotation is excluded from the recommen-

dation due to the specific goals of refactoring, which aim to improve the existing structure

without introducing new features. Therefore, the recommendation focuses on the enhance-

ment of verifying annotations, specifically through the integration of deep learning, which

requires a significant amount of data for training, testing and validation.

45

Systematic Review of Annotations in Microservice Construction

Finding 3: Identifying annotations is the top specific use. In this line, researchers prefer

tools for defect prediction. However, results suggest that adding annotations requires more deep

learning than tools, especially for vulnerability detection.

Implication: Researchers need to investigate deep learning and incorporate it into the tools,

especially for improving vulnerability detection. Moreover, access control benefits from deep

learning, considering its relation to security enhancement.

Graph theory is the second static analysis-based technique without considering the

preference for static analysis tools. Graph theory is mainly applied to architecture evaluation,

defect prediction, and vulnerability detection to improve microservices. We recommend

incorporating graph theory when verifying annotation. By integrating graph theory into

the tooling landscape, researchers may gain access to advanced analytical techniques that

reveal the relations within microservices. This integration would enable more comprehensive

verification of annotation, addressing its lack in the architecture evaluation of microservices.

Graph theory may significantly impact two middle purposes: ensuring microservice

identification and refactoring. These purposes are critical and strongly consider identifying

annotations but miss predicting and verifying annotations. Adopting graph theory with

verifying annotations can play a pivotal role in strengthening the identification of microser-

vices. These techniques can aid in recognising potential structures, analysing patterns, and

detecting roles within the microservice architecture, thereby enhancing the system quality.

Finding 4: Identifying and adding annotations are top specific uses of annotations for mi-

croservices identification and refactoring. Moreover, these purposes show a preference for graph

theory. However, there needs to be more studies on predicting and verifying.

Implication: Researchers need to investigate predicting and verifying annotations based on

graph theory to incorporate it into refactoring and microservice identification. This exploration

will contribute to enhance refactoring practices.

46

Systematic Review of Annotations in Microservice Construction

Identifying and adding annotations cover almost all the purposes for using them

in microservice construction. However, there is a lack of static analysis-based techniques

for predicting and verifying annotations. To address this gap, researchers may focus on

incorporating more deep learning for predicting annotations, which could improve the system

quality through the architecture evaluation providing automated analysis and prediction of

architectural elements, dependencies, and potential issues. Thus, researchers may make

informed decisions and take proactive steps in improving the architecture of microservices,

ultimately enhancing their overall quality and maintainability.

These findings provide new insights into the importance of specific uses of annotations

and their relation between their purposes and static analysis in microservices. These findings

could inform future research in this area by deepening our understanding of annotations.

2.4.1 Future Outlook for Research

For annotations in microservice construction, several essential topics on software development

remain. We outlook a potential research direction, which is discussed next.

Annotations for Energy Consumption in Microservices

With the increased number of cloud-based services and distributed applications, high demand

for energy consumption results in environmental and economic concerns. This research di-

rection aims to investigate the potential of annotations for green computing in microservices

to address the concerns. In general, green computing techniques provide the following ad-

vantages (i) reduction of operational costs, (ii) minimisation of power consumption, (iii)

evaluation of energy saving, and (iv) reduction of CO2 consumption and pollution [119].

Cloud computing already benefits from annotations, especially for parallel program-

ming and energy efficiency [77, 19]. In this line, investigating how the usage of annotations

47

Systematic Review of Annotations in Microservice Construction

can contribute to evaluate energy in microservices. Moreover, annotations can be leveraged

to optimise resource allocation, improve scalability, and enhance energy efficiency. Therefore,

by understanding how our purposes and specific uses of annotations are related to energy

consumption, the researchers can involve developing energy-aware annotation frameworks,

exploring dynamic resource provisioning based on annotations, and studying the impact of

annotations on energy consumption in real-world microservices.

Discovering Microservice Structures Changing Over Time

This research idea explores the potential of identifying annotations to discover and under-

stand the underlying structures and dependencies. Although there exist techniques that

consider identifying annotations in one instant, this research idea considers the evolution

of microservices over time similar of how java annotations changes [138]. By analysing and

recognising how microservice structures change, researchers can gain insights into the organ-

isation and management of microservice architectures.

In this research direction, the focus is on investigating the state-of-the-art techniques

for identifying structures of microservices, and adapting the techniques to handle changes

over time. Researchers can experiment with the specific uses of identifying, adding and

modifying annotations to compare evaluation architecture. Thus, researchers can track the

changes and their impact on the overall architecture. Additionally, academic papers can

focus on algorithms and access tools that leverage annotations as clues to infer relationships,

visualize dependencies, and aid in the efficient design and evolution of microservice systems.

Deep Reinforcement Learning for Evolution of Microservices

This research uses Deep Reinforcement Learning (DRL) to predict possible structure changes.

Deep learning algorithms have shown remarkable capabilities in learning patterns to make

predictions [38]. Reinforcement learning is an algorithm in which an agent interacts with an

48

Systematic Review of Annotations in Microservice Construction

environment to achieve a specific goal by taking actions given a reward. In microservice evo-

lution, the environment represents architecture, the actions are possible structure changes,

and the reward involves quality attributes of a system. DRL trains the agent to predict the

most effective actions based on the changes in the structures of open-source projects.

This research process involves building a dataset of annotated microservices and cor-

responding actions taken over time, training a DRL model based on historical information

and patterns, evaluating prediction accuracy, and integrating annotation prediction models

into the lifecycle of microservices. Our specific uses of annotations, especially identifying,

adding and modifying annotations, are suitable for DRL actions. Moreover, the reward could

consider metrics related to our catalogue or purposes of using annotations. By leveraging

DRL techniques, researchers can investigate how predictive models can anticipate and sug-

gest suitable structure changes based on actions for improving microservice performance,

adaptability, and robustness.

Verifying Annotations for Security Constraints

In this research direction, the critical aspect of security in microservice architectures benefits

from verifying annotations. Adopting of microservices in modern software development posits

security to protect microservice-based applications against cyber-attacks and vulnerabilities

[38]. Annotations are a valuable source of information for security verification. This research

aims to develop techniques to verify the correctness of annotations in the context of security

and how this verification mitigates security risks in microservices.

The first step in this future research is conducting a systematic literature review on

security for microservice architecture. The second step would involve examining a source

code to match security patterns and potential security risks. This step benefits from our

data extraction, which provides a list of studies related to vulnerability detection with static

49

Systematic Review of Annotations in Microservice Construction

analysis-based techniques. The last step would elaborate a verification technique and validate

its effectiveness in identifying security risks and facing cyber threats. The findings and

contributions of this study can provide researchers, practitioners, developers and architects

with a verification framework to enhance the security of applications.

This research direction emphasises the specific use for verifying annotations, particu-

larly concerning security-related constraints. The focus is ensuring that annotations adhere

to security requirements and detect vulnerabilities, mainly to prevent unauthorised access,

data breaches, or inserting malicious code/data. Researchers can explore techniques and

methodologies for verifying the correctness of annotations and the security of microservices.

Additionally, constraint-based verification approaches based on static analysis techniques are

suitable for further investigation of verifying data privacy, integrity, and compliance.

2.4.2 Threats to Validity

This section outlines the main threats affecting the validity of the SLR conducted in this

study.

• External validity. There is a threat to the knowledge generalisation of our study. We

categorised primary studies from established digital repositories along with our experience

related to the field. To address this potential threat, we captured a wide range of publi-

cation years to encompass different software practices that evolve. The publication years

allow us to consider how annotations are used in microservice construction.

• Internal validity. There is a threat to the selection of studies that ensure that selected

studies are relevant to the research questions. To mitigate reviewer bias, we assess the

quality of each study, considering its methodology, data collection, and results description.

The selection of primary studies with a high-quality value for empirical research and

objective description mitigates the potential bias that might lead to inconsistent decisions.

50

Systematic Review of Annotations in Microservice Construction

• Construct validity. There is a threat of missing some papers despite the attempt to

include primary studies of annotations in microservice construction. To mitigate this

potential threat related to the collection of relevant studies, we diversified the inclusion

criteria explained in Subsection 2.2.4 to capture studies from various contexts, and we

applied cross-checking method in the primary studies.

• Conclusion validity. There is another threat regarding the reliability and completeness

of our catalogue on purposes and specific uses of annotations in microservice construction,

considering that additional categories might enrich the classification. To address this

threat, we refined our catalogue with the new concepts encountered in the literature.

Additionally, our catalogue may evolve according to the new changes.

2.5 Gap Analysis

This section highlights the selected limitations to be addressed in the thesis. Limitations are

related to annotations in microservice construction.

1. Absence of a study on technical concerns in microservices: Some existing

studies highlight the significance of defect prediction as a primary purpose of using

annotations. Notably, missing annotations emerge as a crucial technical aspect within

the domain of defect prediction. However, the current research landscape needs to

provide a comprehensive study that reveals what other technical concerns are common

development concerns in microservices. Therefore, a broader spectrum of possible

defects and symptoms demands an exploration of technical aspects beyond annotations.

Within this context, we advocate a critical examination of posts published on one of

the largest sources for developers. Chapter 3 addresses this limitation.

51

Systematic Review of Annotations in Microservice Construction

2. Lack of learning techniques to detect missing annotations: Our findings indi-

cate that more studies on identifying annotations rely on graph theory. However, there

is a significant need for learning techniques that facilitate identifying and modifying

annotations. The absence of learning techniques is problematic because machine and

deep learning have the potential to enhance the automation of detecting missing anno-

tations, which is crucial for maintaining code quality and functionality. Additionally,

deep learning techniques have proven helpful for predicting annotations [134]. Although

adding and modifying annotations has shown promising results for defect prediction,

especially for addressing missing annotations, the development of dedicated learning

techniques for detecting missing annotations remains insufficiently studied.

Chapter 4 addresses this limitation by providing a semantics-driven learning technique,

a novel approach inspired by the results of natural language processing for clone de-

tection. The approach utilises a database of code fragments to find similarities.

3. A semantic learning technique to improve microservice granularity: While

existing literature has primarily focused on using annotations for performance assess-

ment in microservices [22], there remains a gap in learning techniques to optimise

microservice granularity. Current approaches, including those utilising deep learning

for predicting annotation [134], have overlooked the potential of learning techniques to

inform architectural decisions related to the size of microservices. In the context of mi-

croservice granularity, the distinction between fine-grained and coarse-grained services

significantly influences performance. However, existing methodologies lack adequate

consideration of semantics learning techniques to anticipate granularity values. There-

fore, there is a clear need to explore learning techniques aimed at identifying typical

granularity based on existing open-source projects. Chapter 5 addresses this limitation,

where a novel approach is proposed to investigate semantics-driven learning techniques

for identifying granularity limits.

52

Systematic Review of Annotations in Microservice Construction

2.6 Related Work

This section outlines the related work of annotations in microservice construction, extending

beyond the existing studies on the topic. Table 2.10 shows how our work fits the state-of-

the-art by comparing key features between our work and the closely related work.

Table 2.10: Related Work

Features Related Work Our Work

[7] [33] [65] [14] [138]

Missing annotations ✓ ✗ ✗ ✗ ✓ ✓

Refactoring ✗ ✗ ✓ ✗ ✓ ✓

Bad-smell detection ✓ ✗ ✗ ✗ ✓ ✓

Testing and documentation ✓ ✗ ✗ ✗ ✗ ✓

Graph theory ✗ ✗ ✗ ✓ ✗ ✓

Machine learning ✗ ✓ ✗ ✗ ✗ ✓

Deep learning ✗ ✓ ✗ ✗ ✗ ✓

Rule-based methods ✗ ✗ ✓ ✗ ✗ ✓

2.6.1 Annotations in Microservices

Two previous surveys consider the importance of using code annotations and analyse the

missing annotations scenario. Yu et al. [138] discuss the evolution of annotations in the

bug history of Java applications. The authors provide findings regarding their possible

usage when developers ADD, DEL, CHANGE and UPDATE annotations. Alshemaimri et

al. [7] provide insights into the persistence logic and transactional behaviour of database

code fragments. The authors focus on Object Relational Mapping (ORM) antipatterns and

discuss their impact on performance, maintainability, portability, and data integrity.

Other previous works mention the importance of code annotation usage. Del Alamo et

al. [33] discuss annotation development in the context of services offered worldwide as textual

documents. The authors investigate the use of constraints based on structural relations

53

Systematic Review of Annotations in Microservice Construction

between annotations to analyse the privacy policy texts. Laigner et al. [65] catalogue the

antipatterns of dependency injection, like constructors assumed with a particular signature.

Bakhtin et al. [14] perform a survey on techniques to detect microservice patterns. The

authors focus on four aspects of microservices: foundation, responsibility, evolution, quality

and structure. However, they do not employ a perspective for prediction of annotations.

Unlike previous efforts, our article introduces the purposes of using annotations.

Due to a limited number of surveys and a systematic mapping study, we explore other

previous works which refer to contextual annotations in source code to guide maintenance

tasks. Rongrong et al. [110] use the comment lines as a refactoring recommendation to

classify the reconstruction of clones. Zhu et al. [149] search SQL sentences to detect security

vulnerabilities in sensitive table operations. Omoronyia et al. [85] and Montalvillo et al. [81]

add text information to the code and identify which code belongs to shared assets’ features.

The authors generally perform static analysis to find textual annotations. Although these

studies generally employ static analysis techniques to find textual annotations, there exists

a need for a systematic review of the purposes of using annotations and applied techniques.

By classifying the purposes of using annotations, we aim to provide a comprehensive

framework to (i) understand the approaches used in the literature; (ii) offer insights into the

limitations of each technique applied for a specific purpose of using annotations; and (iii)

identify opportunities for innovation into specific use of annotations. Therefore, developing

a classification represents a novel contribution in this area, offering a structured approach to

navigating the landscape of static analysis techniques related to annotations in microservices.

2.6.2 Static Analysis-based Techniques
Regarding the actions that static analysis-based techniques employ with annotations, Al-

shemaimri et al. [7] discuss the identification of annotations for locating entities and their

usage in SQL transactions; while Yu et al. discuss how the annotations evolve after system

54

Systematic Review of Annotations in Microservice Construction

changes. Although the authors mentioned the identification of annotations, only Yu et al.

explicitly consider the ADD and MODIFY annotations. Based on available information,

our study elaborates on classifying static analysis techniques as a new perspective to guide

microservice construction.

Despite the previous works utilise static analysis techniques, Laigner et al. [65] and

Bakhtin et al. [14] collect studies that employ techniques based on graph theory and set

of rules to identify and categorise the patterns. Additionally, different techniques based on

deep learning are systematic collected in the study performed by Del Alamo et al. [33],

specifically, techniques that leverage the usage of natural language processing with symbolic

and statistical approaches. The statistical approaches mix the natural language processing

with traditional machine learning like Support Vector Machine, Logistic Regression, Decision

Tree, Random Forest and others.

Considering the limit number of previous surveys, we also review studies that apply

traditional methods such as Naive Bayes [110], Call Graphs [85], Java Parser [106, 84], among

others. Although the authors identify the techniques and tools for static analysis, they do

not apply machine learning techniques for annotations. To the best of our knowledge, our

study is the first to provide a classification of purposes of using annotations and their relation

with the specific usage of annotations performed by static analysis techniques.

2.7 Summary

The systematic literature review conducted in this study aimed to explore the usage of

annotations in microservice construction. The review focused on the specific uses of annota-

tions, the purposes of using annotations and the static analysis-based techniques applied to

achieve the corresponding purpose. By analysing a wide range of relevant research articles,

55

Systematic Review of Annotations in Microservice Construction

the review shows the essential findings and trends in the field of microservice construction.

Based on the findings from the systematic literature review, a compelling argument

emerged regarding the importance of defect prediction. Thus, verifying annotations is com-

monly used for the detection of annotation misuse, which is critical for defect prediction. The

review revealed that mining annotations and constraints played a crucial role in verifying

annotations. Consequently, the argument is that researchers must address and fix missing

and misused annotations, as this contributes to the construction of microservices.

From this study, we gained insights into the existing use of annotations to suggest

future research directions as follows: (i) discover the relation between annotations and energy

consumption; (ii) capture the structures changing over time to understand the management

of microservices; (iii) predict practical uses of annotations for the evolution of microservices;

and (iv) consider the verification of the correctness and security of annotations.

The findings from this systematic literature review base the foundation for the subse-

quent three chapters of this thesis: (i) Chapter 3 aims to identify common concerns related

to annotations in microservices faced by developers; (ii) Chapter 4 aims to reduce the issues

related to missing annotations by learning the relation between annotations and code frag-

ments for predicting annotations; and (iii) Chapter 5 aims to determine granularity limits

by learning the typical granularity values from operations with similar behaviour that have

same annotations.

In summary, the subsequent chapters build on the insights gained from the systematic

literature review, addressing specific gaps and proposing innovative solutions to enhance the

use of annotations in microservice construction.

56

Chapter Three

Classification of Microservice-Based

Development Concerns

3.1 Overview

Microservice is an approach for designing, developing and delivering applications based on

agile methods focusing on service choreography to promote isolation and autonomy [34]. This

approach enables fast application development and potentially localises bugs to limit their

propagation within the system [76, 136]. However, debugging is complex due to the efforts

required to trace the failed requests among several log files spread on different containers

[103, 128, 49]. The processes of locating and fixing bugs are eventually one of the core

purposes of adopting microservices (i.e. designing for failure recovery); the effectiveness and

efficiency of the process are essential for ensuring the availability and compliance with its

Services Level Agreements and maintaining its revenue streams [42].

Although the automation of bug correction helps reduce the time during the testing

stage, in practical terms, detecting bugs on microservices may take days or even weeks [146].

Furthermore, a high number of microservices implies a large vulnerable surface where bugs

57

Classification of Microservice-Based Development Concerns

can propagate across dependencies, which complicates the identification of the root of the

issue [37]. In this context, developers usually search online communities to learn about

development issues and their solutions [82]. Consequently, developers unfold related posts

with the suggested answers, comments and examples to find solutions to their problems [102].

Notably, these answers often provide insights into addressing concerns related to annotations.

The novel contribution of this chapter is an empirical study that analyses 406 posts

from Stack Overflow [54], one of the largest sources for developers [102, 79] , focusing on

bugs, their symptoms, and root causes. We categorise each post by development lifecycle

phases, quality attributes, software construction activities and fault classes [112, 20, 57], to

understand the concerns developers face with microservices. This classification highlights

specific concerns including those related to annotations, offering insights into their impact

on development processes. This work inspects the corresponding response and comment

thread for each post and contributes to strategies for enhancing microservice construction.

Despite the significance of Stack Overflow, only one previous work has reported tech-

nical issues on microservices by examining answers from Stack Overflow posts [15]. However,

it excludes all the comments that provide relevant post information, like different results af-

ter applying one answer [55]. Different from that work, this research categorises common

development concerns by including posts and their comments. Moreover, previous empirical

studies on microservices have either (i) introduced algorithms using fewer issues to evaluate

their approaches [89, 145, 147], or (ii) interviewed fewer developers to identify undesired prac-

tices [116, 53]. In contrast, this chapter examines concerns from a community perspective.

The remainder of this chapter is organized as follows. Section 3.2 describes the life

cycle of microservices at runtime, whereas the design of the study is presented in Section

3.3. Section 3.4 presents the results, and Section 3.5 shows how these results complement

Chapter 2. Section 3.6 discusses the related work. Finally, Section 3.7 summarizes our work.

58

Classification of Microservice-Based Development Concerns

3.2 The Life Cycle of Microservices at Runtime

The life cycle of a microservice-based system at runtime is triggered by request protocols like

Hypertext Transfer Protocol (HTTP) and Advanced Message Queuing Protocol (AMQP).

This life cycle is composed of four system activities: service routing, service discovery, service

authentication & authorization, and service invocation. Figure 3.1 shows the process that

starts with service routing and ends with service invocation, which calls the microservices

and returns the required response.

Figure 3.1: Microservice-based System Lifecycle at Runtime

Service routing has an entry point that routes all requests to other microservices

[120]. Specifically, the API gateway is the component that receives an initial request, exam-

ines the availability of a microservice, selects its correct version and collects the responses

of the required microservice [8]. In the context of asynchronous responses, API gateways

implement polling for capturing responses. Additionally, common frameworks that help to

construct gateways are Kong, JHipster, and Swagger [2]. Furthermore, the service routing

communicates with all the other life cycle activities.

Service discovery collects microservice health status (i.e. location, IP address, and

ports of available instances) and keeps this information in a component called register, which

returns these details when requested. Additionally, load balancers, databases, repositories,

59

Classification of Microservice-Based Development Concerns

and other components are initialised in this activity. Depending on changing environments

or workloads, these components may use a configuration manager to initialise and adjust the

system performance.

Service authentication & authorization validates user credentials and permis-

sions. If a request requires authentication, the user credentials are validated. If a request

requires authorization, the access permissions are also checked. Depending on the imple-

mentation, this activity communicates to the service invocation activity to propagate access

permissions to other microservices. This activity needs the use of security protocols. JSON

Web Token (JWT) and OAuth are the most common security protocols. The former is

an open-source JSON-based standard that enables tokens as a medium for secure message

transmission [2]. The latter focuses on simple client authorization for Web applications [101].

Service invocation is the activity in which one or more microservices are invoked.

These invocations are performed in either a synchronous or an asynchronous manner. The

former use invocation patterns such as aggregation, chain, proxy [47], whereas the latter use

tools based on messaging broker, streaming, and cache to send data to the invoked microser-

vices. Regarding the origin of the service requests, most of these are received from the service

routing. However, some requests come from the service authentication & authorization due

to permissions propagation. For the requests that come with a token to establish a secure

invocation, the validity of the token is checked before processing the request.

3.3 Study Design

This section presents the key aspects of this study design, which follows well-established

guidelines on systematic studies [60, 91].

60

Classification of Microservice-Based Development Concerns

3.3.1 Research Question

This study aims to gain insights into the main concerns in microservices development. This

work is an effort to (i) prevent junior developers from introducing accidental errors during

the implementation of distributed patterns and (ii) suggest future research on static code

analysis to recognise and fix the misuse of annotations. This investigation centres around

addressing the following Research Question (RQ):

RQ1.3: To what extent the use of annotations is one of the most common concerns

in microservice development?

Developers benefit from microservices to enhance the scalability and modularisation

of applications. To achieve both enhancements of microservice development, they also mo-

tivate the isolation of functionalities into highly cohesive services. However, many services

may increase communication and data consistency complexity. The objective of RQ is to

provide empirical evidence of existing microservice development concerns classified according

to different software engineering activities in the life cycle of microservices at runtime.

3.3.2 Search and Selection Process

Figure 3.2 shows the stages of our search and selection process and the number of Stack

Overflow posts at the end of each stage. For a better control of the post characteristics,

this study considered the following stages in the design of our study: initial search, accepted

answer criteria, conceptual and technical criteria, merging and duplication removal, and

application of selection criteria.

1. Initial search. In this stage, Stack Overflow was the first option as a search

engine since it is one of the largest and most popular online Question & Answer (Q&A)

61

Classification of Microservice-Based Development Concerns

Figure 3.2: Numbers and Stages of our Search and Selection Process

forums, in which developers post programming issues [102, 82]. The tag microservices was

the main criterion considering the main context. This study limited the search to posts

dated until December 2019.

2. Accepted answer criteria. A post could have multiple answers; however, the

owner of the post can select only one answer as accepted. The selection of posts considers

those with an accepted answer using Query Stack Overflow [1]. This website executes simple

Structured Query Language (SQL) statements against public data from Stack Overflow.

3. Conceptual and technical criteria. The posts were manually classified into

two main categories, namely conceptual and technical. On the one hand, a post falls into

the conceptual category when the question is too general, contains non-technical details, and

excludes answers or comments. On the other hand, a post falls into the technical category

when the question is more specific, and their answers or comments contain technical text.

The posts in the technical category are the ones which pass to the next stage.

4. Merging and duplication removal. Moderators on Stack Overflow mark posts

as closed when duplicated, off-topic, or unclear. Based on this, this study excludes closed

and duplicated posts. Additionally, collected posts consider those posts suggested as main

threads.

5. Application of selection criteria. The selection process manually filters all the

62

Classification of Microservice-Based Development Concerns

collected posts according to the selection criteria in Table 3.1.

Table 3.1: Inclusion and Exclusion Criteria for Post Selection

Inclusion criteria (Is) Exclusion criteria (Es)

I1 Microservices posts created until December 2019. E1 Posts with duplicated content.

I2 Posts with an accepted answer. E2 Posts with a status of closed.

I3 Technical posts for microservice implementation.

3.3.3 Data Extraction and Synthesis

In this stage, (i) the classification process puts the posts according to the activities in the

microservices life cycle, quality attributes, software construction activities, and fault classes;

and (ii) the collected data for this study includes the publication year, bug symptom, root

cause, and system activity.

The data synthesis involved a collection and a summary of the data extracted from the

posts [61]. It was aimed at understanding and analysing posts on microservices development.

Specifically, the categorisation of posts facilitated content analysis, and narrative synthesis

explained the findings coming from the content analysis.

For the narrative synthesis, the creation of groups considered posts with similar con-

texts by using the extracted bug symptom(s) and root cause from each post. A discussion

of created groups was also performed until the authors reached a consensus.

For the sake of the replicability of our study, a replication package 1 is available for

interested readers. The replication package includes the research protocol, the SQL scripts,

the raw data with the list of the retrieved posts, the extracted and categorised data, and the

scripts for generating the information charts.

1http://www.research.propio.click/paper-empirical/replication-package/

63

Classification of Microservice-Based Development Concerns

3.4 Results

This work presents the observation of posts over the years in Section 3.4.1 and the main

findings per life cycle activity in Section 3.4.2. Additionally, Section 3.4.3 shows the cat-

egorisation of posts based on quality attributes, software construction activities and fault

classes [112, 20, 57]. Since referencing hundreds of posts occupies a significant space, the

identification of posts use the letter P followed by a unique hexadecimal number (e.g. P1B).

3.4.1 Years vs Life Cycle Activities

Figure 3.3 shows the distribution of posts on microservice development over the years. Al-

though only a few posts were created during 2014, large organisations became interested

in microservices [87]. Moreover, the trend indicates that the activity of the community in

microservice-related topics has been steadily growing over the years, except in 2019, which

has a reduction of 27% of the posts compared to 2018.

The results show that the life cycle activity with the highest number of posts is service

discovery (161/406), followed by service invocation (136/406), service routing (69/406), and

service authentication & authorization (40/406).

Figure 3.3: Life Cycle Activities Over Time

64

Classification of Microservice-Based Development Concerns

3.4.2 Findings per Life Cycle Activities

This work categorises the posts based on their pertinence to service routing, service discovery,

service authentication & authorization, and service invocation.

Tables 3.2 and 3.3 present the distribution of posts per life cycle activities. The system

activity column indicates the name of the activity and the percentage of posts related to

annotations. These tables indicate that 40% of posts are related to annotations. In this

sense, Service Routing has 17% of posts related to annotations, Service Discovery has 8%,

Service Authentication Authorisation has 4%, and Service Invocation has 11%. Finally, 27%

of posts are mainly related to missing annotations.

Service Routing

Table 3.2 shows the service routing distribution. The main tasks in service routing are client

discover 35/59, followed by send request 18/59 and polling response 6/59. Client discover

involves issues in implementing clients intended to discover microservices; for instance, up-

loading files fails to discover a microservice with an overridden UTF-8 configuration (P7D).

Send request issues appear when routing requests with the wrong configuration of cross-origin

in Zuul (P12B) [2]. Polling response occurs when the reception of an asynchronous response

fails. For example, the navigation flow of an application is interrupted due to periodically

missing a resource status (PE1).

Observations revealed that 40% of the posts in client discover are related to missing

parameters or operations. The former, missing parameters, refers to the absence of parameter

names and values during the invocation of scripts or configuration files. In contrast, missing

operations refers to the absence of sentences for adding specific behaviour. For instance, a

client uses the reported status to interact with the dependencies according to their health.

65

C
lassification

ofM
icroservice-B

ased
D

evelopm
ent

C
oncerns

Table 3.2: Classification of Posts

System Activity Activity Task Task Description Issue Category Ratio

Service routing

(17% are based on

Annotations)

Client discover
Issues in the implementation of

clients that discover microservices

Missing parameters

Missing operations
9.9%

Send request
Wrong settings for routing of

request

Wrong configuration of environment

Missing publish event

Missing serialise mechanism

Missing annotations (3%)

5.4%

Polling response
Incomplete asynchronous

response

Missing response (message,

record id, promise or link)

Missing event listener

1.7%

Service discovery

(8% are based on

Annotations)

Configuration

Missing values, parameters or

annotations for settings of

components

Wrong configuration of frameworks

Wrong usage of parameters

Wrong version of dependencies

Missing annotations (24%)

30.3%

Start Failures when starting components

Wrong version of dependent libraries

Wrong login options

Missing operations for services

5.7%

Registry
Issues during interaction with

registry service

Load balancing error caused by

different version of microservices
3.7%

Continued on next page

66

C
lassification

ofM
icroservice-B

ased
D

evelopm
ent

C
oncerns

Table 3.3: Classification of Posts (Continued from previous page)

System Activity Activity Task Task Description Issue Category Ratio

Service

authentication

& authorization

(4% are based on

Annotations)

Authentication
Incomplete validation of a user

account

Missing operations

Missing Web tokens
5.2%

Authorization Deny the access to resources

Missing operations

Missing Web tokens

Missing event messages

3.4%

Grants

Incomplete adoption of user roles

to keep authentication

& authorization

Wrong data usage

High workload

High coupled microservices

1.2%

Service invocation

(11% are based on

Annotations)

Asynchronous
Errors when calling microservices

simultaneously

Common cache errors

Missing patterns for distributed systems
21.9%

Synchronous
Interruption of calling microservices

sequentially

Cross-origin resource sharing (CORS)

Broken contracts

Outdated databases

8.1%

Token validation
Errors when validating secure

tokens

Missing implementation

Missing Token

Unsecured zone

3.4%

67

Classification of Microservice-Based Development Concerns

Regarding missing parameters, common issues include environment variables, security

on network access, framework settings, health metrics, and values of annotations are the

most common concerns. For instance, the variables HOST and PORT require valid values

to connect a remote machine (P59, P85, PD7), a configuration management as Zookeeper is

required to hold the parameters for frameworks such as Zuul, Consul, gateways (P3E, PC6),

and annotations such as ConsulConfiguration and EnableSwagger requires values to fetch

data, generate documentation and others (PF6).

In relation to missing operations, the most relevant operations are the implementation

of variables, getters, setters, and rules for service discovery. For instance, Swagger requires

ApiImplicitParam on getters and setters to generate documentation (PA7), service discov-

ery clients ignore the different DNS ports to get a list of microservice instances from SRV

records (P11, P55, P89), and developers miss rules for checking the version/health/context

of microservices in Zuul, Nginx or vector clocks (P15, P76, PCB).

Observations revealed that 56% of the posts in send request are related to wrong

configuration, 22% are related to missing publish events and missing format for case class,

and 6% refer to missing annotations. The wrong configuration issues refer to the settings of

the environment, relative paths, and security properties. Specifically, the settings of Eureka

for queue messaging and replication need to check the waiting time for the next retry or

increase the maximum number of retries (P36, P8F, PA8, PD4, P12F, P143). In the case of

missing publish events, ActiveMQ, RabbitMQ, Kafka, Spring Framework, and Spray JSON

must catch exceptions when the CrossOrigin annotations are missed.

Finding 1: Missing parameters emerges as one of the most popular issues in service routing.

Results suggest API gateway frameworks require those parameters for configuration.

Implication: Developers need to fix missing parameters and environment variables for Somata,

Cassandra, and Kong [2], which may contribute to reduce bugs at the compilation stage.

68

Classification of Microservice-Based Development Concerns

Finding 2: Missing operations emerge as a popular topic in service routing. Among these kinds

of operations: ApiImplicitParam to generate documentation, SRV record to list microservices

and health status to monitor microservices.

Implication: Developers need a deeper understanding of frameworks such as Consul, Mesos-

DNS, Nginx, Swagger, and Zuul [2]. A guide of missing operations in these frameworks could

help mitigate some issues.

Service Discovery

Table 3.2 also presents the distribution of posts related to service discovery activity. The

main tasks in service discovery are configuration 110/142, followed by start 17/142 and

registry 15/142. Configuration refers to the lack of values, parameters, or annotations; for

instance, if a parameter discovery is disabled then localhost and port between Java Spring and

Consul are unresolved (P23) [2]. Start refers to issues that occur when starting components,

such as using the wrong package version of JHipster when launching a microservice (P112).

Registry refers to issues that occur when components interact against the registry service.

For instance, Eureka clients are still working despite an Eureka server stop (P121).

Regarding the configuration task, 24% of the posts are related to the usage of the

following frameworks: Spring, Netflix, Cassandra, Zookeeper, GemFire and others [2]. In

this context, the common issues of configuration tasks are (i) lack of values for configuration

of fallback, and circuit breaker and lack of parameters for dependency injection or binding

exception; (ii) wrong version of libraries; (iii) annotations of Spring Boot, Lombok and

GemFire are missed/misused [2]; (iv) data serialization provides communication outside

private networks; and (v) missing fault-tolerant clusters to avoid single point of failure.

In the context, the issues arise when the following scenarios appear: query perfor-

mance is deficient when essential filter is not an enumeration (P3A, P57, P67, P6C, PFA),

69

Classification of Microservice-Based Development Concerns

BindingException occurs when server port is absent of the Java Virtual Machine (JVM) pa-

rameters (P22, P2E, P80, PBC, PD1, PE4, P11D, P134), unsupported class version occurs

when using a higher version of servo-core dependency (P33, P51, P6B, P97, PA9, P92), Un-

knownHostException may occurs when RestTemplate miss the Autowired annotation (P47,

P3C, PC9, PD0), front-end microservices should return a ResponseEntity serialized as JSON

to include the HTTP status code (PB2, PD8, P17, P93), and a system lose events if a central

messaging hub has no cluster and becomes unavailable (P2, P98, PE5, PB1).

Regarding the start task, 47% of the posts are related to (i) the usage of libraries for

dependency, especially when bootRepackage is no longer supported by JHipster version 5+

(P7, PB3, P112); (ii) container initialization due to wrong login parameters, when docker

containers require the option –with-registry-auth to forward credentials to other nodes (PBB,

PE0); and (iii) operations for a high number of services such as backup/restoration, logs,

and scaling, when there is no configuration for timeouts and retries then the system could

have scaling troubles (P18, P35, PF2).

In relation to the registry task, 40% of the posts are concerned about a load balancing

between different versions of microservices (P16, P108, P10D), for instance, load balancer

considers a version of microservices unless the older version is marked as OUT OF SERVICE;

and detecting the connectivity of services and components (P13, P1E, P69), for instance, if

health checking is not enabled then a system cannot detect when microservices are down.

Finding 3: The wrong version of libraries is one of the top issues in service discovery. Con-

sequently, compilers do not find the requested classes in the library.

Implication: Developers may benefit from the usage of project management tools like Apache

Maven or build automation tools like Gradle [2]. Both kinds of tools offer support for library

and dependency management.

70

Classification of Microservice-Based Development Concerns

Finding 4: Annotations, protocols and clusters appear among the top issues in service dis-

covery. According to our survey, microservice-based applications benefit from (i) the usage of

NonNull annotation to warn about the presence of null values; (ii) the adoption of JSON pro-

tocol for external communications; and (iii) the activation of clusters with dynamic IP.

Implication: Developers could reduce these issues by using static code analysis to recognise

the misuse of annotations, protocols and clusters.

Service Authentication & Authorization

Table 3.2 illustrates the task distribution of service authentication & authorization. The

main tasks in service authentication & authorization are authentication 18/37, authorization

14/37, and grants 5/37. Authentication refers to issues that occur when trying to validate

user accounts (P48). Authorization issues occur when trying to provide access permissions

to specific functionality (PE8). Grants issues arise when adopting the user roles to avoid

repeating authentication & authorization processes (PB).

Observations revealed that 44% of the posts in authentication & authorization are

related to missed operations and usage of web tokens. On the one hand, missed operations

refer to the absence of sentences for the usage of user credentials, configuration, and others.

On the other hand, web tokens refer to the time life of tokens and excessive validation.

Missed operations raised concerns about user credentials and configuration usage to

avoid failures of unique constraints and missing annotations. Common scenarios included

are: requests return 401 unauthorized responses when credentials are unavailable into Eureka

or Spring Cloud [2] (P46, P52, PBE, PFE); transactions include the username field as part of

unique constraints (P3F, P48, PAC); and clients missed RestTemplate with the LoadBalanced

annotation to support multiple instances of microservices (P62).

71

Classification of Microservice-Based Development Concerns

Regarding exposing web tokens, there are two concerns: (1) a slow response of the

overall system due to multiple validations of a token where developers could pass valid JWT

tokens to other microservices (P9, P1D, P2A, PF7) and (2) tokens that live longer than

expected, they could pass between microservices, stay in the same domain and create a

security vulnerability (P5F, P8B).

Finding 5: The absence of authentication & authorization operations as JNDI lookup with the

connection factory causes issues when getting user credentials in a centralized solution.

Implication: Developers could choose a fully decentralized solution that includes Zookeeper,

ZeroMQ, or Consul [2] to reduce the response time of the overall system.

Finding 6: Exposing the web tokens for a long time makes a microservice-based application

vulnerable to attacks and hacks.

Implication: Short timelife tokens minimize security breaches. Hence, developers could im-

prove renewal mechanisms to ensure that compromised tokens remains valid for a brief period.

Service Invocation

Table 3.2 depicts the task distribution of service invocation. The main tasks in service invoca-

tion are asynchronous 78/118, followed by synchronous 26/118 and token validation 14/118.

Asynchronous issues occur when simultaneously calling microservices using eventual con-

sistency patterns to handle inconsistent states over multiple responses (P19). Synchronous

issues arise when sequentially calling microservices use HttpHeaders to send JSON data for

HttpEntity instances (P1C). Token validation issues refer to tokens received by microservices

and need internal validation when passed by the header between microservices (P4E).

Regarding the asynchronous task, 29% of posts are related to common cache errors

and missing patterns for distributed systems. The most common cache errors include missing

72

Classification of Microservice-Based Development Concerns

Terracotta servers for backing up the cache [2] (P95), missing shared cache layer on top of a

database to respond with latest data even when dependant microservices are inactive (P50,

P11A, P5D), wrong cache parameters for the avoidance of data duplication, reduction of

unnecessary communication, and validation of outdated data (P3, P1B, P7A, PED, PF3).

Concerning the missing patterns for distributed systems, observations revealed that

sagas, event-store, eventual consistency, aggregator, reporting, shared database, and pro-

duce/consumer are the most mentioned patterns. Generally, the sagas pattern is used to get

fresh data for completing complex processes by keeping a trace of events (PBF, PDA, PC4,

PE2). The event-store replicates events when the system provides outdated user information

(PBF, PDA, PC4, PE2). The other design patterns are combined for easy and fast access

to connected data (P19, P4D, P8E, P96, P135).

With the synchronous task, 31% of the posts are concerned about (i) missed HTTP

headers for microservices in different domains, (ii) change of bounded context that results

in broken contracts and (iii) data synchronization after data structure modification. To

illustrate, the Cross-origin resource sharing (CORS) filter becomes imperative in systems

with Zuul and Azure Service Fabric with corresponding requirements for request headers on

the client side (P34, P74, P75). Bounded contexts of microservices change according to the

data structure dependency (P6F, PA3, PF9). Moreover, microservices without versioning

produce errors after data structure modification (P107, P111).

Finding 7: The absence of configuration parameters for cache is one of the most common issues

on service invocation. This study indicates that communication processes among microservices

require those parameters for optimal performance.

Implication: Developers could use configuration parameters of cache (e.g. Ehcache enabled

with Terracotta server) in external files such as YML configuration files.

73

Classification of Microservice-Based Development Concerns

Finding 8: Patterns for long-running transactions are another common issue on service invo-

cation. Results suggest that transaction patterns reduce code duplication on services.

Implication: Developers must focus on transaction patterns such as SAGAS, try/cancel/con-

firm, and event-store to maintain data consistency across microservices.

3.4.3 Further Categorisation

Quality Attributes

Quality attributes are system characteristics a quality management team assesses to judge

software quality [112]. Table 3.4a shows the distribution of posts in terms of quality at-

tributes. The main identified attributes are reliability 105/406 and security 90/406, followed

by performance 65/406 and availability 64/406. Posts related to different quality attributes

are presented in a category called Others 83/406.

Security concerns are related to the quality attribute of microservices inside a private

network with IP addresses that expose them to public networks (P32, P98, PAF). Reliability

issues are related to missing handlers, retries, publish events or incomplete rollback that

affect the operation time of a system (P3C, P8, PF, P10). Performance refers to issues

when response time is affected by missing cache implementation (P4, P105, P7A, P3, P1B).

Availability issues arise when the execution of a system stops; for instance, the Zuul filter

launches errors when missing the http header X-Forwarded-Host (P87, PA3, PC5, PE3).

Software Construction

Construction of software refers to the elaborated creation of software by combining coding,

verification, debugging, unit testing, integration testing, and debugging [20]. Table 3.4b

74

Classification of Microservice-Based Development Concerns

Table 3.4: Further Categorisation

(a) Quality Attributes

Quality attributes #Posts (%)

Availability 64 (16%)

Performance 65 (16%)

Security 90 (22%)

Reliability 105 (26%)

Others 83 (20%)

(b) Software Construction

Software construction #Posts (%)

Coding and debugging 128 (32%)

Detailed design 57 (14%)

Integration 152 (37%)

Unit testing 6 (01%)

Others 63 (16%)

(c) Fault Class

Fault class #Posts (%)

Input/output faults 65 (16%)

Logic faults 171 (42%)

Interface faults 92 (23%)

Data faults 48 (12%)

Others 30 (07%)

presents a distribution of posts in terms of software construction activities. The main tasks

in software construction are integration 152/406 and code & debugging 128/406, followed by

detailed design 57/406, unit testing 6/406 and others 63/406.

Integration issues occur during the interaction of multiple components by missing

operations to keep a clean state of data (P2C), single-sign-on with discovery (P1A, P23) or

aggregator with integration platform (in P4C, P4D). Code & debugging concerns are related

to missing code for cache (P3), handling events (in P19, P3C), overriding methods (in P6C,

P7B, P86), and annotations to validate and enable transactions (in PC9, PD0). Detailed

design issues occur in approaches to build reports based on information from multiple mi-

croservices (P43), cache for event store to keep updating the user information (P79, P7A),

and usage of data-streaming with eventual consistency to decouple the database (P7C).

75

Classification of Microservice-Based Development Concerns

Fault classes

Fault classes classify bugs that can be detected by static analysis to detect anomalies intro-

duced in a piece of code [57]. Table 3.4c shows a distribution of posts in terms of fault classes.

The identified fault classes are logic faults 171/406 and interface faults 92/406, followed by

input/output faults 65/406, data faults 48/406, and others 30/406.

Logic faults issues appear in correct code statements that produce a wrong behaviour,

especially when reading/writing a model, changing versions, making notifications, imple-

menting events, tolerant clusters, JSON protocols and others (P6B, P73, P93, PA6, PB2).

Interface faults concerns occur while adding identifiers, implementing failure recovery, aggre-

gated patterns, and others (P6, P4C, P66, P8E, P91). Input/output faults arise when missing

or using wrong a version of libraries, location of parameters, and others (P31, PA2, P123,

P2E, PD1). Data faults occur when optimising the cache, managing persistent messages,

and using decorators for accessing/storing/formatting data (P50, P7F, PD5, P109).

3.4.4 Threats to Validity

This Subsection outlines the primary threats that impact the validity of the empirical study

performed in this chapter.

• External validity. There is a threat to the generalizability of knowledge in our empirical

study. We categorised posts from one of the largest sources for developers, along with our

experience related to the field. To mitigate this potential threat, we included a diverse

range of publication years to cover evolving software practices. The publication years

allow us to address a spectrum of concerns in microservice development.

• Internal validity. A threat arises in the selection of posts that directly relate to our

research question. To address this reviewer bias, we evaluate each posts, considering its

76

Classification of Microservice-Based Development Concerns

data collection. By selecting posts with a high-quality value for empirical research and

objective description mitigates the potential bias that might affect our decisions.

• Construct validity. There is a threat of overlooking specific posts, even though we try

to cover the main concerns in microservice development. To mitigate this potential threat

in collecting relevant posts, we kept simple the inclusion and exclusion criteria from Table

3.1 to capture posts from various contexts and remove unnecessary content.

• Conclusion validity. There is another threat regarding the completeness of our findings

because we conducted the study in 2021 and set 2019 as the maximum publication year,

even though additional years could enhance the classification. To address this threat, we

refined our categories with new concepts to get a novel pattern up to the selected date,

recognising that developers can continue to follow historical patterns.

3.5 Complementing the Systematic Literature Review

The results presented in this chapter provide a practical perspective that complements the

theoretical findings of the systematic literature review (SLR) in Chapter 2. The SLR iden-

tified key issues, like the importance of defect prediction through annotations verification,

which serve as initial understanding. This chapter delves into real-world instances of these

problems by examining posts related to microservice development activities over several

years. By categorising and analysing these posts, this chapter highlights specific challenges

developers face in areas like service routing, service discovery, authentication and authori-

sation, and service invocation. These empirical observations reinforce the argument that

addressing missing and misused annotations is crucial for microservice construction.

Moreover, the findings in this chapter underscore the practical implications of develop-

ment concerns in the microservice lifecycle. The detailed analysis of posts reveals that missing

77

Classification of Microservice-Based Development Concerns

parameters, wrong configurations, and misused annotations frequently disrupt microservice

operations. This real-world evidence supports the SLR for future research directions, such

as predicting practical uses of annotations and verifying their correctness. By identifying

specific problems and their contexts, this chapter not only validates the theoretical insights

from the SLR but also provides concrete context that can inform the development of tools

and techniques for improving microservice reliability and performance. This synthesis of the-

oretical and empirical insights lays a robust foundation for the subsequent chapters, which

aim to address these identified gaps with innovative solutions.

3.6 Related Work

This section discusses closely related research.

Bandeira et al. [15] implemented an unsupervised machine learning that detects

word or phrase patterns in Stack Overflow posts to build a general taxonomy of subjects

on microservices. However, it excludes relevant information from comments and possible

key answers that clarify posts [55]. Our research differs from their work in two dimensions.

First, the classification framework is based on the following aspects of software engineering:

software quality attributes, software construction activities, and fault classes. Second, this

work follows systematic mapping guidelines with the corresponding replication package to

increase the reliability and replicability of the study results.

Regarding the origin of the data in previous empirical studies on microservices, they

either: (i) introduced algorithms using a reduced number of faults or issues to evaluate their

debugging approaches [49, 89, 145, 147]; or (ii) interviewed a limited number of developers

to identify undesired practices [116] or code smells [53] in microservice-based applications.

In this context, to the best of our knowledge, our work constitutes the first attempt to

reveal active development concerns from Stack Overflow as a big data source, relevant for

78

Classification of Microservice-Based Development Concerns

the development community, which may serve as a baseline for future empirical works.

3.7 Summary

This chapter surveyed Stack Overflow to provide a classification of posts based on microser-

vice life cycle activities at runtime, namely service routing, service discovery, service authen-

tication & authorization, and service invocation.

The results indicate that (i) missing parameters/operations are the most common con-

cerns in service routing, (ii) wrong versions of libraries, annotations, protocols, and clusters

appear as main concerns on service discovery, (iii) the absence of authorisation operation and

web tokens exposed for a long time are critical concerns in service authentication & autho-

risation, and (iv) the absence of cache parameters and inadequate patterns for long-running

transactions emerge as trending concerns in service invocation.

The observations reveal that the top concerns focus on security and reliability, followed

by integration testing and logic faults. The implications for developers summarise in (i) the

usage of short timelife tokens to reduce vulnerabilities, (ii) the usage of static code analysis to

recognise misuses of annotations, (iii) the storing the configuration in external files to improve

the cache performance, and (iv) the transaction patterns to maintain data consistency.

79

Classification of Microservice-Based Development Concerns

80

Chapter Four

A Semantics-Driven Learning for

Annotations in Microservices

4.1 Overview

Annotations are a form of program metadata that generate code, configuration files, and

warnings, among others. Microservice frameworks provide annotations to facilitate the im-

plementation of cloud-based applications in terms of the reuse of features and support for

software evolution. However, the misuse of annotations generates potential bugs whose de-

tection requires the analysis of multiple logs and source code files. This detection effort is

not trivial for developers since debugging microservices may take days or even weeks [146].

Developers go through a reduced amount of source code [73] and infer the function-

ality of code fragments [51]. Additionally, comprehension of programs takes around 58% of

the time spent on software maintenance due to outdated or missing comments [132]. More-

over, the wrong usage of annotations introduces errors with unexpected behaviour. Despite

their significance for microservice development, only a few approaches have worked with

annotations to detect cycle dependency and misuse of annotations [93, 94]. However, these

81

A Semantics-Driven Learning for Annotations in Microservices

approaches apply specific patterns and rules and do not provide mechanisms to match the

source code with annotations for predicting them. Learning from annotated code fragments

to predict annotations is essential to address this gap.

This chapter contributes to a novel static analysis approach using semantics-driven

learning of code fragments collected from open-source repositories. Specifically, it combines

a Recurrent Neural Network (RNN) and a K-Nearest-Neighbour (KNN) classifier to capture

the semantic relation of code fragments and predict suitable annotations. Predicting an-

notations helps to identify missing annotations, detect misuses of annotations, and explain

possible causes of these bugs through various experiments that simulate code fragments with-

out annotations. The evaluation uses open-source projects from GitHub, extracting Abstract

Syntax Trees (ASTs) from Java classes to provide syntactic knowledge [30]. This approach

converts AST representations to vectors and finds vectors with similar features, drawing on

techniques to detect similar code fragments [92, 90].

The approach in this chapter is the first to explore the relation between code fragments

and their annotations and exploit them to predict suitable annotations for a given code

fragment. The primary goal is to facilitate the maintenance activities of microservices,

including code inspection, analysis, and debugging. By accurately predicting annotations,

the approach aims to improve the quality of maintenance activities. Predicting annotations

supports ensuring that annotations match according to the code behaviour. A simulation

tool facilitates evaluating the approach by extending the PyTorch and Sci-Kit Learn Library.

Results indicate that semantic learning achieves an average of 87% of the correct predictions

of annotations.

The remainder of this chapter is organized as follows. Section 4.2 presents details of

the approach. Section 4.3 provides the evaluation, followed by a discussion of related work

in Section 4.4. Finally, Section 4.5 concludes the chapter and outlines future research.

82

A Semantics-Driven Learning for Annotations in Microservices

4.2 Proposed Approach

This approach explores connections between a code fragment and its annotations. In this

sense, analysing open-source code helps to understand how developers use microservice an-

notations, with a particular focus on the AST representation containing syntax and semantic

information of code fragments. This information helps detect semantically similar code frag-

ments. Thus, the approach learns the semantic information of existing code fragments to

give suggestions about the declaration of microservice annotations in a code fragment.

Figure 4.1: Conceptual Model of Semantics-Driven Learning Approach

Figure 4.1 shows the interaction between the components. The main inputs of the

approach are: (i) a shortlisted microservice annotations ; (ii) a dataset of classes in text

files with annotations for training; and (iii) a database of code fragments with or without

annotations to find the best set of microservice annotations. The shortlisted annotations

limits the scope of annotations under analysis. The input format of code fragments are

instructions in a programming language such as Java. Listing 4.3 shows a sample of a code

83

A Semantics-Driven Learning for Annotations in Microservices

fragment that includes one annotation. The output of our approach is a set of suggestions

in terms of actions followed by the annotation name, e.g., KEEP PostConstruct. The ADD

action suggests the incorporation of an annotation, and the KEEP action suggests no change

in the usage of an annotation.

The inputs must be provided by researchers who have expertise in microservice de-

velopment. Researchers build the inputs by compiling Java classes from many open-source

repositories and projects that employ microservices to ensure a diverse and extensive source

of examples. The shortlisted annotations are based on annotations commonly used in the

compiled open-source projects. We determine the shortlisted by examining the source code

and analysing which annotations have more code fragments. The training code fragments

are a dataset of classes with annotations built from compiled Java classes with enough code

fragments per annotation. The approach uses the training code fragments to train, validate

and test the learner. The target code fragments are a database built from unseen code

fragments, automatically generated by introducing differences with or without annotations.

Listing 4.1 shows examples of shortlisted annotations and inputs used for training

the learner. It shows that shortlisted annotations are just the names of annotations to be

evaluated during the experiments. In the listing, we show one annotation as an example.

Additionally, Listing 4.2 shows examples of targets for doing the experiments and the possible

output returned by our semantics-driven learning approach. This listing has two examples:

(i) the first has a code fragment without annotation, and the expected output is to ADD

the predicted annotation; (ii) the second example has a code fragment with annotation, and

the expected output is to KEEP the annotation because it is correct.

84

A Semantics-Driven Learning for Annotations in Microservices

1 // input s h o r t l i s t e d annotat ion

2 @RequestMapping

3

4 // example 1

5 // input t r a i n i n g code fragment

6 @RequestMapping ("/network")

7 p r i va t e void findNetwork () {

8 }

9

10 // example 2

11 // input t r a i n i n g code fragment

12 @RequestMapping ("/network")

13 p r i va t e void findNetwork () {

14 }

15

16 // example 3

17 // input t r a i n i n g code fragment

18 @RequestMapping ("/network")

19 p r i va t e void findNetwork () {

20 }

21

Listing 4.1: Shortlist and Inputs

1 // example 1

2 // input ta rg e t code fragment

3 @RequestMapping

4 pr i va t e void findNetwork () {

5 }

6

7 // example 1

8 // output suggested ac t i on f o r annotat ion

9 ADD RequestMapping

10

11 // example 2

12 // input ta rg e t code fragment

13 @RequestMapping

14 pr i va t e void findNetwork () {

15 }

16

17 // example 2

18 // output suggested ac t i on f o r annotat ion

19 KEEP RequestMapping

20

21

Listing 4.2: Targets and Outputs

This approach addresses problems related to microservice construction. As identified

in Chapter 1, developers often struggle with code comprehension due to outdated or miss-

ing comments. Additionally, the incorrect usage of annotations leads to errors that existing

methods for detecting annotation issues do not offer predictive mechanisms for. This ap-

proach directly tackles these issues by leveraging semantics-driven learning from annotated

code fragments to predict annotations.

4.2.1 Pre-processor

The pre-processor transforms raw data into training, validation, and testing sets. The raw

data for training contains Java source code and the list of targeted microservice annotations.

The first step is converting each Java file into its AST representation and splitting it into

methods with attached annotations. The second step is to build two databases (Java and

Queries) for the experiments. A Java database is required to find subsets and references for

the predictor, similarity finder and adviser.

85

A Semantics-Driven Learning for Annotations in Microservices

Figure 4.2: Nodes of an AST Representation

Natural Language Processing (NLP) is a series of techniques for understanding the

meaning of text in a context. NLP provides tasks to automate translation, summarisation,

classification and others [150, 45]. Tokenisation is a way of separating the text into words or

tokens. Although tokenisation is a common NLP task, it is prone to miss part of the content

when meaningful punctuation symbols are removed [30]. Additionally, it may produce the

same sequence of tokens for two different class methods due to source code ambiguity [51].

However, tokenising the AST representation of the source code instead can overcome these

issues, which usually is a tree that represents the syntactic structure of a source code.

Specifically, an AST contains additional semantic information inside a tree structure

and a reading process expresses its nodes as a statement. Figure 4.2 presents the tree

structure of an AST representation. FieldDeclaration Annotation Value Literal BasicType

int VariableDeclarator port is the statement after reading the nodes starting with its root

and following from the left to right. The most common reading process is the traversal

algorithm which offers three ways to read the tree: inorder, preorder and postorder. From

these, the preorder is the most employed to read an AST [143, 51] because it accepts (i)

functions as arguments, and (ii) a variable number of arguments.

Pre-processor builds the AST representation by using a Python implementation of

Java Lang Parser, which has been successful for the clone detection. The Java Parser fol-

lows the language syntax by tokenising the source code to identify the types, constructors,

86

A Semantics-Driven Learning for Annotations in Microservices

members and expressions. Then, it creates a compilation unit as the root of the tree and

inserts nodes according to the different declarations of the Java language such as imports,

enums, classes, interfaces, fields, methods, annotations, arguments, parameters, and others.

After building the AST, the Java Parser reads the tree and returns a string representation.

An AST representation has keywords to identify the definition of methods and at-

tributes. A text parser detects the keyword MethodDeclaration for methods, and the annota-

tions appear after Annotation. Listing 4.3 shows a Java code fragment with its corresponding

AST representation shown in Listing 4.4 about how the pre-processor increases the amount

of text. Splitting classes into methods increases the amount of samples and reduces the

maximum size of each sample. The pre-processor reduces the execution time by loading

databases simultaneously with multi-processing.

1 protec ted RestTemplate restTemplates ;

2

3 @PostConstruct

4 p r i va t e void postConstruct () {

5

6 restTemplate . se tErrorHandler (new

DefaultResponseErrorHandler ()) ;

7

8 restTemplate . setMessageConverters (

httpMessageConverters . getConverters ()) ;

9 }

10

Listing 4.3: Source Code

1 F i e ldDec l a ra t i on ReferenceType RestTemplate

Var iab l eDec la ra to r restTemplate

2

3 MethodDeclaration Annotation PostConstruct

postConstruct StatementExpress ion

MethodInvocation restTemplate ClassCreator

ReferenceType DefaultResponseErrorHandler

setErrorHandler StatementExpress ion

MethodInvocation restTemplate

MethodInvocation httpMessageConverters

getConverters setMessageConverters

4

Listing 4.4: AST Representation

4.2.2 Learner

The goal of this component is to learn the semantic information of a code fragment. The im-

plemented learning process contains a series of actions that examine extracting features from

data [70]. For this purpose, the component is similar to a learning task that generates a code

description using models based on sequence, deep learning or graphs [73, 70, 115]. Specifi-

cally, a sequence-to-sequence-based learner is selected, considering its good performance in

capturing the relation between code and text [51].

87

A Semantics-Driven Learning for Annotations in Microservices

Figure 4.3: Neural Network Architecture

A sequence-to-sequence model reads tokens one by one. It learns the semantic mean-

ings of a text file and uses this knowledge to generate multiple output tokens in a new

sentence. This approach allows the generation of coherent and contextually appropriate sen-

tences. The model generalises standard classification to multiple output variables, making

it versatile for various applications [4]. Sequence-to-sequence models are particularly useful

in tasks where the output is a sequence of tokens. Examples include language translation,

text summarisation, and code generation.

The learner in this context comprises two sub-components: an encoder and a decoder.

The encoder converts the code into vector space, capturing the semantic meaning of the

input. The decoder performs the inverse operation, transforming the vector representation

back into a sequence of tokens. Both components are intricately connected, allowing for

the simultaneous training of both sub-components [51, 45]. This connection is crucial as it

ensures that the learned representations are effectively utilised during decoding.

Encoder-Decoder Architecture

The architecture of the neural network is depicted in Figure 4.3. An encoder transforms the

AST from a source code to vectors, which has a good performance for finding clones [4]. The

88

A Semantics-Driven Learning for Annotations in Microservices

input of our encoder is the AST of code fragments that represents methods with or without

annotations. Encoders could include attention, which is a mechanism that selects essential

parts from the input and aligns code tokens with natural language words [51]. Additionally,

the encoders with attention based on Recurrent Neural Network (RNN) extracts features

from the text with better accuracy than Support Vector Machines (SVM) based on traditional

methods [143].

There exist two ways of reading a sequence of tokens. The unidirectional schema

processes the context in the same direction. In contrast, the bidirectional schema processes

the tokens in both directions: from left to right and from right to left [45]. Our encoder takes

advantage of the bidirectional schema when learning from the context forward and reverse.

Additionally, the bidirectional schema captures more information due to three hidden states:

one for each direction and one for connecting both directions [143].

Decoders aim to generate a sequence of tokens, i.e., in our case a sequence of anno-

tations. However, selecting a predictor considers that decoders tend to have low accuracy

[45]. In contrast, classifiers show promising results for clone detection. Additionally, the

approach requires the name of annotations and high accuracy instead of a long sequence of

tokens that could have annotations with similar names but different definitions.

Let X = (x1, x2, . . . , xT) be the sequence of tokens representing the AST. The bidi-

rectional RNN generates forward hidden states
−→
h t and backward hidden states

←−
h t. This

bidirectional RNN provides crucial contextual information that LSTM cells utilise to manage

memory effectively and understand the context comprehensively. The following equations

express the link between the forward and backward hidden states:

−→
h t = RNNfwd(xt,

−→
h t−1)

←−
h t = RNNbwd(xt,

←−
h t+1) (4.1)

Implementing an RNN for a sequence-to-sequence model that utilises LSTM cells

89

A Semantics-Driven Learning for Annotations in Microservices

with two or more layers requires the calculation of the following gates: input, forget and

output. These gates allow the model to selectively update, discard, and expose information

for effective memory management. Additionally, the model requires the cell and hidden

states to retain information and to understand the context across the sequence. Finally, the

model requires a cell candidate to introduce and update new information into the cell state

based on the current input and the previous hidden state.

it = σ(Wiixt + bii +Whiht−1 + bhi) (4.2)

The input gate it determines how much of the new information from the current

input xt and the previous hidden state ht−1 should be incorporated into the cell state. This

gate uses a sigmoid activation function σ, which outputs values between 0 and 1, effectively

deciding which parts of the new input to let through.

ft = σ(Wifxt + bif +Whfht−1 + bhf) (4.3)

The forget gate ft controls which information from the previous cell state ct−1 should

be discarded. Like the input gate, it uses a sigmoid activation function to scale the contribu-

tions of the previous cell state, thereby allowing the model to forget irrelevant information.

gt = tanh(Wigxt + big +Whght−1 + bhg) (4.4)

The cell candidate gt is created using a tanh activation function, which produces new

candidate values to be added to the cell state. This step combines the current input xt and

the previous hidden state ht−1 to generate potential new information for the cell state.

ot = σ(Wioxt + bio +Whoht−1 + bho) (4.5)

The output gate ot decides how much of the cell state ct should be exposed to the

output. This gate also uses a sigmoid activation function to determine which parts of the

cell state should influence the next hidden state ht.

90

A Semantics-Driven Learning for Annotations in Microservices

ct = ft ⊙ ct−1 + it ⊙ gt ht = ot ⊙ tanh(ct) (4.6)

The cell state ct combines the previous cell state ct−1 and the new candidate values

gt, modulated by the forget gate ft and the input gate it. The element-wise multiplication

⊙ ensures that gates control the information flow appropriately. Additionally, the hidden

state ht is updated by applying the output gate ot to the tanh-activated cell state ct. This

hidden state serves as the LSTM cell’s output and the input for the next time step.

Finally, the attention mechanisms generate a context vector utilising the cell and

hidden states. In this sense, the encoder is the right part of the model, the context vector is

in the middle, and the left part is the decoder, which generates output tokens.

Vector Representation

Finding two pieces of code with similar behaviour is a time-consuming task, which usually

transforms source code files into a vector space. Specifically, a vector representation is

a mechanism that converts a code fragment to a single vector with key features [90]. The

usage of vectors allows the application of math operations such as finding distance, grouping,

and prediction over code or text. For instance, our bidirectional encoder returns vectors with

dimensions NxM , where N represents the number of tokens and M the feature dimensions

of each token.

Domain transformation is a mechanism that changes a text to a different domain,

similar to a language translation. It has been used in software engineering to generate code

comments from source code. In this context, the identification of annotations for a given

source code domain can also be considered as a transformation problem that uses vector

representations.

91

A Semantics-Driven Learning for Annotations in Microservices

Pseudo Code for Training Sequence-to-Sequence

Listing 4.5 presents a pseudo code which outlines the training process of the sequence-to-

sequence model with bidirectional RNN with attention:

1 Input : AST sequences {X} , Annotations {Y}

2 Output : Trained sequence−to−sequence model

3

4 I n i t i a l i z e : Encoder and Decoder parameters

5

6 f o r each epoch do :

7 f o r each (X, Y) in tra in ing_data do :

8 # Forward pass through the encoder

9 f o r t in range (1 , T+1) :

10 h_fwd [t] = RNN_fwd(X[t] , h_fwd [t −1])

11 h_bwd[T−t+1] = RNN_bwd(X[T−t +1] , h_bwd [T−t +2])

12

13 h = concatenate (h_fwd , h_bwd)

14

15 # Attent ion mechanism

16 f o r t in range (1 , T+1) :

17 alpha [t] = softmax (h [t] . h)

18 c [t] = sum(alpha [t] ∗ h)

19

20 # Forward pass through the decoder

21 f o r t in range (1 , T+1) :

22 y_pred [t] = Decoder (c [t] , s [t −1] , y [t −1])

23 l o s s += compute_loss (y_pred [t] , Y[t])

24

25 # Backward pass and opt imizat i on

26 l o s s . backward ()

27 opt imize r . s tep ()

28 p r in t (’Epoch ’ , epoch , ’ Loss : ’ , l o s s)

29 return trained_model

Listing 4.5: Pseudo Code

4.2.3 Predictor

This model predicts the best microservice annotations for a given source code. A classifier

predicts whether an annotation is correct for a given code fragment. For the training process,

each code fragment pairs with the elements of the annotation list. Suppose the original code

has one annotation from the list. Here, the target in the predictor is a numerical represen-

tation of the target code fragment. The learner provides this numerical representation.

92

A Semantics-Driven Learning for Annotations in Microservices

The decoder of a learner provides a sequence of tokens with words of similar meaning.

However, the approach requires specific words for each annotation. Among the requirements

for the predictor, the approach considers that (i) every query requires a subset of limited

code fragments with similar features; (ii) fast classifiers that support non-linear boundaries

with sensitivity to overfitting; and (iii) classifiers based on probabilistic are unacceptable

due to their demand for more training data.

Numerical Representation

The numerical representation of the target code fragment is the vector that connects the

encoder and decoder in the sequence-to-sequence learner. To understand it, Figure 4.4

simplifies the connection between each cell of the neural network architecture used by the

learner. We observe that the cells on the left are the encoder; in the middle, the hidden

states capture the contextual information into a numerical vector, also known as contextual

vector; in the right size, there is the decoder to generate corresponding annotations.

Figure 4.4: Encoder and Decoder

Figure 4.5 presents how the numerical vector is organised, it seems that each column

is associated to each word. In this sense, each column of the numerical vector corresponds

to a different feature or dimension that captures the semantics and structural aspects of the

word inside the code fragment.

93

A Semantics-Driven Learning for Annotations in Microservices

KNN Classifier

The key component of the predictor is a K-Nearest-Neighbour (KNN) classifier, which fulfils

the above requirements. KNN predicts a class by (i) calculating the distance between the

target and all the training points (subset), (ii) locating the K inputs which are closest to the

target, (iii) calculating the probabilities of the target belonging to the classes of K inputs,

and (iv) selecting the class of the neighbour with higher probability. KNN selection is due

to its good results for predicting warnings [68].

Once the model is trained, KNN is fast for predictions due to its ability to memorise

the training dataset and predict based on the closest data points. However, when the data

size grows, KNN tends to be slow. Despite that, KNN is selected because it is one of the

algorithms with high precision and recall [68]. Our approach deals with the scenario of big

training data by introducing a constraint to use a dataset with a fixed size.

Let X = {x1,x2, . . . ,xn} be the set of training code fragments, where each xi is a

numerical vector representation of a code fragment. The corresponding annotations are Y =

{y1, y2, . . . , yn}, where yi is an integer representing the annotation for xi. Each annotation

has a unique integer label associated with it.

Given a query vector q, the KNN classifier finds the K nearest neighbours among the

training vectors. The predicted annotation ŷ for the query is determined by majority voting

Figure 4.5: Numerical Representation from Encoder

94

A Semantics-Driven Learning for Annotations in Microservices

among the annotations of the nearest neighbours. Mathematically, the KNN(q, K) denotes

the set of K nearest neighbours of q as in the expression: ŷ = mode({yi | xi ∈ KNN(q, K)}).

To ensure the efficiency of predictor, a subset of the Java database is used during

training to mitigate the issue of large data sizes. This subset is selected based on code

fragments that share similar features with the query. The selection of this subset depends

on the Similarity Finder in Section 4.2.4.

Pseudo Code for Predictor Operation

The predictor performs training for every query; therefore, it is crucial to reduce the execution

time. To accomplish this, a subset of the Java database is a key input for training. The

predictor requires a K value to create a group of closest elements and a list of microservice

annotations to encode their names. After the training, the predictor can receive the query

vector and returns the predicted annotation as detailed in our replication package.

Listing 4.6 presents a pseudo code which outlines the operation of the predictor com-

ponent:

1 Input : Query vector q , Training s e t X, Training l a b e l s Y, Number o f ne ighbours K

2 Output : Pred icted annotat ion y_hat

3

4 Function KNN_Predictor (q , X, Y, K) :

5 d i s t anc e s = []

6 f o r i = 1 to length (X) :

7 d i s t ance = ComputeDistance (q , X[i])

8 d i s t an c e s . append ((d i s tance , Y[i]))

9 sor ted_di s tances = SortByDistance (d i s t anc e s)

10 nearest_neighbours = sor ted_di s tances [1 :K]

11 y_hat = Mode(nearest_neighbours)

12 return y_hat

13

14 Function ComputeDistance (a , b) :

15 return sq r t (sum((a − b) ^2))

Listing 4.6: Pseudo Code

95

A Semantics-Driven Learning for Annotations in Microservices

4.2.4 Similarity Finder and Adviser

Code search is a software engineer activity where developers employ natural language queries

to find code fragments [4]. A similarity finder automates this activity and requires an un-

known code fragment as a query. The goal of our similarity finder is the suggestion of

annotations. Initially, the engine encodes the query to get its vector representation. Next,

it selects a subset of vectors from the Java database to reduce the scope and execution time

of the prediction. Finally, it communicates with the adviser to suggest actions for the query.

The selection of code fragments with similar features of the query vector is a crucial

problem for the similarity finder and adviser. The comparison of the query vector against

each code fragment from the Java database allows the approach to address this problem.

The cosine similarity calculates the angle between two vectors. The ideal subset is a set

of vectors with a similarity close to zero. However, there are several vectors with similar

behaviours. This proposes the selection of the top closest vectors.

The query is a text that represents a single method, and it may include microservice

annotations. The similarity finder utilises the Java database to get code fragments as one

subset. Then, it calls the predictor with the query and a subset and returns an annotation.

The adviser examine the query annotations and builds the possible actions of ADD or KEEP.

Examples of responses would be ADD RequestMapping or KEEP GetMapping.

The selected actions (ADD or KEEP) for each annotation are the basis for future

actions. The predictor returns the predicted annotations, and the adviser mainly predicts

actions by comparing the original code fragment with the predicted annotations. If adviser

returns no KEEP and ADD action, developers could modify the annotation. Thus, the

approach is not limited to a small number of actions, and it focuses on the key ones. Listing

4.7 presents the pseudo code for this component, it has three functions one for each part

(finder, adviser) and one function that reuse the previous two.

96

A Semantics-Driven Learning for Annotations in Microservices

1 Function Se l e c tSubse t (Java_database , query_vector , M) :

2 d i s t anc e s = []

3 f o r code_fragment in Java_database :

4 fragment_vector = Encode (code_fragment)

5 d i s t ance = ComputeDistance (query_vector , fragment_vector)

6 d i s t an c e s . append ((d i s tance , code_fragment))

7

8 sor ted_di s tances = SortByDistance (d i s t anc e s)

9 # Se l e c t the top M c l o s e s t code fragments

10 subset = sor ted_di s tances [:M]

11 return subset

12

13

14 Function Adviser (predicted_annotat ion , or ig inal_code_fragment) :

15 or i g ina l_annotat ion = get_annotation (orig inal_code_fragment)

16 i f o r i g ina l_annotat ion == predicted_annotat ion :

17 return "KEEP"

18 e l s e :

19 return "ADD"

20

21 Function Simi lar i tyFinderAndAdviser (query , Java_database , p r ed i c t o r) :

22 // M i s hyperparameter

23 query_vector = Encode (query)

24 subset = Se l e c tSubse t (Java_database , query_vector , M)

25 predicted_annotat ion = pr ed i c t o r (query , subset)

26 ac t i on s = Adviser (predicted_annotat ion)

27 return ac t i on s + " " + predicted_annotat ion

28

Listing 4.7: Pseudo Code of Finder and Adviser

4.3 Evaluation
The study investigates how the semantics information of different code fragments helps keep

or add annotations for unseen code fragments. Although the approach can learn from dif-

ferent programming languages, the selected language supports annotations from more than

109,000 open-source repositories related to microservices on GitHub. Most of those reposito-

ries (76%) adopt ten different languages. The inputs for the approach evaluation are based

on the Java language, which is the top language used in 29% of the repositories. Specifi-

cally, this study aims to answer the RQ2 from Chapter 1: How can we leverage semantic

connections between code fragments and microservice annotations to predict annotations?

Several experimental works on NLP fundamentals prove that inducing an RNN-based

solution can lead to a better prediction when compared to traditional techniques (SVM,

97

A Semantics-Driven Learning for Annotations in Microservices

TFIDF, SMT). Additionally, the selection of an RNN-based solution considers that more

than 62% of those works implemented RNN-based techniques, as shown in Table 4.2.

Instantiated code fragments with and without annotations facilitate measuring the

correct and wrong predictions returned by our approach. Calculations for the evaluation are

(i) the F1-Score and Accuracy calculate the percentage of correct prediction of annotations

to evaluate the predictor and measure the percentage of correct prediction of actions to

evaluate the adviser, (ii) Bilingual Evaluation Understudy (BLEU) Score measures

the quality of similar code fragments in the training subset and helps the evaluation of the

similarity finder, (iii) Confusion matrix presents the false positive and false negative to

evaluate the adviser by exploring the possible causes of wrong suggestions.

Accuracy is the percentage of correct values versus their total instances in the dataset.

Precision is the percentage of correctly predicted positive values versus the total instances

predicted as positive. Recall is the percentage of correctly predicted positive values versus the

total actual positive instances. F1-score is derived based on the precision and recall of correct

and incorrect values. BLEU Score is a measurement that quantifies the difference between

an automatic translation and human-created reference translations of a source sentence [51],

where a higher score means a higher similarity with the reference translation. The approach

uses fragments of source code instead of text translation. A confusion matrix is a technique

for summarising correct and incorrect predictions grouped by each class.

The approach considers a database of Java code fragments; thus, the availability

of computing resources limits the maximum number of code fragments and annotations.

The approach searches the top annotations in different open-source projects for evaluation

purposes. The selected five annotations are related to microservices and have many records

of small and medium-size to facilitate the database creation. These annotations are (i) Bean

for returning objects of business logic; (ii) Before for preparing a test; (iii) PostConstruct

98

A Semantics-Driven Learning for Annotations in Microservices

for executing after creating a new instance; (iv) GetMapping for exposing a method by a

single URL; and (v) RequestMapping for directing a request toward a method.

4.3.1 Hyper-parameters

Hyper-parameters are variables that adjust the performance of our process for suggesting

annotations. The sequence-to-sequence model requires: (i) the layers settings (number, ar-

rangement, type) that receive and transform input; (ii) the dimensions to represent previous

inputs (hidden states), continuous vectors (embedding) and training subset for one iteration

(mini-batch); (iii) the learning rate that controls the updating speed; and (iv) the decay and

dropout to reduce the loss and prevent over-fitting.

In particular, the predictor, similarity finder and adviser require: (i) the length of the

vector, which affects the execution time during training, which means that a long number

makes it slow, but a small number reduces its accuracy; (ii) the maximum number of closest

vectors that reduces the scope of searching vectors with similar behaviours; and (iii) the

number of neighbours, which shortens the classification.

In general, tuning techniques optimise the hyper-parameters and increase the per-

formance. Standard tuning techniques include random search, genetic algorithm, and grid

search. The genetic algorithm requires high computer performance to achieve reasonable

accuracy. The random search is efficient in high-dimensional space. In contrast, grid search

allows parallel execution with promising results for multi-label classification, prediction of

the method name, and clone detection. Table 4.1 shows specific values for hyper-parameters.

The hyper-parameters were tuned based on a grid search, which works through mul-

tiple combinations of hyper-parameter values. The hyper-parameter values investigated by

the grid search included various settings for dropout, vector dimensions, subset size for a

maximum number of closest vectors, and the number of neighbours for the KNN. This thor-

99

A Semantics-Driven Learning for Annotations in Microservices

Table 4.1: Semantics-Driven Learning Settings

Component Hyper-parameter Range Value

Learner Layers N/A LSTM

Learner Hidden states and Mini-batch N/A 100

Learner Learning rate and Decay N/A 0.9

Learner Dropout [0.1 - 0.5] 0.2

All Vector dimensions 85x[32-256] 85x128

Similarity Finder and Adviser Subset size [10-50] 25

Predictor K Neighbours [5, 7, 9, 11] 7

ough search ensured that the chosen hyper-parameters delivered an optimal performance.

4.3.2 Experiment Setup

PyTorch is a Python-based machine learning library for NLP and deep neural networks.

We extend PyTorch to train the learner and build vectors. The KNeighborsClassifier of the

Sci-Kit Learn library allows the predictor to classify new code fragments. The similarity

finder and adviser have a Java database of code fragments to identify corresponding pieces

of code and provide suggestions for annotations.

The dataset comprises Java source code from GitHub repositories related to microser-

vices with annotations. Specifically, it is possible to clone a few methods using keywords

and distribute them into 20 experiments. The method adaptation occurs before replacing

common words with unique keywords and specifying the number of new clones. Then, the

cloning process replaces the keywords according to a list of words. For instance, if the code

fragment says public List<NAME> findAllNAME(), its keyword is NAME and when we

replace the keyword with the following words [Student, Employee, Customer], we have the

operations named as findAllStudent, findAllEmployee, findAllCustomer, each one returns

List<Student>, List<Employee>, List<Customer>, respectively.

100

A Semantics-Driven Learning for Annotations in Microservices

Additionally, A query database is built with correct annotations as the target for

prediction based on the scenario of five annotations with a minimum of five references.

A script kept or removed the annotations randomly. Then, the suggestion for a query is

successful if the predicted annotation is correct.

The experiments performed well on two environments: (i) laptop and (ii) nodes. The

training part of the learner runs in the nodes with GPU and CPUs, whereas the rest runs

in the laptop environment. The laptop has a Core i7-4700MQ CPU at 2.4GHz with 16GB

RAM. Nodes provide several CPUs/GPUs, and scripts allocate 5/35 CPUs and 1 GPU.

This section offers a replication package 1 which is publicly available for interested

readers. The package includes the dataset for training, the databases and scripts to replicate

and run the experiments. There are four main scripts: (i) training the learning model; (ii)

building the databases for experiments; (iii) running the experiments; and (iv) plotting the

charts. The source code is also available as a zip file with the following secret key: asus-

RUBYcall2022. The replication package also includes more detail and examples of critical

steps for the pre-processor, learner, predictor, similarity finder and adviser.

4.3.3 Results and Discussion

Scatter and box-and-whisker plots show the accuracy of queries, actions and annotations.

Besides, a plot of the average bleu score per length shows the quality of searching code

fragments. Additionally, a confusion matrix plots actions plus annotations to identify the

miss-classification. The last chart helps compare the distance of queries and their subset in

case of correct and wrong predictions.

Our approach achieves an accuracy between 83.09% and 89.8%, with an average

1https://bitbucket.org/semantics-driven-learning/replication-package/

101

A Semantics-Driven Learning for Annotations in Microservices

(a) Performance Evaluation of the Model. (b) BLEU Score by Vector Length

Figure 4.6: Performance and Quality of our Approach

of 87.03%. Figure 4.6a shows that 60.00% of the experiments are above the average. The

difference between F1-score and accuracy is slight, i.e., 0.13% and 0.37%. The small difference

means the precision and recall are good because of low false positives and negatives.

The approach assesses the quality of finding code fragments using the BLEU score,

which evaluates one sentence against a reduced group of five references or sentences with

similar features. Figure 4.6b shows the quality of good queries with different lengths grouped

every five tokens. The score analysis considers the values in terms of small, medium and

large queries, i.e., less than ten tokens, between 10 and 40 tokens, and more than 40 tokens,

respectively. Large queries (nearly 23.33%) have an average bleu score of 61.87%, the medium

queries (66.67%) have 63.69%, and the small queries (10.00%) have 62.26%. The average of

all good queries is 63.12%, which is a good value considering that comment generation has

38% and translation language has an average of 41% [51].

The filled area in Figure 4.6b indicates that experiments have more queries with

similar lengths (less than 40 tokens) but different values of bleu scores. The observa-

tions revealed bleu scores between 41.84% and 81.24%, consistent with the changes made

in four of ten queries with lengths of less than 40 tokens. The changes including adding

System.out.println sentences at the beginning or end of methods. Additionally, avoiding

102

A Semantics-Driven Learning for Annotations in Microservices

(a) Accuracy of Actions. (b) Accuracy of Annotations.

Figure 4.7: Accuracy of Actions and Annotations

System.out.println sentences in the Java database helped us to evaluate their quality, given

those differences. Queries with lengths greater than 40 tokens have no fill area in the chart

because the Queries database requires more similar code fragments with some differences

such as System.out.println.

The accuracy shows the quality of the approach by counting its positive results. The

elaborated box-and-whisker plots the percentage of correct predictions and focuses on two

actions with five annotations, which open-source projects widely attach to their methods.

Accuracy of actions from Figure 4.7a shows that KEEP action has an average of 98.41% and

performs 15.06% better than ADD action. On the other hand, ADD has 74.56% on average

and 81.56% as maximum. This difference is due to all the records in the Java database

having annotations, increasing the distance between queries without annotations.

The experiment results indicate that our semantics-driven learning achieves an average

accuracy between 74.95% and 93.92% for annotations and a general average of 87.26%. Our

103

A Semantics-Driven Learning for Annotations in Microservices

Figure 4.8: Analysis of Wrong Suggestions

results also show that the minimum accuracy of 67.11% is for Before annotation, while the

unexpected annotations have 90.37% on average. Figure 4.7b also shows that RequestMap-

ping and GetMapping have higher accuracy with an average above 90%. Before and Re-

questMapping have a minimum difference of 31.64% and a maximum of 3.11%.

The confusion matrix of actions plus annotations in Figure 4.8 shows that ADD Be-

fore has the lowest percentage of correct predictions. It is consistent with Figure 4.6b, and

it mismatches against Bean (39.20%), PostConstruct (5.33%) and RequestMapping (3.20%).

The first and second-highest percentage of wrong predictions are ADD Bean and ADD Re-

questMapping with 41.8% and 32.86%, respectively. To analyse possible causes of wrong

suggestions, the evaluation also considers the intersection between two similar code frag-

ments.

For the sake of discussing the data, the evaluation explores possible causes of wrong

predictions with Before annotation. The observations show that wrong predictions occur

for distances above 0.40. The green area indicates the expected annotations of the good

104

A Semantics-Driven Learning for Annotations in Microservices

predictions are below 0.70 with distance ranges: (i) bellow 0.10 has 60%. (ii) between 0.10

and 0.45 has an average of 60%; and (iii) above 0.45 increase from 10% up to 39%. The red

line refers to the unexpected annotations of the wrong predictions and shows that 80% occurs

for a distance between 0.41 and 0.75. The blue line refers to the unexpected annotations of

the good predictions between 40% and 60%.

According to the confusion matrix, Bean represents 35% of mismatches for Before,

and RequestMapping is the second most mismatched annotation. The results revealed 58%

of ADD Bean suggestions with three unique annotations for (i) returning new instances

created with or without parameters; (ii) returning a local attribute or a default type such

as integer or string; (iii) assigning a new instance to a local attribute; (iv) invoking at

least one local method with parameter(s); (v) invoking static methods; and (vi) validating

a condition/catch before throwing a new exception. Despite including different features, the

AST representation excluded literal strings, which affected the balance of the subset.

Beyond the results of our experiments, our approach can reduce the misuse of anno-

tations. We provided a quantitative way of indicating if a set of code fragments are different

from a particular Java database and how different they are. Developers can thus identify

which code fragments need adjustment to the usage of annotations. Additionally, they can

increase the Java database to add new rules and extend them for other features such as

parameters and their types.

4.3.4 Threats to Validity

We collected code fragments from open-source repositories and built a database of Java and

queries to evaluate the suggestion of annotations. Thus, we present the threats to validity

105

A Semantics-Driven Learning for Annotations in Microservices

of our evaluation according to the guidelines in [130].

External validity: A limited number of repositories may reduce the successful ap-

plication of the approach. We mitigate it by splitting the source code into methods that

increase the number of records for training. We cannot mitigate the generalizability of ob-

tained results due to the size of the database. However, we leave a mechanism to increase

data size for future work.

Internal validity: A subset of code fragments that share certain similarities with

different annotations for a query introduce noise, reducing the number of correct suggestions.

We mitigate this by reducing the number of code fragments as a subset. A noisy Java

database of code fragments may increase wrong suggestions, which we reduce by cloning

real-world code fragments. Another significant threat is using a single split for training,

validation, and test sets. This single split can lead to overfitting and may not provide a

robust evaluation of the model’s performance. We mitigate this by randomly creating the

validation test and building a pool of examples accessed in batch. Additionally, we report

performance metrics averaged over multiple runs to account for any variability.

Construct validity: We mitigated the bias in the selection of weak projects by (i)

using the star numbers and (ii) focusing on methods with standard annotations. We consider

the bias in the manual construction of Java and query databases to assess the suggestions.

We mitigate it by selecting simple code fragments, introducing small changes and checking

similarity against others.

106

A Semantics-Driven Learning for Annotations in Microservices

4.4 Related Work

This study focuses on the prediction of annotations in the area of microservices. Table 4.2

shows how this work fits in the state-of-the-art techniques by comparing key features such

as AST, NLP, clone detection and others.

Table 4.2: Related Work

Features Related Work Our Work

[93] [94] [92] [90] [135] [68] [148] [30] [137] [150]

Microservices ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Annotations ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

AST ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

NLP ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

RNN ✗ ✗ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✓

Extracting features ✗ ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓

Feature detection ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Defect detection ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓

Clone detection ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✓ ✓ ✓

Bug detection ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓

This research differs from their work in two dimensions. First, the extraction process

of methods recognises microservices and annotations by using the AST of the source code.

Only two previous works focus on detecting microservice invocations and cycle dependency

[93] and defining mutation operators to modify the declaration of annotations and apply

mutation testing [94]. Second, the training process of a model that learns the usage of

annotations to compare code fragments and suggests the best annotations.

Previous works used NLP in microservices projects for detecting different feature and

clones of code fragments. Pigazzini et al. form groups of similar methods where distant

groups mean different functionalities [92]. Perez et al. use a syntax tree-based skip-gram

algorithm on different programming languages [90]. Unlike those works, our approach focuses

on using microservice annotations by extracting terms from annotations and learning their

107

A Semantics-Driven Learning for Annotations in Microservices

relation with the code.

Other previous approaches for bug detection applied in different contexts (no mi-

croservices) inspire us to apply NLP techniques such as (i) generation of sentences from

source code for summarisation of its behaviour [135]; (ii) extracting pieces of text/com-

ments/reports and features from source code for detecting bugs and warning analysis [68];

(iii) detecting defects by using AST [148, 30]; and (iv) detecting clones or similarities on

code fragments [137, 150].

4.5 Summary

This chapter proposes a semantics-driven learning approach to suggest annotations according

to the similarities between code fragments. The approach implements a Recurrent Neural

Network (RNN) and a K-Nearest-Neighbour (KNN) classifier to learn the semantic relation

of code fragments against their annotations and predict a suitable annotation, respectively.

This section concludes that using a database of rules based on code fragments with

annotations is good enough to predict annotations and predict actions. The accuracy in the

actions and the confusion matrix of suggestions, specifically for the ADD Bean and ADD

Before, indicate that the approach needs for improvement when operations with similar

behaviour are written for different purposes. Therefore, the purposes of using annotations

is a dimension that researchers need to consider for prediction of annotations.

In our ongoing research, we are including the REMOVE action and introducing the

analysis of multiple interconnected annotations. Additionally, we are incorporating other

vector representations such as Flow2vec for advanced features. A research on the overlapping

and imbalance of the training subsets for predictor could help to investigate if increasing the

distance between code fragments. Improving the overlapping and imbalance could reduce

the number of wrong suggestions.

108

Chapter Five

A Mining Approach to Limit

Granularity of Annotated Operations

5.1 Overview

The microservice architecture style is a software development approach that advocates in-

dependent units of development based on lower coupling and higher cohesion [53]. Coupling

is the degree of interdependence or interconnection between microservices, while cohesion is

the degree of relationship between the responsibilities assigned to a microservice. Granu-

larity is the detail level of services presented in applications. In general, it can be defined

by the number of services with their operations complexity and dependencies [53]. Among

others, microservice granularity can be measured by the number of published operations,

microservices, code lines, and complexity (e.g. the number of tokens).

However, microservice-based applications have different granularity because there is

no agreement on the right granularity, which can produce issues. For instance, applications

with tiny microservices introduce managing issues into the whole architecture. On the other

hand, large microservices affect the system performance and reduce the overall system quality

109

A Mining Approach to Limit Granularity of Annotated Operations

[121]. The selection of adequate granularity is not trivial since there is a trade-off between

microservice maintainability and computational efficiency. Then, inadequate granularity

can introduce defects where fixing them is time-consuming. Moreover, the detection effort

to solve the above issues and debugging microservices may take days or weeks [131].

The novel contribution of this chapter is a semantics-driven learning approach for

searching operations with semantics similarity and mining the granularity operations. The

learning process pursues building a vector space for operations with annotations that fa-

cilitate the identification of granularity by segregating similar operations. The approach

contributes to the fundamentals of microservice granularity, where this work is the first to

cluster similar operations to reduce the amount of microservice issues related to excessive

invocation due to fine-grained services or time response due to coarse-grained services. This

chapter aims to obtain an empirical answer to RQ3 stated in Chapter 1: How can annotations

contribute to the understanding of typical granularity degree within existing microservices?

While creating statistics tables for each annotation might provide some insights, this

approach is limited in capturing complex patterns and relations within the data. On the other

hand, a semantics-driven learning approach offers a better understanding of the intricate

relation among annotated operations. By employing this technique, we identify the typical

granularity of operations and suggest granularity limits based on analysing various operations

with similar behaviour. This learning method enables a more dynamic and accurate approach

to optimising microservice architectures by addressing granularity issues more effectively

than using only traditional statistical methods.

The research has shown that annotation issues are a top developer concern [96].

Especially annotation issues related to evaluating test cases and detecting bad smells in

microservices [94, 93]. Previous studies have mentioned the importance and methods of

determining the appropriate granularity [41, 105, 122]. However, a systematic compilation of

110

A Mining Approach to Limit Granularity of Annotated Operations

operations for granularity analysis has been lacking. In this context, this approach is the first

to explore and identify the average granularity values for similar operations. Furthermore,

GitHub selection considered its popularity as an open-source software hosting platform that

allows the collection of millions of methods for building datasets [3, 95].

The organisation of the rest of the chapter follows: Section 5.2 explains the compo-

nents of the approach. A report of the evaluation is in Section 5.3 with results and discussion,

followed by an analysis of related works in Section 5.4. Finally, Section 5.5 concludes the

chapter and outlines future research.

5.2 Proposed Approach

5.2.1 Operations with Annotations

Operations are units of functionality or actions within a microservice-based application. Op-

erations encapsulate specific functionalities that microservices expose. The functionalities

are often associated with handling HTTP requests, processing data or managing resources.

To implement these functionalities, developers frequently employ libraries that provide an-

notations. These annotations support the definition and management of operations more

effectively. Annotations are metadata added to source code to convey additional instruc-

tions. In the context of microservices, annotations facilitate the development of applications

by defining endpoints and operations for handling incoming HTTP requests.

Microservice frameworks play a vital role in simplifying the implementation of cloud-

based applications by offering annotations. These annotations support the reuse of features

and software evolution, aligning with developers when following coding style guidelines [28].

Consequently, consistent usage of annotations appears in operations that share semantics

111

A Mining Approach to Limit Granularity of Annotated Operations

(a) Operations by Granularity (b) Clustering Error Curves

Figure 5.1: Operation Selection and Granularity Exploration

similarities. In general, annotations enable specific features to methods, classes and fields

of Java source code. To explore and identify these annotations, the Java Parser library is a

valuable resource, allowing for efficient searches for annotations attached to operations.

5.2.2 Abstract Syntax Tree of Operations

An Abstract Syntax Tree (AST) is a tree representation of source code with additional syntax

and semantic information [30]. ASTs show good results for clone detection by recognising

code fragments with a similar sequence of tokens [90]. Java Parser library help builds the

ASTs for detecting annotations. Thus, the approach can convert the sequence of tokens into

a vector representation for clustering operations.

A critical task of the approach is the selection of microservice operations for training.

To ensure comprehensive coverage, the selection process focuses on operations containing up

to 85 tokens, a granularity limit that includes most of the operations with annotations, as

shown in Figure 5.1a. Additionally, the selection process extends to annotations by checking

the top ones and selecting those that publish operations like @RestController and @GetMap-

112

A Mining Approach to Limit Granularity of Annotated Operations

ping which creates a Web service by mapping HTTP requests to a specific operation.

Initially, the approach requires an extensive collection of Java code fragments coming

from more than 30K public GitHub repositories. After converting the sequence of tokens

into a vector representation, our approach creates clusters of similar operations. We choose

a base of 10 clusters considering the decay in the clustering error curves, which provides

insights into the performance of a clustering algorithm, as shown in 5.1b.

In general, a reading process expresses AST nodes as a statement. The most common

reading process is the traversal algorithm which offers three ways to read the tree: inorder,

preorder and postorder. From these, the preorder is the most employed to read an AST

because it accepts (i) functions as arguments, and (ii) a variable number of arguments [143,

51]. To convert AST statement to tokens, the approach use the tokenisation task from

Natural Language Processing (NLP). A token is essentially a numerical representation of an

AST element.

5.2.3 Approach Components

The relation between operations and annotations is crucial for exploring granularity. In this

sense, our approach involves collecting code fragments, extracting their annotations, and

analysing them. Next, we categorise operations based on their associated annotations and

calculate the granularity of operations. The analysis focuses on understanding the granularity

utilised by the developer community when attaching annotations to operations. In particular,

the semantic information of operations enhances the search for similar operations, thereby

improving the analysis.

The principal components of our approach are Operation Miner, Operation Converter,

and Limits Finder. Each component plays a specific role in the process:

113

A Mining Approach to Limit Granularity of Annotated Operations

Figure 5.2: The Components of our Approach

• Operation Miner prepares the operations with their connections, annotations, and gran-

ularity metrics. It gathers code fragments from the input datasets and identifies the an-

notations associated with each operation. It calculates granularity metrics based on the

number of tokens from the AST representation of each operation.

• Operation Converter learns semantics from operations and converts them into vec-

tor representations. This component utilises a sequence-to-sequence model to build the

numerical vector of each operation. It stores operations, their annotations and their gran-

ularity. This storage is helpful for the next component to identify the closest operations

with similar behaviour.

• Limits Finder creates clusters according to the similarity between annotated operations

before searching unseen operations to the closest group. To build clusters, it utilises a

K-Means algorithm, while it uses a KNN algorithm to predict the correct cluster. This

choice allows the approach to dynamically and accurately assign new operations to existing

clusters based on their proximity to the nearest neighbours. The Limits Finder then

calculates the granularity limits for each cluster, defining the typical range of granularity

values.

114

A Mining Approach to Limit Granularity of Annotated Operations

The approach requires code fragments as inputs: one Java dataset of microservice

applications and one Java database of clone operations. The approach simplifies the inputs

by requiring a string representation for dataset and database paths. Additionally, we need

the two output paths for (i) the microservice operations extracted from the Java dataset;

and (ii) mapping files generated after each stage. Finally, we propose the following format

for the limits of granularity: (i) operation group, (ii) annotation, and (iii) granularity range.

Operation Miner

The goal of Operation Miner is to pre-process the raw files from the Java dataset. This

component gets, organises, and formats the operations before continuing with the other

components. The Miner executes three essential functions: (i) extracting operations with

their annotations, (ii) building their Abstract Syntax Tree (AST), and (iii) measuring their

granularity. These steps result in a structured dataset of operations along with an index file

that specifies the source code, annotations and their connections.

Extract Operations: The initial task of the Miner is to collect the code fragments

from open-source repositories. First, we need to download complete source code files from

different projects. Second, the Miner must identify Java files with annotations. Third, the

Miner needs to split the files into code fragments. Next, we select only code fragments that

correspond to operations. Then, the Miner maps the selected operations according to their

projects, packages, and classes.

Build Abstract Syntax Trees (ASTs): The complex task of the Miner is to iden-

tify the operations due to the different mechanisms and frameworks that expose functionality

over an HTTP request. The Miner needs to locate the source code of each operation with

their annotations. To identify the microservice operations, the Miner focuses on specific

annotations that expose the functionality through an HTTP request. For instance, any code

115

A Mining Approach to Limit Granularity of Annotated Operations

fragment with the RequestMapping and GetMapping annotations is a microservice opera-

tion. After identifying operations, the Miner constructs ASTs for these operations to capture

their structure and semantics. It utilises a Java Lang library to parser the operations, which

reads the source code and constructs the corresponding AST.

Measure Granularity: Granularity measurement involves quantifying the size of

each identified operation. The Miner groups the operations by their packages, each repre-

senting a microservice. Then, the component counts operations by microservice and their

lines of code. Additionally, the Miner measures the lines of code per operation and holds

the granularity information for the next component, the Operation Converter, when it is

required to attach to the vector representation of the operations.

1

2 // 1 . Example o f annotated operat ion

3 @RequestMapping ("/home")

4 pub l i c S t r ing welcome () {

5 return "Welcome " + user . getName () ;

6 }

7

8 // 2 . Example o f AST rep r e s en t a t i on as s t r i n g

9 St r ing as t = "MethodDeclaration Annotation RequestMapping L i t e r a l ReferenceType St r ing welcome

ReturnStatement BinaryOperation + L i t e r a l MethodInvocation user getName" ;

10

11 // 3 . Example o f i t s g r anu l a r i t y

12 St r ing [] tokens = ast . trim () . s p l i t ("\\ s+") ;

13 g r anu l a r i t y = tokens . l ength ;

14

15

Listing 5.1: Example of Annotated Operation and Its AST

Listing 5.1 shows the first example of an annotated operation that returns a welcome

message with the user name. The second example corresponds to its AST representation

assigned to a string variable. The third and last example calculates its granularity by splitting

the string into tokens, which are words separated by blank spaces. The granularity is the

number of tokens that form its AST representation. Listing 5.2 presents the pseudo code of

this component.

116

A Mining Approach to Limit Granularity of Annotated Operations

1

2 c l a s s OperationMiner :

3 de f __init__(s e l f) :

4 pass

5

6 de f mine_operations (s e l f , j a v a_ f i l e s) :

7 ope ra t i ons = []

8 f o r f i l e in j a v a_ f i l e s :

9 code_fragments = s e l f . extract_code_fragments (f i l e)

10 annotated_operat ions = s e l f . ident i fy_annotated_operat ions (code_fragments)

11 f o r op in annotated_operat ions :

12 as t = s e l f . bui ld_ast (op)

13 g r anu l a r i t y = s e l f . measure_granular ity (as t)

14 ope ra t i on s . append ({

15 ’ code ’ : op ,

16 ’ a s t ’ : ast ,

17 ’ g r anu l a r i t y ’ : g ranu la r i ty ,

18 ’ annotat ions ’ : s e l f . get_annotat ions (op)

19 })

20 return ope ra t i ons

21

22 de f extract_code_fragments (s e l f , f i l e) :

23 code_fragments = []

24 # Open f i l e , get content , s p l i t content in to code fragments

25 i f fragment isMethod :

26 code_fragments . append (fragment)

27 return code_fragments

28

29 de f ident i fy_annotated_operat ions (s e l f , f ragments) :

30 annotated_operat ions = []

31 f o r fragment in (fragments)

32 i f fragment isAnnotated :

33 annotated_operat ions . append (fragment)

34 return annotated_operat ions

35

36 de f bui ld_ast (s e l f , operat ion) :

37 # Use the Java Lang Parser l i b r a r y

38 ast_tree = par se r . parse ("@UnknownAnnotation \n c l a s s Unknown { " + operat ion + " } ")

39 as t = par se r . convert_to_text (as t)

40 return as t

41

42 de f measure_granular ity (s e l f , a s t) :

43 St r ing [] tokens = ast . tr im () . s p l i t ("\\ s+") ;

44 g r anu l a r i t y = tokens . l ength ;

45 return l en (as t)

46

47 de f get_annotat ions (s e l f , operat ion) :

48 # Logic to ex t ra c t annotat ions from an operat ion

49 return annotat ions

50

51

Listing 5.2: Pseudo Code of Operation Miner

117

A Mining Approach to Limit Granularity of Annotated Operations

Operation Converter

The goal of our Operation Converter is to store in memory the relation between the code

fragments, their annotations and the granularity associated with each operation. This com-

ponent gets the AST representation and converts operations into vectors. The Converter

executes three essential functions, which are: (i) learn the semantic relation between opera-

tions and annotations, (ii) convert ASTs to numerical vectors, and (iii) create a dictionary

that captures operations, annotations, granularity and numerical vectors. Additionally, the

Converter considers the static characteristics of a code fragment. This component also con-

siders the granularity that belongs to a single operation instead of the whole system.

Learn Semantic Relation: The primary function of this component is to learn

relations between operations and annotations through semantics-driven techniques, which

extract features from a text by focusing on its syntax and semantics. Our semantic learn-

ing produces a sequence-to-sequence model that can read a text word by word to learn the

semantic meanings [4]. To perform this functionality, a Recurrent Neural Network (RNN)

employs the AST representation as a text of code fragments to discern patterns and con-

nections. This component requires a Java Parser, a library that reads the Java files and

provides an AST structure to work with Java code in a programmatic way.

Convert to Numerical Vector: The core functionality of the converter is to trans-

form ASTs of operations into numerical vectors through the application of semantics-driven

learning. The previous function produces an encoder that can convert the AST representa-

tion of a new operation into vectors. The approach needs the conversion step, considering

that similar operations could require similar annotations, and the approach intends to detect

operations with similar behaviour by converting the operations into vectors and calculating

the distance between vectors. Two operations are similar if the distance between their vectors

is closest to zero.

118

A Mining Approach to Limit Granularity of Annotated Operations

Create a Dictionary: After getting the vector representation of operations, this

component converts the annotation names into vectors with one dimension. Then, the con-

verter adds the annotations as additional information to the vector representation of opera-

tions. The converter uses an unsupervised learning technique to create clusters considering

the cosine similarity between vectors. Additionally, each cluster has internal groups by their

annotations. This way, the converter can organise data by operation similarity, annotation,

and granularity.

Listing 5.3 presents the pseudo code of the Operation Converter as a class to facilitate

the understanding of this component.

1

2 c l a s s OperationConverter :

3 de f __init__(s e l f) :

4 pass

5

6 de f convert_operat ions (s e l f , ope ra t i ons) :

7 vec to r i z ed_operat i ons = []

8 f o r operat ion in ope ra t i ons :

9 vec tor = s e l f . convert_to_vector (operat ion [’ a s t ’])

10 vec to r i z ed_operat i ons . append ({

11 ’ vec tor ’ : vector ,

12 ’ annotat ions ’ : operat ion [’ annotat ions ’] ,

13 ’ g r anu l a r i t y ’ : operat ion [’ g r anu l a r i t y ’]

14 })

15 return vec to r i z ed_operat i ons

16

17 de f convert_to_vector (s e l f , a s t) :

18 # Logic to convert AST to numerical vec tor

19 # Here we use the encoder from the semantics−dr iven l e a rn i ng approach .

20 return vector

Listing 5.3: Pseudo Code for Operation Converter

Limits Finder
The Limits Finder component is responsible for detecting operations with similar annotations

and determining the granularity limits for these annotated operations. This process involves

several steps and utilises both the K-Means and KNN algorithms. Using these algorithms is

possible by measuring the distance between two vectors.

First, we measure the distance between vectors representing code fragments to find

119

A Mining Approach to Limit Granularity of Annotated Operations

similar operations. Various distance measures are available in Machine Learning, such as

Hamming, Euclidean, Manhattan, Minkowski, Cosine Similarity, and others. We use Cosine

similarity due to its effectiveness in clone detection of code fragments in different program-

ming languages [150]. Cosine similarity returns a number between zero and one, where zero

means identical vectors (high similarity), and one indicates completely different vectors. To

ensure meaningful similarity, we filter out operations that are too dissimilar using a specific

threshold (e.g., 0.70).

Using Cosine Similarity, we reduce the search scope by finding the nearest vectors

representing similar operations. We use the K-Means algorithm to build clusters from a

subset of the closest vectors. The K-Means algorithm partitions the data into a predeter-

mined number of clusters, grouping annotated operations. If one operation has more than

one annotation, we could join the annotations in pairs to capture their combined effect.

To check clusters, we count operations per annotation within each cluster and cal-

culate the error as the distance from each operation to the cluster centre. We select the k

number of clusters by minimising this error. This method is commonly used in unsupervised

learning when the error decreases as the number of clusters increases.

After clustering, we assign each operation a unique cluster identification (cluster ID).

Then, we use the KNN algorithm to predict the cluster membership of new or unseen oper-

ations based on their similarity to existing operations. We use cosine similarity to fetch a

subset of operations and their corresponding cluster IDs. The KNN algorithm performs the

prediction by using the K cluster members that are most similar to an unseen operation,

leveraging the learned similarity patterns from the training data. This step helps generalise

the clustering to operations not seen during the initial clustering phase.

Finally, we filter the operations within each predicted cluster to determine the granu-

larity metrics. These metrics are ordered from minimum to maximum, allowing us to define

120

A Mining Approach to Limit Granularity of Annotated Operations

the granularity limits for each unseen operation. The granularity limits are determined by

the range of granularity values observed within each cluster. We avoid the outliers and use

the 0.25 and 0.75 percentiles to limit the typical granularity of operations. This process

provides insights into the typical granularity of operations associated with each cluster.

The primary output of the Limits Finder is a set of granularity limits for unseen

operations, which helps to guide the effective use of annotations in microservice development

and maintenance. Listing 5.4 presents the pseudo code of this component as a class.

1 c l a s s LimitsFinder :

2 de f __init__(s e l f) :

3 pass

4

5 de f f i nd_l im i t s (s e l f , vector i zed_operat ions , unseen_operation) :

6 ve c to r s = [op [’ vec tor ’] f o r op in vec to r i z ed_operat i ons]

7 kmeans = KMeans(n_cluster s=s e l f . get_k_clusters ())

8 kmeans . f i t (v e c to r s)

9 c l u s t e r s = kmeans . p r ed i c t (v e c to r s)

10

11 c l u s t e r_d i c t = d e f a u l t d i c t (l i s t)

12 f o r i , op in enumerate (vec to r i z ed_operat i ons) :

13 c l u s t e r_d i c t [c l u s t e r s [i]] . append (op)

14

15 knn = KNe ighbor sC la s s i f i e r (n_neighbors=7)

16 knn . f i t (vectors , c l u s t e r s)

17

18 g ranu l a r i t y_ l im i t s = s e l f . c a l cu l a t e_granu l a r i t y_ l im i t s (c l u s t e r_d i c t)

19 return knn , g r anu l a r i t y_ l im i t s

20

21 de f get_k_clusters (s e l f) :

22 # Logic to determine the number o f c l u s t e r s

23 return k_c lus te r s

24

25 de f c a l cu l a t e_granu l a r i t y_ l im i t s (s e l f , c l u s t e r_d i c t) :

26 g r anu l a r i t y_ l im i t s = {}

27 f o r c l u s t e r , ops in c l u s t e r_d i c t . i tems () :

28 g r a n u l a r i t i e s = [op [’ g r anu l a r i t y ’] f o r op in ops]

29 l im i t s = np . p e r c e n t i l e (g r a nu l a r i t i e s , [2 5 , 7 5])

30 g ranu l a r i t y_ l im i t s [c l u s t e r] = l im i t s

31 return g ranu l a r i t y_ l im i t s

32

33 de f p r ed i c t_c lu s t e r (s e l f , knn , new_operation_vector) :

34 return knn . p r ed i c t ([new_operation_vector]) [0]

Listing 5.4: Pseudo Code for Limits Finder

121

A Mining Approach to Limit Granularity of Annotated Operations

Pseudo Code of the Approach

Listing 5.5 presents a pseudo code which outlines how the approach invoke the different tasks

of the Operation Miner, the Operation Converter, and Limits Finder:

1

2 java_dataset_path = " . . . " # conta ins the path to the java ope ra t i ons

3 j a v a_ f i l e s = " . . . " # conta ins the path to the java ope ra t i on s

4 clone_operations_path = " . . . " # conta ins the path o f ope ra t i one s f o r exper imentat ion

5 op_miner = OperationMiner ()

6 op_converter = OperationConverter ()

7 l im i t s_ f i nd e r = LimitsFinder ()

8

9 de f execute_approach () :

10 j a v a_ f i l e s = l o ad_ f i l e s (java_dataset_path)

11 ope ra t i ons = op_miner . mine_operations (j a v a_ f i l e s)

12 vec to r i z ed_operat i ons = op_converter . convert_operat ions (ope ra t i on s)

13

14 new_operations = l o ad_ f i l e s (clone_operations_path)

15 f o r operat ion in new_operations :

16 as t = op_miner . bui ld_ast (operat ion)

17 vector = op_converter . convert_to_vector (as t)

18 knn , g r anu l a r i t y_ l im i t s = l im i t s_ f i nd e r . f i nd_l im i t s (vector i zed_operat ions ,

operat ion)

19 c l u s t e r = l im i t s_ f i nd e r . p r ed i c t_c lu s t e r (knn , vector)

20 l im i t s = g ranu l a r i t y_ l im i t s [c l u s t e r]

21 p r in t (f "Granular i ty l im i t s f o r operat ion : { l im i t s }")

22

23 de f l o ad_ f i l e s (path) :

24 # Logic to load Java f i l e s from a given path

25 return f i l e s

Listing 5.5: Pseudo Code of the Approach

5.3 Evaluation

The experiment measures the relation between annotations and the granularity values for

a group of operations with similar behaviour. Additionally, the experiment considers the

usage granularity when developers build operations with a catalogue of annotations. The

granularity analysis of distances between the limits for fined-coarse and grained-coarse eval-

uates the approach’s effectiveness by counting the percentage of operations inside the range

of granularity limits.

122

A Mining Approach to Limit Granularity of Annotated Operations

To evaluate our approach, we build a dataset and database similar to the previous

chapter and collect several annotated operations from open-source repositories. We analyse

the distribution of operations by annotations to select which annotations have a representa-

tive number of operations. With those operations, we create similar operations with minor

changes to build the database of annotations operations. We randomly split the database

of 10674 examples to build training (45%), validation (45%) and test (10%) datasets. For

experimentation, we use operations from different open-source repositories; this helps to

identify if our approach has overfitting.

We mainly evaluate the Limits Finder by selecting operations with annotations and

calculating their granularity using the number of tokens in their AST representation. Specifi-

cally, we consider operations that contain a maximum of 85 tokens. Using this data, we build

a searchable database to find similar operations, create clusters, determine their granularity

range of limits, get their granularity values and locate them within the corresponding range.

The evaluation of the approach utilises the following metrics: (i) the Limits evaluates

the Limits Finder component by plotting the operations between the 25 and 75 percentiles

(granularity range), (ii) the F1-Score evaluates the overall approach by calculating the preci-

sion and recall of correct and incorrect clustering prediction, (iii) the Accuracy evaluates the

overall approach by calculating the percentage of correct clustering prediction in comparison

with their total, and (iv) the Distance Analysis evaluates the Limits Finder component by

showing the distance range of a cluster and plotting the distance between good and wrong

predictions.

We chose a list of three annotations that most appears in different open-source

projects. These annotations are RestTemplate, GetMapping, and RequestMapping. We

use GetMapping and RequestMapping to identify operations and the RestTemplate to iden-

tify operation connections. Our scenario evaluates if the operations have their granularity

123

A Mining Approach to Limit Granularity of Annotated Operations

in the correct range. The range could have low, medium and high granularity where two

thresholds separate the limits.

5.3.1 Experiment Design

We prepare a Java dataset by cloning the source code from GitHub open-source repositories

selected with the following criteria: (i) Java projects; (ii) microservices; (iii) more than 300

stars. We search with Java Parser for RequestMapping, GetMapping and RestTemplate

annotations to detect operations and connections between them. Our text parser reads

the selected Java files and splits their content into operations. We choose the operations

with annotations, generate their AST representation and calculate the length of operations.

Additionally, our learning model needs three datasets of selected operations for training,

validating and testing its encoder. Then, we add to our dataset the vector after converting

the operations with the encoder.

We explore the granularity metrics of operations for the evaluation by grouping them

according to their package and class. We elaborate a Java database with a subset of opera-

tions that were modified. Our database will have successful operations within a granularity

range. We generate the range by adding new sentences based on System.out.print. Thus, we

increase the length and keep the actual behaviour of the operations at the same time. Other

mechanism to increase the length is adding print lines inside new conditions.

We evaluate the scenario where developers follow development guides for building mi-

croservice applications. Thus, new operations with similar features should follow the specifi-

cations, such as the operation length when implementing (ABC behaviour). We identify first

the operation behaviour and then its annotation. Then, we search inside our database for

other similar operations to know their granularity range. Thus, if our new operation has a

granularity inside the range is a successful operation; otherwise, it is a unsuitable operation.

124

A Mining Approach to Limit Granularity of Annotated Operations

5.3.2 Hyper-parameters

Hyper-parameters are variables to adjust the overall performance of the three main com-

ponents of our approach. The Operation Miner requires the number of cores to speed the

processing of the dataset and build the corresponding database. The Operation Converter

requires the dimensions for setting the deep learning with the hidden states, continuous

vector embedding, and mini-batch. Additionally, the Limits Finder requires the lower and

higher thresholds for the granularity limits.

We optimise these hyper-parameters using standard tuning techniques such as ran-

dom search, genetic algorithms, and grid search. Random search and genetic algorithms are

efficient in high-dimensional space and consume high computer processing to achieve reason-

able accuracy. Thus, we chose grid search due to the parallel execution and the promising

results for clone detection and multi-label classification. Table 5.1 shows specific values for

hyper-parameters of our approach.

Table 5.1: Limits of Granularity Settings

Component Hyper-parameter Range Value

Operation Miner Cores 5-35 35

Operation Miner Vector dimensions 85x[32-256] 85x128

Operation Converter Hidden states N/A 100

Operation Converter Mini-batch N/A 100

Operation Converter Vector dimensions 85x[32-256] 85x128

Limits Finder Vector dimensions 85x[32-256] 85x128

Limits Finder Low thresholds N/A below 25%

Limits Finder High thresholds N/A above 75%

125

A Mining Approach to Limit Granularity of Annotated Operations

5.3.3 Experiment Setup

We implement the Miner with Java and Python libraries to extract the operations. Specif-

ically, the Java Parser Lang library helps identify connections between operations, while

Python Java Parser builds the AST representation. Additionally, we implement semantics-

driven learning by extending PyTorch, a Python-based library for NLP and deep neural

networks. We train the learner for the Operation Converter and then build the vectors using

its encoder.

We perform the experiments mainly on a laptop with a Core i7-4700MQ CPU at

2.4GHz and 16GB RAM. We also speed the training of semantics-driven learning in the

environment of the nodes, which provides several CPUs. We set up our scripts to run up to

35 CPUs in the nodes. The process of parsing the dataset runs in the laptop environment.

The process with a subset of 25 unseen operations runs in the laptop environment, which

loads the vectors database partially due to the limitation of 16GB RAM.

We provide a replication package for interested readers 1. The replication package

has a zip file with all the open-source projects related to microservices from GitHub. The

package also contains the datasets, databases and scripts to run the experiments. There are

four main scripts: (i) mining the dataset; (ii) training the learning model; (iii) running the

experiments; and (iv) plotting the charts. The source code of our Operation Miner, Operation

Converter and Limits Finder is available as a zip file with the secret key: miningLIMITS2022.

Our replication package also includes more detail and examples of the critical steps for our

approach: operation miner, operation converter and limits finder.

1https://bitbucket.org/mining-granularity-limits/replication-package/

126

A Mining Approach to Limit Granularity of Annotated Operations

Figure 5.3: Isolated and Linked Annotations

5.3.4 Results and Discussion

We draw Venn diagrams to show code fragments with one, two and three linked annotations.

A plot scatters of the annotation usage counts the number of code fragments for each anno-

tation. A violin plot presents the range of granularity and compares the relation between the

number of lines and tokens. The distribution of tokens usage allows us to select operations

based on their number of tokens. The clustering error curves and the box-and-whisker plot

help observe the granularity limits per cluster. We plot scatter to show the performance of

our approach when matching operations with their corresponding cluster.

After collecting open-source repositories from GitHub, we identify 143,341 Java files

containing 264,531 potential code fragments. From this dataset, only 20,540 code fragments

contain 506 unique annotations. Figure 5.3 illustrates how developers connect those unique

annotations. The data shows that developers use annotations in various combinations. This

figure is a Venn Diagram depicting the number of unique annotations attached to operations,

categorised into One Annotation, Two Annotations or Three Annotations. For instance,

the RequestParam annotation is often utilised alongside the RequestMapping annotation,

demonstrating how multiple annotations are combined in practice.

127

A Mining Approach to Limit Granularity of Annotated Operations

Software Engineers(SEs) generally utilise annotations for various microservices-related

tasks, like publishing services, consuming services, accessing database structure, and return-

ing processed information. In this context, SEs may reuse the collected annotated operations

to detect similar operations for different purposes. Here are three possible scenarios where

SEs could apply our approach to the collected operations: (i) improving recommendation

systems by suggesting code fragments to developers for completing operations; (ii) enhanc-

ing code refactoring tools by detecting similar operations and automatically merging them,

and (iii) optimising code review processes by highlighting similar patterns across different

projects. The fourth scenario involves determining the limits of the granularity of operations,

which results are discussed in this section.

We observe that 33% are unique in the group One Annotation; while the groups Two

Annotations and Three Annotations has 18% and 10% exclusive linked annotations. Develop-

ers combine 24% of annotations: (i) 12% of annotations belong to the combination between

One Annotation and Two Annotations ; (ii)10% represents the combination between Two

Annotations and Three Annotations ; and (iii) 2% corresponds to the combination between

One Annotation and Three Annotations. The 15% remnant corresponds to the combination

of the three groups. Thus, we can say that developers may link 49% of annotations in pairs

of two. We focus on operations with one annotation because it has the most representative

number of operations.

Figure 5.4a shows the usage of the top 20 annotations according to the number of code

fragments where they appear. These 20 annotations appear near 69% of code fragments.

Although Bean is the most common annotation with more than 6,200 code fragments, we

exclude it because our scope focuses on operations. According to our expectation, Re-

questMapping and GetMapping are the next common annotations with an usage of 1,809

and 1,483 code fragments. Thus, we can say that developers commonly expose the opera-

tions as HTTP requests when methods have either RequestMapping or GetMapping. Finally,

128

A Mining Approach to Limit Granularity of Annotated Operations

(a) Annotations Usage (b) Granularity Density

Figure 5.4: Mining Operations

Path is another annotation to expose operations with 418 code fragments that appears when

a class has the RequestMapping annotation.

Figure 5.4b represents the probability density of different granularity values. We ob-

serve that three annotations, RequestMapping, GetMapping and GET have a similar density.

They show that developers prefer operations with less than 75 tokens on average After 100

tokens, the number of operations almost disappears. There are different shapes for the Path

and POST annotations. Operation Granularity tends to decrease slowly between the 75 and

150 tokens in both cases. Although POST looks to disappear after 200 tokens, it slightly

reappears near the 400 tokens. Thus, clusters of the operations with similar behaviour may

have their own granularity density.

We reduce the scope of our experimentation by focusing on the operations with a

higher percentage of token usage. We count the number of operations for every ten tokens and

calculate the usage as a percentage against the total number of operations per annotation.

Figure 5.1a shows the percentage of token usage for the top annotations. A decay appears

in all cases, meaning that operations with a granularity above 80 tokens have a small usage.

129

A Mining Approach to Limit Granularity of Annotated Operations

(a) RequestMapping C10 (b) GetMapping C10

Figure 5.5: Granularity Limits

Thus, we focus on operations with less than 85 tokens for the rest of the experimentation.

RequestMapping and GetMapping have similar behaviour; they increase until 20 tokens and

then decrease. On the other hand, GET and POST start with a high percentage of usage

and then decay. POST has ups and downs, probably due to operations with too different

behaviour. We exclude Path because its shape in Figure 5.4b differs from others.

We identify the granularity limits by clustering the vector representation of operations

per annotation. Figure 5.1b shows the error curves for RequestMapping and GetMapping

after clustering the operations between 3 and 100 clusters. Clustering operations have errors

under 4% with a significant decay before 20 clusters. Then, we consider 10 clusters as a

base to continue the exploration. Figures 5.5a and 5.5b show the granularity limits of both

RequestMapping and GetMapping, respectively. The whisker boxes present the lower and

high granularity values for each cluster, and each operation is a coloured data point. Thus,

the blue data points (below 25%) have low, while the red data points (above 75%) have high

granularity. The green data points contain 50% of data points, including the mean.

Our approach achieves an accuracy above 89%, with an average of 94%. Figure

130

A Mining Approach to Limit Granularity of Annotated Operations

(a) Overall Accuracy (b) Distance Analysis

Figure 5.6: Overall Results

5.6a shows that our approach has 55% of experiments above the average. We also notice a

slight difference between the Accuracy and F1-Score. The difference of 2% means low false

positives and negatives for Precision and Recall. Additionally, we group the results of good

and wrong predictions by cluster. For instance, Figure 5.6b shows the cumulative percentage

of distance occurrence for two different clusters. We observe two possible scenarios: C6 is

a cluster with a similar cumulative percentage but a gap between the distance of good and

wrong predictions (0.04 to 0.05). On the other hand, C9 has a more significant cumulative

percentage for good predictions. However, there is an overlapping with wrong predictions

after a distance of 0.11.

5.3.5 Threats to Validity

We collected code fragments from open-source repositories and built a database of Java to

analyse their granularity. Then, we selected queries randomly and evaluated the suggestion

of linked annotations of our approach. Thus, we present the threats to the validity of our

evaluation according to the guidelines in [130].

External validity: A limited number of repositories may reduce the successful per-

131

A Mining Approach to Limit Granularity of Annotated Operations

centage of operations with good granularity. We mitigate it by splitting the source code into

operations to increase the number of records for exploring their granularity.

Internal validity: A subset of operations that share similar features may introduce

noise and reduce the probability of finding correct granularity limits. We mitigate it by (i)

reducing the size of the subset and (ii) cloning real-world operations. Using a single split

for training, validation, and test datasets risks performing well on training data but failing

to generalise the new data. This single split may provide an unreliable evaluation of model

performance. To mitigate this, we create the validation set randomly and build a pool of

examples accessed in batches. This mechanism ensures that the model is validated on diverse

data samples, thereby enhancing its generalisation ability and reliability.

Construct validity: We mitigated the bias in the dataset of repositories by selecting

projects related to microservices with more than 300 stars. We also mitigated the bias in

Java operations created manually by introducing small changes without changing the simple

behaviour of operations.

5.4 Related Work

This chapter focuses on the mining granularity of annotated operations in the area of mi-

croservices. Table 5.2 shows how our work fits the state-of-the-art techniques by comparing

key features between our work and the closely related work.

Annotations detection. A few previous works consider the annotations detection

and microservices detection in the context of static analysis. Our research shows one em-

pirical study catalogues developer issues and identifies annotations as the top category for

components settings (30.3%) [96]. One systematic mapping study consolidates activities for

detection and transition to microservices [48]. The research also shows previous studies that

132

A Mining Approach to Limit Granularity of Annotated Operations

Table 5.2: Related Work

Features Related Work Our Work

[96] [94] [48] [93] [41] [28] [105] [123] [122]

Annotations detection ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Microservice detection ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Granularity importance ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

Granularity metrics ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Source code of samples ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓

Semantics similarity ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Operations collection ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Granularity exploration ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

take advantage of the annotations to detect bad smells on microservice architecture [93] and

evaluate the quality of the software through mutation testing [94]. Unlike those works, our

approach identifies microservices and extracts annotations from a dataset of microservice im-

plementations from real open-source projects. We catalogue the annotations used between

connected operations.

Granularity importance. Several studies mentioned the granularity importance of

determining the size of microservices and proposed methodologies to identify suitable sizes

for microservices when splitting monolith applications [48, 28]. Refactoring and Domain-

Driven Design are used to find the optimal modularity of microservices [41, 105, 122]. Five

works propose fourteen granularity samples, and only 22% have third-parties source code to

calculate the granularity metrics. Unlike those works, our approach explores the different

operation lengths among their semantics similarity to propose limits for good granularity.

Previous approaches do not consider the granularity by annotations. Then, we focus

on the operations collection, semantics similarity and granularity exploration of size limits

for fine-grained and coarse-grained operations. Although, other works show good results

with a limited number of projects. Vural et al. [123] suggest evaluating approaches with

133

A Mining Approach to Limit Granularity of Annotated Operations

more projects. Thus, we collect a suitable amount of operations to reduce the threats to

validity and increase the feasibility of our approach.

5.5 Summary

We elaborated a semantics-driven learning approach to suggest the granularity limits accord-

ing to the similarities between operations. Our approach implements a Recurrent Neural

Network (RNN) to learn the semantic relation between operations and their annotations.

Then, a K-Nearest-Neighbour (KNN) classifier predicts the granularity limits. We are the

first to propose a mechanism that detects the granularity limits of similar operations with

their annotations.

We conclude that a database of operations is good enough to identify the granularity

limits, specifically for unseen operations published with annotations. Moreover, the analysis

of overall results shows that increasing the unique annotations with overlapped operations

would slightly reduce the overall accuracy. Increasing the distance between operations would

minimize the impact on the overall accuracy.

In our ongoing research, we are including other granularity metrics and introducing

the analysis of multiple dimensions like complexity. Additionally, we are incorporating other

clustering mechanisms, such as Hierarchical Clustering, for advanced features. Finally, al-

though our approach does not improve granularity, practitioners may opt to use it to improve

microservice granularity in the future.

134

Chapter Six

Reflection and Appraisal

6.1 Overview

This chapter aims to (i) revisit the research questions posed in Chapter 1 by reviewing how we

addressed the research questions and (ii) reflect on the approach and evaluation considering

different design aspects presented in previous chapters. The reflection encompasses the

annotated operations, evaluation mechanism, database integrity and overhead presented in

the approach.

The remainder of this chapter is organised as follows. Section 6.2 elaborates on how

the proposed studies and approaches answer the research questions. Section 6.3 highlights

the reflection on the different design aspects. The chapter concludes in Section 6.4.

6.2 How the Research Questions are Addressed

This section discusses how the previous chapters have addressed each research question

mentioned in the first chapter of this thesis.

135

Reflection and Appraisal

RQ1.1 and RQ1.2: What are the purposes of using annotations in mi-

croservice construction? How do the static analysis-based techniques support

the purpose of using annotations?

In Chapter 2, we delved into the relation between annotations and microservice con-

struction [99]. We recognised that construction of microservices poses unique concerns,

requiring practical tools and techniques to address them using annotations. A systematic

literature review presented the different purposes and specific uses of annotations in mi-

croservice construction. Through this review, a wide range of purposes for using annotations

emerged. The found purposes were defect prediction, architecture evaluation, vulnerability

detection, microservice identification, among others.

From the perspective of specific use of annotations, we identified the following: (i)

identifying annotations; (ii) adding annotations; (iii) modifying annotations; (iv) verifying

annotations; and (v) predicting annotations. Additionally, the study presented their rela-

tion with the different static analysis-based techniques categorised as: (i) graph theory; (ii)

genetic algorithm; (iii) machine learning; (iv) deep learning; (v) syntax-based method; (vi)

rule-based method; and (vii) tools. The combination of these characteristics showed us the

specific uses of annotations that require more attention from industry and academia.

The results presented in this chapter guided us to identify pending challenges for

research as follows: (i) consider the usage of annotations for energy consumption in mi-

croservices; (ii) discover microservice structures changing over time; (iii) incorporate deep

reinforcement learning for the evolution of microservices; (iv) verify annotations for security

constraints; (v) identify technical concerns from the perspective of microservice software

development; (vi) incorporate a learning technique to detect missing annotations; and (vii)

incorporate a semantic learning technique to improve microservice granularity. From these

pending challenges, we decided to address the last three challenges.

136

Reflection and Appraisal

RQ1.3: To what extent the use of annotations is one of these concerns?

In Chapter 3, we investigated microservice concerns from the perspective of developers

by collecting posts from Stack Overflow [96]. Our exploration into the posts considered that

developers usually publish their concerns to find a solution from online communities. Thus,

this study revealed the posts with suggested answers and coding practices. The research

extracted the bug symptoms and root causes and provided a classification of posts based on

microservice life cycle activities at runtime, namely service routing, service discovery, service

authentication & authorization, and service invocation.

From the perspective of bug symptoms, we identified the following top activity tasks:

(i) client discover for service routing; (ii) configuration for service discovery; (iii) authentica-

tion for service authentication & authorization; and (iv) asynchronous for service invocation.

Additionally, the study analysed the issue categories and found the following top categories:

(i) wrong configuration of frameworks; (ii) wrong usage of parameters; (iii) wrong version of

dependencies; (iv) missing parameters; (v) missing operations; (vi) missing web tokens; (vii)

missing patterns for distributed systems; and (vi) missing annotations. The results of our

study indicated that missing parameters and operations are the most common concerns in

service routing. At the same time, the misuse and wrong usage of annotations are the most

common concerns in service discovery.

Based on our findings, we identified the following implications for developers: (i)

understanding missing operations and fixing missing parameters to reduce bugs at the com-

pilation stage; (ii) using static code analysis and project management tools to recognise

misuses of annotations; (iii) choosing a decentralised solution with short timelife tokens to

minimise security breaches; and (iv) using configuration parameters and transaction patterns

to keep data consistency. Moreover, from the implication list, annotations belong to the top

concern, and we decided to address the usage of static code analysis to recognise similar

137

Reflection and Appraisal

operations when detecting misuses and missing annotations.

RQ2: How can we leverage semantic connections between code fragments

and microservice annotations to predict annotations?

In Chapter 4, acknowledging that developers follow style guidelines to coding an-

notated operations, we developed a semantics-driven learning approach to investigate the

standard annotations that expose operations in microservice applications [98]. We consid-

ered missing annotations scenarios and proposed a novel approach for capturing the relation

between code fragments and annotations, leveraging a Recurrent Neural Network (RNN) and

a K-Nearest-Neighbour (KNN) classifier. Our investigation focused on discerning whether

the semantic information between operations and annotations can detect misuse and missing

annotations.

Our proposed approach offered a mechanism to analyse code fragments and under-

stand the utilisation of annotations by extracting the Abstract Syntax Tree (AST) rep-

resentation of each code fragment. This AST representation facilitated the detection of

semantically similar code fragments through the following components: (i) a pre-processor

for transforming raw data into AST representation; (ii) a learner for capturing the seman-

tic information using a sequence-to-sequence model that encodes vectors; (iii) a similarity

finder, informed by cosine similarity, for returning a subset of annotated operations from a

database; (iv) the predictor for training a KNN classifier to predict annotations using this

subset; and (v) the adviser for suggesting actions that keep or add annotations.

In this chapter, we concluded that using a database of rules based on code frag-

ments with annotations is good enough to identify missing annotations. The performance

evaluation of our approach focused on overall Accuracy and the BLEU (Bilingual Evalu-

ation Understudy) Score. Notably, the approach exhibited high accuracy in actions and

annotations, with a BLEU Score that validated the quality of the subset returned by the

138

Reflection and Appraisal

similarity finder. The confusion matrix analysis provided insights into wrong suggestions,

revealing possible considerations to improve the database of code fragments. Overall, the

results strongly support the affirmative answer to this RQ2.

RQ3: How can annotations contribute to the understanding of typical

granularity degree within existing microservices?

In Chapter 5, we delved into various GitHub open-source projects to find operations

with different granularity values [97]. The chapter proposed a semantics-driven learning

approach to mining the granularity limits of operations with their annotations according to

the developer community. Moreover, the learning process pursued to build a database of

similar operations for clustering by their annotations. Thus, our investigation focused on

discerning whether microservice granularity from previous projects provides a foundation for

assessing the granularity of new operations.

Our approach delved into the exploration of microservice granularity, using annota-

tions as key indicators. Microservices often employ annotations to expose operations aligned

with coding style guidelines. We extended the semantics-driven learning approach using the

following components: (i) operation miner for extracting operations with specific annota-

tions and generating their AST representation; (ii) operation converter for utilising semantic

relations to convert ASTs into numerical vectors and calculate their granularity metrics;

(iii) limits finder for clustering an operation database and predicting where new operations

belong. The approach excelled in its ability to learn and map the nuances of microservice

granularity, providing a valuable tool for detecting whether a new microservice operation

aligns with the usual granularity degrees observed in the developer community.

Our findings revealed that some operations combine two annotations, and their prob-

ability density of granularity demonstrated favourable patterns. The granularity limits, re-

vealed through clustering and illustrated in box-and-whisker plots, showed detailed patterns

139

Reflection and Appraisal

for the selected annotations: RequestMapping and GetMapping. These annotations formed

distinct clusters with different granularity traits. The analysis of overall results showed that

increasing the unique annotations with overlapped operations would reduce the overall ac-

curacy. Additionally, increasing the distance between operations would minimise the impact

on the overall accuracy. In summary, results strongly indicate a positive answer for RQ3.

6.3 Reflection on the Research

This section presents a reflection on the thesis approach and evaluation. The reflection

considers the design aspects concerning the operations, annotations, natural language pro-

cessing, integrity of the dataset and overhead.

6.3.1 Selection of Operations and Annotations

In this thesis, selecting operations and annotations was crucial to the research journey and

experiments. This process serves as a pivotal component of the overall research, contributing

to producing a dataset for repeatable and reliable experiments. The decisions made in this

regard were crucial to ensure that different features of this process align with the broader

objective of the thesis. These features included class split, similarity of behaviour, keywords

to create clones, operation size, and distribution. The alternative, adapting experiments to

different real-world operations, would have posed a considerable time investment.

The selection process unfolded diverse methods, each influenced by several factors,

including the feasibility of implementation, the relevance of the chosen method to the research

objective, and its suitability within the microservice construction. The selected method

combined a manual creation of annotated and automatic replication. The former serves as a

140

Reflection and Appraisal

seed for the latter. Additionally, the selection of annotations benefited from this mechanism;

when one annotation had a few operations, we increased the number of operations by creating

new ones based on clone techniques.

The effectiveness of our chosen approach manifested in the achieved results. Moreover,

the limitations inherent to the selection and creation of annotated operations were addressed

and mitigated to ensure the credibility of the research findings. However, applying different

mechanisms based on ground truth extraction would present another strategy to overcome

the challenges associated with selecting operations and annotations.

6.3.2 Evaluation Using Natural Language Processing

We applied Natural Language Processing (NLP) using a semantics-driven learning approach

to pursue the thesis objective. The primary focus of this approach was twofold: (i) detecting

missing annotations and (ii) determining the granularity limits of annotated operations. The

reliability and effectiveness of these techniques were instrumental in shaping the quality and

applicability of the approach within real-world scenarios.

In this thesis, we evaluated two dimensions to demonstrate the accomplishment of

our semantics-driven learning approach. One dimension is the assessment of missing an-

notations, a key concern in microservice software development. Simultaneously, we delved

into determining the granularity limits, a critical dimension in optimising the performance

of microservice-based applications. These evaluations validated the effectiveness of the ap-

proach. They contributed to fortifying the applicability of NLP in the realm of microservice

construction.

The calibration of various parameters was indispensable to conduct these evaluations.

The key parameters were vector dimensions, subset size and the number of k-neighbours.

141

Reflection and Appraisal

These parameters influenced the credibility and efficacy of our findings and results. We

would choose a sequential parameter tuning that allows a trade-off between efficiency and

exhaustive exploration; however, we chose a comprehensive grid search due to its paral-

lel execution. Additionally, a fitness function would return more efficient values; however,

this avenue requires further investigation to assess its feasibility and impact on the overall

evaluation process. Thus, we opted to evaluate an expected range of values.

A central characteristic of our evaluation process was utilising a simulation envi-

ronment. We would evaluate the scope of the approach in a high-performance computing

environment. However, we chose it only for the training of the learning model. The experi-

ments run in a simulation environment similar to a standard laptop available for developers.

Additionally, this laptop environment served as a controlled and repeatable mechanism, en-

abling the execution of multiple experiments. The benefits of using this environment were

ensuring reproducible findings and saving resources.

6.3.3 Integrity in the Operation Database

Our semantic-driven learning approach relies an operation database containing many an-

notated operations. The matching process can generally start using a code fragment as an

input without annotations. The goal of the approach was straightforward: identify code frag-

ments with similar behaviour from the database. In our experiments, annotated operations

were extracted from GitHub repositories to guarantee the applicability of semantics-driven

learning in real-world scenarios. However, the approach lacks a mechanism to validate the

correctness of operations. For instance, we would classify which operations include a bug.

A central characteristic of our operation database was the collection of different code

fragments that contained patterns, rules, and style guidelines provided by developers. Bug

142

Reflection and Appraisal

propagation occurred when specific bug patterns were copied along the projects, and other

developers followed the same bug patterns without acknowledging which part of the code

had a bug. We would clean the initial code fragments of bugs before doing the automatic

replication. However, that process would be time-consuming and require applying techniques

out of the scope of our approach.

Considering the accuracy of our results, this limitation would be independent of the

effectiveness of the approach. However, instead of using free bug operations, measuring the

number of bugs in the subset for the classifier training would help analyse the adverse effects

of bugs inside operations. This bug-detection mechanism would provide insight into how

extended approaches would improve their accuracy. Moreover, further exploration of this

limitation would enhance the robustness of the approach.

6.3.4 Overhead

In the pursuit of the research objective, we delved into the intricate domain of semantic-

driven learning applied to microservices. A crucial aspect that merited careful consideration

was the presence of software overhead in the experiments. The experiments presented over-

head due to the application of natural language processing techniques with machine learning

classifiers. The overhead observed in the experiments can come from (i) building the database

based on annotated operations and (ii) searching the subset to train the classifier.

In the first source of overhead, each annotated operation carries critical semantic in-

formation, contributing to the overall effectiveness of the applied natural language processing

techniques. Thus, curing the operations is time-consuming. Additionally, searching and se-

lecting the subset requires substantial computational resources and time in the second source

of overhead. In both cases, the implications of overhead in the experiments are profound.

143

Reflection and Appraisal

Overhead may lead to challenges related to the efficiency and accuracy of the approach.

Excessive overhead can hinder the execution time of the experiments.

To mitigate and optimise the identified overhead sources, we used the K neighbours

parameter to enhance the efficiency of building the database and searching the subset. By

addressing the overhead, we aim to minimise its impact on the experiments, thereby ensuring

the quality of the thesis results. However, other valuable mechanisms that we could apply

to optimise the overhead would be the usage of algorithms based on hash code and running

in parallel to reduce the execution time.

6.4 Concluding Remark

In this chapter, we summarise the outcome of our research questions. We also reflect retro-

spectively on the research limitations. Moreover, the reflection focused on what we would

have done differently to make a better approach. Specifically, we reflected on (i) the process

of selecting operations and annotations, (ii) the way we evaluate the usage of natural lan-

guage processing in the approach, (iii) the possible impact of classifying operation database

with bugs, and (iv) the sources of overhead in the solution. While there is room for improve-

ment in our work, this reflective analysis shows an adequate addressing of research questions

during the elaboration of the thesis.

144

Chapter Seven

Conclusion and Future Work

7.1 Overview

In the context of microservice architecture research, this journey depicts various dimensions,

challenges and solutions associated with annotations in microservice construction. Chapter

2 provides the conceptual framework for annotations and highlights their purposes and spe-

cific uses in academia. Chapter 3 reveals the importance of annotations in the industry with

implications for developers using static code analysis for annotation recognition. Moreover,

Chapters 4 and 5 reveal something new about how new approaches could detect missed

annotations and cluster operations with similar behaviour by using natural language pro-

cessing. This thesis has addressed open concerns in microservices by evaluating the proposed

contributions to solve the research questions stated in Chapter 1.

The remainder of this chapter is organised as follows. Section 7.2 elaborates on the

contributions and implications of our work. Section 7.3 highlights the possible future research

directions. The thesis concludes by the closing remarks in Section 7.4.

145

Conclusion and Future Work

7.2 Contributions of the Thesis

This thesis promotes a semantic-driven learning approach for microservice construction. The

approach provides a mechanism for detecting missing annotations and exploring of granu-

larity limits by addressing a critical concern in microservice development. Specifically, this

thesis adds to the field the following contributions:

• A Systematic Literature Review (SLR) of annotations in microservices [99]. We performed

the SLR of annotations in microservice construction to build a catalogue of purposes of

using annotations through static analysis techniques based on the existing state-of-the-

art approach. Our view presents a nuanced understanding of the diverse purposes of

annotations and the challenges developers face. Additionally, we outlined future directions

to guide the development of advanced tools and techniques to predict annotations.

• An empirical study on microservice software development [96]. Based on SLR findings, an

empirical study was conducted to identify the relevance of annotations in the microservice

life cycle. Collecting posts from Stack Overflow and extracting information related to

bugs, symptoms and causes of concerns help classify the issues into common concerns

in microservice software development. Additionally, we recognise missing and misused

annotations as part of common concerns that mainly affect practitioners and developers.

• A semantics-driven learning for microservice annotations [98]. We developed a semantic-

driven learning approach for microservice construction that gets knowledge based on the

semantic connections between code fragments and annotations. The learning approach

builds on the natural language processing for clone detection and machine learning clas-

sifier to analyse code fragments and predict missing annotations. The researchers can

benefit from the results of this contribution by enhancing the accuracy and efficiency of

annotation usage. Overall, this contribution advances the field by introducing a novel

approach that allows developers to use annotations more effectively to reduce complexity

of microservice applications.

146

Conclusion and Future Work

• A mining approach to limit granularity of annotated operations [97]. We extended a se-

mantic learning approach to mine the granularity of operations. The learning approach

aimed at identifying the granularity limits of operations by clustering them according to

their behaviour. The approach explores the semantic similarity and proposes limits for

fine-grained and coarse-grained operations. The approach relies on the premise that oper-

ations with similar behaviour and different lengths provide boundaries for new operations.

Practitioners and researchers can benefit from these results by making informed decisions

about granularity. This contribution advances the field by introducing an innovative ap-

proach to improve practices in microservice development.

7.3 Future Work

In addition to the future work in Section 2.4.1, which presents the importance of specific uses

of annotations, this section further discusses the areas for potential future research direction.

Specifically, it explores the possibilities offered by annotations and semantics-driven learning.

7.3.1 Enhanced Annotations Semantics.

Chapter 2 provides promising avenue for future research and delve deeper into semantics of

annotations in microservices by addressing the limitations of current approach. One mecha-

nism for enhancement is the incorporation of Deep Reinforcement Learning (DRL) to benefit

from rewards to predict possible structure changes. Deep learning algorithms have shown

remarkable capabilities in learning patterns and making predictions [38]. Reinforcement

learning is a type of learning in which an agent interacts with an environment to achieve a

specific goal by taking actions that give a reward [43]. In microservice evolution, the envi-

ronment represents the architecture, the actions are the possible changes of structure, and

the reward involves quality attributes of a system. DRL trains the agent to predict the most

effective actions based on the changes in the structures of open-source projects.

147

Conclusion and Future Work

7.3.2 Annotation Impact on Non-Functional Aspects.

Chapter 3 provides valuable insights into the development concerns and impact of annota-

tions on microservices. Additional, Chapter 4 provides an approach that use semantics of

operations to identify missing annotations. These concerns are primarily focused on func-

tional aspects of software development. Future research could incorporate non-functional

aspects, such as security and performance [142, 22]. This non-functional aspects means ad-

ditional features that needs for exploration of other mechanisms for vector representations

such as Flow2vec for these advanced features. Flow2vec considers the control flow as part

of the vector encoding [115]. Thus, the approach could identify portions of the control flow

related to performance and security, and incorporate them for getting vector representation.

7.3.3 Dynamic Granularity Adjustment.

Chapter 5 provides a new perspective on granularity in microservices, which relies on static

analysis of operations. Future research could extend this analysis to the dynamic nature

of microservices, considering the runtime changes in microservices [108]. These runtime

changes are related to operational patterns over time. Then, the approach needs to learn

the recognition of dynamic patterns provided by runtime monitors. These runtime monitors

generally capture information in real-time and provide log records for posterior manual anal-

ysis [147, 141]. The analysis results could serve as a training dataset for pattern recognition

in a machine learning algorithm. Additionally, researchers could evaluate different clustering

mechanisms, such as Hierarchical Clustering, for detecting granularity limits and matching

them with the performance limitations to launch a warning for a granularity adjustment.

7.4 Closing Remarks

This section summarises the outcome of the research conducted throughout the elaboration

of this thesis. The primary conclusions extracted from this research are:

148

Conclusion and Future Work

• This thesis demonstrated that annotations can significantly impact microservices and spe-

cific uses of annotations benefits from static analysis techniques, emphasizing the potential

for enhancing the overall microservice construction through advanced analysis of annota-

tion usage.

• Through empirical analysis and computational modelling, this thesis has established that

annotations play a crucial role in shaping microservices. It provides valuable insights for

researchers and practitioners seeking effective solutions for microservices concerns. Addi-

tionally, this thesis has contributed learning models to predict annotations and determine

typical granularity values.

• Chapter 3, after its empirical analysis of Stack Overflow posts, identified and categorised

the primary concerns related to annotations in microservices development. Misuse of

annotations emerge as a top concern, highlighting the significance of carefully selecting

and applying annotations to ensure the intended functionality and quality of microservices

architecture.

• Chapter 4 contributed a novel approach for detecting missing annotations in microservices

based on the semantic analysis of annotations. By leveraging neural language processing

techniques, this research offered a more nuanced understanding of how annotations corre-

late with fault-prone areas in code.

• Chapter 5 further enriched the landscape by presenting a semantics-driven learning ap-

proach for exploring the typical granularity values of microservices operations. By cluster-

ing similar operations based on annotations, the research introduced a method for refining

operations design by determining their granularity limits, which affects their performance

and maintainability.

149

Conclusion and Future Work

150

References

[1] [n.d.] Query Stack Overflow. 2020. url: https://data.stackexchange.com/stackoverflow/

queries.

[2] [n.d]. Common components used in Microservices. 2020. url: https://bit.ly/3o2uHEJ.

[3] Carlos M. Aderaldo and et al. “Benchmark Requirements for Microservices Architec-

ture Research”. In: Proceedings of the 2017 IEEE/ACM 1st International Workshop

on Establishing the Community-Wide Infrastructure for Architecture-Based Software

Engineering (ECASE). Buenos Aires, Argentina: IEEE, 2017, pp. 8–13.

[4] Miltiadis Allamanis et al. “A Survey of Machine Learning for Big Code and Natural-

ness”. In: ACM Computing Surveys 51.4 (July 2018), p. 81.

[5] Eman Abdullah AlOmar et al. “On preserving the behavior in software refactoring:

A systematic mapping study”. In: Information and Software Technology 140 (Dec.

2021), p. 106675.

[6] Eman Abdullah Alomar et al. “Refactoring Practices in the Context of Modern Code

Review: An Industrial Case Study at Xerox”. In: Proceedings of the 2021 IEEE/ACM

43rd International Conference on Software Engineering: Software Engineering in Prac-

tice (ICSE-SEIP). IEEE Computer Society, May 2021, pp. 348–357.

[7] Bader Alshemaimri et al. “A survey of problematic database code fragments in soft-

ware systems”. In: Engineering Reports 3 (10 Oct. 2021), e12441.

151

https://data.stackexchange.com/stackoverflow/queries
https://data.stackexchange.com/stackoverflow/queries
https://bit.ly/3o2uHEJ

REFERENCES

[8] Nuha Alshuqayran and et al. “A Systematic Mapping Study in Microservice Archi-

tecture”. In: Proceedings of the 2016 IEEE 9th International Conference on Service-

Oriented Computing and Applications (SOCA). Macau, China: IEEE, 2016.

[9] Nuha Alshuqayran, Nour Ali, and Roger Evans. “Towards Micro Service Architec-

ture Recovery: An Empirical Study”. In: Proceedings of the 2018 IEEE International

Conference on Software Architecture (ICSA). Institute of Electrical and Electronics

Engineers Inc., July 2018, pp. 47–56.

[10] Daniel R.F. Apolinário and Breno B.N. de França. “A method for monitoring the

coupling evolution of microservice-based architectures”. In: Journal of the Brazilian

Computer Society 27 (1 Dec. 2021).

[11] Thiwankan C Kapugama Arachchi and K P Hewagamage. “Process of Conversion

Monolithic Application to Microservices Based Architecture”. Master. University of

Colombo, 2021.

[12] Elena A. Araujo et al. “Applying a multi-platform architectural conformance solu-

tion in a real-world microservice-based system”. In: Proceedings of the 14th Brazilian

Symposium on Software Components, Architectures, and Reuse. Association for Com-

puting Machinery, Oct. 2020, pp. 41–50.

[13] Muhammad Ilyas Azeem et al. “Machine learning techniques for code smell detec-

tion: A systematic literature review and meta-analysis”. In: Information and Software

Technology 108 (Apr. 2019), pp. 115–138.

[14] Alexander Bakhtin et al. “Survey on tools and techniques detecting microservice api

patterns”. In: Proceedings of the 2022 IEEE International Conference on Services

Computing (SCC). IEEE. Barcelona, Spain: IEEE, 2022, pp. 31–38.

152

REFERENCES

[15] Alan Bandeira et al. “We need to talk about microservices: an analysis from the dis-

cussions on stackoverflow”. In: Proceedings of the 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR). IEEE, 2019, p. 5.

[16] Marcello M. Bersani et al. “Verifying big data topologies by-design: a semi-automated

approach”. In: Journal of Big Data 6 (1 Dec. 2019), pp. 1–23.

[17] Farzana Ahamed Bhuiyan, Md Bulbul Sharif, and Akond Rahman. “Security bug

report usage for software vulnerability research: a systematic mapping study”. In:

IEEE Access 9 (2021), pp. 28471–28495.

[18] Ekaba Bisong. “Introduction to Scikit-learn”. In: Building Machine Learning and Deep

Learning Models on Google Cloud Platform. Springer, 2019, pp. 215–229.

[19] Raffaele Bolla et al. “Enhancing energy-efficient cloud management through code

annotations and the green abstraction layer”. In: Proceedings of the 2015 IEEE/ACM

8th International Conference on Utility and Cloud Computing (UCC). IEEE. 2015,

pp. 534–539.

[20] Pierre Bourque, Richard E Fairley, et al. Guide to the software engineering body of

knowledge (SWEBOK (R)): Version 3. IEEE Computer Society, 2014.

[21] Miguel Brito, Jácome Cunha, and João Saraiva. “Identification of microservices from

monolithic applications through topic modelling”. In: Proceedings of the 36th Annual

ACM Symposium on Applied Computing. Association for Computing Machinery, Mar.

2021, pp. 1409–1418.

[22] Tomáš Bureš et al. “Towards performance-aware engineering of autonomic compo-

nent ensembles”. In: Proceedings of the Leveraging Applications of Formal Methods,

Verification and Validation. Technologies for Mastering Change: 6th International

Symposium, ISoLA 2014, Imperial, Corfu, Greece, October 8-11, 2014, Proceedings,

Part I 6. Springer. Oct. 2014, pp. 131–146.

153

REFERENCES

[23] Vincent Bushong, Dipta Das, and Tomas Cerny. “Reconstructing the holistic archi-

tecture of microservice systems using static analysis”. In: Proceedings of the 12th In-

ternational Conference on Cloud Computing and Services Science (CLOSER). Online

Streaming: Scitepress, May 2022, pp. 149–157.

[24] John Carnell and Illary Huaylupo Sánchez. Spring microservices in action. Simon and

Schuster, 2021.

[25] Tomas Cerny et al. “Microvision: Static analysis-based approach to visualizing mi-

croservices in augmented reality”. In: Proceedings of the 2022 IEEE International

Conference on Service-Oriented System Engineering (SOSE). 2022, pp. 49–58.

[26] Istehad Chowdhury and Mohammad Zulkernine. “Using complexity, coupling, and

cohesion metrics as early indicators of vulnerabilities”. In: Journal of Systems Archi-

tecture 57 (3 Mar. 2011), pp. 294–313.

[27] Maria Christakis and Christian Bird. “What developers want and need from program

analysis: an empirical study”. In: Proceedings of the 31st IEEE/ACM international

conference on automated software engineering. Association for Computing Machinery

(ACM), Aug. 2016, pp. 332–343.

[28] Michel Cojocaru, Alexandru Uta, and Ana Maria Oprescu. “MicroValid: A valida-

tion framework for automatically decomposed microservices”. In: Proceedings of the

International Conference on Cloud Computing Technology and Science (CloudCom).

IEEE. 2019, pp. 78–86.

[29] Antonio Cuomo, Antonella Santone, and Umberto Villano. “CD-Form: A clone de-

tector based on formal methods”. In: Science of Computer Programming 95 (2014),

pp. 390–405.

[30] Hoa Khanh Dam et al. “Lessons learned from using a deep tree-based model for

software defect prediction in practice”. In: Proceedings of the 2019 IEEE/ACM 16th

154

REFERENCES

International Conference on Mining Software Repositories (MSR). Montreal Quebec,

Canada: IEEE Press, May 2019, pp. 46–57.

[31] Mohamed Daoud et al. “A multi-model based microservices identification approach”.

In: Journal of Systems Architecture 118 (Sept. 2021).

[32] Dipta Das et al. “On automated RBAC assessment by constructing a centralized

perspective for microservice mesh”. In: PeerJ Computer Science 7 (2021), pp. 1–24.

[33] Jose M Del Alamo et al. “A systematic mapping study on automated analysis of

privacy policies”. In: Computing 104.9 (2022), pp. 2053–2076.

[34] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. “Research on architecting

microservices: Trends, focus, and potential for industrial adoption”. In: Proceedings

of the 2017 IEEE International Conference on Software Architecture (ICSA). IEEE,

2017, pp. 21–30.

[35] Michael Eichberg, Thorsten Schäfer, and Mira Mezini. “Using annotations to check

structural properties of classes”. In: Proceedings of the Fundamental Approaches to

Software Engineering: 8th International Conference, FASE 2005, Held as Part of

the Joint European Conferences on Theory and Practice of Software, ETAPS 2005,

Edinburgh, UK, April 4-8, 2005. Proceedings 8. Springer. 2005, pp. 237–252.

[36] Daniel Escobar et al. “Towards the understanding and evolution of monolithic appli-

cations as microservices”. In: Proceedings of the 2016 XLII Latin American computing

conference (CLEI). Institute of Electrical and Electronics Engineers Inc., Jan. 2017.

[37] Christian Esposito and et al. “Challenges in delivering software in the cloud as mi-

croservices”. In: IEEE Cloud Computing (2016), pp. 10–14.

[38] Runhan Feng et al. “Automated Detection of Password Leakage from Public GitHub

Repositories”. In: Proceedings of the 44th International Conference on Software En-

gineering (ICSE). Pittsburgh Pennsylvania: ACM, 2022.

155

REFERENCES

[39] Pietro Ferrara et al. “Static analysis for discovering IoT vulnerabilities”. In: Interna-

tional Journal on Software Tools for Technology Transfer 23 (1 Feb. 2021), pp. 71–

88.

[40] Francisco Freitas, André Ferreira, and Jácome Cunha. “Refactoring java monoliths

into executable microservice-based applications”. In: Proceedings of the 25th Brazilian

Symposium on Programming Languages. Association for Computing Machinery, Sept.

2021, pp. 100–107.

[41] Jonas Fritzsch et al. “From monolith to microservices: A classification of refactoring

approaches”. In: Lecture Notes in Computer Science (including subseries Lecture Notes

in Artificial Intelligence and Lecture Notes in Bioinformatics) 11350 LNCS (2019),

pp. 128–141.

[42] Yu Gan and et al. “Seer: Leveraging big data to navigate the complexity of perfor-

mance debugging in cloud microservices”. In: Proceedings of the 24th International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems (ASPLOS). ACM, 2019.

[43] Samira Ghodratnama, Amin Behehsti, and Mehrdad Zakershahrak. “A personalized

reinforcement learning summarization service for learning structure from unstructured

data”. In: Proceedings of the 2023 IEEE International Conference on Web Services

(ICWS). 2023, pp. 206–213.

[44] Qiwen Gu, Stefan Wagner, and Jonas Fritzsch. “A meta-approach to guide architec-

tural refactoring from monolithic applications to microservices”. Master. Universität

Stuttgart, 2020.

[45] Wang Guan, Ivan Smetannikov, and Man Tianxing. “Survey on automatic text sum-

marization and transformer models applicability”. In: Proceedings of the 2020 1st In-

ternational Conference on Control, Robotics and Intelligent System. Xiamen, China:

ACM, 2020, pp. 176–184.

156

REFERENCES

[46] Haryadi S. Gunawi et al. “What bugs live in the cloud? A study of 3000+ issues

in cloud systems”. In: Proceedings of the 5th ACM Symposium on Cloud Computing

(SOCC). Association for Computing Machinery, Nov. 2014.

[47] Arun Gupta. Microservice Design Patterns. 2015. url: https://goo.gl/pd5d1x.

[48] Sara Hassan, Rami Bahsoon, and Rick Kazman. “Microservice transition and its gran-

ularity problem: A systematic mapping study”. In: Software: Practice and Experience

50.9 (2020), pp. 1651–1681.

[49] Victor Heorhiadi and et al. “Gremlin: Systematic resilience testing of microservices”.

In: Proceedings of the 2016 IEEE 36th International Conference on Distributed Com-

puting Systems (ICDCS). Nara, Japan: IEEE, 2016.

[50] Wolfgang Hobmaier. Improving the Quality of OpenAPI Specifications Using Type-

Script Types and Annotations. 2020.

[51] Xing Hu et al. “Deep code comment generation”. In: Proceedings of the 26th conference

on Program Comprehension (ICPC). ACM Press, 2018, pp. 200–210.

[52] James Ivers, Chris Seifried, and Ipek Ozkaya. “Untangling the knot: Enabling ar-

chitecture evolution with search-based refactoring”. In: Proceedings of the 2022 IEEE

19th International Conference on Software Architecture (ICSA). IEEE, 2022, pp. 101–

111.

[53] Pooyan Jamshidi et al. “Microservices: The journey so far and challenges ahead”. In:

IEEE Software 35.3 (2018), pp. 24–35.

[54] Jeff Atwood and Joel Spolsky. StackOverflow. 2008. url: https://stackoverflow.com/.

[55] Jeff Atwood and Joel Spolsky. StackOverflow Comment Everywhere. 2008. url: https:

//stackoverflow.com/help/privileges/comment.

[56] Kamil Jezek, Jens Dietrich, and Premek Brada. “How Java APIs break - An empirical

study”. In: Information and Software Technology 65 (Sept. 2015), pp. 129–146.

157

https://goo.gl/pd5d1x
https://stackoverflow.com/
https://stackoverflow.com/help/privileges/comment
https://stackoverflow.com/help/privileges/comment

REFERENCES

[57] Paul Jorgensen. Software testing, a craftsman approach. CRC Press, 2014.

[58] Nikhil Ketkar. “Introduction to pytorch”. In: Deep learning with python. Springer,

2017, pp. 195–208.

[59] Myeongsoo Kim et al. “Automated test generation for REST APIs: no time to rest

yet”. In: Proceedings of the 31st ACM SIGSOFT International Symposium on Software

Testing and Analysis. ACM, July 2022, pp. 289–301.

[60] B. Kitchenham and P. Brereton. “A systematic review of systematic review process

research in software engineering”. In: 55.12 (2013), pp. 2049–2075.

[61] B. Kitchenham and S. Charters. Guidelines for performing systematic literature re-

views in software engineering. 2007.

[62] Barbara Kitchenham. “Procedures for performing systematic reviews”. In: Keele, UK,

Keele University 33.2004 (2004), pp. 1–26.

[63] Barbara Kitchenham et al. “Trends in the quality of human-centric software engineer-

ing experiments–A quasi-experiment”. In: IEEE Transactions on Software Engineer-

ing 39.7 (2012), pp. 1002–1017.

[64] Emna Ksontini et al. “Refactorings and technical debt in docker projects: An empirical

study”. In: Proceedings of the 2021 36th IEEE/ACM International Conference on

Automated Software Engineering (ASE). IEEE Computer Society, 2021.

[65] Rodrigo Laigner et al. “Cataloging dependency injection anti-patterns in software

systems”. In: Journal of Systems and Software 184 (Feb. 2022).

[66] Ha Thanh Le et al. “Automated reverse engineering of role-based access control poli-

cies of web applications”. In: Journal of Systems and Software 184 (Feb. 2022).

[67] Xing Li et al. “Automatic policy generation for Inter-Service access control of mi-

croservices”. In: 30th USENIX Security Symposium (USENIX Security 21). 2021.

158

REFERENCES

[68] Guangtai Liang et al. “Automatic construction of an effective training set for priori-

tizing static analysis warnings”. In: Proceedings of the 25th IEEE/ACM International

Conference on Automated Software Engineering (ASE). Antwerp, Belgium: ACM,

Sept. 2010, pp. 93–102.

[69] Fábio Lopes et al. “Automating orthogonal defect classification using machine learn-

ing algorithms”. In: Future Generation Computer Systems 102 (Jan. 2020), pp. 932–

947.

[70] Pablo Loyola and Yutaka Matsuo. “Learning feature representations from change

dependency graphs for defect prediction”. In: Proceedings of the 2017 IEEE 28th

International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2017,

pp. 361–372.

[71] Shang Pin Ma et al. “Version-based and risk-enabled testing, monitoring, and visual-

ization of microservice systems”. In: Journal of Software: Evolution and Process 34.10

(2022).

[72] Shang Pin Ma et al. “Version-Based Microservice Analysis, Monitoring, and Visu-

alization”. In: 2019 26th Asia-Pacific Software Engineering Conference (APSEC).

Vol. 2019-December. IEEE Computer Society, Dec. 2019, pp. 165–172.

[73] Senthil Mani et al. “AUSUM: Approach for unsupervised bug report summarization”.

In: Proceedings of the ACM SIGSOFT 20th International Symposium on the Foun-

dations of Software Engineering (FSE ’12). Cary, North Carolina: ACM Press, 2012,

pp. 1–11.

[74] Kollegger Manuel and Johannes Kepler. “Continuous Architecture Evaluation in the

Context of Microservices Computer Science”. PhD thesis. Universität Linz, 2018.

159

REFERENCES

[75] Diego Marcilio et al. “SpongeBugs: Automatically generating fix suggestions in re-

sponse to static code analysis warnings”. In: Journal of Systems and Software 168

(Oct. 2020).

[76] Manuel Mazzara and Bertrand Meyer, eds. Present and ulterior software engineering.

Springer, 2017.

[77] Mostafa Mehrabi, Nasser Giacaman, and Oliver Sinnen. “@ PT: Unobtrusive parallel

programming with Java annotations”. In: Concurrency and Computation: Practice

and Experience 31.1 (2019), e4831.

[78] Andrea Melis. “Cybersecurity issues in software architectures for innovative services”.

PhD thesis. AlmaDL University of Bologna Digital Library, 2020.

[79] Na Meng and et al. “Secure Coding Practices in Java: Challenges and Vulnerabilities”.

In: 40th ICSE. Gothenburg, Sweden: IEEE, 2018.

[80] Loup Meurice, Csaba Nagy, and Anthony Cleve. “Static analysis of dynamic database

usage in Java systems”. In: Proceedings of the 28th International Conference on Ad-

vanced Information Systems Engineering (CAiSE 2016). Ed. by Selmin Nurcan et al.

Vol. 9694. Springer, June 2016, pp. 491–506.

[81] Leticia Montalvillo and Oscar Díaz. “Requirement-driven evolution in software prod-

uct lines: A systematic mapping study”. In: Journal of Systems and Software 122

(Dec. 2016), pp. 110–143.

[82] Seyed Mehdi Nasehi and et al. “What makes a good code example? A study of pro-

gramming Q&A in StackOverflow”. In: Proceedings of the 28th IEEE International

Conference on Software Maintenance (ICSM). IEEE, Sept. 2012, pp. 25–34.

[83] Carlos Noguera and Laurence Duchien. “Annotation framework validation using do-

main models”. In: Proceedings of the European Conference on Model Driven Architecture-

Foundations and Applications. Springer Berlin Heidelberg, June 2008, pp. 48–62.

160

REFERENCES

[84] Batyr Nuryyev et al. “Mining annotation usage rules: A case study with MicroProfile”.

In: Proceedings of the 2022 IEEE International Conference on Software Maintenance

and Evolution (ICSME). IEEE. 2022, pp. 553–562.

[85] Inah Omoronyia et al. “A review of awareness in distributed collaborative software

engineering”. In: Software - Practice and Experience 40 (12 Nov. 2010), pp. 1107–

1133.

[86] Oracle. Lesson: Annotations (The Java™ Tutorials > Learning the Java Language).

url: https : / / docs . oracle . com / javase / tutorial / java / annotations/ (visited on

11/17/2020).

[87] Claus Pahl and Pooyan Jamshidi. “Microservices: A systematic mapping study”. In:

Proceedings of the 12th International Conference on Cloud Computing and Services

Science (CLOSER). Rome, Italy: SCITEPRESS, 2016, pp. 137–146.

[88] Ya Pan et al. “A systematic literature review of android malware detection using

static analysis”. In: IEEE Access 8 (2020), pp. 116363–116379.

[89] Aurojit Panda, Mooly Sagiv, and Scott Shenker. “Verification in the age of microser-

vices”. In: Proceedings of the 16th Workshop on Hot Topics in Operating Systems.

Vol. 7. Whistler, BC, Canada: ACM, May 2017, pp. 30–36.

[90] Daniel Perez and Shigeru Chiba. “Cross-language clone detection by learning over

abstract syntax trees”. In: Proceedings of the 2019 IEEE/ACM 16th International

Conference on Mining Software Repositories (MSR). IEEE Press, May 2019, pp. 518–

528.

[91] K. Petersen and et al. “Guidelines for conducting systematic mapping studies in

software engineering: An update”. In: Information and Software Technology 64 (2015),

pp. 1–18.

161

https://docs.oracle.com/javase/tutorial/java/annotations/

REFERENCES

[92] Ilaria Pigazzini. “Automatic detection of architectural bad smells through semantic

representation of code”. In: Proceedings of the 13th European Conference on Software

Architecture (ECSA ’19). ACM, Sept. 2019, pp. 59–62.

[93] Ilaria Pigazzini et al. “Towards microservice smells detection”. In: Proceedings of the

3rd International Conference on Technical Debt. Association for Computing Machin-

ery, June 2020, pp. 92–97.

[94] Pedro Pinheiro et al. “Mutation operators for code annotations”. In: Proceedings of

the III Brazilian Symposium on Systematic and Automated Software Testing (SAST

2018). Association for Computing Machinery, Sept. 2018, pp. 77–86.

[95] Md Rafiqul Islam Rabin et al. “Towards demystifying dimensions of source code em-

beddings”. In: RL+SE and PL 2020 - Proceedings of the 1st ACM SIGSOFT Interna-

tional Workshop on Representation Learning for Software Engineering and Program

Languages, Co-located with ESEC/FSE 2020. New York, NY, USA: Association for

Computing Machinery, Inc, Nov. 2020, pp. 29–38.

[96] Francisco Ramírez et al. “An empirical study on microservice software development”.

In: Proceedings of the 2021 IEEE/ACM Joint 9th International Workshop on Soft-

ware Engineering for Systems-of-Systems and 15th Workshop on Distributed Software

Development, Software Ecosystems and Systems-of-Systems (SESoS/WDES). IEEE.

2021, pp. 16–23.

[97] Francisco Ramírez et al. “Mining the limits of granularity for microservice anno-

tations”. In: Proceedings of the 20th International Conference on Service-Oriented

Computing (ICSOC 2022). Springer. Nov. 2022, pp. 273–281.

[98] Francisco Ramírez et al. “Semantics-driven learning for microservice annotations”.

In: Proceedings of the 20th International Conference on Service-Oriented Computing

(ICSOC 2022). Springer. Nov. 2022, pp. 255–263.

162

REFERENCES

[99] Francisco Ramírez et al. “Systematic review of annotations in microservice construc-

tion (under review for publication)”. In: ACM Computing Surveys (CSUR) (2024).

[100] Zhongshan Ren et al. “Migrating web applications from monolithic structure to mi-

croservices architecture”. In: Proceedings of the 10th Asia-Pacific Symposium on In-

ternetware. Association for Computing Machinery, Sept. 2018, pp. 1–10.

[101] RFC6749. OAuth. 2006. url: https://oauth.net/2/.

[102] Christoffer Rosen and et al. “What are mobile developers asking about? A large scale

study using stack overflow”. In: Empirical Software Engineering 21 (2016), pp. 1192–

1223.

[103] Anees Saba. 4 Challenges you need to address with Microservices adoption. 2016. url:

https://bit.ly/35Mfr4O.

[104] Caitlin Sadowski et al. “Tricorder: Building a program analysis ecosystem”. In: Pro-

ceedings of the 2015 IEEE/ACM 37th IEEE International Conference on Software

Engineering (ICSE 2015). Vol. 1. IEEE Computer Society, Aug. 2015, pp. 598–608.

[105] Ana Santos and Hugo Paula. “Microservice decomposition and evaluation using de-

pendency graph and silhouette coefficient”. In: Proceedings of the 15th Brazilian Sym-

posium on Software Components, Architectures, and Reuse (SBCARS). Sept. 2021,

pp. 51–60.

[106] Stefanie Scherzinger and Sebastian Sidortschuck. “An empirical study on the design

and evolution of NoSQL database schemas”. In: Proceedings of the 39th International

Conference on Conceptual Modeling. Vol. 12400 LNCS. Springer Science and Business

Media Deutschland GmbH, Nov. 2020, pp. 441–455.

[107] Micah Schiewe et al. “Advancing static code analysis with language-agnostic compo-

nent identification”. In: IEEE Access 10 (2022), pp. 30743–30761.

163

https://oauth.net/2/
https://bit.ly/35Mfr4O

REFERENCES

[108] Khaled Sellami et al. “Combining static and dynamic analysis to decompose mono-

lithic application into microservices”. In: Proceedings of the Service-Oriented Comput-

ing. Ed. by Javier Troya et al. Cham: Springer Nature Switzerland, 2022, pp. 203–

218.

[109] Dharmendra Shadija and et al. “Towards an understanding of microservices”. In:

Proceedings of the 2017 23rd International Conference on Automation and Computing

(ICAC). IEEE, 2017, pp. 1–6.

[110] Rongrong She, Liping Zhang, and Fengrong Zhao. “A method for identifying and

recommending reconstructed clones”. In: Proceedings of the 2019 3rd International

Conference on Management Engineering, Software Engineering and Service Sciences.

Association for Computing Machinery, Jan. 2019, pp. 39–44.

[111] Zhidong Shen and Si Chen. “A survey of automatic software vulnerability detection,

program repair, and defect prediction techniques”. In: Security and Communication

Networks 2020 (Sept. 2020), pp. 1–16.

[112] Ian Sommerville. Software Engineering (tenth edn. global edition). 2016.

[113] Fausto Spoto. “The Julia static analyzer for Java”. In: Proceedings of the Static Anal-

ysis: 23rd International Symposium (SAS 2016). Vol. 9837 LNCS. Springer Verlag,

2016, pp. 39–57.

[114] Niels Streekmann. “Software evolution and modernisation”. In: Clustering-Based Sup-

port for Software Architecture Restructuring. Wiesbaden: Springer, 2011, pp. 23–44.

[115] Yulei Sui et al. “Flow2Vec: value-flow-based precise code embedding”. In: Proceedings

of the ACM on Programming Languages 4, No. OOPSLA (2020). Vol. 4. Nov. 2020,

pp. 1–27.

[116] D. Taibi and V. Lenarduzzi. “On the definition of microservice bad smells”. In: IEEE

Software 35 (3 2018), pp. 56–62.

164

REFERENCES

[117] Yiming Tang et al. “An empirical study of refactorings and technical debt in machine

learning systems”. In: Proceedings of the 2021 IEEE/ACM 43rd international confer-

ence on software engineering (ICSE). IEEE Computer Society, May 2021, pp. 238–

250.

[118] Rafik Tighilt et al. “On the study of microservices antipatterns: A catalog proposal”.

In: Proceedings of the European Conference on Pattern Languages of Programs 2020.

Association for Computing Machinery, July 2020, pp. 1–13.

[119] Shreya Tiwari et al. “A review on green computing implementation using efficient

techniques”. In: Proceedings of the 2021 3rd International Conference on Advances

in Computing, Communication Control and Networking (ICAC3N). IEEE. Greater

Noida, India: IEEE, 2021, pp. 1496–1501.

[120] Harsh Upreti. 4 Essential strategies for testing microservices. 2018. url: https ://

smartbear.com/blog/4-essential-strategies-for-testing-microservices/.

[121] Fredy H. Vera-Rivera, Carlos Gaona, and Hernán Astudillo. “Defining and measur-

ing microservice granularity—a literature overview”. In: PeerJ Computer Science 7

(2021).

[122] Fredy H. Vera-Rivera et al. “Microservices Backlog - A genetic programming technique

for identification and evaluation of microservices from user stories”. In: IEEE Access

9 (2021), pp. 117178–117203.

[123] Hulya Vural and Murat Koyuncu. “Does domain-driven design lead to finding the

optimal modularity of a microservice?” In: IEEE Access 9 (2021), pp. 32721–32733.

[124] Andrew Walker, Dipta Das, and Tomas Cerny. “Automated code-smell detection in

microservices through static analysis: A case study”. In: Applied Sciences (Switzer-

land) 10 (21 Nov. 2020), pp. 1–20.

165

https://smartbear.com/blog/4-essential-strategies-for-testing-microservices/
https://smartbear.com/blog/4-essential-strategies-for-testing-microservices/

REFERENCES

[125] Andrew Walker, Dipta Das, and Tomas Cerny. “Automated microservice code-smell

detection”. In: Proceedings of the Information Science and Applications (ICISA).

Springer Singapore, 2021, pp. 211–221.

[126] Andrew Walker, Ian Laird, and Tomas Cerny. “On automatic software architecture re-

construction of microservice applications”. In: Proceedings of the Information Science

and Applications (ICISA 2020). Springer Singapore, 2021, pp. 223–234.

[127] Jie Wang et al. “Scaling static taint analysis to industrial SOA applications: A case

study at Alibaba”. In: Proceedings of the 28th ACM Joint Meeting on European Soft-

ware Engineering Conference and Symposium on the Foundations of Software Engi-

neering (ESEC/FSE 2020). Association for Computing Machinery, Inc, Nov. 2020,

pp. 1477–1486.

[128] AWS Whitepaper. Challenges of Microservices. url: https://amzn.to/3a0XRgI.

[129] Claes Wohlin. “Guidelines for snowballing in systematic literature studies and a repli-

cation in software engineering”. In: Proceedings of the 18th International Conference

on Evaluation and Assessment in Software Engineering. 2014, pp. 1–10.

[130] Claes Wohlin et al. Experimentation in software engineering. Springer Science & Busi-

ness Media, 2012.

[131] Li Wu, Johan Tordsson, Jasmin Bogatinovski, et al. “MicroDiag: Fine-grained per-

formance diagnosis for microservice systems”. In: Proceedings of the International

Workshop on Cloud Intelligence (CloudIntelligence 2021). IEEE. 2021, pp. 31–36.

[132] Xia Xin et al. “Measuring program comprehension: A large-scale field study with

professionals”. In: IEEE Transactions on Software Engineering 44.10 (Oct. 2018),

pp. 951–976.

[133] Baowen Xu et al. “A brief survey of program slicing”. In: ACM SIGSOFT Software

Engineering Notes 30.2 (2005), pp. 1–36.

166

https://amzn.to/3a0XRgI

REFERENCES

[134] Yanming Yang et al. “A survey on deep learning for software engineering”. In: ACM

Computing Surveys (Jan. 2021).

[135] Ziyu Yao, Jayavardhan Reddy Peddamail, and Huan Sun. “Coacor: Code annotation

for code retrieval with reinforcement learning”. In: Proceedings of the The world wide

web conference (WWW 2019). 2019, pp. 2203–2214.

[136] Dongjin Yu et al. “A survey on security issues in services communication of Microservices-

enabled fog applications”. In: Concurrency and Computation: Practice and Experience

31.22 (2019).

[137] Hao Yu et al. “Neural detection of semantic code clones via tree-based convolution”.

In: Proceedings of the 2019 IEEE/ACM 27th International Conference on Program

Comprehension (ICPC 2019). Montreal, Quebec, Canada: IEEE, May 2019, pp. 70–

80.

[138] Zhongxing Yu et al. “Characterizing the usage, evolution and impact of Java an-

notations in practice”. In: IEEE Transactions on Software Engineering 47.5 (2021),

pp. 969–986.

[139] Pascal Zaragoza et al. “Leveraging the layered architecture for microservice recovery”.

In: Proceedings of the 2022 IEEE 19th International Conference on Software Archi-

tecture (ICSA). Institute of Electrical and Electronics Engineers Inc., 2022, pp. 135–

145.

[140] Uwe Zdun et al. “Microservice security metrics for secure communication, identity

management, and observability”. In: ACM Transactions on Software Engineering and

Methodology (May 2022).

[141] Chenxi Zhang et al. “DeepTraLog: Trace-log combined microservice anomaly detec-

tion through graph-based deep learning”. In: Proceedings of the 44th International

167

REFERENCES

Conference on Software Engineering. ICSE ’22. Pittsburgh, Pennsylvania: Associa-

tion for Computing Machinery, 2022, pp. 623–634.

[142] Haibo Zhang and Kouichi Sakurai. “A survey of software clone detection from security

perspective”. In: IEEE Access 9 (2021), pp. 48157–48173.

[143] Jian Zhang et al. “A novel neural source code representation based on abstract syn-

tax tree”. In: Proceedings of the 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE). Montreal, Quebec, Canada: IEEE, May 2019, pp. 783–

794.

[144] Man Zhang and Andrea Arcuri. “Adaptive hypermutation for search-based system

test generation: A study on REST APIs with EvoMaster”. In: ACM Transactions on

Software Engineering and Methodology 31 (1 Jan. 2022), pp. 1–52.

[145] Xiang Zhou et al. “Delta debugging microservice systems”. In: Proceedings of the

33rd ACM/IEEE International Conference on Automated Software Engineering (ASE

2018). Vol. 18. ACM, Sept. 2018, pp. 802–807.

[146] Xiang Zhou et al. “Fault analysis and debugging of microservice systems: Industrial

survey, benchmark system, and empirical study”. In: IEEE Transactions on Software

Engineering 14.8 (2018), pp. 1–1.

[147] Xiang Zhou et al. “Latent error prediction and fault localization for microservice

applications by learning from system trace logs”. In: Proceedings of the 2019 27th

ACM Joint Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE). 2019, pp. 583–694.

[148] Yu Zhou et al. “Analyzing APIs documentation and code to detect directive defects”.

In: Proceedings of the IEEE/ACM 39th International Conference on Software Engi-

neering (ICSE). Buenos Aires, Argentina: IEEE Press, 2017, pp. 27–37.

168

REFERENCES

[149] Jun Zhu et al. “Mitigating access control vulnerabilities through interactive static

analysis”. In: Proceedings of the 20th ACM Symposium on Access Control Models

and Technologies. Vol. 2015-June. Association for Computing Machinery, June 2015,

pp. 199–209.

[150] Meital Zilberstein and Eran Yahav. “Leveraging a corpus of natural language descrip-

tions for program similarity”. In: Onward! 2016: Proceedings of the 2016 ACM Inter-

national Symposium on New Ideas, New Paradigms, and Reflections on Programming

and Software. Amsterdam, Netherlands: ACM, Nov. 2016, pp. 197–211.

169

REFERENCES

170

	Title Page
	Abstract
	1 Introduction
	1.1 Overview
	1.2 Problem Statement
	1.2.1 Definition of Annotations, Types and Examples
	1.2.2 Definition of Granularity
	1.2.3 Abstract Syntax Tree, Definition and Usability
	1.2.4 Prediction of Annotations
	1.2.5 Prediction of Actions
	1.2.6 Determining Typical Granularity
	1.2.7 Importance of These Problems
	1.2.8 Semantics-Driven Learning Algorithm

	1.3 Research Methodology
	1.4 Research Questions
	1.5 Thesis Contributions
	1.6 Publications Linked to this Thesis
	1.7 Thesis Roadmap

	2 Systematic Review of Annotations in Microservice Construction
	2.1 Overview
	2.2 Research Methodology
	2.2.1 Review Protocol
	2.2.2 Research Goal
	2.2.3 Research Questions
	2.2.4 Literature Search Strategy
	2.2.5 Publication Quality Assessment
	2.2.6 Data Extraction and Synthesis

	2.3 Results
	2.3.1 Description of Studies
	2.3.2 Description of Categories
	2.3.3 Annotations in Microservices Construction
	2.3.4 Specific Uses in Static Analysis-based Techniques

	2.4 Discussion
	2.4.1 Future Outlook for Research
	2.4.2 Threats to Validity

	2.5 Gap Analysis
	2.6 Related Work
	2.6.1 Annotations in Microservices
	2.6.2 Static Analysis-based Techniques

	2.7 Summary

	3 Classification of Microservice-Based Development Concerns
	3.1 Overview
	3.2 The Life Cycle of Microservices at Runtime
	3.3 Study Design
	3.3.1 Research Question
	3.3.2 Search and Selection Process
	3.3.3 Data Extraction and Synthesis

	3.4 Results
	3.4.1 Years vs Life Cycle Activities
	3.4.2 Findings per Life Cycle Activities
	3.4.3 Further Categorisation
	3.4.4 Threats to Validity

	3.5 Complementing the Systematic Literature Review
	3.6 Related Work
	3.7 Summary

	4 A Semantics-Driven Learning for Annotations in Microservices
	4.1 Overview
	4.2 Proposed Approach
	4.2.1 Pre-processor
	4.2.2 Learner
	4.2.3 Predictor
	4.2.4 Similarity Finder and Adviser

	4.3 Evaluation
	4.3.1 Hyper-parameters
	4.3.2 Experiment Setup
	4.3.3 Results and Discussion
	4.3.4 Threats to Validity

	4.4 Related Work
	4.5 Summary

	5 A Mining Approach to Limit Granularity of Annotated Operations
	5.1 Overview
	5.2 Proposed Approach
	5.2.1 Operations with Annotations
	5.2.2 Abstract Syntax Tree of Operations
	5.2.3 Approach Components

	5.3 Evaluation
	5.3.1 Experiment Design
	5.3.2 Hyper-parameters
	5.3.3 Experiment Setup
	5.3.4 Results and Discussion
	5.3.5 Threats to Validity

	5.4 Related Work
	5.5 Summary

	6 Reflection and Appraisal
	6.1 Overview
	6.2 How the Research Questions are Addressed
	6.3 Reflection on the Research
	6.3.1 Selection of Operations and Annotations
	6.3.2 Evaluation Using Natural Language Processing
	6.3.3 Integrity in the Operation Database
	6.3.4 Overhead

	6.4 Concluding Remark

	7 Conclusion and Future Work
	7.1 Overview
	7.2 Contributions of the Thesis
	7.3 Future Work
	7.3.1 Enhanced Annotations Semantics.
	7.3.2 Annotation Impact on Non-Functional Aspects.
	7.3.3 Dynamic Granularity Adjustment.

	7.4 Closing Remarks

	References

