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Abstract

Microbots are artificial swimmers engineered to perform complex tasks at the mi-

croscale including drug delivery, cargo transport, and non-invasive surgery. Historically,

the design of microbots has advanced from basic rigid structures to more sophisticated

flexible and active particles. This transformation has been driven by the use of soft and

flexible materials like hydrogels, which offer low elastic moduli and, consequently, high de-

formability. These soft active materials hold the potential to enable microbot navigation

through shape and volume transformations.

This thesis begins by showing that hydrogel-based bubble-driven rigid microbots with

I, U, and S-shapes exhibit distinct swimming characteristics: pumping, translation, and

rotation. While the manufacturing and experiments of this study were conducted by

our experimental collaborators, we propose a mathematical model to provide physical

insight into the bubble growth mechanism at the active tips. The findings of this study

inspire us to explore the use of hydrogels to control microbot dynamics through shape

transformations.

We proceed by investigating the deformations of active hydrogel-based filaments in

Stokes flow. For this investigation, we propose a simple numerical model incorporating a

bead and spring system with the method of regularised stokeslets. The bead and spring

network captures the elastic deformations, while the method of regularised stokeslets

accounts for the non-local hydrodynamic interactions between different segments of the

hydrogel body. Simulations of porous filaments, representing hydrogels activated by single

or double-tip forces, reveal periodic oscillations and motion patterns such as corkscrew

motion and run-and-tumble behaviour, reminiscent of the motility seen in sperm and

bacteria.

Finally, the same framework is adapted to model the volume and shape transforma-

tions of the responsive hydrogels. By combining responsive and non-responsive sections



within the same hydrogel, we are able to control both the function and swimming charac-

teristics of passive and active hydrogel bilayers. Additionally, we propose new smart mi-

crobot prototypes, including star-shaped structures, and suggest control mechanisms that

integrate responsivity with activity. The findings of this dissertation offer guidance for

designing shape-shifting active microbots, and the methodologies developed are broadly

applicable to various problems in the study of artificial microswimmers and undulatory

motion.
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CHAPTER 1

INTRODUCTION TO ARTIFICIAL
MICROSWIMMERS

Movement is an essential feature of life, intrinsic to finding nutrition, reproduction, and

avoiding predators. The way living organisms move differs across different length scales.

At the microscale where viscous forces are dominant to inertial forces, locomotion methods

are distinct from those at the macroscale. Most microscale creatures exist in a fluid.

Therefore, they need to swim, which requires deformation of the body or the use of a

tail-like appendage such as a cilium or flagellum (see figure 1.1). Thanks to theoretical

and experimental studies in biological locomotion, how living creatures and cells propel

at the microscale is thoroughly understood (104).

This understanding has inspired the engineering of artificial microswimmers. These

microbots have the potential to perform intricate biomedical tasks, such as targeted drug

delivery or miniaturised surgery (92). The success of these applications depends on the

‘intelligence’ of the microbots, which can be considered to be self-propelled, externally

controlled, and multifunctional in some cases. To design a ‘smart’ microbot capable of

accomplishing complex missions, it is essential to elaborate on their historical develop-

ment.

In this chapter, different propulsion strategies and ways to control artificial microswim-

mers are introduced, along with a brief history of microbots. In sections 1.2 and 1.3, we

compare the benchmark examples of external and self-actuation methods. In section 1.4,
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(a) Cilium of an eukaryotic cell deforms as
depicted.

Eukaryotic Cell

(b) Some bacteria use their flagella
to have a run-and-tumble motion.

Run

Tumble

Run
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Figure 1.1: Eukaryotic and prokaryotic creatures propel themselves with whip-like or-
ganelles, namely cilia and flagella. In panel (a), a cilium beats around a fixed point. In
panel (b), a bacterium uses flagella to perform run-and-tumble. During the “run” phase,
the bacterium swims forward. Subsequently, in the “tumble” phase, flagella deform to

change the direction of motion.

we provide the properties of viscous flows from a mathematical perspective and describe

the Stokes equations. Moreover, we mention singularity-based solutions to model slender

structures. We conclude this chapter with an analytical solution for the problem of Stokes

flow past a sphere in section 1.5.1.

1.1 Artificial Microswimmers

Swimming in viscous fluids at the microscale is a challenging task. There is no inertia

that helps the swimmer use momentum. Consequently, natural microswimmers including

sperm cells, bacteria, algae and amoebae employ a variety of propulsion mechanisms.

Some of these mechanisms exploit a long thin appendage to move. Periodic deformations

of flagella or cilia may suffice to break symmetry in the fluid, enabling swimming. Some

others such as amoebae deform their entire bodies, so they can have movement in highly
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viscous fluids.

Similarly, artificial microswimmers also experience the same problem of moving in

viscous fluids. However, unlike their natural counterparts, which have evolved over thou-

sands of years, the manufacturing and development of microbots are still in the early

stages. The concept of microbots as a promising field of science began to gain traction

only 65 years ago, when Feynman (44) credited Albert Hibbs for the concept of “swal-

lowing the doctor”. Even after that, it took almost four decades to realise the simplest

propulsion mechanisms and primary designs.

Some of these designs were biomimetic, featuring rigid or flexible tails to propel.

Human spermatozoa inspired attaching a magnetic filament to red blood cell (39). In

another study, a helical filament was linked to a magnetic head, resembling the motion of

Escherichia coli (E.coli) bacteria (197). Additionally, new synthetic propulsion methods

were invented as well. Diffusiophoresis, a transportation mechanism driven by chemical

concentration gradients in the fluid, was used for the passive motion of particles (40). As

an extension of phoretic motion, Janus particles with hydrophobic and hydrophilic halves

were theoretically described (20). A Janus swimmer, named after the Roman god, has

two distinct faces (30). One face is made of a material that introduces activity, while the

other face is passive. The term ’activity’ refers to interactions with the environment, such

as catalysing a chemical reaction. Depending on the affinity of the active material for the

environmental conditions, the swimmer either propels towards chemically rich areas in

the fluid or moves away from them. Although the initial Janus particles were spherical,

subsequent designs have included tubes, rods, filaments, and various arbitrary shapes (see

figure 1.2). Over time, examples of employing other field gradients, including temperature

(88) and magnetism (51) were demonstrated. Another novel artificial propulsion method

was nucleating microbubbles to push the ambient fluid, thus facilitating locomotion (63).

It is worth noting that most of these propulsion methods were developed not only to

power the swimmer but also to control its trajectory.

This is particularly important for in vivo applications, where precise navigation be-
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Figure 1.2: Janus particles can be designed in various shapes. For example, on the left-
hand side, a traditional spherical Janus particle is demonstrated, while on the right-hand
side, a cylindrical Janus rod is presented. Generally, the active face, indicated by pink,
interacts with the environment, causing the swimmer to move in the opposite direction.

comes crucial. For instance, local delivery of therapeutic drugs requires different functions

including translation, rotation, stopping, and drug release. Moreover, both the process

and the microbot itself should be non-invasive and biodegradable. These issues can be

addressed by using soft, flexible and harmless materials that can be externally tunable.

However, outer control mechanisms may lack precision, especially for operations em-

ploying a swarm of microbots (129). Identifying individual swimmers in a group and

avoiding collisions can be cumbersome or costly. Therefore, the ultimate goal is to engi-

neer microbots that are biocompatible, self-sufficient for movement, spatially aware, and

internally controlled.

To obtain these smart microbots, the shape, propulsion method, navigation, and cor-

responding applicability of artificial swimmers have been in development (164). Thanks

to these improvements, intelligent microbots may perform complex tasks for biomedical

and environmental purposes, including local drug delivery (56), cargo transport (191),

and mixing as a microfluidic device (125).

In the next sections, we explain different propulsion methods and their associated
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control mechanisms. We categorise these swimmers into two groups; externally controlled

and self-actuated microbots (129). Externally-actuated microbots are directed by outside

factors such as applied magnetic fields (197), acoustic waves (9), or light intensity (98).

In the absence of an external stimulus, these microbots remain stationary. In contrast,

self-actuated microbots are typically fuel-based microswimmers that utilise environmental

conditions to move autonomously without external stimuli. (188). In some instances, a

microbot may benefit from multiple mechanisms simultaneously, blurring the boundary

between external and self-actuation methods. Additionally, it should be noted that there

can be different ways of categorisation, such as directed and undirected motion. In such

groupings, the main focus is on the presence of a control mechanism. Therefore, most

examples in the following sections may be categorised under directed motion. Given this

nuance, sections 1.2 and 1.3 should be considered a general review rather than a strict

classification.

1.2 Externally-Actuated Swimmers

Externally-actuated swimmers are controlled by outside factors. Depending on the task,

these stimuli can include magnetic fields, acoustic waves, and light signals. These swim-

mers rely on external actuation for navigation which means they can use different propul-

sion mechanisms similar to self-sufficient microbots. We will begin our review with mag-

netic fields for externally controlling and propelling microbots.

1.2.1 Magnetic Fields

Exerting magnetic fields is one of the most common propulsion methods in artificial

microswimmer studies. The ease of implementation and compatibility with any swimmer

shape (helical, spherical, or more complex designs) have placed magnetic fields in a pivotal

role in the advancement of microbots. Moreover, magnetic field gradients offer remote

control for the user without the need for any additional device or system.
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Figure 1.3: The schematic demonstrates a magnetic swimmer capable of rotating its
helical tail under magnetic field gradients to propel itself. For example, Zhang et al. (197)

employed a similar mechanism.

Some early studies utilised magnetic fields to control microbots, mimicking natural

swimmers. At the millimetre scale, a rigid spiral connected to a magnet was turned by

alternating magnetic torque (74). Later, in a landmark study, Zhang et al. (197) mag-

netically rotated a helical tail at the micrometre scale attached to a soft head inspired by

the monotrichous bacterium. The passive tail was spun around the head by changing the

magnetic gradient, resulting in a corkscrew-like motion, hence translation (see figure 1.3).

In experimental studies, magnetically controlled helical swimmers were used for loading

and unloading objects as microcarriers (79) and were involved in the degradation of bac-

terial pollution (75). Although these tasks were conducted in laboratory settings, they

are crucial in demonstrating the potential of these swimmers.

As an alternative to helical swimmers, deformations of the flexible tails have been used

for microscale locomotion. Dreyfus et al. (39) magnetically actuated a chain of colloids

as a micrometre-scale filament. In the same study, red blood cells were transported by an

artificial flagellum in vitro. In Gao et al.’s study (57), akin to oscillations of the prokaryotic

flagellum, the rotary motion of nanowires provided both propulsion and control.

In contrast to drawing inspiration from nature, some studies have focused on virtual

methods. For example, Yesin et al. (194) developed an untethered elliptical swimmer that

6



can be pulled via magnetic fields. Similarly, a Janus sphere was magnetically steered in

the work by Chen et al. (22). This study also provided an example of using magnetic

fields to trigger an effective scavenger mode for noble metals. Additionally, Jang et al.

(85) employed flexibility to realise a modified version of Purcell’s theoretical three-link

swimmer (see 1.4.1). In the study, a three-link swimmer was magnetically deformed to

exhibit planar undulation.

These examples have paved the way for more precise, efficient, and biodegradable

magnetically controlled swimmers. Deformable materials have been employed to increase

the functionality of microbots, offering dynamic shape transformations and different oper-

ational modes. For example, Fusco et al. (51) showcased self-folding microtubes in-silico

and in vitro environments. In the research by Huang et al. (78), a thermal stimulus was

used to change the morphology of a magnetically guided hydrogel bilayer. Polymer-based

composites and other degradable materials have also been exploited to reduce potential

harm and improve in vivo applicability. Peters et al. (144) fabricated a canonical helical

swimmer made of poly(ethylene glycol) diacrylate (PEG-DA) for drug delivery purposes.

Recently, Luan et al. (114) streamlined a micromotor by alginate hydrogel. The swimmer

combined catalytic bubble propulsion (will be detailed in section 1.3.2) with magnetic

navigation to demonstrate run-and-tumble motion.

For a more detailed review of recent developments and future directions of magnetically

driven microswimmers, readers are referred to the study by Shen et al. (162). In the next

section, we will explore the usage of acoustic waves in microbot studies.

1.2.2 Acoustic Waves

Acoustic waves and ultrasound have been used both as an energy source and a guidance

mechanism in artificial microswimmers. Generally, they are regarded as safe options capa-

ble of penetrating through soft tissues (182). This feature renders acoustic waves suitable

for controlling microbots carrying therapeutic payloads in biomedical applications. The

direct usage of ultrasound for motion is based on the principle of inducing particle motion

7
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Figure 1.4: The schematic illustrates different applications of acoustic microswimmers.
Panel (a) depicts the study of Wang et al. (182). In panel (b), the previous work of

Esteban-Fernández de Ávila et al. (42) is redrawn.

via adsorption and reflection of acoustic radiation. A travelling or standing wave excites

the swimmer in a highly biocompatible manner, and around the early 2010s, this property

began to be considered as an alternative to magnetic fields.

In a landmark study, asymmetric nanorods were levitated by acoustic fields to propel

in water (182) (see figure 1.4a). A similar mechanism was employed by Ding et al.

(35) to manipulate microparticles with an acoustic tweezer. Later, acoustically propelled

microbots were advanced on the nano-scale and used for in-cell operations. For example,

Wang et al. (183) operated nanorods in two different modes, namely translation and

spinning, inside living HeLa cells. In another study, small interfering RNA-loaded (siRNA)

acoustic nanowires transported intracellularly (42) (see figure 1.4b).

Aside from these examples, the compatibility of acoustic waves has been combined

with other propulsion mechanisms and has been used in fuel-free swimming. In the study

by Valdez-Garduño et al. (179), an ultrasound-driven Janus particle was oriented by fixed

magnetic fields. Another approach was experimented with by adding a metallic helical tail

to a nanorod (106). The design of the micromotor offered to benefit from both acoustic

waves and magnetic fields to have double propulsion. Other examples of hybrid swimmers
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Figure 1.5: The faces of light-propelled Janus swimmer can consist of different material
pairs, such as gold (Au) and titanium dioxide (TiO2), corresponding to pink and grey
colours in the schematic. There is a transfer of H+ and H2O in the opposite direction to

the motion.

and propulsion methods, particularly acoustically controlled bubble propulsion, will be

provided in section 1.3. A more detailed literature review of acoustic propulsion can be

found in the study by McNeill and Mallouk (124). In the next section, we will explain

light-propelled swimmers, which lie between external and self-actuation techniques.

1.2.3 Light Intensity

In light-propelled swimmers, mostly photoanodes and photocathodes are incorporated.

The gradients of light around the swimmer result in an anisotropic distribution of ions,

and hence propulsion (201) (see an illustration of the mechanism in figure 1.5).

An important example of exploitation of this mechanism was performed by Liu et al.

(112). In that study, a nanomotor drove a disk O(104) times larger than its own body

via linearly polarised light. In another investigation, a photocatalytic Janus sphere was

propelled by UV light (38), suggesting a direct proportionality between swimmer speed

and light intensity. A similar Janus particle was enhanced to swim in multiple wavelengths

(86). Additionally, in the same study, the motion of the swimmer was manipulated to

either stop or continue by toggling the light off and on.
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Although these studies have demonstrated fruitful applications of light propulsion,

the penetrability of light into soft tissues is more limited than that of magnetic fields and

acoustic waves. As a result, these swimmers are often used near surfaces in vitro, and

light is devised as a triggering mechanism or for navigation rather than propulsion. As

an example of light-triggered thermophoresis (will be explained in 1.3.1), Wu et al. (192)

produced polymer-based tubular microrockets that could reach high speeds such as 10

to 15 body lengths per second. In another study, a catalytic microtube was employed

to release gas bubbles from the body by light stimulus (132). The combination of these

two mechanisms promised a selective nucleation area for bubble growth. Later, the same

principle was applied to Janus spheres with the aim of decomposing pollutants (109).

Recently, Rey et al. (154) published a detailed review of similar uses of light intensity in

the intersection of microswimmer studies and soft matter.

In this section, we complete our description of external actuation methods and piv-

otal studies. Research on externally-actuated microbots has significantly enhanced our

understanding of the dynamics of artificial swimming at the microscale. However, due

to complexity of the tasks and concerns regarding biocompatibility, external actuation

mechanisms have yet to be fully commercialised. In the next section, we will delve into

self-propulsion mechanisms as an alternative solution to these issues. It should be noted

that hybrid methods will also be given in the same section.

1.3 Self-Propelled Swimmers

Self-propulsion is crucial to reaching the potential of smart microbots. It requires a certain

level of environmental awareness, and necessary tools to exploit ambient conditions (131).

Therefore, acknowledging this reliance on external factors, they may be mentioned as

fuel-dependent micromachines.

This fuel for converting mechanical or chemical energy to work is mainly hydrogen

peroxide H2O2. Although other solutions can be used to propel swimmers (83), H2O2
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has been abundant in synthetic swimming because it can easily decompose. This ambient

solution is used to start a chemical reaction resulting in either a field gradient or nucleation

of gas bubbles. While the first mechanism forms the basis for phoretic motion, the latter

refers to bubble propulsion. In sections 1.3.1 and 1.3.2, we will introduce these two

methods in self-movement at the microscale.

1.3.1 Phoretic Microswimmers

In phoretic motion, the movement of the particles is induced by field gradients. These

gradients can result from the heterogeneous distribution of chemical concentration, elec-

tric potential, or temperature field. The field gradients cause anisotropic surface reactions

which result in motion. Self-phoretic or autophoretic microbots can establish these gra-

dients themselves. Since Paxton et al. (143) experimentally performed the first example

of phoretic motion, different versions of it have become ubiquitous in microbot studies.

The most common type of phoretic motion occurs due to gradients in chemical con-

centration. This mechanism is known as diffusiophoresis. Diffusiophoretic motion can

be considered somewhat analogous to the attraction of sperm to the egg (8) or bacte-

ria’s search for nutrients (49). In general, a chemical reaction, i.e., the decomposition

of hydrogen peroxide, happens on a part of the swimmer’s body. Consequently, the bal-

ance between attractive and repulsive forces between the ambient fluid and particle is

perturbed. This imbalance gives a push or pull, causing the swimmer to wander (see

figure 1.6a).

As a theoretical benchmark study, Golestanian et al. (64) mathematically described

a self-diffusiophoretic Janus particle. Following this, experimental studies realised self-

diffusiophoresis for Janus particles. Howse et al. (76) investigated the relation between the

directed motion of a Janus swimmer and the solute concentration. In the same study, it

was observed that the long-term dynamics of Janus particles yield random walks. Later,

Pavlick et al. (142) propelled a Janus sphere with chemical reaction products due to

polymerisation. The study also promised precise navigation by harnessing the chemotaxis
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(a) Diffusiophoretic motion is
illustrated.

Reactant

Product

(b) Electrophoretic motion is
demonstrated by the schematic.
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(c) Temperature gradients along the body generate motion.
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Figure 1.6: The figures illustrates the working principles of diffusiophoretic, elec-
trophoretic, and thermophoretic microbots from panel (a) to panel (c) in respective order.
In each figure, the motion occurs from left to right. In panel (a), the grey face represents
an inert material and the pink face triggers a catalytic reaction. In panel (b), the colours
can be considered as a metal pair such as platinum (Pt) and gold (Au), and the electron
transfer is in the opposite direction to the motion. In panel (c), due to the thermal gra-
dient fluid particles at the left-hand side obtain more energy and hit the active surface,

resulting in propulsion.

12



behaviour through monomer concentration.

These insights have paved the way for employing diffusiophoretic swimmers for more

complex tasks. For example, an autophoretic vesicle was proposed in local drug delivery

across the blood-brain barrier by Joseph et al. (90). Different studies showcased spatially

intelligent micromachines to sense pollution to clean (147) or solve a so-called maze (48).

While these studies illustrate the versatility of self-diffusiophoretic motion, there is

another study we would like to mention. In the work by Brown and Poon (16), the swim-

ming velocity of a self-diffusiophoretic swimmer was limited in the presence of additional

surfactants. This was due to increased ionic strength and, hence, a reduction in reaction

rate. This relation suggested that in most cases diffusiophoretic motion was accompanied

by electrophoresis as well.

The idea of electrophoresis dates back to the 1950s. Mitchell (127) proposed that

if a bacteria could pump ions asymmetrically and exchange them with the surrounding

medium, it would swim without a limb. To the best of our knowledge, there is no biological

example of this phenomenon (186). However, this definition can be adapted to microbots;

if a gradient of electric potential exists, ions will constantly travel along the body and

propel the artificial microswimmer (see figure 1.6b).

The very first experimental study of self-electrophoresis can be found in Paxton et al.’s

study (143), in which bimetallic microrods consisting of gold and platinum were used to

transfer protons from one end to the other end. This process resulted in a motion along

the rod’s long axis, hence, swimming in a hydrogen peroxide solution. Later, different

metal combinations were experimented with to increase or decrease the reaction rate to

control the speed of the microswimmer. In that regard, Wang et al. (185) demonstrated

that as the mixed electric potential of the metal pair, higher translational speeds can be

obtained.

However, some of these metal pairs were not biocompatible and could not be applied

to operations in biological systems. Thus, different materials including enzymes and

hydrogels have been suggested as remedies. Mano and Heller (119) designed a carbon
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fibre motor that can swim at the air-solution interface via bioelectrochemical propulsion,

which can be classified as the first example of enzyme usage on the millimetre scale.

Over time, thanks to advancements in microfluidic technologies, the length scale of these

devices has started to shrink to the microscale. In Pavel et al.’s study (141), hemoproteins

capable of catalysing hydrogen peroxide were employed to establish self-electrophoresis on

nanorods. However, there still remains a need for further improvement in biodegradable

electrophoresis.

Thermophoresis as an independent mechanism from ionic strengths and hazardous

metals, may offer a more bio-friendly option for microbots. In thermophoretic motion,

a temperature gradient exists throughout the body of the swimmer. The anisotropic

distribution of temperature causes more collisions with surrounding particles on the hotter

side. This process causes a momentum exchange, hence, locomotion (see figure 1.6c).

A prime example of self-thermophoretic motion was given by Jiang et al. (88). In that

study, a Janus particle induced by a laser beam performed self-thermophoretic motion.

Later, Qian et al. (151) not only propelled the swimmer with thermophoresis but also

numerically optimised a steering strategy to control the trajectory.

In terms of the external navigation of the microbot, other mechanisms have been

combined with self-thermophoresis. For example, Baraban et al. (4) suggested using

magnetic fields to direct self-thermophoretic Janus particles. The purpose of this hybrid

approach was to have precise control over a biocompatible swimmer. With a similar

motivation, Qin et al. (153) utilised asymmetric catalytic reactions on the Janus particle,

creating a temperature gradient in the ambient fluid.

With these examples, we have shed light on some fundamental concepts of phoretic

motion. Recent developments in this field can be found in reviews of the literature by

Jang et al. (87) and Wang (181). In the next section, we will exemplify the studies on

the bubble propulsion mechanism. It should be noted that section 1.3.2 will be more

comprehensive than the previous sections. This is due to the fact that our collaborative

study described in Chapter 2 benefited from the bubble propulsion method.
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Figure 1.7: The schematic describes the working principle of a bubble-driven conical
microtube. The top illustration is redrawn from the previous work by Gallino et al. (53).
The inner walls trigger the catalytic reaction and also confine the growing bubble. The

ejected bubble and microbot move in opposite directions.

1.3.2 Bubble Propelled Microswimmers

In the last two decades, bubble propulsion has been studied extensively as a promising

method for steering microswimmers. Generally, bubble-propelled microswimmers produce

gas bubbles that can either detach from the body or burst while still in contact with the

microbot (84). Both the growth of the bubble and its removal can create propulsion,

which raises significant interest in this mechanism.

The first example of a bubble propulsion mechanism can be found in the work of

Ismagilov et al. (84). In the study, millimetre-scale circular plates were moved by the recoil

of oxygen bubbles. The gas was produced as 2H2O2(l) −−→ O2(g) + 2H2O(l) catalysed by

platinum. As bubbles recoiled from the body, the plates moved in the opposite direction.
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Later, the decomposition of hydrogen peroxide was established by Nickel and the release

of oxygen nanobubbles was used to rotate a nanorotor anchored at one end (47). In a

similar study, a bubble-propelled microrocket was introduced by Mei et al. (126). This

tubular jet had two openings, which were responsible for the penetration of aqueous fluid

and the ejection of gas bubbles (see figure 1.7). The bubbles were formed via the silver

(Ag) inner walls and detached from the body due to low adhesive forces. Following

this, asymmetrically rolled up microtubes were designed to drill into biomaterials with

corkscrew-like rotations (167). The mitigation of oxygen bubbles to the trailing edge

resulted in thrust to move the swimmer. The same principle of detaching bubbles from

the microparticle to generate a net hydrodynamic force was suggested for Janus spheres

by Gibbs and Zhao (63) (see the illustration showing the motion of a bubble-driven Janus

sphere in figure 1.8). In different studies, bubble-driven Janus particles have been realised

for cleaning bacterial pollution(140) and targeted cargo transfer(111). Different designs

including shell swimmers (81) and capsule Janus vesicles (58) have also been combined

with catalytic bubble-propulsion.

In addition to catalytic bubble generation, there is also another way of exploiting gas

bubbles for propulsion, which is acoustic excitement. In a landmark study, ultrasound

pulses vaporised the droplets inside a microtube resulting in bubble release accompanied

by a bullet-like propulsion (93). In the study by Bertin et al. (9), an experimentally

manufactured bubble was placed inside an “armour”. While the armour was protecting

the bubble from bursting for hours, the acoustic waves periodically oscillated the bubble,

causing directional motion.

Opposed to the straightforward mechanism of acoustically induced bubble propulsion,

the dynamics of catalytic bubble recoil can be more ambiguous. Even though the cat-

alytic production of gas bubbles is the dominant method for swimming, it is also possible

to mention the presence of diffusiophoresis and electrophoresis. Since the decomposition

equation of hydrogen peroxide may create both chemical concentration and ion gradients,

phoretic motion could also contribute to propulsion. For example, Qin et al. (152) ob-
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Figure 1.8: As a result of a catalytic reaction, the active face of the Janus swimmer,
indicated in pink, produces oxygen bubbles, causing the swimmer to move from left to

right in the schematic.

served the utilisation of both electrophoresis and bubble propulsion in catalytically driven

nanorotors. To identify which mechanism governs the dynamics, Wang and Wu (180) in-

vestigated catalytic Janus dimers. In the study, it was reported that Janus swimmers with

rough surfaces and higher catalytic activity tend to use bubble propulsion rather than

diffusiophoresis. From a different perspective, in-silico study of Zhang et al. (196) nu-

merically compared dominant mechanism according to length scale. The study suggested

for Janus motors whose diameter is smaller than 5µm to 10 µm, self-diffusiophoresis is

the main propulsion mechanism. However, for larger particles, bubble propulsion dom-

inates the motion, resulting in faster translation as well. With these valuable insights,

efforts have been put into optimising the translation speed of bubble-driven microbots

and improving functionality for real-life applications.

For this purpose various parameters including the material of the swimmer, concentra-
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tion of solution, and applicability of multiple propulsion strategies have been tested (92).

In Dey et al.’s study (34), a polymer-based bubble-propelled Janus sphere was manufac-

tured to be sensitive to pH gradients. It was observed that as pH became more alkaline,

the micromotor swam faster. In a different study, the inverse correlation between bubble

radius and generation frequency was discovered for microtubes (166). The authors sug-

gested that as the solution concentration increases, the bubble generation becomes more

frequent, resulting in smaller bubbles and slower translation, which could be essential

to control these microbots. In the work by Sanchez et al. (156), the usage of catalase

enzyme led to the successful motion of bubble-driven microengines in low H2O2 concen-

trations. These microtubes were also rotated depending on the size of released bubble,

which was a prospective application of dynamic self-steering. These results have been used

to manufacture bubble-driven microbots and implement them in complex scenarios. For

example, the study by Gao et al. (59) can be considered as the first in vivo application of

bubble-propelled swimmers. The rod-shaped micromotors operated inside the stomach of

mice for cargo delivery and also gradually self-destructed via gastric acid. Magnetic fields

helped to control the microbot. Singh et al. (163) designed a cubic swimmer made by

zeolite and able to release Ag+ to degrade E.coli bacteria. The porosity of the swimmer

facilitated the simultaneous release of silver ions and gas bubbles. Later, a chitosan-based

Janus micromotor was employed to clean E.coli bacteria pollution in water (31). In that

study, the magnesium-coated face triggered a chemical reaction producing hydrogen gas,

while the chitosan-coated face was employed to decrease bacterial contamination.

These experimental studies have been supported by mathematical models that explain

the bubble growth mechanism. Favelukis and Yablonsky (43) proposed a catalytic bubble

growth model. The study focused on the generation of gas bubbles in quiescent fluids

without any solid surface to attach or recoil and suggested a temperature gradient was

produced as a side product of the reaction. Later, Gallino et al. (54) investigated a

catalytic bubble growth mechanism inside a microrocket and described the process in three

phases: spherical growth, deformation, and exit of the bubble from the cone. The study
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numerically optimised the cone angle to increase the maximum displacement velocity.

In Chapter 2, we will also propose a catalytic bubble growth-collapse mechanism for

microrods.

The latest developments and new horizons of the bubble-propulsion mechanism can

be found in Wang et al.’s study (184). With this, we complete our section on methods

of artificial microswimming. In the next section, we will mathematically describe the

governing equations of the motion of microbots.

1.4 Microswimmer Dynamics and Stokes Flow

Artificial microswimmers can take on different shapes and employ various propulsion

mechanisms. The necessity for this broad spectrum of movement strategies arises from

the fluids in which microbots operate. These microbots move in the Stokes flows. Hy-

drodynamics of any flow can be described with the Cauchy momentum equations, and

Stokes flow is no different (5). The Cauchy momentum equations are given as:

ρ
Du

Dt
= ∇ · σ + F (1.1)

∂ρ

∂t
+∇ · (ρu) = 0 (1.2)

where ρ is the fluid density, u := u(x, t) and F := F (x, t) are fluid velocity, and forces

acting on the fluid, respectively. The stress tensor including the pressure field is denoted

with σ. The arguments of velocity and force are a material point in the fluid, x and time,

t in respective order. Throughout this thesis, scalars will be denoted by lowercase letters,

while vectors will be provided by bold lowercase letters.

In above equations, the material derivative is defined as:

Du

Dt
=
∂u

∂t
+ (u · ∇)u. (1.3)

Since we only work on incompressible flows in this thesis, the density is not a function
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of pressure. Assuming that the density is constant throughout the fluid, mass continuity

or continuity equation in 1.2 can be simplified as:

∇ · u = 0. (1.4)

For Newtonian fluids such as water or aqueous solutions, the stress tensor is defined

as:

σ = −pI+ 2µE(u). (1.5)

In this formulation, p and µ are the pressure and viscosity respectively. It should be noted

that I is the identity matrix. Throughout this study, the viscosity is considered constant.

The fluid strain rate is given by:

E(u) =
1

2
(∇u+ (∇u)T ), (1.6)

which represents the symmetric part of the velocity gradient ∇u.

By substituting equation 1.5 into equation 1.1, we obtain the incompressible Navier-

Stokes equations for a Newtonian fluid as follows:

ρ

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∇2u+ F , ∇ · u = 0. (1.7)

For simplicity, we can express the force acting on the fluid as F = ρg, where g is the

gravitational acceleration vector (148). Then, we can non-dimensionalise equation 1.7 by

introducing the following dimensionless variables:

u∗ =
u

U
, x∗ =

x

L
, t∗ =

t

T
, p∗ =

pL

µU
. (1.8)

Consequently, dimensionless Navier-Stokes equation can be written as:

β
∂u∗

∂t
+Re (u∗ · ∇∗u∗) = −∇∗p∗ +∇∗2u∗ +

Re

Fr2
g

g
(1.9)
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where the parameter groups

β =
ρL2

µT
, Re =

ρUL

µ
, Fr =

U√
gL
, (1.10)

are the frequency number, the Reynolds number, and the Froude number respectively.

Here, the frequency number denotes the ratio of inertial acceleration to the viscous forces.

The second parameter group, the Reynolds number, provides the ratio of inertial forces to

viscous forces, while the Froude number is equivalent to magnitude of inertial convective

forces relative to body forces.

For microswimming studies, the Reynolds number is calculated as Re ≪ 1 by substi-

tuting the appropriate length and velocity scales. Prime examples of low Re swimming

are E. coli and human spermatozoon. The former swims at Re ≈ 10−5 − 10−4, while the

latter moves at Re ≈ 10−2. By considering problems in the “zero” limit for Re, and after

choosing the appropriate force scaling, we obtain the unsteady Stokes equation as follows:

β
∂u

∂t
= −∇p+ µ∇2u+ F . (1.11)

Additionally, for flows where β ≪ 1, the acceleration term on left-hand side of equa-

tion 1.11 may be neglected. This reduction yields the Stokes equation for creeping flows,

given as:

−∇p+ µ∇2u+ F = 0, ∇ · u = 0. (1.12)

It should be noted that equations 1.11 and 1.12 are presented in dimensional form.

Furthermore, the latter serves as the cornerstone of this thesis. Thus, it is essential to

understand the distinct features of the Stokes regime, as discussed in section 1.4.1. In

addition to that, in section 1.5.1, we will provide an analytical solution for the problem of

a creeping flow past a sphere. The solution will be further used in Chapter 4 to determine

the regularisation width.
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1.4.1 Properties of Stokes Flow and Fundamental Solution

We can begin by describing one key property of the Stokes flow: instantenity. In creeping

flows, such as those described by equation 1.12, there is no inertial term or time derivative

(ρDu
Dt

→ 0). This means the flow field is solely determined by instantaneous boundary

conditions and force fields. For example, if a non-deformable sphere sediments under

gravity, it reaches the terminal velocity immediately. An important implication of the

absence of inertial terms is no net force on the swimmer. Thus, the sum of body forces

and external forces should be always equal to zero.

The instantenity of Stokes flow also results in kinematic reversibility. This feature

implies that if the boundary motion is reversed, then the flow field would be equal and

in the opposite direction to the original flow. Consequently, periodic reversible motions

would create a net zero displacement. In a short movie by Taylor (173), the kinematic

reversibility was showcased by mixing and unmixing a parcel of dye and glycerine through

an equal number of rotations clockwise and counterclockwise.

The same film also demonstrated that a rotating helical filament was enough to propel

a body in creeping flows. The non-reversible motion of the helical filament resulted in

non-zero forces on average on the body, what was later described by Purcell (150) as

“Scallop Theorem”. According to this theorem, a scallop cannot move in the Stokes

flow by just periodically opening and closing its shell. Consequently, the swimmers in the

Stokes regime are required to use non-reciprocal deformations to achieve propulsion. As an

illustrative example of bypassing the kinematic reversibility, Purcell proposed a theoretical

swimmer comprising three links connected by two hinges. The swimmer swings its arms

in a non-reciprocal fashion in each beat cycle, as depicted in figure 1.9. Since the periodic

motion of the three-link swimmer is irreversible, it generates a net flow. A similar yet

simpler theoretical swimmer was suggested by Najafi and Golestanian (135), consisting

of three spheres and beating in a non-reciprocal fashion.

Another important feature of the Stokes equation is its linearity, which means that

the sum of two solutions is also a solution of the equation. In other words, if (u1, p1) and
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Figure 1.9: Purcell’s theoretical three-link swimmer moves with changing arm positions
relative to the body (150). The key configurations of swimmer are given as states, with
the green colour indicating the moving arm compared to previous position. The third
state is particularly crucial for inducing non-reciprocal motion. In configuration III, the

red arm shows a theoretical reciprocal deformation, hence, no motion.

(u1, p2) are both solutions, then the following equation is satisfied as well.

µ∇2(u1 + u2)−∇(p1 + p2) + F = (µ∇2u1 −∇p1) + (µ∇2u2 −∇p2) + F (1.13)

∇ · (u1 + u2) = ∇ · u1 +∇ · u2 = 0. (1.14)

This property enables superposition, which has been essential in developing several tech-

niques to model swimming at the microscale. By superposing fundamental solutions, it

becomes possible to describe different and more complex flows in the Stokes regime. To

obtain a fundamental solution, consider a Stokes flow driven by a concentrated force per

unit volume, F = fδ(x − x0). The three-dimensional Dirac delta function is centred at

x0, and x represents a material point in the fluid domain. Then, by using the Green’s

function for equation 1.12, we can write:

u(x) =
1

8πµ
S(x,x0) · f(x0) (1.15)
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where S is known as the Stokeslet or the Oseen-Burgers tensor (148). The stokeslet is a

point force driving the flow field, given by:

S(x,x0) =
I

r
+

rr

r3
, (1.16)

where r = x− x0 and r = |r|. Then, the associated pressure field with this flow may be

presented as (104):

p(x) = H(x,x0) · f , H(x,x0) =
r

4πr3
. (1.17)

Due to the linearity of the Stokes equation, the derivatives of the stokeslets are also

fundamental solutions. The first derivative yields force dipoles, while the second derivative

leads to a source dipole and force quadrupoles (104). Appropriate combinations of these

fundamental solutions can describe a flow field, such as the flow past a sphere, which can

be solved using a stokeslet and a source dipole.

Equation 1.16 contains an anisotropic term, which in component form can be written

as rirj/r
3. This anisotropy plays a significant role in explaining the dynamics of slender

structures such as cilia or flagella in Stokes flows (128). If we consider velocities parallel

and perpendicular to the exerted force, fj (see figure 1.10), we would obtain the following

result;

u∥ =
fj

4πµr
(1.18)

u⊥ =
fj

8πµr
. (1.19)

Equations 1.18 and 1.19 mean that the same force produces a parallel velocity twice

that of the perpendicular direction, i.e., u∥ = 2u⊥. Then, a slender cylindrical object

such as a cilium or flagellum can be modelled as a line distribution of singular stokeslet

forces. By summing the stokeslet solutions along the centreline of the slender body, we

can approximate the velocity field. Consequently, the drag on a slender body moving
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Figure 1.10: The drag anisotropy results in a 2:1 ratio for perpendicular and parallel
forces to obtain the same velocity. The schematic is redrawn from the work of Blake and

Sleigh (12).

along the flow direction is about half that of an equivalent body moving perpendicular to

the flow.

This “two to one” ratio provides a valid approximation for exponentially thin struc-

tures, as first suggested by Gray and Hancock (65). However, over time, Lighthill (110)

and Johnson (89) refined the calculation of drag coefficients, proposing more accurate

models for slender bodies. The physical correspondence of these mathematical descrip-

tions is known as drag-based thrust, which describes how flagellum buckles to propel sperm.

Apart from this natural mechanism, equations 1.18 and 1.19 are essential to understand

deformations of synthetic thin filaments. Therefore, the physical insights from this section

will be employed in Chapter 4 to explain the deflections of filaments due to sedimentation.

It should be noted that the stokeslet solution in equation 1.16 is singular. However,

this singularity can be addressed by regularising the driving force with a technique known

as the method of regularised Stokeslets (25). This method smooths the point forces by

distributing it over a sphere to provide pressure and velocity fields. By using the method
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of regularised stokeslets, fluid-solid interactions for slender filaments or microswimmers

have been modelled in a computationally efficient manner (52). Further details of this

method will be discussed in the next section.

1.5 The Method of Regularised Stokeslets

The method of regularised stokeslets was developed by Cortez (25), and since then, it has

become a powerful numerical tool for investigating viscous flows at the microscale. Due

to simplicity of implementation, the method has been widely used to simulate flagellated

locomotion (136), propulsion of artificial microswimmers (130), reproduction of pollen

tubes (178), and flows in and through porous media (28).

The main purpose of the method is to offer a divergence-free exact solution by removing

the singularity of stokeslet. This is achieved by smoothing the point force in equation 1.15.

The point force driving the flow is distributed over a sphere in R3 as follows:

F (x) = fψϵ(x− x0), (1.20)

where ψϵ is the smoothing function. The position vector x = [x, y, z]T is the collocation

point, and x0 is the location of regularised stokeslet. The radially symmetric smoothing

function is a modified version of the Dirac-δ distribution and has the following property:

∫∫∫

R3

ψϵ(x)dx = 1. (1.21)

Hereafter, the terms cut-off and blob function will be used interchangeably for smoothing

function.

Blob function ψϵ can be defined in many different ways. However, in the original
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Figure 1.11: As spreading increases, the blob function becomes shorter.

studies in R2(25) and R3(26), it is given as:

in R2 : ψϵ(x) =
3ϵ3

2π(||x||2 + ϵ2)5/2
(1.22)

in R3 : ψϵ(x) =
15ϵ4

8π(r2 + ϵ2)7/2
=

15ϵ4

8πr7ϵ
, rϵ =

√
r2 + ϵ2 (1.23)

where ϵ is the regularisation width known as spreading. Regularisation width is a pa-

rameter behaving like the Dirac-δ function as ϵ → 0. It is responsible for limiting the

influence of regularised force. Additionally, for the same cutoff function, different values

of ϵ result in wider or narrower spreading (see figure 1.11).

After substituting the regularised force into equation 1.12, we obtain:

−∇p+ µ∇2u(x) = −fψϵ(x− x0). (1.24)

Equation 1.24, can be solved using the smoothed approximation of the Green’s function,

Gϵ(x) as

∆Gϵ(x) = ψϵ(x) (1.25)

∆Bϵ = Gϵ(x). (1.26)
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Then, equation 1.15 yields to;

u(x) =
1

8πµ
Sϵ(x,x0) · f(x0) (1.27)

where Sϵ is the regularised stokeslet that is given as:

Sϵ
ij(x,x0) =

δij(r
2 + 2ϵ2) + rirj

r3ϵ
(1.28)

in the component form. In equation 1.28, δij is the Kronecker-δ tensor, and r2 = riri.

Equations 1.27 and 1.28 will be the basis of our numerical method in Chapter 4. In the

next section, we will provide an analytical solution for a problem of a Stokes flow past a

sphere.

1.5.1 Stokes Flow Past an Impermeable Sphere

We consider a creeping flow past a rigid sphere with radius m (see figure 1.12). The

background flow has a velocity of U∞ = [U∞, 0, 0]. The disturbance in the flow created

by the sphere held fixed is identical with the same sphere translating with a velocity of

−U∞.

For equation 1.12, it is known that:

∇2w = 0, ∇2p = 0 (1.29)

where w is the vorticity vector. In the axisymmetric case, by using the relationship,

w = −∇2Ψ , we obtain:

∇4Ψ = 0 (1.30)

where Ψ(r,Θ) is the stream function. In spherical coordinates, the radial and polar
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Figure 1.12: The schematic demonstrates the streamlines of a creeping flow around a
sphere. The drag force on the sphere is in the opposite direction of the far-field flow.

components of the velocity can be defined as:

ur =
1

r2 sinΘ

∂Ψ

∂Θ
(1.31)

uΘ = − 1

r sinΘ

∂Ψ

∂r
. (1.32)

In addition, equation 1.30 yields to:

Λ4Ψ = 0 (1.33)

Λ2 =
∂2

∂r2
+

sinΘ

r2
∂

∂Θ

[
1

sinΘ

∂

∂Θ

]
(1.34)

and differential operator Λ2 is different than the Laplacian operator in spherical coordi-

nates.

By applying the no-slip, ur = 0 at r = m, and the far-field boundary conditions where
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ur = U∞ cosΘ, uΘ = −U∞ sinΘ, we obtain flow variables as:

ur =
1

2
U∞

m

r

(
m2

r2
− 3

)
cosΘ (1.35)

uΘ =
1

4
U∞

m

r

(
m2

r2
+ 3

)
sinΘ (1.36)

p = −3

2

µU∞
m

m2

r2
cosΘ. (1.37)

Finally, we can find the traction over the sphere and then by integrating over its surface,

we can obtain the drag force exerted on the sphere (149). The traction can be find

by summing the normal (σrr) and tangential (σrΘ) components of stress tensor given in

equation 1.5. Consequently, the drag on the sphere is:

Fdrag = −6πµmU∞ (1.38)

The result derived in equation 1.38 will be substantial in both our implementation of

regularised stokeslet framework and validation cases (Chapter 4).

1.6 Overview of This Thesis

The remainder of this thesis aims to suggest control mechanisms for hydrogel-based arti-

ficial microswimmers through analytical models, numerical methods, and physical under-

standing, and is organised as follows.

Chapter 2 presents the published article “Fundamental modes of swimming correspond

to fundamental modes of shape: Engineering I-, U-, and S- shaped swimmers”, which

includes a mathematical bubble growth model, image analysis study, and comparison

with experimental results.

Chapter 3 provides the necessary background information about gels and responsive

hydrogels. In addition, our discrete multiphysics study for modelling hydrogel swelling,

namely “Numerical modelling of heterogeneous stimuli-responsive hydrogels” is briefly
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explained in the same chapter.

In Chapter 4, we propose a simple bead and spring system employing the method of

regularised stokeslets to model hydrodynamics of hydrogel-based active particles. Using

this methodology, we investigate the dynamics of active filaments driven by follower forces

in Chapter 5. The result of that chapter was extended to an article “Dynamics of active

poroelastic filaments” and submitted for publication.

In Chapter 6, the bead and spring system is adapted into the numerical simulations

of the swelling and shrinking process of responsive hydrogels. Our numerical technique

successfully predicts the shape evolution of hydrogel bilayers.

Finally, in Chapter 7, the findings of each chapter are discussed. and future directions

are suggested. The published and unpublished works are provided in the Appendix C.
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CHAPTER 2

BUBBLE DRIVEN HYDROGEL BASED I-, U-,
AND S-SHAPED MICROBOTS

This chapter elaborates on the mathematical bubble growth model in the published paper

“Fundamental modes of swimming correspond to fundamental modes of shape: Engineer-

ing I-, U-, and S- shaped swimmers” (161). The manufacturing and experimental work

for this study were done by our collaborators Dr Juliane Simmchen and Dr Ivan Rehor’s

groups and relevant information is provided in Appendix C. This investigation includes

a summary of the catalytic bubble growth mechanism and the relationship between the

shape and swimming characteristics of rigid microbots. In addition, the findings of this

chapter will serve as the primary inspiration for the rest of this thesis.

Recently, soft materials including hydrogels and gels have emerged as key compo-

nents in partially reaching the avenue of smart or intelligent artificial microswimmers.

Thanks to their biocompatibility, versatility, and low Young’s moduli, these materials

have introduced important properties such as self-assembly (116), self-folding (125), and

self-organisation (80). These beneficial features have been realised through advancements

in manufacturing techniques including Stop-Flow Lithography (SFL). In this study, gel-

based rigid microbots produced using SFL are employed.

In terms of the geometries of microbots, we have been inspired by a previous mathe-

matical phoretic swimmer model proposed by Montenegro-Johnson (129). In that study,

phoretic swimmers reminiscing the first three bending modes were employed for different
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Figure 2.1: Swimmers are dyed to illustrate active and inactive regions. Red tips indicate
active caps, while green sections represent inactive regions.

functions. These swimmers, characterised by their shapes, could have operated as microp-

umps, motors, and rotors. Here, we revisit the previous theoretical study (129) to obtain

physical insight; therefore, we focus on three different shapes reminiscent of the letters

I, U, and S. However, it should be noted that in this study, each microrod preserves its

shape instead of undergoing dynamic shape transformations.

The activity is attributed to the presence of catalase enzyme content in the tips, which

is added to the pre-gel mixtures made of Poly(ethylene glycol diacrylate) (PEGDA) in

microfluidic channels at SFL manufacturing. The enzyme initiates a chemical reaction

with the ambient fluid, which is a solution of hydrogen peroxide H2O2. The chemical

reaction decomposes solution into its components, hence, the production of O2 gas that

accumulates in active regions, forming bubbles (see figure 2.1).

The bubble growth at active caps causes the displacement of the fluid, resulting in

motion, which is then followed by the collapse of the bubble. The hydrodynamics of

microbots are influenced by several factors, including periods of bubble growth-collapse

mechanism, the shape of the swimmer, and the configuration of active and inactive regions.

While we primarily focus on 3-component swimmers (1 inactive region and 2 active tips as

shown in figure 2.2a), we also investigate 2-component swimmers (1 active and 1 inactive

region, as seen in figure 2.2b). An I-shaped swimmer with 2 components is equivalent to

a Janus rod, and a 3-component I-shaped swimmer is referred to as a Saturn rod.

In this chapter, we first present a mathematical model for the catalytic bubble growth
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(a) (b)

Figure 2.2: SFL is used to fabricate 2- and 3-component microrods. The method employs
active and inactive pre-gel mixtures, producing rods consisting of parallel sections. In the

schematic, green represents active tips, while blue indicates inactive sections.

mechanism, comparing it with experimental results. Subsequently, the dynamics and

motion patterns of various swimmers will be described, followed by a discussion of the

results and potential outcomes.

2.1 Bubble Growth Mechanism

In our system, O2 gas molecules nucleate at the active ends as a result of the following

reaction; 2H2O2(aq) + catalase −−→ 2H2O(l) + O2. The growing bubbles increase the

buoyancy of the gel microswimmer, causing motion to occur at the air-water interface, a

common feature in bubble-driven motors (see figure 2.3). Typically, in any bubble-driven

system, three main trends are observed.

Firstly, as bubbles grow, they push the ambient fluid in the vicinity of the swimmer,

leading to anisotropic displacement. This displacement creates a propulsive force which

may result in translation or pumping of surrounding fluid, depending on the shape design.

In the second aspect, the bubble detaches from the body depending on the strength

of adhesion forces and flow properties. During ejection, the bubble and microbot move in

opposite directions to preserve net zero force balance.

The last trend is the collapse of the bubbles, which can occur due to different reasons

such as pressure differences or instabilities. This collapse creates a powerful microjet

perpendicular to the surface to which the bubble was attached. The jet instantaneously
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Figure 2.3: Due to buoyancy force, swimmers operate at the air-water interface. In panel
(a), a rod-shaped motor translates at the interface. Panel (b) illustrates the pumping

behaviour of a 3-component microbot.

impulses the microswimmer and propels it in the opposite direction.

In our study, we only observe bubble growth and collapse. We initiate the analysis

of periodic bubble growth-collapse dynamics with a general description of the Rayleigh-

Plesset equation (145);

p− p∞ =
2σ

rb
+

4µ

rb
ṙb + ρ(rbr̈b +

3

2
ṙb

2) (2.1)

where p corresponds to internal gas pressure, p∞ pressure far away from the bubble, rb

bubble radius, σ surface tension, µ viscosity, and ρ density. The superscript ˙ refers to

the time derivative.

For a microbubble, the capillary forces (Ca = µU/σ ≈ 10−5 ≪ 1 where U is the

microbot velocity) are small and therefore negligible (53). Consequently, the surface

tension dominates the viscous forces, and the bubble remains spherical. In addition,

experimental results suggest that inertial effects are also negligible (118). Thus, we can

eliminate the last two terms at the right-hand side in equation 2.1 and rearrange it to

yield the Laplace Law as following;

p = p∞ + 2σ/rb. (2.2)

The O2 gas inside the bubble obeys the ideal gas law,

pV = nRT, (2.3)
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where V = 4πr3b/3 corresponds the bubble volume and n is the number moles of O2 gas

inside the bubble. The temperature is defined as T ≈ 293K and the ideal gas constant

equals to R = 8.314 Jmol−1K−1.

After substituting these expressions into equation (2.3) and taking its derivative with

respect to time, we obtain:

1

RT

d

dt

[(
p∞ +

2σ

rb

)
4πr3b
3

]
=

dn

dt
, (2.4)

and after a rearrangement, the bubble growth dynamics are given by

ṙb =
drb
dt

=
RT

4π

dn/dt

p∞r2b + 4σrb/3
, (2.5)

where dn/dt is the molar flux of gas into the bubble.

At this point, we may assume that the gas is produced at a constant rate at the

catalytic end, as the solute concentration is constant and gas molecules transfer directly

into the bubble without diffusing (63). In this case, the molar flux can be written as

dn/dt = Q, for some constant Q. Substituting this into equation (2.5) results in the

following;

ṙb =
RT

4π

Q

p∞r2b + 4σrb/3
. (2.6)

After integrating equation (2.6) with the initial condition rb = 0 at t = 0, the final form

of the bubble growth mechanism is obtained as:

p∞
3
r3b +

2σ

3
r2b =

RTQ

4π
t. (2.7)

In equation 2.7, R and T are known parameters with constant values. The bubble

radius, rb, and time, t can be obtained from experimental results. Consequently, we

have a model with a single unknown parameter, Q, which can calculated using standard

numerical methods such as the method of least squares. In the next section, we determine

the molar flux rate by fitting the single parameter to experimental data through an image
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1

Figure 2.4: Frame-by-frame of a single growing bubble over an entire growth cycle. The
blue circle denotes the bubble that is detected by the circular Hough transform.

analysis study.

2.1.1 Detecting Bubbles with Image Analysis

The image analysis is conducted by an in-house code processing the experimental data set.

The process begins by importing video microscopy data into MATLAB®. The bubble

detection function displays the first frame of the video to the user, who then selects a

small region of interest(ROI) using ginput function which identifies the axis coordinates.

Subsequently, the algorithm iterates through each frame to detect the bubble radius.

Since bubbles remain spherical, an algorithm detecting circular shapes can find the

radius as a function of time, corresponding to the number of frames in this case. For this

purpose, MATLAB®’s built-in function imfindcircles was employed, as shown in figure 2.4.

The imfindcircles function uses Circular Hough Transform (CHT), a specific version of

the Hough Transform based on the Canny edge detector algorithm. The Canny edge

detector was designed to extract structural information by converting colour triplets to

the grayscale (19), making it convenient for finding the intensity gradients in the filtered

data. The method can be summarised in five main steps.

First, a Gaussian filter is applied to the image data to remove noise. The Gaussian

filter is passed across each pixel to smooth the image, reducing the likelihood of false edge

detection. In the second step, the image is filtered to determine the edges and intensity

values by calculating the first derivatives in the horizontal and vertical directions.

In the third step, a gradient magnitude threshold or lower bound cutoff suppression
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Figure 2.5: The radius of a single bubble as a function of time over multiple growth-
collapse cycles. A subregion of clean data are selected to be used for phase averaging.

is employed for edge thinning process. This step aims to locate the sharpest change in

intensity value. Edge strengths are compared for each pixel, and the algorithm determines

whether the value should be retained or suppressed. The next step can be considered as

identification of remained edge pixels due to variations in colour or noise. Pixels are

categorised as strong or weak edge pixels based on predefined threshold values. As a

result, smaller gradient values than the weak edge threshold are removed.

In the final step, the connection between edges in a blob is analysed. If a weak edge

point is involved in the same 8-point blob (also known as an 8-point neighbourhood) with

a strong edge point, it is preserved, while others are suppressed. With this, edge tracking

process by hysteresis is finalised.

The CHT follows a similar process to Canny edge detector, but it specifically finds

circular shapes among all the edges. For each edge, circles are drawn with the desired

radius. The intersection point gives the coordinates of the centre of the real circle in the

image. After distinguishing the circles, the routine eliminates some of them according to

user-given parameters, which is termed as voting. The minimum radius and the object

polarity are some of the user-given parameters in the CHT. The robustness of the function

circumvents the possible inaccuracies due to noise.

Using the CHT, the radius over time as a periodic signal is plotted, and a region

of interest is selected on the data, as depicted in figure 2.5. This region of interest is

phase averaged by using the locations of the bubble collapses, and the averaged data set

for bubble radius is obtained for comparison with the mathematical growth model (see
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Figure 2.6: a) The bubble growth cycles are phase-averaged to obtain a dataset. b) The
flux rate Q in equation 2.7, as a single parameter, is fitted to experimental data using the

method of least squares, showing good agreement.

figure 2.6a).

The flux rate Q can be determined by inserting ambient pressure and surface tension

into the equation 2.7. At the air-water interface p∞ = 1 atm = 101 325Nm−2 and

surface tension can be considered as σ = 7.2× 10−2Nm−1 for microbubbles, as reported

in the literature (53). By using the method of least squares, the flux rate is found to be

Q ≈ 8.45× 10−13mol s−1.

We can determine the bubble radius over time through reverse engineering by inserting

Q into the same equation. The comparison between the periodic bubble growth-collapse

model and the experimental data shows good agreement in figure 2.6b. It should be noted

that the initial stages of bubble growth in experiments could not be captured due to the

minimum radius requirement in the CHT algorithm.

In our results, we observe a considerable fluctuation in the flux rate from cycle to

cycle, with Qmin ≈ 6 × 10−13mol s−1 and Qmax ≈ 1.2 × 10−12mol s−1. As the flux rate

increases, bubbles grow faster. Although this variance occurs stochastically, a long-term

trend is detected in terms of decaying maximum bubble radius and slower bubble growth.

In figure 2.7 both trends are depicted for multiple cycles. In these figures, the legend

represents the bubbles at different edges of swimmers for the entire experiment. The

decrease in maximum radius can be interpreted as the decay in the molar flux of gas
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Figure 2.7: Panel (a) shows the steady (linear) decay of the maximum bubble radius
over time indicating degradation of the catalytic enzyme. In panel (b), period between

collapses shows a steady increase.

into the bubble. The molar flux could decline over time due to depletion of the local

solute concentration, or the diminishing catalase enzyme at the active end. However, it

is noteworthy that the same decay is observed for both pumps (3-component I-shaped)

and translators (3-component U-shaped). The fact that 3-component U-shaped swimmers

wander into areas rich with solute reduces the likelihood of the first possibility. Therefore,

enzymatic degradation emerges as the main cause of decay in molar flux.

Before explaining the hydrodynamic motion of artificial microswimmers, we examine

the reasons behind the collapse of bubbles. In general, during the growth period, the gas

pressure inside the bubbles begins to drop to values similar to those of the surrounding

liquid. Due to this pressure drop, at some point the bubble becomes unstable and even

a small fluctuation may cause a violent collapse. The threshold value for the collapse

mechanism is defined with Blake critical radius (69) and given as:

rc =

[
9mgRT

8πσ

]1/2
(2.8)

where mg is the mass of the gas. We can estimate the mass by multiplying the average

molar flux Q ≈ 8.45× 10−13mol s−1 with average collapse time tc ≈ 0.5 s.
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(a) (b)

Figure 2.8: I-shaped microbots swim in different modes depending on the number of poles
they possess. Panels (a) and (b) show the motion of Janus and Saturn rods respectively,

as captured in the experimental work.

By substituting the values of gas mass and other parameters into equation 2.8, the

critical radius is found rc ≈ 70 µm. On the other hand, the experimental data in figure 2.5

shows that bubbles collapse when the radius reaches approximately 20 µm. At the free

surface, the film that covers the bubble gets thinner over time and becomes fragile (195).

Thus we can suggest that the collapse occurs due to oscillations at the air-water interface

that are present enough to rupture the bubble. In conclusion, while the growing bub-

ble gives steady propulsion to the microrod, the collapse mechanism creates a secondary

impulsive effect in the form of a microjet. Since the bubble growth and collapse mecha-

nisms are fully explained, we can detail the characteristic swimming patterns of microbots

thoroughly.

2.2 Fundamental Modes of Swimming

The investigation begins with I-shaped rigid rod swimmers. Ideally, for a 2-component

I-shaped swimmer, the active end periodically produces bubbles. As microbot raises to

the air-water interface due to increasing buoyancy, the bubbles continue to grow and

collapse (see figure 2.8a). Since the 2-component I-swimmer has only one active end,

the bubbles exert a single force on to the swimmer. This force is balanced by drag and

consequently, the I-shaped microbot translates ballistically. On the other hand, in a 3-

component I-shaped swimmer the active tips are located at each end, which creates a

symmetric geometry. Consequently, the propulsive forces at the active ends are equal

in magnitude but act in opposite directions, which leads to zero net force. Thus, the
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Figure 2.9: Typical motion patterns of the differently shaped particles: a) pumping of
I-shaped swimmers b) translating movement of U-shaped swimmers and c) rotating S-

shaped swimmers. The scale bar equals 150µm.

swimmer pumps the fluid around, which is demonstrated in figures 2.8b and 2.9a.

In the case of a 3-component U-shaped swimmer, the propulsive forces arise in the

same direction, balanced by the viscous drag, thus enabling forward movement. As a

result, the microswimmer achieves ballistic locomotion (see figure 2.9b).

The 3-component “S” swimmer functions as a rotator due to its geometry. Similar

to the 3-component I-shaped swimmer, the propulsive forces are equal and in opposite

directions, yet the shape of the swimmer induces a torque. The torque is counteracted

by the rotation, as can be seen in figure 2.9c. However, owing to the stochastic nature

of the nucleation sites, the forces are not entirely opposite in direction. Consequently,

the S-shaped microrod undergoes translation as well. In summary, the I-, U-, and S-

shaped microbots mirror the first three modes of buckling or shape, corresponding to the

first three modes of swimming: pumping, translation, and rotation (see the schematic

illustrated in figure 2.10).

It is important to acknowledge that these are ideal scenarios with flawless manufac-

turing and simultaneous bubble production on both ends. However, when accounting

for intrinsic stochasticity of locations in bubble generation, time lags between periods

at opposite ends, and minor manufacturing variations, the swimmers may exhibit differ-

ent behaviours. For instance, on figure 2.11a, a Saturn microrod (3-component I-shaped

microbot) generates multiple nucleation sites at one of its active caps. As a result, the

opposing forces are not balanced, leading to translational motion accompanied by rota-
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Figure 2.10: The interplay between the shape and bubble force directions determines the
dynamics of the microbot. In the zeroth mode, the I-shaped microbot pumps the fluid
around. The first shape mode corresponds to translation. An S-shaped microbot that

represents the second mode rotates.

tion.

Furthermore, the number of active poles also changes the characteristics of the swim-

mer. In figure 2.11b, a U-swimmer with a single active pole performs translation accom-

panied by rotation. In the case of a 2-component U-swimmer, the absence of a balancing

tip force results in a moment around the centre of the swimmer and subsequent rotation.

In the case of asymmetric S-swimmers, there is no change in rotational behaviour because

a single bubble can produce a torque around the centre (see figure 2.11c). However, the

velocity and rotation periods of swimmer are affected by such change. With this, we have

presented our results. In the next section, we will highlight some of the findings and

explain how these results influence our research.

2.3 Conclusions and Inspiration

In conclusion, this study aims to understand the effects of shape and bubble growth

mechanisms as propulsive forces in rigid microrods. The swimming modes of gel-based
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Figure 2.11: Motion patterns of the differently shaped particles caused by the influences
described above: a) partial rotation, partial translation of I-shaped swimmers b) partial
rotation, partial translation of U-shaped swimmers and c) rotating translation of S-shaped

swimmers. The scale bar equals 150 µm.

microbots are significantly dependent on the shape, the number of active poles, manufac-

turing quality, and the inherent stochasticity of bubble sites. In general, it is observed

that 3-component “I” swimmers pump stresslet-like flows, while “U” and “S” swimmers

exhibit translation and rotation patterns, respectively. On the other hand, due to the

factors mentioned, each swimmer has the potential of demonstrating other behaviours,

such as translating I-swimmers, rotating U-shaped microbots, and translating S-shaped

rotors.

The findings of this chapter motivate us to investigate the relationship between these

shapes and swimming patterns in different setups. Our main inspiration lies in under-

standing the transitions between these shapes, thereby gaining control over the swimming

modes. Achieving such control could facilitate navigating the swimmer to accomplish in-

tricate missions. Having translation, rotation, and pumping behaviours within the same

swimmer could help in performing complex tasks, including local drug delivery and mi-

crofluidic mixing in environments with obstacles.

The transitions between these shapes can be done through various means, such as

using deformable materials or changing the volume of the microswimmer. Soft hydrogels

offer both of these features. Due to their low Young’s moduli, they can buckle, twist, and

bend into different shapes under external forces. Another effective method of changing

their shapes is by shrinking or swelling the hydrogel. Responsive hydrogels, as a special
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type of gel, can absorb or release fluid when they are stimulated by external factors such

as pH or temperature.

In the following chapters, background information will be provided about the charac-

teristics and historical development of such materials, and both shape transition strategies

will be showcased through numerical studies.
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CHAPTER 3

INTRODUCTION TO SOFT MATTER AND
HYDROGELS

Soft matter is the general name for materials that can be easily deformed under thermal

or mechanical stresses, e.g., polymers, surfactants, liquid crystals, colloids, foams, and

gels. The name itself was coined by de Gennes (30) who contributed to the recognition

of polymers and liquid crystals, during his Nobel Prize acceptance speech. Soft matter

provides a middle ground between fluid and solid phases of matter; therefore, it is also

referred to as “complex fluids”. This intermediate position is mainly due to the complex

and unusual molecular structures of soft matter. At the molecular level, their units are

individual and disordered like fluid particles, which allows them to swap positions and flow.

However, on larger length scales, there is an order that forms structures. Consequently,

the material responds as a whole. In other words, their subunits (macromolecules) are

large enough to neglect quantum effects, but also small enough to be impacted by thermal

fluctuations (37).

This interaction between the fluid and solid states results in significantly “exaggerated”

responses to external stimuli such as temperature or pH. A small shift in these factors can

lead to considerable changes in material properties. Furthermore, soft matter is capable

of self-assembly, which plays a vital role in biopolymers such as DNA and RNA (189).

These dynamic responses can be tailored for specific functions, ranging from drug delivery

systems to smart actuators, depending on the type of soft matter.
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(a) A cartoon schematic of a polymer
chain is illustrated.

(b) Surfactants cover the surface of
the fluid.
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Figure 1. Chemical structure of the prepared PNIPAM hydrogels
crosslinked by MBA.

Table 2. Elemental analyses of the prepared PNIPAM hydrogels
crosslinked by MBA.

Chemical elements

Hydrogel C (%) H (%) N (%)

No. 1-1 58.48 9.58 11.34
No. 2-1 58.26 9.56 11.42

the chemical compositions of the hydrogels No. 1-1 and No.
2-1 were almost the same. The chemical structure of the
prepared PNIPAM hydrogels crosslinked by MBA is shown
in figure 1. Therefore, it could be concluded that the overall

 

(a) (b)

(c) (d)

Figure 2. SEM images of the internal microstructures of PNIPAM hydrogels: (a, b) with homogeneous microstructure (samples No. 1-1 and
No 1-3), and (c, d) with heterogeneous microstructure (samples No. 2-1 and No 2-3). Scale bar 10 µm.

degree of crosslinking in PNIPAM hydrogels No. 1-1 and
No. 2-1 could be considered the same. That is to say, the
difference in the thermo-responsive characteristics of PNIPAM
hydrogels described in the subsequent sections resulted from
differences in internal microstructure, because the chemical
compositions of the PNIPAM hydrogels were the same.

3.2. Internal microstructures of PNIPAM hydrogels

Figure 2 shows SEM images of the internal microstructures
of PNIPAM hydrogels prepared under different conditions.
Samples No. 1-1 and No. 1-3 shown in figures 2(a) and (b)
were the PNIPAM hydrogels prepared at 25 ◦C (below the
LCST), and samples No. 2-1 and No. 2-3 shown in figures 2(c)
and (d) were prepared at 60 ◦C (above the LCST). Obviously,
hydrogels No. 2-1 and No. 2-3 have a heterogeneous internal
microstructure, composed of numerous small gel particles
with submicrometre dimensions. These small gel particles
could be considered to be microgels formed by the phase
separation, because the preparation temperature of these
hydrogels (60 ◦C) was much higher than the LCST of PNIPAM
polymer. On the other hand, hydrogels No. 1-1 and No. 1-3
have a homogeneous porous honeycomb-like microstructure
that is distinct from the internal microstructure of hydrogels
No. 2-1 and No. 2-3. The SEM observations confirmed the
supposition proposed by Kayaman et al [19]. In their report,
Kayaman et al also prepared PNIPAM hydrogels at different
temperatures, and they thought that the hydrogels prepared
at different temperatures might have different structures by
visual observation of the turbidity of hydrogels. Possible
explanations for the formation of different microstructures of
PNIPAM hydrogels could be as follows.

Although the preparation recipes for samples No.
1-1 and 1-3 were different, the internal microstructures
of hydrogels No. 1-1 and 1-3 were similar to each other,
and the situation was the same for hydrogels No. 2-1 and
2-3. It could be concluded that the internal microstructures

1770

1

Figure 3.1: Various examples of soft matter are demonstrated. Panel (a) is the work of
Paul Topham and printed under a CC BY-SA 4.0 license. Panel (e) is taken and reprinted
from the work of Ju et al. (91) with permission from IOP Publishing. In panel (b), the
outer region contains an aqueous fluid, while the pink-coloured droplet is an oil-based

fluid.
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Regarding the categorisation of soft matter, drawing distinct borders between different

groups could be a difficult task, since most materials exhibit common properties. Noting

this, we start classifying with polymers (see figure 3.1a). The name originates from Greek,

meaning “many parts” as a reference to repeating very large macromolecules. Natural

and synthetic polymers are exemplified by DNA, hemp, wool, cellulose, polyethylene,

polypropylene, rubber, nylon, and silicone. The configuration of polymer chains and their

repeat distance determine the material properties of the polymers (189).

Another example of soft matter is surfactants containing two parts within themselves.

One part is hydrophilic, and the other is hydrophobic. When these molecules form bonds

with each other in a bulk fluid, there is a tendency to cover the surface at arbitrary sizes

(134). The outer face of the surface corresponds to the hydrophobic side. In this regard,

it may remind a collection of Janus particles; however, it differs due to its penetrability.

An aggregation of Janus particles has voids between the microspheres; therefore, it is

reminiscent of human skin that is breathable. On the other hand, a surfactant-covered

surface has no pores (see figure 3.1b).

Liquid crystals have molecules that can translate in any direction, similar to fluids;

however, these molecules generally align in the same direction (see figure 3.1c). The

molecules of liquid crystals, known as “mesogens”, have a preferred direction called the

director. This order in direction creates a crystalline structure. These materials have

been widely used in home electronics and biotechnologies (101).

Colloids are fluids filled with granular particles, which can form distinct phases. In

colloids, the scattered impermeable solid particles are suspended in a fluid; therefore, the

word “suspension” is used interchangeably (134) (see figure 3.1d). Similarly, foams can

be categorised as the bubble counterparts of colloids.

Another significant instance of soft matter pertains to gels (see figure 3.1e). We will

numerically investigate the dynamics of gels in Chapters 5 and 6. Therefore, we will

explain the general properties and some examples of gels in the next section, 3.1 in detail.

In the same section, we will approach the problem of flows through a hydrogel from

48



a mathematical perspective. After, in section 3.2, theoretical and experimental studies

about a special type of gels, responsive hydrogels are scrutinised. Hence, the sections 3.1

and 3.2 will provide the foundation for subsequent chapters.

3.1 Gels and Hydrogels

A gel is a dilute polymer or colloidal network that is present in a solvent agent. The

large gaps between the subunits of the network increase the surface area of gels and allow

them to have low density. Additionally, the non-solvent-solute scaffold of gels permits

it to be squished under external forces. The combination of flexibility and low density

makes gels ideal candidates for a plethora of applications. They have been commonly

used in biomedical studies such as tissue engineering, local drug delivery, and contact

lens designs, and also can be found in everyday products, including ketchup, shampoos,

toothpaste, and paints (24).

Gels can be categorised according to solvent type, e.g., air, water, or other chemical

solutions. When a gel is dried, it loses the fluid content and leaves a solid structure

behind. Consequently, the residual porous structure has a large surface area. If the gel is

ambient or freeze-dried, the material is named xerogel. During this process, shrinkage is

observed. On the other hand, if the material is dried at a supercritical state, where the

liquid is transformed directly into a gas without capillary stresses, an aerogel is obtained.

The pores between subunits are filled with air, and almost no shrinkage occurs. The

difference between drying processes leads to variations in porosity values. Aerogels are

known to have larger porosity values which can be up to ≈ 95%, while porosity in xerogels

is around 75% (77).

As another example of gels, hydrogels are swollen in water and were first discovered

by Kuhn (99) and Breitenbach and Karlinger (15) independently. A polymer hydrogel is

made from hydrophilic macromolecules, resulting in a great capacity for absorbing water.

This property can facilitate complex tasks including retaining micro and nanoparticles, or
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covering surfaces by increasing the volume of hydrogel. To maximise the effectiveness of

these applications, it is essential to understand the interplay between the outside and in-

side fluid and the porous structure of the hydrogel. In the next section, we will investigate

mathematical models for the problem of a creeping flow through a hydrogel.

3.1.1 Stokes Flow Through a Hydrogel

From a mathematical point of view, the interaction between the surrounding fluid and

hydrogel is full of rich dynamics. The related understanding can be derived as simplifying

the problem as a flow through a porous medium. Although such simplification may ignore

the chemical mechanisms contributing to the problem, it offers an efficient description of

the physics. Therefore, we review the mathematical models for flows passing through

porous media.

In general, the determination of appropriate boundary conditions increases the com-

plexity of this problem compared to flows passing a rigid object. The number of pores,

their shapes and sizes, and their uniformity add extra depth. Consequently, several models

have suggested approximate solutions for flow through a porous medium.

Historically, the first model of flow in a porous medium was proposed by Darcy (13).

The model established a constitutive relationship between fluid velocity and porosity,

based on experimental observations on flow through beds of sand. According to Darcy,

the volumetric flow rate in a pore, Q can be described as:

Q = −ζApore

µLpore

∇p (3.1)

where ζ is the permeability of the system, and Apore and Lpore are the cross-sectional area

and the length of the void, respectively. As flow passes through the pore, the pressure
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drops. For an isotropic porous medium, equation 3.1 can be expressed in a local form as;

q = − ζ

µ
∇p = ϕu (3.2)

u =
q

ϕ
(3.3)

where ϕ is the porosity of the system and u is the velocity vector for the fluid. While

the original Darcy’s law in equation 3.2 was found experimentally, it can be also derived

analytically (187).

At this point, we recall the problem of creeping flow past a sphere given in 1.5.1 with

a modification. Now, the sphere with radius m is permeable. Therefore, the sphere can be

considered as a collection of many small impermeable spherical elements. In the presence

of gravity, an additional term ρfg is added to equation 3.2, resulting in:

ϕu = − ζ

µ
(∇p− ρfg), (3.4)

which describes the internal flow. By using the stream function in 1.31 and matching

the internal and external flow conditions, the drag on the sphere is obtained as:

Fdrag = 6πµm(1− φ)U∞ (3.5)

where φU∞ is the permeation velocity inside the sphere (36). The permeation criterion,

also known as the deviation parameter, is given as:

φ =
3ζ/2m2

1 + 3ζ/2m2
. (3.6)

The permeability of the sphere, ζ, can be written according to Brinkman’s formulation

as:

ζ =
c2

18

(
3 +

4

1− ϕ
− 3

√
8

1− ϕ
− 3

)
(3.7)

where c is the radius of each impermeable sphere (159). We will use equation 3.5 in
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Chapter 4 for validation.

However, equation 3.4 is not compatible near boundaries since there is no shear term

associated with it (137). As an alternative approach, the Brinkman equation suggests

a mathematical formulation independent of empirical data. The equation provides a

translational velocity between boundaries as follows:

∇p = −µ∇2u+ µα2u, ∇ · u = 0 (3.8)

where α is the resistance of the porous medium (α2 = 1/ζ). The above equation is the

modified version of the traditional Stokes equation with an additional resistance term.

Analytical solutions of equation 3.8 have been used to describe flows in simple porous

geometries including gels in equilibrium, hence, no deformation (50). However, these

solutions would not be sufficient in our particular interest in shape-switching porous hy-

drogels.

For more complex geometries, such as the interaction between a bacterium and arbi-

trary domains with pores, numerical solutions could be used. Especially a fundamental

solution smoothed by regularisation may handle such complicated problems (105). Sim-

ilar to the method of regularised stokeslets (which will be detailed in 4.2), a regularised

Brinkmanlet can efficiently solve the dynamics in a Brinkman medium (27). The only

drawback of any numerical scheme associated with regularised Brinkmanlets occurs when

heterogeneities are intrinsic to the domain. Such heterogeneous domains can be encoun-

tered in media where materials properties, such as permeability, are not uniform. In these

cases, in addition to the loss in accuracy of regularised Brinkmanlet solutions, frequent

re-meshing negatively contributes to computational cost.

To overcome the aforementioned challenges, recently Kamarapu et al. (94) proposed a

new framework that represents the porous medium as a collection of regularised stokeslets.

The method stemmed from the assumption that the flow inside the porous domain is a

creeping flow; therefore, the regularised stokeslets correspond to the solid part of the
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medium. The rest of the domain and the voids between the regularised stokeslets are

fluid. The method was combined with a boundary element method (BEM) to reduce

the dimension of the problems and was applied to the Couette and source flows through

stationary porous domains. This solution procedure has inspired our research. Therefore,

we will extend this method to dynamic and poroelastic boundaries, such as flexible and

porous filaments or shape-switching smart microbots. The details of our methodology

will be given in the next Chapter 4.

In this section, we have discussed the flow within and surrounding a porous medium.

The respective equations provide insights for refining our model in Chapter 4 and address-

ing the problem presented in Chapter 5. In these chapters, the hydrophilic structure of

the hydrogels will be emphasised. On the other hand, in some cases, the positive interest

of hydrogels towards aqueous fluids could be reversed. In the next section, we will detail

the examples of this phenomenon with responsive hydrogels.

3.2 Responsive Hydrogels

Responsive hydrogels can change their physical properties and volume in response to

external conditions. Stimulating environmental factors such as temperature, pH, and light

can reversibly change the affinity of the hydrogel to aqueous solutions, leading to volume

changes such as swelling or contraction. Throughout the volume transition, responsive

hydrogels absorb or expel a significant amount of aqueous fluids (172).

Depending on the type of actuation and cross-linking properties, the mechanics of

volume transition may differ. Although these differences raise interesting questions about

the dynamics, in this thesis we specifically focus on thermo-responsive hydrogels. This

is due to the vast literature about their features (96; 95) and their compatibility with

advanced manufacturing techniques such as stop-flow lithography (161) mentioned in

Chapter 2 or two-photon polymerisation (72).

For thermo-responsive hydrogels, a critical temperature known as the volume phase
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Figure 3.2: Thermo-responsive hydrogels including PNIPAM expel fluid at temperatures
over their LCST. Throughout the volume change, polymer chains start to tangle up, which

is named coil to globule transition.

transition temperature controls the miscibility of the solid skeleton and interstitial fluid

(95). This temperature governs the swelling and shrinking characteristics, and accord-

ingly, thermo-responsive hydrogels can be classified into two groups. The first type of

thermo-responsive hydrogels has a lower critical solution temperature (LCST). At tem-

peratures above the LCST, these hydrogels shrink significantly. Increasing the tempera-

ture weakens the hydrophilic bonds within the polymer chains, and the hydrogel becomes

hydrophobic. Consequently, the hydrogel loses its affinity for the fluid. Meanwhile, the

polymer chains start to form spherical structures (known as coil-to-globule transition),

which decreases the pore size, hence, the release of fluid (see figure 3.2). Throughout

the fluid expulsion, the material becomes stiffer, resulting in an increase in the elastic

modulus (72).

An opposite process can be observed in hydrogels with upper critical solution temper-
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ature (UCST). The hydrophilic bonds strengthen, so the absorbing capacity of hydrogel

increases. Subsequently, the hydrogel starts to swell. Although both groups can be syn-

thetically produced, those with LCST have been employed more often (96). In particular,

poly(N-isopropyl acrylamide) (PNIPAM) has been used widely in in vivo applications

due to its LCST ≈ 32 ◦C, which is around human body temperature (160), and it will

be the main material for our numerical studies. In addition, PNIPAM can operate under

different pH conditions, facilitating the performance of complex tasks in biological sites

including the vagina and gastrointestinal tract (97).

This versatility allows PNIPAM to be used in diverse applications such as fabricating

smart actuators (122), as devices for local drug delivery (97), filling materials for broken

tissues (169), or producing micro imaging apparatus (60). Traditionally, PNIPAM and

other thermo-responsive hydrogels have been used as homogeneous materials. It should

be distinguished that here, homogeneity refers to a single type of material with the same

features. For example, in a study by Bhattarai et al. (10), microdose drugs were immersed

between the polymer chains and squeezed out during the deswelling process. Alternatively,

by employing a thermoresponsive hydrogel with UCST, the drug can be diffused out as

a homogeneous material swells (68). In tissue engineering, PNIPAM facilitated wound

healing as a flexible scaffold that can expand or contract in response to temperature on

the damaged skin (202). The flexible and biodegradable properties of PNIPAM meet the

requirements of real-life implementation. In the study by Cheng et al. (23), temperature-

sensitive hydrogels swelled and morphed into the letters “SOS” to signal an emergency,

drawing inspiration from Morse code.

In these studies, isotropic volume change in homogeneous thermo-responsive hydro-

gels have been exploited. However, these materials may present new horizons. Obtaining

anisotropic responses such as partial swelling/deswelling can pave the way for engineer-

ing programmable passive and active materials, thus, accomplishing more complex mis-

sions (73). Combining different behaviours in the same material can provide precise

control over the shape of the hydrogel, which is the main goal of this research. As a result
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Figure 3.3: The schematic re-illustrates the self-folding behaviour by using responsive
hydrogels as hinges in the study of Ge et al. (62). In panel (a), the responsive middle
section causes an out-of-plane deformation. In panel (b), a cross-shaped rod transforms

into a box, inspired by origami.

of alternating sensitivities, hydrogels can be forced to deform with volume transition in all

three planes via bending, buckling, and twisting. Moroever, other deformation patterns

such as wrinkling or creasing, or origami like programmable-folding (177) can be observed.

To this degree, there has been engagement in both experimental and numerical inquiries.

The simplest mechanism would involve two materials to have a bilayer. As the mate-

rials have different responsivity, controlled deformations could been directed. This prin-

ciple was followed in the work of Stoychev et al. (170). The authors fabricated a star-like

shape at the micron scale by using photolithography. While one face of the star was

made of thermo-responsive PNIPAM, the other face was manufactured by hydrophobic

polycaprolactone. As the material heated, the faces responded differently, resulting in

a closing motion that could theoretically encapsulate microloads. A different attempt

realised out-of-plane deformations with a planar X-shaped hydrogel bilayer, which could

serve as a soft microgripper (108).

A similar strategy would use responsive hydrogels as hinges to connect non-responsive

sections (see figure 3.3). For example, Ge et al. (62) employed 4D printing to engineer
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a flat cross-shape that can fold into a box under heating. The mismatched stresses

at hinge sites forced the structure to bend (see figure 3.3). While both methods have

led to fruitful experimental studies, the chemical attachment of two materials may face

challenges in practical applications. The interface between the material is prone to damage

due to repeated mechanical stresses (41). From a mathematical perspective, different

materials introduce additional complexity to the modelling problem. The presence of

two different materials would involve two elastic moduli and two porosity values that are

not necessarily identical. Therefore, effective modulus and effective porosity would be

required to determine, which can be an intriguing topic of research in itself.

However, recent efforts have been put to utilise a single hydrogel in an inhomogeneous

fashion. Spatial gradients of response within the same hydrogel can overcome interfacial

fractures caused by differences in material properties. The main numerical advantage of

the employment of only one material is the ability to gather all the necessary information

about mechanical properties without further calculation, such as elastic modulus and

porosity. Therefore, simple mathematical models could efficiently predict the evolution

of shape transformation.

Responsive hydrogels with spatial gradients can be manufactured by altering the

monomer or cross-linker concentration (67). In their benchmark study, Hippler et al.

(72) experimentally designed PNIPAM bilayers that can be induced by light. The bilay-

ers consisted of a single material; however, hetero-responses were achieved by adapting

the cross-linking density as dose exposure during manufacturing. Consequently, the bi-

layers performed anisotropic deformations and complex actuation patterns. In Chapter 6,

we will use this study as our main inspiration and provide a qualitative comparison. It

should be noted that the responsivity was mapped to a step function in the mentioned

study. It is also possible to shift the response rate gradually rather than a sharp tran-

sition. Nojoomi et al. (139) manufactured spatially nonuniform rates of shrinkage along

the radius of circular plates. The varying rate of deformation formed more complex 3D

morphologies such as hyperbolic paraboloids.
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Some other efficient strategies have also been suggested for the directional responsivity.

For instance, Maslen et al. (122) introduced PNIPAM-based hexagonal platelets consisting

of struts. The study achieved non-reciprocal actuation by altering the porosity of certain

struts and their respective locations, which is essential for motion in low Re flows. The

pores improved the fluid expulsion/absorption rate, thus a variation in the activation

time. To fully utilise this feature and other heterogeneities in responsive hydrogels, it is

essential to develop a numerical model capable of capturing the interplay between pores

and shape transformation.

In this regard, a number of studies have focused on the development of computational

models. In general, the length scale of the responsive hydrogel is the main determining

factor of the variety of numerical techniques. As the length scale shifts from macro to

micro, the continuum approaches are replaced by discrete models. While the method of

Dissipative Particle Dynamics (DPD) is the ideal candidate for simulating the swelling

and shrinking in the mesoscale (193), Molecular Dynamics (MD) (1) methods and Coarse-

Grained (CG) (121) extensions are more appropriate for estimating characteristics at the

micro- and nanoscale. In MD, polymers are represented as chains of computational enti-

ties; therefore, as the length scale increases, the computational cost becomes exponentially

expensive (33). Using a single computational unit, such as a bead for a lattice of atoms

or molecules, would reduce the cost, as in the case of CG simulations (7). Although such

methods are remarkably useful for explaining the local interactions between pores and

ambient fluid, the bulk dynamics of swelling and shrinking at the macroscopic scale are

mostly described by theoretical mathematical models.

The initial mathematical models regarding the equilibrium dynamics and volume tran-

sition of responsive hydrogels focused on homogeneous materials. Flory and Rehner sug-

gested a foundational theory based on entropy changes and calculating swelling behaviour

by minimising the free energy density (46). The theory considers the shape transforma-

tion of the homogeneous hydrogel, the mixing of the polymer chains and interstitial fluid,

and the energy expended against the osmotic pressure (45). Due to significant defor-
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mations throughout the volume transition, Flory-Rehner theory has been combined with

neo-Hookean expression of elastic energy and shear modulus (113). Similar works have

highlighted the difference between swelling and shrinking behaviours of homogeneous hy-

drogels (17) and shown that shrinking is more unstable compared to swelling (157).

These studies have paved the way for investigating more complex volume transitions,

such as anisotropic deformations due to responsive regions in heterogeneous hydrogels. In

this regard, Tomari and Doi (174) published a landmark article proposing a mechanical

model addressing the internal stresses and flow-related terms in a hydrogel bar with

varying swelling ratios along its length. Later, the same approach was employed for

modelling thermo-responsive spherical hydrogels (175). Based on the experimental results,

Hino and Prausnitz (71) suggested a modification for classical Flory-Rehner theory taking

heterogeneities into account.

Recently, we suggested a hybrid approach that can investigate both fluid-solid interac-

tions at the local pore level and estimate shape transition during swelling and shrinking.

The submitted article “Numerical modelling of heterogeneous stimuli-responsive hydro-

gels” can be found in Appendix C. Our numerical method embeds a Mass-Spring System

(MSM) into a Smoothed-Particle Hydrodynamics (SPH) framework. Since our method-

ology in Chapter 4 will use a bead-spring model, the details regarding such networks will

be provided in the respective chapter. Here, we will elaborate on the general technique

and intriguing results.

The numerical scheme is a particle-based method that can operate in multiscale. While

SPH resolves the fluid-solid interface, MSM is employed to account for elastic deforma-

tions. A distinct feature of the method is the identities of the particles. The particles

stand in the middle of being computational points similar to mesh-dependent discretisa-

tion methods and material elements that are aware of physical properties. This hybrid

approach brings versatility to the method, and from this perspective, it is possible to find

some similarities with the developed method in the next chapter. In terms of the grid, an

unstructured mesh to model a heterogeneous hydrogel cube is generated by tetrahedral
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Increasing channel number
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Figure 3.4: Menger sponges have rectangular channel profiles. Depending on the number
of channels, they may expel fluid locally reaching moderate Reynolds numbers.

elements. Each element is a cluster of 20 elements creating a dodecahedron lattice.

The method is employed to explore the impacts of different parameters, including

elastic modulus and shrinking ratio, on fluid expulsion. The numerical results suggest that

depending on the parameters, deswelling may result in jet formation, which has locally

finite Re, that is pushed out from the pores. These jets can facilitate local drug delivery

with directional tendencies. To numerically realise this intention, we offer different Menger

sponges with varying numbers of channels and directions. These channels are larger

openings than the intrinsic pores of the hydrogel. In this regard, they may resemble

apertures in optic lenses, fulfilling the same purpose of achieving an anisotropic response

as the pores in the previous study of Maslen et al. (122). For example, the velocity profile

of expelled fluid changes in the channel direction with increased circulation and diminishes

in other directions for a one-hole sponge (see figure 3.4). Moreover, it is also noted that

the local Re number becomes two times larger than the cases with no channels. The

study provides insight in regard to design heterogeneity for responsive hydrogels, some of

which will be used in Chapter 6.

To summarise, this chapter has presented examples of soft matter, in particular, fo-

cusing on hydrogels and responsive hydrogels. The material properties of gels will form

the foundation of the rest of this thesis from a numerical standpoint. In the next chapter,
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we will develop our numerical method for flows through porous media.
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CHAPTER 4

METHODOLOGY

Here, we present a simple framework for modelling the dynamics of porous materials in

Stokes flows. We develop a methodology that may be applied to simulate the motion

of artificial microswimmers or active particles of arbitrary shapes. The framework em-

ploys a bead and spring system to capture elastic deformations in the forms of buckling,

bending, and twisting. The method of regularised stokeslets is used to explore non-local

hydrodynamic interactions.

This chapter starts with a description of the bead-spring systems and adaptation in this

study in 4.1. It is followed by an elaboration of the method of regularised stokeslets in 4.2.

Subsequently, both methods are coupled to develop a numerical algorithm (Section 4.3).

The chapter ends with the validation of the developed methodology and a new insight

regarding the sedimentation of porous filaments in section 4.4.

4.1 The Bead and Spring System

Bead and spring systems mathematically represent elastic materials. In general, a bead-

spring network consists of a finite number of nodes (beads) that are connected with elastic

springs. Under external forces, elastic springs can expand, compress, or rotate. Depending

on the requirements of the problem, the springs can be linear, non-linear, or torsional.

Additionally, extra elements such as dashpots can be introduced to the problem setup to
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Figure 4.1: Schematic of a two-bead, one spring system is provided. Dashed lines indicate
the instantaneous positions.

increase damping, thus providing a smoother response.

In the field of applied mathematics and engineering, physical phenomena can be mod-

elled using bead or mass spring systems. These models include polymer physics (11),

microswimmer motility (146), mechanics of non-Newtonian fluids (190), and dynamics of

flexible filaments (32). The mesh-free nature of bead-spring networks has offered com-

putationally cost-efficient solutions. In addition, the bead-spring networks can be easily

employed for arbitrary shapes and heterogeneous materials.

On the other hand, for rod-like structures continuum approaches have been widely

used as well (123). For example, inextensible cylindrical structures including flagella,

cilia, and filaments can be modelled as Kirchhoff rods (3). In their landmark study, Torn-

berg and Shelley (176) combined the slender body theory with Kirchhoff inextensibility

constraint. Although such models provide insight about the dynamics of homogeneous

materials in beam shapes (107), they are not applicable to model porous structures in

complex shapes with heterogeneities. Since bead-spring networks consider interactions of

individual elements with each other, they provide discrete solutions which is essential for

modelling heterogeneity.

These advantages of bead and spring networks have been used to simulate the dynamics

of flexible materials and organisms at the nano and microscale. Previously, Gauger and

Stark (61) presented a bead-spring formulation to model a magnetic swimmer attached

to DNA. Similarly, Manghi et al. (117) simulated a rotating elastic nanorod. In another
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(a) Edges of the tetrahedral elements may
have different lengths.

(b) Collection of tetrahedral
elements creates the body.

1

Figure 4.2: A bead and spring system is used to create porous geometries. In panel (a),
a tetrahedral element is illustrated, while panel (b) demonstrates the meshed volume of

the porous sphere.

landmark study, Delmotte et al. (32) provided a general bead and spring framework for

elastic fibres, in addition to the joint and gear models governing the distance and contact

criteria between beads.

In our model, we begin by creating a 3D geometry in GMSH® and meshing it in an

unstructured grid. The nodes in the mesh are utilised as the beads in our system, while the

links connecting the beads serve as harmonic springs. We create porous geometries with

Nb impermeable beads by assigning each bead an identical radius. These beads correspond

to solid parts or the skeleton of the porous body, while the voids between them represent

the pores in the hydrogel. The radius of each bead is determined according to desired

porosity, ϕ. Since the total volume of the body, V is a known parameter, we can calculate

the volume of each bead as follows:

Vb =
V (1− ϕ)

Nb

(4.1)
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where Vb is a single bead volume. In equation 4.1, the volume of each bead is identical.

Then, the radius of each bead c is given by:

c =
3

√
3Vb
4π

. (4.2)

With this model preference, the heterogeneities in the material are accounted for by

the unstructured mesh. One might argue for different means to address heterogeneous

material properties, such as assigning different bead radii. However, as we will explain

later in section 4.2, our approach emphasises simplifying the model and obtaining robust

results by keeping numerical parameters as constant and uniform as possible.

In the presence of external forces, the beads start to move, causing the Hookean

springs to deform elastically. In our system, the beads are connected by total number

of Ns springs. Then, the rest length between beads a and b, located at xa0 and xb0

respectively, is defined:

Lab = ||xb0 − xa0||, (4.3)

as illustrated in figure 4.1. The distance between the beads during contraction or extension

is given as:

rab = ||rab||, rab =




xb

yb

zb




︸ ︷︷ ︸
xb

−




xa

ya

za




︸ ︷︷ ︸
xa

(4.4)

where xa and xb are the instantaneous positions of the beads.

The unit vector pointing from the centre of bead a to the centre of bead b is defined
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as:

erab =
rab

rab
=




erab,x

erab,y

erab,z



. (4.5)

By inserting equations 4.4 and 4.5 into Hooke’s law, we can write the elastic force on

the bead a:

f spring,ab = −f spring,ba = k(rab − Lab)erab (4.6)

where k is the spring stiffness or spring coefficient.

In our system, the beads are connected in a manner that creates tetrahedral elements

(see figure 4.2a). However, considering the heterogeneity of the material, the number

of tetrahedra formed by each bead is not identical. Consequently, the number of springs

linked to each bead may vary. Moreover, the deflection of these springs can differ in terms

of both magnitude and direction. Therefore, the total elastic force on the ath bead should

be written as a sum, as follows:

f spring,a =

Nc,a∑

b=1

k(rab − Lab)erab . (4.7)

In equation 4.7, Nc,a denotes the total number of beads connected to the ath bead.

Since our model is a mathematical formulation that emulates real-life dynamics, it is

necessary to relate the spring constant in the model to the macroscopic material proper-

ties, such as bending modulus. For this purpose, we adopt the spring stiffness formulation

provided by LaGrone et al. (102). This method relates the elastic energy to the bending

modulus B = EI, thereby providing a constitutive relationship for the spring coefficient

(21). It should be noted that E and I represent the elastic modulus and second moment

of area of the material, respectively.

Then, the elastic energy of a spring network that creates a filament-like shape can be
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calculated as:

Eb =
1

2

Ns∑

a,b

k (rab − Lab)
2 . (4.8)

The bending modulus can be found by bending the filament into a known curvature, κ;

B =
2Eb

κ2L
(4.9)

where L is the length of the filament like spring network. For a known bending rigidity,

the spring constant can be obtained by inserting equation 4.8 into equation 4.9 and solving

inversely.

To bend the filament into a known curvature, we utilise arclength parameterisation

(s ∈ [0, L]) for the centreline and local cylindrical coordinates for the filament as (r,Θ, s).

We begin with a filament with a circular cross-section with radiusR and length L. Initially,

the centreline of the filament is located between xc0(s) = 0 and xc0(s) = L (see figure 4.3).

Then, the centreline of the deformed filament can be written as follows:

xc(s) =
sin(κxc0(s))

κ
(4.10)

yc(s) =
1

κ
− cos(κxc0(s))

κ
(4.11)

zc(s) = 0 (4.12)

The coordinates of the ath bead on the arc with curvature κ is given as:

xa(r,Θ, s) = xc(s) + r cosΘN+ r sinΘB (4.13)

where N and B are the unit normal and binormal vectors respectively, given by Frenet-

Serret formulation. Once the coordinates of all beads are known, the elastic energy can

be calculated.

For a filament with a bending modulus of B = EI = EπR4/4 , we repeat this

procedure for different curvature values κ = 1/(10L), . . . , 1/L, . . . , 1/(L/10). Figure 4.4a

67



xc0(s = 0) xc0(s = L)

r
Θ

1/κ

xc(s = 0)

1

Figure 4.3: Initially, a straight filament is illustrated on top. After bending it into a
known arc, the new positions of the beads are calculated.

demonstrates the bent filaments for κ = 1/(L/5), 1/L, and 1/10L. In figure 4.4b, the

y−axis is normalised according to the average value of spring stiffness. The figure suggests

that the sensitivity of the spring constant to curvature is negligible. When κ = 1/(L/2π),

the filament is bent into a circle. Even for curvatures greater than this value, the spring

stiffness remains approximately identical. Therefore, we will calculate spring constants

for the filaments with κ = 1/2L.

This method offers an easy-to-implement solution and we will follow it for the majority

of this thesis. However, equation 4.9 only holds for rod-like shapes and it is not suitable for

modelling geometries like spheres or arbitrary shapes. To address this limitation, we also

benefit from another formulation, namely the 3D distinct lattice spring model (DLSM).

The DLSM framework was first described by Zhao et al. (199) to relate spring stiff-

ness with elastic modulus in unstructured bead-spring systems. Previous validation cases

for cubic and spherical geometries (200) demonstrated that the method is ideal for mod-

elling arbitrary shapes. Additionally, the DLSM formulation is specifically designed for
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(a) Different curvatures are tested for
calculating spring stiffness.
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Figure 4.4: There is no significant change in spring stiffness according to variations in
curvature. In figure a), three different curves as depicted as an example. In respective
order blue, yellow, and orange curves labelled as I, II, and III have uniform curvatures

equal to 1/10L, 1/L, and 5/L.

unstructured meshes. According to the model, the spring coefficient is given by:

k =
3E

α3D(1− 2ν)
(4.14)

where ν represents Poisson’s ratio. In our method, we will assume that the Poisson’s ratio

is fixed at ν = 0.25. The microstructure geometry coefficient α3D is an effective length

scaling parameter defined as:

α3D =

Ns∑

a,b

L2
ab

V
. (4.15)

It is worth noting that the original DLSM formulation was designed for elastic ma-

terials rather than poroelastic hydrogels. As a result, it may suggest slightly different

spring coefficients for the same system compared to the formulation in 4.9. Both methods

can be calibrated against empirical data, which is planned as a part of further studies in
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Chapter 7. However, for the remainder of this thesis, we will disregard this difference and

utilise the elastic energy formulation for rod-like structures, while the DLSM formulation

will be applied to the other geometries. Additionally, we use the DLSM formulation in

the cases where the material either does not deform at all or is subject to internal stress

rather than external force. In such problem setups, the spring stiffness does not have

an impact on the dynamics, therefore, any large spring coefficient would yield to same

results. In the next section, we will adopt the method of regularised stokeslets described

in section 1.5 for the hydrodynamics in our numerical method.

4.2 The Method of Regularised Stokeslets

In our system, each regularised stokeslet is placed at the centre of its corresponding bead.

Consequently, the number of regularised stokeslets is identical to the number of beads.

With this formulation, the regularised stokeslets may effectively represent both the solid

parts of the porous structure and the interstitial fluid within the pores. To accurately and

robustly describe the hydrodynamics of the system, we need to determine an appropriate

regularisation width, ϵ, for the regularised stokeslets.

For this purpose, we consider a simple problem setup in which the viscous drag on

an impermeable sphere with a radius of m is calculated using the method of regularised

stokeslet. We begin by recalling the velocity formulation with a regularised force, as given

in equation 1.27 and 1.28. Then, the flow field can be described by:

u(x) =
1

8πµ
Sϵ(x,x0) · f(x0) (4.16)

Sϵ
ij(x,x0) =

δij(r
2 + 2ϵ2) + rirj

r3ϵ
. (4.17)

Additionally, as provided in section 1.5.1, the drag force on the sphere is given by

fdrag = 6πµmu. If we consider a single regularised stokeslet with r = 0, implying

evaluation/collocation point is identical to the centre of regularised stokeslet x = x0,
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equation 4.16 becomes:

ui(x0) =
δij2ϵ

2

8πµϵ3
fdrag =

1

6πµm
fdrag (4.18)

∴ ϵ =
3

2
m. (4.19)

In our study, regardless of the number of beads and hydrogel shape, we will adhere to

the formulation in equation 4.19. Previously, Zhao et al. (198) compared the accuracy

of different regularisation widths for the same blob function and also different blobs. We

may consider a similar study for improving our methodology in the future. However, our

selection of the constitutive relation between the bead radius and the regularisation width

is intended to produce a system in which the porosity is user-determined. Therefore, for a

prescribed body volume and desired porosity value, the radius of each bead is calculated

accordingly, and the same regularisation is applied to each bead.

Additionally, the example above uses a single regularised stokeslet to describe the flow

field. However, for slender filaments such as flagella or cilia, or more complex structures

including porous networks, the combination of multiple regularised stokeslets can provide

a more accurate solution. Since we couple the method of regularised stokeslets with our

bead and spring system, for Nb regularised stokeslets, equation 4.16 results in a linear

matrix system that can be written as:

1

8πµ




Sϵ(x1,x1) Sϵ(x1,x2) . . . Sϵ(x1,xNb
)

Sϵ(x2,x1) S(x2,x2) . . . Sϵ(x2,xNb
)

...
...

. . .

Sϵ(xNb
,x1) Sϵ(xNb

,x2) . . . Sϵ(xNb
,xNb

)




︸ ︷︷ ︸
M




f 1

f 2

...

fNb




︸ ︷︷ ︸
F

=




u1(x1)

u2(x2)

...

uNb
(xNb

)




︸ ︷︷ ︸
U

(4.20)

Sϵ(xa,xb) =




Sϵ
xx(xa,xb) Sϵ

xy(xa,xb) Sϵ
xz(xa,xb)

Sϵ
yx(xa,xb) Sϵ

yy(xa,xb) Sϵ
yz(xa,xb)

Sϵ
zx(xa,xb) Sϵ

zy(xa,xb) Sϵ
zz(xa,xb)




(4.21)
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where M is a 3Nb×3Nb matrix, and F and U are 3Nb×1 column matrices. Each element

of F represents the force acting on the ath bead and fa = [fx, fy, fz]
T
a . As we will

detail in the next section, this force can be a combination of gravitational force, spring

forces due to elastic deformations, and external forces such as a compressive pusher force.

The velocity vectors are given by u = [u, v, w]T . Now that we have elaborated on our

bead-spring system and the method of regularised stokeslet, we can develop a numerical

algorithm incorporating both.

4.3 Numerical Algorithm

In our methodology, the elastic deformations of the bead system are coupled with the

hydrodynamic effects resulting from the creeping flow in and out of the porous hydrogels.

We model the interactions involved by distributing regularised stokeslets on the solid

beads. Consequently, the regularised force on each stokeslet is determined by the forces

exerted by each bead onto the fluid.

The numerical algorithm begins with a force balance equation between hydrodynamic

drag, body forces, and elastic deformations. Since we consider sedimentation problems

under gravity for validation in this Chapter, the force balance is given by:

f drag + f spring + f body = 0 (4.22)

where f body represents the gravitational force.

In our model, f spring and f body are known parameters that depend on the dynamics

of the physical system. Therefore, by using the force acting on each bead, the velocity at

any arbitrary fluid parcel within the domain can be estimated. The drag force is applied

by the fluid onto the bead as a resultant force in the direction opposite to the sum of the

body and spring forces.
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After inserting equation 4.22 into equation 4.20, the force matrix F becomes:

F =




f body,1 + f spring,1

f body,2 + f spring,2

...

f body,Nb
+ f spring,Nb



. (4.23)

For sedimentation cases in section 4.4, the body force on the ath bead is written as:

f body,a = ∆ρgVb, (4.24)

which is the sedimentation force resulting from gravity and buoyancy. In equation 4.24,

∆ρ = ρs − ρf is the difference between bead density and ambient fluid density, and

g = [gx, gy, gz]
T .

By implementing 4.7 and the above expression 4.24 into equation 4.23, the force

matrix, F, can be written in vector form as the following:

F =




∆ρgVb +
∑Nc,1

b=1 k(r1b − L1b)er1b

∆ρgVb +
∑Nc,2

b=1 k(r2b − L2b)er2b

...

∆ρgVb +
∑Nc,Nb

b=1 k(rNbb − LNbb)erNbb




(4.25)

where each entry is a 3×1 column vectors. By updating equation 4.20 with equation 4.25,

the velocity at any point in the domain can be determined at any given instant. Alterna-

tively, if the velocities of the solid boundaries are known, the force exerted on the fluid can

be calculated by inverting equation 4.20. In our simulations, we know the body forces;

therefore, once the velocity is calculated, the positions of the beads can be advanced.

Time marching can be performed explicitly or implicitly. Considering a first-order
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forward Euler method, the position of the ath bead is given by:

xn+1
a = xn

a +∆tun
a (4.26)

where the superscript n denotes the time step, and ∆t is the time step-size. However,

the problems that we will solve in this thesis are numerically stiff. To preserve numerical

stability in the presence of numerical stiffness, the explicit scheme requires the use of small

time step sizes, typically on the order of ∆t ≈ O(10−8−10−6). For example, if we consider

a system with Nb = 2283 beads which we will use in 4.4, for ∆t = 10−6, each time step

takes approximately 1 s. Then, simulating a single second of the physical problem would

take around ≈ 11 days. As ∆t becomes smaller and simulation time increases, this wall

time would become even more dramatic.

To avoid this expensive computational cost, we can employ a first-order implicit Euler

scheme. The implicit method allows us to use larger time step sizes, thereby requiring

fewer iterations. The disadvantage of the method is that a single iteration would take

more time since it involves solving a system of ordinary differential equations. In addition

to that, it could be cumbersome to develop an algorithm while preserving the linearity of

the system.

As a remedy to the mentioned issues, we propose a semi-implicit Euler scheme. The

scheme uses a force balance equation at the current time step, n+1, while the positions of

the regularised stokeslets are estimated at the previous time step, n. A similar formulation

for the locations of regularised stokeslets was previously used in the study of Bouzarth

et al. (14). Consequently, the semi-implicit scheme can be written as follows:

xn+1
a = xn

a +∆tun+1
a (4.27)

un+1
a =

Nb∑

b=1

Sϵ(xa,xb)
n ·
(
fn+1

body,b + fn+1
spring,b

)
. (4.28)

In equation 4.28, the gravitational force is constant so it remains unchanged between time
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steps. However, the elastic spring force on the ath bead is adapted as:

fn+1
spring,a =

Nc,a∑

b=1

k(rn+1
ab − Lab)e

n
rab
. (4.29)

It should be noted that, in equation 4.29, the unit vector pointing from the ath bead to

the bth bead, en
rab

, is calculated at the previous time step. This is done to preserve the

linearity of equation 4.20. This assumption limits the rotation of the springs, however,

the resulting error can be neglected by selecting small time steps. Our assumption yields

to following relationship:

en+1
rab

≈ en
rab

(4.30)

∴ rn+1
ab en

rab
≡ rn+1

ab en+1
rab

= rn+1
ab = xn+1

b − xn+1
a (4.31)

∴ (rn+1
ab − Lab)e

n
rab

= xn+1
b − xn+1

a − Labe
n
rab
. (4.32)

If we combine this information with equation 4.29, the semi-implicit algorithm implies;

xn+1
a − xn

a

∆t
= un+1

a =
1

8πµ

Nb∑

b=1

Sϵ(xa,xb)
n

(
∆ρgVb +

Nc,b∑

c=1

k
(
rn+1
bc − Lbc)e

n
rbc

)
)

(4.33)

=
1

8πµ

Nb∑

b=1

Sϵ(xa,xb)
n

(
∆ρgVb +

Nc,b∑

c=1

k
(
xn+1
c − xn+1

b − Lbce
n
rbc

)
)
. (4.34)

For the remainder of this thesis, equation 4.33 will be used to create a linear matrix system.

While the second term on the right-hand side (RHS) considering elastic deflections will

remain the same, the body force may be replaced by external forces or omitted entirely,

depending on the problem setup.

If we collect the known terms on the nth time step on the RHS, we can obtain the

linear system. From equation 4.33, the RHS can be written as:

RHS = xn
a +

∆t

8πµ

Nb∑

b=1

Sϵ(xa,xb)
n


∆ρgVb −

Nc,b∑

c=1

k
(
Lbce

n
rbc

)

 . (4.35)
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Then, the left-hand side (LHS) of the linear system is given by:

LHS = xn+1
a +

k∆t

8πµ

Nb∑

b=1

S(xa,xb)
n




Nc,b∑

c=1

xn+1
b − xn+1

c


 . (4.36)

After rearranging equations 4.35 and 4.36, we can write the following matrix system:

AXn+1 = B (4.37)

where X is a 3Nb × 1 column matrix of the bead positions. If we introduce γ = ∆t
8πµ

, A is

given as:

A = I3Nb×3NB
+ kγMnC1 − kγC2 (4.38)

where

C1 =




Nc,1 Nc,1 Nc,1 . . . Nc,Nb
Nc,Nb

Nc,Nb

...
...

Nc,1 Nc,1 Nc,1 . . . Nc,Nb
Nc,Nb

Nc,Nb




(4.39)

and

C2 =




∑Nc,1

c=1 S
ϵ
xx(x1,xc,1) . . .

∑Nc,Nb
c=1 Sϵ

zx(xNb
,xc,1)

∑Nc,1

c=1 S
ϵ
xy(x1,xc,1) . . .

∑Nc,Nb
c=1 Sϵ

zy(xNb
,xc,1)

∑Nc,1

c=1 S
ϵ
xz(x1,xc,1) . . .

∑Nc,Nb
c=1 Sϵ

zz(xNb
,xc,1)

...
∑Nc,1

c=1 S
ϵ
xx(x1,xc,Nb

) . . .
∑Nc,Nb

c=1 Sϵ
zx(xNb

,xc,Nb
)

∑Nc,1

c=1 S
ϵ
xy(x1,xc,Nb

) . . .
∑Nc,Nb

c=1 Sϵ
zy(xNb

,xc,Nb
)

∑Nc,1

c=1 S
ϵ
xz(x1,xc,Nb

) . . .
∑Nc,Nb

c=1 Sϵ
zz(xNb

,xc,Nb
)




T

(4.40)
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where A, C1, C2 are 3Nb× 3Nb matrices. Then, equation 4.35 is converted to a matrix as:

B = Xn + γMnD (4.41)

D =




∆ρgxVb −
∑Nc,1

c=1 kL1cer1c,x

∆ρgyVb −
∑Nc,1

c=1 kL1cer1c,y

∆ρgzVb −
∑Nc,1

c=1 kL1cer1c,z
...

∆ρgxVb −
∑Nc,Nb

c=1 kL1cerNbc
,x

∆ρgyVb −
∑Nc,Nb

c=1 kL1cerNbc
,y

∆ρgzVb −
∑Nc,Nb

c=1 kL1cerNbc
,z




(4.42)

where D is a 3Nb × 1 column matrix. We create the above matrices in MATLAB®

and solve them by using the built-in function linsolve. A pseudo-code demonstrating the

MATLAB® algorithm can be found in Appendix A. In the next section, we will test our

method in various validation cases.

4.4 Verification and Results

Our methodology is validated against previous theoretical and experimental studies. The

comparison begins with numerical simulations of the sedimentation of porous and non-

deformable spheres under gravity. Later, the developed technique is used to model sed-

imentation of nonporous and deformable filaments. After verifying the method, the al-

gorithm is applied to capture the physics of sedimenting porous and deformable passive

filaments.

An aqueous solution at room temperature is selected as the ambient and interstitial

fluid. The density and dynamic viscosity of the fluid are given as ρf = 997 kgm−3 and

µ = 1 × 10−3Nsm−2 respectively. Sedimentation occurs under standard gravitational

acceleration in the −z-direction, g = 9.81m s−2 in an infinite and quiescent fluid. There
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are no wall effects. With the motivation to extend the model for responsive hydrogel

studies, we consider the material properties of Poly(N-isopropylacrylamide) (PNIPAM) for

the solid bodies. Thus, the density is ρs = 1100 kgm−3 and elastic modulus is E = 10 kPa

(158), unless otherwise stated.

4.4.1 Sedimentation of Porous Non-Deformable Spheres

The sedimentation of porous spheres is a problem studied through theoretical, numerical,

and experimental investigations. The problem can be observed in the sedimentation of

suspensions (155), the movement of microbial granules (133) and the flow through fixed

beds of catalyst pellets (171). In these examples, the porous sphere is typically composed

of aggregates of spherical components. While the approaching flow is defined by Stokes’

formulation, determining the boundary conditions and flow description inside the sphere

is more complicated.

Previously, in their landmark study, D.N.Sutherland and C.T.Tan (36) suggested an

analytical model for creeping flows through a permeable sphere with a radius of m. We

provided the drag on the sphere in 3.5. Inserting gravitational force into the equation,

the settling speed is provided as:

ut =
2(ρb − ρf )gm

2

9(1− φ)µ
(4.43)

where ρb = (1 − ϕ)ρs + ϕρf is the bulk density of the porous structure. Equation 4.43

can be interpreted as that a porous sphere would sediment faster than an impermeable

sphere with the same bulk density, as the denominator is smaller for the porous case.

This statement has been supported by experimental studies (133).

We conduct a numerical study to compare our results with the above formulation. The

sphere in our simulations has a radius m = 10 µm and consists of Nb smaller spheres. Due

to spherical geometry, DLSM formulation is used to determine spring stiffness. However,

it should be noted that since the sphere is rigid and non-deformable, the elastic modulus is
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chosen to be higher than E = 10 kPa. Our simulations correspond to 10 s of sedimentation

in physical parameters.

We begin by comparing the accuracy in terminal speed for changing porosity values.

The number of beads is equal to Nb = 2283 which is the second-highest spatial resolution

for this problem setup, and a detailed resolution study will be provided later in this section.

The porosity is varied between ϕ = 0− 0.9 with increments of 0.1, and an additional case

with ϕ = 0.95 is considered. In all simulations, the time step size equals ∆t = 0.01.

Figure 4.5a plots the relative error between our numerical method and the theoretical

study (36). The results show good agreement and exhibit a trend of increasing accuracy

with the porosity. The reason behind this is the fact that the regularised stokeslets may

overlap with each other for low porosity cases, which causes erroneous forces on the beads.

In figure 4.5b, we demonstrate the number of iterations required for the convergence of the

terminal speed. Because of the instantaneity of Stokes flow, a sedimenting non-deformable

sphere would reach the terminal velocity immediately. With our numerical method, the

settling speed is reached after 20 iterations of the simulations.

To understand the dynamics of the system, we compare the magnitudes of the terminal

velocities. Terminal speed for a nonporous sphere can be found by balancing the drag

force with sedimentation force, −fdrag = fgravity = (ρs − ρf )gVs where Vs = 4πm3/3. By

using the analytical solution provided in equation 1.38, the terminal speed of a nonporous

sphere can be found as the following:

ut =
2(ρs − ρf )gm

2

9µ
. (4.44)

Thus, the terminal speed with our parameters is ut ≈ 2.46×10−5ms−1, which corresponds

to Re ≈ 2.45× 10−4 ≪ 1. In figure 4.6a, we normalise the terminal speeds for this value.

It can be seen that with increasing porosity, the magnitude of terminal velocity decreases

linearly. There may be two factors contributing to this trend. First of all, as porosity

increases, the mass of the sphere decreases, therefore, the driving force becomes smaller.
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(a) The relative error in terminal
speed decreases as porosity
increases.
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(b) The terminal speed begins to
converge to a stable value after 20
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Figure 4.5: The sedimentation of porous spheres are investigated. In panel (a), the
numerical results are compared with equation 4.43. In panel (b), for ϕ = 0.9, the sphere

numerically reaches a steady state and translates at terminal speed.

In addition to that, the internal flow may affect the sedimentation speed. Therefore, we

investigate the flow inside the sphere.

Due to small length scales, experimentally measuring the flow inside the pores has

been a challenging task. Consequently, theoretical and numerical studies have suggested

different solutions to this problem. A comprehensive study of Neale et al. (138) compared

extensions of Brinkman and Darcy solutions. The main difference between the two models

is the magnitude of interstitial flow compared to sedimentation speed.

We estimate the speed of flow inside the sphere by using regularised stokeslets. For

this purpose, we determine some fluid points on the zngc plane which is the z coordinate

of the geometrical centre of the sphere at the nth time step. Then, we take the average of

flow speed at these points.

Figure 4.6b depicts the ratio of average internal flow speed to the terminal speed of

sphere ui/ut, in percentages. According to the figure, as porosity increases, the inter-

nal flow becomes more pronounced. However, since the ratio remains less than 1%, we

conclude that the flow within the sphere is negligible, as suggested by D.N.Sutherland
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(a) Terminal speed decreases as
porosity increases.
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(b) Flow inside the sphere is
negligible.
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Figure 4.6: The terminal speeds and flows inside the spheres are compared. In panel (a),
the porosity of the sphere and sedimentation speed have an inverse correlation. Panel
(b) shows that even for high porosity values, the flow inside the sphere has a much lower

speed than the terminal speed of the sphere (36).

and C.T.Tan (36). It should be added that the flow inside the sphere is parallel to the

sedimentation direction unless it encounters a bead.

Finally, we conduct a resolution study for time marching and spatial discretisation.

For testing the temporal resolution, we simulate the same sedimentation problem for

Nb = 2283 and ϕ = 0.9 with time step sizes between ∆t = 10−4 to 10−1. In figure 4.7a,

the y−axis is the normalised with the analytical solution. As ∆t decreases, the precision

of the solution increases. However, even for ∆t = 10−1, the error is around ≈ 2%. So,

we can conclude that using ∆t = 10−2 is a safe choice for preventing stability issues.

Additionally, since the end state is steady, time resolution should not significantly impact

the results.

For testing the spatial resolution, the number of beads is changed for fixed ∆t = 10−2

and ϕ = 0.9. In figure 4.7b, we demonstrate the relative error versus spatial resolution.

Similar to temporal resolution, spatial refinement improves the accuracy of the solution.

For the two finest resolutions Nb = 2283, and 2859, the error is less than 1.3% and the

difference between them is 0.9%. Thus, we use Nb = 2283, which has good accuracy with
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(a) Temporal resolution does not
impact the accuracy significantly.
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(b) As spatial resolution increases,
accuracy increases as well.
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(c) As Nb changes, the deviation parameter shifts.
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Figure 4.7: According to temporal and spatial resolution studies, we determine the number
of beads and time step size in our system.

lower computational cost.

In our method, the permeability of the system is a function of the porosity and cor-

responding bead radius. Consequently, as the number of beads changes, the permeability

of the system also alters. This is important because, during the spatial resolution study,

the corresponding physical problem setup may also change slightly. Since the deviation

parameter φ is a function of ζ, changes in permeability would affect the terminal speed.

In figure 4.7c, φ versus Nb is presented. Because permeability has a negative correlation

with the number of beads, the deviation parameter decreases as the spatial resolution

82



I

B

A

1

Figure 4.8: Filaments may buckle into a “U” shape. While A represents the distance
between minimum and maximum points in the z−axis, the horizontal distance between

tips is defined as B.

increases. On the other hand, for high-resolution cases, φ does not change significantly.

This can be interpreted as for low spatial resolution, the number of beads may impact the

problem setup up to a threshold value. After Nb = 1514, the number of beads only affects

the accuracy but not the physical representation of the problem. With this conclusion,

we finish this validation case. In the next sections, we will use our numerical technique

for modelling filaments.

4.4.2 Sedimentation of Nonporous Deformable Filaments

In this section, we examine our framework for the sedimentation problem of deformable

but nonporous filaments. Although we use a sedimentation force, depending on the length

scale, the exerted force can be considered as any conservative force perpendicular to

the long axis of the filament, such as magnetic attraction. During sedimentation, the

filament or “slender body” may deform, which is coupled with the surrounding flow field.

Therefore, the filament does not reach terminal velocity immediately. However, at some

point, it should become stable with a fixed shape and speed.

The dynamics of this problem is governed by the elastogravitational number, G. The

elastogravitational number is defined as the ratio of gravitational forces to elastic forces

and is given as:

G =
ρgL3

EI
(4.45)

where ρ is the effective mass per unit length and L is the length of the filament.

In our setup, we use a nonporous circular filament with a radius of r = 1 µm and an
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aspect ratio of L/r = 100. Typically, the method of regularised stokeslets for simulating

filament dynamics places one bead along the centreline of the filament. However, in

this case, we consider filaments with finite thickness. Therefore, the cross-section of the

filament consists of multiple beads forming a spring network, rather than a single bead.

It should be noted that, due to nature of our model, there will be some pores between

beads even in the ϕ = 0 case. Therefore, a nonporous filament is an approximation used

for comparing the qualitative behaviour of the filaments.

In our simulations, the nonporous filament consists of Nb = 1548. The long axis of

the filament is aligned on the x−axis. The bending modulus is selected to match the

elastogravitational number in equation 4.45. Once the bending modulus is found, the

spring stiffness is calculated by bending the filament into an arc with a fixed curvature of

κ = 1
2L
.

Our simulations investigate a range of elastogravitational numbers changing between

G = 10−7000. As a general trend, once filaments reach their terminal velocity, they form

a “U” shape (see figure 4.8). This shape occurs due to stronger hydrodynamic interactions

at the middle of the filament compared to tips, as resistive force theory approximately

suggested (65).

To understand how vertical distance between the minimum and maximum points and

the horizontal distance change, we normalise A and B with respect to filament length

throughout the simulations for G = 600 and 1000. In figure 4.9a, we quantitatively

demonstrate that as G increases, the tips of the filament becomes closer to each other,

and the filament creates a narrow and tall U shape. This transition of parameters A and

B, depending on the elastogravitational number, shows good qualitative agreement with

the previous study by Li et al. (107), in which the authors used a slender body theory

based continuum approach. Additionally, for larger values of G, the filaments reach steady

state in a shorter time with a higher sedimentation speed. Figure 4.9b depicts a slight

decrease in sedimentation speed for G = 1000, where the y−axis is normalised with respect

to a speed equal to the filament length per second.

84



(a) Elastogravitational number controls the
deformation.
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increases, sedimentation speed increases.

0 0.5 1

0.011

0.014

0.018

Normalised Time (t)

N
or
m
al
is
ed

S
p
ee
d

G = 600
G = 1000

1

Figure 4.9: Properties of sedimentation are compared for different elastogravitational
numbers. As G increases, the U shape of the filament becomes narrower and more pro-
nounced. In panel (b), the sedimentation speed is normalised according to the body length

per second.

In figure 4.10a, we capture the trajectory of the filament with G = 1000 for t > 0.5.

As it can be seen, the filament initially drifts away from the x = 0.5L line. Later,

it starts to come towards the centre. This behaviour happens because of an out-of-

plane deformation of the filament which may due to finite thickness of the filament (see

figure 4.10b). The asymmetric shape changes the drag on the filament, hence, slower

sedimentation. This kind of zigzag motion pattern was reported in the previous study

of Hall-McNair et al. (66), in which the authors incorporated the method of regularised

stokeslets with boundary integrals formulated by the tangent angle along the centreline

of the filament.

It should be noted that although there is no experimental evidence, several numerical

and theoretical studies (29) suggest a metastable “W” shape for high values of G. The

limits of this regime depend on the theoretical model, with G > 3500 in the work of Hall-

McNair et al. (66) and G > 5000 in the study by Marchetti et al. (120). In our study, we

test different elastogravitational numbers up to G = 7000. However, such deformations

are not observed in our simulations, which may be attributed to the finite thickness of
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(a) The filament trajectory is centred
on the initial centre of mass.

x = 0.5L

z

(b) An out-of-plane deformation is
captured for G = 1000.
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Figure 4.10: For G = 1000, the filament drifts away from the initial centre of mass, and
also deform out-of-plane.

our filaments. In conclusion, this section demonstrated the validity of our numerical

algorithm for handling hydrodynamic problems coupled with elastic deformations. With

this established, we can use our method to explore interesting dynamics.

4.5 Sedimentation of Porous Deformable Filaments

So far, our methodology has been tested with porous non-deformable and nonporous

deformable materials. We now apply this technique to describe the sedimentation of

porous and deformable filaments. To the best of our knowledge, the sedimentation of

poroelastic filaments remains understudied, and we aim to address this gap. While some

studies have analysed flow through porous media composed of fibres, attention to an

individual permeable filament is lacking.

Compared to the original problem, the presence of pores may have two important
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impacts on the physics. Firstly, it can be ambiguous in determining the elastogravitational

number. Normally, the effective mass density per length for a circular filament is defined

as:

ρ = (ρs − ρf )πr
2. (4.46)

Equation 4.46 ensures that each bead has the same solid density ρs. However, for a

porous material, using the above equation would result in a smaller force per bead due

to the smaller bead volume in equation 4.24. Conversely, exerting the same force per

bead implies a higher effective mass density, hence, a larger G according to its traditional

definition.

The second effect pertains to how porosity changes the flow inside the filament. Pre-

viously, we demonstrated that flow inside a porous sphere is negligible. However, in the

case of filament, geometrically non-linear deformations may be coupled with porosity. To

detect the importance of both factors, we start our simulations.

We use the identical filament described in 4.4.2 with a porosity value of ϕ = 0.9. To

address the aforementioned issues, we have two sets of simulations with G = 600 and 1000.

In the first set, G is determined by inserting equation 4.46 into equation 4.45. Therefore,

porosity only changes the radius of the bead and the corresponding regularisation width.

In the second set, we match the effective mass per length with that of a nonporous

filament.

In figures 4.11a and 4.11b, horizontal and vertical distances are estimated for these two

sets. For the first set of simulations, there is no considerable deformation. The filaments

mostly preserve their straight shape and sediment without negligible deformation at the

tips. On the other, when we match the effective mass density per bead, the filaments

deform in a similar fashion to nonporous filaments for G = 600 and 1000.

When comparing sedimentation speeds for these cases, the results reveal a significant

difference between each case (see figure 4.12). Terminal speeds in the second set are

approximately 20 times faster than those of the first set. Moreover, these speeds surpass

even the nonporous cases provided in figure 4.9. Additionally, there is a trend of subtle
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(a) Two sets are compared for G = 600.
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(b) Two sets are compared for G = 1000.
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Figure 4.11: Deflection parameters are presented G = 600 and G = 1000, each calculated
using different elastogravitational number definitions.

decrease in terminal speed once it reaches the maximum value. This little “hump” is more

apparent in figure 4.9b), just before t = 0.5. The decline in speed implies more rotation

of the filament in all three planes. In addition to rotation, the tips of the filament slightly

open up as the filament relaxes.

This behaviour becomes more dramatic as G increases. In figure 4.13a, terminal speeds

of a nonporous filament and the second set are plotted for G = 3000. For the nonporous

filament, there are some fluctuations in the speed; however, the filament settles steadily

after t > 0.5. Even though the filament leans to one side as a whole, this does not disrupt

the U shape. In the same figure, the dashed line shows the speed of the porous filament

from the second set. Sedimentation occurs in an unstable form, causing fluctuations in

speed. This is due to the extreme shapes of the filament. In figures 4.13b and c, the

centreline of the porous filament is presented for t = 0.9 and t = 1 respectively. The

filament bends into an asymmetric shape reminiscent of a hook. This shape initially

occurs in the yz−plane with a minimum point close to the distal edge. Over time, the

minimum point turns into a minimum section, therefore, the deflection spreads into the

xy−plane. Consequently, the filament unzips itself.
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(a) Two sets are compared for G = 600.
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(b) Two sets are compared for G = 1000.
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Figure 4.12: Sedimentation speeds of two sets are compared for G = 600 and G = 1000.
The y−axis is normalised according to a speed of body length per second.

We can summarise the findings of this section as follows: for porous materials, the

original elastogravitational number results in considerably slower sedimentation. Thus,

it may be necessary to reconsider the definition of G or introduce a new dimensionless

group. When the mass per bead is matched, the results are similar to those of nonporous

filaments, and the effects of porosity become more pronounced. We observe that for the

same effective mass, porous filaments tend to become more unstable. This is due to higher

sedimentation velocities and possibly additional flows passing through pores. It is worth

mentioning that having faster sedimentation agrees with the results of nondeformable

porous sphere simulations in section 4.4.1. With these insights, our Methodology chapter

ends. In the next chapter, we will investigate the dynamics of hydrogel-based active

filaments by using our numerical method.
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(a) The sedimentation speeds are compared.
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Figure 4.13: In panel (a), the comparison of sedimentation speeds for nonporous filament
and the second set with ϕ = 0.9 are given for G = 3000. Panels (b) and (c) show the

shapes of the porous filament at different time steps.
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CHAPTER 5

DYNAMICS OF ACTIVE POROELASTIC
FILAMENTS

In this chapter, we employ the developed methodology to simulate the dynamics of active

Janus and Saturn filaments (see figure 5.1). The focus of this chapter is on the impact

of non-conservative tip forces on the mobility of the filaments. In the realm of soft

active particles, this problem serves as a model for understanding the motion of bubble-

driven or phoretic hydrogel-based filaments. Consequently, the flexible filament can be

conceptualised as a chain of beads attached to an active element at the tip. From a

mathematical perspective, this is a “follower force” problem which essentially exerts a

tangential force with a fixed magnitude to the tip of a filament or rod (70). It differs from

classical “Euler” buckling instability since the direction of force changes according to the

shape of the filament.

We will investigate the follower force problems in three different setups, in the following

order: a clamped filament with one tip force (5.1), a free filament with a single tip force

(5.2), and a free filament with two tip forces (5.3). While the first numerical test serves

as a comparison with the literature (18), the following cases are methods for achieving

dynamic shape transformations that may play a significant role in controlling flexible

artificial microbots.
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Janus Saturn

1

Figure 5.1: A flexible filament may deform under non-conservative end forces, as demon-
strated by the red arrows. The filament under the influence of a single tip force is named

Janus, while the Saturn filament experiences forces at both tips.

5.1 Clamped Filaments

Although the number of experimental studies is limited due to the challenging nature of

the problem setup, the follower force problems have been examined in a number of studies,

both theoretically and numerically. Previously, Canio et al. (18) modelled cytoplasmic

streaming as a filament that is pinned at one end and exposed to a point force at the

other end. The dynamics of the follower force problem were governed by a dimensionless

parameter that was given as:

σ ≡ ΓL2

EI
(5.1)

where Γ > 0 is the magnitude of the compressive end force. For the rest of this chapter,

we will use σ for describing our problems.

In the study of Canio et al. (18), initially straight filaments were exposed to a small

perturbation. Following this, a follower force was continuously exerted to observe the

behaviour perturbation. According to the value of σ, filaments exhibited three different

behaviours. These regimes are monotonic straightening, straightening with decaying os-

cillations, and growing perturbations that leading to periodic oscillations. It should be

noted that in Canio et al. (18), the motion of the filaments was restricted to the z = 0
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plane, and also the filaments had infinitesimal thickness. These factors reduce the problem

to 2 dimensions.

We replicate the above problem to gain insights into our method and also validate

the technique in a different setup. This comparison is essential for detecting the limits

of σ in our numerical model and for assessing the impact of the finite thickness of the

filaments. In our simulations, we use a filament with a circular cross section of radius

r. The filament has a unit length and an aspect ratio of L/r = 100. By assigning the

bending modulus to EI = 1, we ensure that σ = Γ. To calculate the spring constant, the

filament is bent in an arc with constant curvature, κ = 1/2L. Since the study of Canio

et al. (18) considered biological fluids, the viscosity was µ = 1Pa s, and the same value is

also used in our simulations.

From a numerical standpoint, our base code needs updating for boundary conditions.

The nodes at x = 0 are identified as the clamped end. The clamped boundary condition

implies the following:

u |x=0 = 0. (5.2)

In addition to this, to account for the follower nature of the force, we need to calculate

the surface normal at the other tip, x = L. By assuming that there is no deformation

at the force tip, we can calculate the normal vector as the cross product of two vectors

on the plane. For this purpose, we determine the coordinates of 3 beads out of a total of

Ntip beads at x = L. Then, the unit normal vector for the plane can be expressed as:

N =
r12 × r13

||r12 × r13||
(5.3)

where numbers in the subscript indicate the direction of the vector. Once the normal

vector is determined, the follower force is evenly distributed on each bead at the tip as

f tip = Γ
Ntip

N. Consequently, our semi-implicit algorithm provided in equation 4.34 is
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updated as:

xn+1
a − xn

a

∆t
=

1

8πµ

Nb∑

b=1

Sϵ(xa,xb)
n

(
Γ

Ntip

Nn +

Nc,b∑

c=1

k
(
xn+1
c − xn+1

b − Lbce
n
rbc

)
)

(5.4)

where the first term at the RHS, considering the external force, is only applied to the

beads on the tip.

Then, we introduce a small perturbation to the filament. From a numerical perspec-

tive, we employ filaments with Nb = 1548, and ϕ = 0.9. Given that the dynamics vary in

speed according to σ, each simulation is run for as long as needed.

Similar to the study that we stem from, we observe three phases. For σ < 7.5,

the filament monotonically moves to the horizontal position (see figure 5.2a). In the

range between 7.5 < σ < 15, oscillations begin to appear but decay back to the straight

configuration. Initially, the filament passes through the horizontally straight position and

goes vertically. Subsequently, at each oscillation the tip becomes closer to y = 0. An

important aspect of this regime is the number of oscillations and maximum tip position.

As it can be seen in figure 5.2b, there is a positive correlation between the number of

oscillations and σ. This trend is accompanied by an increase in the maximum tip position

along the y−axis. These changes in dynamics result in a longer period for the filament to

reach a steady state.

As we apply larger forces, the transition to the third regime occurs. The primary

characteristic of this regime is the oscillation of the filament. In figure 5.3, the y−positions

of active tips are shown for σ = 15, 17, 20, and 25. For each value, a small initial

perturbation amplifies, leading to periodic oscillations. The filament does not stop at the

horizontal position but continues moving. While the oscillations in σ = 15 and 25 have

constant amplitude, irregularities can be captured for intermediate values. This is due to

the trajectory of the filament.

In figure 5.4, we track the centreline of the filament for σ = 15. The dots in the

figure represent beads passing through the centreline. The initial position of the filament
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(a) Monotonic decay is given for σ = 5.
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Figure 5.2: The ratio of follower force to bending resistance is denoted by σ. As σ
increases, decay dynamics change. In both panels, the y−axis plots the position of the

active tip, which is normalised with respect to the length of the filament.

is given by cyan colour, and as it moves, the colour shifts towards magenta. Following a

growth phase, the tip moves vertically up and down in the xy−plane, which we can refer

to as side-to-side bending. This result is consistent with the literature (18; 103).

On the other hand, as the exerted force increases, the whirling motion becomes more

apparent, and we can capture the actual 3D dynamics. Figure 5.5 displays the trajectory

of the filament for σ = 20. The early phases of the motion are similar to those of σ = 15,

with oscillations in the xy−plane. However, after that the filament starts to translate

out-of-plane. It rotates around the fixed end with a constant radius, creating the circular

trajectory visible in figure 5.5. For larger values of force, i.e., σ = 25, the angle between

the xy−plane and the plane where the circular path is followed shifts. Meanwhile, the

amplitude of oscillations remains unchanged. This trend indicates an increase in the

curvature towards the fixed end.

Previously, similar patterns were observed in the numerical work of Laskar and Ad-

hikari (103). In the same study, a chain of passive beads was activated by an active bead

at its terminus, serving as a theoretical actuation mechanism at the microscale. The study
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Figure 5.3: The oscillations in the third regime are captured for different σ values.

suggested another regime after the whirling motion, which is a windscreen wipers-like pla-

nar motion. However, we do not capture this behaviour. In our study, the dimensionless

parameter is restricted to σ < 30. Consequently, the range of distinct phases is smaller

compared to the previous studies. There could be multiple reasons for the differences

between our study and the results of Canio et al. (18) and Laskar and Adhikari (103).

In Chapter 4, we demonstrated the need for modifying the definition of elastograv-

itational number for porous filaments. Similarly, one may suggest the same here. The

tendency of porous filaments to become unstable may narrow the working range for σ.

Another possible reason for slightly different dynamics is the finite thickness of our fila-
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Figure 5.4: For σ = 15, the centreline of the filament is followed, and the motion remains
planar. The transition from cyan to magenta colour is synced with the filament’s position

over time. The figure is viewed in the xy−plane.

ments, which was ignored in both comparison studies. In our study, the filament thickness

is correlated with the bead radius and, consequently, the surface area. However, we ap-

ply force to each bead as a point force rather than distributing it over the bead surface.

This may also lower the upper bounds for the regimes in our study. Additionally, and

more importantly, the finite thickness of the filaments in our simulations impacts the non-

local hydrodynamic contributions due to the method of regularised stokeslets, leading to

different dynamics.

Now, we are motivated to extend this follower force problem to the different boundary

conditions. In section 5.2, the fixed boundary condition is replaced with a free end,

allowing the filament to translate. Since the filament has only one active tip, it will be

referred to as a Janus filament for the rest of this thesis. After exploring the motion of

Janus filaments under different values of σ, non-conservative end forces are exerted on

both ends in section 5.3. The filaments with two active tips are named Saturn. To the

best of our knowledge, exerting end forces at both tips is a new problem setup and will

shed light on a gap in the literature.
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(a) Planar trajectory occurs between
t = 0 to t = 0.2.
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(c) After t = 0.4, filament rotates around a fix
point.
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Figure 5.5: For σ = 20, the centreline of the filament is tracked. In each figure, cyan colour
indicates the initial position, which is identical to the magenta coloured final position in

the previous figure.

5.2 Active Janus Filaments

For active Janus filaments, we utilise a filament with L = 10 µm and L/r = 100. In all

cases, the filament has a porosity of ϕ = 0.9 and is positioned between x = 0 and x = L

as a straight line. The follower force is exerted at the x = L end, and initially, the inward

normal equals N = [−1, 0, 0]. The filament has Nb = 1548, and the spring stiffness is

calculated for bending the filament into an arc with κ = 1/2L. The bending modulus is

determined as E = 10 kPa, which is consistent with PNIPAM. For the viscosity of the

ambient fluid, µ = 0.001Pa s is used.
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(a) The filament follows a straight
path.
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Figure 5.6: For σ = 30, the filament translates along a straight trajectory. The conver-
gence to the fixed translation speed takes 30 iterations.

In Janus pusher filaments, 2 main characteristics are observed; pure translation and

translation with oscillatory motion. Pure translation is captured for σ < 90, which is

a relatively large range compared to the fixed boundary condition. In this regime, the

filament exhibits no deformation and translates as a straight rod. Consequently, the

filament moves in a straight trajectory (see figure 5.6a). Since there is no deflection in

the geometry, the filament should move at a constant speed in a fixed direction. In our

simulations, after 30 iterations, the solution converges to a constant translation speed. In

figure 5.6b, the translation speed is normalised with a speed corresponding to a filament

length per second.

In the second regime, where σ > 90, the filament performs both translation and

deformation. The motion begins with an initial translation whose duration depends on

σ. Similar to the first regime, the centre of mass of the filament follows a straight path.

Subsequent to this pure translation period, the filament starts to deform and buckle.

The deflection of the filament grows over time. This is followed by the deformation of

the filament in the xy−plane initiated by the active tip. The deflection propagates as a

wave towards the free end and buckles the filament in an asymmetric 1st bending mode.

Figures 5.7 and 5.8 show that the periodic oscillations of the filament in σ = 100 and

σ = 130 are accompanied by translation.
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(a) The trajectory of the filament is
illustrated.
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(b) Time versus distance from the initial
position is plotted.
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(d) The curvature values of the filament are shown as a
heatmap.
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Figure 5.7: For σ = 100, the Janus filament moves with side-to-side bending. In panel
(a), the cyan-to-magenta transition represents the evolution of the filament’s trajectory
from from its initial to final position. The time points marked in panel (b) correspond to

the filament shapes shown in panel (c).

It is observed that the speed of the centre of mass decreases after the initial pure trans-

lation phase. The exerted force is converted into both elastic energy through deflection

and kinetic energy due to translation.

Although the general characteristics of σ = 100 and σ = 130 are similar, they differ

in the dynamics of oscillations.
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(a) The trajectory of the filament is
illustrated.
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(b) Time versus distance from the initial
position is plotted.
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(d) The curvature values of the filament are shown as a
heatmap.
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Figure 5.8: For σ = 130, the filament moves in a corkscrew-like motion. In panel (a),
the cyan-to-magenta transition represents the evolution of the filament’s trajectory from
from its initial to final position. The time points marked in panel (b) correspond to the

filament shapes shown in panel (c).

Due to the larger exerted force, the duration of the initial translation is shorter for σ =

130. Similarly, the frequency of the oscillations for σ = 130 is higher than σ = 100. This

trend is accompanied by larger curvature values, implying more buckling (see figures 5.7d

and 5.8d).
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Figure 5.9: For σ = 100 and 130, the speeds of centre of masses are compared, and the
y−axis is normalised respect to the body length per second. It should be noted that
originally the σ = 100 case run longer. However, for this figure, a section that matches

the time frame of the σ = 130 case is presented.

The curvature, κ values in these figures are calculated using the Frenet-Serret for-

mulation for arclength (s). In addition, to obtain a smooth visualisation of curvature

and torsion values, a post-processing tool is developed in MATLAB®. Due to the un-

structured nature of our bead-spring network, the beads are not positioned along the

geometrical centreline of the filament. Therefore, we require to numerically extract the

geometrical quantities. Consequently, we design this in-house computational algorithm

to provide quantitative insight into the deflection of filaments and flagella, as detailed in

the Appendix B.

This change in deformation affects the trajectory of the filament. For smaller values of

σ, the Janus filament moves side-to-side, reminiscent of in-plane deformations observed in

the eukaryotic flagellum (see figure 5.7a). On the other hand, as σ increases, the filament

periodically deflects in circular patterns and exhibits a whirlingcorkscrew motion, akin to

oscillations of the prokaryotic flagellum (see figure 5.8a). In circular motion, the active tip

covers a larger distance. However, due to larger speed, the period of oscillations becomes

smaller as well (see figure 5.9).
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An interesting common feature in both motions is the drift of the trajectory from a

straight line. The asymmetric “U” shapes formed in figures 5.7c and 5.8c contribute to the

drag anisotropy of the filaments. Consequently, Janus swimmers drift in the xy−plane.

This kind of directional preference can be beneficial for developing biomedical tools in

the microscale. What determines the direction of the drift is the initial buckling of

the filament, which is intrinsically stochastic. However, the findings of this section are

important to encourage investigation into the controlled buckling of these filaments. With

these results, we complete our examination of Janus filaments. In the next section, we

will exert follower forces on both tips.

5.3 Active Saturn Filaments

In this set of simulations, two follower forces are applied to each end of the filament. The

magnitude of the forces is identical, and each of them is defined by σ. So, when σ is

given for a set of simulations, it indicates the individual forces at the tips. The material

properties and dimensions of the filaments are completely identical to the Janus filaments

in the previous section.

As non-conservative forces are exerted onto Saturn filaments, five main regimes are

observed: “pumping”, “ballistic translation”, “spiral trajectory”, “run-and-tumble”, and

“tumble dominant run”, sorted according to increasing σ. It should be noted that these

regimes lack strict parameter boundaries per se. Instead, we observe a combination of be-

haviours, such as run-tumble-and-helical swimming, between the third and fourth regimes.

5.3.1 Stationary Pumping Filaments

For σ < 30, the follower forces do not overcome elastic forces. Therefore, no deformation or

motion is observed. The filament preserves its straight shape and position between x = 0

and x = L. In addition, no torsion occurs as well. In this regard, stationary filaments

can be considered as replicas of I-shaped microrods with double poles in Chapter 2.
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(a) The trajectory of the filament is
illustrated.
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(b) Time versus distance from the initial
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(d) The curvature values of the filament are shown as a
heatmap.
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Figure 5.10: For σ = 40, Saturn filament buckles into a “U” shape and translates bal-
listically. In panel (a), the cyan-to-magenta transition represents the evolution of the
filament’s trajectory from from its initial to final position. The time points marked in

panel (b) correspond to the filament shapes shown in panel (c).

However, in our simulations, forces are located completely symmetrically and are

constant rather than stochastic, thus, no rotation or drift occurs.
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5.3.2 Ballistic Motion

As σ increases, new dynamics begin to be observed. This regime is bounded between

30 < σ < 60. Here, we present a case in this regime with σ = 40 (see figure 5.10).

Initially, the filament stays in its original shape. After a while, t ≈ 0.25, the filament

deflects. The initial deformation occurs around the middle of the arclength. Over time,

the magnitude of buckling increases, and the filament forms a U shape, representing the

1st buckling mode. The magnitude of the exerted force determines the symmetry of the

shape, hence, the trajectory.

In figure 5.10, the quantitative results are given for σ = 40. As can be seen in

figure 5.10b, the filament translates ballistically. There is a minor asymmetry in the

curvature values that leads to a small rotation in the xy−plane which can be neglected.

Additionally, it is observed that the initial deflection of the filament occurs out-of-plane,

as is intrinsic to any buckling problem. Since this 1st buckling mode is not in the plane,

the trajectory of the filament initially shows an elevation along the z−axis. However, over

time this elevation diminishes, and the filament moves within a constant plane.

5.3.3 Spiral Trajectory

For 60 < σ < 100 values, the characteristics of ballistic regime alter. In figure 5.11a, the

spiral trajectory of the filament is presented for σ = 70. After translating in a straight

path, the rotation begins and directs the path of the filament. In figure 5.11d, following

the initial deflection, the filament begins to relax around t ≈ 0.125. As a result of this

relaxation phase, the filament reaches a steady state with an asymmetric U shape. It

should be noted that the curvature values are also considerably larger than in the σ = 40

case. In terms of displacement, a bell-like shape is depicted in figure 5.11b. Following

this, periodic rotation starts again.
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(a) The trajectory of the filament is
illustrated.

x

y

z

(b) Time versus distance from the initial
position is plotted.
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Figure 5.11: For σ = 70, Saturn filament rotates in a spiral trajectory. In panel (a),
the cyan-to-magenta transition represents the evolution of the filament’s trajectory from
from its initial to final position. The time points marked in panel (b) correspond to the

filament shapes shown in panel (c).

5.3.4 Run-and-Tumble

The fourth regime, between 100 < σ < 125, consists of two phases: run and tumble, re-

sembling the bacterial swimming pattern. In natural run-and-tumble motion, a bacterium

translates in a certain direction with flagellated propulsion, which is known as
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(a) The trajectory of the filament is
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Figure 5.12: For σ = 120, Saturn filament moves in a run-and-tumble pattern. In panel
(a), the cyan-to-magenta transition represents the evolution of the filament’s trajectory
from from its initial to final position. The time points marked in panel (b) correspond to

the filament shapes shown in panel (c).

“running” phase. However, after a while, due to different reasons including finding

nutrition or affinity to a light source, the bacterium needs to change its direction. At that

point, the bacterium bends its flagella to reorient itself, which is the “tumbling” phase

(see the schematic in 1.1).

In this regime, the filament starts running similarly to the previous regime. During
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the run, the filament moves ballistically (see displacement figure 5.12b for σ = 120).

However, it differs from the previous regime in terms of curvature. Although the run is

initiated by the 1st bending mode with a maximum curvature around the centre, over

time, this changes. As the U-shaped filament moves through the fluid, the middle portion

with high curvature values is exposed to larger drag. Consequently, that section bends in

the opposite direction, and the filament forms the 3rd buckling mode (see figure 5.12d).

This constant shape-switch disturbs the spiral trajectory. Therefore, instead of a spiral

trajectory, the filament changes direction and creates a zigzag pattern. In this regard,

it resembles run-and-tumble patterns. The 1st buckling mode creates runs, and the 3rd

mode leads to direction changes, hence, tumbling.

The filament continues to follow these patterns until t ≈ 0.75. Following this, a self-

reorientation can be captured. This reorientation is a longer and more effective tumble,

resulting in a decline in displacement and a trajectory without a recognisable pattern (see

the magenta filaments in figure 5.12a). Meanwhile, the filament transitions into higher

modes of buckling, as shown in figure 5.12c-IV . Over time this tumbling phase decays,

and one side becomes dominant again.

The position of the maximum curvature value has a significant role in the trajectory

of the filament in this phase. Depending on the value of σ, the tumbling phase can be

more transient. In figure 5.13a, the curvature of σ = 110 case is given. The filament

starts running as usual. However, instead of following a zigzag trajectory determined by

the periodicity of tumbling, an interesting behaviour emerges. The 1st mode propagates

towards one tip, creating a hook-like shape. Subsequently, the filament changes direction

by tumbling, leading to a relaxation in the filament that forms the 1st mode of buckling

with smaller curvature values. As a result, the filament settles in a helical orbit in the

yz−plane with an outward directionality, which appears to be stable. This behaviour can

be considered as a hybrid mixture of the third and the fourth regimes. Therefore, it may

be named run-tumble-helical.
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(a) The trajectory of the filament is
illustrated.
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(b) Time versus distance from the initial
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Figure 5.13: For σ = 110, tumble phase of run-and-tumble appears as a helix. In panel
(a), the cyan-to-magenta transition represents the evolution of the filament’s trajectory
from from its initial to final position. The time points marked in panel (b) correspond to

the filament shapes shown in panel (c).

However, it is not certain what makes a filament with the highest curvature off-centre

more stable and move in an orbit. At this stage, it is difficult to provide a fulfilling

explanation behind the physics, but we plan to investigate this phenomenon in detail in

the future.
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(a) The trajectory of the filament is
illustrated.
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(b) Time versus distance from the initial
position is plotted.
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(d) The curvature values of the filament are shown as a
heatmap.
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Figure 5.14: For σ = 140, there is no directional tendency or running phase. Thus,
the Saturn filament tumbles continuously. In panel (a), the cyan-to-magenta transition
represents the evolution of the filament’s trajectory from from its initial to final position.
The time points marked in panel (b) correspond to the filament shapes shown in panel

(c).

5.3.5 Tumble Dominant Run

The fifth and last regime is captured for σ > 125 and it can be distinguished by the

continuous tumbling of the filament. In the scarcity of a running phase, the filament

constantly buckles into various modes: therefore, the filament follows a more chaotic

110



trajectory. Figure 5.14a shows the path of a filament with σ = 140, which does not

resemble any pattern. The tumbling phase fully dominates the dynamics.

In terms of quantitative data, curvature values in figure 5.14d can provide more in-

sight. Before t = 0.25, the filament deforms similarly to the early stages of the σ = 120

case. However, the transition between modes occurs more frequently, resulting in shorter

durations of translation. Consequently, the zigzag pattern fades out and transforms into

sudden direction changes. As t > 0.25, the filament relaxes into a one-side dominant 1st

mode briefly, which is followed by a 4th buckling mode. In terms of displacement, this

coincides with a plateau in figure 5.14b. At the end of the plateau, a different periodic

deformation happens. The filament creates a hook-like shape, which is a 2nd mode heav-

ily dominated by one side (see figure 5.14c-IV ). This shape preserves itself, thus, the

filament rotates around. Consequently, the filament forms scattered clusters of tumbling

(see figure 5.14a).

In figure 5.15, the speeds of the centres of mass are given for all of the mentioned

regimes and normalised with respect to a speed of body length per second. The figure is

rich in terms of providing physical insight. First of all, it shows that in the ballistic and

spiral trajectory regimes, the Saturn filament may reach similar speeds to Janus filaments.

The presence of forces at both tips provides enough thrust to hold a steady speed of up

to 5 body lengths per second.

Another notable finding is the constant speed of the centre of mass in the run-tumble-

helical trend. Once the filament transforms into helical phase, the speed does not fluctuate

at all. This feature can be beneficial for having directional control over the trajectory of

the filament without any external mechanism.

For σ = 120 and σ = 140 which are labelled with dashed and straight orange lines

respectively, the impact of tumbling is illustrated. During the running phase, both fila-

ments reach speeds exceeding 10 body lengths per second. However, these high speeds are

followed by abrupt declines. These minimum speed values coincide with tumbling phases

and fall within the range of 0.5 − 1 body length per second. For σ = 140, the impact of
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Figure 5.15: The speeds of the centres of mass are compared. The y−axis is normalised
with respect to the body length per second. The x−axis is determined by the simulation
time of σ = 140 cases because of faster dynamics. Therefore, it should be noted that the

plot represents the snapshots of the other simulations instead of the full ranges.

relaxation around t = 0.5 is evident. Finishing our numerical investigation on Janus and

Saturn filaments, in the next section we will delve into our findings.

5.4 Discussion

We simulate active Janus pusher filaments with free ends, employing the dimensionless

group σ to describe the problem. The setup resembles the description of a passive tail

excited by an active motor, as outlined by Machin (115) for sperm motility. Two dis-

tinctive trends are observed for Janus pusher filaments: pure translation and periodic

oscillations involving the 1st and 2nd modes of buckling. In the first regime, the filament

reaches the terminal speed in a short time and follows a straight path. The transition

from pure translation to deformations correlates with the increase of σ. The parameter

not only determines the distinctive regimes but also controls the frequency and periods

in the second trend.

In the second regime, the swimming trends evolve from side-to-side motion into
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corkscrew-like deformation. This is akin to the flapping-to-whirling transition observed

in follower force models with fixed bases.

Another insight into this trend is the oscillations of the filament around a fixed point.

Although the filament continues translating, the viscous drag at the free end puts the

filament under compression. From this perspective, it is similar to the results of the

study by Laskar and Adhikari (103). However, our problem and the mentioned study

differ in terms of the definition of activity and consequent force balance, ensuring 0 net

force in Stokes flow. In this thesis, this is secured by employing regularised stokeslets

to balance viscous drag. On the other hand, the mentioned study used stresslets for the

same purpose.

In terms of physics, we observed a directional preference in the trajectory of the

oscillating filaments. This feature is a function of the initial buckling problem. Therefore,

the idea of guiding the buckling can be fruitful in microswimmer studies. Such navigation

systems can be achieved either using joints or employing stimuli-responsive hydrogels. In

the next Chapter, we will explore the latter option.

We continue by exerting another non-conservative end force to obtain Saturn filaments.

The results offer potential for future applications. As a function of σ, five regimes are

identified; stationary pumping, ballistic motion, spiral trajectory, run and tumble, and

tumble. Moreover, at the boundaries between regimes, some transient characteristics are

captured including run-tumble-helical behaviour.

The significance of the first regime lies in highlighting the impact of symmetry and

its real-life implications. The tip forces remain in balance and the filament does not

deform. Consequently, the filament acts like a microfluidic device, pumping the fluid at

both ends, resembling the I-shaped micropumps in Chapter 2. However, the filaments are

more slender compared to I-shaped microrods and do not suffer from intrinsic randomness

of the locations of bubble nucleation points observed in the experimental study (161).

In the second regime, the filament deforms into the 1st buckling mode with an asym-

metric shape and small curvature values. With equal forces at both ends, the U-shaped
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filament acts as a pure translator, moving along a straight path. We numerically show how

to harness the deformability of the active particles to have control over their locomotion.

Such swimmers demonstrate the ability of shifting from an I-shape to a U-shape solely

through the exertion of a follower force with constant magnitude and non-conservative

direction. Thus, this mechanism can facilitate operations such as locally pumping a drug

with an I-shaped flexible microbot and then leaving the site via pure ballistic translation

as it transforms into a U-shape.

As σ increases, due to the heterogeneity of the filament, the 1st mode may occur more

asymmetrically with larger curvature values. Consequently, the filament follows a spiral

trajectory. From this perspective, the combined translation with rotation of the filament

is similar to the U-shaped microbots with double poles in Chapter 2.

While these two regimes serve as design guides, the fourth and fifth regimes introduce

novel dynamics. The fourth regime is named run-and-tumble due to its similarity to

bacterial motion. Throughout this regime, the filament experiences periodic buckling

between the first and third modes. Depending on parameter σ, the periods of run and

tumble phases can be extended or become more frequent.

A similar motion trend was experimentally observed for bubble-propelled micromotors

by Luan et al. (114). However, the previous study relied on the design heterogeneity and

the placements of catalysts to have distinct run-and-tumble motions. In this study, we

demonstrate it is possible to have a run-and-tumble pattern by only exerting identical end

forces on the filament. These periodic runs and tumbles enable the filament to translate

and reorient itself. Therefore, this behaviour could be exploited for autonomously escaping

from a maze. In biomedical applications, this feature could aid in navigating through

media with obstacles, like turning corners.

Another finding of this regime is the helical trajectory. Under certain conditions of

porosity, σ, and filament shape, a unique equilibrium occurs, leading to a stable shape.

The run phase of the regime is followed by a single tumbling, and then, the filament

adopts the helical trajectory. The speed of the filament remains constant and the filament
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performs a drilling-like motion in a helix with a constant radius.

In the last identified regime, the filament only undergoes tumbling motion, and shifts

between the first four modes with high frequency. The main difference from the other

regimes is the small amount of net motion. The filament performs no running behaviour

and only drifts along as it deforms. Moreover, the speed of the centre of mass fluctuates

considerably, ranging between extreme values. The filament demonstrates unpredictable

out-of-plane deformations inherent in the buckling instability. One possible application

of this regime could be the self-orientation of the filament. By harnessing the tumbling

pattern, the filament might have the ability to transition into various modes and directions

as needed.

In conclusion, this chapter explores the manipulation of smart hydrogel-based mi-

crobots via deformations induced by non-conservative end forces. In the next chapter, we

will offer an alternative strategy to change the shape of a microbot, which involves the

use of thermo-responsive hydrogels.
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CHAPTER 6

RESPONSIVE SHAPE-SHIFTING MICROBOTS

Responsive hydrogels are capable of changing their shapes by absorbing or releasing sub-

stantial amounts of aqueous fluids. This property can be harvested to control the swim-

ming dynamics of a microbot (122). With this inspiration, we suggest a simple math-

ematical model that can effectively capture the foundations of shape-transformations in

responsive hydrogels. The numerical simulations are constructed on the bead and spring

system described in Chapter 4. It should be noted that the method differs from the

SPH-based computational tool mentioned in Chapter 3. The SPH method provides an

understanding regarding both the local fluid interactions and bulk dynamics in depth,

which comes with a computational cost. On the other hand, our methodology in this

chapter is a more flexible technique which is primarily targeting the acquisition of core

dynamics. Although it is a relatively simple model, it is versatile and applicable to arbi-

trary shapes.

This chapter is organised as follows. In section 6.1, we begin by updating the bead

and spring framework for responsive hydrogels. Later, in section 6.2, passive hydrogel

bilayers are simulated to demonstrate transitions between different shapes, including self-

folding and twisting behaviours for unconventional designs. In section 6.3, responsive

hydrogels are utilised to navigate active Janus microbots. The chapter concludes with a

brief discussion about the findings in 6.4.
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6.1 Updating the Bead and Spring System for Re-

sponsive Hydrogels

Here, we employ our mathematical model, which combines a bead and spring system with

regularised stokeslets. However, the main algorithm is adapted to incorporate isotropic

responses in selected regions of the hydrogel, leading to anistropic deflections. This feature

allows for the estimation of complex responses in single-material hydrogels with differing

cross-linking densities, similar to the previous study of Hippler et al. (72). The volume and

shape transitions resulting from responsive swelling and deswelling dynamics are achieved

by adjusting the natural lengths of elastic springs within the system while maintaining

homogeneity across all physical parameters within the material.

To implement this numerical update, we initialise a geometry and use an indicator

function that distinguishes between responsive and non-responsive beads, assigning values

of 1 and 0, respectively. This indicator function stores the indices of all beads whose

centres lie within the user-defined region of interest, designating them as responsive beads.

Subsequently, we adjust the rest lengths of springs connected to responsive beads, either

contracting or extending them accordingly. The revised rest lengths would deviate from

those in the initial shape.

Such modification would induce internal stresses, which would be balanced by hydro-

dynamic drag and elastic deformations, hence causing shape change. Consequently, our

semi-implicit algorithm is given by:

xn+1
a − xn

a

∆t
=

1

8πµ

Nb∑

b=1

Sϵ(xa,xb)
n

(
Nc,b∑

c=1

k
(
xn+1
c − xn+1

b − Lbce
n
rbc

)
)
. (6.1)

By adjusting the spring lengths in this manner, we would obtain deflections as sudden

impulses rather than gradual changes. This modelling approach would better suit to the

length scale that we are interested in. It has been generally observed that the thermal

diffusion in thermo-responsive hydrogel studies occurs more rapidly than shape changes

caused by fluid expulsion (17). Consequently, the rapid dynamics of thermal changes
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lead to instantaneous internal state transitions in the gel.

In responsive behaviour, the volume change is accompanied by shifts in elastic mod-

ulus. As demonstrated by Hippler et al. (72), the elastic modulus of the material can

increase several folds with shrinkage. This means that as the material shrinks, it becomes

more difficult to deform. To represent this transition, the elastic modulus is updated

along the spring lengths, which impacts the spring stiffness. Consequently, the spring

stiffness becomes a function of time and the responsiveness of the beads as follows:

k = kab(t) (6.2)

where the subscript indicates the connected beads.

It is worth noting that Poisson’s ratio remains constant throughout our simulations.

Temperature variations directly influence the Poisson’s ratio, thereby impacting our 3D

DLSM formulation and spring stiffness. However, thermoresponsive hydrogels are capable

of shrinking and swelling immediately just over their LCST. Therefore, we can assume

that transition occurs in a narrow range between 30 ◦C to 33 ◦C. In this regime, changes

in Poisson’s ratio are negligible. Now, we can use the modified algorithm to explore shape

transformations of passive heterogeneous hydrogels.

6.2 Passive Shape Shifters

Our simulations begin by examining passive shape-shifters consisting of responsive and

non-responsive layers, fully immersed in aqueous fluids. In our test cases, the shrinking

behaviour of responsive hydrogels is modelled in particular. This is due to the availability

of the extensive literature on PNIPAM and other responsive hydrogels with LCST.

Unless otherwise stated, the shrinkage is imposed by contracting the springs to 70% of

their initial lengths. While this value could be as low as 20− 30%, we opt for a relatively

higher percentage to ensure a sufficient distance between regularised Stokeslets.
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(a) The bilayer initially has a rod-like
shape.
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Figure 6.1: The responsive region of the bilayer shrinks, which leads to a bending motion.
As a result, the bilayer forms the 1st mode of bending. In panel (a), blue indicates the
responsive section before shrinkage. In panel (b), orange represents the final shape of
the responsive section after shrinkage. In both panels, black denotes the non-responsive

sections.

The time step size is selected as ∆t = 1× 10−5, and the simulations run for as long as

necessary.

6.2.1 Rod Bilayer, also known as Pump to Translator (I to U)

The first test case involves a rod-shaped passive bilayer. We examine the effects of different

parameters on the shrinkage ratio and final shape of the hydrogel.

The bilayer has the dimensions of 10 µm× 5 µm× 40 µm as b×h×L. I-shaped bilayer
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(a) Final shape of the bilayer is
given.
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(b) The curvature values of the bilayer are
provided.
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Figure 6.2: The hydrogel bilayer is constructed to have a boundary layer in the xy−plane.
In panel (a), the final shape is demonstrated and the inset of the figure shows the initial
bilayer from a side view in the yz−plane. In panel (b), the evolution of the curvature

values over time is shown.

comprises Nrb = 1295 responsive beads out of a total of Nb = 2466, which corresponds to

a responsiveness ratio of Υ = Nrb

Nb
≈ 0.52. An interface in the yz−plane determines the

anisotropy in response.

In figure 6.1a, the initial configuration of the bilayer is provided as its long axis aligned

between y = −2b and y = 2b. Here, black beads represent the non-responsive layer, while

the blue colour indicates the responsive section. As the thermal stimulus is applied to

the bilayer rod, the responsive beads start to come closer, causing that section to shrink.

Conversely, the beads in the non-responsive layer strive to maintain their original position.

Consequently, the system reaches equilibrium with deformation. In figure 6.1b, the final

configuration of the bilayer is shown, in which the orange colour marking the responsive

section after the thermal shift. The final shape reminds the letter U, rotated 90◦ clockwise.

In figure 6.1c, the curvature contour of the bilayer is illustrated. The bilayer mostly

undergoes symmetric deformation, reaching maximum curvature values of up to 2/L. In

the next section, we will test the impact of responsive surface area on the dynamics.
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−2b
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1

Figure 6.3: The initial configurations of bilayers are illustrated. The responsiveness ratio,
Υ, increases from left to right. Each plot is viewed in the xy−plane. The blue regions
represent the responsive areas in the bilayer, while black sections are non-responsive.

Effect of the Surface Area of Responsive Layer

To comprehend the influence of surface area, we alter the orientation of the responsive

layer. Consequently, an identical hydrogel to the previous study has an interface between

responsive and non-responsive beads in the xy−plane. The ratio of responsive beads to

the whole system is approximatelyΥ ≈ 0.5 which ensures isolating the effects of surface

area.

Figure 6.2 displays the final shape of the responsive hydrogel and the evolution of

the curvature over time. Panel (b) highlights a significant difference in the curvature

values compared to the previous simulation. While both simulations share similar char-

acteristics, the curvature values are higher for the bilayer with interface in the xy−plane.

Furthermore, the curvature becomes uniform in the same simulation. These findings sug-

gest that as the surface area of the responsive layer increases, the bilayers tend to buckle

more. This aspect can be exploited to control the buckling of a given bilayer. To gain full

control over these dynamics, as part of our future studies, we plan to define a dimension-

less parameter group that provides the ratio of thermal stress to both bending resistance

and hydrodynamic resistance. In the next section, we will offer another way to control

buckling by altering the responsiveness ratio, Υ.
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(a) As Υ increases bilayer bends more.
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(b) Average bead speed is plotted for
different Υ values.
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different Υ values.
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Figure 6.4: The quantitative data are provided for Υ = 0.25, 0.43, and 0.75. In panel
(a), Υ increases from left to right. In panel (b), the average bead speed is normalised
with respect to the body length per second. Panel (c) shows the volume change for each

bilayer.

Effect of Responsiveness Ratio

The ratio of responsive beads to non-responsive beads may govern the deformation of

the bilayer. To understand this relationship, we assign Υ ≈ 0.25, 0.43 and 0.75 for the

hydrogels whose initial configurations are provided in figure 6.3.

In figure 6.4a, we present the final configurations of the hydrogels after volume tran-

sition, illustrating an increasing bending trend with Υ (see figure 6.5). In figure 6.4b, the

average bead speed over time is depicted. The y−axis is normalised with respect to the

speed of body length per second. During volume transition, deformation occurs due to
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(a) The curvature is plotted for
Υ ≈ 0.25.
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(b) The curvature is plotted for
Υ ≈ 0.43.
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(c) The curvature is plotted for
Υ ≈ 0.75.
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Figure 6.5: The curvature values increase as the responsivity ratio increases from Υ ≈ 0.25
to Υ ≈ 0.75. Panels (a) to (c) correspond to the bilayers from left to right in panel (a) of

figure 6.4, in respective order.

internal stresses. As a result, in cases such as shrinkage or swelling of a homogeneous

thermo-responsive hydrogel, the centre of mass may maintain its position while the bulk

structure moves. Therefore, the average bead speed may better represent the dynamics

compared to the speed of the centre of mass.

Figure 6.4b reveals a positive correlation between Υ and average bead speed, ac-

companying the increasing bending. As Υ increases, internal stresses become larger and

conversely, there is less resistance from non-responsive beads towards shrinkage, hence,

greater bead speeds.

Finally, we would like to compare the deswelling of a homogeneous hydrogel with the
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(a) The homogeneous hydrogel maintains
its rod-shaped structure without bending
after deswelling.
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(b) Average bead speeds are compared
for homogeneous and heterogeneous
hydrogels.
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Figure 6.6: The homogeneous and responsive hydrogel shrinks while preserving its shape,
and the dynamics are faster than heterogeneous bilayers. In panel (b), the y−axis is

normalised with respect to a speed of body length per second.

initial deswelling case in figure 6.1. In the case of the entire hydrogel being responsive,

the deformation is uniform and isotropic (see figure 6.6a). Thus, there is no bending

throughout the volume change. However, the dynamics are considerably faster compared

to the heteregeneous hydrogels (see figure 6.6b). With these results, we conclude our in-

vestigation of the parameter impacts. In the next section 6.2.2, we will introduce multiple

responsive areas to initiate more complex bending forms.

6.2.2 Pump to Rotator (I to S)

So far, we have demonstrated how a single responsive region can transform the shape of

a hydrogel. In this section, we employ multiple thermo-sensitive regions. To distribute

these layers, we first determine the geometrical centre. Then, as shown in figure 6.7a,

the body is divided into four quadrants, and responsive layers are added diagonally. The

responsiveness ratio is equal to Υ ≈ 0.5.

After the thermal stimulus, both responsive regions start to shrink simultaneously.
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(a) Initial configuration of hydrogel is
viewed in yz−plane.
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(b) The final shape of the hydrogel
reminds S shape.
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Figure 6.7: The hydrogel can switch shapes between I and S in the presence of multiple
responsive layers.

As these layers are located in opposite halves along the z−axis, they bend in opposite

directions. Consequently, the hydrogel adopts the second buckling mode, forming an

S shape (see figure 6.7b). We continue by doubling the number of responsive regions.

Similar to the previous simulation, the sensitive regions are arranged in a zigzag pattern

(see figure 6.8a). After deformation, the hydrogel creates a wave-like shape in figure 6.8b.

Interestingly, the tip-to-tip length of the hydrogel on the y−axis is similar to the previous

case.

Although these cases have the same Υ as the original test case given in figure 6.2,

the original bilayer bends significantly more. On the other hand, the difference between

deswelling times and average bead velocities between these three simulations are negli-

gible. As long as the bilayer preserves the total responsive surface area, the mentioned

parameters remain unaffected.

Figure 6.8c, depicts the final shape after recovery for the thermo-responsive hydrogel

with four responsive areas. Once the deswelling ceases, we reassign the rest lengths. Con-

sequently, the responsive beads tend to move away from each other, resulting in elastic

forces acting on all beads. Subsequently, the hydrogel re-swells and straightens, forming

a rod-like shape identical to the initial configuration and volume (see figure 6.8d). This

125



(a) The initial configuration of the
hydrogel is viewed in the yz−plane.
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(b) The final shape of the hydrogel with
four responsive regions reminds a wave.

−1.6b 0 1.6b
−b

0

b

2b

(c) The hydrogel recovers to the initial
shape after re-swelling.
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(d) The hydrogel maintains its original
volume after recovery.
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Figure 6.8: A hydrogel with four responsive regions initially shrinks and forms a wave-like
shape. After recovery, it re-creates the original configuration.

result shows a good agreement with the previous study of Hippler et al. (72), consid-

ering the minor measurement errors in experimental study. Regarding the time scales

of deswelling and swelling, it is difficult to draw definitive conclusions with our method.

Since the method of regularised stokeslets does not enforce the no-slip boundary condition

on the surface of beads, we will consider alternative methods to address this issue in the

future studies.

This section has presented a method for transitioning from an I to an S shape by

adding multiple responsive regions. Thus, we have demonstrated transitions from one
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fundamental shape to another, as outlined in Chapter 2 (161). Utilising the self-recovery

process, these shape switches can also be reversed. Moreover, by varying the number and

locations of responsive areas, we have controlled the deflection of the hydrogels. Another

way of obtaining complex responses is to change boundary conditions. In section 6.2.3,

we will further explore this restricting motion at one end and comparing our results with

those of Hippler et al. (72).

6.2.3 Bilayer with Fixed End

The introduction of a clamped boundary condition may impact the final shape and dy-

namics of the bilayer (72). Here, we limit the displacement of the beads at y = −2b,

effectively creating a fixed end. The responsive interface is identical to the bilayer in 6.1.

With clamped boundary condition, we simulate three different hydrogels with lengths of

L, 1.5L, and 2L.

In figure 6.9, the final shapes of these bilayers are illustrated. The figure suggests that

the length has an impact on the curvature, which aligns the findings of Hippler et al.

(72). As the length increases, bending may extend into a rolling motion. Consequently,

the bilayer with a length of 2L forms a semi-circle on the xy−plane. For longer bilayers,

this motion can result in a full circle. Such a bilayer configuration may facilitate grasping,

holding, and releasing microobjects (100).

Additionally, we simulate the same problem with multiple responsive layers, motivated

by the previous experimental study of Hippler et al. (72). After deformation, multiple

curves form with centres at opposite halves of the x = b/2 line (see figures 6.10a and

6.10b). The main difference from the free-end problem is the preferred direction of the

structure. In the free-end simulations, we observed that the centreline of the hydrogel

maintains its position. However, with a clamped boundary condition, the centreline has an

angle with the initial origin of symmetry. This angle depends on the number of responsive

layers and exhibits a negative correlation.

Figure 6.10c plots the angle between the x = b/2 line and the line passing through
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(a) Bilayer with length L bends.
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(b) Bilayer with length 1.5L curves.
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(c) Bilayer with length 2L rolls.
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Figure 6.9: I-shaped bilayers with clamped boundary condition deflects as Hippler et al.
(72) suggested. As length increases, bending transforms into self-rolling. Previously,
similar mechanisms were realised in both millimetre (168) and micrometre scale (100).

the centres of both tips for two and four responsive region cases. The angles are equal

to α1 ≈ 22.3 and α2 ≈ 8.9. In this example, we showcase how hydrogel bilayers can

perform complex responses. In the next section, we will use the information collected

from previous simulations to propose a smart microbot design for microdelivery.

6.2.4 Self-Folding Star

An important potential application of responsive hydrogel bilayers lies in their ability to

create self-folding structures, which could revolutionise various fields such as biomedi-
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(a) The final shape of the bilayer with
two responsive regions is plotted.
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(b) The final shape of the bilayer with
four responsive regions is plotted.
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(c) As number of responsive regions increases tip-to-tip vector makes less
angle with the x = b/2 line.
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Figure 6.10: Numerical simulations agree with the previous study of Hippler et al. (72)
and demonstrate that the direction and position of hydrogel can be navigated by changing

the number of active regions.

cal engineering, robotics, and microfabrication. These microbots could encapsulate and

release therapeutic drugs on command, as well as perform complex operations such as

collecting objects. In nature, self-folding behaviour is observed in the hunting routine of

the Venus flytrap (2). When triggered by a target touching it, the plant closes its mouth-

shaped leaves to catch its prey. A similar mechanism can be replicated in microbots for

loading, carrying, and unloading cargo. Previously, Stoychev et al. (170) manufactured

thermo-responsive PNIPAM-based star-shaped microcapsules. Motivated by the results of

that study, we propose a self-folding bilayer. In addition to showcasing self-encapsulation,
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(a) Star with 4 equilateral triangle
arms.
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(b) Star with 4 isosceles triangle arms.
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(c) Star with 4 circular arms.
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(d) Hexagonal star with 6 equilateral
triangle arms.
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Figure 6.11: Different self-folding mechanisms are suggested. Their initial configurations
are shown from the xy−plane with elevation. The bottom halves of the bilayers are

constructed by a non-responsive layer.

we compare geometrical parameters for optimisation purposes.

In our numerical examination, we utilise star-like geometries with distinguishable arm

shapes including isosceles triangles, equilateral triangles, and semicircles, and varying

number of arms. In figure 6.11, the initial configurations of various self-folding stars are

provided. In all of these stars, the edges of the arms connecting them to the main body

have a length of 20µm. The thickness of the stars is equal to 2µm.

In figure 6.12, the final configurations are presented. To visualise these simulations,

we create surface plots with triangulation. A common feature in all stars with triangular
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(a) Star with 4 arms folds itself. (b) Elevated view in xy−plane is given.

(c) Star with circular arms serves as a bowl. (d) Elevated view in xy−plane is given.

(e) Isosceles arms may grasp larger objects. (f) Hexagonal star may hold objects stable.

1

Figure 6.12: Final shapes of various designs are provided. The top row demonstrates a
star with 4 equilateral triangle arms from 2 different views. The middle row depicts a
star with circular arms from 2 different angles. In the bottom row, a star with isosceles
triangle arms and a hexagonal star with 6 arms are shown from 30◦ − 30◦ azimuth and

elevation angle.

131



(a) (b) (c)

1

Figure 6.13: From (a) to (c) the final shape of the bilayer is shown from 30◦−30◦, 90◦−0◦,
and 0◦ − 90◦ azimuth and elevation angles, respectively.

arms is the rolling at the tips. For circular arms, self-folding occurs more smoothly.

Additionally, as the ratio of the height of the arm to thickness increases, creases can be

observed at the edges (see figure 6.12e). This property suggests that elongated shapes with

a high surface area-to-thickness ratio, such as ribbons, can offer additional dynamics. For

example, a thinner version of the bilayer given in figure 6.1 may exhibit twists and extra

curvatures on the edges. To validate this, we employ the mentioned bilayer and halve its

thickness. After deswelling, a U-shape is formed. However, the edges of the bilayer have

irregularities indicating self-folding towards the centreline. When we investigate the edges

parallel to the y−axis, multiple bending modes can be seen. Thus, we may qualitatively

conclude that the results support our suggestion regarding thickness and shape formation.

In figure 6.12, the bottom row contains a four-arm star with isosceles triangles and a

six-arm star with equilateral triangles. These designs may expand the operational range of

microcapsules. The isosceles triangles have more elongated shapes, making them suitable

for grasping larger objects. On the other hand, the hexagonal star can provide better

stability for holding objects steady.

We continue exploring the impact of the number of active regions in the self-folding

stars by assigning non-responsive beads to middle sections. In this iteration, non-responsive

beads are assigned to the middle sections, leaving only the arms thermo-responsive.
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(a) Star with 4 responsive regions. (b) Side view in xz−plane is given.

(c) Hexagonal star with 6 responsive regions. (d) Side view in xz−plane is given.

(e) Shrinking ratio affects the final shape
dramatically. (f) Side view in xz−plane is given.

1

Figure 6.14: Having non-responsive middle sections changes the shrinkage dynamics sig-
nificantly. The top row demonstrates 2 different views of a star with 4 responsive arms and
a non-responsive middle. In the middle row, the same views are used to show a hexagonal
star with an identical configuration to the previous case. The bottom row captures how

the shrinkage ratio impacts the final shape.
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Figure 6.14 displays the final shapes of four-equilateral arm and six-equilateral arm

stars are shown. The left column provides views from a 30◦ − 30◦ angle, while the right

column shows views in the xz−plane.

Figures 6.14a) to d) highlight notable differences from the previous examples. The

shrinkage of arms is counteracted by a deflection in the middle section. This deformation

occurs as an elevation in the z−axis, and the middle section of stars creates a dome-like

shape. Since the hexagonal star has a larger area in the middle section, it elevates higher

compared to the four-arm star.

The bottom row of the figure illustrates another intriguing deformation. Previously, a

shrinkage ratio of 70% was employed. In figure 6.14e) and f), the ratio is set to 50%. With

this ratio, the shrinkage does not result in self-folding. The rolling behaviour becomes

less visible at the arms, and the tip of each arm remains in the z ≈ 0 plane. This is

accompanied by a higher elevation at the middle section, attributed to the production of

larger elastic forces. In addition to the increased forces, the absence of self-rolling redirects

this energy into mechanical work at the middle section, causing it to rise. Hence, one may

suggest parametrising the middle section elevation and arms position based on the surface

area of the middle section and the shrinkage ratio.

This design offers two potential theoretical applications. The first involves using it

as a microvacuum. The elevation of the middle layer can create a vacuum. Thus, given

the small time scale of the dynamics, these devices can instantly eject objects from the

surfaces. A possible real-life application can be surface cleaning, particularly in scenarios

involving bacterial pollution.

Another possible extension is utilising stars as the surface beaters. Leveraging the

recovery of the bilayers, a dome-like middle section can hit a surface periodically. When

the bilayer is heated, only the arms stay in contact with the surface. However, an instant

cooling would lead to swelling back to its original configuration, hence, a strike to the

surface. These periodic beats to the surface can be employed to smooth surface roughness

or break down microobjects. Although both of these applications are theoretical at the
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moment, we hope that advanced studies in the field will realise them soon.

To this point, we have provided examples of passive shape-switchers. In the next

section, we will fulfil our promise of demonstrating active shape-shifters using a simple

design.

6.3 Active Shape Shifters

In this section, we integrate the shape-shifting feature into active microbots. The mobility

of the microbots is provided by a follower force, as defined in Chapter 5. Here, we focus

on thick Janus microbots with responsive segments instead of thin, flexible filaments.

Although it is feasible to examine a combination of active components, passive flexibility,

and responsive bending, the main objective here is to isolate these effects and concentrate

on how responsive shape changes can control trajectory. Therefore, we opt for I-shaped

rods, as discussed in Section 6.2.2.

In the active rod, the responsive beads are limited by y < 0 and z < 0.25b (see

figure 6.15a). This design ensures that there is no deformation at the active tip. The

shape of the active tip’s surface must be preserved to correctly apply non-conservative

force with the formulation in 5.3. In the event of tip deformations, calculation of the

surface normal should be modified, which will be addressed in Chapter 7 as part of the

further studies. In terms of tip force, σ = 30 is used and exerted to tip at y = 2b. In the

simulation, between t = 0 to t = 0.2, there is no thermal fluctuation; therefore, the Janus

rod purely translates in a straight trajectory. However, as the responsive section starts to

shrink, the free end of the Janus rod starts to bend and reaches a final shape resembling

a hook (see figures 6.15b and c).

This bending impacts the total drag force on the bilayer. As a result, the Janus

microbot alters its trajectory and descends in the z−axis. The overall trajectory can be

seen in figure 6.15d with a minor drift in the xy−plane. In figure 6.15a, the left edge

of the bilayer is positioned along the y−axis passing through x = 0. However, the final
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(a) Initial position of active Janus rod is
given.

(b) Final configuration of the Janus rod is
viewed in yz−plane.

(c) Final configuration of the Janus rod is
shown from 30◦ − 30◦ angle.

(d) Trajectory of the active tip is given in
yz−plane.

−140b−105b−70b−35b0
−15b

0

1

Figure 6.15: Responsive Janus bilayer deforms into a hook-like shape. The switch in the
shape results in a change in trajectory.

shape in 6.15c shows that the left edge is drifted towards the −x−axis.

A characteristic of active and responsive Janus rods is the opposite directions in deflec-

tion and trajectory. This correlation could potentially enable smart navigation for turning

corners. Recently, Ganguly and Gupta (55) theoretically suggested similar dynamics for

asymmetric bent Janus rods using phoretic motion. The same study numerically showed

that, in the presence of a bent section near one of the tips, the Janus particle follows a

trajectory that can be described by a circle equation, with which our results qualitatively

agree.
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(a) Deformation of the rod is captured in
the middle of the simulation. (b) The shape is drawn in the yz−plane.

(c) Deformation of the rod is captured at
the end of the simulation.

(d) The final shape is drawn in the
yz−plane.

(e) The trajectory of the rod is provided.
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−10b

0

10b

20b

1

Figure 6.16: Shrinkage and recovery can be used to direct the trajectory of the rod. Panels
(a) and (b) are depicted at t = 0.5. The orange section represents the responsive area

after shrinkage, while the rest of the body is non-responsive.
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To guide the trajectory of the rod, a combination of deswelling and swelling may be

the ideal strategy. While shrinkage initiates the descent in the z−axis, the recovery phase

should conclude this period and lead to a change in trajectory.

To verify this, we simulate a two-pulse system. The first pulse triggers the shrinkage

at t = 0.1, and the second pulse begins the recovery at t = 0.3, corresponding to instant

heating and cooling, respectively. Until the second pulse, all dynamics are identical to the

previous case. However, after triggering the recovery process, the responsive layer swells.

This is accompanied by relaxation at the active tip, which corresponds to a descending

motion (see figures 6.16a to d). Eventually, the Janus microbot returns to its original

straight rod shape. However, its orientation differs from the initial one. As shown in

figure 6.16d, the final shape after recovery makes an angle with the y−axis instead of

being parallel.

The impact of this shape and angle transformation is evident on the trajectory in

figure 6.16e. Following the descending motion in the z−direction, the motion reaches a

plateau. The plateau phase ends quickly, and the Janus rod ascends. The dynamics of

this double-pulse system suggest the possibility of the fine-tuning the trajectory of active

swimmers. We demonstrate that by exerting a follower force and employing responsive

hydrogels, the motion in one axis can be controlled. In addition, this control mechanism

comes with a negligible drawback, as the drift in the x−axis is minimal compared to the

displacement in the yz−plane.

We proceed by suggesting another method for trajectory navigation. In our final

simulation setup, we introduce multiple responsive regions to the active Janus rod. The

design incorporates responsive beads positioned diagonally between y < −b and z > 0.25b,

and −b < y < 0 and z < 0.25b. After deflection, the free tip forms an S-shaped pointing

towards −z-direction (see figure 6.17a and b). Consequently, the hydrogel ascends in the

z−axis (see figure 6.17c).

The primary difference from the previous single responsive layer case is the elevation

in the z−axis due to a change in tip-to-tip distance. The Janus rod with multiple re-
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(a) Multiple active regions result in an
asymmetric shape.

(b) Final configuration of the Janus rod is
viewed in yz−plane.

(c) Trajectory of the active tip is given.

−140b−105b−70b−35b0

2b

4b

1

Figure 6.17: Active Janus rod with multiple responsive regions deforms and changes its
direction. Figure c) is captured from a 90◦ − 0◦ angle.

sponsive areas exhibits a more elongated shape, which aligns parallel to the exerted force.

Therefore, the angle between the tip force and the y−axis is reduced, leading to a smaller

perpendicular component of the drag. Thus, the number of active regions may influence

and control the trajectory of the active Janus rods by exploiting drag anisotropy.

With these results, we complete our numerical examination. In the next section, we

will briefly discuss the findings of this chapter.

6.4 Discussion

In this chapter, we have presented shape-shifting microbot designs. The microbots have

sensitive regions which can actuate anisotropic responses, thus enabling behaviours like

bending, rotating, and non-reciprocal swimming.

We begin by demonstrating the shape switches between fundamental bending modes.
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Inspired by the microbots in Chapter 2, we transform straight rod-shaped hydrogels into

U- and S-shaped bilayers. The first transformation is achieved by utilising a single re-

sponsive layer covering half of the material, while the latter occurs due to the presence

of multiple responsive areas positioned diagonally. Throughout these shape changes, we

have examined the impact of different parameters including the ratio of responsive beads

to the total number of beads and the surface area of the responsive layer.

An important observation is the faster dynamics as the ratio of responsive beads

increases. This is due to increasing elastic stresses in the hydrogel. Regarding the effect of

surface area on the dynamics, we have noted that the bending becomes more pronounced

with the increase in the surface area of the responsive layer.

In addition to U and S shapes, we have introduced more complex geometries. By

increasing the number of sensitive areas, a wave-like curvy structure has been obtained.

For these structures, we have investigated the recovery dynamics. As the material cools

down, it swells and returns to its original configuration and volume.

We have replicated the previous experimental study conducted by Hippler et al. (72),

focusing on bilayers attached to a fixed surface. Our findings reveal that as the length of

the bilayer increases, the deflection begins to create a rolled-up shape. Subsequently, we

have examined microrods with multiple responsive sections and demonstrated that as the

number of responsive layers increases, the hydrogels exhibit less planar motion. These

results have inspired us to propose more practical designs for artificial microswimming

studies.

Initially, we have provided a self-folding structure with a responsive face. This star-

shaped structure holds the potential for loading and carrying microcargo. By exploiting

the shrinking dynamics, a planar shape deforms and folds towards the centre of mass,

creating a bowl-like shape. In the same numerical experiment, we have explored different

designs by increasing the number of arms or altering the shape of arms. These variations

offer benefits such as increased holding stability or the ability to grasp objects of different

sizes.
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Subsequently, we have numerically engineered stars with responsive arms only. The

presence of a non-responsive layer at the centre has changed the dynamics dramatically.

The middle section ascends in one direction. This shape can be used for vacuuming and

protecting objects, or generating a periodic beat.

Finally, we have integrated the follower force problem from Chapter 5 with shape-

shifting microbots. A simple design involving a Janus rod with a single layer of responsive

PNIPAM at the free tip has been employed. The Janus swimmer is propelled by a non-

conservative force at the other end. Upon shrinkage, the trajectory of the rod points in

the opposite direction to the deformation.

We have combined this feature with the recovery phase in a double-pulse mechanism.

The first pulse initiates the shrinkage, hence, an alteration in the followed path. With

the second pulse, the route of the swimmer shifts to the opposite direction. Additionally,

an extra responsive layer is added to the Janus rod. The active swimmer with multiple

sensitive sections performs similar but slower dynamics compared to the first model. Thus,

we have demonstrated two different methods of controlling the trajectory for active and

responsive Janus microbots.

This chapter has served as a mostly qualitative description of proof-of-concept shape-

shifting microswimmers. In the next chapter, this thesis will be concluded by sharing the

key findings and future work.
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CHAPTER 7

CONCLUDING REMARKS

This thesis commenced with an exploration of the catalytic bubble growth mechanism on

bubble-propelled microswimmers. Following this, it presented a versatile numerical ap-

proach for modelling the dynamics of hydrogel-based microbots. The numerical technique

integrated an elastic bead-spring system and the method of regularised Stokeslets. The

method was used not only to obtain physical insights concerning theoretical and exper-

imental studies but also to propose future designs for intelligent microbots intended for

biomedical applications.

7.1 Highlights of Findings

We began our study by investigating the effects of shape on the swimming dynamics of

hydrogel microbots in a collaboration with Dr Juliane Simmchen and Dr Ivan Rehor. I-, U-

, and S-shaped microswimmers used catalase enzyme to decompose the H2O2 solution into

O2 gas, thereby facilitating the bubble propulsion. It was observed that the bubble growth

mechanism causes two types of translation. During the initial growth phase, the bubbles

push the surrounding fluid, which gives the microbot a steady slow translation. Our

mathematical model and experimental data indicated that the bubble growth occurs with

a constant molar flux at each cycle, however, the flux diminishes over time. This reduction

is attributed to the degradation of the catalase enzyme at the active tip, resulting in slower
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growth and decay in the maximum bubble radius.

Following this, the film covering the bubbles gets thinner and ruptures due to oscil-

lations at the air-water interface. The bursting of bubbles generates a jet; therefore, the

microbot moves forward with an impulse. Later, we captured different swimming charac-

teristics stemming from variations in shape and symmetry. Depending on the number of

active tips, I-shaped swimmers either pumped the fluid around without any movement or

underwent ballistic translation. U-shaped swimmers exhibited pure translation or trans-

lation with rotation, contingent upon symmetry in nucleation sites. S-shaped swimmers

demonstrated rotation with varying frequencies according to the number of active tips.

In addition, it was shown that the randomness in the location of bubbles and minor flaws

in the manufacturing process influenced the swimming characteristics. The study, pub-

lished in the Journal of Advanced Intelligent Systems, motivated us to devise a mechanism

for transitioning between the I, U, and S shapes. These shape changes could effectively

control the trajectory of the microbot.

To achieve this objective, we focused on hydrogel microbots, whose flexibility could

be harnessed for shifting their shapes. To understand the dynamics of deformation in

these materials, we developed a numerical framework that couples a bead-spring system

with the method of regularised stokeslets. Our methodology emulated the flow through

the poroelastic medium by distributing regularised stokeslets on the beads. Following the

validation of the method, we delved into the physics of active hydrogel filaments.

The filaments were exposed to non-conservative end forces at one end or both ends.

The problem was defined by a dimensionless parameter, σ which is effectively the ratio of

tip force to the elastic forces on the filament. Depending on this parameter, the regimes of

the motion of Janus filaments were categorised as pure translation and translation accom-

panied periodic oscillations. In the second regime, deformations changed the trajectory

of the filaments. As σ increased, the filaments transitioned from side to side bending to

corkscrew-like rotations.

For Saturn filaments, more complex dynamics were detected. Small values of end
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forces were unable to break the symmetry; therefore, filaments remained stationary and

functioned as micropumps. With increasing force, deformations began to occur in four

different regimes.

First, filaments formed a stable U shape and translated ballistically. Then as σ in-

creased, filaments buckled into an asymmetric 1st bending mode, which leads to a spiral

trajectory with an increasing radius of rotation. With larger tip forces, the filament per-

formed a run-and-tumble motion. Following brief intervals of propulsion or running, the

viscous drag became more pronounced at the middle section of the filament, prompting

a change in direction, known as tumbling. In the final regime, the motion was gov-

erned by an unstable buckling problem, making it more challenging to discern distinct

patterns amidst shifts between higher buckling modes. With this part of the study, we

demonstrated that the presence of non-conservative end forces alone is sufficient to induce

periodic changes in the shape of filaments.

Another way of controlling the deformations of microbots involves using responsive

hydrogels capable of swelling or shrinking based on external factors such as changes in

temperature or pH. By adjusting the cross-linking density, it is possible to obtain nonuni-

form responses along the hydrogel body. To exploit this mechanism to execute complex

tasks, we modified our numerical bead-spring system. This updated method was designed

to contract the springs in response to thermal fluctuations and create internal stresses.

Initially, we demonstrated transitions between passive microbots in the shapes of I, U,

and S. The shrinkage was observed to occur almost immediately. Additionally, for passive

bilayers attached at one end, the length of the structure impacted the dynamics. As the

bilayers became longer, they started to roll more. Following this, we proposed star-shaped

microcarriers, which are able to self-fold for loading and unloading objects.

Lastly, we combined the shape-shifting concept with the follower force problem. The

resulting design was a steerable translator, essentially a Janus rod with a responsive

region. Initially, the microbot was propelled by a force that allowed it to translate without

deformation. However, as the responsive layer shrank, the microbot bent at the free end.

144



This shape led to a different trajectory from that of pure translators. Later, the same

swimmer was modified with a recovery mode. This mechanism enabled us to control the

trajectory of the rod. Following recovery, the rod altered its direction. Overall, we offered

simple designs for controlling the trajectory of the microbots, which could be useful to

accomplish complex tasks.

In summary, this thesis has advanced our understanding of hydrogel-based microbots

and the bubble propulsion mechanism. Moreover, it has introduced two numerical tools

for modelling flows through porous structures and estimating the radius of curvature for

slender bodies such as flagella. However, there is still plenty of room to improve the

developed methodology and explore the intriguing areas of artificial swimming. In the

following section, we will outline planned future work.

7.2 Future Work

A number of extensions are possible to increase the accuracy and versatility of the devel-

oped methodology. Here, we begin with the bubble growth model.

Chapter 2 provides a mathematical model explaining how bubbles grow at the cat-

alytic end and what swimming characteristics occur. However, the model does not delve

deeply into the properties of the exerted force on the nucleation sites. To gain a better

understanding of this aspect, a numerical model could be beneficial. The interplay be-

tween growing bubbles, ambient fluid, and porous hydrogel structure can be considered

as a three-phase fluid-solid interaction problem. Therefore, the numerical method should

be robust and reliable.

For this purpose, previously we collaborated with Dr Mostafa Safdari Shadloo, who is

also a co-author of the submitted article “Numerical modelling of heterogeneous stimuli-

responsive hydrogels”. In our collaborative work, the objective was to develop a simulation

based on the Lattice-Boltzmann method (LBM). A similar numerical method can be

developed by using a hybrid approach combining the Immersed Boundary and Front-
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Tracking methods; however, the selection of the Lattice-Boltzmann scheme is due to our

collaborator’s expertise in the technique. Although the numerical model is yet to be

completed, it holds the promise of physical insight into the nature of forces exerted by

growing bubbles, such as magnitudes of forces as a function of time and the damage on

active tips due to the bubble collapse mechanism. Access to such knowledge would come

along with another prospective extension.

So far, we have modelled follower forces as non-conservative in direction, but constant

in magnitude as a simplification. However, this is not necessarily the case in general. Fac-

tors including the depletion of local solution concentration or cycle-to-cycle fluctuations

in the molar flux of O2 gas can introduce time-dependent forces. Implementation of this

feature in the bead-spring model is straightforward. Similar to the varying spring stiff-

ness in double-pulse mechanism in 6.3, the follower force can be defined as an array rather

than a constant value. The presence of time-dependent tip forces could alter the overall

dynamics for active Janus and Saturn filaments. The controlled exertion of follower forces

in a timely manner can offer new swimming characteristics and means that could hold

the key to novel treatment strategies. For example, ceasing force implementation after

the running phase might bypass the tumbling mode, leading to filament relaxation.

In terms of follower forces, the final modification would be proposing a general math-

ematical model capable of calculating the local tangent vectors in arbitrary points on

curved surfaces. In our current methodology, we assume that the tip surfaces are planar

and remain undeformed under external forces. Therefore, a uniformly distributed force

acts on the plane over every bead on the tip surface. However, our aim is to extend

our methodology to more complex shapes including hyperbolic paraboloids. Addition-

ally, we have observed that active tips may deform and bend in heterogeneous responsive

hydrogels. In these cases, the normal vectors would vary across the surface.

This issue can be tackled by using connectivity information of tetrahedra. Meshing

with tetrahedral elements ensures that each bead on the tip surface is connected with at

least two other surface beads, and at least one bead in the interior volume (see figure 7.1).
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Figure 7.1: The unit normal vectors Na12 and Na23 are stored for each bead in their
respective triangles. As the ath bead serves a common corner for both triangles, the unit

normal on bead a is computed as the average of Na12 and Na23.

By using the equation 5.3, we can calculate the surface normal for each triangle on the

surface. Then, the same unit vector is stored for each bead on the corners of the triangle.

At this point, the interior beads are essential to sense the direction of the unit normal

vector, and ensure that the compressive (tensile) tip force is always exerted in the inward

(outward) direction as suggested by Smith et al. (165). In terms of the magnitude of the

force in each time step, we would adhere to distributing the force equally among each

bead. By implementing such an algorithm, we can enhance the accuracy of our numerical

methodology.

Apart from the method used to determine forces, there is scope for refinement in

determining spring stiffness for arbitrary shapes. The 3D DLSM formulation is designed

for rigid elastic materials with unstructured meshes, thus, it does not account for pores

when relating spring stiffness with real-life parameters. Consequently, the simulations in

Chapter 6 may not fully represent the dynamics of PNIPAM-based shape-shifters. To

address this limitation, we intend to modify the 3D DLSM formulation by comparing it
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with experimental data. For this purpose, we may collaborate with experimental experts,

such as Prof Anne Juel of the University of Manchester. In such collaborative efforts, the

sedimentation problem of disc-shaped microplates could serve as an initial focal point.

The mentioned problem offers a fine-tuning opportunity for the 3D DLSM formulation

since it has a constant force exerted on all beads for a circular shape. Consequently, for

a deforming disc, the impact of spring stiffness can be isolated. Throughout the tuning

process, we will also investigate the regularisation width and blob function to improve

the accuracy of our solution. These parameters directly affect the drag on the material;

hence, they may considerably change the dynamics. Additionally, a “shell” model will be

considered for the regularised stokeslets. With the shell model, we restrain the impact of

regularised stokeslets on each other based on the distance. This approach is commonly

practised in both SPH and LBM, effectively assigning a lattice or a threshold distance for

the impact.

Once the aforementioned modifications are implemented, we will utilise the findings

of this thesis to propose alternative control strategies for microbots. For example, sec-

tion 6.2.1 showed an I-to-U transition for passive and responsive hydrogels. After being

capable of calculating the normal vector for a deformed tip surface, this transition can be

achieved for an active microbot. Therefore, a scenario where a micropump bends into a

symmetric U-shaped swimmer, translates ballistically in a straight path as long as desired,

and then reverts pumping in the new location by recovering back to its original shape

could be realised.

Another prospective implementation could involve controlling a run-and-tumble mo-

tion. Transitioning from an S-shaped to an I-shaped swimmer may halt the tumbling

phase. This could be achieved with a fully responsive hydrogel. Taking advantage of in-

creasing stiffness during shrinkage, we can effectively reduce the σ parameter in addition

to shape change. Consequently, the hydrogel adopts a rod-like shape and pumps fluid

around after running.

Another theoretical design concept could revolve around responsive microribbons. Sec-
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tion 6.2.4 showcased that the thickness-to-length ratio plays a significant role in the folding

behaviour. By incorporating responsive layers to a microribbon, twisting and curling be-

haviours can be triggered in addition to rolling. These out-of-plane deformations would

bring additional functionality, such as twining around an object like a vine. One practical

application would be capturing the rod-shaped viruses. Alternatively, a more innovative

approach could use these ribbons as joints for self-assembly purposes, enabling the tying

knots to attach microobjects.

Before discussing future comparison studies, we would like to explore one final simu-

lation case. In Chapter 5, we reported a run-tumble-helical behaviour for certain Saturn

filaments. This transient regime shares some common features with the motion of active

and responsive Janus particles. In both simulations, we have observed a helical or circular

orbit that swimmers follow. From this perspective, our numerical studies align with the

findings of the previous study of Ganguly and Gupta (55), suggesting that rigid Janus

particles with bent sections would rotate in circles. However, in the case of active Saturn

filaments, we are required to explore the dynamics in more detail. For this purpose, we

plan to conduct more extensive simulations in this regime.

Throughout this thesis, we have mentioned some alternative formulations for different

components of the numerical model. A notable example is the beam theories for mod-

elling the buckling and bending of filaments, that we used in Chapter 4 for a qualitative

comparison with the literature (107). While we employed a bead and spring formulation

to address the elastic deformations for arbitrary shapes, beam theories such as Euler-

Bernoulli (6) and Timoshenko-Ehrenfest (82) models have been widely used for modelling

slender filaments and flagellated motion. The difference between the two models is the

consideration of shear forces acting on the beams and rotational effects. Consequently, a

direct comparison with one or more of these models would improve the precision of the

numerical method.

Finally, we will validate our responsive hydrogel simulations against the poroelastic

model proposed by Butler and Montenegro-Johnson (17). While our model is capable of
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estimating the bulk dynamics, there is potential for enhancement through such compar-

ative analyses. For instance, since regularised stokeslets do not enforce no-slip boundary

conditions on the bead surfaces, we were unable to conclusively determine the time scales

of swelling and deswelling. The theoretical model of Butler and Montenegro-Johnson (17)

would provide this information, therefore, we can improve the accuracy of our bead and

spring system. With suggested modifications and comparisons, we would have a robust

and adaptable numerical tool that can aid in designing novel artificial microswimmers for

biomedical applications in the near future.
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APPENDIX A

THE CODE

Here, we present the numerical algorithm that is used in Chapters 5 and 6. The main

body of the method is structured as the following:

Algorithm 1 Algorithm for simulating porous and flexible hydrogels

Procedure:

1. Initialise material properties

2. Upload geometry and mesh: filament.m

3. Parse geometry: tet mesh to bead spring.m

4. Initialise time parameters

5. If necessary, bend filament into a curve: bending.m

6. If necessary;

(a) find end points and create follower force

(b) perturb initial position: start perturbed.m

7. If necessary; add responsivity: responsivity.m

8. Time loop for solving algorithm: gel dynamics full nonlocal hydro implicit.m

9. Store results in a folder: folder creator.m.
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In above algorithm, italic names with “.m” extension denotes the in-house functions

build for specific routines.
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APPENDIX B

CURVATURE POST-PROCESS TOOL

The curvature, κ, and torsion,τ , are determined by the Frenet-Serret formulas as follows:

dT

ds
= κN, (B.1)

dN

ds
= −κT+ τB, (B.2)

dB

ds
= −τN (B.3)

where T, N, and B are the unit tangent, normal, and binormal vectors, respectively. The

above equations are parametrised with respect to the arclength s.

The curvature post-process tool is designed to eliminate noisy data and provide a

smooth evolution of the curvature along the arclength over time by using equations B.1

to B.3. The algorithm in the tool begins with finding the arclength.

This is achieved by calculating the tip-to-tip distances in each direction. Subsequently,

the algorithm identifies which direction has the longest edge. Once the direction of the

long axis and the arclength are determined, the algorithm proceeds to sort it out the points

in ascending order along that direction. This sorting is necessary due to mesh generation

on GMSH. In the geometry creation process, we first assign the corners of a 2D shape,

followed by extruding it as translation in the 3rd axis. Moreover, Delaunay triangulation

follows a process of creating the neighbours and then neighbours of neighbours, rather

than moving and assigning points in one direction. As a result, the data points should be
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sorted, and the built-in function sort is used for this purpose.

Following this, we select a line on the filament, which is not necessarily the centre-

line. Depending on our interest, the straight line can be an edge for a rectangular beam

or similarly a line on the surface of a circular filament. For instance, in the case of a

responsive hydrogel, it might be necessary to check the curvature of both responsive and

non-responsive layers. Therefore, the centreline would not provide the required informa-

tion.

The straight line is determined as checking the values in a range in one direction.

To accomplish this, a small tolerance is assigned due to concerns about the computer

precision. Let the tolerance value be δ, and suppose the long axis of the filament is in the

y− direction. Then, the indices of the edge can be detected as the intersection of points

in the x and z directions:

x1 − δ < x < x1 + δ, z1 − δ < z < z1 + δ (B.4)

where x1 and z1 are the arbitrary values. The intersection in equation B.4 is stored

in an array, namely ind. Following this, the variables are initialised. An important

variable is the smoothing parameter, sp, which satisfies 0 < sp < 1. The lower bound

corresponds a fully smoothed function, while the upper bound represents no smoothing at

all. After initialisation, the curvature post-process algorithm operates in loop over time.

The pseudo-code is provided in algorithm 2 for only one direction, therefore, it should be

noted that the original algorithm repeats the same steps for all three directions within

the same loop.

The built-in function csaps computes the cubic smoothing spline of any given function.

The first argument of the function is the data points provided by the user, and the

second argument is the values aimed to be fit. The third argument is the smoothing

parameter, sp. In line 1a, sp = 1 since we are only changing the data form of the original

function rather than interpolation. Following this, we use unmkpp and mkpp functions of
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Figure B.1: Noisy data is removed out from the function d2x/ds2 using algorithm 2.

MATLAB®. The former extracts the polynomial details as breaks, coefficients, number of

intervals, order, and dimension of target as the outputs in line 1b. With the latter function,

we reconstruct the piecewise polynomial with a modification. The second argument,

repmat, manipulates the coefficients of the interpolated function. Therefore, we reduce the

polynomial by one order. Finally, line 1d completes the procedure by creating a piecewise

polynomial for dx(s) using the ppval function, where the second argument specifies the

query points.

After that, the same procedure is followed for the second derivatives between lines 1e

to 1h. In figure B.1, we demonstrate the original function and the smoothed versions

with different sp values for d2x(s) at an arbitrary time point. The algorithm significantly

smooths the initial data. The rest of the code obtains tangent, normal, and binormal

vectors as given in equations B.1, B.2, and B.3. Similarly, we unwrap and reconstruct

those functions to store smoothed curvature and torsion data. Finally, both data sets are

plotted as contours over time and arclength.
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Algorithm 2 Curvature smoothing algorithm

Procedure:

1. For j = 1 to tmax do

(a) Evaluate points of x(s): pp x = csaps(y(ind), p xs(j, ind), 1)

(b) Extract the polynomial details: [breaks, coefs, l, k, d] = unmkpp(pp x)

(c) Build the piecewise polynomial for the 1st derivative:
p dx = mkpp(breaks, repmat(k − 1 : −1 : 1, d ∗ l, 1). ∗ coefs(:, 1 : k − 1), d)

(d) Compute dx(s): dxds = ppval(p dx, y(ind))

(e) Evaluate points of dx(s): pp dx = csaps(y(ind), dxds, sp)

(f) Extract the polynomial details: [breaks, coefs, l, k, d] = unmkpp(pp dx)

(g) Build the piecewise polynomial for the 2nd derivative:
p ddx = mkpp(breaks, repmat(k − 1 : −1 : 1, d ∗ l, 1). ∗ coefs(:, 1 : k − 1), d)

(h) Compute d2x(s): ddxds = ppval(p ddx, y(ind))

(i) Obtain curvature: curvature =
√
ddxds.2 + ddyds.2 + ddzds.2

(j) Evaluate points of curvature: pp curv = csaps(y(ind), curvature, sp)

(k) Store curvature: Curv mat(:, j) = ppval(pp curv, ds)

(l) Compute normal vector: n x = ddxds./curvature

(m) Compute binormal vector: A = [dxds(:), dyds(:), dzds(:)], N = [n x(:), n y(:
), n z(:)], B = cross(A,N)

(n) Evaluate points of binormal vector: Bx = csaps(y(ind), B(:, 1), sp)

(o) Store binormal vector components: Bi mat x(:, j) = ppval(B x, ds)

(p) Extract the polynomial details: [breaks, coefs, l, k, d] = unmkpp(B x)

(q) Build the piecewise polynomial for the 1st derivative of binormal vector:
p Bx = mkpp(breaks, repmat(k − 1 : −1 : 1, d ∗ l, 1). ∗ coefs(:, 1 : k − 1), d)

(r) Compute dBx(s): dBxds = ppval(p Bx, y(ind))

(s) Evaluate points of dBx(s): pp dbx = csaps(y(ind), dBxds, sp)

(t) Compute dot product for torsion: B der = [dBxds(:), dByds(:), dBzds(:)],
tor mat = dot(−N ′, B der′)

(u) Evaluate points of torsion: pp tor = csaps(y(ind), tor mat, sp)

(v) Store torsion: tau(:, j) = ppval(pp tor, ds)

2. Plot curvature contour: contourf(tt, ds, Curv mat(:, tt))

3. Plot torsion contour: contourf(tt, ds, tau(:, tt))
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APPENDIX C

SUMMARY OF RESEARCH ARTICLES

C.1 Published Work

Fundamental Modes of Swimming Correspond to Fundamental Modes of

Shape: Engineering I-, U-, and S-Shaped Swimmers - Priyanka Sharan, Char-

lie Maslen, Berk Altunkeyik, Ivan Rehor, Juliane Simmchen, Thomas D. Montenegro-

Johnson

This study introduces a straightforward approach to incorporating multiple swimming

modes into catalase-propelled hydrogel structures, produced using stop-flow lithography

(SFL). The research investigates the dynamics resulting from bubble expulsion and iden-

tifies that in ”Saturn” rods, characterised by active poles and an inert midpiece, the

primary swimming modes align with the first three fundamental shape modes achievable

through buckling elastic filaments: I, U, and S-shapes. The paper was published in the

Journal of Advanced Intelligent Systems.

C.2 Submitted Work

Numerical modelling of heterogeneous stimuli- responsive hydrogels - Amin

Rahmat, Berk Altunkeyik, Mostafa Safdari Shadloo, and Tom Montenegro- Johnson

This paper presents a computational approach for modelling heterogeneous thermo-
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responsive hydrogels, focusing on resolving local fluid-solid interactions within hydrogel

pores during the deswelling process. The technique employed is a Lagrangian particle-

based method, utilising computational grids to represent polymer beads within the hy-

drogel scaffolds. The study demonstrates that mechanical properties such as shrinkage

ratio and elastic modulus directly influence the advancement of the fluid expulsion front

during deswelling. Furthermore, the paper explores the impact of design heterogeneity

on directional release through the development of simple heterogeneous designs inspired

by Menger Sponge shapes. The article was submitted to Journal of Physical Review E.

Dynamics of Active Poroelastic Filaments in Stokes Flow - Berk Altunkeyik,

Tom Montenegro-Johnson, Amin Rahmat

This paper starts with a brief literature review of soft matter and its applications

in active microbot studies. Drawing inspiration from previous work simulating follower

force problems, we propose a bead and spring method to investigate the dynamics of

active poroelastic filaments. Focusing on exerted tip forces, our study suggests that

flexible ”Janus pusher” filaments may display oscillatory dynamics as they propel forward.

Additionally, under specific conditions, ”Saturn” filaments may exhibit ”Run and Tumble”

dynamics akin to bacteria, solely through elastohydrodynamic interactions. These findings

highlight the potential role of flexibility in enhancing the functionality of active particles.

The article was submitted to Journal of Physical Review E.
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Fundamental Modes of Swimming Correspond to
Fundamental Modes of Shape: Engineering I-, U-, and
S-Shaped Swimmers

Priyanka Sharan, Charlie Maslen, Berk Altunkeyik, Ivan Rehor, Juliane Simmchen,*
and Thomas D. Montenegro-Johnson

1. Introduction

Nanomotors and micromotors are self-propelling artificial
machines that harvest energy from their environment (chemical,
light, heat) and transform it into motion. The propulsion of

motors originates from exploiting various
phenomena, including bubble propulsion,
diffusiophoresis, electrophoresis, and
Marangoni flow, among others. Some of
the earliest researched artificial micromo-
tors were bubble-driven, where gas bubbles
are released from the micromotor body
due to decomposition of H2O2.

[1–5] More
recently, interest in bubble propulsion has
declined due, in part, to the rise of novel
phoretic propulsion mechanisms,[6–8] but
also because existing manufacturing
techniques are able to produce few adapt-
able properties, such as programmability of
trajectories, or complex shape designs.
Indeed, the geometries of bubble-driven
micromotors have been largely restricted

to tubes, or spherical particles, with notable exceptions including
the stomatocytes, presented by the Wilson group, as one of the
smallest bubble-driven micromotors.[9] Larger swimmers
include cartridge-shaped polymer structures[10] and spherical
micromotors,[11] while other complex geometries include
spindle, drum, zigzag, and bilayer shapes[12] and helical motor
bodies;[13] the performance of serrated swimmers, for example,
was shown to depend significantly on geometry.[14] However, the
previously used fabrication techniques including colloidal syn-
thesis[9] and roll-up technology[2,15] are not capable of producing
major shape variations or material composition of
microswimmers, on-demand, to comply to a large variety of
theoretically proposed designs.

From a hydrodynamical perspective, there are three aspects to
bubble propulsion, which may be present in any given system. In
the first stage, bubble growth causes the displacement of fluid.
Due to the proximity of the swimmer to the bubble, this displace-
ment is anisotropic, yielding a propulsive flow. This bubble may
then eject from the swimmer, as in the propulsion of tubular
microjets, and the swimmer is propelled forward at a velocity
such that the net force on the bubble and swimmer is zero.[16]

Alternatively, the growing bubble may violently collapse, creating
a microjet of fluid perpendicular to the surface of the swimmer
that impulsively propels the swimmer in the opposite direction
over a very short interval.[17]

Gibbs et al.[18] presented a simple model based on the forma-
tion and release of oxygen bubbles that leads to a change in
momentum, and used this model to describe the motion of
spherical swimmers. Fomin et al.[19] fitted both ejection and
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growth models to experimental results, and found that they did
not fully account for the propulsive force, as the swimming
speeds and bubble ejection frequencies are underpredicted by
these models. An explanation for this was found in the capillary
force induced through the asymmetry of the tube shape; this
asymmetry led to a momentum transfer, which is counteracted
by a jet force yielding higher velocities. In a later study, the same
author extended their considerations to the mixing effect from
the bubble ejection.[15] Other approaches include considering
bubble geometric asymmetry and buoyancy force; Li et al.[20]

found that the buoyancy force deforms the bubble, and therefore
influences bubble release. In contrast to these methodologies,
Gallino et al.[21] assumed that bubbles in tubular microjets
remain spherical while passing through the inside of the tube,
due to the predominance of capillary effects. Working in the zero
Péclet number limit, Boundary Element Methods were used to
sequentially provide the gas concentration via solution of
Laplace’s equation, and use the resulting bubble growth as
boundary conditions for solving the Stokes flow equations.

In this article, we introduce chemically driven, hydrogel micro-
swimmers produced using stop-flow lithography (SFL),[22,23] a
high throughput microfluidic technique for the production of
micrometer scale (�10–1000 μm) hydrogels (microgels) of arbi-
trary 2D shapes. Exploiting laminar flow of multiple streams
in microfluidic channels allows the production of microgels with
discretely variable composition. The method allows the produc-
tion of poly(ethylene glycol) diacrylate (PEGDA) microgels with
active regions (containing catalase enzyme) and inactive regions
(composed of pure PEGDA). The spatial location of the active and
inactive regions, coupled with the shape design of the microgels,
leads to different motion behaviors—stationary, ballistic, and
rotation. These three modes of propulsion correspond to the first
three shape/bending modes of an elastic filament: a zeroth mode
filament (straight, I-shape) with two active caps is stationary by

symmetry, a filament bent into the first mode (one bend, U-
shape) will translate but not rotate (by symmetry), and a filament
bent in the second mode (two bends, S-shape) will rotate, as sug-
gested in recent theoretical work on autophoretic swimmers.[24] It
is expected, therefore, that this behavior may be recovered for a
variety of propulsion mechanisms—modification of swimmer
geometry, ultimately in an adaptable or programmable manner,
may be used to control and modulate swimming behavior.

2. Results

A representative scheme of the production process in the SFL
technique is shown in Figure 1a,b. The achieved structures are
tens of micrometers in size (the size can be tuned by changing
the magnification in Figure 1a,b). The successful incorporation
of fluorescently labeled catalase in the hydrogel structure was
proven by means of fluorescent microscopy, as well as by active
bubble production after exposing the particles to peroxide fuel.
The created bubbles increase the buoyancy of the hydrogel struc-
tures, so the motion is observed to be at the air–water interface, as
commonly observed for bubble-driven motors.[25] A fraction of the
particles with decreased to no activity were routinely observed sed-
imenting to the bottom surface, and are out of the focal plane and
so unseen in the images. The active motility depends on the shape
and enzyme distribution within the swimmers: two-component
swimmers in a simple rod shape move ballistically (Figure 1c,
e), while their three-component equivalents remain static while
producing bubbles, which leads to fluid pumping instead, due
to the higher symmetry of the system (Figure 1d,f ). We found
the catalase activity to be long lasting: when stored in the fridge
(�20 �C), the particles could swim for about 14 days after fabrica-
tion, after which the activity declined noticeably.

The versatility of the SFL to flexibly change shapes during par-
ticle production was confirmed by exchanging the photomasks,

Figure 1. a) Fabrication principle of two component swimmers (further explanation in the text); b) fabrication principle of three component swimmers.
c,d) Swimming principle at the air water interface of two and three component swimmers, respectively. e,f ) Image sequence of bubble release versus
motility, depending on the composition of the micromotors. Scale bar equals 100 μm.
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and producing letters in the shape of U, I, and S (see Figure 2
for the smaller microgel sizes and Figure S1, Supporting
Information, for greater sizes). The shape in 3D is confirmed
by means of scanning electron microscopy (SEM) images of
freeze-dried microgels (Figure 2). The active and inactive regions
in the swimmer body were indicated using dye labeling.
Rhodamine-labeled catalase was used to label the enzyme-loaded
region (active region) in the swimmer (indicated in red in
Figure 2) and Fluorescein-o-acrylate was used to indicate the
inactive regions of the enzyme (indicated in green in
Figure 2). The thickness of the active region can be tuned easily
by changing the flow rates of the active and inactive component
with respect to each other. The active regions were kept small to
control the position of bubbles effectively. A higher concentra-
tion of inactive component was chosen to increase the cross-
linking density, which helped in preventing the diffusion of
gas bubbles inside the inactive component, to an extent. Due
to a two times lower PEGDA concentration in the active pregel
composition, as compared with the inactive component, a
slightly higher shrinkage at the edges of the fabricated letters
was observed in the freeze-dried SEM samples.

We now analyze the periodic growth-collapse dynamics of the
propulsive gas bubbles. This analysis comprises automated
capture of the bubble radii as a function of time using custom rou-
tines (Figure 3a–c), together with a mathematical model for the
bubble growth and a qualitative description of the collapse. The
dynamics of microbubbles is dominated by surface tension[17]

(i.e., the capillary number is small), and so the gas pressure P inside

the bubble may be well approximated by the Laplace law
P ¼ P∞ þ 2σ=rb, for bubble radius rb, and surface tension
σ, and ambient pressure P∞. The gas inside the bubble obeys
the ideal gas law

PV ¼ nRT (1)

where n is the number of moles of gas present in the bubble, T is
the temperature in Kelvin (assumed constant), andR is the ideal gas
constant. We assume that the bubble remains spherical, so that
V ¼ 4πr3b=3. Substituting these expressions into the ideal gas equa-
tion and taking the derivative with respect to time yields

1
RT

d
dt

P∞ þ 2σ
rb

� �
4πr3b
3

� �
¼ dn

dt
(2)

so that the bubble growth dynamics are given by

r
:
b ¼

RT
4π

dn=dt
P∞r2b þ 4σrb=3

(3)

where dn=dt is the molar flux of gas into the bubble.
Under the simplest assumption, gas is produced at the cata-

lytic surface at a constant rate, and moves immediately into the
bubble, rather than diffusing through the surrounding solute—
i.e., the flux of gas into the bubble is confined to a thin region at
the catalytic surface. In this case, the molar flux dn=dt ¼ Q , for
some constant Q. Substituting Equation (3), we find

Figure 2. SEM micrograph, optical micrograph, and overlaid micrograph of different fluorescent channels, indicating the passive swimmer body (green)
and the active, enzyme incorporating regions (red), respective of a) I-shaped swimmers, b) U-shaped swimmers, and c) S-shaped swimmers.
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r
:
b ¼

RT
4π

Q
P∞r2b þ 4σrb=3

⇒
P∞

3
r3b þ

2σ
3
r2b ¼

RTQ
4π

t (4)

for time t, where we have used the initial condition r ¼ 0 at t ¼ 0.
While this equation is not analytically invertible, it is a simple
matter to numerically find rb(t) for a given Q. Taking values
of R ¼ 8.314 Jmol�1K�1, T ¼ 293K, σ ¼ 7.2� 10�2 Nm�1,
and P∞ ¼ 1 atmosphere¼ 101 325Nm�2, we find a value of
Q � 8.45� 10�13 mol s�1, fitting our model well to phase-aver-
aged experimental data (Figure 3d). There is significant variance
in this fitted parameter from cycle to cycle, with slower growth
phases typically having Q � 6� 10�13 mol s�1 and faster grow-
ing bubbles around Q � 1.2� 10�12 mol s�1.

This variation in the flux occurs from one cycle to the next
stochastically, although we note a long-time (multicycle) trend
of decreasing maximum bubble radius (Figure 4a) and slower
bubble growth (Figure 4b). This long-time trend indicates that
the molar flux of gas into the bubble decays slowly over time.
Possible explanations for this include local depletion of solute
near the swimmer and degradation of the catalytic enzyme.

As this is true for both pumps and translators, which can move
into areas replete with solute, we conclude that this decay is at
least, in part, due to enzymatic degradation.

Finally, we examine the cause of the bubble collapse. As the
bubble grows, the gas pressure lowers until it is similar to the
pressure of the liquid, whereupon fluctuations can provide
enough of a kick for collapse.[17] This point can be estimated
via the Blake critical radius[26]

Rc ¼
9mgRT
8πσ

� �
1=2

(5)

The mass of gasmg is approximated by the average flux in one
of our bubbles Q � 8.45� 10�13 mol s�1 multiplied by the aver-
age time of a growth-collapse cycle �0.5 s using the data in
Figure 3b. The critical radius is thus around 70 μm, while we
see our bubbles collapsing at around 20 μm. Thus, it is likely that
the cause of collapse in our case is interaction between the
bubble and the air–water interface.

(a)

(b)

(c) (d)

Figure 3. Analysis of the growth of a single bubble. a) Frame-by-frame of a single growing bubble over an entire growth cycle. The blue circle denotes the
extent of the bubble, found via circular Hough transform. b) The radius of a single bubble as a function of time over multiple growth/collapse cycles.
A subregion of clean data is selected to be used for phase averaging. c) Phase-averaged growth of the bubble, to be compared with modeling results.
d) Model with a single parameter, the constant molar flux, fitted to experimental data, showing good agreement.
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We conclude with the observation that the effect of a collaps-
ing bubble near a solid body is well documented, and results in a
small jet of fluid that provides an impulsive force to the
swimmer.[27] Thus, the bubble growth phase provides a steady
propulsive force, while the collapse provides a sudden impulse
from the ensuing microjet. We now characterize these dynamics
more thoroughly.

When swimmers in the “I,” “U,” and “S” shapes were dis-
persed in H2O2 fuel, the observed swimmer dynamics was
highly shape dependent (Figure S2, Supporting Information).
In the “I” configuration, enzyme is located at both poles, and
by symmetry the propulsive forces arising from the bubbles
are equal and opposite, resulting in no net motion and a

pumping “stresslet”-like flow (Figure 5a and Figure S9,
Supporting Information, for theta and displacement vs time plot
of Figure 5 particles, more examples in Figure S3 and S4, Video
S1, S2, Supporting Information). Typically, a U-shaped swimmer
prefers to propel ballistically, owing to its geometry (Figure 5b,
and more examples in Figure S5, S6, Supporting Information).
The gas bubbles located at the two poles of the “U” configuration
impart a propulsive force in the same direction as each other,
which is balanced by the drag force of the swimmer moving
forward.

In the case of a perfectly manufactured S-shaped swimmer,
propulsive forces are again equal and opposite, so that no net
force is exerted on the fluid that needs to be balanced by drag

(a) (b)

Figure 4. Multicycle analysis of four bubbles at different locations. a) Steady (linear) decay of the maximum bubble radius over time, indicating decay of
the catalytic enzyme, or local depletion of solute. b) Period between collapse events, showing a steady increase.

Figure 5. Typical motion patterns of the differently shaped particles: micrographs and corresponding analysis [sin Θ and displacement plotted versus
time] of a) pumping of I-shaped swimmers, b) translating movement of U-shaped swimmers, and c) rotating S-shaped swimmers. Scale bar equals
150 μm.
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arising from translation. However, the displacement of the forces
about the center results in a torque that is balanced by the
rotation of the swimmer. In addition, small differences in
manufacturing and indeed inherent randomness in the bubble
nucleation sites will almost always lead to a slight rotational
asymmetry, in which case the S-shaped swimmer will also trans-
late while rotating (Figure 5c, more examples in Figure S7
and S8, Supporting Information). In summary, a U-shape
behaves as a propeller, an I-shape as a pump, and a S-shape
as a moving rotor.

Localization of the bubbles on the microgel surfaces varies
between the individual microgels. We ascribe this to the stochas-
ticity of the bubble nucleation and growth, and the fact that
surface irregularities, some small local defects, may foster the
bubble nucleation at a particular spot. These nucleation spots
on the active microgel surface remain unchanged over the course
of the experiment involving hundreds/thousands bubbles
formed. Different localizations of the bubble nucleation sites
result in different microgel modes of motion. For example, in
the “I” configuration, if additional bubbles are located at the sides
of the swimmer body, in addition to the gas bubbles at the poles,
the swimmer rotates and translates (Figure 6a, Figure S10,
Supporting Information, for theta and displacement versus time
plot of Figure 6 particles and Video S3, Supporting Information).
The interplay of bubble growth and collapse at different locations
results in a different motion pattern in this case. It is observed
that a “U” configuration in which only a single pole is active can
force the fabricated structure to rotate, in addition to translation
(Figure 6b). The location of the gas bubble only at one pole
results in unbalancing of the propulsive force (which is acting
on only one side in this case as compared to when both the poles

are active), producing a moment about the swimmer’s
center of drag that results in rotation. The ballistic motion of the
U-shaped swimmer is compromised due to additional rotation of
the swimmer; the rotation observed, however, was not as fast as
that observed in the case of the “S” configuration. Since the
motion of an S-shaped swimmer already has a translational
and rotational component, the qualitative dynamics of its trajec-
tory remain unaffected by imperfections, such as having only a
single active cap (Figure 6c); even if gas bubbles are only
produced from one of the poles, the rotating motion pattern
is conserved (due to the moment of the force about the
swimmer’s center of drag), and merely the pivotal point and
the periodicity are shifted.

3. Discussion

A considerable body of research has focused on the fabrication of
micromotors with controllable shapes and sizes. Here, we used
SFL as a high throughput microfluidic technique to engineer
micromotors. This technique provides an edge over other meth-
ods in terms of freedom in shape selection and in controlling the
active regions in the fabricated geometries. Exploiting the lami-
nar flow in the low Reynolds number regime in the microfluidics
channels, we fabricated I-, U-, and S-shaped configuration with
active regions confined at the two poles of the shapes. The spatial
confinement of the active component was confirmed by labeling
the enzyme with a fluorescent dye. The active motion pattern of
these configurations was witnessed after mixing them with
H2O2. Oxygen bubbles generated due to decomposition of
H2O2 result in efficient bubble propulsion.

Figure 6. Motion patterns of the differently shaped particles caused by the influences described earlier: micrographs and corresponding analysis [sin Θ
and displacement plotted versus time] of a) partial rotation, partial translation of I-shaped swimmers, b) partial rotation, partial translation of U-shaped
swimmers, and c) rotating translation of S-shaped swimmers. Scale bar equals 150 μm.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2021, 3, 2100068 2100068 (6 of 8) © 2021 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2021, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202100068 by U

niversity O
f B

irm
ingham

 E
resources A

nd Serials T
eam

, W
iley O

nline L
ibrary on [06/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



The interplay of shape, catalytic decomposition of solute, and
resultant bubble growth and collapse driving propulsive fluid
flows determines the trajectories of the fabricated configurations.
Bubbles collapsing at the two poles of an U-shaped configuration
contribute to ballistic motion, while the higher symmetry of the I-
shaped swimmer leads to these propulsive forces on the swim-
mer cancelling so that the shape functions as a pump.
In the S-shaped microgel, although rotational symmetry means
that the forces are equal and opposite, cancelling ballistic motion,
their displacement allows them to exert a couple on the swim-
mer, which results in rotation. This rotational symmetry is
not perfect, and as a result the S-shape also exhibits some trans-
lation, resulting in a moving rotor that may be able to act as an
excellent microscale mixer.

4. Conclusion

In this work, we could show that different configurations of
hydrogel microswimmers can achieve a set of swimming behav-
iors dependent on their geometries. As predicted theoretically,[24]

a straight I-shaped geometry can either act as a pump or as a
ballistic swimmer, having two or only a single catalytic patch,
respectively. U-shaped hydrogels are dominantly translators,
while S-shapes are commonly rotating. As bubble propulsion
is strongly dependent on the local surface properties (e.g., cavi-
ties, or nucleation points), we find a rather large proportion of
microswimmers deviating from the expected swimming modes,
resulting in a broad spectrum of swimming behaviors. In the
future, the implementation of shape changing materials can lead
to the development of multifunctional actuators that respond to
different stimuli and perform specific tasks depending on their
environment. In addition, the use of hydrogels will facilitate the
use of a variety of enzymes operating on base of different sub-
strates and therefore enable the use of different fuels, which
might lead to a platform technology.

5. Experimental Section

Materials: PEGDA (Mn¼ 700), Lithium phenyl-2,4,6-trimethylbenzoyl-
phosphinate (LAP), Catalase from bovine liver (lyophilized powder)
≥10 000 units mg�1 protein, Fluorescein o-acrylate, Rhodamine B isothio-
cyanate (RITC) Tween 20, Glycerol, and Hydrogen peroxide were pur-
chased from Sigma-Aldrich. SYLGARD 184 Silicone Elastomer Kit was
purchased from Dow-Corning.

Labeling Catalase with RITC: Catalase (1 mg) was dissolved in
phosphate-buffered saline (PBS) (1mL) and a solution of RITC (2 μL of
stock solution of concentration 0.2mgmL�1) was added. The mixture
was gently stirred for 4 h and subsequently dialyzed against 200mL
PBS (three times, buffer was exchanged every 6 h). The final volume of
the solution was 1.2 mL. The solution was divided into 150 μL aliquots
and stored at �20 �C for subsequent use.

Pregel Compositions: Active pregel: LAP (10mg) was dissolved in 650 μL
of PBS buffer. Catalase (12.5mg) was added to the mixture and dissolved
by vortexing, followed by PEGDA (200 μL) addition. Then the solution of
Rhodamine-labeled catalase, as received in the labeling step was added
(150 μL). The resulting mixture was vortexed and spinned down
(10 000 g, 5 min) to remove dispersed dirt. Fresh compositions were pre-
pared before each use.

Inactive pregel: Similar to active pregel composition, LAP (10mg) was
dissolved in 550 μL of PBS buffer followed by PEGDA (400 μL) addition.
Then, 50 μL of Fluorescein o-acrylate (8 mgmL�1 in DMSO) was added.

This mixture was sonicated well and centrifuged for 5 min before use.
Fresh mixtures were prepared before each use.

Microfluidic Channel Production: Polydimethylsiloxane (PDMS) micro-
fluidic (depth¼ 30 μm) channels were produced as follows. Silicon wafers
with SU-8 photoresist positive relief channels (Michrochem) were used as
masters, having lateral dimensions of 300 μm� 15 000 μm and the height
30 and 50 μm for production of microgels of corresponding thickness.
Silicone elastomer base (35 g) and curing agent (5 g) from the
Elastomer Kit were mixed well and centrifuged at 15 000 g for 20min.
The mixture was then poured over the silicon wafer and degassed under
vacuum (40mbar, 20 min). The PDMS was cured by storing the wafer at
70 �C overnight after which it was cut and removed from the wafer and
divided into individual pieces, each containing one channel. Using a biopsy
needle, a 1mm hole was punctured through the PDMS pieces at the end of
each inlet channel and at the opposite, outlet, end of the main channel.
Separately, glass slides were spin-coated with PDMS with a 10:1 ratio of
elastomer:base. The glass slides were partially cured by storing them at
70 �C for 35min. After partial curing, the PDMS pieces were placed, chan-
nel side down, on the PDMS side of the slides and these were then cured at
70 �C overnight. Three inlet adapters were made using flattened 1mm
diameter syringe needles with Luer adaptors and inserted in the inlet holes.
A 1mm diameter capillary was inserted into the outlet and fed into a poly-
merase chain reaction (PCR) tube containing 1 wt% Tween 20.

SFL: The SFL method is adapted from that presented by Dendukuri
et al.[22] The active pregel solution (50 μL) was loaded into each of the
two outer inlets and 50 μL of the inactive pregel was loaded into the inner
inlet. The pregels were pumped into the channel using compressed N2,
regulated to 0.4–0.6 psi using a pressure regulator. One pressure regulator
was used for the outer inlets and another for the central inlet. This allowed
the dimensions of the outer, sheath, flows to be regulated manually. Both
regulator outputs were connected to synchronized three-way solenoid
valves which allowed rapid switching between input atmospheric pressure.
The channels were placed on the stage of an inverted microscope (Nikon
Ti-U). UV light passed through a photomask in the focal plane of the
microscope objective such that it illuminated the channel in the shape
given by the photomask. The shutter of the UV source and the solenoid
valves were controlled by a Raspberry Pi, programmed to cycle in the fol-
lowing progression: flow—pregel is pumped through the channel, stop—
the flow is stopped, print—UV light illuminates the channel. The UV light
induced polymerization and cross-linking of the pregel in the illuminated
region, producing microgels with shapes defined by the photomask and a
depth slightly less than the depth of the channel (�27 μm). By controlling
the dimensions of the sheath flow and the position of the illuminated area,
the active and inactive compositions were localized to predesigned
regions of the microgel. The stop–print–flow cycle could be repeated
up to 4 Hz and, with 50 μL of pregel in each inlet, was used to produce
some 14 000 microgels within an hour. The photomasks and collection
PCR tubes were exchanged within the synthesis, providing separate sam-
ples from the same set of pregel. After synthesis, the microgels were sedi-
mented (10min) washed five times with PBS (220 μL concentrated to
20 μL), to remove the excess of catalase. Washed microgels were stored
at �20 �C for subsequent use.

Motion Studies and Analysis: Motion studies were performed in specifi-
cally designed wells. Typically, plastic washers of 2 mm height and 10mm
inner diameter were stuck on to glass slides using spin-coated PDMS as an
inert glue, to render the system optically transparent. This entire assembly
was then cured at 70 �C for 12 h. The fabricated wells were filled with an
aqueous 2.5 wt% H2O2 solution containing 7.5 wt% Glycerol and subse-
quently swimmers were added. The motion and bubbling of micro-
swimmers was recorded using an attached camera to an inverted
Nikon (Ti-U) microscope. The recordings were generated at 30 frames
per second. The videos were analyzed using Tracker software.

SEM: Droplets of water containing fabricated microswimmers were
cast on silicon wafer and shock frozen using liquid N2. Afterward, these
frozen droplets were subjected to freeze drying. SEM images were
obtained after sputtering a 5 nm thin Au–Pd layer on the silicon
sample holders, using a Zeiss Gemini SEM 300 instrument using a
3 kV electron beam.
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Fluorescence Imaging: Fluorescence images were captured on an
inverted Nikon (Ti-U) microscope using green and red channels of light.
The obtained images (one in green channel and the other in red channel)
were subsequently overlayed in ImageJ to obtain the final images.

Image Analysis of Bubbles: Videomicroscopy data were first imported
into Matlab, whereupon we selected a small region of interest (ROI) con-
taining a single bubble. We then performed a frame-by-frame analysis on
this ROI to find the radius of the bubble for each frame. A circular Hough
Transform was used within the built-in function imfindcircles to give the
bubble radius (Figure 3a). As the interior of the bubble appears consistently
darker than the surroundings, erroneous results (most common when the
bubble is small or has just collapsed) were removed by ensuring that the
standard deviation of the pixels inside the circle is below a threshold.
The radius as a function of time was then plotted as a periodic signal
(Figure 3b). A region of interest of clean data was selected from the periodic
signal (Figure 3b, between the red dashed lines), and the locations
of the collapse event (to the nearest frame) were used to “phase-average”
the signal (Figure 3c), to give an averaged data set against which to compare
our model.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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In this paper, we introduce a computational technique for modelling heterogeneous thermo-
responsive hydrogels. The model resolves local fluid-solid interactions in hydrogel pores during
the deswelling process. The model is a Lagrangian particle-based technique, which benefits from
computational grids that represent polymer beads inside hydrogel scaffolds. The hydrogel shrinkage
is triggered via instantaneous step-changes in spring properties, i.e. natural length and stiffness.
The results show that the mechanical properties of hydrogels during deswelling, e.g. shrinkage ratio
and elastic modulus, have a direct effect on the development of the front of expelled fluid. It is
also observed that in certain parameter regimes the hydrogel may generate inertial fluid jets at
the early stages of deswelling. Finally, simple heterogeneous designs are developed using Menger
Sponge-inspired shapes to investigate the effect of design heterogeneity on promoting directional
release.

I. INTRODUCTION

Hydrogels are soft porous materials with a great ca-
pacity to absorb fluids. A hydrogel comprises entangled
polymer chains and the pores between them, which are
loaded with aqueous fluids e.g., water and chemical solu-
tions. Stimuli-responsive hydrogels are hydrogels that re-
act to applied environmental stimuli, such as light [1, 2],
pH [3, 4], and temperature[5, 6], losing their affinity for
water and expelling interstitial fluid, thereby shrinking.
Such stimuli-responsive hydrogels are suitable for appli-
cations in soft robotics [7, 8], tissue engineering [9–11],
and drug delivery [12–14].

Among these various stimuli, temperature is widely
employed, particularly in biomedical applications [15,
16], because it is nontoxic and easy to control. In thermo-
responsive materials, a Lower Critical Solution Temper-
ature (LCST) exists above which the polymer chains un-
dergo a reversible conformation transition by switching
from a hydrophilic state into a hydrophobic one [17].
During this process, the hydrogel expels the absorbed
aqueous fluids following the shrinkage of the hydrogel
structure. Poly N-isopropylacrylamide (PNIPAM) is one
of the most commonly studied thermo-responsive mate-
rials [18, 19] with a LCST of ∼ 32◦C, making it suit-
able for various biomedical applications. It has been
shown that the PNIPAM active shrinkage/swelling range,

∗ A footnote to the article title
† a.rahmat@bham.ac.uk

its mechanical properties, and volume shrinkage ratio
can be adjusted by varying the polymerisation param-
eters [20, 21], the concentration of NIPAM and other
co-polymers [22–24], and cross-linker type and concen-
tration [25, 26].

Numerical simulations of thermo-responsive hydrogels
have been greatly dominated by Molecular Dynamics [27,
28] and coarse-grained models such as Coarse-Grained
Molecular Dynamics [29], Coarse-Grained Multi-Blob
[30, 31] and Dissipative Particle Dynamics [32, 33] tech-
niques. All-Atom Molecular Dynamics simulations in
which monomers and single polymer chains are simu-
lated at very small timescales (nano and picoseconds)
and lengthscales (≤ 100 nm), have been developed to
study the effect of the solution and cross-linker types
[28], arrangement of model components and molecules
[27, 34], and polymer structural characterisation [35] for
PNIPAM-based and other thermo-responsive hydrogels.
At larger time and length scales, coarse-grained models
have been developed to model the formation and assem-
bly of hydrogels from crystalline lattices [36, 37], ran-
domly distributed cross-linkers [32, 38], functionalised
polymer chains [39, 40], and self-assembly of gel networks
[41]. Coarse-grained models have also unfolded the ki-
netics and dynamics of swelling and deswelling processes
[32, 42] for PNIPAM and other thermo-responsive hydro-
gels. The development of multiscale computational mod-
els for simulating the topological dynamics and geomet-
rical deformations of thermo-responsive materials is piv-
otal in designing future smart technologies at the much
larger time and length scales. However, numerical stud-
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ies in the literature have mainly focused on internal in-
teractions of hydrogel components, and modelling of the
macroscopic bulk dynamics of hydrogels has been unat-
tended except in a few notable studies. Hippler et al. [43]
studied the dynamics of heterogeneous PNIPAM thermo-
responsive structures in microfluidic systems aiming to
design microscale actuators for which they developed a
multiphysics model to complement their experimental
data. Their COMSOL multiphysics model has resolved
the swelling and shrinkage mechanisms of bilayer beams
in multiple cycles, and showed good agreement with ex-
periments. Similarly, Wang et al. [44] developed a COM-
SOL multiphysics model aiming to design soft thermo-
sensors and predict their deformation at different tem-
peratures. More recently, Tanasijevic et al. [45] studied
the non-reciprocal dynamics and jet-driven viscous loco-
motion of thermo-responsive, PNIPAM ribbons in which
they used COMSOL multiphysics to model the Stokes
flow for a disk under free-force locomotion.

These studies provide good geometrical and topologi-
cal agreement with the experiments and are good design
tools for geometrical optimisation and modelling topo-
logical variations. However, there are other knowledge
gaps in the dynamics of stimuli-responsive hydrogels that
are missing but crucially needed. Hydrogels are heteroge-
neous materials with an irregular pore structure, which is
neglected in homogenised numerical/mathematical mod-
els. Such inherent heterogeneity plays a key role in fluid-
solid interactions at local pore-scale dynamics. These lo-
cal interactions are particularly important in biomedical
applications e.g., targeted drug delivery, wound dressing,
and skin regeneration, where fluid expulsion regime, di-
rectional release profile, and species transport are key
objectives that need to be optimised.

In this paper, we present a hybrid multiscale computa-
tional model for thermo-responsive PNIPAM hydrogels.
The model combines two particle-based methods i.e.,
the Smoothed Particle Hydrodynamics and Mass Spring
Model, and has a continuum Lagrangian approach, which
explicitly resolves the interfaces between fluid and solid
phases. Similar to other homogenised models, the pro-
posed technique captures topological variations and geo-
metrical dynamics of stimuli-responsive hydrogels during
the deswelling process. In addition, it offers modelling
heterogeneous stimuli-responsive hydrogels and simulates
the local fluid dynamics in hydrogel pores and around the
hydrogel. These features enable us to investigate the dy-
namics of loaded fluid front during expulsion and direc-
tionality of released fluid by incorporating simple design
heterogeneity.

II. METHODOLOGY

We have proposed a hybrid particle-based numerical
model to simulate the dynamics of stimuli-responsive hy-
drogels. The model is extended based on the Discrete
MultiPhysics model [46, 47] which has been developed

for the interactions of fluid-solid systems under large de-
formations. In this model, both fluid and solid phases
are modelled under continuum mechanics assumptions,
for which computational particles are employed to discre-
tise both phases. The proposed technique combines the
Smoothed Particle Hydrodynamics (SPH) for modelling
the fluid flow and a modified version of the Mass Spring
Model which accounts for the deformation of compliant
materials.
Within the framework of particle-based techniques,

there are two distinct approaches regarding particle
“identity”. In the first approach, particles are solely
considered as computational particles, which are used
to discretise the governing equations. Although they
have physical properties, they serve as representative dis-
crete Lagrangian points in space with no real physical
dimensions. One may relate this approach to mesh-
dependant discretisation techniques and the definition
of points/grids, elements, and volumes in Finite Differ-
ence, Finite Element, and Finite Volume methods, re-
spectively. In the second approach, particles have a ma-
terial identity by holding physical properties and phys-
ical dimensions, thus the distance between particles is
the void/spacing between the constructing elements of
the material. The latter approach is a common prac-
tice in computational chemistry and material sciences,
and is applied to the problems at the atomic, coarse-
grained, and mesoscopic lengthscales where the interac-
tions and potential dynamics between atoms/beads are
considered. The SPH method, which we utilise to model
the fluid phase, relies on the former approach, so we
mainly consider particles as computationally-discretised
Lagrangian points. However, since some dynamics of the
proposed model fall at the interface between mesoscale
and continuum-scale mechanics, we have adopted some
characteristics of the second approach in our hybridised
technique. We will refer to this discussion in the following
sections wherever appropriate.

A. Smoothed Particle Hydrodynamics (SPH)

SPH is a particle-based numerical method initially
developed for astrophysical purposes [48], but it soon
became a popular technique due to its characteristics
for modelling large deformations in fluid dynamics in-
cluding free surface flows [49, 50], multiphase systems
[51, 52], flow instabilities [53, 54], and fluid-solid inter-
actions [55, 56]. The governing equations of a laminar
incompressible Newtonian fluid may be written

Dρ

Dt
= −ρ∇ · u, (1)

Du

Dt
=

−∇p

ρ
+

1

ρ
(∇ · µ∇u) + F, (2)
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where u is the velocity vector, and ρ, µ, and p are density,
kinematic viscosity, and pressure, respectively. Time is
represented by t, D

Dt is the material derivative, and F is
the volumetric body force.

SPH solves equations 1 and 2 over spatially distributed
particles in the solution domain using a smoothing ker-
nel function, W (rij , h) or in its concise form, Wij . The
kernel function relates the particle i with its surrounding
neighbour particles j, based on the relative distance be-
tween these particles rij = |ri − rj |, and the smoothing
length, h. In this study, we have used the Lucy kernel
function [57] due to its suitability for parallel simulations.
In SPH, any arbitrary variable f can be approximated as
a summation over discrete particles as

fi ≃
Ji∑

j=1

mj

ρj
fjWij , (3)

where mj is the mass of the discrete neighbouring parti-
cles, and Ji is the number of neighbouring particles for
particle i. It should be noted here that in SPH (and in
other particle-based techniques in general) mass is au-
tomatically conserved since each computational particle
has a specific mass, which remains constant throughout
the simulation. Equations 1 and 2 can be written in dis-
cretised forms as

ρ̇i = −
Ji∑

j=1

mjuij
∂Wij

∂xi
, (4)

fi = −∑Ji

j=1 mimj

(
pi

ρ2
i
+

pj

ρ2
j

)
∂Wij

∂xi

+
∑Ji

j=1
mimj(µi+µj)

ρiρj
uij

∂Wij

∂xi
+ Fi. (5)

In equation 5, the first term is the pressure gradient
and the second one is the dissipation term known as the
laminar viscosity model [58]. In SPH, there are two dis-
tinct approaches to evaluate pressure: (i) the incompress-
ible SPH method which requires solving a pressure Pois-
son equation [59]; and (ii) the Weakly Compressible SPH
(WCSPH) method [60], in which the pressure is evalu-
ated from density variations via an equation Of state. In
this paper, we employed the WCSPH technique using the
so-called Tait equation Of state [61]:

p =
c20ρ0
γ

[(
ρ

ρ0

)γ

− 1

]
. (6)

where c0 is a reference speed of sound. To keep the den-
sity variations below 1% in incompressible flows, it is
recommended to set the reference speed of sound at least
one order of magnitude larger than the maximum veloc-
ity in the domain [62]. ρ0 is the reference density set
equal to 1000 kgm−3 and γ is a coefficient taken equal to

7 [63]. Similar to our previous studies [47, 64], different
particle types are defined to mark different fluid phases,
which automatically resolve the interface between differ-
ent material phases.

B. The MSM

The Mass Spring Model (MSM) [46, 65] is a particle-
based model which represents deformable elastic mate-
rials using a network of interconnected springs. In the
MSM [66], deformable solid material is discretised into
computational particles and a network of harmonic bonds
connecting these particles allows them to move according
to the Newtonian equations of motion under the effect of
external forces. These harmonic bonds are used to ac-
count for Hookean elasticity between solid particles by

Fi,bond = kb (rij − r0) (7)

where kb is the Hookean bond coefficient and r0 is the
equilibrium distance. Depending on the structure of
MSM grids (e.g., tetrahedral, hexahedral, random, etc.)
and the connectivity between springs and particles (i.e.,
structured vs unstructured, 2D vs 3D), one may correlate
the model spring stiffness to the macroscopic properties
such as elastic and shear moduli. For a three dimensional
unstructured system, the relationship between the elastic
modulus and the spring coefficient is evaluated by [67],

kb =
3E

α3D(1− 2ν)
(8)

where ν is the Poisson ratio, and α3D is the microstruc-
ture geometry coefficient and is calculated as

kb =
Σl2s
V

(9)

where ls is the original length of the s-th bond and V is
the volume of the modelling material.
We have modified the MSM to model stimuli-

responsive materials such as thermo-responsive PNIPAM
hydrogels, which change their volume in response to tem-
perature variations [15, 16]. To account for the confor-
mational changes and hydrophobicity of PNIPAM when
heated, we present a simple model where the natural
length of springs is adjusted in response to temperature
variations, which consequently reduces the size of the hy-
drogel as temperature exceeds the LCST.

C. Coupling of SPH and MSM

The interaction between the solid (MSM particles) and
the fluid (SPH particles) is defined by boundary condi-
tions which relate to the behaviour of two adjacent ma-
terials at the common interface. There are three types
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of boundary conditions that must be taken into consid-
eration [68], no-penetration, no-slip, and continuity of
stresses. In continuum mechanics, these conditions are
often, respectively, represented as

(
∂

∂t
uf − us

)
· n = 0, (10)

(
∂

∂t
uf − us

)
× n = 0, (11)

and

σsn = σf (−n) , (12)

where n is the unit vector normal to the boundary, us

and uf are the displacement of the solid and the velocity
of the fluid, respectively; the stress is represented by σs

and σf for the solid and fluid, respectively. The proposed
approach follows the principles of the ghost particle ap-
proach in particle-based techniques, in which ghost fluid
particles are assigned to solid particles (herein MSM par-
ticles) at the fluid-solid interface to interact with SPH
particles of the fluid.

D. Numerical algorithm

The time integration is employed using the Velocity
Verlet (VV) algorithm with a first-order Euler approach
and variable timestep according to the stability condi-
tion, ∆t = ζh2/ν, where ν is the dynamic viscosity equal
to ν = ρ/µ and ζ is taken to be equal to 0.125 [46]. Us-
ing the VV algorithm, particles velocities are calculated
at the intermediate stage

u∗
i = u

(n)
i +

∆t

2mi
f
(n)
i . (13)

Here, the superscript (∗) represents an intermediate
value and the superscript (n) denotes values at the n-th
time step. Then, the density of the particles is updated
according to

ρ∗i = ρ
(n)
i +

∆t

2
ρ̇
(n)
i , (14)

where the density variations ρ̇ is calculated according to
equation 4. In equation 4, the density should be updated
based on the velocity difference between particles uij. To
prevent poor conservation of total mass due to the lag of
the velocity in the VV algorithm, an extrapolated veloc-
ity is introduced here as

ui = u
(n)
i +

∆t

mi
f
(n)
i , (15)

FIG. 1. The equilibrium curve as a function of temperature
for thermo-responsive hydrogels [69].

where the velocity difference is now calculated based on
uij = (ui − uj). The next step is to move particles to
their new positions by means of

x
(n+1)
i = x

(n)
i +∆tu∗

i . (16)

At this stage, ρ̇
(n+1)
i , and f

(n+1)
i are calculated for the

new time step using equations 4 and 5, respectively. Fi-
nally, the true velocity and density are calculated respec-
tively as

u
(n+1)
i = u∗

i +
∆t

2mi
f
(n+1)
i , (17)

and,

ρ
(n+1)
i = ρ∗i +

∆t

2
ρ̇
(n+1)
i . (18)

There are two approaches available for the deswelling
of stimuli-responsive hydrogels. In one approach, the hy-
drogels follow a quasi-static deformation in which the
hydrogel deforms incrementally under the effect of tem-
perature variations to maintain equilibrium state during
the deswelling process. This can be considered by fol-
lowing small increments in the red equilibrium curve in
figure 1. In the other approach, the temperature in-
creases instantaneously and the hydrogel undergoes a
sudden change in its characteristic length-scale along the
horizontal arrow in figure 1. Subsequently, the hydro-
gel requires to reach equilibrium which results in shrink-
age. In both approaches, the underlying fact is that
the hydrodynamic timescale, which describes the hydro-
dynamic diffusion and fluid expulsion, generally occurs
at much larger timescales in comparison to the thermal
timescale. Tanaka and Philmore [70] suggest that the hy-
drodynamic diffusivity is about four orders of magnitude
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FIG. 2. A 3D representation of the computational domain;
(a) a schematic view of the hydrogel with the size of 2L at
the centre of the domain with a size of H = 5L, (b) hydro-
gel discretisation via unstructured tetrahedral mesh and the
allocation of dodecahedron grids on each node, and (c) com-
putational domain showing different particle types i.e., poly-
mer particles (black) loaded aqueous fluid shown (green), and
surrounding fluid (magenta). It should be noted that particle
sizes have been changed for illustration purposes only.

FIG. 3. Particle resolution study for three different resolu-
tions: (a) P1 = 160Π, (b) P2 = 180Π, and (c) P3 = 200Π
on a thin slice at z = H/2 ± ϵ, where ϵ is equal to H/100,
shown at four different times: t = 0.4, t = 0.8, t = 1.6, and
t = 3.2. Velocity contours are represented within the range
of 0 ≤ v ≤ 2 and velocity streamlines are shown by solid red
lines while black particles illustrate hydrogel beads.

smaller than the thermal diffusivity of water, suggesting
that the swelling takes 100 times slower than the heat
diffusion [69, 71]. However, these two approaches differ
in the hydrogel length-scale. It has been shown in lit-
erature [69, 71] that the shrinkage time is proportional
to the second power of the hydrogel length-scale. Thus,
the former approach is more appropriate for length-scales
above 1 mm where temperature gradients are observed
while the latter is more suitable for micro-scale materials,
where small temperature changes occur almost instanta-
neously at small length-scales. In this study, we restrict
ourselves to the second approach.

III. PROBLEM SETUP

Figure 2 represents the simulation domain, which is
a cube with the size of H = 5L and a hydrogel cube
is placed with a size of 2L at the centre. The charac-
teristic length L = 40µm, while the other characteristic
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parameter is the shrinkage time T, calculated as the time
required for the hydrogel to shrink up to 90 % of its ini-
tial volume, and the velocity is scaled by V = L/T. In
figure 2, there are three different fluid types which are
shown by different colours: (i) black particles represent
the thermo-responsive hydrogel, (ii) green particles rep-
resent the loaded aqueous fluid, and (iii) magenta parti-
cles indicate surrounding fluid. It should be noted that
the particle sizes in figure 2 do not imply any physical or
numerical meaning and they are used for illustration pur-
poses only. In all simulations, other physical properties
such as fluid density and viscosity are taken as ρ = 1000
Kg/m3 and µ = 5 mPa.s, unless stated otherwise.

There are numerous experiments in the literature
studying the PNIPAM hydrogels and their microscopic
pore formation [72, 73]. It has been observed that de-
pending on the polymerisation technique and construct-
ing elements e.g., co-polymers and cross-linkers, unstruc-
tured PNIPAM porous structures are formed with an av-
erage pore size ranging from ∼ 2 µm to a few hundreds.
Detailed electron microscopy images further demonstrate
the hydrogel structure as interconnected polymer clus-
ters via linking legs. In such unstructured elasto-porous
medium, the local fluid-solid interactions plays a sig-
nificant role in the hydrodynamics of the hydrogel and
fluid expulsion during the swelling/deswelling process.
However, computational techniques ignore these micro-
dynamics and consider assumptions that do not provide
useful information about local interactions. To resolve
the local fluid-solid interactions, we have developed a
novel hybrid computational approach by using particle
grids to represent polymer clusters. As mentioned be-
fore, computational particles do not have any physical
dimensions, so it is not practical to apply no-slip bound-
ary condition, which is required for resolving local inter-
actions. Further, individual particles cannot represent
polymer clusters and the unstructured pore formation.
To overcome these limitations, we have used a MAT-
LAB routine to generate tetrahedral unstructured mesh,
which discretises the hydrogel cube into points on the
vertices of tetrahedrons. Then, we have allocated a do-
decahedron particle grid on each of these vertices. Each
dodecahedron consists of 20 SPH particles which are in-
terconnected via stiff springs to represent hydrogel beads
as shown in figure 2-b. These grids that are shown as
black packs of particles in figure 2-c, can effectively in-
troduce no-slip surfaces for local fluid-solid interactions.
Considering the size of the hydrogel, we have discretised
the cube such that the pore size is approximately 8 µm
at the swollen state before the initiation of the shrinkage
process, while each dodecahedron has a diameter of ap-
proximately 2.5 µm. During the deswelling, there is no
external control and/or enforcement on the pore size and
it is governed by the competition between hydrodynam-
ics and elastic forces.

The deswelling is implemented by updating both
spring natural length and stiffness as being suggested in
experiments [43]. As shown in equation 8, the spring co-

efficient relates with the elastic modulus, so we have set
the spring coefficient to match with E = 25kPa before
the shrinkage and E = 100kPa after the shrinkage, re-
spectively. The spring natural length is further updated
to 40 % of their original length. Nonetheless, it should be
noted that some of these values are varied for some test-
cases to test the effect of elastic modulus and shrinkage
ratio.
The numerical code is modelled and implemented

in LAMMPS, an open-source package developed for
particle-based techniques. The computational domain
contains more that 5.8 million computational particles.
Simulations are performed on different available High-
Performance Computing facilities and take an average
wall-time of 19.5k cpu.h to run. In-house MATLAB
codes are used to design computational domain during
pre-processing stage, while Ovito and in-house MATLAB
codes are used for post-processing purposes.

IV. RESULTS

A. Deswelling dynamics and particle resolution
study

Before investigating the effect of various parameters on
the hydrogel deswelling, the model is checked to remove
any dependency on number of computational particles.
Thus, we have compared the shrinkage dynamics of the
hydrogel for three different resolution cases: P1 = 160Π,
P2 = 180 Π, and P3 = 200 Π, where Π indicates the
number of particle along the side of the simulation do-
main. Figure 3 represents the velocity streamlines and
contours as well as hydrogel beads (shown by black par-
ticles) at four different times for P1, P2, and P3. The
results are shown on a thin slice at z = H/2 ± ϵ where
ϵ is equal to H/200. As the shrinkage is triggered, the
hydrogel beads are contracted towards the centre which
causes the loaded fluid to expel out in the surrounding.
Subsequently, fluid jets are diffused from the hydrogel
sides and flow streamlines indicate the formation of flow
circulations around the hydrogel. Flow streamlines also
reveal that there are reverse flows from the hydrogel cor-
ners towards the centre, which is deemed to occur due
to a combination of two effects: (a) asymmetric hydrogel
structure that generates higher resisting drag for loaded
fluid expulsion along the diagonals and makes the fluid
diffusion faster from the sides and (b) the domain pe-
riodic boundary conditions that amplifies these circu-
lations. These flow circulations are developed at early
stages at the vicinity of the solid front and they seem
to move in the outward direction. Comparing the veloc-
ity contours and streamlines, it can be qualitatively con-
cluded that increasing particle resolution improves the
results from P1 to P2, while no significant improvement
is observed between P2 and P3 cases.
Figures 4 and 5 provide further quantitative compar-

isons for the particle resolution study of P1, P2, and
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FIG. 4. Contours of fluid front on the xy-plane on a thin slice at z = H/2 ± ϵ at four different times (a-d) and x-velocity
profiles along x direction at four different times (e-h) for P1 = 160Π, P2 = 180Π, and P3 = 200Π represented by blue, red,
and black colours, respectively.

P3 cases. Figure 4 illustrates the interface (hereafter re-
ferred to as the ‘front’) between the loaded fluid and the
surrounding fluid (a-d) and velocity profiles along the
x-axis (e-h) at four different times on the same slice as
shown in figure 3. In all sub-figures, P1, P2, and P3 are
represented by blue, red, and black colours, respectively.
Figure 4 (a-d) represents the fluid front which develops
during the deswelling towards domain boundaries. The
fluid front is developed faster from the hydrogel sides cre-
ating a total number of six spikes (two along each axis)
which four are shown in the figure. Figure 4 (e-h) fur-
ther demonstrates the velocity profiles, i.e. vx along the
x-axis passing through the hydrogel centre. The sudden
deswelling of the hydrogel generates velocity peaks in the
expelled fluid that travels towards the domain boundaries
as deswelling develops. It should be noted that the ve-
locity magnitude of the loaded fluid particles inside the
hydrogel structure are noisy, which is due to the local
forces exerted on individual fluid particles at the prox-
imity of hydrogel beads, which might drag them in the
opposite direction of the expulsion.

Figure 5 represents the time evolution of the front de-
velopment for both fluid (solid lines) and solid (dashed
lines) phases along x direction for P1, P2, and P3 cases
shown by blue, red and black colours, respectively. The
solid front reaches its terminal state much faster that the
fluid front, due to the effect of elastic force between hy-
drogel beads. In other words, the difference in the rate of

FIG. 5. Effect of particle resolution on the temporal evolution
on the fluid (solid lines) and solid (dashed lines) fronts along
the x direction for three different resolutions: (a) P1 = 160Π
(blue), (b) P2 = 180Π (red), and (c) P3 = 200Π (black).

front development for fluid and solid phases relies on the
difference between the viscoelastic response of the hydro-
gel in contrast to the viscous dynamics of the loaded fluid
during expulsion, which develops steadily while gradually
being damped due to viscous effects.

As discussed, figures 4 and 5 provide quantitative
comparison between P1, P2, and P3 cases during the



8

deswelling process. It is observed that increasing parti-
cle resolution leads to the convergence of results such that
increasing particle resolution from P1 to P2 improves nu-
merical accuracy. However, increasing particle resolution
from P2 to P3 does not seem to improve numerical results
significantly, thus we have used the resolution of P2 as
the baseline for the rest of the simulations in this study.

FIG. 6. Three-dimensional streamtubes around the hydrogel
during the deswelling process at t = 0.8 for P2; fluid velocities
are illustrated using different colours on individual tubes.

As previously mentioned, the conformational change
of the hydrogel structure is implemented as an instan-
taneous change to the springs’ “preferred” length, thus
it is important to study the time scale of the deswelling
dynamics. In our simulations, the deswelling of the hy-
drogels is occurs very quickly as it takes place in 60
µs. Other researchers including Tanasijevic et al. [45]
and Zhang et al. [74] who have investigated the dy-
namics and swimming characteristics of microscale bi-
layer thermo-responsive PNIPAM hydrogels, have re-
ported larger (though still small) time-scales in their ex-
periments. Tanasijevic et al. [45], for instance, studied
the swimming dynamics of 80 micron bi-layer ribbons
and reported that a full actuation cycle occurs within
about 12 milliseconds. Their measured actuation time is
clearly larger than our findings, but other factors should
be taken into account. First, our numerical model simu-
lates a hydrogel cube in a quiescent fluid, which experi-
ences no drag from the surrounding environment during
the deswelling process. In contrast, their bi-layer ribbons
are resisted by the ambient fluid during the course of ac-
tuation. Second, we have modelled a homogeneous cube
representing a uniform shrinkage, while the actuation dy-
namics of bi-layer ribbons is temporally restrained by the
resisting elastic force exerted by the non-responsive layer,
which seems to have a significant effect on the actuation

response time. Finally, differences may arise since the
formalism we have used to calculate the spring stiffness
in our model was derived for elastic, rather than poroe-
lastic materials. Therefore, the deswelling time in our
numerical simulations is significantly smaller than those
in experiments. While it would be possible to further fit
the stiffnesses to match specific experimental data, for
the purposes of this study, which focuses on methodology
and the effect on the flow of adding structured mesopores
- and given the wide range variation hydrogel material
properties - this is not necessary to understand qualita-
tive dynamics (as shown in Fig. 7b).

TABLE I. Simulation test cases and their properties to ex-
amine the effect of elastic modulus (E) and shrinkage ratio
(δ).

Test-case E (kPa) δ (%)
S1 100 60
S2 100 50
S3 100 40
S4 50 60
S5 25 60

Figure 6 illustrates three-dimensional streamtubes
around the hydrogel during the deswelling at t = 0.8 for
P2. In this figure, streamtubes depict flow streamlines
on which velocity magnitudes are locally represented us-
ing a spectrum of colours. Further, hydrogel beads are
shown in black to mark the hydrogel front. It is observed
that fluid jets stream out of the hydrogel side faces show-
ing a relatively large velocity magnitudes. These jets
split into four currents which generate flow circulations
towards the four adjacent corners of the hydrogel side.
Therefore, each corner attracts three streams of circulat-
ing fluid from its constructing faces. It might be possible
and interesting to reconstruct the above flow circulations
using force dipoles and singular flows at the Stokes regime
for less stiff hydrogels. As the front of the hydrogel is
shrinking towards the centre, however, the magnitude of
these circulating streams and the amount of displaced
fluid are marginal from corners compared to the expelled
fluid from the sides.

B. Effect of shrinkage ratio and elastic modulus

Polymerisation parameters such as the concentration
of PNIPAM, other co-polymers and cross-linkers can sig-
nificantly impact the responsive dynamics and proper-
ties of hydrogels by changing the elastic modulus and
shrinkage ratio. Subsequently, these two factors can af-
fect the hydrodynamics of the deswelling. In fact, the
elastic modulus contributes to the viscoelastic proper-
ties of hydrogels and the shrinkage ratio affects the fluid
expulsion by changing the amount of the fluid being dis-
placed. In this section, we investigate the local and over-
all deswelling dynamics by modelling five test-cases as
shown in table I where S1 is the base case and identical
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FIG. 7. Temporal evolution and development of fluid (solid
lines) and solid (dashed lines) for S1, S2, S3, S4, and S5; Sub-
figure compare the effect of (a) shrinkage ratio and (b) elastic
modulus.

to P2 in the previous section and S2-S3 and S4-S5 are
introduced to examine the effect of shrinkage ratio (δ)
and elastic modulus (E), respectively.

Figure 7 represents the effect of (a) shrinkage ratio
and (b) elastic modulus by comparing the temporal de-
velopment of fluid and solid fronts for S1, S2, S3, S4,
and S5 cases. In figure 7-a, it is shown that decreas-
ing the shrinkage ratio affects the development of both
solid and fluid fronts such that decreasing the shrink-
age ratio results in a slower development. It should be
noted that shrinkage ratio does not affect the rate of de-
velopment for the solid front and all cases reach their
plateau almost at the same time. This is in contrary
with the effect of the elastic modulus for the solid front
in figure 7-b in which the solid front reaches the plateau
at later times for smaller elastic cases (S5). The rea-
son lies behind the fact that changing elastic modulus
would affect the viscoelastic properties of the hydrogel
and enhances the viscous component, thus the hydrogel
represents a slower response compared to larger elastic
modulus cases. On the other hand, both shrinkage ratio
and elastic modulus represent similar influence on the de-
velopment of the fluid front derived from various causes.

Changing the shrinkage ratio impacts the amount of ex-
pelled fluid and the expulsion hydrodynamics, while the
rate of front development seems unaffected. Changing
the elastic modulus, however, results in a change in the
rate of development but the amount of displaced fluid
remains the same. Thus, it can be concluded that de-
creasing the elastic modulus/response rate decreases the
penetration of the expelled fluid while forming a more
spread front.
Figure 8 represents the vx velocity profiles along the

x-axis on a line passing the hydrogel centre for S1, S2,
S3, S4, and S5 cases at four different times. As expected,
velocity profiles are generally symmetric around the hy-
drogel centre for all cases. A detailed observation, how-
ever, reveals that there are noisy fluctuations especially
at early times of the deswelling and at the proximity of
the hydrogel centre. These fluctuations arise from local
interactions between fluid particles and hydrogel beads,
which influence fluid dynamics in their proximity. Com-
paring the effect of shrinkage ratio and elastic modulus,
it is observed that peak velocities monotonically decrease
with decreasing the shrinkage ratio and elastic modulus
at all simulation times. The magnitude of the fluid ve-
locities has a direct relationship with the development
of fluid fronts, and we expect the same physics influ-
ence both. Considering the relationship between the fluid
front and maximum peak velocity, it is observed that
the maximum peak velocities are approximately 0.6 unit
length behind the fluid front at all times and for all cases.
The dynamics of microscale swimmers and devices in-

cluding stimuli-responsive hydrogels are often considered
to occur in the Stokes regime where inertia is negligi-
ble. Although it is true for many natural phenomena
and engineering applications, we noticed that inertial
fluid jets may formed during the deswelling process, if
it is sufficiently rapid. As described in previous section,
these fluid jets develop in the outward direction and from
the faces of the hydrogel. We herein introduce the local
Reynolds number (ReL), which is calculated by measur-
ing the width of the jet fluid at the location of the max-
imum velocity (umax) as

ReL =
ρumaxD

µ
, (19)

where D is the measured width of the jet.
Figure 9 presents the local Reynolds numbers for S1,

S2, S3, S4, and S5 cases at different times during the
deswelling process. The results indicate that the expelled
jets are within the finite Reynolds regime and the local
Reynolds number decreases as deswelling progresses in
time. By comparing the solid front development and the
local Reynolds number, we can conclude that the inertia
limit of the expulsion ends when the solid front reaches
a plateau at t ≈ 2. Viscous dissipation is the main cause
of the decay of the Reynolds number. In fact, the lo-
cal Reynolds number decreases due to (a) decreasing the
maximum velocity as discussed in figure 8 and (b) thin-
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FIG. 8. Velocity profile along the x direction passing the centre of the hydrogel at four different times (black at t = 0.4, blue
at t = 0.8, red at t = 1.6, and green at t = 3.2) for S1, S2, S3, S4, and S5.

FIG. 9. Local Reynolds number for S1, S2, S3, S4, S5 cases.

FIG. 10. Schematic views for the M1, M2, and M3 cases; the
size of the openings are a third of the hydrogel size i.e., 2L/3.

ning of the jet stream as it penetrates in the surrounding.

C. Effect of design heterogeneity

So far, we have investigated the dynamics of shrink-
age and fluid expulsion for a solid cube. However,
thermo-responsive hydrogels can be exploited for devel-

FIG. 11. Velocity contours and flow streamlines for S1, M1,
M2, and M3 cases on a thin slice at z = H/2 ± ϵ, which ϵ is
equal to H/100, shown at four different times: t = 0.4, t = 0.8,
t = 1.6, and t = 3.2; velocity streamlines are shown by solid
red lines while black particles illustrate hydrogel grids.

oping more sophisticated designs, which provide addi-
tional features that can be used in many applications
such as targeted drug delivery. One of these features is
the directional release of the loaded material, which can
be achieved by different techniques including design het-
erogeneity. Design heterogeneity can be introduced using
various approaches such as hybrid polymerisation and ad-
vanced geometrical designs. Here, we make use of Menger
Sponge-inspired structures to develop simple geometrical
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designs to promote directional expulsion in homogeneous
hydrogels, inspired from experiments on anisotropic dy-
namics of non-reciprocal actuators [75]. These structures
are motivated by Menger Sponges as fractal objects [76].
Figure 10 illustrates three Menger-inspired designs i.e.
M1, M2, M3 cases, in which Menger channels (hollow
spaces within the hydrogel structure) are introduced in
one, two, and three directions, respectively. The size of
the Menger channels are one third of the width of the
hydrogels. All physical properties of these test-cases are
similar to S1 including elastic modulus, shrinkage ratio
and properties of the loaded fluid.

FIG. 12. Temporal evolution and development of fluid (solid
lines) and solid (dashed lines) for S1, M1, M2, and M3 along
(a) x and (b) y directions.

Similar to figure 3, Figure 11 represents the veloc-
ity contours and streamlines for four different cases, S1,
M1, M2, and M3 at four different times. Comparing
S1 with Menger cases, the Menger channels affect the
velocity contours along the channel directions, particu-
larly for the M1 case, which exhibits substantial devel-
opment for the expelled fluid jet along the y-direction.
On the other hand, velocity contours represent a dimin-
ishing effect on the expelled fluid jet along the x-axis
for M1. Such changes in the hydrodynamics of the ex-
pulsion is not observed for the M2 and M3 cases, which
indicates that introducing asymmetry in the design of
homogeneous materials is effective for developing direc-

tional expulsion. Comparing streamlines and flow circu-
lations also introduces interesting findings. Recalling the
discussions made earlier on the direction of the stream-
lines and the development of 8 pairs of circulating flows
around the hydrogel cube, one may observe that these
circulatory flows are affected in M1, for which the circu-
lations along the y-direction (the main direction of expul-
sion) is amplified due to a higher momentum generated
by the flowing jet. This results in a faster development
of lateral circulations towards domain boundaries whilst
experiencing a weaker flow. Comparing the development
of expelled fluid jets between S1 and Menger cases, it
is observed that the streams develop faster and seem to
have a stronger momentum for M cases.

Figure 12 illustrates the development of fluid and solid
fronts in both x and y directions for S1, M1, M2, and M3
cases. As expected, the magnitude and rate of develop-
ment for solid fronts do not differ in both directions. On
the other hand, it is observed that fluid fronts develop sig-
nificantly faster for M1, M2, and M3 cases in comparison
with S1 case with an exception for M1 along x-direction.
The difference is attributed to having a Menger channel
along y-direction, thus facilitating the expulsion along y
axis and deteriorating the expulsion along other direc-
tions. The deterioration effect is large enough to keep
the front development along the x-direction behind S1
case. Along the direction of Menger channel, however,
the fluid front meets domain boundaries at t ≈ 2.5 due
to the fast expulsion rates, thus no further development
is recorded for these cases.

Figure 13 represents the profiles of velocity compo-
nents i.e., vx and vy along x and y directions, respec-
tively. Velocity profiles of all Menger cases are signifi-
cantly larger than those of the S1 case, with an expected
exception for the x velocity of M1. The comparison be-
tween the shape and smoothness of velocity profiles inside
Menger channels and those of S1 case demonstrates the
influence of hydrogel porous structure on affecting the
flow regime in their vicinity. It is also interesting to note
that the peaks of these profiles are closer to the domain
boundaries in comparison with S1 case, which indicate
faster jet developments. Subsequently, one may conclude
that fluid jets have a larger local Reynolds number.

Figure 14 compares the local Reynolds number for S1,
M1, M2, and M3 cases along both x and y directions. Re-
sults indicate that the local Reynolds number is approx-
imately two times larger for M cases at early stages of
development in comparison with the S1 case. The larger
Reynolds number and faster development of fluid fronts
for Menger cases suggest that simple heterogeneous de-
signs and asymmetries can generate fast penetrating fluid
jets with larger inertial dynamics, which can be incorpo-
rated in microfluidic devices where agent release is of
importance. Considering the relationship between the
peak velocity and Reynolds number, one might further
notice that difference between local Reynolds numbers of
M cases are approximately two times larger than those for
S1, while the maximum velocities have larger difference.
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FIG. 13. Velocity profile along the x and y directions passing
the centre of the hydrogel at four different times (black at t
= 0.4, blue at t = 0.8, red at t = 1.6, and green at t = 3.2)
for S1 (black), M1 (blue), M2 (red), and M3 (green) cases.

The matching factor is the size of the fluid jet which are
relatively thinner for those along Menger cases compared
to those in S1. Careful microfluidics designs of thermo-
responsive materials based on the later conclusion may
lead to promoted directional release due to the formation
of fast developing and concentrated expulsion jets.

Figure 15 represents the relative displacement of par-
ticles during the deswelling process for S1, M1, M2, and
M3 cases. In all cases, small dark blue colours illustrate
the displacement of hydrogel grids during the deswelling
which drag fluid particles in their vicinity. Considering
the the displacement of fluid particles, however, they are
displaced outward almost uniformly through the sides of
the hydrogel and inward from the corners for S1. Menger
channels facilitate the displacement in the outward direc-
tion and provide more directional release by forming fluid
jets.

FIG. 14. Local Reynolds number along the x and y directions
for S1, M1, M2, and M3 cases.

FIG. 15. The heat-map contours for the relative displacement
of fluid and solid particles with respect to the hydrogel centre
during the deswelling process; the data is shown on a thin
slice at z = H/2 ± ϵ.

V. CONCLUDING REMARKS

In this paper, we presented the development of a nu-
merical framework for modelling the dynamics of stimuli-
responsive hydrogels during deswelling. The computa-
tional framework has a Lagrangian particle-based na-
ture, and is capable of modelling local fluid-solid inter-
actions and explicitly capturing of fluid and solid fronts.
The proposed model facilitates the modelling of hetero-
geneous materials with varying pore sizes and resolves
the local fluid-solid interactions. Within the context of
modelling stimuli-responsive hydrogels, the model cap-
tures the dynamics of the loaded fluid expulsion during
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the deswelling process and demonstrates how directional
release profiles of expelled fluid can be promotes using
design heterogeneity.

Considering the length-scale of the problem and the
speed of heat diffusion, we have modelled the deswelling
of thermo-responsive hydrogels by imposing an instanta-
neous change in preferred chain length, and modelling the
subsequent interactions between fluid and solid phases.
We further employed a grid approach to represent hydro-
gel beads. We have shown that the introduction of such
computational grids does not contribute significantly to
the overall hydrodynamics of the hydrogel, but it has a
major effect on local hydrodynamics and flow character-
istics, especially within the hydrogel structure.

We investigated the effect of polymerisation techniques
and realised how elastic modulus and shrinkage ratio
affect the overall expulsion profile. Effectively, reduc-
ing the shrinkage ratio and elastic modulus similarly re-
sults in slower development of fluid front. The shrink-
age ratio has the same time-scale for the fluid expulsion,
while it changes the amount of the expelled fluid. On
the other hand, changing the elastic modulus affects the
viscoelastic response of the hydrogel such that reducing
the elastic modulus results in a slower front develop-
ment, while generating a more spread front profile. We
have also observed that despite overall dynamics of the
microscale thermo-responsive hydrogels are within the
Stokes regime, inertial fluid jets may be locally formed
during the expulsion, provided shrinkage is rapid enough,
and the calculated Reynolds numbers indicate that in this
case, inertial effects are present mainly during the early
stages of the deswelling along the side faces of a hydrogel
cube.

We have also investigated the effect of simple design
heterogeneity, in the form of structured mesopores, in
promoting the directional release and realised that sim-
ple asymmetries affect the shape and development of
fluid jets during the expulsion. We have shown that
introducing hollow regions (such as Menger channels)
in hydrogels increases the local Reynolds number con-
siderably and generates strong penetrative fluid jets.
Such simple designs provide useful guidelines for promot-

ing thermo-responsive hydrogels in numerous engineering
and biomedical applications such as targeted drug deliv-
ery where releasing an agent in a directional pattern is
favoured.
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