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Chapter 2: List of Variables
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Description

Focal length of the camera.

Coordinates of a point in the image plane.

Interaction matrix (Image Jacobian) for the ith feature.
Difference between the current and desired feature in the image.
Camera velocity vector.

Camera linear velocity vector.

Camera angular velocity vector.

Positive proportional gain.

Pseudo-inverse of the interaction matrix L;.

Euclidean coordinate of the features in the camera frame.
Euclidean coordinate of the features in the desired camera frame.

Positive controller gain in PBVS method.

6 X 6 matrix in PBVS method.

Rotation matrix.

3 X 3 matrix for rotation components.

Rotation axis vector.

Rotation angle.

Skew-symmetric matrix associated with the vector u.

Translational error signal.

Rotational error signal.

3 X 3 matrix for translational components.

3 X 3 matrix relating translational and rotational velocities.
Product of the camera scaling factor.

Decoupled interaction matrix for X and Y translational velocities.
Decoupled interaction matrix for Z translational and rotational veloci-
ties.

Matrix generated by the first and second columns of L, in PBVS
method.

Matrix generated by the last four columns of L, in PBVS method.
Damped Least Squares (DLS) inverse of the Jacobian matrix.
Transformation matrix from the EE frame to the camera frame.
Translation vector between the EE frame and the camera frame.
Rotation matrix between the EE frame and the camera frame.
Skew-symmetric matrix of the translation vector t.

Damping factor in DLS inverse method.

Identity matrix.
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Description

Joint velocity vector.

Joint velocity vector for secondary task.

Positive gain for secondary task.

Cost function for secondary task (robot manipulability).

Norm of the feature error.

Adaptive gain dependent on feature error.

Output of the i-th linear local model in the LoLiMoT neural network.
Parameters associated with the i-th neuron in the LoLiMoT neural
network.

Input features to the neural network, corresponding to feature errors in
the image screen.

Total number of neurons in the LoLiMoT neural network.
Membership function for the i-th neuron, used to weigh the contribution
of each local model to the final output.

Final output of the LoLiMoT neural network, calculated as a weighted
sum of the outputs of all local models.

Gaussian function representing the unnormalized membership value for
the i-th neuron.

Center of the i-th neuron’s receptive field in the j-th input dimension.
Standard deviation of the i-th neuron’s Gaussian membership function
in the j-th input dimension.

Number of input features to the LoLiMoT neural network.

Number of neurons in the LoLiMoT neural network.

Input variables in the Gaussian membership function for each neuron.
Number of observations used for LoLiMoT NN.

Predicted value for the i-th observation.

Actual (reference) value for the i-th observation.

Chapter 3: List of Variables

Symbol

Description

Action taken by the reinforcement learning agent.
Action space from which the agent selects actions.
State observed from the environment.

State space from which the states are sampled.

Policy function that maps state s to action a.

Scalar reward received after taking action a in state s.
Preceding state after taking action a in state s.
Reward function mapping state-action pairs to rewards.
State transition probability, P(s’|s, a).

Optimal value function providing the maximum expected reward for
state-action pair (s, a).

Discount factor used in the Bellman equation.
Expectation operator in the Bellman equation.
Action-value function under policy 7.

Loss function for the actor in the DDPG algorithm.
Loss function for the critic in the DDPG algorithm.
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Description

Target value used to compute the critic’s loss function.

Bounds for the action space, defined by the minimum and maximum
values from different approaches.

First reward function focused on minimizing feature errors.

Second reward function for avoiding joint limits.

Third reward function for avoiding singularities.

Jacobian matrix of the robot.

First Q-function used in the TD3 algorithm.

Second Q-function used in the TD3 algorithm.

Target policy function in the TD3 algorithm.

Noise term added to target actions in the TD3 algorithm.
Constant for clipping the noise in TD3 algorithm.

Target value in the TD3 algorithm's Q-learning update.
Parameters of the actor network in the TD3 algorithm.

Policy function used to select actions in the TD3 algorithm.

Set of additional goals sampled from the replay buffer.

Mini-batch sampled from the replay buffer.

Number of features or joints in the reward functions or action space.
Position of the jth joint.

Maximum angle of the jth joint.

Minimum angle of the jth joint.

Joint velocities from the IBVS approach.

Joint velocities from the PBVS approach.

Joint velocities from the HDVS approach.

Minimum action values determined from the action bounds.
Maximum action values determined from the action bounds.
Indices defining the convex hull of action vectors.

Minimum value for the ith dimension of actions in the convex hull.
Maximum value for the ith dimension of actions in the convex hull.

Chapter 4: List of Variables

Symbol
P

p
R

Je
r(h)
é(h)

' (h)
" (M)l
pstart

DPend
S

d

Description

Tool centre point (TCP) pose comprising position p and ZYX Euler
angle orientation R

Position vector of the TCP

ZYX Euler angle orientation of the TCP

External measured wrench

Position vector of a path parameterized by arc length &

Path direction vector at a point on the path, unit vector in the direction
of the tangent

First derivative of the position vector with respect to arc length h
Magnitude of the first derivative of the position vector

Start-point position of the path

End-point position of the path

Scalar distance from the endpoint of the path

Deviation from the path



T+l
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L

J(U)

Umax

Nmax
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C

rterm

Description

Differential position over the sampling time T}

State vector in the LBMPC approach or in the RL approach, which
includes (d, s, Ap, f., R)

Action vector in the LBMPC approach or in the RL approach

State vector at the next time step in LBMPC

State transition function in LBMPC

Cost metric in the LBMPC optimization problem

Cost function to be minimized in LBMPC

Maximum allowed control input

Mass matrix of the robot in the FDM approach

Jacobian matrix of the robot in the FDM approach

Joint accelerations in the FDM approach

External force applied to the robot in the FDM approach

Stiffness gain matrix in the FDM approach

Damping gain matrix in the FDM approach

Distance error between the target and the current end-effector position
Derivative of the distance error

Weighting term for deviation in the reward function

Weighting term for slicing in the reward function

Weighting term for effort in the reward function

Weighting term for contact reward in the reward function

Weighting term for force penalty in the reward function

Joint position commands

Sampling time

Moore-Penrose pseudo-inverse of the manipulator Jacobian

Envelope function specifying the evolution of the randomisation distri-
bution over training

Fraction of the limits at episode N in curriculum-based domain ran-
domisation

Fraction of the limits at episode zero in curriculum-based domain
randomisation

Maximum and minimum limits for episode N in curriculum-based domain
randomisation

Maximum value of a variable for domain randomisation

Minimum value of a variable for domain randomisation

Maximum number of episodes in curriculum-based domain randomisa-
tion

Target threshold for the ramping force penalty

Minimum force threshold for establishing contact

Discrete reward for establishing contact with the environment
Terminal penalty for early episode termination

Chapter 5: List of Variables

Symbol

M(q)
C(q.q)

Description
Joint-space inertia matrix of a rigid N-link manipulator
Coriolis and centrifugal matrix



Symbol Description

g(q) Gravitational torques vector

Text External torques vector acting on each link

T Control torques vector

q Joint configuration of the master robot (Phantom Omni)

qr Joint configuration of the slave robot (Franka Panda)

P, Delta transformation matrix for the Phantom Omni

Fr, Delta transformation matrix for the Franka Panda

I;T Homogeneous transformation matrix from the Franka arm'’s base frame
to the Phantom Omni’s base frame

Ty End-effector pose of the Franka Panda

x; End-effector pose of the Phantom Omni

e, Task space pose error, computed as Ty — x;

J Jacobian matrix of the slave manipulator

K, Controller stiffness matrix

K, Controller damping matrix

ey Joint space error, computed as g7 — q;

ey Derivative of the joint space error

Tf Control torque for the slave Franka Panda

T Control torque for the master Phantom Omni

Foyt External force vector experienced at the Franka end-effector

F; Force feedback vector received by the Phantom Omni

G Scaling factor for force feedback, empirically determined to be 0.1

A Task space inertia matrix

Ky, Damping matrix for the master Phantom Omni



Abstract

This thesis is focused on the integration of advanced Artificial Intelligence (Al) techniques
with computer vision methods to enhance the capabilities of robotic manipulation systems.
The research application focuses on the disassembly of Electric Vehicle (EV) battery packs
using robotic systems. As the demand for EVs continues to rise, the need for sustainable,
and autonomous battery recycling grows, due to the limited lifespan of these batteries. Em-
ploying robots in this process is crucial as it guarantees not only cost-effectiveness and
precision but also mitigates hazardous exposure for human workers. However, the disas-
sembly of EV batteries is a challenging task for the robots. Firstly because of the diversity
in battery types, shapes, and sizes and the absence of standardized formats across man-
ufacturers. Secondly, robotics and automation in manufacturing typically operate within
structured environments, doing repetitive tasks on known objects in fixed positions. How-
ever, adapting robots to handle different objects and unpredictable situations is challenging,
necessitating innovative Al-based robotic solutions that can adapt to the diverse nature of
battery packs while ensuring efficient and safe disassembly operations. To achieve these
objectives, this study aims to develop control strategies that enable robots to perform pre-
cise and efficient manipulation tasks in dynamic and complex environments. The thesis is
organized into several chapters, each addressing specific aspects of this comprehensive goal.
The thesis begins by explaining the problem statement and difficulties related to the safe
recycling of Lithium-ion batteries. It is certainly the case that challenges with disassembly pro-
cedures require automated solutions, with robots being a key component. Thereafter, a general
introduction to the field, highlighting the need to enhance adaptability, precision, and efficiency
in robotic systems through the integration of Al and vision-integrated techniques is presented.
The objectives of the research are also provided, preparing the setting for the following chapters.
The second chapter focuses on optimizing hybrid Visual Servoing (VS) approaches. Conven-
tional methods in 2D, 3D, and hybrid VS are known to have limitations such as convergence
issues, sub-optimal trajectories, and singularities. We carefully studied the behaviour of each
approach in controlling specific components and proposed a decoupled hybrid VS approach.
This approach integrates the functionalities of both 2D and 3D VS methods, minimizing
their shortcomings while leveraging their distinct strengths. Adaptive gains, task sequencing,
damped least squares, and projection operator techniques are integrated into the proposed
method, each addressing a specific challenge to enhance the overall efficacy of the VS. Since the
proposed method introduced computational complexities, we used neuro-fuzzy neural networks
to predict and model the behaviour of the proposed VS approach. Then the proposed method
is compared with traditional approaches, demonstrating improved efficiency and robustness.
In the third chapter, the project investigates the integration of Reinforcement Learning (RL)
techniques with VS. This involves expanding the Al intervention beyond image spaces to joint
spaces of the robot. The main contribution of this chapter explores the incorporation of deep
RL algorithms with the data of several controllers during training to enhance the performance
of the trained policy. The proposed approach improves training by dynamically constraining the
agent's action spaces using several controller demonstrations, allowing for the learning of robust
policies adaptable to various scenarios, and reducing the risk of sub-optimal solutions during
training by utilizing the knowledge of mathematically proven control methods. Additionally,



the proposed strategy can be combined with other techniques to enhance the training process.
This approach results in a case study demonstrating a 51% reduction in training time, improved
convergence rates, and enhanced controllability of the trained agent. Thereafter, the perfor-
mance of the controller was demonstrated through comparisons with traditional VS methods.
The fourth chapter extends the project’s scope to contact-rich manipulation tasks. A framework
was introduced that employs RL to address the challenges posed by uncertain and complex
environments. By utilizing a curriculum-based domain randomization approach, the robotic
system's robustness to uncertainties is improved, enabling the successful execution of compliant
path-following in a range of conditions. To accelerate the RL training and reduce the problem
of getting stuck in sub-optimal solutions, we proposed a strategy using human demonstrations.
The data from human demonstrations in completing the desired task was gathered across various
surfaces with various friction and stiffness. Thereafter, this data is used to create a 3D shape
that includes all the demonstrated trajectories. This shape helps to limit where the RL algorithm
should search for solutions. Notably, this strategy differs from imitation learning in that the
agent is not required to imitate any particular behaviour. Therefore, it can accommodate even
imperfect demonstrations, as the RL policy will correct the agent’s behaviour during the training.
Chapter five underscores the practicality and adaptability of the developed techniques across a
range of scenarios. This chapter presents a comprehensive exploration of various experiments
and supplementary works carried out during the PhD project. These include tasks such as
sorting, utilizing different grippers and robots, teleoperation, employing haptic devices, and
applying computer vision methods such as deep learning for object detection, a model-based
tracker for tracking predefined models, and the proposed VS approaches. The final chapter,
the conclusion, summarizes the key findings, contributions, limitations, and implications of the
research. It reflects on how the integration of Al and VS has led to advancements in robotic
manipulation capabilities. This chapter also discusses potential future directions for research
and emphasizes the broader impact of the project’s outcomes on robotics and automation.
Overall, this PhD aims to bridge the gap between advanced computer vision, Al, and tradi-
tional robotic manipulation techniques, ultimately contributing to more efficient, adaptable,
and robust manipulation systems capable of performing in complex real-world environments.



Acknowledgements

| am profoundly grateful to my supervisors, Prof. Rustam Stolkin and Dr. Alireza Rastegarpanah
for their unwavering guidance, invaluable insights, and constant encouragement throughout
the journey of this thesis. Your expertise, patience, and dedication have been instrumental
in shaping the direction and quality of this work. Your feedback and constructive criticism
have pushed me to reach new heights, and | am truly fortunate to have had the opportunity
to learn under your supervision.

| would also like to extend my heartfelt appreciation to my parents for their unconditional love,
endless support, and belief in my abilities. Your encouragement has been the driving force
behind my aspirations, and | am deeply grateful for the sacrifices you have made to see me
succeed.

| am indebted to my friends and colleagues who provided valuable insights and encouragement
during this endeavor. Your discussions, brainstorming sessions, and cooperation have added
depth and dimension to my work.



List of Papers

Ali Aflakian, Rastegarpanah, Alireza, and Rustam Stolkin. " Optimized hybrid decoupled visual
servoing with supervised learning.” Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering 236.2 (Published 2022): 338-354.

Ali Aflakian, Rastegarpanah, Alireza, and Rustam Stolkin. " Improving the manipulability of a
redundant arm using decoupled hybrid visual servoing.” Applied Sciences 11.23 (Published
2021): 11566.

Aflakian, Ali, Alireza Rastegharpanah, and Rustam Stolkin. "Boosting Performance of Visual
Servoing Using Deep Reinforcement Learning From Multiple Demonstrations.” IEEE Access
11 (Published 2023): 26512-26520.

Aflakian, Ali, et al. "An Online Hyper-volume Action Bounding Approach for Accelerating the
Process of Deep Reinforcement Learning from Multiple Controllers.” Journal of Field Robotics,
(Published 2024).

Ali Aflakian, Rustam Stolkin, Alireza Rastegarpanah, "Integrating Multi-Demonstration
Knowledge and Bounded Workspaces for Efficient Deep Reinforcement Learning”, IEEE-RAS
International Conference on Humanoid Robots, (Published 2023).

Scott, S., Islam, Z., Allen, J., Yingnakorn, T., Aflakian, A., Hathaway, J., Rastegarpanah,
A., Harper, G.D., Kendrick, E., Anderson, P.A. and Edge, J., 2023. Designing lithium-ion
batteries for recycle: The role of adhesives. Next Energy, 1(2), (Published 2023), p.100023.

Hathaway, J., Shaarawy, A., Akdeniz, C., Aflakian, A., Stolkin, R. and Rastegarpanah, A.,
2023. Towards Reuse and Recycling of Lithium-ion Batteries: Tele-robotics for Disassembly of
Electric Vehicle Batteries.(Published 2023) :2304.01065.

Ali Aflakian, Jamie Hathaway, Rustam Stolkin, and Alireza Rastegarpanah, "A curriculum-
based domain randomisation approach for learning contact-rich tasks with parametric uncer-
tainties”, Journal of IEEE Access, (Published 2024).

Rastegarpanah, A., Mineo, C. , Contreras, C.A, Aflakian, A., Paragliola, G., Stolkin, R.
" Electric Vehicle Battery Disassembly Using Interfacing Toolbox for Robotic Arms”, Journal of
Batteries (MDPI), (Published 2024).






Introduction

Whether it is in manufacturing, healthcare, logistics, space exploration, or other domains,
the demand for versatile and intelligent robotic systems continues to rise. To this aim, this
research focuses on the convergence of two critical and rapidly evolving fields: Vision-guided
manipulations and Artificial Intelligence (Al). Traditional vision-guided robotic manipulation
methods, while effective, often encounter challenges when confronted with complex, dynamic,
or uncertain environments. The advent of Al has opened up possibilities for addressing these
challenges. By fusing the power of Al with established computer vision and robotic control
strategies, this research strives to push the boundaries of what robots can achieve, enabling
them to perform tasks more autonomously, efficiently, and adaptively.

1.1 Industrial challenge that motivates this program

The primary focus of this study is to integrate vision and Al-proposed algorithms in the example
application of battery disassembly with robots, aiming to enhance efficiency and precision in
this critical process. It is predicted that yearly sales of Electric Vehicles (EV) will rise from 2
million in 2020 to over 14 million in 2030 (without taking into account plug-in hybrid cars) [1].
Therefore, due to the limited lifespan of EVs (10-15 years [2]), a substantial number of EV
batteries are anticipated to reach the end of their operational life. This indicates that tons of
costly and essential raw materials, like as graphite, nickel, cobalt, and lithium, may be wasted
in the ensuing decades [3]. Consequently, there has been an increasing focus on the disassembly
and recycling of end-of-life (EOL) battery components in both industry and academia. Recycling
materials from existing batteries reduces the demand for new materials in battery production,
leading to a reduced overall environmental cost of manufacturing. Moreover, considering that
material costs constitute 75-80% of battery manufacturing expenses [4], recycling holds the
potential to lower material prices. This decrease in manufacturing expenses makes electric
vehicles a more attractive option, providing benefits for both manufacturers and consumers.
During the disassembly of EV battery packs, some materials can be reused, others recycled,
while some inevitably become waste. Among these, reusing stands out as the most favourable
choice, prioritizing sustainability and resource conservation. If reusing is not feasible, recycling
becomes the next best alternative, ensuring that valuable materials are repurposed rather than
discarded. Ultimately, minimizing waste generation and maximizing resource utilization are key
considerations in the disassembly process [5].

Methods for disassembling batteries can be broadly categorized into three main groups: fully
manual, semi-autonomous, and fully autonomous techniques. Previous studies such as [6]
have emphasized the importance of autonomous disassembly considering cost savings, time
efficiency, and environmental impact reduction. However, there are limitations, including the
high degree of variation in EV battery models, the absence of design standardization, and the
lack of dexterity in unstructured dynamic environments [7]. Therefore, for many years the



disassembly of batteries remains a primarily manual process for trained experts, demanding a
high degree of attention and precision [8, 9]. In Figure 1.1, three distinct battery cell designs
and the corresponding packs from existing electric vehicles are shown. It is evident that the
three vehicles have significantly diverse designs, necessitating various methods of disassembly,
especially in terms of automation. These varied component formats and sizes also limit the
applications for re-use.

Tesla model S BMW i3 Nissan Leaf

355.2V

235kg
Pack
\ >
o
16 modules 25kg 8 modules 245kg 48 modules 38
Packils per pack 3 per pack . per pack <& =
O, 6, ©
10x 10x 10x )

o <

B :

444 cells per module 12 cells per module 4 cells per module

Fig. 1.1. Comparison of different battery packs and components for three car manufacturers
made in 2014 [5].

In [9], hybrid frameworks for dismantling EV batteries have been suggested in which robots and
humans work collaboratively close to each other. However, EV batteries cause many thermal
and chemical risks due to residual charge and the risk of thermal runaway. The related hazards
are further increased for damaged batteries, which are difficult to disassemble autonomously
due to additional uncertainty in component condition [8, 9]. As a result of the potential
hazards faced by human operators in EV battery disassembly settings, recent research has
predominantly focused on the development of autonomous methods with the aim of enhancing
both efficiency and safety. Additionally, automation might enhance the mechanical separation
of components and materials, improving the purity of the materials that are separated and
increasing the efficiency of downstream separation and recycling operations [5].

Figure 1.2, illustrates various risks and challenges that exist in the disassembly and recycling
of battery materials in different scales. Utilizing intelligent robotic approaches in this context
has the potential to reduce these risks and make the disassembly process more cost-efficient.
Autonomous methods seek to improve disassembly efficiency by enabling robots to independently
plan and execute repetitive tasks in unstructured environments, leveraging visual and tactile
feedback. Examples of such research can be found in references such as [10-13]. A common
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Fig. 1.2. Complex disassembly challenges in electric vehicle battery packs at different levels
of scale [5].

element in these approaches involves the utilization of labelling and detection techniques to
autonomously recognize components and fasteners, subsequently constructing appropriate
disassembly plans. To securely dismantle battery packs, clever and flexible robotic solutions are
required due to the enormous range of battery models and constructions, as well as uncertainties
during the disassembly. In other words, unlike assembly processes where component positions
and hierarchy of tasks are typically known, disassembly involves uncertain and changing
configurations. This is especially true for contact-rich tasks, where interactions with the
environment can lead to changes in the positions of components and robots. Not to mention
that dealing with wire and loose components adds more challenges, as their shapes and positions
may vary case by case. Utilizing vision systems plays a crucial role in such applications, just as
our human eyes assist us in correcting our actions to achieve goals. Another vital aspect of
having real-time vision feedback is the possibility of collisions, especially in activities involving
multiple robots and potentially humans. Al strengthens the robustness, applicability, and
generalizability of vision algorithms. This research, titled is primarily focused on the integration
of Al and vision algorithms in robotic manipulations.

The project involves multiple stages, including tasks such as unbolting, cutting, grasping,
manipulating, and sorting. In this specific phase of the research, our main focus is on the use
of vision systems to track and locate battery components in relation to the robots, which is
referred to as Visual Servoing (VS). This approach introduces several challenges, including



dealing with the limitations of stationary robots, losing objects from the camera’s Field of View
(FOV), addressing image-related complexities, and finding physically accessible trajectories
for the robot. The motivation for this research stems from the compelling need to empower
robots with the ability to detect and manipulate objects effectively, precisely, and robustly in a
wide range of scenarios. Section 1.3, explains the integration of robotics, Al, and computer
vision within the framework of disassembly in this study.

1.2 Background and Literature Review

Some content within this section is extracted from our accepted publications out of this
research in [14-17].

Vision sensors are widely used in industry to provide contact-less knowledge of the workplace
and adjust robot behaviour to deal with the uncertainties of unstructured settings [18]. This
section will provide an introduction to the literature and background of generally used concepts
in the field of vision-guided robotics, as well as the application of Al to it.

1.2.1 Visual servoing

Visual control, also known as VS or visual tracking, essentially consists of using data from one
or more cameras as input to real-time closed-loop control schemes. It is crucial to define some
terms before further delving into the VS:

e Visual features: Refer to distinctive elements within the visual data captured by
cameras, such as corners, edges, or key points. These features serve as essential
landmarks for the control system to interpret the surroundings and distinguish between
objects.

e Feature extraction: Identifying relevant visual features in the camera images is called
feature extraction. The defined target features for the robot’s task are also called desired
image features. The VS control law works by determining the difference between these
current and desired features.

e Computer vision:  Computer vision focuses on enabling computers to interpret,
understand, and process visual information from the world, typically in the form of
images or videos. It involves tasks such as image recognition, object detection, and
image generation. The goal of computer vision is to give machines the ability to see and
extract meaningful information from visual data, akin to human vision, enabling them to
perform various tasks and make decisions based on what they perceive.

e Convergence criteria: Conditions that determine when the robot has successfully
reached the desired state. Typically, these criteria involve the error signal reaching a
small or acceptable value.

e Camera calibration: Camera calibration involves determining the intrinsic and extrinsic
parameters of a vision sensor, allowing for accurate reconstruction of the 3D world from
2D images. More in-depth details in 7.1.

e Eye-in-Hand and Eye-to-Hand: In eye-in-hand configuration the camera is mounted
on the robot's End-effector (EE), providing a direct view of the task space. Nevertheless,
in eye-to-hand configuration the camera is fixed in the environment, offering a static
viewpoint for broader perspective planning. Figure 1.3 illustrates these two configurations
in which the robot uses the visual feedback from the cameras to adjust its movements



continually. By doing so, it brings the current features closer to the desired ones, until
they align together (the so-called visual servoing).

e Image Jacobian: Image Jacobian (Interaction matrix) relates the change in visual
features in the image space to the cartesian velocity of the camera or robot’s EE. It is a
crucial component in the control law for computing the necessary robot motions.

Dynamic manipulation of a system to perform a task defined by a collection of visual constraints
is the objective of VS [19]. Since the nature of VS is to correct the movement of a manipulator
using online feedback of vision, it helps to compensate for the modelling inaccuracies and
uncertainties. [19].

Eye-In-Hand Configuration Eye-To-Hand Configuration

B
&

® Current features

@ ® Desired features

Fig. 1.3. An overview of eye-in-hand and eye-to-hand configurations used for VS.

Controlling a robot using image information has been the focus of various robotic applications,
including mobile robots, flying robots (drones), marine robots, medical robots, industrial robots,
and more. In mobile robot applications, VS helps robots navigate in dynamic environments
by using visual information. It assists the robot in avoiding obstacles, following predefined
paths, and tracking objects or targets, making them suitable for applications like warehouse
automation, surveillance, smart toys, and autonomous driving cars [20]. Furthermore, robots
equipped with VS can identify and harvest ripe fruits or vegetables with precision [21]. VS
is also crucial for humanoid robots to interact with their environment, grasp objects, and
perform tasks that require hand-eye coordination [22]. In flying robots, VS aids drones in
autonomously navigating through complex and dynamic environments by using visual data for
obstacle avoidance and path planning to achieve precision landing on designated places and
tracking targets[23].

VS is also employed in underwater robots for tasks such as exploring the ocean floor, inspecting
underwater structures, and tracking marine life [24]. Another application of VS is in Medical
robots. It is applied in robotic-assisted surgery, allowing precise control of surgical instruments
based on real-time visual feedback [25]. It enhances the surgeon’s accuracy and minimizes
errors. VS also has the potential to be employed in space exploration for robotic systems to
enhance their capabilities and autonomy for precise maneuvers [26]. An example of that is
using VS during spacecraft docking operations, enabling precise alignment and connection with
other spacecraft or space stations. In industrial applications VS is used for guiding industrial
robots in tasks such as assembly, disassembly, pick-and-place operations, and handling objects
with varying positions and orientations. In Figures 1.4 and 1.5, some of the applications of
robotic visual tracking are illustrated. There are a number of research studies that applied VS
for solving industrial challenges and human-robot cooperation [15, 27-29].

1https ://www.mvtec.com/application-areas/intralogistics-and-automated-warehouses
thttps://www.droneguru.net/8-best-drones-that-follow-you-follow-drones/



(a) Visual perception in (b) Using vision for tracking a  (c) Visual tracking with marine
Robotics for warehousing® moving target with drones’ robots [24].

Fig. 1.4. Application of visual tracking for mobile robots, flying drones, and marine robotic
systems showcasing their capabilities in navigating dynamic environments and tracking dynamic
targets.

(a) Integration of visual feedback (b) Humanoids dual arm (c) Integration of visual
with agricultural robotics manipulation with VS [30] feedback with surgical
robots[25]

Fig. 1.5. The application of VS in agricultural robotics, humanoids, and medical robotics.

However, VS brings complexities within the 2D image and 3D robot spaces, as well as their
intersections [31]. Image-based VS (IBVS) or 2D VS, Position-based VS (PBVS) or 3D VS,
and Hybrid VS (HVS) or 2 & 1/2D VS are three primary categories of VS control approaches.
The IBVS method computes the desired controller actions directly from extracted image-space
features, offering greater resilience against camera calibration [32]. Moreover, image features
are less likely to be lost from the camera field of view [33]. On the other hand, IBVS has
certain limitations. For example, it may generate controller commands that are physically
unattainable for the robot, such as being out of reach. Additionally, IBVS methods struggle
with depth information ambiguity, leading to difficulties in handling scenes with occlusions or
textureless regions [34]. Besides, the image Jacobian matrix (Interaction matrix) may cause
problems with error convergence of features, like singularities and local minima [35]. IBVS
failures are mostly for trajectories required rotations about the z-axis (the so-called Chaumette
conundrum [19]) and translation in the z-axis (named as camera retreat [35]). In 3D VS or
PBVS, the controller will do the visual tracking based on the 3D estimation of 2D features in
the camera screen. Due to direct measurement of the camera velocities from the task space
errors in the PBVS process, the interaction matrix problems (i.e., local minima and singularity)
would be avoided, and thus feasible trajectories for the robot can be generated [36]. However,
any error in the camera calibration may create an error in the 3D estimation of the target
and consequently affect the entire tracking task [19]. Moreover, the possibility of losing the
features in the image screen is higher than 2D VS, since the control law is designed using

thttps://dmexco.com/stories/smart-farming/



the 3D estimation of the workspace, To combine the advantages of 2D and 3D VS, hybrid
methods were introduced. In such methods, the task function is expressed in a combination
of the image space (2D) and the Cartesian space (3D) [37]. One of the limitations of these
hybrid methods is their dependency on the co-planar features for real-time tracking, otherwise,
it is computationally complex. Furthermore, Using hybrid methods, the control signal might
suffer from discontinuity and they need more time to converge in comparison to the 2D
and 3D VS [38]. The switching approach is a hybrid visual servoing technique in which the
controller alternates between IBVS and PBVS based on their efficacy in different situations [39].
However, when switching occurs the controller suffers from discontinuities, particularly when
the object is close to the image borders [40]. Task sequencing techniques provide a solution
to fill such gaps [41], nevertheless, sequencing techniques increase the convergence time [19].
Furthermore, two failures in IBVS (i.e., camera retreat and Chaumette Conundrum) could
not be easily identified because image-Jacobian is not ill-conditioned in those configurations
[34, 35]. As a result, switching between IBVS and PBVS can not resolve these issues. On
the other hand, even inducing rotational motions about the camera optic axis could not solve
the Chaumette Conundrum, as rotational contributions cancel out one another [35]. In [35],
a hybrid VS method is presented that separates the translation and rotation about Z-axis,
from the interaction matrix to avoid the chaumette conundrum and the camera retreat issues.
However, the expensive computation of the pseudo-inverse is a remaining challenge. Moreover,
controlling rotations about the X and Y axes in the image space results in undesirable robot
motions [39]. In another study [42], by decomposing translations from rotations in 2 and 1/2D
visual servoing methods, unnecessary motions of the robot were reduced. These methods,
however, are computationally intensive and necessitate homography construction, which makes
them susceptible to image noises [35]. Another disadvantage of the 2 and 1/2D VS approach
is the necessity of using co-planar features to estimate the homography matrix. Otherwise, at
least 8 visual features are required to make this estimation, while 4 features are sufficient in
most of the methods [43]. The 2 and 1/2D VS approach also decomposes homography to
remove rotational parameters associated with non-unique solutions [44].

On another note in the case of using static arm manipulators for VS, issues like unfavourable
configurations, joint limits, kinematic singularities, and occlusions should be considered.
Redundant robots are preferable because adding redundancy to the robot increases the
manipulability and versatility [45]. Many studies investigated the use of redundancy to define
various types of constraints by integrating secondary tasks that express the constraints with the
main task [46—48]. A global objective function is used in [49] to determine a balance between
the main task and the secondary tasks by using the redundant Degrees of Freedom (DOF) of
the robot with respect to the main task. However, significant perturbations may occur by the
obtained motions which are generally incompatible with the main task. In another classical
method [50], the authors employed a gradient projection method to solve the redundancy
resolution; nonetheless, this approach necessitates that the main task will not constrain all
DOFs of the robot. In such cases, the main Jacobian will gain full rank, and there would be
no redundancy space left for projecting any constraint. This is a drawback of the traditional
gradient projection technique. In [45], a projection operator for the redundant systems was
proposed based on a task function specified as the norm of the usual error; in this approach,
even if the main task is full rank, this projection operator allows the secondary tasks to be
completed.

1.2.2 Artificial intelligence in robotic vision

The integration of visual feedback into robotic control systems has been instrumental in
enhancing the capabilities of robots in various applications. However, traditional control



systems, which rely on predefined rules and models, face challenges in adapting to dynamic
environments and handling complex tasks and uncertainties. Al introduces a paradigm shift
in robotics. Unlike traditional control systems, Al allows robots to learn from experience,
adapt to changing conditions, and improve their performance over time. In [51], the authors
discuss the advancements and challenges in vision-based autonomous systems and Al, including
path-planning, localization, perception, and robot control. Al approaches can be broadly
categorized into three types: supervised learning, unsupervised learning, and reinforcement
learning.

e Supervised learning: In supervised learning, the labelled dataset is used to train the
algorithm, where a corresponding output is linked to each input. The goal is for the
model to learn the mapping between inputs and their corresponding outputs.

e Unsupervised learning : In unsupervised learning, the model is trained on unlabeled
data, where the algorithm investigates patterns, relationships, or structures within the
data without guidance. It aims to discover the inherent structure or distribution of the
input data.

e Reinforcement learning: RL involves an agent that learns to find solutions by
interacting with an environment. The agent observes the feedback in the form of
rewards and penalties based on its actions, and the goal is to learn a model (policy) that
maximizes the cumulative reward over time.

Regression-based Neural Networks have been extensively used in the literature to approximate
the nonlinear behaviour of image-Jacobian [52-55]. For example, in [56], the authors discuss
the use of convolutional neural networks for semantic segmentation in robotics, enhancing
traditional tasks with an additional level of intelligence, crucial for VS. It should be mentioned
that obtaining labelled data in a supervised learning approach can be challenging in numerous
real-world scenarios, while unlabeled data are often abundant. To address this issue of limited
labelled data, unsupervised learning methods and RL algorithms offer viable solutions.
Recent advancements in deep learning and RL research have empowered robots to tackle
progressively more complex tasks, as evidenced by Hua et al.’s work in 2021 [57]. In an RL
framework, an agent strives to maximize its expected reward through interactions with its
environment. Some example of these are in [53, 58, 59], where researchers use RL to solve
vision tracking challenges which are complex to model or computationally expensive. The
practical implementation of RL has been constrained by the substantial exploration demands.
To overcome this challenge, researchers use the data of demonstrations from human experts
or controllers to reduce unnecessary explorations of the RL agent. Incorporating demonstrator
or expert data in RL is beneficial for its ability to expedite learning, guide exploration, reduce
sub-optimal solutions, and facilitate knowledge transfer to new tasks. There are two potential
approaches for incorporating knowledge from expert demonstrations in RL: prior knowledge,
comprising demonstrations prior to RL refinement; and online knowledge, in which case
demonstrations are occasionally presented while the RL iterations are in progress [60]. The
online method can significantly enhance the learned policy’s convergence towards an expected
performance level while lowering the likelihood of distributional mismatch compared to the
prior knowledge approach [61]. However, several challenges remain with the online use of
demonstrations while the agent is learning. These include the high cost of data collection; the
inability to generalise to different scenarios; and the limitation of the agent’s exploration to
blindly following the demonstrator [62-64].



1.2.3 Reinforcement learning from demonstrations

RL provides a theoretical way for learning policies through the exploration of the action space.
However, the amount of exploration required has limited its implementation in real-world
applications. In traditional deep reinforcement learning approaches, the agent explores the
entire state space to find the optimal solution. This can be a time-consuming process, and
the agent may get stuck in local minima, which are sub-optimal solutions that appear to be
optimal within a certain region of the state space [65]. There have been several previous
attempts to accelerate the process of deep reinforcement learning using human demonstrations
[66-69]. Early Reinforcement Learning from Demonstration (RLFD) algorithms are classified
into three main groups: Behavioral Cloning (BC), Generative Adversarial Imitation Learning
(GAIL), and Inverse Reinforcement Learning (IRL) [70]. BC was developed based on direct
policy learning, which enables the distribution of the state/action trajectory to match the
demonstration given by a supervisor. The agent has no capability to respond to environmental
changes [62]. Therefore, in the case of using a small number of samples, the trained BC
policy has little capability to generalize to different scenarios. IRL was developed to tackle the
problem of reward function design and is more adaptable to new situations [63]. While BC
and IRL methods gain experience from demonstrations, they have no capability to interact
with experts during training to make the trained policy more optimized and robust. To enable
the agent to better exploit the expert when optimizing a policy, the GAIL approaches were
developed based on generative adversarial networks [64]. The GAIL approach is applied by
making a comparison between generated and expert strategies and converging them as closely
as possible. However, the GAIL method is susceptible to convergence on local minima [64].
Also, BC methods suffer from data mismatch and compounding error issues. Consequently,
the DAgger algorithm was developed to tackle this problem [71]. DAgger is an iterative policy
learning method that employs online learning as a reduction in which the main classifier will
be retrained on all states encountered by the learner at each iteration. Despite this, the policy
trained with DAgger will not be generalised to different scenarios, and the approach is limited
to learning from the expert and cannot surpass its performance [72]. Interactive imitation
learning methods (e.g. HG-DAgger and Thrifty DAgger) are variants of DAgger, and they are
also introduced to address some robustness issues of DAgger [73, 74].

Typically, human demonstrations were employed for such interactive imitation techniques.
Algorithms that can use other controllers as experts have been less well studied. Modern RLfD
techniques incorporate aspects from imitation learning and push the agent to replicate the
demonstrated behaviours when feedback from the environment is scarce or even missing [75,
76]. They specifically reshape the reward function in RL by adding another term to encourage
expert exploration. While rewarding expert-like activities might assist in minimising unnecessary
exploration, applying such rewards throughout the learning phase can be troublesome with
imperfect demonstrations. There is no guarantee that limiting divergence from expert behaviour
will result in an improved agent policy [77].

1.2.4 Contact-rich robotic

In recent years, modern robots with proper sensor sets have provided a versatile platform
for automating various manual and repetitive jobs by interacting with their surroundings.
However, a challenging problem in contact-rich applications is developing a robust control
algorithm capable of modelling and generalising unknown contact dynamics and environment
changes. To this end, many control issues may be formulated as optimum control problems with
discrete-time dynamics and cumulative costs across time. One well-known technique to solve
such optimal control problems is Model Predictive Control (MPC) which predicts the behaviour



of a system based on its model. MPC employs an online optimization method to determine
the best control action for delivering the anticipated output to the reference [78]. However,
MPC suffers from several well-known disadvantages, chiefly, high computational complexity,
inhibiting the online deployment capability [79]. Explicit MPC approaches furthermore require
considerable domain expertise or large amounts of offline labelled training data. These data
must have good domain coverage of the state/action space to ensure the accuracy of the
model. Moreover, the precision of the model employed for predictions significantly impacts the
controller performance [80]. RL approaches show promise for addressing such issues since they
allow agents to acquire behaviours through interaction with their surroundings and generalise
to new, previously unknown scenarios [81].

Several approaches exist for tackling the challenges presented by high sample complexity and
the suitability of RL to real-world deployment, particularly concerning contact-rich tasks. One
such approach is based on noting the complementary advantages and shortcomings of MPC
and RL, using the former to act as an expert policy to assist the latter. This has been applied
in [82], [83]. In the latter, a combination of MPC with RL providing worst-case performance
guarantees was proposed, enabling online deployment with improved learning stability. However,
the baseline model used neglects the parametric uncertainty in the environment. This is typical
of most explicit MPC approaches, which require considerable domain expertise and prior
knowledge, necessitating approaches with higher computational complexity. Learning-based
MPC (LBMPC) is one such approach that has been used to address the problem of uncertain
environments in robotic manipulation tasks [84-86]. In LBMPC, a model of the system is
learned through interaction with the environment, and this model is then used to predict
future system behaviour and generate control actions. For example, an LBMPC approach
for contact-rich tasks with reduced sample complexity was considered in [87], exploring the
capability of memory-augmented neural networks as a system model in an MPC framework
incorporating visual feedback. However, the high computational complexity of recurrent
network architectures, including MANNSs, limits the applicability of online deployment.

In a similar vein, recent works have emphasised the selection of suitable action spaces to
facilitate the learning of tasks in the real world. In [88], a task-frame formalism was employed to
directly train a real-world policy for the task of vegetable cutting by exploiting the task-specific
action-space constraints, however, this approach is naturally dependent on accurate prior
knowledge of the task specification. In [89, 90], the selection of suitable action spaces for
contact-rich manipulation tasks is explored, with related approaches presented based on a
variable impedance control system in which the controller gains constitute the policy action
space. Methods based on this approach separate the task of compliant path following, which
is essential for many interaction tasks, into the distinct problems of trajectory generation
and trajectory tracking. Accurate task planning is not always possible to obtain and may
not be desired in many applications as explored in [91]. Besides [91], this has been explored
extensively in the context of MPC [92, 93], though demonstrably remains an issue for RL.
Many RL-based methods are developed in simulation, owing to the difficulty of transferring
learned behaviours to the real world, particularly for destructive tasks. To address this,
alternative approaches based on reinforcement learning have been explored to narrow the
sim-to-real transfer gap. The Domain Randomization (DR) approach aims to close the reality
gap by exposing the agent to a large number of scenarios that may not individually reflect
the real-world system. However, it results in a policy representation that is robust to system
uncertainties such that it may adapt to the real-world case. Examples of this approach include
[94] for path following using an industrial robot. Curriculum-based, or automatic DR has been
employed with success in dexterous manipulation tasks as demonstrated by OpenAl in [95, 96],
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reducing the trial and error procedure of defining an environment with suitable variation to
ensure a robust policy, while improving the capability to learn challenging tasks from scratch.
An overview of the proposed method to address the aforementioned challenges in the literature
will be given in section 1.3.

1.3 Research objectives

In this section, the research objectives of each developed method will be explained. By breaking
down the objectives, the section aims to provide an understanding of the purpose and intended
outcomes of each methodological approach employed throughout the study.

To address the limitations inherent in classical VS methods, we have developed a novel
approach known as Hybrid Decoupled Visual Servoing (HDVS). In this research, we thoroughly
investigated the behaviour of the camera velocity vector components, individually, within the
context of both 2D and 3D VS methods. Subsequently, we employed a decoupling strategy
to isolate and control the problematic components in 2D and 3D spaces, respectively. This
approach effectively allowed us to enhance the robustness and performance of the VS system.
In addition to the decoupling mechanism, we integrated various algorithms, such as Damped
Least Squares (DLS), task sequencing, adaptive gains, and projection operator techniques
into our proposed HDVS method. DLS was used to mitigate discontinuities resulting from
the decoupling process. Adaptive gains were used to accelerate the process of tracking. Task
sequencing was introduced as a strategic measure to avoid velocity discontinuities. Additionally,
using projection operator techniques the introduction of secondary tasks serves to enhance the
controllability of the robot throughout the tracking process. Figure 1.6, illustrates the concise
schematic overview of the proposed method at this particular stage.

. . Camera Velocity | | Joint Velocity
Desired F O I‘mﬁk}zys's‘d | Robot Controller S

‘ Joint States ‘

Fig. 1.6. Proposing a hybrid decoupled VS method to overcome traditional VS drawbacks.

However, some computational complexities were introduced by our methodology. To address
such complexities, we have used a supervised learning technique to predict and model the
behaviour of our proposed VS system. A simplified version of the proposed framework is
depicted in Figure 1.7, and an in-depth description of the methodology would be found in
Section 2.3.1.
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Fig. 1.7. Using supervised learning on image space to enhance the proposed hybrid VS
method.

In our next advancement, we have elevated our proposed VS method by integrating RL
techniques. This extended approach not only operates within the image space but also extends
its influence to the robot's joint space. The incorporation of RL establishes a direct link
between image features and the desired joint velocities of the robot’s manipulator. This
direct mapping serves to mitigate potential issues, including instability and robot singularities.
Additionally, it eliminates the necessity for computationally demanding calculations, such as
the robot's and the image’s pseudo-inverse Jacobian, thereby enhancing the overall efficiency
and effectiveness of the control strategy. In Figure 1.8, the adjustments that we applied to
implement RL with our previous control loop in Figure 1.7 are illustrated.

Replace with a RL model
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Desired F O Propos::l :Idy\‘;‘;d e B : -
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Fig. 1.8. Using RL on both image space and robot space to further improve the proposed VS
method.

To avoid unnecessary exploration while also overcoming the problem of the agent overly
following the expert behaviour, we present an online Action Optimizer Reinforcement Learning
from Multi-demonstrations (AORLD) (detailed in Section 3.2). Figure 1.9, illustrates the
proposed AORLD method in summary. As depicted in Figure 1.9, we employed the control
error derived from the desired features and current features (the Feedback block) to generate
a range of actions using different controllers. Subsequently, we employed these actions to
define a convex hull or boundary encompassing these action possibilities. Then, we instructed
our RL policy to focus its search space for optimal solutions within the confines of these action
bounds.
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Fig. 1.9. Proposing a Reinforcement Learning from Demonstrations method to accelerate the
process of learning and boost the RL policy.

In our previous contributions, we explored how Al could improve tasks involving contact-less
vision-guided manipulation. In Chapter 4 we explore further and develop a framework for
handling challenging tasks that involve physical contact. A significant challenge in contact-rich
applications is developing a robust control algorithm capable of modelling and adapting to
unknown contact dynamics and environmental changes. Many of these control issues can be
framed as optimal control problems with discrete-time dynamics and cumulative costs over
time.

To address these challenges, RL approaches show promise by enabling agents to acquire
behaviours through interactions with their environment and generalize their capabilities to new
and previously unseen scenarios [81]. In our research, we explore the application of vision-
guided RL to tackle contact-rich tasks with parametric uncertainties. We also compare its
performance with that of MPC and the Virtual Forward Dynamics Mode (FDM). In traditional
deep reinforcement learning methods, agents explore the entire state space to identify optimal
solutions. However, this process can be time-consuming and may lead the agent into local
minima, which are sub-optimal solutions within specific regions of the state space [65].

To expedite RL and mitigate local minima issues, we proposed a novel method. We gathered
data from human demonstrations performed on various surfaces with varying friction and
stiffness properties, focusing on a contact-rich path following manipulation. Subsequently, we
computed a 3D convex hull that encapsulated all the paths demonstrated by individuals. This
convex hull was then employed to define a bounded workspace for RL, thereby reducing the
agent's search space to a region more likely to contain optimal solutions, ultimately enhancing
sample efficiency. Importantly, our approach does not require the agent to mimic any specific
behaviour, distinguishing it from imitation learning. Moreover, it can accommodate even
imperfect demonstrations, as the RL policy will adapt the agent’s behaviour accordingly.
Figure 1.10, shows a simple diagram illustrating our approach, which involves using human
demonstrations and limiting the area the agent explores. Chapter 4 of this thesis provides a
deeper exploration of the specific details and the outcomes of this research effort.
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Fig. 1.10. Propose a method to effectively reduce the search space of the RL agent from
human demonstrations.

In Chapter 5 of this thesis, the techniques and approaches developed in previous chapters,
along with deep learning, model-based tracking, and various other robotic control methods
have been applied to the process of battery disassembling. Chapter 5 offers a thorough
exploration of the experiments and tasks undertaken within the realm of battery disassembly,
employing a range of robotic systems and technologies. The chapter commences with an
overview of the experimental setups, which include details about the robots used, the types
of grippers employed, haptic devices, vision systems, and the incorporation of deep learning
techniques and model-based pick-and-place approaches. It essentially sets the stage by
describing the equipment and technology involved. Subsequently, the chapter delves into a
thorough exploration of specific disassembly tasks. These tasks encompass sorting, unbolting
or unscrewing, cutting, and teleoperation. Each task is elaborated upon, offering insights into
how they were executed and what they entailed. To provide a clear and visual understanding of
the setups and disassembly processes, a collection of images accompanies each task, offering a
visual context for readers to better comprehend the experimental procedures and the equipment
used. This visual component enhances the overall clarity and accessibility of the chapter’s
content. The upcoming subsection outlines publications and submitted papers from this study
and elaborates on the objectives and contributions of each one.

1.3.1 Publications out of this thesis

The thesis builds upon a base of peer-reviewed contributions and includes some materials
which are submitted to Journals and Conferences. The published papers associated with all
authors involved are listed below, along with a brief description connecting each contribution
to a chapter.

1. Ali Aflakian, Rastegarpanah, Alireza, and Rustam Stolkin. " Improving the manipulabil-
ity of a redundant arm using decoupled hybrid visual servoing.” Applied Sciences 11.23
(Published 2021): 11566.

Authors contributions: Conceptualization, A.R., A.A. and R.S.; methodology, A.A;
software, A.A; validation, A.R. and A.A.; formal analysis, A.A_; investigation, A.R. and
A.A_; resources, A.R., A.A. and R.S.; data curation, A.A.; writing—original draft prepa-
ration, A.R. and A.A.; writing—review and editing, A.R., A.A. and R.S.; visualization,
A.A_; supervision, A.R. and R.S.; project administration, A.R.; funding acquisition, A.R
and R.S.

Brief description: This study presents an innovative hybrid visual servoing technique
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designed to address issues in classical 2D, 3D, and hybrid approaches. The method incor-
porates adaptive gains, and the Damped Least Square approach to enhance performance
and mitigate challenges like convergence issues and robot singularities. Comparisons
with traditional methods show that the proposed approach results in more efficient robot
trajectories, shorter camera paths, and improved object tracking. Overall, the technique
offers enhanced robot controllability, outperforming alternative methods. Chapter 2 of
the thesis details the theory, mathematical formulation, and the experimental section of
the study. In Chapter 5, the practical utility of the method is demonstrated through its
application in the disassembly of a Nissan Leaf battery pack. This chapter serves as a
real-world illustration of how the developed method is employed in a specific context,
showcasing its effectiveness in the practical domain of disassembling the mentioned
battery pack.

Ali Aflakian, Rastegarpanah, Alireza, and Rustam Stolkin. " Optimized hybrid decoupled
visual servoing with supervised learning.” Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering 236.2 (Published 2022):
338-354.

Authors contributions: Conceptualization, A.R., A.A. and R.S.; methodology, A.A.;
software, A.A; validation, A.R. and A.A.; formal analysis, A.A.; investigation, A.R. and
A.A_; resources, A.R., A.A. and R.S.; data curation, A.A.; writing—original draft prepa-
ration, A.R. and A.A.; writing—review and editing, A.R., A.A. and R.S.; visualization,
A.A_; supervision, A.R. and R.S.; project administration, A.R.; funding acquisition, A.R
and R.S.

Brief description: This study represents an advancement of a previous publication,
detailed in paper 1, by incorporating supervised learning techniques into the development
of the proposed decoupled hybrid VS method. A neuro-fuzzy neural network called
the local linear model tree approximates the pseudo-inverse of the proposed interaction
matrix. This helps avoid singularities, and complex calculations, handle ill-conditioning,
and enhance robustness to image noise and camera calibration. Chapter 2 in the thesis
delves into the theory, mathematical formulation, and experimental components of the
study. In Chapter 5, the method’s practical application is illustrated through its use in
disassembling a Nissan Leaf battery pack. This chapter exemplifies how the developed
method is effectively employed in a specific context, demonstrating its practical effec-
tiveness.

. Aflakian, Ali, Alireza Rastegharpanah, and Rustam Stolkin. " Boosting Performance of

Visual Servoing Using Deep Reinforcement Learning From Multiple Demonstrations.”
IEEE Access 11 (Published 2023): 26512-26520.

Authors contributions: Conceptualization, A.A., A.R. and R.S.; methodology, A.A.;
software, A.A; validation, A.A.; formal analysis, A.A.; investigation, A.A. and A.R;
resources, A.A., A.R. and R.S.; data curation, A.A.; writing—original draft preparation,
A.A.; writing—review and editing, A.A., A.R., and R.S.; visualization, A.A.; supervision,
A.R. and R.S.; project administration, A.R.; funding acquisition, A.R and R.S.

Brief description: This study represents an advancement of previously proposed
methods in papers 1 and 2 by incorporating RL into the VS framework, leading to im-
proved performance and efficiency in training. The proposed method employs knowledge
from various controllers, integrating them with deep reinforcement learning to train a
VS technique. The aim is to address the data insufficiency issue in RL methods by



developing a strategy that generates online hyper-volume action bounds from demonstra-
tions by multiple controllers (experts). The agent then explores within these bounds to
discover optimized solutions and gain more rewards, reducing unnecessary explorations
and improving both training time and performance of the trained policy. Chapter 3 in
the thesis extensively examines the theory, mathematical formulation, and experimental
components of the study. Transitioning to Chapter 5, the practical application of the
method is demonstrated through its implementation in the disassembly of a Nissan Leaf
battery pack.

. Aflakian, Ali, et al. "An Online Hyper-volume Action Bounding Approach for Acceler-
ating the Process of Deep Reinforcement Learning from Multiple Controllers.” Journal
of Field Robotics, (Published 2024).

Authors contributions: Conceptualization, A.A., A.R. and R.S.; methodology, A.A.;
software, A.A; validation, A.A.; formal analysis, A.A.; investigation, A.A. and A.R;;
resources, A.A., A.R. and R.S.; data curation, A.A.; writing—original draft preparation,
A.A.; writing—review and editing, A.A., A.R., J.H., and R.S.; visualization, A.A.; super-
vision, A.R. and R.S.; project administration, A.R.; funding acquisition, A.R and R.S.
Brief description: This study explores different methods for bounding the actions of
the RL agent during training, comparing their effectiveness. This publication extends
the previous method, explained in paper 3, for broader applicability across various tasks,
presenting alternative approaches for constraining action space and demonstrating im-
proved training progress in VS. Chapter 3 of the thesis conducts a thorough exploration
of the study, the theoretical foundations, mathematical formulations, and algorithms.
This chapter provides a comprehensive examination of the principles and methodologies
that form the basis of our proposed AORLD approach.

. Ali Aflakian, Jamie Hathaway, Rustam Stolkin, and Alireza Rastegarpanah, " A curriculum-
based domain randomisation approach for learning contact-rich tasks with parametric

uncertainties”, Journal of IEEE Access, (Published 2024).

Authors contributions: Conceptualization, A A., J.H., A.R. and R.S.; methodology,

A.A., J.H.; software, A.A, J.H.; validation, A.A., J.H.; formal analysis, A.A., J.H.; inves-
tigation, A.A. and A.R.; resources, A.A., J.H., A.R. and R.S.; data curation, A.A., J.H,

writing—original draft preparation, A.A., J.H.; writing—review and editing, A.A., J.H.,

A.R., and R.S.; visualization, A.A.; supervision, A.R. and R.S.; project administration,

A.R.; funding acquisition, A.R and R.S.

Brief description: In this study, we expand our application scope from contact-less

approaches to contact-rich scenarios. We introduce a framework for contact-rich path

following using RL with a blend of visual and tactile feedback, enabling path follow-
ing in unknown environments. Our approach incorporates a curriculum-based domain

randomization strategy with a time-varying sampling distribution, ensuring robustness

to uncertainties in the robot-environment system. Through simulation evaluations in

compliant path-following scenarios with random uncertain environments, we demonstrate

the policy’s robustness across a range of stiffness and friction values. Additionally, we

extend the concept to unknown surfaces with varying curvatures to enhance the trained

policy’s robustness in adapting to surface changes. The results were compared with the

Learning-based Model predictive controller (LBMPC) and Virtual Forward Dynamics

Model (FDM) approaches. The details of this method, its underlying principles, and the

outcomes of simulations are presented in chapter 4 for a thorough understanding of the
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proposed approach. We suggest the potential application of this method for learning
more challenging tasks, such as milling, which are difficult to model and depend on a
wide range of process variables.

. Ali Aflakian, Rustam Stolkin, Alireza Rastegarpanah, " Integrating Multi-Demonstration

Knowledge and Bounded Workspaces for Efficient Deep Reinforcement Learning”, IEEE-
RAS International Conference on Humanoid Robots, (Accepted 2023).

Authors contributions: Conceptualization, A.A., A.R. and R.S.; methodology, A.A;
software, A.A; validation, A.A.; formal analysis, A.A.; investigation, A.A. and A.R;
resources, A.A., A.R. and R.S.; data curation, A.A.; writing—original draft preparation,
A.A.; writing—review and editing, A.A., A.R., and R.S.; visualization, A.A.; supervision,
A.R. and R.S.; project administration, A.R.; funding acquisition, A.R and R.S.

Brief description: In this study, as an extension of our previous approach in paper 5,
we present a novel method to enhance deep RL by incorporating human demonstrations
and offline workspace bounding. Our approach involves gathering data from human
demonstrations on diverse surfaces with varying friction and stiffness properties. A 3D
convex hull is computed to encompass all demonstrated paths. Defining task and desired
parameters as reward functions allows the RL agent to learn within this bounded space,
reducing the required search space. Comparing our approach with a baseline, results
indicate accelerated learning, improved policy performance, and enhanced resilience to
local minima. Combining our method with RL also enables the refinement of imperfect
demonstrators’ behaviour during learning. In Chapter 4 of this thesis, we provide a
theoretical and mathematical explanation of our approach, accompanied by simulation
results. Furthermore, in Chapter 5, we elaborate on the potential application of our
approach in automating and optimizing teleoperation examinations through the use of RL.

Hathaway, J., Shaarawy, A., Akdeniz, C., Aflakian, A., Stolkin, R. and Rastegarpanah,
A., 2023. Towards Reuse and Recycling of Lithium-ion Batteries: Tele-robotics for
Disassembly of Electric Vehicle Batteries.(Published 2023) :2304.01065.

Authors contributions: Conceptualization, A.R.; methodology, J.H., A.S. and A.R;
software, A.S., J.H. and A.A.; investigation, A.S., J.H., A/A. and A.R.; validation, J.H,
A.S and A.R; data curation, J.H. and A.S.; formal analysis, J.H. and A.S.; visualisation,
J.H. and A.S.; writing—original draft, C.A., J.H, A.S and A.R; writing—review & editing,
AR., C.A. and J.H, AA; resources, A.R. and R.S; supervision A.R. and R.S.; funding
acquisition, A.R. and R.S.; project administration, A.R.

Brief description: In this study we explained that Telerobotics offers a solution for
semi-autonomous robotic disassembly, particularly emphasizing the importance of realistic
haptic interactions for precision and safety. To investigate, we conducted a comparative
study on the disassembly of a Nissan Leaf 2011 module stack using both traditional
haptic-cobot master-slave framework and identical master and slave cobots. Chapter 5
of this thesis provides more detailed insights into this study.

Rastegarpanah, A., Mineo, C., Contreras, C.A, Aflakian, A., Paragliola, G., Stolkin,
R. " Electric Vehicle Battery Disassembly Using Interfacing Toolbox for Robotic Arms”,
Journal of Batteries (MDPI), (Published 2024).

Authors contributions: Conceptualization, A.R., C.M.; methodology, A.A., C.M., G.P.
. software, C.M, A.A; validation, A.R., CM., CA.C., AA,, and G.P.; investigation, A.R.,



C.M., CA.C, AA., and G.P; resources, A.R., CM., CA.C.,, AA., GP, and R.S.; data
curation, C.A.C., and A.A_; writing—original draft preparation, C.A.C.; writing—review
and editing, A.R., C.M., CA.C., AA., and G.P.; visualization, C.A.C., and A.A.; super-
vision, A.R., C.M. and R.S.; project administration, A.R.; funding acquisition, A.R. and
R.S.

Brief description: This paper presents an innovative approach to automating the
disassembly of electric vehicle (EV) batteries by integrating the Interfacing Toolbox for
Robotic Arms (ITRA) with vision and ROS capabilities. To this aim, we have integrated
and tested our proposed hybrid decoupled visual serving approach with industrial robots
(KUKA KR500, KUKA KR10, KUKA AGILUS).
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Innovation (UKRI) project “Reuse and Recycling of Lithium-lon Batteries” (RELiB) under
RELiB2 Grant FIRG005 and RELiB3 Grant FIRG057.

1.4 Thesis structure

The structure of this thesis is visually represented in Figure 1.11. This figure conveys the central
theme of the thesis, which revolves around the utilization of vision and artificial intelligence in
the context of manipulation tasks. These tasks are broadly categorized into two main types:
contact-less and contact-rich tasks. Moreover, the specific application chosen for in-depth
study in this thesis is the disassembly of battery packs.

In Chapter 2, the primary focus is on introducing the proposed VS method. This chapter
explores the VS method and the incorporation of supervised learning to enhance its performance.
The findings gained in this chapter establish the foundation for the subsequent chapters for
further investigation and improvements. Chapter 3 introduces the integration of Reinforcement
Learning (RL) with the previously proposed VS method. This chapter discusses general
RL challenges and our strategies for mitigating them, including leveraging data from other
systematic controllers and incorporating domain randomization and adaptation in our learning
framework. The investigation continues in Chapter 4, with a focus on using vision in contact-
rich applications and RL. This investigation is built on a case study, with an emphasis on
using domain randomization within a curriculum-based randomization framework. The chapter
concludes by demonstrating the advantages of incorporating human demonstrations to improve
RL performance and reduce the agent's search space and sub-optimal solutions. The possibility
of using model-based tracker and deep learning in the disassembly loop is explored in Chapter 5.
The chapter also details various setups and practical demonstrations conducted during the study.
This section provides an in-depth overview of the various ways used for the disassembly process,
highlighting the benefits of these approaches. Finally, Chapter 5 serves as the conclusion,
providing a cohesive summary of the key findings and limitations of each method explored in
the earlier chapters. The chapter also identifies possible future directions and applications
for further research and concludes the thesis by providing a comprehensive overview of the
contributions made.

Each chapter, excluding the conclusion and index, follows a consistent structure. Starting with
an abstract and introduction outlining the challenges and gaps, followed by a methodology,
results, explanations, details on the setups that were used, and a final summary. The goal is to
make sure that the research material is presented in the thesis in a coherent and logical form.
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Enhancing Vision guided manipulation tasks using machine learning approaches
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Hybrid-Decoupled Visual Servoing with
Supervised Learning

Content from this chapter has been published in the following:

Ali Aflakian, Rastegarpanah, Alireza, and Rustam Stolkin. " Improving the manipulability of
a redundant arm using decoupled hybrid visual servoing.” Applied Sciences 11.23 (Accepted
2021): 11566.

Ali Aflakian, Rastegarpanah, Alireza, and Rustam Stolkin. " Optimized hybrid decoupled visual
servoing with supervised learning.” Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering 236.2 (Accepted 2022): 338-354.

2.1 Introduction

To address the explained convergence and performance issues of VS in literature 1.2, we
proposed an optimized VS method called Hybrid Decoupled Visual Servoing (HDVS). In the
proposed method, all three rotations, and translation in the Z-axis have been decoupled
from the image-Jacobian. These four components’ errors will be regulated from the 3D
reconstruction of the visual features. Consequently, the controller has independent control over
translation in Z-axis, and rotations. Thereafter, the LoLiMoT neural network has been used
to approximate the pseudo-inverse of the proposed interaction matrix. Using LoLiMoT avoids
singularities that could be happened in the interaction matrix, and reduces the computational
complexities effectively. Accordingly, the controller becomes robust to camera calibration errors
and image noises. LoLiMoT is a fast, effective neuro-fuzzy neural network that learns a huge
number of nonlinear models [97]. LoLiMoT method guarantees a global optimization solution
which implies the generalization ability of the method [97]. Regression approaches are blind in
the detection of global minima, but LoLiMoT is axis orthogonal and operates by errors, thus it
will not stuck in local minima [98]. The locality of this method provides online learning in one
region without forgetting the other operating regions [99]. Besides, the number of required
trial-and-error steps will be reduced in the LoLiMoT approach. In the following sections, the
method will be discussed in detail and its efficacy will be validated in both simulation and the
real world. The contributions of this chapter are itemized in the following:

e The proposed method produces an optimized trajectory, both in the image space and
the joint space in terms of control effort and convergence time. Moreover, HDVS is
robust to camera calibration and image noises.

e The proposed approach produces more controllable trajectories (higher manipulability)
for the robot than IBVS when tracking objects. In comparison to PBVS and HVS
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approaches, the HDVS approach is less likely to lose the object from the camera’s Field
of View (FOV). The method’s effectiveness will be compared with the other methods in
both simulation and the real world (2.5).

The VS process has been boosted by using adaptive gains and The functionality of the
manipulator has been increased by defining the manipulability as a secondary task. This
contribution has been explained explicitly in Section 2.3.1.

HDVS benefits from Damped-least squire (DLS) inverse instead of pseudo-inverse
to generate the joint velocities. Therefore, HDVS reduces the effect of the robot's
singularities and it assists in smoothing the discontinuities created by the decoupling

process and adaptive gains. This contribution has been explained explicitly in Section
2.3.1.

A set of LoLiMoT NNs have been trained in the presence of image noise to approximate
the interaction matrix. Consequently, singularities of the interaction matrix would be
avoided and computational complexities would be reduced effectively. Nevertheless,
using LoLiMoT NN makes the controller robust to image noises. This contribution has
been explained explicitly in Section 2.3.3.

Figure 2.1 illustrates the critical problems in 2D, 3D, and Hybrid methods and contributions of
the proposed HDVS approach in the image space, joint space, and the interaction of these two.
The rest of this chapter is as follows: A brief overview of various visual servoing controllers

Fig.

[ Solving Critical Problems in Visual Servoing ]
IBVS @)
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. singularity ‘ | paths for arm J
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l l I |
|
[ Proposed Hybrid VS (HDVS) ]

2.1. Problem domains in classical visual servoing and contributions of the proposed

HDVS method.

has been investigated in Section 2.2. Section 2.4 explains the simulation and experimental
setups designed to evaluate the performance of the proposed VS method. In Section 2.5, the
behaviour and effective parameters of four VS methods have been investigated. Finally, this

work
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2.2 Background

In this section, a background of the classical visual servoing methods is given first. Thereafter,
our proposed HDVS method will be explained in detail.

2.2.1 Image-Based visual servoing

In the IBVS method, the feedback from the image features will be directly used and the
image-Jacobian (Interaction matrix L;) will be used to relate the pixel velocity to the camera
velocity [100]. The Interaction matrix for the ith feature would be defined as follows [100]:

L o -z _% fQ;uz -
_ VA Z
L, = 0 7 ) F2402 i (2.1)
2y u

where f denotes the focal length of the camera and s = (u, v) denotes the coordinates of a
point in the image plane. Let's consider €; is difference between current and desired positions
of each feature in the image plane, and v 4, = (v¢, Ww,) is the camera velocity vector (where
Ve = (Vy, vy, V) is camera linear velocity vector, and w. = (wy, w,, w;)) is its angular velocity
vector. The exponential decoupled decrease of the error can be obtained when the Interaction
matrix at the desired pose is not singular (i.e., s;(¢) — s;4(t) = €;(t) = 0). Therefore, the
appropriate camera velocity vector will be determined using the following control law [100]:

VC ——— . + .
[ .- ] = —kL'e; (2.2)

where k; represents a positive proportional gain and L} represents the pseudo-inverse of L;.

2.2.2 Position-based visual servoing

In position-based visual servoing, the feedback is obtained from the pose reconstruction of the
environment. The pose estimation will be calculated with the help of Euclidean methods and
camera parameters, from the camera image.

T
The Euclidean coordinate of the features in the camera frame is m; [ Vi Zi ] and the

Xi
. . - . . v T
Euclidean coordinate of the features in the desired camera frame is [ x:oyrozf ] . The

controller in this method is defined as [43]:

We

[ Ve ] =-2,L%, (2.3)

Where 4, is a positive controller gain and L, (#) is a 6 X 6 matrix obtained from the following
equation:

R 0
Ly = [ 0 L, ] (2.4)
Where L, (u(2),6(t)) is a 3 X 3 matrix defined as:
Lo = I — Oul +| 1= 0O |12 (2.5)

9 Hlx
sinc? (g)

Where u(f) € R® and () € R are the rotation axis and rotation angle, decomposed from the
rotation matrix. [u]x is the skew-symmetric matrix associated to the vector u.
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2.2.3 Homography-based visual servoing

The Homography-based visual servo control approaches mostly decompose the six-DoF motion
of the camera in two separate controllers to achieve the convergence goal; one for the
translational components and the other one for the rotational components. The error signal
will be selected by the estimated position from the Euclidean information and directly from
the image information [101]:

ey = ub (2.7)

é, =L,ve+L,,w. and &, = L,w, could be defined as corresponding transitional and rotational
errors. In which L, (¢) was presented in Eq.2.5 and L, (¢), L, (7) are 3 X 3 matrices that are
obtained from:

e, = | my—my; my— m;i In ( (2.6)

Nl:\]

~ %

i 1 0 —My
Li=——|0 1 -my (2.8)
iloo 1
meymy; —1—m2  my;
X1 vt xi yi
L,=|1+ mii —MyiMly;  —My; (29)
—NMy; My 0

Where « is the product of the camera scaling factor. The translation and the rotation
controllers could be defined as:

w = —kL'e, = —ke, (2.10)
ve = -L;! (ke, — kL,ue,) (2.11)
2.3 Proposed approaches

In the following, our proposed approaches to enhance the performance of the visual serving
are explained in more detail.

2.3.1 Proposed hybrid visual servoing

The proposed HDVS method decouples the Z-axis of translational velocity and the three
rotational velocities (the components that create the IBVS singularity and unnecessary motions
for the robot) from the image-Jacobian matrix. The translational velocities of X and Y
components will be measured in 2D, while the error of the other four parameters will be
calculated by 3D estimation of the target. The control rule in the classic IBVS system is
defined below:

$ =Liveam (2.12)
By decoupling the interaction matrix, the control law would be amended as follows:
§ = Lyyvy +Lv, (2.13)

where v, = [vay]T and v, = [VszWyWZ]T. In addition, Ly, and L, are calculated as follows:

L[

O NI
N~ O

] (2.14)
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Hence:
Vyy = L;y(s -Lv,) (2.16)

since the time variation of the features is related to the feature errors § = —ke, therefore (2.16)
will change to:

iy = Ly (=k(llel e = L,v;) (2.17)

To reduce the convergence time, the following adaptive representation of the controller gain
has been implemented [102]:

—k(0)

k(llel]) = (k(0) — k(oco))eT@-x=1 ¥l 1k (co) (2.18)

In (2.18), for small amounts (less than 0.005 m) of ||e|| the positive amount of gain is kg = k(0),
while for the high amounts (more than 0.005 m) of ||e|| the gain is ke = kjj¢||—c0. k(|]€]]),
and the slope of k at [le|[ = 0 is k.
The term L,v, will be calculated during each iteration, and the outcome of this term will
be placed in (2.17). To determine v, in the PBVS method the same scenario for the IBVS
method will happen as follows:

S'p = pryvxy + LprVr (219)

where Lp,, is a matrix generated by the first and second columns of Lp in (2.4), and Lp, is a
matrix created by the last four columns of Lp in (2.4). Therefore:

v, = L, (~k(llelDep = Lpayviy) (2.20)
Finally, the camera velocity vector is calculated by solving (2.17) and (2.20), simultaneously.

2.3.2 Robot kinematics with task priority

Joint velocities (q) are computed after the end-effector (EE) velocities are calculated using
the kinematics of the robot:

o= T7ENe,, (2.21)
The transformation matrix &£ is used to map the velocities represented in the robot end-effector
(EE) frame to the camera frame [103]:

e _ | RE sk (8) R
€c - [ 0 Rf ] (222)
where t¢ is the translation vector between the EE frame and the camera frame. R is the
rotation matrix between the EE and the camera frame, and sk(t¢) is the skew-symmetric
matrix of the translation vector. It is worth mentioning that &¢ is constant in such a scenario
(Eye-in-Hand configuration). By using this approach the effect of robot singularity has been
reduced, and discontinuities caused by the decoupling process have been greatly smoothed,
thanks to the DLS inverse [104]:

-1
§ A ) (JJT + 121) (2.23)

where A is a positive scalar known as the damping factor. Using DLS inverse minimizes the
term ||J¢q — x||? + 22||q||>. Choosing A will ensure that the solution norm stays within an
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assigned range [105]. It is worth noting that regularisation techniques help with reducing
the effect of singularity configurations. In addition, they increase the convergence time [106].
In this study, the task priority for the given tasks (i.e., feature error convergence and robot
manipulability) is calculated [104], and given by:

4 =IEVE gy + (1= TT)do (2.24)

where I—J%J is the Null space projection matrix. Therefore, the closest point in the Jacobian
matrix null space will be identified, satisfying both tasks. qy is defined as follows [45]:

T
do = ko (aw(_(’)) (2.25)

In (2.25), ko is a positive gain and w is the cost function for another task. w should be
maximized to consider the other objectives. As mentioned earlier, the manipulability of the
robot has been considered as the second task.

w(g) = yJdet (J(¢)37()) (2.26)

Using the classical projection operator defined in [45], the secondary task will be computed
and will be added to the joint velocity vector. The value of w(g) is called manipulability value
and shows the functionality of the robot in each configuration. The more the amount of m,
the better adjustment in the workspace is possible (greater range of possible motions) [107].
The proposed visual servoing control schema before using LoLIMOT NN is depicted in Figure
2.2. The red blocks represent the image-based controller, the blue blocks represent the
position-based controller, and the grey blocks represent algorithms in the task space. As shown
in the control block diagram in Figure 2.2, the camera velocities have been decoupled; in 2D,
two of them (translations in X and Y) were considered by using the features created from the
image screen, as feedback. The remaining components were modelled in 3D (computed by
partial 3D reconstruction of the environment attained by the extracted features). Following
that, the computed velocities will be given to the robot. The controller will exchange the
desired camera velocities with the desired joint velocities using the Jacobian of the robot.

fa

b‘l X
Desired features
In camera screen

f Feature Vision
f L extraction sensor

Fig. 2.2. The control schema of the proposed visual servoing approach before applying
LoLiMOT NN.
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To minimise the effects of robot singularity, the DLS inverse method was used instead of the
pseudo-inverse approach. The 3D calculation of the visual features is used to regulate the
errors of rotations and translation in the Z-axis. As a result, feasible trajectories for the robot
will be generated, and image singularities caused by these four components in the interaction
matrix will be eliminated. In Algorithm 1, the pseudocode of the proposed approach has been
illustrated.

Algorithm 1: Hybrid Decoupled Visual Servoing.

1 Inputs: e, e;;

2 Qutputs: q;

3 Initialization;

4 Define desire points;

5 Modify task as Eye-in-Hand;
6 while Not converged do

7 for i=1 to i=features.size() do
8 \ Compute Ly, L, Lp, and Lp,,
9 end
10 for j=I to j=camera-velocity.size() do
11 compute camera velocities Veay, = (Vyy, Vr);
12 use adaptive gain;
13 IBVS update visual features;
14 viy = Ly (=k(lell)e = Lyv;);
15 PBVS update visual features;
16 V= L;r(_k(”ell)ep - Lnyny);
17 end
18 for k=1 to k=joint-velocity.size() do
19 calculate joint velocities q;
20 define manipulability as a secondary task;
21 use damped least square method;
22 command robot;
23 a= THENVE,, + A= T D)y,
24 end
25 end

The inputs of the algorithm are the feature errors in the image screen and their counterparts
in the 3D space. The output of the algorithm will be the vector of joint velocities. In line 8 of
Algorithm 1, the decoupled matrices will be determined from (2.14), (2.15), and (2.4). Camera
velocity would be estimated in lines 14 and 16 using the calculated decoupled matrices in line
8. An adaptive representation of the controller gains was used in this calculation to increase
the VS task speed. Eventually, the robot joint velocities will be measured and commanded
to the robot velocity controller in line 23 of Algorithm 1. Not to mention that the controller
would use manipulability as a secondary task in measuring the joint velocities, and DLS inverse
would be used instead of pseudoinverse to convert EE velocities to the joint velocities.

2.3.3 Estimation of camera velocities using Neural Networks

A trained neural network is employed to provide an accurate estimation of the camera velocities
from the feature errors (NN replaced with lines 7 to 17 in Algorithm 1 ). To this end, feature
errors in the image screen were deployed as input of the neural network and the calculated
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camera velocities were defined as the outputs. A Local Linear Model Tree (LoLiMoT) neural
network was used for this purpose.

The approximated equations by the NN are the combination of the right-hand side of the
Equation 2.17 (including pseudo-inverse of Ly, to calculate translational velocities in X
and Y-axis from 2D image errors) and the right-hand side of the Equation 2.20 (including
pseudo-inverse of Lp, to calculate the translational velocity in Z-axis and three rotational
velocities from estimated 3D errors of the image features). To this end, 76000 sets of unique
feature errors with their relevant camera velocities (calculated from the achieved Equations
number 2.17 and 2.20) all over the image screen (480*640 pixel) for the test and training
data have been gathered. These results were taken by moving the camera manually and trying
to include the feature's positions all around the image screen as best as possible. In Figure
2.6, the positions of the current features have been shown in the camera screen with green.
To train and validate the neural network, the data was split into training, validation, and test
sets, with 70% used for training and 30% for testing. This division was done to ensure that
the model could generalize well to unseen data. In comparison to other neuro-fuzzy NNs,
LoLiMoT is more efficient in learning non-linear systems with fewer neurons [108].

Fig. 2.3. The structure of LoLiMoT NN with m neuron and P input.

The LoLiMoT algorithm operates by the errors and it is axis-orthogonal. Therefore, the
network divides the space in a properly optimized way w.r.t the errors. Other types of neural
networks, which work by the use of gradient descent, operate blindly and can not guarantee
global optimization [109]. The structure of the LoLiMoT network is depicted in Figure 2.3.
A linear local model alongside a membership function is assigned to each neuron. For the
allocated linear model, the validated area would be determined with an assigned membership
function. The linear model is formulated as follows [110]:

Vi = wio + Wi1X1 + . .. + WipXp (2.27)

In equation 2.27, w;j is the associated parameters to i;; neuron. The final output is calculated
as follows:

M M
y=)5i(®, D ax=1 (2.28)
i=1 i=1
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Where ¢; (x) stands for the membership function which is assumed as a normalized Gaussian
function in Eq. 2.28. The corresponding member function is derived by the following equation:

) S 1C))
¢l (x) Zyil ¢1(X) ,
("l_ci1)2 (“P_cip) (229)
wx)=e 21 x...xe i

In equation 2.29, ¢;; and o;; are the centre of the area and the standard deviation, respectively.
The NN has been trained for each output separately (6 camera velocities).
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Fig. 2.4. RMSE of test and train samples of LoLiMoT neural network for translational camera
velocity outputs.
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Fig. 2.5. RMSE of test and train samples of LoLiMoT neural network for rotational camera
velocity outputs.

As illustrated in Figure 2.6, the pseudo-inverse of the decoupled image-Jacobian and pose
estimation are replaced with six NNs to predict the camera velocity vector at each iteration.
The feature error vector will be computed by subtraction of current and desired features.
Control input has been defined by eight components of the error vector, consequently, the
output would be the camera velocity vector with six components. This camera velocity vector
will be transformed to the EE frame of the robot using Eq. 2.22. Eventually, joint velocities
were computed using the robot’s Jacobian, and they were commanded to the actuators of
each joint. The control loop will be continued until feature errors converge to zero.

Decoupling the image-Jacobian and using the LoLiIMOT method would solve the image
singularity and local minima problem in the image-Jacobian. Since the networks are trained
with the calibrated parameters, therefore the controller will be highly robust in terms of
calibration errors. Moreover, supplementary noise has been added to the neural network input
data set during training to improve its robustness to the image noises. The added Gaussian
noise has a standard deviation of one and a mean of zero (white noise), generated by the
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Fig. 2.6. The control schema of the proposed visual servoing (HDVS) integrated with
LoLiMOT NN.

pseudo-random number generator. Using NN, the complexity of 3D estimation of the target
position and pseudo-inverse of the decoupled image-Jacobian have been relaxed, as described
in subsection 2.3.1.

For each output, one LoLiMoT network has been used. Therefore, six neural networks have
been trained, coming after six camera velocities. Each network has a different number of
LoLiMoT models. In LoLiMoT, the performance of the proposed model is evaluated using the
Root Mean Square of Errors (RMSE). RMSE is a commonly used metric that quantifies the
difference between values predicted by the model and the actual observed values:

1 Nobs

Z(xp,- —xa;)? (2.30)
i=1

Nobs “=

RMSE =

where, nps is the number of observations, x p; is the predicted value for the i-th observation,
and xa; is the actual (reference) value for the i-th observation. In our analysis, RMSE is
computed separately for both the training data and the testing data. The RMSE for the
training data indicates how well the model fits the data it was trained on. On the other hand,
the RMSE for the testing data assesses the model's generalization ability to new, unseen data.
The number of neurons in each output component is determined through trial and error. The
approach involves training the network with an initially assigned number of neurons. If the
RMSE of the test process decreases as the network trains, the training is considered successful.
The number of neurons is then adjusted through multiple trials, and the process is repeated
until the configuration that results in the lowest RMSE is found. It was also observed that
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increasing the number of neurons sometimes caused the RMSE to jump suddenly at certain
points. These jumps indicate that the neural network is starting to overfit, or "overlearn,” the
training data. This is a key sign that the network has too many neurons for the task and that
the number should be reduced to avoid overfitting. This method ensures that the network is
neither underfitted (too few neurons) nor overfitted (too many neurons). The learning process
stops when the test and train samples acquire a predefined accuracy. This accuracy will be
checked by the RMSE in both test and train samples (RMSE of 0.01m/s for translational
velocities and RMSE of 0.01rad/s for rotational velocities). Such behaviour will effectively
decrease the number of trials and errors.

The number of allocated LoLiMoT models (membership functions alongside linear local model)
and RMSE of the trained Neural network for the test and the train samples have been depicted
in Figure 2.4 and 2.5. Each LoLiMoT model consists of a linear local model alongside a
Gaussian membership function.

As Figure 2.4a suggested, having 10 models is optimal to have the RMSE of 0.01 in test
and train samples. Having more than 10 models is redundant and could lead the network to
over-fitting. The number of LoLiMoT models is 9 for the prediction of velocity controller in Y
direction (Figure 2.4b). This number is 6 for velocity in Z (Figure 2.4c).

In Figure 2.5a, it can be seen that 8 LoLiMoT models are required for rotational velocity about
X-axis, 10 models for rotational velocity about Y-axis (Figure 2.5b) and 9 LoLiMoT models
for rotational velocity about Z-axis (Figure 2.5¢). The trained set of these 6 networks will be
used to predict the camera velocity required to perform the visual servoing task. The updated
set of feature errors will be utilized for the networks at each iteration.

2.4 Simulation and experimental setup

In this study, two different setups were introduced to evaluate the efficacy of the proposed
HDVS method in comparison with other VS methods. In the first setup, different behaviours
of the proposed method have been studied such as singularity, performance, and manipulability
(Figure 2.7). The second setup was also designed to demonstrate the capability of the proposed
DHVS method for performing an industrial application (i.e., sorting) (Figure 2.9 ). It is worth
mentioning that all the case studies were performed with the same adaptive and DLS gains
(ko =4, ke = 0.4,k =30, 1 =0.1).

2.4.1 Design of setup 1

In the first setup, the HDVS method has been tested in simulation and then validated in the
real world. The simulation platform includes two Franka manipulators; one robot is equipped
with an RGB-D camera, and another robot arm holds an object (with a printed tag marker).
Four corners of the marker are used as points of interest/visual features in this study. Tracking
the object under this condition has been tested via different VS methods. The experimental
and simulation setups are identical. Franka robots have 7 degrees of freedom across 7 axes,
with a 3 kg payload, and positioning accuracy of +/— 0.1 mm in all directions. The proposed
method was modeled in simulation using ROS/Gazebo. ROS Melodic on Linux 18 was used
for both the simulation and the experiment. The joint state controller was used to publish the
joint state (at a rate of 1 kHz) and the joint velocity group controller was used to set the joint
velocities computed from the VS approaches. A system with the following CPU specification
was used for the visual servoing operation: AMD Ryzen 7 3700x, 8-core with 16 CPU Threads,
3.6 GHz base clock, and 36 MB total cache. Figure 2.7a depicts an snapshot of the developed
simulation environment in Gazebo, and Figure 2.7b shows the identical experimental setup in
the real world.
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Fig. 2.7. The modelled setup 1 in (a) the simulation environment, and (b) the real world.

Figure 2.8 also illustrates the ROS schematic graph, including ROS nodes and ROS topics to
communicate between these nodes. The joint-states topics provide the position and velocity of
each joint from the robot models simulated in Gazebo. Using a ROS Handler this information
will be published to subscribe and use in each node (vs-node and moving-marker). The
provided information will be used as feedback in robots’ controllers. The velocity input will be
commanded to the simulated robots by using the panda-arm-controller/command topic. Not
to mention that the camera information will be acquired from the Gazebo or real robot node
to the visual servoing node by camera/image-raw topic.

[robot_2/joint_states
99.9 Hz

P /moving_marker
/robot_2/panda_arm_controller/command

/robot_1/camera/image_raw

30.0 Hz// 10.0 ms ——X_ /ler_vs_node

g /gazebo )
<\ g <q—_Irobot_1/panda_arm_controller/command [robot_2
frobot_2/controller_spawner

[robot_2/joint_states

Jrobot_2/robot_state_publisher

[robot_1/joint_states

[robot_1

/robot_1/robot_state_publisher

frobot_1/controller_spawner

Fig. 2.8. Considered ROS topics to communicate between ROS nodes.
By using Setup 1, three different case studies have been designed to compare different

behaviours of the HDVS method such as singularity, performance, and manipulability with
other VS methods.
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Case Study 1

To demonstrate the effectiveness of the proposed method, this case study has been designed
in which the robot with the attached marker moved to a pre-defined position, and another
robot, equipped with the camera, tracked the visual features. This case study shows scenarios
in which the proposed method could complete the task while other methods are unsuccessful
to do so. The camera calibration was intentionally degraded by at least 20% in all of the case
studies to evaluate the performance of HDVS in an imperfect calibrated condition.

Case Study 2

In this case study, a comprehensive comparison between the effective parameters in VS is
carried out. Ten random positions were defined for the object (with an attached marker) in
order to be tracked by another robot (with the attached camera) using different VS methods.
The experiments are performed under the same conditions for all four VS approaches (IBVS,
PBVS, HVS, HDVS). Thereafter, the performance of the robot and the VS methods in the
image space and Cartesian space were compared quantitatively based on the RMSE, range
of feature error, required number of iterations for convergence, and the manipulability of the
robot.

Case Study 3

In this case study, the object is not fixed (the opposite of Case Study 1 and Case Study 2)
and the controller will track a dynamic object to demonstrate how HDVS could improve the
manipulability of the robot. The selected trajectory includes a wide range of rotations and
translations.

2.4.2 Design of setup 2

The second setup was designed to evaluate the efficacy of the proposed HDVS method for
sorting applications. Figure 2.9 depicts the experimental setup used for sorting the dismantled
components of an EV battery pack (Nissan Leaf 2011). The VS has been used to guide the
suction gripper toward the battery module (i.e., the object with an attached marker). Then,
the battery module will be lifted and will be placed in the corresponding basket. The rationale
for performing this case study is that in industry, the robot and the object that the robot is
interacting with must be precisely positioned, otherwise, the robot might fail to complete the
task due to uncertainties in the environment.
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Fig. 2.9. The automated process of sorting the dismantled EV battery components introduced
in Setup 2. The object tracking is carried out by the proposed VS method (HDVS) and the
object is manipulated using a redundant manipulator arm.

2.5 Results and discussion

Various scenarios have been studied and compared the proposed HDVS approach with HVS,
IBVS, and PBVS approaches. To have a logical comparison, the same adaptive gains have
been used for every method (kg =4, ko = 0.4, k6 = 30). The A gain in DLS inverse is set to
0.1. Moreover, each iteration of the control loop was designed to be completed within a fixed
time interval (0.025s), representing the maximum allowable time for all necessary computations.
This fixed iteration time was chosen to reflect the constraints of real-time control systems,
where maintaining a consistent update rate is essential for ensuring the robot’s responsiveness
to environmental changes. Using a fixed iteration time, we ensured all methods were tested
under the same time conditions. This way, the number of iterations needed to reach a solution
shows how fast each method is, given the same amount of time per iteration.

2.5.1 Case 1: Analysis of unsuccessful VS methods, setup 1
Comparing the performance of PBVS with HDVS

A case has been defined to follow a pre-defined position of the target with an uncalibrated
camera. The performance of HDVS and PBVS in regulating the errors is illustrated in Figure
2.10. In Figure 2.10a, it is shown that the position-based controller has failed to track the
features, and the controller could not follow the desired features from iteration 350. This
failure comes from the fact that there is an error in the 3D estimation of the target generated
by an uncalibrated camera.

The reason that PBVS is not robust to the camera calibration is that the errors in camera
parameters propagated to errors in the 3D estimation of the target. However, HDVS is robust
in terms of camera parameters. Figure 2.10b illustrates the feature errors on the y-axis against
the number of iterations on the x-axis. Iteration in the plots refers to a single execution cycle
of the main control loop. In the VS, each iteration represents one complete pass through the
loop, during which the system acquires an image, detects features, computes errors, applies
the control law, and updates the robot’s velocities. Not to mention that the feature errors
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Fig. 2.10. Result of tracking desired features with an uncalibrated camera for PBVS and
HDVS.

were represented in normalized pixels, scaling the pixel coordinates relative to the 640 x 480
image dimensions. This normalization ensures consistent error measurements across different
image resolutions. Figure 2.10b suggested that HDVS tracked the desired features successfully.
This is because in HDVS camera velocities are generated directly from the trained LoLiMoT
NN. Collecting data for the NN has been done with an accurate camera calibration. Therefore,
it is not important how inaccurate is the camera calibration in online mode (i.e. robot during
visual servoing), the controller will work well and is more robust to camera calibration errors
compared to PBVS.

Comparing the performance of IBVS with HDVS

IBVS failures are mostly associated with the rotations about Z-axis (Chaumette Conundrum)
[34] and Camera retreat [35]. Furthermore, camera ambiguities might happen between
translations and rotations in the image plane; this implies that different camera velocities could
produce the same motion of points in the image and some camera motions lead to no change
in the image [111]. A case study has been defined in such that the desired features rotated
90° about the Z-axis. The performance of HDVS and IBVS in converging feature errors to
zero is depicted in Figure 2.11.
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Fig. 2.11. Result of tracking desired features with an uncalibrated camera for IBVS and
HDVS.
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As shown in Figure 2.11, the controller will end up with unpleasant behaviour in IBVS. Figure
2.11a shows that the errors could not converge to zero as the controller produces a large
velocity in Z which makes the robot go to its joint limits. The main reason associated
with this limitation is that reducing the rotation error about the Z-axis in the image screen
could be achieved by moving the camera away from the target (the so-called camera retreat
phenomenon). Such a wrong decision in 2D could produce a large motion in the Z axis in 3D.
An extreme version of this behaviour is when there is a pure 7 rad rotation between features
and their desired positions in the image. In such a case, the features will be driven towards the
origin by mistake and cause image singularity [34]. In this configuration, the controller would
servo forever, and features can not reach the desired ones [35]. The proposed HDVS method
will provide the most straightforward way of compensating errors of Z and rotations in task
space. This claim comes from the fact that the error of these four parameters (translation in
Z-axis and three rotations) is directly compensated by 3D estimation of the target position
w.r.t the camera position. In Figure 2.11b, it is illustrated that using the proposed controller the
errors easily converge (in 509 iterations) without causing singularity. Moreover, HDVS avoids
camera ambiguity while the controller distinguishes the camera rotations from translations.
Camera ambiguity could be explained by the structure of the image-Jacobian matrix in Eq.
2.1. When the camera focal length is large or when the pixel coordinates are small, columns 1
and 4 become very similar. The same ambiguity could happen for columns 2 and 5 (large focal
length dominates u squared). Therefore, transnational velocities in the X axis and Y axis could
not be easily detected from rotational velocities about the Y and X axis, respectively. These
components are decoupled from the image-Jacobian in HDVS, and the controller avoided these
kinds of ambiguities.

Comparing the performance of HVS with HDVS

In the traditional HVS approach, the controller compensates for translation in Z-axis from
the 2D information given by the camera. As a result, the controller continues to generate a
non-optimized trajectory for the camera, which results in generating robot singularity. Figure
2.12a clearly shows that the controller using the HVS method failed to converge the errors
to zero with an uncalibrated camera. However, HDVS could successfully finish the tracking
in Figure 2.12b. Not to mention that the overshoots in Figure 2.12b are caused by the
uncalibrated camera parameters, but the key point is that the controller still managed to
complete the task successfully. Another advantage of HDVS in comparison with traditional
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Fig. 2.12. Result of tracking desired features with an uncalibrated camera for HVS and
HDVS.
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HVS methods is the significant reduction in computation costs. The computing and modelling
process (Eq. 2.10 and 2.11) in traditional HVS for each iteration is time-consuming and
complex. However, in HDVS neuro-fuzzy NNs are used for estimating the required velocities.
Since the NNs are trained offline and used online as a predictor of required velocities, the
convergence time will be reduced considerably. Moreover, HVS methods need homography
construction and decomposition. Homography construction is sensitive to image noises and
there exists sign ambiguity in homography decomposition (non-unique solutions). However,
HDVS is robust to image noises, and globally optimized solutions will be achieved from the
LoLiMoT network.

Figure 2.13 compares the success rate of four VS methods for 10 different random paths in
simulation and their counterparts in the real world. From Figure 2.13, it can be concluded that
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Fig. 2.13. The success rate of four VS methods over 10 trials in simulation and real world

HDVS outperformed with its success rate in both simulations (with 10 out of 10 successful
trials) and the real world (with 9 out of 10 successful trials) compared to other VS methods.
In summary, Figures 2.10, 2.11, and 2.12 suggest that the proposed HDVS approach could
avoid the singularity, mitigate the discontinuities, and complete the VS tasks without the use
of complex and time-consuming methods, while the other VS methods failed to complete the
task successfully.

2.56.2 Case 2: Performance analysis of VS methods, setup 1

In this section, the effective parameters during tracking 10 positions by four different VS
methods are compared with each other quantitatively and the results are tabulated in Tables
2.1-2.3.

According to Table 2.1, the HDVS method has a lower mean RMSE than PBVS and HVS,
and the range of feature errors in PBVS and the classical HVS are greater than that value in
the HDVS. As a result, using the HDVS, the object is less likely to be missed from the camera
screen than in the other two approaches. Not to mention that the proposed method is quicker
than traditional HVS, and needs fewer iterations to complete the same mission. Table 2.1 also
illustrates that the IBVS method not only has the smallest range of feature error but also the
smallest RMSE as compared to other approaches. Without a doubt, IBVS performs better in
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Table 2.1
Performance of visual servoing methods in the image space.

Method RMSE Feature Error Iteration Mean of Error Mc?an. Standard
Range Deviation of Error

IBVS 0.0222  [-0.36, 0.310] 453 0.0152 0.0095

PBVS 0.0383 [-0.445, 0.507] 487 0.0204 0.0164

HVS 0.0273 [-0.448, 0.486] 624 0.0168 0.0141

HDVS 0.0249 [-0.419, 0.407] 505 0.0155 0.0101

Table 2.2
Performance of visual servoing methods in the Cartesian space.

Method RMSE of RMSE of Camera (or EE)
Position (m) Orientation (°) Travelled Distance (m)

IBVS 0.036 9.43 0.942

PBVS 0.022 6.54 0.722

HVS 0.034 8.41 0.917

HDVS 0.027 7.11 0.746

the image-plane if there is no singularity or local minima. However, the controller operates
blindly in the Cartesian space (with the highest RMSE for location and orientation as shown
in Table 2.2). Large camera motions are common in the IBVS approach.

As shown in Table 2.2, in Cartesian space, the HDVS method performed better than IBVS and
HVS, as one would expect. However, the mean RMSE amounts of position and orientation
in the PBVS method were less than their counterparts in the other three methods. As a
consequence, in Cartesian space, the PBVS method had better outcomes, followed by HDVS.
Ultimately, the HDVS method indicates more optimised efficiency in the Cartesian space than
IBVS and HVS (based on the amounts of mean RMSE shown in Table 2.2). Furthermore,
HDVS outperforms PBVS and HVS in image space (based on the amounts of RMSE and
feature error ranges, shown in Table 2.1).

In Table 2.3, a quantitative comparison of manipulability has been presented as well. When
using the HDVS approach for VS, the mean of manipulability across the entire path is higher
than when using the other three methods. The mean of manipulability with our proposed
HDVS method after 10 different trials was 0.0486. However, for the same number of trials
and the same initial position of the robot and the marker, this amount was 0.0407 for the
IBVS method, 0.0446 for the PBVS method, and 0.0396 for the classical hybrid method.
In conclusion, the proposed HDVS technique had advantages in terms of controllability and
the ability to select a wider range of joint positions, compared to PBVS, IBVS, and HVS
approaches.

As a prime example, in Figures 2.14 and 2.15, the behaviours of different VS methods for one
of the experiments (i.e., tracking one of the ten positions) have been depicted in this case
study.

According to Figures 2.14 and 2.15, the proposed hybrid approach will not inherently have
the best performance in tracking the features in the image-space and Cartesian space (robot
space), but it has an optimised performance in both.

It stems from the fact that translation in the X-axis and Y-axis of the camera velocities
are computed directly from the image space, while the rest are computed from the 3D
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Table 2.3
Comparison of manipulability in different VS methods.

Manipulability Manipulability

Method RMSE Mean Range Iteration
IBVS 0.0222 0.0407 [0.0140, 0.0810] 153
PBVS 0.0383 0.0446 [0.0245, 0.0807] 187
Hybrid VS  0.0273 0.0396 [0.0208, 0.0806] 224
HDVS 0.0247 0.0486 [0.0278, 0.0816] 203
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Fig. 2.14. The real world result of the feature errors in different methods for the same
scenario.

reconstruction of the environment. Furthermore, as compared to HVS and PBVS, the object in
HDVS is less likely to be lost from the camera FOV. This conclusion was reached by comparing
the maximum feature error in Figure 2.14d to the one in Figure 2.14a and 2.14c, which is less.
The larger the error, the more likely the feature might be lost from the camera FOV.
According to Figure 2.15e, HDVS (the blue path) has a shorter camera path than HVS (the
purple path) and IBVS (the red path). To elaborate, the camera (or the robot EE) travelled
0.843 m distance in HDVS; however, this value is 0.942 m and 0.917 m in IBVS and HVS,
respectively. In PBVS, the camera travelled distance is 0.722 m, which provides the most
optimised Cartesian trajectory of the robot EE, as predicted.

The IBVS reflects the most optimised path in the camera frame as shown in Figure 2.14b,
followed by the HDVS method. IBVS has a lower RMSE than the other three VS approaches.
In Figure 2.14, this amount is 0.036 in PBVS, 0.021 in IBVS, 0.032 in HVS, and 0.028 in
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Fig. 2.15. Image frame and Cartesian trajectory of EE for the same scenario in Figure 2.14.

HDVS. As shown in Figure 2.14b, the maximum feature error along the entire path is 0.098,
indicating that there is a very low chance of losing the object from the camera FOV. Since
the PBVS controller performs blindly in the image screen, it has the most undesirable RMSE
(0.036) in the camera screen. As illustrated in Figure 2.14a, PBVS has the highest feature
error (0.24) compared to other approaches, therefore, it is more likely to lose the object from
the camera FOV. Comparison of Figures 2.14c, and 2.14d also shows that the HDVS method is
faster (converged in 300 iterations) with less RMSE amount than the HVS method (converged
within 443 iterations).

A qualitative comparison of the aforementioned results for all different methods is presented in
Table 2.4.
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Table 2.4
A qualitative comparison of visual servoing schemes.

IBVS PBVS HVS HDVS

Optimized Cartesian Trajectory low high  med*  high
Optimized Feature Trajectory high low med med
Image Singularities yes no no no
Robustness to Camera Calibration  high low med high
Convergence Speed high low low med
Computationally Complex med med high Low
Robustness to Image Noises high med low high

* med = medium

Table 2.4 illustrates that the proposed HDVS method offers an optimized trajectory both in
Cartesian and image space. Furthermore, the controller is highly robust in terms of camera
calibration (PBVS problem), image singularities (IBVS problem), and image noises (HVS
problem). Not to mention that the proposed method has significantly relaxed the calculation,
and the convergence speed is better than the classical HVS method.
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Fig. 2.16. Comparison of CPU and RAM usage while each method is running in the real
world

In Figure 2.16, the CPU and the RAM usage while different techniques are running have been
shown. The comparison between the graphs in Figure 2.16 clearly illustrates our claim that
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HDVS is less computationally heavy compared to the other three methods. The CPU usage in
HDVS is around 90 percent; However, this amount is above 105 percent for other techniques.

2.5.3 Case 3: Manipulability analysis of VS methods, setup 1

Four different visual servoing methods (HDVS, IBVS, HVS, PBVS) have been used to track a
dynamic object with a Tag (Figure 2.17).
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Fig. 2.17. Evaluating the manipulability performance of several visual servoing techniques in
tracking a dynamic object.

Figure 2.18 depicts the amount of manipulability for different VS methods. As shown in Figure
2.18, the manipulability of the HDVS method was mostly greater than the other three methods.
Not to mention that the manipulability value at the time zero is the same since the robot
started moving from the same position with an identical configuration during all trials. The
minimum amount of manipulability for the HDVS method is 0.0684, while this amount is
0.0588 for IBVS, 0.0613 for PBVS, and 0.0628 for the HVS method.

In Figure 2.19, the manipulability ellipsoid of the robot in its minimum amount (lowest amount
of controllability for the robot) for different VS approaches has been illustrated. Since the
manipulability ellipsoid is a hyper ellipsoid in six dimensions and plotting this in 3D space is a
complex task, the first three elements of the ellipsoid have been plotted (i.e., translational
velocities). The more isotropic the ellipsoid, the higher the controllability of the robot. From
the plots in Figure 2.19, it is obvious that the proposed hybrid method has better controllability
on the robot movements, compared to IBVS, PBVS, and HVS methods.

2.5.4 Case 4: Application of sorting with HDVS, setup 2

In industry, the robot and the object on which the robot is working must be precisely positioned
for the task to be completed successfully. This is the most common procedure for industrial
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Fig. 2.18. Analysing the manipulability of different VS methods during tracking the trajectory
(introduced in Case study 3) of a dynamic object.

applications. Several things can go wrong during this process. There could be sensory errors,
as well as robot kinematic model errors. Alongside, one might not be aware of the precise
location of the robot base and the object on which the robot will perform the task. These
positions may change during the task and must be calibrated regularly. Not to mention that
all positions could not be predicted in advance during the disassembly process, especially when
loose and flexible objects are present in the workspace. Currently, the process of dismantling
the EV battery packs is carried out manually and robotic disassembly is limited to minor
tasks with the assistance of humans [112]. The manual operations also take time and require
qualified workers to complete which makes it not economical [113]. A solution to this challenge
is fully automating the dismantling process to reduce the cost and to increase safety [114].
As a proof of concept, we designed the fourth case study to demonstrate the capability of
the developed HDVS method in automating the process of sorting the dismantled EV battery
components. This demonstration is carried out by using Setup 2 introduced in Section 2.4.2
(Figure 2.20).

The manipulator’'s arm tracks the object by converging the current features in the camera
screen to the desired ones (red dots in Figure 2.20a). The trajectory of each feature is shown
in green in the camera screen (Figure 2.20a). The convergence threshold for tracking is set to
0.00005m. By using the transformation matrix which links the camera to the vacuum suction
gripper, the robot moves to a position above the object. Then, the robot moves in the Z-axis
till makes contact with the object (Figure 2.20b, Figure 2.20f). The external force is calculated
using the Jacobian of the robot and the joint force sensors (Figure 2.20e). The next step is
to lift the object using the vacuum suction gripper (Figure 2.20c) and place it in the desired
basket, depending on whether they are reusable or should be discarded (Figure 2.20d).

2.6 Conclusion

In this chapter, a hybrid decoupled visual servoing (HDVS) method has been proposed. This
method has been developed to overcome the drawbacks of classical IBVS and PBVS methods
and to improve the classical HVS method. In HDVS, all three rotations, and translation in
the Z-axis have been decoupled from the image-Jacobian. These four components’ errors
will be regulated to zero by the 3D reconstruction of the visual features. Thereafter, a neuro-

42



z{m)
o
z(m)

0 -05 -1 -15 <15 -1 -05 0 05 1 1.5 _,:.3 ) c\'s 0 _:‘,I’ -1 -5 =) R 0 0
y (m) x{m) y (m) 15 1 0.5 nA”_' 0.5 15

(c) HVS (d) HDVS
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Fig. 2.20. HDVS method is used for tracking the visual features attached to a Lithium-ion
battery. Manipulability is considered a secondary task for the controller. By using the proposed
HDVS, the robot arm performs the task of sorting the battery; (a) the robot will follow the
visual features of the object online; the tracked path of each feature is shown in the camera
screen. (b) The robot goes down straight to detect the surface by the force feedback. (c,d)
The object has been lifted by the vacuum suction gripper and then released the battery in the
corresponding basket. (e) The feature errors converged to zero during Visual Servoing. (f)
The force value in the Z-axis for detecting the object surface.
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fuzzy LoLiMoT neural network was used to approximate the pseudo-inverse of the proposed
interaction matrix. Moreover, the convergence time was reduced by the use of adaptive gains
rather than a constant gain. The damped least square method was applied in order to reduce
the effect of robot singularities and to smooth the discontinuities.

The method not only has an optimized solution for the robot's EE, but it also considers the
optimized trajectories of features in the image space. Furthermore, HDVS has improved the
performance of classical HVS in both image-plane and task space. The method is robust in
terms of camera parameters and image noises to a good extent, and it avoids singularities of
the image-Jacobian effectively. In addition, it is less likely to lose the object from the camera
fields of view than the PBVS and HVS methods. Results obtained from 40 random experiments
(10 experiments per method) suggested 100% and 90% success rates in executing the VS
tasks in simulation and real-world, respectively. In the next chapter, the use of Reinforcement
learning with the help of demonstrations for the application of VS has been studied.

Data availability

The supporting data and clips for the findings discussed in this chapter are available in the
following repositories:

https://github.com/aaflakiyan/HDVS_Franka

https://github.com/aaflakiyan/DHVS
https://figshare.com/articles/media/Improving_the_manipulability_of_a_redundant_
arm_using_Decoupled_Hybrid_Visual_Servoing/17040620
https://figshare.com/articles/journal_contribution/Optimized_Hybrid_Decoupled_
Visual_Servoing_simulation_and_code/12980009
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Reinforcement Learning from Demonstrations
with Visual Servoing
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Aflakian, Ali, Alireza Rastegharpanah, and Rustam Stolkin. " Boosting Performance of Visual
Servoing Using Deep Reinforcement Learning From Multiple Demonstrations.” IEEE Access
11 (Accepted 2023): 26512-26520.

Aflakian, Ali, et al. " An Online Hyper-volume Action Bounding Approach for Accelerating the
Process of Deep Reinforcement Learning from Multiple Controllers.” Journal of Field Robotics,
(Submitted, under second round of review, 2023).

3.1 Introduction

In this chapter, we have advanced our proposed VS method by integrating RL techniques.
Building upon the developments made in the preceding chapter, where we employed LoLiMoT
NN to estimate camera velocities based on feature errors, this chapter expands the scope of
Al. Using Reinforcement learning, our approach encompasses not only image spaces but also
extends to the joint space of the robot. Through this integration, we establish a direct mapping
from image features to the desired joint velocities of the manipulator. This direct mapping
helps to mitigate potential issues such as instability and robot singularity. Furthermore, it
avoids the need for computationally expensive calculations like the robot's pseudo-inverse
Jacobian and enhances the overall efficiency and effectiveness of the control strategy. However,
deep RL algorithms generally require a large amount of data before they achieve an acceptable
performance. We developed a method that uses demonstrations of multiple controllers to
address the issue of insufficient data in RL. Unlike the RLfD approaches mentioned in section
1.2.3 that aimed to replace existing learning from demonstration strategies, our proposed
method is complementary to established RLfD methods and we fuse ideas from RL, Learning
from Demonstration (LfD), and Ensemble Learning into a single paradigm. In other words,
knowledge from a mixture of control algorithms (experts) is used to constrain the action space
of the agent, enabling faster RL refining of a control policy, by avoiding unnecessary explorative
actions. Domain-specific knowledge of each expert is exploited, resulting in a robust policy
against errors of individual experts, since it is refined by a reward function without copying
any particular demonstration. We have established two distinct case studies to demonstrate
the efficacy of our approach. In the first case study, we used the Deep Deterministic Policy
Gradient (DDPG) to train the RL algorithm and employed a hypercube to constrain the action
space of the agent by integrating insights from previous VS methodologies. More specifically,
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the joint velocity data (RL actions) of three experts; image-based VS (IBVS), position-based
VS (PBVS), and hybrid-decoupled VS (HDVS), are used in the proposed method to limit the
action region of the agent and avoid inapplicable actions. Furthermore, the agent investigates
the experts' achieved action bounds in greater depth to find even more ideal candidates who
can increase the cumulative rewards. This adjustment served to curtail unnecessary agent
explorations, resulting in a notable reduction in training time and an enhancement in the
performance of the trained policy. Defining these limitations has nothing to do with the
reward function. As a result, the procedure could still be applied even without an explicit
reward function using an inverse RL method. Throughout this training process, we employed
domain randomization and domain adaptation techniques, reinforcing the robustness of the VS
approach in real-world scenarios. Remarkably, our efforts yielded a 51% reduction in training
time to achieve the desired performance level, compared to the scenario where RL was applied
alone.

Figure 3.1 illustrates the graphical overview of the proposed method.

Demonstrations Proposed Method Training in Simulation Training in Real-world Task Execution

Camera-view

Controller/

expert 3

Fig. 3.1. The outline of the proposed strategy combined with the RL method for a VS
application in case study 1. The Deep Deterministic Policy Gradient (DDPG) agent will be
trained by using the DR method. The proposed method employs a combination of three
different methods (PBVS, IBVS, and HDVS) as demonstrators to accelerate training and
enhance VS performance. Following that, the policy will be further trained with the real robots
to adapt to the real world, and the RL agent will be deployed to complete the visual servoing
task.

In the second case study, we explore four methods for bounding the actions of a Twin Delayed
DDPG (TD3) RL agent during training, based on the knowledge of several controllers. The
first method involves constraining the action space to an online convex hull generated from the
knowledge of controllers (AORLD-HL). We modify the loss function to penalize the agent for
taking actions outside the generated hypervolume. The second method involves generating an
online hypercube from the knowledge of experts to constrain the action space (AORLD-CL). We
again modify the loss function to penalize the agent for taking actions outside the hypercube.
The third method involves filtering the actions suggested by the RL policy that lie outside the
generated convex hull (AORLD-HF). We use the standard loss function for the RL agent. This
method does not modify actions directly but instead filters out undesirable actions.

The fourth method involves projecting the actions outside the convex hull onto the convex
hull (AORLD-HP). This method modifies the action space and ensures that the agent always
takes actions within the convex hull. We compare the performance of these methods to that
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Demonstrations Proposed AORLD Training in Simulation Task Execution
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Fig. 3.2. The outline of the proposed online action-optimizer combined with the RL method

for a VS application in case study 2. The Twin Delayed Deep Deterministic Policy Gradient

(TD3) agent was trained by using the Domain Randomization (DR) method. The AORLD

method employs a combination of three different methods (PBVS, IBVS, and HDVS) as

demonstrators to accelerate training and enhance VS performance. Four different approaches

have been used to constrain the action space of the agent and their results are compared
together.

AORLD-HF

Performing the Task

of a standard RL algorithm without any bounding method. Figure 3.2 outlines the AORLD
method for a visual servoing application.

In Figure 3.3, the adjustments that we applied to implement RL with our previous control loop
in Figure 2.6 are illustrated.

The proposed AORLD approach is generic, in that it can be applied to a wide variety of RL
scenarios. However, to demonstrate and validate the method, we implement AORLD in the
context of a Visual Servoing (VS) task. The highlights of this study are summarized as follows:

e AORLD adaptively constrains the agent's action spaces by exploiting demonstrations
from different “expert” controllers, improving training efficiency.

e AORLD enables learning of policies that do not directly conform to any single demonstra-
tion, hence they are robust against errors or imperfections in any individual demonstration.

e The AORLD approach is generic, and can be incorporated into a wide variety of multi-
agent and other RLfD algorithms, for many different applications.

e Since the action space is achieved using mathematically proven control methods, the
possibility of stacking in the local minima while training the agent in the RL algorithm
is reduced.

3.2 Methodology

The next section gives an overview of the RL algorithms and the proposed strategies used in
the two case studies.
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Fig. 3.3. Using RL in control loop introduces in Figure 2.2

3.2.1 Case 1: Integrating AORLD with DDPG

Reinforcement learning is well known for its applications in controlling complex, potentially
non-linear systems. The policy is a function that connects observations with actions [115].
The policy parameters are continuously updated by the reinforcement learning algorithm. The
goal is to find an optimal policy that is able to maximise the cumulative rewards. The reward
indicates how successful an action is in terms of fulfilling the task goal. An RL agent interacts
with the actual environment to perform an action a from an action space A and receive state
s from a state space S, both of which are determined by a policy known as 7 (a|s). A scalar
reward r and the preceding state s’ are the results of mapping from state s to actions a.
The rewards function R(s,a), the environment model, and the state transition probability
T(s,a,s’) = P(s’|s,a) provide the basis for this mapping between states and actions. This
process is continued in an episodic problem until the agent reaches a terminal state.

The value function Q*(s, @), which delivers maximal values in all states, is determined using
the Bellman equation [72]:

Q*(s,a) =E [R(s,a) +y Z P(s" | s,a) maxQ* (s',a’) (3.1)

where y € (0, 1] is the discount factor, E is the Bellman expectation, and Q" (s,a) is an
estimate of the expected future reward.

DDPG is an algorithm that learns a Q-function and a policy at the same time. The Q function
is used to learn the policy using the Bellman equation and off-policy data. Two different NNs
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Fig. 3.4. The proposed method block receives current and desired features that have been
extracted from the vision sensor as inputs. Consequently, the knowledge of HDVS, PBVS, and
IBVS approaches is used at each episode to constrain the action space. Actions outside the
created bounds are filtered using the Action filter block in the DDPG policy. The joint velocity
actions will be applied to the training environment, and average rewards will be calculated
accordingly.

are used in DDPG: An actor (target policy) 7 : S — A, and a critic (action value function
approximator) Q : S X A — R. Approximating the action-value function Q™ of the actor is the
duty of the critic [116].

The actor trains using the following loss function:

La=-E;Q(s,7(s)) (3-2)

in which s is sampled from the replay buffer. Furthermore, mini-batch gradient descent on the
loss L is used to train the critic network, which promotes the estimated Q-function to meet
the Bellman equation:

£=2(0(ssar)- y,)2 (33)

In (3.3), y; is computed using the action which is the output of the actor network:

ye=ri+y0Q (St+1’ Tt (St+l)) (3.4)

Back-propagation through the combined critic and actor networks is used to calculate the
gradient of £, with respect to the actor parameters [117].

In Figure 3.4, the structure of the proposed technique for the visual servoing task is outlined.
As illustrated in Figure 3.4, the proposed method takes in current and desired features extracted
from a vision sensor as inputs. These features are used to constrain the action space using
knowledge from different approaches, namely HDVS, PBVS, and IBVS (explained in 2.2).
This helps to ensure that the actions taken by the system are within acceptable bounds. To
enforce these bounds, an action filter block is employed in the DDPG policy. The DDPG
policy comprises two blocks: the actor and the critic. The actor block maps the current state
to an action, while the critic block evaluates the quality of the action based on the expected

49



reward. The actor and critic blocks are trained using actor and critic loss functions, respectively.
During training, if the action generated by the actor block falls outside the bounds set by
the knowledge of HDVS, PBVS, and IBVS approaches, the action filter block will remove
the action from consideration. This ensures that only actions within acceptable bounds are
considered, leading to better learning outcomes. The joint velocity actions that pass through
the action filter block are then applied to the training environment, and the resulting average
rewards are calculated.

Proposed method: action constrained strategy

As described in Section 1.2.3, our proposed method uses implemented control algorithms to
limit the action space of the RL agent rather than letting the Al agent learn from scratch
through their exploration. Joint velocities are defined as RL agent actions (VS commands).
The observations are the positions of image feature points, camera poses, and the Jacobian of
the robot. Three reward functions are combined to provide the agent reward. The feature
errors are driven to zero in the first reward, ry:

4
ry=- Z V(i = uig)? + (vi = vig)? (3.5)
=1

where (u,v) denotes the coordinates of a point in the picture and (ug,vy) is the desired
coordinates of that point. i = 1 to n is the number of features (in this case n = 4 features).
The second reward function (rz2) is defined to avoid joint limits [118]:

n o 2
w:—%Z(—% - ) (3:6)

=1 qgiMm —4jm

where g is center of 7 joint range. gjm and g, are the maximum and minimum angles of
the j'* joint respectively, and n = 7 is the number of joints. Singularity avoidance is introduced
in the final reward component [118]:

s = yJdet (J(@J7 () (37)

where J is the robot Jacobian. The overall procedure of the proposed learning method is
detailed in Algorithm 2. The final reward function will be derived as:

F=—=Wgry —wWgrg — Wiyt3 (3'8)

The terms wr, w,, and w; are weighting factors that are manually adjusted. For each reward,
values of wy =10, w, = 2, and w; = 4 were chosen to determine the weighting contribution.
In the proposed acceleration method, the robot achieves the desired joint velocities at the
beginning of each step from IBVS, PBVS, and HDVS methods. Thereafter, from a combination
of these demonstrators, a set of bounds for the action will be defined (apouna): the lower limits
of the bound for the i, joint would be min(&;pvs[i], Qpovslil, Gnavs[i]) and the upper limit
of the bound would be: max(dipvs[i], dppvsli], dnavs[i]). In this way, the actions which are
out of bounds and created from the critic network would be filtered, and the agent continues
exploring by trial and error, within the created bounds. We defined a hypercube at each time
step (i.e. a subset of the whole space), as restrictive bounds for action space. Not to mention
that the hypercube is one of the simplest spaces which encapsulate all of the action vectors.

50



Algorithm 2: Action constrained approach

1 Inputs:

2 o Joint velocities from IBVS (Qipvs), PBVS (dppvs), HDVS (dnavs)
3 Outputs:

4 o Optimized joint velocities a, (actions)

5 Given:

6 o RL algorithm DDPG

7 e The strategy for sampling goals from replay
8 ® The reward function

9 Initialize actor and critic weights randomly ;
10 Initialize replay buffer R ;

11 while VS error not converged do

12 for episode i=1 to M do

13 Sample g (goal) and initial so (state);

14 for t=0to T-1 do

15 for k=1 to 7 do

16 Get Lyy, L, Lp, and Lpyy, €, €; ;

17 Get joint velocities q;p,s from IBVS ;

18 Get joint velocities s from PBVS ;

19 Get joint velocities q,4,5 from HDVS ;

20 Make bounds: ajouna = [min(Qipys|i], dpbvs [i], Qnavs[i]),
max(Qipys[i], Apbvs [i], Qnavs (D] ;

21 Sample a, (action) using DDPG policy and filter actions out of the
Apound bound: 7m(s:|g) — a; ;

22 Execute a, and observe s;;1 (new state) ;

23 re i =r(s,ar,8) ;

24 Store (s¢|g, as, rs, s1+1]g) (transition) in R ;

25 Sample g’ (additional goal) for replay G : S(current episode) ;

26 end

27 for ¢’ € G do

28 r'=r(s,ang’);

29 Store (s¢|g’, a;, 7', s14118") In R ;

30 end

31 for t=1to N do

32 Sample B (mini-batch) from the R (replay buffer) ;

33 Execute one step of optimization using DDPG and B ;

34 end

35 end

36 end

37 end

3.2.2 Case 2: Integrating AORLD with TD3

TD3 is an effective off-policy actor-critic algorithm that uses delayed policy updates and target
policy smoothing to improve stability and performance. The algorithm involves the use of two
Q-functions, Qg4, and Qg,, which are learned simultaneously by minimizing the mean square
Bellman error [119]. The Bellman equation is a fundamental concept in reinforcement learning
that helps predict the expected cumulative reward of being in a state and taking an action. To
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learn the Q-functions, TD3 uses the mean square Bellman error, which measures the difference
between the predicted Q-value and the actual Q-value for a state-action pair. By using two
Q-functions, TD3 aims to reduce the overestimation bias that can occur in single Q-function
methods. The use of target policy smoothing, which adds noise to the actions selected by the
actor, further enhances the stability and performance of the learned policy.

To form the Q-learning target in the TD3 reinforcement learning algorithm, actions are
generated based on the target policy, denoted as uy,,,. However, clipped noise is added to
each dimension of the action to enhance exploration. This means that the target action is
obtained by adding clipped noise to the output of the target policy and then clipping the result
to ensure that it lies within the valid action range (azoy < a < aH,-gh). Mathematically, the
target actions can be expressed as [120]:

a/(sl) = clip ('ugtarg(s’) + C“p(E, —C, C), Amins amax) (39)

where € is a noise term drawn from a normal distribution with zero mean and standard deviation
o, and ¢ is a constant that determines the amount of noise added to the action.

Clipped double-Q learning is a method employed in the TD3 reinforcement learning algorithm
to alleviate the overestimation issue in the Q-function. The approach trains two Q-functions,
labelled as Q4, and Qy,, simultaneously by regressing towards a single target value. The
target value is computed by choosing the Q-function that gives the lower target value, which
is expressed mathematically as:

y(r,s',d) =r+vy(1-d) mllgt Q4 arg (875" (57)) (3.10)
=1,

Here, r is the reward, s’ is the next state, d is a binary indicator of whether the episode has
ended, vy is the discount factor, and a’(s’) is the target action with clipped noise, as described
earlier in (3.9).

Both Q-functions, Q4, and Qg,, are then trained by minimizing the squared difference between
the predicted Q-value and the target value [117].

Finally, the TD3 policy with the modified loss function is learned by maximizing Qg4,. The
actor network, denoted as pg, selects actions that maximize the Q-value estimated by Qy, .
Mathematically, the policy is learned by solving the following optimization problem:

m@axsf_b [Q¢1(s,/19(s))] (3.11)

While we used TD3 in this case, the proposed method is readily applicable to different RL
algorithms by modifying their target action limits. The overall procedure of the proposed
optimization learning method is detailed in Algorithm 3 and Figure 3.5.

The algorithm takes candidate actions from multiple expert controllers as input and optimized
actions for a given task, considering the observations, are the outputs of the trained policy. The
RL algorithm used in this approach is TD3 (Twin Delayed Deep Deterministic Policy Gradient).
The AORLD approach has four different methods for constraining the actions generated by the
RL algorithm: convex hull with modified loss function (AORLD-HL), hypercube with modified
loss function (AORLD-CL), convex hull with filtering actions outside the hull (AORLD-HF),
and convex hull with projecting actions onto the hull (AORLD-HP). Each method modifies
the TD3 algorithm in a specific way to constrain the generated actions.

In each iteration of the training process, the AORLD approach samples a goal and an initial
state and generates an action using the RL algorithm. The generated action is then constrained
by one of the four above-mentioned methods, depending on the chosen method. The resulting
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Fig. 3.5. Structure of AORLD integrated with TD3 RL. The proposed block diagram in this
study takes in current and desired features extracted from the vision sensor as inputs. Then,
during each episode, the knowledge from HDVS, PBVS, and IBVS approaches is utilized to
restrict the action space. The joint velocity actions are then applied to the training environment,
and the average rewards are computed accordingly.

action is executed in the environment, and the resulting state and reward are stored in a replay
buffer.

The AORLD approach then samples additional goals from the replay buffer and generates
actions for these goals. The resulting states and rewards are also stored in the replay buffer.
The replay buffer is then sampled to create mini-batches for optimizing the policy using TD3.
In the following, we will describe those four methods to constrain actions in detail and explain
their respective pros and cons.

The AORLD-HL algorithm is introduced in Algorithm 4. To compute the amin and amax values
in (3.9), the following procedure was adopted: data are collected from multiple controllers
that generate candidate action vectors for each observation of the environment. Thereafter,
the convex hull of action vectors is computed and the resulting convex hull is used to define
the feasible action space for the reinforcement learning agent. Let k be the set of indices that
define the convex hull of A, i.e., k = convhulln(A). For each dimension i of A, minimum (d;»)
and maximum (d,qx) values over the vertices of the convex hull are computed as follows:

Amin,i = I}IGIE Aaji and Amax,i = IIjlgi‘X(lj,i (312)

where aj; is the ith component of the jth vertex of the convex hull. It should be noted that
7(s¢|g) in Algorithm 4 is the policy that maps the state s, to an action a, given the goal
g, and — denotes the assignment of a, to the output of the policy. The convex hull is a
mathematical concept that defines the smallest convex set that contains all the given points
in a higher dimensional space. In our case, the convex hull is a boundary that encloses most
of the potentially desired action vectors. It should be mentioned that it requires at least n+1
unique points in n-dimensional space to create a n-dimensional convex hull. The algorithm
uses each controller prediction to have at least n+1 data if there is not enough data to build
the n-dimensional convex hull. Given the bounding convex hull, we can find the minimum
and maximum values for each dimension by computing the minimum (a@mi») and maximum
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Algorithm 3: AORLD approach

1 Inputs:

2 o Candidate actions from expert 1 (a.x1), expert 2 (dey2), ..., expert n (dexn)
3 Outputs:

4 e Optimized actions a;

5 Given:

6 o RL algorithm TD3

7 e The strategy for sampling goals from replay
8 o The reward function

9 Initialize actor and critic weights randomly;

10 Initialize a set of actions randomly;

11 Initialize replay buffer R;

12 while Controller stop criteria not achieved do

13 for episode i=1 to M do

14 Sample g (goal) and initial sg (state);

15 for t=0to T-1 do

16 if AORLD-HL then

17 ‘ Use Algorithm 2 to calculate ay;

18 else if AORLD-CL then

19 ‘ Use Algorithm 3 to calculate ay;

20 else if AORLD-HF then

21 \ Use Algorithm 4 to calculate a;;

22 else if AORLD-HP then

23 ‘ Use Algorithm 5 to calculate ay;

24 end Execute a; and observe s;,1 (new state);

25 re =r(s, a1, 8);

26 Store (s¢|g, as, rs, s1+11g) (transition) in R;

27 Sample g’ (additional goal) for replay G : S(currentepisode) ;
28 for ¢’ € G do

29 r'=r(s,ang);

30 Store (s¢|g", as, 1, si+11g") In R;

31 end

32 for t=1to N do

33 Sample B (mini-batch) from the R (replay buffer);
34 Execute one step of optimization using TD3 and B;
35 end

36 end

37 end

38 end

(amax) values of each coordinate of the vertices of the convex hull. During training, the convex
hull would be periodically updated using a new set of action vectors. As explained before,
this approach aims to adaptively constrain the RL agent to choose actions within the feasible
action space defined by the convex hull. Limiting the actions of the RL agent to lie within the
convex hull can potentially simplify the learning problem and make it easier for the agent to
converge to a good policy. Moreover, by limiting the actions to a smaller region of the action
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Algorithm 4: AORLD-HL

1
2
3
4
5
6
7
8
9

10
11

12

13
14
15

Inputs:
e Candidate actions from expert 1 (a.x1), expert 2 (dey2), ..., expert n (dexn)
Outputs:
e Candidate actions (a;) inside the generated convex hull
for j=1tondo
Generating convex hull around action vectors A:
k = convhulln(A);
Find the minimum and maximum vectors for each dimension:
amin = min(a(k(:),:), [1,1);
amax = max(a(k(:),:), [1,1);
Modify the TD3 algorithm to use the new bounded action space:
@' (5') = clip (o (5) + Clip (€=, ), Amins
Sample actions (a;) inside the convex hull using TD3 policy:
n(silg) = a ;
end

space, the agent has fewer options to choose from and can more quickly learn which actions
are likely to lead to good outcomes.

Algorithm 5: AORLD-CL

1
2
3
4
5
6
7
8

9

10
11
12

Inputs:
e Candidate actions from expert 1 (a.x1), expert 2 (dey2), ..., expert n (dexn)
Outputs:
e Candidate actions (a;) inside the generated hyper cube
for j=1tondo
Make action bounds:
Apound = [min(aexl [l]’ Aex2 [l]» <oy dexn [l])’ max(aexl [l]’ Aex?2 [l]’ <oy exn [l])] ;
Modify the TD3 algorithm to use the new bounded action space:
& (5") = Clip (o (5) + Clip (€, =€ €), mins
Sample actions (a,) inside the convex hull using TD3 policy:
n(silg) = ar ;
end

The AORLD-CL algorithm is established in Algorithm 5. In AORLD-CL, instead of generating
a convex hull around the experts' outputs, a set of bounds for the action is defined based on
the combination of demonstrators’ data. These bounds represent the minimum and maximum
values that each action can take. To create the lower limit of the i;;, action, the minimum
value of that action from all the demonstrators’ data is used:

Amin,i = min(aexl [i], acex2li], ..., acxnli] (3-13)

Similarly, the upper limit of the i;;, action is created using the maximum value of that action
from all the demonstrators’ data:
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This creates a hypercube in the action space that represents the feasible action space for the
agent. Not to mention that the convex hull is the minimum bounding convex hypervolume
that includes the actions from the controllers, which reduces the action and search space of the
agent more than the hypercube. Convex hull also accounts for correlations between different
actions, whereas the hypercube approach in AORLD-CL assumes each action dimension is
independent. During training, the hypercube is updated periodically with the demonstrators’
new set of action vectors. This ensures the feasible action space is updated as the agent learns
from the demonstrators’ data. The modified TD3 loss function in AORLD-CL enforces that
the agent's predicted actions stay within these bounds. This simple approach to limiting the
action space can be computationally less expensive than generating a convex hull and still
helps to constrain the agent's actions to the feasible action space. Nevertheless, the agent's
exploration space is not optimally condensed and is larger than when employing a convex hull.

Algorithm 6: AORLD-HF

1 Inputs:
2 e Candidate actions from expert 1 (a.x1), expert 2 (dey2), ..., expert n (dexn)
3 QOutputs:

a4 e Candidate actions (a,) inside the generated convex hull

5 for j=1 to n do

6 Generating convex hull around action vectors A:

7 k = convhulln(A);

8 Filter actions outside the created bound:

9 if Inhull(k,a;)==1 then

10 Sample actions (a;) inside the convex hull using TD3 policy:
11 n(silg) — a;;

12 else

13 ‘ Repeat the action generation

14 end

15 end

The AORLD-HL (Algorithm 4) and AORLD-HF (Algorithm 6) methods both use an online
convex hull to constrain the action space of the RL agent, but they differ fundamentally in
their approach and impact on the learning process. AORLD-HL modifies the agent'’s loss
function to penalize actions outside the convex hull, thereby directly shaping the agent’s policy
during training to encourage inbound actions. This method actively discourages the agent
from exploring out-of-bound actions by making them more costly. In contrast, AORLD-HF
does not alter the loss function; instead, it acts as a post-processing filter, removing any
actions that fall outside the convex hull before execution. This allows the agent to learn freely
without penalties during training, with the constraints applied only when the agent is about to
take an action.

The algorithm 6 follows the steps below:

(I) Generate a convex hull around action vectors A using the convhulln function, (II) Find
the minimum and maximum vectors for each dimension using the minimum and maximum
functions, (II) For each action sample a,, check if it is inside the generated convex hull using
the "Inhull” function, (IV) If a; is inside the hull, sample an action inside the convex hull using
the TD3 policy, (V) If a; is outside the hull, repeat the action generation.

Finally, AORLD-HP, introduced in Algorithm 7, differs from AORLD-HF in that AORLD-HF
filters actions outside the generated bound; however, AORLD-HP uses a projection method
explained in Algorithm 7. The projection method projects the candidate action onto the closest
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Algorithm 7: AORLD-HP

1 Inputs:

2 o Candidate actions from expert 1 (a.x1), expert 2 (dey2), ..., expert n (dexn)
3 Outputs:

4 e Candidate actions (a;) inside the generated convex hull

5 for j=1 to n do

6 Generating convex hull around action vectors A:

7 k = convhulln(A);

8 if Inhull(k,a)==1 then

9 Sample action (a;) inside the convex hull using TD3 policy:
10 n(sig) — ar ;

11 else

12 Project the action vector onto the convex hull:
13 for [ =1:size(k,1) do

14 a; = zeros(n, 1);

15 x = points(k(i,:),);

16 u=x(1,:),

17 v=x(2,:) —u;

18 proj =u+v# ((a—u) *v)/norm(v)?

19 a; =a;+ proj;

20 n(silg) = ar ;

21 end

22 end

23 end

point on the boundary of the convex hull as follows: Let k be the set of indices of the convex
hull points, points be the set of points on the convex hull and a be the original action vector
to be projected onto the convex hull. Let u be the starting point of a line segment on the
convex hull, v be the direction of the line segment, and proj be the projection of a onto the
line segment.

(a—u)T v

roj=u+v

(3.15)
It should be mentioned that the hard constraint of modifying the loss function with new
minimum and maximum actions in the AORLD-HL method is more effective than filtering and
projecting actions on the hull (AORLD-HF and AORLD-HP, respectively), as it enforces the
action constraints strictly. However, the algorithm in AORLD-HL assumes that the candidate
actions from the expert controllers are sufficient to define the action space, which may not
always be the case in complex environments. We will discuss VS as an application to test our
suggested approaches in the following.

3.3 Experimental setup

To train the policy, an environment was modelled in the simulation (i.e. ROS/Gazebo).
Simulations are preferred over real-world trials because they provide inexpensive and fast
experiments. In addition, using the simulation environment helps mitigate the risks of damaging
the robot setup due to unexpected movements during training. Since the real system is assumed
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Fig. 3.6. Considered ROS nodes used in training of the RL agent.

/vs-camera-node

to be one instance in a vast distribution of training variations, the trained model with DR can
adapt to the real-world environment. As mentioned in 1.2.3, DR is a technique for training a
model that works in a variety of simulated settings with randomized properties [121].

Figure 3.6, illustrates the ROS nodes used in this study. The RL algorithm was used as a ROS
node (/matlab—global —node), and policies were taught using Matlab reinforcement Learning
Toolbox [122]. Control methods (IBVS, PBVS, and HDVS) and the camera information were
employed as a distinct ROS node (/vs — camera — node) to deliver the actions based on
the respective observations. Joint velocity commands were applied to each robot with
[robot —n/panda — arm — controller [command (n = 1, 2) topics. The joint-states topics
provide the position and velocity of each joint from the robot models simulated in Gazebo.
Using a ROS Handler this information will be published to subscribe and use in each node.
Figure 3.7 depicts the simulation environment in Gazebo. The simulation platform includes
two Franka robot manipulators; one with an eye-in-hand configuration, and another one with
a tag marker attached to its EE. The reason for using the second arm was to move the marker
into different positions.

An Intel RealSense depth camera D435i was employed as a vision sensor. Two systems were
linked together using an Ethernet connection in the same network. One system with the
following specifications was utilized for the simulation: AMD Ryzen 7 3700x 8-core CPU with
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X 16 threads and a 3.6 GHz base clock. The graphics card (GPU) of another system with
the following specifications was used for reinforcement learning and policy training: NVIDIA
GTX 1080Ti GPU, Intel (R) Core (TM) i7-8086K 6-core CPU with x 12 threads and a 4GHz
base clock with 32 GB installed RAM. Moreover, to accelerate the process of learning, parallel
training was used with the help of Parallel Computing Matlab Toolbox [122]. In this study, 12
workers were deployed to create a simulation of the agent in the environment and send data
back to the client.

3.4 Results and discussions

3.4.1 Case 1: AORLD with DDPG policy results

To show the efficacy of our suggested strategy (detailed in Section 3.2.1), we compare the
training progress and results of RL without the proposed strategy (agent-1) and with the
proposed strategy (agent-2).

For the sim-to-real task, DR was used which has been identified as the most commonly used
strategy for improving simulation realism. The training was carried out for the task of VS
(i.e. tracking the features of a target in the camera screen). The initial position of the first
robot (the robot with the camera mounted on its wrist) was randomized in each episode to
generalize the trained policy better. The desired threshold of the average reward was defined
to be -200 (determined from preliminary experiments). The agent restarted the episode in
case of meeting one of the following criteria during training: (I) when the robot is close to
the joint limits, (II) when the features are 10% close to the image boundary, (llI) when the
robot Jacobian manipulability is too small (less than 0.01), and finally (IV) when the number
of steps in each episode surpasses 400. The used RL parameters are defined in Table 3.1.
As illustrated in Figure 3.8, the agents have learned to maximize the cumulative reward over
time. According to Figure 3.8, it takes the agent approximately 57800 episodes and 6 million
steps for the average reward to exceed the desired threshold (-200). However, it is shown that
approximately 28400 episodes and 3 million steps are required to achieve the same average
reward of -200 by combining the proposed method with RL. Thereafter, using the so-called
domain adaptation approach, we let the trained policies train for 1500 more real-world episodes
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Table 3.1
Employed RL and noise parameters in the training.

RL parameters Noise options
Target smooth factor 0.001 Mean 0
Target update freq 1 Mean Attraction constant 5
Sample time 0.025 Variance decay rate 0.00001
Discount factor 0.95  Variance 0.5
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Fig. 3.8. Training graph without using any expert (agent-1, blue line), and with using three
experts to constrain the action space (agent-2, red line).

using actual robots (green area in Figure 3.8). Both agent-1 and agent-2 reached the award
of -200 before domain adaptation, however, agent-2 achieved a higher reward after domain
adaptation. Due to the change of environment (i.e. sim-to-real), the reward values dropped
for both agents after DA, as shown in Figure 3.8. Results suggest that agent-2 is faster and
achieves a more effective policy (higher average reward) than agent-1.

Table 3.2 compares the effective parameters in the performance of individual VS methods and
the trained policies. These parameters are derived by averaging 50 trials with 10 different initial
positions of the robot equipped with the camera. These initial positions were chosen randomly
with the condition of having all four features visible in the image frame. All experiments are
duplicated under the same conditions for IBVS, PBVS, HDVS, agent-1, and agent-2. As
shown in Table 3.2, IBVS shows an optimized behaviour in 2D image space, because it has
the smallest Root Mean Square Error (RMSE) than other methods. Moreover, the smaller
range of feature errors in IBVS confirms that the chance of losing the target object from the
camera FOV in this method is lower than in the other four methods. However, agent-2 is still
faster than IBVS based on the number of iterations. Not to mention that in VS both image
space and robot space should be considered, and this is where the suggested method surpasses
the IBVS. Following IBVS, the trained policy with agent-2 performs more optimally (smaller
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Table 3.2
The performance comparison of visual servoing techniques derived by averaging 50 trials (10
trails per method). The bold results represent the best candidate for each column.

Method RMSE of Feature Error  RMSE of RMSE of Camera Travelled Manipulability Manipulability lterations Average
2D Errors Range Position (m) Orientation (deg)  Distance (m) Mean Range Reward

IBVS 0.0222  [-0.36, 0.31] 0.036 943 0.942 0.0407 [0.014, 0.081] 292 -309.42
PBVS 0.0383 [-0.44, 0.51] 0.022 6.54 0.722 0.0446 [0.024, 0.080] 387 -316.23
HDVS 0.0273 [-0.45, 0.49] 0.034 8.41 0.917 0.0396 [0.021, 0.081] 424 -275.19
Agent-1 0.0458 [-0.52, 0.62] 0.046 153 1.140 0.0321 [0.013, 0.075] 383 -223.03
Agent-2  0.0258  [-0.34, 0.34] 0.030 7.82 0.839 0.0492 [0.029, 0.082] 253 -184.21

RMSE, smaller feature error range, and fewer iterations) than other methods. As a result,
agent-2 outperformed PBVS, HDVS, and agent-1 in the image space.

From Table 3.2, the average mean value of manipulability was 0.0492 for agent-2, 0.0407
for IBVS, 0.0446 for PBVS, 0.0396 for HDVS, and 0.0321 for agent-1. Therefore, agent-2
performs better in terms of manipulability in comparison with the other four approaches. From
Table 3.2, it would also be inferred that the robot has better controllability with agent-2 while
tracking the target due to higher manipulability bounds created by agent-2.

Figure 3.10 depicts the commanded joint velocities (actions) in different VS methods for the
same scenario in Figure 3.9. It should be noted that the joint velocities obtained by using RL
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Fig. 3.9. Comparison of visual servoing feature errors with various approaches for one random
trial. It should be noted that exp; and eyp; represent the x and y components of the i™" feature,
respectively.

methods are not as smooth as those obtained by using IBVS, PBVS, and HDVS (could be
easily solved by using a Filter to smooth the commands). However, comparing Figure 3.10e to
other subplots in Figure 3.10 shows that the performance of the controller, in terms of required
iterations to complete the VS task, has been improved by using the proposed optimization
method.

According to Table 3.2, the policy trained with agent-2 has a shorter camera path than IBVS,
HDVS, and agent-1. The robot EE’s travelled distance is 0.839m with agent-2. This value
is 0.942m, 0.917m, and 1.14m, in IBVS, HDVS, and agent-1, respectively. In PBVS, the
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Fig. 3.10. Comparison of visual servoing joint velocities with various approaches.

camera travelled distance was 0.722m, and thus provided the shortest EE trajectory. Agent-2
outperforms IBVS, HDVS, and agent-1 in the Cartesian (robot) space. However, still better
results are achieved using the PBVS method in terms of EE travelled distance. It should be
mentioned that the PBVS method has other drawbacks like losing the object from the camera
FOV, high sensitivity to the camera parameters, and its sub-optimal performance in the image
space, while the trained policy with agent-2 has solved these drawbacks. Another inference
from Table 3.2 is that the RMSE of position and orientation with the trained policy of agent-2
is smaller than IBVS, HDVS, and agent-1 policy which indicates a more optimized trajectory
created by agent-2.

In conclusion, agent-2 achieved an optimal overall performance over the image space and
cartesian space, where PBVS and IBVS suffer respectively. Additionally, using our suggested
approach the agent offers the best controllability among the other techniques. Furthermore,
comparing the average rewards in Table 3.2, agent-2 performs 17.4% better than agent-1,
33.1% better than HDVS, 41.7% better than PBVS, and 40.5% better than IBVS.

We selected a random trial to demonstrate the error convergence and robot manipulability
for all five VS methods. Figure 3.9 illustrates the convergence error for all VS methods. By
comparing the RMSE for this trial, IBVS achieved an RMSE of 0.024; comparatively, this
value was 0.041 for PBVS, 0.0276 for HDVS, 0.043 for agent-1, and 0.0224 for agent-2. The
RMSE for agent-2 is even better than this value for the IBVS approach. Moreover, the task is
completed in 350 iterations with IBVS, 341 iterations with PBVS, 308 iterations with HDVS,
292 iterations with agent-1, and 197 iterations with agent-2. As a result, agent-2 offers a
faster solution than all other approaches, demonstrating that the trained policy with agent-2
not only inherits good IBVS performance in terms of RMSE but also learns to operate faster.
Furthermore, the manipulability of the robot arm for all five methods is plotted in Figure
3.11 for the same trial illustrated in Figure 3.9. In Figure 3.11, the manipulability of the RL
methods with agent-1 and agent-2 is higher than other IBVS, PBVS, and HDVS methods.
Agent-2 offers the highest manipulability compared to the other four methods in most robot
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Fig. 3.11. The manipulability of five different VS methods

configurations. As a result, there would be more controllability for the robot joints using
agent-2. In Figure 3.11, the mean manipulability for IBVS, PBVS, HDVS, agent-1, and agent-2
were 0.062, 0.0613, 0.642, 0.0662, and 0.0742, respectively.

3.4.2 Case 2: Extension of AORLD with TD3

Five different agents were defined and trained, and their training progress was compared.
The first method, called AORLD-HL, involved constraining the agent’s action space to an
online convex hull generated from controller knowledge and modifying the agent's loss function
to penalize actions outside the generated hyper-volume. The second method, AORLD-CL,
involved generating an online hypercube to constrain the action space, and similarly modifying
the loss function. The third method, AORLD-HF, involved filtering out actions suggested by
the RL policy that lie outside the generated convex hull while using the standard loss function.
The fourth method, AORLD-HP, involved projecting actions outside the convex hull onto the
convex hull. Finally, the fifth policy was created using only RL without any demonstrator.
To make the policy robust to noise, calibration errors, and random objects in the scene, domain
randomization was used. All five agents were trained for 25,000 episodes, with the initial
position of the first robot randomized in each episode to generalize the trained policy. The
agent restarted the episode if it met one of four criteria: (I) when the robot was close to joint
limits, (I1) when the features were very close to the image boundary, (I11) when the robot's
Jacobian manipulability was very small (less than 0.01), or (IV) when the number of steps in
each episode exceeded 400. The parameters for the RL algorithm in the training were specified
in Table 3.3 for all the agents.

The agents in the experiment have learned to maximize the cumulative reward over time,
as shown in Figure 3.12. Among the tested methods, the TD3 agent with the AORLD-HL
algorithm achieved the highest average reward of approximately -220, followed by the agent
with AORLD-CL with an average reward of around -250. These two methods are effective
in ensuring that the agent’s actions are valid, as they enforce hard constraints. However,
they require modifications to the RL algorithm, including changes to the loss function and
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Fig. 3.12. Comparison of training progress across 5 different methods for action space
constraint in reinforcement learning. The graph shows the average reward per episode for
each method over the course of training. AORLD-HL and AORLD-CL show faster learning
and higher average rewards, possibly due to the hard constraints on actions. AORLD-HF,
AORLD-HP, and the agent without action constraints show slower learning and lower average
rewards.

Table 3.3
RL and noise parameters employed in training
RL parameters Noise options
Target smooth factor 1e-03 Mean 0
Learning rate [5e-04, 5e-04] Mean Attraction constant 5
Sample time 2.5e-02 Variance decay rate le-05
Discount factor 0.95 Variance 0.5

target action. Furthermore, it can be inferred from the data presented in Fig. 3.12 that
the AORLD-HL algorithm requires a smaller number of episodes to attain a satisfactory
average reward compared to all other four methods. The less the agent must interact with the
environment, the faster it will learn the task.

The AORLD-HF method, on the other hand, is simpler as it only allows the agent to choose
valid actions without additional calculations. However, it resulted in a less effective agent,
as it may limit the agent’s ability to explore the state space and find optimal solutions. The
average reward obtained by the agent in this method is approximately -300, as shown in Fig.
3.12. Therefore, the first two methods are more effective as they allow the agent to explore
the state space while staying within the feasible action space.

The agent trained with the AORLD-HP algorithm had an average reward of around -400,
which is lower than the first two methods (Fig. 3.12). This is because the projection method
used in AORLD-HP may not always provide an accurate representation of the action space,
especially in higher dimensions. Additionally, this method is computationally expensive since it
requires projecting each action outside the hull onto the hull, and it may be less effective if the
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hull is irregularly shaped or difficult to calculate. Finally, the agent without using any action
constraints achieved an average reward of -600, indicating the effectiveness of the AORLD
method.

In this study, we conducted a comparison between the performance of IBVS, PBVS, HDVS,
and five trained policies using effective parameters. To obtain these parameters, we carried
out 80 experiments with the robots starting from randomly selected initial positions, ensuring
that all four features were visible in the image frame. The mean values of these parameters
were then derived and reported in Figs. 3.13, 3.14, and 3.15.

M Iterations MRMSE of 2D Errors
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(a) Iterations are taken to complete the VS task and RMSE of 2D errors in image
space for eight different methods.
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(b) RMSE of position and orientation errors for eight different methods in 3D
task space.

Fig. 3.13. Comparison of VS performance parameters in 2D and 3D. All comparisons in these
figures are based on the average of 10 trials for each method (overall 80).

65



Fig. 3.13a compares the number of iterations taken to complete the VS task and the root
mean square (RMSE) of 2D errors in the image space for eight different methods, including
AORLD-HL, AORLD-CL, AORLD-HF, AORLD-HP, IBVS, PBVS, HDVS, and the TD3. It is
evident from the figure that the RMSE of errors in AORLD-HL, AORLD-CL, and IBVS are
the smallest values among all the other methods, and AORLD-HL performs faster (with fewer
iterations) than other methods. To have an optimised performance in VS, both image space
and robot space should be taken into account.

Fig. 3.13b illustrates the RMSE of position and orientation for all eight methods in the 3D task
space. From this figure, it is shown that the best performance in 3D task space is achieved by
AORLD-HL and PBVS followed by AORLD-CL. This is because the RMSE of orientation and
position is lower for AORLD-HL and PBVS compared to the other 6 methods.

Additionally, it is worth noting that the TD3 RL method offers the worst performance in
both 2D and 3D tasks compared to the other 7 methods. This highlights the fact that the
agent is more susceptible to getting stuck in local minima without using the knowledge of any
other controllers or demonstrators. In other words, using the action space proposed by other
controllers can significantly help the agent find its optimal solutions while avoiding unnecessary
explorations.

Overall, the results presented in Figs. 3.13a and 3.13b demonstrate that the agent using
AORLD-HL is highly effective for both 2D and 3D tasks, while the TD3 without using data of
any demonstrators performs poorly in comparison.
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Fig. 3.14. Comparison of Average Reward for Different Methods: This figure shows a
comparison of the average reward obtained by different methods. AORLD-HL offers the
highest average reward followed by AORLD-CL, HDVS, IBVS, PBVS, AORLD-HF, AORLD-HP,
and TD3, indicating the better performance of AORLD-HL compared to other methods.

Fig. 3.14, compared the mean average reward of different methods for the same 80 trials
in Fig. 3.13. The data in Fig. 3.14 shows that AORLD-HL achieves the highest average
reward of -208.24, outperforming all other methods. AORLD-CL comes in second place with
an average reward of -232.42, followed by HDVS with an average reward of -275.19, IBVS
with an average reward of -309.42, PBVS with an average reward of -316.23, AORLD-HF with
an average reward of -328.67, AORLD-HP with an average reward of -433.06, and finally TD3
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with an average reward of -582.30. The higher average reward indicates the outperforming of
AORLD-HL in 2D and 3D space compared to the other methods.
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Fig. 3.15. Comparison of Manipulability values and ranges for eight methods over 80 trials.

The manipulability of a robot is a key factor in evaluating its performance in task execution.
In this study, we compare the manipulability of eight different methods for robot control, as
shown in Fig. 3.15. The manipulability values and ranges are calculated by averaging the
tracking performance of desired features for the same 80 trials as in Fig. 3.13.

From the results presented in Fig. 3.15, it is observed that the AORLD-HL method provides
the highest mean manipulability value of 0.0494, followed by AORLD-CL with 0.0453, PBVS
with 0.0446, IBVS with 0.0407, HDVS with 0.0396, AORLD-HF with 0.0394, AORLD-HP
with 0.0292, and TD3 with 0.0121. The higher manipulability values for AORLD-HL indicate
its better performance compared to the other approaches.

Moreover, the results in Fig. 3.15 suggest that the robot has better controllability with the
AORLD-HL method while tracking the desired features compared to other methods. This
is evident from the fact that the lower and higher manipulability bound in agent-3 from the
manipulability range is bigger than the other seven methods, indicating that the AORLD-HL
method provides better control over the motion of the robot.

Overall, from the date of Fig. 3.13, 3.14 and 3.15, the TD3 agent which is trained with
AORLD-HL achieves the best overall performance over the image space and Cartesian space,
also suggests the best controllability compared to other approaches. In our earlier work [16], we
integrated our method with domain adaptation to enable the agent to train in the real-world
setting as well as simulation. However, the present study aims to compare and identify the
most effective ways to constrain the action space and facilitate the exploration of potential
action vectors by the agent in simulation. In future works, we plan to develop our methods
with domain adaptation further and implement them on real robots.

3.5 Conclusion

This chapter proposed a learning-based online action-policy optimizer named AORLD. The
AORLD technique intelligently limits the action space of the agent, based on demonstrated
actions from an ensemble of several different supervisory experts. Thereafter, the agent
explores further within this constrained action space, refining its policy to become increasingly
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optimal with respect to a reward function. The learning process is greatly accelerated because
the policy search space has been reduced by the expert demonstrations.

We demonstrated AORLD in the context of a standard VS task, with TD3 algorithms to train
the policy. IBVS, PBVS, and HDVS were defined as a set of expert supervisors for AORLD.
We proposed and compared four methods to bound actions online while training. We found
using the convex hull with modified loss function (AORLD-HL) is the most effective method for
improving the exploration-exploitation trade-off in RL. Our experimental results demonstrate
the effectiveness of these methods in improving the average reward progress during training,
compared to using no bounding methods. Moreover, the agent trained with AORLD-HL
achieves better overall performance in terms of feature trajectories in the 2D image plane,
and also robot trajectories in the 3D task space, while also achieving higher Jacobian and
manipulability of the robot throughout its motions.

Overall, our study highlights the importance of incorporating prior knowledge into the training
process of RL policies to improve their performance, particularly in challenging environments
with high-dimensional action spaces. The AORLD method can be used when there are multiple
control methods available to serve as demonstrators (from two to arbitrarily many). AORLD
finds a useful trade-off between these experts, while also incorporating the capabilities of RL
to enable iterative optimising of policies with respect to a reward function. The methods
presented in this study provide a promising approach for addressing this challenge and can
be applied in various RL applications. In future work, we aim to introduce haptic experts in
our proposed optimization method to correct and improve the control signals from a human
operator during teleoperation tasks. Furthermore, AORLD could be integrated with multi-agent
RL, to significantly reduce training episodes by intelligently limiting the exploration bounds of
each agent.

Data availability

The data and clip supporting the findings presented in this chapter are available in the following
repositories:

https://github.com/aaflakiyan/HDVS_Franka
https://github.com/aaflakiyan/RL-Visual-Servoing-Franka
https://figshare.com/articles/media/Reinforcement_Learning_from_Demonstrations_
with_Visual_Servoing/25498297
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Vision Guided Contact-Rich Tasks Using

Reinforcement Learning from Demonstrations

Content from this chapter has been published in the following:

Ali Aflakian, Rustam Stolkin, Alireza Rastegarpanah, "Integrating Multi-Demonstration
Knowledge and Bounded Workspaces for Efficient Deep Reinforcement Learning”, IEEE-RAS
International Conference on Humanoid Robots, (Accepted 2023).

Ali Aflakian, Jamie Hathaway, Rustam Stolkin, and Alireza Rastegarpanah, "A curriculum-
based domain randomisation approach for learning contact-rich tasks with parametric uncer-
tainties”, Journal of IEEE Access, (Submitted 2024).

4.1 Introduction

In the previous chapters, we investigated the use of Al in improving contactless vision-guided
manipulation tasks. In this chapter, we propose a framework for learning challenging contact-
rich tasks with the RL algorithm. In our proposed RL method, we used a curriculum-based
domain randomisation approach with a time-varying sampling distribution. As a result, the
constructed policy would be robust to the parametric uncertainties in the robot-environment
system. Based on evaluation in simulation for compliant path-following case studies with
a random uncertain environment, and comparison with a Learning-based Model Predictive
Controller (LBMPC) method and Virtual Forward Dynamics Model (FDM), the robustness of
the obtained policy over a stiffness range 10*~10° and friction range 0.1-1.2 is demonstrated.
We furthermore trained the RL agent with various surface curvatures to enhance the robustness
of the trained policy in terms of changes in surfaces. We demonstrate ~ 15X improvement
in trajectory accuracy compared to the previous LBMPC method and ~ 18% improvement
compared to using the FDM approach. We suggest the applications of the proposed method
for learning more challenging tasks such as milling, which are difficult to model and dependent
on a wide range of process variables. In another study, we proposed a novel approach for
boosting deep RL using human demonstrations and offline workspace bounding. Our approach
involves collecting data from human demonstrations on random surfaces with varying friction,
stiffness, and surface curvatures. We then compute a 3D convex hull that encompasses all
the paths taken by the demonstrators. By defining the task and the desired parameters as
reward functions, we enable the RL agent to learn an optimal solution within the bounded
space, significantly reducing the search space required for the agent. We compare the training
progress and the behaviour of the trained policy of our approach with a baseline approach.
The results demonstrate that our approach not only expedites learning but also improves the
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Fig. 4.1. Graphical overview of the suggested RL and comparison of path following in
contact-rich tasks with MPC and FDM approaches.

policy’s performance and resilience to local minima. Combining our approach with RL also
enables the use of imperfect demonstrators as their behavior can be improved during the
learning. Figure 4.1, illustrates the graphical overview of using three different approaches for
path following in a contact-rich cutting task. Our work contributes to the growing body of
research on using Deep RL for robotic manipulation tasks in uncertain environments and offers
an approach for addressing the challenge of obtaining a robust policy representation with DR
in complex tasks such as contact-rich manipulation tasks.

In another case study, we collect data from human demonstrations on random surfaces with
random friction and stiffnesses for contact-rich path following. We then compute the 3D
convex hull which encapsulates all the demonstrators’ paths and use it to define a bounded
workspace for RL. By doing this, we reduce the search space of the agent with an area that is
more likely to contain the optimal solution and improve the sample efficiency. This approach
does not require the agent to mimic any specific behaviour and is not considered imitation
learning. Therefore, we can even use imperfect demonstrations since the RL policy will improve
the agent's behaviour accordingly. Thanks to our proposed approach the agent would keep
away from possible local minima outside the created hull. In our experiments, we compare the
training progress and the behaviour of the trained policy using our method with a baseline
method that uses pure RL without the bounded workspace. Our results demonstrate the
effectiveness of our approach in reducing the search space of the agent and improving the
sample efficiency. To ensure that the trained policy is robust and generalizable in terms of
environmental parameters, we performed the training on a variety of surfaces with randomized
friction and stiffness values. Specifically, we used a set of surface models and randomly varied
their parameters within a certain range. This enabled the agent to learn a policy that is
not only optimized for a specific environment but can also adapt to different environmental
conditions. By training on a diverse set of environments, we aimed to reduce the likelihood
of the agent over-fitting to specific surface properties, and instead, learn a more general
and robust policy. Our approach has the potential to be combined with other methods to
further boost the process of reinforcement learning, opening up new avenues for research
and development in this field. Figure 4.2 provides a step-by-step process of our approach,
starting from the collection of data from human demonstrations on random surfaces with
varying friction and stiffness properties. It showcases the computation of a 3D convex hull that
encompasses the paths taken by the demonstrators, which serves as the bounded workspace
for the RL agent. The flowchart also highlights the use of domain randomization to generalize
our approach to further unseen surfaces.
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Fig. 4.2. This figure represents the sequential steps involved in the proposed approach,
starting with data collection through human demonstrations on random surfaces. The data
is then used to compute the boundary around the demonstrator trajectories, which defines
the bounded workspace for reinforcement learning. Domain randomization is introduced to
generate variations in the surface parameters, such as friction and stiffness, to enhance the
agent's ability to generalize to different conditions. Reward functions are defined to guide
the agent's learning process and RL is applied to learn an optimal policy within the bounded
workspace.

4.2 Materials and methods

We consider a reinforcement-learning-based approach to the case of learning contact-rich tasks
for position-controlled manipulators in a simulation environment based on the twin-delayed
deep-deterministic policy gradient (TD3) algorithm. For many contact-rich tasks, the desired
behaviour is for the robot to track as closely as possible the desired path on the surface of an
elastically compliant object with (potentially) unknown stiffness. Based on this specification,
we consider the relevant raw measurements available as the tool centre point (TCP) pose, P
comprising position p and ZYX Euler angle orientation R, and the external measured wrench
fe. Let 7(h) be the position vector of a path parameterized by arc length 4. Then, the path
direction at any point on the path can be calculated as:

/
h
ey ="
7 (h)l
where 77 (h) is the first derivative of the position vector with respect to arc length, and ||/ (k)]
is its magnitude. The path direction vector ¢ is a unit vector that points in the direction of
the tangent to the path at the point (/). For simplicity, and due to the natural constraints
imposed by the geometry of the tool, we consider the case of a linear reference path that
will be modified to match the geometry of the surface. The path is defined by a start and
end-point with position Psiars, Pend respectively. The path direction é is then defined as
_ Pstart — Pend (41)
||pstart - pend”
Although the TCP position is known directly, it is desirable to not expose its measurement
directly to the agent to avoid over-fitting to specific tasks. Instead, the position is converted
into a pair of task-specific features as the scalar distance () from the endpoint of the path:

[}
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s = (P — Pend) - C, (4.2)
and deviation from path d
2
d* =|lp - pi| (4.3)

The surface position estimate p; was computed as a Gaussian weighted average of the sampled
points in the depth image about the closest point on the desired path to the current TCP
position [87].

4.3 Case 1: Comparison of RL with MPC and FDM
methods

The principle of the LBMPC approach [87] is to learn a model of the contact dynamics, given
states, actions x, u as:

T+l = f(xp, ug) (4.4)

formulating the trajectory optimization as a constrained nonlinear optimization problem of
some metric of cost, specified by L:

N-1

minimize JWU) = Z L (xjtis Wksi) (4.5)
i=0

S.t. Lh+i+l = .f(wk+i, Uk+i)

||uk+i||1 < Umax
i=0,1...N-1

where ||-||1 denotes the £! norm. In the LBMPC approach, the function f(xy, ux) is represented
as an LSTM neural network which is trained from trajectories collected offline.

To include an additional comparison method, we have adopted the use of an FDM for contact-
rich Cartesian robot control. We follow the approach described by the authors in [123], who
omit the Coriolis term for simplification. The authors focus on solving Inverse Kinematics
problems by assuming instantaneous motion (with zero joint velocities, ¢ = 0) and neglecting
the effects of gravity and velocity-dependent forces. This results in a simplified dynamic model
which directly relates external forces to joint accelerations, given by:

Gg=H1JTf (4.6)

where H corresponds to the mass matrix of the robot, J is the Jacobian matrix, § represents
the joint accelerations, and f is external force:

f = er+Kded (4.7)

while e is the distance error between the target and the current EE positions, e; denotes
the derivative of the distance error, K, and K, are positive definite diagonal stiffness and
damping gains. As claimed by the authors in [123], omitting the Coriolis term is justified as it
reduces computational complexity while still providing a practical and effective framework for
solving IK problems. They have also demonstrated that the FDM approach is not only free
from delays and noise but also inherently more stable in contact-rich applications compared to
traditional Admittance controllers.
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We explored two distinct sets of gain values, high-gain (FDM-H) and low-gain (FDM-L). We
defined K, as follows:

FDM-H: K, = diag([100, 100, 1000, 10, 10, 10])
FDM-L: K, = diag([10, 10,200, 1,1, 1])

In both methods, we used the following value for damping gains: K4 = diag([1,1,1,0.1,0.1,0.1])
TD3 is an off-policy actor-critic learning algorithm. Its principle of operation is related to

DDPG with key improvements in the introduction of twin critics, policy smoothing, Q-value

clipping, and delayed actor updates [124]. It assumes the control problem can be modelled as

a Markov decision process, in which the objective is to determine a policy that maximises an

expected sum of rewards over time, weighted temporally by a discount factor. To ensure a fair

comparison between the two methods, we design the reward function for the RL algorithm to

be identical to the negated cost function used in the MPC approach. Hence:

L(x,u) = —r(x,u) (4.8)

For the path following, based on the objectives defined in Section 4.2, we hence define the
reward function r:

s
r(z,uw) = —wgd? - wsﬁ — wyu? (4.9)
c
where wy, wg, and w,, are manually tuned weighting terms. The deviation term, represented by
the expression |wdd2, is a scaling penalty that discourages excessive deviations from the desired
\)

path. The ws“‘—c'|| term, referred to as the slicing term, encourages the agent to progress along

the path. The normalisation by ||c|| ensures the reward for path progression is independent of
the path length. This reward also encodes desirable traits like productivity; as the cumulative
path progress penalty is minimised by agents that rapidly reach the path endpoint. w,u?
is a small effort penalty to discourage extreme motions, labelled the effort term. For both
approaches, weighting contributions of w; = 1000, wy = 10, and w, = 0.000001 were selected
for each reward.

4.3.1 Reinforcement learning

Based on the available observations @ = (d, s, Ap, f.) we aim to learn a policy mapping @ to
actions in Cartesian velocity space w. Each observation & was scaled to the approximate range
0-1. For TD3, we employ a set of deep feed-forward neural networks serving as the actor and
dual critics respectively. The critic networks each comprise two input pathways: two hidden
layers of 400 and 300 units for observations, and one of 300 units for actions, followed by a
common output layer. A learning rate of 5x 10™* and L2 regularisation penalty of 2 x 10~
were selected as critic network hyperparameters.

The actor network comprises 2 hidden layers of 400 and 300 units respectively. An initial
learning rate of 5 X 1074, L2 regularisation penalty of 1 X 107°, batch size of 512, RELU
hidden activation and tanh output activation were chosen as the network hyperparameters.
The choice of tanh activation bounds the velocities by saturating the policy outputs. The
remaining hyperparameters for the learning algorithm were chosen according to Table 4.1.
Training was carried out up to a threshold of 3000 episodes. This threshold is established
from initial experiments conducted in a simulation environment described in Section 4.3.2.
Based on the actions w and sample time 7§, we convert the policy outputs into joint position

commands q as:
q=T - J'u (4.10)

where J* is the Moore-Penrose pseudo-inverse of the manipulator Jacobian.
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Table 4.1
The reinforcement learning hyperparameters and noise options used in training the TD3 policy.

RL parameters Noise options
Smooth factor 0.001 Mean 0
Mean attraction 2.5 Variance decay rate 0.00001
Sample time (7;) 0.02  Variance 0.5

Discount factor 0.99

Table 4.2
Sample space used for domain randomisation of the simulated workpiece parameters

Property Range Distribution
Stiffness k, (Nm™')  107-10° Log-uniform
Dyn. coeff. friction u 0.1-1.2  Uniform

4.3.2 Domain randomisation

We consider the case of a position-controlled manipulator in the KUKA LBR iiwa R820
collaborative robot. The robot is mounted with an external force-torque sensor, an RGBD
vision sensor, and a cutting tool. Experiments were carried out in the Gazebo simulator, with
the workpiece being represented by a Nissan Leaf 2011 battery module as an application
example. Currently, the process of battery disassembly is not fully automated chiefly due to
diversity in the design of electric vehicle batteries. The proposed strategy in this study can be
generalized to various battery designs (in terms of geometry and material characteristics). For
simplicity, the workpiece collision surface is approximated as an elastically compliant cuboid
with fixed, but unknown stiffness and isotropic dynamic coefficient of friction. The TCP is
positioned at a fixed offset above the workpiece about the path start point py,¢, at which
point the agent is given full control over the robot.

To learn a policy representation that is robust to an unknown environment, we establish the
environment based on a curriculum-based domain randomisation method. During training, at
the beginning of each episode, the properties of the object surface were sampled according
to the distributions in Table 4.2. In the traditional DR, the distribution parameters are held
constant from the first episode as the range specified in Table 4.2, denoted as [, [_ for the
maximum and minimum value of a variable /. For example, in the case of the stiffness variable
kp, 1. corresponds to the upper limit of 10Nm™! and I_ to the lower limit of 10*Nm™!.
Similarly, for the dynamic coefficient of friction u, [ is 1.2 and /_ is 0.1. These limits are used
in the equations to define the range of possible values that the environment variables can take
during each episode.

However, the extreme and immediate variation in the environment can greatly increase the
difficulty of learning the task, and in some cases reaching the optimal reward is not possible
as the learning algorithm converges to a local minimum. To combat this, we introduce the
concept of curriculum-based DR. Under this approach, the full random distribution range is
not immediately introduced but varied according to each episode as Fy:

Fy =Fo+ (1 - Fy)g(N) (4.11)

where Fj is the fraction of the limits at episode zero. The maximum and minimum limits for
episode N, Iy, Iy, are computed as

l+_l_

lNi:l_+(1iFN) (412)
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Fig. 4.3. The training graph of the TD3 agent for the compliant path following task on a
near-planar surface with unknown surface properties.

Here, [n+ and [y_ represent the dynamically adjusted upper and lower limits for the parameters
in Table 4.2 as the training progresses. For instance, as Fy increases over episodes, the range
for k, gradually expands from an initial smaller range towards the full 10% to 10” range, thereby
easing the learning process.

g(N) is an envelope function that specifies the evolution of the randomisation distribution
over the training process. In this study, we select g(N) as a linear function of N.

N
Nmax
This gradual adjustment of the randomisation limits allows the learning algorithm to progres-

sively adapt to the full range of environmental variations, thereby increasing robustness without
overwhelming the system with abrupt changes.

g(N) =

(4.13)

4.3.3 Experiments

We evaluate the trained agents in the simulation environment discussed in Section 4.3.2, for
the task of a compliant path following along the surface of a given workpiece. Training for the
TD3 agent with the curriculum DR approach was carried out over 4.05 x 10° seconds for 3000
total episodes. The hyperparameters N,,,, and Fy were chosen as 2500 and 0.05 respectively.
The processor of the computer used for simulation and training was an Intel(R) Core(TM)
i7-8086K 8-core processor with a 4 GHz base clock and 32 GB RAM. The training graph
is shown in Figure 4.3. The agent rapidly converges to an average reward of approximately
—2500 and remains close to this value which illustrates that the desired task behaviour was
successfully learned.

Based on the learned policy representation from the curriculum DR method, we evaluate the
performance of the agent over four path-following case studies with randomly chosen surface
properties, shown in Table 4.3. For comparison, we employ a method based on LBMPC
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Table 4.3
The stiffness and friction coefficients used in different case studies.

Experiments Stiffness k, (Nm™) Friction y

Case study 1 9.22116 x 107 0.95413
Case study 2 2.19674 x 106 0.797441
Case study 3 5.06996 x 10° 1.32379
Case study 4  9.79874 x 10% 1.40105

described in our previous work [87], with data collected using a series of manually designed
admittance controllers to train a predictive model of the surface contact dynamics. Due to
the difficulty of solving for the optimal trajectory U directly, we employ the forward shooting
method using sample-based optimisation to approximate the solution of (4.5). For LBMPC a
dataset of 101120 samples was collected, which is comparable to the number of observations
exposed to the agent after ~200 episodes of training. The average reward displayed in Figure
4.3 demonstrates that the agent experiences the majority of its performance improvement
before completing 200 episodes of training. This is notable because the dataset size used for
LBMPC consists of roughly the same number of observations as those encountered by the agent
in this early phase of training, indicating that the dataset is a reasonable size for comparison
of LBMPC and RL methods. This establishes a benchmark that is less sample-intensive than
the exploration required for RL but has greater computational overhead.

The magnitude of tracking error and cutting path for LBMPC, TD3 with curriculum DR,
FDM-H, and FDM-L during each example case study are presented in Figure 4.4—4.7. Figures
4 4a—4.7a illustrate the magnitude of trajectory errors, represented as the norm of the error
vector in the x, y, and z coordinates, which captures the difference between the current and
desired tool TCP positions.

In Figure 4.4a, for case study 1, the task was completed in approximately 25 seconds using
MPC, 10 seconds with the trained RL agent, 15 seconds with the FDM-L method, and 6
seconds with the FDM-H method. This comparison highlights that RL achieves faster task
execution compared to both MPC and the FDM-L approach. However, the trajectory error of
the RL method is significantly lower than that of the other three methods. This suggests that
the RL agent is more effective at completing the task compared to the MPC and FDM methods.
Figure 4.4b displays the 3D path of the tool-tip for case study 1, comparing the performance
of the RL method with others. Although all methods exhibit attempts to correct any deviation
from the path, the deviation is less noticeable for the RL method. This observation is supported
by the root mean square tracking error (RMSE) between the end-effector position and the
desired path. The RMSE was 7.2mm for MPC, 9.6mm for FDM-L, and 9.0mm for FDM-H,
greatly exceeding the corresponding RL value of 0.56mm.

The results for case study 2 are depicted in Figure 4.5, where it can be observed that the
tool requires approximately 23 seconds to reach the endpoint when using MPC, 15 seconds
with FDM-L, approximately 9 seconds with FDM-H and the TD3 agent completes the task
in 10 seconds. The performance of the RL agent for case study 2 can similarly be compared
by analyzing the 3D TCP path, as shown in Figure 4.5b. Despite all approaches attempting
to correct any deviation from the desired path, the deviation is again less prominent in the
RL method. This finding is further supported by the RMSE tracking error, where the FDM-L
method exhibits the highest RMSE value of 11.1mm, followed by MPC with an RMSE of
10.4mm. In contrast, the FDM-H method achieves a lower RMSE of 4.5mm, while the RL
method stands out with a notably lower RMSE value of 0.84mm.

76



Module
1 Desired path|
—wee ——MpC
E e : / FDML
P —ME 0 = = 758 —_FDMH
£ ~ <
?o 02 1 N 0.2
& ot - X (m)
0 | | | |
0 s 10 15 20 25 -0.2
Time (s) Y (m)
(a) Trajectory error (b) 3D tool path
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Fig. 4.5. Case study 2: material stiffness k, = 2.19674 x 108(N /m), friction coefficient of
p=0.797441.

Figure 4.6 presents the outcomes of case study 3, with the endpoint again reached in roughly
23 seconds when using MPC, 15 seconds using the FDM-L method, roughly 12 seconds when
using FDM-H and 10 seconds when using the trained RL agent. From Figure 4.6a it is also
evident that the magnitude of the trajectory error with the trained RL agent is lower than that
of the others during path following. The 3D path of the tool-tip in Figure 4.6b provides a
basis for comparing the performance of the RL agent with other methods in case study 3. All
methods make an effort to correct any deviations from the intended path, but the deviations
are less in the RL method. This observation is consistent with the RMSE values, which were
significantly lower for RL (0.34mm) compared to the MPC (9.6mm), FDM-L (10.8mm), and
FDM-H (9.7mm). Finally, comparing trajectory errors in Figure 4.7, the RL agent performed
33% faster (10 seconds) than MPC and FDM-L methods (15 seconds). Notably, the RL
method was only 1 second slower than the FDM-H method, which completed the task in 9
seconds. It is also illustrated from Figure 4.7 that the error magnitude during path following
using the trained TD3 agent is lower than that of the other methods. Figure 4.7b similarly
demonstrates the desired path is tracked more closely with RL, with a lower RMSE tracking
error (0.11mm) compared to MPC (7.6mm), FDM-L (9.8mm), and FDM-H (7.9mm).
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Fig. 4.6. Case study 3: material stiffness k, = 5.06996 x 10°(N/m), friction coefficient
u = 1.32379.

Mot_lule
004 :RLMPC ’ &L :B;g“’ path
E FDM-L @ g :RFIJSM-L
3 00 —FDMH —__FDMH
) 0.2
gow
g : 0
Door} ] . X (m)
0 s 10 15 2 25 02 02
Time (s) Y (m)
(a) Trajectory error (b) 3D tool path

Fig. 4.7. Case study 4: material stiffness k, = 9.79874 x 108(N/m), friction coefficient of
u = 1.40105.

In summary, the results of the four case studies in Figure 4.4—4.7, demonstrate that although
all methods are capable of accomplishing the task without prior knowledge of the surface
properties, the RL agent outperforms other methods in terms of both speed and effectiveness.
This provides evidence for the superiority of the RL agent over MPC and FDM, indicating that
the use of RL in completing similar tasks may lead to significant improvements in performance.
Moreover, A primary issue with the MPC-based framework is the high computational complexity
of the LBMPC method, and hence only approximate solutions for the optimal trajectory may
be found at each time step. The degree of variability this introduces leads to the controller
exploring areas of the action space for which there is lower confidence in the model predictions,
as noted in [83], as they are conditioned on the training data obtained by pre-defined interactions
with the system , which are collected offline. In addition, the FDM approach is susceptible
to difficulties related to choosing suitable stiffness and damping gains and exhibits a high
sensitivity to these parameter values.
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4.4 Case 2: Extension to unknown, non-planar sur-
faces

We extend the first presented task, considered for the case of unknown material properties with
known surface geometry to the more general case where material properties and surface position
are both unknown. We procedurally generate height-field surfaces alongside randomizing
stiffness and friction, while modulating the contact force to avoid damage to the tool or
workpiece. In doing so, we establish the capability of the trained policy to generalize to various
types of surfaces besides the presented planar surface case studies. While in the first instance,
the TCP orientation R was excluded, for the case of an unknown, non-planar environment,
the rotation encodes useful information about the point of contact and external torques acting
on the tool, particularly in the case of loss of visual feedback or occlusion of the surface
geometry. We therefore extend the observations from Task 1 to include the TCP orientation
R, as x = (d, s, Ap, f., R) where the sine and cosine of each Euler angle component were
taken as the scaled orientation inputs. Training for the TD3 agent with the curriculum DR
and randomized heightmaps was carried out over 2.81 x 10° seconds for 2000 total episodes.
Similarly to Section 4.3, the hyperparameters for TD3 were established by manual search. The
TD3 hyperparameters and noise information are summarized in Table 4.5.

The problem of reward function selection is a further necessary and challenging part of task
specification. Based on observations in equations (4.1), (4.2), and (4.3), we extend the
definition for the agent reward function r as:

p |s| P
r=-wgd _Wsm_wuu +WCC_Wf (max (fmax,llfell) _fmax) (4-14)
where wy, wg, we and w ¢ are manually tuned weighting terms. wyd? and wsﬂ are deviation

llcl]
and slicing terms explained in (4.9). While these reward contributions alone may be sufficient

for unconstrained path following, in the presence of path planning errors presented by an
unknown or approximately known surface geometry, it is necessary to ensure the robot does
not apply excessive force to the environment to avoid tool breakage or fail to accomplish the
desired tasks by avoiding the surface entirely. This is accomplished by the latter 3 terms. w,u?
is a small effort penalty to discourage extreme motions. C is a discrete reward contribution
encouraging the agent to establish contact with the environment, defined as:

o {1 if £ > fonin (4.15)

0 otherwise

We introduce a ramping force penalty that penalises forces (w (max (fimaxs 1) = fmax))

in excess of a target threshold f,,.. Finally, for training, an additional terminal penalty is
applied, defined as ry.,,, in the case of early episode termination, and 0 otherwise. Without
this penalty, the cumulative reward may converge to a local minimum corresponding to the
agent immediately pursuing the episode termination criteria, versus the case of a prolonged
episode, where the cumulative penalties due to path deviation or excessive force may be higher.
The terminal penalty was chosen to be sufficient to surmount any negative cumulative reward
expected during the prolonged episode. The chosen weighting contributions and termination
penalty for each reward are shown in Table 4.4. The movements of the tool are furthermore
bounded via workspace limitations about the desired path, which we employ in both task space
and joint space.
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Fig. 4.8. Training graph of TD3 agent for compliant surface path following for the case of
unknown surface properties and unknown (heightmap) surface geometry.

Table 4.4
Reward weighting contributions for the reward function defined in (4.14).
Weighting Value
Path deviation w, 1000
Path progress wy 2
Effort w, 0.3
Contact w,.. 0.75
Force limiting w 0.006

Termination penalty 7o, 400

Training was halted when the agent reached the threshold of 2000 episodes and the training
progress graph is shown in Figure 4.8. Similarly to the training on the planar surface in Section
4.3, the performance rapidly converges within the first ~ 250 episodes. For the remainder
of training, the reward remains approximately constant, with a progressive degradation of
performance from 500-1250 episodes as the range of surface properties is introduced by the
curriculum schedule. Finally, the performance recovers for the remaining episodes, indicating
successful learning of the task. Figure 4.9 illustrates the trajectory of the cutter TCP with the
trained RL algorithm on different height maps. In the case of path planning errors or loss of
visual feedback, the reference path may be defined slightly below the object surface. Hence,
perfect tracking of the path cannot be achieved without violating the force limiting objectives
defined in (4.14). However, the trajectories of the tool TCP in Figure 4.9 demonstrate the
proposed method results in a learned policy that is robust to an uncertain environment for a
variety of surface types.
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Table 4.5
The reinforcement learning hyperparameters and noise options used in training the TD3 policy.

RL parameters Noise options
Smooth factor 0.001 Mean 0
Learning rate 5e-04 Mean attraction 2.5
Sample time (7y) 0.02  Variance decay rate 0.00001
Discount factor  0.99  Variance 0.5

Mini batch size 512

4.5 Case 3: Integrating multi-demonstration knowl-
edge to RL

During the evaluation of our proposed approach, we compared four different methods of
workspace bounding, along with a baseline approach that solely relied on traditional reinforce-
ment learning (RL) methods. Not to mention that we used domain randomization in all four
cases. The methods of workspace bounding included: (1) Convex Hull, (2) Boundary with a
shrink factor of 0.4, (3) Shrink factor of 0.1, and (4) Baseline RL. Fig 4.10, visually illustrates
the different processes of defining boundaries around the human demonstrator trajectories.
The boundaries were computed employing MATLAB's " Convhull” and " Boundary” functions

[125, 126].

X (m) 05 92 ol Y (m)

(a) Multiple trajectories were taken by human (b) The computed convex hull that encompasses all
demonstrators. the demonstrators’ trajectories, represents the
overall workspace (used in case 1).

035

X (m) 05 02 : Y (m) X (m) 05 02 : Y (m)

(c) The boundary around the trajectories with a (d) The boundary around the trajectories with a
shrink factor of 0.4, reduced the workspace shrink factor of 0.1, restricts the workspace
(used in case 2). (used in case 3).

Fig. 4.10. Defining boundaries around the human demonstrator trajectories.
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Fig. 4.11. A comparison of training progress: Average cumulative rewards for different
workspace bounding methods.

We analyzed the performance of the four methods using a plot depicting the cumulative
average rewards over the course of training in Fig 4.11. The x-axis represents the number of
episodes, while the y-axis represents the cumulative average reward. The method utilizing
Convex Hull workspace bounding (case 1) exhibited the fastest learning progress in Fig. 4.11,
reaching the optimal average reward of approximately 0 after only 900 episodes (~ 3.6 x 10°
steps). This method provided a workspace area of 0.0016m>, enabling the agent to explore a
range of possibilities in this area. The method employing the boundary with a shrink factor
of 0.4 (case 2) achieved the same average reward as case 1 but at a slower learning pace. It
reached the optimal reward of 0 after approximately 1500 episodes (~ 6 x 10° steps). The
workspace area for this method was 0.0011m?, slightly smaller than case 1 but still offering
a substantial exploration space. On the other hand, the method with a shrink factor of 0.1
(case 3) faced challenges in achieving satisfactory results. It became trapped in a local minima,
resulting in an average reward that failed to surpass -10. The significantly reduced workspace
area of 0.00062m> may have limited the agent's ability to discover optimal solutions. Lastly,
the baseline approach (case 4), which relied solely on RL without any workspace bounding,
struggled to learn the task effectively. Even after 6000 episodes, it failed to achieve the average
reward of -25.

Table 4.6
The average cumulative rewards obtained from 20 randomized trials for each case study.

Method Slicing  Deviation Contact/Force Overal Reward

Case 1 -0.0581 -0.0075 0.0210 -0.0391
Case 2 -0.1993 -0.0091 0.0062 -0.2335
Case 3 -4.7807 -0.7230 -0.0089 -7.6126
Case 4 -8.0741 -3.0414 -0.0782 -22.2341

Table 4.6 displays the average cumulative rewards obtained from 20 randomized trials for each
of the four methods employed to train the RL agent and confine its workspace boundaries.
Figure 4.12 also presents a bar plot for a visual comparison of the performance of each
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Fig. 4.12. Comparison of the average cumulative rewards obtained from 20 trials across
different methods employed in the experiment.

method based on the slicing, deviation, contact/force, and overall rewards. The slicing term is
represented by the blue bar in the plot 4.12, reflecting the agent’s progress along the desired
path and its ability to efficiently reach the endpoint. Therefore, a higher amount (a smaller
negative value as observed in Case 1) indicates a better performance in terms of making
progress along the path. Case 2, Case 3, and Case 4 follow in decreasing order of performance
in this regard. The red bar in Fig. 4.12 represents the deviation reward, which penalizes
the robot for deviating excessively from the intended path, with the penalty scaled by the
squared distance between the current TCP position and the path. Similarly, a smaller negative
value (best seen in Case 1) indicates a better performance in terms of staying close to the
desired path. Case 2, Case 3, and Case 4 exhibit progressively lower deviation rewards. The
contact/force reward (grey bar in Fig. 4.12) promotes contact between the robot and the
environment while ensuring that excessive force is not applied, preventing tool damage or
failure to accomplish the task. A higher positive value indicates a better performance in
establishing appropriate contact and force interactions. Once again, Case 1 demonstrates the
highest contact/force reward, followed by Case 2, Case 3, and Case 4. The overall reward
encompasses the cumulative effect of the aforementioned rewards along with the effort term in
equation (4.14). It represents the comprehensive performance measure for each method. The
results highlight that utilizing a convex hull to limit the agent's workspace (Case 1) yields the
highest overall reward, indicating superior performance compared to the other three methods
(Case 2, Case 3, and Case 4).

There is no mathematical proof that our method will keep the agent away from local minima
outside the created hull. However, by reducing the search space to a bounded region, the
agent is forced to explore a smaller and more relevant part of the state space, which may
increase the likelihood of finding a better solution and reduce the chance of getting trapped in
a local minimum outside the created hull. Additionally, the hull provides a way to constrain
the solution space, which can prevent the agent from exploring irrelevant parts of the state
space. These results further emphasize the efficacy of our proposed approach and its potential
to enhance the development of deep RL.
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4.6 Conclusion

In this work, we proposed a TD3 agent with curriculum-based DR to learn contact-rich path
following with parametric uncertainties in the interaction contact dynamics. We specifically
considered the case of a robotic path following along a workpiece with unknown stiffness and
isotropic friction over a range of values. By validating our approach with four random case
studies in simulation, we demonstrated the robustness of the learned policy representation
to unknown environments. Comparison with an earlier approach using learning-based model
predictive control and a virtual forward dynamic model illustrates RL superior task performance
with improvement in tracking error; the LBMPC approach suffers due to computational
complexity and the problem of adequate domain coverage in the training dataset when
employing established expert policies for data collection. Furthermore, the FDM approach is
vulnerable to challenges associated with selecting appropriate stiffness and damping gains and
is highly sensitive to these parameter values. Overall, the RL approach shows approximately 15
times improvement over LBMPC method and 18 times improvement over the FDM approach.
We extend this concept by procedurally generating height-field surfaces alongside randomizing
stiffness and friction, during the online training, which allowed us to generalize the trained
policy for various types of surfaces beyond planar surfaces to environments with unknown
surface geometries and path-planning errors.

A notable limitation of the current work is sensor limitations, particularly with loss of visual /
depth feedback with reflective or occluded surfaces, or close to the target surface. Although the
method compensates for vision feedback loss by incorporating both visual and tactile modalities
for path following, the so-called "reality gap” between simulations remains a challenge. To
directly bridge this gap, RL methods rely on the exploration of the target environment, which
is costly in a real setup. Therefore, future work will focus on addressing domain adaptation
of the proposed method to a range of target domains, including real-world applications. We
have also proposed an offline workspace bounding approach for accelerating the process of
deep RL using human demonstrations. Our approach reduces the search space and keeps the
agent focused on the most promising areas of the state space, which in turn can lead to faster
convergence to the optimal solution while avoiding possible local minimas outside the reduced
workspace. We evaluated three different methods for limiting the workspace boundary and
training a RL agent. The methods aimed to optimize performance metrics related to slicing,
deviation from the desired path, contact, and force interactions. Our results demonstrate
that incorporating a convex hull to limit the workspace boundary yields the most favourable
outcomes across all performance metrics. The agent trained using this method consistently
achieved higher slicing rewards, indicating better progress along the desired path. Additionally,
it exhibited reduced deviation from the path, as evidenced by the smaller negative values in
the deviation reward metric. Moreover, it successfully established optimal contact and force
interactions with the environment. The overall reward, which accounts for all performance
metrics and the effort term, further supports the superiority of the convex hull method. Our
findings highlight the importance of carefully considering the workspace boundary limitations
and their impact on RL agent training.

In future research, it would be beneficial to conduct studies on the generalization capabilities
of our method to various configurations and applications.

Data availability

The data and clip supporting the findings presented in this chapter are also available in the
following repositories:
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https://github.com/aaflakiyan/RL-Contact-Rich-Path-following
https://github.com/aaflakiyan/TouchX-Teleoperation-Matlab-R0OS
https://figshare.com/articles/media/RL_MPC_Cutting/25498342
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Experiments and Demonstrations: Disassembly
of Battery Pack

Some content from this chapter has been published in the following:

Ali Aflakian, Rustam Stolkin, Alireza Rastegarpanah, "Integrating Multi-Demonstration
Knowledge and Bounded Workspaces for Efficient Deep Reinforcement Learning”, IEEE-RAS
International Conference on Humanoid Robots, (Accepted 2023).

Hathaway, J., Shaarawy, A., Akdeniz, C., Aflakian, A., Stolkin, R. and Rastegarpanah, A.,
2023. Towards Reuse and Recycling of Lithium-ion Batteries: Tele-robotics for Disassembly of
Electric Vehicle Batteries.(Accepted 2023) :2304.01065.

Rastegarpanah, A., Mineo, C. , Contreras, C.A, Aflakian, A., Paragliola, G., Stolkin, R.

" Electric Vehicle Battery Disassembly Using Interfacing Toolbox for Robotic Arms”, Journal of
Batteries (MDPI), (Submitted 2024).

5.1 Introduction

Chapter 5 of this thesis provides a comprehensive examination of the experimental setups and
tasks involved in the disassembly of batteries employing a diverse array of robotic systems.
The chapter commences with an overview of the experimental configurations, encompassing
robots, grippers, haptic devices, vision systems, and the integration of deep learning techniques.
Additionally, it explores the utilization of a model-based tracker to localize the position of each
component in 3D space based on 2D images.

The subsequent section delves into specific disassembly tasks, including sorting, unbolt-
ing/unscrewing, cutting, and teleoperation. Each task is described, along with its objectives,
challenges, and the important roles played by various components in their execution. Each
task is further illustrated by a collection of images that offer visual context to both the setups
and the disassembly procedures.

Each setup further explores its development into the suggested vision methodology, model-based
tracking, and deep learning techniques. In the Model-based tracker, the chapter investigates
the employment of component models to determine their 3D positions from 2D images. In the
Deep NN section, the focus shifts to the application of deep neural network models trained
using transfer learning. These models are designed to autonomously detect objects in the
camera scene and localize the borders of rectangles encapsulating the objects.

The case study of battery disassembly is presented, which includes a variety of disassembly
tasks like unbolting, sorting, and cutting, following the sequence of operations required for
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pack-to-cell disassembly of a Nissan Leaf 2011. A concise overview of the process involved
in disassembling an EV battery, from the battery pack down to the individual battery cell is
illustrated in Fig 5.1.

In conjunction with the traditional disassembly methods, which rely on predetermined compo-
nent positions for task execution, our study delves into innovative approaches for the integration
of vision feedback. Some of these innovative approaches are explored in prior chapters. In
this chapter, we also employ vision in two additional capacities. One of these approaches
involves model-based tracking, where we use the built-in knowledge of how things should look
to figure out exactly where they are in 3D space (3D model of components) from 2D images.
This helps us understand where each part is more precisely and makes the disassembly process
based on that. Furthermore, we explore the use of deep learning, to automate the process of
object detection. Specifically, we employ transfer learning, a technique enabling the utilization
of pre-existing knowledge from trained neural network models. This approach facilitates the
development of sophisticated neural network models capable of autonomous object detection
within the camera scene and outlining object boundaries.

Battery Disassembly Process (Stack to Cell)
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Fig. 5.1. A brief breakdown of Nissan leaf battery pack disassembly process.

As mentioned, this research centres on the 2011 Nissan Leaf battery pack, serving as a case
study to illustrate various disassembly tasks. The 2011 Nissan Leaf pack is composed of 192
cells distributed within 48 modules, organized into two front vertical stacks, each containing
12 modules, and a single rear horizontal stack of 24 modules. In Figure 5.2, a visual depiction
of the grippers utilized in our experiments for the disassembly processes is provided. These
grippers, carefully selected for their functionality, play a pivotal role in the successful execution
of our battery disassembly tasks.

Figure 5.3 offers an overview of the essential robotic systems and devices crucial to our
disassembly experimental setups. In the subsequent sections, we will delve into detailed
explanations of how these grippers, robotic arms, and devices were employed in various setups
for practical demonstrations, providing an understanding of their roles and functionalities.
An overview of the primary disassembly stages for pack-to-cell disassembly is presented in
Table 5.1, specifically focusing on the forward module stacks briefly.

The degree of automation detailed in Table 5.1 was derived from an understanding of the
current manual disassembly process, considering factors such as the types of fasteners used
and component accessibility. While the extent of semi- and fully autonomous tasks may differ
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Table 5.1
The order of disassembly steps for the pack-to-cell disassembly of the 2011 Nissan Leaf. To
keep it concise, we're only focusing on disassembling the front module stack. The tasks fall into
different categories: fully manual (M), where specialized tools or skilled manual dexterity are
needed, semi-autonomous (S-At), where a robot can perform the task with human assistance,
and fully autonomous (At) tasks that can be completed without human involvement [17].

Step  Disassembly task Type

#

1 Remove service plug retainer M
Top case -

2 Remove upper case bolts & lift top case At

3 Battery Remove mounting bolts S-At

4 controller Disconnect harness connectors & remove battery controller M

5 Disconnect interlock circuit harness & heater harness connectors M

6 Remove mounting nuts & front stack connecting bus-bar S-At

7 Remove battery member pipe S-At

8 Remove junction box cover M

9 . Remove central bus bar bolts and remove central bus bar S-At
Junction box & :

10 harnesses Remove current sensor bus bar mounting bolt S-At

11 Remove switch bracket mounting bolts S-At

12 Invert switch bracket, disconnect harnesses & remove switch M

bracket

13 Remove high voltage (HV) harness bolts & remove HV harnesses  S-At

14 Disconnect voltage & temperature sensor harnesses M

15 Remove junction box mounting nuts & junction box M

16 Disconnect harness connectors from heater and heater relay unit M

17 Heaters Remove heater & heater relay mounting nuts S-At

18 Remove heater controller unit & heaters M

19 Remove stack mounting nuts At

20 Extract module stack At

21 Remove bus bar cover M
Front module . : .

22 stack(s) Remove bus bar terminal mounting bolts & mounting screws S-At

23 Remove end plate bolts At

24 Remove end plate S-At

25 Electrical test & sort modules S-At

26 Separate module cover S-At

27 Module Glue separation At

28 Separate cell tabs from terminal assembly S-At
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Fig. 5.2. Grippers employed in experimental setups

among various battery designs and manufacturers, there is a shared motivation to enhance
automation levels to reduce disassembly costs, as emphasized in the study by Lander et al. [6].
Based on the disassembly sequence outlined in Table 5.1, we explore a range of repetitive
tasks commonly identified in related studies [9]. These tasks encompass unbolting, involving
the removal of fasteners connecting a stack of modules; the extraction and sorting (pick and
place) of disassembled waste components; and cutting, utilized when mechanically separating
components becomes necessary due to the inability to remove fasteners non-destructively, and
when the goal is to reach inside the components such as reaching to cells inside the battery
modules.

To demonstrate these tasks, we employed various methods:

¢ Predefined Positions Teaching: This conventional approach involves instructing
the robot with predetermined positions in the task environment. While widely used
in industry, it demands strict adherence to initial positions, making it less robust for
disassembly tasks where object poses can vary, especially with flexible or tangled items.
Changes in the environment or object positions during tasks that need contact can also
decrease accuracy.

¢ Vision-Based Methods: Utilizing vision for object identification and localization, we
explored different approaches such as model-based trackers and employing trackers
based on component models for look-and-move strategies. Deep learning and transfer
learning, train neural networks to recognize and identify components, providing flexibility
in handling variations. Visual Servoing, Dynamically manipulating the robot based on
real-time image features, facilitating adaptive and precise movements.

e Teleoperation: We investigated teleoperation, utilizing either a haptic device or an

identical robot to remotely control the robot’s position, allowing for disassembly tasks
to be performed from a distance.
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Fig. 5.3. Robotic arms and devices utilized in experimental setups

In the following sections, each method is comprehensively explained, accompanied by detailed
insights into various setups designed and utilized for these purposes.
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5.2 Model based tracker

In this section, we introduce a 3D model-based tracking approach, which enables tracking
of marker-less objects while providing precise 3D localization of the object’s pose in the
camera frame. This method is particularly valuable when utilizing a calibrated camera. Our
implementation leverages the VISP library [127] and involves the publication of the object'’s
location on a designated topic, making it compatible with various ROS-friendly platforms. The
information obtained through this tracking system holds significant potential for applications
such as pick-and-place and sorting tasks, and we have successfully applied this method to
track both bolts and modules within the battery pack of the Nissan Leaf 2011. The package
is designed to be adaptable, allowing for implementation on a wide range of ROS-compatible
robots, regardless of their programming language.

The VISP library provides three distinct tracking methods to accommodate a variety of objects
and scenarios:

e Moving-Edges Tracker: This tracker is designed to handle objects lacking textures
and relies on the detection of moving edges that may not be visible within the object’s
model. It proves particularly effective for tracking untextured objects, ensuring robust
performance even in the absence of prominent edges.

e KLT Key Points Tracker: In contrast, the KLT key points tracker is tailored for
objects with textured surfaces, tracking key points detected on each visible face of the
model. This method excels at tracking textured objects, even when the edges are not
visible.

e Hybrid Tracker: The hybrid tracker combines the strengths of both the moving-edges
and KLT key points trackers, offering a solution capable of tracking textured objects
with visible edges, making it an ideal choice for a wide range of applications.

The adaptability of these trackers is a key feature, allowing users to switch between them by
simply modifying the controller in the launch file provided with our implemented model-based
tracking package.

To employ the tracking system, an initial setup is required, which involves a one-time manual
initialization by a human operator (Figure 5.4). This setup includes the use of helper points
to define and initialize the object to be tracked and localized. These points are pivotal for
the system to establish an initial understanding of the object’s position and characteristics.
The Intel RealSense D435i (RGB-D) camera is used in this work. In Figure 5.5, we provide a
visual representation of the model-based tracker in action, demonstrating the utilization of the
hybrid version of the tracker to detect and localize modules and bolts within the Nissan Leaf
2011 battery pack.

5.3 Object detection using deep learning

In this section, we explore the process of utilizing deep learning techniques for the detection of
battery components within the battery pack. This approach offers a robust and automated
method for object detection and localization, enhancing the efficiency and accuracy of battery
disassembly procedures and offering a range of benefits to the entire workflow.

The outcome of this project is the development of a Deep Learning package. This package is able
to perform the classification of a diverse set of battery components, effectively distinguishing
between them. Once a component is detected, its coordinates are pinpointed within the image
or video frame. Additionally, the system provides labels to identify these components.

92



Fig. 5.4. The manual initialization process is depicted, demonstrating the use of helper points
to establish the initial object tracking parameters for both the bolt and battery module.

Bolt Tracker Module Tracker

Fig. 5.5. This figure illustrates the implementation of our model-based tracker, showcasing
the hybrid tracker in action as it detects and localizes modules and bolts within the Nissan
Leaf 2011 battery pack.

Once this package is fully completed it will be used as an asset for a task planner, providing
feedback that includes not only the location data but also the labels associated with all detected
objects. This information is important in facilitating the planning and execution of subsequent
tasks in the battery disassembly process, including, sorting, unbolting, cutting, and so on. In
other words, it offers an efficient means of understanding the content and arrangement of
battery components, ultimately streamlining the entire disassembly procedure. In what follows,
the process of preparing the deep learning package is explained:

5.3.1 Data collection and labeling

The first step in building a deep learning-based object detection system is to collect a substantial
amount of data for each component we want to recognize and then label that data. This
process begins with the collection of data, typically in the form of images or videos. Since the
process of labelling is time-consuming, we make use of the MATLAB Ground Truth Labeler
Toolbox. This toolbox assists in the data labelling process by simplifying and automating the
annotation of objects within each frame of the video. With this approach, we identify and
label components, including battery modules, bolts, bus bards, cables, connectors, battery
management systems, and other objects that are of interest to us. Thereafter, the data will
be divided into two groups, training and test data (Figure 5.6). The Ground Truth Toolbox

93



Wiring looms Connectors Covers

- Training

-’ =] -w data

[, - =
|& Dataset |
= » ﬁ Testing

@ [ data
—
- =

Battery pack Bus terminals

Fig. 5.6. Some of the components in the battery pack data set.

provides powerful built-in algorithms to automate labelling. Among the algorithms provided
are:

e Lane Boundary Detector: This algorithm helps identify and mark lane boundaries
in images, which is particularly useful for tasks involving road scenes or vehicle-related
applications.

e Aggregate Channel Features: Aggregate Channel Features (ACF) is a technique used
for object detection in images, making it easier to highlight and label objects of interest
within the data.

e Point Cloud Temporal Interpolator: When working with point clouds, this algorithm
assists in interpolating and labelling temporal data, which is valuable for applications
dealing with time-series information.

e Point Tracker: The point tracker algorithm is instrumental in following and labelling
the movement of specific points within video frames, a fundamental step in object
tracking.

e Temporal Interpolator: This algorithm aids in the interpolation of temporal data,
which is essential for tasks requiring smooth transitions in time-series data.

These algorithms are a crucial part of the data labelling process, ensuring accuracy and efficiency
in preparing the data for deep learning-based object detection. In Figure 5.7, we provide a
visual representation of using The Point Tracker algorithm to identify and automatically label
bolts, modules, and bus terminals in a video file.

5.3.2 Data pre-processing

After we have labelled the data, the next important step is data pre-processing. This step
is all about getting our data ready for our deep learning model. It is a crucial part of the
process because it helps our model perform better in a wider range of situations. Techniques
like applying filters can help improve image quality and reduce or add noise to the labelled
objects. Additionally, data augmentation is employed to expand the dataset. This involves
creating variations of the original images through techniques like rotation, scaling, flipping,
and colour filters which simulate real-world variations and make the model more robust (using
a small and monotonous dataset can cause the model to become too specialized, resulting in
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Fig. 5.7. Using the Ground Truth Labeler Toolbox to automatically identify and label nuts,
modules, and bus terminals in a MP4 file.

overfitting.). It should be mentioned that all pictures should be resized to the format that is
acceptable for the network as inputs (here 224-by-224). Augmentations were applied after the
data for training and testing were separated. If we had applied augmentation to the entire
dataset before the separation, it could have led to overfitting, as multiple versions of the same
data might have ended up in both the training and testing sets.

5.3.3 Transfer learning

The core of our object detection process is deep learning models, particularly pre-trained
deep neural networks initially designed for image recognition tasks. These pre-trained models
provide a robust starting point due to their ability to extract essential image features, which
is incredibly valuable for the object detection objective. We have used Squeezenet for this
purpose and trained a YOLOv3 model detector.

To instruct the model in recognizing specific objects, we employ transfer learning. This
technique harnesses the knowledge acquired by the pre-trained network in general image
recognition tasks and fine-tunes it to custom use cases. Using Transfer learning will adjust the
model weights and layers, enabling it to learn the unique features of battery components.
The dataset was partitioned, with 70% reserved for training and the remaining 30% allocated
for testing. Before training, we preprocess the training data to conform to the network's input
size while preserving the original image aspect ratio.

Furthermore, we calculate anchor boxes using the training data to estimate potential object
locations.
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5.3.4 Training and validation

The training process involved parameters that influence the accuracy of the model and training
speed. To arrive at the final parameter settings, we conducted extensive experimentation by
trial and error and compared the results. The key training options employed for the final
outcome are shown in Table 5.2. Brief explanations of different parameters are detailed below:

Table 5.2
Training Options and Values.

Epochs Mini Batch size Learning Rate Warm-up Period L2 Reg Penalty Threshold
30 8 0.001 7000 0.0005 0.5

e Number of Epochs: An epoch represents the model's complete pass through the training
data, and in this case, it encompassed 30 such passes. The choice of the number of
epochs is pivotal, as too few may lead to underfitting, where the model does not learn
sufficiently, while too many may result in overfitting, limiting the generalization of the
model.

e Mini Batch Size: We employed a mini-batch strategy, where data is processed in smaller
groups. This not only accelerates training but also helps maintain the quality of the final
result. The batch size can be adjusted depending on the available memory resources.

e Learning Rate: The learning rate dictates the step size taken at each iteration towards
minimizing the loss function. It is a crucial parameter for achieving effective training.

e Warm-up Period: The warm-up period involves a phase where the model gradually
increases its learning rate to stabilize learning in later iterations. Once this period ends,
the specified learning rate is maintained for the rest of the training, typically about half
of the overall training process.

e |2 Regularization: L2 Regularization introduces an additional penalty to the cost functions
used during training. This penalty reduces the weights of coefficients contributing to
the cost, thereby mitigating overfitting.

e Penalty Threshold: Predictions that overlap less than the specified threshold with the
ground truth are penalized, enhancing the precision of the model.

During each iteration, data is retrieved from the batch queue. If the queue becomes empty,
it will reset to proceed to the next epoch. This queue prepares mini-batches of data in the
background while the model continues training on previous batches, improving computational
efficiency. The queue is also shuffled at the beginning of each epoch to prevent the model
from learning the sequence of data. The current state of the model is constantly evaluated
against the loss function to assess gradients. Weight decay with L2 regularization is applied to
ensure robust training, and the learning rate is adjusted. Detection parameters are updated,
and the process repeats until the specified number of epochs is completed. After each iteration,
the box loss, object loss, and total loss are recorded. This information allows us to monitor
the model performance over time and make informed decisions like stopping training if the
loss has saturated for a few epochs. This helps save time and resources while reducing
the risk of overfitting. Once the training concludes, the model performance is evaluated
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by running it on test data and comparing the results with the ground truth. The average
precision metric is a critical factor in determining the model’s success in this case. The overall
results of the deep learning model, particularly the implementation of YOLO, are reported in
Table 5.3. The model is more accurate in the detection of larger and isolated components

Table 5.3
Detection accuracy of some components in Nissan leaf battery pack.

Components Module Backstack BMS Board Terminal Cover Bus bar
Average Precision 63.97%  88.89% 66.67% 50% 47.28%

such as modules and backstacks. However, challenges are encountered in achieving precise
detection for smaller components like bus bars or module connectors. This limitation may be
attributed to sub-optimal detection precision, and potential improvements could be explored
by utilizing more zoomed-in images instead of directly labelling entire battery packs. Smaller
components face difficulties in detection due to factors such as low resolution, making them
harder to distinguish from the background. Additionally, their colours often provide limited
useful information, as they are typically similar in colour to the modules they are located on.
Obstruction further hinders the detection of smaller components, particularly when observing
an entire pack. Many battery designs intentionally conceal wiring harnesses for neatness and
safety, posing a challenge for the model in accurately detecting and labelling these concealed
components. It is important to note that this study is an initial exploration, and further
iterations are required. The dataset and YOLO model may need updates and modifications to
enhance precision. The study hints at the possibility of utilizing deep learning and transfer
learning not only for detecting components within the Nissan Leaf battery pack but also for
distinguishing and labelling components from different companies. Future work should consider
refining the model architecture, expanding the dataset, and incorporating transfer learning
techniques to achieve more accurate and versatile component detection across various battery
pack designs and manufacturers.

5.4 Experimental details and setups

In this section, the experimental setups employed, along with a detailed explanation of the
experiments conducted will be presented.

5.4.1 Setupl

In Figure 5.8, the designed Setup 1 for demonstrating the process of disassembling a stack of
modules is illustrated. The image showcases three robotic arms equipped with a two-finger
gripper, a suction gripper, and an impact wrench, strategically positioned around the battery
pack scene. The arrangement allows for close access to the entire battery pack, enabling
efficient execution of disassembly tasks. Two baskets, designated for waste and recycling
purposes, are positioned within the scene. Additionally, cameras are placed on the scene to
monitor the disassembly process during the execution of the tasks. In this setup, we used
preprogrammed robots and predefined positions to perform some parts of the disassembly tasks.
In Figure 5.9, a step-by-step visual inspection illustrates the disassembly tasks for a stack of
modules. The process begins with unbolting and removing mounting bolts using a two-finger
gripper attached to the KUKA LBR. The next steps involve the UR10e with a suction gripper,
removing the cover, and placing it in the waste basket. Subsequently, the modules are picked
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Fig. 5.8. Setup 1 used to demonstrate the disassembly of a module stack in Nissan leaf
battery pack.

and deposited into the recycle basket, setting the stage for further processes such as cutting
and reaching the cell level.

For the unbolting process (Figure 5.9a, and b), we utilized a Universal socket wrench capable of
handling bolts of various sizes, ranging from 7 to 19mm. The impact wrench is custom-designed
by one of the technicians, in order to be able to mount on the various types of robot wrists
and operate it from a distance. This design allows for remote operation, facilitating both
bolting and unbolting tasks.

In our experiments, we demonstrate bolting and unbolting of various sizes of bolts, depicted
in Figure 5.9a. The impact wrench’s adaptability and remote operational contribute to the
efficiency and flexibility of the disassembly process. Furthermore, our experimentation extends
to illustrating collaborative efforts between two robots engaged in the unbolting of bolts with
nuts. As depicted in Figure 5.9b, the KUKA LBR robot, equipped with a two-finger gripper,
securely holds the nut at the bottom of a hex bolt. Simultaneously, the UR10e robot, fitted
with the impact wrench, moves to the head of the hex bolt, facilitating the unbolting process.
This collaborative approach highlights the versatility achieved by combining different robotic
arms to accomplish a disassembly task.

The next task, which succeeds the previous unbolting stage, involves the removal of each
fastener from the stack, as illustrated in Figure 5.9¢c, and d. For this specific operation, we
utilized the Schunk two-finger gripper, attached to the Kuka LBR arm. The gripper was
configured with a grasping force of 40N, ensuring a secure and controlled hold. To execute
this task, the robot was programmed to approach each fastener, employ the gripper to securely
grasp and remove the bolt from the stack, and then place it into the designated waste basket
close to the task space.

Subsequent to the removal of the fasteners, the UR10e robot, equipped with the star suction
gripper, undertakes the task of removing the module cover plate (Figure 5.9¢, and f) to gain
access to the underlying module stack. Given the weight and geometry of the cover plate,
achieving a specific configuration of channels and precise positioning of the suction cups
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Fig. 5.9. Step-by-step disassembly process for a stack of modules

is crucial. This ensures a secure grip on the cover and establishes an optimal grasp point,
guaranteeing the safe and stable transportation of the cover during removal. For this particular
task, the configured grasping vacuum power was set at 40kPa. This specific parameterization
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is designed to provide the necessary suction force, ensuring a reliable grip and facilitating the
successful and controlled removal of the cover plate by the UR10e robot.

The next task involves the unstacking and sorting of EV battery modules, employing the star
vacuum suction gripper. In this operation, the UR10e robot is tasked with extracting a pair of
modules from a stack and depositing them into a designated recycling basket (Figure 5.9g,
and h). Precision is crucial in this task, requiring the gripper to be accurately positioned on a
suitable surface for effective grasping. It is essential to maintain consistent contact to engage
the suction cups with the material, all while ensuring that the force exerted by the robot
remains within the permissible force limits of the robot. Similar to the cover removal step, the
gripper for this task was configured with a grasping force of 40N. This configuration optimizes
the grip on the modules, ensuring a secure hold during the unstacking and sorting process.

5.4.2 Setup 2

In Setup 2, we introduced several enhancements to our disassembly process as illustrated in
Figure 5.10. Notably, a camera was integrated into the UR10e along with the implementation
of visual servoing, complemented by the utilization of a three-finger gripper (Robotiq). To
ensure precise performance, an initial calibration of the camera was done, the details of this
calibration process are given in the index 7.1.

% components

Fig. 5.10. Setup 2 used for the disassembly of a module stack in Nissan leaf battery pack.

One pivotal addition in this setup is the incorporation of an Angle flange, a component that
provides the robot with the flexibility of attaching two distinct grippers to its EE. This feature
empowers the robot to undertake diverse tasks without necessitating a change in the gripper. A
suction gripper and a screwdriver were employed as the two gripper types in this configuration.
Within our implemented ROS package for visual servoing, three distinct methods have been
incorporated. These include image-based visual servoing (IBVS), position-based visual servoing
(PBVS), and our proposed visual servoing method (Chapter 2). It is important to note,
however, that due to the absence of redundant joints in the UR robot configuration, we are
unable to include a security task during the redundancy resolution process when solving the
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kinematics of the robot. This limitation arises from the non-redundant nature of the robot
joints, which restricts the incorporation of additional tasks in redundancy resolution. Despite
this constraint, the implemented visual servoing methods remain effective in guiding the robot's
movements based on visual feedback for precise and accurate task execution.

Setup 2 also incorporates a linear tracker. By mounting one of the UR10e robots on the linear
tracker, the task space of the robot is significantly expanded, enabling it to operate across a
broader range. The linear tracker’s data cables are connected to the robot's controller, and
with the appropriate URCap, it can be controlled directly from within the robot program using
the teach pendant. URCaps serves as a platform to add accessories that directly operate within
UR robot applications for end-users.

Alongside using VS, another novel task is introduced in this setup, involving the extraction
of a cell from the interior of an opened module and placing it on a designated testbed As
depicted in Figure 5.11. The testbed is purposefully designed to assess the health of the cell,
to determine its reusability. If the cell is healthy, it can be reused; otherwise, it proceeds to
the recycling stage, where valuable materials are extracted. After this assessment, the robot
is programmed to pick up the cell and, based on the testbed’s decision, either place it in an
allocated basket for the subsequent task or direct it toward recycling.

The modified HDVS method builds upon our initial introduction of the hybrid VS model.
Initially, the HDVS model leveraged the advantages of overconstrained robots, which are robots
equipped with redundant joints—having more joints than the number of degrees of freedom
they need to control. This redundancy allowed us to incorporate additional tasks, such as
obstacle avoidance or singularity avoidance, within the null space of the robot. However, in
many industrial robot scenarios, the number of joints is equal to the number of degrees of
freedom, eliminating the option of exploiting redundancy for additional tasks. Despite this
limitation, we have adapted and modified our proposed hybrid method to remain applicable
in these scenarios. Although we may not benefit from the overconstrained nature of the
robot, the modifications introduced in our hybrid decoupled method still offer advantages in
addressing specific challenges (discussed in 1.2), making the approach relevant and effective
even in cases where redundancy is not available. In the proposed visual servoing package, we
have implemented not only the HDVS method but also provided the flexibility to utilize two
other visual servoing techniques: Image-Based Visual Servoing (IBVS) and Position-Based
Visual Servoing (PBVS). Users have the option to simply switch between these three methods
based on their preferences and specific application requirements.

5.4.3 Setup 3

In our subsequent setup, as depicted in Figure 5.12, we employed two Franka arms and one
Kuka LBR. This configuration incorporated a motorized cutter and an e-pick suction gripper
provided by Robotiq. For the cutting task, we initially applied a hybrid force and position
control method, utilizing a marker as a gripper. This demonstration showcased the controller’s
ability to trace the borders of a dummy module while maintaining constant contact with its
surface. The resulting lines produced by the marker on the module can be observed in Figure
5.13a. The cutting algorithm comprises two nested control loops: an outer loop for ensuring
the Cartesian x and y directions of the cutter tip, and an inner loop for maintaining contact
of the cutter tip with the module surface by monitoring the z component of Cartesian force
at each step. The inner loop operates at a higher frequency, and when the detected force is
below the desired threshold, the robot moves further in the z-direction until the specified force
threshold is reached. Moreover, when the detected force is higher than the threshold the robot
will move up until the force is in the boundary. The boundary should change for each material
and here we choose the 4N < F < 8N to be between 4N and 8N for the dummy module. It is
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¢) Using the modified HDVS to track a dynamic module f) Image screen and trajectory (green)

Fig. 5.11. Visual representation of the 2 new tasks introduced in the setup 2. Sub-figures (a)
and (b) demonstrate the task of extracting a cell from an opened module. Sub-figures (c)
and (d) illustrate the subsequent placement of the cell on the designated testbed for health
assessment. Sub-figure (&) shows the use of visual servoing to track a dynamic module and
sub-figure (f) illustrates the camera FOV, where the green trajectories are the path of each

feature (red signs).
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Fig. 5.12. Setup 3 used for the disassembly of a module stack in Nissan leaf battery pack.

important to note that the z-direction of the robot’s motion is constrained as well to prevent
damage to both the cutter and the module.

In the subsequent phase of our experimentation, we utilized a custom-designed motorized
cutter tool to demonstrate the effectiveness of our proposed control algorithm in cutting
through the borders of cardboard, serving as a proof of concept (Figure 5.13b). Furthermore,
the execution of a dual-arm cooperative task for cell separation, as outlined in reference [128],
was accomplished using two Franka robots (Figure 5.13c, and d).

Furthermore, additional experiments were conducted using a RealSense camera in tandem
with the proposed RL-based VS (detailed in Chapter 3) for the task of sorting cells within
the battery module. The advantage of VS lies in its capacity to dynamically correct the
robot’s position based on the error generated between the current and desired features of
the object in the image. This alleviates concerns about potential variations in the position
of the robot's base or alterations in the environment, as the controller consistently adapts to
correct these errors. Figure 5.13e provides a visual representation of the image screen and the
robot equipped with the suction and camera. It is noteworthy that the red markers indicate
the desired positions of features in the image, while the green trajectories represent the path
travelled by the robot to reach the current features. Once the errors converge to zero and the
features align, the robot's precise position relative to the object becomes known. Subsequently,
the robot executes precise movements, guided by detected contact forces, to vacuum the cells
and sort them into designated baskets around the scene (Figure 5.13f).

5.4.4 Setup 4

In the final demonstration setup, illustrated in Figure 5.14, heavy-duty industrial robots and
grippers have been used. This configuration consists of two Kuka KR500 robots and one Kuka
KR16 arm. The Kuka KR500 is categorized in heavy-duty industrial robotics, characterized by
its remarkable payload capacity (500kg) and expansive range of motion. KR500 belongs to the
KR QUANTEC series and is engineered for applications demanding robustness and strength.

103



| peEUSE & \
FECYCLING OF 3
UTHIUM-ION

B BATTERIES

e) Using VS to follows cells inside a module f) Sorting with the help of VS

Fig. 5.13. Experiments were conducted using Setup 3.

With a high payload capability, the KR500 excels in material handling, welding, machining, and
other industrial processes that necessitate the handling of substantial loads. Its versatility and
precision are further enhanced by the Kuka KRC4 controller, providing advanced programming
and control functionalities. On the other hand, the Kuka KR16 embodies precision and
agility. As a compact industrial robot, it is engineered for applications that prioritize accuracy
and lightness. Industries such as electronics, assembly, and laboratory settings benefit from
the KR16's dexterity and control precision. Coupled with the Kuka KRC4 controller, this
robot executes tasks that demand careful handling and intricate manoeuvres, showcasing its
adaptability in applications where a lighter touch is key. The integration of Kuka KR500 and
Kuka KR16 robots creates an optimal configuration for the disassembly of a battery pack,
providing a fusion of precision and heavy-duty capabilities.
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Fig. 5.14. Setup 4, used for some demonstration in disassembly of Nissan leaf battery pack.

The KR16 is mounted on a linear tracker, expanding its workspace capabilities, while a 2-axis
positioner allows versatile positioning of the Nissan Leaf battery pack, enabling task execution
from different angles. An impact wrench was attached to the EE of the KR16 for unbolting.
Within this setup, one KR500 robot is equipped with a vacuum gripper, a RealSense D435
camera, and a force sensor. Another robot, a Kuka LBR, is attached to the wrist of the other
KR500, enabling it to perform more delicate tasks. This tandem arrangement significantly
expands the workspace of the Kuka LBR, as the KR500 can reposition the base of the LBR
robot as needed. The robots could be controlled through their teach pendant or using Kuka
Sunrise software and Java language or via MATLAB.

Figure 5.15 provides a visual representation of one KR500 robot picking up the heavy lid of
the battery pack and precisely placing it in the designated position. Additionally, the KR500
demonstrates the pick-and-place capability of modules using a vacuum suction gripper. The
integration of the VS package and the Model-Based Tracker enhances the robotic capabilities for
vision-related tasks. It is crucial to note that the camera should undergo calibration for optimal
performance within this robotic system. The conducted VS with the KUKA KR Agilus robot
in Figure 5.16 serves as a demonstration illustrating the versatility of the proposed package for
application across various types of industrial robots and cobots. Besides, the Model-Based
Tracker package is also adaptable to be used in various setups. Through camera calibration on
the robot’s wrist (index 7.1), these two packages directly would integrate into the system. The
Visual Servoing package provides a dynamic solution by generating Cartesian velocity commands
through three distinct topics, accommodating various visual servoing methods including, IBVS,
PBVS, and DHVS (detailed in Chapter 2). Simultaneously, the Model-Based Tracker package
enhances the setup by providing the 3D positions of tracked models, empowering the robot to
execute movements with different tools for diverse tasks (detailed in the section 5.2). The
package offers multiple tracking options, catering to textureless and textured objects, and a
hybrid approach, demonstrating robust tracking capabilities. ROS integration and compatibility
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¢) Using vacuum gripper to pick modules and d) sort them with Kuka KR500

Fig. 5.15. Some of the performed experiments with Setup 4.

with popular programming languages contribute to the adaptability of both packages in both
simulation and real-world scenarios.

Fig. 5.16. Utilizing the suggested Visual Servoing (VS) package to track a marker attached
to a quadcopter.
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5.5 Teleoperation

As previously discussed, teleoperation provides the operator with the capability to remotely
control robots, ensuring safety and facilitating tasks that require human flexibility. In this
scenario, we employed two distinct master devices for teleoperating the slave robot, and a
comparison was conducted between these two methods. The experimental setup is illustrated
in Figure 5.12.

In this research, we used a custom-designed impact wrench tool capable of accommodating
various fastener sizes. To facilitate low-power cutting tasks, a motorized slitting cutting tool
was specifically designed for the low-payload cobots featured in this study. When it comes to
pick and place operations, the Franka Hand two-finger gripper was utilized for handling thin
and lightweight waste items like bolts and plates, while the Robotiq EPick suction gripper was
employed for larger and heavier materials such as battery modules.

5.5.1 Teleoperation using haptic device

A common approach for executing teleoperation tasks involves the use of a cost-effective,
handheld platform, such as a haptic device, in conjunction with a robot within a master-slave
configuration. In this specific approach, we examine the pairing of a Phantom Omni haptic
device with a Panda cobot, as depicted in Figure 5.17. The difference in Degrees of Freedom
(DoFs) between the Omni and Panda robot, or any over-actuated robot in general, imposes
limitations, preventing independent control of all robot DoFs. This limitation necessitates the
establishment of a mapping function, aligning the joint positions of the haptic device with
those of the slave arm. The mapping is often achieved by mirroring the Cartesian pose or twist
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Fig. 5.17. Overview of the telemanipulation framework featuring the Phantom Omni haptic
device and Franka Emika Panda cobot. The term FK represents the forward kinematic mapping,
linking the follower joint configuration gy to the end-effector pose x.

of the haptic end-effector to that of the slave robot, offering an intuitive framework for users
to position the robot for task execution. However, this approach introduces susceptibility to
singularities and joint limits during inverse kinematics/dynamics calculations to determine the
required joint-space motion. Additionally, the smaller range of motion provided by the Omni,
both in joint and task space, presents a trade-off between the speed of coarse motion and
the precision of fine positional alignment. This trade-off involves either scaling the motion of
the haptic device to achieve larger robot motions or directly mapping the motion, potentially
even reducing it. Furthermore, the limited force capabilities of the haptic device hinder a 1:1
mapping of force feedback from the robot to the haptic device. Consequently, the feedback
may feel unnatural or fail to provide sufficient cues for the operator, especially when safety
limits on force are exceeded.
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5.5.2 Telemanipulation using two identical cobots

Alternatively, we explore a telemanipulation setup employing two identical Franka Emika Panda
cobots configured in a master-slave arrangement (Figure 5.18). In this configuration, the user
directly controls the master Franka arm, and its movements are directly replicated by the
slave arm. Since both robots share an identical configuration, joint positions, and torques
can be seamlessly transferred between them in a 1:1 mapping. While this mapping ensures
natural and responsive user feedback, it also introduces potential safety risks as the user may
be exposed to the full forces involved in specific tasks.

The joint space control of both arms offers advantages in handling singularities and joint limits,
overcoming challenges associated with mapping Cartesian end-effector poses from the master
to the task space of the slave robot. However, this control scheme may present challenges in
performing tasks along specific directions, such as bolt removal or cutting, making them more
complex and less intuitive for the user.
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Fig. 5.18. Telemanipulation framework utilizing two identical Franka Emika Panda cobots.

5.5.3 Methodology

To establish a virtual coupling between master and slave devices, we begin by considering the
dynamic equation of a rigid N-link manipulator in joint space:

M(q)q+C(q.q) +g(q) = Text + T (5.1)

Here, M € R¥N C(q,q) € RVN g(q) € RN represent the joint-space inertia matrix,
Coriolis and centrifugal matrix, and gravitational torques, respectively. Additionally, Tex €
RN and 7 € RN are the vectors of external and control torques acting on each link, with
subscripts / and f denoting master and slave, respectively.

Given the haptic device's limitations, achieving a 1:1 mapping between g; and gy is impractical
due to discrepancies in kinematic degrees of freedom and joint ranges compared with the
Franka arm. Consequently, either mapping the joint space onto a reduced subset of the robot's
full joint space or operating in a mutual task space is required. In this work, we employ a
6DoF Cartesian mapping for motion control of the slave Franka arm with the Phantom Omni
master arm. As the operator moves the master arm within its workspace, we compute the
delta Cartesian pose PTA, which is then mapped to the end-effector delta pose ¥TA via the
workspace transformation:

FRA FtA

Fopa =0T .PTy = 01

(5.2)
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Fig. 5.19. Cartesian mapping for the master-slave teleoperation setup between the haptic
device and Franka arm.

Here, I;T is the homogeneous transformation matrix from the Franka arm’s base frame to the
Phantom Omni's base frame, and “TA and PTA represent the delta transformation matrices
for the Franka and Phantom, respectively. The position and orientation components of “TA
are assigned to the desired velocity @, allowing us to compute the task space pose error
ex = ¢y — x; for the slave arm. The control law for the slave arm is then given by:

Ty = JT (-K,ex —KuJgr) + Cgy) + g(qy) (5.3)

Here, J € RV*6 is the slave manipulator Jacobian mapping joint to end-effector velocities, and
K, and K, are controller stiffness and damping matrices, respectively. This results in the
desired closed-loop dynamic behaviour:

A:Bf + Kd:l?f + erx = Fext (5.4)

Force feedback is crucial for a bilateral teleoperation system, providing the user with a tactile
perception of the slave robot’s environment. The external force vector Feoy; experienced at the
Franka end-effector is transformed with respect to the Phantom, enabling the user to receive
the force as Fj:

Fi=G- T Foyy (5.5)

Because of the disparity in force capabilities between the master and slave devices, the feedback
is adjusted by a factor of G = 0.1. This factor was empirically determined by comparing the
maximum expected force across all tasks using preliminary data and scaling it to the haptic
device's maximum force capabilities (3.3N). To minimize distortion of the force feedback and
maintain consistency with the constant 1:1 feedback of the identical cobot setup, this factor
was kept constant across all trials.

An essential aspect of the task space control scheme is addressing singularities and joint limits.
In this scenario, a null space position regulation term is incorporated into (5.3) to prevent
encountering joint limits. In contrast to pseudoinverse control, where large solution values can
be obtained, the controller design in (5.3) results in singularities being observed as the torque
command 7 tends toward zero along the singular directions.
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For the Franka arm, we employ a joint impedance control scheme that directly maps the joint
configuration of the master arm to the slave arm (Figure 5.18). The control law is defined as
follows:

TF = —erq _Kdeq"'c(qf) +g(qf) (56)

where e, = gy — q is the joint space error. represents the error in joint space. This leads to
the closed-loop dynamics in joint space for the slave arm.

Mgy +Kie, + K, e, = Text (5.7)

To deliver force feedback to the user, the master control torques are computed as follows:
T = Text — Kaiqu (5.8)

In general, note that the model parameters C and g are subject to uncertainty, leading to
reduced tracking performance and the presence of steady-state error in both controllers. Tuning
of the control gains K, and K, followed a similar process as that for G, through preliminary
experiments, in line with other comparative studies like [129]. Specifically, the value of K, was
incrementally increased for each control strategy on the slave arm in isolation until instability
occurred, while K; was set to achieve critically damped behavior. This tuning approach
enhances tracking performance in free space and minimizes the impact of uncertainties in the
model parameters C and g. For the joint control strategy, the gains were scaled down based
on the torque capabilities of each joint.

Considering the higher forces applied to the master and the low stiffness of the human operator,
an additional damping term K, is introduced to the master's response. The value of K,
was determined by identifying the minimum damping value assigned to all joints, aiming to
suppress oscillations resulting from feedback effects in the bilateral master-slave coupling.

5.5.4 Teleoperation experiments

For each task, the operator is presented with two fixed camera views of the module stack. In
all tasks except cutting, these camera views remain constant throughout. For the cutting task,
the operator is provided with two camera views of a material holder containing the cutting
workpiece. Before starting each task, both the master and slave robots are initialized to a
home position in joint space, maintaining consistency across all tasks. The following provides
a more detailed explanation of each task. Figure 5.20, illustrates the experimental case studies
conducted in order.

e Unbolting: In this task, the goal is to unfasten a set of four bolts securing an individual
stack of modules. The operator utilizes a motorized universal socket wrench tool attached
to the robot's wrist. Success is achieved when the bolt becomes manually removable
without further unscrewing. If the success condition is not met on the first attempt or
the robot's configured force thresholds (40N) are exceeded, the task is considered a
failure.

e Removing Fasteners: Following the unbolting stage, the next step involves extracting
each fastener from the stack before removing the cover. For this task, the Franka hand,
configured with a grasping force of 50N, is employed. The operator must manoeuvre the
hand to each fastener, grasp and remove the bolt from the stack, depositing it into a
container. Due to limited camera views, the operator relies on a combination of tactile
and visual exploration. Failure occurs if the bolt is not successfully grasped on the first
attempt or if the grasp is lost outside the target container.
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Fig. 5.20. Procedure of an electric vehicle (EV) battery disassembly detailing the case studies
explored in sequence.

¢ Removing Module Cover Plate: After fastener removal, the operator proceeds to
take off the module cover plate to access the underlying module stack. Considering
the weight and geometry of the cover plate, finding a suitable grasp point is crucial
for safe transportation. The configured grasping force is increased to 60N for all
experiments. Failure conditions include an unsuccessful first grasp or losing the grasp
during transportation.

e Sorting Modules: This case study involves unstacking and sorting EV battery modules
using a vacuum suction gripper. The operator must remove a pair of modules from a
stack and deposit them into a container. Visual positioning of the gripper and maintaining
contact to engage the suction cups without exceeding force limits are essential. Similar
to the cover removal, failure conditions include an unsuccessful first grasp or losing the
grasp during transportation.

e Contact Cutting The operator cuts a planar material along a visually marked path using
a slitting saw tool. As a benchmark, cutting a cardboard sheet is considered. Tactile
feedback controls the cutting force, while visual feedback ensures precise positioning
along the marked path. Failure occurs if the cut deviates more than +2.5mm from the
desired path’s centroid or if the cut is incomplete along parts of the path.

5.5.5 Teleoperation results

For each case study, Table 5.4 provides a comprehensive summary of the overall success rate
and average completion time across all trials. The success rates for all tasks consistently
surpass or equal 50%, with the lowest rate of 50% noted for the identical cobot in the task of
bolt removal. Most tasks achieve success rates exceeding 75%, showcasing the viability of the
module stack disassembly process using both cobot and haptic device telerobotics platforms.
Figure 5.21 illustrates selected teleoperation tasks, showcasing the operator's engagement in
the disassembly process using the proposed telemanipulation setup.

Comparing the two platforms, success rates are generally comparable for unbolting and bolt
removal, with the operator’s success rate 10-15% higher than the identical cobot case. Failures
in bolt removal trials are attributed to misalignment, constituting 17% of failures, rising to
30% with identical cobots. Other causes include loss of grasp during bolt extraction (15%
for both platforms) and releasing the bolt outside of the box (5%, 2.5% for haptic and cobot
respectively).
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Fig. 5.21. Various teleoperation tasks are depicted, offering a visual representation of the
operator's involvement in the disassembly procedures through the telemanipulation system.

Cover removal emerges as the simplest task, achieving a 100% success rate across all operator
trials with both platforms. In contrast, notable differences arise in unstacking and cutting
tasks, where the identical cobot underperforms by 30% in the former and outperforms by 20%
in the latter. The challenges in unstacking stem from the design mechanism of the vacuum
suction gripper, requiring direct contact and perpendicular orientation for a successful grip.
Manipulating the suction gripper’s position and orientation in Cartesian space with the haptic
platform yields a higher success rate than in joint space with the identical cobot, where failures
occur due to orientation misalignment.

The findings from cutting trials underscore the significance of force feedback. The identical
cobot platform exhibits a higher success rate because force feedback is maintained at a 1:1
scale, while the haptic platform scales it down due to limited force capabilities (Eq. 5.5).
Consequently, the user does not experience the fully scaled forces exerted on the end-effector
during cutting. Failure causes in the cobot platform include deviations from the desired path,
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Table 5.4
Assessing performance metrics for disassembly tasks during telemanipulation utilizing the
Phantom Omni haptic device and an identical cobot (Franka) platform.

Haptic Franka
Success rate[%] Avg. time[s] Success rate[%] Avg. time[s]
Unbolting (4x) 95 188+23 85 124+13
Nut/bolt removal (8x) 63 713+89 50 410+63
Cover removal 100 101+15 100 70+6
Sorting modules (2x) 90 179+19 60 7745
Cutting 60 122+26 80 95+18
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Fig. 5.22. A detailed task trial breakdown of completion times between the Haptic and
Franka telemanipulation masters. Data are excluded if the failure condition is met before
task completion, typically due to a violation of configured force limits. Tasks are categorized
into four phases: an initial " Coarse” phase involving approximate visual tool alignment, a
"Fine" phase requiring precise visual and tactile alignment, an " Action” phase involving the
task-specific action (e.g., unbolting, cutting), and a "Place” phase where the user deposits
grasped objects.

while the haptic platform failures result from shallow, incomplete cutting or exceeding the
robot’s force limits.

Figure 5.22 provides a detailed breakdown of task completion times by trial, illustrating the
time spent in each stage of the trials. The stages include a " Coarse” stage for rough visual
alignment, a "Fine" stage for precise positioning, an " Action” stage for task interaction, and a
"Place” stage for object release after successful grasping. The breakdown aids in interpreting
the operators’ efforts in completing each stage with respect to the two comparable platforms.
Upon reviewing Figure 5.22, it is evident that the identical cobot platform achieved shorter
average completion times across all tasks compared to the haptic platform. Notably, the
most substantial difference in average time between the two platforms is observed for the
bolt removal and sorting tasks, taking approximately 1.7 to 2.3 times longer to complete on
average with the haptic device. Task completion times were consistently more stable between
trials with the identical cobot platform for all tasks.

For a comprehensive comparison of the effect on completion time across tasks, the Standardized
Mean Difference (SMD) effect size metric is employed. Values of |[SMD| > 0.8 indicate a
significant effect, while the converse suggests a small or marginal effect. In the context of
the module stack disassembly case study, the highest proportion of time was dedicated to
unbolting and removing the retaining fasteners. This is evident in Figure 5.22a and 5.22b,
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where the 'fine’ stage comprises 60%, 63%, and 47%, 50% of the average task completion time,
respectively, for both platforms. Therefore, the fine alignment stage significantly contributed
to the overall reduction in task completion speed. This implies that regardless of the platform
used, unbolting and bolt removal were the most demanding tasks, requiring a combination
of precise visual and tactile alignment of the tool to successfully accomplish the disassembly.
However, the SMD values for unbolting and bolt removal are 1.09 and 1.24, respectively,
indicating significant improvements afforded by the identical cobot.

Operators + Interface Experimental Setup
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Fig. 5.23. This figure depicts the teleoperation setup where a haptic device and an identical
robotic arm are employed as master devices to teleoperate slave robots for the tasks of
unbolting and sorting.

(a) (b)

Fig. 5.24. Defining boundaries around the human demonstrator trajectories, (a) for the task
of unbolting, (b) for the task of sorting.

Following this study, we have leveraged some of the demonstrations to perform unbolting
and sorting tasks (Fig 5.23). Subsequently, we depicted the convex hull created around
these demonstrations in Fig 5.24. These convex hulls represent initial demonstrations to
highlight the potential of our approach. The bounded workspace would be later used in
Reinforcement Learning to automate and optimize these tasks. By confining the workspace, we
limit the search space for the RL agent, with a higher probability of finding optimal solutions
in these constrained areas. The concept of utilizing these limited bounds extends beyond
the proposed applications in this study. Once reward functions are defined for specific tasks,
these precomputed bounded workspaces can be readily employed to boost the RL process in a
variety of real-world scenarios. This flexibility in applying our method proposed in Chapter
4 underscores its potential to significantly accelerate the development and deployment of
RL-based solutions.
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5.6 Conclusion

In conclusion, Chapter 5 provides a comprehensive overview of the experimental setups and
disassembly tasks employed in battery disassembly, showcasing the versatility of various robotic
systems. The integration of robots, grippers, haptic devices, vision systems, and advanced
techniques such as deep learning, model-based tracking, and visual servoing is highlighted.
The chapter thoroughly explores specific disassembly tasks, shedding light on their objectives,
challenges, and the pivotal role played by different approaches. The visual context provided
through images enhances the understanding of both setups and procedures. Moreover, This
study investigated the telerobotic disassembly of a module stack from the Nissan Leaf 2011
battery pack. The research conducted a comparative analysis involving two distinct setups: a
master-slave configuration employing a haptic device to control a cobot, and a scenario with
two identical cobots. The evaluation focused on assessing the success rate and completion time
across various tasks, including unbolting, bolt extraction, cover plate grasping and removal,
module sorting using a suction gripper, and contact cutting. The findings from this study
provide valuable insights into the performance and efficiency of these setups, shedding light on
the strengths and limitations of each configuration in the context of battery disassembly.
Moreover, we demonstrated that our proposed Visual Servoing and Model-Based Tracker
packages have shown adaptability to various platforms and support different programming
languages in both simulation and real-world scenarios. The prerequisite for deploying these
packages is the calibration of the attached camera on the wrist of any robot, as explained in
section 7.1. For the VS package, the calculated Cartesian velocity commands are transmitted
as twist messages through three distinct topics, corresponding to the IBVS, PBVS, and DHVS
methods. Additionally, the Model-Based Tracking package provides the 3D position of each
model in the camera frame. This enables the robot to move accordingly, allowing for the
use of different tools to perform diverse tasks. The package includes models for tracking
both modules and bolts. However, by incorporating the CAD model of each component, the
package can be extended to detect and localize various components. Users are provided with
three tracking options: Moving Edge Tracker for objects without texture, KLT Key points
Tracker for objects with textured surfaces, and the Hybrid Tracker, which combines both
approaches. Future work will concentrate on assessing the impact of variable autonomy on
task completion performance within the framework of the disassembly case studies presented.
Additionally, there is the possibility to incorporate our proposed workspace bounding approach
from Chapter 4. This involves merging the data obtained from human demonstrations with
RL techniques to automate and further enhance tasks that are currently performed manually
through telemanipulation. This integration aims to bring about advancements in the efficiency
and automation of the disassembly processes, leveraging both human expertise and machine
learning algorithms.

Data availability

The data supporting the findings presented in this chapter are also available in the following
GitHub repositories:
https://github.com/aaflakiyan/TouchX-Teleoperation-Matlab-R0OS
https://github.com/aaflakiyan/DHVS
https://figshare.com/articles/media/Robotic_Disassembly/25498360
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Conclusion

In conclusion, this PhD project represents important steps towards improving the capabilities
of robotic manipulation systems by integrating artificial intelligence techniques with computer
vision methods. The study is divided into multiple chapters, each of which focuses on a
different aspect of the main objective. The journey begins with the optimization of hybrid
visual servoing approaches, addressing convergence issues and introducing adaptive gains and
neuro-fuzzy neural networks for enhanced control precision and robustness. The study explores
further the integration of RL with visual servoing, extending Al intervention from image spaces
to joint spaces. Incorporating expert demonstrations into the learning process, this extension
results in faster and more effective learning. The research then extends into the domain
of contact-rich manipulation tasks, introducing a RL framework to navigate complex and
uncertain environments. This framework enhances the robustness and adaptability of robotic
systems in tasks like compliant path-following. In this study, human demonstrations are also
utilised to limit the agent’s workspace, preventing it from exploring unnecessary areas and
avoiding sub-optimal solutions. Finally, the practical applicability of the developed methods
through a series of experiments that explore battery disassembly in the context of various
robots, grippers, haptic devices, and deep learning techniques has been investigated.

In the following sections, we will go over a summary of the key findings from the research.
This investigation will not only highlight the accomplishments and advancements made in the
integration of Al and computer vision with robotic manipulation but will also openly discuss
the limitations that have been identified. Following the summary of key findings, the focus
will shift to recognising these boundaries and constraints encountered during the research
process. These constraints are essential for understanding the scope and applicability of the
developed methodologies. Furthermore, an examination of possibilities for future research is
explained. Identifying and addressing these future research directions is critical to the field's
ongoing development and the refinement of existing approaches. Finally, the story progresses
into the realm of applications. The practical implications and potential applications of the
techniques that have been developed will be explained, understanding where and how to apply
these methodologies.

6.1 Summary of key findings

In this section, the summary of key findings from my research is explained.

In chapter 2, the proposed Hybrid Decoupled Visual Servoing (HDVS) method emerges as a
robust and optimized solution to address limitations inherent in classical 2D, 3D, and Hybrid
visual servoing methods. The key findings can be summarized as follows:

e Decoupling and Optimization: HDVS effectively decouples rotations and translation in
the Z-axis, regulating these decoupled errors to zero through 3D reconstruction of visual
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features while regulating X-axis and Y-axis errors in 2D. This decoupling strategy leads
to optimized solutions for both the end effector and trajectories in the image space.

Neuro-Fuzzy Approximation: The use of the Local Linear Model Tree (LoLiMoT)
neuro-fuzzy neural network enhances the control system'’s robustness, approximating the
pseudo-inverse of the interaction matrix. This not only reduces computational expenses
but also ensures the avoidance of singularities and ill-conditioning, making the method
more resilient to image noises and camera parameters.

Adaptive Gains and Damped Least Square: The incorporation of adaptive gains expedites
the visual servoing operation, contributing to reduced convergence times. The application
of the Damped Least Squares method mitigates robot singularities and smoothes
discontinuities, further enhancing the method's performance.

Enhanced Performance Metrics: Comparative evaluations against classical image-based,
position-based, and hybrid visual servoing methods, conducted both in simulation and
with a 7-degree-of-freedom arm robot in the real world, reveal superior performance.
HDVS demonstrates more efficient optimized trajectories, shorter camera paths, and
heightened manipulability compared to existing methods.

Robustness and Object Tracking: HDVS exhibits robustness to camera calibration and
image noises, outperforming classical position-based visual servoing methods. Further-
more, the method reduces the likelihood of losing the object from the camera’s field of
view, ensuring a more reliable and controllable robotic manipulation process.

Chapter 3 presents a significant advancement in the integration of RL techniques with the
visual servoing method. Key findings include:

Expansion to Joint Space: The incorporation of RL techniques extends the VS method
beyond image spaces to the joint space of the robot, establishing a direct mapping from
image features to desired joint velocities.

Addressing Data Insufficiency: A novel approach is introduced to mitigate the data
insufficiency challenge inherent in RL. By leveraging demonstrations from multiple
controllers, the method combines RL, Learning from Demonstration (LfD), and Ensemble
Learning, resulting in a more efficient learning paradigm.

Case Studies and Performance Improvement: Two case studies demonstrate the efficacy
of the proposed method. Notably, the integration of a hypercube to constrain the action
space significantly reduces training time, resulting in a 51% reduction in achieving the
desired performance level compared to RL alone. The method also exhibits improved
performance compared to classical VS methodologies.

Bounding Actions: Four methods for bounding actions of the RL agent during training
are explored, with the convex hull and modified loss function (AORLD-HL) proving the
most effective. This method enhances the exploration-exploitation trade-off, leading to
improved average reward progress during training.

Versatility: The AORLD method shows versatility in adapting to various expert supervisors
and provides a promising approach for addressing challenges in high-dimensional action
spaces.
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Chapter 4 introduces a framework for learning contact-rich tasks using Reinforcement Learning
(RL), with a focus on robustness to parametric uncertainties. The key findings include:

e Curriculum-Based Domain Randomization (DR): The proposed RL method employs
curriculum-based domain randomization with a time-varying sampling distribution. This
approach enhances the robustness of the policy to parametric uncertainties in the robot-
environment system, demonstrating superior performance in compliant path-following
tasks.

e Improved Trajectory Accuracy: Evaluation in simulation for compliant path-following case
studies reveals a substantial improvement in trajectory accuracy compared to traditional
methods. The RL approach shows approximately 15 times improvement over a previous
Learning-Based Model Predictive Control (LBMPC) method and 18 times improvement
over a Virtual Forward Dynamics Model (FDM) approach.

e Boosting RL with Human Demonstrations: A novel approach is introduced to boost
deep RL using human demonstrations and offline workspace bounding. The method
reduces the search space, expedites learning, and improves the policy's performance and
resilience to local minima.

Chapter 5 of the thesis focuses on the experimental setups and disassembly tasks involved in
battery disassembly using various robotic systems. The key findings include:

e Versatile Robotic Systems: The chapter highlights the versatility of robotic systems,
including robots, grippers, haptic devices, vision systems, and advanced techniques such
as deep learning, model-based tracking, and visual servoing.

e Showcasing Disassembly Tasks: Specific disassembly tasks, such as sorting, unbolting/un-
screwing, cutting, and teleoperation, are thoroughly described. The chapter provides
insights into the objectives, challenges, and the crucial role of different components in
executing these tasks.

e Vision Methodologies: The exploration extends into vision methodologies, with a focus
on model-based tracking and deep learning approaches. Model-based tracking involves
using component models to determine 3D positions from 2D images, while deep neural
network models, trained using transfer learning, autonomously detect objects in the
camera scene.

e Telerobotic: A comparative analysis of two distinct setups for telerobotic disassembly of
a module stack from the Nissan Leaf 2011 battery pack is presented. The evaluation
assesses the success rate and completion time across various tasks, providing valuable
insights into the performance and efficiency of each configuration.

e Adaptability of Visual Servoing and Model-Based Tracker Packages: The study demon-
strates the adaptability of the Visual Servoing and Model-Based Tracker packages to
various platforms and programming languages in both simulation and real-world scenar-
ios. These packages enhance robot movements based on calculated Cartesian velocity
commands and provide 3D positions of tracked components.

e The Visual Servoing and Module Tracker packages are provided in two versions for different
needs. The standalone C++ version ensures flexibility and independence, enabling users
who may not be utilizing the Robot Operating System (ROS) to incorporate the
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functionalities into their applications. On the other hand, the ROS-compatible version is
designed to integrate into ROS-based robotic systems, taking advantage of ROS features
like communication between nodes, topics, services, and visualization tools. This version
facilitates integration with other ROS packages and tools.

6.2 Limitations

In this section, we will elaborate on the limitations associated with each proposed method and
algorithm introduced in this thesis.

6.2.1 Algorithmic Limitations

HDVS Approach (Chapter 2): While the HDVS approach, introduced in Chapter 2, show-
cases impressive capabilities, it is important to acknowledge certain limitations, including
adaptability to high dimensions, sensitivity to camera model and impact of structural changes
in camera mount. The HDVS method is currently optimized for scenarios involving four
features in the image, with predefined desired convergence points. This design choice caters
to specific applications where the same number of features are considered. However, there
are applications in which the user needs to define more features, and the input space of the
NN will increase. Investigating the adaptability of the learning method to higher dimensions
needs further investigation. In this study, we exclusively applied the HDVS with the LoLiMoT
neural network to the Franka robotic arm and its specific camera structure. For other camera
platforms (with new extrinsic parameters), a modified version of our proposed method (we call
it DHVS) was utilized. The modification involves excluding the learning component responsi-
ble for approximating the proposed image Jacobian matrix. The core methodology remains
consistent with the approach employed for the Franka arm, with the necessary adjustments
made to accommodate the new parameters. Therefore, to use HDVS for alternative robots
and camera structures, one needs to collect relevant data with the specific setup of interest
and subsequently retrain the model. This retraining procedure ensures the adaptability of the
HDVS method to provide the camera’s desired velocities based on the unique structure of the
new setup.

Reinforcement Learning for Visual Servoing (Chapter 3): In chapter 3, we have
investigated the Use of Reinforcement learning for the task of VS with stationary robots. Utiliz-
ing RL for VS introduces notable advantages, particularly in addressing issues related to robot
control and image Jacobian calculations. However, it comes with limitations to the chosen
robot and camera structure in training. Despite the comprehensive integration of both image
space and robot control in RL for VS, the trained RL policy is highly specific to the model of the
chosen robot. The mapping of feature errors to joint velocities is linked to the geometry and
kinematics of the robot involved in the training process. Consequently, deploying the RL-based
VS method on a different robot type requires the repetition of the training process. However, it
should be mentioned that the proposed AORLD approach can be applied to a broad spectrum of
applications where systematic controllers exist, and the objective is to enhance their behaviour.
This broader applicability underscores the versatility of AORLD across diverse scenarios, mak-
ing it a valuable tool for improving the performance of systematic controllers in various contexts.

Simulation-based Policy Development (Chapter 4): A notable limitation from Chapter 4

lies in the fact that all experiments conducted, involving the application of RL and curriculum-
based domain randomization to develop a robust policy for environments with uncertainties,
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were carried out in simulation. The transition from simulation to the real-world scenario
introduces a set of challenges, particularly due to the inherently contact-rich nature of the task
which could be studied in future works. The study aimed to showcase the possibilities and
demonstrate the effectiveness of our method primarily in simulation, serving as a foundation for
understanding its potential real-world applications. However, the simulation environment may
not perfectly replicate the complexities and dynamics of the actual contact-rich interactions
that occur in the real-world setting. Therefore, the inherent challenges of translating simulation
results to real-world performance, especially in tasks involving significant physical contact,
highlight a limitation that should be acknowledged.

Deep Learning for Object Detection (Chapter 5): Another limitation of this thesis
pertains to the deep learning method, introduced in chapter 5, which could be enhanced
through the expansion of the dataset and fine-tuning of training parameters. The inclusion of
this section aimed to showcase the potential of employing deep learning for object detection,
an alternative to initializing the image in the model-based tracker. Further improvements in
the deep learning model’s performance may be achieved through a more extensive dataset and
optimization of training parameters to develop a more robust object detector. Moreover, in
the model-based tracker package, while the tracker offers adaptability, the scope is limited to
the CAD model of each component. Therefore, extending the package to detect and localize
various components requires incorporating CAD models.

6.2.2 Hardware and Structural Limitations

Camera Setup and Mounting (Chapter 2): It is noted that changes in the camera setup,
such as replacement or adjustment, necessitate retraining of the HDVS model. The model’s
robustness to camera calibration is evident, but significant structural changes in the camera
mount, such as tilting or rotating, present challenges that require pre-training the model
to handle various angles. This limitation is particularly relevant in scenarios where frequent
changes in camera setup are necessary.

Real-world Applications (Chapter 4): The reliance on simulation for developing and
testing the RL and curriculum-based domain randomization methods limits the direct appli-
cability of the results to real-world scenarios. The inherent differences between simulated
environments and real-world contact-rich interactions could affect the performance of the
developed policies when applied to actual tasks.

6.3 Implications for future research

Task Planner Development: The outcome of the battery disassembly project would be
to create a general task planner. This would be a big step for future research. This task
planner would serve as a higher-level decision-making component, determining optimal actions
for various robotic systems and grippers during the disassembly process. By leveraging the
information about the environment obtained through various sensors, the task planner can
intelligently allocate specific tasks to different robots and grippers. It would strategically plan
the sequence of actions to streamline and optimize the overall disassembly process. Using a
well-designed task planner aims to enhance efficiency, reduce processing time, and ensure the
systematic execution of disassembly tasks, contributing to the advancement of automation
in disassembly projects. In this thesis, we have focused on various tasks individually. Our
proposed approaches involve the integration of artificial intelligence with vision and robotic
control, resulting in the development of robust algorithms designed to address various sorts
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of challenges. Moving forward, an important direction for future work involves incorporating
the developed algorithms into a unified task planner. This task planner not only does routine
disassembly tasks but also learns and gets better over time (utilizing the power of RL).

Deep Learning Expansion: Another possible future work for the disassembly project includes
exploring the integration of deep learning not only for specific component detection but also
for identifying the car company that utilizes each component. This extension could broaden
the scope of the disassembly project. Additionally, using more robust and advanced YOLO
methods in future setups could enhance the accuracy and efficiency of component detection,
localization, and segmentation. Furthermore, future works could explore the application of
deep learning techniques to detect defective and distorted objects within the disassembly
process. Implementing a system that considers the percentage of defectiveness could enhance
the precision and adaptability of the disassembly process, contributing to a more efficient and
reliable overall system. This ability would enable the system to identify issues in components
and take appropriate actions, such as sorting, handling the task by an operator, or telema-
nipulation from a distance, based on the degree of defectiveness. Another aspect with room
for improvement is the model-based tracker, which could be further modified to extend its
capability to track various types of components within the battery pack. In this study, the
model-based tracker was employed for tracking bolts and modules, and there is potential for
future development to enable multi-object tracking. Enhancements to the model-based tracker
could involve adaptations to accommodate diverse components, expanding its application
to a broader range of object-tracking scenarios within the battery pack. The integration of
object detection, segmentation, and localization techniques could play a crucial role in the
development of the general task planner.

Vision Technique Enhancement: Another future exploration would be enhancing the
versatility of the proposed VS technique. The current focus on tracking features using tag
markers can be expanded to accommodate more sophisticated scenarios. The aim would be
to adapt the VS method for tracking identified components through deep learning or the
model-based tracker package. This expansion would expand to situations where a greater set
of features needs to be tracked.

Teleoperation and RL Integration: Furthermore, the integration of Reinforcement Learning
and the proposed workspace limitation approach, in Chapter 5, provides a pathway to auto-
mate challenging tasks done with teleoperation. To this end, the data collected from human
demonstrations would be used to limit the search space of the RL agent. Thereafter, the agent
will learn to perform the same tasks done in teleoperation, automatically by learning from its
behavior and improving itself.

An Example of Systematic Task Planner Development: An example of a system-
atic task planner could be as follows: The initial phase involves the detection and localization
of objects within the workspace. Subsequently, an in-depth analysis of objects takes place,
coupled with task determination. This process begins with objects requiring minimal robot
motion and effort, gradually extending to more complex tasks. Additionally, the task planner
considers the robot's effort and power, potentially informed by a learning process. Task priorities
are established, taking into account different criteria such as the nature of the task and the
robot's capabilities. The subsequent stages encompass robot control implementation, ensuring
precise and effective robotic movements, followed by the execution of specific tasks. These
tasks encompass a range of actions, including cutting, grasping, pick-and-place manoeuvres,
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suction operations, and measurements, all orchestrated to enhance the overall efficiency and
automation of the disassembly workflow. In case of unsuccessful task execution, the planner
will flag the issue, prompting intervention. An operator can then take over and perform the
task manually using teleoperation.

6.3.1 Possible Applications

Based on the contribution of this study, there are some likely end applications for my research:
Industrial Robotic Automation:This research findings could be applied to enhance the
capabilities of industrial robots in manufacturing and assembly lines. The optimized visual
servoing and reinforcement learning techniques can improve the efficiency and precision of tasks
such as pick-and-place operations, assembly of complex components, and handling objects in
dynamic environments.

Medical and Healthcare Robotics: The integration of Al-driven control strategies can
find applications in medical robotics, enabling more accurate and delicate procedures such as
surgical tasks or handling medical instruments. The enhanced manipulation and adaptability
of robotic systems can lead to safer and more efficient medical interventions.

Logistics and Warehousing: This research could be extended to logistics and warehousing
automation, where robots are increasingly utilized for tasks like sorting, packing, and moving
items. The developed control methods could optimize the manipulation of objects with
varying shapes, sizes, and weights, improving the overall efficiency of distribution centers and
warehouses.

Agricultural Robotics: The Al-enhanced manipulation techniques could be employed in
agricultural settings to handle delicate tasks such as fruit harvesting or plant maintenance.
Robots equipped with optimized control strategies could navigate complex environments,
ensuring minimal damage to crops while improving harvesting efficiency.

Space Exploration and Manufacturing: The concepts developed in this research could be
adapted for space missions, where robots play a crucial role in tasks like assembling structures
or conducting experiments in microgravity environments. The robust control methods could
aid in precise and reliable manipulation of objects in space.

Assistive and Rehabilitation Robotics: The research outcomes might have implications
for assistive devices and rehabilitation robotics. Optimized manipulation strategies could
be integrated into robotic prosthetics or exoskeletons, enabling more natural and effective
movement for individuals with mobility impairments.

Construction Robotics: The advanced control techniques we have developed could be
applied to construction robots, improving their ability to handle tasks like bricklaying, concrete
pouring, and material transportation on construction sites. This could lead to faster and more
efficient construction processes.

Environmental Monitoring and Maintenance: This research findings could be utilized
in the development of robots designed for environmental monitoring and maintenance tasks.
These robots could navigate challenging terrains to perform tasks like sensor placement, data
collection, and maintenance of infrastructure in remote or hazardous locations.
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Human-Robot Collaboration: The adaptive control strategies and Al-driven manipulation
techniques could facilitate safer and more productive collaboration between humans and robots.
In settings like warehouses, factories, or healthcare facilities, robots could work alongside
humans, assisting in tasks that require precision, strength, or repetitive actions.

In the end, the findings of this study contribute to a new paradigm in robotic manipulation
in which the interaction of Al and traditional control strategies redefines the capabilities of
robotic systems. The proposed methodologies open the path for higher levels of autonomy,
precision, and adaptability, making major improvements to the fields of robotics and artificial
intelligence.
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Index 1

7.1 Camera calibration

Camera calibration is a fundamental process in computer vision, involving the measurement
and adjustment of camera parameters to ensure that it accurately captures and represents the
real-world environment. The main goal of camera calibration is to establish a mathematical
relationship between the 3D world coordinates and the 2D image coordinates produced by the
camera. This relationship is vital for a wide range of applications, including object measurement,
3D reconstruction, augmented reality, and robotics.

Camera calibration is necessary for several reasons:

e Accuracy: Cameras, even high-quality ones, have inherent imperfections, such as lens
distortion and variations in manufacturing. Calibration helps correct these imperfections,
ensuring the accuracy of measurements and reconstructions.

e Consistency: Calibration ensures that different cameras produce consistent and compara-
ble results, making it possible to integrate data from multiple cameras or sensors into a
single coordinate system.

e Spatial Mapping: For computer vision tasks, it's essential to map 2D image points to
corresponding 3D world points. Calibration provides the transformation necessary for
this mapping.

e Virtual and Real World Alignment: In augmented reality, virtual objects must align
correctly with the real world. Calibration enables this alignment by establishing the
camera’s position and orientation in space.

e Robotics: In robotics, precise camera calibration is crucial for robot navigation, object
manipulation, object detection and localization, and obstacle avoidance.

Camera calibration is divided into two main groups, intrinsic camera calibration and extrinsic
camera calibration. In the following subsections, these two categories are explained.

7.1.1 Intrinsic Camera Calibration

Intrinsic camera calibration deals with the internal characteristics of the camera, which primarily
affect the image formation process. These characteristics include parameters like the focal
length, principal point, and lens distortion. Intrinsic calibration is necessary to correct distortions
caused by the camera’s lens and ensure that measurements in the image are accurate and
undistorted.
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The goal of calibration is to estimate specific camera parameters that find the relation between
the pixel positions in the image and normalized positions in meters on the image plane (real-
world units). The mathematical relationship between 3D world coordinates and 2D image
coordinates are as follows:

:f-§+Cx (7.1)
v:f-§+Cy (7.2)

Here (u,v) are Pixel coordinates in the image, (X,Y, Z) are 3D world coordinates, f is Focal
length, and (C,, Cy) are Principal point coordinates.

Intrinsic camera calibration also addresses lens distortion, which can affect the accuracy of
measurements in images. A common model used for this purpose is the radial distortion
model. Two distortion coefficients, k,; and kg4, are Distortion parameters that correct for lens
distortion effects. From meters to pixels, the following formulas are considered:

= ug+xpe(1+kyqr?) (7.3)
v=vo+yp,(1+ kyar?) (7.4)
where r? = x2 + y2. From pixels to meters, the following formulas are applied:
x = (u —ugp) (1 + kdurQ) /Px (7.5)
y=(-vo) (1 + kdurz) /py (7.6)

with r? = ((u = up)/px)* + (v = vo)/py)*.
Here, (ug,vp) are Principal point coordinates in pixels (py, py) are the Ratio between focal
length and pixel size. The calibration process involves several steps:

1. Image Acquisition: Capture images of a calibration pattern (e.g., checkerboard) from
various angles and orientations. Ensure the pattern is visible in each image.

2. Corner Detection: Detect the corners of the calibration pattern in the images using
computer vision libraries.

3. World Points and Image Points: Create a list of 3D world points corresponding to
the corners of the calibration pattern and a list of corresponding 2D image points.

4. Camera Calibration: Use a calibration algorithm to estimate the intrinsic parameters,
inCIUding (f, Cx» Cy» Pxs Py, kud» kdu)-

5. Refinement: Refine the calibration results by minimizing the reprojection error, ensuring
that the 3D world points projected onto the images match the detected corner positions.

6. Extraction of Parameters: The calibrated camera parameters are then extracted from
the calibration results and can be used in various computer vision applications.
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In summary, intrinsic camera calibration is a crucial process that estimates the internal camera
parameters. These parameters enable accurate mapping between the 3D world and 2D image
coordinates. The calibration procedure involves capturing images of a calibration pattern,
detecting corners, and using calibration algorithms to estimate camera intrinsic parameters, as
well as correcting lens distortion. The resulting parameters are essential for ensuring accurate
measurements in computer vision tasks. In our work, we utilized the standard predefined intrinsic
parameters provided for the intrinsic calibration of each camera. It is essential to clarify that
our focus was on applying these pre-established parameters rather than conducting the intrinsic
calibration process from scratch. These parameters could be found in the camera firmware
or SDK and in VISP library we get them from vpRealSense2 :: getCameraParameters()
function.

7.1.2 Extrinsic camera calibration

Extrinsic camera calibration deals with determining the pose and position of the camera in
the 3D world. It includes camera orientation and its translation (in general homogeneous
transformation) in the world coordinate system. These parameters are essential for mapping the
2D image to the 3D world. This calibration is crucial for various computer vision applications,
including robotics, object tracking, and augmented reality, where knowing the camera's
viewpoint in the world is essential.

Extrinsic Calibration Procedure: Les us define /M., as the homogeneous transformation
between the robot base frame (often referred to as the fixed frame) and the robot end-
effector. “M,, as the homogeneous transformation between the camera frame and a calibration
grid frame (also known as the object frame). Typically, this calibration grid is the OpenCV
chessboard. *M,, as the homogeneous transformation between the end-effector and the camera
frame. This transformation corresponds to the extrinsic eye-in-hand transformation that needs
to be estimated, then:

Extrinsic camera calibration when the camera is attached to the robot’s EE, can be performed
using the following steps:

e Image Acquisition: Capture images of a known calibration pattern from various angles
and orientations and their correspondence homogeneous transformation between the
robot base frame and EE (/M,). The pattern should be visible in each image. Also,
acquire the camera’s intrinsic parameters. In Figure 7.1, the calibration process involves
placing a chessboard pattern underneath some of the robots is illustrated. This setup
allows for the precise estimation of the camera’s position with respect to each robot's
EE position. The camera on the robot captures images of the chessboard from different
angles, providing essential information to determine the camera’s pose. The resulting
extrinsic parameters are crucial for various applications, such as accurate robot navigation,
visual servoing, and object localization.

e World Points and Image Points: Establish correspondences between 3D world points and
their 2D image coordinates. The calibration pattern provides known 3D points in the
world coordinate system. In other words, computing the corresponding homogeneous
transformation between the camera frame and a calibration grid frame (“M,). Figure
7.2 displays a subset of images employed during the extrinsic calibration procedure. Each
image represents the robot in a distinct position, ensuring coverage of a significant
portion of the half-sphere above the chessboard. Capturing images from various angles
and orientations is essential for robust calibration, as it enables accurate determination
of the camera’s rotation and translation with respect to the robot’s EE position.
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Fig. 7.1. The extrinsic calibration setups, where a chessboard pattern is positioned beneath
the robots for the calibration of the camera’s extrinsic parameters.

Fig. 7.2. A selection of images used for the calibration process. These images depict the robot
in different positions, covering a substantial portion of the half-sphere above the chessboard.

e Camera Calibration: Use an extrinsic calibration algorithm and the collected data in
previous steps to estimate the homogeneous transformation between the EE and the
camera frame (°M.). We have used the VISP camera calibration tutorial [130] for
calibrating our cameras.
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Index 2

8.1 | Designed SimMechanics model

One setup involves creating a SimMechanics model for the LBR robot (Figure 8.1). In this
simulation, the robot model is constructed from scratch using SimMechanics, with revolute
joints, transformation matrices, and CAD parts defining the robot’s structure. Friction and
damping coefficients for each joint are specified based on the robot’s documentation.

Fig. 8.1. Design SimMechanics environment to simulate and visualise Kuka LBR behavior.

8.2 | RLin MATLAB

Reinforcement Learning in MATLAB/Simulink provides a powerful framework for training
intelligent agents to perform tasks in various simulated environments. In this overview, | will
discuss the application of RL in two distinct scenarios: VS and Contact-Rich Manipulation.

8.2.1 Visual servoning application

Figure 8.2 illustrates the Simulink environment tailored for VS. Leveraging the MATLAB
Reinforcement Learning Toolbox, we establish an RL framework where observations, termination
rules, and rewards are defined. The action vector for RL is configured to be joint velocities,
allowing the agent to control the robotic arm’s movements. Three different approaches to
defining a camera are explored. The first one is defining a dummy camera within MATLAB's
Robotics Vision and Control Toolbox, providing a straightforward way to simulate visual
observations. The second approach is Utilizing camera information from the Gazebo simulation
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Fig. 8.2. Simulink environment for Visual Servoing using RL

environment, offering a more realistic representation. The last option is incorporating a
real camera to get the visual input during training. Figure 8.3 illustrates "is Done” and
" Observations” blocks in Figure 8.2, used in training the agent for the task of VS.
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Fig. 8.3. Is Done and Observations used in training the agent for the task of VS.

In Section 3.2.1, we provide a complete explanation of the proposed action-constrained
strategies, along with detailed algorithms and the theoretical formulation of RL applied to VS.
The strategies, such as AORLD-HL, AORLD-CL, AORLD-HF, and AORLD-HP, are thoroughly
explained, outlining their respective algorithms and the underlying theory.

8.2.2 Cutting application

Figure 8.4 showcases a Simulink environment designed for the contact-rich manipulation task.
The action space is defined as Cartesian velocities, and as with the Visual Servoing task, the
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simulation has been done in Gazebo. Communication between MATLAB and Ros packages in
Gazebo has happened through ROS topics and services, enabling direct integration of the RL
agent with the simulated environment. Figure 8.5 illustrates is Done and Observations blocks
in Figure 8.4, used in training the agent for the task of contact-rich manipulation. Figure 8.6
shows the design of reward functions in the Simulink used in training the agent for the task of
contact-rich manipulation.
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Fig. 8.4. Simulink environment for contact-rich manipulation task using RL
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Fig. 8.5. Is Done and Observations used in training the agent for the task of contact-rich
manipulation.
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Fig. 8.6. Defined rewards in training the agent for the task of contact-rich manipulation.

8.3 Teleoperation Simulink Model

To collect human demonstrations for our investigation in Section 4.5, a Simulink model has been
designed. The model utilizes ROS-MATLAB integration to enable teleoperation, employing
a Phantom Haptic device to control a simulated KUKA robot. Additionally, the model
incorporates functionality to map contact forces experienced by the robot to the operator’s
hand during telemanipulation. This setup facilitates the gathering of human demonstrations,
contributing to our research in the specified section. Figure 8.7 depicts the Simulink model
designed for telemanipulating the simulated robot. It should be mentioned that using the
features provided by ROS, we have the flexibility to transition from controlling the simulated
robot to operating a real robot by adjusting the assigned topics. This capability enhances the

flexibility of the telemanipulation setup, allowing for easy integration with both simulated and
real-world robotic systems.

140



o B B B B

ol 1
|‘ = - — I
L]
1 IsNew|—>3 X = M <l 1
A ply 1
: Exgd o et e INow o
I fiwaloint, ih‘““‘g stidus ’ EE2Z =Y Msg :
I — v jortvel B iwa/CartesianWrench
I Riasad Matrix -
I Mutiply m :
I
] Psaudorerse m :
I SVO)
| Slave s m _ '
u'Ts 8
: (Kuka Ibr robot) terpeted :
\ g+ {oque Jont velocity cortrolier 1
e e o T o o ¥
————— j--- o T S T o S o T o .
( ] i
| ooh ] —T |
: Iarnmwmnm Poss omni_msgs/Omnil ack _.'> Forca X I
1 1
] . : ——< := Forca.Y 1
1 Master el —= i
| (Haptic device) OB grproms e Ry | |
B ~— iphantom/Torca_feedback 1
1 4 ) = Position Z
I IsNew —T s :
: Q Hold bution fen : = Pasition.¥ 1
1 1
1 Wm“ﬂ Poss <GreyButton> := Positicn X 1
1 1
\ 7

S —————————— - -

Fig. 8.7. Simulink environment for Teleoperating the simulated KUKA robot in Simulink
using ROS
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