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Symbol Description
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v𝑐𝑎𝑚 = (v𝑐,w𝑐) Camera velocity vector.
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Camera angular velocity vector.

𝑘𝑖 Positive proportional gain.
L+
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Pseudo-inverse of the interaction matrix L𝑖.
𝑚̄𝑖 = [𝑥𝑖, 𝑦𝑖, 𝑧𝑖]T Euclidean coordinate of the features in the camera frame.
𝑚̄∗
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𝑖
, 𝑧∗

𝑖
]T

Euclidean coordinate of the features in the desired camera frame.

𝜆𝑝 Positive controller gain in PBVS method.
L𝑝 6 × 6 matrix in PBVS method.
R Rotation matrix.
L𝜔 (𝑢(𝑡), 𝜃 (𝑡)) 3 × 3 matrix for rotation components.
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𝛼 Product of the camera scaling factor.
L𝑥𝑦 Decoupled interaction matrix for 𝑋 and 𝑌 translational velocities.
L𝑟 Decoupled interaction matrix for 𝑍 translational and rotational veloci-

ties.
L𝑃𝑥𝑦 Matrix generated by the first and second columns of L𝑝 in PBVS

method.
L𝑃𝑟 Matrix generated by the last four columns of L𝑝 in PBVS method.
J†𝜆 Damped Least Squares (DLS) inverse of the Jacobian matrix.
ξ𝑒𝑐 Transformation matrix from the EE frame to the camera frame.
t𝑒𝑐 Translation vector between the EE frame and the camera frame.
R𝑒

𝑐 Rotation matrix between the EE frame and the camera frame.
𝑠𝑘 (t𝑒𝑐) Skew-symmetric matrix of the translation vector t𝑒𝑐.
𝜆 Damping factor in DLS inverse method.
I Identity matrix.



Symbol Description
¤q Joint velocity vector.
¤q0 Joint velocity vector for secondary task.
𝑘0 Positive gain for secondary task.
𝑤(𝑞) Cost function for secondary task (robot manipulability).
| |𝑒 | | Norm of the feature error.
𝑘 ( | |e| |) Adaptive gain dependent on feature error.
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network.
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the image screen.
𝑀 Total number of neurons in the LoLiMoT neural network.
𝜙𝑖 (𝑥) Membership function for the 𝑖-th neuron, used to weigh the contribution

of each local model to the final output.
𝑦 Final output of the LoLiMoT neural network, calculated as a weighted

sum of the outputs of all local models.
𝜇𝑖 (𝑥) Gaussian function representing the unnormalized membership value for

the 𝑖-th neuron.
𝑐𝑖 𝑗 Center of the 𝑖-th neuron’s receptive field in the 𝑗-th input dimension.
𝜎𝑖 𝑗 Standard deviation of the 𝑖-th neuron’s Gaussian membership function

in the 𝑗-th input dimension.
𝑃 Number of input features to the LoLiMoT neural network.
𝑚 Number of neurons in the LoLiMoT neural network.
𝑢1, 𝑢2, . . . , 𝑢𝑝 Input variables in the Gaussian membership function for each neuron.
𝑛𝑜𝑏𝑠 Number of observations used for LoLiMoT NN.
𝑥𝑝𝑖 Predicted value for the 𝑖-th observation.
𝑥𝑎𝑖 Actual (reference) value for the 𝑖-th observation.
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Symbol Description
𝑎 Action taken by the reinforcement learning agent.
𝐴 Action space from which the agent selects actions.
𝑠 State observed from the environment.
𝑆 State space from which the states are sampled.
𝜋(𝑎 |𝑠) Policy function that maps state 𝑠 to action 𝑎.
𝑟 Scalar reward received after taking action 𝑎 in state 𝑠.
𝑠′ Preceding state after taking action 𝑎 in state 𝑠.
𝑅(𝑠, 𝑎) Reward function mapping state-action pairs to rewards.
𝑇 (𝑠, 𝑎, 𝑠′) State transition probability, 𝑃(𝑠′|𝑠, 𝑎).
𝑄∗(𝑠, 𝑎) Optimal value function providing the maximum expected reward for

state-action pair (𝑠, 𝑎).
𝛾 Discount factor used in the Bellman equation.
E Expectation operator in the Bellman equation.
𝑄𝜋 (𝑠, 𝑎) Action-value function under policy 𝜋.
L𝑎 Loss function for the actor in the DDPG algorithm.
L Loss function for the critic in the DDPG algorithm.



Symbol Description
𝑦𝑡 Target value used to compute the critic’s loss function.
a𝑏𝑜𝑢𝑛𝑑 Bounds for the action space, defined by the minimum and maximum

values from different approaches.
𝑟1 First reward function focused on minimizing feature errors.
𝑟2(q) Second reward function for avoiding joint limits.
𝑟3(q) Third reward function for avoiding singularities.
J Jacobian matrix of the robot.
𝑄𝜙1 First Q-function used in the TD3 algorithm.
𝑄𝜙2 Second Q-function used in the TD3 algorithm.
𝜇𝜃targ Target policy function in the TD3 algorithm.
𝜖 Noise term added to target actions in the TD3 algorithm.
𝑐 Constant for clipping the noise in TD3 algorithm.
𝑦(𝑟, 𝑠′, 𝑑) Target value in the TD3 algorithm’s Q-learning update.
𝜃 Parameters of the actor network in the TD3 algorithm.
𝜋(𝑠𝑡 |𝑔) Policy function used to select actions in the TD3 algorithm.
𝐺 Set of additional goals sampled from the replay buffer.
𝐵 Mini-batch sampled from the replay buffer.
𝑛 Number of features or joints in the reward functions or action space.
𝑞 𝑗 Position of the 𝑗th joint.
𝑞 𝑗𝑀 Maximum angle of the 𝑗th joint.
𝑞 𝑗𝑚 Minimum angle of the 𝑗th joint.
¤q𝑖𝑏𝑣𝑠 Joint velocities from the IBVS approach.
¤q𝑝𝑏𝑣𝑠 Joint velocities from the PBVS approach.
¤qℎ𝑑𝑣𝑠 Joint velocities from the HDVS approach.
a𝑚𝑖𝑛 Minimum action values determined from the action bounds.
a𝑚𝑎𝑥 Maximum action values determined from the action bounds.
𝑘 Indices defining the convex hull of action vectors.
𝑎𝑚𝑖𝑛,𝑖 Minimum value for the 𝑖th dimension of actions in the convex hull.
𝑎𝑚𝑎𝑥,𝑖 Maximum value for the 𝑖th dimension of actions in the convex hull.
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Symbol Description
P Tool centre point (TCP) pose comprising position p and ZYX Euler

angle orientation R
p Position vector of the TCP
R ZYX Euler angle orientation of the TCP
fe External measured wrench
r(ℎ) Position vector of a path parameterized by arc length ℎ

ĉ(ℎ) Path direction vector at a point on the path, unit vector in the direction
of the tangent

r′(ℎ) First derivative of the position vector with respect to arc length ℎ

∥r′(ℎ)∥ Magnitude of the first derivative of the position vector
p𝑠𝑡𝑎𝑟𝑡 Start-point position of the path
p𝑒𝑛𝑑 End-point position of the path
𝑠 Scalar distance from the endpoint of the path
𝑑 Deviation from the path



Symbol Description
Δp Differential position over the sampling time 𝑇𝑠
x State vector in the LBMPC approach or in the RL approach, which

includes (𝑑, 𝑠,Δp, f𝑒,R)
u Action vector in the LBMPC approach or in the RL approach
x𝑘+1 State vector at the next time step in LBMPC
f (x𝑘 ,u𝑘 ) State transition function in LBMPC
𝐿 Cost metric in the LBMPC optimization problem
J (U ) Cost function to be minimized in LBMPC
𝑢max Maximum allowed control input
H Mass matrix of the robot in the FDM approach
J Jacobian matrix of the robot in the FDM approach
¥q Joint accelerations in the FDM approach
f External force applied to the robot in the FDM approach
K𝑝 Stiffness gain matrix in the FDM approach
K𝑑 Damping gain matrix in the FDM approach
e Distance error between the target and the current end-effector position
e𝑑 Derivative of the distance error
𝑤𝑑 Weighting term for deviation in the reward function
𝑤𝑠 Weighting term for slicing in the reward function
𝑤𝑢 Weighting term for effort in the reward function
𝑤𝑐 Weighting term for contact reward in the reward function
𝑤 𝑓 Weighting term for force penalty in the reward function
q Joint position commands
𝑇𝑠 Sampling time
J+ Moore-Penrose pseudo-inverse of the manipulator Jacobian
𝑔(𝑁) Envelope function specifying the evolution of the randomisation distri-

bution over training
𝐹𝑁 Fraction of the limits at episode 𝑁 in curriculum-based domain ran-

domisation
𝐹0 Fraction of the limits at episode zero in curriculum-based domain

randomisation
𝑙𝑁± Maximum and minimum limits for episode 𝑁 in curriculum-based domain

randomisation
𝑙+ Maximum value of a variable for domain randomisation
𝑙− Minimum value of a variable for domain randomisation
𝑁𝑚𝑎𝑥 Maximum number of episodes in curriculum-based domain randomisa-

tion
𝑓𝑚𝑎𝑥 Target threshold for the ramping force penalty
𝑓𝑚𝑖𝑛 Minimum force threshold for establishing contact
𝐶 Discrete reward for establishing contact with the environment
𝑟𝑡𝑒𝑟𝑚 Terminal penalty for early episode termination
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Symbol Description
M(q) Joint-space inertia matrix of a rigid 𝑁-link manipulator
C(q, q) Coriolis and centrifugal matrix



Symbol Description
g(q) Gravitational torques vector
τext External torques vector acting on each link
τ Control torques vector
q𝑙 Joint configuration of the master robot (Phantom Omni)
q 𝑓 Joint configuration of the slave robot (Franka Panda)
𝑃TΔ Delta transformation matrix for the Phantom Omni
𝐹TΔ Delta transformation matrix for the Franka Panda
𝑃
𝐹
T Homogeneous transformation matrix from the Franka arm’s base frame

to the Phantom Omni’s base frame
x 𝑓 End-effector pose of the Franka Panda
x𝑡 End-effector pose of the Phantom Omni
e𝑥 Task space pose error, computed as x 𝑓 − x𝑡

J Jacobian matrix of the slave manipulator
K𝑝 Controller stiffness matrix
K𝑑 Controller damping matrix
e𝑞 Joint space error, computed as q 𝑓 − q𝑙
e𝑞 Derivative of the joint space error
τ 𝑓 Control torque for the slave Franka Panda
τ𝑙 Control torque for the master Phantom Omni
Fext External force vector experienced at the Franka end-effector
F𝑙 Force feedback vector received by the Phantom Omni
𝐺 Scaling factor for force feedback, empirically determined to be 0.1
Λ Task space inertia matrix
K𝑑,𝑙 Damping matrix for the master Phantom Omni



Abstract

This thesis is focused on the integration of advanced Artificial Intelligence (AI) techniques
with computer vision methods to enhance the capabilities of robotic manipulation systems.
The research application focuses on the disassembly of Electric Vehicle (EV) battery packs
using robotic systems. As the demand for EVs continues to rise, the need for sustainable,
and autonomous battery recycling grows, due to the limited lifespan of these batteries. Em-
ploying robots in this process is crucial as it guarantees not only cost-effectiveness and
precision but also mitigates hazardous exposure for human workers. However, the disas-
sembly of EV batteries is a challenging task for the robots. Firstly because of the diversity
in battery types, shapes, and sizes and the absence of standardized formats across man-
ufacturers. Secondly, robotics and automation in manufacturing typically operate within
structured environments, doing repetitive tasks on known objects in fixed positions. How-
ever, adapting robots to handle different objects and unpredictable situations is challenging,
necessitating innovative AI-based robotic solutions that can adapt to the diverse nature of
battery packs while ensuring efficient and safe disassembly operations. To achieve these
objectives, this study aims to develop control strategies that enable robots to perform pre-
cise and efficient manipulation tasks in dynamic and complex environments. The thesis is
organized into several chapters, each addressing specific aspects of this comprehensive goal.
The thesis begins by explaining the problem statement and difficulties related to the safe
recycling of Lithium-ion batteries. It is certainly the case that challenges with disassembly pro-
cedures require automated solutions, with robots being a key component. Thereafter, a general
introduction to the field, highlighting the need to enhance adaptability, precision, and efficiency
in robotic systems through the integration of AI and vision-integrated techniques is presented.
The objectives of the research are also provided, preparing the setting for the following chapters.
The second chapter focuses on optimizing hybrid Visual Servoing (VS) approaches. Conven-
tional methods in 2D, 3D, and hybrid VS are known to have limitations such as convergence
issues, sub-optimal trajectories, and singularities. We carefully studied the behaviour of each
approach in controlling specific components and proposed a decoupled hybrid VS approach.
This approach integrates the functionalities of both 2D and 3D VS methods, minimizing
their shortcomings while leveraging their distinct strengths. Adaptive gains, task sequencing,
damped least squares, and projection operator techniques are integrated into the proposed
method, each addressing a specific challenge to enhance the overall efficacy of the VS. Since the
proposed method introduced computational complexities, we used neuro-fuzzy neural networks
to predict and model the behaviour of the proposed VS approach. Then the proposed method
is compared with traditional approaches, demonstrating improved efficiency and robustness.
In the third chapter, the project investigates the integration of Reinforcement Learning (RL)
techniques with VS. This involves expanding the AI intervention beyond image spaces to joint
spaces of the robot. The main contribution of this chapter explores the incorporation of deep
RL algorithms with the data of several controllers during training to enhance the performance
of the trained policy. The proposed approach improves training by dynamically constraining the
agent’s action spaces using several controller demonstrations, allowing for the learning of robust
policies adaptable to various scenarios, and reducing the risk of sub-optimal solutions during
training by utilizing the knowledge of mathematically proven control methods. Additionally,



the proposed strategy can be combined with other techniques to enhance the training process.
This approach results in a case study demonstrating a 51% reduction in training time, improved
convergence rates, and enhanced controllability of the trained agent. Thereafter, the perfor-
mance of the controller was demonstrated through comparisons with traditional VS methods.
The fourth chapter extends the project’s scope to contact-rich manipulation tasks. A framework
was introduced that employs RL to address the challenges posed by uncertain and complex
environments. By utilizing a curriculum-based domain randomization approach, the robotic
system’s robustness to uncertainties is improved, enabling the successful execution of compliant
path-following in a range of conditions. To accelerate the RL training and reduce the problem
of getting stuck in sub-optimal solutions, we proposed a strategy using human demonstrations.
The data from human demonstrations in completing the desired task was gathered across various
surfaces with various friction and stiffness. Thereafter, this data is used to create a 3D shape
that includes all the demonstrated trajectories. This shape helps to limit where the RL algorithm
should search for solutions. Notably, this strategy differs from imitation learning in that the
agent is not required to imitate any particular behaviour. Therefore, it can accommodate even
imperfect demonstrations, as the RL policy will correct the agent’s behaviour during the training.
Chapter five underscores the practicality and adaptability of the developed techniques across a
range of scenarios. This chapter presents a comprehensive exploration of various experiments
and supplementary works carried out during the PhD project. These include tasks such as
sorting, utilizing different grippers and robots, teleoperation, employing haptic devices, and
applying computer vision methods such as deep learning for object detection, a model-based
tracker for tracking predefined models, and the proposed VS approaches. The final chapter,
the conclusion, summarizes the key findings, contributions, limitations, and implications of the
research. It reflects on how the integration of AI and VS has led to advancements in robotic
manipulation capabilities. This chapter also discusses potential future directions for research
and emphasizes the broader impact of the project’s outcomes on robotics and automation.
Overall, this PhD aims to bridge the gap between advanced computer vision, AI, and tradi-
tional robotic manipulation techniques, ultimately contributing to more efficient, adaptable,
and robust manipulation systems capable of performing in complex real-world environments.
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CHAPTER1
Introduction

Whether it is in manufacturing, healthcare, logistics, space exploration, or other domains,
the demand for versatile and intelligent robotic systems continues to rise. To this aim, this
research focuses on the convergence of two critical and rapidly evolving fields: Vision-guided
manipulations and Artificial Intelligence (AI). Traditional vision-guided robotic manipulation
methods, while effective, often encounter challenges when confronted with complex, dynamic,
or uncertain environments. The advent of AI has opened up possibilities for addressing these
challenges. By fusing the power of AI with established computer vision and robotic control
strategies, this research strives to push the boundaries of what robots can achieve, enabling
them to perform tasks more autonomously, efficiently, and adaptively.

1.1 | Industrial challenge that motivates this program

The primary focus of this study is to integrate vision and AI-proposed algorithms in the example
application of battery disassembly with robots, aiming to enhance efficiency and precision in
this critical process. It is predicted that yearly sales of Electric Vehicles (EV) will rise from 2
million in 2020 to over 14 million in 2030 (without taking into account plug-in hybrid cars) [1].
Therefore, due to the limited lifespan of EVs (10-15 years [2]), a substantial number of EV
batteries are anticipated to reach the end of their operational life. This indicates that tons of
costly and essential raw materials, like as graphite, nickel, cobalt, and lithium, may be wasted
in the ensuing decades [3]. Consequently, there has been an increasing focus on the disassembly
and recycling of end-of-life (EOL) battery components in both industry and academia. Recycling
materials from existing batteries reduces the demand for new materials in battery production,
leading to a reduced overall environmental cost of manufacturing. Moreover, considering that
material costs constitute 75-80% of battery manufacturing expenses [4], recycling holds the
potential to lower material prices. This decrease in manufacturing expenses makes electric
vehicles a more attractive option, providing benefits for both manufacturers and consumers.
During the disassembly of EV battery packs, some materials can be reused, others recycled,
while some inevitably become waste. Among these, reusing stands out as the most favourable
choice, prioritizing sustainability and resource conservation. If reusing is not feasible, recycling
becomes the next best alternative, ensuring that valuable materials are repurposed rather than
discarded. Ultimately, minimizing waste generation and maximizing resource utilization are key
considerations in the disassembly process [5].
Methods for disassembling batteries can be broadly categorized into three main groups: fully
manual, semi-autonomous, and fully autonomous techniques. Previous studies such as [6]
have emphasized the importance of autonomous disassembly considering cost savings, time
efficiency, and environmental impact reduction. However, there are limitations, including the
high degree of variation in EV battery models, the absence of design standardization, and the
lack of dexterity in unstructured dynamic environments [7]. Therefore, for many years the
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Fig. 1.2. Complex disassembly challenges in electric vehicle battery packs at different levels
of scale [5].

element in these approaches involves the utilization of labelling and detection techniques to
autonomously recognize components and fasteners, subsequently constructing appropriate
disassembly plans. To securely dismantle battery packs, clever and flexible robotic solutions are
required due to the enormous range of battery models and constructions, as well as uncertainties
during the disassembly. In other words, unlike assembly processes where component positions
and hierarchy of tasks are typically known, disassembly involves uncertain and changing
configurations. This is especially true for contact-rich tasks, where interactions with the
environment can lead to changes in the positions of components and robots. Not to mention
that dealing with wire and loose components adds more challenges, as their shapes and positions
may vary case by case. Utilizing vision systems plays a crucial role in such applications, just as
our human eyes assist us in correcting our actions to achieve goals. Another vital aspect of
having real-time vision feedback is the possibility of collisions, especially in activities involving
multiple robots and potentially humans. AI strengthens the robustness, applicability, and
generalizability of vision algorithms. This research, titled is primarily focused on the integration
of AI and vision algorithms in robotic manipulations.
The project involves multiple stages, including tasks such as unbolting, cutting, grasping,
manipulating, and sorting. In this specific phase of the research, our main focus is on the use
of vision systems to track and locate battery components in relation to the robots, which is
referred to as Visual Servoing (VS). This approach introduces several challenges, including
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dealing with the limitations of stationary robots, losing objects from the camera’s Field of View
(FOV), addressing image-related complexities, and finding physically accessible trajectories
for the robot. The motivation for this research stems from the compelling need to empower
robots with the ability to detect and manipulate objects effectively, precisely, and robustly in a
wide range of scenarios. Section 1.3, explains the integration of robotics, AI, and computer
vision within the framework of disassembly in this study.

1.2 | Background and Literature Review

Some content within this section is extracted from our accepted publications out of this
research in [14–17].
Vision sensors are widely used in industry to provide contact-less knowledge of the workplace
and adjust robot behaviour to deal with the uncertainties of unstructured settings [18]. This
section will provide an introduction to the literature and background of generally used concepts
in the field of vision-guided robotics, as well as the application of AI to it.

1.2.1 Visual servoing

Visual control, also known as VS or visual tracking, essentially consists of using data from one
or more cameras as input to real-time closed-loop control schemes. It is crucial to define some
terms before further delving into the VS:

• Visual features: Refer to distinctive elements within the visual data captured by
cameras, such as corners, edges, or key points. These features serve as essential
landmarks for the control system to interpret the surroundings and distinguish between
objects.

• Feature extraction: Identifying relevant visual features in the camera images is called
feature extraction. The defined target features for the robot’s task are also called desired
image features. The VS control law works by determining the difference between these
current and desired features.

• Computer vision: Computer vision focuses on enabling computers to interpret,
understand, and process visual information from the world, typically in the form of
images or videos. It involves tasks such as image recognition, object detection, and
image generation. The goal of computer vision is to give machines the ability to see and
extract meaningful information from visual data, akin to human vision, enabling them to
perform various tasks and make decisions based on what they perceive.

• Convergence criteria: Conditions that determine when the robot has successfully
reached the desired state. Typically, these criteria involve the error signal reaching a
small or acceptable value.

• Camera calibration: Camera calibration involves determining the intrinsic and extrinsic
parameters of a vision sensor, allowing for accurate reconstruction of the 3D world from
2D images. More in-depth details in 7.1.

• Eye-in-Hand and Eye-to-Hand: In eye-in-hand configuration the camera is mounted
on the robot’s End-effector (EE), providing a direct view of the task space. Nevertheless,
in eye-to-hand configuration the camera is fixed in the environment, offering a static
viewpoint for broader perspective planning. Figure 1.3 illustrates these two configurations
in which the robot uses the visual feedback from the cameras to adjust its movements
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(a) Visual perception in
Robotics for warehousing∗

(b) Using vision for tracking a
moving target with drones†

(c) Visual tracking with marine
robots [24].

Fig. 1.4. Application of visual tracking for mobile robots, flying drones, and marine robotic
systems showcasing their capabilities in navigating dynamic environments and tracking dynamic
targets.

(a) Integration of visual feedback
with agricultural robotics‡

(b) Humanoids dual arm
manipulation with VS [30]

(c) Integration of visual
feedback with surgical

robots[25]

Fig. 1.5. The application of VS in agricultural robotics, humanoids, and medical robotics.

However, VS brings complexities within the 2D image and 3D robot spaces, as well as their
intersections [31]. Image-based VS (IBVS) or 2D VS, Position-based VS (PBVS) or 3D VS,
and Hybrid VS (HVS) or 2 & 1/2D VS are three primary categories of VS control approaches.
The IBVS method computes the desired controller actions directly from extracted image-space
features, offering greater resilience against camera calibration [32]. Moreover, image features
are less likely to be lost from the camera field of view [33]. On the other hand, IBVS has
certain limitations. For example, it may generate controller commands that are physically
unattainable for the robot, such as being out of reach. Additionally, IBVS methods struggle
with depth information ambiguity, leading to difficulties in handling scenes with occlusions or
textureless regions [34]. Besides, the image Jacobian matrix (Interaction matrix) may cause
problems with error convergence of features, like singularities and local minima [35]. IBVS
failures are mostly for trajectories required rotations about the z-axis (the so-called Chaumette
conundrum [19]) and translation in the z-axis (named as camera retreat [35]). In 3D VS or
PBVS, the controller will do the visual tracking based on the 3D estimation of 2D features in
the camera screen. Due to direct measurement of the camera velocities from the task space
errors in the PBVS process, the interaction matrix problems (i.e., local minima and singularity)
would be avoided, and thus feasible trajectories for the robot can be generated [36]. However,
any error in the camera calibration may create an error in the 3D estimation of the target
and consequently affect the entire tracking task [19]. Moreover, the possibility of losing the
features in the image screen is higher than 2D VS, since the control law is designed using

‡https://dmexco.com/stories/smart-farming/
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the 3D estimation of the workspace, To combine the advantages of 2D and 3D VS, hybrid
methods were introduced. In such methods, the task function is expressed in a combination
of the image space (2D) and the Cartesian space (3D) [37]. One of the limitations of these
hybrid methods is their dependency on the co-planar features for real-time tracking, otherwise,
it is computationally complex. Furthermore, Using hybrid methods, the control signal might
suffer from discontinuity and they need more time to converge in comparison to the 2D
and 3D VS [38]. The switching approach is a hybrid visual servoing technique in which the
controller alternates between IBVS and PBVS based on their efficacy in different situations [39].
However, when switching occurs the controller suffers from discontinuities, particularly when
the object is close to the image borders [40]. Task sequencing techniques provide a solution
to fill such gaps [41], nevertheless, sequencing techniques increase the convergence time [19].
Furthermore, two failures in IBVS (i.e., camera retreat and Chaumette Conundrum) could
not be easily identified because image-Jacobian is not ill-conditioned in those configurations
[34, 35]. As a result, switching between IBVS and PBVS can not resolve these issues. On
the other hand, even inducing rotational motions about the camera optic axis could not solve
the Chaumette Conundrum, as rotational contributions cancel out one another [35]. In [35],
a hybrid VS method is presented that separates the translation and rotation about 𝑍-axis,
from the interaction matrix to avoid the chaumette conundrum and the camera retreat issues.
However, the expensive computation of the pseudo-inverse is a remaining challenge. Moreover,
controlling rotations about the 𝑋 and 𝑌 axes in the image space results in undesirable robot
motions [39]. In another study [42], by decomposing translations from rotations in 2 and 1/2D
visual servoing methods, unnecessary motions of the robot were reduced. These methods,
however, are computationally intensive and necessitate homography construction, which makes
them susceptible to image noises [35]. Another disadvantage of the 2 and 1/2D VS approach
is the necessity of using co-planar features to estimate the homography matrix. Otherwise, at
least 8 visual features are required to make this estimation, while 4 features are sufficient in
most of the methods [43]. The 2 and 1/2D VS approach also decomposes homography to
remove rotational parameters associated with non-unique solutions [44].
On another note in the case of using static arm manipulators for VS, issues like unfavourable
configurations, joint limits, kinematic singularities, and occlusions should be considered.
Redundant robots are preferable because adding redundancy to the robot increases the
manipulability and versatility [45]. Many studies investigated the use of redundancy to define
various types of constraints by integrating secondary tasks that express the constraints with the
main task [46–48]. A global objective function is used in [49] to determine a balance between
the main task and the secondary tasks by using the redundant Degrees of Freedom (DOF) of
the robot with respect to the main task. However, significant perturbations may occur by the
obtained motions which are generally incompatible with the main task. In another classical
method [50], the authors employed a gradient projection method to solve the redundancy
resolution; nonetheless, this approach necessitates that the main task will not constrain all
DOFs of the robot. In such cases, the main Jacobian will gain full rank, and there would be
no redundancy space left for projecting any constraint. This is a drawback of the traditional
gradient projection technique. In [45], a projection operator for the redundant systems was
proposed based on a task function specified as the norm of the usual error; in this approach,
even if the main task is full rank, this projection operator allows the secondary tasks to be
completed.

1.2.2 Artificial intelligence in robotic vision

The integration of visual feedback into robotic control systems has been instrumental in
enhancing the capabilities of robots in various applications. However, traditional control
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systems, which rely on predefined rules and models, face challenges in adapting to dynamic
environments and handling complex tasks and uncertainties. AI introduces a paradigm shift
in robotics. Unlike traditional control systems, AI allows robots to learn from experience,
adapt to changing conditions, and improve their performance over time. In [51], the authors
discuss the advancements and challenges in vision-based autonomous systems and AI, including
path-planning, localization, perception, and robot control. AI approaches can be broadly
categorized into three types: supervised learning, unsupervised learning, and reinforcement
learning.

• Supervised learning: In supervised learning, the labelled dataset is used to train the
algorithm, where a corresponding output is linked to each input. The goal is for the
model to learn the mapping between inputs and their corresponding outputs.

• Unsupervised learning : In unsupervised learning, the model is trained on unlabeled
data, where the algorithm investigates patterns, relationships, or structures within the
data without guidance. It aims to discover the inherent structure or distribution of the
input data.

• Reinforcement learning: RL involves an agent that learns to find solutions by
interacting with an environment. The agent observes the feedback in the form of
rewards and penalties based on its actions, and the goal is to learn a model (policy) that
maximizes the cumulative reward over time.

Regression-based Neural Networks have been extensively used in the literature to approximate
the nonlinear behaviour of image-Jacobian [52–55]. For example, in [56], the authors discuss
the use of convolutional neural networks for semantic segmentation in robotics, enhancing
traditional tasks with an additional level of intelligence, crucial for VS. It should be mentioned
that obtaining labelled data in a supervised learning approach can be challenging in numerous
real-world scenarios, while unlabeled data are often abundant. To address this issue of limited
labelled data, unsupervised learning methods and RL algorithms offer viable solutions.
Recent advancements in deep learning and RL research have empowered robots to tackle
progressively more complex tasks, as evidenced by Hua et al.’s work in 2021 [57]. In an RL
framework, an agent strives to maximize its expected reward through interactions with its
environment. Some example of these are in [53, 58, 59], where researchers use RL to solve
vision tracking challenges which are complex to model or computationally expensive. The
practical implementation of RL has been constrained by the substantial exploration demands.
To overcome this challenge, researchers use the data of demonstrations from human experts
or controllers to reduce unnecessary explorations of the RL agent. Incorporating demonstrator
or expert data in RL is beneficial for its ability to expedite learning, guide exploration, reduce
sub-optimal solutions, and facilitate knowledge transfer to new tasks. There are two potential
approaches for incorporating knowledge from expert demonstrations in RL: prior knowledge,
comprising demonstrations prior to RL refinement; and online knowledge, in which case
demonstrations are occasionally presented while the RL iterations are in progress [60]. The
online method can significantly enhance the learned policy’s convergence towards an expected
performance level while lowering the likelihood of distributional mismatch compared to the
prior knowledge approach [61]. However, several challenges remain with the online use of
demonstrations while the agent is learning. These include the high cost of data collection; the
inability to generalise to different scenarios; and the limitation of the agent’s exploration to
blindly following the demonstrator [62–64].
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1.2.3 Reinforcement learning from demonstrations

RL provides a theoretical way for learning policies through the exploration of the action space.
However, the amount of exploration required has limited its implementation in real-world
applications. In traditional deep reinforcement learning approaches, the agent explores the
entire state space to find the optimal solution. This can be a time-consuming process, and
the agent may get stuck in local minima, which are sub-optimal solutions that appear to be
optimal within a certain region of the state space [65]. There have been several previous
attempts to accelerate the process of deep reinforcement learning using human demonstrations
[66–69]. Early Reinforcement Learning from Demonstration (RLFD) algorithms are classified
into three main groups: Behavioral Cloning (BC), Generative Adversarial Imitation Learning
(GAIL), and Inverse Reinforcement Learning (IRL) [70]. BC was developed based on direct
policy learning, which enables the distribution of the state/action trajectory to match the
demonstration given by a supervisor. The agent has no capability to respond to environmental
changes [62]. Therefore, in the case of using a small number of samples, the trained BC
policy has little capability to generalize to different scenarios. IRL was developed to tackle the
problem of reward function design and is more adaptable to new situations [63]. While BC
and IRL methods gain experience from demonstrations, they have no capability to interact
with experts during training to make the trained policy more optimized and robust. To enable
the agent to better exploit the expert when optimizing a policy, the GAIL approaches were
developed based on generative adversarial networks [64]. The GAIL approach is applied by
making a comparison between generated and expert strategies and converging them as closely
as possible. However, the GAIL method is susceptible to convergence on local minima [64].
Also, BC methods suffer from data mismatch and compounding error issues. Consequently,
the DAgger algorithm was developed to tackle this problem [71]. DAgger is an iterative policy
learning method that employs online learning as a reduction in which the main classifier will
be retrained on all states encountered by the learner at each iteration. Despite this, the policy
trained with DAgger will not be generalised to different scenarios, and the approach is limited
to learning from the expert and cannot surpass its performance [72]. Interactive imitation
learning methods (e.g. HG-DAgger and Thrifty DAgger) are variants of DAgger, and they are
also introduced to address some robustness issues of DAgger [73, 74].
Typically, human demonstrations were employed for such interactive imitation techniques.
Algorithms that can use other controllers as experts have been less well studied. Modern RLfD
techniques incorporate aspects from imitation learning and push the agent to replicate the
demonstrated behaviours when feedback from the environment is scarce or even missing [75,
76]. They specifically reshape the reward function in RL by adding another term to encourage
expert exploration. While rewarding expert-like activities might assist in minimising unnecessary
exploration, applying such rewards throughout the learning phase can be troublesome with
imperfect demonstrations. There is no guarantee that limiting divergence from expert behaviour
will result in an improved agent policy [77].

1.2.4 Contact-rich robotic

In recent years, modern robots with proper sensor sets have provided a versatile platform
for automating various manual and repetitive jobs by interacting with their surroundings.
However, a challenging problem in contact-rich applications is developing a robust control
algorithm capable of modelling and generalising unknown contact dynamics and environment
changes. To this end, many control issues may be formulated as optimum control problems with
discrete-time dynamics and cumulative costs across time. One well-known technique to solve
such optimal control problems is Model Predictive Control (MPC) which predicts the behaviour
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of a system based on its model. MPC employs an online optimization method to determine
the best control action for delivering the anticipated output to the reference [78]. However,
MPC suffers from several well-known disadvantages, chiefly, high computational complexity,
inhibiting the online deployment capability [79]. Explicit MPC approaches furthermore require
considerable domain expertise or large amounts of offline labelled training data. These data
must have good domain coverage of the state/action space to ensure the accuracy of the
model. Moreover, the precision of the model employed for predictions significantly impacts the
controller performance [80]. RL approaches show promise for addressing such issues since they
allow agents to acquire behaviours through interaction with their surroundings and generalise
to new, previously unknown scenarios [81].
Several approaches exist for tackling the challenges presented by high sample complexity and
the suitability of RL to real-world deployment, particularly concerning contact-rich tasks. One
such approach is based on noting the complementary advantages and shortcomings of MPC
and RL, using the former to act as an expert policy to assist the latter. This has been applied
in [82], [83]. In the latter, a combination of MPC with RL providing worst-case performance
guarantees was proposed, enabling online deployment with improved learning stability. However,
the baseline model used neglects the parametric uncertainty in the environment. This is typical
of most explicit MPC approaches, which require considerable domain expertise and prior
knowledge, necessitating approaches with higher computational complexity. Learning-based
MPC (LBMPC) is one such approach that has been used to address the problem of uncertain
environments in robotic manipulation tasks [84–86]. In LBMPC, a model of the system is
learned through interaction with the environment, and this model is then used to predict
future system behaviour and generate control actions. For example, an LBMPC approach
for contact-rich tasks with reduced sample complexity was considered in [87], exploring the
capability of memory-augmented neural networks as a system model in an MPC framework
incorporating visual feedback. However, the high computational complexity of recurrent
network architectures, including MANNs, limits the applicability of online deployment.
In a similar vein, recent works have emphasised the selection of suitable action spaces to
facilitate the learning of tasks in the real world. In [88], a task-frame formalism was employed to
directly train a real-world policy for the task of vegetable cutting by exploiting the task-specific
action-space constraints, however, this approach is naturally dependent on accurate prior
knowledge of the task specification. In [89, 90], the selection of suitable action spaces for
contact-rich manipulation tasks is explored, with related approaches presented based on a
variable impedance control system in which the controller gains constitute the policy action
space. Methods based on this approach separate the task of compliant path following, which
is essential for many interaction tasks, into the distinct problems of trajectory generation
and trajectory tracking. Accurate task planning is not always possible to obtain and may
not be desired in many applications as explored in [91]. Besides [91], this has been explored
extensively in the context of MPC [92, 93], though demonstrably remains an issue for RL.
Many RL-based methods are developed in simulation, owing to the difficulty of transferring
learned behaviours to the real world, particularly for destructive tasks. To address this,
alternative approaches based on reinforcement learning have been explored to narrow the
sim-to-real transfer gap. The Domain Randomization (DR) approach aims to close the reality
gap by exposing the agent to a large number of scenarios that may not individually reflect
the real-world system. However, it results in a policy representation that is robust to system
uncertainties such that it may adapt to the real-world case. Examples of this approach include
[94] for path following using an industrial robot. Curriculum-based, or automatic DR has been
employed with success in dexterous manipulation tasks as demonstrated by OpenAI in [95, 96],
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designed to address issues in classical 2D, 3D, and hybrid approaches. The method incor-
porates adaptive gains, and the Damped Least Square approach to enhance performance
and mitigate challenges like convergence issues and robot singularities. Comparisons
with traditional methods show that the proposed approach results in more efficient robot
trajectories, shorter camera paths, and improved object tracking. Overall, the technique
offers enhanced robot controllability, outperforming alternative methods. Chapter 2 of
the thesis details the theory, mathematical formulation, and the experimental section of
the study. In Chapter 5, the practical utility of the method is demonstrated through its
application in the disassembly of a Nissan Leaf battery pack. This chapter serves as a
real-world illustration of how the developed method is employed in a specific context,
showcasing its effectiveness in the practical domain of disassembling the mentioned
battery pack.

2. Ali Aflakian, Rastegarpanah, Alireza, and Rustam Stolkin. ”Optimized hybrid decoupled
visual servoing with supervised learning.” Proceedings of the Institution of Mechanical
Engineers, Part I: Journal of Systems and Control Engineering 236.2 (Published 2022):
338-354.
Authors contributions: Conceptualization, A.R., A.A. and R.S.; methodology, A.A.;
software, A.A; validation, A.R. and A.A.; formal analysis, A.A.; investigation, A.R. and
A.A.; resources, A.R., A.A. and R.S.; data curation, A.A.; writing—original draft prepa-
ration, A.R. and A.A.; writing—review and editing, A.R., A.A. and R.S.; visualization,
A.A.; supervision, A.R. and R.S.; project administration, A.R.; funding acquisition, A.R
and R.S.
Brief description: This study represents an advancement of a previous publication,
detailed in paper 1, by incorporating supervised learning techniques into the development
of the proposed decoupled hybrid VS method. A neuro-fuzzy neural network called
the local linear model tree approximates the pseudo-inverse of the proposed interaction
matrix. This helps avoid singularities, and complex calculations, handle ill-conditioning,
and enhance robustness to image noise and camera calibration. Chapter 2 in the thesis
delves into the theory, mathematical formulation, and experimental components of the
study. In Chapter 5, the method’s practical application is illustrated through its use in
disassembling a Nissan Leaf battery pack. This chapter exemplifies how the developed
method is effectively employed in a specific context, demonstrating its practical effec-
tiveness.

3. Aflakian, Ali, Alireza Rastegharpanah, and Rustam Stolkin. ”Boosting Performance of
Visual Servoing Using Deep Reinforcement Learning From Multiple Demonstrations.”
IEEE Access 11 (Published 2023): 26512-26520.
Authors contributions: Conceptualization, A.A., A.R. and R.S.; methodology, A.A.;
software, A.A; validation, A.A.; formal analysis, A.A.; investigation, A.A. and A.R.;
resources, A.A., A.R. and R.S.; data curation, A.A.; writing—original draft preparation,
A.A.; writing—review and editing, A.A., A.R., and R.S.; visualization, A.A.; supervision,
A.R. and R.S.; project administration, A.R.; funding acquisition, A.R and R.S.
Brief description: This study represents an advancement of previously proposed
methods in papers 1 and 2 by incorporating RL into the VS framework, leading to im-
proved performance and efficiency in training. The proposed method employs knowledge
from various controllers, integrating them with deep reinforcement learning to train a
VS technique. The aim is to address the data insufficiency issue in RL methods by
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developing a strategy that generates online hyper-volume action bounds from demonstra-
tions by multiple controllers (experts). The agent then explores within these bounds to
discover optimized solutions and gain more rewards, reducing unnecessary explorations
and improving both training time and performance of the trained policy. Chapter 3 in
the thesis extensively examines the theory, mathematical formulation, and experimental
components of the study. Transitioning to Chapter 5, the practical application of the
method is demonstrated through its implementation in the disassembly of a Nissan Leaf
battery pack.

4. Aflakian, Ali, et al. ”An Online Hyper-volume Action Bounding Approach for Acceler-
ating the Process of Deep Reinforcement Learning from Multiple Controllers.” Journal
of Field Robotics, (Published 2024).
Authors contributions: Conceptualization, A.A., A.R. and R.S.; methodology, A.A.;
software, A.A; validation, A.A.; formal analysis, A.A.; investigation, A.A. and A.R.;
resources, A.A., A.R. and R.S.; data curation, A.A.; writing—original draft preparation,
A.A.; writing—review and editing, A.A., A.R., J.H., and R.S.; visualization, A.A.; super-
vision, A.R. and R.S.; project administration, A.R.; funding acquisition, A.R and R.S.
Brief description: This study explores different methods for bounding the actions of
the RL agent during training, comparing their effectiveness. This publication extends
the previous method, explained in paper 3, for broader applicability across various tasks,
presenting alternative approaches for constraining action space and demonstrating im-
proved training progress in VS. Chapter 3 of the thesis conducts a thorough exploration
of the study, the theoretical foundations, mathematical formulations, and algorithms.
This chapter provides a comprehensive examination of the principles and methodologies
that form the basis of our proposed AORLD approach.

5. Ali Aflakian, Jamie Hathaway, Rustam Stolkin, and Alireza Rastegarpanah, ”A curriculum-
based domain randomisation approach for learning contact-rich tasks with parametric
uncertainties”, Journal of IEEE Access, (Published 2024).
Authors contributions: Conceptualization, A.A., J.H., A.R. and R.S.; methodology,
A.A., J.H.; software, A.A, J.H.; validation, A.A., J.H.; formal analysis, A.A., J.H.; inves-
tigation, A.A. and A.R.; resources, A.A., J.H., A.R. and R.S.; data curation, A.A., J.H.;
writing—original draft preparation, A.A., J.H.; writing—review and editing, A.A., J.H.,
A.R., and R.S.; visualization, A.A.; supervision, A.R. and R.S.; project administration,
A.R.; funding acquisition, A.R and R.S.
Brief description: In this study, we expand our application scope from contact-less
approaches to contact-rich scenarios. We introduce a framework for contact-rich path
following using RL with a blend of visual and tactile feedback, enabling path follow-
ing in unknown environments. Our approach incorporates a curriculum-based domain
randomization strategy with a time-varying sampling distribution, ensuring robustness
to uncertainties in the robot-environment system. Through simulation evaluations in
compliant path-following scenarios with random uncertain environments, we demonstrate
the policy’s robustness across a range of stiffness and friction values. Additionally, we
extend the concept to unknown surfaces with varying curvatures to enhance the trained
policy’s robustness in adapting to surface changes. The results were compared with the
Learning-based Model predictive controller (LBMPC) and Virtual Forward Dynamics
Model (FDM) approaches. The details of this method, its underlying principles, and the
outcomes of simulations are presented in chapter 4 for a thorough understanding of the
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proposed approach. We suggest the potential application of this method for learning
more challenging tasks, such as milling, which are difficult to model and depend on a
wide range of process variables.

6. Ali Aflakian, Rustam Stolkin, Alireza Rastegarpanah, ”Integrating Multi-Demonstration
Knowledge and Bounded Workspaces for Efficient Deep Reinforcement Learning”, IEEE-
RAS International Conference on Humanoid Robots, (Accepted 2023).
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Brief description: In this study, as an extension of our previous approach in paper 5,
we present a novel method to enhance deep RL by incorporating human demonstrations
and offline workspace bounding. Our approach involves gathering data from human
demonstrations on diverse surfaces with varying friction and stiffness properties. A 3D
convex hull is computed to encompass all demonstrated paths. Defining task and desired
parameters as reward functions allows the RL agent to learn within this bounded space,
reducing the required search space. Comparing our approach with a baseline, results
indicate accelerated learning, improved policy performance, and enhanced resilience to
local minima. Combining our method with RL also enables the refinement of imperfect
demonstrators’ behaviour during learning. In Chapter 4 of this thesis, we provide a
theoretical and mathematical explanation of our approach, accompanied by simulation
results. Furthermore, in Chapter 5, we elaborate on the potential application of our
approach in automating and optimizing teleoperation examinations through the use of RL.
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disassembly of electric vehicle (EV) batteries by integrating the Interfacing Toolbox for
Robotic Arms (ITRA) with vision and ROS capabilities. To this aim, we have integrated
and tested our proposed hybrid decoupled visual serving approach with industrial robots
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1.4 | Thesis structure

The structure of this thesis is visually represented in Figure 1.11. This figure conveys the central
theme of the thesis, which revolves around the utilization of vision and artificial intelligence in
the context of manipulation tasks. These tasks are broadly categorized into two main types:
contact-less and contact-rich tasks. Moreover, the specific application chosen for in-depth
study in this thesis is the disassembly of battery packs.
In Chapter 2, the primary focus is on introducing the proposed VS method. This chapter
explores the VS method and the incorporation of supervised learning to enhance its performance.
The findings gained in this chapter establish the foundation for the subsequent chapters for
further investigation and improvements. Chapter 3 introduces the integration of Reinforcement
Learning (RL) with the previously proposed VS method. This chapter discusses general
RL challenges and our strategies for mitigating them, including leveraging data from other
systematic controllers and incorporating domain randomization and adaptation in our learning
framework. The investigation continues in Chapter 4, with a focus on using vision in contact-
rich applications and RL. This investigation is built on a case study, with an emphasis on
using domain randomization within a curriculum-based randomization framework. The chapter
concludes by demonstrating the advantages of incorporating human demonstrations to improve
RL performance and reduce the agent’s search space and sub-optimal solutions. The possibility
of using model-based tracker and deep learning in the disassembly loop is explored in Chapter 5.
The chapter also details various setups and practical demonstrations conducted during the study.
This section provides an in-depth overview of the various ways used for the disassembly process,
highlighting the benefits of these approaches. Finally, Chapter 5 serves as the conclusion,
providing a cohesive summary of the key findings and limitations of each method explored in
the earlier chapters. The chapter also identifies possible future directions and applications
for further research and concludes the thesis by providing a comprehensive overview of the
contributions made.
Each chapter, excluding the conclusion and index, follows a consistent structure. Starting with
an abstract and introduction outlining the challenges and gaps, followed by a methodology,
results, explanations, details on the setups that were used, and a final summary. The goal is to
make sure that the research material is presented in the thesis in a coherent and logical form.
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CHAPTER2
Hybrid-Decoupled Visual Servoing with

Supervised Learning

Content from this chapter has been published in the following:

Ali Aflakian, Rastegarpanah, Alireza, and Rustam Stolkin. ”Improving the manipulability of
a redundant arm using decoupled hybrid visual servoing.” Applied Sciences 11.23 (Accepted
2021): 11566.

Ali Aflakian, Rastegarpanah, Alireza, and Rustam Stolkin. ”Optimized hybrid decoupled visual
servoing with supervised learning.” Proceedings of the Institution of Mechanical Engineers,
Part I: Journal of Systems and Control Engineering 236.2 (Accepted 2022): 338-354.

2.1 | Introduction

To address the explained convergence and performance issues of VS in literature 1.2, we
proposed an optimized VS method called Hybrid Decoupled Visual Servoing (HDVS). In the
proposed method, all three rotations, and translation in the 𝑍-axis have been decoupled
from the image-Jacobian. These four components’ errors will be regulated from the 3D
reconstruction of the visual features. Consequently, the controller has independent control over
translation in 𝑍-axis, and rotations. Thereafter, the LoLiMoT neural network has been used
to approximate the pseudo-inverse of the proposed interaction matrix. Using LoLiMoT avoids
singularities that could be happened in the interaction matrix, and reduces the computational
complexities effectively. Accordingly, the controller becomes robust to camera calibration errors
and image noises. LoLiMoT is a fast, effective neuro-fuzzy neural network that learns a huge
number of nonlinear models [97]. LoLiMoT method guarantees a global optimization solution
which implies the generalization ability of the method [97]. Regression approaches are blind in
the detection of global minima, but LoLiMoT is axis orthogonal and operates by errors, thus it
will not stuck in local minima [98]. The locality of this method provides online learning in one
region without forgetting the other operating regions [99]. Besides, the number of required
trial-and-error steps will be reduced in the LoLiMoT approach. In the following sections, the
method will be discussed in detail and its efficacy will be validated in both simulation and the
real world. The contributions of this chapter are itemized in the following:

• The proposed method produces an optimized trajectory, both in the image space and
the joint space in terms of control effort and convergence time. Moreover, HDVS is
robust to camera calibration and image noises.

• The proposed approach produces more controllable trajectories (higher manipulability)
for the robot than IBVS when tracking objects. In comparison to PBVS and HVS
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2.2 | Background

In this section, a background of the classical visual servoing methods is given first. Thereafter,
our proposed HDVS method will be explained in detail.

2.2.1 Image-Based visual servoing

In the IBVS method, the feedback from the image features will be directly used and the
image-Jacobian (Interaction matrix L𝑖) will be used to relate the pixel velocity to the camera
velocity [100]. The Interaction matrix for the 𝑖𝑡ℎ feature would be defined as follows [100]:

L𝑖 =


𝑓

𝑍
0 − 𝑢

𝑍
−𝑢𝑣

𝑓

𝑓 2+𝑢2
𝑓

−𝑣
0 𝑓

𝑍
− 𝑣

𝑍
− 𝑓 2+𝑣2

𝑓
𝑢𝑣
𝑓

𝑢

 (2.1)

where 𝑓 denotes the focal length of the camera and s = (𝑢, 𝑣) denotes the coordinates of a
point in the image plane. Let’s consider e𝑖 is difference between current and desired positions
of each feature in the image plane, and v𝑐𝑎𝑚 = (v𝑐,w𝑐) is the camera velocity vector (where
v𝑐 = (𝑣𝑥 , 𝑣𝑦, 𝑣𝑧) is camera linear velocity vector, and w𝑐 = (𝑤𝑥 , 𝑤𝑦, 𝑤𝑧)) is its angular velocity
vector. The exponential decoupled decrease of the error can be obtained when the Interaction
matrix at the desired pose is not singular (i.e., s𝑖 (𝑡) − s𝑖𝑑 (𝑡) = e𝑖 (𝑡) = 0). Therefore, the
appropriate camera velocity vector will be determined using the following control law [100]:[

vc
wc

]
= −𝑘𝑖L+

𝑖 e𝑖 (2.2)

where 𝑘𝑖 represents a positive proportional gain and L+
𝑖
represents the pseudo-inverse of L𝑖.

2.2.2 Position-based visual servoing

In position-based visual servoing, the feedback is obtained from the pose reconstruction of the
environment. The pose estimation will be calculated with the help of Euclidean methods and
camera parameters, from the camera image.

The Euclidean coordinate of the features in the camera frame is 𝑚̄𝑖

[
𝑥𝑖 𝑦𝑖 𝑧𝑖

]T
and the

Euclidean coordinate of the features in the desired camera frame is 𝑚̄∗
𝑖

[
𝑥∗
𝑖

𝑦∗
𝑖

𝑧∗
𝑖

]T
. The

controller in this method is defined as [43]:[
vc
wc

]
= −𝜆𝑝L

−1
𝑝 e𝑝 (2.3)

Where 𝜆𝑝 is a positive controller gain and L𝑝 (𝑡) is a 6 × 6 matrix obtained from the following
equation:

L𝑝 =

[
R 0
0 L𝜔

]
(2.4)

Where L𝜔 (𝑢(𝑡), 𝜃 (𝑡)) is a 3 × 3 matrix defined as:

L𝜔 = 𝐼3 −
𝜃

2
[𝑢]× +

©­­«1 −
sinc(𝜃)

sinc2
(
𝜃
2

) ª®®¬ [𝑢]2× (2.5)

Where 𝑢(𝑡) ∈ 𝑅3 and 𝜃 (𝑡) ∈ 𝑅 are the rotation axis and rotation angle, decomposed from the
rotation matrix. [𝑢]× is the skew-symmetric matrix associated to the vector 𝑢.
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2.2.3 Homography-based visual servoing

The Homography-based visual servo control approaches mostly decompose the six-DoF motion
of the camera in two separate controllers to achieve the convergence goal; one for the
translational components and the other one for the rotational components. The error signal
will be selected by the estimated position from the Euclidean information and directly from
the image information [101]:

e𝑣 =

[
𝑚𝑥𝑖 − 𝑚∗

𝑥𝑖
𝑚𝑦𝑖 − 𝑚∗

𝑦𝑖
ln

(
𝑧𝑖
𝑧∗
𝑖

) ]T
(2.6)

e𝜔 = 𝑢𝜃 (2.7)

¤e𝑣 = L𝑣vc+L𝑣𝜔wc and ¤e𝜔 = L𝜔wc could be defined as corresponding transitional and rotational
errors. In which L𝜔 (𝑡) was presented in Eq.2.5 and L𝑣 (𝑡),L𝑣𝜔 (𝑡) are 3 × 3 matrices that are
obtained from:

L𝑣 = −𝛼𝑖
𝑧∗
𝑖


1 0 −𝑚𝑥𝑖

0 1 −𝑚𝑦𝑖

0 0 1

 (2.8)

L𝑣𝜔 =


𝑚𝑥𝑖𝑚𝑦𝑖 −1 − 𝑚2

𝑥𝑖
𝑚𝑦𝑖

1 + 𝑚2
𝑦𝑖

−𝑚𝑥𝑖𝑚𝑦𝑖 −𝑚𝑥𝑖

−𝑚𝑦𝑖 𝑚𝑥𝑖 0

 (2.9)

Where 𝛼 is the product of the camera scaling factor. The translation and the rotation
controllers could be defined as:

wc = −𝑘L−1
𝜔 e𝜔 = −𝑘e𝜔 (2.10)

vc = −L−1
𝑣 (𝑘e𝑣 − 𝑘L𝑣𝜔e𝜔) (2.11)

2.3 | Proposed approaches

In the following, our proposed approaches to enhance the performance of the visual serving
are explained in more detail.

2.3.1 Proposed hybrid visual servoing

The proposed HDVS method decouples the 𝑍-axis of translational velocity and the three
rotational velocities (the components that create the IBVS singularity and unnecessary motions
for the robot) from the image-Jacobian matrix. The translational velocities of 𝑋 and 𝑌

components will be measured in 2D, while the error of the other four parameters will be
calculated by 3D estimation of the target. The control rule in the classic IBVS system is
defined below:

¤s = L𝑖v𝑐𝑎𝑚 (2.12)

By decoupling the interaction matrix, the control law would be amended as follows:

¤s = L𝑥𝑦v𝑥𝑦 + L𝑟v𝑟 (2.13)

where v𝑥𝑦 = [v𝑥v𝑦]𝑇 and v𝑟 = [v𝑧𝑤𝑥𝑤𝑦𝑤𝑧]𝑇 . In addition, L𝑥𝑦 and L𝑟 are calculated as follows:

L𝑥𝑦 =

[
𝑓

𝑍
0

0 𝑓

𝑍

]
(2.14)
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L𝑟 =
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𝑓
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− 𝑓 2+𝑣2

𝑓
𝑢𝑣
𝑓
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 (2.15)

Hence:
v𝑥𝑦 = L+

𝑥𝑦 (¤s − L𝑟v𝑟) (2.16)

since the time variation of the features is related to the feature errors ¤s = −𝑘𝑒, therefore (2.16)
will change to:

v𝑥𝑦 = L+
𝑥𝑦 (−𝑘 ( | |e| |)e − L𝑟v𝑟) (2.17)

To reduce the convergence time, the following adaptive representation of the controller gain
has been implemented [102]:

𝑘 ( | |e| |) = (𝑘 (0) − 𝑘 (∞))𝑒
−𝑘 (0)

𝑘 (0)−𝑘 (∞) | |e| | + 𝑘 (∞) (2.18)

In (2.18), for small amounts (less than 0.005 m) of | |𝑒 | | the positive amount of gain is 𝑘0 = 𝑘 (0),
while for the high amounts (more than 0.005 m) of | |𝑒 | | the gain is 𝑘∞ = 𝑘 | |𝑒 | |→∞, 𝑘 ( | |e| |),
and the slope of 𝑘 at | |𝑒 | | = 0 is 𝑘′0.
The term L𝑟v𝑟 will be calculated during each iteration, and the outcome of this term will
be placed in (2.17). To determine v𝑟 in the PBVS method the same scenario for the IBVS
method will happen as follows:

¤s𝑝 = L𝑃𝑥𝑦v𝑥𝑦 + L𝑃𝑟v𝑟 (2.19)

where L𝑃𝑥𝑦 is a matrix generated by the first and second columns of L𝑃 in (2.4), and L𝑃𝑟 is a
matrix created by the last four columns of L𝑃 in (2.4). Therefore:

v𝑟 = L+
𝑃𝑟 (−𝑘 ( | |e| |)e𝑝 − L𝑃𝑥𝑦v𝑥𝑦) (2.20)

Finally, the camera velocity vector is calculated by solving (2.17) and (2.20), simultaneously.

2.3.2 Robot kinematics with task priority

Joint velocities (¤q) are computed after the end-effector (EE) velocities are calculated using
the kinematics of the robot:

¤q = J†𝜆ξ𝑒𝑐v
𝑐
𝑐𝑎𝑚 (2.21)

The transformation matrix ξ𝑒𝑐 is used to map the velocities represented in the robot end-effector
(EE) frame to the camera frame [103]:

ξ𝑒𝑐 =

[
R𝑒

𝑐 𝑠𝑘
(
t𝑒𝑐

)
R𝑒

𝑐

0 R𝑒
𝑐

]
(2.22)

where t𝑒𝑐 is the translation vector between the EE frame and the camera frame. R𝑒
𝑐 is the

rotation matrix between the EE and the camera frame, and 𝑠𝑘 (t𝑒𝑐) is the skew-symmetric
matrix of the translation vector. It is worth mentioning that ξ𝑒𝑐 is constant in such a scenario
(Eye-in-Hand configuration). By using this approach the effect of robot singularity has been
reduced, and discontinuities caused by the decoupling process have been greatly smoothed,
thanks to the DLS inverse [104]:

J†
𝜆

= J𝑇
(
JJ𝑇 + 𝜆2I

)−1
(2.23)

where 𝜆 is a positive scalar known as the damping factor. Using DLS inverse minimizes the
term | |J¤q − ¤x| |2 + 𝜆2 | | ¤q| |2. Choosing 𝜆 will ensure that the solution norm stays within an
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To minimise the effects of robot singularity, the DLS inverse method was used instead of the
pseudo-inverse approach. The 3D calculation of the visual features is used to regulate the
errors of rotations and translation in the 𝑍-axis. As a result, feasible trajectories for the robot
will be generated, and image singularities caused by these four components in the interaction
matrix will be eliminated. In Algorithm 1, the pseudocode of the proposed approach has been
illustrated.

Algorithm 1: Hybrid Decoupled Visual Servoing.

1 Inputs: e, e𝑝;
2 Outputs: ¤q;
3 Initialization;
4 Define desire points;
5 Modify task as Eye-in-Hand;
6 while Not converged do
7 for i=1 to i=features.size() do
8 Compute L𝑥𝑦, L𝑟 , L𝑃𝑟 and L𝑃𝑥𝑦

9 end
10 for j=1 to j=camera-velocity.size() do
11 compute camera velocities v𝑐𝑎𝑚 = (v𝑥𝑦, v𝑟);
12 use adaptive gain;
13 IBVS update visual features;
14 v𝑥𝑦 = L+

𝑥𝑦 (−𝑘 ( | |e| |)e − L𝑟v𝑟);
15 PBVS update visual features;
16 v𝑟 = L+

𝑃𝑟
(−𝑘 ( | |e| |)e𝑝 − L𝑃𝑥𝑦v𝑥𝑦);

17 end
18 for k=1 to k=joint-velocity.size() do
19 calculate joint velocities ¤q;
20 define manipulability as a secondary task;
21 use damped least square method;
22 command robot;

23 ¤q = J†𝜆ξ𝑒𝑐v
𝑐
𝑐𝑎𝑚 + (I − J†𝜆J) ¤q0;

24 end

25 end

The inputs of the algorithm are the feature errors in the image screen and their counterparts
in the 3D space. The output of the algorithm will be the vector of joint velocities. In line 8 of
Algorithm 1, the decoupled matrices will be determined from (2.14), (2.15), and (2.4). Camera
velocity would be estimated in lines 14 and 16 using the calculated decoupled matrices in line
8. An adaptive representation of the controller gains was used in this calculation to increase
the VS task speed. Eventually, the robot joint velocities will be measured and commanded
to the robot velocity controller in line 23 of Algorithm 1. Not to mention that the controller
would use manipulability as a secondary task in measuring the joint velocities, and DLS inverse
would be used instead of pseudoinverse to convert EE velocities to the joint velocities.

2.3.3 Estimation of camera velocities using Neural Networks

A trained neural network is employed to provide an accurate estimation of the camera velocities
from the feature errors (NN replaced with lines 7 to 17 in Algorithm 1 ). To this end, feature
errors in the image screen were deployed as input of the neural network and the calculated
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increasing the number of neurons sometimes caused the RMSE to jump suddenly at certain
points. These jumps indicate that the neural network is starting to overfit, or ”overlearn,” the
training data. This is a key sign that the network has too many neurons for the task and that
the number should be reduced to avoid overfitting. This method ensures that the network is
neither underfitted (too few neurons) nor overfitted (too many neurons). The learning process
stops when the test and train samples acquire a predefined accuracy. This accuracy will be
checked by the RMSE in both test and train samples (RMSE of 0.01𝑚/𝑠 for translational
velocities and RMSE of 0.01𝑟𝑎𝑑/𝑠 for rotational velocities). Such behaviour will effectively
decrease the number of trials and errors.
The number of allocated LoLiMoT models (membership functions alongside linear local model)
and RMSE of the trained Neural network for the test and the train samples have been depicted
in Figure 2.4 and 2.5. Each LoLiMoT model consists of a linear local model alongside a
Gaussian membership function.
As Figure 2.4a suggested, having 10 models is optimal to have the RMSE of 0.01 in test
and train samples. Having more than 10 models is redundant and could lead the network to
over-fitting. The number of LoLiMoT models is 9 for the prediction of velocity controller in 𝑌

direction (Figure 2.4b). This number is 6 for velocity in 𝑍 (Figure 2.4c).
In Figure 2.5a, it can be seen that 8 LoLiMoT models are required for rotational velocity about
𝑋-axis, 10 models for rotational velocity about 𝑌 -axis (Figure 2.5b) and 9 LoLiMoT models
for rotational velocity about 𝑍-axis (Figure 2.5c). The trained set of these 6 networks will be
used to predict the camera velocity required to perform the visual servoing task. The updated
set of feature errors will be utilized for the networks at each iteration.

2.4 | Simulation and experimental setup

In this study, two different setups were introduced to evaluate the efficacy of the proposed
HDVS method in comparison with other VS methods. In the first setup, different behaviours
of the proposed method have been studied such as singularity, performance, and manipulability
(Figure 2.7). The second setup was also designed to demonstrate the capability of the proposed
DHVS method for performing an industrial application (i.e., sorting) (Figure 2.9 ). It is worth
mentioning that all the case studies were performed with the same adaptive and DLS gains
(𝑘0 = 4, 𝑘∞ = 0.4, 𝑘′0 = 30, 𝜆 = 0.1).

2.4.1 Design of setup 1

In the first setup, the HDVS method has been tested in simulation and then validated in the
real world. The simulation platform includes two Franka manipulators; one robot is equipped
with an RGB-D camera, and another robot arm holds an object (with a printed tag marker).
Four corners of the marker are used as points of interest/visual features in this study. Tracking
the object under this condition has been tested via different VS methods. The experimental
and simulation setups are identical. Franka robots have 7 degrees of freedom across 7 axes,
with a 3 kg payload, and positioning accuracy of +/− 0.1 mm in all directions. The proposed
method was modeled in simulation using ROS/Gazebo. ROS Melodic on Linux 18 was used
for both the simulation and the experiment. The joint state controller was used to publish the
joint state (at a rate of 1 kHz) and the joint velocity group controller was used to set the joint
velocities computed from the VS approaches. A system with the following CPU specification
was used for the visual servoing operation: AMD Ryzen 7 3700x, 8-core with 16 CPU Threads,
3.6 GHz base clock, and 36 MB total cache. Figure 2.7a depicts an snapshot of the developed
simulation environment in Gazebo, and Figure 2.7b shows the identical experimental setup in
the real world.
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Case Study 1

To demonstrate the effectiveness of the proposed method, this case study has been designed
in which the robot with the attached marker moved to a pre-defined position, and another
robot, equipped with the camera, tracked the visual features. This case study shows scenarios
in which the proposed method could complete the task while other methods are unsuccessful
to do so. The camera calibration was intentionally degraded by at least 20% in all of the case
studies to evaluate the performance of HDVS in an imperfect calibrated condition.

Case Study 2

In this case study, a comprehensive comparison between the effective parameters in VS is
carried out. Ten random positions were defined for the object (with an attached marker) in
order to be tracked by another robot (with the attached camera) using different VS methods.
The experiments are performed under the same conditions for all four VS approaches (IBVS,
PBVS, HVS, HDVS). Thereafter, the performance of the robot and the VS methods in the
image space and Cartesian space were compared quantitatively based on the RMSE, range
of feature error, required number of iterations for convergence, and the manipulability of the
robot.

Case Study 3

In this case study, the object is not fixed (the opposite of Case Study 1 and Case Study 2)
and the controller will track a dynamic object to demonstrate how HDVS could improve the
manipulability of the robot. The selected trajectory includes a wide range of rotations and
translations.

2.4.2 Design of setup 2

The second setup was designed to evaluate the efficacy of the proposed HDVS method for
sorting applications. Figure 2.9 depicts the experimental setup used for sorting the dismantled
components of an EV battery pack (Nissan Leaf 2011). The VS has been used to guide the
suction gripper toward the battery module (i.e., the object with an attached marker). Then,
the battery module will be lifted and will be placed in the corresponding basket. The rationale
for performing this case study is that in industry, the robot and the object that the robot is
interacting with must be precisely positioned, otherwise, the robot might fail to complete the
task due to uncertainties in the environment.
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(a) Uncalibrated camera in PBVS (b) Uncalibrated camera in HDVS

Fig. 2.10. Result of tracking desired features with an uncalibrated camera for PBVS and
HDVS.

were represented in normalized pixels, scaling the pixel coordinates relative to the 640 × 480
image dimensions. This normalization ensures consistent error measurements across different
image resolutions. Figure 2.10b suggested that HDVS tracked the desired features successfully.
This is because in HDVS camera velocities are generated directly from the trained LoLiMoT
NN. Collecting data for the NN has been done with an accurate camera calibration. Therefore,
it is not important how inaccurate is the camera calibration in online mode (i.e. robot during
visual servoing), the controller will work well and is more robust to camera calibration errors
compared to PBVS.

Comparing the performance of IBVS with HDVS

IBVS failures are mostly associated with the rotations about 𝑍-axis (Chaumette Conundrum)
[34] and Camera retreat [35]. Furthermore, camera ambiguities might happen between
translations and rotations in the image plane; this implies that different camera velocities could
produce the same motion of points in the image and some camera motions lead to no change
in the image [111]. A case study has been defined in such that the desired features rotated
90◦ about the 𝑍-axis. The performance of HDVS and IBVS in converging feature errors to
zero is depicted in Figure 2.11.

(a) IBVS (b) HDVS

Fig. 2.11. Result of tracking desired features with an uncalibrated camera for IBVS and
HDVS.
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As shown in Figure 2.11, the controller will end up with unpleasant behaviour in IBVS. Figure
2.11a shows that the errors could not converge to zero as the controller produces a large
velocity in 𝑍 which makes the robot go to its joint limits. The main reason associated
with this limitation is that reducing the rotation error about the 𝑍-axis in the image screen
could be achieved by moving the camera away from the target (the so-called camera retreat
phenomenon). Such a wrong decision in 2D could produce a large motion in the 𝑍 axis in 3D.
An extreme version of this behaviour is when there is a pure 𝜋 rad rotation between features
and their desired positions in the image. In such a case, the features will be driven towards the
origin by mistake and cause image singularity [34]. In this configuration, the controller would
servo forever, and features can not reach the desired ones [35]. The proposed HDVS method
will provide the most straightforward way of compensating errors of 𝑍 and rotations in task
space. This claim comes from the fact that the error of these four parameters (translation in
𝑍-axis and three rotations) is directly compensated by 3D estimation of the target position
w.r.t the camera position. In Figure 2.11b, it is illustrated that using the proposed controller the
errors easily converge (in 509 iterations) without causing singularity. Moreover, HDVS avoids
camera ambiguity while the controller distinguishes the camera rotations from translations.
Camera ambiguity could be explained by the structure of the image-Jacobian matrix in Eq.
2.1. When the camera focal length is large or when the pixel coordinates are small, columns 1
and 4 become very similar. The same ambiguity could happen for columns 2 and 5 (large focal
length dominates 𝑢 squared). Therefore, transnational velocities in the 𝑋 axis and 𝑌 axis could
not be easily detected from rotational velocities about the 𝑌 and 𝑋 axis, respectively. These
components are decoupled from the image-Jacobian in HDVS, and the controller avoided these
kinds of ambiguities.

Comparing the performance of HVS with HDVS

In the traditional HVS approach, the controller compensates for translation in 𝑍-axis from
the 2D information given by the camera. As a result, the controller continues to generate a
non-optimized trajectory for the camera, which results in generating robot singularity. Figure
2.12a clearly shows that the controller using the HVS method failed to converge the errors
to zero with an uncalibrated camera. However, HDVS could successfully finish the tracking
in Figure 2.12b. Not to mention that the overshoots in Figure 2.12b are caused by the
uncalibrated camera parameters, but the key point is that the controller still managed to
complete the task successfully. Another advantage of HDVS in comparison with traditional
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(b) HDVS

Fig. 2.12. Result of tracking desired features with an uncalibrated camera for HVS and
HDVS.
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Table 2.1
Performance of visual servoing methods in the image space.

Method RMSE
Feature Error

Range
Iteration Mean of Error

Mean Standard
Deviation of Error

IBVS 0.0222 [−0.36, 0.310] 453 0.0152 0.0095
PBVS 0.0383 [−0.445, 0.507] 487 0.0204 0.0164
HVS 0.0273 [−0.448, 0.486] 624 0.0168 0.0141
HDVS 0.0249 [−0.419, 0.407] 505 0.0155 0.0101

Table 2.2
Performance of visual servoing methods in the Cartesian space.

Method
RMSE of

Position (𝒎)
RMSE of

Orientation (◦)
Camera (or EE)

Travelled Distance (𝒎)

IBVS 0.036 9.43 0.942
PBVS 0.022 6.54 0.722
HVS 0.034 8.41 0.917
HDVS 0.027 7.11 0.746

the image-plane if there is no singularity or local minima. However, the controller operates
blindly in the Cartesian space (with the highest RMSE for location and orientation as shown
in Table 2.2). Large camera motions are common in the IBVS approach.
As shown in Table 2.2, in Cartesian space, the HDVS method performed better than IBVS and
HVS, as one would expect. However, the mean RMSE amounts of position and orientation
in the PBVS method were less than their counterparts in the other three methods. As a
consequence, in Cartesian space, the PBVS method had better outcomes, followed by HDVS.
Ultimately, the HDVS method indicates more optimised efficiency in the Cartesian space than
IBVS and HVS (based on the amounts of mean RMSE shown in Table 2.2). Furthermore,
HDVS outperforms PBVS and HVS in image space (based on the amounts of RMSE and
feature error ranges, shown in Table 2.1).
In Table 2.3, a quantitative comparison of manipulability has been presented as well. When
using the HDVS approach for VS, the mean of manipulability across the entire path is higher
than when using the other three methods. The mean of manipulability with our proposed
HDVS method after 10 different trials was 0.0486. However, for the same number of trials
and the same initial position of the robot and the marker, this amount was 0.0407 for the
IBVS method, 0.0446 for the PBVS method, and 0.0396 for the classical hybrid method.
In conclusion, the proposed HDVS technique had advantages in terms of controllability and
the ability to select a wider range of joint positions, compared to PBVS, IBVS, and HVS
approaches.
As a prime example, in Figures 2.14 and 2.15, the behaviours of different VS methods for one
of the experiments (i.e., tracking one of the ten positions) have been depicted in this case
study.
According to Figures 2.14 and 2.15, the proposed hybrid approach will not inherently have
the best performance in tracking the features in the image-space and Cartesian space (robot
space), but it has an optimised performance in both.
It stems from the fact that translation in the 𝑋-axis and 𝑌 -axis of the camera velocities
are computed directly from the image space, while the rest are computed from the 3D
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Table 2.3
Comparison of manipulability in different VS methods.

Method RMSE
Manipulability

Mean
Manipulability

Range
Iteration

IBVS 0.0222 0.0407 [0.0140, 0.0810] 153
PBVS 0.0383 0.0446 [0.0245, 0.0807] 187
Hybrid VS 0.0273 0.0396 [0.0208, 0.0806] 224
HDVS 0.0247 0.0486 [0.0278, 0.0816] 203

(a) PBVS (b) IBVS
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(c) HVS (d) HDVS

Fig. 2.14. The real world result of the feature errors in different methods for the same
scenario.

reconstruction of the environment. Furthermore, as compared to HVS and PBVS, the object in
HDVS is less likely to be lost from the camera FOV. This conclusion was reached by comparing
the maximum feature error in Figure 2.14d to the one in Figure 2.14a and 2.14c, which is less.
The larger the error, the more likely the feature might be lost from the camera FOV.
According to Figure 2.15e, HDVS (the blue path) has a shorter camera path than HVS (the
purple path) and IBVS (the red path). To elaborate, the camera (or the robot EE) travelled
0.843 m distance in HDVS; however, this value is 0.942 m and 0.917 m in IBVS and HVS,
respectively. In PBVS, the camera travelled distance is 0.722 m, which provides the most
optimised Cartesian trajectory of the robot EE, as predicted.
The IBVS reflects the most optimised path in the camera frame as shown in Figure 2.14b,
followed by the HDVS method. IBVS has a lower RMSE than the other three VS approaches.
In Figure 2.14, this amount is 0.036 in PBVS, 0.021 in IBVS, 0.032 in HVS, and 0.028 in
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Table 2.4
A qualitative comparison of visual servoing schemes.

IBVS PBVS HVS HDVS

Optimized Cartesian Trajectory low high med∗ high
Optimized Feature Trajectory high low med med
Image Singularities yes no no no
Robustness to Camera Calibration high low med high
Convergence Speed high low low med
Computationally Complex med med high Low
Robustness to Image Noises high med low high

* med = medium

Table 2.4 illustrates that the proposed HDVS method offers an optimized trajectory both in
Cartesian and image space. Furthermore, the controller is highly robust in terms of camera
calibration (PBVS problem), image singularities (IBVS problem), and image noises (HVS
problem). Not to mention that the proposed method has significantly relaxed the calculation,
and the convergence speed is better than the classical HVS method.

(a) PBVS (b) IBVS

(c) HVS (d) HDVS

Fig. 2.16. Comparison of CPU and RAM usage while each method is running in the real
world

.

In Figure 2.16, the CPU and the RAM usage while different techniques are running have been
shown. The comparison between the graphs in Figure 2.16 clearly illustrates our claim that
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HDVS is less computationally heavy compared to the other three methods. The CPU usage in
HDVS is around 90 percent; However, this amount is above 105 percent for other techniques.

2.5.3 Case 3: Manipulability analysis of VS methods, setup 1

Four different visual servoing methods (HDVS, IBVS, HVS, PBVS) have been used to track a
dynamic object with a Tag (Figure 2.17).

Fig. 2.17. Evaluating the manipulability performance of several visual servoing techniques in
tracking a dynamic object.

Figure 2.18 depicts the amount of manipulability for different VS methods. As shown in Figure
2.18, the manipulability of the HDVS method was mostly greater than the other three methods.
Not to mention that the manipulability value at the time zero is the same since the robot
started moving from the same position with an identical configuration during all trials. The
minimum amount of manipulability for the HDVS method is 0.0684, while this amount is
0.0588 for IBVS, 0.0613 for PBVS, and 0.0628 for the HVS method.
In Figure 2.19, the manipulability ellipsoid of the robot in its minimum amount (lowest amount
of controllability for the robot) for different VS approaches has been illustrated. Since the
manipulability ellipsoid is a hyper ellipsoid in six dimensions and plotting this in 3D space is a
complex task, the first three elements of the ellipsoid have been plotted (i.e., translational
velocities). The more isotropic the ellipsoid, the higher the controllability of the robot. From
the plots in Figure 2.19, it is obvious that the proposed hybrid method has better controllability
on the robot movements, compared to IBVS, PBVS, and HVS methods.

2.5.4 Case 4: Application of sorting with HDVS, setup 2

In industry, the robot and the object on which the robot is working must be precisely positioned
for the task to be completed successfully. This is the most common procedure for industrial
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fuzzy LoLiMoT neural network was used to approximate the pseudo-inverse of the proposed
interaction matrix. Moreover, the convergence time was reduced by the use of adaptive gains
rather than a constant gain. The damped least square method was applied in order to reduce
the effect of robot singularities and to smooth the discontinuities.
The method not only has an optimized solution for the robot‘s EE, but it also considers the
optimized trajectories of features in the image space. Furthermore, HDVS has improved the
performance of classical HVS in both image-plane and task space. The method is robust in
terms of camera parameters and image noises to a good extent, and it avoids singularities of
the image-Jacobian effectively. In addition, it is less likely to lose the object from the camera
fields of view than the PBVS and HVS methods. Results obtained from 40 random experiments
(10 experiments per method) suggested 100% and 90% success rates in executing the VS
tasks in simulation and real-world, respectively. In the next chapter, the use of Reinforcement
learning with the help of demonstrations for the application of VS has been studied.

Data availability

The supporting data and clips for the findings discussed in this chapter are available in the
following repositories:
https://github.com/aaflakiyan/HDVS_Franka

https://github.com/aaflakiyan/DHVS

https://figshare.com/articles/media/Improving_the_manipulability_of_a_redundant_

arm_using_Decoupled_Hybrid_Visual_Servoing/17040620

https://figshare.com/articles/journal_contribution/Optimized_Hybrid_Decoupled_

Visual_Servoing_simulation_and_code/12980009
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CHAPTER3
Reinforcement Learning from Demonstrations

with Visual Servoing

Content from this chapter has been published in the following:

Aflakian, Ali, Alireza Rastegharpanah, and Rustam Stolkin. ”Boosting Performance of Visual
Servoing Using Deep Reinforcement Learning From Multiple Demonstrations.” IEEE Access
11 (Accepted 2023): 26512-26520.

Aflakian, Ali, et al. ”An Online Hyper-volume Action Bounding Approach for Accelerating the
Process of Deep Reinforcement Learning from Multiple Controllers.” Journal of Field Robotics,
(Submitted, under second round of review, 2023).

3.1 | Introduction

In this chapter, we have advanced our proposed VS method by integrating RL techniques.
Building upon the developments made in the preceding chapter, where we employed LoLiMoT
NN to estimate camera velocities based on feature errors, this chapter expands the scope of
AI. Using Reinforcement learning, our approach encompasses not only image spaces but also
extends to the joint space of the robot. Through this integration, we establish a direct mapping
from image features to the desired joint velocities of the manipulator. This direct mapping
helps to mitigate potential issues such as instability and robot singularity. Furthermore, it
avoids the need for computationally expensive calculations like the robot’s pseudo-inverse
Jacobian and enhances the overall efficiency and effectiveness of the control strategy. However,
deep RL algorithms generally require a large amount of data before they achieve an acceptable
performance. We developed a method that uses demonstrations of multiple controllers to
address the issue of insufficient data in RL. Unlike the RLfD approaches mentioned in section
1.2.3 that aimed to replace existing learning from demonstration strategies, our proposed
method is complementary to established RLfD methods and we fuse ideas from RL, Learning
from Demonstration (LfD), and Ensemble Learning into a single paradigm. In other words,
knowledge from a mixture of control algorithms (experts) is used to constrain the action space
of the agent, enabling faster RL refining of a control policy, by avoiding unnecessary explorative
actions. Domain-specific knowledge of each expert is exploited, resulting in a robust policy
against errors of individual experts, since it is refined by a reward function without copying
any particular demonstration. We have established two distinct case studies to demonstrate
the efficacy of our approach. In the first case study, we used the Deep Deterministic Policy
Gradient (DDPG) to train the RL algorithm and employed a hypercube to constrain the action
space of the agent by integrating insights from previous VS methodologies. More specifically,
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reward. The actor and critic blocks are trained using actor and critic loss functions, respectively.
During training, if the action generated by the actor block falls outside the bounds set by
the knowledge of HDVS, PBVS, and IBVS approaches, the action filter block will remove
the action from consideration. This ensures that only actions within acceptable bounds are
considered, leading to better learning outcomes. The joint velocity actions that pass through
the action filter block are then applied to the training environment, and the resulting average
rewards are calculated.

Proposed method: action constrained strategy

As described in Section 1.2.3, our proposed method uses implemented control algorithms to
limit the action space of the RL agent rather than letting the AI agent learn from scratch
through their exploration. Joint velocities are defined as RL agent actions (VS commands).
The observations are the positions of image feature points, camera poses, and the Jacobian of
the robot. Three reward functions are combined to provide the agent reward. The feature
errors are driven to zero in the first reward, 𝑟1:

𝑟1 = −
4∑︁
𝑖=1

√︁
(𝑢𝑖 − 𝑢𝑖𝑑)2 + (𝑣𝑖 − 𝑣𝑖𝑑)2 (3.5)

where (𝑢, 𝑣) denotes the coordinates of a point in the picture and (𝑢𝑑 , 𝑣𝑑) is the desired
coordinates of that point. 𝑖 = 1 to 𝑛 is the number of features (in this case 𝑛 = 4 features).
The second reward function (𝑟2) is defined to avoid joint limits [118]:

𝑟2 = − 1

2𝑛

𝑛∑︁
𝑗=1

(
𝑞 𝑗 − 𝑞 𝑗

𝑞 𝑗𝑀 − 𝑞 𝑗𝑚

)2
(3.6)

where 𝑞 𝑗 is center of 𝑗 𝑡ℎ joint range. 𝑞 𝑗𝑀 and 𝑞 𝑗𝑚 are the maximum and minimum angles of
the 𝑗 𝑡ℎ joint respectively, and 𝑛 = 7 is the number of joints. Singularity avoidance is introduced
in the final reward component [118]:

𝑟3 =

√︃
det

(
J(q)J𝑇 (q)

)
(3.7)

where J is the robot Jacobian. The overall procedure of the proposed learning method is
detailed in Algorithm 2. The final reward function will be derived as:

𝑟 = −𝑤 𝑓 𝑟1 − 𝑤𝑞𝑟2 − 𝑤𝑚𝑟3 (3.8)

The terms 𝑤 𝑓 , 𝑤𝑞, and 𝑤 𝑗 are weighting factors that are manually adjusted. For each reward,
values of 𝑤 𝑓 = 10, 𝑤𝑞 = 2, and 𝑤 𝑗 = 4 were chosen to determine the weighting contribution.
In the proposed acceleration method, the robot achieves the desired joint velocities at the
beginning of each step from IBVS, PBVS, and HDVS methods. Thereafter, from a combination
of these demonstrators, a set of bounds for the action will be defined (a𝑏𝑜𝑢𝑛𝑑): the lower limits
of the bound for the 𝑖𝑡ℎ joint would be 𝑚𝑖𝑛( ¤q𝑖𝑏𝑣𝑠 [𝑖], ¤q𝑝𝑏𝑣𝑠 [𝑖], ¤qℎ𝑑𝑣𝑠 [𝑖]) and the upper limit
of the bound would be: 𝑚𝑎𝑥( ¤q𝑖𝑏𝑣𝑠 [𝑖], ¤q𝑝𝑏𝑣𝑠 [𝑖], ¤qℎ𝑑𝑣𝑠 [𝑖]). In this way, the actions which are
out of bounds and created from the critic network would be filtered, and the agent continues
exploring by trial and error, within the created bounds. We defined a hypercube at each time
step (i.e. a subset of the whole space), as restrictive bounds for action space. Not to mention
that the hypercube is one of the simplest spaces which encapsulate all of the action vectors.
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Algorithm 2: Action constrained approach

1 Inputs:
2 • Joint velocities from IBVS (¤q𝑖𝑏𝑣𝑠), PBVS (¤q𝑝𝑏𝑣𝑠), HDVS (¤qℎ𝑑𝑣𝑠)
3 Outputs:
4 • Optimized joint velocities a𝑡 (actions)
5 Given:
6 • RL algorithm DDPG
7 • The strategy for sampling goals from replay
8 • The reward function
9 Initialize actor and critic weights randomly ;

10 Initialize replay buffer R ;
11 while VS error not converged do
12 for episode i=1 to M do
13 Sample g (goal) and initial 𝑠0 (state);
14 for t=0 to T-1 do
15 for k=1 to 7 do
16 Get L𝑥𝑦, L𝑟 , L𝑃𝑟 and L𝑃𝑥𝑦, e𝑝, e𝑖 ;
17 Get joint velocities ¤q𝑖𝑏𝑣𝑠 from IBVS ;
18 Get joint velocities ¤q𝑝𝑏𝑣𝑠 from PBVS ;
19 Get joint velocities ¤qℎ𝑑𝑣𝑠 from HDVS ;
20 Make bounds: a𝑏𝑜𝑢𝑛𝑑 = [𝑚𝑖𝑛( ¤q𝑖𝑏𝑣𝑠 [𝑖], ¤q𝑝𝑏𝑣𝑠 [𝑖], ¤qℎ𝑑𝑣𝑠 [𝑖]),

𝑚𝑎𝑥( ¤q𝑖𝑏𝑣𝑠 [𝑖], ¤q𝑝𝑏𝑣𝑠 [𝑖], ¤qℎ𝑑𝑣𝑠 [𝑖])] ;
21 Sample 𝑎𝑡 (action) using DDPG policy and filter actions out of the

a𝑏𝑜𝑢𝑛𝑑 bound: 𝜋(𝑠𝑡 |𝑔) → 𝑎𝑡 ;
22 Execute 𝑎𝑡 and observe 𝑠𝑡+1 (new state) ;
23 𝑟𝑡 := 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑔) ;
24 Store (𝑠𝑡 |𝑔, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 |𝑔) (transition) in R ;
25 Sample 𝑔′ (additional goal) for replay 𝐺 : 𝑆(current episode) ;

26 end
27 for 𝑔′ ∈ 𝐺 do
28 𝑟′ := 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑔′) ;
29 Store (𝑠𝑡 |𝑔′, 𝑎𝑡 , 𝑟′, 𝑠𝑡+1 |𝑔′) in R ;

30 end
31 for t=1 to N do
32 Sample B (mini-batch) from the R (replay buffer) ;
33 Execute one step of optimization using DDPG and B ;

34 end

35 end

36 end

37 end

3.2.2 Case 2: Integrating AORLD with TD3

TD3 is an effective off-policy actor-critic algorithm that uses delayed policy updates and target
policy smoothing to improve stability and performance. The algorithm involves the use of two
Q-functions, 𝑄𝜙1 and 𝑄𝜙2 , which are learned simultaneously by minimizing the mean square
Bellman error [119]. The Bellman equation is a fundamental concept in reinforcement learning
that helps predict the expected cumulative reward of being in a state and taking an action. To
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learn the Q-functions, TD3 uses the mean square Bellman error, which measures the difference
between the predicted Q-value and the actual Q-value for a state-action pair. By using two
Q-functions, TD3 aims to reduce the overestimation bias that can occur in single Q-function
methods. The use of target policy smoothing, which adds noise to the actions selected by the
actor, further enhances the stability and performance of the learned policy.
To form the Q-learning target in the TD3 reinforcement learning algorithm, actions are
generated based on the target policy, denoted as 𝜇𝜃targ . However, clipped noise is added to
each dimension of the action to enhance exploration. This means that the target action is
obtained by adding clipped noise to the output of the target policy and then clipping the result
to ensure that it lies within the valid action range (𝑎𝐿𝑜𝑤 ≤ 𝑎 ≤ 𝑎𝐻𝑖𝑔ℎ). Mathematically, the
target actions can be expressed as [120]:

𝑎′(𝑠′) = clip
(
𝜇𝜃targ (𝑠′) + clip(𝜖,−𝑐, 𝑐), 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥

)
(3.9)

where 𝜖 is a noise term drawn from a normal distribution with zero mean and standard deviation
𝜎, and 𝑐 is a constant that determines the amount of noise added to the action.
Clipped double-Q learning is a method employed in the TD3 reinforcement learning algorithm
to alleviate the overestimation issue in the Q-function. The approach trains two Q-functions,
labelled as 𝑄𝜙1 and 𝑄𝜙2 , simultaneously by regressing towards a single target value. The
target value is computed by choosing the Q-function that gives the lower target value, which
is expressed mathematically as:

𝑦(𝑟, 𝑠′, 𝑑) = 𝑟 + 𝛾(1 − 𝑑)min
𝑖=1,2

𝑄𝜙𝑖,targ (𝑠′, 𝑎′(𝑠′)) (3.10)

Here, r is the reward, s’ is the next state, d is a binary indicator of whether the episode has
ended, 𝛾 is the discount factor, and 𝑎′(𝑠′) is the target action with clipped noise, as described
earlier in (3.9).
Both Q-functions, 𝑄𝜙1 and 𝑄𝜙2 , are then trained by minimizing the squared difference between
the predicted Q-value and the target value [117].
Finally, the TD3 policy with the modified loss function is learned by maximizing 𝑄𝜙1 . The
actor network, denoted as 𝜇𝜃, selects actions that maximize the Q-value estimated by 𝑄𝜙1 .
Mathematically, the policy is learned by solving the following optimization problem:

max
𝜃

E
𝑠∼D

[
𝑄𝜙1 (𝑠, 𝜇𝜃 (𝑠))

]
(3.11)

While we used TD3 in this case, the proposed method is readily applicable to different RL
algorithms by modifying their target action limits. The overall procedure of the proposed
optimization learning method is detailed in Algorithm 3 and Figure 3.5.
The algorithm takes candidate actions from multiple expert controllers as input and optimized
actions for a given task, considering the observations, are the outputs of the trained policy. The
RL algorithm used in this approach is TD3 (Twin Delayed Deep Deterministic Policy Gradient).
The AORLD approach has four different methods for constraining the actions generated by the
RL algorithm: convex hull with modified loss function (AORLD-HL), hypercube with modified
loss function (AORLD-CL), convex hull with filtering actions outside the hull (AORLD-HF),
and convex hull with projecting actions onto the hull (AORLD-HP). Each method modifies
the TD3 algorithm in a specific way to constrain the generated actions.
In each iteration of the training process, the AORLD approach samples a goal and an initial
state and generates an action using the RL algorithm. The generated action is then constrained
by one of the four above-mentioned methods, depending on the chosen method. The resulting

52





Algorithm 3: AORLD approach

1 Inputs:
2 • Candidate actions from expert 1 (𝑎𝑒𝑥1), expert 2 (𝑎𝑒𝑥2), ..., expert n (𝑎𝑒𝑥𝑛)
3 Outputs:
4 • Optimized actions 𝑎𝑡
5 Given:
6 • RL algorithm TD3
7 • The strategy for sampling goals from replay
8 • The reward function
9 Initialize actor and critic weights randomly;

10 Initialize a set of actions randomly;
11 Initialize replay buffer R;
12 while Controller stop criteria not achieved do
13 for episode i=1 to M do
14 Sample g (goal) and initial 𝑠0 (state);
15 for t=0 to T-1 do
16 if AORLD-HL then
17 Use Algorithm 2 to calculate 𝑎𝑡 ;
18 else if AORLD-CL then
19 Use Algorithm 3 to calculate 𝑎𝑡 ;
20 else if AORLD-HF then
21 Use Algorithm 4 to calculate 𝑎𝑡 ;
22 else if AORLD-HP then
23 Use Algorithm 5 to calculate 𝑎𝑡 ;
24 end Execute 𝑎𝑡 and observe 𝑠𝑡+1 (new state);
25 𝑟𝑡 := 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑔);
26 Store (𝑠𝑡 |𝑔, 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1 |𝑔) (transition) in R;
27 Sample 𝑔′ (additional goal) for replay 𝐺 : 𝑆(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑒𝑝𝑖𝑠𝑜𝑑𝑒) ;
28 for 𝑔′ ∈ 𝐺 do
29 𝑟′ := 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑔′);
30 Store (𝑠𝑡 |𝑔′, 𝑎𝑡 , 𝑟′, 𝑠𝑡+1 |𝑔′) in R;

31 end
32 for t=1 to N do
33 Sample B (mini-batch) from the R (replay buffer);
34 Execute one step of optimization using TD3 and B;

35 end

36 end

37 end

38 end

(𝑎𝑚𝑎𝑥) values of each coordinate of the vertices of the convex hull. During training, the convex
hull would be periodically updated using a new set of action vectors. As explained before,
this approach aims to adaptively constrain the RL agent to choose actions within the feasible
action space defined by the convex hull. Limiting the actions of the RL agent to lie within the
convex hull can potentially simplify the learning problem and make it easier for the agent to
converge to a good policy. Moreover, by limiting the actions to a smaller region of the action
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Algorithm 4: AORLD-HL

1 Inputs:
2 • Candidate actions from expert 1 (𝑎𝑒𝑥1), expert 2 (𝑎𝑒𝑥2), ..., expert n (𝑎𝑒𝑥𝑛)
3 Outputs:
4 • Candidate actions (𝑎𝑡) inside the generated convex hull
5 for j=1 to n do
6 Generating convex hull around action vectors 𝐴:
7 𝑘 = 𝑐𝑜𝑛𝑣ℎ𝑢𝑙𝑙𝑛(𝐴);
8 Find the minimum and maximum vectors for each dimension:
9 𝑎𝑚𝑖𝑛 = 𝑚𝑖𝑛(𝑎(𝑘 (:), :), [], 1);

10 𝑎𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑎(𝑘 (:), :), [], 1);
11 Modify the TD3 algorithm to use the new bounded action space:

12 𝑎′(𝑠′) = clip
(
𝜇𝜃targ (𝑠′) + clip(𝜖,−𝑐, 𝑐), 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥

)
13 Sample actions (𝑎𝑡) inside the convex hull using TD3 policy:
14 𝜋(𝑠𝑡 |𝑔) → 𝑎𝑡 ;

15 end

space, the agent has fewer options to choose from and can more quickly learn which actions
are likely to lead to good outcomes.

Algorithm 5: AORLD-CL

1 Inputs:
2 • Candidate actions from expert 1 (𝑎𝑒𝑥1), expert 2 (𝑎𝑒𝑥2), ..., expert n (𝑎𝑒𝑥𝑛)
3 Outputs:
4 • Candidate actions (𝑎𝑡) inside the generated hyper cube
5 for j=1 to n do
6 Make action bounds:
7 𝑎𝑏𝑜𝑢𝑛𝑑 = [𝑚𝑖𝑛(𝑎𝑒𝑥1 [𝑖], 𝑎𝑒𝑥2 [𝑖], ..., 𝑎𝑒𝑥𝑛 [𝑖]), 𝑚𝑎𝑥(𝑎𝑒𝑥1 [𝑖], 𝑎𝑒𝑥2 [𝑖], ..., 𝑎𝑒𝑥𝑛 [𝑖])] ;
8 Modify the TD3 algorithm to use the new bounded action space:

9 𝑎′(𝑠′) = clip
(
𝜇𝜃targ (𝑠′) + clip(𝜖,−𝑐, 𝑐), 𝑎𝑚𝑖𝑛, 𝑎𝑚𝑎𝑥

)
10 Sample actions (𝑎𝑡) inside the convex hull using TD3 policy:
11 𝜋(𝑠𝑡 |𝑔) → 𝑎𝑡 ;

12 end

The AORLD-CL algorithm is established in Algorithm 5. In AORLD-CL, instead of generating
a convex hull around the experts’ outputs, a set of bounds for the action is defined based on
the combination of demonstrators’ data. These bounds represent the minimum and maximum
values that each action can take. To create the lower limit of the 𝑖𝑡ℎ action, the minimum
value of that action from all the demonstrators’ data is used:

𝑎𝑚𝑖𝑛,𝑖 = 𝑚𝑖𝑛(𝑎𝑒𝑥1 [𝑖], 𝑎𝑒𝑥2 [𝑖], ..., 𝑎𝑒𝑥𝑛 [𝑖] (3.13)

Similarly, the upper limit of the 𝑖𝑡ℎ action is created using the maximum value of that action
from all the demonstrators’ data:

𝑎𝑚𝑎𝑥,𝑖 = 𝑚𝑎𝑥(𝑎𝑒𝑥1 [𝑖], 𝑎𝑒𝑥2 [𝑖], ..., 𝑎𝑒𝑥𝑛 [𝑖] (3.14)
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This creates a hypercube in the action space that represents the feasible action space for the
agent. Not to mention that the convex hull is the minimum bounding convex hypervolume
that includes the actions from the controllers, which reduces the action and search space of the
agent more than the hypercube. Convex hull also accounts for correlations between different
actions, whereas the hypercube approach in AORLD-CL assumes each action dimension is
independent. During training, the hypercube is updated periodically with the demonstrators’
new set of action vectors. This ensures the feasible action space is updated as the agent learns
from the demonstrators’ data. The modified TD3 loss function in AORLD-CL enforces that
the agent’s predicted actions stay within these bounds. This simple approach to limiting the
action space can be computationally less expensive than generating a convex hull and still
helps to constrain the agent’s actions to the feasible action space. Nevertheless, the agent’s
exploration space is not optimally condensed and is larger than when employing a convex hull.

Algorithm 6: AORLD-HF

1 Inputs:
2 • Candidate actions from expert 1 (𝑎𝑒𝑥1), expert 2 (𝑎𝑒𝑥2), ..., expert n (𝑎𝑒𝑥𝑛)
3 Outputs:
4 • Candidate actions (𝑎𝑡) inside the generated convex hull
5 for j=1 to n do
6 Generating convex hull around action vectors 𝐴:
7 𝑘 = 𝑐𝑜𝑛𝑣ℎ𝑢𝑙𝑙𝑛(𝐴);
8 Filter actions outside the created bound:
9 if Inhull(k,𝑎𝑡)==1 then
10 Sample actions (𝑎𝑡) inside the convex hull using TD3 policy:
11 𝜋(𝑠𝑡 |𝑔) → 𝑎𝑡 ;

12 else
13 Repeat the action generation
14 end

15 end

The AORLD-HL (Algorithm 4) and AORLD-HF (Algorithm 6) methods both use an online
convex hull to constrain the action space of the RL agent, but they differ fundamentally in
their approach and impact on the learning process. AORLD-HL modifies the agent’s loss
function to penalize actions outside the convex hull, thereby directly shaping the agent’s policy
during training to encourage inbound actions. This method actively discourages the agent
from exploring out-of-bound actions by making them more costly. In contrast, AORLD-HF
does not alter the loss function; instead, it acts as a post-processing filter, removing any
actions that fall outside the convex hull before execution. This allows the agent to learn freely
without penalties during training, with the constraints applied only when the agent is about to
take an action.
The algorithm 6 follows the steps below:
(I) Generate a convex hull around action vectors 𝐴 using the 𝑐𝑜𝑛𝑣ℎ𝑢𝑙𝑙𝑛 function, (II) Find
the minimum and maximum vectors for each dimension using the minimum and maximum
functions, (III) For each action sample 𝑎𝑡 , check if it is inside the generated convex hull using
the ”Inhull” function, (IV) If 𝑎𝑡 is inside the hull, sample an action inside the convex hull using
the TD3 policy, (V) If 𝑎𝑡 is outside the hull, repeat the action generation.
Finally, AORLD-HP, introduced in Algorithm 7, differs from AORLD-HF in that AORLD-HF
filters actions outside the generated bound; however, AORLD-HP uses a projection method
explained in Algorithm 7. The projection method projects the candidate action onto the closest
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Algorithm 7: AORLD-HP

1 Inputs:
2 • Candidate actions from expert 1 (𝑎𝑒𝑥1), expert 2 (𝑎𝑒𝑥2), ..., expert n (𝑎𝑒𝑥𝑛)
3 Outputs:
4 • Candidate actions (𝑎𝑡) inside the generated convex hull
5 for j=1 to n do
6 Generating convex hull around action vectors 𝐴:
7 𝑘 = 𝑐𝑜𝑛𝑣ℎ𝑢𝑙𝑙𝑛(𝐴);
8 if Inhull(k,𝑎)==1 then
9 Sample action (𝑎𝑡) inside the convex hull using TD3 policy:

10 𝜋(𝑠𝑡 |𝑔) → 𝑎𝑡 ;

11 else
12 Project the action vector onto the convex hull:
13 for 𝑙 = 1 : 𝑠𝑖𝑧𝑒(𝑘, 1) do
14 𝑎𝑡 = 𝑧𝑒𝑟𝑜𝑠(𝑛, 1);
15 𝑥 = 𝑝𝑜𝑖𝑛𝑡𝑠(𝑘 (𝑖, :), :);
16 𝑢 = 𝑥(1, :)′;
17 𝑣 = 𝑥(2, :)′ − 𝑢;

18 𝑝𝑟𝑜 𝑗 = 𝑢 + 𝑣 ∗ ((𝑎 − 𝑢)′ ∗ 𝑣)/𝑛𝑜𝑟𝑚(𝑣)2;
19 𝑎𝑡 = 𝑎𝑡 + 𝑝𝑟𝑜 𝑗 ;
20 𝜋(𝑠𝑡 |𝑔) → 𝑎𝑡 ;

21 end

22 end

23 end

point on the boundary of the convex hull as follows: Let 𝑘 be the set of indices of the convex
hull points, 𝑝𝑜𝑖𝑛𝑡𝑠 be the set of points on the convex hull and 𝑎 be the original action vector
to be projected onto the convex hull. Let 𝑢 be the starting point of a line segment on the
convex hull, 𝑣 be the direction of the line segment, and 𝑝𝑟𝑜 𝑗 be the projection of 𝑎 onto the
line segment.

𝑝𝑟𝑜 𝑗 = 𝑢 + 𝑣
(𝑎 − 𝑢)𝑇 · 𝑣

|𝑣 |2
(3.15)

It should be mentioned that the hard constraint of modifying the loss function with new
minimum and maximum actions in the AORLD-HL method is more effective than filtering and
projecting actions on the hull (AORLD-HF and AORLD-HP, respectively), as it enforces the
action constraints strictly. However, the algorithm in AORLD-HL assumes that the candidate
actions from the expert controllers are sufficient to define the action space, which may not
always be the case in complex environments. We will discuss VS as an application to test our
suggested approaches in the following.

3.3 | Experimental setup

To train the policy, an environment was modelled in the simulation (i.e. ROS/Gazebo).
Simulations are preferred over real-world trials because they provide inexpensive and fast
experiments. In addition, using the simulation environment helps mitigate the risks of damaging
the robot setup due to unexpected movements during training. Since the real system is assumed
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Fig. 3.6. Considered ROS nodes used in training of the RL agent.

to be one instance in a vast distribution of training variations, the trained model with DR can
adapt to the real-world environment. As mentioned in 1.2.3, DR is a technique for training a
model that works in a variety of simulated settings with randomized properties [121].
Figure 3.6, illustrates the ROS nodes used in this study. The RL algorithm was used as a ROS
node (/𝑚𝑎𝑡𝑙𝑎𝑏−𝑔𝑙𝑜𝑏𝑎𝑙−𝑛𝑜𝑑𝑒), and policies were taught using Matlab reinforcement Learning
Toolbox [122]. Control methods (IBVS, PBVS, and HDVS) and the camera information were
employed as a distinct ROS node (/𝑣𝑠 − 𝑐𝑎𝑚𝑒𝑟𝑎 − 𝑛𝑜𝑑𝑒) to deliver the actions based on
the respective observations. Joint velocity commands were applied to each robot with
/𝑟𝑜𝑏𝑜𝑡 − 𝑛/𝑝𝑎𝑛𝑑𝑎 − 𝑎𝑟𝑚 − 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟/𝑐𝑜𝑚𝑚𝑎𝑛𝑑 (𝑛 = 1, 2) topics. The joint-states topics
provide the position and velocity of each joint from the robot models simulated in Gazebo.
Using a ROS Handler this information will be published to subscribe and use in each node.
Figure 3.7 depicts the simulation environment in Gazebo. The simulation platform includes
two Franka robot manipulators; one with an eye-in-hand configuration, and another one with
a tag marker attached to its EE. The reason for using the second arm was to move the marker
into different positions.
An Intel RealSense depth camera D435i was employed as a vision sensor. Two systems were
linked together using an Ethernet connection in the same network. One system with the
following specifications was utilized for the simulation: AMD Ryzen 7 3700x 8-core CPU with
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Fig. 3.7. Simulation environment in Gazebo

× 16 threads and a 3.6 GHz base clock. The graphics card (GPU) of another system with
the following specifications was used for reinforcement learning and policy training: NVIDIA
GTX 1080Ti GPU, Intel (R) Core (TM) i7-8086K 6-core CPU with × 12 threads and a 4GHz
base clock with 32 GB installed RAM. Moreover, to accelerate the process of learning, parallel
training was used with the help of Parallel Computing Matlab Toolbox [122]. In this study, 12
workers were deployed to create a simulation of the agent in the environment and send data
back to the client.

3.4 | Results and discussions

3.4.1 Case 1: AORLD with DDPG policy results

To show the efficacy of our suggested strategy (detailed in Section 3.2.1), we compare the
training progress and results of RL without the proposed strategy (agent-1) and with the
proposed strategy (agent-2).
For the sim-to-real task, DR was used which has been identified as the most commonly used
strategy for improving simulation realism. The training was carried out for the task of VS
(i.e. tracking the features of a target in the camera screen). The initial position of the first
robot (the robot with the camera mounted on its wrist) was randomized in each episode to
generalize the trained policy better. The desired threshold of the average reward was defined
to be -200 (determined from preliminary experiments). The agent restarted the episode in
case of meeting one of the following criteria during training: (I) when the robot is close to
the joint limits, (II) when the features are 10% close to the image boundary, (III) when the
robot Jacobian manipulability is too small (less than 0.01), and finally (IV) when the number
of steps in each episode surpasses 400. The used RL parameters are defined in Table 3.1.
As illustrated in Figure 3.8, the agents have learned to maximize the cumulative reward over
time. According to Figure 3.8, it takes the agent approximately 57800 episodes and 6 million
steps for the average reward to exceed the desired threshold (-200). However, it is shown that
approximately 28400 episodes and 3 million steps are required to achieve the same average
reward of -200 by combining the proposed method with RL. Thereafter, using the so-called
domain adaptation approach, we let the trained policies train for 1500 more real-world episodes
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Table 3.1
Employed RL and noise parameters in the training.

RL parameters Noise options

Target smooth factor 0.001 Mean 0
Target update freq 1 Mean Attraction constant 5
Sample time 0.025 Variance decay rate 0.00001
Discount factor 0.95 Variance 0.5
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Fig. 3.8. Training graph without using any expert (agent-1, blue line), and with using three
experts to constrain the action space (agent-2, red line).

using actual robots (green area in Figure 3.8). Both agent-1 and agent-2 reached the award
of -200 before domain adaptation, however, agent-2 achieved a higher reward after domain
adaptation. Due to the change of environment (i.e. sim-to-real), the reward values dropped
for both agents after DA, as shown in Figure 3.8. Results suggest that agent-2 is faster and
achieves a more effective policy (higher average reward) than agent-1.
Table 3.2 compares the effective parameters in the performance of individual VS methods and
the trained policies. These parameters are derived by averaging 50 trials with 10 different initial
positions of the robot equipped with the camera. These initial positions were chosen randomly
with the condition of having all four features visible in the image frame. All experiments are
duplicated under the same conditions for IBVS, PBVS, HDVS, agent-1, and agent-2. As
shown in Table 3.2, IBVS shows an optimized behaviour in 2D image space, because it has
the smallest Root Mean Square Error (RMSE) than other methods. Moreover, the smaller
range of feature errors in IBVS confirms that the chance of losing the target object from the
camera FOV in this method is lower than in the other four methods. However, agent-2 is still
faster than IBVS based on the number of iterations. Not to mention that in VS both image
space and robot space should be considered, and this is where the suggested method surpasses
the IBVS. Following IBVS, the trained policy with agent-2 performs more optimally (smaller
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(a) IBVS
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(b) PBVS
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(c) HDVS
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(d) Agent-1
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(e) Agent-2 with AORLD

Fig. 3.10. Comparison of visual servoing joint velocities with various approaches.

camera travelled distance was 0.722m, and thus provided the shortest EE trajectory. Agent-2
outperforms IBVS, HDVS, and agent-1 in the Cartesian (robot) space. However, still better
results are achieved using the PBVS method in terms of EE travelled distance. It should be
mentioned that the PBVS method has other drawbacks like losing the object from the camera
FOV, high sensitivity to the camera parameters, and its sub-optimal performance in the image
space, while the trained policy with agent-2 has solved these drawbacks. Another inference
from Table 3.2 is that the RMSE of position and orientation with the trained policy of agent-2
is smaller than IBVS, HDVS, and agent-1 policy which indicates a more optimized trajectory
created by agent-2.
In conclusion, agent-2 achieved an optimal overall performance over the image space and
cartesian space, where PBVS and IBVS suffer respectively. Additionally, using our suggested
approach the agent offers the best controllability among the other techniques. Furthermore,
comparing the average rewards in Table 3.2, agent-2 performs 17.4% better than agent-1,
33.1% better than HDVS, 41.7% better than PBVS, and 40.5% better than IBVS.
We selected a random trial to demonstrate the error convergence and robot manipulability
for all five VS methods. Figure 3.9 illustrates the convergence error for all VS methods. By
comparing the RMSE for this trial, IBVS achieved an RMSE of 0.024; comparatively, this
value was 0.041 for PBVS, 0.0276 for HDVS, 0.043 for agent-1, and 0.0224 for agent-2. The
RMSE for agent-2 is even better than this value for the IBVS approach. Moreover, the task is
completed in 350 iterations with IBVS, 341 iterations with PBVS, 308 iterations with HDVS,
292 iterations with agent-1, and 197 iterations with agent-2. As a result, agent-2 offers a
faster solution than all other approaches, demonstrating that the trained policy with agent-2
not only inherits good IBVS performance in terms of RMSE but also learns to operate faster.
Furthermore, the manipulability of the robot arm for all five methods is plotted in Figure
3.11 for the same trial illustrated in Figure 3.9. In Figure 3.11, the manipulability of the RL
methods with agent-1 and agent-2 is higher than other IBVS, PBVS, and HDVS methods.
Agent-2 offers the highest manipulability compared to the other four methods in most robot
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Fig. 3.11. The manipulability of five different VS methods

configurations. As a result, there would be more controllability for the robot joints using
agent-2. In Figure 3.11, the mean manipulability for IBVS, PBVS, HDVS, agent-1, and agent-2
were 0.062, 0.0613, 0.642, 0.0662, and 0.0742, respectively.

3.4.2 Case 2: Extension of AORLD with TD3

Five different agents were defined and trained, and their training progress was compared.
The first method, called AORLD-HL, involved constraining the agent’s action space to an
online convex hull generated from controller knowledge and modifying the agent’s loss function
to penalize actions outside the generated hyper-volume. The second method, AORLD-CL,
involved generating an online hypercube to constrain the action space, and similarly modifying
the loss function. The third method, AORLD-HF, involved filtering out actions suggested by
the RL policy that lie outside the generated convex hull while using the standard loss function.
The fourth method, AORLD-HP, involved projecting actions outside the convex hull onto the
convex hull. Finally, the fifth policy was created using only RL without any demonstrator.
To make the policy robust to noise, calibration errors, and random objects in the scene, domain
randomization was used. All five agents were trained for 25,000 episodes, with the initial
position of the first robot randomized in each episode to generalize the trained policy. The
agent restarted the episode if it met one of four criteria: (I) when the robot was close to joint
limits, (II) when the features were very close to the image boundary, (III) when the robot’s
Jacobian manipulability was very small (less than 0.01), or (IV) when the number of steps in
each episode exceeded 400. The parameters for the RL algorithm in the training were specified
in Table 3.3 for all the agents.
The agents in the experiment have learned to maximize the cumulative reward over time,
as shown in Figure 3.12. Among the tested methods, the TD3 agent with the AORLD-HL
algorithm achieved the highest average reward of approximately -220, followed by the agent
with AORLD-CL with an average reward of around -250. These two methods are effective
in ensuring that the agent’s actions are valid, as they enforce hard constraints. However,
they require modifications to the RL algorithm, including changes to the loss function and
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Fig. 3.12. Comparison of training progress across 5 different methods for action space
constraint in reinforcement learning. The graph shows the average reward per episode for
each method over the course of training. AORLD-HL and AORLD-CL show faster learning
and higher average rewards, possibly due to the hard constraints on actions. AORLD-HF,
AORLD-HP, and the agent without action constraints show slower learning and lower average
rewards.

Table 3.3
RL and noise parameters employed in training

RL parameters Noise options

Target smooth factor 1e-03 Mean 0
Learning rate [5e-04, 5e-04] Mean Attraction constant 5
Sample time 2.5e-02 Variance decay rate 1e-05
Discount factor 0.95 Variance 0.5

target action. Furthermore, it can be inferred from the data presented in Fig. 3.12 that
the AORLD-HL algorithm requires a smaller number of episodes to attain a satisfactory
average reward compared to all other four methods. The less the agent must interact with the
environment, the faster it will learn the task.
The AORLD-HF method, on the other hand, is simpler as it only allows the agent to choose
valid actions without additional calculations. However, it resulted in a less effective agent,
as it may limit the agent’s ability to explore the state space and find optimal solutions. The
average reward obtained by the agent in this method is approximately -300, as shown in Fig.
3.12. Therefore, the first two methods are more effective as they allow the agent to explore
the state space while staying within the feasible action space.
The agent trained with the AORLD-HP algorithm had an average reward of around -400,
which is lower than the first two methods (Fig. 3.12). This is because the projection method
used in AORLD-HP may not always provide an accurate representation of the action space,
especially in higher dimensions. Additionally, this method is computationally expensive since it
requires projecting each action outside the hull onto the hull, and it may be less effective if the
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Fig. 3.13a compares the number of iterations taken to complete the VS task and the root
mean square (RMSE) of 2D errors in the image space for eight different methods, including
AORLD-HL, AORLD-CL, AORLD-HF, AORLD-HP, IBVS, PBVS, HDVS, and the TD3. It is
evident from the figure that the RMSE of errors in AORLD-HL, AORLD-CL, and IBVS are
the smallest values among all the other methods, and AORLD-HL performs faster (with fewer
iterations) than other methods. To have an optimised performance in VS, both image space
and robot space should be taken into account.
Fig. 3.13b illustrates the RMSE of position and orientation for all eight methods in the 3D task
space. From this figure, it is shown that the best performance in 3D task space is achieved by
AORLD-HL and PBVS followed by AORLD-CL. This is because the RMSE of orientation and
position is lower for AORLD-HL and PBVS compared to the other 6 methods.
Additionally, it is worth noting that the TD3 RL method offers the worst performance in
both 2D and 3D tasks compared to the other 7 methods. This highlights the fact that the
agent is more susceptible to getting stuck in local minima without using the knowledge of any
other controllers or demonstrators. In other words, using the action space proposed by other
controllers can significantly help the agent find its optimal solutions while avoiding unnecessary
explorations.
Overall, the results presented in Figs. 3.13a and 3.13b demonstrate that the agent using
AORLD-HL is highly effective for both 2D and 3D tasks, while the TD3 without using data of
any demonstrators performs poorly in comparison.
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Fig. 3.14. Comparison of Average Reward for Different Methods: This figure shows a
comparison of the average reward obtained by different methods. AORLD-HL offers the
highest average reward followed by AORLD-CL, HDVS, IBVS, PBVS, AORLD-HF, AORLD-HP,
and TD3, indicating the better performance of AORLD-HL compared to other methods.

Fig. 3.14, compared the mean average reward of different methods for the same 80 trials
in Fig. 3.13. The data in Fig. 3.14 shows that AORLD-HL achieves the highest average
reward of -208.24, outperforming all other methods. AORLD-CL comes in second place with
an average reward of -232.42, followed by HDVS with an average reward of -275.19, IBVS
with an average reward of -309.42, PBVS with an average reward of -316.23, AORLD-HF with
an average reward of -328.67, AORLD-HP with an average reward of -433.06, and finally TD3
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optimal with respect to a reward function. The learning process is greatly accelerated because
the policy search space has been reduced by the expert demonstrations.
We demonstrated AORLD in the context of a standard VS task, with TD3 algorithms to train
the policy. IBVS, PBVS, and HDVS were defined as a set of expert supervisors for AORLD.
We proposed and compared four methods to bound actions online while training. We found
using the convex hull with modified loss function (AORLD-HL) is the most effective method for
improving the exploration-exploitation trade-off in RL. Our experimental results demonstrate
the effectiveness of these methods in improving the average reward progress during training,
compared to using no bounding methods. Moreover, the agent trained with AORLD-HL
achieves better overall performance in terms of feature trajectories in the 2D image plane,
and also robot trajectories in the 3D task space, while also achieving higher Jacobian and
manipulability of the robot throughout its motions.
Overall, our study highlights the importance of incorporating prior knowledge into the training
process of RL policies to improve their performance, particularly in challenging environments
with high-dimensional action spaces. The AORLD method can be used when there are multiple
control methods available to serve as demonstrators (from two to arbitrarily many). AORLD
finds a useful trade-off between these experts, while also incorporating the capabilities of RL
to enable iterative optimising of policies with respect to a reward function. The methods
presented in this study provide a promising approach for addressing this challenge and can
be applied in various RL applications. In future work, we aim to introduce haptic experts in
our proposed optimization method to correct and improve the control signals from a human
operator during teleoperation tasks. Furthermore, AORLD could be integrated with multi-agent
RL, to significantly reduce training episodes by intelligently limiting the exploration bounds of
each agent.

Data availability

The data and clip supporting the findings presented in this chapter are available in the following
repositories:
https://github.com/aaflakiyan/HDVS_Franka

https://github.com/aaflakiyan/RL-Visual-Servoing-Franka

https://figshare.com/articles/media/Reinforcement_Learning_from_Demonstrations_

with_Visual_Servoing/25498297
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CHAPTER4
Vision Guided Contact-Rich Tasks Using

Reinforcement Learning from Demonstrations

Content from this chapter has been published in the following:

Ali Aflakian, Rustam Stolkin, Alireza Rastegarpanah, ”Integrating Multi-Demonstration
Knowledge and Bounded Workspaces for Efficient Deep Reinforcement Learning”, IEEE-RAS
International Conference on Humanoid Robots, (Accepted 2023).

Ali Aflakian, Jamie Hathaway, Rustam Stolkin, and Alireza Rastegarpanah, ”A curriculum-
based domain randomisation approach for learning contact-rich tasks with parametric uncer-
tainties”, Journal of IEEE Access, (Submitted 2024).

4.1 | Introduction

In the previous chapters, we investigated the use of AI in improving contactless vision-guided
manipulation tasks. In this chapter, we propose a framework for learning challenging contact-
rich tasks with the RL algorithm. In our proposed RL method, we used a curriculum-based
domain randomisation approach with a time-varying sampling distribution. As a result, the
constructed policy would be robust to the parametric uncertainties in the robot-environment
system. Based on evaluation in simulation for compliant path-following case studies with
a random uncertain environment, and comparison with a Learning-based Model Predictive
Controller (LBMPC) method and Virtual Forward Dynamics Model (FDM), the robustness of
the obtained policy over a stiffness range 104–109 and friction range 0.1–1.2 is demonstrated.
We furthermore trained the RL agent with various surface curvatures to enhance the robustness
of the trained policy in terms of changes in surfaces. We demonstrate ∼ 15× improvement
in trajectory accuracy compared to the previous LBMPC method and ∼ 18× improvement
compared to using the FDM approach. We suggest the applications of the proposed method
for learning more challenging tasks such as milling, which are difficult to model and dependent
on a wide range of process variables. In another study, we proposed a novel approach for
boosting deep RL using human demonstrations and offline workspace bounding. Our approach
involves collecting data from human demonstrations on random surfaces with varying friction,
stiffness, and surface curvatures. We then compute a 3D convex hull that encompasses all
the paths taken by the demonstrators. By defining the task and the desired parameters as
reward functions, we enable the RL agent to learn an optimal solution within the bounded
space, significantly reducing the search space required for the agent. We compare the training
progress and the behaviour of the trained policy of our approach with a baseline approach.
The results demonstrate that our approach not only expedites learning but also improves the
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𝑠 = (p − p𝑒𝑛𝑑) · ĉ, (4.2)

and deviation from path 𝑑

𝑑2 =
��|p − p𝑠 |

��2 (4.3)

The surface position estimate 𝑝𝑠 was computed as a Gaussian weighted average of the sampled
points in the depth image about the closest point on the desired path to the current TCP
position [87].

4.3 | Case 1: Comparison of RL with MPC and FDM
methods

The principle of the LBMPC approach [87] is to learn a model of the contact dynamics, given
states, actions x, u as:

x𝑘+1 = f (x𝑘 ,u𝑘 ) (4.4)

formulating the trajectory optimization as a constrained nonlinear optimization problem of
some metric of cost, specified by 𝐿:

minimize J (U ) =
𝑁−1∑︁
𝑖=0

𝐿 (x𝑘+𝑖,u𝑘+𝑖) (4.5)

s.t. x𝑘+𝑖+1 = f (x𝑘+𝑖,u𝑘+𝑖)��|u𝑘+𝑖 |
��
1
≤ 𝑢max

𝑖 = 0, 1 . . . 𝑁 − 1

where
��|·|��

1
denotes the ℓ1 norm. In the LBMPC approach, the function f (x𝑘 ,u𝑘 ) is represented

as an LSTM neural network which is trained from trajectories collected offline.
To include an additional comparison method, we have adopted the use of an FDM for contact-
rich Cartesian robot control. We follow the approach described by the authors in [123], who
omit the Coriolis term for simplification. The authors focus on solving Inverse Kinematics
problems by assuming instantaneous motion (with zero joint velocities, ¤q = 0) and neglecting
the effects of gravity and velocity-dependent forces. This results in a simplified dynamic model
which directly relates external forces to joint accelerations, given by:

¥q = H−1J𝑇f (4.6)

where H corresponds to the mass matrix of the robot, J is the Jacobian matrix, ¥q represents
the joint accelerations, and f is external force:

f = K𝑝e +K𝑑e𝑑 (4.7)

while e is the distance error between the target and the current EE positions, e𝑑 denotes
the derivative of the distance error, K𝑝 and K𝑑 are positive definite diagonal stiffness and
damping gains. As claimed by the authors in [123], omitting the Coriolis term is justified as it
reduces computational complexity while still providing a practical and effective framework for
solving IK problems. They have also demonstrated that the FDM approach is not only free
from delays and noise but also inherently more stable in contact-rich applications compared to
traditional Admittance controllers.
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We explored two distinct sets of gain values, high-gain (FDM-H) and low-gain (FDM-L). We
defined Kp as follows:

FDM-H: Kp = diag( [100, 100, 1000, 10, 10, 10])
FDM-L: Kp = diag( [10, 10, 200, 1, 1, 1])

In both methods, we used the following value for damping gains: Kd = diag( [1, 1, 1, 0.1, 0.1, 0.1])
TD3 is an off-policy actor-critic learning algorithm. Its principle of operation is related to
DDPG with key improvements in the introduction of twin critics, policy smoothing, Q-value
clipping, and delayed actor updates [124]. It assumes the control problem can be modelled as
a Markov decision process, in which the objective is to determine a policy that maximises an
expected sum of rewards over time, weighted temporally by a discount factor. To ensure a fair
comparison between the two methods, we design the reward function for the RL algorithm to
be identical to the negated cost function used in the MPC approach. Hence:

𝐿 (x,u) = −𝑟 (x,u) (4.8)

For the path following, based on the objectives defined in Section 4.2, we hence define the
reward function 𝑟:

𝑟 (x,u) = −𝑤𝑑𝑑
2 − 𝑤𝑠

|𝑠 |��|c|�� − 𝑤𝑢u
2 (4.9)

where 𝑤𝑑, 𝑤𝑠, and 𝑤𝑢 are manually tuned weighting terms. The deviation term, represented by
the expression 𝑤𝑑𝑑

2, is a scaling penalty that discourages excessive deviations from the desired
path. The 𝑤𝑠

|𝑠 |
| |c| | term, referred to as the slicing term, encourages the agent to progress along

the path. The normalisation by
��|c|�� ensures the reward for path progression is independent of

the path length. This reward also encodes desirable traits like productivity; as the cumulative
path progress penalty is minimised by agents that rapidly reach the path endpoint. 𝑤𝑢u

2

is a small effort penalty to discourage extreme motions, labelled the effort term. For both
approaches, weighting contributions of 𝑤𝑑 = 1000, 𝑤𝑠 = 10, and 𝑤𝑢 = 0.000001 were selected
for each reward.

4.3.1 Reinforcement learning

Based on the available observations x = (𝑑, 𝑠,Δp, f𝑒) we aim to learn a policy mapping x to
actions in Cartesian velocity space u. Each observation x was scaled to the approximate range
0–1. For TD3, we employ a set of deep feed-forward neural networks serving as the actor and
dual critics respectively. The critic networks each comprise two input pathways: two hidden
layers of 400 and 300 units for observations, and one of 300 units for actions, followed by a
common output layer. A learning rate of 5 × 10−4 and L2 regularisation penalty of 2 × 10−4

were selected as critic network hyperparameters.
The actor network comprises 2 hidden layers of 400 and 300 units respectively. An initial
learning rate of 5 × 10−4, L2 regularisation penalty of 1 × 10−5, batch size of 512, RELU
hidden activation and tanh output activation were chosen as the network hyperparameters.
The choice of tanh activation bounds the velocities by saturating the policy outputs. The
remaining hyperparameters for the learning algorithm were chosen according to Table 4.1.
Training was carried out up to a threshold of 3000 episodes. This threshold is established
from initial experiments conducted in a simulation environment described in Section 4.3.2.
Based on the actions u and sample time 𝑇𝑠, we convert the policy outputs into joint position
commands q as:

q = 𝑇𝑠 · J+u (4.10)

where J+ is the Moore-Penrose pseudo-inverse of the manipulator Jacobian.
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Table 4.1
The reinforcement learning hyperparameters and noise options used in training the TD3 policy.

RL parameters Noise options
Smooth factor 0.001 Mean 0
Mean attraction 2.5 Variance decay rate 0.00001
Sample time (𝑇𝑠) 0.02 Variance 0.5
Discount factor 0.99

Table 4.2
Sample space used for domain randomisation of the simulated workpiece parameters

Property Range Distribution
Stiffness 𝑘 𝑝 (𝑁𝑚−1) 104–109 Log-uniform
Dyn. coeff. friction 𝜇 0.1–1.2 Uniform

4.3.2 Domain randomisation

We consider the case of a position-controlled manipulator in the KUKA LBR iiwa R820
collaborative robot. The robot is mounted with an external force-torque sensor, an RGBD
vision sensor, and a cutting tool. Experiments were carried out in the Gazebo simulator, with
the workpiece being represented by a Nissan Leaf 2011 battery module as an application
example. Currently, the process of battery disassembly is not fully automated chiefly due to
diversity in the design of electric vehicle batteries. The proposed strategy in this study can be
generalized to various battery designs (in terms of geometry and material characteristics). For
simplicity, the workpiece collision surface is approximated as an elastically compliant cuboid
with fixed, but unknown stiffness and isotropic dynamic coefficient of friction. The TCP is
positioned at a fixed offset above the workpiece about the path start point p𝑠𝑡𝑎𝑟𝑡 , at which
point the agent is given full control over the robot.
To learn a policy representation that is robust to an unknown environment, we establish the
environment based on a curriculum-based domain randomisation method. During training, at
the beginning of each episode, the properties of the object surface were sampled according
to the distributions in Table 4.2. In the traditional DR, the distribution parameters are held
constant from the first episode as the range specified in Table 4.2, denoted as 𝑙+, 𝑙− for the
maximum and minimum value of a variable 𝑙. For example, in the case of the stiffness variable
𝑘 𝑝, 𝑙+ corresponds to the upper limit of 109𝑁𝑚−1 and 𝑙− to the lower limit of 104𝑁𝑚−1.
Similarly, for the dynamic coefficient of friction 𝜇, 𝑙+ is 1.2 and 𝑙− is 0.1. These limits are used
in the equations to define the range of possible values that the environment variables can take
during each episode.
However, the extreme and immediate variation in the environment can greatly increase the
difficulty of learning the task, and in some cases reaching the optimal reward is not possible
as the learning algorithm converges to a local minimum. To combat this, we introduce the
concept of curriculum-based DR. Under this approach, the full random distribution range is
not immediately introduced but varied according to each episode as 𝐹𝑁 :

𝐹𝑁 = 𝐹0 + (1 − 𝐹0)𝑔(𝑁) (4.11)

where 𝐹0 is the fraction of the limits at episode zero. The maximum and minimum limits for
episode 𝑁, 𝑙𝑁+, 𝑙𝑁−, are computed as

𝑙𝑁± = 𝑙− + (1 ± 𝐹𝑁 )
𝑙+ − 𝑙−

2
(4.12)
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Fig. 4.3. The training graph of the TD3 agent for the compliant path following task on a
near-planar surface with unknown surface properties.

Here, 𝑙𝑁+ and 𝑙𝑁− represent the dynamically adjusted upper and lower limits for the parameters
in Table 4.2 as the training progresses. For instance, as 𝐹𝑁 increases over episodes, the range
for 𝑘 𝑝 gradually expands from an initial smaller range towards the full 104 to 109 range, thereby
easing the learning process.
𝑔(𝑁) is an envelope function that specifies the evolution of the randomisation distribution
over the training process. In this study, we select 𝑔(𝑁) as a linear function of 𝑁.

𝑔(𝑁) = 𝑁

𝑁𝑚𝑎𝑥

(4.13)

This gradual adjustment of the randomisation limits allows the learning algorithm to progres-
sively adapt to the full range of environmental variations, thereby increasing robustness without
overwhelming the system with abrupt changes.

4.3.3 Experiments

We evaluate the trained agents in the simulation environment discussed in Section 4.3.2, for
the task of a compliant path following along the surface of a given workpiece. Training for the
TD3 agent with the curriculum DR approach was carried out over 4.05 × 105 seconds for 3000
total episodes. The hyperparameters 𝑁𝑚𝑎𝑥 and 𝐹0 were chosen as 2500 and 0.05 respectively.
The processor of the computer used for simulation and training was an Intel(R) Core(TM)
i7-8086K 8-core processor with a 4 GHz base clock and 32 GB RAM. The training graph
is shown in Figure 4.3. The agent rapidly converges to an average reward of approximately
−2500 and remains close to this value which illustrates that the desired task behaviour was
successfully learned.
Based on the learned policy representation from the curriculum DR method, we evaluate the
performance of the agent over four path-following case studies with randomly chosen surface
properties, shown in Table 4.3. For comparison, we employ a method based on LBMPC
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Table 4.3
The stiffness and friction coefficients used in different case studies.

Experiments Stiffness 𝑘 𝑝 (Nm−1) Friction 𝜇

Case study 1 9.22116 × 107 0.95413
Case study 2 2.19674 × 106 0.797441
Case study 3 5.06996 × 105 1.32379
Case study 4 9.79874 × 108 1.40105

described in our previous work [87], with data collected using a series of manually designed
admittance controllers to train a predictive model of the surface contact dynamics. Due to
the difficulty of solving for the optimal trajectory U directly, we employ the forward shooting
method using sample-based optimisation to approximate the solution of (4.5). For LBMPC a
dataset of 101120 samples was collected, which is comparable to the number of observations
exposed to the agent after ∼200 episodes of training. The average reward displayed in Figure
4.3 demonstrates that the agent experiences the majority of its performance improvement
before completing 200 episodes of training. This is notable because the dataset size used for
LBMPC consists of roughly the same number of observations as those encountered by the agent
in this early phase of training, indicating that the dataset is a reasonable size for comparison
of LBMPC and RL methods. This establishes a benchmark that is less sample-intensive than
the exploration required for RL but has greater computational overhead.
The magnitude of tracking error and cutting path for LBMPC, TD3 with curriculum DR,
FDM-H, and FDM-L during each example case study are presented in Figure 4.4–4.7. Figures
4.4a–4.7a illustrate the magnitude of trajectory errors, represented as the norm of the error
vector in the 𝑥, 𝑦, and 𝑧 coordinates, which captures the difference between the current and
desired tool TCP positions.
In Figure 4.4a, for case study 1, the task was completed in approximately 25 seconds using
MPC, 10 seconds with the trained RL agent, 15 seconds with the FDM-L method, and 6
seconds with the FDM-H method. This comparison highlights that RL achieves faster task
execution compared to both MPC and the FDM-L approach. However, the trajectory error of
the RL method is significantly lower than that of the other three methods. This suggests that
the RL agent is more effective at completing the task compared to the MPC and FDM methods.
Figure 4.4b displays the 3D path of the tool-tip for case study 1, comparing the performance
of the RL method with others. Although all methods exhibit attempts to correct any deviation
from the path, the deviation is less noticeable for the RL method. This observation is supported
by the root mean square tracking error (RMSE) between the end-effector position and the
desired path. The RMSE was 7.2mm for MPC, 9.6mm for FDM-L, and 9.0mm for FDM-H,
greatly exceeding the corresponding RL value of 0.56mm.
The results for case study 2 are depicted in Figure 4.5, where it can be observed that the
tool requires approximately 23 seconds to reach the endpoint when using MPC, 15 seconds
with FDM-L, approximately 9 seconds with FDM-H and the TD3 agent completes the task
in 10 seconds. The performance of the RL agent for case study 2 can similarly be compared
by analyzing the 3D TCP path, as shown in Figure 4.5b. Despite all approaches attempting
to correct any deviation from the desired path, the deviation is again less prominent in the
RL method. This finding is further supported by the RMSE tracking error, where the FDM-L
method exhibits the highest RMSE value of 11.1mm, followed by MPC with an RMSE of
10.4mm. In contrast, the FDM-H method achieves a lower RMSE of 4.5mm, while the RL
method stands out with a notably lower RMSE value of 0.84mm.
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4.4 | Case 2: Extension to unknown, non-planar sur-
faces

We extend the first presented task, considered for the case of unknown material properties with
known surface geometry to the more general case where material properties and surface position
are both unknown. We procedurally generate height-field surfaces alongside randomizing
stiffness and friction, while modulating the contact force to avoid damage to the tool or
workpiece. In doing so, we establish the capability of the trained policy to generalize to various
types of surfaces besides the presented planar surface case studies. While in the first instance,
the TCP orientation R was excluded, for the case of an unknown, non-planar environment,
the rotation encodes useful information about the point of contact and external torques acting
on the tool, particularly in the case of loss of visual feedback or occlusion of the surface
geometry. We therefore extend the observations from Task 1 to include the TCP orientation
R, as x = (𝑑, 𝑠,Δp, f𝑒,R) where the sine and cosine of each Euler angle component were
taken as the scaled orientation inputs. Training for the TD3 agent with the curriculum DR
and randomized heightmaps was carried out over 2.81 × 105 seconds for 2000 total episodes.
Similarly to Section 4.3, the hyperparameters for TD3 were established by manual search. The
TD3 hyperparameters and noise information are summarized in Table 4.5.
The problem of reward function selection is a further necessary and challenging part of task
specification. Based on observations in equations (4.1), (4.2), and (4.3), we extend the
definition for the agent reward function 𝑟 as:

𝑟 = −𝑤𝑑𝑑
2 − 𝑤𝑠

|𝑠 |��|c|�� − 𝑤𝑢u
2 + 𝑤𝑐𝐶 − 𝑤 𝑓

(
max

(
𝑓𝑚𝑎𝑥 , | |f𝑒 | |

)
− 𝑓𝑚𝑎𝑥

)
(4.14)

where 𝑤𝑑, 𝑤𝑠, 𝑤𝑐 and 𝑤 𝑓 are manually tuned weighting terms. 𝑤𝑑𝑑
2 and 𝑤𝑠

|𝑠 |
| |c| | are deviation

and slicing terms explained in (4.9). While these reward contributions alone may be sufficient
for unconstrained path following, in the presence of path planning errors presented by an
unknown or approximately known surface geometry, it is necessary to ensure the robot does
not apply excessive force to the environment to avoid tool breakage or fail to accomplish the
desired tasks by avoiding the surface entirely. This is accomplished by the latter 3 terms. 𝑤𝑢u

2

is a small effort penalty to discourage extreme motions. 𝐶 is a discrete reward contribution
encouraging the agent to establish contact with the environment, defined as:

𝐶 =

{
1 if 𝑓𝑧 > 𝑓𝑚𝑖𝑛

0 otherwise
(4.15)

We introduce a ramping force penalty that penalises forces (𝑤 𝑓

(
max

(
𝑓𝑚𝑎𝑥 , | |f | |

)
− 𝑓𝑚𝑎𝑥

)
)

in excess of a target threshold 𝑓𝑚𝑎𝑥. Finally, for training, an additional terminal penalty is
applied, defined as 𝑟𝑡𝑒𝑟𝑚 in the case of early episode termination, and 0 otherwise. Without
this penalty, the cumulative reward may converge to a local minimum corresponding to the
agent immediately pursuing the episode termination criteria, versus the case of a prolonged
episode, where the cumulative penalties due to path deviation or excessive force may be higher.
The terminal penalty was chosen to be sufficient to surmount any negative cumulative reward
expected during the prolonged episode. The chosen weighting contributions and termination
penalty for each reward are shown in Table 4.4. The movements of the tool are furthermore
bounded via workspace limitations about the desired path, which we employ in both task space
and joint space.
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Fig. 4.8. Training graph of TD3 agent for compliant surface path following for the case of
unknown surface properties and unknown (heightmap) surface geometry.

Table 4.4
Reward weighting contributions for the reward function defined in (4.14).

Weighting Value
Path deviation 𝑤𝑥 1000
Path progress 𝑤𝑠 2
Effort 𝑤𝑢 0.3
Contact 𝑤𝑐 0.75
Force limiting 𝑤 𝑓 0.006
Termination penalty 𝑟𝑡𝑒𝑟𝑚 400

Training was halted when the agent reached the threshold of 2000 episodes and the training
progress graph is shown in Figure 4.8. Similarly to the training on the planar surface in Section
4.3, the performance rapidly converges within the first ∼ 250 episodes. For the remainder
of training, the reward remains approximately constant, with a progressive degradation of
performance from 500–1250 episodes as the range of surface properties is introduced by the
curriculum schedule. Finally, the performance recovers for the remaining episodes, indicating
successful learning of the task. Figure 4.9 illustrates the trajectory of the cutter TCP with the
trained RL algorithm on different height maps. In the case of path planning errors or loss of
visual feedback, the reference path may be defined slightly below the object surface. Hence,
perfect tracking of the path cannot be achieved without violating the force limiting objectives
defined in (4.14). However, the trajectories of the tool TCP in Figure 4.9 demonstrate the
proposed method results in a learned policy that is robust to an uncertain environment for a
variety of surface types.
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Fig. 4.11. A comparison of training progress: Average cumulative rewards for different
workspace bounding methods.

We analyzed the performance of the four methods using a plot depicting the cumulative
average rewards over the course of training in Fig 4.11. The x-axis represents the number of
episodes, while the y-axis represents the cumulative average reward. The method utilizing
Convex Hull workspace bounding (case 1) exhibited the fastest learning progress in Fig. 4.11,
reaching the optimal average reward of approximately 0 after only 900 episodes (≈ 3.6 × 105

steps). This method provided a workspace area of 0.0016𝑚3, enabling the agent to explore a
range of possibilities in this area. The method employing the boundary with a shrink factor
of 0.4 (case 2) achieved the same average reward as case 1 but at a slower learning pace. It
reached the optimal reward of 0 after approximately 1500 episodes (≈ 6 × 105 steps). The
workspace area for this method was 0.0011𝑚3, slightly smaller than case 1 but still offering
a substantial exploration space. On the other hand, the method with a shrink factor of 0.1
(case 3) faced challenges in achieving satisfactory results. It became trapped in a local minima,
resulting in an average reward that failed to surpass -10. The significantly reduced workspace
area of 0.00062𝑚3 may have limited the agent’s ability to discover optimal solutions. Lastly,
the baseline approach (case 4), which relied solely on RL without any workspace bounding,
struggled to learn the task effectively. Even after 6000 episodes, it failed to achieve the average
reward of -25.

Table 4.6
The average cumulative rewards obtained from 20 randomized trials for each case study.

Method Slicing Deviation Contact/Force Overal Reward

Case 1 -0.0581 -0.0075 0.0210 -0.0391
Case 2 -0.1993 -0.0091 0.0062 -0.2335
Case 3 -4.7807 -0.7230 -0.0089 -7.6126
Case 4 -8.0741 -3.0414 -0.0782 -22.2341

Table 4.6 displays the average cumulative rewards obtained from 20 randomized trials for each
of the four methods employed to train the RL agent and confine its workspace boundaries.
Figure 4.12 also presents a bar plot for a visual comparison of the performance of each
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Fig. 4.12. Comparison of the average cumulative rewards obtained from 20 trials across
different methods employed in the experiment.

method based on the slicing, deviation, contact/force, and overall rewards. The slicing term is
represented by the blue bar in the plot 4.12, reflecting the agent’s progress along the desired
path and its ability to efficiently reach the endpoint. Therefore, a higher amount (a smaller
negative value as observed in Case 1) indicates a better performance in terms of making
progress along the path. Case 2, Case 3, and Case 4 follow in decreasing order of performance
in this regard. The red bar in Fig. 4.12 represents the deviation reward, which penalizes
the robot for deviating excessively from the intended path, with the penalty scaled by the
squared distance between the current TCP position and the path. Similarly, a smaller negative
value (best seen in Case 1) indicates a better performance in terms of staying close to the
desired path. Case 2, Case 3, and Case 4 exhibit progressively lower deviation rewards. The
contact/force reward (grey bar in Fig. 4.12) promotes contact between the robot and the
environment while ensuring that excessive force is not applied, preventing tool damage or
failure to accomplish the task. A higher positive value indicates a better performance in
establishing appropriate contact and force interactions. Once again, Case 1 demonstrates the
highest contact/force reward, followed by Case 2, Case 3, and Case 4. The overall reward
encompasses the cumulative effect of the aforementioned rewards along with the effort term in
equation (4.14). It represents the comprehensive performance measure for each method. The
results highlight that utilizing a convex hull to limit the agent’s workspace (Case 1) yields the
highest overall reward, indicating superior performance compared to the other three methods
(Case 2, Case 3, and Case 4).
There is no mathematical proof that our method will keep the agent away from local minima
outside the created hull. However, by reducing the search space to a bounded region, the
agent is forced to explore a smaller and more relevant part of the state space, which may
increase the likelihood of finding a better solution and reduce the chance of getting trapped in
a local minimum outside the created hull. Additionally, the hull provides a way to constrain
the solution space, which can prevent the agent from exploring irrelevant parts of the state
space. These results further emphasize the efficacy of our proposed approach and its potential
to enhance the development of deep RL.
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4.6 | Conclusion

In this work, we proposed a TD3 agent with curriculum-based DR to learn contact-rich path
following with parametric uncertainties in the interaction contact dynamics. We specifically
considered the case of a robotic path following along a workpiece with unknown stiffness and
isotropic friction over a range of values. By validating our approach with four random case
studies in simulation, we demonstrated the robustness of the learned policy representation
to unknown environments. Comparison with an earlier approach using learning-based model
predictive control and a virtual forward dynamic model illustrates RL superior task performance
with improvement in tracking error; the LBMPC approach suffers due to computational
complexity and the problem of adequate domain coverage in the training dataset when
employing established expert policies for data collection. Furthermore, the FDM approach is
vulnerable to challenges associated with selecting appropriate stiffness and damping gains and
is highly sensitive to these parameter values. Overall, the RL approach shows approximately 15
times improvement over LBMPC method and 18 times improvement over the FDM approach.
We extend this concept by procedurally generating height-field surfaces alongside randomizing
stiffness and friction, during the online training, which allowed us to generalize the trained
policy for various types of surfaces beyond planar surfaces to environments with unknown
surface geometries and path-planning errors.
A notable limitation of the current work is sensor limitations, particularly with loss of visual /
depth feedback with reflective or occluded surfaces, or close to the target surface. Although the
method compensates for vision feedback loss by incorporating both visual and tactile modalities
for path following, the so-called ”reality gap” between simulations remains a challenge. To
directly bridge this gap, RL methods rely on the exploration of the target environment, which
is costly in a real setup. Therefore, future work will focus on addressing domain adaptation
of the proposed method to a range of target domains, including real-world applications. We
have also proposed an offline workspace bounding approach for accelerating the process of
deep RL using human demonstrations. Our approach reduces the search space and keeps the
agent focused on the most promising areas of the state space, which in turn can lead to faster
convergence to the optimal solution while avoiding possible local minimas outside the reduced
workspace. We evaluated three different methods for limiting the workspace boundary and
training a RL agent. The methods aimed to optimize performance metrics related to slicing,
deviation from the desired path, contact, and force interactions. Our results demonstrate
that incorporating a convex hull to limit the workspace boundary yields the most favourable
outcomes across all performance metrics. The agent trained using this method consistently
achieved higher slicing rewards, indicating better progress along the desired path. Additionally,
it exhibited reduced deviation from the path, as evidenced by the smaller negative values in
the deviation reward metric. Moreover, it successfully established optimal contact and force
interactions with the environment. The overall reward, which accounts for all performance
metrics and the effort term, further supports the superiority of the convex hull method. Our
findings highlight the importance of carefully considering the workspace boundary limitations
and their impact on RL agent training.
In future research, it would be beneficial to conduct studies on the generalization capabilities
of our method to various configurations and applications.

Data availability

The data and clip supporting the findings presented in this chapter are also available in the
following repositories:
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https://github.com/aaflakiyan/RL-Contact-Rich-Path-following

https://github.com/aaflakiyan/TouchX-Teleoperation-Matlab-ROS

https://figshare.com/articles/media/RL_MPC_Cutting/25498342
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CHAPTER5
Experiments and Demonstrations: Disassembly

of Battery Pack

Some content from this chapter has been published in the following:

Ali Aflakian, Rustam Stolkin, Alireza Rastegarpanah, ”Integrating Multi-Demonstration
Knowledge and Bounded Workspaces for Efficient Deep Reinforcement Learning”, IEEE-RAS
International Conference on Humanoid Robots, (Accepted 2023).

Hathaway, J., Shaarawy, A., Akdeniz, C., Aflakian, A., Stolkin, R. and Rastegarpanah, A.,
2023. Towards Reuse and Recycling of Lithium-ion Batteries: Tele-robotics for Disassembly of
Electric Vehicle Batteries.(Accepted 2023) :2304.01065.

Rastegarpanah, A., Mineo, C. , Contreras, C.A, Aflakian, A., Paragliola, G., Stolkin, R.
”Electric Vehicle Battery Disassembly Using Interfacing Toolbox for Robotic Arms”, Journal of
Batteries (MDPI), (Submitted 2024).

5.1 | Introduction

Chapter 5 of this thesis provides a comprehensive examination of the experimental setups and
tasks involved in the disassembly of batteries employing a diverse array of robotic systems.
The chapter commences with an overview of the experimental configurations, encompassing
robots, grippers, haptic devices, vision systems, and the integration of deep learning techniques.
Additionally, it explores the utilization of a model-based tracker to localize the position of each
component in 3D space based on 2D images.
The subsequent section delves into specific disassembly tasks, including sorting, unbolt-
ing/unscrewing, cutting, and teleoperation. Each task is described, along with its objectives,
challenges, and the important roles played by various components in their execution. Each
task is further illustrated by a collection of images that offer visual context to both the setups
and the disassembly procedures.
Each setup further explores its development into the suggested vision methodology, model-based
tracking, and deep learning techniques. In the Model-based tracker, the chapter investigates
the employment of component models to determine their 3D positions from 2D images. In the
Deep NN section, the focus shifts to the application of deep neural network models trained
using transfer learning. These models are designed to autonomously detect objects in the
camera scene and localize the borders of rectangles encapsulating the objects.
The case study of battery disassembly is presented, which includes a variety of disassembly
tasks like unbolting, sorting, and cutting, following the sequence of operations required for
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Table 5.1
The order of disassembly steps for the pack-to-cell disassembly of the 2011 Nissan Leaf. To
keep it concise, we’re only focusing on disassembling the front module stack. The tasks fall into
different categories: fully manual (M), where specialized tools or skilled manual dexterity are
needed, semi-autonomous (S-At), where a robot can perform the task with human assistance,
and fully autonomous (At) tasks that can be completed without human involvement [17].

Step
#

Disassembly task Type

1
Top case

Remove service plug retainer M
2 Remove upper case bolts & lift top case At

3 Battery
controller

Remove mounting bolts S-At
4 Disconnect harness connectors & remove battery controller M

5

Junction box &
harnesses

Disconnect interlock circuit harness & heater harness connectors M
6 Remove mounting nuts & front stack connecting bus-bar S-At
7 Remove battery member pipe S-At
8 Remove junction box cover M
9 Remove central bus bar bolts and remove central bus bar S-At
10 Remove current sensor bus bar mounting bolt S-At
11 Remove switch bracket mounting bolts S-At
12 Invert switch bracket, disconnect harnesses & remove switch

bracket
M

13 Remove high voltage (HV) harness bolts & remove HV harnesses S-At
14 Disconnect voltage & temperature sensor harnesses M
15 Remove junction box mounting nuts & junction box M

16
Heaters

Disconnect harness connectors from heater and heater relay unit M
17 Remove heater & heater relay mounting nuts S-At
18 Remove heater controller unit & heaters M

19

Front module
stack(s)

Remove stack mounting nuts At
20 Extract module stack At
21 Remove bus bar cover M
22 Remove bus bar terminal mounting bolts & mounting screws S-At
23 Remove end plate bolts At
24 Remove end plate S-At
25 Electrical test & sort modules S-At

26
Module

Separate module cover S-At
27 Glue separation At
28 Separate cell tabs from terminal assembly S-At
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Fig. 5.2. Grippers employed in experimental setups

among various battery designs and manufacturers, there is a shared motivation to enhance
automation levels to reduce disassembly costs, as emphasized in the study by Lander et al. [6].
Based on the disassembly sequence outlined in Table 5.1, we explore a range of repetitive
tasks commonly identified in related studies [9]. These tasks encompass unbolting, involving
the removal of fasteners connecting a stack of modules; the extraction and sorting (pick and
place) of disassembled waste components; and cutting, utilized when mechanically separating
components becomes necessary due to the inability to remove fasteners non-destructively, and
when the goal is to reach inside the components such as reaching to cells inside the battery
modules.
To demonstrate these tasks, we employed various methods:

• Predefined Positions Teaching: This conventional approach involves instructing
the robot with predetermined positions in the task environment. While widely used
in industry, it demands strict adherence to initial positions, making it less robust for
disassembly tasks where object poses can vary, especially with flexible or tangled items.
Changes in the environment or object positions during tasks that need contact can also
decrease accuracy.

• Vision-Based Methods: Utilizing vision for object identification and localization, we
explored different approaches such as model-based trackers and employing trackers
based on component models for look-and-move strategies. Deep learning and transfer
learning, train neural networks to recognize and identify components, providing flexibility
in handling variations. Visual Servoing, Dynamically manipulating the robot based on
real-time image features, facilitating adaptive and precise movements.

• Teleoperation: We investigated teleoperation, utilizing either a haptic device or an
identical robot to remotely control the robot’s position, allowing for disassembly tasks
to be performed from a distance.
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5.2 | Model based tracker

In this section, we introduce a 3D model-based tracking approach, which enables tracking
of marker-less objects while providing precise 3D localization of the object’s pose in the
camera frame. This method is particularly valuable when utilizing a calibrated camera. Our
implementation leverages the ViSP library [127] and involves the publication of the object’s
location on a designated topic, making it compatible with various ROS-friendly platforms. The
information obtained through this tracking system holds significant potential for applications
such as pick-and-place and sorting tasks, and we have successfully applied this method to
track both bolts and modules within the battery pack of the Nissan Leaf 2011. The package
is designed to be adaptable, allowing for implementation on a wide range of ROS-compatible
robots, regardless of their programming language.
The ViSP library provides three distinct tracking methods to accommodate a variety of objects
and scenarios:

• Moving-Edges Tracker: This tracker is designed to handle objects lacking textures
and relies on the detection of moving edges that may not be visible within the object’s
model. It proves particularly effective for tracking untextured objects, ensuring robust
performance even in the absence of prominent edges.

• KLT Key Points Tracker: In contrast, the KLT key points tracker is tailored for
objects with textured surfaces, tracking key points detected on each visible face of the
model. This method excels at tracking textured objects, even when the edges are not
visible.

• Hybrid Tracker: The hybrid tracker combines the strengths of both the moving-edges
and KLT key points trackers, offering a solution capable of tracking textured objects
with visible edges, making it an ideal choice for a wide range of applications.

The adaptability of these trackers is a key feature, allowing users to switch between them by
simply modifying the controller in the launch file provided with our implemented model-based
tracking package.
To employ the tracking system, an initial setup is required, which involves a one-time manual
initialization by a human operator (Figure 5.4). This setup includes the use of helper points
to define and initialize the object to be tracked and localized. These points are pivotal for
the system to establish an initial understanding of the object’s position and characteristics.
The Intel RealSense D435i (RGB-D) camera is used in this work. In Figure 5.5, we provide a
visual representation of the model-based tracker in action, demonstrating the utilization of the
hybrid version of the tracker to detect and localize modules and bolts within the Nissan Leaf
2011 battery pack.

5.3 | Object detection using deep learning

In this section, we explore the process of utilizing deep learning techniques for the detection of
battery components within the battery pack. This approach offers a robust and automated
method for object detection and localization, enhancing the efficiency and accuracy of battery
disassembly procedures and offering a range of benefits to the entire workflow.
The outcome of this project is the development of a Deep Learning package. This package is able
to perform the classification of a diverse set of battery components, effectively distinguishing
between them. Once a component is detected, its coordinates are pinpointed within the image
or video frame. Additionally, the system provides labels to identify these components.
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5.3.4 Training and validation

The training process involved parameters that influence the accuracy of the model and training
speed. To arrive at the final parameter settings, we conducted extensive experimentation by
trial and error and compared the results. The key training options employed for the final
outcome are shown in Table 5.2. Brief explanations of different parameters are detailed below:

Table 5.2
Training Options and Values.

Epochs Mini Batch size Learning Rate Warm-up Period L2 Reg Penalty Threshold

30 8 0.001 7000 0.0005 0.5

• Number of Epochs: An epoch represents the model’s complete pass through the training
data, and in this case, it encompassed 30 such passes. The choice of the number of
epochs is pivotal, as too few may lead to underfitting, where the model does not learn
sufficiently, while too many may result in overfitting, limiting the generalization of the
model.

• Mini Batch Size: We employed a mini-batch strategy, where data is processed in smaller
groups. This not only accelerates training but also helps maintain the quality of the final
result. The batch size can be adjusted depending on the available memory resources.

• Learning Rate: The learning rate dictates the step size taken at each iteration towards
minimizing the loss function. It is a crucial parameter for achieving effective training.

• Warm-up Period: The warm-up period involves a phase where the model gradually
increases its learning rate to stabilize learning in later iterations. Once this period ends,
the specified learning rate is maintained for the rest of the training, typically about half
of the overall training process.

• L2 Regularization: L2 Regularization introduces an additional penalty to the cost functions
used during training. This penalty reduces the weights of coefficients contributing to
the cost, thereby mitigating overfitting.

• Penalty Threshold: Predictions that overlap less than the specified threshold with the
ground truth are penalized, enhancing the precision of the model.

During each iteration, data is retrieved from the batch queue. If the queue becomes empty,
it will reset to proceed to the next epoch. This queue prepares mini-batches of data in the
background while the model continues training on previous batches, improving computational
efficiency. The queue is also shuffled at the beginning of each epoch to prevent the model
from learning the sequence of data. The current state of the model is constantly evaluated
against the loss function to assess gradients. Weight decay with L2 regularization is applied to
ensure robust training, and the learning rate is adjusted. Detection parameters are updated,
and the process repeats until the specified number of epochs is completed. After each iteration,
the box loss, object loss, and total loss are recorded. This information allows us to monitor
the model performance over time and make informed decisions like stopping training if the
loss has saturated for a few epochs. This helps save time and resources while reducing
the risk of overfitting. Once the training concludes, the model performance is evaluated
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by running it on test data and comparing the results with the ground truth. The average
precision metric is a critical factor in determining the model’s success in this case. The overall
results of the deep learning model, particularly the implementation of YOLO, are reported in
Table 5.3. The model is more accurate in the detection of larger and isolated components

Table 5.3
Detection accuracy of some components in Nissan leaf battery pack.

Components Module Backstack BMS Board Terminal Cover Bus bar

Average Precision 63.97% 88.89% 66.67% 50% 47.28%

such as modules and backstacks. However, challenges are encountered in achieving precise
detection for smaller components like bus bars or module connectors. This limitation may be
attributed to sub-optimal detection precision, and potential improvements could be explored
by utilizing more zoomed-in images instead of directly labelling entire battery packs. Smaller
components face difficulties in detection due to factors such as low resolution, making them
harder to distinguish from the background. Additionally, their colours often provide limited
useful information, as they are typically similar in colour to the modules they are located on.
Obstruction further hinders the detection of smaller components, particularly when observing
an entire pack. Many battery designs intentionally conceal wiring harnesses for neatness and
safety, posing a challenge for the model in accurately detecting and labelling these concealed
components. It is important to note that this study is an initial exploration, and further
iterations are required. The dataset and YOLO model may need updates and modifications to
enhance precision. The study hints at the possibility of utilizing deep learning and transfer
learning not only for detecting components within the Nissan Leaf battery pack but also for
distinguishing and labelling components from different companies. Future work should consider
refining the model architecture, expanding the dataset, and incorporating transfer learning
techniques to achieve more accurate and versatile component detection across various battery
pack designs and manufacturers.

5.4 | Experimental details and setups

In this section, the experimental setups employed, along with a detailed explanation of the
experiments conducted will be presented.

5.4.1 Setup 1

In Figure 5.8, the designed Setup 1 for demonstrating the process of disassembling a stack of
modules is illustrated. The image showcases three robotic arms equipped with a two-finger
gripper, a suction gripper, and an impact wrench, strategically positioned around the battery
pack scene. The arrangement allows for close access to the entire battery pack, enabling
efficient execution of disassembly tasks. Two baskets, designated for waste and recycling
purposes, are positioned within the scene. Additionally, cameras are placed on the scene to
monitor the disassembly process during the execution of the tasks. In this setup, we used
preprogrammed robots and predefined positions to perform some parts of the disassembly tasks.
In Figure 5.9, a step-by-step visual inspection illustrates the disassembly tasks for a stack of
modules. The process begins with unbolting and removing mounting bolts using a two-finger
gripper attached to the KUKA LBR. The next steps involve the UR10e with a suction gripper,
removing the cover, and placing it in the waste basket. Subsequently, the modules are picked
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kinematics of the robot. This limitation arises from the non-redundant nature of the robot
joints, which restricts the incorporation of additional tasks in redundancy resolution. Despite
this constraint, the implemented visual servoing methods remain effective in guiding the robot’s
movements based on visual feedback for precise and accurate task execution.
Setup 2 also incorporates a linear tracker. By mounting one of the UR10e robots on the linear
tracker, the task space of the robot is significantly expanded, enabling it to operate across a
broader range. The linear tracker’s data cables are connected to the robot’s controller, and
with the appropriate URCap, it can be controlled directly from within the robot program using
the teach pendant. URCaps serves as a platform to add accessories that directly operate within
UR robot applications for end-users.
Alongside using VS, another novel task is introduced in this setup, involving the extraction
of a cell from the interior of an opened module and placing it on a designated testbed As
depicted in Figure 5.11. The testbed is purposefully designed to assess the health of the cell,
to determine its reusability. If the cell is healthy, it can be reused; otherwise, it proceeds to
the recycling stage, where valuable materials are extracted. After this assessment, the robot
is programmed to pick up the cell and, based on the testbed’s decision, either place it in an
allocated basket for the subsequent task or direct it toward recycling.
The modified HDVS method builds upon our initial introduction of the hybrid VS model.
Initially, the HDVS model leveraged the advantages of overconstrained robots, which are robots
equipped with redundant joints—having more joints than the number of degrees of freedom
they need to control. This redundancy allowed us to incorporate additional tasks, such as
obstacle avoidance or singularity avoidance, within the null space of the robot. However, in
many industrial robot scenarios, the number of joints is equal to the number of degrees of
freedom, eliminating the option of exploiting redundancy for additional tasks. Despite this
limitation, we have adapted and modified our proposed hybrid method to remain applicable
in these scenarios. Although we may not benefit from the overconstrained nature of the
robot, the modifications introduced in our hybrid decoupled method still offer advantages in
addressing specific challenges (discussed in 1.2), making the approach relevant and effective
even in cases where redundancy is not available. In the proposed visual servoing package, we
have implemented not only the HDVS method but also provided the flexibility to utilize two
other visual servoing techniques: Image-Based Visual Servoing (IBVS) and Position-Based
Visual Servoing (PBVS). Users have the option to simply switch between these three methods
based on their preferences and specific application requirements.

5.4.3 Setup 3

In our subsequent setup, as depicted in Figure 5.12, we employed two Franka arms and one
Kuka LBR. This configuration incorporated a motorized cutter and an e-pick suction gripper
provided by Robotiq. For the cutting task, we initially applied a hybrid force and position
control method, utilizing a marker as a gripper. This demonstration showcased the controller’s
ability to trace the borders of a dummy module while maintaining constant contact with its
surface. The resulting lines produced by the marker on the module can be observed in Figure
5.13a. The cutting algorithm comprises two nested control loops: an outer loop for ensuring
the Cartesian 𝑥 and 𝑦 directions of the cutter tip, and an inner loop for maintaining contact
of the cutter tip with the module surface by monitoring the 𝑧 component of Cartesian force
at each step. The inner loop operates at a higher frequency, and when the detected force is
below the desired threshold, the robot moves further in the 𝑧-direction until the specified force
threshold is reached. Moreover, when the detected force is higher than the threshold the robot
will move up until the force is in the boundary. The boundary should change for each material
and here we choose the 4𝑁 < 𝐹 < 8𝑁 to be between 4N and 8N for the dummy module. It is
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Fig. 5.19. Cartesian mapping for the master-slave teleoperation setup between the haptic
device and Franka arm.

Here, 𝑃
𝐹
T is the homogeneous transformation matrix from the Franka arm’s base frame to the

Phantom Omni’s base frame, and 𝐹TΔ and 𝑃TΔ represent the delta transformation matrices
for the Franka and Phantom, respectively. The position and orientation components of 𝑃TΔ
are assigned to the desired velocity ¤x𝑡 , allowing us to compute the task space pose error
e𝑥 = x 𝑓 − x𝑡 for the slave arm. The control law for the slave arm is then given by:

τ 𝑓 = JT
(
−K𝑝e𝑥 −K𝑑Jq 𝑓

)
+ C(q 𝑓 ) + g(q 𝑓 ) (5.3)

Here, J ∈ R𝑁×6 is the slave manipulator Jacobian mapping joint to end-effector velocities, and
K𝑝 and K𝑑 are controller stiffness and damping matrices, respectively. This results in the
desired closed-loop dynamic behaviour:

Λx 𝑓 +K𝑑x 𝑓 +K𝑝e𝑥 = Fext (5.4)

Force feedback is crucial for a bilateral teleoperation system, providing the user with a tactile
perception of the slave robot’s environment. The external force vector Fext experienced at the
Franka end-effector is transformed with respect to the Phantom, enabling the user to receive
the force as F𝑙 :

F𝑙 = 𝐺 · 𝑃𝐹T−1 · Fext (5.5)

Because of the disparity in force capabilities between the master and slave devices, the feedback
is adjusted by a factor of 𝐺 = 0.1. This factor was empirically determined by comparing the
maximum expected force across all tasks using preliminary data and scaling it to the haptic
device’s maximum force capabilities (3.3N). To minimize distortion of the force feedback and
maintain consistency with the constant 1:1 feedback of the identical cobot setup, this factor
was kept constant across all trials.
An essential aspect of the task space control scheme is addressing singularities and joint limits.
In this scenario, a null space position regulation term is incorporated into (5.3) to prevent
encountering joint limits. In contrast to pseudoinverse control, where large solution values can
be obtained, the controller design in (5.3) results in singularities being observed as the torque
command τ 𝑓 tends toward zero along the singular directions.
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For the Franka arm, we employ a joint impedance control scheme that directly maps the joint
configuration of the master arm to the slave arm (Figure 5.18). The control law is defined as
follows:

τ 𝑓 = −K𝑝e𝑞 −K𝑑e𝑞 + C(q 𝑓 ) + g(q 𝑓 ) (5.6)

where e𝑞 = q 𝑓 − q𝑙 is the joint space error. represents the error in joint space. This leads to
the closed-loop dynamics in joint space for the slave arm.

Mq 𝒇 +K𝑑e𝑞 +K𝑝e𝑞 = τext (5.7)

To deliver force feedback to the user, the master control torques are computed as follows:

τ𝑙 = τext −K𝑑,𝑙q𝑙 (5.8)

In general, note that the model parameters C and g are subject to uncertainty, leading to
reduced tracking performance and the presence of steady-state error in both controllers. Tuning
of the control gains K𝑝 and K𝑑 followed a similar process as that for 𝐺, through preliminary
experiments, in line with other comparative studies like [129]. Specifically, the value of K𝑝 was
incrementally increased for each control strategy on the slave arm in isolation until instability
occurred, while K𝑑 was set to achieve critically damped behavior. This tuning approach
enhances tracking performance in free space and minimizes the impact of uncertainties in the
model parameters C and g. For the joint control strategy, the gains were scaled down based
on the torque capabilities of each joint.
Considering the higher forces applied to the master and the low stiffness of the human operator,
an additional damping term K𝑑,𝑙 is introduced to the master’s response. The value of K𝑑,𝑙

was determined by identifying the minimum damping value assigned to all joints, aiming to
suppress oscillations resulting from feedback effects in the bilateral master-slave coupling.

5.5.4 Teleoperation experiments

For each task, the operator is presented with two fixed camera views of the module stack. In
all tasks except cutting, these camera views remain constant throughout. For the cutting task,
the operator is provided with two camera views of a material holder containing the cutting
workpiece. Before starting each task, both the master and slave robots are initialized to a
home position in joint space, maintaining consistency across all tasks. The following provides
a more detailed explanation of each task. Figure 5.20, illustrates the experimental case studies
conducted in order.

• Unbolting: In this task, the goal is to unfasten a set of four bolts securing an individual
stack of modules. The operator utilizes a motorized universal socket wrench tool attached
to the robot’s wrist. Success is achieved when the bolt becomes manually removable
without further unscrewing. If the success condition is not met on the first attempt or
the robot’s configured force thresholds (40N) are exceeded, the task is considered a
failure.

• Removing Fasteners: Following the unbolting stage, the next step involves extracting
each fastener from the stack before removing the cover. For this task, the Franka hand,
configured with a grasping force of 50N, is employed. The operator must manoeuvre the
hand to each fastener, grasp and remove the bolt from the stack, depositing it into a
container. Due to limited camera views, the operator relies on a combination of tactile
and visual exploration. Failure occurs if the bolt is not successfully grasped on the first
attempt or if the grasp is lost outside the target container.
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Fig. 5.20. Procedure of an electric vehicle (EV) battery disassembly detailing the case studies
explored in sequence.

• Removing Module Cover Plate: After fastener removal, the operator proceeds to
take off the module cover plate to access the underlying module stack. Considering
the weight and geometry of the cover plate, finding a suitable grasp point is crucial
for safe transportation. The configured grasping force is increased to 60N for all
experiments. Failure conditions include an unsuccessful first grasp or losing the grasp
during transportation.

• Sorting Modules: This case study involves unstacking and sorting EV battery modules
using a vacuum suction gripper. The operator must remove a pair of modules from a
stack and deposit them into a container. Visual positioning of the gripper and maintaining
contact to engage the suction cups without exceeding force limits are essential. Similar
to the cover removal, failure conditions include an unsuccessful first grasp or losing the
grasp during transportation.

• Contact Cutting The operator cuts a planar material along a visually marked path using
a slitting saw tool. As a benchmark, cutting a cardboard sheet is considered. Tactile
feedback controls the cutting force, while visual feedback ensures precise positioning
along the marked path. Failure occurs if the cut deviates more than ±2.5mm from the
desired path’s centroid or if the cut is incomplete along parts of the path.

5.5.5 Teleoperation results

For each case study, Table 5.4 provides a comprehensive summary of the overall success rate
and average completion time across all trials. The success rates for all tasks consistently
surpass or equal 50%, with the lowest rate of 50% noted for the identical cobot in the task of
bolt removal. Most tasks achieve success rates exceeding 75%, showcasing the viability of the
module stack disassembly process using both cobot and haptic device telerobotics platforms.
Figure 5.21 illustrates selected teleoperation tasks, showcasing the operator’s engagement in
the disassembly process using the proposed telemanipulation setup.
Comparing the two platforms, success rates are generally comparable for unbolting and bolt
removal, with the operator’s success rate 10-15% higher than the identical cobot case. Failures
in bolt removal trials are attributed to misalignment, constituting 17% of failures, rising to
30% with identical cobots. Other causes include loss of grasp during bolt extraction (15%
for both platforms) and releasing the bolt outside of the box (5%, 2.5% for haptic and cobot
respectively).
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5.6 | Conclusion

In conclusion, Chapter 5 provides a comprehensive overview of the experimental setups and
disassembly tasks employed in battery disassembly, showcasing the versatility of various robotic
systems. The integration of robots, grippers, haptic devices, vision systems, and advanced
techniques such as deep learning, model-based tracking, and visual servoing is highlighted.
The chapter thoroughly explores specific disassembly tasks, shedding light on their objectives,
challenges, and the pivotal role played by different approaches. The visual context provided
through images enhances the understanding of both setups and procedures. Moreover, This
study investigated the telerobotic disassembly of a module stack from the Nissan Leaf 2011
battery pack. The research conducted a comparative analysis involving two distinct setups: a
master-slave configuration employing a haptic device to control a cobot, and a scenario with
two identical cobots. The evaluation focused on assessing the success rate and completion time
across various tasks, including unbolting, bolt extraction, cover plate grasping and removal,
module sorting using a suction gripper, and contact cutting. The findings from this study
provide valuable insights into the performance and efficiency of these setups, shedding light on
the strengths and limitations of each configuration in the context of battery disassembly.
Moreover, we demonstrated that our proposed Visual Servoing and Model-Based Tracker
packages have shown adaptability to various platforms and support different programming
languages in both simulation and real-world scenarios. The prerequisite for deploying these
packages is the calibration of the attached camera on the wrist of any robot, as explained in
section 7.1. For the VS package, the calculated Cartesian velocity commands are transmitted
as twist messages through three distinct topics, corresponding to the IBVS, PBVS, and DHVS
methods. Additionally, the Model-Based Tracking package provides the 3D position of each
model in the camera frame. This enables the robot to move accordingly, allowing for the
use of different tools to perform diverse tasks. The package includes models for tracking
both modules and bolts. However, by incorporating the CAD model of each component, the
package can be extended to detect and localize various components. Users are provided with
three tracking options: Moving Edge Tracker for objects without texture, KLT Key points
Tracker for objects with textured surfaces, and the Hybrid Tracker, which combines both
approaches. Future work will concentrate on assessing the impact of variable autonomy on
task completion performance within the framework of the disassembly case studies presented.
Additionally, there is the possibility to incorporate our proposed workspace bounding approach
from Chapter 4. This involves merging the data obtained from human demonstrations with
RL techniques to automate and further enhance tasks that are currently performed manually
through telemanipulation. This integration aims to bring about advancements in the efficiency
and automation of the disassembly processes, leveraging both human expertise and machine
learning algorithms.

Data availability

The data supporting the findings presented in this chapter are also available in the following
GitHub repositories:
https://github.com/aaflakiyan/TouchX-Teleoperation-Matlab-ROS

https://github.com/aaflakiyan/DHVS

https://figshare.com/articles/media/Robotic_Disassembly/25498360
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CHAPTER6
Conclusion

In conclusion, this PhD project represents important steps towards improving the capabilities
of robotic manipulation systems by integrating artificial intelligence techniques with computer
vision methods. The study is divided into multiple chapters, each of which focuses on a
different aspect of the main objective. The journey begins with the optimization of hybrid
visual servoing approaches, addressing convergence issues and introducing adaptive gains and
neuro-fuzzy neural networks for enhanced control precision and robustness. The study explores
further the integration of RL with visual servoing, extending AI intervention from image spaces
to joint spaces. Incorporating expert demonstrations into the learning process, this extension
results in faster and more effective learning. The research then extends into the domain
of contact-rich manipulation tasks, introducing a RL framework to navigate complex and
uncertain environments. This framework enhances the robustness and adaptability of robotic
systems in tasks like compliant path-following. In this study, human demonstrations are also
utilised to limit the agent’s workspace, preventing it from exploring unnecessary areas and
avoiding sub-optimal solutions. Finally, the practical applicability of the developed methods
through a series of experiments that explore battery disassembly in the context of various
robots, grippers, haptic devices, and deep learning techniques has been investigated.
In the following sections, we will go over a summary of the key findings from the research.
This investigation will not only highlight the accomplishments and advancements made in the
integration of AI and computer vision with robotic manipulation but will also openly discuss
the limitations that have been identified. Following the summary of key findings, the focus
will shift to recognising these boundaries and constraints encountered during the research
process. These constraints are essential for understanding the scope and applicability of the
developed methodologies. Furthermore, an examination of possibilities for future research is
explained. Identifying and addressing these future research directions is critical to the field’s
ongoing development and the refinement of existing approaches. Finally, the story progresses
into the realm of applications. The practical implications and potential applications of the
techniques that have been developed will be explained, understanding where and how to apply
these methodologies.

6.1 | Summary of key findings

In this section, the summary of key findings from my research is explained.
In chapter 2, the proposed Hybrid Decoupled Visual Servoing (HDVS) method emerges as a
robust and optimized solution to address limitations inherent in classical 2D, 3D, and Hybrid
visual servoing methods. The key findings can be summarized as follows:

• Decoupling and Optimization: HDVS effectively decouples rotations and translation in
the 𝑍-axis, regulating these decoupled errors to zero through 3D reconstruction of visual
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features while regulating 𝑋-axis and 𝑌 -axis errors in 2D. This decoupling strategy leads
to optimized solutions for both the end effector and trajectories in the image space.

• Neuro-Fuzzy Approximation: The use of the Local Linear Model Tree (LoLiMoT)
neuro-fuzzy neural network enhances the control system’s robustness, approximating the
pseudo-inverse of the interaction matrix. This not only reduces computational expenses
but also ensures the avoidance of singularities and ill-conditioning, making the method
more resilient to image noises and camera parameters.

• Adaptive Gains and Damped Least Square: The incorporation of adaptive gains expedites
the visual servoing operation, contributing to reduced convergence times. The application
of the Damped Least Squares method mitigates robot singularities and smoothes
discontinuities, further enhancing the method’s performance.

• Enhanced Performance Metrics: Comparative evaluations against classical image-based,
position-based, and hybrid visual servoing methods, conducted both in simulation and
with a 7-degree-of-freedom arm robot in the real world, reveal superior performance.
HDVS demonstrates more efficient optimized trajectories, shorter camera paths, and
heightened manipulability compared to existing methods.

• Robustness and Object Tracking: HDVS exhibits robustness to camera calibration and
image noises, outperforming classical position-based visual servoing methods. Further-
more, the method reduces the likelihood of losing the object from the camera’s field of
view, ensuring a more reliable and controllable robotic manipulation process.

Chapter 3 presents a significant advancement in the integration of RL techniques with the
visual servoing method. Key findings include:

• Expansion to Joint Space: The incorporation of RL techniques extends the VS method
beyond image spaces to the joint space of the robot, establishing a direct mapping from
image features to desired joint velocities.

• Addressing Data Insufficiency: A novel approach is introduced to mitigate the data
insufficiency challenge inherent in RL. By leveraging demonstrations from multiple
controllers, the method combines RL, Learning from Demonstration (LfD), and Ensemble
Learning, resulting in a more efficient learning paradigm.

• Case Studies and Performance Improvement: Two case studies demonstrate the efficacy
of the proposed method. Notably, the integration of a hypercube to constrain the action
space significantly reduces training time, resulting in a 51% reduction in achieving the
desired performance level compared to RL alone. The method also exhibits improved
performance compared to classical VS methodologies.

• Bounding Actions: Four methods for bounding actions of the RL agent during training
are explored, with the convex hull and modified loss function (AORLD-HL) proving the
most effective. This method enhances the exploration-exploitation trade-off, leading to
improved average reward progress during training.

• Versatility: The AORLD method shows versatility in adapting to various expert supervisors
and provides a promising approach for addressing challenges in high-dimensional action
spaces.
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Chapter 4 introduces a framework for learning contact-rich tasks using Reinforcement Learning
(RL), with a focus on robustness to parametric uncertainties. The key findings include:

• Curriculum-Based Domain Randomization (DR): The proposed RL method employs
curriculum-based domain randomization with a time-varying sampling distribution. This
approach enhances the robustness of the policy to parametric uncertainties in the robot-
environment system, demonstrating superior performance in compliant path-following
tasks.

• Improved Trajectory Accuracy: Evaluation in simulation for compliant path-following case
studies reveals a substantial improvement in trajectory accuracy compared to traditional
methods. The RL approach shows approximately 15 times improvement over a previous
Learning-Based Model Predictive Control (LBMPC) method and 18 times improvement
over a Virtual Forward Dynamics Model (FDM) approach.

• Boosting RL with Human Demonstrations: A novel approach is introduced to boost
deep RL using human demonstrations and offline workspace bounding. The method
reduces the search space, expedites learning, and improves the policy’s performance and
resilience to local minima.

Chapter 5 of the thesis focuses on the experimental setups and disassembly tasks involved in
battery disassembly using various robotic systems. The key findings include:

• Versatile Robotic Systems: The chapter highlights the versatility of robotic systems,
including robots, grippers, haptic devices, vision systems, and advanced techniques such
as deep learning, model-based tracking, and visual servoing.

• Showcasing Disassembly Tasks: Specific disassembly tasks, such as sorting, unbolting/un-
screwing, cutting, and teleoperation, are thoroughly described. The chapter provides
insights into the objectives, challenges, and the crucial role of different components in
executing these tasks.

• Vision Methodologies: The exploration extends into vision methodologies, with a focus
on model-based tracking and deep learning approaches. Model-based tracking involves
using component models to determine 3D positions from 2D images, while deep neural
network models, trained using transfer learning, autonomously detect objects in the
camera scene.

• Telerobotic: A comparative analysis of two distinct setups for telerobotic disassembly of
a module stack from the Nissan Leaf 2011 battery pack is presented. The evaluation
assesses the success rate and completion time across various tasks, providing valuable
insights into the performance and efficiency of each configuration.

• Adaptability of Visual Servoing and Model-Based Tracker Packages: The study demon-
strates the adaptability of the Visual Servoing and Model-Based Tracker packages to
various platforms and programming languages in both simulation and real-world scenar-
ios. These packages enhance robot movements based on calculated Cartesian velocity
commands and provide 3D positions of tracked components.

• The Visual Servoing and Module Tracker packages are provided in two versions for different
needs. The standalone C++ version ensures flexibility and independence, enabling users
who may not be utilizing the Robot Operating System (ROS) to incorporate the
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functionalities into their applications. On the other hand, the ROS-compatible version is
designed to integrate into ROS-based robotic systems, taking advantage of ROS features
like communication between nodes, topics, services, and visualization tools. This version
facilitates integration with other ROS packages and tools.

6.2 | Limitations

In this section, we will elaborate on the limitations associated with each proposed method and
algorithm introduced in this thesis.

6.2.1 Algorithmic Limitations

HDVS Approach (Chapter 2): While the HDVS approach, introduced in Chapter 2, show-
cases impressive capabilities, it is important to acknowledge certain limitations, including
adaptability to high dimensions, sensitivity to camera model and impact of structural changes
in camera mount. The HDVS method is currently optimized for scenarios involving four
features in the image, with predefined desired convergence points. This design choice caters
to specific applications where the same number of features are considered. However, there
are applications in which the user needs to define more features, and the input space of the
NN will increase. Investigating the adaptability of the learning method to higher dimensions
needs further investigation. In this study, we exclusively applied the HDVS with the LoLiMoT
neural network to the Franka robotic arm and its specific camera structure. For other camera
platforms (with new extrinsic parameters), a modified version of our proposed method (we call
it DHVS) was utilized. The modification involves excluding the learning component responsi-
ble for approximating the proposed image Jacobian matrix. The core methodology remains
consistent with the approach employed for the Franka arm, with the necessary adjustments
made to accommodate the new parameters. Therefore, to use HDVS for alternative robots
and camera structures, one needs to collect relevant data with the specific setup of interest
and subsequently retrain the model. This retraining procedure ensures the adaptability of the
HDVS method to provide the camera’s desired velocities based on the unique structure of the
new setup.

Reinforcement Learning for Visual Servoing (Chapter 3): In chapter 3, we have
investigated the Use of Reinforcement learning for the task of VS with stationary robots. Utiliz-
ing RL for VS introduces notable advantages, particularly in addressing issues related to robot
control and image Jacobian calculations. However, it comes with limitations to the chosen
robot and camera structure in training. Despite the comprehensive integration of both image
space and robot control in RL for VS, the trained RL policy is highly specific to the model of the
chosen robot. The mapping of feature errors to joint velocities is linked to the geometry and
kinematics of the robot involved in the training process. Consequently, deploying the RL-based
VS method on a different robot type requires the repetition of the training process. However, it
should be mentioned that the proposed AORLD approach can be applied to a broad spectrum of
applications where systematic controllers exist, and the objective is to enhance their behaviour.
This broader applicability underscores the versatility of AORLD across diverse scenarios, mak-
ing it a valuable tool for improving the performance of systematic controllers in various contexts.

Simulation-based Policy Development (Chapter 4): A notable limitation from Chapter 4
lies in the fact that all experiments conducted, involving the application of RL and curriculum-
based domain randomization to develop a robust policy for environments with uncertainties,
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were carried out in simulation. The transition from simulation to the real-world scenario
introduces a set of challenges, particularly due to the inherently contact-rich nature of the task
which could be studied in future works. The study aimed to showcase the possibilities and
demonstrate the effectiveness of our method primarily in simulation, serving as a foundation for
understanding its potential real-world applications. However, the simulation environment may
not perfectly replicate the complexities and dynamics of the actual contact-rich interactions
that occur in the real-world setting. Therefore, the inherent challenges of translating simulation
results to real-world performance, especially in tasks involving significant physical contact,
highlight a limitation that should be acknowledged.

Deep Learning for Object Detection (Chapter 5): Another limitation of this thesis
pertains to the deep learning method, introduced in chapter 5, which could be enhanced
through the expansion of the dataset and fine-tuning of training parameters. The inclusion of
this section aimed to showcase the potential of employing deep learning for object detection,
an alternative to initializing the image in the model-based tracker. Further improvements in
the deep learning model’s performance may be achieved through a more extensive dataset and
optimization of training parameters to develop a more robust object detector. Moreover, in
the model-based tracker package, while the tracker offers adaptability, the scope is limited to
the CAD model of each component. Therefore, extending the package to detect and localize
various components requires incorporating CAD models.

6.2.2 Hardware and Structural Limitations

Camera Setup and Mounting (Chapter 2): It is noted that changes in the camera setup,
such as replacement or adjustment, necessitate retraining of the HDVS model. The model’s
robustness to camera calibration is evident, but significant structural changes in the camera
mount, such as tilting or rotating, present challenges that require pre-training the model
to handle various angles. This limitation is particularly relevant in scenarios where frequent
changes in camera setup are necessary.

Real-world Applications (Chapter 4): The reliance on simulation for developing and
testing the RL and curriculum-based domain randomization methods limits the direct appli-
cability of the results to real-world scenarios. The inherent differences between simulated
environments and real-world contact-rich interactions could affect the performance of the
developed policies when applied to actual tasks.

6.3 | Implications for future research

Task Planner Development: The outcome of the battery disassembly project would be
to create a general task planner. This would be a big step for future research. This task
planner would serve as a higher-level decision-making component, determining optimal actions
for various robotic systems and grippers during the disassembly process. By leveraging the
information about the environment obtained through various sensors, the task planner can
intelligently allocate specific tasks to different robots and grippers. It would strategically plan
the sequence of actions to streamline and optimize the overall disassembly process. Using a
well-designed task planner aims to enhance efficiency, reduce processing time, and ensure the
systematic execution of disassembly tasks, contributing to the advancement of automation
in disassembly projects. In this thesis, we have focused on various tasks individually. Our
proposed approaches involve the integration of artificial intelligence with vision and robotic
control, resulting in the development of robust algorithms designed to address various sorts
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of challenges. Moving forward, an important direction for future work involves incorporating
the developed algorithms into a unified task planner. This task planner not only does routine
disassembly tasks but also learns and gets better over time (utilizing the power of RL).

Deep Learning Expansion: Another possible future work for the disassembly project includes
exploring the integration of deep learning not only for specific component detection but also
for identifying the car company that utilizes each component. This extension could broaden
the scope of the disassembly project. Additionally, using more robust and advanced YOLO
methods in future setups could enhance the accuracy and efficiency of component detection,
localization, and segmentation. Furthermore, future works could explore the application of
deep learning techniques to detect defective and distorted objects within the disassembly
process. Implementing a system that considers the percentage of defectiveness could enhance
the precision and adaptability of the disassembly process, contributing to a more efficient and
reliable overall system. This ability would enable the system to identify issues in components
and take appropriate actions, such as sorting, handling the task by an operator, or telema-
nipulation from a distance, based on the degree of defectiveness. Another aspect with room
for improvement is the model-based tracker, which could be further modified to extend its
capability to track various types of components within the battery pack. In this study, the
model-based tracker was employed for tracking bolts and modules, and there is potential for
future development to enable multi-object tracking. Enhancements to the model-based tracker
could involve adaptations to accommodate diverse components, expanding its application
to a broader range of object-tracking scenarios within the battery pack. The integration of
object detection, segmentation, and localization techniques could play a crucial role in the
development of the general task planner.

Vision Technique Enhancement: Another future exploration would be enhancing the
versatility of the proposed VS technique. The current focus on tracking features using tag
markers can be expanded to accommodate more sophisticated scenarios. The aim would be
to adapt the VS method for tracking identified components through deep learning or the
model-based tracker package. This expansion would expand to situations where a greater set
of features needs to be tracked.

Teleoperation and RL Integration: Furthermore, the integration of Reinforcement Learning
and the proposed workspace limitation approach, in Chapter 5, provides a pathway to auto-
mate challenging tasks done with teleoperation. To this end, the data collected from human
demonstrations would be used to limit the search space of the RL agent. Thereafter, the agent
will learn to perform the same tasks done in teleoperation, automatically by learning from its
behavior and improving itself.

An Example of Systematic Task Planner Development: An example of a system-
atic task planner could be as follows: The initial phase involves the detection and localization
of objects within the workspace. Subsequently, an in-depth analysis of objects takes place,
coupled with task determination. This process begins with objects requiring minimal robot
motion and effort, gradually extending to more complex tasks. Additionally, the task planner
considers the robot’s effort and power, potentially informed by a learning process. Task priorities
are established, taking into account different criteria such as the nature of the task and the
robot’s capabilities. The subsequent stages encompass robot control implementation, ensuring
precise and effective robotic movements, followed by the execution of specific tasks. These
tasks encompass a range of actions, including cutting, grasping, pick-and-place manoeuvres,
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suction operations, and measurements, all orchestrated to enhance the overall efficiency and
automation of the disassembly workflow. In case of unsuccessful task execution, the planner
will flag the issue, prompting intervention. An operator can then take over and perform the
task manually using teleoperation.

6.3.1 Possible Applications

Based on the contribution of this study, there are some likely end applications for my research:
Industrial Robotic Automation:This research findings could be applied to enhance the
capabilities of industrial robots in manufacturing and assembly lines. The optimized visual
servoing and reinforcement learning techniques can improve the efficiency and precision of tasks
such as pick-and-place operations, assembly of complex components, and handling objects in
dynamic environments.

Medical and Healthcare Robotics: The integration of AI-driven control strategies can
find applications in medical robotics, enabling more accurate and delicate procedures such as
surgical tasks or handling medical instruments. The enhanced manipulation and adaptability
of robotic systems can lead to safer and more efficient medical interventions.

Logistics and Warehousing: This research could be extended to logistics and warehousing
automation, where robots are increasingly utilized for tasks like sorting, packing, and moving
items. The developed control methods could optimize the manipulation of objects with
varying shapes, sizes, and weights, improving the overall efficiency of distribution centers and
warehouses.

Agricultural Robotics: The AI-enhanced manipulation techniques could be employed in
agricultural settings to handle delicate tasks such as fruit harvesting or plant maintenance.
Robots equipped with optimized control strategies could navigate complex environments,
ensuring minimal damage to crops while improving harvesting efficiency.

Space Exploration and Manufacturing: The concepts developed in this research could be
adapted for space missions, where robots play a crucial role in tasks like assembling structures
or conducting experiments in microgravity environments. The robust control methods could
aid in precise and reliable manipulation of objects in space.

Assistive and Rehabilitation Robotics: The research outcomes might have implications
for assistive devices and rehabilitation robotics. Optimized manipulation strategies could
be integrated into robotic prosthetics or exoskeletons, enabling more natural and effective
movement for individuals with mobility impairments.

Construction Robotics: The advanced control techniques we have developed could be
applied to construction robots, improving their ability to handle tasks like bricklaying, concrete
pouring, and material transportation on construction sites. This could lead to faster and more
efficient construction processes.

Environmental Monitoring and Maintenance: This research findings could be utilized
in the development of robots designed for environmental monitoring and maintenance tasks.
These robots could navigate challenging terrains to perform tasks like sensor placement, data
collection, and maintenance of infrastructure in remote or hazardous locations.
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Human-Robot Collaboration: The adaptive control strategies and AI-driven manipulation
techniques could facilitate safer and more productive collaboration between humans and robots.
In settings like warehouses, factories, or healthcare facilities, robots could work alongside
humans, assisting in tasks that require precision, strength, or repetitive actions.

In the end, the findings of this study contribute to a new paradigm in robotic manipulation
in which the interaction of AI and traditional control strategies redefines the capabilities of
robotic systems. The proposed methodologies open the path for higher levels of autonomy,
precision, and adaptability, making major improvements to the fields of robotics and artificial
intelligence.
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Mobile Robot Control: A Novel Weighted Fitness Function-Based Image Registration
Model in International Conference “New Technologies, Development and Applications”
2021, 744–752.

57. Hua, J., Zeng, L., Li, G. & Ju, Z. Learning for a Robot: Deep Reinforcement Learning,
Imitation Learning, Transfer Learning. Sensors 21, 1278 2021.

58. Castelli, F., Michieletto, S., Ghidoni, S. & Pagello, E. A machine learning-based visual
servoing approach for fast robot control in industrial setting. International Journal of
Advanced Robotic Systems 14, 1729881417738884 2017.

59. Jin, Z., Wu, J., Liu, A., Zhang, W.-A. & Yu, L. Policy-based deep reinforcement
learning for visual servoing control of mobile robots with visibility constraints. IEEE
Transactions on Industrial Electronics 69, 1898–1908 2021.

60. Ramirez, J., Yu, W. & Perrusquia, A. Model-free reinforcement learning from expert
demonstrations: a survey. Artificial Intelligence Review 55, 3213–3241 2022.

127



61. Ross, S., Gordon, G. & Bagnell, D. A reduction of imitation learning and structured
prediction to no-regret online learning in Proceedings of the fourteenth international
conference on artificial intelligence and statistics 2011, 627–635.

62. Takeda, T., Hirata, Y. & Kosuge, K. Dance step estimation method based on HMM
for dance partner robot. IEEE Transactions on Industrial Electronics 54, 699–706 2007.

63. Krishnan, S., Garg, A., Liaw, R., Thananjeyan, B., Miller, L., Pokorny, F. T. &
Goldberg, K. SWIRL: A sequential windowed inverse reinforcement learning algorithm
for robot tasks with delayed rewards. The International Journal of Robotics Research
38, 126–145 2019.

64. Ho, J. & Ermon, S. Generative adversarial imitation learning. Advances in neural
information processing systems 29 2016.

65. Ding, Z. & Dong, H. Challenges of reinforcement learning. Deep Reinforcement
Learning: Fundamentals, Research and Applications, 249–272 2020.

66. Cruz Jr, G. V., Du, Y. & Taylor, M. E. Pre-training neural networks with human
demonstrations for deep reinforcement learning. arXiv preprint arXiv:1709.04083 2017.

67. Ball, P. J., Smith, L., Kostrikov, I. & Levine, S. Efficient online reinforcement learning
with offline data. arXiv preprint arXiv:2302.02948 2023.

68. Liu, Y., Datta, G., Novoseller, E. & Brown, D. S. Efficient preference-based rein-
forcement learning using learned dynamics models. arXiv preprint arXiv:2301.04741
2023.

69. Wu, J., Huang, Z., Hu, Z. & Lv, C. Toward human-in-the-loop AI: Enhancing deep
reinforcement learning via real-time human guidance for autonomous driving. Engineering
21, 75–91 2023.

70. Kumar, V., Gupta, A., Todorov, E. & Levine, S. Learning dexterous manipulation
policies from experience and imitation. arXiv preprint arXiv:1611.05095 2016.

71. Ross, S., Gordon, G. J. & Bagnell, J. A. No-regret reductions for imitation learning
and structured prediction in In AISTATS 2011.

72. Hester, T., Vecerik, M., Pietquin, O., Lanctot, M., Schaul, T., Piot, B., Horgan, D.,
Quan, J., Sendonaris, A., Osband, I., et al. Deep q-learning from demonstrations in
Proceedings of the AAAI Conference on Artificial Intelligence 32 2018.

73. Kelly, M., Sidrane, C., Driggs-Campbell, K. & Kochenderfer, M. J. HG-DAgger:
Interactive imitation learning with human experts in 2019 International Conference on
Robotics and Automation (ICRA) 2019, 8077–8083.

74. Hoque, R., Balakrishna, A., Novoseller, E., Wilcox, A., Brown, D. S. & Goldberg, K.
ThriftyDAgger: Budget-aware novelty and risk gating for interactive imitation learning.
arXiv preprint arXiv:2109.08273 2021.

75. Sun, W., Bagnell, J. A. & Boots, B. Truncated horizon policy search: Combining
reinforcement learning & imitation learning. arXiv preprint arXiv:1805.11240 2018.

76. Kang, B., Jie, Z. & Feng, J. Policy optimization with demonstrations in International
conference on machine learning 2018, 2469–2478.

77. Yang, C., Ma, X., Huang, W., Sun, F., Liu, H., Huang, J. & Gan, C. Imitation learning
from observations by minimizing inverse dynamics disagreement. Advances in neural
information processing systems 32 2019.

128



78. Mayne, D. Q., Rawlings, J. B., Rao, C. V. & Scokaert, P. O. Constrained model
predictive control: Stability and optimality. Automatica 36, 789–814 2000.

79. Forbes, M. G., Patwardhan, R. S., Hamadah, H. & Gopaluni, R. B. Model predictive
control in industry: Challenges and opportunities. IFAC-PapersOnLine 48, 531–538
2015.

80. Zanon, M. & Gros, S. Safe reinforcement learning using robust MPC. IEEE Transactions
on Automatic Control 2020.

81. Kober, J., Bagnell, J. A. & Peters, J. Reinforcement learning in robotics: A survey.
The International Journal of Robotics Research 32, 1238–1274 2013.

82. Omer, M., Ahmed, R., Rosman, B. & Babikir, S. F. Model predictive-actor critic
reinforcement learning for dexterous manipulation in 2020 International Conference on
Computer, Control, Electrical, and Electronics Engineering (ICCCEEE) 2021, 1–6.

83. Bellegarda, G. & Byl, K. An online training method for augmenting MPC with deep
reinforcement learning in 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS) 2020, 5453–5459.

84. Hewing, L., Wabersich, K. P., Menner, M. & Zeilinger, M. N. Learning-based model
predictive control: Toward safe learning in control. Annual Review of Control, Robotics,
and Autonomous Systems 3, 269–296 2020.

85. Zhang, K., Wang, J., Xin, X., Li, X., Sun, C., Huang, J. & Kong, W. A survey
on learning-based model predictive control: Toward path tracking control of mobile
platforms. Applied Sciences 12, 1995 2022.

86. Shin, C., Ferguson, P. W., Pedram, S. A., Ma, J., Dutson, E. P. & Rosen, J.
Autonomous tissue manipulation via surgical robot using learning based model predictive
control in 2019 International conference on robotics and automation (ICRA) 2019,
3875–3881.

87. Rastegarpanah, A., J. Hathaway & R. Stolkin, “Vision-Guided MPC for Robotic Path
Following Using Learned Memory-Augmented Model”. Frontiers in Robotics and AI 8
2021.

88. Padalkar, A., Nieuwenhuisen, M., Schneider, S. & Schulz, D. Learning to Close the
Gap: Combining Task Frame Formalism and Reinforcement Learning for Compliant
Vegetable Cutting. in ICINCO 2020, 221–231.

89. Martin-Martin, R., Lee, M. A., Gardner, R., Savarese, S., Bohg, J. & Garg, A. Variable
impedance control in end-effector space: An action space for reinforcement learning in
contact-rich tasks in 2019 IEEE/RSJ international conference on intelligent robots and
systems (IROS) 2019, 1010–1017.

90. Zhang, X., L. Sun, Z. Kuang & M. Tomizuka, “Learning Variable Impedance Control via
Inverse Reinforcement Learning for Force-Related Tasks”. IEEE Robotics and Automation
Letters 6, 2225–2232 2021.

91. Faulwasser, T., T. Weber, P. Zometa & R. Findeisen, “Implementation of Nonlinear
Model Predictive Path-Following Control for an Industrial Robot”. IEEE Transactions
on Control Systems Technology 25, 1505–1511 2017.

92. Matschek, J., J. Bethge, P. Zometa & R. Findeisen, “Force Feedback and Path
Following using Predictive Control: Concept and Application to a Lightweight Robot”.
IFAC-PapersOnLine 50, 9827–9832 2017.

129



93. Meng, L., S. Yu, H. Chang, R. Findeisen & H. Chen, Path following and terminal
force control of robotic manipulators. IEEE International Conference on Control and
Automation, ICCA. 2020-October. 2020, 1482–1487.

94. Maldonado-Ramirez, A., R. Rios-Cabrera & I. Lopez-Juarez, “A visual path-following
learning approach for industrial robots using DRL”. Robotics and Computer-Integrated
Manufacturing 71 2021.

95. Peng, X. B., M. Andrychowicz, W. Zaremba & P. Abbeel, “Sim-to-Real Transfer
of Robotic Control with Dynamics Randomization”. CoRR abs/1710.06537. arXiv:
1710.06537 2017.

96. OpenAI, I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A.
Paino, M. Plappert, G. Powell, R. Ribas, J. Schneider, N. Tezak, J. Tworek, P. Welinder,
L. Weng, Q. Yuan, W. Zaremba & L. Zhang, “Solving Rubik’s Cube with a Robot
Hand”. CoRR abs/1910.07113. arXiv: 1910.07113 2019.

97. Nelles, O., Fink, A. & Isermann, R. Local linear model trees (LOLIMOT) toolbox for
nonlinear system identification. IFAC Proceedings Volumes 33, 845–850 2000.

98. Kalhor, A., Araabi, B. N. & Lucas, C. Evolving Takagi–Sugeno fuzzy model based on
switching to neighboring models. Applied Soft Computing 13, 939–946 2013.

99. Nelles, O. Local linear model trees for on-line identification of time-variant nonlinear
dynamic systems in International Conference on Artificial Neural Networks 1996, 115–
120.

100. Hu, G., Gans, N. R. & Dixon, W. E. Adaptive Visual Servo Control. 2009.

101. Hutchinson, S. & Chaumette, F. Visual servo control, part i: Basic approaches. IEEE
Robotics and Automation Magazine 13, 82–90 2006.

102. Kermorgant, O. & Chaumette, F. Dealing with constraints in sensor-based robot
control. IEEE Transactions on Robotics 30, 244–257 2013.

103. Spong, M. Hutchinso, n. Seth, and MV Vidyasagar,“Robot Modeling and Control,”
John Wiley& Sons 2006.

104. Baerlocher, P. & Boulic, R. Task-priority formulations for the kinematic control of
highly redundant articulated structures in Proceedings. 1998 IEEE/RSJ International
Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and
Applications (Cat. No. 98CH36190) 1 1998, 323–329.

105. Maciejewski, A. A. & Klein, C. A. Numerical filtering for the operation of robotic
manipulators through kinematically singular configurations. Journal of Robotic Systems
5, 527–552 1988.

106. Fruchard, M., Morin, P. & Samson, C. A framework for the control of nonholonomic
mobile manipulators. The International Journal of Robotics Research 25, 745–780 2006.

107. Vahrenkamp, N., Asfour, T., Metta, G., Sandini, G. & Dillmann, R. Manipulability
analysis in 2012 12th ieee-ras international conference on humanoid robots (humanoids
2012) 2012, 568–573.

108. Rezaie, J., Moshiri, B., Rafati, A. & Araabi, B. N. A Modified LOLIMOT Algorithm
for Nonlinear Estimation Fusion in 2007 IEEE International Conference on Information
Reuse and Integration 2007, 520–525.

109. Kalhor, A., Araabi, B. N. & Lucas, C. Reducing the number of local linear models in
neuro-fuzzy modeling: A split-and-merge clustering approach. Applied Soft Computing
11, 5582–5589 2011.

130



110. Aflakian, A., Safaryazdi, A., Masouleh, M. T. & Kalhor, A. Experimental study on
the kinematic control of a cable suspended parallel robot for object tracking purpose.
Mechatronics 50, 160–176 2018.

111. Corke, P. Robotics, vision and control: fundamental algorithms in MATLAB® second,
completely revised Springer, 2017.

112. Wegener, K., Andrew, S., Raatz, A., Dröder, K. & Herrmann, C. Disassembly of
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CHAPTER7
Index 1

7.1 | Camera calibration

Camera calibration is a fundamental process in computer vision, involving the measurement
and adjustment of camera parameters to ensure that it accurately captures and represents the
real-world environment. The main goal of camera calibration is to establish a mathematical
relationship between the 3D world coordinates and the 2D image coordinates produced by the
camera. This relationship is vital for a wide range of applications, including object measurement,
3D reconstruction, augmented reality, and robotics.
Camera calibration is necessary for several reasons:

• Accuracy: Cameras, even high-quality ones, have inherent imperfections, such as lens
distortion and variations in manufacturing. Calibration helps correct these imperfections,
ensuring the accuracy of measurements and reconstructions.

• Consistency: Calibration ensures that different cameras produce consistent and compara-
ble results, making it possible to integrate data from multiple cameras or sensors into a
single coordinate system.

• Spatial Mapping: For computer vision tasks, it’s essential to map 2D image points to
corresponding 3D world points. Calibration provides the transformation necessary for
this mapping.

• Virtual and Real World Alignment: In augmented reality, virtual objects must align
correctly with the real world. Calibration enables this alignment by establishing the
camera’s position and orientation in space.

• Robotics: In robotics, precise camera calibration is crucial for robot navigation, object
manipulation, object detection and localization, and obstacle avoidance.

Camera calibration is divided into two main groups, intrinsic camera calibration and extrinsic
camera calibration. In the following subsections, these two categories are explained.

7.1.1 Intrinsic Camera Calibration

Intrinsic camera calibration deals with the internal characteristics of the camera, which primarily
affect the image formation process. These characteristics include parameters like the focal
length, principal point, and lens distortion. Intrinsic calibration is necessary to correct distortions
caused by the camera’s lens and ensure that measurements in the image are accurate and
undistorted.
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The goal of calibration is to estimate specific camera parameters that find the relation between
the pixel positions in the image and normalized positions in meters on the image plane (real-
world units). The mathematical relationship between 3D world coordinates and 2D image
coordinates are as follows:

𝑢 = 𝑓 · 𝑋
𝑍
+ 𝐶𝑥 (7.1)

𝑣 = 𝑓 · 𝑌
𝑍
+ 𝐶𝑦 (7.2)

Here (𝑢, 𝑣) are Pixel coordinates in the image, (𝑋,𝑌, 𝑍) are 3D world coordinates, 𝑓 is Focal
length, and (𝐶𝑥 , 𝐶𝑦) are Principal point coordinates.
Intrinsic camera calibration also addresses lens distortion, which can affect the accuracy of
measurements in images. A common model used for this purpose is the radial distortion
model. Two distortion coefficients, 𝑘𝑢𝑑 and 𝑘𝑑𝑢 are Distortion parameters that correct for lens
distortion effects. From meters to pixels, the following formulas are considered:

𝑢 = 𝑢0 + 𝑥𝑝𝑥 (1 + 𝑘𝑢𝑑𝑟
2) (7.3)

𝑣 = 𝑣0 + 𝑦𝑝𝑦 (1 + 𝑘𝑢𝑑𝑟
2) (7.4)

where 𝑟2 = 𝑥2 + 𝑦2. From pixels to meters, the following formulas are applied:

𝑥 = (𝑢 − 𝑢0)
(
1 + 𝑘𝑑𝑢𝑟

2
)
/𝑝𝑥 (7.5)

𝑦 = (𝑣 − 𝑣0)
(
1 + 𝑘𝑑𝑢𝑟

2
)
/𝑝𝑦 (7.6)

with 𝑟2 = ((𝑢 − 𝑢0)/𝑝𝑥)2 + ((𝑣 − 𝑣0)/𝑝𝑦)2.
Here, (𝑢0, 𝑣0) are Principal point coordinates in pixels (𝑝𝑥 , 𝑝𝑦) are the Ratio between focal
length and pixel size. The calibration process involves several steps:

1. Image Acquisition: Capture images of a calibration pattern (e.g., checkerboard) from
various angles and orientations. Ensure the pattern is visible in each image.

2. Corner Detection: Detect the corners of the calibration pattern in the images using
computer vision libraries.

3. World Points and Image Points: Create a list of 3D world points corresponding to
the corners of the calibration pattern and a list of corresponding 2D image points.

4. Camera Calibration: Use a calibration algorithm to estimate the intrinsic parameters,
including ( 𝑓 , 𝐶𝑥 , 𝐶𝑦, 𝑝𝑥 , 𝑝𝑦, 𝑘𝑢𝑑 , 𝑘𝑑𝑢).

5. Refinement: Refine the calibration results by minimizing the reprojection error, ensuring
that the 3D world points projected onto the images match the detected corner positions.

6. Extraction of Parameters: The calibrated camera parameters are then extracted from
the calibration results and can be used in various computer vision applications.
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In summary, intrinsic camera calibration is a crucial process that estimates the internal camera
parameters. These parameters enable accurate mapping between the 3D world and 2D image
coordinates. The calibration procedure involves capturing images of a calibration pattern,
detecting corners, and using calibration algorithms to estimate camera intrinsic parameters, as
well as correcting lens distortion. The resulting parameters are essential for ensuring accurate
measurements in computer vision tasks. In our work, we utilized the standard predefined intrinsic
parameters provided for the intrinsic calibration of each camera. It is essential to clarify that
our focus was on applying these pre-established parameters rather than conducting the intrinsic
calibration process from scratch. These parameters could be found in the camera firmware
or SDK and in VISP library we get them from 𝑣𝑝𝑅𝑒𝑎𝑙𝑆𝑒𝑛𝑠𝑒2 :: 𝑔𝑒𝑡𝐶𝑎𝑚𝑒𝑟𝑎𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠()
function.

7.1.2 Extrinsic camera calibration

Extrinsic camera calibration deals with determining the pose and position of the camera in
the 3D world. It includes camera orientation and its translation (in general homogeneous
transformation) in the world coordinate system. These parameters are essential for mapping the
2D image to the 3D world. This calibration is crucial for various computer vision applications,
including robotics, object tracking, and augmented reality, where knowing the camera’s
viewpoint in the world is essential.
Extrinsic Calibration Procedure: Les us define 𝑓M𝑒, as the homogeneous transformation
between the robot base frame (often referred to as the fixed frame) and the robot end-
effector. 𝑐M𝑜, as the homogeneous transformation between the camera frame and a calibration
grid frame (also known as the object frame). Typically, this calibration grid is the OpenCV
chessboard. 𝑒M𝑐, as the homogeneous transformation between the end-effector and the camera
frame. This transformation corresponds to the extrinsic eye-in-hand transformation that needs
to be estimated, then:
Extrinsic camera calibration when the camera is attached to the robot’s EE, can be performed
using the following steps:

• Image Acquisition: Capture images of a known calibration pattern from various angles
and orientations and their correspondence homogeneous transformation between the
robot base frame and EE ( 𝑓M𝑒). The pattern should be visible in each image. Also,
acquire the camera’s intrinsic parameters. In Figure 7.1, the calibration process involves
placing a chessboard pattern underneath some of the robots is illustrated. This setup
allows for the precise estimation of the camera’s position with respect to each robot’s
EE position. The camera on the robot captures images of the chessboard from different
angles, providing essential information to determine the camera’s pose. The resulting
extrinsic parameters are crucial for various applications, such as accurate robot navigation,
visual servoing, and object localization.

• World Points and Image Points: Establish correspondences between 3D world points and
their 2D image coordinates. The calibration pattern provides known 3D points in the
world coordinate system. In other words, computing the corresponding homogeneous
transformation between the camera frame and a calibration grid frame (𝑐M𝑜). Figure
7.2 displays a subset of images employed during the extrinsic calibration procedure. Each
image represents the robot in a distinct position, ensuring coverage of a significant
portion of the half-sphere above the chessboard. Capturing images from various angles
and orientations is essential for robust calibration, as it enables accurate determination
of the camera’s rotation and translation with respect to the robot’s EE position.
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Fig. 7.1. The extrinsic calibration setups, where a chessboard pattern is positioned beneath
the robots for the calibration of the camera’s extrinsic parameters.

Fig. 7.2. A selection of images used for the calibration process. These images depict the robot
in different positions, covering a substantial portion of the half-sphere above the chessboard.

• Camera Calibration: Use an extrinsic calibration algorithm and the collected data in
previous steps to estimate the homogeneous transformation between the EE and the
camera frame (𝑒M𝑐). We have used the VISP camera calibration tutorial [130] for
calibrating our cameras.
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