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Abstract

In this thesis, the concept of Monotone Extended Second Order Cone (MESOC), which

is a new generalisation of second order cone, has been present. We discussed the funda-

mental properties of MESOC and demonstrated the positive operator, the Lyapunov-like

transformation as well as the reducibility of this cone. The value Lyapunov rank has also

been provided. We also investigated the isotonicity property of MESOC, and we showed

the cylinder is the only isotonic projection set with respect to MESOC in the ambient

space. Then we present the mixed complementarity problem on a general close, and con-

vex cone can be solved by using an iterative method based on the isotonicity property of

MESOC. Meanwhile, a numerical example has been illustrated to show the applicability

of MESOC. We also investigated the formulas to show how to project onto MESOC. In

the most general case, the formula we obtained is dependent on an equation for one real

variable. The linear complementarity problem on the MESOC has also been studied. We

have demonstrated that the linear complementarity problem on the MESOC can be con-

verted to a mixed complementarity problem on the nonnegative orthant. The algorithms

are discussed and numerical examples are also present. Moreover, we present an applica-

tion of the MESOC, which is a portfolio optimisation problem with an analytical solution.

At last, we studied the gradient projection method on the sphere. We showed that this

method could be used in discussing the solvability of the complementarity problem and

checking the copositivity of an operator with respect to cones. The numerical experiments

which illustrate the copositivity of operators are also provided.
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CHAPTER 1

CONES AND COMPLEMENTARITY PROBLEMS

1.1 Introduction

Karush introduced the concept of complementarity in [49], and then the complementarity

problem was considered for the non-negative orthant by Dantzig and Cottle in their

technical report [19]. Meanwhile, Variational Inequality (VI), which is recognized as a

generalization of the nonlinear complementarity problem (NCP), has been implemented in

the research of optimisation as well as equilibrium problems. In the mid-1960s, the finite-

dimensional NCP, as well as VI have been considered by researchers systematically. These

two problems have played an important role not only in different fields of mathematics but

also in engineering, economics and finance (see [10, 33, 43]). In 1964, Cottle pointed out

the relationship between nonlinear complementarity problems and linear programming in

his PhD thesis [18]. He observed that this relationship could be identified as a nonlinear

complementarity problem; Cottle was named the father of linear complementarity. Almost

at the same time, the first constructive method was developed by Scarf in 1967 (see [74]).

As a result, the whole family of fixed point methods appeared following his research,

which made great contributions to equilibrium programming. It refers to a wide field

of mathematics programming, such as analysis, modelling and computation of equilibria.

According to the research finished by Pang in [28], the complementarity problem has

a close relationship with the equilibrium problem. More specifically, in [75], Scarf and
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Hansen have shown for the equilibrium problems, the problems of finding their solutions

by using fixed-point methods are CPs or VIs. Throughout the whole research history

of the cone complementarity problem, in the beginning, even though the researchers’

works are focused on the theory development based on the general cone, they only made

progress in the applications based on the complementarity problem on the non-negative

orthant. For example, some well-known applications are listed as follows. In the financial

market, Jaillet, Lamberton and Lapeyre developed the algorithm, which was formulated

to evaluate the price of the American options by using VI [48]. In the topics related to

economics, Markov perfect equilibria, perfect competition equilibrium andWalrasian price

equilibrium models have been developed. In engineering, the complementarity problem

also played an important role in analysing the elastoplastic structure and solving the

frictional contact problem. In recent years, rather than the complementarity problems

based on the non-negative orthant, researchers have considered more applications of the

complementarity problem based on more sophisticated cones, such as second order cones

and positive semi-definite cones. By using the Karush-Kuhn-Tucker conditions on the

second order conic optimisation problems, researchers developed applications based on

the theory of second order cone complementarity problem in robotics [3] and robust game

theory [54]. Their research results emphasise that the complementarity problem can be

treated as a cross-cutting problem, which means it not only can play a powerful role in the

research of optimisation and equilibrium problems but also can make great contributions

to the applications in a wide range of disciplines.

From the previous research, we can see that second order cone programming has

played a significant role in complementarity problems. Thus, the concept of extended

second order cone (ESOC) is introduced by Németh and Zhang in [62], which could be

recognised as a natural extension of the concepts of second order cone. Sznajder obtained

the value of the Lyapunov rank (or bilinearity rank) of ESOC in [79] and proved the

irreducibility of the ESOC. His conclusions pointed out that the ESOC is a numerically

good cone, and is worth further investigation. Ferreira and Németh found a numerical
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way to solve the problem of how to project onto the ESOC [32]. Until now, Németh and

Zhang [62] have shown that the ESOC can be implemented as a tool not only in solving the

mixed complementarity problem based on a general cone but also in finding the solution

of the variational inequalities based on a general convex set [63]. Németh and Xiao also

demonstrated how to solve the linear complementarity problem based on the ESOC [61].

Their research not only pointed out the relationship between the solution of the linear

complementarity problem based on ESOC and the solution of the mixed complementarity

problem based on the non-negative orthant but also introduced an application to the

optimisation problem of portfolio allocation, which is called the mean-ℓ2 norm (ML2N)

model. They have demonstrated the advantages of the mean-ℓ2 norm (ML2N) model over

the well-known mean-variance model (MV), which was developed by Markowitz in [56],

and the mean-absolute deviation model (MAD), which was introduced in [52].

The problems related to isotone projection mapping and complementarity problems

were considered by Isac and A.B. Németh in [58], some properties of isotone projection

cones in Euclidean, as well as Hilbert space, have been developed by them in [44]. From

the practical point of view, according to the research in recent years, the importance

of the class of isotone projection cones in applications, such as monotone cone [42] and

monotone nonnegative cone [64], have been acknowledged. Nishimura and Ok [64] also

demonstrated that the isotonicity property of a projection could be implemented not only

in finding the solvability of variational inequalities but also in solving the equilibrium

problems which are related to these cones.

In conclusion, the previous research demonstrated the importance of both extended

second order cone and ordered vector spaces in investigating the equilibrium problems,

such as in economics, finance and traffic equilibrium. Thus, we will give another nautral

extension of the concept of the second order cone based on ESOC, which is called the

monotone extended second order cone (MESOC). Although there is a trivial relationship

between ESOC and MESOC, we will show the difference between them. The previous

research and applications on ESOC motivate us to investigate the complementarity prob-
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lem based on the MESOC. In this thesis, we also developed an application related to the

portfolio optimisation problem based on the monotone extended second order cone, which

we present in Chapter 6.

This thesis is organised as follows: In the remaining part of this chapter, the main

terminology and concepts mentioned in this work, which includes basic definitions, prop-

erties and basic examples and results related to cones and complementarity problems have

been introduced and explained.

Then, in Chapter 2, we introduced the monotone extended second order cone and

present its basic properties. We showed that this monotone extended second order cone is

proper and is numerically good, which is worth investigating. Furthermore, we also studied

the properties of the positive operators and Z-transformations (or Z-properties) of this

cone, respectively. We found the necessary condition of sufficient condition for a matrix to

be a positive operator or Z-transformation of the monotone extended second order cone,

respectively, and we also developed the necessary and sufficient condition for a block

diagonal matrix to be a positive operator on this cone. In this case, the corresponding

Z-transformation can be easily obtained. Moreover, the Lyapunov-like transformation of

the monotone extended second order cone is computed, and the Lyapunov rank is present.

In Chapter 3, we showed that the projection mapping onto a cylinder is an isotonic

projection set with respect to MESOC. Then by using the isotonicity property of the

monotone extended second order cone, we generated a fixed point iteration scheme, which

is convergent to a solution of the mixed complementarity problem on a general closed and

convex cone. The convergence of this iteration is order-based rather than based on a

usual contraction mapping principle. A numerical example has also been demonstrated

at the end of this chapter. By using the above iteration method, we showed the existence

of a solution in exact numbers. Even this iteration scheme can also be implemented

to solve some general mixed complementarity problems by using ESOC-isotonicity, we

proved that for the mixed complementarity problems, which can be solved iteratively by

using the MESOC-isotonicity, the same iterative scheme can not be used via ESOC.
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In Chapter 4, we discuss the problem of how to project onto the monotone extended

second order cone. We prove some initial results on the MESOC complementarity set. By

using the relationship between the complementarity set of the monotone extended second

order cone and the complementarity set of the monotone nonnegative cone, together with

the Moreau decomposition theorem, we have reduced the projection onto the MESOC to

two isotonic regressions in neighbouring dimensions, which can be solved efficiently by

pool-adjacent-violators algorithm.

In Chapter 5, we investigate the linear complementarity problems defined on the mono-

tone extended second order cones. We have demonstrated that the linear complementarity

problem defined on the MESOC can be reduced to a mixed complementarity problem on

the nonnegative orthant in a neighbourhood dimension. We also found that any point is

a solution to the converted problem if this point is a solution to the Fischer– Burmeister

complementarity function. We also show that the semi-smooth Newton method could

be used to solve the converted mixed complementarity problem and provide a numeri-

cal example. Other algorithms are also discussed, such as the FB linear search method,

which can be implemented in finding the solution to the merit function associated with

the Fischer– Burmeister complementarity function, and this solution is also a solution to

the converted mixed complementarity problem. Finally, we develop an application for the

monotone extended second order cone, which is a portfolio optimisation problem defined

on this cone. The explicit solution to the portfolio optimisation problem has also been

derived at the end.

In Chapter 6, we have presented the gradient projection method on the sphere and

provided the algorithms. We have demonstrated that the algorithm we found can be used

to solve the constraint optimisation problem defined on the intersection of a cone and a

sphere. We apply this algorithm to show the solvability of the complementarity problem

or to check the copositivity of an operator (or matrix) with respect to a cone, as the

relationship between these problems has been discussed. As far as we know, this is the

first numerical method implemented to check operators’ copositivity with respect to the
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positive semidefinite cone. We provide the numerical results obtained by implementing

our algorithms and provide with the discussions on the copositivity of operators.

1.2 Preliminaries

The notations and auxiliary results which we use in this dissertation are presented in this

section. First, let us consider some basic definitions related to cones.

Denote the canonical unit vectors of Rn by e1, . . . , en and let e = e1 + · · · + en. Any

vector z ∈ Rn is considered to be a column vector and can be uniquely written as z =

(z1, . . . , zn)
⊤ := z1e

1 + · · ·+ zne
n. In particular e = (1, . . . , 1)⊤.

The definition of canonical inner product of any two vectors x, y ∈ Rn, where Rn represents

the Euclidean space, is given by

⟨x, y⟩ := x⊤y = x1y1 + · · ·+ xnyn,

and the corresponding norm ∥ · · · ∥ is given as

∥x∥ :=
√
⟨x, x⟩.

We also have another formula for the inner product, which is called as Abel’s partial

summation formula, that is

⟨x, y⟩ =
p−1∑
i=1

(xi − xi+1)
i∑

j=1

yj + xp

p∑
i=1

yi, ∀x, y ∈ Rp.

Let p, q be positive integers, we identify Rp × Rq with Rp+q through (x, y) = (x⊤, y⊤)⊤.

Let (x, u) ∈ Rp × Rq ∋ (y, v), then the scalar product in Rp × Rq is given as

⟨(x, u)⊤, (y, v)⊤⟩ = ⟨x, y⟩+ ⟨u, v⟩.
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The set

H(u, a) := {x ∈ Rn : ⟨x− a, u⟩ = 0}

is called an affine hyperplane through a ∈ Rm with the normal u ∈ Rn \ {0} and the

corresponding sets

H−(u, a) := {x ∈ Rn : ⟨x− a, u⟩ ≤ 0},

H+(u, a) := {x ∈ Rn : ⟨x− a, u⟩ ≥ 0},

are called closed half-spaces. An affine hyperplane through the origin will be simply called

hyperplane.

For an arbitrary set K, if it satisfy λv ∈ K, for any λ ∈ R and v ∈ K, then K is called a

cone. Moreover, a cone K is called pointed if we cannot find a straight line through the

origin in K, which is equivalent to

K ∩ −K ⊆ {0}.

Let K ⊆ Rn be a cone, if for any arbitrary a, b > 0, and u, v ∈ K, we have

au+ bv ∈ K,

then cone K is a convex cone. Note that the convex cone is also a convex set.

If K is a convex cone as well as a closed set, then we call K as a closed convex cone. A

cone K is called a proper cone if K is pointed, as well as a closed and convex cone with

a nonempty interior.

A cone K in Rm is called as reducible if it can be expressed as a sum K = K1 + K2,

where K1, K2 ̸= {0} are cones with span(K1) ∩ span(K2) = {0}. Otherwise, it is called

irreducible.

Denote K∗ be the dual cone of K, then the formula for K∗ is given as

K∗ = {v ∈ Rn : ∀u ∈ K : ⟨u, v⟩ ≥ 0}.
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If K ⊆ K∗, then the cone K is subdual, if K∗ ⊆ K, it is called superdual, otherwise, if

K = K∗, the cone K is self-dual. Moreover, a cone K ⊆ Rn is a simplicial cone if there

is a basis {ui : 1 ≤ i ≤ n} of Rn such that

K =
{
α1u

1 + · · ·+ αnu
n : αi ≥ 0, 1 ≤ i ≤ n

}
.

The vectors ui, 1 ≤ i ≤ m are called the generators of K. The simplicial cone has a

property, which is nice and well-known. That is, the dual of a simplicial cone is also a

simplicial cone.

Let PC(x) be the metric projection of the point x onto a closed and convex set C, then

the problem of finding the projection of x onto the set C is equivalent to the following

constrained optimisation problem

Rn ∋ x 7→ PC(x) := argmin{∥y − x∥ : y ∈ C}.

Moreover, the point PC(x) is unique, followed by the convexity of set C.

Necessarily, PC(x) is a point-to-point mapping which is well defined from Rn to C. We

also indicate that the projection PC is nonexpansive(see [69]), i.e., for any x, y ∈ Rm,

∥PC(x)− PC(y)∥ ≤ ∥x− y∥. (1.1)

Definition 1.2.1. If there exists an arbitrary vector u ∈ Rk
+ and a matrix T ∈ Rk×k such

that

Tu ≥ 0,

then we called matrix T a S0 matrix.
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1.3 Definition of cone and complementarity problem

After the introductions of the fundamental concepts of vectors and cones, we will give the

definition of the complementarity problem as well as some examples of cones which have

been used in this dissertation.

Definition 1.3.1. Denote K ∈ Rn be a nonempty closed and convex cone, and K∗ be the

dual cone of K, then the set

C(K) = {(u, v) ∈ K ×K∗ : ⟨u, v⟩ = 0}

is called the complementarity set of K.

Then, we will give some examples of the complementarity set of cones which will be

implemented in the proof of some theorems in this thesis.

Example 1.3.1. The definition of the monotone cone Rn
≥ is given as

Rn
≥ := {x ∈ Rn : x1 ≥ x2 ≥ · · · ≥ xn}.

It is easy to check that its dual cone (Rn
≥)

∗ is

(Rn
≥)

∗ =

{
y ∈ Rn :

j∑
i=1

yj ≥ 0, j = 1, 2, . . . , n− 1,
n∑

i=1

yi = 0

}
.

It is an important object, also known as the Schur cone (see [77], Example 7.4) since

it induces the so-called Schur ordering, which plays an important role in the theory of

optimisation, see [66].

From the formula of Rn
≥ and (Rn

≥)
∗, we get the complementarity set C(Rn

≥) of the cone

Rn
≥, which is given by

C(Rn
≥) =

{
(x, y) : x ∈ R≥, y ∈ (Rn

≥)
∗, (xi − xi+1)

i∑
j=1

yj = 0, ∀i = 1, 2, . . . , n− 1

}
.
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Example 1.3.2. Let us define the monotone nonnegative cone Rn
≥+ as:

Rn
≥+ := {x ∈ Rn : x1 ≥ x2 ≥ · · · ≥ xn ≥ 0} .

Its dual cone is given by:

(Rn
≥+)

∗ =

{
y ∈ Rn :

j∑
i=1

yi ≥ 0, j = 1, 2, . . . , n

}
,

and the complementarity set of Rn
≥+ is

C(Rn
≥+) =

{
x ∈ Rn

≥+, y ∈ (Rn
≥+)

∗ :

(
xj = xj+1 or

j∑
i=1

yj = 0, ∀j = 1, 2, . . . , n− 1

)

and

(
xn = 0 or

n∑
i=1

yi = 0

)}
.

Following the formula of Rn
≥+ and (Rn

≥+)
∗ and the definition of the simplicial cone, we

get both Rn
≥+ and (Rn

≥+)
∗ are simplicial cones.

Example 1.3.3. Németh and Zhang [62] defined the extended second order cone (ESOC)

as follows

ESOC = {(x, u) ∈ Rp × Rq : x ≥ ∥u∥e},

and its dual cone is given as

(ESOC)∗ = {(x, u) ∈ Rp × Rq : ⟨x, e⟩ ≥ ∥u∥, x ≥ 0},

where p and q are nonnegative integers.

To the end of this chapter, for a given convex closed cone K, we define concepts of

variational inequality, complementarity problem, and mixed complementarity problem

with respect to cone K.
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Definition 1.3.2. Let C ⊆ Rn be a closed and convex set and F : C → Rn be a mapping.

The variational inequality, VI(F,C), is to find a vector x ∈ C, such that for any y ∈ C,

we have

(y − x)⊤F (x) ≥ 0.

Definition 1.3.3. Let cone K be a closed and convex cone and K∗ be its dual cone, and

F : K → Rn be a mapping, then the complementarity problem (CP) defined by K and F

is to find x ∈ Rn such that the following conditions

K ∋ x ⊥ F (x) ∈ K∗

are satisfied, where x ⊥ y denotes the perpendicular relation, i.e., ⟨x, y⟩ = 0. The defini-

tion above is equivalent to

CP(F,K) :=


find a x ∈ Rn, such that

(x, F (x)) ∈ C(K).

When C = K is in the previous definition, it is well known and easy to see that CP(F,K)

is equivalent to CP(F,C). We denote the solution set of the complementarity problem

CP(F,K)

SolCP(F,K) = {x ∈ Rn : (x, F (x)) ∈ C(K)} .

Definition 1.3.4. The complementarity problem CP(K, F ) will be denoted by

NCP(K, F ), which is the nonlinear complementarity problem when K = Rn
+−the nonneg-

ative orthant.

Definition 1.3.5. The mixed complementarity problem MiCP is a generalization of NCP.

Let m,n be two positive integers, denote two mappings as: F1 : Rm × Rn → Rm and

F2 : Rm × Rn → Rn and let K be a nonempty closed and convex cone, then the mixed
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complementarity problem MiCP defined by K, F1 and F2 is given as

MiCP(F1, F2, K) :=


find a (u, v)⊤ ∈ Rm × Rn, such that

F2(u, v) = 0 and ⟨u, F1(u, v)⟩ = 0.

Denote the solution to the mixed complementarity problem MiCP(F1, F2, K) as SolMiCP(F1, F2, K),

we have

SolMiCP(F1, F2, K) =
{
(u, v)⊤ ∈ Rm×n : (u, F1(u, v)) ∈ C(K) and F2(u, v) = 0

}
Definition 1.3.6. Let n be a positive integer, denote T ∈ Rn × Rn to be an arbitrary

matrix, and let F : Rn → Rn be an arbitrary linear mapping such that F (x) = Tx + q,

where q ∈ Rn is an arbitrary vector. Let K be a nonempty closed and convex cone and K∗

be its dual cone, then the definition of the linear complementarity problem LCP associated

with K and F is

LCP(T, q,K) :=


find a x ∈ Rn, such that

F (x) ∈ K∗ and ⟨x, F (x)⟩ = 0.

And the solution to the linear complementarity problem LCP(T, q,K) is given by

SolLCP(T, q,K) = {x ∈ K : Tx+ q ∈ K∗ and ⟨x, Tx+ q⟩ = 0 for T ∈ Rn × Rn and q ∈ Rn} .
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CHAPTER 2

MONOTONE EXTENDED SECOND ORDER
CONE

In this Chapter, we introduce the definition of the monotone extended second order cone

and some of its important properties. Chapters 2 and 3 are based on my joint work [37].

2.1 Basic concepts and properties of MESOC

First, let us introduce the definition of the monotone extended second order cone

(MESOC).

Definition 2.1.1. Let n, p and q be nonnegative integers such that n = p + q. MESOC

is the following set in Rn:

L := {(x, u) ∈ Rp × Rq : x1 ≥ x2 ≥ · · · ≥ xp ≥ ∥u∥} . (2.1)

Proposition 2.1.1. The monotone extended second order cone is a proper cone, which

means it is a pointed, closed and convex cone with a non-empty interior.

Proposition 2.1.2. For the monotone extended second order cone L defined in (2.1), we

have L = L1 + L2, where

L1 := cone
{
(1, . . . , 1︸ ︷︷ ︸

p

,m1, . . . ,mq) : m
2
1 + · · ·+m2

q ≤ 1
}

and
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L2 := cone
{
(1, 0, . . . , 0︸ ︷︷ ︸

p

, 0, . . . , 0︸ ︷︷ ︸
q

), (1, 1, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

), . . . , (1, 1, . . . , 1, 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

)
}
.

By using the definition of the reducibility of the cone, we conclude that the monotone

extended second order cone L is reducible.

Proof. First, we show the inclusion L ⊆ L1 + L2.

An arbitrary element (x1, . . . , xp, u1, . . . , uq) ∈ L, by the definition of L, can be repre-

sented as (
∑p

i=1 ai, . . . , a1 + a2, a1, u1, . . . , uq), where ai ≥ 0 for i = 2, . . . , p and a1 ≥

∥(u1, . . . , uq)∥. Hence,

(x1, . . . , xp, u1, . . . , uq)

=

(
p∑

i=1

ai,

p−1∑
i=1

ai, . . . , a1, u1, . . . , uq

)

= (a1, . . . , a1, u1, . . . , uq) + (a2, . . . , a2, 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) + · · ·+ (ap, 0, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

)

= (a1, . . . , a1, u1, . . . , uq) + a2(1, . . . , 1, 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) + · · ·+ ap(1, 0, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

).

Obviously, a2(1, . . . , 1, 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) + · · ·+ ap(1, 0, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) ∈ L2.

Now, we will show that (a1, . . . , a1, u1, . . . , uq) ∈ L1. It is trivial when a1 = 0, so we

assume that a1 > 0. Thus, we have (a1, . . . , a1, u1, . . . , uq) = a1

(
1, . . . , 1,

u1
a1
, . . . ,

uq
a1

)
.

As a1 ≥ ∥(u1, . . . , uq)∥, we get

a1 ≥
√
u21 + · · ·+ u2p ≡ 1 ≥

√(
u1
a1

)2

+ · · ·+
(
uq
a1

)2

,

which, by the definition of L1, gives that (a1, . . . , a1, u1, . . . , uq) ∈ L1. Hence, we conclude

that for arbitrary element (x1, . . . , xp, u1, . . . , uq) ∈ L, it can be represented as a sum of

two elements in L1 and L2 respectively, that is

(a1, . . . , a1, u1, . . . , uq) ∈ L1
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and

a2(1, . . . , 1, 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) + · · ·+ ap(1, 0, . . . , 0︸ ︷︷ ︸
p

, 0, . . . , 0︸ ︷︷ ︸
q

) ∈ L2 .

Now, let us consider the inverse case, which is L1 +L2 ⊆ L. From the definition of L, L1

and L2, it is obvious that L1 ⊆ L and L2 ⊆ L. Then, by using convexity of the cone L,

it follows that L1 + L2 ⊆ L+ L = L. It concludes the proof of the equality L = L1 + L2.

Obviously, the cones L1, L2 ̸= {0} and span(L1) ∩ span(L2) = {0}. Thus, the monotone

extended second order cone L is reducible.

Proposition 2.1.3. The dual cone of a monotone extended second order cone L defined

above is given by

M :=

{
(x, u) ∈ Rp × Rq :

j∑
i=1

xi ≥ 0,∀j ∈ {1, . . . , p− 1},
p∑

i=1

xi ≥ ∥u∥

}
, (2.2)

that is, M = L∗.

Proof. In order to prove L∗ = M , we will show that M ⊆ L∗ first. Let (x, u) ∈ L and

(y, v) ∈M . By using Abel’s summation formula, we have

⟨(x, u), (y, v)⟩ = x⊤y+ u⊤v =

p−1∑
i=1

(xi− xi+1)
i∑

j=1

yj + xp

p∑
i=1

yi + u⊤v ≥ ∥u∥∥v∥+ u⊤v ≥ 0.

So, we have M ⊆ L∗. Now, we show the converse inclusion. Let (y, v) ∈ L∗ and e =

(1, 1, . . . , 1) ∈ Rp. Obviously, we have (∥v∥e,−v) ∈ L. Suppose v ̸= 0, then

⟨(∥v∥e,−v), (y, v)⟩ ≥ 0⇔ ∥v∥
p∑

i=1

yi − ∥v∥2 ≥ 0.

Hence,

p∑
i=1

yi ≥ ∥v∥. When v = 0, then (e, 0) ∈ L and (y, 0) ∈ L∗ imply that

p∑
i=1

yi ≥

0 = ∥v∥.

Proposition 2.1.4. The monotone extended second order cone is a sub-dual cone when

p ≥ 2, and it is a self-dual cone if and only if p = 1. Moreover, when p = 1, the monotone
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extended second order cone is the same as the Lorentz cone in R× Rq.

Proof. When p ≥ 2, from the definition of MESOC and the formula for the dual cone

of MESOC in Proposition 2.1.3, we have L ⊆ M . Thus, MESOC is a sub-dual cone.

Moreover, when p = 1, it is trivial that MESOC is the same as Lorentz cone, and then

we have MESOC is self-dual when p = 1.

After finding the dual cone of the monotone extended second order cone, the complemen-

tarity set of this cone will be established. In order to do so, we need to use the following

result below.

Lemma 2.1.5. For any arbitrary (x, u) ∈ L and (y, v) ∈M , we have

⟨x, y⟩ ≥ ∥u∥
p∑

i=1

yi ≥ ∥u∥∥v∥ .

Proof. First, we show the validity of the first inequality, which is ⟨x, y⟩ ≥ ∥u∥
∑p

i=1 yi.

Since (x, u) ∈ L, (y, v) ∈M , by using Definition 2.1 and Definition 2.2, we have

x1 ≥ x2 ≥ · · · ≥ xp ≥ ∥u∥

and
j∑

i=1

yj ≥ 0, for all j ∈ {1, . . . , p− 1},
p∑

i=1

yi ≥ ∥v∥ ≥ 0.
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Thus, by using the backward induction,

p∑
i=1

yi = y1 + y2 + . . .+ yp ≥ 0

=⇒ (xp − ∥u∥)
p−1∑
i=1

yi + (xp − ∥u∥)yp ≥ 0

=⇒ (xp−1 − ∥u∥)
p−2∑
i=1

yi + (xp−1 − ∥u∥)yp−1 + (xp − ∥u∥)yp ≥ 0

=⇒ (xp−2 − ∥u∥)
p−3∑
i=1

yi + (xp−2 − ∥u∥)yp−2 + (xp−1 − ∥u∥)yp−1

+ (xp − ∥u∥)yp ≥ 0

· · ·

=⇒ (x1 − ∥u∥)y1 + (x2 − ∥u∥)y2 + · · ·+ (xp − ∥u∥)yp ≥ 0

⇐⇒ ⟨x, y⟩ ≥ ∥u∥
p∑

i=1

yi .

Finally, since ⟨x, y⟩ ≥ ∥u∥
∑p

i=1 yi and
∑p

i=1 yi ≥ ∥v∥, we have

⟨x, y⟩ ≥ ∥u∥
p∑

i=1

yi ≥ ∥u∥∥v∥ .

Next, we introduce the complementarity set of the monotone extended second order cone

by using Lemma 2.1.5.

Proposition 2.1.6. Let (x, y, u, v) ∈ C(L), where (x, u) ∈ L and (y, v) ∈ M . If u ̸=

0, v ̸= 0, then the complementarity set of the monotone extended second order cone L is

given by

C(L) =

{
(x, u, y, v) : (x, u) ∈ L, (y, v) ∈M, ⟨x, y⟩ = ∥u∥

p∑
i=1

yi,

p∑
i=1

yi = ∥v∥,

and ∃λ > 0 such that v = −λu

}
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or equivalently,

C(L) =

{
(x, u, y, v) : (x, u) ∈ L, (y, v) ∈M, (xi − xi+1)

i∑
j=1

yj = 0 ,

∀ i = 1, . . . , p− 1, xp = ∥u∥,
p∑

i=1

yi = ∥v∥, and∃λ > 0 suchthatv = −λu

}
.

Proof. Let us define the following set

S :=

{
(x, u, y, v) : (x, u) ∈ L, (y, v) ∈M, ⟨x, y⟩ = ∥u∥

p∑
i=1

yi,

p∑
i=1

yi = ∥v∥, and

∃λ > 0 such that v = −λu

}
.

Now, we need to show that C(L) = S. First, we need to prove that C(L) ⊆ S. For an

arbitrary (x, u, y, v) ∈ C(L), by using Lemma 2.1.5, we have

0 = ⟨(x, u), (y, v)⟩ = ⟨x, y⟩+ ⟨u, v⟩

≥ ∥u∥
p∑

i=1

yi + ⟨u, v⟩

≥ ∥u∥∥v∥+ ⟨u, v⟩ ≥ 0 .

Hence, all the inequalities above must be equalities, and then all the equations and in-

equalities above will become

0 = ⟨x, y⟩+ ⟨u, v⟩ = ∥u∥
p∑

i=1

yi + ⟨u, v⟩

= ∥u∥∥v∥+ ⟨u, v⟩ = 0 .

Thus,

⟨x, y⟩ = ∥u∥
p∑

i=1

yi = ∥u∥∥v∥ . (2.3)

Therefore,

∥u∥
p∑

i=1

yi = ∥u∥∥v∥
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and

∥u∥∥v∥+ ⟨u, v⟩ = 0 . (2.4)

From (2.3) we get ⟨x, y⟩ = ∥u∥
∑p

i=1 yi and, subsequently,
∑p

i=1 yi = ∥v∥. From the

equality case in the Cauchy-Schwarz inequality, equation (2.4) implies that ∃λ > 0, v =

−λu. Thus, C(L) ⊆ S. Now, we will show the satisfaction for the converse inclusion,

which is S ⊆ C(L). We have: ∀(x, u, y, v) ∈ S, ∃λ > 0 such that v = −λu, (x, u) ∈

L, (y, v) ∈M,x⊤y = ∥u∥
∑p

i=1 yi and
∑p

i=1 yi = ∥v∥. Thus

⟨(x, u), (y, v)⟩ = ⟨x, y⟩+ ⟨u, v⟩ = ∥u∥∥v∥+ ⟨u, v⟩ = 0 .

Therefore, (x, u, y, v) ∈ C(L). Hence, S ⊆ C(L).

Finally, we have

C(L) = {(x, u, y, v) : (x, u) ∈ L, (y, v) ∈M, ⟨x, y⟩ = ∥u∥
∑p

i=1 yi,
∑p

i=1 yi = ∥v∥,

and ∃λ > 0 such that v = −λu

}
.

(2.5)

Moreover,

∥u∥
p∑

i=1

yi = ⟨x, y⟩

= y1(x1 − x2) + (y1 + y2)(x2 − x3) + · · ·+ (y1 + y2 + · · ·+ yp−1)(xp−1 − xp)

+ (y1 + y2 + · · ·+ yp)xp

if and only if

(∥u∥ − xp)
p∑

i=1

yi

= y1(x1 − x2) + (y1 + y2)(x2 − x3) + · · ·+ (y1 + y2 + · · ·+ yp−1)(xp−1 − xp) .

In the equation above, it is obvious that the LHS ≤ 0 and the RHS ≥ 0, where LHS
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and RHS denote left hand side and right hand side, respectively. Thus, both the LHS

and the RHS must be equal to 0. Since the components of the sum in the RHS are all

nonnegative, each component must be equal to 0. Hence, from equation (2.5), it follows

that

C(L) =

{
(x, u, y, v) : (x, u) ∈ L, (y, v) ∈M, (xi − xi+1)

i∑
j=1

yj = 0 ,

∀ i = 1, . . . , p− 1, xp = ∥u∥,
p∑

i=1

yi = ∥v∥, and ∃λ > 0 such that v = −λu

}
.

2.2 Positive operators and Z-transformations on the

MESOC

Research into positive operators and the Z-transformations on cones, particularly on the

second-order cone and on the extended second-order cone, remains a highly captivating

area of study within Hilbert spaces and cone theory. Burns, Fiedler and Haynsworth

developed the concepts of positive operator on polyhedral cones in [17]. Loewy and

Schneider found the necessary and sufficient conditions for a linear mapping to be a

positive operator on the n-dimensional Lorentz cone. Such a mapping, represented by a

matrix, must satisfy a positive semidefinite condition in [53]. Tam [80, 81] discussed the

properties of the structure of cones of positive operators and investigated the properties

of respectively the positive operator on polyhedral cones and simplicial cones.

Meanwhile, it is also important to study the Z-transformation(Z-property) on the

monotone extended second order cone. Berman and Plemmons illustrate the importance

of Z-transformation in many aspects, not only in optimisation but also in economics,

dynamical systems, and differential equations in [7]. In their Introduction of [40], Gowda

and Tao studied the properties of Z-transformations on proper and symmetric cones and

emphasised the significance of Z-transformations in the context of the linear comple-
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mentarity problem. Németh and Gowda evaluated the connections between the positive

operators and Z-transformations in [60].

Motivated by the aforementioned research, our interest lies in finding the differences

between the properties of the positive operators on the monotone extended second order

cone and those on general second order cones. Consequently, we also discuss the char-

acteristics of the positive operators and Z-transformations on the monotone extended

second order cone because even the monotone extended second order cone has some nice

properties which have been introduced in the earlier part of this chapter, but at the same

time, it lacks some good properties, notably self-duality.

First, we introduce some basic concepts of the positive operator.

Definition 2.2.1. The set Γ(K) of positive operators on a cone K ⊆ Rm is defined by

Γ(K) = {A ∈ Rm×m : Ax ∈ K for any x ∈ K}.

The set of positive operators is a cone in Rm×m.

We also have the following proposition for the positive operator.

Proposition 2.2.1. Matrix A represents a positive operator on K if and only if A⊤

represents a positive operator on K∗.

Proposition 2.2.2. Denote matrix A to be a positive operator of cone K, then AK is a

closed and convex cone if K is a closed and convex cone.

Proposition 2.2.3. Denote matrix A be a positive operator of a closed and convex cone

K, then AK is a polyhedral cone if and only if K is a polyhedral cone.

Definition 2.2.2. Denote K ∈ Rn to be a cone. A linear mapping L : Rn → Rn is a

Z-transformation (L ∈ Z(K)), if

(x, y) ∈ C(K)⇒ ⟨Lx, y⟩ ≤ 0.
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Proposition 2.2.4 (see [76]). Let K ∈ Rn be a proper cone, then matrix A ∈ Rn×n is

a Z-transformation of cone K if and only if for any t ≥ 0, we have e−tA is a positive

operator of cone K.

Proposition 2.2.5. If K ∈ Rn is a proper cone, then the Z-operator of K can be obtained

by Z(K) = cl (LL(K)− Γ(K)), where LL(K) is the Lyapunov rank of K and Γ(K) is the

positive operator of K, respectively.

Then, we will derive the conditions that a linear transformation is a positive operator

on the MESOC. The theorem below illustrates the necessary condition for a linear operator

to be a positive operator on the dual cone of the MESOC, and by using the Proposition

2.2.1, we will have the necessary condition for a linear operator to be a positive operator

on the MESOC.

Theorem 2.2.6 (Necessary conditions for positive operators on M(p, q)). Let p, q

be two integers such that p ≥ 1 and q ≥ 1.If A(p+q)×(p+q) is a positive operator on M(p, q),

then we have the following statements:

(i) Let Ai be the i-th row of matrix A, then we have

j∑
i=1

A⊤
i ∈ L(p, q), for j = 1, 2, . . . , p.

(ii) Let Ai be the i-th column of matrix A, we have

Ai ∈M(p, q), for i = 1, 2, . . . , p

and

Ai − Aj ∈M(p, q), for any i < j ≤ p.

(iii) For an arbitrary vector u = (u1, u2, . . . , uq)
⊤ ∈ Rq with ∥u∥ = 1, we have

Ai +

q∑
j=1

ujA
p+j ∈M(p, q),
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for i = 1, 2, . . . , p.

(iv) By adding any column of A from the first p columns to any column from the last q

columns, we obtain a vector in M(p, q).

Proof. (i) Suppose that A is a positive operator on M(p, q).

Then, for any y = (y1, y2, . . . , yp, v)
⊤ ∈ M(p, q) with yi ∈ R and v ∈ Rq, we have

Ay ∈M , which is equivalent to



⟨A⊤
1 , y⟩

⟨A⊤
2 , y⟩
...

⟨A⊤
p+q, y⟩


∈M(p, q),

hence by using (2.2), we have

j∑
i=1

⟨A⊤
i , y⟩ ≥ 0, ∀j ∈ {1, . . . , p− 1} and

p∑
i=1

⟨A⊤
i , y⟩ ≥ ∥

(
⟨A⊤

p+1, y⟩, . . . , ⟨A⊤
p+q, y⟩

)
∥.

Which implies that
j∑

i=1

A⊤
i ∈ L(p, q), for j = 1, 2, . . . , p.

(ii) By Proposition 2.2.1, the matrix A⊤ is a positive operator on L(p, q). Hence, by using

the fact (Ai)⊤ is the i-th row of A⊤, for any x = (x1, x2, . . . , xp, u) ∈ L(p, q) with xi ∈ R
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and u ∈ Rq we have that A⊤x ∈ L, which is equivalent to



⟨A1, x⟩

⟨A2, x⟩
...

⟨Ap, x⟩

⟨Ap+1, x⟩
...

⟨Ap+q, x⟩



∈ L(p, q).

Then, by using (2.1) we have

⟨A1, x⟩ ≥ ⟨A2, x⟩ ≥ . . . ≥ ⟨Ap, x⟩ ≥ ∥(⟨Ap+1, x⟩, . . . , ⟨Ap+q, x⟩)∥ ≥ 0. (2.6)

Thus, Ai ∈ M(p, q), for i = 1, 2, . . . , p, or in other words the first p columns of A will be

in M(p, q).

Moreover, by using (2.6), we also have ⟨Ai − Aj, x⟩ ≥ 0 for any 1 ≤ i < j ≤ p, which

implies that

Ai − Aj ∈M(p, q) for any 1 ≤ i < j ≤ p.

(iii) For any x ∈ L(p, q) and i = 1, 2, . . . , p, by using the Cauchy inequality, we have

⟨x, ai +
q∑

j=1

ujap+j⟩ = ⟨x, ai⟩+ ⟨x,
q∑

j=1

ujap+j⟩

= ⟨x, ai⟩+
q∑

j=1

uj⟨x, ap+j⟩

≥ ⟨x, ai⟩ −

√√√√ q∑
j=1

u2j

√√√√ q∑
j=1

⟨x, ap+j⟩2

≥ ⟨x, ai⟩ −

√√√√ q∑
j=1

⟨x, ap+j⟩2

(2.7)
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Since A is a positive operator on M(p, q), A⊤ is a positive operator on L(p, q), which is

equivalent to A⊤x ∈ L(p, q). By using the definition of L(p, q), we have

⟨x, ai⟩ ≥

√√√√ q∑
j=1

⟨x, ap+j⟩2.

Hence, bearing in mind equation (2.7), we get

⟨x, ai +
q∑

j=1

ujap+j⟩ ≥ ⟨x, ai⟩ −

√√√√ q∑
j=1

⟨x, ap+j⟩2 ≥ 0.

Since we have x ∈ L(p, q), we obtain that ai +
∑q

j=1 ujap+j ∈ M(p, q), for any i =

1, 2, . . . , p.

(iv) It follows from (iii) by letting u = ej, where j = 1, 2, . . . , q.

Lemma 2.2.7. For any positive integers p, q,m such that m = p+ q, consider the matrix

J ∈ Rm×m, where

J =

ee⊤ 0

0 −Iq


where e = (1, . . . , 1)⊤ ∈ Rp and Iq represent the q × q identity matrix. For any k =

1, 2, . . . , p, denote by ek ∈ Rp the vector whose first k elements are equal to 1 and the rest

are equal to 0. Then, we have

M(p, q) :=
{
w = (u, v) ∈ Rp × Rq : w⊤Jw ≥ 0 and ⟨u, ek⟩ ≥ 0 for k = 1, 2, . . . , p

}
.

Proof. Define the set S such that

S :=
{
w = (u, v) ∈ Rp × Rq : w⊤Jw ≥ 0 and ⟨u, ek⟩ ≥ 0 for k = 1, 2, . . . , p

}
.

In order to prove that S =M(p, q), first we will show that S ⊆M(p, q).
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For any w = (u, v) ∈ S, w⊤Jw ≥ 0 yields

⟨u, e⟩2 − ∥v∥2 = u⊤ee⊤u− vTv = w⊤Jw ≥ 0. (2.8)

From ⟨u, ek⟩ ≥ 0 we obtain

k∑
i=1

ui ≥ 0, for k = 1, 2, . . . , p. (2.9)

Combining (2.8) and (2.9) we conclude that for any n = (u, v) ∈ S,

k∑
i=1

ui ≥ 0, for k = 1, 2, . . . , p− 1 and

p∑
i=1

ui ≥ ∥v∥.

Thus, w = (u, v) ∈M and we have S ⊆M .

Conversely, for any w = (u, v) ∈M ,

p∑
i=1

ui ≥ ∥v∥ =⇒ ⟨u, e⟩ ≥ ∥v∥ =⇒ ⟨u, e⟩2 − ∥v∥2 ≥ 0 =⇒ w⊤Jw ≥ 0. (2.10)

Meanwhile,
k∑

i=1

ui ≥ 0 =⇒ ⟨u, ek⟩ ≥ 0, for any k = 1, 2, . . . , p− 1. (2.11)

By using (2.10) and (2.11), we conclude that M ⊆ S. Thus,

M(p, q) =
{
w = (u, v) ∈ Rp × Rq : w⊤Jw ≥ 0 and ⟨u, ek⟩ ≥ 0 for any k ∈ (1, 2, . . . , p)

}

By using the lemma above, the theorem below illustrates the sufficient condition for

a linear operator to be a positive operator on the dual cone of the MESOC, and by using

the Proposition 2.2.1, we get the sufficient condition for a linear operator to be a positive

operator on the MESOC.
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Theorem 2.2.8 (Sufficient conditions for positive operators on M(p, q)). Denote

by A ∈ Rm×m an arbitrary matrix, where p, q,m are positive integers such that m = p+ q.

Then, we have the following statements:

(i) If there exist a λ ≥ 0 such that A⊤JA− λJ is positive semi-definite, and

(
j∑

i=1

A
[1:p]
i , 0[1:q]

)⊤

∈ L(p, q), for j = 1, 2, . . . , p,

where A
[1:p]
i ∈ Rp is a vector containing the first p elements of Ai and 0[1:q] =

(0, 0, . . . , 0) ∈ Rq, then A is a positive operator on M(p, q).

(ii) If matrix A is defined as A = (etT )⊤, where t ∈ R and T is a matrix with the

structure given in (2.22), then A is a positive operator on M(p, q).

(iii) If T is Lyapunov-like on M(p, q), then for any t ∈ R, the matrix A = etT is a

positive operator on M(p, q).

Proof. (i) We need to prove that for any n = (y, v) ∈ M(p, q), we have An ∈ M(p, q).

Denote An = (y∗, v∗) where y∗ ∈ Rp and v∗ ∈ Rq. By using Lemma 2.2.7, we need to

show that

(An)⊤J(An) ≥ 0 and ⟨y∗, ek⟩ ≥ 0 for any k ∈ (1, 2, . . . , p).

We have ⟨y∗, ek⟩ ≥ 0 if and only if

y∗ ∈ (Rp
≥+)

∗,

which is equivalent to



⟨(A[1:p]
1 )⊤, y⟩

⟨(A[1:p]
2 )⊤, y⟩
...

⟨(A[1:p]
p )⊤, y⟩


∈ (Rp

≥+)
∗ ⇐⇒

(
j∑

i=1

A
[1:p]
i , 0[1:q]

)⊤

∈ L(p, q), for j = 1, 2, . . . , p.
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Thus, since we assumed that

(
j∑

i=1

A
[1:p]
i , 0[1:q]

)⊤

∈ L(p, q), for j = 1, 2, . . . , p,

from the above chain of equivalences, we get

⟨y∗, ek⟩ ≥ 0 for any k = 1, 2, . . . , p.

Moreover, since we have also assumed that there exists a λ ≥ 0, such that A⊤JA− λJ is

positive semi-definite, it follows that for any arbitrary n ∈M(p, q), we have

n⊤(A⊤JA− λJ)n = (An)⊤J(An)− λn⊤Jn ≥ 0.

Since n ∈ M(p, q), we have n⊤Jn ≥ 0, which from the above implies (An)⊤J(An) ≥

λn⊤Jn ≥ 0, hence for any n ∈ M(p, q) we have An ∈ M(p, q). Thus, A is a positive

operator on M(p, q).

(ii) Since we have shown T is Lyapunov matrix of L(p, q) in Theorem 2.3.1, we have

etT ∈ Aut(L(p, q)) for any t ∈ R.

Since any automorphism is a positive operator, etT is a positive operator of L(p, q). By

using Proposition 2.2.1, we conclude that if A = (etT )⊤, then A is a positive operator of

M(p, q).

(iii) If matrix T is Lyapunov-like on M(p, q), then we have

etT ∈ Aut(M(p, q)) for any t ∈ R.

Thus, if A = etT , then A is automorphism on M(p, q), furthermore, A is a positive

operator on M(p, q).
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In Theorem 2.2.6 and Theorem 2.2.8, we have shown a necessary condition and a suffi-

cient condition for a linear operator to be a positive operator on the MESOC, respectively.

In the following theorem, we will provide a general result of the necessary and sufficient

condition of a linear operator to be a positive operator on the MESOC.

Theorem 2.2.9. Let T ∈ R(p+q)×(p+q) with

T =

 A 0

0 D


where A ∈ Rp×p, D ∈ Rq×q. Then T is a positive operator on L if and only if

p∑
j=1

(amj − anj) ≥ 0 for any 1 ≤ m < n ≤ p, 1 ≤ i, k ≤ p,

and
p∑

j=1

aij ≥ ∥D∥,

where ∥D∥ denotes the operator norm of D.

Proof. First, we prove the sufficiency. For an arbitrary (x, u) ∈ L, let (y, v) := T (x, u) =

(Ax,Du), we will have

yi =

p∑
j=1

aijxj ≥ ∥u∥
p∑

j=1

aij ≥ ∥D∥∥u∥ ≥ ∥v∥.

Moreover, for any 1 ≤ m < n ≤ p, we have

ym − yn =

p∑
j=1

(amj − anj)xj ≥ 0

Thus, (y, v) ∈ L and then A is a positive operator on L.

Next, we prove the necessity. Suppose T is a positive operator on L, then for any (x, u) ∈ L
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we have (y, v) = T (x, u) = (Ax,Du) ∈ L. Since (y, v) ∈ L, we have

ym − yn =

p∑
j=1

(amj − anj)xj ≥ 0 for any 1 ≤ m < n ≤ p

which in the special case (x, u) = (e, 0) ∈ L yields

p∑
j=1

(amj − anj) ≥ 0 for any 1 ≤ m < n ≤ p,

Last, we will show that
∑p

j=1 aij ≥ ∥D∥. Suppose to the contrary that
∑p

j=1 aij < ∥D∥.

Let u∗ be a nonzero vector such that ∥Du∗∥ = ∥D∥∥u∗∥, we have (∥u∗∥e, u∗) ∈ L and

then z = (∥u∗∥Ae,Du∗) ∈ L. Note that zi =
∑p

j=1 aij∥u∗∥, for i = 1, 2, . . . , p. Then,

zi < ∥D∥∥u∗∥ = ∥Du∗∥, which contradicts z ∈ L. Thus,
∑p

j=1 aij ≥ ∥D∥.

After investigating the conditions for a linear operator to be a positive operator on

the MESOC, we will study the property of Z-transformation on the MESOC.

Definition 2.2.3. The set of all Z-transformation on a cone K ⊆ Rm is given as

Z(K) := {T ∈ Rm×m : ⟨Tx, y ≤ 0⟩ for all (x, y) ∈ C(K)}.

Proposition 2.2.10. For any positive integers p, q, n such that p + q = n. Let T be a

linear mapping with the following block form:

T =

 A B

C D

 : Rp × Rq → Rp × Rq,

where A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×p, and D ∈ Rq×q. Then T is an arbitrary element in

Z(L) if and only

T1 =

 A 0

0 D


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is a Z-transformation of cone L, where L is defined by (2.1), and matrix B and C satisfy

⟨Bu, y⟩+ ⟨Cx, v⟩ = 0,

where (x, u, y, v) ∈ C(L).

Proof. Take any (x, u, y, v) ∈ C(L). Suppose T ∈ Z(L), we have

⟨Ax, y⟩+ ⟨Bu, y⟩+ ⟨Cx, v⟩+ ⟨Du, v⟩ ≤ 0, (2.12)

and

⟨Ax, y⟩ − ⟨Bu, y⟩ − ⟨Cx, v⟩+ ⟨Du, v⟩ ≤ 0, (2.13)

where the latter equation comes from the former one by substituting −u for u and −v for

v. By using (2.12) and (2.13), we get

⟨Ax, y⟩+ ⟨Du, v⟩ ≤ 0. (2.14)

Which implies that

T1 =

 A 0

0 D

 ∈ Z(L).
We also conclude that ⟨Bu, y⟩ + ⟨Cx, v⟩ = 0, since if ⟨Bu, y⟩ + ⟨Cx, v⟩ ≠ 0, when the

equality holds in (2.14), either they will contradict inequality (2.12) or inequality (2.13).

Conversely, if T1 ∈ Z(L), then for any (x, u, y, v) ∈ C(L), we have

⟨Ax, y⟩+ ⟨Du, v⟩ ≤ 0.

Meanwhile, by using ⟨Bu, y⟩+ ⟨Cx, v⟩ = 0, we have

⟨Ax, y⟩+ ⟨Bu, y⟩+ ⟨Cx, v⟩+ ⟨Du, v⟩ ≤ 0,
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and

⟨Ax, y⟩ − ⟨Bu, y⟩ − ⟨Cx, v⟩+ ⟨Du, v⟩ ≤ 0.

These two inequalities above indicate that T ∈ Z(L).

Indeed, the problem of presenting a general formula for the Z-transformation of the

MESOC is difficult as we need to know the structure of matrix A and D respectively.

We can find that matrix A is a Z-transformation of the monotone nonnegative cone by

letting u = v = (0, . . . , 0). To the best of our knowledge, from the previous literature,

no one provides the structure of the Z-transformation of the monotone nonnegative cone.

Thus, in order to find the structure of the Z-transformation of MESOC, we need to use

some techniques. Recall Proposition 2.2.5, since L ∈ Rn is a proper cone, then the Z-

transformation of L can be obtained by Z(L) = cl (LL(L)− Γ(L)), where LL(L) is the

Lyapunov-like transformation of L and Γ(L) is the positive operator of L, respectively. We

already found the necessary conditions for a linear mapping to be a positive operator on

the MESOC for a block diagonal case in Theorem 2.2.9. Thus, if we can find the necessary

and sufficient condition for a liner operator to be a Lyapunov-like transformation of L,

then by using the relationship of the Z-transformation given above, we can summarise

the condition that a linear mapping to be a Z-transformation on the MESOC. In the next

section we investigate the formula of Lyapunov-like transformation on the MESOC as

well as find the Lyapunov rank of MESOC.

2.3 Lyapunov-like transformation and Lyapunov rank

of MESOC

It is well known that the complementarity set illustrates the connection between the opti-

mal conditions of conic programming and the complementarity theory. Rudolf introduced

the definition of bilinearity rank in [71] and emphasised the importance of the value of
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bilinearity rank. The motivation why he was interested in investigating the value of bi-

linearity rank is that he wanted to build a system of n or more independent equations

⟨Fi(u), v⟩ by using every single equation ⟨u, v⟩ in the complementarity set C(K), for a

closed and convex cone K ∈ Rn. The value of bilinearity rank could be used to quantify

the possibility of the solubility of the system he build by using the existing algorithm.

Recall that A matrix A ∈ Rn×n is called Lyapunov-like transformation (or Lyapunov-like

matrix) on K, if

⟨Ax, y⟩ = 0, ∀(x, y) ∈ C(K). (2.15)

The relationship between the bilinearity rank of a cone K and its Lyapunov-like transfor-

mations was figured out by Gowda and Tao in [41]. They demonstrated that the value of

the dimension of the space of all Lyapunov-like transformations (matrices) on K is indeed

the value of bilinearity rank of K. That is, if we define a vector space LL(K) as the set

of all Lyapunov-like transformations (matrices) on K and denote its dimension as β(K),

then the value of β(K) is called as the Lyapunov rank (or bilinearity rank) of K. They

also found the connection between Lie algebra and Lyapunov-like transformations. Previ-

ous research inspired us to find the Lyapunov rank of MESOC. Meanwhile, Sznajder [79]

found the value of the Lyapunov rank of the extended second order cone. We are also

interested in finding the similarities as well as differences between MESOC and ESOC. In

order to find the value of the Lyapunov rank of MESOC, we will introduce the following

lemma, which will help us calculate the value of the Lyapunov rank of MESOC.

Lemma 2.3.1. Let A ∈ Rp×p, where p is a positive integer. Then, A ∈ LL(Rp
≥+) if and
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only if it is of the form

A =



a−
∑p

i=2 ai a2 a3 · · · · · · ap

a−
∑p

i=3 ai a3 · · · · · · ap

a−
∑p

i=4 ai · · · · · · ap

. . .
...

...

0 a− ap ap

a


, (2.16)

where a, a2, a3 . . . , ap ∈ R are arbitrary.

Proof. For 1 ≤ i ≤ p, denote ei ∈ Rp be the canonical unit vectors in Rp and ep+1 be the

zero vector in Rp. Let ui :=
∑i

k=1 e
k ∈ Rn

≥+ and vi := ei − ei+1 ∈ (Rn
≥+)

∗, for 1 ≤ i ≤ p

(see Example 1.3.2). Then, ⟨ui, vj⟩ = δij, where δij is the Kronecker symbol, that is,

δii = 1 and δij = 0, for i ̸= j. When i ̸= j, we will have (ui, vj) ∈ C(Rn
≥+), (as it can be

seen from Example 1.3.2, too). Hence, if A ∈ LL(Rn
≥+) and i ̸= j, then

⟨Aui, vj⟩ =
i∑

k=1

(ajk − aj+1,k) = 0, (2.17)

where we set ap+1,k := 0. By using equation (2.17), we get

p∑
ℓ=j

⟨Aui, vℓ⟩ =
i∑

k=1

ajk = 0, if j > i. (2.18)

By equation (2.18) we get

aji =
i∑

k=1

ajk −
i−1∑
k=1

ajk = 0, if j > i. (2.19)

By using again equation (2.17), we get

aji − aj+1,i =
i∑

k=1

(ajk − aj+1,k)−
i−1∑
k=1

(ajk − aj+1,k) = 0, if j + 1 < i. (2.20)
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Thus, by using Equations (2.17), (2.19) and (2.20), we conclude that A is of the form

(2.16). Conversely, suppose that A is of the form (2.16). Since for any element (x, y) ∈

C(Rn
≥+), by using Example 1.3.2, we have

(x, y) =

(∑
i∈I

αiu
i,
∑
j∈J

βjv
j

)
; αi, βj ≥ 0, (2.21)

for some I, J ⊆ {1, 2, . . . , n} with I ∪ J = {1, 2, . . . , n} and I ∩ J = ∅, because {ui :

1 ≤ i ≤ j} ⊆ Rn
≥+ and {vi : 1 ≤ i ≤ j} ⊆ (Rn

≥+)
∗ are generators of the simplicial cones

Rn
≥+ and (Rn

≥+)
∗, respectively, and x ⊥ y. As ⟨Aui, vj⟩ = 0, by considering the derivation

of equations (2.17), (2.18), (2.19) and (2.20) above in the reverse order, equation (2.21)

implies that ⟨Ax, y⟩ = 0. Hence, A ∈ LL(Rn
≥+).

Then, we will show the value of the Lyapunov rank of the MESOC.

Theorem 2.3.2. For the monotone extended second order cone (2.1), any Lyapunov-like

transformation T is of the form

T =



a−
∑p

j=2 aj a2 a3 · · · · · · ap c1 · · · cq

a−
∑p

j=3 aj a3 · · · · · · ap c1 · · · cq

a−
∑p

j=4 aj · · · · · · ap c1 · · · cq

. . .
...

...
...

...

0 a− ap ap c1 · · · cq

a c1 · · · cq

c1 a ∗

0
...

. . .

cq −∗ a



, (2.22)

where a, a2, a3, . . . , ap, c1, ..., cq ∈ R are arbitrary. Hence, its Lyapunov rank is given by

β(L) = p+
q(q + 1)

2
.

Proof. Recall that the complementarity set for the monotone extended second order cone
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L is

C(L) = {((x, u), (y, v)) ∈ L×M : (x, u) ⊥ (y, v)}.

We partition the above set in the following way:

C(L) := C1(L) ∪ C2(L) ∪ C3(L) ∪ C4(L),

where

C1(L) := {(x, 0, y, 0) ∈ C(L)},

C2(L) := {(x, 0, y, v) ∈ C(L) : v ̸= 0},

C3(L) := {(x, u, y, v) ∈ C(L) : u ̸= 0 ̸= v},

C4(L) := {(x, u, y, 0) ∈ C(L) : u ̸= 0}.

Since x = 0⇒ u = 0 and y = 0⇒ v = 0, for any Lyapunov-like transformation on L we

only need to consider the case of x ̸= 0 ̸= y. Let T be any element of LL(L), so it has

the following block form:

 A B

C D

 : Rp × Rq → Rp × Rq,

where A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×p, and D ∈ Rq×q. Take any (x, u, y, v) ∈ C(L). Then

(2.15) implies

⟨Ax, y⟩+ ⟨Bu, y⟩+ ⟨Cx, v⟩+ ⟨Du, v⟩ = 0,

⟨Ax, y⟩ − ⟨Bu, y⟩ − ⟨Cx, v⟩+ ⟨Du, v⟩ = 0,

where the latter equation comes from the former one by substituting −u for u and −v for

v. By adding and subtracting the above equations, we get

⟨Ax, y⟩+ ⟨Du, v⟩ = 0,

⟨Bu, y⟩+ ⟨Cx, v⟩ = 0.

(2.23)
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By using an element (x, 0, y, 0) ∈ L×M in C1(L), with x ∈ Rp
≥+ and y ∈ (Rp

≥+)
∗, we get

⟨Ax, y⟩ = 0, which implies that A ∈ LL(Rp
≥+).

Now, we will determine the structures of matrices B and C. By using elements in C2(L),

from the second equation in (2.23), we get

⟨Cx, v⟩ = ⟨B0, y⟩+ ⟨Cx, v⟩ = 0.

Suppose that Cai ̸= 0 for some i < p and let v := Cai

∥Cai∥ , and y := ej, (j > i), thus,

⟨y, ej⟩ = 1 = ∥v∥. Hence, (ai, 0, ej, v) ∈ C2(L). Then 0 = ⟨Cx, v⟩ = ⟨Cai, v⟩ = ∥Cai∥,

which leads to a contradiction. Hence, Cai = 0. Then, for certain c1, . . . , cq ∈ R we have

C =

 0

c1
...

cq


q×p

.

If C = 0, the second equation in (2.23) demonstrates that ⟨Bu, y⟩ = 0 for all (x, u, y, v) ∈

C3(L). It is easy to verify that (e,−v, ei, v) ∈ C3(L), where v is an arbitrary unit vector

in Rq. Hence, ⟨B(−v), ei⟩ = 0, for all 1 ≤ i ≤ p, thus Bv = 0. In consequence, B = 0.

If C ̸= 0, first we need to find the structure of matrix B. We have ⟨Bu, y⟩ = 0 for any

(x, u, y, 0) ∈ C4(L).

Let ui denote the standard (canonical) unit vector in Rq and for any n > m, let

ym,n := em − en ∈ Rp. Since (e, ui, ym,n, 0) ∈ C4(L),

⟨Bui, ym,n⟩ = 0.

Therefore,

B =


b1 b2 · · · bq
...

...
...

b1 b2 · · · bq


p×q

.
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For i = 1, . . . , q and j = 1, . . . , p, we have (e, ui, ej,−ui) ∈ C3(L) and subsequently,

⟨Bui, ej⟩+ ⟨Ce,−ui⟩ = 0.

It readily implies bi = ci. Hence,

B =


c1 c2 · · · cq
...

...
...

c1 c2 · · · cq


p×q

.

As (e, u, 1
p
e,−u) ∈ C3(L) for all u with ∥u∥ = 1, by using (2.23), we have

〈
Ae,

1

p
e

〉
+ ⟨Du,−u⟩ = 0. (2.24)

Let a :=
⟨Ae, e⟩
p

. Then (2.24) implies

〈(
D +DT

2
− aI

)
u, u

〉
= 0,

and hence

D +DT = 2aI. (2.25)

Obviously, (e,−u1, e1, u1) ∈ C(L) and using the first equation in (2.23) gives

⟨Ae, e1⟩ − ⟨Du1, u1⟩ = 0,

which implies that d11 =
∑

j a1j. Thus, (2.25) implies that d11 = a and hence,
∑p

j=1 a1j =

a.

By changing e1 to e2 (yes, we can), we have
∑p

j=2 a2j = d22 = a. By following this process,

we obtain that dii =
∑p

j=1 aij = a, for all 1 ≤ i ≤ p.

Therefore, by equation (2.25), A ∈ LL(Rn
≥+) (shown above) and Lemma 2.3.1, any
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Lyapunov-like transformation on L has the form (2.22).

Now, we want to show that any transformation T , which can be represented in the form

(2.22), is Lyapunov-like on L, so let T be given as above. Then we have

⟨T (x, u), (y, v)⟩ = ⟨Ax, y⟩+ ⟨Du, v⟩+ ⟨Bu, y⟩+ ⟨Cx, v⟩. (2.26)

We wish to show that for any (x, u, y, v) ∈ C(L), the RHS in the above equation is zero.

We will perform a case-by-case analysis.

Case 1. For any (x, u, y, v) := (x, 0, y, 0) ∈ C1(L), the RHS of (2.26) is equal to zero, as

(x, y) ∈ C
(
Rn

≥+

)
and we have already shown that A ∈ LL(Rn

≥+), hence it is enough to

use Lemma 2.3.1 again.

Case 2. For any (x, u, y, v) := (x, 0, y, v) ∈ C2(L), the RHS of (2.26) is (c1v1+...+cqvq)xp.

Suppose that xp ̸= 0. Then, since (x, y) ∈ C
(
Rn

≥+

)
, from Example 1.3.2 we get y1+ · · ·+

yp = 0. Hence, (y, v) ∈M and (2.2) implies v = 0, which contradicts (x, 0, y, v) ∈ C2(L).

Thus, xp = 0 and, therefore, the RHS of (2.26) is zero.

Case 3. Take an arbitrary (x, u, y, v) ∈ C3(L). Proposition 2.1.6 indicates that for some

λ > 0 one has v = −λu, thus

⟨Ax, y⟩+ ⟨Du, v⟩ = ⟨Ax, y⟩+
〈
D +DT

2
u, v

〉
= ⟨Ax, y⟩+ a⟨u, v⟩

= ⟨z, y⟩+ a⟨u, v⟩

=

p−1∑
i=1

[
(zi − zi+1)

i∑
j=1

yj

]
+ zp

p∑
i=1

yi + a⟨u, v⟩,

(2.27)

where zi :=
∑i

j=1 ajxi+
∑p

k=i+1 akxk, for any 1 ≤ i ≤ p−1 and zp =
∑p

k=1 akxp. Then for

any 1 ≤ i ≤ p− 1, it is easy check that zi− zi+1 =
∑i

j=1 aj(xi− xi+1). By inserting these

equalities and the formula for zp into equation (2.27), and by using Proposition 2.1.6, we
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obtain ⟨Ax, y⟩+ ⟨Du, v⟩ = 0. We will show that

⟨Bu, y⟩+ ⟨Cx, v⟩ = 0.

By using the full power of Proposition 2.1.6, including v = −λu for some λ > 0, we have

⟨Bu, y⟩ =
q∑

i=1

(ciui) ·
p∑

i=1

yi = ∥v∥
q∑

i=1

(ciui)

and

⟨Cx, v⟩ = xp

q∑
i=1

(civi) = ∥u∥
q∑

i=1

(civi).

Then

⟨Bu, y⟩+ ⟨Cx, v⟩ = ∥v∥
q∑

i=1

(ciui) + ∥u∥
q∑

i=1

(civi)

= λ∥u∥
q∑

i=1

(ciui)− λ∥u∥
q∑

i=1

(ciui)

= 0.

Case 4. For any (x, y, u, v) := (x, u, y, 0) ∈ C4(L), the RHS of (2.26) is (c1u1 + ... +

cquq)(y1 + ... + yq). Suppose that y1 + · · · + yp ̸= 0. Then, since (x, y) ∈ C(Rn
≥+),

from Example 1.3.2 we get xp = 0. Hence, (x, u) ∈ M and (2.2) implies u = 0, which

contradicts (x, u, y, 0) ∈ C4(L). Thus, y1 + · · ·+ yp = 0 and therefore, the RHS of (2.26)

is zero.

In conclusion, the RHS of (2.26) is zero for any (x, u, y, v) ∈ C1(L) ∪ C2(L) ∪ C3(L) ∪

C4(L) = C(L) Therefore, T ∈ LL(L). Following the definition of the Lyapunov rank,

its value for the cone L equals the number of independent parameters in (2.22), which is

p+ q(q+1)
2

.

Moreover, Orlitzky and Gowda [68] present that a cone K ∈ Rn is numerical good if

β(K) ≥ n, since the complementarity set of cone K can be formulated by using n linearly-

independent Lyapunov-like matrices when β(K) ≥ n holds.

In our case, β(L) = p + q(q+1)
2
≥ n = p + q will always hold when q ≥ 1. Thus, we
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conclude that the monotone extended second order cone is a numerically good cone.

Meanwhile, Orlitzky and Gowda also introduced the upper bound of β(K) equals to

(n − 1)2 when K ∈ Rn. Moreover, in [67], Orlitzky showed that the upper bound of

β(K) equals to n2−n
2

+ 1 when K ∈ Rn is a proper cone. Considering the Lyapunov

rank of MESOC, we found the upper bound is tight for L ∈ R1+2. Since in this case,

β(L) = p + q(q+1)
2

= 1 + 2(2+1)
2

= 4 = (3 − 1)2 = (p + q − 1)2 and β(L) = p + q(q+1)
2

=

1+ 2(2+1)
2

= 4 = 32−3
2

+ 1 = (p+q)2−(p+q)
2

+ 1. It is easy to find this is the only case for the

MESOC, such that its Lyapunov rank is tight, for any other case for (p, q) when p > 1,

the upper-bound is not tight for L ∈ Rp+q.

2.4 Conclusions and comments

In this chapter, we study the properties of the monotone extended second order cone

(MESOC). This cone is different from both the traditional Lorentz cone (second order

cone), since the Lorentz cone is self-dual while the MESOC is not, and the previously

introduced extended second-order cone, as the MESOC is reducible while the extended

second order cone is irreducible [79]. We showed that the MESOC is a proper cone

in Proposition 2.1.1 and found the formula of the dual cone of the MESOC and the

complementarity set of MESOC in Proposition 2.1.3 and Proposition 2.1.6, respectively.

Furthermore, we have developed some conditions for a positive operator on the MESOC.

In Theorem 2.2.9, we illustrated a necessary and sufficient condition for a linear mapping

with a block diagonal form to be a linear operator on the MESOC. We also demonstrated

that the Z-transformation formula can be found using Proposition 2.2.5, which provided

a relationship between the positive operator, Z-transformation and Lyapunov-like trans-

formation on a proper cone. Finally, the Lyapunov rank (bilinearity rank) of a monotone

extended second order cone defined as L ∈ Rp+q has been determined in Theorem 2.3.2,

which is β(L) = p + q(q+1)
2

. The formula for a linear mapping to be a Lyapunov-like

transformation of MESOC is also provided in this theorem. We also concluded that the
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monotone extended second order cone is a numerically good cone.
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CHAPTER 3

ISOTONICITY PROPERTY AND MIXED
COMPLEMENTARITY PROBLEM

As we mentioned in the introduction, Isac and A.B.Németh in [44] have shown that the

isotone projection cones have advantages in solving the corresponding complementarity

problems since the ordering defined by cones in the iterative method is very useful. In

this chapter, we demonstrate an isotonicity property of the monotone extended second

order cone. Then, we use this isotonicity property of MESOC to solve a general mixed

complementarity problem.

3.1 Isotonicity property of MESOC

In this chapter, we call a closed convex set C as an isotone projection set with respect to

an arbitrary proper cone K if the projection onto the set C is isotone with respect to the

order defined by the cone K. In order to derive the isotonicity property of MESOC, we

will introduce some fundamental concepts and results related to the isotone projection

cone first.

Definition 3.1.1. A closed and convex cone K is an isotone projection cone if for arbi-

trary two vectors u, v ∈ K, the following implication holds:

u ≤K v ⇒ PK(u) ≤K PK(v).
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Theorem 3.1.1. (see [58]) The closed convex set C ⊂ Rm with nonempty interior is a

K-isotone projection set if and only if it is of the form

C =
⋂
i∈N

Hy−(ui, ai),

where each affine hyperplane Hy(ui, ai) is tangent to C and it is a K-isotone projection

set.

The following two lemmas are from [62].

Lemma 3.1.2. Let K ⊂ Rm be a closed convex cone and Hy ⊂ Rm be a hyperplane with

a unit normal vector a ∈ Rm. Then, Hy is a K-isotone projection set if and only if

⟨x, y⟩ ≥ ⟨a, x⟩⟨a, y⟩,

for any x ∈ K and y ∈ K∗.

Lemma 3.1.3. Let z ∈ Rm, K ⊂ Rm be a closed convex cone, and C ⊂ Rm be a nonempty

closed convex set. Then, C is a K-isotone projection set if and only if C+z is a K-isotone

projection set.

Finally, by using the above three results, we derive an isotonicity property of MESOC,

which we will use to solve complementarity problems on this cone.

Theorem 3.1.4. Let L be the MESOC defined in Rn corresponding to the dimensions

p and q, with q > 1 and n = p + q. The closed convex set with nonempty interior

K ⊆ Rp × Rq is an L-isotone projection set if and only if K = Rp × C, for some closed

convex set C ⊆ Rq with nonempty interior.

Proof. First, suppose that K = Rp × C, where C ⊆ Rq is a nonempty closed convex set

with nonempty interior. Let (x, u), (y, v) ∈ Rp × Rq be such that (x, u) ≤L (y, v), thus

(y − x, v − u) ∈ L, i.e.,

y1 − x1 ≥ y2 − x2 ≥ · · · ≥ yp − xp ≥ ∥v − u∥. (3.1)
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Since C is a closed and convex set in Rq, by the nonexpansivity (1.1) of PC , we have

∥v − u∥ ≥ ∥PCv − PCu∥,

which together with (3.1) yields

y1 − x1 ≥ y2 − x2 ≥ · · · ≥ yp − xp ≥ ∥PCv − PCu∥.

Thus,

(y, PCv)− (x, PCu) ∈ L

and therefore, we have

PK(x, u) = (x, PCu) ≤L (y, PCv) = PK(y, v).

In conclusion, K is an L-isotone project set.

Conversely, suppose that the closed convex set K ⊆ Rp×Rq with nonempty interior is an

L-isotone project set. If p = 1, then in [58], it has been proved that K = Rp×C, where C

is a nonempty, closed and convex subset with nonempty interior of Rq. Therefore, assume

that p > 1. By Theorem 3.1.1 and Lemma 3.1.3, we need to show that for any tangent

hyperplane Hy of K with unit normal γ = (a, u), we have a = 0. From Lemma 3.1.2, we

have

⟨ζ, ξ⟩ ≥ ⟨γ, ζ⟩⟨γ, ξ⟩, (3.2)

for any ζ := (x, v) ∈ L and ξ := (y, w) ∈ L∗. By Lemma 3.1.2, condition (3.2) holds. Let

x ∈ Rp
+ and v ∈ Rq. Then, by using equation (2.1), and Proposition 2.1.3, obviously, we

will have ζ := (∥v∥e, v) ∈ L, ξ := (∥v∥x,−⟨e, x⟩v) ∈ L∗ and ⟨ζ, ξ⟩ = 0. Then, by using

condition (3.2), we have

0 ≥ (⟨a, e⟩∥v∥+ ⟨u, v⟩)(⟨a, x⟩∥v∥ − ⟨e, x⟩⟨u, v⟩). (3.3)
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In the inequality (3.3), suppose that v ̸= 0 such that ⟨u, v⟩ = 0, let x = e, then 0 ≥

⟨a, e⟩2∥v∥2, and we will have ⟨a, e⟩ = 0. Thus, the inequality (3.3) will be equivalent as

0 ≥ ⟨u, v⟩(⟨a, x⟩∥v∥ − ⟨e, x⟩⟨u, v⟩). (3.4)

First, let us consider the case when u ̸= 0. Let vk ∈ Rq be a sequence of points such that

∥vk∥ = 1, ⟨u, vk⟩ > 0 and limn→+∞⟨u, vk⟩ = 0. Denote an arbitrary positive integer by n.

In the inequality (3.4), if we choose λ > 0, let λ sufficiently large and x := a+ λe ≥ 0 as

well as v = vk, we will have

(0 ≥ ⟨u, vk⟩(∥a∥2 − λp⟨u, vk⟩), ) or equivalently ∥a∥2 ≤ λp⟨u, vk⟩.

Then, in the last inequality, let k → +∞, we will have

∥a∥2 ≤ 0, or equivalently a = 0.

Next, let us consider the case when u = 0. Since (a, u) is a unit vector, it follows that

a ̸= 0. Let (x, y) ∈ C(Rp
≥+) and w ∈ Rq such that ⟨y, e⟩ ≥ ∥w∥. Then, by using

the definition of MESOC in(2.1) and Proposition 2.1.3, we will have ζ := (x, 0) ∈ L,

ξ := (y, w) ∈ L∗ and ⟨ζ, ξ⟩ = 0. Hence, by using the inequality (3.2), we have

0 ≥ ⟨a, x⟩⟨a, y⟩,

for any (x, y) ∈ C(Rp
≥+) with ⟨x, y⟩ = 0. From Example 1.3.2, we can choose x =

e1 + · · · + er and y = es − es+1, where r, s ∈ {1, . . . , p}, and we set ep+1 := 0. Hence,

(a1+ · · ·+ar)(as−as+1) ≤ 0, where we set ap+1 := 0. Take now r = 1 and for s = 1, . . . , p,

add the inequalities a1(a1 − a2) ≤ 0, . . . , a1(ap − ap+1) ≤ 0, to obtain (by the telescoping

effect) a1 · a1 ≤ 0, which gives a1 = 0. Similarly, for r = 2 and s = 2, . . . , p, add the

inequalities (0 + a2)(a2 − a3) ≤ 0, . . . , a2(ap − ap+1) ≤ 0, to get a2 = 0. Acting similarly
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(with r = 3, and so on), we get a3 = 0, up to ap = 0. Thus, a = 0. But this contradicts

a ̸= 0, so the case u = 0 cannot hold.

3.2 Mixed complementarity problem

Facchinei and Pang defined the mixed complementarity problem (MiCP) on the non-

negative orthant (see Subsection 9.4.2 in [28]). It is not only equivalent to a linearly

constrained variational inequality problem (this relationship is also known as the Karush-

Kuhn-Tucker (KKT) system of the variational inequality) but it can also be viewed as an

NCP for a particular non-pointed cone. Németh and Zhang considered the MiCP defined

on an arbitrary closed and convex cone. In Proposition 3.1.4, we have already shown

that the projection mapping onto a cylinder is an isotonic projection set with respect to

MESOC. Then, the importance of solving the mixed complementarity problem, which has

been pointed out in the previous research, motivated us to consider using the isotonicity

on MESOC we have obtained as a tool to solve the MiCP.

Let us first introduce the fundamental background which we have used in solving the

mixed complementarity problem.

It is well-known that for the nonlinear complementarity problem NCP(F,K), x∗ is its

solution if and only if x∗ is a fixed point of the mapping K ∋ x 7→ PK(x− F (x)). For an

arbitrary sequence {xn} generated by the fixed point iteration process

xn+1 = PK(x
n − F (xn)), (3.5)

if the mapping F is continuous and the sequence {xn} is convergent to x∗ ∈ K, then x∗

is a fixed point of the mapping K ∋ x 7→ PK(x − F (x)), hence x∗ is a solution of the

nonlinear complementarity problem NCP(F,K).

The nonlinear complementarity problem defined on a general closed and convex cone

considered by Németh and Zhang is defined in the following lemma.
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Lemma 3.2.1. (Lemma 4 in [63]) Let K = Rp × C, where C is an arbitrary nonempty

closed and convex cone in Rq. Denote mapping G : Rp × Rq 7→ Rp, mapping H :

Rp × Rq 7→ Rq and mapping F = (G;H) : Rp × Rq 7→ Rp × Rq. Then the nonlinear

complementarity problem NCP(F,K) is equivalent to the mixed complementarity problem

MiCP(G,H,C, p, q) defined as

G(x, u) = 0, C ∋ u ⊥ H(x, u) ∈ C∗.

Proof. It is standard and follows from the definition of the nonlinear complementarity

problem NCP(F,K), by noting that K∗ = {0} × C∗.

Thus, by using the notations of Lemma 3.2.1, the fixed point iteration (3.5) is equivalent

to: 
xn+1 = xn −G(xn, un),

un+1 = PC(u
n −H(xn, un)).

(3.6)

Meanwhile, Németh and Zhang also present sufficient conditions for the solvability of this

problem:

Proposition 3.2.2. (Proposition 2 in [63]) Let L ⊆ Rm be a pointed closed convex cone,

K ⊆ Rm be a closed convex cone and F : Rm → Rm be a continuous mapping. Consider

sequence {xn}n∈N which is defined by using (3.5).

Assume that the mappings PK and I − F are L− isotone, and x0 = 0 ≤L x
1. Let

Ω := K ∩ L ∩ F−1(L) = {x ∈ K ∩ L : F (x) ∈ L}

and

Γ := {x ∈ K ∩ L : PK(x− F (x)) ≤L x}.

Then ∅ ̸= Ω ⊂ Γ and the sequence {xn} is convergent to x∗, which is a solution of

NCP(F,K). Moreover, x∗ is a lower L-bound of Ω and the L-least element of Γ.
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Thus, by using the previous lemma and proposition, we obtain the following theorem,

which provides sufficient conditions for the solvability of MiCP(G,H,C, p, q) by using

MESOC.

Theorem 3.2.3. Let L be the monotone extended second order cone corresponding to p

and q. For an arbitrary cone K = Rp × C, where C be a closed convex cone, denote its

dual cone by K∗. Let F = (G;H) : Rp × Rq 7→ Rp × Rq, such that I − F is L-isotone,

where I denotes the identical mapping, G : Rp × Rq 7→ Rp and H : Rp × Rq 7→ Rq

are two continuous mappings. Consider a sequence {(xn, un}n∈N defined by (3.6), where

x0 = 0 ∈ Rp and u0 = 0 ∈ Rq. Let x, y ∈ Rp and u, v ∈ Rq. Suppose that the system of

inequalities

yi − xi ≥ yi+1 − xi+1 ≥ ∥v − u∥; 1 ≤ i ≤ p− 1

implies the system of inequalities

yi − xi − (G(y, v)i −G(x, u)i) ≥ yi+1 − xi+1 − (G(y, v)i+1 −G(x, u)i+1)

≥ ∥v − u− (H(y, v)−H(x, u))∥;

1 ≤ i ≤ p − 1, and that x1i ≥ x1i+1 ≥ ∥u1∥; 1 ≤ i ≤ p − 1 (in particular, this holds when

−G(0, 0)i ≥ −G(0, 0)i+1 ≥ ∥H(0, 0)∥; 1 ≤ i ≤ p− 1). Let

Ω := {(x, u) ∈ Rp × C : x1 ≥ · · · ≥ xp ≥ ∥u∥, G(x, u)1 ≥ · · · ≥ G(x, u)p ≥ ∥H(x, u)∥}

and

Γ := {(x, u) ∈ Rp × C : x1 ≥ · · · ≥ xp ≥ ∥u∥, G(x, u)1 ≥ · · · ≥ G(x, u)p

≥ ∥u− PC(u−H(x, u))∥}.

Then ∅ ̸= Ω ⊆ Γ, the sequence {(xn, un)} is convergent, and its limit (x∗, u∗) is a solution

of MiCP(G,H,C, p, q). Moreover, (x∗, y∗) is also a lower L-bound of Ω as well as is the

L-least element of Γ.
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3.3 Numerical example

In this section, we will give a numerical example to show how to solve the mixed comple-

mentarity problem by using the isotonicity property of MESOC.

Let L be the monotone extended second order cone, then suppose that K = R2 × C

where C = {(u1, u2) ∈ R2 : u1 ≥ u2 ≥ 0}. Let f1(x, u) = 1
10
x1 − 1

20
x2 +

1
20
∥u∥ + 1

and f2(x, u) =
1
5
x1 − 3

20
x2 +

1
20
∥u∥ − 3

5
. Obviously, f1(x, u) and f2(x, u) are L-monotone.

Define ω1 := (2, 1, 1
3
, 1
6
) and ω2 := (2, 1, 1

6
, 1
3
); it is easy to find out that ω1, ω2 ∈ L. Then,

for two arbitrary vectors (x, u), (y, v) ∈ R2 × R2 such that (x, u) ≤L (y, v), by using the

definition of the MESOC, we have that y1− x1 ≥ y2− x2 ≥ ∥v− u∥ ≥ ∥u∥− ∥v∥. Hence,

f1(y, v)− f1(x, u) =
1

10
(y1 − x1)−

1

20
(y2 − x2)−

1

20
(∥u∥ − ∥v∥) ≥ 0,

f2(y, v)− f2(x, u) =
1

5
(y1 − x1)−

3

20
(x2 − y2)−

1

20
(∥u∥ − ∥v∥) ≥ 0.

Since ω1, ω2, (y, v) − (x, u) ∈ L, by using the convexity of L, if we have (x, u) ≤L (y, v),

then

(f1(y, v)− f1(x, u))ω1 + (f2(y, v)− f2(x, u))ω2 ∈ L,

which is equivalent to the following inequality:

f1(x, u)ω
1 + f2(x, u)ω

2 ≤L f1(y, v)ω
1 + f2(y, v)ω

2.

Thus, the mapping f1ω
1+f2ω

2 is L-isotone. Now, we define functions G and H as follows:

G(x, u) :=

(
2

5
x1 +

2

5
x2 −

1

5
∥u∥ − 4

5
,− 3

10
x1 +

6

5
x2 −

1

10
∥u∥ − 2

5

)
,

H(x, u) :=

(
u1 −

1

15
x1 +

1

24
x2 −

1

40
∥u∥ − 7

30
, u2 −

1

12
x1 +

7

120
x2 −

1

40
∥u∥+ 1

30

)
.
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Hence, we get

(x−G, u−H) = f1ω
1 + f2ω

2 =

(
2f1 + 2f2, f1 + f2,

1

3
f1 +

1

6
f2,

1

6
f1 +

1

3
f2

)

is L− isotone. Then, we check that all the conditions in Theorem 3.2.3 are satisfied. Let

us start with the initial condition. We have,

−G(0, 0, 0, 0) =
(
4

5
,
2

5

)
and ∥H(0, 0, 0, 0)∥ =

√(
− 7

30

)2

+

(
1

30

)2

=

√
2

6
.

Evidently, −G(0, 0, 0, 0)1 ≥ −G(0, 0, 0, 0)2 ≥ ∥H(0, 0, 0, 0)∥. Now, consider a vector

(x̂, û) := (30, 12, 4, 3) ∈ K, which yields

G(x̂, û) =

(
15,

9

2

)
and H(x̂, û) =

(
257

120
,
133

120

)
.

Moreover, we have that G(x̂, û)1 ≥ G(x̂, û)2 ≥ ∥H(x̂, û)∥, which implies that (x̂, û) ∈ Ω.

Hence, Ω ̸= ∅. Next, we solve the mixed complementarity problem MiCP(G,H,C, p, q).

For an arbitrary element (x, y), if it is a solution of MiCP(G,H,C, p, q), then

x−G(x, u) = (2f1 + 2f2, f1 + f2) where fi = fi(x, u), i = 1, 2,

and G(x, u) = 0. Thus, we have x1 = 2f1 + 2f2 and x2 = f1 + f2. Moreover,

x1 =
1

3
∥u∥+ 4

3
and x2 =

1

6
∥u∥+ 2

3
. (3.7)

Meanwhile, we have u ⊥ H(x, u), which implies

⟨u,H(x, u)⟩ = u1

(
u1 −

1

3
f1 −

1

6
f2

)
+ u2

(
u2 −

1

6
f1 −

1

3
f2

)
= 0.

Then,

∥u∥2 = u21 + u22 =

(
1

3
u1 +

1

6
u2

)
f1 +

(
1

6
u1 +

1

3
u2

)
f2. (3.8)
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We will figure out all the nonzero solutions on the boundary of C. For the first case,

without loss of generality, suppose that u1 = u2 > 0, so we have ∥u∥ =
√
2u1 =

√
2u2

and, by using (3.8),

u1 = u2 =
1

4
(f1 + f2) .

By using the definition of f1 and f2 as well as (3.7), we get

u1 = u2 =
48 + 2

√
2

287
.

Thus, the solution of MiCP(G,H,C, p, q) is

(x, u) =

(
384 + 16

√
2

287
,
192 + 8

√
2

287
,
48 + 2

√
2

287
,
48 + 2

√
2

287

)
.

For the second case, we consider u2 = 0, which implies that ∥u∥ = u1. Hence, the equation

(3.8) is equivalent to

u21 −
(
1

3
f1 +

1

6
f2

)
u1 = 0.

Since u1 ̸= 0, we have

u1 =
1

3
f1 +

1

6
f2.

By using the definition of f1 and f2, and (3.7) again, we have u1 = 212
691

, which implies

that u =
(
212
691
, 0
)
. Thus,

(x, u) =

(
992

691
,
496

691
,
212

691
, 0

)
.

Consider (0, 0, 0, 0) as a starting point in the fixed point iteration process (3.6). We have



xn+1 = xn −G(xn, un)

= (2f1(x
n, un) + 2f2(x

n, un), f1(x
n, un) + f2(x

n, un)),

un+1 = PC(u
n −H(xn, un))

= PC

(
1

3
f1(x

n, un) +
1

6
f2(x

n, un),
1

6
f1(x

n, un) +
1

3
f2(x

n, un)

)
.

(3.9)
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From the above equations we get xn+1
1 ≥ xn+1

2 . Moreover, since as the starting point, we

set (0, 0, 0, 0), then for any arbitrary i ∈ N, we have that xi1 ≥ xi2 ≥ 0. Define the set S

as follows:

S :=

{
(x, u) ∈ R2 × R2 : 0 ≤ x1 <

992

691
, 0 ≤ x2 <

496

691
, 0 ≤ u1 <

212

691
, u2 = 0

}
.

We want to show that for any n ∈ N, we have (xn, un) ∈ S. We will prove it by induction.

First, we have (x0, u0) ∈ S. Suppose next 0 ≤ xn1 <
992
691

, 0 ≤ xn2 <
496
691

, 0 ≤ un1 <
212
691

and

u2 = 0, which is equivalent to ∥un∥ = un1 . Since x
n
1 ≥ xn2 , we have

0 < xn+1
1 = 2f1(x

n, un) + 2f2(x
n, un) =

3

5
xn1 −

2

5
xn2 +

1

5
un1 +

4

5

<
3

5
· 992
691
− 2

5
· 496
691

+
1

5
· 212
691

+
4

5
=

992

691
.

Similarly,

0 < xn+1
2 = f1(x

n, un) + f2(x
n, un) =

3

10
xn1 −

1

5
xn2 +

1

10
un1 +

2

5

<
3

10
· 992
691
− 1

5
· 496
691

+
1

10
· 212
691

+
2

5
=

496

691
.

Meanwhile, we also have

un −H(xn, un) =

(
1

3
f1(x

n, un) +
1

6
f2(x

n, un),
1

6
f1(x

n, un) +
1

3
f2(x

n, un)

)
.

Obviously, (un −H(xn, un))1 > 0, then

(un −H(xn, un))1 <
1

3

(
1

10
· 992
691
− 1

20
· 496
691

+
1

20
· 212
691

+ 1

)

+
1

6

(
1

5
· 992
691
− 3

20
· 496
691

+
1

20
· 212
691
− 3

5

)
=

212

691
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and 0 < (un −H(xn, un))2. It is easy to check that the projection of it onto C such that

0 ≤ un+1
1 < 691

212
and un+1

2 = 0, must be given on the ray {(u1, u2) : u1 ≥ 0, u2 = 0}. It is

equivalent to

un+1 = (un+1
1 , un+1

2 ) = PC (un −H(xn, un)) =

(
1

3
f1(x

n, un) +
1

6
f2(x

n, un), 0

)
.

Thus, the system of equations (3.9) is equivalent to


xn+1
1 = 3

5
xn1 − 2

5
xn2 +

1
5
un1 +

4
5
,

xn+1
2 = 3

10
xn1 − 1

5
xn2 +

1
10
un1 +

2
5
,

un+1
1 = 1

15
xn1 − 1

24
xn2 +

1
40
un1 +

7
30
.

(3.10)

Moreover, we have xn1 = 2xn2 , so (3.10) is equivalent to


xn+1
1 = 2xn+1

2 ,

xn+1
2 = 2

5
xn2 +

1
10
un1 +

2
5
,

un+1
1 = 11

120
xn2 +

1
40
un1 +

7
30
.

(3.11)

The last two lines in (3.11) can be aggregated as follows


xn+1
2

un+1
1

 =


2
5

1
10

11
120

1
40



xn2

un1

+


2
5

7
30

 .

One easily verifies that the above 2× 2 matrix has both (real) eigenvalues whose absolute

values are less than 1, so it is a convergent matrix. Hence, the above process is convergent

to the unique fixed point [x∗2 u
∗
1]

′ of the above equation, regardless of a starting point
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[x02 u
0
1]

′ ∈ R2. Explicitly,


x∗2

u∗1

 =


3
5
− 1

10

− 11
120

39
40


−1

·


2
5

7
30

 =


496
691

212
691

 .

Bearing in mind that xn+1
1 = 2xn+1

2 and un2 = 0, we have the convergence:

(xn, un) = (xn1 , x
n
2 , u

n
1 , u

n
2 )→ (x∗1, x

∗
2, u

∗
1, 0) =

(
992

691
,
496

691
,
212

691
, 0

)
,

which is the same as one solution we have obtained on the boundary.

Remark 3.3.1. We remark that f1ω
1 + f2ω

2 is not ESOC-isotone. Indeed, if we assume

that f1ω
1 + f2ω

2 is L-isotone, then for any (x, u) ≤L (y, v) and ω1, ω2 ∈ L, we have

f1(x, u)ω
1 + f2(x, u)ω

2 ≤L f1(y, v)ω
1 + f2(y, v)ω

2 (3.12)

and it is equivalent to

(f1(y, v)− f1(x, u))ω1 + (f2(y, v)− f2(x, u))ω2 ∈ L.

For arbitrary (x∗, u∗), (y∗, v∗) ∈ Rp×Rq, such that y∗1−x∗1 = ∥u∗−v∗∥ = ∥u∗∥−∥v∗∥ > 0,

y∗2 − x∗2 = 2∥u∗ − v∗∥ = 2(∥u∗∥ − ∥v∗∥) > 0, it is obvious that (x∗, u∗) ≤ESOC (y∗, v∗).

Since f1(x, u) =
1
10
x1 − 1

20
x2 +

1
20
∥u∥+ 1 and f2(x, u) =

1
5
x1 − 3

20
x2 +

1
20
∥u∥ − 3

5
,

f1(y
∗, v∗)− f1(x∗, u∗) =

1

10
(y∗1 − x∗1)−

1

20
(y∗2 − x∗2)−

1

20
(∥u∗∥ − ∥v∗∥)

=
1

10
(∥u∗∥ − ∥v∗∥)− 2

20
(∥u∗∥ − ∥v∗∥)− 1

20
(∥u∗∥ − ∥v∗∥)

= − 1

20
(∥u∗∥ − ∥v∗∥) < 0,
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f2(y
∗, v∗)− f2(x∗, u∗) =

1

5
(y∗1 − x∗1)−

3

20
(x∗2 − y∗2)−

1

20
(∥u∗∥ − ∥v∗∥) ≥ 0

=
1

5
(∥u∗∥ − ∥v∗∥)− 6

20
(∥u∗∥ − ∥v∗∥)− 1

20
(∥u∗∥ − ∥v∗∥)

= − 3

20
(∥u∗∥ − ∥v∗∥) < 0,

,

contradicting (3.12), so f1ω
1 + f2ω

2 is not ESOC-isotone. Let us recall that both f1

and f2 are MESOC-monotone (which has been proved in the numerical example) and

not ESOC-monotone, which implies that f1(y, v) − f1(x, u) and f2(y, v) − f2(x, u) will

not be nonnegative for all (x, u) ≤ESOC (y, v). Since both f1(y
∗, v∗) − f1(x

∗, u∗) and

f2(y
∗, v∗) − f2(x

∗, u∗) are negative, then by using convexity of ESOC, since ω1, ω2 ∈

MESOC ⊆ ESOC, we have

−(f1(y∗, v∗)− f1(x∗, u∗))ω1 − (f2(y
∗, v∗)− f2(x∗, u∗))ω2 ∈ ESOC.

Meanwhile, if f1ω1 + f2ω2 were ESOC-isotone, then

(f1(y
∗, v∗)− f1(x∗, u∗))w1 + (f2(y

∗, v∗)− f2(x∗, u∗))w2 ∈ ESOC.

Since ω1 and ω2 are linearly independent, it contradicts the property of the pointedness of

ESOC. Thus, f1ω
1 + f2ω

2 is not ESOC-isotone.

3.4 Conclusions and comments

In this chapter, we first derived the isotonicity property of the monotone extended second

order cone(MESOC). We demonstrated that the cylinders defined as Rp × C, where C is

an arbitrary closed convex set with nonempty interior in Rq, are isotone projection sets

with respect to the MESOC in Theorem 3.1.4. The isotonicity property is another differ-

ence between the MESOC and ESOC. As for the ESOC, any isotone projection set with

respect to MESOC is such a cylinder, while for the ESOC, it is indicated that ESOC has

a large family of ESOC − isotone mappings in [62]. Theorem 3.2.3 is the main theorem
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in this chapter. In this theorem, we used the MESOC-isotonicity of the projection onto

the cylinder to solve general mixed complementarity problems. We illustrated the corre-

sponding iterative method by using a numerical example with exact numbers. Although

the iteration principle for the MESOC is similar to the corresponding one for ESOC, we

remark that there are mixed complementarity problems which can be solved iteratively by

MESOC, but the same iterative scheme cannot be used via ESOC because it does not sat-

isfy the corresponding ESOC-isotonicity condition (merely the MESOC-isotonicity). This

is due to the fact that although MESOC is a subset of ESOC, the MESOC-isotonicity of

mappings does not imply their ESOC-isotonicity. This idea is underlined in the preceding

section.
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CHAPTER 4

HOW TO PROJECT ONTO MESOC

In the previous chapter, we presented the concepts and properties of the monotone ex-

tended second order cone. Meanwhile, we developed an iterative technique to show that

the mixed complementarity problem could be solved by using the isotonicity property of

the monotone extended second order cone. But from the optimisation point of view, we

need to find an easy method to project onto this cone such that we could say this cone

is very useful in optimisation. The results in this chapter have already been published

in [30].

Generally speaking, the problem of projecting onto the monotone extended second order

cone is basically a conic optimisation problem with respect to MESOC. Moreover, for an

arbitrary point (x, y) ∈ Rp × Rq, we can project this point onto the monotone extended

second order cone, and the corresponding second order conic optimisation problem will

be formulated as

min{∥x− u∥+ ∥y − v∥ : (x, y) ∈ Rp × Rq, (u, v) ∈ L}, (4.1)

where L is the monotone extended second order cone in Rp × Rq. If we use the method

above to solve the problem of how to project onto MESOC, we will lose some useful

properties of MESOC. Motivated by the aim of reducing the complexity of the problem,

we found a more elegant way to show how to solve the problem of projecting onto MESOC

by using the properties of MESOC and the Moreau’s decomposition theorem as follows.
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Theorem 4.0.1. Denote K ⊂ Rn to be a closed and convex cone, and let K∗ be its

dual cone, and z be an arbitrary point in Rn. Then, for any arbitrary points x ∈ K and

y ∈ K∗, we hold the equivalence for the two arguments as follows

(i) z = x− y and (x, y) ∈ C(K),

(ii) x = PK(z) and y = PK∗(−z).

Moreover, from theorem 4.0.1 we also have the following conclusions

PK(z) ⊥ PK∗(−z), z = PK(z)− PK∗(−z).

After the introduction of the Moreau’s decomposition theorem, we will define some nota-

tions, which will be implemented in this section.

For an arbitrary z ∈ Rp, let z = (z1, . . . , zp)
⊤. Denote the nonnegative orthant in Rp

by Rp
+ = {x ∈ Rp : x ≥ 0}. The nonnegative orthant is a proper cone and also self-

dual, i.e., Rp
+ = (Rp

+)
∗. For an arbitrary real number α ∈ R, let α+ := max(α, 0)

and α− := max(−α, 0). Then for any arbitrary vector z ∈ Rp, let z+ := (z+1 , . . . , z
+
p ),

z− := (z−1 , . . . , z
−
p ) and |z| := (|z1|, . . . , |zp|). Then we will have

z+ = PRp
+
(z), z− = PRp

+
(−z), z = z+ − z− and |z| = z+ + z−. (4.2)

4.1 Properties of the complementarity set for MESOC

For the next step, we will develop another property of the monotone extended second

order cone. From the definition and the formula of the complementarity set of monotone

extended second order cone in (2.1), as well as Proposition 2.1.6 and the monotone non-

negative cone in Example 1.3.2 respectively, we demonstrated the connection between the

complementarity set of these two cones in the following propositions.

Proposition 4.1.1. Denote L ∈ Rp × Rq be the monotone extended second order cone

and L∗ be its dual cone, then for arbitrary points (x, u), (y, v) ∈ Rp × Rq. we have
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(i) (x, u) ∈ L if and only if x− ∥u∥e ∈ Rp
≥+.

(ii) (y, v) ∈ L∗ if and only if y − ∥v∥ep ∈ (Rp
≥+)

∗,

where ei is the canonical unit vectors of Rp for i = 1, 2, . . . , p and e = e1 + · · ·+ ep.

Proof. Following the conclusions of the monotone nonnegative cone in Example 1.3.2, the

definition of MESOC in (2.1) and Proposition 2.1.3, we will have the results above.

Proposition 4.1.2. Let x, y ∈ Rp, and u, v ∈ Rq \ {0}.

(i) (x, 0, y, v) ∈ C(L) if and only if xp = 0,
∑p

i=1 yi ≥ ∥v∥ and (x, y) ∈ C(Rp
≥+).

(ii) (x, u, y, 0) ∈ C(L) if and only if xi ≥ ∥u∥ for all i,
∑p

i=1 yi = 0 and (x, y) ∈ C(Rp
≥+).

(iii) (x, y, u, v) ∈ C(L) if and only if xp = ∥u∥, ⟨y, e⟩ = ∥v∥, ⟨u, v⟩ = −∥u∥∥v∥, and

(x− ∥u∥e, y − ∥v∥ep) ∈ C(Rp
≥+).

Proof. (i) First, we prove that if (x, 0, y, v) ∈ C(L), then xp = 0, (x, y) ∈ C(Rp
≥+). Since

(x, 0, y, v) ∈ C(L), then
∑p

i=1 yi ≥ ∥v∥ and

0 = ⟨(x, 0), (y, v)⟩

= y1(x1 − x2) + (y1 + y2)(x2 − x3) + · · ·+ (y1 + y2 + · · ·+ yp−1)(xp−1 − xp)

+ (y1 + y2 + · · ·+ yp)xp

≥ 0

Since
∑p

i=1 yi ≥ ∥v∥ > 0, then ⟨(x, 0), (y, v)⟩ = 0 implies xp = 0. Meanwhile, we have

⟨(x, 0), (y, v)⟩ =
∑p

i=1 xiyi = 0. The inequalities x1 ≥ x2 ≥ . . . ≥ xp ≥ 0 imply x ∈ Rp
≥+,

meanwhile,
∑j

i=1 yi ≥ 0, for all j = 1, 2, . . . , p − 1 and
∑p

i=1 yi ≥ ∥v∥ > 0 imply that

y ∈ (Rp
≥+)

∗. Hence, (x, y) ∈ C(Rp
≥+).

Second, we need to prove that if for all (x, y) ∈ C(Rp
≥+), xp = 0 and

∑p
i=1 yi ≥ ∥v∥, then

(x, y) ∈ C(L).
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From (x, y) ∈ C(Rp
≥+), we get x ∈ Rp

≥+, y ∈ (Rp
≥+)

∗ and ⟨x, y⟩ = 0. Thus, x ∈ Rp
≥+ and

xp = 0 imply (x, 0) ∈ L, meanwhile y ∈ (Rp
≥+)

∗,
∑p

i=1 yi ≥ ∥v∥ and ⟨x, y⟩ = 0 imply

(y, v) ∈M and ⟨(x, 0), (y, v)⟩ = ⟨x, y⟩ = 0. Thus, (x, 0, y, v) ∈ C(L).

(ii) First, we need to show that if (x, u, y, 0) ∈ C(L), then xi ≥ ∥u∥,
∑p

i=1 yi = 0 and

(x, y) ∈ C(Rp
≥+).

Since (x, u, y, 0) ∈ C(L), we get

0 = ⟨(x, u), (y, 0)⟩

=

p∑
i=1

xiyi

= y1(x1 − x2) + (y1 + y2)(x2 − x3) + · · ·+ (y1 + y2 + · · ·+ yp−1)(xp−1 − xp)

+ (y1 + y2 + · · ·+ yp)xp

≥ 0

Thus xp ≥ ∥u∥ > 0 implies
∑p

i=1 yi = 0. Meanwhile, it is obvious that x ∈ Rp
≥+,

y ∈ (Rp
≥+)

∗. Thus 0 = ⟨(x, u), (y, 0)⟩ = xTy implies (x, u, y, 0) ∈ C(Rp
≥+)

Second, we need to prove that if xi ≥ ∥u∥,
∑p

i=1 yi = 0, (x, y) ∈ C(Rp
≥+), then we have

(x, u, y, 0) ∈ C(L).

Since (x, y) ∈ C(Rp
≥+), we have x ∈ Rp

≥+, y ∈ (Rp
≥+)

∗ and
∑p

i=1 xiyi = 0. Thus, x ∈ Rp
≥+

and xi ≥ ∥u∥ imply (x, u) ∈ L. On the other hand, y ∈ (Rp
≥+)

∗ and
∑p

i=1 yi = 0

implies (y, 0) ∈ M . Furthermore,
∑p

i=1 xiyi = 0 implies ⟨(x, u), (y, 0)⟩ = 0. Hence,

(x, u, y, 0) ∈ C(L).

(iii) Take (x, u, y, v) ∈ C(L). Then following the definition of C(L), we get (x, u) ∈ L,

(y, v) ∈ L∗ and ⟨(x, u), (y, v)⟩ = 0. Following the conclusions in Proposition 4.1.1, since

(x, u) ∈ L and (y, v) ∈ L∗, then we have x − ∥u∥e ∈ Rp
≥+ and y − ∥v∥ep ∈ (Rp

≥+)
∗.

Moreover, by using the Cauchy inequality, the condition of ⟨(x, u), (y, v)⟩ = 0, and the

conclusion in Lemma 2.1.5, we have

0 = ⟨x, y⟩+ ⟨u, v⟩ ≥ ∥u∥⟨y, e⟩+ ⟨u, v⟩ ≥ ∥u∥∥v∥+ ⟨u, v⟩ ≥ 0.
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Thus, ⟨x, y⟩ = ∥u∥⟨y, e⟩, ∥u∥⟨y, e⟩ = ∥u∥∥v∥ and ⟨u, v⟩ = −∥u∥∥v∥. Moreover, consider

we have supposed that u ̸= 0, then we also have ⟨y, e⟩ = ∥v∥. Hence, by using the Abel’s

partial summation formula in (1.2), we have the following inequalities

0 ≥ (∥u∥ − xp) ∥v∥ = (∥u∥ − xp) ⟨y, e⟩ = ⟨x, y⟩ − xp
p∑

i=1

yi =

p−1∑
i=1

(xi − xi+1)
i∑

j=1

yj ≥ 0.

Hence, all the terms in the inequalities above must equal to 0. In particular, we got

(∥u∥ − xp) ∥v∥ = 0. Since we have supposed that v ̸= 0, then we can conclude that

xp = ∥u∥. On the other hand, consider the following equation,

⟨x− ∥u∥e, y − ∥v∥ep⟩ = ⟨x, y⟩ − ∥u∥⟨y, e⟩ − xp∥v∥+ ∥u∥∥v∥,

since we have already got the conclusions of ⟨x, y⟩ = ∥u∥⟨y, e⟩ and xp = ∥u∥, then we can

obtain that ⟨x− ∥u∥e, y − ∥v∥ep⟩ = 0. Hence, (x− ∥u∥e, y − ∥v∥ep) ∈ C(Rp
≥+), then we

finished that proof of necessity.

Then we will consider the proof of sufficient. Suppose we have the following conditions,

which are

xp = ∥u∥, ⟨y, e⟩ = ∥v∥, ⟨u, v⟩ = −∥u∥∥v∥, and (x− ∥u∥e, y − ∥v∥ep) ∈ C(Rp
≥+).

Thus, (x−∥u∥e, y−∥v∥ep) ∈ C(Rp
≥+) implies that x−∥u∥e ∈ Rp

≥+ and y−∥v∥ep ∈ (Rp
≥+)

∗.

Then by using Proposition 4.1.1, we have (x, u) ∈ L and (y, v) ∈ L∗. Moreover, from

(x−∥u∥e, y−∥v∥ep) ∈ C(Rp
≥+), we have ⟨x−∥u∥e, y−∥v∥ep⟩ = 0 and it is equivalent to

⟨x, y⟩ − ∥u∥⟨y, e⟩ − xp∥v∥+ ∥u∥∥v∥ = 0.

Thus, xp = ∥u∥ implies that ⟨x, y⟩ = ∥u∥⟨y, e⟩.
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Hence, by using the conditions of ⟨u, v⟩ = −∥u∥∥v∥ and ⟨y, e⟩ = ∥v∥, we have

⟨(x, u), (y, v)⟩ = ⟨x, y⟩+ ⟨u, v⟩ = ∥u∥⟨y, e⟩ − ∥u∥∥v∥ = ∥u∥ (⟨y, e⟩ − ∥v∥) = 0.

Therefore, (x, u, y, v) ∈ C(L).

4.2 Projection onto MESOC

After finding the relationships between the complementarity set of the monotone extended

second order cone and the complementarity set of the monotone nonnegative cone, in order

to show the formula which shows how to project onto the monotone extended second order

cone, we need to introduce the following lemma.

Lemma 4.2.1. For an arbitrary (z, w) ∈ Rp×Rq, if PL(z, w) = (x, u) and PL∗(−z,−w) =

(y, v), then the following conclusions hold:

(i) ⟨P(Rp
≥+)∗(−z), e⟩ ≥ ∥w∥ if and only if u = 0;

(ii) PRp
≥+

(z)p ≥ ∥w∥ if and only if v = 0.

(iii) ⟨P(Rp
≥+)∗(−z), e⟩ < ∥w∥ and PRp

≥+
(z)p < ∥w∥ if and only if u ̸= 0 and v ̸= 0.

Proof. First, let us prove the item (i). Suppose that u = 0, then we have PL(z, w) = (x, 0)

and PL∗(−z,−w) = (y, v). By using the Moreau’s decomposition theorem, we have

(x, 0) ∈ L, (y, v) ∈ L∗, ⟨(x, 0), (y, v)⟩ = 0 and (z, w) = (x, 0)− (y, v).

Hence, we have x ∈ Rp
≥+, y ∈ (Rp

≥+)
∗, ⟨y, e⟩ ≥ ∥v∥, ⟨x, y⟩ = 0, z = x − y and w = −v.

Hence, the Moreau’s decomposition theorem for Rp
≥+ implies that

x = PRp
≥+

(z) and y = P(Rp
≥+)∗(−z).
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Since w = −v and ⟨y, e⟩ ≥ ∥v∥, we have that ⟨P(Rp
≥+)∗(−z), e⟩ ≥ ∥w∥. On the other side,

let ⟨P(Rp
≥+)∗(−z), e⟩ ≥ ∥w∥. Since (PRp

≥+
(z), 0) ∈ L and ⟨P(Rp

≥+)∗(−z), e⟩ ≥ ∥w∥, we ob-

tain that (P(Rp
≥+)∗(−z),−w) ∈ L∗. Moreover, we will have (PRp

≥+
(z), 0, P(Rp

≥+)∗(−z),−w) ∈

C(L) and (z, w) = (PRp
≥+

(z), 0) − (P(Rp
≥+)∗(−z),−w). Hence, by using the Moreau’s de-

composition theorem for L, we conclude that PL(z, w) = (PRp
≥+

(z), 0) and PL∗(−z,−w) =

(P(Rp
≥+)∗(−z),−w). Thus, u = 0.

In the next step, we will show the satisfaction of item (ii). Let us first consider v = 0.

Since we have PL(z, w) = (x, u) and PL∗(−z,−w) = (y, 0), Then by using Moreau’s

decomposition theorem for L, we have

(x, u) ∈ L, (y, 0) ∈ L∗, ⟨(x, u), (y, 0)⟩ = 0 and (z, w) = (x, u)− (y, 0).

Thus, we have

x ∈ Rp
≥+, y ∈ (Rp

≥+)
∗, xp ≥ ∥u∥, ⟨x, y⟩ = 0, z = x− y and w = u.

Then, by applying the Moreau’s decomposition theorem for Rp
≥+ we conclude that

x = PRp
≥+

(z) and y = P(Rp
≥+)∗(−z).

Moreover, by using w = u and xp ≥ ∥u∥, we obtain that PRp
≥+

(z)p ≥ ∥w∥.

Conversely, suppose we have PRp
≥+

(z)p ≥ ∥w∥. Since (P(Rp
≥+)∗(−z), 0) ∈ L∗ and

PRp
≥+

(z)p ≥ ∥w∥, we will have (PRp
≥+

(z), w) ∈ L. Moreover, we have

(PRp
≥+

(z), w, P(Rp
≥+)∗(−z), 0) ∈ C(L) and (z, w) = (PRp

≥+
(z), w)− (P(Rp

≥+)∗(−z), 0).

Hence, by applying Moreau’s decomposition theorem for the monotone extended second

order cone, we have

PL(z, w) = (PRp
≥+

(z), w) and PL∗(−z,−w) = (P(Rp
≥+)∗(−z), 0).
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Therefore, v = 0.

The conclusion in Item (iii) is an immediate consequence of items (i) and (ii).

In order to simplify the notations in the formula of how to project into the monotone

extended second order cone, let us first define the following functions. Let (z, w) ∈ Rp×Rq

be an arbitrary given point, then we define

ϕ(λ) :=
〈
P(Rp

≥+)∗(−f(λ)), e
〉
, f(λ) := z − 1

1 + λ
∥w∥e+ λ

1 + λ
∥w∥ep. (4.3)

Then we will show how to project into MESOC.

Theorem 4.2.2. Let (z, w) ∈ Rp × Rq, then the following statements hold:

(1) If ⟨P(Rp
≥+)∗(−z), e⟩ ≥ ∥w∥, then

PL(z, w) = (PRp
≥+

(z), 0), PL∗(−z,−w) = (P(Rp
≥+)∗(−z),−w);

(2) If PRp
≥+

(z)p ≥ ∥w∥, then

PL(z, w) = (PRp
≥+

(z), w), PL∗(−z,−w) = (P(Rp
≥+)∗(−z), 0);

(3) If ⟨P(Rp
≥+)∗(−z), e⟩ < ∥w∥ and PRp

≥+
(z)p < ∥w∥, then the following equation

ϕ(λ) = 0, (4.4)

has a unique positive solution λ > 0 and

PL(z, w) =

(
PRp

≥+
(−f(λ)) + 1

1 + λ
∥w∥e, 1

1 + λ
w

)
,

PL∗(−z,−w) =
(
P(Rp

≥+)∗(−f(λ)) +
λ

1 + λ
∥w∥ep,− λ

1 + λ
w

)
.

65



Proof. Let (z, w) ∈ Rp × Rq. In order to prove this theorem, we need to find (x, u) ∈ L

and (y, v) ∈ L∗ such that

PL(z, w) = (x, u), PL∗(−z,−w) = (y, v). (4.5)

To prove item (1), suppose we have ⟨P(Rp
≥+)∗(−z), e⟩ ≥ ∥w∥. Then by using the conclusion

in the item (i) of Lemma 4.2.1, we must have u = 0. Since PL(z, w) = (x, 0) and

PL∗(−z,−w) = (y, v), then by using the Moreau’s decomposition theorem for L, we have

(x, 0) ∈ L, (y, v) ∈ L∗, ⟨(x, 0), (y, v)⟩ = 0 and (z, w) = (x, 0)− (y, v).

Thus,

x ∈ Rp
≥+, y ∈ (Rp

≥+)
∗, ⟨x, y⟩ = 0, z = x− y and v = −w.

Now, applying the Moreau’s decomposition theorem for Rp
≥+, we conclude that x =

PRp
≥+

(z) and y = P(Rp
≥+)∗(−z). Then by using (4.5), u = 0 and v = −w, we finished the

proof for item (1).

Then we will prove the item (2). Since PRp
≥+

(z)p ≥ ∥w∥, then from item (ii) of Lemma 4.2.1

we have v = 0. Since PL(z, w) = (x, u) and PL∗(−z,−w) = (y, 0), then by applying the

Moreau’s decomposition theorem for the cone L, we have

(x, u) ∈ L, (y, 0) ∈ L∗, ⟨(x, u), (y, 0)⟩ = 0 and (z, w) = (x, u)− (y, 0).

Hence, we have

x ∈ Rp
≥+, y ∈ (Rp

≥+)
∗, ⟨x, y⟩ = 0, z = x− y and u = w.

Then by using the Moreau’s decomposition theorem for Rp
≥+, we conclude that x =
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PRp
≥+

(z) and y = P(Rp
≥+)∗(−z). Then by using (4.5), v = 0 and u = w, we have

PL(z, w) = (PRp
≥+

(z), w), PL∗(−z,−w) = (P(Rp
≥+)∗(−z), 0).

Finally, we will show the satisfaction of item (3). We first note that by using

⟨P(Rp
≥+)∗(−z), e⟩ < ∥w∥, PRp

≥+
(z)p < ∥w∥ and item (iii) from Lemma 4.2.1, we obtain

that u ̸= 0 and v ̸= 0. Moreover, it follows from the Moreau’s decomposition theorem,

(4.5) is equivalent to

(x, u, y, v) ∈ C(L) (z, w) = (x, u)− (y, v). (4.6)

Since we have u ̸= 0, v ̸= 0 and (4.6), then by applying Proposition 4.1.2 we have the

following equivalent conditions

xp = ∥u∥, ⟨y, e⟩ = ∥v∥, ⟨u, v⟩ = −∥u∥∥v∥, (x− ∥u∥e, y − ∥v∥ep) ∈ C(Rp
≥+),

(4.7)

and

z = x− y, w = u− v. (4.8)

Since we have ⟨u, v⟩ = −∥u∥∥v∥, u ̸= 0 and v ̸= 0, there exists λ > 0 such that v = −λu.

Then from the second equality in (4.8) we have

u =
1

1 + λ
w, v = − λ

1 + λ
w. (4.9)

Meanwhile, the second equality in (4.7) implies ⟨y, e⟩ = ∥v∥. Then, we obtain

⟨y, e⟩ = λ

1 + λ
∥w∥. (4.10)

From (4.7) we have (x − ∥u∥e, y − ∥v∥ep) ∈ C(Rp
≥+), then by applying the Moreau’s
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decomposition theorem for Rp
≥+ we obtain

x− ∥u∥e = PRp
≥+

(x− ∥u∥e− y + ∥v∥ep)

and

y − ∥v∥ep = P(Rp
≥+)∗ (−x+ ∥u∥e+ y − ∥v∥ep) .

Thus, by using the first equality in (4.7) and (4.9) we obtain after some calculations that

x = PRp
≥+

(
z − 1

1 + λ
∥w∥e+ λ

1 + λ
∥w∥ep

)
+

1

1 + λ
∥w∥e; (4.11)

y = P(Rp
≥+)∗

(
−z + 1

1 + λ
∥w∥e− λ

1 + λ
∥w∥ep

)
+

λ

1 + λ
∥w∥ep. (4.12)

Hence, combining (4.5) with (4.9), (4.11) and (4.12) and taking into account second

equality (4.3) we will have

PL(z, w) =

(
PRp

≥+
(−f(λ)) + 1

1 + λ
∥w∥e, 1

1 + λ
w

)

and

PL∗(−z,−w) =
(
P(Rp

≥+)∗(−f(λ)) +
λ

1 + λ
∥w∥ep,− λ

1 + λ
w

)
.

The equation (4.4) will be obtained by using (4.10), (4.12) and second equality (4.3).

The uniqueness of λ > 0 which satisfies (4.4) follows from the uniqueness of PL(z, w) and

PL∗(−z,−w) .

Remark 4.2.1. If p = 1, then the problem of projecting onto MESOC will be the same

as the problem of projecting into the second order cone, then the projection formulas in

Theorem 4.2.2 could be found in exercise 8.3 (c) in [13].

Theorem 4.2.2 demonstrated the relationship between projecting into MESOC and pro-

jecting onto the monotone nonnegative cone. It is important to know how to compute

a projection onto the cones Rp
≥+. Thus, we will introduce the following theorem, which
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states that in order to compute a projection onto the cone Rp
≥+, we need to know how to

compute a projection onto the cones Rp
≥ and Rp

+, its proof can be found in [57].

Theorem 4.2.3. For any arbitrary x ∈ Rp, we have PRp
≥+

(x) = PRp
≥
(x)+ = PRp

+
(PRp

≥
(x)),

where PRp
≥
(u)+ = max {PRp

≥
(u), 0}, and Rp

+ denotes the nonnegative orthant.

In [8,55], some efficient numerical methods to compute projection onto the cones Rp
≥ have

be introduced. Meanwhile, for computing how to project onto the cones Rp
+, we have

the well-known formula in (4.2). Meanwhile, we also developed the following lemmas

which have shown the relationship between projection onto MESOC, projecting onto the

monotone nonnegative cone and projecting onto the monotone cone.

Lemma 4.2.4. Let λ > 0 be a real number, then λ is a solution of the equation ϕ(λ) = 0

if, and only if,

P(Rp
≥+)∗(−f(λ)) = P(Rp

≥)∗(−f(λ))

or

PRp
≥+

(f(λ)) = PRp
≥
(f(λ)).

Proof. Suppose that ϕ(λ) = 0. Since P(Rp
≥+)∗(−f(λ)) ∈ (Rp

≥+)
∗, by using the formula of

the dual cone of the monotone nonnegative cone which has been illustrated in Example

2.2, we have

〈
P(Rp

≥+)∗(−f(λ)), e1:j
〉
=

j∑
i=1

P(Rp
≥+)∗(−f(λ))i ≥ 0, j = 1, 2, . . . , p.

Thus, due to ϕ(λ) = 0, then by using the definition in (4.3), we have
〈
P(Rp

≥+)∗(−f(λ)), e
〉
=

0. Since the dual cone of Rp
≥ is given by

(Rp
≥)

∗ =

{
y ∈ Rn :

j∑
i=1

yj ≥ 0, j = 1, 2, . . . , p− 1,

p∑
i=1

yi = 0

}
.

Thus, P(Rp
≥+)∗(−f(λ)) ∈ (Rp

≥)
∗.

69



On the other hand, since we have (R≥)
∗ ⊆ (R≥+)

∗, then

min{∥ − f(λ)− x∥ , x ∈ (Rp
≥+)

∗} ≤ min{∥ − f(λ)− x∥ , x ∈ (Rp
≥)

∗}.

Hence, by considering that P(Rp
≥+)∗(−f(λ)) = argmin{∥ − f(λ) − x∥ , x ∈ (Rp

≥+)
∗}, the

projection onto a closed convex set is unique and that P(Rp
≥+)∗(−f(λ)) ∈ (Rp

≥)
∗, we get

P(Rp
≥+)∗(−f(λ)) = P(Rp

≥)∗(−f(λ)).

Moreover, the second equality is an immediate consequence of the Moreau’s decomposition

theorem for Rp
≥.

Reciprocally, assume that P(Rp
≥+)∗(−f(λ)) = P(Rp

≥)∗(−f(λ)). Thus, the result follows by

combining definitions of the dual cone of the monotone cone in Example 1.3.1 and the

dual cone of the monotone nonnegative cone in Example 1.3.2 and (4.3).

Lemma 4.2.5. The real number λ > 0 is a solution of the equation ϕ(λ) = 0 if, and only

if, PRp
+
(PRp

≥
(f(λ))) = PRp

≥
(f(λ)), or equivalently PRp

≥
(f(λ)) ∈ Rp

+.

Proof. The proof follows by combining Theorem 4.2.3 with Lemma 4.2.4.

4.3 Conclusions and comments

In this chapter, we first present the properties of the complementarity set on the MESOC

in Proposition 4.1.1 and Proposition 4.1.2. Then, we have illustrated that the problem of

projection onto the monotone extended second order cone can be reduced to an isotone

regression problem in neighbouring dimensions by using the Moreau’s decomposition the-

orem and the properties of the complementarity set of MESOC in Theorem 4.2.2, which is

the main theorem of this chapter. The isotone regression problem can be efficiently solved

by using the pool-adjacent-violater algorithm [8, 23]. The complexity of the projection

method proposed in the main theorem is considerably lower than the reformulation of this

70



problem, which is to convert the projection problem onto a conic optimisation problem on

the second order cone. The reformulation of the problem of projection has been present at

the beginning of this chapter in (4.1). We expect some other conic optimisation problems

will be easily solved by using this projection method than by transforming them into

second order conic optimisation problems.

The projection onto the MESOC can be a useful ‘ingredient’ of projection methods

for the latter problem. We will study a portfolio optimisation problem on the MESOC

in the next chapter, which is an important application of the MESOC and indicates that

the MESOC is useful in portfolio selection, see [56, 83]. Furthermore, we also predict

more direct applications of the projection onto MESOC to practical problems. These

applications would be regressions with respect to a set of points whose distance (more

generally a ‘cost’) from a source point is expected to decrease, and only the position of

the point closest to the source is important.
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CHAPTER 5

THE LINEAR COMPLEMENTARITY PROBLEM
ON THE MESOC

In the previous chapters, we introduced the monotone extended second order cone (MESOC)

and studied the basic properties of this cone. We calculated the Lyapunov rank and pre-

sented the formula of Lyapunov-like transformation and positive operator of this cone.

We also showed that the MESOC can be used as a tool in finding the solutions to the

mixed complementarity problem on general cones by using the isotonicity properties of

this cone. We expect that the problems based on the MESOC can be solved in a more

efficient way by using the inner structure of the MESOC. Indeed, in the last chapter, we

have illustrated such a particular problem of how to project onto the MESOC, which is

much easier to solve directly by using the properties of the complementarity set of the

MESOC rather than solving the reformulated second order conic optimisation problem.

In recent years, several applications based on the complementarity problems have been

defined on different cones, such as extensions of second order cones, positive semidefinite

cones, or direct product of these cones have emerged. Those applications based on the

complementarity problems defined on the cones mentioned above are in robotics [3], ro-

bust game theory [54, 65], and elastoplasticity [84, 85]. All these applications come from

the Karush–Kuhn–Tucker conditions of second order conic optimisation problems. The

applications mentioned above for different cones indicated the importance of investigating

different cones and the complementarity problems on cones, and the importance of cones
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and complementarity motivated us to consider the complementarity problems based on

the MESOC and practical applications based on this cone.

The results in this chapter are mainly from my joint work with my supervisor, S.Z.

Németh [38]. In this chapter, we studied the linear complementarity problems on the

monotone extended second order cone. We demonstrated that the linear complementar-

ity problem on the monotone extended second order cone can be converted into a mixed

complementarity problem on the non-negative orthant defined in a neighbouring dimen-

sion. We proved that any point satisfying equation related to the Fischer–Burmeister

(FB) complementarity function is a solution to the converted problem. We also showed

that the semi-smooth Newton method could be used to solve the converted problem and

provided a numerical example as well. Finally, we formulated a portfolio optimisation

problem based on the monotone extended second order cone, which indicates that the

MESOC is useful in portfolio selection. We also derived the explicit solution to the port-

folio optimisation problem mentioned above. Note that in this section, as we use L to

denote the lower triangular matrix, then, in order to avoid messing up notations, we will

denote L to be the MESOC andM to be the dual cone of MESOC.

5.1 Problem formulation

Recall that in Definition 1.3.6, we have presented the definition of the linear complemen-

tarity problem on general cones. For the sake of completeness, we will first formulate the

linear complementarity problem on the monotone extended second order cone.

For two arbitrary positive numbers p,q and n such that p+q = n, let T =

A B

C D

 ∈
Rn×n be an arbitrary nonsingular block matrix matrix such that A ∈ Rp×p, B ∈ Rp×q,

C ∈ Rq×p and D ∈ Rq×q are fixed matrices. Let (x, u), (y, v) be two arbitrary vectors such

that x, y ∈ Rp and u, v ∈ Rq. The formulation of the linear complementarity problem

defined on the monotone extended second order cone L ∈ Rn with a fixed vector r ∈ Rn
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and a linear mapping F : Rn → Rn such that F (x, u) = T (x, u) + r is as follows:

LCP(T, r,L) :=


find a (x, u)⊤ ∈ L, such that

F (x, u) ∈M and ⟨(x, u)⊤, F (x, u)⟩ = 0,

whereM is the dual cone of MESOC.

Then, based on Proposition 2.1.6, the following theorem is developed. It indicates the

relationship between the linear complementarity problem on the MESOC with several

other different complementarity problems defined on various cones.

Theorem 5.1.1. Let (x, u), (y, v) be arbitrary vectors with x, y ∈ Rp and u, v ∈ Rq.

Consider the nonsingular block matrix

T =

A B

C D

 ,

where A ∈ Rp×p, B ∈ Rp×q, C ∈ Rq×p and D ∈ Rq×q are constant matrices. Then,

for arbitrary vectors z and r, such that z = (x, u) and r = (y, v). In this theorem, to

avoid messing up the notations, all the notations with a form as x′ denote a variable. Let

L ∈ Rp+q be the monotone extended second order cone. The following statements hold:

(i) Let u = 0. Then, z is a solution of LCP (T, r,L) if and only if x is a solution of

LCP (A, y,Rp
≥+) , xp = 0 and

∑p
i=1(Axi + yi) ≥ ∥Cx+ v∥.

(ii) Let Cx + Du + v = 0. Then, z is a solution of LCP (T, r,L) if and only if x is a

solution of MiCP (G,H,Rp
≥+) , xi ≥ ∥u∥, and

∑p
i=1(Ax + Bu + v)i = 0, where G

and H are defined by the formulas G(x′, u′) = Ax′ +Bu′ + y and H(x′, u′) = 0.

(iii) Let u ̸= 0 ̸= Cx+Du+ v. Then, z is a solution of LCP (T, r,L) if and only if z is

a solution of MiICP (G,H, F,Rp
≥+), where F , G and H are defined by the formulas

F (x′, u′) = x′ − ∥u′∥e, G(x′, u′) = Ax′ +Bu′ + y − ∥Cx′ +Du′ + v∥ep,
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and

H(x′, u′) = u′e⊤(Ax′ +Bu′ + y) + ∥u′∥(Cx′ +Du′ + v).

(iv) Let z̄ = (x̄, u) = (x− ∥u∥e, u) and u ̸= 0 ̸= Cx +Du + v. Then, z is a solution of

LCP (T, r,L) if and only if z̄ is a solution of MiCP (Ḡ, H̄,Rp
≥+), where Ḡ and H̄

are defined by the formulas

Ḡ(x′, u′) = A(x′ + ∥u′∥e) +Bu′ + y − ∥Cx′ + ∥u′∥e) +Du′ + v∥ep,

and

H̄(x′, u′) = u′e⊤(A(x′ + ∥u′∥e) +Bu′ + y) + ∥u′∥(C(x′ + ∥u′∥e) +Du′ + v).

(v) When u ̸= 0 ̸= Cx + Du + v, the problem of finding a solution z = (x, u) of the

linear complementarity problem LCP (T, r,L) is converted to a problem of finding a

vector z = (x, u) such that (α, β) ∈ C(Rp
+), where

α =



x1 − x2

x2 − x3
...

xp−1 − xp

xp − ∥u∥


and β =



(Ax+Bu+ y)1∑2
i=1(Ax+Bu+ y)i

...∑p−1
i=1 (Ax+Bu+ y)i∑p
i=1(Ax+Bu+ y)i


.

Moreover, let

x′i(w
′) =

p−1∑
j=i

w′
j + x′p =

p−1∑
j=i

w′
j + ∥u′∥,

for any i = 1, 2, . . . , p − 1 and any x′, w′ ∈ Rp, u′ ∈ Rq. Let x′p(w
′) = ∥u′∥. Then,

the problem of finding a vector z = (x, u) such that (α, β) ∈ C(Rp
+) is equivalent to
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the problem of finding a solution of MiCP (Ĝ, Ĥ,Rp−1
+ ), where

Ĝ(w′, u′) =



(Ax′(w′) +Bu′ + y)1∑2
i=1(Ax

′(w′) +Bu′ + y)i
...∑p−1

i=1 (Ax
′(w′) +Bu′ + y)i


and

Ĥ(w′, u′) = u′e⊤(Ax′(w′) +Bu′ + y) + ∥u′∥(Cx′(w′) +Du′ + v)

(vi) Let t = ∥u∥. Then, z is a solution of LCP (T, r,L) if and only if x is a solution of

MiCP (G̃, H̃,Rp−1
+ ), where G̃ and H̃ are defined by the formulas

G̃(w′, u′, t′) =



(Ax′(w′, t′) +Bu′ + y)1∑2
i=1(Ax

′(w′, t′) +Bu′ + y)i
...∑p−1

i=1 (Ax
′(w′, t′) +Bu′ + y)i


∈ Rp−1

+ ,

H̃(w′, u′, t′) =

u′e⊤(Ax′(w′, t′) +Bu′ + y) + t′(Cx′(w′, t′) +Du′ + v)

t′2 − ∥u′∥2


and

x′(w′, t′) =



w′
1 + w′

2 + . . .+ w′
p−1 + t′

w′
2 + . . .+ w′

p−1 + t′

...

w′
p−1 + t′

t′


.

Proof.

(i) By the definition of the linear complementarity problem, z = (x, 0) is a solution

of LCP (T, r,L) if and only if (x, 0, Ax+ y, Cx+ v) ∈ C(L), which, by using item (ii) in
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Proposition 4.1.2, is equivalent to xp = 0,
∑p

i=1(Axi + yi) ≥ ∥Cx+ v∥ and (x,Ax+ y) ∈

C(Rp
≥+). Finally, that is further equivalent to x being a solution of LCP (A, y,Rp

≥+).

(ii) Let Cx + Du + v = 0. By the definition of the linear complementarity problem,

z = (x, u) is a solution of LCP (T, r,L) if and only if (x, u,Ax+Bu+y, 0) ∈ C(L), which,

by using item (iii) of Proposition 4.1.2, is equivalent to xi ≥ ∥u∥, e⊤(Ax + Bu + y) = 0

and (x,Ax+Bu+y) ∈ C(Rp
≥+). We conclude that z = (x, u) is a solution of LCP (T, r,L)

if and only if z = (x, u) is a solution of MiCP (G,H,Rp
≥+).

(iii) By using the definition of linear complementarity problem, if z = (x, u) is a

solution of LCP (T, r,L), then we have (x, u,Ax+Bu+ y, Cx+Du+ v) ∈ C(L). Then,

from item (iv) of Proposition 4.1.2 and the equality case in the Cauchy inequality, we

have that (x, u,Ax + Bu + y, Cx + Du + v) ∈ C(L) is equivalent to the existence of a

λ > 0 such that the following equations hold:

xp = ∥u∥,

Cx+Du+ v = −λu, (5.1)

e⊤(Ax+Bu+ y) = ∥Cx+Du+ v∥ = λ∥u∥ (5.2)

and

(x− ∥u∥e, Ax+Bu+ y − ∥Cx+Du+ v∥ep) ∈ C(Rp
≥+). (5.3)

By using (5.3), we conclude that

(F (x, u), G(x, u)) ∈ C(Rp
≥+).

By using equation (5.1) and (5.2), we have

H(x, u) = ue⊤(Ax+Bu+ y) + ∥u∥(Cx+Du+ v) = 0.

Thus, z being a solution of LCP (T, r,L) is equivalent to z being a solution of
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MiICP (G,H, F,Rp
≥+).

(iv) Let z̄ = (x̄, u) = (x−∥u∥e, u) then by using the notations and conclusion in (iii),

we have F (x, u) ⊥ G(x, u). We also have that

F (x, u) = x− ∥u∥e = x̄

and

G(x, u) = Ax+Bu+ y − ∥Cx+Du+ v∥ep

= A(x̄+ ∥u∥e) +Bu+ y − ∥C(x̄+ ∥u∥e) +Du+ v∥ep

= Ḡ(x̄, u).

Thus, x̄ ⊥ Ḡ(x̄, u).

From the proof of (iii), we get

0 = H(x, u) = ue⊤(Ax+Bu+ y) + ∥u∥(Cx+Du+ v)

= ue⊤(A(x̄+ ∥u∥e) +Bu+ y) + ∥u∥(C(x̄+ ∥u∥e) +Du+ v)

= H̄(x̄, u)

Hence, z = (x, u) being a solution of LCP (T, r,L) is equivalent to z̄ = (x−∥u∥e, u) being

a solution of MiCP (Ḡ, H̄,Rp
≥+).

(v) If z = (x, u) is a solution of the linear complementarity problem LCP (T, r,L) we

have

L ∋

x
u

 ⊥
Ax+Bu+ y

Cx+Du+ v

 ∈M.
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From (x, u) ∈ L and (Ax+Bu+ y, Cx+Du+ v) ∈M, we have



x1 − x2

x2 − x3
...

xp−1 − xp

xp − ∥u∥


∈ Rp

+ and



(Ax+Bu+ y)1∑2
i=1(Ax+Bu+ y)i

...∑p−1
i=1 (Ax+Bu+ y)i∑p
i=1(Ax+Bu+ y)i


∈ Rp

+.

We also note that, from Proposition 2.1.6 it follows that for an arbitrary vector (x, u, y, v) ∈

C(L), we have the conditions

xp = ∥u∥,
p∑

i=1

yi = ∥v∥,

(xi − xi+1)
i∑

j=1

yj = 0, ∀i = 1, . . . , p− 1.

v = −λu.

Then, in our case, since (x, u,Ax+Bu+ y, Cx+Du+ v) ∈ C(L), we have

Rp
+ ∋



x1 − x2

x2 − x3
...

xp−1 − xp

xp − ∥u∥


= α ⊥ β =



(Ax+Bu+ y)1∑2
i=1(Ax+Bu+ y)i

...∑p−1
i=1 (Ax+Bu+ y)i∑p
i=1(Ax+Bu+ y)i


∈ Rp

+. (5.4)

where

xp = ∥u∥, Cx+Du+ v = −λu, and
p∑

i=1

(Ax+Bu+ y)i = ∥Cx+Du+ v∥.

Then the problem of finding a solution z = (x, u) of the linear complementarity problem
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LCP (T, r,L) is converted to a problem of finding a vector z = (x, u) such that (α, β) ∈

C(Rp
+).

Moreover, let w ∈ Rp such that wi = xi − xi+1 for any i = 1, 2, . . . , p − 1 and

wp = xp−∥u∥ = 0. Then we have x = x(w) where xi(w) =
∑p−1

j=i wj+xp =
∑p−1

j=i wj+∥u∥

for any i = 1, 2, . . . , p− 1 and xp(w) = ∥u∥. Thus, (5.4) is equivalent to

Rp
+ ∋



w1

w2

...

wp−1

wp


= α ⊥ β =



(Ax(w) +Bu+ y)1∑2
i=1(Ax(w) +Bu+ y)i

...∑p−1
i=1 (Ax(w) +Bu+ y)i∑p
i=1(Ax(w) +Bu+ y)i


∈ Rp

+. (5.5)

We also have from the solution of (iv) that

Ĥ(w, u) = ue⊤(Ax(w) +Bu+ y) + ∥u∥(Cx(w) +Du+ v) = 0.

Hence, the solution of (5.5) is equivalent to the solution of MiCP (Ĝ, Ĥ,Rp−1
+ ).

(vi) Note that the function Ĥ(w, u) is a semi-smooth function and it is not differ-

entiable at u = 0. Thus, we need to reformulate this function to make sure it can be

differentiable everywhere. Let t = ∥u∥. Then, similarly to the proof of (v), for any

(x, u,Ax+Bu+ y, Cx+Du+ v) ∈ C(L), we have

Rp
+ ∋



x1 − x2

x2 − x3
...

xp−1 − xp

xp − t


= α ⊥ β =



(Ax+Bu+ y)1∑2
i=1(Ax+Bu+ y)i

...∑p−1
i=1 (Ax+Bu+ y)i∑p
i=1(Ax+Bu+ y)i


∈ Rp

+. (5.6)
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where

xp = t, Cx+Du+ v = −λu, and
p∑

i=1

(Ax+Bu+ y)i = ∥Cx+Du+ v∥.

Next, let ŵ ∈ Rp such that ŵi = xi− xi+1 for any i = 1, 2, . . . , p− 1 and ŵp = xp− t = 0.

Then, we have x = x(ŵ, t), where xi(ŵ) =
∑p−1

j=i ŵj + xp =
∑p−1

j=i ŵj + t, for any i =

1, 2, . . . , p− 1 and xp(w) = ∥u∥. Thus, (5.6) is equivalent to

Rp−1
+ ∋



ŵ1

ŵ2

...

ŵp−1


= α̂ ⊥ β̂ =



(Ax(ŵ, t) +Bu+ y)1∑2
i=1(Ax(ŵ, t) +Bu+ y)i

...∑p−1
i=1 (Ax(ŵ, t) +Bu+ y)i


∈ Rp−1

+ . (5.7)

We also have from the solution of (v) that

H̃(ŵ, u, t) =

ue⊤(Ax(ŵ, t) +Bu+ y) + t(Cx(ŵ, t) +Du+ v)

t2 − ∥u∥2

 = 0

Hence, the solution of (5.7) is equivalent to the solution of MiCP (G̃, H̃,Rp−1
+ ).

5.2 Fischer–Burmeister function and the associated

merit function

Theorem 5.1.1 shows that the linear complementarity problem on the monotone extended

second order cone can be converted to a mixed complementarity problem defined on the

non-negative orthant (defined by Facchinei and Pang, see Subsection 9.4.2 in [28]). By

using this transformation scheme, we can study the linear complementarity problem on

the MESOC by finding the solution to the converted problem, which is the mixed comple-
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mentarity problem on the nonnegative orthant. Moreover, in [34, 35], Fischer introduced

the Fischer–Burmeister complementarity function, which is a useful tool in finding the

solution to the mixed complementarity problem on the nonnegative orthant. For arbitrary

numbers a and b, the Fischer–Burmeister (FB) complementarity function (C-function) is

defined as follows

ϕ(a, b) =
√
a2 + b2 − (a+ b).

From the definition of the FB C-function, we can conclude the following property

ϕ(a, b) = 0⇐⇒ a ≥ 0, b ≥ 0 and ab = 0.

We also note that ϕ(a, b) is a continuously differentiable function on R2 \ O. By us-

ing the function above, for any continuously differentiable function G̃, where G̃ = (G̃1,

G̃2,. . . ,G̃p−1). Then by using the notations given in item (vi) in Theorem 5.1.1, the mixed

complementarity problem, MiCP (G̃, H̃,Rp−1
+ ) is equivalent to the following root finding

problem for Φ(ω̂, u, t) = 0, where

Φ(ω̂, u, t) =



ϕ(ω̂1, G̃1(ω̂, u, t))

ϕ(ω̂2, G̃2(ω̂, u, t))

...

ϕ(ω̂p−1, G̃p−1(ω̂, u, t))

H̃(ω̂, u, t)


.

Since the mixed complementarity problem MiCP (G̃, H̃,Rp−1
+ ) is generated by using the

FB function, then we have a very useful property, that is, if there exists a point (ω̂∗, u∗, t∗),

such that the function

Φ(ω̂∗, u∗, t∗) = 0,

then we have that the point (ω̂∗, u∗, t∗) is a solution to the mixed complementarity problem

MiCP (G̃, H̃,Rp−1
+ ). Note that the last equality is semi-smooth. Thus, it can be solved by
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using the semi-smooth Newton method, which means we need to formulate the generalised

Jacobian for the function Φ(ω̂, u, t), which in the sequel we will call generalised Jacobian.

Meanwhile, there is another way to reformulate the semi-smooth function to a smooth

function. Note that for the FB C-function ϕ(a, b), we have ϕ(a, b)2 is continuously differen-

tiable in R2. Then, consider the associated natural merit function of MiCP (G̃, H̃,Rp−1
+ )

Ψ(ω̂, u, t) :=
1

2
Φ(ω̂, u, t)⊤Φ(ω̂, u, t).

The function Ψ(ω̂, u, t) is continuously differentiable. Note that the natural merit func-

tion equals zero at a point x∗ if and only if x∗ is a solution of MiCP (G̃, H̃,Rp−1
+ ).

Meanwhile, we have Ψ(ω̂, u, t) ≥ 0 as it is a quadratic function. Thus, if the point

(ω̂∗, u∗, t∗) is a solution to Ψ(ω̂, u, t) = 0, then it is also a global minimiser of Ψ(ω̂, u, t).

On the other hand, if the point (ω̂∗, u∗, t∗) is the global minimiser of Ψ(ω̂, u, t) such that

Ψ(ω̂∗, u∗, t∗) = 0, then the point (ω̂∗, u∗, t∗) is a solution to the mixed complementarity

problemMiCP (G̃, H̃,Rp−1
+ ). Thus, the problem of finding a solution toMiCP (G̃, H̃,Rp−1

+ )

is equivalent to the problem of finding the stationary point (ω̂∗, u∗, t∗) of the unconstrained

problem {minΨ(ω̂, u, t)}. Then in Section 5.3, we discuss the case where the Fischer-

Burmeister function was implemented, and in Section 5.4, we focus on how to find the

minimiser of the associated natural merit function of MiCP (G̃, H̃,Rp−1
+ ).

5.3 Generalized Newton method for semismooth func-

tion

In this section, the formula of the generalised Jacobian for the FB-C function will be

derived, and the corresponding semismooth Newton method will also be presented.

First, let us define the following matrix. LetD1 = diag(d11(ω̂, u, t), . . . , dp−1,p−1(ω̂, u, t))
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and D2 = diag(d′11(ω̂, u, t), . . . , d
′
p−1,p−1(ω̂, u, t)), where

dii =
ω̂i√

ω̂2
i + (G̃)2i (ω̂, u, t)

− 1

and

d′ii =
G̃i(ω̂, u, t)√

ω̂2
i + (G̃)2i (ω̂, u, t)

− 1

when ω̂i ̸= 0 or (G̃)i ̸= 0. For the case when ω̂i = 0 = (G̃)i, we have,

(dii, d
′
ii) ∈ {(y, z) : (y + 1)2 + (z + 1)2 = 1}.

Then the generalised Jacobian of the FB C-function is the set given by

∂Φ(ω̂, u, t) ⊆

D1 +D2Jω̂G̃(ω̂, u, t) D2J(u,t)G̃(ω̂, u, t)

Jω̂H̃(ω̂, u, t) J(u,t)H̃(ω̂, u, t)

 .

Thus, for an arbitrary element in the set of generalised Jacobian

G ∈ ∂Φ(ω̂, u, t)

when ω̂i ̸= 0 ̸= G̃i(ω̂, u, t), we have

(G)i(ω̂, u, t) = diie
i + d′iiJω̂(G̃i(x, u, t))

=

 ω̂i√
ω̂2
i + (G̃)2i (ω̂, u, t)

− 1

 ei +

 (G̃)i√
ω̂2
i + (G̃)2i (ω̂, u, t)

− 1

 Jω̂G̃i(x, u, t).

Then for the case when ω̂i = 0 = (G̃)i, note that the FB C-function is semismooth at

the point (0, 0), then the generalised Jacobian can be obtained by using the generalised

gradient on a composite function with ∂∥(0, 0)∥ = B((0, 0), 1), where B(x, 1) denotes a

closed ball centred at a point x with the radius of 1. Thus, for the case when ω̂i = 0 =
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G̃i(ω̂, u, t), we have

(G)i(ω̂, u, t) =
{(
d11e

i + d′11Jω̂G̃i(ω̂, u, t) : (d11, d
′
11) ∈ B((−1,−1), 1)

)}
.

After obtaining the generalised Jacobian formula for the FB C-function, the conceptual

version of the semismooth Newton method is given as follows.

Algorithm 1 Newton’s method for the semismooth systems

Step 0: Set an initial point z0 = (ω̂, u, t) ∈ Rp+q, set k = 0
Step 1: Unless we have Φ(zk) = 0, solve the following system

G(zk)dk = −Φ(zk)

and get the value dk, where G(zk) is an arbitrary element picked in ∂Φ(zk)
Step 2: Set zk+1 = zk + dk, k = k + 1 and go back to Step 1.

Then, by using Algorithm 1, we can obtain the solution z∗ = (ω̂∗, u∗, t∗) to the equation

Φ(ω̂, u, t) = 0. Hence, z∗ = (ω̂∗, u∗, t∗) is a solution to the mixed complementarity problem

MiCP (G̃, H̃,Rp−1
+ ). Thus, by using the following backtracking method derived from

item (vi) in Theorem 5.1.1, we obtain the solution (x∗, u∗) to the linear complementarity

problem LCP (T, r,L).

Algorithm 2 Backtracking method

Step 0: Set a null vector x ∈ Rp, set k = p− 1
Step 1: Let xp = t,
Step 2: Stop until k = 0, let

xk = xk+1 + ω̂k.

Step 3: Set k = k − 1 and go back to Step 2.

Note that in Algorithm 1, we can only obtain the step-size dk when the generalised

Jacobian of the FB C-function is non-singular. Then, we need to illustrate the condition

of the generalised Jacobian. For the sake of completeness, the definition of the P0 matrix

is given below.

Definition 5.3.1 (P0 matrix). [see [20]] Denote A ∈ Rn×n be a matrix, then the matrix

A is a P0 matrix if all the principle minors of matrix A are non-negative. Moreover, A

is a P -matrix if all the principle minors of A are positive.
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Next, we define a quadruple of disjoint index sets and a sufficient condition for the gen-

eralised Jacobian to be nonsingular. For any i = 1, 2, . . . , k, denote

α =
{
i : ω̂i = 0 < G̃i(ω̂, u, t)

}
β =

{
i : ω̂i = 0 = G̃i(ω̂, u, t)

}
γ =

{
i : ω̂i > 0 = G̃i(ω̂, u, t)

}
δ = {1, 2, . . . , k} \ (α ∪ β ∪ γ)

Then the following proposition holds:

Proposition 5.3.1 (Proposition 9.4.2, [28]). If G̃(ω̂, u, t) and H̃(ω̂, u, t) are two contin-

uously differentiable function, let γ̄ := α ∪ β ∪ δ. Then, if the following two conditions

hold, then the Jacobian is nonsingular.

• The following matrices are nonsingular for any γ̄ satisfied γ ⊆ γ̄ ⊆ γ ∪ β:

 J(u,t)H̃(ω̂, u, t) Jω̂γ̄H̃(ω̂, u, t)

J(u,t)G̃γ̃(ω̂, u, t) Jω̂γ̄G̃γ̃(ω̂, u, t)


• The Schur complement of the matrix

 J(u,t)H̃(ω̂, u, t) Jω̂γ̄H̃(ω̂, u, t)

J(u,t)G̃γ̄(ω̂, u, t) Jω̂γ̄G̃γ̄(ω̂, u, t)


in  J(u,t)H̃(ω̂, u, t) Jω̂ᾱH̃(ω̂, u, t)

J(u,t)G̃γ̄(ω̂, u, t) Jω̂ᾱG̃ᾱ(ω̂, u, t)


is a P0 matrix, where ᾱ = β ∪ γ ∪ δ.

It is known (see Theorem 7.5.3 in [28]) that if the generalised Jacobian of the FB

C-function is non-singular, then the convergence rate of the semismooth Newton method

for the mixed complementarity problem MiCP (G̃, H̃,Rp−1
+ ) is Q-quadratic. In order to
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solve the mixed complementarity problem MiCP (G̃, H̃,Rp−1
+ ), one may use some other

algorithms, which have been discussed in [9, 28, 82], such as Levenberg-Marquardt algo-

rithm or semismooth inexact Newton method. However, as the convergence rates for both

the Levenberg-Marquardt algorithm and the semismooth inexact Newton method are at

least linear, but when the generalised Jacobian is singular, the semismooth inexact Now-

ton method cannot be implied while the Levenberg-Marquardt algorithm can be used,

see [82].

5.4 Finding the minimiser of the merit function

In this section, we will discuss the other approach we considered in the previous section

when solving the mixed complementarity problem. Recall that (ω̂∗, u∗, t∗) is a solution to

the mixed complementarity problem if it is a solution of the merit function Ψ(ω̂, u, t) = 0.

Since the merit function Ψ(ω̂, u, t) is a quadratic function, then if (ω̂∗, u∗, t∗) is a solution

of Ψ(ω̂, u, t) = 0, then (ω̂∗, u∗, t∗) is a global minimiser of the function Ψ(ω̂, u, t). Since

the merit function is continuously differentiable, then it is convex, then it is not difficult

to find its global minimiser. Otherwise, if the merit function is nonconvex, the problem

becomes difficult as we lack tools to work with a nonconvex case. In order to address this

problem, we introduce the definition of a stationary point.

Definition 5.4.1. A point (ω̂∗, u∗, t∗) is called as a stationary point of a merit function

Ψ(ω̂, u, t) if the following inequality holds for any (ω̂, u, t) ∈ Rp
+ × Rq × R

〈
(ω̂ − ω̂∗, u− u∗, t− t∗)⊤,∇Ψ(ω̂∗, u∗, t∗)

〉
≥ 0.

The above problem is a variational inequality problem. But we can find that a point

(ω̂∗, u∗, t∗) is a stationary point of Ψ(ω̂, u, t) cannot guarantee that it is also a global

minimiser of Ψ(ω̂, u, t). Thus, the definition of FB-regular will be introduced. First, let
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us consider the following index sets that have been introduced in [28],

C = {i : vi ≥ 0, Hi(u, v) ≥ 0, viHi(u, v) = 0}, (complementarity indices)

R = {1, 2, . . . , n} \ C, (residual indices)

P = {i ∈ R : vi > 0, Hi(u, v) > 0}, (positive indices)

N = {1, 2, . . . , q} \ (C ∪ P) , (negative indices),

and for any arbitrary vector z, denote zS to be the i-th coordinate of z, where i is an

arbitrary integer such that i ∈ S and S ∈ {C,P ,N}.

First, we will include the definition of a point to be FB-regular

Definition 5.4.2. (FB-regular)[Definition 9.1.13, [28]] For the general formula of

mixed complementarity problem MiCP (G,H), for arbitrary x ∈ Rp, u ∈ Rq and t ∈ R,

denote ũ = (u, t)⊤, then a point (x, u, t),is called FB-regular if JũH(x, u, t) is non-singular

and if for any non-zero vector z ∈ Rq such that

zC = 0, zP > 0, zN < 0,

there exists a non-zero vector w ∈ Rq such that

wC = 0, wP ≥ 0, wN ≤ 0

and

z⊤ (M(x, u, t)/JũH(x, u, t))w ≥ 0

where

M(x, u, t) =

JxG(x, u, t) JũG(x, u, t)

JxH(x, u, t) JũH(x, u, t)

 ∈ R(p+q+1)×(p+q+1)

and M(x, u, t)/JũH(x, u, t) is the Schur complement of JũH(x, u, t) in M(x, u, t).
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Thus, in our case, for the mixed complementarity problemMiCP
(
G̃(ŵ, u, t), H̃(ŵ, u, t)

)
,

the Jacobian of G̃ and H̃ are given as

JG̃(ŵ, u, t) =
(
JŵG̃(ŵ, u, t), JũG̃(ŵ, u, t)

)
=

(
Ã B̃

)
,

JH̃(ŵ, u, t) =
(
JŵH̃(ŵ, u, t), JũH̃(ŵ, u, t)

)
=

(
C̃ D̃

)
,

where

Ã =



a11 a11 + a12 . . . a11 + a12 + . . .+ a1,p−1∑2
i=1 ai1

∑2
i=1(ai1 + ai2) . . .

∑2
i=1(ai1 + ai2 + . . .+ ai,p−1)

...
...

. . .
...∑p

i=1 ai1
∑2

i=1(ai1 + ai2) . . .
∑2

i=1(ai1 + ai2 + . . .+ ai,p−1)


= LIAp−1,p−1UI ,

where

LI =



1 0 . . . 0

1 1 . . . 0

...
...

. . .
...

1 1 . . . 1


,

UI =



1 1 . . . 1

0 1 . . . 1

...
...

. . .
...

0 0 . . . 1


,

and Ai,j is a sub-matrix of A, where

Ai,j =



a11 a12 . . . a1j

a21 a22 . . . a2j
...

...
. . .

...

ai1 ai2 . . . aij


,

.
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B̃ =



b11 b12 . . . b1q∑2
i=1 bi1

∑2
i=1 bi2 . . .

∑2
i=1 biq

...∑p−1
i=1 bi1

∑p−1
i=1 bi2 . . .

∑p−1
i=1 biq

a11 + a12 + . . .+ a1p∑2
i=1(ai1 + ai2 + . . .+ aip)

...∑p−1
i=1 (ai1 + ai2 + . . .+ aip)


=

(
LIB LIAp−1,pe

)
,

C̃ =

tC∗ + ue⊤A∗

0

 ,

where

A∗ =



a11 a11 + a12 . . .
∑p−1

i=1 a1i

a21 a21 + a22 . . .
∑p−1

i=1 c2i
...

...
. . .

...

ap1 ap1 + ap2 . . .
∑p−1

i=1 api


and

C∗ =



c11 c11 + c12 . . .
∑p−1

i=1 c1i

c21 c21 + c22 . . .
∑p−1

i=1 c2i
...

...
. . .

...

cq1 cq1 + cq2 . . .
∑p−1

i=1 cqi


or equivalent to

C̃ =

tCUI + ue⊤AUI

0

 .

Moreover

D̃ =

tD + ue⊤B + (Ax(ŵ, t) +Bu+ y)⊤ eIq×q Du+ v + Cx(ŵ, t) + tCe+ ue⊤Ae

−2u⊤ 2t


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where

x(ŵ, t) =



ŵ1 + ŵ2 + . . .+ ˆwp−1 + t

ŵ2 + . . .+ ˆwp−1 + t

...

ˆwp−1 + t


.

Then, if the Jacobian D̃ = JũH̃(ŵ, u, t) is non-singular, the Schur complement of D̃ of

the matrix M(ŵ, u, y) is (
M/D̃

)
= Ã− B̃D̃−1C̃

The following theorem was introduced by Facchinei and Pang. For the sake of complete-

ness, we quote Theorem 9.4.4 in [28] and provide detailed proof here.

Theorem 5.4.1. For arbitrary vectors ŵ ∈ Rp−1, u ∈ Rq and t ∈ R, we have z = (ŵ, u, t)

is a solution of MiCP (G̃, H̃,Rp−1
+ ) if and only if z is a FB-regular point of Ψ(x) as well

as a stationary point of Φ(x).

Proof. First, suppose z = (ŵ, u, t) is a solution to MiCP (G̃, H̃,Rp−1
+ ). Then we have

z = (ŵ, u, t) as a stationary point as well as the global minimum of the associate merit

function Φ(x). Moreover, z = (ŵ, u, t) is a solution to MiCP (G̃, H̃,Rp−1
+ ), which implies

that (ŵ, G̃(z)) ∈ C(Rp−1
+ ). Then we have ŵ = wc. Thus, the FB-regularity holds for ŵ

and P = ∅ = N .

Conversely, if z = (ŵ, u, t) is a stationary point of the merit function Ψ(x), then

∇Ψ(z) = 0 which implies that

(∂Φ(ŵ, u, t))⊤Φ(ŵ, u, t) =

D1 + Ã⊤D2 C̃⊤

B̃⊤D2 D̃⊤

Φ(ŵ, u, t) = 0

Thus, for any arbitrary vector x ∈ Rp+q, we have

x⊤

D1 + Ã⊤D2 C̃⊤

B̃⊤D2 D̃⊤

Φ(ŵ, u, t) = 0. (5.8)
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For vector x, we have that

xC = 0, xP > 0, xN < 0.

Then if z is not a solution to MiCP (G̃, H̃,Rp−1
+ ), we have {1, 2, . . . , p + q} \ C ≠ ∅. Let

y := D2Φ(x), see [Equation (9.1.14), [28]], and we have

yC = 0, yP > 0, yN < 0.

By using the definitions of D1 and D2, we conclude that D1Φ(x) and D2Φ(x) have the

same sign. Thus,

x⊤(D1Φ) = x⊤C (D1Φ)C + x⊤P(D1Φ)P + x⊤N (D1Φ)N > 0,

since x{1,2,...,p+q}\C ̸= 0, and by using the regularity of JG̃(z)⊤, which is A⊤, we have

x⊤Ã⊤(D2Φ) = x⊤Ã⊤y ≥ 0.

Then, these two inequalities above together contradict the condition (5.8). Thus, we have

set {1, 2, . . . , p+ q} \ C = ∅ and z is a solution to MiCP (G̃, H̃,Rp−1
+ ).

Note that the process of checking FB regularity, in general, is complex and more com-

putationally expensive. The following algorithm is based on the Linear Newton Method

and presented in [28], which can be used to find the solution to the mixed complementar-

ity problem. Even though we do not implement this algorithm in the remaining chapter,

for the sake of completeness, its conceptual version is given as follows.
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Algorithm 3 FB line search algorithm

Step 0: Set an initial point z0 = (ω̂, u, t) ∈ R(p−1)×Rq×R, set l = 0, ρ > 0, n > 1
Step 1: Stop if we have ∥∇Ψ(zl)∥ = 0.
Step 2: Pick an arbitrary G ∈ ∂Φ(ω̂, u, t), solve the following system for di

G(zl)dl = −Φ(zl)

. Reset dl = −∇Ψ(zl) if the system above is not solvable or if the following condition

−ρ∥dl∥n ≥ ∇Ψ(zl)
⊤dl

is not satisfied.
Step 3: Find the smallest nonnegative integer il, such that if we set i = il, we have the

following inequality

Ψ(zl) +
γ∇Ψ(zl)

⊤dl
2i

≥ Ψ

(
zl +

dl
2i

)
holds. Then set τl =

1
2il

Step 4: Set zl+1 = zl + dkτl, l = l + 1. Then go back to Step 1.

5.5 A Numerical Example

In this section, we will give a numerical example of the linear complementarity problem

defined on the MESOC, which is a more general case and satisfies item (iii) in Proposition

4.1.2. Let us consider the linear complementarity problem on the MESOC L ⊂ R3 × R2.

Then for any arbitrary point z = (x, u) ∈ R3×R2, the aim of finding the solution to the lin-

ear complementarity problem is to find z = (x, u) ∈ R3×R2 such that (z, Tz + r) ∈ C(L).

By using item (vi) in Theorem 5.1.1, the solution z = (x, u) of the linear complementarity

problem LCP (T, r,L) is equivalent to the solution of the mixed complementarity problem
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MiCP (G̃, H̃,Rp−1
+ ) and we will have

Rp−1
+ ∋



ŵ1

ŵ2

...

ŵp−1


⊥ G̃(ŵ, u, t) =



G̃1(ŵ, u, t)

G̃2(ŵ, u, t)

...

G̃p−1(ŵ, u, t)



=



(Ax(ŵ, t) +Bu+ y)1∑2
i=1(Ax(ŵ, t) +Bu+ y)i

...∑p−1
i=1 (Ax(ŵ, t) +Bu+ y)i


∈ Rp−1

+

and

H̃(ŵ, u, t) =

ue⊤(Ax(ŵ, t) +Bu+ y) + t(Cx(ŵ, t) +Du+ v)

t2 − ∥u∥2

 = 0,

where

x(ŵ, t) =



ŵ1 + ŵ2 + . . .+ ŵp−1 + t

ŵ2 + . . .+ ŵp−1 + t

...

ŵp−1 + t

t


.

In order to find the solution to the mixed complementarity problem, we use the corre-

sponding FB-based equation

Φ(ŵ, u, t) =



ϕ(ŵ1, G̃1(ŵ, u, t))

ϕ(ŵ2, G̃2(ŵ, u, t))

...

ϕ(ŵp−1, G̃p−1(ŵ, u, t))

H̃(ŵ, u, t)


= 0.
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Let us consider the following example, where

T =

A B

C D

 =



1 0 −2 1 3

−2 6 −1 0 −1

1 −3 0 −1 −2

0 1 −1 1 −1

0 −1 1 1 1


and r =

y
v

 =



2

3

1

4

5


Since we have that matrices T , A and D are non-singular, then, if we set the tolerance τ =

10−7 and by using the semismooth Newton method provided in Algorithm 1, the sequence

{zk} = {(ŵ, u, t)k} will converge to a numerical solution to the mixed complementarity

problem in 11 iterations.

Table 5.1: Numerical Results for the Mixed Complementarity Problem
Iteration The value of Φ(zk) Step-size d

0 2.17e+04 N/A
1 3.74e+03 87.2641
2 1.62e+03 15.3622
3 638.7488 9.21537
4 245.3569 4.68641
5 106.3955 2.09157
6 43.93762 1.12641
7 15.18293 0.50927
8 5.085132 0.22991
9 0.261361 0.03271
10 1.97e-03 5.1e-05
11 8.85e-08 1.2e-06

The solutions we got are

ŵ∗ =

(√
82− 12

√
46

2
, 0

)⊤

, t∗ =

√
82− 12

√
46

2

and

u∗ =

(
−225 + 30

√
46

82
,
139− 24

√
46

82

)⊤

.

Then, let us check whether this solution satisfies the condition of complementarity. We
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have

ŵ∗ =

(√
82− 12

√
46

2
, 0

)⊤

≥ 0, G̃(ŵ∗, u∗, t∗) =

(
0,

√
82− 12

√
46

2

)⊤

≥ 0.

Then

R2
+ ∋ ŵ∗ ⊥ G̃(ŵ, u, t) ∈ R2

+

Hence, we confirm that
(
ŵ∗, G̃(ŵ, u, t)

)
∈ C(R2

+).

By using the backtracking method provided in Algorithm 2, we have the solution to the

linear complementarity problem, which is

z∗ = (x, u)

=

(√
82− 12

√
46,

√
82− 12

√
46

2
,

√
82− 12

√
46

2
,
−225 + 30

√
46

82
,
139− 24

√
46

82

)⊤

.

By using the definition of the monotone extended second order cone, we have z∗ ∈ L, and

Tx+ q =



1 0 −2 1 3

−2 6 −1 0 −1

1 −3 0 −1 −2

0 1 −1 1 −1

0 −1 1 1 1





√
82− 12

√
46

√
82−12

√
46

2√
82−12

√
46

2

−225+30
√
46

82

139−24
√
46

82


+



2

3

1

4

5


=



178−21
√
46

41

24
√
46+41
√

82+12
√
46+107

82

78
√
46−41
√

82−12
√
46−421

82

−36+54
√
46

82

324+6
√
46

82


Then by using the definition of the dual cone of the monotone extended second order

cone, we have Tx + q ∈ M and ⟨x, Tx + q⟩ = 0. Thus, z∗ is a solution to the linear

complementarity problem.

5.6 Example for portfolio optimisation

As Facchinei and Pang summarized in [28], the Fischer-Burmeister function and the gen-

eralized Newton method can be used to solve both the linear and the nonlinear comple-
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mentarity problems. In this section, we consider implementing this algorithm to solve a

specific nonlinear complementarity problem, which is an application of a portfolio opti-

misation problem related to the monotone extended second order cone.

The classical mean-variance (MV) model was developed by Markowitz in [56]. Suppose

we build a portfolio by using n arbitrary assets. Let w ∈ Rn denote the weights of the

assets, r ∈ Rn represent the return of assets, and Σ ∈ Rn ×Rn be the covariance matrix.

Then, the two traditional and equivalent MV models could be given as:

min
w

{
w⊤Σw : r⊤w ≥ α, e⊤w = 1

}
and

max
w

{
r⊤w : w⊤Σw ≤ β, e⊤w = 1

}
,

where α is the minimum profit that the investor demands and β is the maximal risk that

the investor wants to tolerate. These are typical quadratic optimisation problems with

higher computational complexity.

In order to reduce the complexity of solving the portfolio optimisation problem based

on the traditional mean-variance model, lots of models have been introduced, such as

the MAD model (see [52]), which has reduced the computational complexity significantly

[50, 51]. But in [12], Bowen and Wentz also pointed out that the MAD model cannot

provide an analytical solution while the analytic solution to the MV model can be present.

For j = 1, . . . , T , define U = (U1, . . . , UT )
⊤, where Uj = Rj − r. Let yj denote the

upper bound of disturbance of return at day j , and n ∈ R is the number of assets in

the portfolio. By using the Cauchy inequality, we also have |U⊤
j w| ≤ ∥Uj∥∥w∥ for any j.

Denote fj - the probability distribution of the rates of returns of assets, that is

fj = Probability
{
(r̂1, r̂2, . . . , r̂n)

⊤ =
(
Rj

1, R
j
2, . . . , R

j
n

)⊤} ∈ [0, 1],

where j = 1, 2, . . . , T denotes T different scenarios. Here r̂ = (r̂1, r̂2, . . . , r̂n)
⊤ is a vector
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of returns of n different assets, and they are supposed to to be distributed over Rj =

(Rj
1, R

j
2, . . . , R

j
n). Moreover, the sequence of {r̂j}j=1,2,...,T , {Rj}j=1,2,...,T and {fj}j=1,2,...,T

can be obtained by using the historical data of assets and some projection techniques to

forecast the future behaviour of the assets. Meanwhile, since fj is a probability vector,

we have e⊤f = 1. Thus,

r = E[r̂] =
T∑

j=1

fjR
j

The traditional MAD model can be given as follows,

min
y,w

c0f
⊤y − r⊤w

s.t. y ≥ ∥U⊤
j w∥,

e⊤w = 1,

j = 1, 2, . . . , T.

Note that the constraint optimisation problem from the MAD model can be converted to

a complementarity problem on the Lorentz cone. In reality, the uncertainty of the returns

of the assets will increase with the increase of the investment horizon, as it becomes more

difficult to predict the behaviour of the asset or the market. Thus, it is meaningful to

optimize the MAD model to make it more in line with real-world market behaviour. Thus,

we can provide a modified MAD model by giving the market risk an increasing trend.

The modified MAD model, which is defined based on the MESOC, was proposed in our

published paper [30]. It is defined as

min
y,w

c0f
⊤y − r⊤w

s.t. yT ≥ yT−1 ≥ . . . ≥ y1 ≥ ∥Uj∗∥∥w∥,

e⊤w = 1,

j = 1, 2, . . . , T.

where j∗ = argminj |U⊤
j w|, for j = 1, . . . , T can also be obtained by using the historical
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data of assets, and c0 > 0 is the Arrow-Pratt absolute risk-aversion index. Note that the

vector (
yT
∥Uj∗∥

,
yT−1

∥Uj∗∥
, . . . ,

y1
∥Uj∗∥

, w

)⊤

belongs to the monotone extended second order cone LT,n. Thus, the last problem is

equivalent to the following conic optimisation problem:

min
y,w

c0f
⊤y − r⊤w

s.t. e⊤w − 1 = 0,(
yT
∥Uj∗∥

,
yT−1

∥Uj∗∥
, . . . ,

y1
∥Uj∗∥

, w

)⊤

∈ LT,n,

(5.9)

The KKT conditions of the problem (5.9) can be converted to the following comple-

mentarity problem

L ∋



yT
∥Uj∗∥

yT−1

∥Uj∗∥
...

y2
∥Uj∗∥

y1
∥Uj∗∥

w


⊥



c0fT − θT
∥Uj∗∥

c0fT−1 +
θT−θT−1

∥Uj∗∥
...

c0f2 +
θ3−θ2
∥Uj∗∥

c0f1 +
θ2−θ1
∥Uj∗∥

−r + θ1w
∥w∥ + βe


∈M.

Note that this complementarity problem is a non-linear complementarity problem on

the MESOC. By using Proposition 2.1.6 and Proposition 4.1.2, we have the following

properties:

Proposition 5.6.1. If −r + θ1u
∥u∥ + βe ̸= 0,

(i) There exists a λ > 0, such that −r + θ1w
∥w∥ + βe = −λw.

(ii) c0
∑T

i=1 fi −
θ1

∥Uj∗∥
=
∥∥∥−r + θ1w

∥w∥ + βe
∥∥∥.

(iii) y1 = ∥w∥∥Uj∗∥.
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Since we have yT
∥Uj∗∥

≥ yT−1

∥Uj∗∥
≥ . . . ≥ y1

∥Uj∗∥
≥ ∥w∥ > 0, then the complementarity

condition implies that c0
∑T

i=1 fi −
θ1

∥Uj∗∥
= 0, which contradicts to the statement (ii)

in Proposition 5.6.1. Meanwhile, the condition e⊤w = 1 imply that w ̸= 0. Thus, in

Proposition 4.1.2, items (i) and (iii) are inapplicable in the Problem 5.9 while item (ii) is.

Then from item (ii) in Proposition 4.1.2, we have −r + θ1w
∥w∥ + βe = 0, which is equivalent

to

w = −∥w∥
θ1

(βe− r) . (5.10)

Meanwhile, by using e⊤w = 1 with (5.10) and let the number of assets be n, we have

1 = e⊤w = −∥w∥
θ1

(nβ − ⟨r, e⟩) . (5.11)

Let r̄ = 1
n

∑n
i=1 ri, from (5.10) and (5.11), we have

w =
βe− r
nβ − nr̄

. (5.12)

Note that because of the nature of the assets, we will hold that βe ̸= r. Thus, nβ−nr̄ ̸= 0.

Meanwhile, by using item (ii) in Proposition 4.1.2 again, we have

c0

T∑
i=1

fi −
θ1
∥Uj∗∥

=

∥∥∥∥−r + θ1w

∥w∥
+ βe

∥∥∥∥ = 0, (5.13)

which implies that θ1 = c0∥Uj∗∥
∑T

i=1 fi. If we substitute this equality and (5.12) into

(5.10), we have

∥βe− r∥ =

∥∥∥∥∥c0∥Uj∗∥
T∑
i=1

fi

∥∥∥∥∥ ,
which is equivalent to

nβ2 − 2nr̄β + ∥r∥2 =

(
c0∥Uj∗∥

T∑
i=1

fi

)2

. (5.14)

Note that following the definition of fj, we hold that
∑T

i=1 fj = 1. Then, by solving (5.14)
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for β, we have

β = r̄ ±

√
nr̄2 − ∥r∥2 + (c0∥Uj∗∥)2

n
. (5.15)

Thus, following the existence of β, for any arbitrary solution (y, u) to the optimisation

problem, we get the following condition

nr̄2 − ∥r∥2 + (c0∥Uj∗∥)2 ≥ 0,

otherwise, β cannot be a real number. If we substitute the formula for β (5.15) into the

denominator of (5.12), we have

w = ± βe− r√
(nr̄)2 − n∥r∥2 + n (c0∥Uj∗∥)2

.

By item (ii) in Proposition 4.1.2 we have −r + θ1w
∥w∥ + βe = 0. Meanwhile, by using (5.13)

with
∑T

i=1 fj = 1, we have θ1 = c0∥Uj∗∥. Since we also have c0 > 0, we conclude that

sgn(wi) = −sgn(β − ri), for i = 1, 2, . . . , n. Thus, we have

w = −

(
r̄ −

√
nr̄2−∥r∥2+(c0∥Uj∗∥)

2

n

)
e− r√

(nr̄)2 − n∥r∥2 + n (c0∥Uj∗∥)2
.

We can conclude that the weights of assets are related to the return of assets r, risk in

the market ∥Uj∗∥ and the risk preference from the investor c0.

5.7 Conclusions and comments

In this chapter, we studied the linear complementarity problem on the monotone extended

second order cone. Firstly, in the Theorem 5.1.1, which is the main theorem in this chap-

ter, we have shown that the linear complementarity problem on the monotone extended

second order cone can be converted to several kinds of complementarity problems. Most
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importantly, it can be converted to a mixed complementarity problem on the non-negative

orthant. This transformation of the problem is very meaningful because, on the one hand,

it can help reducing the complexity of finding the solutions to the original linear com-

plementarity problem. On the other hand, various algorithms can be used to solve the

mixed complementarity problem on the nonnegative orthant. In contrast, for the linear

complementarity problem, we lack the tools to solve this kind of problem, especially when

it is defined on the cones which are not self-dual. Since the process of solving the mixed

complementarity problem is well studied, we can determine its solution by using either

the FB-C function and the semismooth Newton method or by using the merit function

associated with the FB-C function with the FB line search method. We also provide a

numerical example showing by using the semismooth Newton method, that we can obtain

the solution to the linear complementarity problem. In the end, an application based on

the monotone extended second order cone is discussed, which is a portfolio optimisation

problem. Unlike the traditional MAD model, the modified one based on the MESOC has

an analytical solution, which has been present.
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CHAPTER 6

GRADIENT PROJECTION METHOD ON THE
SPHERE, COMPLEMENTARITY PROBLEMS

AND COPOSITIVITY

6.1 Introduction

In this chapter, we study the connections between the existence of the solution to the

cone complementarity problem and the copositivity of the operator (or matrix) with re-

spect to the corresponding cone. As we mentioned in the previous chapters, the cone

complementarity problem is an important topic with a variety of applications in many

aspects. Some previous research, see [45–47],has already demonstrated that some impor-

tant theorems in the cone complementarity problems can be converted to an optimisation

problem defined on the intersection of the cone and sphere. Thus, in order to solve the

constraint optimisation problem, we will discuss the gradient projection method in this

chapter. Indeed, the intrinsic version of the gradient projection method and its variants

will be proposed. Note that the gradient projection method can also be implemented in

testing the copositivity of an operator with respect to K as well as checking the solvability

of the complementarity problem defined on the cone K. In this chapter, the cone K we

discussed will be a proper cone. By using the algorithm, we conclude that the operator

is not copositive with respect to the cone if we get a negative value. However, if we get

a nonnegative value of the output of the algorithm, we are not completely sure that the
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operator is copositive with respect to the cone. To address this problem, two techniques

can be applied. One is to use different starting points when setting this algorithm, and

another way is to implement the algorithm several times. Both of the techniques will

increase the likelihood that the algorithm will converge at a global minimiser. We also

discussed the convergence analysis for the gradient projection method on the sphere. The

results have already been resubmitted to the Journal of Global Optimization.

This chapter has been organized as follows. In Section 6.2 and Section 6.3, the concepts

related to the cone complementarity problem and copositivity have been presented, as

well as the relationship between K-complementarity problems, problems of testing K-

copositivity and the constraint optimisation problem on the intersection of the cone K

and a sphere. In order to consider a unified description of different cones, in these sections

our work is in Euclidean vector spaces, including the case when K is the cone of positive

semidefinite matrices. In Section 6.3, we provide examples for an operator to be K-

copositive when K is Lorentz cone. In Section 6.4, we present the concepts and basic

results related to the gradient projection method and the closed spherically convex set,

which are used in analysing this method in the later section. In Section 6.5, we discuss

the problem of projection onto a closed spherically convex set and several properties

obtained for this projection have also been present. In Section 6.6, in order to solve a

general constrained optimisation problem, the gradient projection method on the sphere

has been analysed. We also discussed two new variants of the gradient projection method.

One is for the case when the Lipschitz constant cannot be easily obtained. The other one

is for several special cases, such as when the cone K the nonnegative orthant Rn
+, the

Lorentz cone Ln, and the cone of positive semidefinite matrices Sn
+, respectively. Section

6.8 presents the numerical results we obtained by using the introduced algorithms. These

results demonstrate how the gradient projection method on the sphere can be implemented

to check the K-copositivity of the linear mappings. In the last section, we provide some

concluding remarks.
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6.2 Complementarity problems and optimisation prob-

lem on the sphere

In this section, we illustrate the relationship between complementarity problems and an

optimisation problem constrained to a suitable subset of the sphere. This relationship

gives us a motivation for investigation in this chapter. For the sake of completeness, let

us first recall some concepts.

Definition 6.2.1. (Inversion) [ [59], Definition 5] Let k be an arbitrary positive num-

ber, let i be an operator such that

i : Rk \ {0} → Rk \ {0}; i(x) := x

∥x∥2
.

Then we call the operator i an inversion (of pole 0).

From the definition of the inversion, it is easy to check that the operator i is a one-to-one

mapping, and we have that i = i−1.

Definition 6.2.2. (Inversion of Mapping) [ [59], Definition 6] Denote Rn to be a

finite n-dimensional real vector space and F : Rn → Rn to be an arbitrary mapping. The

inversion of mapping of F is the mapping I(F ) : Rn → Rn such that

I(F )(x) :=


∥x∥2F

(
x

∥x∥2

)
if x ̸= 0,

0 if x = 0.

We can also write the inversion mapping I(F ) as

I(F )(x) :=


∥x∥2 (F ◦ i) (x) if x ̸= 0,

0 if x = 0.

We can also find that, following the definition of the inversion of mapping, we have

I(I(F )) = F , or equivalent, I−1 = I.
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Definition 6.2.3. (Lower scalar derivative) [ [47], Definition 1.6] Denote k be an

arbitrary positive integer, let K ⊆ Rk be a cone and F : K → Rk be a mapping, then we

call

F# (x∗, K) = lim inf
x→x∗, x−x∗∈K

⟨F (x)− F (x∗), x− x∗⟩
∥x− x∗∥2

is the lower scalar derivative of F at x∗ in the direction of K.

Moreover, if the mapping F is Fréchet differentiable at x, Németh found another

explicit way to show the formula of the lower scalar derivative in the following theorem.

Theorem 6.2.1. [ [59], Theorem 18] Denote k be an arbitrary positive integer, let x be

an interior point of K, where K is a proper cone in Rk. We have

F# (x, K) = min
∥u∥=1,u∈K

⟨dF (x)u, u⟩,

where dF (x) is the differential of mapping F at point x.

Recall that the formula of the complementarity problem is given by

CP (F,K) =


Find x∗ ∈ K such that

F (x∗) ∈ K∗ and ⟨x∗, F (x∗)⟩ = 0.

In [46], Isac and Németh proved the following theorem.

Theorem 6.2.2. Let F : Rn → Rn be an arbitrary mapping and denote K ⊂ Rn be a

cone and K∗ be the dual cone of K. If we hold the following inequality

lim inf
x→0

⟨F (x)− F (0), x⟩
∥x∥2

> 0,

then we conclude that the complementarity problem CP (F,K) given above has a solution.

By using Definition 6.2.3, Theorem 6.2.1 and Theorem 6.2.2, if we denote dI(F )(0)

as the differential of the inversion of mapping I(F ) at 0, then we can conclude that

106



whenever the mapping I(F ) is differentiable at 0, we have

lim inf
x→0

⟨F (x)− F (0), x⟩
∥x∥2

= min
∥u∥=1,u∈K

⟨dI(F )(0)u, u⟩. (6.1)

Thus, the constrained optimisation problem (6.1) can present a sufficient condition to

show the existence of a solution to the complementarity problem CP (F,K), which is

concluded in the following corollary.

Corollary 6.2.3. Let F : Rk → Rk be a mapping such that the inversion of mapping

of F , which is I(F ) is differentiable at 0. Let K ⊂ Rk be a cone. Then if the following

inequality

min
∥u∥=1,u∈K

⟨dI(F )(0)u, u⟩ > 0, (6.2)

holds true, then the solution to the complementarity problem CP (F,K) exists.

This corollary illustrates that the problem of showing the existence of the solution to

a complementarity problem CP (F,K) can be converted to a problem of proving the

minimisation of a quadratic function on the intersection between the cone K and the

sphere is positive.

The following theorem provides a class of mappings F such that the associated inver-

sion of mapping I(F ) is differentiable at 0.

Theorem 6.2.4. Let n be an arbitrary positive integer, Pi, Qi be two polynomial functions

with ki-the degree of the function Pi and mi-the degree of the function Qi, such that

mi + 1 ≥ ki. Suppose for all x ∈ Rn we have Qi(x) ̸= 0 for any i ∈ {1, 2, . . . , r}, where

r ∈ N is an arbitrary integer, and

Qi

(
x

∥x∥2

)
̸= 0, ∀x ∈ Rn, x ̸= 0.

Let q ∈ Rn and denote L : Rn → Rn to be a linear mapping. Consider the following
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mapping F : Rn → Rn defined as

F (x) =
r∑

i=1

Pi(x)

Qi(x)
ei + Lx+ q, (6.3)

where ei denotes the canonical unit vector. We conclude that the mappings F and the

corresponding inversion of mapping I(F ) are differentiable. Moreover, we conclude that

dI(F )(0) = L.

Proof. Since L, Qi(x) ̸= 0 and Pi, Qi are differentiable, it follows that F is differentiable.

Next, we prove the differentiability of I(F ). For similar reasons as before, I(F ) is differ-

entiable for any x ∈ D \ {0}. Since V ∋ x 7→ I(L+ q)(x) = L(x)+ q∥x∥2 is differentiable,

it is enough to check the differentiability of I(Pi/Qi) at 0 for an arbitrary i. Fix such an

i and denote g := I(Pi/Qi). Let x ̸= 0. After some algebra, by using the homogeneity of

the involved functions, we get

g(x) =

ki∑
j=0

∥x∥2−2jPij(x)

mi∑
j=0

∥x∥−2jQij(x)

=

ki∑
j=0

∥x∥2mi−2j+2Pij(x)

mi∑
j=0

∥x∥2mi−2jQij(x)

, (6.4)

where Pij and Qij are the monomial terms of degree j in Pi and Qi, respectively. We have

g(0) = 0. Indeed, let us first consider the case mi + 1 = ki. Then, we have Piki(0) = 0,

because Piki is homogeneous of degree ki > 0, and the powers of ∥x∥ in the remaining

terms of the nominator of (6.4) are positive. Hence, g(0) = 0. If mi + 1 > ki, then

g(0) = 0, because the powers of ∥x∥ in all terms of the nominator of (6.4) are positive.

In order to show that g is differentiable at 0, it is enough to prove that the directional

derivative

∂g

∂h
(0) = lim

t→0

g(th)− g(0)
t

= lim
t→0

g(th)

t

exists and it is linear with respect to h ∈ V. Since Qimi
(0) ̸= 0, it follows that Qimi

(v) ̸= 0

if v is sufficiently close to the origin. For such a v, by using (6.4) and again the homogeneity
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of the involved functions, we obtain

g(tv)

t
=

ki∑
j=0

tmi−j+2∥v∥mi−j+2Pij(v)

mi∑
j=0

tmi−j∥v∥mi−jQij(v)

,

which, after some algebraic manipulations, implies that

g(tv)

t
=
t
(
∥v∥mi+1−kPik(v)t

mi+1−k + · · ·+ ∥v∥mi+1Pi0(v)t
mi+1

)
Qimi

(v) + ∥v∥tQi,mi−1(h)t+ · · ·+ ∥v∥miQi0(v)tmi
.

Since the nominator of the RHS of the second equality above is t multiplied by a poly-

nomial of t (because the powers of t inside the bracket are nonnegative), it follows that

(∂g/∂v) (0) = 0 if v is close enough to the origin. Hence, by using the positive homogeneity

of the directional derivative, we obtain

V ∋ h 7→ ∂g

∂h
(0) = 0,

which is linear.

Then by using Theorem 6.2.4 and Corollary 6.2.3, we arrive at the following result.

Corollary 6.2.5. Let K ⊂ Rn be a cone. If F is given as in (6.3), then the complemen-

tarity problem CP (F,K) has a solution if min∥u∥=1,u∈K⟨Lu, u⟩ > 0.

Moreover, we can also find that if all polynomial functions Pi in Corollary 6.2.5 reduce

to the null function, then CP (F,K) becomes a linear complementarity problem. Hence,

Corollary 6.2.5 extends a well-known result from linear complementarity problem, which

states that any positive definite matrix is a Q-matrix (see [20]).

By using [72], we obtain the following example, which gives a relationship between the

complementary problem and a cone-constrained optimisation problem.

Example 6.2.1. Denote K ⊂ Rn be a cone and denote its dual cone by K∗. Let φ : Rn →
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R be a differentiable function and its gradient is denoted by Dφ. Then, for the constrained

optimisation problem

min
x∈K

φ(x) (6.5)

the KKT conditions of it can be given as follows

Dφ(x) = y, x ∈ K, y ∈ K∗, ⟨x, y⟩ = 0. (6.6)

Hence, the KKT conditions of the optimisation problem (6.5) are equivalent to a comple-

mentarity problem CP (F,K). Let us consider an example. Suppose we have a function

φ : R4 → R defined by

φ(x) =
x21 + x3

x42 + x44 + 1
+ x21 + x23 + 3x1x3 + 2x2x4 + 5x1 + 3x3 + 4x4,

where x := (x1, x2, x3, x4). Define the mapping F : R4 → R4 by F (x) := Dφ(x), where

Dφ represents the gradient of φ. Let us consider the mapping F given by the following

formula

F (x) =
4∑

i=1

Pi(x)

Qi(x)
ei + Lx+ q, (6.7)

then we have P1(x) := 2x1, Q1(x) := x42+x44+1, P2(x) := −4x32(x21+x3), Q2(x) := (x42+

x44+1)2, P3(x) := 1, Q3(x) := x42+x
4
4+1, P4(x) := −4x34(x21+x3), Q4(x) := (x42+x

4
4+1)2

and

L :=



2 0 3 0

0 0 0 2

3 0 2 0

0 2 0 0


, q :=



5

0

3

4


. (6.8)

Thus, by using Corollary 6.2.5, the solvability of the KKT conditions given in (6.6) with

F given by (6.7) depended on the strict copositivity of the matrix L given by (6.8).

It should be mentioned that the complementarity problems with functions given in

(6.3) can be considered as extensions of linear complementarity problems [20]. In this
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case, the KKT optimality conditions of quadratic optimisation problems can be converted

to linear complementarity problems. If we consider extensions of quadratic optimisation

problems which optimise the sum of special fractional polynomial functions and quadratic

functions, then by writing the optimality conditions to the optimisation problem, we can

have the complementarity problems with functions of type (6.3).

6.3 Copositivity with respect to cones

In this section, for the sake of completeness, we first introduce the basic concepts of

K-copositive and copositive. Then the relationship between the copositivity of a linear

operator and the optimisation problem, which is constrained to the intersection of cone

and sphere, is discussed.

Definition 6.3.1. (K-copositive) Denote Rk be a n-dimensional real vector space, where

k is an arbitrary positive integer. Let K ⊆ Rk be a cone. A matrix A ∈ Rk×k (or

equivalently an operator A : Rk → Rk) is called K− copositive if for any x ∈ K, we have

⟨Ax, x⟩ ≥ 0.

Moreover, if for any x ∈ int K, we have

⟨Ax, x⟩ > 0,

then we call A is strictly K-copositive.

In particular, when K is the nonnegative orthant, i.e., when K = Rk
+, we have the

following definition.

Definition 6.3.2. (Copositive) A matrix A ∈ Rk×k (or equivalent, a operator A : Rk →
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Rk) is called copositive if for any x ∈ Rn
+, we have

⟨Ax, x⟩ ≥ 0.

Some researchers may use other names when they introduce the same definition. For

example, in [27], the same concepts are called copositive with respect to set K or K-

semidefinite. In the research of combinatorial and non-convex quadratic optimisation,

testing copositivity of different matrices is an important topic, but it is also difficult to test

copositivity of a specifically given matrix as this problem is a co-NP-complete problem.

From the previous research, in [4,14–16,24,78], we can find some algorithms which can be

used in testing the copositivity of matrices. In [27], Eichfelder and Jahn showed that when

K is a polyhedral cone, the problem of testing K-copositivity of matrices with respect

to K can be reduced to the problem of testing classical copositivity. More importantly,

in [6], the researchers found a way to test the classical copositivity of matrices by using the

projection onto the intersection of a general cone and sphere. The next lemma illustrates

the relationship between the copositivity and a quadratic programming (QP) problem on

the intersection of cone and sphere, it is an immediate result of the Definition 6.3.1, and

we will omit the proof.

Lemma 6.3.1. Let A ∈ Rk×k be an arbitrary matrix (or equivalent A : Rk → Rk be an

operator) and K ⊆ Rk be an arbitrary cone. Denote x̄ be a (global) minimal solution to

the quadratic optimisation problem (QP) defined as follows:

QP: min f(x) :=
1

2
⟨Ax, x⟩

⟨x, x⟩ = 1 (6.9)

x ∈ K,

Then we have the following conclusions:

(i) A is K-copositive if and only if f(x̄) ≥ 0,
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(ii) A is K-strictly copositive if and only if f(x̄) > 0.

(iii) A is not K-copositive if and only if there exists a feasible x′ such that f(x′) < 0.

(iv) A is not K-strictly copositive if there exists a feasible x′ such that f(x′) = 0.

Then, by using Corollary 6.2.5, we have the following result indicating the relationship

between the copositivity and the existence of a solution to the corresponding cone com-

plementarity problem.

Corollary 6.3.2. Denote K ⊆ Rk to be an arbitrary cone, and I : Rk → Rk be the

identity mapping. Let F be defined by the equation (6.3), which is

F (x) =
r∑

i=1

Pi(x)

Qi(x)
ei + Lx+ q.

Then, if there exists an α > 0 such that L − αI is K-copositive, we conclude that the

complementarity problem CP (F,K) has a solution.

Then, by Corollary 6.2.3, Corollary 6.3.2 and Lemma 6.3.1, we can conclude that the

problem of the existence results for the complementarity problem CP (F,K), where F is

defined by equation (6.3), can be reduced to a problem of finding the global solution of

problem (6.9) by testing the K-copositivity of matrix A. Besides the nonnegative orthant,

the conclusion from Corollary 6.3.2 also gives us a trigger to consider the copositivity with

respect to other cones, such as the Lorentz cone Ln and the positive semidefinite cone.

Recall the definition of Lorentz cone.

Definition 6.3.3. For any n > 1, the Lorentz cone (also known as the ice-cream cone)

in the Euclidean space Rn is defined as:

Ln =
{
(x, t)⊤ ∈ Rn × R : ∥x∥ ≤ t

}
.

We also have that the Lorentz cone is symmetric cone.

Loewy and Schneider propose the following proposition in [53].
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Proposition 6.3.3. Let Ln be the Lorentz cone in dimension Rn, let A ∈ Sn be an

arbitrary n × n symmetric matrix, by denoting J := diag(−1,−1, . . . ,−1, 1) an n × n

diagonal matrix, the matrix A is copositive with respect to Ln if and only if there exists a

µ ∈ R+ such that the matrix A− µJ is positive semidefinite.

This proposition illustrates the necessary and sufficient conditions for a symmetric matrix

to be copositive with respect to the Lorentz cone Ln. Next, we state the homogeneous S-

Lemma. Its proof can be found in [70] and will be omitted. The homogeneous S-Lemma,

together with the conclusion from Proposition 6.3.3, provides a sufficient condition for a

matrix to be Ln-copositive.

Lemma 6.3.4. (The Homogeneous S-Lemma). Suppose there exists x∗ such that (x∗)⊤Ax∗ >

0. If x⊤Ax ≥ 0 implies x⊤Bx ≥ 0 for any x ∈ R, then there exists a µ ∈ R+ such that

B − µA ⪰ 0, where A ⪰ 0 is the notation of the positive semidefiniteness of matrix A.

By using the results above, we have the following theorem.

Theorem 6.3.5. Let F be defined by the equation (6.3) and denote Ln be the n-dimensional

Lorentz cone. Suppose that there exists λ, µ > 0, such that L+λI−µJ is positive semidef-

inite. Then, the complementarity problem CP (F,Ln) has a solution.

Proof. By using that L+λI−µJ is positive semidefinite and Proposition 6.3.3, it follows

that L+ λI is copositive with respect to Ln. Since

lim inf
x→0

⟨F (x)− F (0), x⟩
∥x∥2

= min
∥u∥=1,u∈Ln

⟨Lu, u⟩ = λ > 0,

by using Theorem 6.2.2, we conclude that the complementarity problem CP (F,L) has a

solution.

Let us define the cone of n-dimensional positive semidefinite matrices Sn
+, also called a

positive semidefinite cone, as

Sn
+ = {A ∈ Sn : A ⪰ 0}.
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There are several previous works on checking the copositivity with respect to a cone

K, such as [21, 27, 39]. But until now, there is no research on characterisation of the

copositivity of a matrix with respect to the cone of positive semidefinite matrices Sn
+.

The results above can also be used to test the copositivity of matrices with respect to the

cone of positive semidefinite matrices Sn
+ when n = 2, as we can find that S2

+ is isomorphic

to L3.

In the following section, in order to solve the quadratic optimisation problem (6.9), we

introduce the gradient projection method on the sphere. This method can also be used to

test the copositivity of operators with respect to different cones. We will also give some

examples in the latter chapter and analyze the copositivity of operators with respect to

the positive semidefinite cone.

6.4 Basic concepts and results

In this section, the basic concepts related to the gradient projection method on the sphere

that can be used to solve the constraint optimisation problem on the sphere are intro-

duced. Before the introduction of the basic concepts, we first give a more explicit form

for the constraint optimisation problem we investigate in this section. Let Sn be the

n-dimensional sphere in the Euclidean vector space, i.e.

Sn :=
{
p ∈ Rn+1 : ∥p∥ = 1

}
. (6.10)

Let f : Sn → R be differentiable mapping and C ⊆ Sn is closed and spherically convex (see

Definition 6.4.1). Then the constraint optimisation problem we consider in this section is

given as follows

min{f(p) : p ∈ C}. (6.11)

Note that the problem (6.1) is a specific problem of (6.11). Thus, we can implement

the gradient projection method to test the copositivity of operators with respect to cones
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K ⊆ Rn+1. Meanwhile, by using Corollary 6.2.3, we can also use the gradient projection

method to analyse the solvability of complementarity problems. In order to solve problem

(6.11), some basic results about the sphere (6.10) are needed. After that, we show how

to intrinsically project onto the spherically closed convex set C ⊆ Sn . The gradient

projection method we implemented to solve problem (6.11) as well as the convergence

analysis, will be introduced at the end.

First, for the sake of completeness, let us recall and introduce some general definitions

and basic geometric properties of the sphere in Euclidean vector spaces, while the details

of these definitions and properties have been introduced in [11,25,26,73].

The tangent hyperplane at an arbitrary point p ∈ Sn is the tangent hyperplane at a point

p ∈ Sn and is denoted by

TpSn :=
{
v ∈ Rn+1 : ⟨p, v⟩ = 0

}
. (6.12)

Then we have the corresponding projection mapping onto it, which is denoted by Projp :

Rn+1 → TpSn, is given by

Projp x := x− ⟨p, x⟩p. (6.13)

For any two arbitrary arbitrary points p, q ∈ Sn, the intrinsic distance on the sphere

between them is defined by

d(p, q) := arccos⟨p, q⟩. (6.14)

A geodesic segment on the sphere joining two points p, q ∈ Sn is obtained by the intersec-

tion of a plane through these points and the origin of Rn+1 with Sn. The arc length of a

geodesic segment ω is denoted by ℓ(ω). If for a geodesic segment ω : [a, b]→ Sn we have

ℓ(ω) := arccos⟨ω(a), ω(b)⟩, then this geodesic segment is said to be minimal. For any two

arbitrary points x∗, y∗ ∈ Sn, there exists a unique segment of minimal geodesic from x∗

to y∗ if we hold that y∗ ̸= ±x∗.

Definition 6.4.1 (Spherically convex set). A set C ⊆ Sn is called spherically convex
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if for any two points x∗, y∗ ∈ C, all minimal geodesic segments joining them are contained

in C.

We will give some examples of the spherically convex sets below, and there are more

examples in [29].

Example 6.4.1. Let Sn = {p ∈ Rn+1 : ∥p∥2 = 1} is a sphere in the space Rn+1. Thus,

the set defined by C1 = Rn+1
+ ∩Sn is spherically convex set. Moreover, C2 = Rn+1

+ ∩Sn and

C3 = {p ∈ Sn
+ : ∥p∥ = 1} are also spherically convex sets.

Denote ωp,v to be a geodesic, which is defined by its initial position p with velocity v at p.

Consider the exponential mapping expp : TpSn → Sn which is defined as exppv := ωp,v(1),

and we have the following formula for the exponential mapping

exppv :=


cos(∥v∥) p+ sin(∥v∥) v

∥v∥
, v ∈ TpSn/{0},

p, v = 0.

(6.15)

Following the definition of geodesic, we can find out that, for any t ∈ R, we get ωp,tv(1) =

ωp,v(t). Then we can find out that for any t ∈ R, we hold ωp,v(t) = expptv and by using

(6.15) we have

expptv :=


cos(t∥v∥) p+ sin(t∥v∥) v

∥v∥
, v ∈ TpSn/{0},

p, v = 0.

(6.16)

Note that (6.16) can also be used to represent the formula of geodesic starting at point

p ∈ Sn with the velocity of v ∈ TpSn at point p.

Then, we will introduce the concepts of the inverse of the exponential mapping. Denote

exp−1
p : Sn → TpSn be the inverse of the exponential mapping, then we have the formula
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of it, which is

exp−1
p q :=


d(p, q)√
1− ⟨p, q⟩2

Projp q, q /∈ {p,−p},

0, q = p.

(6.17)

Then following (6.14) and (6.17) together with some calculation, we can obtain that

d(p, q) = ∥exp−1
q p∥, p, q ∈ Sn. (6.18)

In the remainder of this chapter, denote Ω ⊆ Sn be an open set, considering a mapping

f : Ω→ R as a differentiable function. LetDf(p) ∈ Vn+1 be the usual gradient (Euclidean

gradient) of function f at a point p ∈ Ω. Then the formula of the gradient on the sphere

of f at point p ∈ Ω is given by

grad f(p) = ProjpDf(p). (6.19)

Moreover, like the Hessian defined in the Euclidean space, if function f is twice differen-

tiable, let D2f(p) : Vn+1 → Vn+1 be the usual Hessian operator or Euclidean Hessian of

the function f at point p. Then we can obtain the Hessian on the sphere at an arbitrary

point p ∈ Ω, which can be defined as an operator Hess f(p) : TpSn → TpSn, with the

formula as follows

Hess f(p)u := Projp
(
D2f(p)u− ⟨Df(p), p⟩u

)
. (6.20)

Moreover, the operator norm of the Hessian operator on the sphere will be given as:

∥Hess f(p)∥ := sup
∥u∥=1

| ⟨Hess f(p)u, u⟩ |= sup
∥u∥=1

∥Hess f(p)u∥. (6.21)

Then we give an example for the gradient and Hessian on the sphere.
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Example 6.4.2. Let us consider a particular special case. Consider A : Rn+1 → Rn+1 to

be a linear operator. Let us define the following function f(p) := ⟨Ap, p⟩. Then, by using

(6.13) and (6.19), for any u ∈ TpSn, we have

⟨grad f(p), u⟩ = ⟨Ap, u⟩+ ⟨p,Au⟩ − 2⟨Ap, p⟩⟨p, u⟩.

Meanwhile, by using (6.13) and (6.20), for any u ∈ TpSn, we get

⟨Hess f(p)u, u⟩ = 2 ⟨Au, u⟩ − 2⟨Ap, p⟩ ⟨u, u⟩ .

If we denote λmax(A) := max∥u∥=1⟨Au, u⟩ and λmin(A) := min∥u∥=1⟨Au, u⟩. we can ob-

tain the following inequalities: ∥ grad f(p)∥ ≤ 2(λmax(A) − λmin(A)) and ∥Hess f(p)∥ ≤

2(λmax(A)− λmin(A)).

In order to introduce the definition of Lipschitz continuity, we first give the concept

and formula of parallel transport. After that, we introduce the definition of Lipschitz

continuous for a function on the spherically convex set.

For each p, q ∈ Sn such that q ̸= −p, we denote the geodesic segment joining p and q

by [0, 1] ∋ t 7→ ωpq(t) := exppt(exp
−1
p q). Then if we denote the parallel transport from p

to q along he geodesic segment ωpq by Ppq : TpSn → TqSn. We have the formula for Ppq is

given by

Ppq(v) := v − 1

1 + ⟨p, q⟩
⟨q, v⟩(p+ q).

Definition 6.4.2. Let C ⊂ Sn be a spherically convex set. If for any two arbitrary points

p, q ∈ C and some positive constant L ≥ 0, we have the following inequality holds

∥Ppq grad f(p)− grad f(q)∥ ≤ Ld(p, q)

then we say that the gradient vector field of f is Lipschitz continuous on the spherically

closed convex set C with the constant L

119



The following three lemmas illustrate the properties held by a Lipschitz continuous func-

tion on the spherically close and convex set.

Lemma 6.4.1. The gradient vector field of f is Lipschitz continuous with constant L ≥ 0

on C if and only if there exists L ≥ 0 such that ∥Hess f(p)∥ ≤ L, for all p ∈ C.

We omit the proof of Lemma 6.4.1 here, as it is similar to the proof of [11, Proposition

10.43].

By using Lemma 6.4.1 and Example 6.4.2, we have the following lemma.

Lemma 6.4.2. Let f : Ω → R be given by f(p) = ⟨Ap, p⟩ and C ⊆ Ω be a spherically

convex set. Then, f is Lipschitz continuous with constant L = 2(λmax(A)− λmin(A)) on

C.

Proof. By using Example 6.4.2, we have that ∥Hess f(p)∥ ≤ 2(λmax(A)−λmin(A)). Then,

by using the last equality in (6.21) and Lemma 6.4.1, we can conclude that f is Lipschitz

continuous with constant L = 2(λmax(A)− λmin(A)) on the spherically convex set C.

We will also omit the proof of the next lemma, as it is just a straight forward application

result of [11, Corollary 10.54].

Lemma 6.4.3. Suppose that the gradient of a function f on the sphere, which is grad f ,

is Lipschitz continuous on a convex set C ⊆ Ω with constant L ≥ 0. Then, we hold the

following inequalities

f(q) ≤ f(p) + ⟨grad f(p), exp−1
p q⟩+ L

2
d2(p, q), ∀p, q ∈ C.

The last lemma we recall in this chapter is the well-known cosine law for triangles on the

sphere. Since its proof is a straight forward application of (6.17), we will give the detailed

proof here for the sake of completeness.
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Lemma 6.4.4. Suppose we have q̂, q̃, q̄ ∈ Sn such that q̃, q̄ /∈ {q̂,−q̂}. Denote θq̂ be the

angle between the vectors exp−1
q̂ q̃ and exp−1

q̂ q̄. Then, the following equation holds

cos d(q̃, q̄) = cos d(q̂, q̄) cos d(q̂, q̃) + sin d(q̂, q̄) sin d(q̂, q̃) cos θq̂.

Proof. First, by using(6.18), we have that ⟨exp−1
q̂ q̃, exp−1

q̂ q̄⟩ = d(q̂, q̃)d(q̂, q̄) cos θq̂. Mean-

whilie, by using (6.17), we get

〈
exp−1

q̂ q̃, exp−1
q̂ q̄
〉
=

d(q̂, q̃)√
1− ⟨q̂, q̃⟩2

d(q̂, q̄)√
1− ⟨p̂, q̄⟩2

〈
Projq̂ q̃,Projq̂ q̄

〉
.

Then by combining these two equations and using some algebraic manipulations, we have

cos θq̂ =
1√

1− ⟨q̂, q̃⟩2
1√

1− ⟨p̂, q̄⟩2
(⟨q̃, q̄⟩ − ⟨q̂, q̄⟩⟨q̃, q̂⟩) . (6.22)

Recall that ⟨q̃, q̄⟩ = cos d(q̃, q̄), ⟨q̂, q̄⟩ = cos d(q̂, q̄) and ⟨q̃, q̂⟩ = cos d(q̃, q̂). Thus, we have

cos d(q̃, q̄) = cos d(q̂, q̄) cos d(q̂, q̃) + sin d(q̂, q̄) sin d(q̂, q̃) cos θq̂.

6.5 Projection onto a closed spherically convex set

and its properties

In this section we focus on introducing the concepts related to the projection onto a

closed spherically convex set and develop some new properties for the spherically convex

set. We will start by recalling some concepts regarding the projection onto a closed convex

set. Some proofs will be omitted as the details can be found in [29, 31]. Recall that in

Definition 6.4.1, we indicate the condition that a set C ⊆ Sn is a closed spherically convex

set. In the remainder of this chapter, for the purpose of convenience, we assume that all
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the closed spherically convex sets are nonempty proper subsets of the sphere. Then for

any set C ⊆ Sn, define the set KC ⊆ Rn+1 as following

KC := {tp : p ∈ C, t ∈ [0,+∞)} . (6.23)

We can find out that set KC is a cone spanned by the closed spherically convex set C and

it is also the smallest cone that contains the set C. The following proposition provides

another necessary and sufficient condition for a set to be closed spherically convex.

Proposition 6.5.1. The closed set C ⊆ Sn is spherically convex if and only if KC ⊆ Rn+1

is a pointed and convex cone.

Consider the formula of the projection onto the closed spherically convex set C, which is

given by

PC(p) := {p̄ ∈ C : d(p, p̄) ≤ d(p, q),∀ q ∈ C}

= {p̄ ∈ C : ⟨p, q⟩ ≤ ⟨p, p̄⟩,∀ q ∈ C} . (6.24)

We will demonstrate the main property of the projection onto a closed and spherically

convex set in the following proposition.

Proposition 6.5.2. Let p ∈ Sn and p̄ ∈ C such that ⟨p, p̄⟩ > 0. Then, p̄ ∈ PC(p) if and

only if for any arbitrary q ∈ C, we have that
〈
Projp̄ p, Projp̄ q

〉
≤ 0. Moreover, PC(p) is

a singleton.

Remark 6.5.1. In Proposition 6.5.2, the condition
〈
Projp̄ p, Projp̄ q

〉
≤ 0 is equivalent

to ⟨exp−1
p̄ p, exp−1

p̄ q⟩ ≤ 0.

The following proposition indicates that for the problem of projecting a point onto

a closed and spherically convex set, it is sufficient to project this point onto the cone

spanned by this set. As we mentioned at the beginning of this section, the proof of this

proposition can be found in [31].
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Proposition 6.5.3. Denote C ⊆ Sn be a set which is nonempty, closed, and convex. If

for an arbitrary point p ∈ Sn, we have PKC(p) ̸= 0. If we denote PKC(p) be the usual

orthogonal projection onto the cone KC, then we have

PC(p) =
PKC(p)

∥PKC(p)∥
.

Then we provide two examples for Proposition 6.5.2.

Example 6.5.1. Consider a proper set C+ = {p ∈ Sn : p ∈ Rn+1
+ }. Then it is well known

that the cone spanned by set C is the nonnegative orthant, that is KC+ = Rn+1
+ . Note that

the nonnegative orthant is a proper cone, which means it is pointed. Then if we denote

the Euclidean projection onto the nonnegative orthant by PRn+1
+

(z), by using the result in

(4.2), we will have z+ = PRn+1
+

(z). Thus, by using Proposition 6.5.3, for any points p ∈ Sn

with p+ ̸= 0, we obtain the formula of the projection onto set C+ as

PC+(p) =
p+

∥p+∥
.

Example 6.5.2. Consider a proper set C1 = {p ∈ Sn : p ∈ Ln}. Then we can find out

that the cone spanned by set C1 is the Lorentz cone, i.e. KC1 = Ln. Since the Lorentz is

a pointed cone, then for any point p = (x, t) ∈ Sn with t > 0, by using Proposition 6.5.2,

the formula of the projection onto set C1 is given by

PC1(p) =
PLn(p)

∥PLn(p)∥
,

where

PLn(x, t) =



1

2

( [
(t+ ∥x∥)+ − (t− ∥x∥)+

] x

∥x∥
, (t− ∥x∥)+ + (t+ ∥x∥)+

)
, x ̸= 0,

(
t+, 0

)
, x = 0.
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The formula for the projection onto the Lorentz cone is provided in [36, Proposition 3.3].

Moreover, in [5, Proposition 3.3], another formula for the projection onto the Lorentz

cone is given by

PLn (x, t) =


(x, t), t ≥ ∥x∥,

1
2

(
1 + 1

∥x∥

)
(x, ∥x∥) , −∥x∥ < t < ∥x∥.

Example 6.5.3. Recall that we have defined Sn to be the vector space of symmetric

matrices over the real numbers R and Sn
+ = {X ∈ Sn : X ⪰ 0} to be the cone of n-

dimensional positive semidefinite matrices earlier this chapter. It is well-known that the

inner product of two matrices X, Y ∈ Sn can be defined as ⟨X, Y ⟩ = tr(Y X) = tr(XY ),

where tr denotes the trace of a matrix. Let X ∈ Sn and {v1, v2, . . . , vn} be an orthonormal

system of eigenvectors of the matrix X corresponding to the eigenvalues λ1, λ2, . . . , λn,

respectively. Thus, by using the spectral decomposition of X, we have

X =
n∑

i=1

λiv
i(vi)⊤.

Consider the case that the closed convex set C = {X ∈ Sn : X ∈ Sn
+}. In this case, the

cone spanned by set C is KC = Sn
+. Then, the projection of X ∈ Sn onto Sn

+ can be given

by

PSn
+
(X) =

n∑
i=1

λ+i viv
T
i ,

where λ+i := max{λi, 0}. Then, by using Proposition 6.5.3, we conclude that for all

matrices X ∈ Sn with PSn
+
(X) ̸= 0, we have

PC(X) =
PSn

+
(X)

∥PSn
+
(X)∥

.

In the remainder of this section, we introduce some lemmas to discuss some new properties

of the projection onto a closed spherically convex set. These new properties are useful

in analysing the gradient projection method. Denote C ⊂ S to be a nonempty closed
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spherically convex set.

Lemma 6.5.4. Let p, q ∈ Sn and θ̄ > 0 such that θ̄ < π/2. Suppose we have d(p, q) ≤ θ̄

and p ∈ C. Then, we have the following inequality

cos(θ̄)d2(p,PC(q)) ≤
〈
exp−1

p q, exp−1
p PC(q)

〉
. (6.25)

Proof. By applying Lemma 6.4.4 with q̂ = p, q̃ = q and q̄ = PC(q), we conclude that

cos d(q,PC(q)) = cos d(p,PC(q)) cos d(p, q) + sin d(p,PC(q)) sin d(p, q) cos θp. (6.26)

Now, by using Lemma 6.4.4 with q̂ = PC(q), q̃ = q and q̄ = p, we obtain that

cos d(q, p) = cos d(PC(q), p) cos d(PC(q), q) + sin d(PC(q), p) sin d(PC(q), q) cos θPC(q).

Since we have ⟨exp−1
p q, exp−1

p PC(q)⟩ = d(p, q)d(p,PC(q)) cos θp, by using Proposition 6.5.2

and Remark 6.5.1, we get cos θPC(q) ≤ 0. Meanwhile, since we have d(PC(q), p) ≤ π and

d(PC(q), q) ≤ π, then the last equality we have can be converted to the following inequality

cos d(q, p) ≤ cos d(PC(q), p) cos d(PC(q), q). (6.27)

Then, by adding equality (6.26) and inequality (6.27), after some algebraic manipulations,

we have the following inequality

(cos d(q,PC(q)) + cos d(q, p)) (1− cos d(PC(q), p))

≤ sin d(p,PC(q)) sin d(p, q) cos θp. (6.28)

By using ⟨exp−1
p q, exp−1

p PC(q)⟩ = d(p, q)d(p,PC(q)) cos θp again, the inequality (6.28) is
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equivalent to

d2(p,PC(q))
d(q, p)

sin d(p, q)
(cos d(q,PC(q)) + cos d(q, p))

1− cos d(PC(q), p)

d(p,PC(q)) sin d(p,PC(q))
≤

⟨exp−1
p q, exp−1

p PC(q)⟩.

Since d(q,PC(q)) ≤ d(q, p) ≤ π, then cos d(q, p) ≤ cos d(q,PC(q)). Thus, the last inequal-

ity can be converted to

d2(p,PC(q))
2d(q, p) cos d(q, p)

sin d(p, q)

1− cos d(PC(q), p)

d(p,PC(q)) sin d(p,PC(q))

≤ ⟨exp−1
p q, exp−1

p PC(q)⟩. (6.29)

For any arbitrary x ∈ (0, π
2
) we have x

sin(x)
> 1. Meanwhile, function cos(x) is monotone

decreasing when x ∈ (0, π
2
). Note we have 0 ≤ d(p, q) ≤ θ̄ < π/2. Thus, we will obtain

cos(θ̄) ≤ cos d(q, p) ≤ d(q, p) cos d(q, p)

sin d(p, q)
. (6.30)

On the other hand, we have 1−cos(x)
x sin(x)

> 1
2
when x ∈ (0, π

2
) . Thus, by considering

d(q,PC(q)) ≤ d(q, p) and d(p, q) ≤ θ̄ < π/2, we have

1

2
≤ 1− cos d(PC(q), p)

d(p,PC(q)) sin d(p,PC(q))
. (6.31)

Therefore, by combining (6.29) with (6.30) and (6.31), inequality (6.25) follows.

In order to simplify the notations, in the remaining part of this section, we take θ > 0

such that

θ̄ := arccos(θ) <
π

2
. (6.32)

Let f be a function that is defined in (6.11), and we will have the following Lemma.

Lemma 6.5.5. Suppose we have two constants θ and θ̄ which are satisfying (6.32), let

p ∈ C such that grad f(p) ̸= 0. Assume that we have another constant α ∈ R such that
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the inequalities 0 < α ≤ θ̄/∥ grad f(p)∥ hold. Then, we obtain the following inequality

〈
grad f(p), exp−1

p PC
(
expp (−α grad f(p))

)〉
≤ − θ

α
d2
(
p,PC

(
expp (−α grad f(p))

))
. (6.33)

Proof. To simplify the notations, since we have p ∈ C and α > 0, we define

v := grad f(p), q(α) := expp(−α grad f(p)). (6.34)

Since grad f(p) ̸= 0, we have PC(q(α)) ̸= p. By using (6.34), θ̄ < π/2 and α ≤

θ̄/∥ grad f(p)∥ we conclude that d(p, q(α)) = α∥ grad f(p)∥ ≤ θ̄ < π/2. Thus, we have

−αv = exp−1
p q(α). Then, by applying Lemma 6.5.4 with q = q(α), we will have the

following inequality

θd2(p,PC(q(α))) ≤
〈
exp−1

p q(α), exp−1
p PC(q(α))

〉
.

Thus, by substitute −αv = exp−1
p q(α) into the last inequality, we have

⟨v, exp−1
p PC(q(α))⟩ ≤ −

θ

α
d2(p,PC(q(α)).

By using (6.34), the last inequality is equivalent to (6.33).

After the demonstration of the two important inequalities above, we will introduce

another important concept.

Denote C ⊆ Ω to be a closed spherically convex set. Let the point p̄ ∈ C to be the solution

to the constrained optimisation problem (6.11), then we have

〈
Df(p̄),Projp̄ p

〉
=
〈
grad f(p̄),Projp̄ p

〉
= ⟨grad f(p̄), p⟩ ≥ 0, ∀ p ∈ C. (6.35)

Then for any point which is satisfying (6.35), we call the point a stationary point of the
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problem (6.11).

In the next corollary, two important properties of the projection onto the closed spher-

ically convex set are presented, and these two properties are related to the definition of a

stationary point, which is illustrated above.

Corollary 6.5.6. Suppose we have two constants θ and θ̄ which are satisfying (6.32), let

p ∈ C such that grad f(p) ̸= 0. Assume that we have another constant α ∈ R such that

the inequalities 0 < α ≤ θ̄/∥ grad f(p)∥ hold. The following two statements are true.

(i) The point p̄ is stationary for the problem (6.11) if and only if

p̄ = PC
(
expp̄ (−α grad f(p̄))

)
.

(ii) If p̄ is a nonstationary point of the problem (6.11), then

〈
grad f(p̄), exp−1

p̄ PC
(
expp̄ (−α grad f(p̄))

)〉
< 0. (6.36)

Equivalently, if there exists ᾱ ∈ R such that 0 < ᾱ ≤ θ̄/∥ grad f(p̄)∥ and

〈
grad f(p̄), exp−1

p PC
(
expp̄ (−ᾱ grad f(p̄))

)〉
≥ 0, (6.37)

then p̄ is stationary point of the problem (6.11).

Proof. First, let us prove item (i). Suppose that point p̄ is stationary for the prob-

lem (6.11), by using (6.35) we have

〈
grad f(p̄),Projp̄ p

〉
≥ 0, ∀ p ∈ C. (6.38)

Suppose we have

p̄ ̸= PC
(
expp̄ (−α grad f(p̄))

)
. (6.39)

We will prove this by contradiction. From (6.13), we have Projp̄ p = p − ⟨p̄, p⟩p̄, then
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by using the formula of the inverse of the exponential mapping, which is given in (6.17),

along with (6.38) and (6.39), we have

〈
grad f(p̄), exp−1

p̄ PC
(
expp̄ (−α grad f(p̄))

)〉
≥ 0. (6.40)

Then by using the inequality given in Lemma 6.5.5, we have

d(p̄,PC(expp̄(−α grad f(p̄)))) ≤ 0. (6.41)

Note that equation (6.41) contradicts equation (6.39). Thus,

p̄ = PC
(
expp̄ (−α grad f(p̄))

)
.

Next, on the other hand, suppose we have p̄ = PC
(
expp̄ (−α grad f(p̄))

)
. From Proposi-

tion 6.5.2 and Remark 6.5.1, by substituting into q = expp̄ (−α grad f(p̄)) we have

⟨exp−1
p̄ expp̄ (−α grad f(p̄)) , exp−1

p̄ p⟩ ≤ 0, ∀ p ∈ C,

which can be reduced to

⟨α grad f(p̄), exp−1
p̄ p⟩ ≥ 0

for any p ∈ C.

Since we have α > 0, then by using the formula of the inverse of exponential mapping in

(6.17) again, the last inequality implies that

〈
grad f(p̄),Projp̄ p

〉
≥ 0, ∀ p ∈ C,

and we conclude that the point p̄ is a stationary point for problem (6.11).

Therefore, the sufficient and necessary condition for a point to be stationary for prob-

lem (6.11) have been proved.
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Next, we will prove item (ii). Suppose that the point p̄ is not a stationary point of the

problem (6.11), then by using the conclusion in item (i), we get

p̄ ̸= PC
(
expp̄ (−α grad f(p̄))

)
.

Thus, by applying Lemma 6.5.5, since the two constants we have, which are α, θ, are

positive, we get

0 <
θ

α
d2
(
p̄,PC

(
expp̄ (−α grad f(p̄))

))
≤ −

〈
grad f(p̄), exp−1

p̄ PC
(
expp̄ (−α grad f(p̄))

)〉
,

Thus, 〈
grad f(p̄), exp−1

p̄ PC
(
expp̄ (−α grad f(p̄))

)〉
< 0.

Therefore, the first statement from item (ii) has been proved. Since the second statement

in item (ii) is the contrapositive of the first statement in item (ii).

Thus, we can just conclude that if there exists ᾱ ∈ R such that 0 < ᾱ ≤ θ̄/∥ grad f(p̄)∥

and 〈
grad f(p̄), exp−1

p PC
(
expp̄ (−ᾱ grad f(p̄))

)〉
≥ 0,

then p̄ is stationary point of problem (6.11).

6.6 Gradient projection method on the sphere and

algorithms

In this section, in order to solve the constraint optimisation problem (6.11), we will present

the gradient projection method with the algorithms. At the beginning, we will introduce

some new notations first. Denote a nonempty set C ′ ̸= ∅ be the solution set to the

constraint optimisation problem (6.11) and denote the optimal value of f by f ∗, where

f ∗ := infp∈C f(p). Then in the remaining section, we suppose that grad f is Lipschitz
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continuous on C ⊆ Sn with a nonnegative constant L ≥ 0. Moreover, we define another

constant ζ ∈ R to be an upper bound for the gradient of the function f

max
p∈C
∥ grad f(p)∥ ≤ ζ < +∞. (6.42)

The following example will demonstrate a particular case of a function with the upper

bound of the gradient of the function.

Example 6.6.1. Let g : Sn → R be a function such that g(p) = p⊤Ap. Then, by

using the result in Example 6.4.2, we get ∥ grad g(p)∥ ≤ 2(λmax(A) − λmin(A)). Thus,

the upper bound of the gradient of the function g(p) can be obtained by just letting ζ =

2(λmax(A)− λmin(A)).

Now we have all the concepts we need to demonstrate the gradient projection method

and the algorithms. Next, the conceptual version of the gradient projection method,

which is used to solve problem (6.11), is given in the Algorithm 1 below.

Algorithm 1: Gradient projection method on Sn with constant stepsize

Step 0. Take the constants ζ > 0 satisfying (6.42), θ and θ̄ > 0 satisfying (6.32) and α ∈ R such that

0 < α < min

{
2θ

L
,
θ̄

ζ

}
. (6.43)

Take an initial point p0 ∈ C and set k = 0;

Step 1. If grad f(pk) = 0, then stop and return pk; otherwise, set the next iterate pk+1 as follows

pk+1 := PC
(
exppk

(
− α grad f(pk)

))
; (6.44)

Step 2. Update k ← k + 1 and go to Step 1.

The remark below will discuss the value of the constants that we will choose when

implementing Algorithm 1.
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Remark 6.6.1. Since the sphere Sn is a compact set and f is a differentiable function,

then the minimiser of the function f exists. Let us denote it by q̄ ∈ Sn and we have

grad f(q̄) = 0. Consequently, if grad f is Lipschitz continuous on Sn, then by using

Definition 6.4.2, for any p ∈ Sn, we have ∥ grad f(p)∥ ≤ Ld(p, q̄). Hence, ∥ grad f(p)∥ ≤

πL, for all p ∈ Sn, and the value of constant ζ defined in (6.42) can be taken by letting

ζ = πL. Moreover, we would like to find the biggest interval for the step-size α, which

is defined in (6.43). Thus, by considering the definition we set for θ and θ̄ in (6.32), we

must take 0 < θ < 1 such that θ = θ̄, and that leads to θ̄ > 0.7. Therefore, by using

inequality (6.43), we will set 0 < α < 0.7/(πL). Moreover, we find out in Section 6.7 that

this interval can be set bigger for a special case when f(p) = p⊤Ap.

Then, in the next proposition, we show that Algorithm 1 is well defined.

Proposition 6.6.1. Algorithm 1 is well defined and will generate a sequence (pk)k∈N ⊆ C.

Proof. Let p0 ∈ C to be the starting point. Then without loss of generality, we just assume

that we have pk ∈ C. From (6.42) and (6.43), we have maxp∈C ∥ grad f(p)∥ ≤ ζ < +∞

and 0 < α < min
{

2θ
L
, θ̄
ζ

}
, which leads to

d(pk, exppk
(−α grad f(pk))) = α∥ grad f(pk)∥ < θ̄.

By using the definition of θ̄ we have θ̄ < π/2, and subsequently we get

d(pk, exppk
(−α grad f(pk))) < π/2.

Hence, due to pk ∈ C, by using (6.24), the last inequality implies that

d
(
PC(exppk

(−α grad f(pk))), exppk
(−α grad f(pk))

)
<
π

2
.

Thus, by using Proposition 6.5.2, we have that PC(exppk
(−α grad f(pk))) is a singleton.

Therefore, the point pk+1 belongs to the set C, we conclude that Algorithm 1 is well

defined and generates a sequence (pk)k∈N ⊆ C.
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In the next lemma, we present a new inequality which is essential in analysing the sequence

(pk)k∈N generated by Algorithm 1.

Lemma 6.6.2. For the sequence (pk)k∈N that is generated by using Algorithm 1, we have

the following inequality

f(pk+1) ≤ f(pk)−
(
2θ − αL

2α

)
d2(pk, pk+1), k = 0, 1, . . . . (6.45)

In particular, the sequence (f(pk))k⊆N is non-increasing and convergent.

Proof. By using Proposition 6.6.1, since p0 ∈ C, we have (pk)k∈N ⊆ C. Let Ω = Sn, p = pk

and q = pk+1, by applying Lemma 6.4.3, we get

f(pk+1) ≤ f(pk) + ⟨grad f(pk), exp−1
pk
pk+1⟩+

L

2
d2(pk, pk+1).

From (6.44), we have pk+1 := PC
(
exppk

(
− α grad f(pk)

))
. Then, by using Lemma 6.5.5

with p = pk, we get

f(pk+1) ≤ f(pk)−
θ

α
d2(pk, pk+1) +

L

2
d2(pk, pk+1)

= f(pk)−
(
2θ − αL

2α

)
d2(pk, pk+1), (6.46)

which implies the inequality (6.45). By using (6.43), we have that (2θ − αL)/2α > 0,

which leads to f(pk+1) ≤ f(pk). Thus, we conclude that the sequence (f(pk))k∈N is non-

increasing. Hence, since −∞ < f ∗ and (f(pk))k∈N is non-increasing, the convergence of

sequence (f(pk))k∈N follows.

In the next theorem, we demonstrate that any cluster point of the sequence (f(pk))k∈N is

a solution to the constraint optimisation problem (6.11).

Theorem 6.6.3. If p̄ ∈ C is a cluster point of the sequence (pk)k∈N, then p̄ is also a

stationary point of the constraint optimisation problem (6.11).
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Proof. For the cluster point p̄ ∈ C, if we have grad f(p̄) = 0, then by using (6.35), we can

find out that p̄ ∈ C is a stationary point of the constraint optimisation problem (6.11).

Now, let us consider the case that grad f(p̄) ̸= 0. Note that inequality (6.45) is equivalent

to

d2(pk, pk+1) ≤
2α

2θ − αL
(f(pk)− f(pk+1)) , k = 0, 1, . . . . (6.47)

Recall that in the Lemma 6.6.2, we indicate the sequence (f(pk))k∈N is non-increasing and

converges. Thus, by using the property of convergence of sequence (f(pk))k∈N and (6.47),

we have that limk→+∞ d(pk, pk+1) = 0.

Denote p̄ to be a cluster point of sequence (pk)k∈N and let sequence (pkj)j∈N represents

a subsequence of (pk)k∈N such that limj→+∞ pkj = p̄. Since we have already proved

that limk→+∞ d(pk, pk+1) = 0, and (pkj)j∈N is a subsequence of (pk)k∈N, we obtain that

limj→+∞ d(pkj+1, pkj) = 0. Hence, limj→+∞ pkj+1 = p̄.

Meanwhilie, by using (6.44) again, we have pkj+1 = PC(exppkj

(
−α grad f(pkj)

)
), for

j = 0, 1, . . .. Then by using Proposition (6.5.2), we have

〈
Projpkj+1

(
exppkj

(−α grad f(pkj))
)
,Projpkj+1

q
〉
≤ 0, ∀ q ∈ C.

Then, since function grad f is continuous, then let j → +∞, by taking the limit, we have

〈
Projp̄

(
expp̄(−α grad f(p̄))

)
,Projp̄ q

〉
≤ 0, ∀ q ∈ C,

which can be simplified as
〈
expp̄(−α grad f(p̄)),Projp̄ q

〉
≤ 0, for any q ∈ C. Hence, in

order to simplify the notation, let v = −α grad f(p̄). Since from (6.43), we have α > 0

and we have assumed grad f(p̄) ̸= 0 at the beginning of this proof, then v ̸= 0. Thus, by

using (6.15), we can obtain

0 ≥
〈
cos(∥v∥)p̄+ sin(∥v∥) v

∥v∥
,Projp̄ q

〉
=

sin(∥v∥)
∥v∥

〈
v,Projp̄ q

〉
, ∀ q ∈ C. (6.48)
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Then by using the equations (6.42), (6.43), and (6.32), we have an inequality as follows

∥v∥ = α∥ grad f(p̄)∥ ≤ αζ ≤ θ̄ <
π

2
.

Thus, sin(∥v∥) ≥ 0. Then inequality (6.48) is equivalent to

0 ≥ ⟨v,Projp̄ q⟩, ∀ q ∈ C.

By substituting v = −α grad f(p̄) back to the above inequality, since α > 0, we get

〈
grad f(p̄),Projp̄ q

〉
≥ 0, ∀ q ∈ C.

Finally, by using the definition of the stationary point, we have that p̄ ∈ C is a stationary

point for problem (6.11).

From item (i) in Corrolary 6.5.6, we have that if pk = PC(exp pk(−αk grad f(pk))),

then pk is a stationary point of problem (6.11). Moreover, from (6.44) we have pk+1 :=

PC
(
exppk

(
− α grad f(pk)

))
. Then,

d(pk, pk+1) = d (pk,PC(exp pk(−αk grad f(pk)))) .

Thus, the value of d(pk, pk+1) can be treated as a measure of the stationarity of the se-

quence pk. In the next theorem, an iteration-complexity bound for the measure d(pk, pk+1)

will be provided. In order to simplify the notations in the statement, let us define

β := (2θ − αL)/(2α) > 0.

Theorem 6.6.4. For any N ∈ N, we have

min {d(pk, pk+1) : k = 0, 1, . . . , N} ≤

√
f(p0)− f ∗

β

1√
N + 1

,
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Proof. Let us substitute the formula of β defined above into (6.45), we obtain that

d2(pk, pk+1) ≤
f(pk)− f(pk+1)

β
, (6.49)

for any k = 0, 1, 2, . . .. Recall that at the beginning of this section, we have defined f ∗ as

the optimal value of f . Note that in Lemma 6.6.2, we have also shown that sequence pk

is non-increasing. Then for any k = 0, 1, 2, . . ., we have f ∗ ≤ f(pk). By simply adding up

the inequality (6.49) from k = 0 to k = N , we have

N∑
k=0

d2(pk+1, pk) ≤
1

β

N∑
k=0

(f(pk)− f(pk+1)) ≤
1

β
(f(p0)− f ∗). (6.50)

And (6.50) implies that

(N + 1)min
{
d2(pk, pk+1) : k = 0, 1, . . . , N

}
≤ (f(p0)− f ∗)/β

which is equivalent to

min {d(pk, pk+1) : k = 0, 1, . . . , N} ≤

√
f(p0)− f ∗

β

1√
N + 1

For Algorithm 1, in order to make sure that it can be used to solve the problem (6.9), we

must have the Lipschitz constant for grad f and an upper bound for ∥ grad f∥ on C ⊆ Sn.

However, we can not always know these constants in advance. These constants also are not

always computable. For example, when we need to deal with some large-scale problems

or in the case when we deal with positive semidefinite cones, this quantity is not easily

computable. In this case, another variant of Algorithm 1 will be demonstrated below, with

a backtracking stepsize rule approximating the Lipschitz constant. The new algorithm

can also be illustrated to accumulate at stationary points as well. The conceptual version

of the new algorithm with a backtracking stepsize rule to solve the problem (6.11) is given
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as follows:

Algorithm 2: Gradient projection method on Sn with backtracking stepsize rule

Step 0. Take constants ρ, β, γ0 ∈ (0, 1), ᾱ > 0, θ and θ̄ > 0 satisfying (6.32). Choose initial point

p0 ∈ C. Set k = 0;

Step 1. If grad f(pk) = 0, then stop and return pk; otherwise take

0 < αk < min

{
θ̄

∥ grad f(pk)∥
, ᾱ

}
, (6.51)

Step 2. Compute

yk := exppk
(−αkgrad f(pk)) , zk := PC (yk) , (6.52)

ℓk := min

{
ℓ ∈ N : βℓγk ≤

θ̄

∥ grad f(pk)∥
, f
(
q(βℓγk)

)
≤ f(pk) + ρ

(
βℓγk

)〈
grad f(pk), exp

−1
pk

zk
〉}

,

where q(τ) := exppk

(
τ exp−1

pk
zk
)
denotes the geodesic segment joining pk to zk;

Step 3. Set pk+1 := q(βℓkγk) and γk+1 := βℓk−1γk;

Step 4. Update k ← k + 1 and go to Step 1.

6.7 Special case

In this section, Algorithm 1 will be implemented to demonstrate how to solve the following

constrained optimisation problem

min{f(p) := ⟨Ap, p⟩ : p ∈ C}, (6.53)

where C ⊆ Sn and A : Rn+1 → Rn+1 is a linear operator such that λmin(A) ̸= λmax(A).

Recall that in Lemma 6.4.2, we introduced the constant L = 2(λmax(A) − λmin(A)).

Similarly, by considering (6.42) and Example 6.6.1, we define ζ = 2(λmax(A)− λmin(A)).

If we take θ = 0.7, then we have θ̂ = arccos 0.7. Since 0.7 < arccos(0.7), by using (6.43),
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we can find an α ∈ R such that

0 < α <
0.35

λmax(A)− λmin(A)
.

Recall that in Proposition 6.5.3, denote PKC(p) to be the usual orthogonal projection onto

the cone KC, if for p ∈ Sn we have PKC(p) ̸= 0, then the formula of the projection onto C

will be given as

PC(p) =
PKC(p)

∥PKC(p)∥
.

In this case, an adapted version of Algorithm 1 will be given as follows:

Algorithm 3: Gradient projection method on Sn to solve problem (6.53)

Step 0. Take 0 < α < 0.35/(λmax(A)− λmin(A)) and an initial point p0 ∈ C. Set k = 0;

Step 1. Set vk := Apk−⟨Apk, pk⟩pk. If vk = 0, then stop and return pk. Otherwise, set pk+1 as follows

pk+1 :=
PKC (qk)

∥PKC (qk)∥
, qk := cos(α∥vk∥) p+ sin(α∥vk∥)

vk
∥vk∥

. (6.54)

Step 2. Update k ← k + 1 and go to Step 1.

In the following examples, we will illustrate the explicit formula of the first equation

in (6.54) for the cases when the cone KC generated by C ⊆ Sn is the nonnegative orthant

Rn+1
+ , the Lorentz cone Ln or the positive semidefinite cone Sn

+ respectively.

Example 6.7.1. First, when we have C = Rn+1
+ ∩ Sn, in this case, KC = Rn+1

+ . Thus, by

using the result which is shown in Example 6.5.1, the first equation in (6.54) becomes

pk+1 =
q+k
∥q+k ∥

.

Example 6.7.2. In this example, we will consider the case when C = Ln ∩ Sn, then we

will have that KC = Ln. Let us define qk := (xk, tk) ∈ Rn × R, by using the second result
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in Example 6.5.2, the first equation in (6.54) is equivalent to

pk+1 =


(xk, tk), tk ≥ ∥xk∥,

1√
2∥xk∥

(xk, ∥xk∥) , −∥xk∥ < tk < ∥xk∥.

Example 6.7.3. Now consider the case when C = Sn
+ ∩ Sn and the cone spanned by C is

the cone of positive semidefinite matrices KC = Sn
+. Let qk ∈ C and {v1k, v2k, . . . , vnk} be

an orthonormal system of eigenvectors of the matrix qk corresponding to the eigenvalues

λ1k, λ2k, . . . , λnk, respectively. By using the spectral decomposition of qk, we have

qk =
n∑

i=1

λikv
ik(vik)⊤.

Thus, by using the result in Example 6.5.3, we conclude that the first equation in (6.54)

will become

pk+1 :=

∑n
i=1(λik)

+vik(vik)T

∥
∑n

i=1(λik)
+vik(vik)T∥

.

6.8 Numerical experiments

In this section, we will illustrate the numerical result we obtained by using the algorithm

presented in the previous section to test the copositivity of operators with respect to

different cones. We implemented the algorithms using Matlab 2018b. From the conclusion

in the previous section, we get that the operator is not copositive with respect to the cone

K if the output we got from the algorithm is negative. On the other hand, we can just

guess that the operator may be copositive with respect to K with a higher probability

if we get a positive result each time when we run the algorithm several times by using

different starting points each time.

The cones we considered are the nonnegative orthant and the Lorentz cone. In order to

implement the algorithm on the nonnegative orthant and the Lorentz cone, respectively,

we use the function f(p) = p⊤Ap and consider the optimisation problem given in (6.11).
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Example 6.8.1. Consider the following matrix, which is not copositive. See [14]:

A1 =



1 −0.72 −0.59 1

−0.72 1 −0.6 −0.46

−0.59 −0.6 1 −0.6

1 −0.46 −0.6 1


. (6.55)

Firstly, we consider the matrix A1 given in (6.55) and K-the nonnegative orthant in prob-

lem (6.11). The Algorithm 3 is implemented with the starting point p0 = [0.5 0.5 0.5 0.5],

the result we obtain is f ∗ = −0.2756 < 0. Thus, we have the result and conclude that the

matrix A1 is not copositive. Now we consider problem (6.11) with respect to the Lorentz

cone L4. In this case, if we implement Algorithm 3 with a starting point p0 = [
√
3
6

√
3
6

√
3
6

3
4
],

the result we have is f ∗ = −0.0545 < 0. Thus, we can conclude that A1 is also not copos-

itive with respect to the Lorentz cone L4. Note that, by using Proposition 6.3.3, the

copositivity with respect to the Lorentz cone can also be verified. In this case, suppose that

A1 is copositive with respect to the Lorentz cone L4. Therefore, by using Proposition 6.3.3,

we conclude that there exists a µ ∈ R+ such that matrix A1 − µJ is positive semidefinite.

Then let us consider one of its principal minors of matrix A1 − µJ , which is

∣∣∣∣∣∣∣
1 + µ 1

1 1− µ

∣∣∣∣∣∣∣ ≥ 0,

and this inequality is equivalent to µ ≤ 0. Hence, we conclude that µ = 0. Thus, if the

matrix A1 is copositive with respect to the Lorentz cone L4, then the matrix A1 itself is

positive semidefinite. But it is easy to check that the matrix A1 has one negative eigenvalue

λ = −0.275649, which implies that matrix A1 is not positive semidefinite. Thus, we can

conclude that A1 is not copositive with respect to the Lorentz cone L4, and it is the same

result we got by using Algorithm 3.
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Example 6.8.2. The second example we considered is the well-known Horn matrix:

A2 =



1 −1 1 1 −1

−1 1 −1 1 1

1 −1 1 −1 1

1 1 −1 1 −1

−1 1 1 −1 1


. (6.56)

First, consider the case when the cone K is the nonnegative orthant, i.e. K = R5
+. By

applying Algorithm 3 with different starting points, we obtain that f ∗ = 1 > 0. We can

only conclude that the Horn matrix given in (6.56) might be strictly copositive with respect

to the nonnegative orthant R5
+. On the other hand, if we consider the case when K = L5,

that is when K is a Lorentz cone. In this case, by implying Algorithm 3 by using the

starting point p0 = [0 0 0 0 1], the result we obtained is f ∗ = −1.2018 < 0. Therefore, we

conclude that the Horn matrix A2 is not copositive with respect to the Lorentz cone. This

conclusion can also be verified by using the Proposition 6.3.3. Suppose A2 is copositive

with respect to the Lorentz cone L5, then we can find one µ ∈ R+ such that the matrix

A2 − µJ =



1− µ −1 1 1 −1

−1 1− µ −1 1 1

1 −1 1− µ −1 1

1 1 −1 1− µ −1

−1 1 1 −1 1 + µ


.

is positive semidefinite. Then, all the principal minors of this matrix must be nonnegative.

Thus, we have ∣∣∣∣∣∣∣
1 + µ −1

−1 1− µ

∣∣∣∣∣∣∣ ≥ 0,

which is equivalent to 1− µ2 − 1 ≥ 0, this leads to µ2 ≤ 0. Hence, we have µ = 0. Thus,
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if the Horn matrix A2 is copositive with respect to L5, we have that matrix A2 is positive

semidefinite. But we can check once again that the Horn matrix A2 has two negative

eigenvalues, which are λ1 = λ2 = 1−
√
5. This implies that the matrix A2 is not positive

semidefinite. Therefore, the Horn matrix A2 is not copositive with respect to the Lorentz

cone L5.

The third example we investigated is the Hoffmann-Pereira matrix:

Example 6.8.3. Consider the following Hoffmann-Pereira matrix, which is a copositive

matrix, see [14]:

A3 =



1 −1 1 0 0 1 −1

−1 1 −1 1 0 0 1

1 −1 1 −1 1 0 0

0 1 −1 1 −1 1 0

0 0 1 −1 1 −1 1

1 0 0 1 −1 1 −1

−1 1 0 0 1 −1 1



, (6.57)

For the case of nonnegative orthant, when K = R7
+, if we run Algorithm 3 with different

starting points, we obtain that f ∗ = 1 > 0. Then we conclude that the Hoffmann-Pereira

matrix A3 is strictly copositive with respect to the nonnegative orthant R7
+. However, if

we consider the case when K is Lorentz cone, that is K = L7, with the starting point

p0 = [0 0 0 0 0 0 1], the result we have is that f ∗ = −0.6519 < 0. Therefore, the

Hoffmann-Pereira matrix A3 is not copositive with respect to the Lorentz cone L7. This

conclusion can also be obtained by using Proposition 6.3.3. Since the matrix A3− µJ has

the same principal minor ∣∣∣∣∣∣∣
1 + µ −1

−1 1− µ

∣∣∣∣∣∣∣
as A2 − µJ . then by using the result we obtained in Example 6.8.2, we conclude that

µ = 0, which implies that if the Hoffmann-Pereira matrix A3 is copositive with respect to

the Lorentz cone L7, then the Hoffmann-Pereira matrix A3 is positive semidefinite. But
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the Hoffmann-Pereira matrix A3 is not a positive semidefinite matrix as it has 4 negative

eigenvalues. Thus, we get again that the Hoffmann-Pereira matrix A3 is not copositive

with respect to the Lorentz cone L7.

In [14,22], there are some other examples of copositive matrices that have been considered

by researchers, which are a set of matrices related to the maximum clique problem from

the DIMACS collection [1]. For those matrices, the real status of copositivity is known by

construction. The justification is given in [14] and those matrices can be accessed at [2].

Then Algorithm 3 was implemented to test the copositivity of most matrices given in [2]

with respect to the nonnegative orthant. In these cases, we have chosen 1000 randomly

generated starting points and run the algorithm 1000 times. The results we got showed

that Algorithm 3 has correctly detected the copositivity status of the tested matrices.

From Table 6.1, we can see the average number of iterations in some of the cases. In the

other cases, the behaviour of the algorithm is similar.

Table 6.1: Results of Testing the Copositivity of Generated Matrices
order copositive not copositive average nr. of iterations

Hamming4-4-not-COP 16 yes 6.28
Johnson6-2-4-not-COP 15 yes 31.69
Johnson6-4-4-not-COP 15 yes 31.92
Keller2-not-COP 16 yes 13.54
sanchis22-Not-COP 22 yes 141.68
Hamming4-4-in-Interior 16 yes 77.62
Johnson6-2-4-in-Interior 15 yes 56.48
Johnson6-4-4-in-Interior 15 yes 56.66
Keller2-in-Interior 16 yes 66.73
sanchis22-in-Interior 22 yes 140.5

Finally, we will give some examples of an operator that is copositive with respect to

the positive semidefinite cones. Recall that we have defined Sn as a vector space of the

n× n symmetric matrices earlier in this chapter. We define Sn = {p ∈ Sn+1 : ∥p∥2 = 1}

to be a sphere. Denote A : Sn+1 → Sn+1 be a linear operator and C = Sn
+ be the positive

semidefinite cone. Let us consider the following nonlinear programming problem

min
p∈C

f(p) := tr(pAp), (6.58)

143



and we will implement Algorithm 2 to check the copositivity of matrix A with respect to

the cone C in two particular examples from problem (6.58).

Example 6.8.4. Let a ∈ Sn be a symmetric matrix and denote A : Sn → Sn be a linear

operator that is defined by Ap = apa. In this case, we have A∗ = A. Then by using (6.19),

we get

grad f(p) = 2Ap− tr((2Ap)p)p. (6.59)

If we consider the case when matrix a = A1, the matrix that is given in (6.55), and

when K is the positive semidefinite cone, then by using Algorithm 2 with different starting

points, we can get the result, that is f ∗ ≃ 3 · 10−6. Hence, the result we got by using

Algorithm 2 represents that the operator Ap = apa might be copositive with respect to the

positive semidefinite cone.

Example 6.8.5. Let a ∈ Sn be a symmetric matrix and denote A : Sn → Sn be a linear

operator that is defined by defined by Ap = pa + ap. In this case, similar to the example

above, we still hold that A∗ = A and we also have

grad f(p) = 2Ap− tr((2Ap)p)p.

Considering the case when we have a = A2, where the matrix A2 is given in (6.56). Then,

by applying Algorithm 2, the result we have is f ∗ = −2.4721 < 0. Since f ∗ is negative,

we find that the operator Ap = pa + ap with the Horn matrix A2 is not copositive with

respect to the positive semidefinite cone.

6.9 Conclusions and comments

In this chapter, in order to solve constrained optimisation problems on the sphere in

finite-dimensional vector spaces, the gradient projection algorithm has been illustrated.

In Corollary 6.2.5, we have demonstrated that the problem of finding the existence of
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the solution to the nonlinear complementarity problem can be reduced to a problem of

proving that the solution to the corresponding constraint optimisation problem defined on

the intersection of the sphere and a corresponding cone is positive. After that, by using

the relationship between the copositivity and a quadratic programming (QP) problem

defined on the intersection of a cone and sphere is shown in Lemma 6.3.1, Then the

problem of analysing the solvability of the complementarity problem can also be converted

to the problem of testing the cone copositivity of the considered linear operator via the

introduced algorithm. The convergence analysis of this method is provided in Lemma

6.6.2. Moreover, two variants of the algorithm have also been introduced, one with a

backtracking stepsize rule approximating the Lipschitz constant, while another one can

be implemented for some special cases. As far as we know, this is the first numerical

method introduced to check the copositivity of operators with respect to the positive

semidefinite cone. Furthermore, several computational results have been provided in the

last section of this chapter, which includes the numerical study of the cone copositivity

of operators.
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CHAPTER 7

FINAL REMARKS AND DISCUSSIONS

In this thesis, we studied some special topics in the cone complementarity. In this final

chapter, we will review the results obtained in this thesis, as well as summarise the

contributions we made and give some possible direction for future research.

We start with introducing a new extension of the second order cone, which is the

monotone extended second order cone (MESOC). In the majority part of this thesis we

are working on topics related to the properties of the MESOC and the complementarity

problem of the MESOC. Even though there exist some similarities, we still could show

that this cone is different from both the second order cone and the extended second order

cone.

First, for the second order cone (or Lorentz cone), it is well known that it is a symmetric

cone in Rp × R, while, in Chapter 2, we found that the monotone extended second order

cone is symmetric only when p = 1. Otherwise, it is a sub-dual cone and not symmetric.

Furthermore, for the extended second order cone (ESOC), even MESOC is a subset of

ESOC, but they are indeed different. Sznajder showed in [79] that ESOC is irreducible,

while we found that MESOC is reducible. The value of the Lyapunov rank of MESOC

has been obtained, and not only the value of the Lyapunov rank is different from ESOC,

but also typical Lyapunov transformations are different.

In Chapter 3, we first discussed the isotonicity property of MESOC. Note that in [62],

Németh and Zhang have pointed out that ESOC has a very wide class of isotone projection
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sets. However, for MESOC, we showed that the cylinders are the only isotone projection

set with respect to the MESOC. Then, by using the MESOC-isotonicity of the projection

onto the cylinder, we developed an iterative scheme which can be implemented to solve

general mixed complementarity problems. Although the iterative scheme is similar to the

iterative method for ESOC, which has been presented in [62]. However, we have shown

that the mixed complementarity problem that can be solved by using MESOC-isotonicity

cannot be solved by using ESOC. Even though MESOC is a subset of ESOC, from the

MESOC-isotonicity of a mapping, we cannot obtain its ESOC-isotonicity. Thus, bears

with similarities, MESOC is still an interesting cone which is worthy of investigation in a

future research.

In Chapter 4, we demonstrated that the problem of projection onto the monotone ex-

tended second order cone can be reduced to an isotone regression problem in neighbouring

dimensions by using the Moreau’s decomposition theorem and the properties of the com-

plementarity set of MESOC. We also presented the formulas to show how to project onto

this cone; these formulas depend only on an equation for one real variable. For the view of

practical applications, it is interesting and also very important to develop the numerical

methods to figure out the solution of the equation (4.4); the solution could be found since

the isotone regression problem can be efficiently solved by using the pool-adjacent-violater

algorithm.

In Chapter 5, we studied the linear complementarity problem on the MESOC. We

showed that this problem could be converted to a mixed complementarity problem on

the nonnegative orthant. Thus, a variety of existing algorithms could be applied to find

the solution to the converted problem. Two approaches have been given: one by using

the Fischer–Burmeister (FB) C-function, and another by reformulating this problem to

an unconstrained optimisation problem by using the merit function derived from FB C-

function. The algorithms corresponding to these two approaches have also been provided.

We provide a numerical example at the end of this chapter, which is based on the first

approach. In the last section of this chapter, we introduced a portfolio optimisation
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problem, which is an application based on the MESOC. By using the earlier results of

Chapter 2 and this chapter, we present an analytical solution to the portfolio optimisation

problem in the end.

In Chapter 6, we represented the relationship between the existence of solutions to

a cone complementarity problem and the optimisation of a quadratic function on the

intersection of the sphere and the corresponding cone. We also demonstrated that the

problem of checking the copositivity of an operator with respect to a cone could be

converted to a problem of finding the minimisation of a quadratic function defined on the

intersection of the sphere and the corresponding cone. Several algorithms, computational

results, and the numerical results obtained in checking the cone copositivity of operators

we presented at the end of the chapter. The results obtained from the algorithm cannot

acknowledge that an operator is definitely copositive with respect to a cone. However,

some other techniques can be applied to increase the likelihood, such as inputting different

initial points and implementing this algorithm a large number of times.

After the final remarks for this thesis, we will outline some contributions we have:

1. We introduced another extension of the second order cone, which is the monotone

extended second order cone. The properties of this cone have been discussed. The

formula for the Lyapunov-like transformation of MESOC and the value of the Lya-

punov rank have been presented. Moreover, we illustrated that MESOC can be

used in solving the general mixed complementarity problem and provided a numer-

ical example. These results above have been published in our paper [37].

2. We have shown that the problem of projection onto the MESOC can be reduced

to an isotone regression problem in the neighbouring dimensions. The formulas

illustrating how to project onto this cone have been presented, and the formulas

for projecting onto the MESOC only depend on an equation for one real variable.

These results have been published in our paper [30].

3. We studied the linear complementarity problem on the MESOC and found the
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solution to the problem. The corresponding algorithms and numerical examples

have also been presented. Moreover, we introduced an application to the MESOC,

which is a portfolio optimisation problem and found the analytical solution to this

problem.

4. We demonstrated that the gradient projection method on the sphere could be used

both in checking the copositivity of an operator with respect to a cone and in

analysing the existence of the solutions to the cone complementarity problem. The

algorithms have been presented with convergence analysis and numerical experi-

ments in checking the copositivity of operators with different cones. To the best

of our knowledge, this is the first numerical method that has been implemented to

check the copositivity of operators with respect to the positive semidefinite cone.

The conclusions have been submitted in the Journal of Global Optimization.

At last, we will discuss some potential future research directions.

1. Can we consider other types of complementarity problems on the monotone extended

second order cone? For example, in the real financial market, the objective function

for some portfolio optimisation problems is defined based on some stochastic process

(normally, the stochastic process will be the standard normal distribution). Let F

be a set of events and P : F → [0, 1] be a mapping from event to possibility.

Denote n ∈ R to be the number of assets in a portfolio, ω = (ω1, ω2, . . . , ωn) be

the weight of assets in the portfolio, ri = (ri,1, ri,2, . . . , ri,T ) be the logarithm return

of the assets i from time 1 to time T , then it is well known that ri,j ∼ N(0, 1).

For example, denote ψ(ω, r) to be the loss function which measures the loss of the

portfolio, and consider the two most popular objective functions which have been

developed to measure the risk of the portfolio, that are Value-at-Risk (VaR) and

Conditional Value at Risk (CVaR). Value-at-Risk (VaR) is defined as follows,

VaRα (ψ(ω, r)) = min{Γ ∈ R : P (ψ(ω, r) ≥ Γ) ≤ α}
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where α ∈ (0, 1) represents the confidence interval (quantifies the probability that

the worst case happens). Conditional Value at Risk (CVaR) is defined by using

VaR. We have

CVaRα (ψ(ω, r)) = −
1

α

∫ α

0

VaRs (ψ(ω, r)) ds.

The investors would like to minimise the risk of a portfolio; we will have to face the

following two optimisation problems.

min
ω

VaRα (ψ(ω, r)) and min
ω

CVaRα (ψ(ω, r)) . (7.1)

Since we have r ∼ N(0, 1), one of our possible future research is if we can build a

stochastic complementarity problem based on the monotone extended second order

cone from an optimisation problem with the objective function given in (7.1) and

find its solution. Moreover, will it be possible to find another application based on

the monotone extended second order cone?

2. In Chapter 6, the gradient projection method on the sphere has been used in testing

the copositivity of an operator with respect to certain cones. However, we also

acknowledged that this algorithm cannot indicate for sure whether the operator is

copositive with respect to the given cones if we got a positive result. Thus, another

possible future research direction emerges whether we can amend this algorithm or

find another algorithm that can be used to fill this gap. Moreover, can we find an

algorithm that can be implemented to check the copositivity of an operator with

respect to the extensions of the second order cone, such as the extended second

order cone and the monotone extended second order cone?
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[70] I. Pólik and T. Terlaky. A survey of the s-lemma. SIAM review, 49(3):371–418, 2007.

156



[71] G. Rudolf, N. Noyan, D. Papp, and F. Alizadeh. Bilinear optimality constraints for
the cone of positive polynomials. Mathematical programming, 129(1):5–31, 2011.

[72] A. Ruszczynski. Nonlinear optimization. Princeton university press, 2011.

[73] T. Sakai. Riemannian geometry, volume 149. American Mathematical Soc., 1996.

[74] H. Scarf. The approximation of fixed points of a continuous mapping. SIAM Journal
on Applied Mathematics, 15(5):1328–1343, 1967.

[75] H. E. Scarf and T. Hansen. The computation of economic equilibria. Number 24.
Yale University Press, 1973.

[76] H. Schneider and M. Vidyasagar. Cross-positive matrices. SIAM Journal on Numer-
ical Analysis, 7(4):508–519, 1970.

[77] A. Seeger and D. Sossa. Critical angles between two convex cones i. general theory.
Top, 24(1):44–65, 2016.

[78] J. Sponsel, S. Bundfuss, and M. Dür. An improved algorithm to test copositivity.
Journal of Global Optimization, 52:537–551, 2012.

[79] R. Sznajder. The Lyapunov rank of extended second order cones. Journal of Global
Optimization, 66(3):585–593, 2016.

[80] B.-S. Tam. Some results of polyhedral cones and simplicial cones. Linear and Mul-
tilinear Algebra, 4(4):281–284, 1977.

[81] B.-S. Tam. On the structure of the cone of positive operators. Linear Algebra and
its Applications, 167:65–85, 1992.

[82] L. Xiao. Complementarity and related problems. PhD thesis, University of Birming-
ham, 2020.

[83] K. Ye, P. Parpas, and B. Rustem. Robust portfolio optimization: a conic program-
ming approach. Computational Optimization and Applications, 52:463–481, 2012.

157



[84] K. Yonekura and Y. Kanno. Second-order cone programming with warm start for
elastoplastic analysis with von mises yield criterion. Optimization and Engineering,
13:181–218, 2012.

[85] L. Zhang, J. Li, H. Zhang, and S. Pan. A second order cone complementarity ap-
proach for the numerical solution of elastoplasticity problems. Computational Me-
chanics, 51:1–18, 2013.

158


