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Abstract

This Thesis is concerned with the qualitative properties of nonlinear non-local reaction

diffusion equations. We begin by establishing minimum and comparison principles for

solutions to inequalities involving the integro-differential operators

P [u] =
n∑

i,j=1

aij∂xixj
u+

n∑
i=1

bi∂xi
u+ cu+ dJu− ∂tu, on ΩT ,

and

Q[u] =
n∑

i,j=1

aij∂xixj
u+ f(·,∇u, u, Ju)− ∂tu, on ΩT ,

respectively, with Ju denoting the convolution of u with an appropriately chosen integral

kernel φ. The minimum and comparison principles are established under a variety of

assumptions on the coefficients aij, bi, c, d and growth/decay rates of u. Next, we demon-

strate that the Cauchy problem associated with

∂tu = ∆u+ f(u, Ju), on ΩT ,

is well-posed, locally in time, when the nonlinear non-local term f is locally Lipschitz

continuous. Additionally, we prove the existence of solutions when f is locally Hölder

continuous (obtaining the existence of maximal and minimal solutions when f is assumed

to be non-decreasing with respect to Ju). Afterwards we treat the non-local analogue

to a problem arising from fractional-order autocatalysis (by taking f(u, Ju) = (Ju)p+, for

p ∈ (0, 1)) and show its well-posedness (locally in time). We accompany our analysis

with numerical simulations, demonstrating the conditional converges of the finite differ-

ence scheme, and large-t asymptotics. Finally, we consider potential generalisations and

extensions of the results presented in the text.
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LIST OF SYMBOLS

The following list describes the notation that is used within the body of this document.

Here, X denotes a subset of an n−dimensional Euclidean space, with its elements denoted

by (x1, x2, . . . , xn), unless stated otherwise.

|x|
(∑n

i=1 |xi|
2)1/2 for x ∈ Rn, unless specified otherwise.

∇u,∆u Let Ω be an open domain in Rn. If u ∈ C1(Ω) then ∇u = (∂x1u, . . . ,

∂xnu). If additionally u ∈ C2(Ω), then ∆u = ∂x1x1u+ · · ·+ ∂xnxnu.

∥u∥L∞(X) ess sup{|u|}, for u ∈ L∞(X).

∥u∥Lp(X)

(∫
X
|u|p
) 1

p , for p ∈ [1,∞) and u ∈ Lp(X).

∥u∥Wk,∞(X)

∑
|α|≤k ∥∂αxu∥L∞(X), for u ∈ W k,∞(X).

∥u∥Wk,p(X)

(∑
|α|≤k ∥∂αxu∥

p
Lp(X)

) 1
p
, for p ∈ [1,∞) and u ∈ W k,p(X).

∂αxu For u ∈ W k,p(X), with p ∈ [1,∞], k ∈ N, α1 + · · ·+αn = |α| ≤ k, and

αi ∈ N0 (for all i = 1, . . . , n), then, ∂αxu = ∂α1
x1
. . . ∂αn

xn
u.

R(X) The space of all functions with domain X and codomain R.

BR
x0

(or BR) The open ball centred at x0 (or 0Rn) with radius R.

C(X) The space of all continuous functions in R(X).

L∞(X) The subspace of R(X) containing all Lebesgue measurable functions

with bounded essential supremum and infimum.

Lp(X) The subspace of R(X) containing all Lebesgue measurable functions

u ∈ R(X) such that
∫
X
|u|p <∞, for p ∈ [1,∞).

W k,∞(X) The subspace of R(X) containing all functions such that for every

multi-index α = (α1, . . . , αn), with |α1 + · · ·+ αn| ≤ k, the mixed
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partial derivative ∂αxu exists, in the weak sense, with bounded essential

supremum and infimum.

W k,p(X) The subspace of R(X) containing all functions such that for every

multi-index α = (α1, . . . , αn), with |α1 + · · ·+ αn| ≤ k, the mixed par-

tial derivative ∂αxu exists, in the weak sense, in Lp(X), i.e. ∥∂αxu∥Lp(X) <

∞, for p ∈ [1,∞).

C l,m(X) The subspace of C(X) such that ∂jxi
u(x, t) and ∂kt u(x, t) exist and

are continuous on X for all j ≤ l and k ≤ m, with j, k ∈ N and

i = 1, . . . , n.

C l(X) The subspace of C(X) such that ∂jxi
u(x) exist and are continuous on

X for all j ≤ l with j ∈ N and i = 1, . . . , n.
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CHAPTER 1

INTRODUCTION

Reaction-diffusion equations have been extensively used for modelling population densities

as far back as the 1930s following the works of Fisher and Kolmogorov-Petrovskii-Piskunov

(see [KPP91]). Even though models based on these FKPP equations have been instru-

mental in providing insight on population dynamics, they do not always capture the full

picture. The study of non-local nonlinear second order parabolic partial differential equa-

tions, has attracted much attention over the past 35 years. In the pioneering works of Ei

[Ei87] and Britton [Bri90, Bri89], evolution equations containing a convolution term φ∗u

(to account for temporal, spatial or spatio-temporal delay) were considered in the context

of population densities which evolve with observable dependence on the local population

density.

To motivate our consideration on such reaction diffusion equations, the focus of this

Thesis, we begin by formally deriving a population model (in manner extensively based

on that presented in [GVA06, Vol11] and [BKUV22]). Different instances of this model

will be will be subsequently recalled in later chapters both as examples for applications to

the theory illustrated therein and as to highlight the limitations of our results. Next, we

briefly describe other types of non-local interactions present in the literature that are not

considered herein. Finally, we provide the structure of this Thesis with comments on the

novelty of the results presented, contrasting them with classical results and in particular

results that hold for local reaction diffusion equations.
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1.1 A derivation of a non-local model

Consider a 2-dimensional spatial region with euclidean coordinates, (x, y) ∈ R2. Let t ≥ 0

denote the time difference from an initial value set at t = 0. Now, let u denote the density

of individuals at the point (x, y, t) ∈ R2 × [0,∞). Suppose individuals move randomly in

any direction, without bias for any particular direction. Set p(r)dr to be the probability

of an individual displacing themselves by a distance between r and r + dr, from (x, y)

during a generation which we denote by δt > 0. We denote ρi to be the i-th moment of

p(r), namely

ρi =

∫ ∞

0

rip(r)dr, for i ∈ N,

and we assume that for i ≤ 4 that ρi is bounded; note that ρ0 = 1; denote
√
ρ2 as the

mean square displacement of the individuals during one generation.

Now, assume that the displacement of individuals, within a generation, is independent

of the rate of their birth and death. Then the local change of the population density u at

(x, y) from t to t+ δt is given by

δu(x, y, t) =

(∫
R2

u(x′, y′, t)
p(r)

2πr
dx′dy′ − u(x, y, t) + F (u, x, y, t)

)
δt, (1.1)

with r =
√
(x− x′)2 + (y − y′)2 and F denoting the local rate of growth/decay in the

population. By further assuming that u is sufficiently smooth, we perform a Taylor

expansion of u(x′, y′, t), centred at (x, y, t), to obtain

u(x′, y′, t) = u(x, y, t) + (x′ − x)ux(x, y, t) + (y′ − y)uy(x, y, t)

+
(x′ − x)2

2
uxx(x, y, t) +

(y′ − y)2

2
uyy(x, y, t)

+ (x− x′)(y − y′)uxy(x, y, t) + ... (1.2)

where we also consider third and fourth order terms. On substitution of u(x′, y′, t) in

(1.2), into (1.1), we note that the first and third order terms integrate to 0 via symmetry.

5



Moreover, provided that ρ2 is much larger than ρ4 we can neglect fourth order terms in

(1.2) and, after integrating, obtain

∂tu =
ρ2
4
∆u+ F (u, ·) on R2 × (0,∞). (1.3)

The function F , for simplicity, is often considered to be independent of (x, y, t). To

incorporate core features concerning the creation and removal of the population, F can

be expressed in the form

F (u) = (B(u)−D(u))us, (1.4)

where B denotes a ‘birth’ function, D a ‘death’ function, and us, for s = 1, 2, is a

reproduction factor1.

Note that by considering s = 1, B(u) = b, the constant birth rate, and D(u) = d+ ku

(with d denoting the constant natural death rate and k the increase in deaths due to

competition), (1.3) becomes the local FKKP equation, as discussed in [Vol11, GVA06].

More generally; suppose that individuals consume resources in some neighbourhood

of the point they are located, then D can be expressed as

D(u, x, y, t) = b+ k

∫ t

0

∫
R2

ψ(x− x′, y − y′, t− t′)u(x′, y′, t′)dx′dy′dt′,

where the function ψ shows how individuals at (x′, y′, t′) influence resources at the point

(x, y, t). Recalling that the timescales of interest (e.g. reproduction, death etc.) are much

larger than the characteristic timescales of the renewal of resources, we may assume that

the influence of ψ is concentrated at t′ = t and write

ψ(x− x′, y − y′, t− t′) = φ(x− x′, y − y′)δ(t− t′),

1The values of s denote asexual and sexual reproduction respectively.
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where δ denotes the Dirac δ function. Substituting ψ, into D we obtain

D(u, x, y, t) = d+ k

∫
R2

φ(x− x′, y − y′)u(x′, y′, t)dx′dy′

:= d+ kJu(x, y, t), (1.5)

where φ denotes a non-negative summable function that takes into account the movement

of individuals around (x, y) in order to consume resources1. Assuming again that B(u) =

b, upon substitution of (1.5) into (1.3)-(1.4), we obtain

∂tu = d∆u+ us(c+ kJu), on R2 × (0,∞). (1.6)

For s = 1, (1.6) is the non-local FKPP equation (see Remark 2.4.4) and for s = 2 a

generalised FKKP type equation (see end of Section 3.3).

Concerning the birth term, alternatively, we may take into account the search for

mating partners in a localised region by considering a non-local reproduction rate function,

given as a function Ju.

To consider more general birth and death terms, as well as more general semi-linear

terms, we focus our attention on equation (1.3), throughout this Thesis, with F being a

general function of (u, Ju), subject to regularity requirements.

We note that non-local reaction-diffusion equations have also been used to model

many propagation phenomena that echo the situation present in the non-local FKPP

equation (see for instance ([VP09, HR14, BNPR09]). Examples include: modelling the

evolution of species and viruses (see [BBM+20, BRBV18] and the references therein);

epidemiological models (see [AH05, Rua07] and the references therein); cell migration

and tumour growth (e.g [CPSZ19, RTSG21]); Lotka-Volterra diffusion competition system

(see [HWD20, NB23] and the references therein); and many more.

1Often, φ is assumed to be probability density function over the entirety of the spatial domain, centred
at zero with bounded variation.
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1.2 Non-local differential equations of other type &

the scope of this Thesis

Within the wider mathematical literature, there exist many instances where the term

‘non-local’ is used. Often those instances arise in the context of boundary value problems

for ordinary differential equations or partial differential equations. A non-exhaustive list

includes: problems with p−Laplacian terms which are used to model non-local diffusion

(eg. [AMRT08]); delay differential equations (eg. [GSW04]); differential equations with

spatially non-local non-linear terms where the non-locality is represented as average of

the function taken over the entire domain (eg. [KS18]); and, non-local Branching Markov

Processes (eg. [HK23]). We note that these topics are not considered herein.

Here, we consider non-local problems where we take spatial averages of the solution to

a reaction-diffusion equation in a neighbourhood of a point (frequently this is represented

by the convolution of the solution u with an appropriately chosen integral kernel φ).

Concerning the non-local theory we treat in this Thesis, we refer the reader to [Fre98,

GSW04, TV20] and references therein as well as the concluding remarks of [Vol11] for an

in depth discussion of the historical development of this research area.

Moreover, we do not consider real-world applications of non-local reaction diffusion

equations herein. For instance, a very reasonable and frequent assumption on the integral

kernel φ is to be of compact support with ∥φ∥L1 = 1 (see eg. [TLZ17, BN22]). This

often arises from a modelling standpoint (eg. resources can only be gathered from a

bounded region within a time interval), and in this case φ usually denotes a probability

density function, centred at zero, with finite variance (assumptions one expects to hold

in a biological setting since φ represents the interactions of individuals close to their

neighbourhood). We will typically avoid such assumptions here as we aim to establish

results without unnecessary restrictions. As such, we use the already established non-

local reaction diffusion equations as a starting point to formulate a general theory on the

subject and illustrate it’s limitations.
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1.3 Motivation and structure of the Thesis

From a mathematical standpoint, a general theory for non-local nonlinear reaction diffu-

sion equations is, at present, incomplete. In many cases, solutions to Cauchy problems

involving non-local reaction diffusion equations, can be obtained by adapting arguments

present in [Fri08] and [LSU68] and other methods that can be utilised to obtain solu-

tions for boundary value problems for non-local reaction-diffusion equations are available

in [Vol11]. However, the lack of maximum/minimum and comparison principles in the

general case, make global bounds on solutions and global well-posedness results signifi-

cantly more difficult to establish when non-local rather than local interaction terms are

included. This motivated the investigation conducted in Chapter 2, concerning minimum

and comparison principles, and the theory concerning the well-posed of non-local Cauchy

problems that follows.

For reference, general local well-posedness results, using semigroup methods for the

existence and uniqueness of mild, strong and classical solutions, for non-local reaction-

diffusion equations, are given in [Bys91, BMT19] for problems posed on bounded spatial

domains1 and finite time blow-up phenomena were considered in [Sou98]. Existence and

uniqueness of steady state solutions are discussed in [Yam15].

Before we describe the structure of this Thesis, we note that, in the introductory

sections of Chapters 2-4, we provide a detailed discussion of the results presented therein,

and, in the concluding sections, we discuss direct implications and extensions of the main

results, as well as, place the results in a wider context. The structure of this Thesis

follows.

In Chapter 2, we focus on establishing minimum and comparison principles for differ-

ential inequalities associated with the integro-differential operators

P [u] =
n∑

i,j=1

aij∂xixj
u+

n∑
i=1

bi∂xi
u+ cu+ dJu− ∂tu on ΩT , (1.1)

1These results motivate the analysis with non-local interactions on unbounded domains with weaker
assumptions on the nonlinear non-local term using fundamental solutions present in Chapter 3.
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and

Q[u] =
n∑

i,j=1

aij∂xixj
u+ f(·,∇u, u, Ju)− ∂tu on ΩT , (1.2)

with

Ju(x, t) =

∫
Ω

φ(x− y)u(y, t)dy, ∀(x, t) ∈ ΩT , (1.3)

for φ : Rn → R and u : ΩT → R appropriately chosen so that Ju is well-defined, and

aij, bi, c, d and f appropriate functions. We start by establishing a conditional minimum

principle for integro-differential operators given by (1.1), utilising suitable weight func-

tions, which allow for distinct growth/decay rates on the coefficients. We then demon-

strate how to obtain minimum principles under certain assumptions, such as boundedness

of u and summability of the second moment of the (non-negative) integral kernel φ. These

principles are established without regularity assumptions on the coefficients in the integro-

differential operator. Following this, an alternative approach is presented, which relies on

integral representations of solutions to integro-differential inequalities. This approach es-

tablishes a minimum principle with weaker conditions on the non-local term, but imposes

regularity and boundedness restrictions on certain coefficients of the integro-differential

operator. These minimum principles are then used to establish comparison principles for

super-solutions and sub-solutions for a semi-linear integro-differential operator, under ap-

propriate regularity assumptions. The results present here generalise previous minimum

and comparison principles established in [Vol11] (by considering a broader class of coeffi-

cients, having weaker assumptions on φ, and generalising the result to Rn) and extend to

the non-local setting results and techniques present in [MN14]. At the same time, they

explore the interplay between the regularity of the coefficients of the operators involved,

the growth/decay of the solution and the integrability of the integral kernel. It should

also be noted that for all the minimum principles established in this chapter, the condi-

tion d ≥ 0, i.e. the coefficient of the non-local term in (1.1), is shown to be necessary.

10



Consequently, for the comparison principles established, a necessary condition for f in

(1.2), is to be non-decreasing with respect to Ju. Examples are provided to illustrate the

applications and limitations of those principles. All the results presented in this chapter

are novel.

In Chapter 3, qualitative properties of solutions to the Cauchy problem for the n-

dimensional heat equation are established. These are used as motivation to establish

similar qualitative properties for solutions to Cauchy problems for semi-linear non-local

reaction diffusion equations of the type

∂tu = ∆u+ f(u, Ju) on ΩT , (1.4)

for f being a locally Lipschitz continuous function. Notably, we establish that the Cauchy

problem associated with (1.4) is well-posed locally in time, assuming appropriate condi-

tions for both the initial data and the nonlinear non-local interaction term given by f . In

particular, the existence and uniqueness of solutions to the Cauchy problem associated

with (1.4) follow from standard techniques that are utilised in the local setting (see for

instance [Fri08, LSU68]) and we present them here for completeness. The local-in-time

continuous dependence of solutions with respect to initial data and with respect to inte-

gral kernels “close enough in the L1-norm” is a novel addition in the literature for classical

solutions. These results are utilised in Chapter 4 where we generalise our assumptions on

f in (1.4) to be locally Hölder continuous. We additionally highlight how different classes

of regularity for the initial data affect a priori bounds on solutions to the aforementioned

Cauchy problems, and their derivatives. The chapter concludes by providing higher or-

der derivative bounds for solutions to Cauchy problems for nonlinear non-local reaction

diffusion equations that are subsequently utilised for the conditional convergence of the

numerical scheme presented in Chapter 4. It should also be noted, that no assumptions

are made in this chapter on the monotonicity of f .

In Chapter 4, we first consider the Cauchy problem for nonlinear non-local reaction

11



diffusion equations, with non-local nonlinear terms given by locally Hölder continuous

functions1. We establish the local existence of solutions to these problems and show that

solutions can be extended indefinitely, or, until a finite-time TMAX , where blow-up occurs.

These solutions are constructed from the limits of sequences of Cauchy problems where

the nonlinear terms are Lipschitz continuous and tend to the Hölder continuous non-linear

term in the limit. Our approach generalises the results for the local case in [MN15a] and

require no monotonicity conditions on f . Moreover, since solutions to the Cauchy problem

are constructed via our approach, they can subsequently be utilised to obtain maximal and

minimal solutions to the Cauchy problem. Namely, under the additional assumption that

the nonlinear, non-local term is non-decreasing with respect to Ju, comparison principles

established in Chapter 2 can be applied. When comparison principles can be applied, the

local existence of maximal and minimal solutions is established (these can then potentially

be utilised to show global existence of solutions). Next, we consider an analogue to the

source problem arising in isothermal autocatalytic chemical kinetics (see [NK93]), with

the localised nonlinear term replaced by a non-local Hölder continuous nonlinear term of

power-type, i.e.

∂tu = ∆u+max{0, (Ju)}p, on ΩT , (1.5)

for p ∈ (0, 1). We establish that the related Cauchy problem is locally well-posed in time,

and has a unique global solution for all T > 0. Since max{0, (Ju)}p in not Lipschitz

continuous for p ∈ (0, 1), uniqueness of solutions in this case is not straightforward. We

establish the uniqueness of solutions via a problem-specific comparison principle, under

sufficient assumptions on the initial data and the integral kernel (based on the approach

in [AE87] and a similar analysis in [MN15a]). We compliment this analysis with a finite

difference approximation to the above problem. This finite difference approximation is

shown to satisfy appropriate bounds; and, be conditionally convergent as the mesh spacing

tends to 0. We utilise the numerical scheme to illustrate the consistency of a concise

1I.e. (1.4), with f being locally Hölder continuous.
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large-t asymptotic approximation for solutions to the Cauchy problem associated with

(1.5). The large-t approximation is based upon a linearisation around the lower bound

for solutions to the Cauchy problem and the method is further used to infer conditions

for the global well-posedness for the Cauchy problem associated with (1.5). From the

large-t approximation we infer information pertinent to global in time well-posedness of

the Cauchy problem. All results in this chapter are novel.

In Chapter 5, we conclude with a discussion of potential extensions to the results

established throughout Chapters 2-4, that were not considered therein.
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CHAPTER 2

COMPARISON PRINCIPLES FOR A NONLINEAR
INTEGRO-DIFFERENTIAL OPERATOR

2.1 Introduction

In this chapter we consider integro-differential operators, of second order linear parabolic

partial differential type, with nonlinear terms of semilinear type, which include non-local

zeroth order quantities; which we will henceforth refer to as ‘integro-differential operators’

for brevity.

We begin by providing a conditional minimum principle, conditional on the existence

of any suitable weight function, which is then used to establish minimum principles with

growth/decay rates on solutions of integro-differential inequalities involving (2.2.4). These

extend the results in [MN14] by taking into account non-local terms and more general

bounds on coefficients. This is achieved with the use of appropriate weight functions that

allow for distinct growth/decay rates on the coefficients in (2.2.4) and φ in (2.2.1). Next,

we demonstrate how one can obtain minimum principles under the assumptions that u is

bounded and the second moment of φ is summable, extending the result in [Vol11, Ch.

9]. These minimum principles are established without regularity assumptions on the coef-

ficients in the integro-differential operator (2.2.4). Using an alternative approach, relying

on integral representations of solutions to integro-differential inequalities, we establish a

minimum principle, where the condition on the non-local term is reduced to the kernel
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being summable, albeit at the cost of imposing regularity and boundedness restrictions

on aij, bi and c in (2.2.4). This complements the aforementioned results.

Using these minimum principles we establish associated comparison principles for

super-solutions and sub-solutions for the operator in (2.2.5), under appropriate assump-

tions on the regularity of f . We then contextualise our results with two examples, which

demonstrate: the limits of; and how to apply, the minimum principles and comparison

principles discussed herein. These minimum and comparison principles, as presented here,

are utilised in Chapters 3 and 4 to obtain bounds on solutions to reaction-diffusion equa-

tions that are then used to prove the local in time well-posedness of the Cauchy problems

associated with them. To conclude, we place our results in a wider context, and, comment

on potential extensions.

2.2 Preliminaries

Let Ω be an unbounded domain of Rn. In relation to Ω, for any T ∈ (0,∞), we denote

the following sets:

ΩT = Ω× (0, T ] and ∂ΩT = (Ω× {0}) ∪ (∂Ω× (0, T )).

The open ball in Ω of radius R > 0, with respect to the euclidean norm, centred at

x0 ∈ Ω (x0 = 0Rn) is denoted by BR
x0

(BR). We denote the closure of ΩT as ΩT . Here,

(x, t) = (x1, . . . , xn, t) ∈ Rn× [0, T ] denotes an (n+1)−dimensional vector. Moreover, we

denote ⟨·, ·⟩ to be the euclidean inner product in Rn and | · | to be its induced norm.

For α ∈ (0, 1], and X ⊆ Rn × [0,∞), the set Hα(X) denotes the set of all u ∈ C(X)

that satisfy the spatial Hölder condition

|u(x1, t)− u(x2, t)| ≤ kα |x1 − x2|α for all (x1, t), (x2, t) ∈ X

for some constant kα ∈ [0,∞).
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We also define the following sets and operators that will be used throughout this

chapter. For a measurable function θ : ΩT → (0,∞) we define

Eθ(ΩT ) = {u : ΩT → R : uθ ∈ L∞(ΩT )}.

Moreover, for any summable φ : Rn → [0,∞) we define the integral operator1 Jθ :

Eθ(ΩT ) → L∞(ΩT ) given by

Jθu(x, t) =

∫
Ω

φ(x− y)θ(y, t)u(y, t)dy ∀(x, t) ∈ ΩT and u ∈ Eθ(ΩT ). (2.2.1)

Furthermore, let L : C2,1(ΩT ) → R(ΩT ) be a second order linear parabolic partial differ-

ential operator given by

L[u] =
n∑

i,j=1

aij∂xixj
u+

n∑
i=1

bi∂xi
u+ cu− ∂tu on ΩT (2.2.2)

for all u ∈ C2,1(ΩT ) with aij, bi, c : ΩT → R such that:

Amin |η|2 ≤
n∑

i,j=1

aijηiηj on ΩT , ∀η ∈ Rn, (2.2.3)

for some constant Amin ∈ [0,∞). Following (2.2.1) and (2.2.2) we define a linear non-local

integro-differential operator Pθ : C
2,1(ΩT ) ∩ Eθ(ΩT ) → R(ΩT ) to be

Pθ[u] =
n∑

i,j=1

aij∂xixj
u+

n∑
i=1

bi∂xi
u+ cu+ dJθu− ∂tu := L[u] + dJθu on ΩT , (2.2.4)

for all u ∈ C2,1(ΩT )∩Eθ(ΩT ) with d : ΩT → [0,∞). When θ ≡ 1 we adopt the conventions:

J1u = Ju and P1[u] = P [u] on ΩT .

The motivation of using this auxiliary function θ is to obtain the contradictions neces-

1Note that, if Ω = Rn, then Jθu denotes the spatial convolution product φ with (θu).
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sary to establish minimum principles. Moreover, we note that with the exception of the

conditional minimum principle in Lemma 2.3.1, the function θ is only used in the proofs

and not in the theorem statements and plays no role in the statement of the results.

However, we include θ here, in the operator in (2.2.2), so that the domain of definition of

the operator, is at all points clear.

For comparison principles we will also consider the semi-linear analogue of Pθ, namely

Qθ[u] =
n∑

i,j=1

aij∂xixj
u+ f(·,∇u, u, Jθu)− ∂tu on ΩT (2.2.5)

for u ∈ C2,1(ΩT )∩Eθ(ΩT ), with f : ΩT ×Rn+2 → R. The function f satisfies a constrained

local Lipschitz condition in u (and analogously in v or w) on ΩT × K if for any compact

set K ⊆ Rn+2, there exist constants kK ∈ [0,∞) and β ∈ [0, 1) such that

|f(x, t, w, u1, v)− f(x, t, w, u2, v)| ≤
kK
tβ

|u1 − u2|, (2.2.6)

for all (x, t) ∈ ΩT and (w, u1, v), (w, u2, v) ∈ K. Moreover the function f satisfies a

constrained local upper Lipschitz condition in u on ΩT×K if for any compact set K ⊆ Rn+2,

there exist constants kK ∈ [0,∞) and β ∈ [0, 1) such that

f(x, t, w, u1, v)− f(x, t, w, u2, v) ≤
kK
tβ

(u1 − u2), (2.2.7)

for all (x, t) ∈ ΩT and (w, u1, v), (w, u2, v) ∈ K with u1 ≥ u2. If β = 0 in (2.2.6) or (2.2.7)

we say that f satisfies a local Lipschitz condition in u or upper local Lipschitz condition

in u (or v, w) respectively.

2.3 Minimum principles

Maximum and minimum principles are widely used to establish qualitative properties

of solutions to boundary value problems involving second order linear parabolic partial
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differential operators (e.g. uniqueness, continuous dependence, and regularity). For a

historical development of this area, see [PW84].

2.3.1 Conditional minimum principle

Here we present a lemma that will be utilised throughout this section to prove minimum

principles under various assumptions on the growth (or decay) rate of solutions to the

integro-differential inequality

P [u] ≤ 0 on ΩT . (2.3.1)

We adopt an approach used in [Wal70] and [MN14] to establish a conditional minimum

principle, which is conditional on the existence of a suitable weight function.

Lemma 2.3.1 (Conditional minimum principle). Let θ ∈ C2,1(ΩT ) ∩ C(ΩT ) be positive,

u ∈ C2,1(ΩT ) ∩ C(ΩT ), Ju be well-defined on ΩT , and P be an operator defined as in

(2.2.4). Furthermore, suppose:

P [u] ≤ 0 on ΩT ; (2.3.2)

u ≥ 0 on ∂ΩT ; (2.3.3)

lim
|x|→∞

u(x, t)

θ(x, t)
= 0 uniformly with respect to t ∈ [0, T ]; (2.3.4)

P [θ]

θ
is bounded above on ΩT . (2.3.5)

Then u ≥ 0 on ΩT .

Proof. We define the auxiliary function v : ΩT → R to be

v(x, t) =
u(x, t)

θ(x, t)
∀(x, t) ∈ ΩT ,

and note that v ∈ C2,1(ΩT ) ∩ C(ΩT ). Via (2.3.3) it follows that v ≥ 0 on ∂ΩT and via
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(2.3.4) it follows that

lim
|x|→∞

v(x, t) = 0, (2.3.6)

uniformly with respect to t ∈ [0, T ]. Furthermore, via (2.3.2), v satisfies the linear non-

local integro-differential inequality

n∑
i,j=1

aij∂xixj
v +

n∑
i=1

b̄i∂xi
v + c̄v + d̄Jθv − ∂tv ≤ 0 on ΩT , (2.3.7)

with

b̄i = bi +
n∑

j=1

(aij + aji)
∂xj

θ

θ
on ΩT ;

c̄ =
L[θ]

θ
on ΩT ; (2.3.8)

d̄ =
d

θ
on ΩT . (2.3.9)

Now, let ω : ΩT → R be given by

ω(x, t) = v(x, t)e−νt ∀(x, t) ∈ ΩT , (2.3.10)

for some non-negative constant ν, which exists via (2.3.5), for which

P [θ]

θ
< ν on ΩT . (2.3.11)

Note that via (2.3.10) and (2.3.6) it follows that

lim
|x|→∞

ω(x, t) = 0, (2.3.12)

uniformly with respect to t ∈ [0, T ]. Moreover, via (2.3.7), ω satisfies the linear non-local
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integro-differential inequality

P̄θ[ω] =
n∑

i,j=1

aij∂xixj
ω +

n∑
i=1

b̄i∂xi
ω + (c̄− ν)ω + d̄Jθω − ∂tω ≤ 0 on ΩT . (2.3.13)

Upon inspection of (2.3.8)-(2.3.9), via (2.3.5) and (2.3.11), it follows that

P̄θ[1] = c̄− ν + d̄Jθ1 =
P [θ]

θ
− ν < 0 on ΩT . (2.3.14)

Next, for any ε > 0, via (2.3.13)-(2.3.14), the function w : ΩT → R given by w = ω + ε

on ΩT satisfies

P̄θ[w] = P̄θ[ω] + εP̄θ[1] < 0 on ΩT . (2.3.15)

Moreover, via (2.3.3), w ≥ ε on ∂ΩT . Furthermore, via (2.3.12) it follows that

lim
|x|→∞

w(x, t) = ε

uniformly with respect to t ∈ [0, T ]. Therefore, there exists a sufficiently large constant

R > 0 such that

w > 0, on (Ω \BR)× (0, T ].

It remains to establish that w > 0 in (Ω∩BR)× (0, T ]. For a contradiction, suppose that

there exists (x, t) ∈ (Ω∩BR)× (0, T ] such that w(x, t) < 0. Since w > 0 on ∂(Ω∩BR)×

[0, T ] and w ∈ C(ΩT ), there exists (x
∗, t∗) ∈ (Ω∩BR)× (0, T ] such that w(x∗, t∗) = 0 and

w > 0 on (Ω∩BR)× [0, t∗). Additionally, ∇w(x∗, t∗) = 0, ∂tw(x
∗, t∗) ≤ 0 and the Hessian

matrix D2w(x∗, t∗) = [∂xixj
w(x∗, t∗)] is positive semi-definite. Consequently, from (2.2.3)
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with the Schur product theorem (see, for example, [HJ85, Theorem 7.5.3]) we obtain that

P̄ [w](x∗, t∗) =
n∑

i,j=1

aij∂xixj
w(x∗, t∗) + d̄(x∗, t∗)Jθw(x

∗, t∗)− ∂tw(x
∗, t∗) ≥ 0

which contradicts (2.3.15). Therefore, w > 0 on ΩT . Letting ε→ 0 establishes that ω ≥ 0

on ΩT , and hence, u ≥ 0 on ΩT , as required.

For functions u : ΩT → R we consider a variety of conditions on their growth (and

decay) as |x| tends to infinity, detailed in the following definition.

Definition 2.3.2. Let α, λ ∈ (−∞, 0]. We denote that u ∈ Eα,λ(ΩT ) if u ∈ C2,1(ΩT ) ∩

C(ΩT ) and there exist k1, k2 > 0 such that

|u(x, t)| ≤ k1 exp
{
−k2

(
1 + |x|2

)|α| (
1 + ln

(
1 + |x|2

))|λ|} ∀(x, t) ∈ ΩT . (2.3.16)

Similarly, for α, λ ∈ [0,∞), we denote that u ∈ Eα,λ(ΩT ) if u ∈ C2,1(ΩT ) ∩ C(ΩT ) and

there exist k1, k2 > 0 such that

|u(x, t)| ≤ k1 exp
{
k2
(
1 + |x|2

)α (
1 + ln

(
1 + |x|2

))λ} ∀(x, t) ∈ ΩT . (2.3.17)

Note that the following inclusions hold: for α1 ≤ α2, Eα1,λ(ΩT ) is a subspace of

Eα2,λ(ΩT ); for λ1 ≤ λ2, Eα,λ1(ΩT ) is a subspace of Eα,λ2(ΩT ). Also note that E0,0(ΩT ) =

C2,1(ΩT ) ∩ C(ΩT ) ∩ L∞(ΩT ).

Remark 2.3.3. In the remainder of this section we will frequently use a class of func-

tions, presented in [Cos80] and [MN14, Section 3], to highlight a connection between the

restrictions placed upon u in (2.3.16)-(2.3.17) with the conditions on the coefficients of P

in (2.2.4) in associated minimum principles. For completeness we present them here. Let

ξ : [1,∞) → [1,∞) be given by

ξ(s) = s|α|(1 + ln s)|λ| ∀s ∈ [1,∞), (2.3.18)
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for α, λ ∈ R. Provided that α and λ are not both zero, it follows that

ξ′(s) > 0; (2.3.19)

sξ′(s) ≤ (|α|+ |λ|)ξ(s); (2.3.20)

sξ′′(s) ≤ (|α|+ |λ|)ξ(s)ξ′(s), (2.3.21)

for all s ∈ [1,∞).

We now present three minimum principles concerning solutions u : ΩT → R to the

linear integro-differential inequality (2.3.1) with P as in (2.2.4). We separate those results

with respect to conditions on u as follows: u grows as in (2.3.17), as |x| → ∞ (see

Proposition 2.3.4); u decays unconditionally, as |x| → ∞ (see Proposition 2.3.5); u decays,

as in (2.3.16), as |x| → ∞ (see Proposition 2.3.6). The following propositions highlight

complementary assumptions on the coefficients of P as well as the integral kernel φ that

are sufficient in order to obtain such minimum principles. We establish these results by

applying the conditional minimum principle, with suitable weight functions.

Proposition 2.3.4. Let (α, λ) ∈ [0,∞)2 \ {(0, 0)}, u ∈ Eα,λ(ΩT ) and P be an operator

as in (2.2.4) (i.e. θ ≡ 1). Furthermore, suppose:

P [u] ≤ 0 on ΩT ; (2.3.22)

u ≥ 0 on ∂ΩT ; (2.3.23)

n∑
i,j=1

aij(x, t)ηiηj ≤
A

tβ
(
1 + |x|2

)1−α (
1 + ln

(
1 + |x|2

))−λ |η|2 ∀(x, t) ∈ ΩT , η ∈ Rn;

(2.3.24)

n∑
i=1

bi(x, t)xi ≤
B

tβ
(
1 + |x|2

)
∀(x, t) ∈ ΩT ; (2.3.25)

c(x, t) ≤ C

tβ
(
1 + |x|2

)α (
1 + ln

(
1 + |x|2

))λ ∀(x, t) ∈ ΩT ; (2.3.26)

suppφ ⊆ BR; (2.3.27)

d(x, t) ≤ D

tβ
ekξ(1+|x|2)

e2kξ(1+(|x|+R)2)

(
1 + |x|2

)α (
1 + ln

(
1 + |x|2

))λ ∀(x, t) ∈ ΩT , (2.3.28)
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for constants A,B,C,D ≥ 0, R > 0, β ∈ [0, 1), and k > k2 for k2 as in (2.3.17), and

with ξ as in (2.3.18) . Then, u ≥ 0 on ΩT .

Proof. Since u ∈ C(ΩT ), via (2.3.27), Ju is well-defined on ΩT . Now, let θ : ΩT0 → R be

given by

θ(x, t) = ekξ(1+|x|2)eµt1−β

∀(x, t) ∈ ΩT0 , (2.3.29)

with

T0 =

(
ln (2)

µ

)1/(1−β)

,

ξ given by (2.3.18), and

µ =
4A(2k + 1)(α + λ)2 + 2(nA+B)(α + λ) + C/k +D||φ||L1(Rn)/k + 1

(1− β)
. (2.3.30)

We observe that θ ∈ C(ΩT0)∩C2,1(ΩT0). We next define the auxiliary function v : ΩT0 → R

to be

v(x, t) =
u(x, t)

θ(x, t)
∀(x, t) ∈ ΩT0 . (2.3.31)

Upon substituting (2.3.23) into (2.3.31), it follows that

v ≥ 0 on ∂ΩT0 .

Moreover, since u ∈ Eα,λ(ΩT ), via (2.3.17) and (2.3.31), it follows that

lim
|x|→∞

v(x, t) = 0,

uniformly with respect to t ∈ [0, T0]. For θ and ξ given by (2.3.29) and (2.3.18) respec-

tively, we have

∂tθ(x, t) = θ(x, t)keµt
1−β (

ξ(1 + |x|2)(1− β)t−βµ
)
; (2.3.32)
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∂xi
θ(x, t) = θ(x, t)keµt

1−β (
2ξ′(1 + |x|2)xi

)
; (2.3.33)

∂xixj
θ(x, t) = θ(x, t)keµt

1−β
(
4keµt

1−β

(ξ′(1 + |x|2))2xixj

+4ξ′′(1 + |x|2)xixj + 2δijξ
′(1 + |x|2)

)
, (2.3.34)

for all (x, t) ∈ ΩT0 . Now, via (2.3.27), it follows that

Jθ(x, t) ≤
∫
Rn

φ(x− y)θ(y, t)dy

=

∫
BR

φ(y)θ(x− y, t)dy

≤ sup
y∈BR

{θ(x− y, T0)}
∫
Rn

φ(y)dy

≤ sup
y∈BR

{e2kξ(1+|x−y|2)}∥φ∥L1(Rn)

≤ ∥φ∥L1(Rn)e
2kξ(1+(|x|+R)2) (2.3.35)

for all (x, t) ∈ ΩT0 . Substituting (2.3.32)-(2.3.35) into P : C2,1(ΩT ) → R(ΩT ), as in

(2.2.4), and using the bounds in (2.3.24)-(2.3.28) and (2.3.30), it follows that

P [θ]

θ
< 0 on ΩT0 . (2.3.36)

By an application of Lemma 2.3.1 it now follows that u ≥ 0 on ΩT0 . By replacing v in

(2.3.31) with

v(x, t) =
u(x, t+ T0)

θ(x, t)
∀(x, t) ∈ ΩT0 , (2.3.37)

it follows, via the argument as above, that u ≥ 0 on Ω2T0 . Repeating this argument

finitely many times establishes that u ≥ 0 on ΩT , as required.

Proposition 2.3.5. Let u ∈ E0,0(ΩT ) and P be an operator defined as in (2.2.4) (i.e.

24



θ ≡ 1). Furthermore, suppose:

P [u] ≤ 0 on ΩT ; (2.3.38)

u ≥ 0 on ∂ΩT ; (2.3.39)

lim
|x|→∞

u(x, t) = 0 uniformly with respect to t ∈ [0, T ]; (2.3.40)

c(x, t) ≤ C

tβ
∀(x, t) ∈ ΩT ; (2.3.41)

d(x, t) ≤ D

tβ
∀(x, t) ∈ ΩT , (2.3.42)

for constants C,D ≥ 0 and β ∈ [0, 1). Then u ≥ 0 on ΩT .

Proof. Since u ∈ L∞(ΩT ) and φ ∈ L1(Rn), it follows that Ju is well-defined on ΩT . Now,

let θ : ΩT → R be given by

θ(x, t) = eµt
1−β ∀(x, t) ∈ ΩT , (2.3.43)

with

µ =
C +D∥φ∥L1(Ω)

1− β
. (2.3.44)

We observe that θ ∈ C(ΩT ) ∩ C2,1(ΩT ). Via (2.3.40) it follows that

lim
|x|→∞

u(x, t)

θ(x, t)
= 0,

uniformly with respect to t ∈ [0, T ]. Utilising (2.3.41), (2.3.42) and for θ as in (2.3.43), it

follows that

P [θ]

θ
=

1

θ
(cθ − ∂tθ + dJθ) ≤ 0 on ΩT .

By an application of Lemma 2.3.1 it follows that u ≥ 0 on ΩT , as required.

Proposition 2.3.6. Let (α, λ) ∈ (−∞, 0]2 \ {(0, 0)}, u ∈ Eα,λ(ΩT ) and P be an operator
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as in (2.2.4) (i.e. θ ≡ 1). Furthermore, suppose:

P [u] ≤ 0 on ΩT ; (2.3.45)

u ≥ 0 on ∂ΩT ; (2.3.46)

n∑
i,j=1

aij(x, t)ηiηj ≤
A

tβ
(
1 + |x|2

)1−|α| (
1 + ln

(
1 + |x|2

))−|λ| |η|2 ∀(x, t) ∈ ΩT , η ∈ Rn;

(2.3.47)

n∑
i=1

bi(x, t)xi ≥ −B
tβ
(
1 + |x|2

)
∀(x, t) ∈ ΩT ; (2.3.48)

c(x, t) ≤ C

tβ
(
1 + |x|2

)|α| (
1 + ln

(
1 + |x|2

))|λ| ∀(x, t) ∈ ΩT ; (2.3.49)

d(x, t) ≤ De−kξ(1+|x|2)

tβ
(
1 + |x|2

)|α| (
1 + ln

(
1 + |x|2

))|λ| ∀(x, t) ∈ ΩT , (2.3.50)

for constants A,B,C,D ≥ 0 and β ∈ [0, 1) and 0 < k < k2, for k2 as in (2.3.16). Then,

u ≥ 0 on ΩT .

Proof. Since u ∈ L∞(ΩT ) and φ ∈ L1(Rn), it follows that Ju is well-defined on ΩT . Now,

let θ : ΩT0 → R be defined to be

θ(x, t) = e−kξ(1+|x|2)e−µt1−β

∀(x, t) ∈ ΩT0 , (2.3.51)

with

T0 =

(
ln (2)

µ

)1/(1−β)

,

ξ given by (2.3.18), and

µ =
4A(|α|+ |λ|)2 + 2B(|α|+ |λ|) + 2C/k + 2D||φ||L1(Rn)/k + 1

(1− β)
. (2.3.52)

We observe that θ ∈ C(ΩT0)∩C2,1(ΩT0). We next define the auxiliary function v : ΩT0 → R

to be

v(x, t) =
u(x, t)

θ(x, t)
∀(x, t) ∈ ΩT0 . (2.3.53)
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Upon substituting (2.3.51) into (2.3.53), it follows that

v ≥ 0 on ∂ΩT0 .

Moreover, since u ∈ Eα,λ(ΩT ), via (2.3.17) and (2.3.31), it follows that

lim
|x|→∞

v(x, t) = 0,

uniformly with respect to t ∈ [0, T0]. For θ and ξ given by (2.3.51) and (2.3.18) respec-

tively, we have

∂tθ(x, t) = θ(x, t)ke−µt1−β (
ξ(1 + |x|2)(1− β)t−βµ

)
; (2.3.54)

∂xi
θ(x, t) = −θ(x, t)ke−µt1−β (

2ξ′(1 + |x|2)xi
)
; (2.3.55)

∂xixj
θ(x, t) = θ(x, t)ke−µt1−β

(
4ke−µt1−β

(ξ′(1 + |x|2))2xixj

−4ξ′′(1 + |x|2)xixj − 2δijξ
′(1 + |x|2)

)
, (2.3.56)

for all (x, t) ∈ ΩT0 . Also note that

Jθ(x, t)

θ(x, t)
=

1

θ(x, t)

∫
Ω

φ(x− y)θ(y, t)dy

≤ 1

θ(x, t)
∥φ∥L1(Rn)

≤ ∥φ∥L1(Rn)e
k
2
ξ(1+|x|2) (2.3.57)

for all (x, t) ∈ ΩT0 . Substituting (2.3.54)-(2.3.57) into P : C2,1(ΩT ) → R(ΩT ), as in

(2.2.4), and using the bounds in (2.3.47)-(2.3.50) and (2.3.52), it follows that

P [θ]

θ
< 0 on ΩT0 .

By an application of Lemma 2.3.1 it now follows that u ≥ 0 on ΩT0 . By replacing v in
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(2.3.53) with

v(x, t) =
u(x, t+ T0)

θ(x, t)
∀(x, t) ∈ ΩT0 ,

it follows, via the argument as above, that u ≥ 0 on Ω2T0 . Repeating this argument

finitely many times establishes that u ≥ 0 on ΩT , as required.

When a decay condition as |x| → ∞ on bounded solutions of the non-local integro-

differential inequality

n∑
i,j=1

aij∂xixj
u+

n∑
i=1

bi∂xi
u+ cu+ dJu− ∂tu ≤ 0 on ΩT ,

is not imposed (e.g. if one relaxes (2.3.40)), and, an estimate on the regularity of the co-

efficients aij, bi is not available, one can instead impose further restrictions on the integral

kernel φ to establish a minimum principle, as illustrated in the following proposition.

Proposition 2.3.7 (Weak minimum principle). Let u ∈ C2,1(ΩT )∩C(ΩT )∩L∞(ΩT ), P

be an operator defined as in (2.2.4) (i.e. θ ≡ 1) and ψ : Rn → R be given by

ψ(x) = φ(x)|x|2 ∀x ∈ Rn. (2.3.58)

Furthermore, suppose:

P [u] ≤ 0 on ΩT ; (2.3.59)

u ≥ 0 on ∂ΩT ; (2.3.60)

n∑
i,j=1

aij(x, t)ηiηj ≤
A

tβ
(1 + |x|2) |η|2 ∀(x, t) ∈ ΩT , η ∈ Rn; (2.3.61)

n∑
i=1

bi(x, t)xi ≤
B

tβ
(1 + |x|2) ∀(x, t) ∈ ΩT ; (2.3.62)

c(x, t) ≤ C

tβ
∀(x, t) ∈ ΩT ; (2.3.63)
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0 ≤ d(x, t) ≤ D

tβ
∀(x, t) ∈ ΩT ; (2.3.64)

ψ ∈ L1(Rn), (2.3.65)

for non-negative constants A, B, C and D and β ∈ [0, 1). Then, u ≥ 0 on ΩT .

Proof. Since u ∈ L∞(ΩT ) and φ ∈ L1(Rn), it follows that Ju is well-defined on ΩT . Now,

let θ : ΩT → R be given by

θ(x, t) = (1 + |x|2)eµt1−β

, ∀(x, t) ∈ ΩT , (2.3.66)

with

µ =
nA+ 2B + C + 3D(||φ||L1(Rn) + ||ψ||L1(Rn)) + 1

1− β
. (2.3.67)

It follows from (2.3.66) that θ ∈ C(ΩT ) ∩ C2,1(ΩT ), and

lim
|x|→∞

u(x, t)

θ(x, t)
≤

∥u∥L∞(ΩT )

θ(x, t)
= 0

uniformly with respect to t ∈ [0, T ]. Moreover, via (2.3.61)-(2.3.63) and (2.3.67), for θ as

given by (2.3.66) it follows that

L[θ]

θ
< 0 on ΩT . (2.3.68)

Now, using (2.3.65) we demonstrate that 1
θ
Jθ is bounded on ΩT . Observe that:

1

θ(x, t)
Jθ(x, t) =

1

θ(x, t)

∫
Ω

φ(x− y)θ(y, t)dy

≤
∫
Rn

φ(y)
|x− y|2 + 1

|x|2 + 1
dy

=

∫
Rn

φ(y)
|x|2 − 2⟨x, y⟩+ |y|2 + 1

|x|2 + 1
dy

≤
∫
Rn

φ(y)

[
1 + |y|

(
2 |x|

|x|2 + 1

)
+ |y|2

(
1

|x|2 + 1

)]
dy

≤ 3(∥φ∥L1(Rn) + ∥ψ∥L1(Rn)) ∀(x, t) ∈ ΩT . (2.3.69)
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Now, via (2.3.67), (2.3.68), (2.3.64), and (2.3.69), it follows that

P [θ]

θ
< 0 on ΩT .

By an application of Lemma 2.3.1 it now follows that u ≥ 0 on ΩT , as required.

Remark 2.3.8. Note that by the argument above we have relaxed the restriction on

φ in [DMV11, Theorem 5], where supp(φ) is compact. Here, we allow φ to decay as

|x| → ∞, albeit with the decay rate constrained by the integrability of ψ. In addition,

upon comparing Proposition 2.3.7 with 2.3.5 we see that the assumption on the decay on

u can be “transferred” on the integral kernel φ.

By combining Proposition 2.3.7 with a strong minimum principle for second order

linear parabolic partial differential inequalities (see, for instance, [Fri08, Chapter 2]), we

obtain

Corollary 2.3.9 (Strong minimum principle). Suppose that the conditions of Proposition

2.3.7 are satisfied. Furthermore, suppose that for any x0 ∈ Ω and R > 0, aij, bi, c ∈

L∞(BR
x0

× (0, T ]). Then, either u ≡ 0 on ΩT or u > 0 on ΩT .

Proof. By Proposition 2.3.7, u ≥ 0 on ΩT . Moreover, since φ ≥ 0 on Ω we have

n∑
i,j=1

aij∂xixj
u+

n∑
i=1

bi∂xi
u+ cu− ∂tu ≤ −dJu ≤ 0 on ΩT . (2.3.70)

Therefore, for any R > 0, the inequality (2.3.70) holds on BR
x0

× (0, T ]. Via the strong

minimum principle for linear parabolic partial differential inequalities [Fri08, Chapter 2]

the result follows, as required.

Remark 2.3.10. By applying the standard strong minimum principle for linear parabolic

partial differential inequalities, the assumption on c of Corollary 2.3.9 cannot be relaxed

to the assumption on c in Proposition 2.3.7 (see [NM15, Section 3]). However we note

that one can establish a sharper strong minimum principle than Corollary 2.3.9, requiring
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alternative conditions on c, using the regularised distance functions constructed in [Lie85],

within a standard strong minimum principle argument.

2.3.2 Integral case

In Section 2.3.1 we showed that, without requiring assumptions on the regularity of co-

efficients of the linear non-local integro-differential operator P , we were able to establish

minimum principles. Notably, we imposed conditions on the behaviour of φ or u as

|x| → ∞ instead of requiring regularity on coefficients of P . In this section, utilising

a different approach (similar to that presented in [Fri08, Ch.2]) we will show that by

assuming additional regularity as well as boundedness on the coefficients of P , we can

establish a minimum principle for P without any further restrictions placed on φ, or on

u as |x| → ∞. For simplicity, we restrict attention to Ω = Rn, and discuss the case when

Ω is an unbounded domain in Rn in the concluding remarks.

Let L : C2,1(ΩT ) → R(ΩT ) be given by (2.2.2). We suppose that for some α ∈ (0, 1],

the coefficients aij, bi, c : ΩT → R in L are such that

aij, bi, c ∈ L∞(ΩT ) ∩Hα(ΩT ). (2.3.71)

Furthermore, aij = aji on ΩT , and

Amin|η|2 ≤
n∑

i,j=1

aij(x, t)ηiηj ≤ Amax|η|2 ∀(x, t) ∈ ΩT , η ∈ Rn, (2.3.72)

for some constants Amin, Amax ∈ R+, and

|aij(x1, t1)− aij(x2, t2)| ≤ kα(|x1 − x2|α + |t1 − t2|α/2) (2.3.73)

for all (x1, t1), (x2, t2) ∈ ΩT for some constant kα ∈ R+. Note that, in order to apply the

theory presented in [Fri08], we require the coefficients to be continuously extendable onto

∂ΩT . Alternative conditions on aij, bi and c to those presented here (which are sufficient to
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establish the existence of fundamental solutions for L) are discussed in [LSU68, p.356-414]

and [BS23, ZC22]. We now state

Lemma 2.3.11. Let L be an operator as in (2.2.2) and suppose that (2.3.71)-(2.3.73) are

satisfied. Then, there exists a fundamental solution for L denoted by Γ(x, t; ξ, τ) : ΩΓ → R

with

ΩΓ = {(x, t; ξ, τ) ∈ ΩT × ΩT : 0 ≤ τ < t ≤ T}.

Specifically, for any fixed (ξ, τ), as a function of (x, t), Γ satisfies:

• L[Γ] = 0 on Ω× (τ, T ].

• For every f ∈ C(Ω) ∩ L∞(Ω)

lim
t↘τ

∫
Ω

Γ(x, t; ξ, τ)f(ξ)dξ = f(x) ∀x ∈ Ω.

Proof. See [Fri08, Theorem 10, p.23].

To proceed, we also require the existence of a fundamental solution for the adjoint

operator of L, denoted by L∗ : C2,1(ΩT ) → R(ΩT ). To define L∗, we require that the

coefficients of L also satisfy

∂xkxl
aij, ∂xk

aij, ∂xk
bi ∈ L∞(ΩT ) ∩Hα(ΩT ), (2.3.74)

for i, j, k, l = 1, . . . , n. Specifically, the adjoint operator of L is given by

L∗[v] =
n∑

i,j=1

∂xixj
(aijv)−

n∑
i=1

∂xi
(biv) + cv + ∂tv on ΩT ,

for all v ∈ C2,1(ΩT ). We can now state

Lemma 2.3.12. Let L be the operator defined as in (2.2.2) and suppose that (2.3.71)-

(2.3.73) and (2.3.74) are satisfied. Then, there exists a fundamental solution for L∗,
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denoted by Γ∗ : ΩΓ∗ → R with

ΩΓ∗
= {(x, t; ξ, τ) ∈ ΩT × ΩT : 0 ≤ t < τ ≤ T}.

Specifically, for any fixed (ξ, τ), as a function of (x, t), Γ∗ satisfies:

• L∗[Γ∗] = 0 on Ω× (0, τ).

• For every f ∈ C(Ω) ∩ L∞(Ω)

lim
t↗τ

∫
Ω

Γ∗(x, t; ξ, τ)f(ξ)dξ = f(x) ∀x ∈ Ω.

Additionally,

Γ(x, t; ξ, τ) = Γ∗(ξ, τ ;x, t) ∀(x, t; ξ, τ) ∈ ΩΓ. (2.3.75)

Proof. See [Fri08, Theorems 14 and 15, p.27-28].

We also require the following qualitative properties of Γ and Γ∗, stated in

Lemma 2.3.13. For all (x, t; ξ, τ) ∈ ΩΓ, Γ satisfies:

0 < Γ(x, t; ξ, τ) ≤ κ(t− τ)−
n
2 exp

(
−λ|x− ξ|2

4(t− τ)

)
, (2.3.76)

|∂xi
Γ(x, t; ξ, τ)| ≤ κ(t− τ)−

(n+1)
2 exp

(
−λ|x− ξ|2

4(t− τ)

)
, (2.3.77)

and for all (x, t; ξ, τ) ∈ ΩΓ∗
, Γ∗ satisfies:

0 < Γ∗(x, t; ξ, τ) ≤ κ(τ − t)−
n
2 exp

(
−λ|x− ξ|2

4(τ − t)

)
, (2.3.78)

|∂xi
Γ∗(x, t; ξ, τ)| ≤ κ(τ − t)−

(n+1)
2 exp

(
−λ|x− ξ|2

4(τ − t)

)
, (2.3.79)

for some constants κ ∈ (0,∞) and λ ∈ (0, Amin).
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Proof. For the upper bounds in (2.3.76)-(2.3.79) see [Fri08, p.24 and p.28]. For the posi-

tivity of Γ and Γ∗ see [Fri08, Theorem 11, p.44] and (2.3.75).

We now establish a weak minimum principle for P as in (2.2.4), with θ ≡ 1.

Proposition 2.3.14 (Weak minimum principle). Let u ∈ C(ΩT )∩C2,1(ΩT )∩L∞(ΩT ) and

P be an operator as in (2.2.4) (i.e. θ ≡ 1). Suppose that the coefficients aij, bi : ΩT → R

satisfy (2.3.71)-(2.3.73) and (2.3.74) and c, d : ΩT → [0,∞) are bounded functions.

Furthermore, suppose

P [u] ≤ 0 on ΩT ; (2.3.80)

u ≥ 0 on ∂ΩT . (2.3.81)

Then, u ≥ 0 on ΩT .

Proof. We rewrite (2.3.80) as

L[u] + cu+ dJu ≤ 0 on ΩT , (2.3.82)

with L denoting the second order linear parabolic partial differential operator given by

L[u] =
n∑

i,j=1

aij∂xixj
u+

n∑
i=1

bi∂xi
u− ∂tu on ΩT , (2.3.83)

for u ∈ C2,1(ΩT ). Now, for R ∈ N we define Γ∗
R : ΩΓ∗ → R to be

Γ∗
R(y, s;x, t) = Γ∗(y, s;x, t)HR(y − x) ∀(y, s;x, t) ∈ ΩΓ∗

, (2.3.84)

with Γ∗ the fundamental solution for the adjoint operator of L in (2.3.83). The existence

of Γ∗ is guaranteed since the conditions of Lemma 2.3.12 are satisfied. The function

HR ∈ C2(Ω) used to define Γ∗
R in (2.3.84) satisfies the following properties:
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HR(y) =


1, y ∈ BR;

0, y ∈ Ω \BR+1;

(2.3.85)

0 ≤ HR(y) ≤ 1 ∀y ∈ Ω; (2.3.86)

n∑
i=1

|∂yiHR|+
n∑

i,j=1

|∂yiyjHR| ≤M on BR+1, (2.3.87)

for a constant M ≥ 0 independent of R ∈ N. Upon multiplying (2.3.82) evaluated at

(y, s), with Γ∗
R(y, s;x, t), and integrating over Ω × [ε1, t − ε2] with ε1, ε2 ∈ (0, t/2), we

obtain

0 ≥
∫ t−ε2

ε1

∫
BR+1

x

Γ∗
R(y, s;x, t)(L[u] + cu+ dJu)(y, s)dyds

=

∫ t−ε2

ε1

∫
BR+1

x

Γ∗
R(y, s;x, t)L[u](y, s)dyds

+

∫ t−ε2

ε1

∫
BR+1

x

Γ∗
R(y, s;x, t)(cu+ dJu)(y, s)dyds. (2.3.88)

Via Green’s identity for L and L∗ [Fri08, p.27], the divergence theorem, and Lemma

2.3.12, the first integral in (2.3.88) is given by

∫ t−ε2

ε1

∫
BR+1

x

Γ∗
R(y, s;x, t)L[u](y, s)dyds

=

∫ t−ε2

ε1

∫
BR+1

x

(uL∗[Γ∗
R]− ∂s(uΓ

∗
R))(y, s;x, t)dyds

+

∫ t−ε2

ε1

∫
BR+1

x

(
n∑

i=1

∂yi

n∑
j=1

[
Γ∗
Raij(∂yju)− uaij(∂yjΓ

∗
R)− uΓ∗

R(∂yjaij)
])

(y, s;x, t)dyds

+

∫ t−ε2

ε1

∫
BR+1

x

(
n∑

i=1

∂yi(biuΓ
∗
R)

)
(y, s;x, t)dyds

(2.3.89)

=

∫ t−ε2

ε1

∫
BR+1

x

Λ(y, s;x, t)u(y, s)dyds−
∫
BR+1

x

Γ∗
R(y, s;x, t)u(y, s)dy

∣∣∣∣t−ε2

s=ε1

, (2.3.90)
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where, via the divergence theorem and (2.3.85)-(2.3.87), the second and third integrals in

(2.3.89) vanish for all (x, t) ∈ ΩT and Λ : Ωt → R is given by

Λ(·, ·;x, t) =
n∑

i,j=1

(∂yj(aijΓ
∗)∂yiHR + ∂yi(aijΓ

∗)∂yjHR)

+
n∑

i,j=1

aijΓ
∗(∂yiyjHR)−

n∑
i=1

biΓ
∗(∂yiHR),

(2.3.91)

on Ωt for all (x, t) ∈ ΩT . Via (2.3.85)-(2.3.86) we have

∫ t−ε2

ε1

∫
BR+1

x

Λ(y, s;x, t)u(y, s)dyds =

∫ t−ε2

ε1

∫
BR+1

x \BR
x

Λ(y, s;x, t)u(y, s)dyds.

Using (2.3.71)-(2.3.73), (2.3.74), (2.3.87), (2.3.91) and Lemma 2.3.13, it follows that there

exists a sufficiently large constant C > 0, independent of ε1 and R, such that

∣∣∣∣∫ t−ε2

ε1

∫
BR+1

x \BR
x

Λ(y, s;x, t)u(y, s)dyds

∣∣∣∣
≤ ∥u∥L∞(ΩT )

∫ t−ε2

ε1

∫
BR+1

x \BR
x

|Λ(y, s;x, t)| dyds

≤M∥u∥L∞(ΩT )

∫ t−ε2

ε1

∫
BR+1

x \BR
x

∣∣∣∣∣
n∑

i,j=1

∂yj(aij(y, s)Γ
∗(y, s;x, t)) + ∂yi(aij(y, s)Γ

∗(y, s;x, t))

∣∣∣∣∣
+

∣∣∣∣∣
n∑

i,j=1

aij(y, s)Γ
∗(y, s;x, t)

∣∣∣∣∣+
∣∣∣∣∣∣

n∑
i=1

bi(y, s)Γ
∗(y, s;x, t)

∣∣∣∣∣∣ dyds
≤ C

∫ t−ε2

0

∫
BR+1

x \BR
x

∣∣∣∣∣
n∑

i=1

∂yiΓ
∗(y, s;x, t)

∣∣∣∣∣+ |Γ∗(y, s;x, t)| dyds. (2.3.92)

Via Lemma 2.3.13, the Fubini-Tonelli theorem and several changes of variables, we obtain

∫ t−ε2

0

∫
BR+1

x \BR
x

∣∣∣∣∣
n∑

i=1

∂yiΓ
∗(y, s;x, t)

∣∣∣∣∣+ |Γ∗(y, s;x, t)| dyds

≤ κ

∫ t−ε2

0

∫
BR+1

x \BR
x

n(t− s)−
n+1
2 exp

(
−λ|x− y|2

4(t− s)

)
+ (t− s)−

n
2 exp

(
−λ|x− y|2

4(t− s)

)
dyds

= κ

∫ t

ε2

∫
BR+1

x \BR
x

(
1 +

n√
τ

)
1

τ
n
2

exp

(
−λ|x− y|2

4τ

)
dydτ
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= κ

∫ t

ε2

(
1 +

n√
τ

)
1

τ
n
2

∫ R+1

R

exp

(
−λr

2

4τ

)
|sn|rn−1drdτ

= κ|sn|
∫ t

ε2

(
1 +

n√
τ

)
1

τ
n
2

∫ λ(R+1)2

4τ

λR2

4τ

e−z

(
4τz

λ

)n−1
2 ( τ

λz

) 1
2
dzdτ

=
κ|sn|
2

(
4

λ

)n
2
∫ t

ε2

(
1 +

n√
τ

)
dτ

∫ λ(R+1)2

4τ

λR2

4τ

e−zz
n
2
−1dz

<
κ|sn|
2

(
4

λ

)n
2
∫ t

ε2

(
1 +

n√
τ

)
dτ

∫ ∞

λR2

4T

e−zz
n
2
−1dz

<
κ|sn|
2

(
4

λ

)n
2 (
T + 2n

√
T
)
Γup

(
n

2
,
λR2

4T

)
(2.3.93)

where λ > 0, |sn| denotes the surface area of the unit n−sphere and Γup : (0,∞)×R → R

denotes the upper incomplete Gamma function (see for instance [AS64, p.260]). Upon

substituting (2.3.93) into (2.3.92) it follows that

∫ t−ε2

ε1

∫
BR+1

x \BR
x

Λ(y, s;x, t)u(y, s)dyds→ 0 as R → ∞, (2.3.94)

uniformly for all (x, t) ∈ ΩT and ε1 ∈ (0, t
2
). Thus, via (2.3.90), (2.3.94) and letting

R → ∞, the differential inequality in (2.3.88) reduces to

0 ≥ −
∫
Ω

Γ∗(y, s;x, t)u(y, s)dy

∣∣∣∣t−ε2

s=ε1

+

∫ t−ε2

ε1

∫
Ω

Γ∗(y, s;x, t)(cu+ dJu)(y, s)dyds.

(2.3.95)

Via Lemma 2.3.12 and by letting ε1, ε2 → 0+ in (2.3.95) we obtain

u(x, t) ≥
∫
Ω

Γ∗(y, 0;x, t)u(y, 0)dy +

∫
Ωt

Γ∗(y, s;x, t)(cu+ dJu)(y, s)dyds (2.3.96)

for all (x, t) ∈ ΩT . Via (2.3.81), the first integral in (2.3.96) is non-negative and thus we
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have

−u(x, t) ≤
∫
Ωt

Γ∗(y, s;x, t)c(y, s)(−u)(y, s)dyds+
∫
Ωt

Γ∗(y, s;x, t)d(y, s)J(−u)(y, s)dyds

(2.3.97)

for all (x, t) ∈ ΩT . Define ψ : ΩT → R to be

ψ = −u on ΩT , (2.3.98)

and additionally, define ψ+
∞ : [0, T ] → R to be

ψ+
∞(t) = sup

y∈Ω
{max{ψ(y, t), 0}} ∀t ∈ [0, T ].

We note that ψ+
∞ ∈ L1([0, T ]) (for details, see [MN15a, Ch. 7]). Thus, via (2.3.78),

(2.3.98), the boundedness of c, d and the integrability of φ, it follows that inequality

(2.3.97) becomes

ψ(x, t) ≤
∫
Ωt

Γ∗(y, s;x, t)c(y, s)max{ψ(y, s), 0}dyds

+

∫
Ωt

Γ∗(y, s;x, t)d(y, s)(J max{ψ, 0})(y, s)dyds

≤
∫
Ωt

Γ∗(y, s;x, t)

(
∥c∥L∞(ΩT )ψ

+
∞(s) + ∥d∥L∞(ΩT )

∫
Ω

φ(z − y)ψ+
∞(s)dz

)
dyds

≤ κ
(
∥c∥L∞(ΩT ) + ∥d∥L∞(ΩT )∥φ∥L1(Rn)

) ∫
Ωt

ψ+
∞(s)

(t− s)n/2
exp

(
−λ|y − x|2

4(t− s)

)
dyds

≤ κ
(
∥c∥L∞(ΩT ) + ∥d∥L∞(ΩT )∥φ∥L1(Rn)

)(2
√
π√
λ

)n ∫ t

0

ψ+
∞(s)ds

= D

∫ t

0

ψ+
∞(s)ds (2.3.99)

for all (x, t) ∈ ΩT , with the constant D given by

D = κ
(
∥c∥L∞(ΩT ) + ∥d∥L∞(ΩT )∥φ∥L1(Rn)

)(2
√
π√
λ

)n

.
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Since the right hand side of (2.3.99) is independent of x ∈ Ω and non-negative, it follows

that

ψ+
∞(t) ≤ D

∫ t

0

ψ+
∞(s)ds on [0, T ].

Via (2.3.81) and (2.3.98) it also follows that

ψ+
∞(0) = 0.

Therefore, via the Bellman-Grönwall inequality [MN15a, Proposition 5.6], we have that

ψ+
∞ ≡ 0 on [0, T ]. (2.3.100)

Thus, from (2.3.98) and (2.3.100) we obtain that u ≥ 0 on ΩT , as required.

2.4 Associated comparison principles

A natural application of the weak minimum principles established in Section 2.3 are

comparison principles for solutions to semi-linear integro-differential inequalities involving

the operator Qθ, defined in (2.2.5). To utilise the Lipschitz properties discussed in Section

2.2, we introduce the following notation. For u, u ∈ C2,1(ΩT )∩C(ΩT )∩L∞(ΩT ), we denote

K0 =

[
inf
ΩT

min{u, u}, sup
ΩT

max{u, u}

]
×

[
inf
ΩT

min{Ju, Ju}, sup
ΩT

max{Ju, Ju}

]
. (2.4.1)

Further assuming that u, u ∈ W 1,∞(ΩT ) we also define

K1 =

[
inf
ΩT

min
i=1,...,n

{∂xi
u, ∂xi

u}, sup
ΩT

max
i=1,...,n

{∂xi
u, ∂xi

u, }

]n
(2.4.2)
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and

K = K1 ×K0. (2.4.3)

We now establish a comparison principle based on an application of Proposition 2.3.7,

specifically, we have

Theorem 2.4.1 (Comparison principle I). Let u, u ∈ C2,1(ΩT ) ∩ C(ΩT ) ∩ L∞(ΩT ) ∩

W 1,∞(ΩT ), Q be as in (2.2.5) (with θ ≡ 1), ψ : Rn → R be given by (2.3.58), and K as

in (2.4.3). Furthermore, suppose:

Q[u] ≥ Q[u] on ΩT ; (2.4.4)

u ≤ u on ∂ΩT ; (2.4.5)

n∑
i,j=1

aij(x, t)ηiηj ≤
A

tβ
(1 + |x|2) |η|2 ∀(x, t) ∈ ΩT , η ∈ Rn; (2.4.6)

ψ ∈ L1(Rn), (2.4.7)

for non-negative constants A and β ∈ [0, 1). Moreover, suppose that f(x, t,∇u, u, Ju):

satisfies a constrained local Lipschitz condition in ∇u on ΩT ×K; (2.4.8)

satisfies a constrained local upper Lipschitz condition in u on ΩT ×K; (2.4.9)

satisfies a constrained local Lipschitz condition in Ju on ΩT ×K; (2.4.10)

is non-decreasing with respect to Ju on ΩT ×K. (2.4.11)

Then, u ≤ u on ΩT .

Proof. Let w : ΩT → R be given by

w(x, t) = u(x, t)− u(x, t) ∀(x, t) ∈ ΩT . (2.4.12)

Then w ∈ C(ΩT ) ∩ C2,1(ΩT ) ∩ L∞(ΩT ) ∩W 1,∞(ΩT ), w ≥ 0 on ∂ΩT , and w satisfies the
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integro-differential inequality

n∑
i,j=1

aij∂xixj
w + (f(·,∇u, u, Ju)− f(·,∇u, u, Ju))− ∂tw ≤ 0 on ΩT . (2.4.13)

Also note that, there exist b1, . . . , bn, c, d : ΩT → R such that

f(·,∇u, u, Ju)− f(·,∇u, u, Ju) =
n∑

i=1

bi∂xi
w + cw + dJw on ΩT , (2.4.14)

with b1, . . . , bn, c and d given by:

bi(x, t) =


f(·, ·, wi, u, Ju)− f(·, ·, wi, u, Ju)

∂xi
u− ∂xi

u

∣∣∣∣
(x,t)

, ∂xi
u(x, t) ̸= ∂xi

u(x, t),

0, ∂xi
u(x, t) = ∂xi

u(x, t),

c(x, t) =


f(·, ·,∇u, u, Ju)− f(·, ·,∇u, u, Ju)

u− u

∣∣∣∣
(x,t)

, u(x, t) ̸= u(x, t),

0, u(x, t) = u(x, t),

(2.4.15)

d(x, t) =


f(·, ·,∇u, u, Ju)− f(·, ·,∇u, u, Ju)

Ju− Ju

∣∣∣∣
(x,t)

, Ju(x, t) ̸= Ju(x, t),

0, Ju(x, t) = Ju(x, t),

(2.4.16)

for all (x, t) ∈ ΩT , where wi, wi : ΩT → R are given by

wi(x, t) =


∂xj

u(x, t), for j < i,

∂xj
u(x, t), for j ≥ i,

; wi(x, t) =


∂xj

u(x, t), for j ≤ i,

∂xj
u(x, t), for j > i,

for all j = 1, . . . , n and (x, t) ∈ ΩT . Since f satisfies (2.4.8)-(2.4.11) and all the points

where f is evaluated lie in ΩT ×K, it follows that b1, . . . , bn, c and d satisfy the conditions

(2.3.62)-(2.3.64). Therefore, w in (2.4.12) and the linear integro-differential operator

obtained from substitution of (2.4.14) into (2.4.13) satisfy the conditions of Proposition

2.3.7. Therefore, w ≥ 0 on ΩT and hence u ≤ u on ΩT , as required.
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Analogously to Theorem 2.4.1, utilising Proposition 2.3.5 instead of Proposition 2.3.7,

we also obtain

Theorem 2.4.2 (Comparison principle II). Let u, u ∈ C2,1(ΩT ) ∩ C(ΩT ) ∩ L∞(ΩT ) ∩

W 1,∞(ΩT ), Q be as in (2.2.5) (with θ ≡ 1) and K as in (2.4.3). Furthermore, suppose:

Q[u] ≥ Q[u] on ΩT ;

u ≤ u on ∂ΩT ;

lim
|x|→∞

u(x, t) = lim
|x|→∞

u(x, t) = 0 uniformly with respect to t ∈ [0, T ],

and conditions (2.4.9)-(2.4.11) are satisfied. Then, u ≤ u on ΩT .

Proof. The proof follows the same approach as that of Theorem 2.4.1, and hence, is

omitted.

A companion comparison principle to Proposition 2.3.14 with the non-local, non-

linear function f present in (2.2.5) is obtainable1 albeit, for ease of illustration we restrict

attention to f without a dependence on ∇u, i.e. f(·, u, Ju). We now introduce the

non-local operator Q̃ : C2,1(ΩT ) ∩ L∞(ΩT ) given by

Q̃[u] =
n∑

i,j=1

aij∂xixj
u+

n∑
i=1

bi∂xi
u+ f(·, u, Ju)− ∂tu on ΩT (2.4.17)

and obtain the following comparison principle.

Theorem 2.4.3 (Comparison principle III). Let u, u ∈ C2,1(ΩT )∩C(ΩT )∩L∞(ΩT ), Q̃ be

as in (2.4.17) and K0 as in (2.4.1). Suppose that the coefficients aij, bi : ΩT → R satisfy

(2.3.71)-(2.3.73) and (2.3.74). Moreover, suppose that f(x, t, u, Ju):

satisfies Lipschitz conditions in u and Ju on ΩT ×K0; (2.4.18)

is non-decreasing with respect to Ju on ΩT ×K0. (2.4.19)

1As long as an assumption on f similar to (2.4.8) for the term involving ∇u is made, so that the
regularity conditions on bi in (2.3.74) are satisfied.

42



Furthermore, suppose that

Q̃[u] ≥ Q̃[u] on ΩT ; (2.4.20)

u ≤ u on ∂ΩT . (2.4.21)

Then, u ≤ u on ΩT .

Proof. Let w : ΩT → R be given by

w = (u− u)θ on ΩT , (2.4.22)

with θ : [0, T ] → (0,∞) given by

θ(t) = ekt ∀t ∈ [0, T ],

where k is a Lipschitz constant for f on ΩT × K0, guaranteed to exist by (2.4.18). It

follows immediately that w ∈ C2,1(ΩT ) ∩ C(ΩT ) ∩ L∞(ΩT ) and, from (2.4.21) that

w ≥ 0 on ∂ΩT .

Via (2.4.17) and (2.4.20), w satisfies

n∑
i,j=1

aij∂xixj
w +

n∑
i=1

bi∂xi
w + (f(·, u, Ju)− f(·, u, Ju))θ + kw − ∂tw ≤ 0 on ΩT .

(2.4.23)

Analogously to (2.4.15)-(2.4.16), via (2.4.18)-(2.4.19), it follows that there exist functions

c, d ∈ L∞(ΩT ) such that

(f(·, u, Ju)− f(·, u, Ju))θ + kw = cw + dJw on ΩT . (2.4.24)
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Moreover, via (2.4.18)-(2.4.19) and a sufficiently large choice for k, it follows that

c, d ≥ 0 on ΩT .

Therefore, we may rewrite (2.4.23) as

n∑
i,j=1

aij∂xixj
w +

n∑
i=1

bi∂xi
w + cw + dJw − ∂tw ≤ 0 on ΩT . (2.4.25)

Observe that w, given by (2.4.22), and the non-local integro-differential operator defined

by (2.4.25) satisfy the conditions of Proposition 2.3.14. Therefore, w ≥ 0 on ΩT and

hence, u ≥ u on ΩT , as required.

Remark 2.4.4. A condition analogous to (2.4.19) is illustrated to be required in Theorem

2.4.3 via the following initial-boundary value problem. The initial-boundary value prob-

lem was chosen due to the pathological behaviour of travelling wave solutions of (2.4.29),

as illustrated in [Bil20] and [NBLM23].

Let Ω = R and P : C2,1(ΩT ) ∩ L∞(ΩT ) → R(ΩT ) be given by

P [u] = D∂xxu+ f(u, Ju)− ∂tu on ΩT , (2.4.26)

for all u ∈ C2,1(ΩT ) ∩ L∞(ΩT ) with: D a positive constant; f : R2 → R given by

f(u, Ju) = u(1− Ju) ∀(u, Ju) ∈ R2; (2.4.27)

and with

φ ∈ L1(R) ∩ C(R), φ ≥ 0, φ is even on R, and ∥φ∥L1(R) = 1. (2.4.28)

The initial-boundary value problem is given by:

P [u] = 0 on ΩT ; (2.4.29)
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u(x, 0) = u0(x) ∀x ∈ Ω, (2.4.30)

with P as in (2.4.26)-(2.4.28); and u0 ∈ C2(Ω) such that

u0(x) =


1, x ∈ (−∞, 0);

η(x), x ∈ [0, 1];

0, x ∈ (1,∞),

(2.4.31)

with η : [0, 1] → [0, 1] a sufficiently smooth decreasing function. Now consider u : ΩT → R

given by ū ≡ 1 on ΩT and u : ΩT → R to be the unique solution to (2.4.29)-(2.4.31).

Since f is locally Lipschitz continuous in R2 the existence of u is established by Theorem

3.3.16. It follows, from the smoothness of the initial data (see Propositions 3.3.6, 3.3.8

and Remark 3.3.10) that u ∈ C2,1(ΩT ). Now we have:

P [u] = 0 = 1− ∥φ∥L1(R) = P [u] on ΩT ,

and

u ≤ u on ∂ΩT .

Further note that ∂Juf(1, 1) = −1 < 0. Thus, P, u and u satisfy all of the conditions

of Theorem 2.4.3, except the non-decreasing condition in (2.4.19). However, since u ∈

C2,1(ΩT ), and Ju(0, 0) ∈ (0, 1), it follows that

0 = lim
ε→0

(D∂xxu+ u(1− Ju)− ∂tu)|(x,t)=(0,ε)

= D∂xxu(0, 0) + 1(1− Ju(0, 0))− ∂tu(0, 0)

> −∂tu(0, 0)
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which implies that

∂tu(0, 0) > 0.

Therefore, there exists (x∗, t∗) ∈ R × (0, T ) such that u(x∗, t∗) > 1 = u(x∗, t∗), violating

the conclusion of Theorem 2.4.1.

We now provide an application of the comparison principles stated above.

Remark 2.4.5. Consider the initial-boundary value problem (2.4.26), (2.4.28), (2.4.29)

and (2.4.30) with f : R2 → R given by

f(u, Ju) = max{(Ju)(1− u), 0} ∀(u, Ju) ∈ R2, (2.4.32)

and u0 ∈ C2(R) ∩ L∞(R), with 0 ≤ u0 ≤ 1 on R. Note that f is locally Lipschitz

continuous in R2, as in Remark 2.4.4, there exists a unique solution u ∈ C2,1(R× [0, T ])∩

L∞(R × [0, T ]), for a sufficiently small T > 0, to this initial-boundary value problem.

Since

∂tu−D∂xxu = f(u, Ju) ≥ 0 on ΩT , (2.4.33)

it follows from the minimum principle for the heat equation that

u ≥ 0 on ΩT . (2.4.34)

Now, for any T > 0, define u = u on ΩT , u ≡ 1 on ΩT and g : R → R to be

g(v) = ∥u∥L∞(ΩT ) max{1− v, 0} ∀v ∈ R.

Then:

∂tu−D∂xxu = max{Ju(1− u), 0} ≤ g(u) on ΩT ; (2.4.35)

∂tu−D∂xxu = 0 ≥ g(u) on ΩT , (2.4.36)
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and

u ≤ u on ∂ΩT . (2.4.37)

Thus, via (2.4.35)-(2.4.37), it follows from Theorem 2.4.3 with φ ≡ 0 and f = g, that

u ≤ u on ΩT and hence, on recalling (2.4.34), we conclude that

0 ≤ u ≤ 1 on ΩT . (2.4.38)

This a priori bound on the solution of the initial-boundary value problem provides suf-

ficient information to conclude that the initial-boundary value problem has a global so-

lution u : Ω∞ → R (i.e., the solution is extendable on ΩT for any T > 0), for each

u0 ∈ C2(Ω) ∩ L∞(Ω).1 Since solutions to the initial-boundary value problem are unique

and bounded between 0 and 1, f in (2.4.32) can be replaced by f(u, Ju) = Ju(1− u) for

all (u, Ju) ∈ R2. Notably, f ∈ C1(R2) and ∂Juf ≥ 0 on [0, 1]2.

Now, consider two cases of the the initial-boundary value problem, with respective

initial data u10, u
2
0 : Ω → R, that satisfy

u10 ≤ u20 on Ω.

Then, we may apply Theorem 2.4.3, to conclude that the corresponding solutions ui :

Ω∞ → R, for i = 1, 2, to the initial-boundary value problem satisfy

u1 ≤ u2 on Ω∞.

1We will expand upon this topic in Chapter 3.
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2.5 Conclusion

It is widely known that solutions to boundary value problems for second order linear

parabolic partial differential equations in unbounded domains, need not be unique if

growth restrictions (as |x| → ∞) are not imposed. Indeed, even for the homogeneous heat

equation in Rn × [0, T ], uniqueness fails if one does not assume a boundedness condition

similar to ∫ T

0

∫
Rn

|u(x, t)| exp
(
−µ|x|2

)
dxdt <∞,

for any constant µ > 0 (see [Fri08, p.29-31] and [Hay78]). In this regard, the condi-

tions in the minimum principle Proposition 2.3.4 complement these uniqueness and non-

uniqueness results. It should also be noted that weak minimum principles, with slightly

augmented conditions to those presented here, can be obtained for particular cases of

(α, λ) if one uses a different ξ, as discussed in [MN14, Section 3].

For the initial-boundary value problem for the heat equation in Rn × [0, T ], sharp

growth conditions on u as |x| → ∞, for which uniqueness/non-uniqueness of solutions

applies, are known (see [Hay78] and the references the therein). Such non-uniqueness

results highlight conditions, which if violated, preclude maximum/minimum principles

and comparison principles. Counter-examples that highlight the limitations of maxi-

mum/minimum principles for semilinear parabolic differential operators (as those dis-

cussed in [MN14, Section 3]), are not readily available in the non-local setting discussed

here. Construction of such counter-examples for this non-local case would provide further

clarity on the limitations of comparison theory for nonlinear non-local integro-differential

operators.

In Proposition 2.3.6 we note that conditions can be improved on d via a more refined

estimate on the integral in (2.3.57), by using the decay of θ as |y| → ∞.

In Section 2.3.2 we assumed that Ω = Rn. However, we may also consider Ω to

be an unbounded domain which is a strict subset of Rn, with ∂Ω sufficiently smooth.

The existence of derivative estimates for fundamental solutions to second order parabolic

48



partial differential equations on such domains are discussed in [LSU68, Chapter IV] and

[Fri08, Chapter 1]. Unfortunately, such derivative estimates are not established therein.

To establish minimum principles using the approach in Section 2.3.2 would require these

derivative estimates to bound derivative terms as |x| → ∞. For such domains, a theorem

similar to Proposition 2.3.14 (and the associated Theorem 2.4.3) can be established via the

same argument. This statement applies, under the proviso that, compatibility conditions

for w = (u − u)θ and Γ∗, in a neighbourhood of ∂Ω × [0, T ], are specified so that the

application of the divergence theorem in (2.3.89), yields

∫ t−ε2

ε1

∫
S

F · n̂dSdt ≥ 0, (2.5.1)

for all (x, t) ∈ ΩT , with S = ∂Ω ∩ BR
x . Here, the i−th component of F : ΩT → Rn is

given by

n∑
j=1

[
Γ∗aij

(
∂yjw

)
− waij

(
∂yjΓ

∗)− wΓ∗ (∂yjaij)]+ (biwΓ
∗) on ΩT ,

for i = 1, . . . , n, and n̂ is the outward normal vector to S = ∂Ω ∩ BR
x . Moreover, the

error term arising from the integral over ∂Ω∩ (BR+1
x \BR

x ) is required to decay sufficiently

rapidly as R → ∞.

We note that, the results in Section 2.4, namely the comparison principles for semi-

linear integro-differential operators, can be extended, using the approach adopted by Hopf

(see [PW84] or [Wal70]) to establish comparison principles for fully nonlinear second

order parabolic partial differential inequalities, with non-local zeroth order quantities.

Additionally, minimum principles with integrability conditions on u, rather than the point-

wise bounds on functions in Eα,λ(ΩT ), can in principle, also be established (see for example

[AB66] and references therein). Moreover, one can accommodate a degree of coefficient

blow-up in the interior of ΩT and still establish minimum principles (see [Mey22] where

these type of blow-up conditions are considered in the elliptic case). We note that the focus

in results presented in this chapter concerned conditions on the coefficients as |x| → ∞,
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and for brevity, these additional technicalities discussed above were not presented.

A natural application for the theorems in Section 2.4 is to establish uniqueness for

solutions of initial-boundary value problems. However, as Remark 2.4.4 demonstrates, the

solution to an initial-boundary value problem for a nonlinear non-local integro-differential

equation, can be unique, without the operator satisfying a comparison principle. Results

concerning uniqueness, and continuous dependence with respect to initial data, are often

established via the Bellman-Grönwall inequality, see for example Lemma 3.3.3, Corollary

3.3.4 and Proposition 3.3.5. This approach to establish uniqueness does not require a

monotonicity condition, such as condition (2.4.11), but merely regularity conditions on f .

Finally, we note that, depending on the conditions placed upon solutions, the regu-

larity of the non-local nonlinearity f and the actual coefficients of the integro-differential

operator, we have demonstrated that there are a variety of options available, if mini-

mum or comparison principles are required. However, for the non-local reaction-diffusion

equations we most frequently encounter, we work with u ∈ L∞(ΩT ), uniformly parabolic

integro-differential operators with coefficients of class C∞, no other a priori assumptions

on the growth/decay rate of u, and integral kernel φ ∈ L1(Rn). This makes Proposition

2.3.14, and the associated comparison principle Theorem 2.4.3 the related results we most

often utilise.
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CHAPTER 3

WELL POSEDNESS OF THE NONLINEAR
NON-LOCAL REACTION DIFFUSION EQUATION

3.1 Introduction

In this chapter we illustrate qualitative properties of solutions to the Cauchy problems

for the n−dimensional heat equation (HE) and the nonlinear non-local reaction diffusion

equation (CP). In Section 3.2 we show that (HE) is well-posed (globally) in the Hadamard

sense by specifying appropriate initial data. Specifically, we prove that if the initial data

is continuous and bounded, then there exists a unique solution to (HE) that is of class

C2,1 on ΩT , which is continuous with respect to the initial data. Furthermore, we provide

derivative bounds for the solution u of (HE) and highlight the differences in qualitative

results if the initial data u0 ∈ L∞(Ω) ∩ C(Ω) and u0 ∈ W 2,∞(Ω) ∩ C2(Ω).

This is done as a motivation and exposition for the techniques that are utilised in

the following section, where we shift our focus to the Cauchy problem for the non-local

reaction-diffusion equation, with the nonlinear non-local term satisfying a local Lipschitz

condition. In particular, in Section 3.3, utilising the results of Section 3.2, we establish

that (CP) is well-posed (locally in time) in the Hadamard sense by specifying appropriate

conditions for both the initial data and the nonlinear term f . Additionally, we highlight

the differences in qualitative results if the initial data u0 and the nonlinearity f are of

different classes of regularity. We conclude this section by providing higher order derivative
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bounds for the solution u to (CP). In both cases we utilise the fundamental solution to

the heat equation to represent our solutions.

Results established in this chapter are utilised in Section 4.2 in the construction of so-

lutions when the nonlinearity f satisfies a local Hölder condition. Moreover the derivative

estimates established here are instrumental in proving the convergence of the numerical

scheme described in Section 4.4. Lastly we note that the continuous dependence results

are used in Section 4.4 to enhance the discussion concerning the computations.

In this chapter, unless otherwise specified, Ω = Rn and no monotonicity restrictions

are placed on the nonlinearity f .

3.2 The n−dimensional heat equation

We consider the Cauchy problem


∂tu = ∆u, on ΩT ;

u(x, 0) = u0(x), ∀x ∈ Ω;

u ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ),

(HE)

with prescribed initial data u0 ∈ L∞(Ω) ∩ C(Ω). Henceforth, unless stated otherwise,

when we refer to (HE), we assume all the conditions mentioned above. We will show

that (HE) is well-posed, in the Hadamard sense (see [Had07]), on ΩT for any T > 0.

The results presented in this section have been previously established (see for instance

[Eva10]) and are proved here in the context of our work.

Theorem 3.2.1 (Uniqueness). (HE) has at most one solution on ΩT for any T > 0.

Proof. Let u1, u2 : ΩT → R be solutions to (HE) with the same initial data u0. Define

w : ΩT → R as

w = u1 − u2 on ΩT .
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It follows that wt − ∆w = 0 ≥ 0 on ΩT and w ≡ 0 on ∂ΩT . Therefore, via the weak

minimum principle (see Proposition 2.3.7),

w ≥ 0 on ΩT .

Via a symmetrical argument, it also follows that

−w ≥ 0 on ΩT .

Thus, w ≡ 0 on ΩT , or equivalently, u1 = u2 on ΩT , as required.

For what follows, we provide a definition for the free-space fundamental solution to

the heat equation. Let DG = {(x, t; y, s) ∈ ΩT × ΩT : 0 ≤ s < t ≤ T}, and G : DG → R

be the function given by

G(x, t; y, s) =
1

(2
√
π)n(t− s)n/2

exp

(
−|x− y|2

4(t− s)

)
, (3.2.1)

for all (x, t; y, s) ∈ DG. The function G is the fundamental solution for the heat equation

in Rn× [0, T ] and is consistent with the definition provided in the previous chapter. Now,

we consider the function u : ΩT → R given by

u(x, t) =


∫
Rn

G(x, t; y, 0)u0(y)dy, (x, t) ∈ΩT ;

u0(x), (x, t) ∈ ∂ΩT .

(3.2.2)

Since u0 ∈ L∞(Ω) ∩ C(Ω) we also have the following alternative representation for u

obtained via a change of variables

u(x, t) =

∫
Rn

u0(x+ 2
√
tz)

e−z2

√
π
ndz ∀(x, t) ∈ ΩT , (3.2.3)

with z2 = z · z, for all z ∈ Rn.

Now we establish the following standard result.
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Theorem 3.2.2 (Global existence and uniqueness). (HE) has a unique solution on ΩT

for any T > 0. This solution is given by u : ΩT → R in (3.2.2) and (3.2.3).

Proof. First note that, for each y ∈ Rn, ∂t(G(x, t; y, 0)u0(y)) and ∆(G(x, t; y, 0)u0(y))

exist and are continuous on ΩT . By direct calculations1 it follows that u ∈ C2,1(ΩT ) and:

ut(x, t) =

∫
Rn

G(x, t; y, 0)u0(y)
|x− y|2 − 2nt

4t2
dy = div(∇u(x, t)) = ∆u(x, t)

for all (x, t) ∈ ΩT . Additionally, since u0 ∈ L∞(Ω) ∩ C(Ω) it follows from the uniform

convergence of the integral in (3.2.3) and the continuity of u0, that

lim
t→0+

u(x, t) = lim
t→0+

∫
Rn

u0(x+ 2
√
tz)

e−z2

√
π
ndz

=

∫
Rn

lim
t→0+

u0(x+ 2
√
tz)

e−z2

√
π
ndz

=

∫
Rn

u0(x)
e−z2

√
π
ndz

=u0(x) (3.2.4)

for all x ∈ Rn. Also, since u0 ∈ L∞(Ω) ∩ C(Ω), applying Hölder’s inequality to (3.2.3)

yields

∥u∥L∞(ΩT ) ≤ ∥u0∥L∞(Ω) on ΩT . (3.2.5)

Thus, u ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ) for any T > 0 and solves (HE). Since T > 0 is

arbitrary, the solution u given by (3.2.2)-(3.2.3), with (3.2.1), can be extended onto Ω∞.

The uniqueness of u follows from Theorem 3.2.1.

Theorem 3.2.3 (Continuous dependence). Let u, v : ΩT → R be solutions to (HE)

with initial data u0, v0 ∈ L∞(Ω) ∩ C(Ω) respectively. Then, for every ε > 0 there exists

1This follows from the continuity and uniform convergence as |x| → ∞ of the derivatives of all
integrands arising from (3.2.2). Derivative formulae then follow from the Leibniz rule.
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δ = δ(ε) > 0 such that if

∥u0 − v0∥L∞(Ω) < δ,

then

∥u− v∥L∞(ΩT ) < ε.

Proof. Via (3.2.3) we have that

|u(x, t)− v(x, t)| ≤
∫
Rn

|u0(x+ 2
√
tz)− v0(x+ 2

√
tz)| e

−z2

√
π
ndz

≤ ∥u0 − v0∥L∞(Ω) < δ ∀(x, t) ∈ ΩT .

By setting δ = ε the result follows, as required.

To establish derivative estimates on ΩT , we assume that u0 ∈ W 2,∞(Ω) ∩ C2(Ω), and

begin our analysis by noting that (following differentiation under the integral sign in

(3.2.3), a change of variables, integration by parts and another change of variables) the

following identities hold:

∂xi
u(x, t) =

∫
Rn

e−z2

√
π
n∂xi

u0(x+ 2
√
tz)dz =

∫
Rn

G(x, t; y, 0)∂yiu0(y)dy, (3.2.6)

for all (x, t) ∈ ΩT and

∂xixj
u(x, t) =

∫
Rn

e−z2

√
π
n∂xixj

u0(x+ 2
√
tz)dz =

∫
Rn

G(x, t; y, 0)∂yiyju0(y)dy, (3.2.7)

for all (x, t) ∈ ΩT . Following this observation and noting that ∥G(x, t; ·, 0)∥L1(Rn) = 1 for

any (x, t) ∈ ΩT , we infer the following result.

Theorem 3.2.4 (Derivative estimates). Let u : ΩT → R be the unique solution to (HE).

Further assume that u0 ∈ W 2,∞(Ω) ∩ C2(Ω) and positive constants m0,M0,m
′
0,M

′
0, m

′′
0

and M ′′
0 exist such that

m0 ≤ u0 ≤M0, m′
0 ≤ ∂xi

u0 ≤M ′
0, m′′

0 ≤ ∂xixj
u0 ≤M ′′

0 on Ω,
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for i, j = 1, . . . , n. Then,

m0 ≤ u ≤M0, m′
0 ≤ ∂xi

u ≤M ′
0, m′′

0 ≤ ∂xixj
u ≤M ′′

0 on ΩT ,

for i, j = 1, . . . , n. Furthermore,

nm′′
0 ≤ ut ≤ nM ′′

0 on ΩT .

Proof. Since u is a solution to (HE) this follows from (3.2.6) and (3.2.7).

By assuming no more than u0 ∈ L∞(Ω) ∩ C(Ω) on the initial data, the derivative

estimates in Theorem 3.2.4 are adapted in the following propositions.

Proposition 3.2.5. Let u : ΩT → R be the solution to (HE). Then,

|∂xi
u(x, t)| ≤

∥u0∥L∞(Ω)√
πt

∀(x, t) ∈ ΩT , (3.2.8)

for i = 1, . . . , n.

Proof. By (3.2.2), by differentiating under the integral sign and following changes of

variables we have:

∂xi
u(x, t) =

∫
Rn

e−
|x−y|2

4t

(2
√
πt)n

(
−(xi − yi)

2t

)
u0(y)dy

= − 1√
t

∫
Rn

e−z2

√
π
n ziu0(x+ 2

√
tz)dz,

for all (x, t) ∈ ΩT . Via the triangle inequality and Hölder’s inequality we obtain

|∂xi
u(x, t)| ≤

∥u0∥L∞(Ω)√
t

∫
Rn

e−z2

√
π
n |zi| dz

=
∥u0∥L∞(Ω)√

πt

∫ ∞

0

∂zi(−e−z2i )dzi

=
∥u0∥L∞(Ω)√

πt
∀(x, t) ∈ ΩT , (3.2.9)
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as required.

Proposition 3.2.6. Let u : ΩT → R be the solution to (HE). Then,

|∂xixj
u(x, t)| ≤

∥u0∥L∞(Ω)

t
, ∀(x, t) ∈ ΩT , (3.2.10)

for i, j = 1, . . . , n.

Proof. By (3.2.2), for all (x, t) ∈ ΩT , by differentiating under the integral sign, following

changes of variables and via the triangle inequality and Hölder’s inequality we have:

|∂xixj
u(x, t)| ≤

∥u0∥L∞(Ω)

t

∫
Rn

e−z2

√
π
n

∣∣∣∣|zi||zj| − δij
2

∣∣∣∣ dz
≤

∥u0∥L∞(Ω)

t

(∫
Rn

e−z2

√
π
n |zi||zj|dz +

1

2

)
∀(x, t) ∈ ΩT .

with δij denoting the Kronecker delta notation1. Bounding the remaining integral, as in

(3.2.9) yields (3.2.10), as required.

3.3 Non-local reaction diffusion equations

In this section, we consider the following Cauchy problem


∂tu = ∆u+ f(u, Ju), on ΩT ;

u(x, 0) = u0(x), ∀x ∈ Ω;

u ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ),

(CP)

with prescribed initial data u0 ∈ L∞(Ω) ∩ C(Ω), with Ju : L∞(ΩT ) → L∞(ΩT ) as in

(2.2.1) given by the convolution product (with argument u),

Ju(x, t) =

∫
Rn

φ(x− y)u(y, t)dy ∀(x, t) ∈ ΩT ,

1I.e. δij =

{
1, if i = j;

0, if i ̸= j.
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with (prescribed) integral kernel φ ∈ L1(Rn), and (prescribed) nonlinearity f : R2 → R

which is locally Lipschitz continuous, i.e. for any compact U ⊆ R2 there exist LU ≥ 0

such that

|f(u1, v1)− f(u2, v2)| ≤ LU(|u1 − v1|+ |u2 − v2|),

for all (u1, v1), (u2, v2) ∈ U . Henceforth, unless stated otherwise, when we refer to (CP),

we assume all the conditions mentioned above. We further define F : ΩT → R to be

F (x, t) = f(u(x, t), Ju(x, t)) ∀(x, t) ∈ ΩT . (3.3.1)

We begin by showing that (CP) has a local solution.

Theorem 3.3.1 (Local existence). (CP) has a solution on Ωδ, for

δ =
1

2K + 2|f(0, 0)|+ 1
(3.3.2)

with

K = LU(1 + ∥φ∥L1(Rn)) (3.3.3)

and LU ≥ 0 is a Lipschitz constant for f on

U = [−(1 + ∥φ∥L1(Rn))(2∥u0∥L∞(Ω) + 1), (1 + ∥φ∥L1(Rn))(2∥u0∥L∞(Ω) + 1)]2.

Proof. Let B be the closed and bounded subspace of L∞(Ωδ)∩C(Ωδ), equipped with the

supremum norm ∥·∥L∞(Ωδ)
= ∥·∥∞,1 so that

B = {v : Ωδ → R : v ∈ L∞(Ωδ) ∩ C(Ωδ) and ∥v∥∞ ≤ 2∥u0∥L∞(Ω) + 1}. (3.3.4)

1In this proof we use this shorthand notation for ease of presentation.
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We note that (B, ∥·∥∞) is a Banach space (given that it is a closed and bounded subspace

of L∞(Ωδ) ∩ C(Ωδ)). By applying a Duhamel principle to (CP), we obtain the mapping

S : B → L∞(Ωδ) ∩ C(Ωδ) such that

S(v)|(x,t) =
∫
Rn

e−z2

√
π
nu0(x+ 2

√
tz)dz

+

∫ t

0

∫
Rn

e−z2

√
π
nf(v(x+ 2

√
t− sz, s), Jv(x+ 2

√
t− sz, s))dzds,

for all v ∈ B and for all (x, t) ∈ Ωδ. First we will show that Im(S) ⊆ B. For v ∈ B, via

(3.3.2) - (3.3.4) it follows that

∥S(v)∥∞ ≤ ∥u0∥L∞(Ω) + δ∥f(v, Jv)∥∞

= ∥u0∥L∞(Ω) + δ∥f(v, Jv) + f(0, 0)− f(0, 0)∥∞

≤ ∥u0∥L∞(Ω) + δ(LU(∥v∥∞ + ∥φ∥L1(Rn)∥v∥∞) + |f(0, 0)|)

= ∥u0∥L∞(Ω) + δ(K∥v∥∞) + |f(0, 0)|)

≤ ∥u0∥L∞(Ω) + δ(K(2∥u0∥L∞(Ω) + 1) + |f(0, 0)|)

= ∥u0∥L∞(Ω) +
K(2∥u0∥L∞(Ω) + 1) + |f(0, 0)|

2K + 2|f(0, 0)|+ 1

< ∥u0∥L∞(Ω) +
2∥u0∥L∞(Ω) + 1

2
+

1

2

= 2∥u0∥L∞(Ω) + 1.

Therefore, S : B → B. Next we show that S is a contraction mapping. For v, w ∈ B and

K as in (3.3.3), via (3.3.2) we have,

∥S(v)− S(w)∥∞ = sup
(x,t)∈Ωδ

{∫ t

0

∫
Rn

e−z2

√
π
n |f(v(x+ 2

√
t− sz, s), Jv(x+ 2

√
t− sz, s))

− f(w(x+ 2
√
t− sz, s), Jw(x+ 2

√
t− sz, s))|dzds

}

≤ K sup
(x,t)∈Ωδ

{∫ t

0

∫
Rn

e−z2

√
π
n |v(x+ 2

√
t− sz, s)
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− w(x+ 2
√
t− sz, s)|dzds

}

≤ K∥v − w∥∞
∫ δ

0

∫
Rn

e−z2

√
π
ndzds

= Kδ∥v − w∥∞

=
K

2K + 2|f(0, 0)|+ 1
∥v − w∥∞

≤ 1

2
∥v − w∥∞.

Therefore,

∥S(v)− S(w)∥∞ ≤ 1

2
∥v − w∥∞,

for all v, w ∈ B. Hence, via the Banach fixed-point theorem1, there exists u∗ ∈ B such

that

u∗(x, t) =

∫
Rn

e−z2

√
π
nu0(x+ 2

√
tz)dz

+

∫ t

0

∫
Rn

e−z2

√
π
nf(u

∗(x+ 2
√
t− sz, s), Ju∗(x+ 2

√
t− sz, s))dzds

=

∫
Rn

G(x, t; y, 0)u0(y)dy

+

∫ t

0

∫
Rn

G(x, t; y, s)f(u∗(y, s), Ju∗(y, s))dyds ∀(x, t) ∈ Ωδ.

To complete the proof, from the regularity of f and u∗, by using the results in [Fri08, Ch.

1], it follows that u∗ ∈ L∞(Ωδ)∩C(Ωδ)∩C2,1(Ωδ), and moreover, that u∗ is a solution to

(CP) on Ωδ, as required.

Remark 3.3.2 (Global existence). Now, following the approach described in [MN15a,

Theorem 6.4], and by assuming that a solution to (CP) is a priori bounded on ΩT
2, we

may extend u∗ up to any t ≤ T i.e, u ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ) as given by

u(x, t) =

∫
Rn

G(x, t; y, 0)u0(y)dy +

∫ t

0

∫
Rn

G(x, t; y, s)f(u(y, s), Ju(y, s))dyds (3.3.5)

1For details see [Sau06, Theorem 1.19].
2I.e, there exists a uniform bound for a solution to (CP) for all t ≤ T .
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for all (x, t) ∈ ΩT , is a solution to (CP). If u is a priori bounded on ΩT for all T > 0,

then there exists a solution to (CP) on Ω∞. We further note that although comparison

theory is widely used to establish a priori bounds for the local instance of (CP), it is

not applicable in the general (non-local) instance of (CP) we consider. However, if f is

non-decreasing with respect to Ju with φ ≥ 0, then the comparison theory developed in

the previous chapter can be applied to establish the uniqueness of solutions to (CP).

For the remainder of this section we assume that solutions to (CP) exist on ΩT . We

now establish a result which will yield uniqueness and continuous dependence for (CP).

Lemma 3.3.3. Let u, v : ΩT → R be solutions to (CP) with initial data u0, v0, and

integral kernels φ, φ̃ respectively, and identical nonlinearity f : R2 → R. Then,

|u(x, t)− v(x, t)| ≤ (∥u0 − v0∥L∞(Ω) + C1t)e
C2t ∀(x, t) ∈ ΩT , (3.3.6)

with C1 = LU∥φ−φ̃∥L1(Rn)∥u∥L∞(ΩT ), C2 = LU(1+∥φ̃∥L1(Rn)) and LU a Lipschitz constant

for f on U = U1 × U2 with

U1 = [−max{∥u∥L∞(ΩT ), ∥v∥L∞(ΩT )},max{∥u∥L∞(ΩT ), ∥v∥L∞(ΩT )}]

and

U2 = [−max{||Ju||L∞(ΩT ), ||J̃v||L∞(ΩT )},max{||Ju||L∞(ΩT ), ||J̃v||L∞(ΩT )}].

Proof. Via (3.3.5) we have that

u(x, t) =

∫
Rn

G(x, t; y, 0)u0(y)dy +

∫ t

0

∫
Rn

G(x, t; y, s)f(u(y, s), Ju(y, s))dyds;

v(x, t) =

∫
Rn

G(x, t; y, 0)v0(y)dy +

∫ t

0

∫
Rn

G(x, t; y, s)f(v(y, s), J̃v(y, s))dyds,
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for all (x, t) ∈ ΩT . Therefore

|u(x, t)− v(x, t)|

≤ ∥u0 − v0∥L∞(Ω)

+

∫ t

0

∫
Rn

G(x, t; y, s)|f(u(y, s), Ju(y, s))− f(v(y, s), J̃v(y, s))|dyds,
(3.3.7)

for all (x, t) ∈ ΩT . Since f is locally Lipschitz continuous, and J, J̃ are linear operators.

it follows from (3.3.7) that

|u(x, t)− v(x, t)|

≤ ∥u0 − v0∥L∞(Ω) +

∫ t

0

∫
Rn

G(x, t; y, s)LU(|(u(y, s)− v(y, s)|

+ |Ju(y, s)− J̃v(y, s)|)dyds

≤ ∥u0 − v0∥L∞(Ω) +

∫ t

0

∫
Rn

G(x, t; y, s)LU(|u(y, s)− v(y, s)|

+ |Ju(y, s)− J̃u(y, s)|+ |J̃u(y, s)− J̃v(y, s)|)dyds

= ∥u0 − v0∥L∞(Ω) +

∫ t

0

∫
Rn

G(x, t; y, s)LU(|u(y, s)− v(y, s)|

+ |(J − J̃)u(y, s)|+ |J̃(u(y, s)− v(y, s))|)dyds

≤ ∥u0 − v0∥L∞(Ω) +

∫ t

0

∫
Rn

G(x, t; y, s)LU(∥u(·, s)− v(·, s)∥L∞(Ω)

+ ∥φ− φ̃∥L1(Rn)∥u(·, s)∥L∞(Ω) + ∥φ̃∥L1(Rn)∥u(·, s)− v(·, s)∥L∞(Ω))dyds

≤ ∥u0 − v0∥L∞(Ω) +

∫ t

0

LU(∥u(·, s)− v(·, s)∥L∞(Ω) + ∥φ− φ̃∥L1(Rn)∥u∥L∞(ΩT )

+ ∥φ̃∥L1(Rn)∥u(·, s)− v(·, s)∥L∞(Ω))ds,

(3.3.8)

for all (x, t) ∈ ΩT , where (3.3.8) follows from Hölder’s inequality and

||G(x, t, ·, s)||L1(Ω) = 1.
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Now, we define ψ : [0, T ] → [0,∞) to be

ψ(t) = ∥u(·, t)− v(·, t)∥L∞(Ω) ∀t ∈ [0, T ]. (3.3.9)

On taking the supremum over all x ∈ Rn in the inequality (3.3.8), using (3.3.9), we obtain,

ψ(t) ≤ ∥u0 − v0∥L∞(Ω) + LU∥φ− φ̃∥L1(Rn)∥u∥L∞(ΩT )t+ LU(1 + ∥φ̃∥L1(Rn))

∫ t

0

ψ(s)ds,

(3.3.10)

for all t ∈ [0, T ]. Via an application of the Bellman-Grönwall inequality to (3.3.10) we

have

ψ(t) ≤ (∥u0 − v0∥L∞(Ω) + LU∥φ− φ̃∥L1(Rn)∥u∥L∞(ΩT )t)e
LU (1+∥φ̃∥L1(Rn))t ∀t ∈ [0, T ],

which implies (3.3.6), as required.

Corollary 3.3.4 (Uniqueness). For any T > 0 there exists at most one solution to (CP).

Proof. Let u, v : ΩT → R be solutions to (CP) with v0 = u0 on Ω, φ̃ = φ on Rn, and

identical nonlinearity f . Then, via Lemma 3.3.3, it follows that |u(x, t)− v(x, t)| = 0 for

all (x, t) ∈ ΩT . Therefore, u = v on ΩT , as required.

Proposition 3.3.5 (Continuous dependence). Suppose that u : ΩT → R is a solution

to (CP) for fixed T > 0. Then, for each ε > 0 there exists δ > 0, that only depends on

ε, T, ∥u∥L∞(ΩT ), ∥φ∥L1(Rn) and a Lipschitz constant for f , such that, if for initial data v0

and integral kernel φ̃ satisfying the conditions of (CP), we have

∥u0 − v0∥L∞(Ω) < δ and ∥φ− φ̃∥L1(Rn) < δ, (3.3.11)

then, there exists a solution v : ΩT → R to (CP) with initial data v0, integral kernel φ̃
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and nonlinearity f , such that

∥u− v∥L∞(ΩT ) < ε. (3.3.12)

Proof. Since u : ΩT → R is a solution (CP) it follows that ∥u∥L∞(ΩT ) <∞. Without loss

of generality, suppose that ε < 1. Let U ⊆ R2 be given by U = [−a, a]× [−b, b] with

a = ∥u∥L∞(ΩT ) + 1 and b = (∥φ∥L1(Rn) + 1)(∥u∥L∞(ΩT ) + 1).

We define f̃ : R2 → R such that

f̃(u,w) =


f(u,w), on U ;

f(u′, w′), on R2 \ U,
(3.3.13)

where (u′, w′) ∈ ∂U is the closest point to (u,w) ∈ R2 \U (with respect to the Euclidean

norm on R2)1. Note that, since f is locally Lipschitz continuous, by construction, f̃ is

Lipschitz continuous on R2 and bounded, i.e. there exists L ≥ 0 such that

∣∣∣f̃(u1, w1)− f̃(u2, w2)
∣∣∣ ≤ L(|u1 − u2|+ |w1 − w2|), ∀(u1, w1), (u2, w2) ∈ R2,

and,

|f̃(u,w)| ≤ ∥f∥L∞(U), ∀(u,w) ∈ R2. (3.3.14)

Now, consider the problem (CP), denoted by (C̃P), with initial data v0, kernel φ̃ and

nonlinearity f̃ given by (3.3.13) with ∥u0 − v0∥L∞(Ω) < 1, and ∥φ − φ̃∥L1(Rn) < 1. Note

that, via Corollary 3.3.4, when u0 = v0 and φ = φ̃, the unique solution to (C̃P) on ΩT is

given by u (the unique solution to (CP)).

1To visualise: we partition R2 in 9 ‘boxes’, the central, bounded box being U and 8 infinite boxes
for each point of the compass. In the N, E, S and W boxes, f̃ is constant on lines perpendicular to the
adjacent edge of U . In the NE, SE, SW and NW boxes, f̃ is constant with value equal to f evaluated at
the adjacent corner of U .
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Additionally, for any solution v : ΩT → R to (C̃P), such that v0 and φ̃ satisfy the

hypotheses of (CP), it follows from Remark 3.3.2, (3.3.13) and (3.3.14) that

∥v∥L∞(ΩT ) ≤ ∥v0∥L∞(Ω) + T ||f̃ ||L∞(R2)

≤ ∥u0∥L∞(Ω) + 1 + T∥f∥L∞(U).

By applying Lemma 3.3.3 to two solutions of (C̃P), specifically, u in the hypothesis, the

solution to (C̃P), denoted by v as above, we have

∥u(·, t)− v(·, t)∥L∞(Ω) ≤ (∥u0 − v0∥L∞(∂ΩT ) + L∥φ− φ̃∥L1(Rn)∥u∥L∞(ΩT )t)e
L(1+∥φ̃∥L1(Rn))t,

for all t ∈ [0, T ], with L being a Lipschitz constant for f on U . Therefore, via (3.3.11)

∥u− v∥L∞(ΩT ) ≤ (∥u0 − v0∥L∞(∂ΩT ) + L∥φ− φ̃∥L1(Rn)∥u∥L∞(ΩT )T )e
L(1+∥φ̃∥L1(Rn))T

< δ
(
1 + L∥u∥L∞(ΩT )T

)
eL(1+δ+∥φ∥L1(Rn))T .

Thus, if δ satisfies

0 < δ < ε
((

1 + L∥u∥L∞(ΩT )T
)
eL(2+∥φ∥L1(Rn))T

)−1

, (3.3.15)

then it follows that

∥u− v∥L∞(ΩT ) < ε. (3.3.16)

To verify that v : ΩT → R, the arbitrary solution to (C̃P) in (3.3.16), is also a solution

(CP), it suffices to show that f̃(v, J̃v) = f(v, J̃v). Indeed, since ε < 1, it follows that

∥v∥L∞(ΩT ) < ∥u∥L∞(ΩT ) + ε < ∥u∥L∞(ΩT ) + 1, (3.3.17)

65



and

∥∥∥J̃v∥∥∥
L∞(ΩT )

≤ ∥φ̃∥L1(Rn)∥v∥L∞(ΩT ) ≤ (∥φ∥L1(Rn) + 1)(∥u∥L∞(ΩT ) + 1). (3.3.18)

Hence, via (3.3.17), (3.3.18) and (3.3.13), f̃(v, J̃v) = f(v, J̃v) on ΩT . Therefore v : ΩT →

R is a solution to (CP) with initial data v0, integral kernel φ̃ and nonlinearity f . Finally,

since δ in (3.3.15) is independent of the specific choice of v0 and φ̃, the bound in (3.3.16)

establishes (3.3.12), as required.

For the remainder of this section we provide several results concerning derivative es-

timates for the solution of (CP) that depend on the regularity of the initial data u0 and

the nonlinearity f .

Proposition 3.3.6 (∂xi
u estimates). Let u : ΩT → R be the solution to (CP) and suppose

that u0 ∈ W 1,∞(Ω) ∩ C1(Ω). Then

|∂xi
u(x, t)| ≤ ∥∂xi

u0∥L∞(Ω) +
2∥f(u, Ju)∥L∞(ΩT )

√
t

√
π

∀(x, t) ∈ ΩT , (3.3.19)

for all i = 1, . . . , n.

Proof. By differentiating under the integral sign in (3.3.5), permitted via the regularity

of f(u, Ju) and the integrability of G, and after a change of variables, via (3.3.1) we have:

|∂xi
u(x, t)| =

∣∣∣∣∣
∫
Rn

e−z2

√
π
n∂xi

u0(x+ 2
√
tz)dz +

∫ t

0

∫
Rn

(∂xi
G(x, t; y, s))F (y, s)dyds

∣∣∣∣∣
≤ ∥∂xi

u0∥L∞(Ω) +

∫ t

0

∫
Rn

e−
|x−y|2
4(t−s)

(2
√
π)n(t− s)n/2

|yi − xi|
2(t− s)

|F (y, s)|dyds

≤ ∥∂xi
u0∥L∞(Ω) +

∫ t

0

1√
t− s

∫
Rn

e−z2

√
π
n |zi||F (x+ 2

√
t− sz, s)|dzds

≤ ∥∂xi
u0∥L∞(Ω) +

2∥f(u, Ju)∥L∞(ΩT )

√
t

√
π

for all (x, t) ∈ ΩT , as required.

66



Proposition 3.3.7. Let u : ΩT → R be the solution to (CP). Then

|∂xi
u(x, t)| ≤

∥u0∥L∞(Ω)√
πt

+
2∥f(u, Ju)∥L∞(ΩT )

√
t

√
π

∀(x, t) ∈ ΩT ,

for all i = 1, . . . , n.

Proof. The proof follows that of Proposition 3.2.5 for the term involving u0 and that of

Proposition 3.3.6 for the term involving the nonlinearity f .

Proposition 3.3.8 (∂xixj
u estimates). Let u : ΩT → R be the solution to (CP) and

suppose that u0 ∈ W 2,∞(Ω) ∩ C2(Ω). Then1

|∂xixj
u(x, t)| ≤ ∥∂xixj

u0∥L∞(Ω) + 4IijK∥∇u∥∞
√
t ∀(x, t) ∈ ΩT , (3.3.20)

for all i, j = 1, . . . , n, with K = LU(1 + ∥φ∥L1(Rn)), LU a Lipschitz constant for f on

U = [−∥u∥L∞(ΩT ), ∥u∥L∞(ΩT )]× [−∥Ju∥L∞(ΩT ), ∥Ju∥L∞(ΩT )]

and Iij is given by

Iij =

∫
Rn

e−z2

√
π
n |z|

∣∣∣∣zizj − δij
2

∣∣∣∣ dz.
Proof. As in the proof of Proposition 3.3.6, by differentiating under the integral sign

(3.3.5), and following a change of variables, we have:

|∂xixj
u(x, t)| ≤

∣∣∣∣∣
∫
Rn

e−z2

√
π
n∂xixj

u0(x+ 2
√
tz)dz

∣∣∣∣∣
+

∣∣∣∣∂xixj

(∫ t

0

∫
Rn

G(x, t; y, s)F (y, s)dyds

)∣∣∣∣
≤ ∥∂xixj

u0∥L∞(Ω)

+

∣∣∣∣∂xixj

(∫ t

0

∫
Rn

G(x, t; y, s)F (y, s)dyds

)∣∣∣∣ , ∀(x, t) ∈ ΩT . (3.3.21)

1Here, we utilise the shorthand notation ||∇u||∞ to mean maxi=1,...,n{||∂xiu||L∞(ΩT )}.
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The last term in (3.3.21) can be estimated as follows:

∣∣∣∣∂xixj

(∫ t

0

∫
Rn

G(x, t; y, s)F (y, s)dyds

)∣∣∣∣
=

∣∣∣∣∣
∫ t

0

∫
Rn

e−z2

√
π
n

(
zizj −

δij
2

)
F (x+ 2

√
t− sz, s)

t− s
dzds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

0

∫
Rn

e−z2

√
π
n

(
zizj −

δij
2

)
F (x+ 2

√
t− sz, s)− F (x, s)

t− s
dzds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

∫
Rn

e−z2

√
π
n

(
zizj −

δij
2

)
F (x, s)

t− s
dzds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

0

∫
Rn

e−z2

√
π
n

(
zizj −

δij
2

)
F (x+ 2

√
t− sz, s)− F (x, s)

t− s
dzds

∣∣∣∣∣
≤
∫ t

0

∫
Rn

e−z2

√
π
n

∣∣∣∣zizj − δij
2

∣∣∣∣ ∣∣∣∣F (x+ 2
√
t− sz, s)− F (x, s)

t− s

∣∣∣∣ dzds (3.3.22)

for all (x, t) ∈ ΩT . Let ξij : Rn → R+ be given by

ξij(z) =
e−z2

√
π
n

∣∣∣∣zizj − δij
2

∣∣∣∣ ∀z ∈ Rn and i, j = 1, . . . , n. (3.3.23)

Recalling that f is locally Lipschitz continuous and J is linear with respect to u, it follows

that (3.3.22) is bounded above by

∫ t

0

∫
Rn

ξij(z)LU

(
|u(x+ 2

√
t− sz, s)− u(x, s)|
t− s

+
|J(u(x+ 2

√
t− sz, s)− u(x, s))|
t− s

)
dzds, (3.3.24)

for all (x, t) ∈ ΩT . Via Proposition 3.3.6, by applying the mean value theorem to the

numerators of the fractions appearing in (3.3.24), we obtain

|u(x+ 2
√
t− sz, s)− u(x, s)| ≤ ∥∇u∥∞2

√
t− s|z| (3.3.25)
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and

|J(u(x+ 2
√
t− sz, s)− u(x, s))| ≤

∫
Rn

φ(y)|u(x+ 2
√
t− sz − y, s)− u(x− y, s)|dy

≤ ∥φ∥L1(Rn)∥∇u∥∞|z|2
√
t− s, (3.3.26)

for all (x, t) ∈ ΩT . Substituting (3.3.25)-(3.3.26) into (3.3.24) and recalling the definitions

of K and Iij, (3.3.22) is further bounded above by

∫ t

0

Iij
2K∥∇u∥∞√

t− s
ds = 4IijK∥∇u∥∞

√
t ∀t ∈ [0, T ]. (3.3.27)

Finally, substituting (3.3.27) into (3.3.21) yields (3.3.20), as required.

Proposition 3.3.9. Let u : ΩT → R be the solution to (CP). Then

|∂xixj
u(x, t)| ≤

∥u0∥L∞(Ω)

t
+ ∥u0∥L∞(Ω)2

√
πIijK + 2

√
πIijK∥f(u, Ju)∥L∞(ΩT )t, (3.3.28)

for all (x, t) ∈ ΩT , for all i, j = 1, . . . , n, with K,LU , U and Iij as in Proposition 3.3.8.

Proof. The first term of the right hand side of (3.3.28) is estimated as in (3.2.10). The

second and third terms of the right hand side of (3.3.28) are estimated similarly to the

terms of the right hand side of (3.3.20). In particular, via Proposition 3.3.7, recalling

that f is locally Lipschitz continuous and J is linear with respect to u (following the same

steps used to produce the bound in (3.3.27) for (3.3.21)) we have1

∣∣∣∣∂xixj

(∫ t

0

∫
Rn

G(x, t; y, s)f(u(y, s), Ju(y, s))dyds

)∣∣∣∣
≤
∫ t

0

∫
Rn

ξij(z)
K∥∇u(·, s)∥∞|x+ 2

√
t− sz − x|

t− s
dzds

≤
∫ t

0

∫
Rn

2Kξij(z)|z|√
t− s

(
∥u0∥L∞(Ω)√

πs
+

2∥f(u, Ju)∥L∞(ΩT )

√
s

√
π

)
dzds

=
2IijK∥u0∥L∞(Ω)√

π

∫ t

0

1√
t− s

√
s
ds+

4IijK∥f(u, Ju)∥L∞(ΩT )√
π

∫ t

0

√
s

t− s
ds

1Here, ||∇u(·, s)||∞ denotes maxi=1,...,n{||∂xiu(·, s)||L∞(Ω)}.
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=
2IijK∥u0∥L∞(Ω)√

π
B

(
1

2
,
1

2

)
+

4IijK∥f(u, Ju)∥L∞(ΩT )√
π

tB

(
3

2
,
1

2

)
, (3.3.29)

for all (x, t) ∈ ΩT , with ξij : Rn → R as in (3.3.23) and B : R2
+ → R the Beta function

defined as

B(x, y) =

∫ 1

0

τx−1(1− τ)y−1dτ =
Γ(x)Γ(y)

Γ(x+ y)
∀x, y ≥ 0.

Substituting the evaluations of Beta function in (3.3.29) yields (3.3.28), as required.

Remark 3.3.10. Using Proposition 3.3.8 it follows that the solution u : ΩT → R to (CP),

with u0 ∈ W 2,∞(Ω) ∩ C2(Ω), satisfies

|∂tu(x, t)| ≤
n∑

i=1

(||∂xixi
u0||L∞(Ω) + 4IiiK∥∇u∥∞

√
t) + ∥f(u, Ju)∥L∞(ΩT ), ∀(x, t) ∈ ΩT .

Remark 3.3.11. Using Proposition 3.3.9 it follows that the solution u : ΩT → R to (CP),

satisfies

|∂tu(x, t)| ≤
n∑

i=1

(
∥u0∥L∞(Ω)

t
+ ∥u0∥L∞(Ω)2

√
πIiiK + 2

√
πIiiK∥f(u, Ju)∥L∞(ΩT )t

)
+ ∥f(u, Ju)∥L∞(ΩT ), ∀(x, t) ∈ ΩT .

Remark 3.3.12. On examining the proofs of Proposition 3.3.6 and Proposition 3.3.8,

it follows that if u0 ∈ W 2,∞(Ω) ∩ C2(Ω), then, for the solution u : ΩT → R to (CP),

it follows that ∂xi
u and ∂xixj

u are continuous on ΩT . Hence, as seen by the differential

equation in (CP), ut can be continuously extended from ΩT onto ΩT and therefore

u ∈ L∞(ΩT ) ∩ C2,1(ΩT ).

Assuming higher regularity for both u0 and f we acquire the following result.

Proposition 3.3.13. Let u : ΩT → R be the solution to (CP) and let k ∈ N satisfy k ≥ 3.

Further assume that ∂αxu0 ∈ L∞(Ω)∩C(Ω), for all multi-indexes α such that |α| ≤ k and
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f ∈ Ck(U), with

U =

[
inf
ΩT

u, sup
ΩT

u

]
×

[
inf
ΩT

Ju, sup
ΩT

Ju

]
.

Then, for all multi-indexes α such that |α| ≤ k + 1, ∂αxu exists on ΩT . Moreover, for

|α| ≤ k the derivatives satisfy the bounds

|∂αxu(x, t)| ≤ ∥∂αxu0∥L∞(Ω) + t∥∂αx f(u, Ju)∥L∞(ΩT ) ∀(x, t) ∈ ΩT . (3.3.30)

Furthermore, for α′ such that |α′| = k + 1 and α such that |α| = k, u satisfies the bound

|∂α′

x u(x, t)| ≤
∥∂αxu0∥L∞(Ω)√

πt
+

2∥∂αx f(u, Ju)∥L∞(ΩT )

√
t

√
π

∀(x, t) ∈ ΩT . (3.3.31)

Proof. We define g : ΩT → R to be

g(x, t) =
e−

|x|2
4t

(2
√
πt)n

∀(x, t) ∈ ΩT .

Note that g ∈ L1(ΩT ) ∩ C∞(ΩT ). Let ∗ : L1(Rn) × L∞(Rn) → L∞(Rn) be the standard

convolution product on Rn given by

(a ∗ b)(x) =
∫
Rn

a(x− y)b(y)dy =

∫
Rn

a(y)b(x− y)dy ∀x ∈ Rn.

Thus, we may write the solution u : ΩT → R to (CP) as

u(x, t) = (g(·, t) ∗ u0(·))(x) +
∫ t

0

(g(·, t− s) ∗ f(u(·, s), Ju(·, s))(x)ds ∀(x, t) ∈ ΩT .

Denoting Ju = v, following two applications of the chain rule, for any i, j = 1, . . . , n,

it follows that

∂xixj
f(u, v) = ∂uuf(u, v)∂xi

u∂xj
u+ ∂uf(u, v)∂xixj

u+ ∂uvf(u, v)∂xi
v∂xj

u

+ ∂uvf(u, v)∂xi
u∂xj

v + ∂vvf(u, v)∂xi
v∂xj

v + ∂vf(u, v)∂xixj
v,

(3.3.32)
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on ΩT . Since ∂xi
u, ∂xixj

u ∈ L∞(ΩT ) ∩ C(ΩT ), it follows that ∂xi
v = J∂xi

u and ∂xixj
v =

J∂xixj
u, and furthermore J∂xi

u, J∂xixj
u ∈ L∞(ΩT ) ∩ C(ΩT ). Therefore, via (3.3.32),

f(u, v) ∈ L∞(ΩT ) ∩ C(ΩT ). Consequently, since

∂xixj
u(x, t) = (g(·, t) ∗ ∂xixj

u0(·))(x) +
∫ t

0

(g(·, t− s) ∗ ∂xixj
f(u(·, s), Ju(·, s))(x)ds,

(3.3.33)

for all (x, t) ∈ ΩT , it follows from ∂xi
g ∈ L1(ΩT ) for i = 1, ..., n, for |α| = 3, that ∂αxu

exists on ΩT , and moreover, that ∂αxu ∈ L∞(ΩT ) ∩ C(ΩT ).

Now, suppose that, for some α with |α| = 3, . . . , k−1, we have ∂αxu ∈ L∞(ΩT )∩C(ΩT ).

Repeated applications of the chain rule show that ∂αx f(u, v) is a multivariate polynomial

in ∂βxf(u, v)|u,Ju, ∂βxu and ∂βxv = J∂βxu (for a multi-index β such that |β| = 1, . . . , |α|).

This implies that ∂αx f(u, v) ∈ L∞(ΩT ) ∩ C(ΩT ). Recalling that g ∈ L1(ΩT ) ∩ C∞(ΩT ),

following a similar argument to that used to produce (3.3.33), we have

∫ t

0

(g(·, t− s) ∗ ∂αx f(u(·, s), Ju(·, s))(x)ds (3.3.34)

is continuously differentiable with respect to xi on ΩT for i = 1, . . . , n. Furthermore, since

∂αxu0 ∈ L∞(Ω)∩C(Ω) for all |α| ≤ k and g(·, t) ∈ L1(Rn)∩C(Rn), for t ∈ (0, T ], we have

that

(g(·, t) ∗ ∂αxu0(·))(x) (3.3.35)

is continuously differentiable with respect to xi on ΩT for i = 1, . . . , n. Therefore, ∂βxu

exists for each |β| = |α|+1. Moreover, on recalling the approach used to prove Proposition

3.3.6 and (3.3.34) and (3.3.35), it follows that ∂βxu ∈ L∞(ΩT ) ∩ C(ΩT ). Thus it follows

from mathematical induction, on recalling the regularity of the initial data, that ∂αxu

exists on ΩT and ∂αxu ∈ L∞(ΩT ) ∩ C |α|(ΩT ) for all |α| = 3, . . . , k.

Now, using the differentiation properties for convolution products and utilising (3.3.1),
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for |α| = 3, . . . , k, we obtain:

∂αxu(x, t) = ∂αx (g(·, t) ∗ u0(·))(x)|+
∫ t

0

∂αx (g(·, t− s) ∗ F (·, s))(x)ds

= (g(·, t) ∗ ∂αxu0(·))(x) +
∫ t

0

(g(·, t− s) ∗ ∂αx f(u(·, s), Ju(·, s)))(x)ds, (3.3.36)

for all (x, t) ∈ ΩT . Thus,

|∂αxu(x, t)| ≤ ∥g(·, t)∥L1(Rn)∥∂αxu0∥L∞(Ω) +

∫ t

0

∥g(·, t− s)∥L1(Rn)∥∂αx f(u, Ju)∥L∞(ΩT )ds

= ∥∂αxu0∥L∞(Ω) +

∫ t

0

∥∂αx f(u, Ju)∥L∞(ΩT )ds

= ∥∂αxu0∥L∞(Ω) + t∥∂αx f(u, Ju)∥L∞(ΩT ),

for all (x, t) ∈ ΩT . Finally, to obtain (3.3.31) we apply the same steps used to prove

Propositions 3.3.6 and 3.3.7 starting from (3.3.36).

Remark 3.3.14. Assuming the conditions of Proposition 3.3.13 and recalling that g(x−

y, t − s) = G(x, t; y, s) is the fundamental solution to the heat equation, it is readily

established, on further examination of the proof, that u ∈ W k,∞
x (ΩT ) ∩ Ck,⌊ k

2⌋(ΩT ).

Remark 3.3.15. Note that the bounds in (3.3.30)-(3.3.31) solely depend on

∥∂αxu0∥L∞(Ω), T, ∥u∥L∞(ΩT ), ||φ||L1(Rn) and ∥∂αx f∥L∞(U). (3.3.37)

Specifically the bounds in (3.3.30)-(3.3.31) do not depend on the lower derivatives of u and

Ju in ΩT , since these are also bounded by terms solely dependent on the terms in (3.3.37).

Thus, Proposition 3.3.13 can be used to bound higher order derivatives of solutions to

(CP) provided that the relevant quantities in (3.3.37) are bounded.

We compile the results regarding the well-posedness for (CP) in the following theorem.

Theorem 3.3.16. Suppose that (CP), with φ, f and u0 prescribed, is a priori bounded

on ΩT for 0 < T < ∞ and let ε > 0. Then, there exists a unique solution u : ΩT → R to
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(CP). Moreover, for all initial data ũ0 and integral kernels φ̃ which are sufficiently close

to u0 and φ in the L∞ and L1 norms respectively, the unique solution ũ : ΩT → R to

(CP) with φ̃, ũ0 and f exists, and satisfies ∥u− ũ∥L∞(ΩT ) < ε.

Proof. This follows directly from Theorem 3.3.1, Corollary 3.3.4 and Proposition 3.3.5.

Theorem 3.3.16 is interpreted as a local in time well-posedness result for (CP). To

establish global in time well-posedness results for (CP), knowledge of the asymptotic

behaviour for solutions to (CP) as t→ ∞ is required.

We now provide an illustration of the application of Theorem 3.3.16 on the non-local

Fisher-KPP problem considered in [LCS20] and [BN22]. Consider the following Cauchy

problem: let Ω = R and suppose that:

∂tu = ∂xxu+ u2(1− Ju) on ΩT ; (3.3.38)

u(x, 0) = u0(x) ∀x ∈ Ω; (3.3.39)

u ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ), (3.3.40)

with prescribed non-negative initial data u0 ∈ L∞(Ω) ∩ C(Ω). Further assume that the

integral kernel φ has positive mass on a closed ball containing 0 and satisfies

φ ∈ L1(R), ∥φ∥L1(R) = 1 and φ ≥ 0 on R. (3.3.41)

Via [LCS20, Theorem 1.1] it follows that any solution u to (3.3.38)-(3.3.40) is a priori

bounded on ΩT with bound independent of T > 0, i.e. u ∈ L∞(Ω∞).1 Thus, via Remark

3.3.2 and Corollary 3.3.4 a solution to (3.3.38)-(3.3.40) exists and is unique. Furthermore,

via Proposition 3.3.5 for any finite time T , solutions to (3.3.38)-(3.3.40) depend continu-

ously to initial data (and integral kernels). We note that to consider whether solutions to

1For completeness we summarise the techniques the authors of [LCS20] utilise to obtain bounds on
solutions of (3.3.38)-(3.3.40). First they obtain Lp−bounds on solutions of (3.3.38)-(3.3.40), that depend
on the exponents of the creation and removal terms of (3.3.38) (here 2 and 1 respectively), ∥u0∥L∞(Ω), the
spatial dimension, and, the mass of the integral kernel around 0. Subsequently, via an iterative argument
over p they manage to obtain L∞ estimates on the solution that depends on the aforementioned quantities.
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(3.3.38)-(3.3.40) depend continuously on the initial data on Ω∞, knowledge of the large-t

structure of solutions is required.

3.4 Conclusion

In this section, motivated by results concerning (HE), we obtained local in time well-

posedness for (CP), as well as derivative estimates for the solutions to (CP). We high-

light that Theorem 3.3.1 will be used to provide approximating functions for solutions

to Cauchy problems associated with non-local reaction-diffusion equations with non-

Lipschitz nonlinear terms f . Specifically, see the proof of Theorem 4.2.2.

It should also be noted that the well-posedness results and methods presented in

Section 3.3, can be adapted to provide related well-posedness results for systems of non-

local reaction-diffusion equations, where the solution is represented by the vector valued

function u : ΩT → Rm. For example, in [NB23] the authors consider the predator-prey

system

∂tu = Du∂xxu+ u(1− Ju− αv);

∂tv = Dv∂xxv + v(1− Jv − βu),

where the integral kernel φ is a top-hat function and appropriate initial data is consid-

ered. Another recent example (of an SIR type model), containing a system of non-local

integro-differential equations, that the theory developed here can be applied is seen in

[WZ23]. Natural extensions for the scalar case include: generalising the linear differential

part of the integro-differential operator, by utilising fundamental solutions for second or-

der linear parabolic partial differential operators, as discussed in in the previous chapter

(see for instance [Fri08, LSU68]); considering spatial domains other than Rn; and alter-

native non-local interaction terms. More specifically, by assuming sufficient regularity

on the coefficients in the linear part of the integro-differential operator and nonlinearity,
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one can use the parametrix method (as described in [Fri08, Ch. 1]) to obtain integral

representations of solutions to related Cauchy problems. Utilising these integral represen-

tations with a similar methodology to that presented here one can obtain results similar

to Theorem 3.3.16. Further discussion is provided in the final chapter.

The higher derivative estimates on solutions to (CP), illustrated in Theorem 3.3.13

can be useful, for example: to bound the truncation error of finite difference schemes used

to approximate solutions to (CP), as used in Section 4.4, [NBLM23], and as illustrated in

[DMR22]; and in justifying the existence of higher order terms in asymptotic approxima-

tions of solutions to u in various space-time limits (see, for example the general approach

illustrated in [LN03]).
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CHAPTER 4

ON THE CAUCHY PROBLEM FOR THE
NON-LOCAL REACTION DIFFUSION EQUATION
WITH HÖLDER CONTINUOUS REGULARITY &

APPLICATIONS

4.1 Introduction

Let Ω = Rd. Consider the following Cauchy problem:


∂tu = ∆u+ f(u, Ju), on ΩT ;

u(x, 0) = u0(x), ∀x ∈ Ω;

u ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ),

(C̃P )

with prescribed u0 ∈ L∞(Ω)∩C(Ω), with Ju : L∞(ΩT ) → L∞(ΩT ) given by the convolu-

tion product (with argument u),

Ju(x, t) =

∫
Rd

φ(x− y)u(y, t)dy ∀(x, t) ∈ ΩT ,

with (prescribed) integral kernel φ ∈ L1(Rd), and (prescribed) nonlinearity f : R2 → R

which is locally Hölder continuous of degree α ∈ (0, 1), i.e. for any compact subset K of

R2 there exists a non-negative Hölder constant CK such that
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|f(u1, v1)− f(u2, v2)| ≤ CK(|u1 − u2|α + |v1 − v2|α) ∀(u1, v1), (u2, v2) ∈ K. (4.1.1)

When (4.1.1) holds, for brevity, we write that f ∈ Hα. Henceforth, unless stated other-

wise, when we refer to (C̃P ), we assume all the conditions mentioned above.

In Section 4.2 we demonstrate that (C̃P ) admits solutions up to a time δ, (see Theorem

4.2.2). Moreover, we establish how one can extend such a solution until either t = T or a

blow-up occurs (see Corollary 4.2.4). The solutions are constructed by first constructing

solutions to sequences of Cauchy problems where the nonlinearity are Lipschitz continuous

and tend to the f of (C̃P ) (from above or below); to achieve this, we utilise results in

Chapter 3. Those methods allow for regularity estimates to be obtained, that in turn

can be applied to inductively construct a solution to (C̃P ). If moreover we assume that

f is non-decreasing in Ju, and that φ ≥ 0 we subsequently illustrate that constructed

minimal and maximal solutions to (C̃P ) exist up to a time t = δ (see Theorem 4.2.3).

Similarly these can be extended until t = T or until blow-up occurs (see Corollary 4.2.4).

In Section 4.3 we utilise the results presented previously to demonstrate that the scalar

non-local analogue to the source problem arising in isothermal autocatalytic chemical

kinetics is locally well-posed (for details on the local case, see [MN15b, NK93]). Namely,

we consider the Cauchy problem associated with (C̃P ) for the case when Ω = R and

f(Ju) = (Ju)p+, and note that here f is non-decreasing in Ju. We refer to this Cauchy

problem as (CP )+ and establish that it is locally well-posed in time. Existence of global

solutions is established via a priori bounds and the results in Section 4.2. To demonstrate

the uniqueness of solutions to (CP )+, we establish comparison principles following the

overall approach of [AE87] that ultimately allows us to also demonstrate the local in time

continuous dependence of (CP )+.

In Section 4.4 we consider a finite difference method to approximate the solution to

a problem related to (CP )+. Specifically we establish the conditional convergence of the
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solution of the finite difference scheme to the solution of (CP )+, as δx, δt→ 0.

In Section 4.5 we establish a formal large-t asymptotic approximation of the solution

to (CP )+. This shows that the lower bound of the solution to (CP )+ is asymptotically

stable for p ∈ (0, 1/3) and unstable for p ∈ (1/3, 1), under specified assumptions on the

initial condition and the integral kernel. The formal results presented here are shown to

be in excellent agreement with the numerical simulations that are provided. These are

used to infer the conditions for which global well-posedness in time holds for (CP )+.

4.2 Local existence

We begin by providing the definition of maximal and minimal solutions.

Definition 4.2.1. Let f ∈ Hα for some α ∈ (0, 1), φ ∈ L1(Rd), and suppose that

u0 ∈ L∞(Ω) ∩ C2(Ω). Let

S = {u : ΩT → R : u is a solution to (C̃P ) on ΩT}. (4.2.1)

A function u : ΩT → R is said to be a maximal solution to the given (C̃P ) if u ∈ S and,

for all u ∈ S we have

u(x, t) ≥ u(x, t) ∀(x, t) ∈ ΩT . (4.2.2)

Similarly, a function u : ΩT → R is said to be a minimal solution to the given (C̃P ) if

u ∈ S and, for all u ∈ S we have

u(x, t) ≤ u(x, t) ∀(x, t) ∈ ΩT . (4.2.3)

It follows that for a given (C̃P ), when u = u on ΩT , then (C̃P ) has a unique solution

on ΩT . We now state the main results of this section.
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Theorem 4.2.2 (Local Hölder existence). Consider (C̃P ) with f ∈ Hα, for some α ∈

(0, 1), φ ∈ L1(Rd), and u0 ∈ L∞(Ω) ∩ C(Ω). Then, there exists a solution u : ΩT → R to

(C̃P ) on ΩT , with T = δ given by

δ = min

{
m0 + a′

c′
,
m0 − b′

c′

}
, (4.2.4)

with

m0 = (1 + ∥φ∥L1(Rd))∥u0∥L∞(Ω) + 1; (4.2.5)

a′ = inf
x∈R

u0(x)− 1/2, b′ = sup
x∈R

u0(x) + 1/2, (4.2.6)

and

c′ = max

{∣∣∣∣ inf
(ξ,η)∈[−m0,m0]2

f(ξ, η)− 1

∣∣∣∣ ,
∣∣∣∣∣ sup
(ξ,η)∈[−m0,m0]2

f(ξ, η) + 1

∣∣∣∣∣
}
. (4.2.7)

Theorem 4.2.3 (Local Hölder existence of minimal and maximal solutions). Consider

(C̃P ) with f ∈ Hα for some α ∈ (0, 1) such that f is non-decreasing in Ju, φ ∈ L1(Rd)

and φ ≥ 0, and, u0 ∈ L∞(Ω)∩C(Ω). Then, there exist minimal and maximal solutions to

(C̃P ) on ΩT , with T = δ as in (4.2.4). In addition, with u, u : Ωδ → R being the minimal

and maximal solutions of (C̃P ) respectively, we have

max{∥u∥L∞(Ωδ)
, ∥u∥L∞(Ωδ)

} ≤ m0. (4.2.8)

The proof of Theorems 4.2.2 and 4.2.3 will be illustrated in the remainder of this

section.

Global solutions, be they minimal, maximal or other, can be constructed by glueing

together solutions of (C̃P ), by repeatedly applying Theorem 4.2.2 or 4.2.3, as described

in [MN15a, Remark 8.4] and Remark 3.3.2. Heuristically, glueing solutions together is

described as follows: suppose, without loss of generality, that T > 2δ and u1 : Ωδ → R is
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a solution to (C̃P ). Consider the analogue to (C̃P ) on Ω × [δ, 2δ], equipped with initial

data u0,2(x) = u1(x, δ), for all x ∈ Ω. Via Theorem 4.2.2, this Cauchy problem has

a solution u2 : Ω × [δ, 2δ] → R on Ω × [δ, 2δ]. Moreover, as noted in Remark 4.2.19,

u2 ∈ L∞(Ω× [δ, 2δ]) ∩ C2,1(Ω× [δ, 2δ]) and

u2(x, δ) = u1(x, δ), ∂tu
2(x, δ) = ∂tu

1(x, δ),

∂xi
u2(x, δ) = ∂xi

u1(x, δ), ∂xixj
u2(x, δ) = ∂xixj

u1(x, δ),

for all x ∈ Ω (derivatives with respect to t are in fact taken as right and left limits which

coincide). Hence, the concatenation of u1 with u2 is, by construction, a solution to (C̃P )

for all t ∈ [0, 2δ]. If C̃P is a-priori bounded on ΩT , we may repeat this argument to

construct a solution to (C̃P ) on ΩT . Otherwise, we can repeat this argument to construct

a solution to (C̃P ) on ΩT for any T < TMAX , where as t→ T−
MAX the solution blows-up.

For clarity, we have:

Corollary 4.2.4. Consider (C̃P ) with f ∈ Hα for some α ∈ (0, 1), φ ∈ L1(Rd), and

suppose u0 ∈ L∞(Ω) ∩ C(Ω). Then, the local solution u : ΩT → R to (C̃P ) in The-

orem 4.2.2 can either be extended to a global solution to (C̃P ) on Ω∞, or there exists

TMAX , such that u cannot be extended onto ΩT ∗ for any T ∗ ≥ TMAX . In the latter case,

∥u(·, t)∥L∞(Ω) → ∞ as T → T−
MAX . Moreover, if f is non-decreasing with respect to Ju

and φ ≥ 0 the conclusion holds similarly for solutions to (C̃P ) provided by Theorem 4.2.3.

To apply known results about (C̃P ) where f is Lipschitz continuous, we require the

following density result.

Proposition 4.2.5 (Lipschitz density). Consider f ∈ Hα with α ∈ (0, 1). Let CK be a

Hölder constant for f on K ⊆ R2, with K = [a, b]2 for a < b. Then, on K, for any ε > 0,

there exists a Lipschitz continuous function g : K → R such that

|f(x, y)− g(x, y)| < ε, ∀(x, y) ∈ K, (4.2.9)
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where g is also a Hölder continuous function of degree α on K with Hölder constant 5CK.

If additionally, f is non-decreasing in y, then g as above, is also non-decreasing in y on

K.

Proof. Let ε > 0 and CK > 0 be a Hölder constant for f on K. We set δ to be

δ =

(
ε

4CK

) 1
α

. (4.2.10)

Then, for all (ξ1, η1), (ξ2, η2) ∈ K such that |ξ1 − ξ2| < δ and |η1 − η2| < δ, we have

|f(ξ1, η1)− f(ξ2, η2)| <
ε

2
. (4.2.11)

Since K = [a, b]2 ⊆ R2, we set N = ⌈(b− a)/δ⌉ and partition K as follows:

Znm = [xn−1, xn]× [ym−1, ym], (4.2.12)

for all n,m = 1, 2, . . . , N , with

xn = yn = a+
(b− a)

N
n, ∀n = 0, 1, . . . , N. (4.2.13)

Then, for any n,m = 1, 2, . . . , N , we define gnm : Znm → R to be the bi-linear interpolant

gnm(x, y) =
N2

(b− a)2

[
f(xn, ym)(x− xn−1)(y − ym−1) + f(xn−1, ym)(xn − x)(y − ym−1)

+ f(xn, ym−1)(x− xn−1)(ym − y) + f(xn−1, ym−1)(xn − x)(ym − y)
]
,

(4.2.14)

for all (x, y) ∈ Znm and define g : K → R as

g(x, y) = gnm(x, y), ∀(x, y) ∈ Znm, (4.2.15)
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for each n,m = 1, 2, . . . , N . It now follows that

∂gnm
∂x

(x, y) =
N2

2(b− a)

[
f(xn, ym)(y − ym−1)− f(xn−1, ym)(y − ym−1)

+ f(xn, ym−1)(ym − y)− f(xn−1, ym−1)(ym − y)
]
,

(4.2.16)

and

∂gnm
∂y

(x, y) =
N2

(b− a)

[
f(xn, ym)(x− xn−1) + f(xn−1, ym)(xn − x)

− f(xn, ym−1)(x− xn−1)− f(xn−1, ym−1)(xn − x)
]
,

(4.2.17)

for all (x, t) ∈ Znm, and n,m = 1, 2, . . . , N . It follows from (4.2.16) and (4.2.17) that

∣∣∣∣∂gnm∂x
(x, y)

∣∣∣∣ ≤ N

(b− a)

[
|f(xn, ym)− f(xn−1, ym)|+ |f(xn, ym−1)− f(xn−1, ym−1)|

]
(4.2.18)

for all (x, y) ∈ Znm and, analogously,

∣∣∣∣∂gnm∂y
(x, y)

∣∣∣∣ ≤ N

(b− a)

[
|f(xn, ym)− f(xn, ym−1)|+ |f(xn−1, ym)− f(xn−1, ym−1)|

]
,

(4.2.19)

for all (x, y) ∈ Znm and each n,m = 1, 2, . . . , N . From (4.2.18) and (4.2.19) it follows

that g as defined by (4.2.15) and (4.2.14), is Lipschitz continuous with Lipschitz constant

given by

Ll
K = max

1≤n≤N
1≤m≤N

{ N

(b− a)

[
|f(xn, ym)− f(xn−1, ym)|+ |f(xn, ym−1)− f(xn−1, ym−1)|

+ |f(xn, ym)− f(xn, ym−1)|+ |f(xn−1, ym)− f(xn−1, ym−1)|
]}
.

(4.2.20)

Moreover, via (4.2.17), if f is non-decreasing with respect to y, then g is also non-

decreasing with respect to y.
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We now demonstrate that g, as constructed, is within ε distance of f on K. For

each (x, y) ∈ K, there exists (n,m) such that max{|x − xn|, |y − ym|} < δ. Thus, via

(4.2.10)-(4.2.11) and (4.2.14), we obtain

|f(x, y)− g(x, y)| ≤ |f(x, y)− f(xn, ym)|+ |f(xn, ym)− g(x, y)|

≤ |f(x, y)− f(xn, ym)|+ |g(xn, ym)− g(x, y)|

<
ε

2
+
ε

2
= ε. (4.2.21)

To show that g is Hölder continuous, with Hölder constant equal to 5CK, independent of

n,m ∈ N, we first consider (x, y) ∈ Znm, for 1 ≤ n,m ≤ N . Recall that g = f at (xn, ym)

and from (4.2.14) it follows that

∣∣∣∣∂g∂x(x, y)
∣∣∣∣ ≤ sup

y∈[m−1.m]

{
|f(xn, y)− f(xn−1, y)|

(xn − xn−1)

}
≤ |f(xn, ym)− f(xn−1, ym)|+ |f(xn, ym−1)− f(xn−1, ym−1)|

(xn − xn−1)

≤ CK|xn − xn−1|α + CK|xn − xn−1|α

(xn − xn−1)

= 2CK|xn − xn−1|α−1, (4.2.22)

and similarly

∣∣∣∣∂g∂y (x, y)
∣∣∣∣ ≤ 2CK|ym − ym−1|α−1.

Using the mean value theorem with (4.2.22), we obtain

|g(x, y)− g(x′, y′)| ≤ |∇g(θ) · ((x, y)− (x′, y′))|

≤
∣∣∣∣∂g∂x(θ)

∣∣∣∣ |x− x′|+
∣∣∣∣∂g∂y (θ)

∣∣∣∣ |y − y′|

= 2CK (|x− x′|α + |y − y′|α) , (4.2.23)

for all (x, y), (x′, y′) ∈ Znm, for some θ ∈ Znm. Now, assume that (x, y) ∈ Znm and
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(x′, y′) ∈ Zkl for k, l = 1, 2, . . . , N , Znm ̸= Zkl. If Znm and Zkl have a common edge we

may choose (x∗, y∗) to be the intersection of the line segment connecting (x, y) and (x′, y′)

with this edge and, following the same steps as those used to produce (4.2.23), obtain

|g(x, y)− g(x′, y′)| ≤ |g(x, y)− g(x∗, y∗)|+ |g(x∗, y∗)− g(x′, y′)|

≤ 4CK(|x− x′|α + |y − y′|α).
(4.2.24)

If Znm and Zkl do not have a common edge, then the line connecting (x, y) and (x′, y′)

intersects the nearest edges of Znm and Zkl. Denote these intersection points in Znm and

Zkl as (xπ, yπ) and (x′π, y
′
π) respectively. Then, using (4.2.23) and f ∈ Hα, it follows that

|g(x, y)− g(x′, y′)| ≤ |g(x, y)− g(xπ, yπ)|+ |g(xπ, yπ)− g(x′π, yπ)|

+ |g(x′π, yπ)− g(x′π, y
′
π)|+ |g(x′π, y′π)− g(x′, y′)|

≤ 2CK (|x− xπ|α + |y − yπ|α) + 3CK (|xπ − x′π|α)

+ 3CK (|yπ − y′π|α) + 2CK (|x′π − x′|α + |y′π − y′|α)

= 5CK(|x− x′|α + |y − y′|α). (4.2.25)

Thus g, via (4.2.23)-(4.2.25) is Hölder continuous of degree α in K, with Hölder constant

5CK. This completes the proof, as required.

Note that the Stone–Weierstrass approximation theorem provides a polynomial func-

tion g : [a, b]2 → R that is ‘ε-close’ to f in the L∞-norm. However, for such g, the

Stone-Weierstrass approximation theorem doesn’t provide an upper bound on the Hölder

constant of g, for fixed Hölder degree equal to that of f . Hence the need for Proposition

4.2.5.

Proposition 4.2.6. Let f ∈ Hα for α ∈ (0, 1), K = [a, b]2 and CK be a Hölder constant

for f on K. Then, there exist sequences {fn}n∈N and {f
n
}n∈N, such that for every n ∈ N

the functions fn, fn
: R2 → R satisfy:

(a) fn and f
n
are Lipschitz continuous on every compact subset of R2;

85



(b) fn and f
n
are Hölder continuous on every compact subset of R2, with Hölder constant

5CK, independent of n ∈ N;

(c) fn → f and f
n
→ f as n→ ∞ uniformly on K;

(d) f
n
≤ f ≤ fn on K for all n ∈ N;

(e) {fn(ξ, η)}n∈N is decreasing for all (ξ, η) ∈ K, and {f
n
(ξ, η)}n∈N is increasing for all

(ξ, η) ∈ K;

(f) if f(ξ, η) is non-decreasing with respect to η, then f
n
(ξ, η) and fn(ξ, η) are also non-

decreasing with respect to η;

(g) ∥f
n
∥L∞(R2) = ∥f

n
∥L∞(K) and ∥fn∥L∞(R2) = ∥fn∥L∞(K).

Proof. The proof follows closely that of [MN15a, Proposition 8.9]. In particular, let

K = [a, b]2 ⊆ R2 and denote gn : R2 → R as g in Proposition 4.2.5 with ε = 2−n, for each

n ∈ N. Then define fn : R2 → R to be

fn(ξ, η) =


gn+2(ξ, η) +

1

2n
, (ξ, η) ∈K;

gn+2(ξ
∗, η∗) +

1

2n
, (ξ, η) /∈K,

(4.2.26)

for each n ∈ N where (ξ∗, η∗) the nearest point in K to (ξ, η) /∈ K, with respect to the

Euclidean distance. The functions f
n
are defined analogously1. Now, (a), (b) and (g)

follow immediately via (4.2.26). Statement (c) follows after an application of the triangle

inequality. After establishing (c), statement (d) follows trivially. Statements (e) and

(f) follows via (4.2.26) with Proposition 4.2.5. The details are left as an exercise to the

reader.

For the remainder of this section we suppose that the functions f , φ and u0 are fixed,

and {fn}n∈N, {fn
}n∈N described in Proposition 4.2.6, are defined using K = [−m0,m0]

2

where m0 is given by (4.2.5).

1I.e., with the + signs in (4.2.26) replaced by − signs.
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Remark 4.2.7. We will henceforth consider instances of (C̃P ) with the reaction functions

fn and f
n
, with initial data u0+1/(2n) ∈ L∞(Ω)∩C(Ω) and u0−1/(2n) ∈ L∞(Ω)∩C(Ω)

respectively and fixed integral kernel φ. These sequences of problems will be referred to

as (CP)un and (CP)ln respectively, with the superscripts ‘u’ and ‘l’ denoting upper and

lower.

We further note that, for G : DG → R as given by (3.2.1) the solution un : ΩT → R

to (CP)ln is represented by

un(x, t) =

∫
Rd

G(x, t; y, 0)

(
u0(y)−

1

2n

)
dy

+

∫ t

0

∫
Rd

G(x, t; y, s)f
n
(un(y, s), Jun(y, s))dyds

(4.2.27)

=

∫
Rd

e−z2

√
π
n

(
u0(x+ 2

√
tz)− 1

2n

)
dz

+

∫ t

0

∫
Rd

e−z2

√
π
d
f
n
(un(x+ 2

√
t− sz, s), Jun(x+ 2

√
t− sz, s))dzds

(4.2.28)

for all (x, t) ∈ ΩT . The solution to (CP)un can be expressed similarly.

Proposition 4.2.8. For all n ∈ N, the unique solutions un, un : ΩT → R to (CP)un and

(CP)ln respectively, exist on ΩT (for any T > 0). Moreover,

−c′t+ a′ ≤ min{un(x, t), un(x, t)} ≤ max{un(x, t), un(x, t)} ≤ c′t+ b′ ∀(x, t) ∈ ΩT ,

(4.2.29)

for any T > 0, where a′, b′ and c′ are given by (4.2.5)-(4.2.7). Furthermore, if f(ξ, η), is

non-decreasing with respect to η, and φ ≥ 0, then

un(x, t) ≤ un(x, t) ∀(x, t) ∈ ΩT . (4.2.30)

Proof. Consider v, v : ΩT → R given by

v = a′ − c′t, ∀(x, t) ∈ ΩT ; (4.2.31)
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v = b′ + c′t, ∀(x, t) ∈ ΩT . (4.2.32)

Let P± : L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ) → R(ΩT ) be given by

P±[v] = ∆v ± c′ − ∂tv ∀v ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ). (4.2.33)

Then via (4.2.31)-(4.2.33), and (4.2.7), upon recalling |f
n
|, |fn| < c′ on R2, it follows that

P−[v] ≥ 0 ≥ P−[un];

P−[v] ≥ 0 ≥ P−[un];

P+[un] ≥ 0 ≥ P+[v];

P+[un] ≥ 0 ≥ P+[v],

(4.2.34)

on ΩT . Additionally, via (4.2.31)-(4.2.32) and (4.2.6) it follows that

v ≤ un < un ≤ v on ∂ΩT . (4.2.35)

The inequalities of (4.2.29) now follow from the comparison principle for the inhomoge-

neous heat equation (see for example, [MN14]).

Now suppose that f(ξ, η) is non-decreasing with respect to η. Via Proposition 4.2.6,

fn is Lipschitz continuous and non-decreasing with respect to Ju. Since

0 = ∆un + fn(un, Jun)− ∂tun ≤ ∆un + fn(un, Jun)− ∂tun on ΩT , (4.2.36)

if φ ≥ 0, an application of the comparison principle, provided by Theorem 2.4.3, yields

(4.2.30). The existence and uniqueness of un and un follow from the a priori bounds in

(4.2.29) and Theorem 3.3.16. This completes the proof, as required.
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Corollary 4.2.9. For δ > 0 given by (4.2.4), it follows that

|un| ≤ m0 and |un| ≤ m0 on Ωδ, (4.2.37)

for all n ∈ N. Moreover, if f is non-decreasing in Ju and φ ≥ 0, then

−m0 ≤ un ≤ un ≤ m0 on Ωδ, (4.2.38)

for all n ∈ N.

Proof. Follows directly upon substitution of (4.2.4) into Proposition 4.2.8.

Note that that the bounds on un and un in Proposition 4.2.8 are independent of

n ∈ N. For the remainder of this section we will only present results for un, noting that

to establish the full result in Theorem 4.2.3 that un can be treated in the same manner.

Proposition 4.2.10 (Derivative estimate I). Let un : Ωδ → R be the (unique) solution

to (CP)ln , for n ∈ N. Then,

∥∂xi
un(·, t)∥L∞(Ω) ≤

∥u0∥L∞(Ω)√
πt

+
2c′

√
t√

π
, (4.2.39)

for all t ∈ (0, δ], i = 1, 2, . . . , d and c′ is as in (4.2.7).

Proof. The result follows directly from Proposition 3.3.7.

Proposition 4.2.11 (Derivative estimate II). Let un : Ωδ → R be the (unique) solution

to (CP)ln , for n ∈ N. Then,

∥∂xixj
un(·, t)∥L∞(Ω) ≤

∥u0∥L∞(Ω)

t
+K1 +K2(c

′)αtα (4.2.40)

for all t ∈ (0, δ] and i, j = 1, 2, . . . , d where

K1 =
K∥u0∥αL∞(Ω)√

π
α B

(
1− α

2
,
α

2

)
;
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K2 =
K2α√
π
αB
(α
2
+ 1,

α

2

)
;

K = Iij,α2
α5CK(1 + ∥φ∥αL1(Rn));

Iij,α =

∫
Rd

e−z2

√
π
d

∣∣∣∣zizj − δij
2

∣∣∣∣ |z|αdz,
with CK a Hölder constant for f ∈ Hα on K = [−m0,m0]

2.

Proof. The first term of the right hand side of (4.2.40) is estimated as in (3.2.10); for the

second and third terms we proceed as follows. Denote F : Ωδ → R to be

F (x, t) = f
n
(un(x, t), Jun(x, t)), ∀(x, t) ∈ Ωδ.

By differentiating under the integral sign the second integral of (4.2.27), noting that the

improper integrals and their derivatives are well-defined, following a change of variables

we obtain:

∣∣∣∣∂xixj

(∫ t

0

∫
Rn

G(x, t; y, s)F (y, s)dyds

)∣∣∣∣
=

∣∣∣∣∣
∫ t

0

∫
Rd

e−z2

√
π
d

(
zizj −

δij
2

)
F (x+ 2

√
t− sz, s)

t− s
dzds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

0

∫
Rd

e−z2

√
π
d

(
zizj −

δij
2

)
F (x+ 2

√
t− sz, s)− F (x, s)

t− s
dzds

∣∣∣∣∣
+

∣∣∣∣∣
∫ t

0

∫
Rd

e−z2

√
π
d

(
zizj −

δij
2

)
F (x, s)

t− s
dzds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

0

∫
Rd

e−z2

√
π
d

(
zizj −

δij
2

)
F (x+ 2

√
t− sz, s)− F (x, s)

t− s
dzds

∣∣∣∣∣
≤
∫ t

0

∫
Rd

e−z2

√
π
d

∣∣∣∣zizj − δij
2

∣∣∣∣ ∣∣∣∣F (x+ 2
√
t− sz, s)− F (x, s)

t− s

∣∣∣∣ dzds, (4.2.41)

for all (x, t) ∈ Ωδ. Let ξij : Rd → [0,∞) be given by

ξij(z) =
e−z2

√
π
d

∣∣∣∣zizj − δij
2

∣∣∣∣ ∀z ∈ Rd and i, j = 1, . . . , d.
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Via Proposition 4.2.6 that f
n
is locally Hölder continuous, with Hölder constant 5CK on

K. Moreover, since J is linear with respect to u, it follows from (4.2.41) that

∣∣∣∣∂xixj

(∫ t

0

∫
Rn

G(x, t; y, s)F (y, s)dyds

)∣∣∣∣
≤
∫ t

0

∫
Rn

ξij(z)5CK

(
|un(x+ 2

√
t− sz, s)− un(x, s)|α

t− s

+
|Jun(x+ 2

√
t− sz, s)− Jun(x, s)|α

t− s

)
dzds,

(4.2.42)

for all (x, t) ∈ Ωδ. By applying the Mean Value Theorem and via Proposition 4.2.10 we

have1

|un(x+ 2
√
t− sz, s)− un(x, s)| ≤ ∥∇un(·, s)∥∞2

√
t− s|z|, (4.2.43)

and, via (4.2.43),

|Jun(x+ 2
√
t− sz, s)− Jun(x, s)| ≤

∫
Rd

φ(y)∥∇un(·, s)∥∞2
√
t− s|z|dy

≤ ∥φ∥L1(Rn)∥∇un(·, s)∥∞2
√
t− s|z|, (4.2.44)

for all (x, t) ∈ Ωδ, z ∈ Rd and 0 < s ≤ t. Substituting (4.2.43) and (4.2.44) into (4.2.42),

upon recalling (4.2.39) and the definition of K, we obtain

∣∣∣∣∂xixj

(∫ t

0

∫
Rn

G(x, t; y, s)F (y, s)dyds

)∣∣∣∣
≤
∫ t

0

∫
Rd

ξij(z)5CK2
α(1 + ∥φ∥αL1(Rn))|z|α∥∇un(·, s)∥

α
∞(t− s)

α
2
−1dzdt

= Iij,αCK2
α(1 + ∥φ∥αL1(Rn))

∫ t

0

∥∇un(·, s)∥
α
∞(t− s)

α
2
−1dt

≤ K

∫ t

0

∣∣∣∣∥u0∥L∞(Ω)√
πs

+
2c′

√
s√

π

∣∣∣∣α (t− s)
α
2
−1dt

≤
K∥u0∥αL∞(Ω)√

π
α

∫ t

0

s−
α
2 (t− s)

α
2
−1ds+

K2α(c′)α√
π
α

∫ t

0

s
α
2 (t− s)

α
2
−1ds

1Here, we again utilise the shorthand notation ||∇v(·, s)||∞ to mean maxi=1,...,n{||∂xi
v(·, s)||L∞(Ω)}.
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=
K∥u0∥αL∞(Ω)√

π
α

∫ 1

0

s−
α
2 (1− s)

α
2
−1ds+

K2α(c′)α√
π
α tα

∫ 1

0

s
α
2 (1− s)

α
2
−1ds

=
K∥u0∥αL∞(Ω)√

π
α B

(
1− α

2
,
α

2

)
+
K2α√
π
αB
(α
2
+ 1,

α

2

)
(c′)αtα,

for all t ∈ (0, δ], which yields (4.2.40), as required.

Utilising Proposition 4.2.11 we obtain the following time derivative estimates.

Remark 4.2.12. Let un : Ωδ → R be the (unique) solution to (CP)ln for n ∈ N. Then,

∥∂tun(·, t)∥L∞(Ω) ≤
d∑

i=1

(
∥u0∥L∞(Ω)

t
+K1 +K2(c

′)αtα

)
+ c′, (4.2.45)

for all t ∈ (0, δ], with K1 and K2 as in Proposition 4.2.11 and c′ as in (4.2.7).

Note that the bounds on the derivatives of un in Propositions 4.2.10 and 4.2.11 as

well as in Remark 4.2.12 are independent of n ∈ N. Now, using the uniform bounds

on solutions of (CP)ln obtained in Proposition 4.2.8 and the uniform derivative estimates

in Proposition 4.2.10 and Remark 4.2.12, we can use the equicontinuity of {un}n∈N on

compact subsets of Ωδ. Then, we may apply the Arzelá-Ascoli Theorem to obtain

Lemma 4.2.13. There exists a function u ∈ L∞(Ωδ) ∩ C(Ωδ) such that for all M > 0

and 0 < δ′ < δ, the sequence of functions {un}n∈N, has a convergent subsequence {unj
}j∈N

that satisfies

unj → u, as j → ∞ uniformly on [−M,M ]d × [δ′, δ]. (4.2.46)

Proof. Let M > 0 and 0 < δ′ < δ. Then, via Corollary 4.2.9, Proposition 4.2.10 and

Remark 4.2.12, it follows that

|un(x, t)|, |∂xi
un(x, t)|, |∂tun(x, t)| ≤ K ∀(x, t) ∈ [−M,M ]d × [δ′, δ], (4.2.47)

for all n ∈ N and i = 1, . . . , d, with K independent of n ∈ N andM > 0. Thus, {un}n∈N is

uniformly bounded and uniformly equicontinuous on [−M,M ]d×[δ′, δ]. Therefore, via the
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Arzelá-Ascoli compactness theorem (see [RF68, Section 10.1 ]), there exists a subsequence

{uni
}i∈N and a function uM ∈ L∞(ΩT ) ∩ C(ΩT ) such that

uni
→ uM uniformly on [−M,M ]d × [δ′, δ]. (4.2.48)

By repeating this argument, withM replaced byM+1, δ′ replaced by δ′/2, {un} replaced

by {uni
}, and {uni

} replaced by {unij
}, an induction argument establishes the existence

of u : Ωδ → R which satisfies (4.2.46), as required.

Using Lemma 4.2.13, and by setting u(x, 0) = u0(x) for all x ∈ Ω, we can define u on

the entirety of Ωδ. Moreover, for u : Ωδ → R, it follows that

∥u∥L∞(Ωδ)
≤ m0 on Ωδ. (4.2.49)

To complete the proof of Theorem 4.2.2 we will construct u as a limit of un using the

the (equivalent) integral equation of (C̃P ) and (CP)ln .

Lemma 4.2.14. The function u in Lemma 4.2.13 satisfies

u(x, t) =

∫
Rd

e−z2

√
π
d
u0(x+ 2

√
tz)dz

+

∫ t

0

∫
Rd

e−z2

√
π
d
f(u(x+ 2

√
t− sz, s), Ju(x+ 2

√
t− sz, s))dzds,

(4.2.50)

for all (x, t) ∈ Ωδ. Moreover, u is a solution to (C̃P ) on Ωδ.

Proof. For all n ∈ N, by construction, un : Ωδ → R is a solution to (CP)ln on Ωδ. It also

follows via Remark 3.3.2 that

un(x, t) =

∫
Rd

e−z2

√
π
d

(
u0(x+ 2

√
tz)− 1

2n

)
dz

+

∫ t

0

∫
Rd

e−z2

√
π
d
f
n
(un(x+ 2

√
t− sz, s), Jun(x+ 2

√
t− sz, s))dzds

:= vn(x, t) + wn(x, t), ∀(x, t) ∈ Ωδ, (4.2.51)
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with vn, wn : Ωδ → R. First note that

lim
n→∞

vn(x, t) = lim
n→∞

[∫
Rd

e−z2

√
π
d
u0(x+ 2

√
tz)dz −

∫
Rd

e−z2

2n
√
π
d
dz

]

=

∫
Rd

e−z2

√
π
u0(x+ 2

√
tz)dz

:= v(x, t), ∀(x, t) ∈ Ωδ, (4.2.52)

with v : Ωδ → R. Now, let w : Ωδ → R be given by

w(x, t) =

∫ t

0

∫
Rd

e−z2

√
π
d
f(u(x+ 2

√
t− sz, s), Ju(x+ 2

√
t− sz, s))dzds, (4.2.53)

for all (x, t) ∈ Ωδ. Fix Mc > 0, δc ∈ (0, δ) and ε > 0 and set M > 0 and δ′ > 0 such that

e−M2d <
ε

6δc′
, (4.2.54)

and

δ′ < min
{ ε

6δc′
, δc

}
. (4.2.55)

Now, via Lemma 4.2.13, there exists {unj
}j∈N ∈ L∞([−M̃, M̃ ]d × [δ′, δ])∩C([−M̃, M̃ ]d ×

[δ′, δ]) such that unj
→ u uniformly on [−M̃, M̃ ]d × [δ′, δ] with

M̃ =Mc + 2
√
δM. (4.2.56)

Additionally, via Lemma 4.2.13 and Proposition 4.2.6 there exists N ∈ N such that for

all nj > N

∥∥∥f(u, Ju)− f
nj
(unj

, Junj
)
∥∥∥
L∞([−M̃,M̃ ]d×[δ′,δ])

<
ε

3δ
. (4.2.57)
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Now, for (x, t) ∈ [−Mc,Mc]
d × [δc, δ], it follows that

∣∣∣(w − wnj
)(x, t)

∣∣∣
≤
∫ t

0

∫
Rd

e−z2

√
π
d

∣∣∣(f(u, Ju)− f
nj
(unj

, Junj
))(x+ 2

√
t− sz, s)

∣∣∣ dzds
=

∫ t

δ′

∫
[−M,M ]d

e−z2

√
π
d

∣∣∣(f(u, Ju)− f
nj
(unj

, Junj
))(x+ 2

√
t− sz, s)

∣∣∣ dzds
+

∫ δ′

0

∫
[−M,M ]d

e−z2

√
π
d

∣∣∣(f(u, Ju)− f
nj
(unj

, Junj
))(x+ 2

√
t− sz, s)

∣∣∣ dzds
+

∫ t

0

∫
(R\[−M,M ])d

e−z2

√
π
d

∣∣∣(f(u, Ju)− f
nj
(unj

, Junj
))(x+ 2

√
t− sz, s)

∣∣∣ dzds.
(4.2.58)

Via (4.2.57), the first integral on the right hand side of (4.2.58) is bounded above by

∫ t

δ′

∫
[−M,M ]d

e−z2

√
π
d

∥∥∥f(u, Ju)− f
nj
(unj

, Junj
)
∥∥∥
L∞([−M̃,M̃ ]d×[δ′,δ])

<
ε

3δ

∫ t

0

∫
Rd

e−z2

√
π
d
dzds

=
ε

3
. (4.2.59)

Moreover, via (4.2.55), the second integral on the right hand side of (4.2.58) is bounded

above by

∫ δ′

0

∫
[−M,M ]d

e−z2

√
π
d
2c′dzds < 2c′δ′ <

ε

3
. (4.2.60)

Furthermore, via (4.2.54), the third integral on the right hand side of (4.2.58) is bounded

above by

∫ t

0

∫
(R\[−M,M ])d

e−z2

√
π
d
2c′dzds = 2d+1c′δ

(∫ ∞

M

e−ζ2

√
π
dζ

)d

< 2d+1c′δe−M2d

(∫ ∞

0

e−ζ2

√
π
dζ

)d

<
ε

3
. (4.2.61)

95



Therefore, via (4.2.58)-(4.2.61), it follows that wnj
→ w, as j → ∞, on [−Mc,Mc]

d×[δc, δ],

and thus, via (4.2.52), (4.2.53) and (4.2.51), it follows that (4.2.50) is satisfied for (x, t) ∈

[−Mc,Mc]
d × [δc, δ]. Given that Mc, δc > 0 were arbitrary, it follows that (4.2.50) is

satisfied on Ωδ. Further noting that w → 0 uniformly for x ∈ Rd as t → 0+, since

u0 ∈ L∞(Ω) ∩ C(Ω), establishes (4.2.50) on Ωδ as well as the continuity of u on Ωδ.

Finally, since f ∈ Hα, it follows, as described at the end of the proof of Theorem 3.3.1,

that u ∈ C2,1(Ωδ)∩C(Ωδ), and moreover is a solution to (C̃P ). This completes the proof,

as required.

The proof of Theorem 4.2.2 is now complete.

Remark 4.2.15. Note that the sequence {un}n∈N of solutions to (CP)ln , can be replaced

by the sequence {un}n∈N of solutions to (CP)un in each result from Proposition 4.2.10 up

to and including Lemma 4.2.14, where u should also be replaced by, a potentially distinct,

u.

For the remainder of this section we will further assume that:

f(ξ, η) is non-decreasing with respect to η and φ ≥ 0. (4.2.62)

We will establish the convergence of un and un to respective minimal and maximal solu-

tions of (C̃P ).

Proposition 4.2.16. Let un, un+1 : Ωδ → R be the (unique) solutions to (CP)ln and

(CP)ln+1 respectively, and suppose (4.2.62) is satisfied. Then, for all n ∈ N

un ≤ un+1 on Ωδ. (4.2.63)

Proof. Let Q : L∞(Ωδ) ∩ C(Ωδ) ∩ C2,1(Ωδ) → R(Ωδ) be given by

Q[v] = ∆v + f
n
(v, Jv)− vt, (4.2.64)
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for all v ∈ L∞(Ωδ) ∩ C(Ωδ) ∩ C2,1(Ωδ). Observe that via Propositions 4.2.6 and 4.2.8 it

follows that

Q[un+1] ≤ Q[un] on Ωδ, (4.2.65)

and

un+1 ≥ un on ∂Ωδ. (4.2.66)

Hence, via (4.2.62), (4.2.65) and (4.2.66), by applying the comparison principle, Theorem

2.4.3, yields (4.2.63), as required.

Proposition 4.2.17. Suppose that (4.2.62) is satisfied and let un : Ωδ → R be the

(unique) solution to (CP)ln on Ωδ. Further assume that v ∈ L∞(Ωδ) ∩ C(Ωδ) ∩ C2,1(Ωδ)

satisfies

∆v + f(v, Jv)− ∂tv ≤ 0 on Ωδ, (4.2.67)

and

u0(x) ≤ v(x, 0) ∀x ∈ Ω. (4.2.68)

Then,

un ≤ v on Ωδ. (4.2.69)

Proof. The proof follows directly from Theorem 2.4.3.

Remark 4.2.18. Proposition 4.2.17 implies that, if u : Ωδ → R is any solution of (C̃P ),

then un ≤ u on Ωδ. Thus, if (4.2.62) is satisfied, it follows that u, as given in Lemma

4.2.14, is a minimal solution to (C̃P ), as described in Definition 4.2.1. By considering
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{un}n∈N, it is similarly established that there exists a maximal solution to (C̃P ) on Ωδ,

denoted by u.

The proof of Theorem 4.2.3 is now complete.

Remark 4.2.19. Propositions 3.3.6 and 3.3.8 can be directly generalised for the case

where the function f is locally Hölder continuous. Therefore, as in the Lipschitz case

(illustrated by Remark 3.3.12), if u0 ∈ W 2,∞(Ω)∩C2(Ω), then, for a solution u : Ωδ → R

to (C̃P ), it follows that ∂xi
u, ∂xixj

u and ∂tu are continuous on Ωδ, i.e:

u ∈ L∞(Ωδ) ∩ C2,1(Ωδ).

4.3 The Cauchy problem with f (Ju) = (Ju)p+ for p ∈
(0, 1)

We consider Ω = R throughout this section. We introduce f : R → R, given by f(v) =

(v)p+= (max{v, 0})p, for all v ∈ R. Now consider the Cauchy problem given by


∂tu = ∆u+ (Ju)p+, on ΩT ;

u(x, 0) = u0(x), ∀x ∈ Ω;

u ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ),

(4.3.1)

with prescribed u0 ∈ L∞(Ω) ∩ C(Ω), with Ju : L∞(ΩT ) → L∞(ΩT ) given by

Ju(x, t) =

∫ ∞

−∞
φ(x− y)u(y, t)dy ∀(x, t) ∈ ΩT , (4.3.2)

with (prescribed) φ ∈ L1(R) such that

φ ≥ σ on [−δ, δ] and φ ≥ 0 on R, (4.3.3)
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for constants σ, δ > 0 and p ∈ (0, 1), and further assume that

u0 is a non-identically null, non-negative function on Ω. (4.3.4)

We denote the Cauchy problem given by (4.3.1)-(4.3.4) as (CP )+. Henceforth, unless

stated otherwise, when we refer to (CP )+, we assume all the conditions mentioned above.

In the remainder of this section we will demonstrate that (CP )+ is well-posed locally in

time.

For u0 ∈ L∞(Ω) ∩ C(Ω) as in (4.3.1) that satisfies (4.3.4) we define the following:

µ0 := inf
x∈Ω

u0(x) and M0 := sup
x∈Ω

u0(x).

Proposition 4.3.1. Let u ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ) be a solution to (CP )+. Then

µ0 ≤ u(x, t) ≤ (M1−p
0 + ∥φ∥pL1(Ω)(1− p)t)

1
1−p , ∀(x, t) ∈ ΩT . (4.3.5)

Proof. The lower bound on u in (4.3.5) follows from an application of the comparison

principle for the heat equation, after noting that (Jv)p+ ≥ 0 on ΩT .

To obtain the upper bound on u in (4.3.5) we proceed as follows: define f : R → R to

be

f(Ju) =


(Ju)p, Ju ≥ ∥φ∥L1(Ω)M0;

∥φ∥pL1(Ω)M
p
0 , Ju < ∥φ∥L1(Ω)M0,

(4.3.6)

and note that f is locally Lipschitz continuous and non-decreasing on R. Next, let v :

ΩT → R be given by

v(x, t) =
(
M1−p

0 + ∥φ∥pL1(Ω)(1− p)t
) 1

1−p
, ∀(x, t) ∈ ΩT , (4.3.7)
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and define P : L∞(ΩT ) ∩ C2,1(ΩT ) → R(ΩT ) to be

P [w] = ∂xxw + f(Jw)− ∂tw, ∀w ∈ L∞(ΩT ) ∩ C2,1(ΩT ). (4.3.8)

It now follows, from (4.3.1), (4.3.6) and (4.3.7), that

P [u] = f(Ju)− f(Ju) ≥ 0 = P [v] on ΩT . (4.3.9)

Moreover, from (4.3.7) we have

v ≥ u on ∂ΩT . (4.3.10)

Via (4.3.9) and (4.3.10), an application of the comparison principle, Theorem 2.4.3, implies

the upper bound in (4.3.5). This completes the proof, as required.

Thus it has been established, via Proposition 4.3.1 that (CP )+ is a priori bounded on

ΩT for all T > 0. We therefore have

Theorem 4.3.2 (Existence). There exist global minimal and maximal solutions to (CP )+

denoted by u, u : Ω∞ → R, respectively. Moreover,

µ0 ≤ u(x, t) ≤ u(x, t) ≤
(
M1−p

0 + ∥φ∥pL1(Ω)(1− p)t
) 1

1−p
, ∀(x, t) ∈ ΩT . (4.3.11)

Proof. Since f ∈ Hα and u0 ∈ L∞(Ω) ∩ C(Ω), the result follows directly from Corollary

4.2.4 with the a priori bounds in Proposition 4.3.1.

Remark 4.3.3. If u : ΩT → R is a solution to (CP )+, then v : ΩT → R given by

v(x, t) = ku(x, t) ∀(x, t) ∈ ΩT

for any constant k > 0, is a solution to (CP )+ with initial data v0 = ku0, and integral

kernel φk = k(1−p)/pφ. Therefore, without loss of generality, if required, one can always
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set ∥φ∥L1(Ω) = 1.

In what follows we will utilise the following lemmas:

Lemma 4.3.4. Let F : R → R be given by

F (x) =

∫ x+δ

x−δ

e−βy2dy − δe−δ2βe−βx2 ∀x ∈ R, (4.3.12)

where β and δ are positive constants. Then F (x) ≥ 0 for all x ∈ R.

Proof. Since F is an even function of x we restrict our attention to x ∈ [0,∞). First note

that F (0) > 0 since

∫ δ

−δ

e−βy2dy ≥ 2δe−βδ2 > δe−βδ2 > 0. (4.3.13)

Next note that

F ′(x) = e−βδ2e−βx2

(e−2βδx − e2βδx + 2βδx),

for all x ∈ [0,∞), and that F ′(x) < 0 for x > 0. Finally, by noting that

lim
x→∞

F (x) = 0

it follows that F ≥ 0, as required.

In what follows, we use the semigroup notation Sτv(x) , for τ ∈ (0,∞) to denote

Sτv(x) = (4πτ)−1/2

∫ ∞

−∞
e−|x−y|2/4τv(y)dy,

for each v ∈ L∞(Ω) ∩ C(Ω) and (x, τ) ∈ Ω∞. Additionally, throughout this section, we

regularly use the following result: for all u0, v0 ∈ L∞(Ω) ∩ C(Ω), if

u0 ≥ v0 on Ω
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then

Sτu0(x) ≥ Sτv0(x), ∀x ∈ Ω.

We further note that this notation is consistent with the fundamental solution notation

used in previous chapters, and is used here for brevity.

Lemma 4.3.5. Let u0 ∈ L∞(Ω) ∩ C(Ω) and satisfy (4.3.4). Moreover, suppose that

u ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ) is a non-negative function on ΩT and

u(x, t) ≥ Stu0(x) +

∫ t

0

St−s(Ju)
p(x, s)ds, (4.3.14)

for all (x, t) ∈ ΩT , with Ju as in (4.3.2)-(4.3.3) and p ∈ (0, 1). Then

u(x, t) > ((σδ)p(1− p)t)
1

1−p ∀(x, t) ∈ ΩT . (4.3.15)

Proof. We first consider the case when

u0(x) ≥ ce−a|x|2 ∀x ∈ R, (4.3.16)

for constants c, a > 0. Note that the following identity holds

St

(
ea|x|

2
)
= (1 + 4at)−

1
2 e

−a|x|2
1+4at ∀(x, t) ∈ Ω∞. (4.3.17)

Since u ≥ 0 on ΩT and φ ≥ 0 on R, via (4.3.14) and (4.3.17) it follows that

u(x, t) ≥ Stu0(x) ≥ St

(
ce−a|x|2

)
= c(1 + 4at)−

1
2 e

−a|x|2
1+4at , (4.3.18)

for all (x, t) ∈ ΩT . Substituting (4.3.18) for u into (4.3.14), recalling that u0 ≥ 0 and φ

satisfies (4.3.3), and using Lemma 4.3.4, we additionally obtain

u(x, t) ≥
∫ t

0

St−s

(∫ ∞

−∞
φ(x− y)c(1 + 4as)−

1
2 e

−a|y|2
1+4as dy

)p

ds
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=

∫ t

0

St−s

(
c(1 + 4as)−

1
2

∫ ∞

−∞
φ(y)e

−a|x−y|2
1+4as dy

)p

ds

≥
∫ t

0

St−s

(
cσ(1 + 4as)−

1
2

∫ x+δ

x−δ

e
−a|y|2
1+4as dy

)p

ds

≥
∫ t

0

cp(σδ)p(1 + 4as)
−p
2 e

−apδ2

1+4as St−se
−ap|x|2
1+4as dyds, (4.3.19)

for all (x, t) ∈ ΩT . Utilising (4.3.17), inequality (4.3.19) can be re-written as

u(x, t) ≥
∫ t

0

cp(σδ)p(1 + 4as)
1−p
2 e

−apδ2

1+4as (1 + 4as+ 4ap(t− s))−
1
2 e

−ap|x|2
1+4as+4ap(t−s)ds, (4.3.20)

for all (x, t) ∈ ΩT . Furthermore, for p ∈ (0, 1), 0 ≤ s ≤ t <∞ and k ∈ N0 we also have

1 + 4apk+1t ≤ 1 + 4apks+ 4apk+1(t− s) ≤ 1 + 4apkt. (4.3.21)

Using (4.3.21), with k = 0, and (4.3.20) we update the bound of u to be

u(x, t) ≥ cp(σδ)p
∫ t

0

(1 + 4as)
1−p
2 e

−apδ2

1+4as (1 + 4at)−
1
2 e

−ap|x|2
1+4apt ds (4.3.22)

= cp(σδ)p(1 + 4at)−
1
2 e

−ap|x|2
1+4apt

∫ t

0

(1 + 4as)
1−p
2 e

−apδ2

1+4as ds (4.3.23)

≥ cp(σδ)p(1 + 4at)−
1
2 te

−ap|x|2
1+4apt ∀(x, t) ∈ ΩT . (4.3.24)

Now, substituting (4.3.24) into (4.3.14), after using Lemma 4.3.4 and (4.3.17), we obtain

u(x, t) ≥
∫ t

0

St−s

(
cp(σδ)p(1 + 4as)−

1
2 s

∫ ∞

−∞
φ(x− y)e

−ap|y|2
1+4aps dy

)p

ds

=

∫ t

0

cp
2

(σδ)p
2

(1 + 4as)−
p
2 spSt−s

(∫ ∞

−∞
φ(x− y)e

−ap|y|2
1+4aps dy

)p

ds

≥
∫ t

0

cp
2

(σδ)p
2+p(1 + 4as)−

p
2 spe

−ap2δ2

1+4aps St−se
−ap2|x|2
1+4aps ds

=

∫ t

0

cp
2

(σδ)p
2+p(1 + 4as)−

p
2 spe

−ap2δ2

1+4aps
(1 + 4aps)

1
2 e

−ap2|x|2

1+4aps+4ap2(t−s)

(1 + 4aps+ 4ap2(t− s))
1
2

ds,

≥ cp
2

(σδ)p
2+pe−ap2δ2

∫ t

0

(
1 + 4aps

(1 + 4as)p

) 1
2

sp
e

−ap2|x|2

1+4aps+4ap2(t−s)

(1 + 4aps+ 4ap2(t− s))
1
2

ds (4.3.25)
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for all (x, t) ∈ ΩT . By applying (4.3.21), with k = 1, and the reverse Bernoulli inequality

to (4.3.25) we obtain the bound

u(x, t) ≥ cp
2

(σδ)p
2+pe−ap2δ2(1 + 4apt)−

1
2

1

p+ 1
tp+1e

−ap2|x|2

1+4ap2t ∀(x, t) ∈ ΩT . (4.3.26)

By iterating this procedure, for every k ∈ N0 and (x, t) ∈ ΩT we hence obtain that

u(x, t) ≥ cp
k+1

(σδ)p
k+1+pk+···+pck(1 + 4apkt)−

1
2 e−kapk+1δ2tp

k+pk−1+···+1e
−apk+1|x|2

1+apkt (4.3.27)

where

ck = (1 + p+ · · ·+ pk)−1(1 + p+ · · ·+ pk−1)−p1 . . . (1 + p)−pk−1

=
k−1∏
j=0

(
k−j∑
l=0

pl

)−pj

∀k ∈ N.

To show that ck is is bounded below uniformly in k we take logarithms and obtain that

log ck = −
k∑

j=0

pj log

(
k−j∑
l=0

pl

)
≥ log(1− p)

k−1∑
j=1

pj ≥ 1

1− p
log(1− p),

and thus,

ck ≥ (1− p)
1

1−p ∀k ∈ N. (4.3.28)

Using (4.3.28) and allowing k to go to infinity, we obtain (4.3.15) for the case when

u0(x) ≥ ce−a|x|2 (the strict inequality follows from the fact that Stu0 > 0), as specified.

If however, a, c > 0 do not exist such that u0 ≥ ce−a|x|2 for all x ∈ R, then, since u0 is

continuous and satisfies (4.3.4), it follows from the strong maximum for the heat equation

that there exist constants at, ct > 0 (dependent on t) such that

u(x, t) > cte
−atx2

, ∀(x, t) ∈ ΩT . (4.3.29)
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Using (4.3.29) and the previous argument, the result follows on considering u0(x) =

u(x, t0) and letting t0 → 0+. This completes the proof, as required.

Corollary 4.3.6. Suppose that the conditions of Lemma 4.3.5 are satisfied. Then,

u(x, t) ≥
(
∥φ∥pL1(Ω)(1− p)t

) 1
1−p

, ∀(x, t) ∈ ΩT . (4.3.30)

Proof. Let t0 ∈ (0, T ). Consider v : ΩT−t0 → R given by

v(x, t) = u(x, t+ t0), ∀(x, t) ∈ ΩT−t0 , (4.3.31)

and define ft0 : R → R to be

ft0(Jv) =


(Jv)p, Jv ≥ ∥φ∥L1(Ω)((σδ)

p(1− p)t0)
1

1−p ;

∥φ∥L1(Ω)((σδ)
p(1− p)t0)

1
1−p , Jv < ∥φ∥L1(Ω)((σδ)

p(1− p)t0)
1

1−p .

(4.3.32)

Note that ft0 is Lipschitz continuous and non-decreasing on R. Since u satisfies (4.3.14),

via Lemma 4.3.5 and (4.3.32), on denoting v(x, 0) = v0(x), for x ∈ Ω, it follows that v

satisfies

v(x, t) ≥ Stv0(x) +

∫ t

0

St−s(Jv(x, s))
pds

> ((σδ)p(1− p)t0)
1

1−p +

∫ t

0

St−sft0(Jv(x, s))ds, (4.3.33)

for all (x, t) ∈ ΩT−t0 . Now consider w : ΩT−t0 → R given by

w(x, t) =
(
(σδ)p(1− p)t0 + ∥φ∥pL1(Ω)(1− p)t

) 1
1−p

, ∀(x, t) ∈ ΩT−t0 , (4.3.34)

and note that

w(x, t) ≤ ((σδ)p(1− p)t0)
1

1−p +

∫ t

0

St−sft0(Jw(x, s))ds, ∀(x, t) ∈ ΩT−t0 . (4.3.35)
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Additionally, via (4.3.31) and (4.3.34)

v ≥ w on ∂ΩT−t0 . (4.3.36)

Via (4.3.33), (4.3.35), (4.3.36), and the comparison principle of Theorem 2.4.3, we have

v ≥ w on ΩT−t0 , (4.3.37)

or equivalently

u(x, t+ t0) ≥
(
(σδ)p(1− p)t0 + ∥φ∥pL1(Ω)(1− p)t

) 1
1−p

, ∀(x, t) ∈ ΩT−t0 . (4.3.38)

By letting t0 → 0+ in (4.3.38) we obtain (4.3.30), as required.

To show that the Cauchy problem (4.3.1) admits a unique solution we will employ the

following comparison principle.

Proposition 4.3.7. [Comparison principle] Let u, v ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ) be

non-negative and satisfy

u(x, t) ≥ Stu0(x) +

∫ t

0

St−s(Ju(x, s))
pds; (4.3.39)

v(x, t) ≤ Stv0(x) +

∫ t

0

St−s(Jv(x, s))
pds, (4.3.40)

for all (x, t) ∈ ΩT , with Ju and Jv as in (4.3.2)-(4.3.3) and p ∈ (0, 1), and u0, v0 ∈

L∞(Ω) ∩ C(Ω) satisfy (4.3.4) and

u0 ≥ v0 on Ω. (4.3.41)

Then u ≥ v on ΩT .
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Proof. Define g : ΩT → R to be

g(x, t) = v(x, t)− u(x, t) ∀(x, t) ∈ ΩT . (4.3.42)

We will show that g+ ≡ 0 on ΩT . Via (4.3.39)-(4.3.41), it follows that

g(x, t) ≤ St(v0(x)− u0(x)) +

∫ t

0

St−s(Jv(x, s)
p − Ju(x, s)p)ds

≤
∫ t

0

St−s(Jv(x, s)
p − Ju(x, s)p)ds

≤
∫ t

0

St−s(Jv(x, s)− Ju(x, s))p+ds

=

∫ t

0

St−s(Jg(x, s))
p
+ds, (4.3.43)

for all (x, t) ∈ ΩT . By taking the positive parts of both sides of (4.3.43) it follows that1

g+(x, t) ≤ ∥φ∥pL1(Ω)

∫ t

0

∥g+(·, s)∥pL∞(Ω)ds ∀(x, t) ∈ ΩT , (4.3.44)

and hence,

∥g+(·, t)∥L∞(Ω) ≤ ∥φ∥pL1(Ω)

∫ t

0

∥g+(·, s)∥pL∞(Ω)ds ∀t ∈ [0, T ]. (4.3.45)

Via a non-linear Grönwall type inequality (see [MPF91, Theorem 1, p. 360-361]) it follows

that

∥g+(·, t)∥L∞(Ω) ≤ (∥φ∥pL1(Ω)(1− p)t)
1

1−p , (4.3.46)

for all t ∈ [0, T ]. Additionally, via the mean value theorem, for each (x, s) ∈ ΩT , there

1Note that the integral in (4.3.44) is well-defined via an application of the monotone convergence
theorem (see e.g. [Apo74]).
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exists η = ηx,s between Jv(x, s) and Ju(x, s) we have

(Jv(x, s))p − (Ju(x, s))p = p(Jv(x, s)− Ju(x, s))ηp−1 = pJg(x, s)ηp−1. (4.3.47)

When u ≤ v, utilising Corollary 4.3.6, we obtain

η ≥ Ju(x, s) ≥ ∥φ∥L1(Ω)(∥φ∥pL1(Ω)(1− p)s)
1

1−p ∀(x, s) ∈ ΩT . (4.3.48)

Substituting (4.3.48) into (4.3.47) yields

((Jv(x, s))p − (Ju(x, s))p)+ ≤ p(J(v − u)+(x, s))

∥φ∥L1(Ω)(1− p)
s−1, (4.3.49)

for all (x, s) ∈ ΩT . Now, via (4.3.49) it follows that

∫ t

0

St−s((Jv(x, s))
p − (Ju(x, s))p)+ds ≤

∫ t

0

St−s
p(J(v − u)+(x, s))

∥φ∥L1(Ω)(1− p)
s−1ds ∀(x, t) ∈ ΩT .

(4.3.50)

Upon recalling (4.3.43), inequality (4.3.50) implies that

g+(x, t) ≤
∫ t

0

ps−1

∥φ∥L1(Ω)(1− p)
St−sJg+(x, s)ds, (4.3.51)

from which we obtain

∥g+(·, t)∥L∞(Ω) ≤
∫ t

0

p

1− p
s−1∥g+(·, s)∥L∞(Ω)ds ∀t ∈ [0, T ]. (4.3.52)

Now, consider G : [0, T ] → R to be

G(t) =
p

1− p

∫ t

0

s−1∥g+(·, s)∥L∞(Ω)ds, ∀t ∈ [0, T ], (4.3.53)
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noting that, via (4.3.44), G is well-defined. Using (4.3.53), (4.3.52) can be re-written as

G′(t)

G(t)
≤ p

1− p
t−1, ∀t ∈ (0, T ]. (4.3.54)

For any ε ∈ (0, T ), it follows from integrating (4.3.54) that

G(t) ≤ G(ε)ε−
p

1−p t
p

1−p , (4.3.55)

for all t ∈ [ε, T ]. Note that, via (4.3.46) and (4.3.53), it follows that

G(ε) ≤ p

1− p

∫ ε

0

s−1∥φ∥
p

1−p

L1(Ω)(1− p)
1

1−p s
1

1−pds = p∥φ∥
p

1−p

L1(Ω)(1− p)
1

1−p ε
1

1−p , (4.3.56)

for all ε > 0. By substituting (4.3.56) into (4.3.55) we obtain

G(t) ≤ p∥φ∥
p

1−p

L1(Ω)(1− p)
1

1−p ε
1

1−p ε−
p

1−p t
p

1−p = p∥φ∥
p

1−p

L1(Ω)(1− p)
1

1−p t
p

1−p ε, (4.3.57)

for all t ∈ [ε, T ]. Letting ε → 0 shows that G ≡ 0 on [0, T ] which, via (4.3.53) and

(4.3.42), yields

u(x, t) ≥ v(x, t), ∀(x, t) ∈ ΩT , (4.3.58)

as required.

Corollary 4.3.8. Let u, v ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ) be non-negative and satisfy

∂tu ≥ ∂xxu+ (Ju)p, on ΩT ; (4.3.59)

∂tv ≤ ∂xxv + (Jv)p, on ΩT ; (4.3.60)

u(x, 0) = u0(x) ≥ v0(x) = v(x, 0), ∀x ∈ Ω, (4.3.61)

where Ju, Jv are as in (4.3.2)-(4.3.3), u0, v0 ∈ L∞(Ω) ∩ C(Ω) and satisfy (4.3.4) and

p ∈ (0, 1). Then, u ≥ v on ΩT .
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Proof. Via a Duhamel principle, if u and v satisfy (4.3.59)-(4.3.61), then they satisfy the

conditions of Proposition 4.3.7, from which the result follows, as required.

Additionally we have

Corollary 4.3.9. Let u : Ω∞ → R be a global solution to (CP )+. Then

(
µ1−p
0 + ∥φ∥pL1(Ω)(1− p)t

) 1
1−p ≤ u(x, t) ≤

(
M1−p

0 + ∥φ∥pL1(Ω)(1− p)t
) 1

1−p
, (4.3.62)

for all t > 0.

Proof. The upper bound on u follows directly from Proposition 4.3.1 and Corollary 4.3.8.

If µ0 > 0, then, the lower bound on u follows on considering the sub-solution v : ΩT → R

given by

v(x, t) =
(
µ1−p
0 + ∥φ∥pL1(Ω)(1− p)t

) 1
1−p

, ∀(x, t) ∈ ΩT ,

for any T > 0 and by applying the comparison principle of Corollary 4.3.8. Note that if

µ0 = 0, then, the lower bound follows from Corollary 4.3.6.

Theorem 4.3.10 (Uniqueness). (CP )+ has a unique global solution.

Proof. Let u1, u2 : Ω∞ → R both be solutions (CP )+ with initial data u0 and integral

kernel φ. Via Corollary 4.3.8 it follows that

u1(x, t) ≤ u2(x, t) ≤ u1(x, t), ∀(x, t) ∈ ΩT ,

for all T > 0. Hence u1 = u2 on Ω∞, as required.

We now demonstrate local-in-time continuous dependence for solutions to (CP )+.

Theorem 4.3.11 (Local-in-time continuous dependence). Let u : Ω∞ → R be the solution

to (CP )+. Moreover, let ũ : Ω∞ → R be the solution to (CP )+ with initial data ũ0 ∈

110



L∞(Ω)∩C(Ω) and integral kernel φ̃ ∈ L1(Ω). Then, for all ε > 0 and T > 0, there exists

δ > 0 (that is independent of ũ) such that, whenever

∥u0 − ũ0∥L∞(Ω) < δ, and ∥φ− φ̃∥L1(Ω) < δ, (4.3.63)

then

∥u− ũ∥L∞(ΩT ) < ε. (4.3.64)

Proof. Let ε > 0. Without loss of generality suppose that ∥φ̃∥L1(Ω) ≤ ∥φ∥L1(Ω). Via

(4.3.63), for δ < ∥φ∥L1(Ω)/2, it follows that ∥φ̃∥L1(Ω) ≥ ∥φ∥L1(Ω) − δ > 0, and hence

∥φ̃∥L1(Ω) can be controlled by ∥φ∥L1(Ω). Denote

M = max{∥u∥L∞(ΩT ), ∥ũ∥L∞(ΩT )}

and observe, via (4.3.63) by considering δ < 1, that M can be seen to be bounded by a

term only dependent on ∥u0∥L∞(Ω), T , ∥φ∥L1(Ω) and p, via Corollary 4.3.9.

Since f : R → R is uniformly Hölder continuous, via Lemma 4.2.14 and (4.3.63) it

follows that

|u(x, t)− ũ(x, t)| < δ +

∫ t

0

∫ ∞

−∞

e−z2

√
π

∣∣∣Ju(x+ 2
√
t− sz, s)p − J̃ ũ(x+ 2

√
t− sz, s)p

∣∣∣ dzds
≤ δ +

∫ t

0

∫ ∞

−∞

e−z2

√
π

∣∣∣Ju(x+ 2
√
t− sz, s)p − J̃u(x+ 2

√
t− sz, s)p

∣∣∣ dzds
+

∫ t

0

∫ ∞

−∞

e−z2

√
π

∣∣∣J̃u(x+ 2
√
t− sz, s)p − J̃ ũ(x+ 2

√
t− sz, s)p

∣∣∣ dzds
= δ +

∫ t

0

∫ ∞

−∞

e−z2

√
π

∣∣∣(J − J̃)u(x+ 2
√
t− sz, s)

∣∣∣p dzds
+

∫ t

0

∫ ∞

−∞

e−z2

√
π

∣∣∣J̃(u− ũ)(x+ 2
√
t− sz, s)

∣∣∣p dzds, ∀(x, t) ∈ ΩT ,

(4.3.65)
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where J̃ denotes J in (4.3.2) with φ replaced with φ̃. It follows that

∥u(·, t)− ũ(·, t)∥L∞(Ω) ≤ δ +

∫ t

0

∥φ− φ̃∥pL1(Ω)∥u(·, s)∥
p
L∞(Ω)ds

+

∫ t

0

∥φ̃∥pL1(Ω)∥u(·, s)− ũ(·, s)∥pL∞(Ω)ds,

(4.3.66)

for all t ∈ [0, T ]. Recalling (4.3.63), (4.3.66) becomes

∥u(·, t)− ũ(·, t)∥L∞(Ω) ≤δ + δpMpT + ∥φ̃∥pL1(Ω)

∫ t

0

∥u(·, s)− ũ(·, s)∥pL∞(Ω)ds, (4.3.67)

for all t ∈ [0, T ]. Applying the non-linear Grönwall’s inequality to the inequality in

(4.3.67) further yields

∥u(·, t)− ũ(·, t)∥L∞(Ω) ≤
(
(δ + δpMpT )1−p + ∥φ̃∥pL1(Ω)(1− p)t

) 1
1−p

, (4.3.68)

for all t ∈ [0, T ]. In particular, for all sufficiently small δ we introduce

t0 =
(δ + δpMpT )1−p

∥φ̃∥pL1(Ω)(1− p)
∈ (0, T ), (4.3.69)

for which, we have

∥u(·, t)− ũ(·, t)∥L∞(Ω) ≤ 2
1

1−p (δ + δpMpT ), ∀t ∈ [0, t0]. (4.3.70)

Furthermore, via the mean value theorem, and utilising the lower bound from Corollary

4.3.9, we have

∣∣∣J̃u(ξ, τ)p − J̃ ũ(ξ, τ)p
∣∣∣

≤ p
(
(∥φ̃∥pL1(Ω)(1− p)τ)

1
1−p∥φ̃∥L1(Ω)

)p−1

∥φ̃∥L1(Ω)∥u(·, t)− ũ(·, t)∥L∞(Ω)

=
p

(1− p)
∥u(·, t)− ũ(·, t)∥L∞(Ω)τ

−1, ∀(ξ, τ) ∈ ΩT . (4.3.71)
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We now consider t ∈ [t0, T ]. Substitution of (4.3.69)-(4.3.70) into (4.3.65) yields

∥u(·, t)− ũ(·, t)∥L∞(Ω)

≤ δ + δpMpT +

∫ t0

0

∥J̃(u− ũ)(·, s)∥pL∞(Ω)ds+

∫ t

t0

∥(J̃up − J̃ ũp)(·, s)∥L∞(Ω)ds

≤ δ + δpMpT +
2

p
1−p (δ + δpMpT )

1− p
+

∫ t

t0

∥(J̃up − J̃ ũp)(·, s)∥L∞(Ω)ds

:= C +

∫ t

t0

∥(J̃up − J̃ ũp)(·, s)∥L∞(Ω)ds (4.3.72)

for all t ∈ [0, T ] for C = Cδ,M,T,p given by

C = δ + δpMpT +
2

p
1−p (δ + δpMpT )

1− p
. (4.3.73)

Note that, for fixed M,T and p, we have C = O(δp), as δ → 0+ . Substitution of (4.3.71)

into (4.3.72) yields

∥u(·, t)− ũ(·, t)∥L∞(Ω) ≤ C +
p

1− p

∫ t

t0

∥u(·, s)− ũ(·, s)∥L∞(Ω)s
−1ds, (4.3.74)

for all t ∈ [t0, T ]. Define g : [t0, T ] → R to be

g(t) = ∥u(·, t)− ũ(·, t)∥L∞(Ω), ∀t ∈ [t0, T ]. (4.3.75)

After substituting (4.3.75) into (4.3.74), via Grönwall’s inequality we have

g(t) ≤ Ct
p

1−p t
− p

1−p

0 ≤ CT
p

1−p t
− p

1−p

0 , ∀t ∈ [t0, T ]. (4.3.76)

Upon substitution of (4.3.69) into (4.3.76), it follows that

g(t) ≤ C(∥φ̃∥pL1(Ω)(1− p)T )
p

1−p (δ + δpMpT )−p, (4.3.77)
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for all t ∈ [t0, T ]. Thus, via (4.3.73), it follows from (4.3.77) that

g(t) = O(δp(1−p)), as δ → 0+, (4.3.78)

uniformly for t ∈ [t0, T ]. By letting δ → 0+ in (4.3.69), it follows from (4.3.78), (4.3.75)

and (4.3.70) that there exists δ > 0, sufficiently small, so that (4.3.64) holds, as required.

Theorem 4.3.12. (CP )+ is well-posed, locally in time.

Proof. Follows directly from Theorem 4.3.10 and Theorem 4.3.11.

4.4 Numerical approximation of (CP )+

For illustrative purposes, we consider the qualitative properties of the solution to (CP )+

with

0 < µ0 = inf
x∈R

u0 < sup
x∈R

u0 =M0 and u0 ∈ W 4,∞(R) ∩ C4(R), (4.4.1)

and integral kernel φ = φσ given by

φσ(x) =


σ, if |x| ≤ 1

2σ
;

0, otherwise,

(4.4.2)

and note that ∥φ∥L1(R) = 1.

By taking any kernel that is sufficiently close to φσ, the continuous dependence result

Theorem 4.3.11 implies that solutions will be sufficiently close to one another. A similar

conclusion is valid for initial data that are sufficiently close to each other.

For a boundary value problem related to (CP )+, we establish that its explicit finite dif-

ference approximation scheme converges, and hence, can provide a uniform approximation

to the solution to (CP )+, on a truncated domain.
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Let u : Ω∞ → R be the solution to (CP )+ and u, u : Ω∞ → R be the upper and lower

bounds of u, respectively, as given in Corollary 4.3.9. Now, define v : Ω∞ → [0, 1] to be

v =
u− u

u− u
on Ω∞. (4.4.3)

It follows immediately that

v ∈ L∞(Ω∞) ∩ C(Ω∞) ∩ C2,1(Ω∞), (4.4.4)

and moreover, that

vt − vxx =
1

u− u
[(J(v(u− u) + u))p − up − v(up − up)] , on Ω∞. (4.4.5)

Moreover, for v0 : R → [0, 1], we have v0(x) = v(x, 0), for all x ∈ R, and assume that

supp v0 ⊆ [−X0, X0] and v0 ∈ C4(R), (4.4.6)

for some X0 > 0. In this scenario, we have the following proposition.

Proposition 4.4.1. Let v : ΩT → R satisfy (4.4.4)-(4.4.6). Then,

lim
|x|→∞

v(x, t) = 0, (4.4.7)

uniformly for t ∈ [0, T ].

Proof. Observe that, via the mean value theorem, for each (x, t) ∈ ΩT , there exists a

θ ∈ (u, u+ (u− u)Jv) such that

1

u− u
[(J(v(u− u) + u))p − up − v(up − up)]

=
1

u− u
[pθp−1(u− u)Jv − v(up − up)]

≤ pup−1Jv. (4.4.8)
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Hence via, (4.4.5) and (4.4.8), it follows that

vt + vxx − pup−1Jv ≤ 0 on ΩT . (4.4.9)

Moreover, consider v : ΩT → R given by

v(x, t) =
cekt

1 + x2
∀(x, t) ∈ ΩT , (4.4.10)

with

k = 8 +
p

µ1−p
0

(
1 +

5

2min{σ, σ2}

)
and c = 1 +X2

0 . (4.4.11)

We note that v ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ) with

vt(x, t) = kv(x, t); (4.4.12)

vxx(x, t) = v(x, t)

(
8x2

(1 + x2)2
− 2

1 + x2

)
, (4.4.13)

for all (x, t) ∈ ΩT . Observe that

Jv(x, t) = σ

∫ 1
2σ

− 1
2σ

v(x− y, t)dy

= σcekt
∫ 1

2σ

− 1
2σ

dy

1 + (x− y)2

≤ σcekt
∫ 1

2σ

− 1
2σ

1

1 + x2
+

|y||2x− y|
(1 + x2)(1 + (x− y)2)

dy

= σv(x, t)

∫ 1
2σ

− 1
2σ

1 +
|y||2x− y|
1 + (x− y)2

dy, (4.4.14)

for all (x, t) ∈ ΩT . For |x| ≤ σ−1, the integral on the right hand side of (4.4.14) is bounded

above by

∫ 1
2σ

− 1
2σ

1 +
|y||2x− y|
1 + (x− y)2

dy ≤ 1

σ

(
1 +

5

4σ2

)
, (4.4.15)
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and, for |x| > σ−1, by noting that |y| ≤ (2σ)−1 ≤ |x|/2, the integral on the right hand

side of (4.4.14) is bounded above by

∫ 1
2σ

− 1
2σ

1 +
|y||2x− y|
1 + (x− y)2

dy ≤ 1

σ

(
1 +

5

2σ

)
. (4.4.16)

Via (4.4.15)-(4.4.16), it follows from (4.4.14) that

Jv(x, t) ≤
(
1 +

5

2min{σ, σ2}

)
v(x, t), (4.4.17)

for all (x, t) ∈ ΩT . Thus, via (4.4.12)-(4.4.13), (4.4.17) and (4.4.11) it follows that

vt − vxx − pup−1Jv ≥ 0 on ΩT . (4.4.18)

Moreover, via (4.4.11) it follows that

v ≥ v on ∂ΩT . (4.4.19)

Therefore, via (4.4.9), (4.4.18) and (4.4.19), by applying the comparison principle of

Theorem 2.4.3, it follows that

v ≤ v on ΩT ,

and hence (4.4.7) is satisfied, as required.

We now consider a numerical approximation of (4.4.5)-(4.4.7) by considering the grid

{
(xi, tj) ∈ R2 : xi = −X + (i− 1)δx, tj = (j − 1)δt, i = 1, . . . , Nx, j = 1, . . . , Nt

}
,

(4.4.20)

for

δx =
2X

Nx − 1
and δt =

T

Nt − 1
.
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On the grid we denote the numerical approximation as vji . To impose property (4.4.7) on

the approximation, we consider X to be sufficiently large and set

vj1 = vjNx
= 0 ∀1 ≤ j ≤ Nt. (4.4.21)

We represent the initial data with compact support on [−X,X] as v1i ∈ [0, 1], for all

1 < i < Nx. The integro-differential equation (4.4.5) is approximated with

vj+1
i =vji + δt

(
vji−1 − 2vji + vji+1

δx2

)

+
δt

uj − uj
(
[J j

i v(u
j − uj) + uj]p − uj

p − vji (u
jp − uj

p

)
)
,

(4.4.22)

for all 1 < i < Nx and 1 ≤ j < Nt with: u
j and uj the functions u and u evaluated at tj,

respectively; J j
i v given by

J j
i v =

∑
Xi

(
vji + vji+1

2

)
δxσ, (4.4.23)

with

Xi =

{
l ∈ Z : − 1

2σ
≤ −X + (l − 1)δx− xi ≤

1

2σ

}
,

where we denote vji = 0 if i < 1 or i > Nx and 1 ≤ j ≤ Nt; and we ensure that

1

2σ
=Mδx, (4.4.24)

for some M ∈ N, so that ∥φσ∥L1(R) = 1 is precisely represented in the numerical approxi-

mation. We now establish bounds on vji .

Proposition 4.4.2. Let vji be the solution to (4.4.21)-(4.4.24). Then, vji ∈ [0, 1] for all
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1 ≤ i ≤ Nx and 1 ≤ j ≤ Nt, provided that

δt ≤
{
δx2

4
,
µ1−p
0

2p

}
. (4.4.25)

Proof. We establish the result via mathematical induction, namely, we consider the state-

ment P (j) given by

0 ≤ vji ≤ 1 ∀1 ≤ i ≤ Nx,

for each 1 ≤ j ≤ Nt. Via the initial condition on v1i it follows that P (1) is true. Now,

suppose that P (j) is true for some 1 ≤ j < Nt. Then, via (4.4.25)

vj+1
i ≤ vji +

δt

δx2
(vji−1 − 2vji + vji+1) +

δt

uj − uj
(uj

p − uj
p

)(1− vji )

≤ vji +
δt

δx2
(vji−1 − 2vji + vji+1) + δtpuj

p−1

(1− vji )

≤ vji +
δt

δx2
(vji−1 − 2vji + vji+1) +

1

2
(1− vji )

= vji

(
1

2
− 2δt

δx2

)
+ (vji−1 + vji+1)

δt

δx2
+

1

2
(4.4.26)

for all 1 < i < Nx. Via (4.4.25) the coefficients of vji , v
j
i+1 and vji−1 on the right hand side

of (4.4.26) are non-negative, and hence

uj+1
i ≤ 1

2
max

1≤i≤Nx

{vji }+
1

2
≤ 1. (4.4.27)

Similarly, via (4.4.25)

vj+1
i ≥ vji +

δt

δx2
(vji−1 − 2vji + vji+1)−

δt

uj − uj
vji (u

jp − uj
p

)

≥ vji +
δt

δx2
(vji−1 − 2vji + vji+1)− δtpuj

p−1

vji

= vji +
δt

δx2
(vji−1 − 2vji + vji+1)−

vji
2

≥ vji

(
1

2
− 2δt

δx2

)
+ (vji−1 + vji+1)

δt

δx2
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≥ 1

2
min

1≤i≤Nx

{vji }

≥ 0 (4.4.28)

It follows from (4.4.27) and (4.4.28) that P (j + 1) is true. The result now follows via

mathematical induction, as required.

We note that in the practical implementation of this method we can ensure vj+1
i ∈ [0, 1]

provided that

δt < min

{
δx2

4
,
uj

2p

}
,

if solving using using the known values of vji .

Before we establish the conditional convergence of vji as δt, δx → 0, we note the

truncation error of (4.4.22) in the following proposition.

Proposition 4.4.3. Let v : ΩT → R be the solution to (4.4.4)-(4.4.6), and let v̂ji denote

v(xi, ti) for each 1 ≤ i ≤ Nx and 1 ≤ j ≤ Nt. Then

v̂j+1
i =v̂ji + δt

(
v̂ji−1 − 2v̂ji + v̂ji+1

δx2

)

+
δt

uj − uj
(
[J j

i v̂(u
j − uj) + uj]p − uj

p − v̂ji (u
jp − uj

p

)
)
+ σj

i ,

(4.4.29)

with the truncation error σj
i such that

|σj
i | ≤ cmin{δt2, δx2δt},

with c dependant on ∥∂2t v∥L∞(ΩT ), ∥∂2xv∥L∞(ΩT ), ∥∂4xv∥L∞(ΩT ) and µ
−1
0 .

Proof. First note that for f : (0,∞) → R given by

f(w) = wp ∀w ∈ (0,∞),

it follows that f ∈ C∞((0,∞)). Moreover, by recalling (4.4.1), it follows from Proposition
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3.3.13 and Corollary 4.3.9 that

∂2t u, ∂
3
xu, ∂

4
xu ∈ L∞(ΩT ) ∩ C(ΩT ),

and hence, via (4.4.3), it follows that

∂2t v, ∂
3
xv, ∂

4
xv ∈ L∞(ΩT ) ∩ C(ΩT ). (4.4.30)

Using (4.4.30), (4.4.29) follows by applying Taylor’s theorem to v, centred at (xi, tj), on

noting that the truncation error for the trapezium rule in (4.4.23) is bounded by cδx2 with

constant c depending on ∥∂2xv∥L∞(ΩT ) and σ. This completes the proof, as required.

We can now establish the following convergence result.

Theorem 4.4.4. Let ε > 0, v : ΩT → R be the unique solution to (4.4.4)-(4.4.7), v̂ji =

v(xi, tj), v
j
i be the solution to (4.4.21)-(4.4.24) and eji = v̂ji −v

j
i . Then, there exists X > 0

such that

|eji | < ε ∀1 ≤ i ≤ Nx and 1 ≤ j ≤ Nt,

for all sufficiently small δx and

δt ≤ min

{
δx2

4
,
µ1−p
0

2p

}
. (4.4.31)

Proof. Via Proposition 4.4.1, for any ε′ > 0, we can choose X sufficiently large so that

|ej1|, |e
j
Nx
| < ε′/2, for all 1 ≤ j ≤ Nt. Moreover, we denote

wj = max
1≤i≤Nx

{
|eji |,

ε′

2

}
,

and note that w1 = ε′/2, by setting v1i = v̂1i . Now, via (4.4.22) and Proposition 4.4.3, it
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follows that

ej+1
i = eji +

δt

δx2
(eji−1 − 2eji + eji+1)

+
δt

uj − uj
[(J j

i v̂(u
j − uj) + uj)p − (J j

i v(u
j − uj) + uj)p − eji (u

jp − uj
p

)] + σj
i

= eji

(
1− 2δt

δx2
− δt

uj − uj
(uj

p − uj
p

)

)
+

δt

δx2
(eji−1 + eji+1) + J j

i eδtpθ
jp−1

i + σj
i ,

(4.4.32)

for 1 < i < Nx and 1 ≤ j < Nt, with θ
j
i given via the mean value theorem. Via (4.4.31),

the coefficients of eji , e
j
i−1, e

j
i+1 and J

j
i e, on the right hand side of (4.4.32) are non-negative.

Hence, via (4.4.31) and Proposition 4.4.3 we obtain

ej+1
i ≥ min

1≤i≤Nx

{eji}
(
1− δt

uj
p − uj

p

uj − uj
+ δtpθj

p−1

i

)
+ σj

i

≥ −wj

(
1 +

δtp

µ1−p
0

)
− cδx2δt, (4.4.33)

for all 1 < i < Nx and 1 ≤ j < Nt, for a constant c independent of i and j. Proceeding

as in (4.4.33) it also follows that

ej+1
i ≤ wj

(
1 +

δtp

µ1−p
0

)
+ cδx2δt, (4.4.34)

for all 1 < i < Nx and 1 ≤ j < Nt. Combining (4.4.33) and (4.4.34) it follows that

wj+1 ≤ wj +
δtp

µ1−p
0

wj + cδx2δt, (4.4.35)

for all 1 ≤ j < Nt. Summing (4.4.35) for j = 1, . . . , N − 1 < Nt, it follows that

wN ≤ w1 +
N−1∑
j=1

(
δtp

µ1−p
0

wj

)
+ cδx2T. (4.4.36)

Now, by applying the discrete Grönwall inequality to the inequality in (4.4.36) (see [Hol09,
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Figure 4.1: An approximation of y = v(x, t). Here p = 0.1, T = 500, X = 150, Nx = 1501,
µ0 = 1, M0 = 2, σ = 1/2 and v0(x) = 1[−10,10](x).

Section 5]) we obtain

wN ≤ (w1 + cδx2T ) exp

(
N−1∑
j=1

δtp

µ1−p
0

)
≤ (w1 + cδx2T ) exp

(
pT

µ1−p

)
, (4.4.37)

for each 1 < N ≤ Nt. By selecting

ε′ = ε exp

(
− pT

µ1−p

)
and δx <

√
ε′

2cT
,

it follows, from (4.4.37) that

wN ≤ ε

for all 1 ≤ N ≤ Nt, which completes the proof, as required.

Remark 4.4.5. We note that the approach utilised here to establish conditional conver-

gence is standard and illustrated in the local case in [LST94]. Moreover, as in [LST94],

Von-Neumann type stability can be considered, albeit, we omit the details here for brevity.

We also note that in all other simulations we have considered, with: initial data of

the form 1[−m,m]; and various parameters p, µ0, M0 and σ in their respective ranges, the
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Figure 4.2: A comparison of numerical approximations of v(x, 500) for p = 0.1, 0.5 and
0.9 (from lowest to highest respectively). The other parameters are as in Figure 4.1.

Figure 4.3: A comparison of numerical approximations of v(x, 500) for M0 = 2, 10 and
100 (from lowest to highest respectively). The other parameters are as in Figure 4.1.
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numerical simulations produced results similar in appearance to that depicted in Figure

4.1. We note that Figures 4.2 and 4.3 indicate a structural dependence of v upon p, µ0

and M0, for large-t, which we explore in the next section.

4.5 Large-t structure of (CP )+

In Section 4.3 we have seen that u and u are the maximal and minimal solutions to

(CP )+. The numerical analysis in Section 4.4 and the theory for the local case of (CP )+,

in [MN15a, Chapter 9.2], indicate that the solution u : Ω∞ → R to (CP )+ converges to

u, as t → ∞, for sufficiently small values of p ∈ (0, 1) when u0 and φ are of compact

support. In addition to the assumptions on u0 and φ described by (CP )+, in this section

we further assume that

u0 ∈ L∞(R) and φ ∈ L1(R) are even and have compact support,

and begin by formulating the linearised initial value problem. We write,

u(x, t) = u(x, t) + εw(x, t), ∀(x, t) ∈ Ω× [1,∞), (4.5.1)

with ε≪ 1 and, upon recalling µ0 = 0 and ∥φ∥L1(Rn) = 1, it follows that

u(x, t) = ((1− p)t)1/(1−p), ∀(x, t) ∈ Ω∞.

On substituting (4.5.1) into the integro-differential equation of (CP )+, by neglecting terms

of O(ε2), as ε→ 0, we obtain an evolution equation for w given by

wt(x, t) = wxx(x, t) +
p

(1− p)t

∫
R
φ(y)w(x− y, t)dy, ∀(x, t) ∈ Ω× [1,∞), (4.5.2)
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with the associated initial condition given by

w(x, 1) = w1(x), ∀x ∈ Ω, (4.5.3)

with w1 : Ω → R such that w1 ∈ C2(Ω)∩W 2,∞(Ω), and we further suppose that w1 is an

even function and w1(x) → 0, at least exponentially, as |x| → ∞.

Utilising known results from Fourier analysis, the evolution equation (4.5.2) has a

general solution of the form

w(x, t) =

∫
R
F (t, k)eikxdk, ∀(x, t) ∈ Ω× [1,∞), (4.5.4)

for some F : [1,∞)× R → C, to be determined. In order to determine F , we substitute

the elementary solution

w(x, t) = F (t, k)eikx, (4.5.5)

into (4.5.2) and obtain the linear ordinary differential equation

Ft(t, k) =

(
pφ̂(k)

(1− p)t
− k2

)
F (t, k), ∀(t, k) ∈ (1,∞)× R, (4.5.6)

with initial condition, obtained by inverting the transformation in (4.5.4) when evaluated

at t = 1, which is given by

F (1, k) =
1

2π

∫
R
w1(ξ)e

−iξkdξ = ŵ1(k), (4.5.7)

with ŵ1 denoting the Fourier transform of w1, and φ̂(k) =
∫
R φ(ξ)e

−ikξdξ denoting the non-

unitary Fourier transform of φ. Note that ŵ1 and φ̂ are well-defined since w1, φ ∈ L1(Ω).

It now follows that the solution to (4.5.6)-(4.5.7) on [1,∞)× R is given by

F (t, k) = ŵ1(k)e
−(k2t− p

1−p
φ̂(k) log t), ∀(t, k) ∈ [1,∞)× R. (4.5.8)
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Via the conditions on w1 it follows that ŵ1 ∈ C(R) and ŵ1(k) = O(k−2) as |k| → ∞.

Hence, it follows that the solution to (4.5.2)-(4.5.3), obtained by substitution of (4.5.8)

into (4.5.4), is given by

w(x, t) =

∫
R
ŵ1(k)e

−(k2t− p
1−p

φ̂(k) log t)eikxdk, ∀(x, t) ∈ R× [1,∞). (4.5.9)

Recalling that w1 and φ are even, from (4.5.9) it follows that

|w(x, t)| ≤ 2

∫ ∞

0

|ŵ1(k)|e−(k
2t− p

1−p
φ̂(k) log t)dk, ∀(x, t) ∈ R× [1,∞). (4.5.10)

Since φ̂ ∈ C2(R) upon recalling that φ̂(0) = ∥φ∥L1(R) = 1, via Taylor’s theorem, it follows

that

φ̂(k) =

∫
R
φ(ξ) cos(kξ)dξ

= φ̂(0) + φ̂′(0)k +
φ̂′′(θ)

2!
k2

:= 1− k2γ(k), ∀k ∈ R, (4.5.11)

where θ is between 0 and k, and γ ∈ C(R)∩L∞(R). Thus, utilising (4.5.11) and following

the change of variables k =
√
s, (4.5.10) can be re-written as

|w(x, t)| ≤ 2t
p

1−p

∫ ∞

0

|ŵ1(k)|e−tk2(1+γ(k) p
1−p

log t
t )dk

= t
p

1−p

∫ ∞

0

|ŵ1(
√
s)|√
s

e−ts(1+γ(
√
s) p

1−p
log t
t )ds, ∀(x, t) ∈ R× [1,∞). (4.5.12)

Note that |ŵ1(
√
s)|/

√
s is absolutely integrable on [0,∞), and

γ(
√
s)

p

1− p

log t

t
→ 0, uniformly on [0,∞) as t→ ∞. (4.5.13)
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Thus it follows that for each ε ∈ (0, 1
2
), there exists a sufficiently large Tε > 0 such that

∫ ∞

0

|ŵ1(
√
s)|√
s

e−ts(1+γ(
√
s) p

1−p
log t
t )ds ≤

∫ ∞

0

|ŵ1(
√
s)|√
s

e−ts(1−ε)ds ∀t ≥ Tε. (4.5.14)

Provided that ŵ1(0) ̸= 0, it follows from the continuity of ŵ1 that ŵ1 is one-signed on

[0, X), for some X > 0. It follows that |ŵ1(k)| is three times continuously differentiable

on [0, X) and moreover, we note that ŵ′
1(0) = 0. Hence via Taylor’s theorem, |ŵ1(

√
s)|

is once continuously differentiable on [0,
√
X). Thus, by utilising the method used to

establish Watson’s lemma (see for instance [Mil06, Chapter 2]), it follows that

∫ ∞

0

|ŵ1(
√
s)|√
s

e−ts(1−ε)ds = |ŵ1(0)|
Γ
(
1
2

)√
(1− ε)t

+O(t−3/2), as t→ ∞. (4.5.15)

By substituting (4.5.15) into (4.5.12), we obtain

||w(·, t)||L∞(Ω) ≤
|ŵ1(0)|Γ(12)√

1− ε
t

p
1−p

− 1
2 +O(t

p
1−p

− 3
2 ), as t→ ∞. (4.5.16)

By considering w(0, t) in (4.5.9), it follows as in (4.5.10)-(4.5.12) that

w(0, t) = t
p

1−p

∫ ∞

0

ŵ1(
√
s)√
s

e−ts(1+γ(
√
s) p

1−p
log t
t )ds, ∀t ∈ [1,∞). (4.5.17)

By treating cases when ŵ1(0) is positive and negative separately, it follows as in (4.5.13)-

(4.5.16), albeit bounding the exponential term in (4.5.14) from below rather than from

above, that for each ε ∈ (0, 1
2
) we have,

|w(0, t)| ≥
|ŵ1(0)|Γ(12)√

1 + ε
t

p
1−p

− 1
2 +O(t

p
1−p

− 3
2 ), as t→ ∞. (4.5.18)

It follows immediately from (4.5.18) that

||w(·, t)||L∞(Ω) ≥
|ŵ1(0)|Γ(12)√

1 + ε
t

p
1−p

− 1
2 +O(t

p
1−p

− 3
2 ), as t→ ∞. (4.5.19)
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Thus it follows from (4.5.16) and (4.5.19) that, provided that ŵ1(0) ̸= 0, we have

||w(·, t)||L∞(Ω) ∼ |ŵ1(0)|Γ(12)t
p

1−p
− 1

2 , as t→ ∞. (4.5.20)

The estimate in (4.5.20), when substituted into (4.5.1), indicates that for sufficiently

small values of p ∈ (0, 1) we have

∥u(·, t)− u(t)∥L∞(Ω) = O
(
t

3p−1
2(1−p)

)
, as t→ ∞. (4.5.21)

To numerically investigate the exponent of t in (4.5.21), we consider local and non-

local instances of (CP )+. Specifically, for p ∈ (0, 1) we approximate v, as described in

Section 4.4 with µ0 = 0.001, M0 = 1.001, v0(x) = 1[−10,10](x), considering φloc to be the

Dirac δ function for the local case, and

φ(x) =


1
2
, if |x| ≤ 1;

0, otherwise,

for the non-local case, on sufficiently large discretised spatial domains, with sufficiently

small δx > 0, for t ∈ [0, 2000].

From the numerical approximations, we estimated g(tk) = ∥u(·, tk)∥L∞(Ω) for tk =

1000 + 50k for k = 1, . . . , 20. A Pearson correlation coefficient was used to verify a

linear correlation between log(tk) and log(g(tk)). Finally, regression was used to estimate

b = b(p) in:

∥u(·, t)− u(t)∥L∞(Ω) = ∥((u− u)v)(·, t)∥L∞(Ω) ∼ atb, as t→ ∞. (4.5.22)

The numerical approximations for b(p) in (4.5.22) are illustrated, along with the asymp-

totic estimate for b(p) arising from (4.5.21), in Figure 4.4. We observe that the asymptotic

and numerical estimates for b(p) in (4.5.22) are in excellent agreement.
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Figure 4.4: Here we illustrate y(p) = b(p) for b as in (4.5.22) with p ∈ (0, 1) above and
p ∈ (0, 3/5) below. The numerical approximation from the local and non-local numeri-
cal solutions to (CP )+ are shown by the blue crosses and red circles respectively. The
asymptotic approximation (dashed curve) is given by y(p) = 3p−1

2(1−p)
.
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Remark 4.5.1. Let u : Ω∞ → R be the solution to (CP )+ with initial data u0 ∈ L∞(Ω)

and integral kernel φ ∈ L1(Ω). Moreover suppose that u0 and φ are of compact support

and ∥φ∥L1(Ω) = 1. Then, for all p ∈ (0, 1/3)

u(x, t) = ((1− p)t)
1

1−p +O(t
3p−1
2(1−p) ), as t→ ∞, (4.5.23)

and hence, ∥∥∥u(·, t)− ((1− p)t)
1

1−p

∥∥∥
L∞(Ω)

→ 0, as t→ ∞.

Moreover, for p ∈ (1/3, 1) it follows that

∥∥∥u(·, t)− ((1− p)t)
1

1−p

∥∥∥
L∞(Ω)

↛ 0, as t→ ∞. (4.5.24)

Alternatively, from (4.5.23) and (4.5.24), it follows that for (CP )+, the lower bound

((1−p)t)
1

1−p is asymptotically stable as t→ ∞ for p ∈ (0, 1/3) and unstable for p ∈ (1/3, 1)

as t→ ∞. Furthermore, we infer that (CP )+ is globally well-posed in time if p ∈ (0, 1/3).

4.6 Conclusion

In Section 4.2 we assumed throughout that u0 ∈ L∞(Ω)∩C(Ω). If u0 ∈ W 2,∞(Ω)∩C(Ω),

then the derivative estimates in Proposition 4.2.10 and Proposition 4.2.11 are improved,

to be bounded on Ωδ, similarly to those in Proposition 3.3.6 and Proposition 3.3.8 (the

latter differing due to the assumption that f is locally Hölder continuous and not locally

Lipschitz continuous). One can potentially relax the Hölder condition on f to a Dini

condition (as given in [BS23]). To establish this, using the approach herein, one would

need to extend the related derivative estimates for f and the Lipschitz density result.

In Section 4.2 we opted for a construction to show the existence of solutions to (C̃P ).

It should be noted that a solution can also be obtained by the use of the Leray-Schauder

fixed-point theorem (assuming one can show that the conditions of the theorem are sat-
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isfied at a sufficient convex and closed subset of L∞(ΩT ) ∩ C2,1(ΩT ) for the equivalent

integral equation associated with (C̃P ), (see [Fri08, Chapter 7])). However, this method

doesn’t readily support the construction of maximal and minimal solutions for (C̃P ) that

the method herein accommodates.

All the results presented in Section 4.3 are presented for Ω = R. Changing (4.3.3) so

that φ has positive mass on a closed ball centred at 0 and then adapting Lemma 4.3.4

(taking the integral over the closed ball and obtaining a similar bound) would allow for

all results present in Section 4.3 to extend directly to Rd. Moreover, ideally, the condition

that φ has a positive mass centred at 0 can be relaxed to φ having positive mass centered

somewhere in Ω. This relaxation however, adds technicalities to the proof of the lower

bound in Lemma 4.3.5, that require some care to address. To prove global in time well-

posedness for (CP )+ for p ∈ (0.1/3), one could potentially consider compactly supported

initial data and then establish an upper bound for the solution to (CP )+, of the form

((1− p)t)
1

1−p +O(tα), as t→ ∞, for some α < 0, similar to that established for the local

case in [MN15a, Section 9.2]. More broadly, the approaches illustrated in [GV12] could

similarly be used to establish the stability of ((1− p)t)
1

1−p as t→ ∞, which could inform

on the well-posedness or ill-posedness results for (CP )+. We note that the numerical

approximations for a in (4.5.22) were not observed to be in agreement with Γ(1/2)|ŵ1(0)|

in (4.5.20). This is likely due to the large times required to ensure the term in (4.5.13)

is insignificant when applying Watson’s Lemma, but also, for applicable linearization

theory for this class of nonlinear evolution equations to take effect. However, for the

purpose of inferring stability properties of the linearization of (CP )+, and the stability

of u for (CP )+, we reiterate that the computations leading to (4.5.20) which dictate the

dependence on t, suffice.

A more detailed estimate for w(x, t) in (4.5.9) which incorporates the spatial structure

in x would also be of interest. To achieve this, one could use the method of stationary

phase to estimate (4.5.9). In the setting described in Section 4.5 one would need to take

care to consider the poles of φ̂, which is possible to address with specific instances of φ,
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but nontrivial to address with φ as considered therein.

We finally note that the results in Section 4.4 are readily extended for the problem

(CP )+ considered with Ω = Rd, however, in practice the computational complexity grows

exponentially with d, making this not ideal for d > 3.
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CHAPTER 5

CONCLUDING REMARKS

In this short chapter we discuss possible extensions to the results presented in Chapters

2-4, as well as related results which have not been considered herein. We note that even

though, the results presented in Chapters 2-4 are not necessarily useful in ‘real-world

applications’ in the wider context of the theory of PDEs they provide insight on how one

treats problems of this class of non-local problems. Furthermore, the results highlight the

similarities and differences with the local theory established (see [MN15a]) one can expect

when working on generalising results from the local setting.

5.1 General remarks and extensions for Chapter 2

Recall the t−blow-up, as t → 0+, of the coefficients of the integro-differential operator

discussed in Chapter 2, i.e., for any compact subset X ⊆ Ω, the coefficients are O(t−β), as

t → 0+ for x ∈ X. It is understood that β = 1 is, without further spatial constraints on

the coefficients, a limiting case. It would be of interest to consider if greater t−blow-up

would be permitted, provided that further constraints are imposed on solutions to the

integro-differential inequalities or the coefficients of the operators considered.

As discussed in the conclusion of Chapter 2, we expect that Proposition 2.3.14 holds

in more general (unbounded) domains than Rn. Notably, in Proposition 2.3.14, if Ω = Rn

is relaxed to Ω ⊊ Rn, where Ω is unbounded, with sufficiently smooth boundary (e.g. ∂Ω
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is C2), then provided that (2.5.1) is satisfied accordingly, then one can likely establish a

related minimum principle.

Additionally note that the weak minimum principle of Proposition 2.3.14 was estab-

lished under the regularity condition (2.3.74), restricting the coefficients of aij, bi, and

their derivatives, to be bounded and Hölder continuous functions as well as having c and

d be continuous and bounded functions. These conditions were imposed to define the

fundamental solution for adjoint equation, and hence it is worthwhile to inquire:

What are the weakest regularity conditions one can impose on the coefficients of P as

in (2.2.4) and still be able to define fundamental solutions for the adjoint equation?

Answering this question would allow for a natural generalisation of Theorem 2.4.3.

The recently published results in [BS23] provide a starting point to what may be an

optimal result of this type.

5.2 General remarks and extensions for Chapter 3

A natural extension to the well-posedness theory presented in Chapter 3 is to systems of

integro-differential equations. Utilising the ideas presented in Chapter 3 we can obtain

a theorem analogous to Theorem 3.3.16, where the unknown function is represented by

a vector valued function. The changes required to establish such a result are illustrated

here.

Let Ω = Rn and suppose that u : ΩT → Rm is given by

u = (u1, u2, . . . , um) on ΩT , (5.2.1)

with ui ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ) for all i = 1, 2, . . . ,m. We also denote:

∂tu = (∂tu1, ∂tu2, . . . , ∂tum) on ΩT ; (5.2.2)

∆u = (∆u1,∆u2, . . . ,∆um) on ΩT . (5.2.3)
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Furthermore, for i, j = 1, 2, . . . ,m and k = 1, 2, . . . , p, and φijk ∈ L1(Rn) we define

Ju = (J1u, J2u, . . . , Jmu) on ΩT (5.2.4)

with

J iu =


φi11 ∗ u1 φi12 ∗ u1 . . . φi1p ∗ u1

...
...

...

φim1 ∗ um φim2 ∗ um . . . φimp ∗ um

 on ΩT . (5.2.5)

Moreover, for f : Rm × Rm×m×p → Rm we denote

f(u,Ju) = (f1(u, J
1u), f2(u, J

2u), . . . , fm(u, J
mu)) ∀(u,Ju) ∈ Rm × Rm×m×p (5.2.6)

where for all i = 1, 2, . . . ,m, fi is assumed to be locally Lipschitz continuous in the

variables (u, J iu). Now, consider the Cauchy problem,


∂tu = ∆u+ f(u,Ju), on ΩT ;

u(x, 0) = u0(x), ∀x ∈ Ω;

ui ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ),

(CP*)

with prescribed initial data u0i ∈ L∞(Ω) ∩ C(Ω), for all i = 1, 2, . . . ,m. For the ith

equation in (CP*) we have

∂tui = ∆ui + fi(u, J
iu) on ΩT . (5.2.7)

In this setting, and by following the same steps used to obtain Theorem 3.3.16 the

following statement holds.

Theorem. Suppose (CP*), with φijk, f and u0 prescribed, for all i, j = 1, 2, . . . ,m and

k = 1, 2, . . . , p, is a priori bounded on ΩT for 0 < T < ∞. Then, there exists a unique
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solution u : ΩT → Rm to (CP*). Moreover, for all ε > 0, there exists δ > 0 such that, for

all initial data ũ0 and kernels φ̃ijk which are within δ distance of u0 and φijk in the L∞

and L1 norms respectively (for all i, j, k), the unique solution ũ : ΩT → R to (CP*) with

φ̃ijk, ũ0 and f exists, and satisfies ∥u− ũ∥L∞(ΩT ) < ε.

Alternatively, let ΩT = Rn × (0, T ] and aij, bi, f : ΩT → R for 1 ≤ i, j ≤ n be such

that: aij satisfies (2.2.3); and aij, bi and f satisfy sufficient regularity and boundedness

conditions. Then, using the methods described in [Fri08] or [ZC22] to construct classical

solutions to the Cauchy problem

∂tu =
n∑

i,j=1

aij∂xixj
u+

n∑
i=1

bi∂xi
u+ f on ΩT ;

u(x, 0) = u0(x) ∀x ∈ Rn,

one may obtain the (local in time) well-posedness for the following Cauchy problem



∂tu =
n∑

i,j=1

aij∂xixj
u+

n∑
i=1

bi∂xi
u+ f(u, Ju), on ΩT ;

u(x, 0) = u0(x), ∀x ∈ Ω;

u ∈ L∞(ΩT ) ∩ C(ΩT ) ∩ C2,1(ΩT ),

(CP**)

with prescribed initial data u0 ∈ L∞(Ω) ∩ C(Ω) and with Ju : L∞(ΩT ) → L∞(ΩT ) as in

(2.2.1).

5.3 General remarks and extensions for Chapter 4

In Chapter 4 we utilised the comparison theory developed in Chapter 2 to produce a

priori bounds for u. Using those bounds, we were able to demonstrate the local existence

of solutions to (C̃P ). Ideally, criteria on f , which would allow one to ascertain uniform-

in-time a priori bounds on solutions to (C̃P ), that do not rely on the monotonicity of f

with respect to Ju could be established. We recall that such problem-specific uniform-in-

137



time a priori bounds for non-local Fisher-KPP-type equations (see [LCS20, Pen18]) are

somewhat technical, and not necessarily readily generalised.

We note that in the local existence result for (C̃P ), if f is not non-decreasing with

respect to Ju, then the existence of maximal and minimal solutions is not established. We

highlight that an example of (C̃P ) for which it is demonstrated that maximal and minimal

solutions do not exist would be a welcome addition to the literature. An analogous, non-

local, problem to that considered in [MN17] would seem to provide a natural starting

point to address this.

A more comprehensive treatment with an aim of determining the large−t structure of

the solution to (CP )+ can potentially be achieved. A first step in this direction would

be making the formal analysis in Section 4.5 rigorous. Then, the influence of the spatial

dimension d (for Ω replaced with Rd) and the initial data (see Figures 4.2-4.3), could

also be investigated. Following this, a comparable result to Remark 4.5.1 could provide

additional insight on whether or not pattern formations can occur in the large−t structure

of u.

Concerning the numerical approximation in Section 4.4, we highlighted that the ap-

proximation cannot be practically implemented for large spatial dimension d. However,

using recently developed methods (see for example [BHJK23]), potentially a numerical

approximation can be achieved for higher spatial dimensions d, at the cost of the || · ||∞

error estimates being replaced by || · ||p norm estimates.
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