
Improving the Interpretability of
Machine Learning Approaches
with User-generated Data

By

Giuseppe Serra

A thesis submitted to
the University of Birmingham
for the degree of
DOCTOR OF PHILOSOPHY

Centre of Excellence for Research in Computational Intelligence and Applications
School of Computer Science

College of Engineering and Physical Sciences
University of Birmingham

December 2022

University of Birmingham Research Archive

e-theses repository

This unpublished thesis/dissertation is copyright of the author and/or third
parties. The intellectual property rights of the author or third parties in respect
of this work are as defined by The Copyright Designs and Patents Act 1988 or
as modified by any successor legislation.

Any use made of information contained in this thesis/dissertation must be in
accordance with that legislation and must be properly acknowledged. Further
distribution or reproduction in any format is prohibited without the permission
of the copyright holder.

UNIVERSITYDF
BIRMINGHAM

© Copyright by GIUSEPPE SERRA, 2022

All Rights Reserved

ABSTRACT

Given the increasing deployment of automatic decision systems in many critical sce-

narios, understanding and explaining machine-based decision systems has become an impor-

tant problem to be solved. For this reason, recently, there has been an increasing interest in

what we commonly call Explainable AI (XAI). In this thesis, starting from an overview of

the inner mechanisms of deep neural networks, we will tackle the problem of interpretability

from two different perspectives.

First, considering that neural networks usually encode the input features as numer-

ical vector representations hardly understandable by humans, we propose new approaches

to learning interpretable numerical vectors. In view of the availability of large collections of

textual data in different scenarios, we intend to exploit the natural language information to

generate vectors with intrinsic interpretability. In this way, the new numerical vectors will

have the capacity of being effectively used by neural algorithms while also providing human-

understandable information. The proposed methodologies are evaluated on e-commerce data

with textual reviews. In this context, given the so-called neural hype, we also critically ana-

lyze whether the use of complicated and deep architectures is fully motivated in recommender

systems scenarios.

Second, given the inscrutability of the inner reasoning of neural architectures, we

develop a new approach capable of highlighting the portion of input information effectively

used by the model for its predictions. The methodology is based on the so-called learning

to explain paradigm and is applied to graph-based models. The proposed method learns

to select subgraphs that are used in all the computational operations until prediction. The

inherent interpretability of the model overcomes the limitations of common post-hoc expla-

nation techniques. Furthermore, since the resulting explanations are faithful to the model

reasoning, the results can also be used for model debugging and hyperparameter tuning.

i

DEDICATION

Dedicated to my parents.

ii

ACKNOWLEDGMENTS

Words can never be enough to express my gratitude towards my supervisors — Peter Tiňo,

Zhao Xu, and Xin Yao — for their endless support and guidance during this journey. I

learned a lot from each piece of advice, each comment, and each challenge they provided me.

I hope that, in the future, I will be able to carry on their truly inspiring lessons and become

a researcher they would be proud of. I wish to thank my former colleagues in the Machine

Learning group at NEC Labs. Every small chat, discussion, meeting, or presentation, was

a small step to grow in many professional and personal ways. In particular, I would like to

thank Mathias Niepert and Carolin Lawrence. I was lucky enough to collaborate with them,

and they are a brilliant example of what it means to be an excellent researcher. Last but

not least, I would also like to thank all my colleagues involved in the ECOLE project. The

pandemic deprived us of many occasions for physically meeting, but I will always treasure

the valuable experience we shared.

Finally, some personal acknowledgment. I want to thank my girlfriend for always supporting

me through thick and thin. My closest friends for our strong bonding despite the distance.

My parents for their unconditioned love and encouragement. Nothing would have been

possible without the fondness of each of them.

Fundings. This project has received funding from the European Research Council (ERC)

under the European Union’s Horizon 2020 research and innovation programme ECOLE

(grant agreement No. 766186).

iii

Gutta cavat lapidem

[non vi sed saepe cadendo]

Ovidio, ”Epistulae ex Ponto”

Contents

Page

1 Introduction 1

1.1 Motivations . 1

1.2 Contributions and Scope . 2

1.3 Outline . 7

2 Background & Related Works 10

2.1 Graph Neural Networks . 10

2.1.1 Basics of Graphs . 10

2.1.2 Message-passing Graph Neural Networks 13

2.2 Probabilistic Modeling . 15

2.2.1 Basic Definitions . 15

2.2.2 Useful Distributions . 18

2.2.3 Statistical Inference . 21

2.3 Explainable AI . 22

2.4 Related Works . 28

2.4.1 Graph Representation Learning . 28

2.4.2 Topographic Organization in Latent Models 29

2.4.3 Text-based Recommendation Models 30

2.4.4 Explainability Methods for GNNs . 32

i

CONTENTS

3 Improving the Interpretability of Representation Learning Techniques 37

3.1 Motivations . 37

3.2 Model Definition . 38

3.2.1 The Generative Process . 39

3.2.2 Inference and Learning . 42

3.3 Experiments . 44

3.3.1 Datasets and Settings. 44

3.4 Results . 46

3.5 Summary . 54

4 An Interpretable Alternative to Neural Representation Learning 57

4.1 Motivations . 57

4.2 Model Definition . 60

4.2.1 Topological Organization of the Latent Model 61

4.2.2 Inference and Learning . 62

4.2.3 EM-step . 63

4.2.4 Rating Prediction Part . 67

4.3 Experiments . 69

4.3.1 Datasets and Settings . 69

4.4 Results . 71

4.5 Summary . 79

5 Learning to Explain Graph Black-box Models 81

5.1 Motivations . 81

5.2 Model Definition . 84

5.2.1 Problem Statement and Framework 85

5.2.2 Implicit Maximum-Likelihood Learning 88

5.2.3 L2xGnn: Learning to Explain GNNs with I-MLE 88

ii

5.3 Experiments . 91

5.3.1 Datasets and Settings . 91

5.4 Results . 94

5.5 Summary . 101

6 Conclusions 103

A Addendum to Chapter 3 108

B Derivations of EM Algorithm Equations 111

B.1 E-step Derivations . 111

B.2 M-step Derivations . 112

References 117

iii

List of Figures

1.1 An illustration of node embedding learning for graph data. 3

1.2 A graphical illustration of a learning system involving a black-box model. . . 4

2.1 A graphical representation of a graph with 8 vertices and 8 edges. 11

2.2 Example of directed (left) and undirected (right) graph. 12

2.3 Example of connected (left) and disconnected (right) graph. 12

2.4 Example of a Gamma distribution with different scale and rate parameters. . 19

2.5 Example of a Categorical distribution with six possible states. 19

2.6 Example of a Gamma distribution with different scale and rate parameters. . 20

2.7 Example of a Gaussian distribution with µ = 0 and different values of σ. . . 20

3.1 The schematic view of the iGNN model. Dashed boxes represent input (non-

trainable) data. The line connections depict the dependencies between the

variables mentioned in Section 3.2.1. 41

3.2 Cluster organization of the word-vector distributions β·,·,v for different cate-

gories. The clusters analyzed in the right table are highlighted in cyan. . . . 49

3.3 Evaluation of the metric distributions across all datasets. 51

3.4 Interpretability case study on a random node. The figure depicts the node-

specific word distribution; the 15 highest probabilities are highlighted by green

points. Top-15 Words and Node-related Words refer to the sets A and

B defined in (3.12)-(3.13). Black bold represents the overlapping words; blue

bold highlights words that may explain further characteristics of the node. . 52

iv

LIST OF FIGURES

4.1 A graphical example of the conditional distributions P (zku|u) and P (zℓp|p) and

their corresponding two-dimensional grids. 67

4.2 The schematic view of the proposed architecture. After the input layer, we

follow the principles of related CNN-based models for rating prediction tasks.

The output r̂up represents the predicted rating for the given user-product (u,p)

input. 68

4.3 Results of the out-of-sample extension from the category Pet Supplies. The

words in the bottom box are the ones used by the unknown user un to review

a product p in our dataset. The considered words are included in the corre-

sponding vocabulary Vpet. Note that the darker the color, the higher is the

probability assignment to the corresponding latent class. 74

5.1 Workflow of the proposed approach. The upstream model hv learns to assign

weights θ·,· for each edge in the input graph. The edge matrix θ – perturbed

with ϵ – is then utilized as input by the optimization algorithm opt to sample

a subgraph z with specific characteristics. Finally, the downstream model fu

uses only the information about the sampled (sub)graph to make a prediction. 87

5.3 Benzene-NO2 motif. 95

5.2 Visualization of some of the subgraphs selected by L2xGnn for MUTAG0 on

the test set. The solid edges represent the ones sampled by our approach. The

subscript dsc indicates the maximum weight k -edge subgraph problem (i.e.,

possibly disconnected subgraphs). Black, blue, red, and gray nodes represent

carbon (C), nitrogen (N), oxygen (O), and hydrogen (H) atoms respectively. 96

5.4 Example of model analysis based on the generated explanations. 98

5.5 Effect of the edge ratio on the prediction accuracy (%). 99

v

5.6 Comparison of the generated explanations for MUTAG0 on the test set. The

solid edges are the ones considered responsible of a correct prediction. Black,

blue, red, gray, and green nodes represent carbon (C), nitrogen (N), oxygen

(O), hydrogen (H), and chlorine (Cl) atoms respectively. 102

A.1 Schematic view of the encoder-decoder architecture for learning sparse latent

representations. 109

vi

List of Tables

3.1 Statistics of the preprocessed datasets. 46

3.2 MSE for iGNN and state-of-the-art approaches. 47

3.3 Evaluation of retrieved nodes from different datasets. Black bold represents

the matching words; blue bold highlights words that may explain further

characteristics of the node. 56

4.1 Product-class word organization for the Automotive category. 72

4.2 MSE for TLCM and state-of-the-art approaches. 77

5.1 Statistics of the datasets. 92

5.2 Hyperparameter settings for graph classification tasks. H and L represent the

number of hidden units and the number of layers respectively. 93

5.3 Prediction test accuracy (%) for graph classification tasks over ten runs. . . . 94

5.4 Evaluation of explanation accuracy (%) on synthetic graph classification datasets

using a 3-layer GIN architecture. The lowest standard deviation for each met-

ric is underlined. With the exception of L2xGnn, none of the approaches can

guarantee faithful explanations where the explanation is exclusively used dur-

ing message passing operations . 95

5.5 Explanation accuracy (%) on multiple test runs over the same data instances. 97

5.6 Explanation accuracy (%) on different model initializations using a 3-layer

GIN architecture. 98

vii

LIST OF TABLES

viii

Acronyms

a.k.a. also called as.

AI Artificial Intelligence.

c.d.f. cumulative distribution function.

CF Collaborative Filtering.

CNN Convolutional Neural Network.

DLGM Deep Latent Generative Model.

DNN Deep Neural Network.

e.g. Exempli Gratia.

ELBO Evidence Lower BOund.

EM Expectation-Maximization.

FCN Fully Connected Network.

GNN Graph Neural Network.

i.e. Id Est.

ix

Acronyms

i.i.d. independent and identical distributed.

iGNN Interpretable Graph Neural Network.

KL Kullback-Leibler.

L2X Learning to Explain.

MC Monte Carlo.

ML Machine Learning.

MLE Maximum Likelihood Estimation.

MLP Multi Layer Perceptron.

MSE Mean Squared Error.

NLP Natural Language Programming.

NN Neural Network.

p.m.f. probability mass function.

ReLU Rectified Linear Units.

SDLGM Sparse Deep Latent Generative Model.

SGD Stochastic Gradient Descent.

SOM Self-Organizing Maps.

VI Variational Inference.

XAI Explainable AI.

x

Chapter One

Introduction

1.1 Motivations

The impressive advance of machine learning (ML) during the past few years has shifted the

priorities and goals related to ML approaches. In the past, the main objective was to im-

prove the predictive capabilities of the models. Afterward, thanks to modern technological

advancement, we were able to progressively build more powerful and resourceful machines

allowing, in parallel, steady progress of the learning capabilities of the predictive models.

Nowadays, given the impressive predictive performance of neural-based approaches, it is not

particularly complicated to achieve competitive results on many tasks. Therefore, researchers

have started focusing on other challenges and problems related to neural-based models. One

of the main challenges is related to the black-box nature of the models and their complexity.

In fact, along with the improvements in predictive accuracy, also the complexity of the ar-

chitectures is increased substantially. Most of the breakthrough architectures [1]–[4] recently

proposed on several domains correspond to models with billion parameters. Thus, given the

continuous more use of ML models in real-world applications, there is an increasing need for

understanding the rationales of these decision systems since, although having tremendous

1

Introduction

predictive capabilities, there is little comprehension from the human perspective. While this

is entirely acceptable for low-risk scenarios (e.g., movie recommendation), the same does not

hold when we want to integrate these approaches into decision-critical systems. The ubiq-

uitous adoption of computer-aided frameworks in critical tasks requires fully understanding

the models before deploying them in the real world. For this reason, there has been a surge

in research regarding Explainable AI (XAI) and its related aspects.

1.2 Contributions and Scope

Considering the behavior and the learning process of neural networks (NNs), we can face

the explainability problem from different perspectives. Neural networks, for efficient com-

putation, usually transform the input data into some latent numerical representations, also

known as embeddings. Vector space modeling has become increasingly more popular since

the introduction of Word2Vec [5] in 2013 for Natural Language Processing (NLP) tasks.

It originally consisted of representing (i.e., embedding) text tokens in a continuous vector

space where similar items were mapped to closer low-dimensional vector representations in

the embedding space. In this way, semantically similar concepts were supposed to be close

to each other in the vector space allowing the automatic extraction of knowledge from the

input data that would be difficult to discover otherwise.

The idea of automatically learning effective latent representations of the input data was

advantageous and, given the success of Word2Vec, embedding learning has become a well-

established and common procedure in many applications. For example, in graph-based

applications, we have node embedding or graph embedding learning. In the first case, we aim

to encode the nodes as low-dimensional vectors that reflect their closeness, relationships, or

similarities. In this way, for instance, nodes can be projected into a latent space such that

2

Introduction

their geometric relations in the embedding space correspond to some type of similarity in

the original network [6], [7]. Similarly, graph embedding consists of learning low-dimensional

representations of entire graphs such that the ones sharing similar properties or structures

in the original space lie close to each other in the embedding space. A graphical example of

node embedding is provided in Figure 1.1.

4

8

1

3

7
6

2

5

Embedding SpaceOriginal Input

Figure 1.1: An illustration of node embedding learning for graph data.

The dense low-dimensional representations learned by generic embedding methods, although

having a meaning in the latent space, are not easily understandable from the human perspec-

tive. Differently from human-engineered feature vectors, where we exactly know the feature

associated with each dimension of a vector, we are not able to decipher the meaning of the

numerical values associated with a vector generated by the embedding layer of a model.

z4 = [0.43, 0.58, 0.91, 0.01, 0.62, 0.05]

z5 = [0.12, 0.23, 0.56, 0.84, 0.65, 0.72]

z8 = [0.47, 0.64, 0.86, 0.10, 0.75, 0.19]

For instance, if we consider the analysis of the vectors above, one can see their relationships

when projected into a 2-dimensional space (see Figure 1.1) but is not able to gather any valu-

able information from the corresponding numbers since no human-understandable concept

is associated with them. Therefore, by not knowing the meaning of each dimension of the

learned embedding vectors, the evaluation of a single vector is not possible. In this direction,

3

Introduction

following the aforementioned limitation, we will focus on proposing new methodologies that

would help organize these internal representations in a meaningful way. Our goal is to gen-

erate vector representations that can be evaluated both collectively and singularly. A simple

but effective idea is to transform the vector dimensions into features whose meaning can be

understood by humans. In this way, high or low values of certain features suggest what the

model thinks is relevant for the prediction and, in turn, can serve as a human-understandable

explanation of the internal behavior of the models.

Another problem related to neural-based approaches is their opaque nature. In fact, neural

networks are considered black-boxes for which we know the input and the output, but for

which we are not able to inspect and evaluate their internal reasoning process.

Input Output

Black-box Model

Figure 1.2: A graphical illustration of a learning system involving a black-box model.

Since we are unable to explain why a certain prediction has been made, this may be a critical

problem when we employ black-box models in critical tasks. As reported in [8], it has been

shown that the use of non-interpretable machine learning models in real-world applications

has had serious consequences in finance, justice, and many other domains. The issue can

be solved following two different directions: 1) by using intrinsic interpretable models (e.g.,

regression models, decision trees); 2) by implementing methodologies that would open black-

box models in order to understand their internal reasoning.

For the first case, despite the limited expressiveness compared to neural networks, it has

4

Introduction

been shown that the use of complicated and difficult-to-interpret models is not needed in

many real tasks [9], [10]. Following the critical examination of the neural-hype, we will try

to understand whether we really need to implement neural-based approaches or, contrarily,

we can make advantage of simpler and easy-to-interpret methodologies for the same tasks.

For the second case, instead, we aim to explain the reasoning of the neural architectures

in order to increase their clearness and, in turn, human trust. Furthermore, understanding

the behavior of the models brings other advantages. For instance, we can analyze whether

the model is focusing on the expected features or, on the contrary, it is affected by some

learning problem such as shortcut learning [11]. Thus, the analysis of the inner mechanisms

can facilitate model analysis and debug before the deployment of the model in the real world.

Sometimes, the additional information related to our datasets can further help us in improv-

ing the interpretability of the results. Since textual information is one of the most natural

ways to explain concepts to humans, throughout this thesis, whenever available, we will try

to make use of the textual information for improving the interpretability of the results.

Challenges. Instilling interpretability within learning methods brings additional chal-

lenges. For instance, there might be a reduction in the predictive performance of the model.

This is motivated by the fact that interpretability constraints could limit the expressive-

ness of the learning process. Considering the embedding problem, the definition of specific

properties of the values and features associated with the latent vectors could limit their

discriminative power degrading the predictive capacity of the models. Similarly, if we try to

extract a subset of the input features that contribute most to the prediction, by reducing

the information used by the model for inference, we may have a drop in its predictive ability.

An additional challenge, given the ideal properties of an explanation, is how to quantify

the quality of an interpretation without human intervention. On this matter, there is no

consensus regarding a common metric nor regarding the definition of what ‘explainability’

5

Introduction

exactly means. In a more general perspective, in this thesis, we will consider explainable any

method, approach, or mechanism that could help humans increase their trust and compre-

hension of machine learning models. In particular, our intent is to provide an understanding

of the input features considered relevant by the model for making its predictions. Differently

from post-hoc techniques, we aim to generate explanations that faithfully reflect the model

reasoning and can serve as an interpretation of the model outcome. In terms of the human-

readability of the explanations, the goal is to provide explanations that can deliver direct

feedback to all the end-users by considering several aspects such as conciseness, consistency,

and faithfulness.

Research Questions. Considering the facets and challenges of XAI just presented, the

main research questions that we will try to answer are the followings:

RQ1 Trade-off Explainability/Performance - Does the interpretability constraint affect the

learning task performance?

RQ2 Quantifying Explainability - Can we introduce some metrics to help assessing the qual-

ity of the explanatory results without human intervention?

RQ3 Neural Hype and Illusion of Progress - Are deep models and complex representations

really better than more principled and easy-to-interpret approaches?

Summarizing, throughout this thesis, we focus on introducing and proposing new approaches

that could enhance the interpretability of machine learning approaches. The problem is faced

from different perspectives including a) the improvement of latent representation understand-

ability, and b) the comprehension of the inner reasoning of black-box models. Depending

on the task, when possible, we will also make use of the extra human-understandable in-

formation which could further help us in creating explanations easily accessible not only by

researchers but also by non-expert end-users.

6

Introduction

1.3 Outline

As just said, in the remainder of this thesis we will present novel approaches to improve the

interpretability of black-box models, their internal representations, and the corresponding

outputs.

In Chapter 3, we present a novel method for organizing the latent vector representations

learned by neural networks in a meaningful way. The idea is to exploit the additional

textual data available in many domains (e.g., reviews in recommendation systems, medical

narratives in medical applications, or social media posts in social networks) as a human-

understandable source of information to create vector features that perform competitively

in a given prediction task and whose meaning can be understood by humans (RQ1). The

work is analyzed in the context of review data. In a few words, for each user and product,

we aim to generate a word-based vector where each dimension of the latent representation

represents a word contained in a selected vocabulary. The corresponding value represents

the probability that the given word explains user preferences or product characteristics.

Furthermore, we also propose a quantitative evaluation of the generated text-based vectors

in order to further ease the evaluation of the results (RQ2).

In Chapter 4, considering the so-called neural-hype, we want to understand whether we really

need to implement neural (and deep) approaches and employ dense and high-dimensional

embeddings for common predictive tasks, e.g., rating prediction. For this purpose, similarly

to what is presented in Chapter 3, we use the textual information for organizing the user

and product vectors in the latent space. However, differently from the previous approach,

we implement a fully transparent probabilistic method that creates and uses interpretable,

compact and rather sparse representations for rating prediction tasks (RQ3). We compare

the results with popular neural-based approaches and we critically analyze the trade-off

between the predictive capability and interpretability of the considered models (RQ1).

7

Introduction

Finally, in Chapter 5, we change perspective and try to uncover the inner mechanisms

of black-box models. In some cases, human-intelligible information is not available along

with the data. Therefore, we need to find another way to provide explanations for the

output. Instead of focusing on explaining the internal latent representations through text-

based concepts, we propose a method to understand which information is used to make

a certain prediction. The proposed method takes inspiration from the learning to explain

(L2X) paradigm [12] and is applied to graph-based models. Through an approach based on

gradient-based implicit differentiation, we aim to identify the discriminative subset of features

that is effectively used by the model for the prediction (RQ1). Given the properties of the

generated output, since it faithfully reflects the information used to make the predictions,

we can analyze whether the model is focusing on the expected features or if it is affected by

some learning problem (RQ2). Hence, by fully understanding the model reasoning, we can

analyze and debug the model effectively.

Related Publications. The work presented in Chapter 3 has been published as:

- Giuseppe Serra, Zhao Xu, Mathias Niepert, Carolin Lawrence, Peter Tiňo, and Xin

Yao. "Interpreting Node Embedding with Text-labeled Graphs." In 2021 International

Joint Conference on Neural Networks (IJCNN), pp. 1-8. IEEE, 2021 [13].

The work presented in Chapter 4 reports unpublished work, currently under review as a

journal article:

- Giuseppe Serra, Peter Tiňo, Zhao Xu, Xin Yao, "An Interpretable Alternative to Neural

Representation Learning for Rating Prediction – Transparent Latent Class Modeling

of User Reviews"

The work presented in Chapter 5 reports unpublished work, currently under review as a

conference paper. A preprint of the work has been published as:

8

Introduction

- Giuseppe Serra and Mathias Niepert, "L2XGNN: Learning to Explain Graph Neural

Networks", arXiv preprint arXiv:2209.14402, 2022 [14].

Additional discussions and perspectives throughout the thesis are taken from other publi-

cations or contributed articles. The ideas and claims of these works can be integrated as

additional features to improve the quality of the proposed approaches, but are not the core

topic of the thesis. In particular, some related discussions are inspired by concepts taken

from the following publications:

- Zhao Xu, Daniel Onoro-Rubio, Giuseppe Serra, and Mathias Niepert. "Learning Spar-

sity of Representations with Discrete Latent Variables." In 2021 International Joint

Conference on Neural Networks (IJCNN), pp. 1-9. IEEE, 2021 [15]

- Bhushan Kotnis, Kiril Gashteovski, Julia Gastinger, Giuseppe Serra, Francesco Ale-

siani, Timo Sztyler, Shaker Ammar, Na Gong, Carolin Lawrence, Zhao Xu. "Human-

Centric Research for NLP: Towards a Definition and Guiding Questions." In HCI+NLP

Workshop at 2022 Annual Conference of the North American Chapter of the Associa-

tion for Computational Linguistics (random author order, NAACL) [16]

9

Chapter Two

Background & Related Works

2.1 Graph Neural Networks

In this section, we will review the basic concepts of graph theory before digging into a

more detailed description of methodologies for graph-based machine learning. After the

introductory part, taken from different sources [17], [18], we will introduce the concept of

message-passing neural networks, which is of fundamental importance in the development of

the most popular graph neural networks (GNNs) techniques.

2.1.1 Basics of Graphs

Definition 2.1.1 (Graph). A graph G = (V,E) consists of two non-empty sets V and E. V

is the set of elements called vertices (or nodes), while E contains the set of unordered pairs

of adjacent elements of V called edges. More formally, two vertices u, v are defined adjacent

if the edge e = (u, v) ∈ E. Sometimes, especially in machine learning scenarios, nodes and

edges are associated with some additional features. Therefore, we might have additional data

that contains such information in form of matrices. Let denote with ng = |V | and eg = |E|

10

Background & Related Works

the number of nodes and edges in the graph respectively. We will call X ∈ Rng×dn the

feature matrix that associates each node of the graph with a dn-dimensional feature vector,

and, similarly, with E ∈ Reg×de the feature matrix associated with each edge e in G.

4

8

1

3

7
6

2

5

Figure 2.1: A graphical representation of a graph with 8 vertices and 8 edges.

Definition 2.1.2 (Adjacency Matrix). The adjacency matrix A ∈ {0, 1}ng×ng summa-

rizes the information about adjacent vertices of a graph in a more convenient way. Each

entry Auv is equal to 1 if the nodes are adjacent (i.e., there exists an edge (u, v)), and 0

otherwise. Depending on the directedness of the graph, the adjacency matrix can be sym-

metric (undirected graph) or not (directed graph). Below, is the adjacency matrix of the

graph sketched in Figure 2.1.

A =



1 1 1 1 0 0 0 0
1 1 0 0 1 0 0 0
1 0 1 0 0 1 0 0
1 0 0 1 0 0 1 1
0 1 0 0 1 0 0 0
0 0 1 0 0 1 1 0
0 0 0 1 0 1 1 0
0 0 0 1 0 0 0 1


Definition 2.1.3 (Directed/Undirected Graph). A graph G is directed when E is a set

of ordered pairs of nodes. In this case, each edge (u, v) has a source node u and a target

node v which define the direction of the edge. Intuitively, when dealing with undirected

graphs, (u, v) and (v, u) are interchangeable. In the directed case, instead, (u, v) ̸= (v, u).

Consequently, they represent two distinct edges and may not exist simultaneously. In real-

world applications, we can use undirected graphs to represent, to name a few, biological

11

Background & Related Works

networks (e.g., molecules) and social networks (e.g., Facebook) where the connections are

non-directional. Instead, directed graphs can be used to model directional social networks

(like Twitter), road maps or electrical circuits. From now on, we will consider and ana-

lyze undirected graphs. Thus, whenever we consider an edge (u, v), we are considering the

edge in both directions (u, v) and (v, u). Consequently, for the definition given before, the

corresponding adjacency matrix A is symmetrical.

4

8

1

3

7
6

2

5

4

8

1

3

7
6

2

5

Figure 2.2: Example of directed (left) and undirected (right) graph.

Definition 2.1.4 (Connected/Disconnected Graph). An undirected graph G is con-

nected if there exists a path between each pair of vertices. In other words, this means that

the graph consists of a single connected component where each node can be reached starting

from another vertex by means of the existing edges. Alternatively, when we have more than

one connected component, the graph is said disconnected.

4

8

1

3

7
6

2

5

4

8

1

3

7
6

2

5

Figure 2.3: Example of connected (left) and disconnected (right) graph.

Definition 2.1.5 (Graph Motif). A motif is a recurrent and statistically significant sub-

graph pattern that repeats itself many times among various graphs. For example, for chem-

ical networks, a motif might be a specific chemical group that always leads to a specific

12

Background & Related Works

category of compounds (e.g., aromatic/non-aromatic compounds). Hence, the notion of mo-

tif is particularly important when we want to discover relevant patterns on larger graphs. As

we will see in Chapter 5, by discovering discriminative subgraph motifs used by an ML model

to differentiate and recognize different graph classes, we can improve the interpretability of

both the results and the model itself.

2.1.2 Message-passing Graph Neural Networks

Although many GNNs exist, the majority of them can be categorized as message-passing

graph neural networks [19]. Let G(V,E) be a graph with n = |V | the number of nodes. Let

X ∈ Rn×d be the feature matrix that associates each node of the graph with a d-dimensional

feature vector and let A ∈ Rn×n be the adjacency matrix. GNNs have three computations

based on the message passing paradigm [20] which is defined as

hℓ
i = γ

(
hℓ−1
i ,□j∈N (vi)ϕ

(
hℓ−1
i ,hℓ−1

j , rij
))
, (2.1)

where γ, □, and ϕ represent update, aggregation and message function respectively.

Propagation step. The message-passing network computes a messagemℓ
ij = ϕ(hℓ−1

i ,hℓ−1
j , rij)

between every pair of nodes (vi, vj). The function takes in input vi’s and vj’s representations

hℓ−1
i and hℓ−1

j at the previous layer ℓ− 1, and the relation rij between the two nodes.

Aggregation step. For each node in the graph, the network performs an aggregation

computation over the messages from vi’s neighborhood N (vi) to calculate an aggregated

message M ℓ
i = □({mℓ

ij | vj ∈ N (vi)}). The definition of the aggregation function differs

between methods [20]–[23].

Update step. Finally, the model non-linearly transforms the aggregated message M ℓ
i

and vi’s representation from previous layer hℓ−1
i to obtain vi’s representation at layer ℓ as

hℓ
i = γ(hℓ−1

i ,M ℓ
i). The final embedding for node vi after L layers is zi = hL

i and is used for

node classification tasks. For graph classification, an additional readout function aggregates

13

Background & Related Works

the node representations to obtain a graph representation hG. This function can be any

permutation invariant function or a graph-level pooling function [24]–[29]. Many aggrega-

tion schemes have been proposed lately [20]–[22], [30]–[32], however, in Chapter 5, we will

make use of three particular neighborhood aggregation schemes, namely Graph Isomorphism

Networks (GINs) [22], Graph Convolutional Networks (GCNs) [30], and GraphSAGE [20].

The choice is motivated by the fact that, following a general trend in GNN explainability,

the explainers are usually tested on GNNs with a convolutional flavour [33]. For Graph

Isomorphism Networks, the message passing operation for node vi is

hℓ
i = γℓ

(1 + ϵℓ
)
· hℓ−1

i +
∑

j∈N (vi)

hℓ−1
j

 , (2.2)

where γ represents a multi-layer perceptron (MLP), and ϵ denotes a learnable parameter.

For Graph Convolutional Networks, instead, the message passing operation is defined as

hℓ
i = γℓ

(
D̃− 1

2 ÃD̃− 1
2hℓ−1

i Wℓ−1

)
, (2.3)

where γ represents an activation function, Ã = A + In represents the adjacency matrix A

with added self-loops and In the identity matrix, D̃ii =
∑

j Ãij the diagonal degree matrix,

and Wℓ−1 a learnable weight matrix at layer ℓ− 1.

Finally, for GraphSAGE, the message passing operation is defined as

hℓ
i = γℓ

(
Wℓ−1 · f

(
hℓ−1
i ,

{
hℓ−1
j ∀j ∈ N (vi)

}))
, (2.4)

where γ represents a non-linear activation function, Wℓ−1 represents a weight matrix, and

f represents an aggregation function such as Sum, Max, or Mean.

We will write Hℓ = Gnnℓ(A,Hℓ−1) as a shorthand for the application of the ℓth layer

of the GNN under consideration.

14

Background & Related Works

2.2 Probabilistic Modeling

In this section, we provide a refresh of probability concepts used throughout the method-

ological chapters. A more detailed description of the theory presented in this part can be

found in the following books [34], [35].

2.2.1 Basic Definitions

Definition 2.2.1 (Probability Space). In probability theory, a probability space of a

random process (or experiment) is fully defined by the triple (Ω,A, P). The sample space Ω

defines the set of all possible outcomes of the experiment. The event space A ⊆ Ω is the set

of events we may consider. The function P (·) represents a probability measure which assigns

a probability for each event in the event space.

Definition 2.2.2 (σ-algebra). The event space A is required to be a σ-algebra. More

specifically, A is a σ-algebra if:

1. ∅ ∈ A

2. ∀A ∈ A =⇒ (Ω/A) ∈ A (closed under complements)

3. ∀ {An}n∈N =⇒
⋃

r∈NAr ∈ A (closed under countable unions)

As a consequence of these properties, we also have the following ones:

4. Ω ∈ A

5. ∀ {An}n∈N =⇒
⋂

r∈NAr ∈ A (closed under countable intersections)

Definition 2.2.3 (Probability Measure). A probability measure P is a measure on (Ω,A)

which assigns to each event A ∈ A, a probability P (A) such that:

15

Background & Related Works

1. P (A) ≥ 0 ∀A ∈ A (non-negativity)

2. P (∅) = 0

3. P (
⋃

r∈NAr) =
∑

r∈N P (Ar) (σ-additivity)

4. P (Ω) = 1

The first three properties generally define a measure. The last one is specifically tailored for

defining the probability measure. A closely related concept is called random variable which

is a function that maps a possible outcome of the event space to a measurable space.

Definition 2.2.4 (Random Variable). A random variable X is a measurable function

X : Ω → R which maps an outcome ω ∈ Ω to a measurable space E ⊆ R. More generally,

we may be interested in computing a probability for a group B of points ωi ∈ Ω (for example,

an interval). In order to compute P (X ∈ B), X should be measurable, i.e., X−1(B) ∈ A.

From this, we can infer that:

P (X ∈ B) = P (X(ω) ∈ B) = P ({ω ∈ Ω : X(ω) ∈ B}) = P (X−1(B)). (2.5)

Definition 2.2.5 (Cumulative Distribution Function). In order to identify the proba-

bility distribution related to a random variable X, we can use the cumulative distribution

function (c.d.f.) FX(x) defined as

FX(x) = P (X ≤ x) x ∈ R. (2.6)

Associated with a c.d.f. there is another function that, depending on the discreteness of the

random variable, we call in different ways. When the random variable is discrete, that is,

when it can take values from a countably infinite set S such that P (X ∈ S) = 1, we consider

the probability mass function (p.m.f.) defined as p(xr) = P (X = xr). For continuous random

variables, instead, we define the probability density function (p.d.f.) as fX(x) = ∂
∂x
FX(x).

We can exploit these two definitions to obtain the probability P (X ∈ B) =
∑

xr∈B p(xr) for

16

Background & Related Works

the discrete case, and P (X ∈ B) =
∫
x∈B fX(x)dx in the continuous case. The set of events

xi of a random variable X and the corresponding probabilities P (X = xi) fully define a

probability distribution.

For each random variable, in order to obtain a probability distribution, the necessary and

sufficient conditions are:

P (X = x) ≥ 0;
∑

x
P (X = x) = 1 (discrete case), (2.7)

fX(x) ≥ 0 :

∫ ∞

−∞
fX(x) = 1 (continuous case). (2.8)

In most of the cases, however, we are interested in more than a single event. For multidi-

mensional random variables, the c.d.f. is

FX1,...,Xk
(x1, ... , xk) = P (X1 ≤ x1, ... , Xk ≤ xk) = P ([X1 ≤ x1] ∩ ... ∩ [Xk ≤ xk]). (2.9)

(For the rest of the section, we will refer to the discrete case. The definitions are valid for

the continuous case by changing the notation accordingly.)

The corresponding joint probability distribution is denoted by P (X1 = x1, ... , Xk = xk).

Then, if the set of random variables is independent, the joint probability is given by
∏k

i=1 P (Xi =

xi). Otherwise, when an event Y = y conditions the realization of the collection of random

variables Xi, we have
∏k

i=1 P (Xi = xi|Y = y).

Definition 2.2.6 (Bayes’ Rule). Given an event E and a finite set of non-compatible

events Ai, if E ⊂
⋃

iAi and P (E) ̸= 0, then

P (Ai|E) =
P (Ai)P (E|Ai)

P (E)
=

P (Ai)P (E|Ai)∑
j P (Aj)P (E|Aj)

, (2.10)

where P (Ai), called prior probability, represents the probability we assume before the real-

ization of a certain event E. The posterior distribution P (Ai|E), instead, constitutes the

probability of Aj when E occurred. The equation shows how the realization of E modifies the

probability of Ai from P (Ai) to P (Ai|E) through P (E|Ai) which is the so-called likelihood.

17

Background & Related Works

When dealing with two-dimensional random variables (X, Y), we might be interested in

getting information about the probability distribution of one of the two random variables.

This process is called marginalization and the result is called marginal distribution.

Definition 2.2.7 (Marginal Distribution). Given two random variables (X, Y), the

marginal distributions of X and Y are given by:

px· = P (X = x) =
∑

y
P (X = x, Y = y) (2.11)

p·y = P (Y = y) =
∑

x
P (X = x, Y = y) (2.12)

This can be easily extended to three or more dimensions. Moreover, we might be interested

in computing some statistics of X, such as the average value assumed by X.

Definition 2.2.8 (Expected Value). The expected value E of a random variable X is

defined as:

E(X) =
∑

x
xP (X = x) (discrete case) (2.13)

E(X) =

∫
R
xfX(x) (continuous case) (2.14)

where we assume, for simplicity, that the sum (or integral) is convergent.

2.2.2 Useful Distributions

Binomial Distribution. The binomial distribution is a discrete probability distribution

that models the number of k successes in n trials for a variable with p the probability of

success and q = 1− p the probability of failure. Its p.m.f is

P (x|n, p) =
(
n

k

)
pkq(n−k). (2.15)

18

Background & Related Works

0 10 20 30 40
x

0.0

0.1

0.2

pr
ob

ab
ili

ty
 m

as
s

n = 40, p = 0.1
n = 40, p = 0.8
n = 20, p = 0.5

0 10 20 30 40
x

0.0

0.5

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

n = 40, p = 0.1
n = 40, p = 0.8
n = 20, p = 0.5

Figure 2.4: Example of a Gamma distribution with different scale and rate parameters.

Multinomial Distribution. The multinomial distribution is a generalization of the bino-

mial distribution. Given k categories, it models the number of successes xk of each category

in n trials, where each of the k category has a fixed success probability pk. The p.m.f. is:

P (x1, ... , xk|n, p1, ... pk) =
n!

x1! · · ·xk!
p
(x1)
1 · · · p(xk)

k , with
∑

k
xk = n. (2.16)

Categorical Distribution. The categorical distribution represents a special case of the

multinomial distribution where k > 2 and n = 1. Consequently, the p.m.f. can be simply

obtained as:

P (X = i|p1, ... pk) = pi. (2.17)

1 2 3 4 5 6
x

0.0

0.1

0.2

0.3

pr
ob

ab
ili

ty
 m

as
s

0 1 2 3 4 5 6
x

0.0

0.5

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

Figure 2.5: Example of a Categorical distribution with six possible states.

19

Background & Related Works

Gamma Distribution. The Gamma distribution Gamma(α, β) is a continuous probabil-

ity distribution with the following p.d.f.:

P (x|α, β) = βα

Γ(α)
e−βxxα−1, x > 0, (2.18)

with α the shape parameter, β the rate parameter, and Γ(α) = (α− 1)!.

0 10 20 30 40
x

0.0

0.1

0.2

pr
ob

ab
ili

ty
 d

en
si

ty

= 5, = 3
= 5, = 2
= 2, = 2

0 10 20 30 40
x

0.0

0.5

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

= 5, = 3
= 5, = 2
= 2, = 2

Figure 2.6: Example of a Gamma distribution with different scale and rate parameters.

Gaussian Distribution. The Gaussian distribution N (µ, σ2) is a continuous probability

distribution defined as:

P (x|µ, σ2) =
1√
2πσ2

e−(
x−µ

σ2)
2

(2.19)

where µ ∈ R is the mean value and σ2 > 0 represents the variance.

4 2 0 2 4
x

0.0

0.2

0.4

pr
ob

ab
ili

ty
 d

en
si

ty

= 1
= 2
= 1.5

4 2 0 2 4
x

0.0

0.5

1.0

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty = 1
= 2
= 1.5

Figure 2.7: Example of a Gaussian distribution with µ = 0 and different values of σ.

20

Background & Related Works

2.2.3 Statistical Inference

There are some analogies between statistical inference and machine learning. In particular,

the main objective of inference learning is to learn the parameters of the distribution we

assume have generated the available data. Similarly, in a machine learning scenario, we

want to find the parameters of the model that optimize an objective function. Now, we will

introduce further concepts and methodologies that are used throughout this thesis.

Maximum Likelihood Estimation. One of the most popular techniques to find an es-

timate of the parameters of a distribution is the maximum likelihood method. Assuming the

samples are independent and identical distributed (i.i.d.), the likelihood function is:

L(θ|x) = L(θ1, ... ,θk|x1, ... ,xk) =
n∏
i=i

f(xi|θ1, ... ,θk) (2.20)

The goal of maximum likelihood estimation (MLE) is to find a value θ̂ that maximizes the

likelihood function. Therefore, we aim to find:

θ̂ = argmax
θ∈Θ

L(θ|x) (2.21)

where Θ represents the parameter space. However, given the factorial nature of L(θ|x), for

convenience, we usually work with the so-called log-likelihood ℓ(θ|x) = logL(θ|x). We will

make use of the (negative) log-likelihood in Chapters 3 and 4, where it will act as a loss

function for learning the textual information available.

Expectation-Maximization Algorithm. An alternative to maximum likelihood esti-

mation is the so-called Expectation-Maximization (EM) algorithm [36]. It iterates the Ex-

pectation (E) and Maximization (M) steps until convergence and enables maximum likeli-

hood estimation in latent variable models. More formally, the EM algorithm considers the

21

Background & Related Works

’complete-data’ likelihood L(θ|X,Z) as an optimization objective to find a solution for the

’incomplete-data’ likelihood L(θ|X). In the E-step, the algorithm evaluates the current es-

timates of the model parameters by computing the expected values of L(θ|X,Z). In the

M-step, the algorithm maximizes the expectation computed in the E-step by re-estimating

the model parameters. The iterative procedure is guaranteed to converge to the MLE. Start-

ing from some initialized values of the parameters θ(0), the iterative process consists of the

following steps:

1. Compute the expected value Q(θ|θ(t)) of the log-likelihood ℓ(θ|X,Z) using the current

estimates of θ(t):

Q(θ|θ(t)) = EZ|X,θ(t) [ℓ(θ|X,Z)] (2.22)

2. Find the re-estimated parameters θ(t+1) that maximize Q(θ|θ(t)):

θ(t+1) = argmax
θ

Q(θ|θ(t)) (2.23)

3. Iterate steps 1 and 2 until convergence.

However, as we will see in Chapter 4, the information about the latent variable Z might be

unknown. In this case, during the E-step, the algorithm evaluates the current estimates of

the model parameters by computing the expected values of the latent variables Z. Thus,

although the principle remains unvaried, the iterative process is slightly different than before.

2.3 Explainable AI

The adoption of complicated machine learning methods (e.g., deep neural networks) in real-

world applications has recently led to an increasing interest in Explainable AI (XAI) [37].

22

Background & Related Works

In fact, the improper use of accurate-but-opaque machine learning models may lead to high-

impact risks since humans could not fully understand (and, consequently, evaluate) the

underlying system or the resulting output. Thus, practical employment of machine learning

methods in industrial, medical, and socio-economical applications requires a better under-

standing of these opaque models through XAI. In this framework, the explanations represent

the tool by which we can close the gap between humans and automatic decision models [38].

To introduce the main definitions, challenges, and general taxonomy of XAI, we borrow

concepts taken from books, surveys, and taxonomic papers on XAI [8], [39]–[42].

Definition 2.3.1 (Intrinsic/Post-hoc Explainability). We refer to intrinsic interpretabil-

ity when: a) we employ models which are interpretable for definition. This includes, for

instance, the use of linear models, decision trees, and rule-based approaches; b) we are able

to reduce the complexity of the model during training. For example, a reduced complex-

ity can be achieved through a model that learns how to select a subset of input features

leading to the same output as if we were using the complete input information. Post-hoc

interpretability alludes, instead, to the practice of using a simpler, interpretable model (i.e.,

a surrogate model) to explain an already trained black-box model.

Definition 2.3.2 (Model-specific/Model-agnostic). A model-agnostic interpretable model

is an XAI approach that can be used on different categories of models since it does not need

any specific requirement to be applied. Usually, model-agnostic approaches do not require

access to the internal mechanisms of the model we want to explain. These models make

use of the input features and the corresponding predicted labels to infer the most influential

features for the outputs. Contrarily, model-specific approaches are specifically tailored to

explain a certain type of predictive model. As such, they need to be adapted accordingly in

order to be used for explaining other methods.

Definition 2.3.3 (Global/Local-level Explanation). We obtain global interpretability

when we can understand and follow the entire logic of the predictive model leading to all

23

Background & Related Works

the possible outcomes. An example of global explainability is given by decision trees where,

through a flowchart, we can analyze each possible outcome given the considered attributes.

Instead, we define local explanations as the ones that allow us to explain only a particu-

lar input’s prediction at a time. Most of the XAI approaches generate local explanations,

which can be further divided into categories depending on the explanation’s properties. The

explanations that highlight parts of the input are usually referred to as feature-based ex-

planations. Then, the example-based explanations show the most similar training instances

to the prediction. Finally, the counterfactual-based explanations attempt to generate an

explanation such that we can understand the differences in the input features that would

lead to a change in the prediction label.

Properties. According to [39], an explanation should consider the following aspects:

• Interpretability : the term refers to which extent a human can understand the provided

explanation. As already mentioned, the main challenge is represented by the difficulty

in measuring the degree of human-understandability. Given the different nature an

explanation can have (textual, visual, gradient-based), it is challenging to have a single

metric that could evaluate this aspect. In fact, no common metric exists so far.

• Accuracy : it refers to the predictive accuracy of the interpretable model. As explained

before, imposing an interpretability constraint during training could affect the flexibil-

ity and, in turn, the predictive capabilities of the model.

• Fidelity : this term refers to the ability of an interpretable model to mimic the behavior

of the black-box one that we want to explain. This property is implicitly obtained when

using transparent and faithful models. Contrarily, it is a property we need to take into

account when dealing with post-hoc explanation methods.

• Reliability/Consistency : the explainable model should be able to maintain certain

24

Background & Related Works

levels of precision independently from the model parameter initialization, and high

consistency if the explanatory algorithm is applied to the same data instance multiple

times.

• Conciseness : the explanations, to be easily understandable by the end-users, should be

concise. In fact, as reported in [43], sparse explanations would be useful since humans

can handle only about 10 cognitive entities at the same time.

An additional property that we should consider, especially in the post-hoc scenario, is the

faithfulness of the explanations. Intuitively, an explanation is faithful when it can identify

the exact features that cause a certain prediction. However, there might be some discrepancy

between the explanation generated by a post-hoc approach and the actual information used

by the model for the same prediction. In fact, even though the post-hoc explanation can

match the prediction of the original model, this does not necessarily guarantee that the

model uses the same information for its prediction. A discussion about faithfulness applied

to explanations for graph neural networks can be found in Section 2.4.4.

Explainability Evaluation. As reported in [41], there is no consensus about what ex-

plainability is. The reason is that, depending on the task and the data we have, the inter-

pretability objective could be different. As a consequence, a general evaluation framework

for explainability does not exist. This, probably, remains one of the main challenges yet to be

addressed in XAI. Nevertheless, some efforts have been made during the last few years [44],

[45]. For instance, in [45], the authors propose three different approaches for interpretability

evaluation based on the type of task (real, simplified, or proxy) and the presence (or not) of

human evaluators. To have humans evaluate the quality of the explanations for real tasks

looks natural, but the costs in terms of time and money do not always make it feasible in

research. On the contrary, generating easier tasks or synthetic data that can be automat-

ically evaluated through some computational metrics may not reflect the complexity of a

25

Background & Related Works

real task and, therefore, cannot be effectively used for practical applications. Similar to the

faithfulness problem, if we use ground-truth labeled data (i.e., data for which we assume to

know the expected explanations), we could end up having some inconsistencies when using

post-hoc techniques [46]. In fact, considering the general evaluation pipeline of the explana-

tion methods, there might be a mismatch between the ground truth evidence and the actual

explanations used by the model. Ground-truth datasets do not consider the weights learned

by the model but, instead, represent the explanation that we assume the explainer would

generate for a certain input. Consequently, if a post-hoc explanation perfectly matches the

ground-truth, this does not assure we are actually explaining the model reasoning. Again,

the problem is no longer noteworthy in case we use inherent interpretable models.

Common Post-hoc XAI Techniques. Recent advances in explainable AI propose many

post-hoc interpretability approaches which differ depending on the setting and application

domain. LIME [47] and SHAP [48] are some of the most popular approaches for local ex-

plainability. LIME first generates a new dataset consisting of perturbed samples. Then,

it uses a surrogate interpretable model to understand the changes in the outcome when a

variation of the original data point is used. SHAP is based on principles of game theory and

uses the Shapley values to compute a contribution score for each input feature. By aggregat-

ing the computed Shapley values, the approach can also be used for global interpretability.

Many extensions of these works have been presented lately [49]–[51]. Attribution methods,

instead, try to explain the output by highlighting characteristics of the output itself (e.g.,

textual explanations with highlighted relevant words) or by highlighting characteristics of

the input that strongly influence the result. Similarly to the previous methods, the most

popular approaches for feature attribution attempt to understand which portion of the input

conditions the output. CAM [52], Integrated Gradients (IG) [53] and GradCAM [54] gener-

ate saliency maps based on the computed input attribution scores for Convolutional Neural

Networks (CNNs). While CAM and GradCAM were specifically tailored for computer vision

26

Background & Related Works

tasks, IG has broader applicability. In fact, it only requires the differentiability of the model.

In this way, it can compute the gradients of any differentiable model in order to assign the

relevant input features with the corresponding output. Following a similar direction, [55]

estimates the influence of training examples in neural matrix factorization models through

gradient analysis. A comprehensive review of explainability methods for GNNs is presented

in Section 2.4.4

An interesting class of interpretable models is represented by logic-based methods. Logic-

based approaches create falling rules and interpretable decision sets. In [56], inspired by

the need for model explanations in healthcare applications, the authors propose a Bayesian

framework to learn falling rule lists which consist of an ordered list of if-then rules determining

which training sample should be classified by each rule. [57] proposes to learn decision sets

(i.e., independent sets of if-then rules) through an objective function that simultaneously

optimizes the accuracy and interpretability of the rule.

Interpretable by Design Models. Other relevant works in the literature face the inter-

pretability problem from different angles. For instance, mechanistic interpretability seeks to

understand the inner mechanisms of neural networks by reverse engineering their weights [58].

This approach has been recently used to understand the behaviour of large-language models

(LLMs) based on transformers [59]. In Chattopadhyay, Slocum, Haeffele, et al. [60], instead,

the authors propose to learn predictors by using a composition of interpretable queries to

create a model that is interpretable by design. This is similar, in the intent of creating

interpretable by desing approaches, to the learning to explain (L2X) paradigm presented

in Chen, Song, Wainwright, et al. [12]. In this work, the authors propose an instance-wise

feature selection method that learns to select a small subset of the input features during

training making the model interpretable and the generated explanations faithful by design.

27

Background & Related Works

For a comprehensive discussion on methods for explainable AI, we refer the reader to the

surveys [39], [40], [61], [62].

2.4 Related Works

In this section, we review the literature related to the methodological chapters that will fol-

low. For each topic, after a general overview of the state-of-the-art, we will discuss limitations

and will provide connections with the methods proposed in the next chapters.

2.4.1 Graph Representation Learning

The first attempts to learn low-dimensional representations of graphs were using traditional

graph embedding techniques [63]–[66]. After that, more sophisticated methodologies were

proposed. Among the approaches for network embedding, the pioneer Deepwalk [67] is un-

doubtedly one of the most popular. It samples a set of random walks from a graph as

sentences and learns node embedding with the SkipGram method [5]. Deepwalk is then

extended by LINE [68] to address large-scale networks, and by node2vec [69] to model flexi-

ble network neighborhood of nodes. Variations of these works have been recently presented

[70]–[72]. Another line of GNN research is TransE [73] and its variants [74], [75]. They gen-

erally model graph instances as functions of embedding vectors. Differently, following the

message-passing paradigm, graph convolutional neural network and its extensions [30], [76],

[77] directly learn a single embedding function which is used to generate all the latent vector

representations. However, none of the aforementioned methodologies takes into account any

source of human-understandable information such as, for instance, textual data. To include

textual data into the embedding, to name a few, [78] learns embeddings of both textual and

network structure, and concatenates them to obtain a single embedding for each node. [79]

28

Background & Related Works

proposes an extension of DeepWalk that includes the textual information associated with the

vertices, and [80] uses a word alignment mechanism to absorb impacts from proximate texts

more effectively. In these cases, the textual information is used to improve the quality of the

resulting node representations, but it is not exploited to generate explanations of the node

embeddings. In this direction, there are few works that aim to improve the interpretability

of latent representations. Existing works mainly endeavour to explain the embedding dimen-

sions as clusters in an implicit manner, e.g., employing Canonical Polyadic decomposition

[81], or assigning a learned cluster to each vector dimension [82]. Unlike these approaches, the

method proposed in Chapter 3 focuses on improving the interpretability of node embeddings

in an explicit way. The extra-textual information associated with the graphs is employed to

generate word-based vector explanations. In this way, our method maps the latent space of

node embeddings into a textual space through such word-based vectors. Consequently, the

additional available textual information works as a human-understandable source to generate

explanations of node embeddings.

2.4.2 Topographic Organization in Latent Models

Kohonen’s seminal work on self-organizing maps (SOM) [83] was introduced in the 1980s.

Given the ability to produce low-dimensional representations of high-dimensional data while

providing a good approximation of the input space, many extensions and advancements

have been proposed in later years. Generative topographic mapping (GTM) [84] is one of

the most popular probabilistic alternatives to SOM. GTM provides a generative extension

of the SOM, assuming a specific discretized non-Gaussian latent prior. Applications and

extensions of SOM span many different domains. For example, in [85], the author proposes

a data-driven, statistical approach to visualize large collections of text documents using two-

dimensional maps. In collaborative filtering (CF) applications, [86] introduce a topographic

29

Background & Related Works

organization of latent classes for rating preferences. Differently from their work, where the

user preferences are organized using the numerical information, in Chapter 4, we propose

to induce a topographic organization of both user and product latent classes exploiting the

associated textual information. As a result, we obtain two separate grids (one for users

and one for products) reflecting the word patterns of the data. As reported in [85], the

most nuanced and sophisticated medium to express our feelings is our language. Hence,

for rating prediction tasks, we believe that it is important to understand and organize the

review information in a structured and intuitive way.

2.4.3 Text-based Recommendation Models

Despite the statistical foundation and the nice visualization capabilities of SOMs, with the

advent of more powerful and capable machines, researchers started focusing more and more

on developing deep neural architectures for recommendation. More generally, for this task,

one of the most popular approaches is matrix factorization (MF) and, specifically, Singular

Value Decomposition (SVD). This method maps users and items into a latent factor space

and computes the rating as a dot product between the user and the product embeddings.

Although such approaches are effective and simple, the results are poorly interpretable. In-

deed, the embeddings of users and items are not explainable and, not knowing the meaning

of each feature, it is impossible to unveil user preferences and product characteristics [87].

Given the availability of large collections of product reviews, researchers have recently ex-

tended latent factor models to leverage textual information for improving rating prediction

performances. In fact, recent studies in this area tend to conclude that the numerical rat-

ing information is not powerful enough for discovering user preferences. One of the first

attempts demonstrating the usefulness of leveraging features extracted from reviews to im-

prove the rating prediction accuracy was presented in [88]. Among other popular works in

30

Background & Related Works

this direction, Hidden Factors as Topics (HFT) [89] learns topics using a Latent Dirichlet

Allocation (LDA)-like model for each item and an MF for ratings. Ratings Meet Reviews

(RMR) [90] uses the same LDA model for modeling the textual information, but it uses

Gaussian mixtures for the rating prediction part. Similarly, TopicMF [91] learns topics from

each review. In [92], instead of using an approach based on LDA, the explored methods

are neural network-based. Most of the existing works combine two learning objectives; one

(unsupervised) for the textual information, and one (supervised) for rating prediction. The

unsupervised loss acts as a regularization term for the rating prediction loss while taking

advantage of the review data. Consequently, the vector representations of the reviews are

learned to work well for rating prediction tasks while preventing overfitting.

Another category of models uses deep learning approaches for learning latent representations

of users and items. These methods mainly differ in the neural architecture they use. In [87],

the authors propose an attention-based CNN (Attn+CNN) to build vector representations

of users and products. In [56] they propose a hierarchical Bayesian model called Collabo-

rative Deep Learning (CDL), which jointly performs deep representation learning and CF

for the rating matrix. In [93], the model learns vector representations of users, items, and

reviews, where a review embedding is learned as a translation in the vector space between

the user and the product embeddings. In all the above cases, the resulting embedding vec-

tors are only meaningful when compared to each other. For example, considering [93], we

can get valuable information about users and products only when the review embeddings

are employed. Otherwise, it would be difficult to get interpretable information about them.

Differently, in Chapters 3 and 4, the resulting representations are self-interpretable providing

a ’translation’ of the numerical information to human-understandable concepts.

Even though many works have been published in this direction, as pointed out in [94] and

[95], it is debatable whether deep-learning-based models are really making progress in this

research area. Additionally, despite the majority of the existing works deal with embeddings,

31

Background & Related Works

the resulting vector representations usually do not reflect any visualization-driven assump-

tion of the data, making the output poorly explainable. Also, since the ultimate goal is to

improve the rating prediction part, the textual information is solely used as an additional

source to achieve this goal. Consequently, the latent information contained in the textual

data is not fully exploited and investigated.

Moreover, there have been related methods in the direction of explainable recommenda-

tions. These works face the problem of generating explanations by using knowledge graph

reasoning [96], neural attentive models [97]–[99], attraction modeling [100] or substitute rec-

ommendation systems [101]. However, they do not aim to explicitly generate interpretable

vector representations. Instead, the main objective is to generate user-specific explainable

recommendations using the complete textual information and highlighting words that are

important to explain item-specific ratings. Differently, in our work in Chapter 4, we propose

a framework for a deeper understanding of the data, presenting a two-step approach that

starts from the interpretable organization of the textual information to arrive at the rating

prediction task.

2.4.4 Explainability Methods for GNNs

There are several methods to explain the behavior of GNNs. Following Yuan, Yu, Gui, et

al. [102], explanatory methods for GNNs can be divided into several categories.

Gradient-based methods. [103]–[105]. The main idea is to compute the gradients of

the target prediction with respect to the corresponding input data. The larger the gradient

values, the higher the importance of the input features.

Perturbation-based methods. [51], [106]–[111]. Here the objective is to study the models’

output behavior under input perturbations. When the input is perturbed and we obtain an

32

Background & Related Works

output comparable to the original one, we can conclude that the perturbed input information

is not important for the current input. Inspired by causal inference methods, [112]–[115]

attempt to provide explanations based on factual and counterfactual reasoning.

Surrogate methods. [23], [116]–[119]. First, these approaches generate a local dataset

comprised of data points in the neighboring area of the input. The local dataset is assumed

to be less complex and, consequently, can be analyzed through a simpler model. Then, a

simple and interpretable surrogate model is used to capture local relationships that are used

as explanations for the predictions of the original model.

Decomposition methods. [120]–[123]. These methods use decomposition rules to decom-

pose the model predictions leading back to the input space. The prediction is considered as

the target score. Then, starting from the output layer, the target score is decomposed at

each preceding layer according to the decided decomposition rules. In this way, the initial

target score is distributed among the neurons at every layer. Finally, the decomposed terms

obtained at the input layer are associated to the input features and used as importance

scores of the corresponding nodes and edges.

Model-level methods. [124]. Different from the instance-level methods above, these

methods provide a general and high-level understanding of the models. In the context of

GNNs, they aim at studying the input patterns that would lead to a certain target prediction.

The generated explanations are general and provide a global understanding of the trained

GNNs.

Prototype-based methods. [125] propose ProtGNN, a new explanatory method based

on prototypes to provide built-in explanations, overcoming the limitations of post-hoc tech-

niques. The explanations are obtained following case-based reasoning, where new instances

are compared with several learned prototypes.

33

Background & Related Works

Concept-based methods. [126] propose CGExplainer, a post-hoc explanatory methods for

human-in-the-loop concept discovery. This concept representation learning method extracts

concept-based explanations that allow the end-user to analyze predictions with a global view.

Following a similar idea, [33] propose a concept-based model that generates global and local

explanations for graphs through neuron analysis.

Among the methods categorized above, a similar approach in intent is presented in

Schlichtkrull, Cao, and Titov [110]. The authors propose a post-hoc technique that learns

how to remove the unnecessary edges through layer-wise edge masking. There are two

main differences compared to our work: 1) the edge masking is learned from an already

trained model, while we learn the edges to remove during training; 2) the edges are treated

as independent binary random variables. In our case, instead, the optimization algorithm

allows us to model the dependencies between edge variables.

Additional works face the explainability problem from different perspectives as explanation

supervision [127], neuron analysis [33], and motif-based generation [128]. For a comprehen-

sive discussion on methods to explain GNNs, we refer the reader to the survey [102]. In

Section 5.4, we provide a more detailed comparison with inherent interpretable methods and

graph structure learning approaches.

Limitations of Prior Work

When explaining GNNs, we distinguish between how the dataset was constructed and how

the GNN makes its predictions. We refer to a responsible motif when a dataset is created

such that the presence or absence of it determines the class label of the graphs. Hence, the

responsible motif represents the underlying evidence (ground truth) allowing us to discrimi-

nate among the labels that we hope the explanatory method will find [46]. Instead, when a

motif is responsible for the prediction of a certain class label, we refer to the edges present

34

Background & Related Works

in the motif as the ones causing the prediction (causing motif). Existing XAI methods for

GNNs have several limitations and can lead to inconsistencies. In fact, there could be a mis-

match between the responsible motif (ground truth), the actual motif used by the pre-trained

model for its prediction (causing motif), and the one identified by the explanatory model

(explanatory motif) [23], [46]. In contrast, in our work, we know that the prediction of the

class label is caused by the explaining motif, as its selection by the upstream model caused

the downstream model to make said prediction. As anticipated, we focus on the problem of

identifying a subset of the edges as an explanation of the model’s message-passing behavior.

Hence, an explanation is equivalent to identifying a mask for the adjacency matrix of the

original graph. Intuitively, an explanation can be accurate and/or faithful. It is accurate

if it succeeds in identifying the edges in the input graph responsible for the graph’s class

label – i.e., if the explanatory motif matches the responsible motif. This property can, for

example, be evaluated with synthetic data where the class label of a graph is determined by

the presence or absence of a particular substructure. An explanation is faithful if the edges

identified as the explanation cause the prediction of the GNN on an input graph – i.e., if

the explanatory motif matches the causing motif. Contrary to measuring accuracy, there

is no consensus on evaluating faithfulness. Recent work has proposed to measure unfaith-

fulness as the difference between the predictions of (1) the GNN on a perturbed adjacency

matrix and (2) the GNN on the same perturbed adjacency matrix with edges removed by

the explanation mask [103], [129], [130]. We believe that this definition is problematic as

the perturbation is typically implemented using a swap operation which replaces two ex-

isting edges (a, b) and (c, d) with two new edges (a, c) and (b, d). Hence, these new edges

are present in the unmasked adjacency matrix but not present in the masked one. It is,

however, natural that the same GNN would predict highly different label distributions on

these two graphs. For instance, consider a chemical compound where we remove and add

new bonds. The resulting compounds and their properties can be chemically very different.

Hence, contrary to prior work, we define a subgraph to be a faithful explanation, if it is a

35

Background & Related Works

significantly smaller subgraph of the input graph and we know that only its structure is used

in the message-passing operations of equation (2.1).

36

Chapter Three

Improving the Interpretability of

Representation Learning Techniques

3.1 Motivations

Learning graph data with neural networks [30], [67], [69], [73] has recently attracted consider-

able interest. Graph Neural Networks (GNNs) have been applied to a variety of applications

with great success, such as knowledge base completion [75], [131], disease classification and

protein interaction prediction [132], [133], machine translation and relation extraction [134]–

[137], visual question answering [138], [139], and object detection [140]. In this context,

node embedding usually plays an important role. In fact, as seen in the previous chapter,

many GNN approaches formulate graph learning with node embedding, and the downstream

task (e.g., link prediction, node classification, or (sub-)graph classification) is modeled with

node embedding vectors to automatically organize the latent information contained in the

data. However, as explained in Section 2.4.1, the resulting embedding vectors are usually not

understandable: high-dimensional vectors are difficult to interpret from the human perspec-

tive. Thus, for humans to gain trust in AI, along with high performance on graph analysis

37

Improving the Interpretability of Representation Learning Techniques

tasks, interpretability of node representation is expected. The problem of node embedding

interpretability can be faced from two different perspectives: 1. understand the meaning of

the generated latent representations; 2. explain why the learning model generates a specific

node embedding vector. In this methodological chapter, we intend to explore the first type of

interpretability: the meaning of the embedding itself. As textual data are widely available

across different domains, we aim to use this source of human-understandable information

to interpret embedding vectors. In this way, the generated text-based explanations allow

humans to understand the characteristics of the analyzed nodes, the (dis)similarity between

different nodes, as well as the results of the follow-up learning tasks, e.g. recommendation. In

this context, in addition to the visual evaluation of the results, we introduce two quantitative

metrics for text-based explanations with the intent of further helping in their evaluation.

3.2 Model Definition

In this section, we introduce the proposed method, called interpretable graph neural network

(iGNN), to learn interpretable node representations. First, we describe how to integrate the

textual information within the architecture to learn the probabilistic patterns between words

and the considered nodes. Second, we explain how to get user and product-specific word

distributions from the results obtained from the training phase.

To illustrate the method, we use a typical review network as a running example. Assume

there is a bipartite graph G with N number of users and M number of products. Between

a user i and a product j, there is an edge ei,j. Each edge is associated with a multi-set of

words (namely, a review of S words) si,j = {wi,j,1, . . . , wi,j,S}, and a rating ri,j. The size of

the vocabulary is V . The number of reviews is R.

38

Improving the Interpretability of Representation Learning Techniques

3.2.1 The Generative Process

Technically, the proposed model is based on neural generative modeling. In this way, we

are able to integrate the advantages of probabilistic generative models with the ones of

neural networks. In particular, the edge sampling and the corresponding probabilistic textual

patterns are learned in the following way:

• Each user i is represented by means of an embedding vector xi ∈ RD which is au-

tomatically learned during training. Taking inspiration from prior works on neural

topic modeling [141], [142], we assume the vector is initially drawn from a multivariate

Gaussian with zero mean and a diagonal covariance matrix I:

xi ∼ ND(0, I). (3.1)

• For all users, we introduce K clusters. Each user cluster k is associated with an

embedding vector ck ∈ RD, which is again drawn from a Gaussian:

ck ∼ ND(0, I). (3.2)

Here, we assume all embedding vectors have the same dimension to avoid complicated

notation.

• The user cluster weights θi ∈ [0, 1]K are computed based on the embedding vectors as:

θi,k = sparsegen-lin (f(xi, ck;ϕ);λu) , (3.3)

which specifies the probability that the user i belongs to cluster k. The function f

can be any learnable function (in our case, a fully connected layer) that takes in input

the user embedding xi and the cluster embedding ck. In other words, the function f

quantifies the relevance or similarity (unnormalized probability) between the user xi

and the cluster ck. The output layer is sparsegen-lin, where the hyperparameter λu

39

Improving the Interpretability of Representation Learning Techniques

represents a regularization term shared among all users. Sparsegen-lin is a controllable

extension of sparsemax [143], defined in [144] as:

sparsegen-lin(ẑ;λ) = sparsemax
(

ẑ

1− λ

)
, (3.4)

where ẑ and λ < 1 represent the logits and the coefficient to control the regularization

strength respectively. In particular for λ → 1−, the probability distribution has the

minimum support (i.e. hardmax) whereas for λ → −∞, the resulting distribution is

non-sparse (i.e. uniform).

• Analogously, for each product j, we can proceed in an equivalent manner introducing

L clusters and generating xj, cℓ and θj,ℓ employing a different fully-connected layer g

and using the hyperparameters ξ and λp accordingly.

• Once we have generated the user and product cluster weights θi and θj, given a word v,

we can extract the corresponding cluster assignment probabilities zi,v and zj,v. Finally,

we can sample a text associated with an edge ei,j by drawing each word wi,j,v in the

text as follows:

zi,v ∼ Categorical(θi)

zj,v ∼ Categorical(θj)

wi,j,v ∼ Categorical(β, zi,v, zj,v), (3.5)

where β is a 3D tensor representing the probabilistic patterns among user clusters,

product clusters and words. In particular, βk,ℓ,: specifies a categorical word distribution

conditioned on the user cluster k and the product cluster ℓ. It lies in a (V − 1)-

dimensional simplex ∆V−1, such that
∑V

v=1 βk,ℓ,v = 1 and βk,ℓ,v ≥ 0. V denotes the

number of words. The parameter βk,ℓ,v is computed as:

βk,ℓ,v = sparsemax(ψ(ck, cℓ,xv; ρ)). (3.6)

40

Improving the Interpretability of Representation Learning Techniques

Node Embedding

Cluster Embedding

Word Embedding

. . .

. . .

. . .
. . .

. . .

Cluster combination weights

.

.

Figure 3.1: The schematic view of the iGNN model. Dashed boxes represent input
(non-trainable) data. The line connections depict the dependencies between the vari-
ables mentioned in Section 3.2.1.

The function ψ defines again a fully connected layer with parameters ρ. In this case, xv

represents the pre-trained vector of the word v that has been learned from Word2Vec

[5]. Word sampling is inspired by topic modeling. In this case, we assume that all

relations and words follow a distribution with distinct parameter values derived from

the embedding vectors of the nodes involved. The model is schematically represented

in Figure 3.1.

41

Improving the Interpretability of Representation Learning Techniques

Generation of Textual Explanations of Node Embeddings. Once we learned the

cluster assignments θi,k and θj,ℓ for each user i and product j, and the word-based distribu-

tions βk,ℓ,· associated to each cluster combination, it is possible to generate textual explana-

tions of the examined node embeddings. For a node, e.g. a user i, the textual explanation

is formulated as a node-specific word distribution p(wv|xi) conditioned on its embedding

vector xi. In particular, the probability of a word v being used to explain the embedding xi

is computed as:

p(wv|xi) =
1

L

∑
k,ℓ

θi,k βk,ℓ,v. (3.7)

This is a marginal distribution over all possible user and product clusters. Since the user

distribution is not related to any specific products, we marginalize over the product clusters,

i.e. the term 1/L in (3.7). In a similar way, textual explanations can be generated for product

nodes.

3.2.2 Inference and Learning

In summary, our approach attempts to combine two objectives: a) learn traditional node

embeddings that perform well in the downstream task of interest; b) generate human-

understandable explanations associated to such learned vector representations. Consequently,

the learning of the node embeddings and the corresponding textual explanations are driven

by two different learning objectives. The first objective is the log-likelihood of the review

corpus. For the textual part, the parameters to be learned include embedding vectors of

clusters {ck}Kk=1 and {cℓ}Lℓ=1, and parameters ϕ, ξ, ρ which define the learnable functions f ,

42

Improving the Interpretability of Representation Learning Techniques

g, and ψ respectively. Thus, the log-likelihood of an edge and the corresponding text is

L1 = log p(ei,j|xi,xj, γ)+

+
S∑

v=1

log

(
K∑
k=1

L∑
ℓ=1

p(zi = k|xi, ck, ϕ)

p(zj = ℓ|xj, cℓ, ξ)p(wi,j,v|ck, cℓ,xv, ρ)

)
, (3.8)

where the first term represents the probability that an edge exists between two nodes. This

is implicitly included in the computation of the textual information since we suppose that

each edge, if exists, has some associated text. The second objective is the error of the

predictions. In our study case, the metric used to compute the rating prediction error is the

Mean Squared Error (MSE) defined as:

L2 =
1

R

∑
(r̂i,j − ri,j)

2 (3.9)

with

r̂i,j = h


xi

xj

 ;ω

 , (3.10)

where h(·) can be any complex function. In our case, h(·) defines a neural network with the

concatenation of the node embeddings xi and xj as input, and ω as hyperparameters.

Finally, we can define the complete objective function as:

min
Θ

L = min
Θ

(L1 + µL2), (3.11)

where Θ represents the parametric space and µ is a hyperparameter to trade-off the im-

portance of the two objective functions. Although the final goal is to generate textual

explanations for node embedding, prediction accuracy is crucial during the learning phase.

Looking at (3.7), one can see that the textual explanation is conditioned on the node embed-

ding vectors. Hence, we should aim at learning ’meaningful’ node embeddings, i.e., obtaining

vector representations that are learned to perform well on the given learning task (Eqs. (3.9)

43

Improving the Interpretability of Representation Learning Techniques

and (3.10)). In this way, by jointly learning embedding vectors, rating predictions and tex-

tual explanations, we strengthen the interpretability of the results since the two objectives

simultaneously influence each other during the training phase. Finally, given the loss defined

in (3.11), we can use backpropagation to efficiently optimize the model.

3.3 Experiments

In the following section, we describe datasets, experimental settings and procedures used to

study the effectiveness of the proposed model. First, we want to evaluate the effectiveness

of the model on learning node embeddings that perform well in a downstream task, i.e., a

rating prediction task. Then, we want to evaluate the generated textual explanations of the

node vectors from multiple perspectives, considering both the qualitative and quantitative

aspects of their interpretability.

3.3.1 Datasets and Settings.

Datasets. We evaluate our method with a popular benchmark dataset: Amazon Product

Data1. The dataset contains millions of product reviews and metadata, categorized according

to the product category, collected between May 1999 and July 2014. We focus on the 5-core

version of the datasets, where each user and item has at least five reviews associated with

it. A rating, i.e., a labeled link between a user and an item, is an integer value ranging from

1 to 5. To preprocess the texts associated with the review graphs, we embed the words into

a 200−dimensional vector space using Word2Vec [5]. We train the word vectors with the

raw reviews to capture the semantic and syntactic structure of the corpus. The raw text is

preprocessed and cleaned via the following steps: (a) maximum length of a raw review set to

1http://jmcauley.ucsd.edu/data/amazon

44

http://jmcauley.ucsd.edu/data/amazon

Improving the Interpretability of Representation Learning Techniques

300; (b) case normalization; (c) removal of stopwords, numbers and special characters; (d)

filtering out non-existing words using an English vocabulary; (e) lemmatization; (f) removal

of single-word reviews. Once the reviews are normalized, we perform the vocabulary selection

independently for each category. This is motivated by the fact that the textual information

shows strong diversity depending on the product category. For instance, words frequently

occurring in the Baby category would not occur in Office product reviews. Let C denote the

review collection for a given category, we consider each review sij ∈ C as a document. For

each word w ∈ sij we compute the corresponding tf-idf index and extract the top 10% words

(at most 10 for longer reviews) with respect to such index. Then, we merge all the top-words

extracted from the corpus C and we sort them with respect to the tf-idf score. The first V

words in this ranking denote the vocabulary for the given category. Finally, we further filter

the reviews to remove the ones without any word belonging to the vocabulary. To tackle the

word co-occurrence sparsity problem over short texts, we extract biterms for each document

[145]. For a node-related document with v words, the resulting biterm extraction results

in v(v − 1)/2 unordered word-pairs. In this way, we can pattern the textual information

by means of biterms co-occurring in the same document. The statistics of the preprocessed

datasets are summarized in Table 3.1. In this chapter, we use data from 12 categories for

our evaluation.

Experimental Settings. We set the vector dimensionality D = 200 for all users, products

and clusters embeddings. We evaluated the robustness of our method to changes in the hyper-

parameter D but did not observe any significant performance difference. The number of user

clusters K = 50 and product clusters L = 30; we evaluated the values [10, 20, 30, 40, 50] and

we observed that, generally, larger values lead to more sparse cluster assignments. We set

the coefficients for the sparsegen-lin function as λu = 0.9 and λp = 0.75. The function h(·),

defined in (3.10), is a neural network with four hidden fully-connected layers [128, 64, 64, 32].

The experiment was run for 200 learning iterations and validated every 2 iterations. A single

45

Improving the Interpretability of Representation Learning Techniques

Table 3.1: Statistics of the preprocessed datasets.

Reviews Users Items
Amazon Instant Videos 36241 5127 1685
Automotive 20285 2926 1835
Baby 156335 19442 7050
Beauty 194130 22356 12101
Cell Phones and Acc. 191336 27864 10429
Digital Music 64260 5539 3568
Grocery and Gourmet Food 148902 14675 8713
Health and Personal Care 333274 38583 18534
Musical Instruments 10218 1427 900
Office Products 52988 4902 2420
Patio, Lawn and Garden 13213 1684 962
Pet Supplies 152367 19848 8510
Sports and Outdoors 289181 35588 18357
Tools and Home Improv. 133445 16634 10217
Toys and Games 161603 19405 11924
Videogames 227859 24291 10672

epoch performs RMSProp with a learning rate set to 2e-6 and batch size of 2562.

3.4 Results

We discuss our findings starting from the quantitative analysis of the rating prediction part.

After the evaluation of the predictive performance for ratings, we investigate the capacity of

our model to generate human-understandable vector representations. In particular, we will

analyze both visually and quantitatively the nature of the textual explanations.

Rating Prediction Results. We compare our method with several baselines considering

both factorization-based approaches, like SVD and NMF [146], and review-based approaches

2The training time for a single batch is around 30 times higher when using the textual information

(∼ 1.3s) than the same model without it (∼ 0.04s).

46

Improving the Interpretability of Representation Learning Techniques

Table 3.2: MSE for iGNN and state-of-the-art approaches.

Category Offset Attn+CNN NMF SVD HFT DeepCoNN TransRev iGNN
Instant Videos 1.180 0.936 0.946 0.904 0.888 0.943 0.884 0.923
Automotive 0.948 0.881 0.876 0.857 0.862 0.753 0.855 0.827
Baby 1.262 1.176 1.171 1.108 1.104 1.154 1.100 1.094
Beauty 1.322 - 1.204 1.168 1.165 1.184 1.158 1.073
Cell Phones 1.451 - 1.357 1.290 1.285 1.365 1.279 1.161
Digital Music 1.137 - 0.805 0.797 0.793 0.835 0.782 0.855
Gourmet Food 1.165 1.004 0.985 0.964 0.961 0.973 0.957 0.924
Office Products 0.876 0.726 0.742 0.727 0.727 0.738 0.724 0.665
Patio 1.156 0.999 0.958 0.950 0.956 1.070 0.941 0.941
Pet Supplies 1.354 1.236 1.241 1.198 1.194 1.281 1.191 1.186
Tools and Home 1.017 0.938 0.908 0.884 0.884 0.946 0.879 0.879
Toys and Games 0.975 - 0.821 0.788 0.784 0.851 0.784 0.775

(i.e., methods that exploit textual information for improving the rating prediction perfor-

mance), including HFT [89], DeepCoNN [147], TransRev [93] and Attn+CNN [87]. We also

compare our method with a simple baseline (offset) that uses the average rating score of the

training set as prediction.

Following previous works, the data are randomly split by reviews into training (80%), vali-

dation (10%) and test (10%) sets. We independently repeat each experiment on five different

random splits and report the averaged Mean Squared Error (MSE) to quantitatively evaluate

the results. For a fair comparison, the same preprocessed data and data splits are used as

input information for all the considered baselines. Table 3.2 summarizes the results of the

compared approaches. Note that we primarily focus on the generation of textual explana-

tions for node embeddings. The rating prediction evaluation is a logical consequence of the

definition of the generation of textual explanation based on (3.7), and the loss (see (3.11)).

From the reported results, iGNN outperforms other models on the majority of the datasets,

and achieves comparable results on the remaining ones. This clearly confirms the capacity of

the proposed method on learning node representations that perform well on the considered

task.

47

Improving the Interpretability of Representation Learning Techniques

Analysis of the Probabilistic Patterns. We now investigate the capacity of our model

on generating meaningful textual explanations for the learned node vector representations.

To show the advantages of the generated output compared to common embedding tech-

niques, we analyze the results considering the ability of the text-based explanations to pro-

vide human-understandable insights when evaluated both singularly and collectively. First,

we evaluate the probabilistic patterns between user clusters, product clusters and words by

analyzing the learned word distributions β·,·,v. As defined in (3.6), β specifies the word dis-

tributions for each combination of user and product cluster. For each category, to visualize

the learned word-vector distributions on a two-dimensional space, the TSNE method [148]

is employed for dimensionality reduction. Figure 3.2 illustrates the cluster organization for

different categories. In the two-dimensional embedding space, the clusters are distributed

differently and, consequently, well separated. In theory, from direct experience using Ama-

zon, we know that each category can be further divided into sub-categories. Therefore, each

cluster identified in Figure 3.2 should represent one sub-category of products. To prove

this hypothesis, we select a pair of clusters from two different categories (i.e., Automotive

and Pet Supplies), and we compute the corresponding average word distributions. In this

way, by looking at the most probable words of the averaged cluster word distributions, one

should be able to infer the main topic of the selected clusters. The right table in Figure

3.2 reports the most probable words for each of the selected clusters (highlighted in cyan in

the left plot). The results validate our hypothesis since, for each cluster, we can infer the

sub-category of interest. As an example, the first cluster in the Pet Supplies dataset refers to

the grooming sub-category, while the other one is about aquariums. Thus, we demonstrate

that the word distributions β·,·,v can capture the latent organization of the data and help to

find the textual patterns between user and product clusters, enhancing the interpretability

of the results. Indeed, knowing the user and product cluster assignments one can find the

sub-categories highly correlated with the given items.

48

Improving the Interpretability of Representation Learning Techniques

Evaluation of Generated Textual Explanations. In the previous paragraph, we demon-

strated that the learned text-based vectors, similarly to common embedding techniques, can

be analyzed collectively. However, differently from typical neural-based representations, our

textual vector representations can also be analyzed singularly since they can be considered

self-interpretable. In this part, to prove that our model is able to generate textual expla-

nations as node-specific word distributions, we attempt to provide both quantitative and a

visual evaluation of the node-related explanations. As reported in [44], lacking common met-

rics for interpretability quality is problematic to the research community to make progress

in this area and, in an unsupervised setting, the problem is even more clear. Indeed, it is

common for researchers to simply rely on the human visualization of the results, e.g., by em-

ploying attention mechanisms or heat maps, in order to make the results human-explainable

[37]. For the quantitative analysis of the results, despite the fact that we can still evaluate

the quality of the results based just on human perception of the highlighted relevant words,

Figure 3.2: Cluster organization of the word-vector distributions β·,·,v for different
categories. The clusters analyzed in the right table are highlighted in cyan.

49

Improving the Interpretability of Representation Learning Techniques

we attempt to introduce some metrics that could further help in assessing the quality of

the results. For the visualization and evaluation of the correlation between the generated

word distributions and the node-related words in the data, we adopt the following procedure.

Given a sampled node, we first extract the top-15 words of the generated word distribution,

i.e., the 15 words having the highest probability in the distribution. Second, we extract the

set of words associated with the sampled node in the original data. Let denote with A and

B respectively, these two sets. The Jaccard similarity is used to measure similarity between

two sets of words A and B, which is defined as follows:

J(A,B) =
|A ∩B|
|A ∪B|

. (3.12)

The Jaccard score only considers the direct matches among the words in the two sets consid-

ered. However, two words may be different but have a similar meaning. Hence, to consider

the semantic similarity of the two sets, we employ the so-called Word Mover’s Distance

(WDM), introduced by [149]; this metric takes into account the word similarities in the

latent space and computes the minimum distance needed by the words in text A to travel

in the semantic space to reach the words in text B. Since Jaccard and WDM have different

scales and behaviors, we apply MinMaxScaler to Jaccard, and transform WDM as follows:

t-WDM(A,B) = 1−
(

di −min(d)

max(d)−min(d)

)
, (3.13)

where di is the distance between the sets A and B for a node i, and d represents all the

distances between the two sets for each node in the graph. In this way, the transformed

distance score is in the range [0,1] and, opposite to the definition of semantic distance, the

higher the value the closer are sets A and B.

To analyze the quality of the generated textual explanations, we compute the two scores for

all the selected datasets. Figure 3.3 illustrates the value distribution of these metrics across

the nodes in the datasets. The Jaccard values mostly range between [0.4 − 0.7], while the

WDM scores are highly concentrated in the range [0.6−0.8]. It is important to note that the

50

Improving the Interpretability of Representation Learning Techniques

lower Jaccard scores do not impact the performance of the model. Instead, they confirm that

the model generates textual explanations that are not redundant, as would be the case with

too high similarity scores. Indeed, as written in [37], two sets of words can be semantically

similar even with low lexical overlapping. Furthermore, this shows that our approach is

not simply based on lexical similarity, but also takes into account the semantic similarity of

the words in order to generate textual explanations that differ from the original data and,

consequently, provide new insights regarding the items under examination. Figure 3.4 shows

an example of the generated word distribution of a sampled node with the corresponding

explanatory scores.

We continue the evaluation by analyzing the results on the Baby, Gourmet Food, and Pet

Supplies datasets. The example nodes showed in Table 3.3 demonstrate the ability of iGNN

to capture the most probable words associated with a given node. In particular, not only

direct correspondences with the words in the data but also highly related words. For example,

looking at the sampled node from the Baby category, we can observe that the generated

explanation can be used to capture additional characteristics of the node. In general, it

seems that the node is related to toys and strollers. In addition to the information about

the types of products of interest, by analyzing the bold blue words, we can infer other

characteristics the product has (if the node is a product) or should have (in case the node is

a user). In particular, we can deduce that the related items should be safe and made with

suitable quality materials. Additionally, we can notice the impact of the scores on the quality

Figure 3.3: Evaluation of the metric distributions across all datasets.

51

Improving the Interpretability of Representation Learning Techniques

of the generated word distributions. The first two examples, taken from the Gourmet Food

data set, have different Jaccard scores but similar distances. Nevertheless, the first example

looks semantically good. The results show that exploiting word vector representations during

the training phase is crucial in order to push the probabilities of terms closer together on a

semantic level.

Top-15
Words

bad best breakfast burger dinner dish
love meat rice salad sandwich sauce
soup star taco

Node-related
Words

ambiance authentic best breakfast choice
cilantro decision guacamole love meat pas
plain satisfied sauce spacious staple taco

t-J(A,B) = 0.696 t-WDM(A,B) = 0.718

Figure 3.4: Interpretability case study on a random node. The figure depicts the node-
specific word distribution; the 15 highest probabilities are highlighted by green points.
Top-15 Words and Node-related Words refer to the sets A and B defined in
(3.12)-(3.13). Black bold represents the overlapping words; blue bold highlights words
that may explain further characteristics of the node.

52

Improving the Interpretability of Representation Learning Techniques

We can also observe that (a) the model does not take into account the polarity of the words.

Hence, it may be possible to extend and improve the architecture by exploiting sentiment

(or rating) information in order to obtain the distribution of positive/negative words; and

(b) the vocabulary selection can be improved by employing more sophisticated methods

that may ultimately result in improved performance. In terms of human readability, given

the availability of a large number of textual reviews, a more intuitive approach would be

to exploit natural language explanations. In fact, a textual explanation would probably

be more intelligible than our word-based vector distribution. However, the overhead in

terms of data needed and model complexity makes this choice prohibitive in low-resource

scenarios. As mentioned in Section 2.4.3, text-based explanations (or recommendations)

need the complete textual information to generate meaningful natural language outputs.

In our case, instead, only a subset of meaningful words for each product category is used.

Furthermore, the resulting word-based vector representations can be potentially employed

as input features of users and products in recommender system tasks. In a similar intent,

we demonstrate it is possible to use user and product latent vectors for rating prediction in

the next methodological chapter.

Real-world applications. The idea of extracting human-interpretable information start-

ing from a text-labeled graph can have real-world implications. In the US patent [150]

related to the proposed methodology, we present a system for extracting interpretable entity

profiles for system management and operations. Complicated systems (e.g., smart hospi-

tals) usually include a variety of entities (e.g., patients, doctors, and medical staff) and rich

information (e.g., clinical narratives, medical images of patients, and metadata of patients

and doctors). Given the limited amount of human and physical resources (e.g., treatment

rooms, specialized doctors), system operators are required to gain a comprehensive overview

of all the entities such that they can better manage and operate the system for optimizing

different management tasks (e.g., resource allocation). Typically, system operators conduct

53

Improving the Interpretability of Representation Learning Techniques

entity profiling by collecting all information about a particular entity and then extracting a

digital representation of that entity from the collected data. However, entities are generally

not independent of each other. Thus, a graph representation of the data can help orga-

nize all the relevant entities and their relationships in a structured way. In this framework,

given the complexity of the data, AI-based technologies would be beneficial to help opera-

tors manage such amounts of data. However, as explained before, general NNs only learn

real numbers as digital representations of unstructured data (e.g., images, texts, etc.) that,

unfortunately, are not understandable by humans. For this reason, we propose to use the

presented work as a way for assisting system operators in their decisions. In this way, through

human-understandable word-based profiles, the operators can a) have an interpretable way

to operate and explain the system; b) use the resulting word-based profiles to explore and

discover similarities among different entities in the system, facilitating and accelerating dif-

ferent management tasks. The proposed idea can be extended or adapted and, consequently,

is not limited to the example of smart hospitals.

3.5 Summary

In this chapter, we present interpretable graph neural networks (iGNNs), which learn human-

understandable explanations of node embeddings based on extra-textual information asso-

ciated with graphs. In order to enhance the interpretability of the results, during training

the model simultaneously learns node embeddings and verbal descriptions. As a result of

the introduction of node cluster embeddings, the model can discover patterns among nodes,

ratings, and textual information. In this way, the proposed methodology acquires the dis-

crete structure of graph data and text-based explanations in an elegant manner. Finally,

recalling Eqs. (3.9) and (3.10), our model offers a flexible framework that can be integrated

with different learning tasks. Due to the availability of rating information, we perform a

54

Improving the Interpretability of Representation Learning Techniques

rating prediction task. However, the second term of the complete objective function defined

in (3.11) can be modified depending on the intended application. According to the results

of the explanation analysis, the model is capable of generating human-understandable ex-

planations while performing competitively on a prediction task. Indeed, the model is able

to explain the meaning of the learned node representations in a human-interpretable way. A

quantitative analysis of the textual explanations adds value to the assessment of the quality

of the results. Unlike the simple visualization of sampled outputs, the proposed investigation

provides a comprehensive understanding of the general model’s behavior based on the tex-

tual explanation. The approach may be extended in future work by integrating the polarity

of the words, and using the interpretation of the results for downstream purposes, such as

human-understandable recommendations.

55

Improving the Interpretability of Representation Learning Techniques

Table 3.3: Evaluation of retrieved nodes from different datasets. Black bold represents
the matching words; blue bold highlights words that may explain further characteristics
of the node.

Gourmet Food

Top-15
Words

butter buy cereal chocolate cracker
delicious eat energy honey milk nut
package price say time

Node-related
Words

almond alternative arrive butter buy
container creamy date deal delicious
healthy jar mess nut oil oily order
package peanut plastic pull say size
stir time variety way

t-J(A,B) = 0.539 t-WDM(A,B) = 0.748

Top-15
Words

best buy chocolate cup dark delicious eat
mix nice organic price say strong tea time

Node-related
Words

agree arrive bad best big chocolate cookie
crack cup delicious disappear early equal
expect forever heat package picky price
quite say shelf sleeve staff tea time week

t-J(A,B) = 0.640 t-WDM(A,B) = 0.753

Baby

Top-15
Words

color cup cute daughter hard item
material nice perfect product pump
quality safe stroller toy

Node-related
Words

bouncer color comfy daughter flop happy
insert issue item lot perfect product
return stroller swing tiny toy

t-J(A,B) = 0.777 t-WDM(A,B) = 0.731

Pet Supplies

Top-15
Words

clean color eat filter good help long look
order size small thing water week work

Node-related
Words

bottle brush care chip clean daily drink
excite good last long look nice puppy
small smell spray stay thing triple type
water week white work

t-J(A,B) = 0.943 t-WDM(A,B) = 0.893

56

Chapter Four

An Interpretable Alternative to Neural

Representation Learning

4.1 Motivations

In recent years, as previously mentioned in Chapter 1, with the advent of more power-

ful and capable machines, researchers have started focusing more and more on developing

(deep) neural architectures for a wide range of applications. The success of neural-based

approaches in different domains, as language modeling [151], [152] or computer vision [153],

[154], led these models to also dominate the recommender systems research area [77], [155],

[156]. Nonetheless, it is not necessarily true that models with high complexity are inher-

ently more accurate [8], [40]. In fact, for recommendation tasks, recent works have raised

some concerns about the relative performance improvements of deep learning approaches

compared to simpler algorithms [94], [95], [157]. Additional works [9], [158] showed that

new recommendation methods do not significantly outperform existing approaches or even

can be outperformed by very simple methods, e.g. nearest-neighbor-based techniques [159].

Previous investigations in this direction were mainly focused on pure collaborative filter-

57

An Interpretable Alternative to Neural Representation Learning

ing (CF) data, where the only available input was the rating matrix. Nevertheless, recent

studies in this area tend to conclude that numerical rating data are not informative enough

for discovering user preferences. Consequently, given the availability of large collections of

textual data, such as product reviews or social media posts, many approaches have tried

to extend and improve recommendation models by leveraging such textual information [78],

[89], [93], [147], [160]. In fact, corpora of textual documents contain a wealth of information.

Textual corpora can be used to improve the predictive performances of recommendation

systems, but more importantly, they provide human understandable explanation about user

preference and product properties. As mentioned in the previous chapters, to integrate the

extra textual information into recommendation systems, most existing works employ embed-

ding methods, i.e., representing items, words, and documents as high-dimensional numerical

vectors for better flexibility. Although the embedding-based methods often provide good

predictions, as seen before, the resulting latent representations are usually not explainable;

if singularly evaluated, a 100D or 200D vectors can be hard to comprehend by humans.

To complete the study on the interpretability of the embeddings started in the previous

chapter, inspired by recent discussions about the “neural hype” [9], in this methodological

chapter we investigate whether using a simpler, more transparent and principled way to

learn user and product latent representations can lead to comparable results in the recom-

mendation task, i.e. review-based rating prediction. Differently from Chapter 3, we present

a probabilistic framework for the topographic organization of review data where the result-

ing latent codes are rather compact and sparse. In contrast with previous neural-based

works, we impose a double two-dimensional topological organization of user and product

latent classes based on the textual information. As a result, the latent classes of users and

products are organized on two different square grids that reflect the textual input space.

The grid organization makes the investigation and interpretation of the results fast and in-

tuitive. Additionally, the probabilistic assumptions of our system enable us to analyze the

58

An Interpretable Alternative to Neural Representation Learning

extracted information in a statistical manner. With the interpretable topographically orga-

nized latent space representations obtained in our probabilistic framework, one can naturally

solve many downstream learning tasks, such as product rating prediction. Motivated by the

strong correlation between reviews and ratings, we believe that exploiting our simple, yet

meaningful representations of textual review information will lead to competitive rating pre-

diction results, while maintaining the explainability of the latent classes. We compare our

results with state-of-the-art approaches, including both neural network (NN) based meth-

ods and non-NN ones. The main goal of this work is not to develop a new approach that

outperforms the state-of-the-art with respect to a single predictive score (e.g. accuracy or

area-under-curve (AUC)), but rather to propose a principled and interpretable method that

focuses on learning a transparent latent structure of the review data, while having competi-

tive rating prediction performances. Finally, inspired by the recent debates on the phantom

progress [157] of NN-based methods for recommendation tasks, we compare our findings in

terms of both interpretability and predictive performances with respect to the most popular

text-based neural approaches for rating prediction.

In summary, the main contributions of this chapter are threefold:

1. We present a topographic organization of user and product latent classes based on the

latent structure of the review data. Common embedding techniques model each item

by employing dense and complicated representations. In our case, we model classes

of users and products resulting on latent vectors that are compact, interpretable and

rather discrete. Also, different from existing works where the analysis of the user and

product characteristics from the textual perspective is practically ignored, we propose

a more complete investigation of the available information.

2. In contrast with previous works where the interpretability is provided by post-hoc eval-

uations, the probabilistic assumptions of the framework allow us to explicitly impose

59

An Interpretable Alternative to Neural Representation Learning

through model formulation the interpretability of the latent codes. In addition, the

topographic organization can help us to understand the relationships among differ-

ent latent classes. Indeed, classes close to each other in the topographic maps should

exhibit similar patterns.

3. Motivated by the strong correlation between reviews and ratings, we exploit our rep-

resentations of the review information as input for a rating prediction task. We con-

tribute to the debate about the effective performances of neural-based approaches in

comparison with more principled and simpler methods. Differently from previous in-

vestigations, we present a comprehensive comparison mainly focused on text-based

approaches for rating prediction, considering both interpretability capacity and pre-

dictive performances.

4.2 Model Definition

In this section, we present the key ingredients of our framework. Based on our observa-

tion that analysis of the textual latent patterns is often not fully covered, we propose an

interpretable review-based probabilistic model for rating prediction. First, we describe the

estimation of the model parameters. Then, to make our model able to integrate new user

data after training, we propose an out-of-sample extension allowing us to compute the latent

class assignments of new users that reviewed products available in our data set. Finally,

we present how to exploit the estimated latent space representations as model inputs for a

rating prediction task.

60

An Interpretable Alternative to Neural Representation Learning

4.2.1 Topological Organization of the Latent Model

Consider a collection of users U = {u1, u2, ..., uN}, products P = {p1, p2, ..., pM} and words

V = {w1, w2, ..., wV }. The data D is a collection of R triples D = {(ui, pi, ri)}Ri=1, each triple

identifying the user ui ∈ U writing a review ri on product pi ∈ P . The review ri is a multi-set

of words from V , ri = (wi
1, w

i
2, ..., w

i
Si
), wi

j ∈ V . The latent variables zu ∈ {1, . . . , K} and

zp ∈ {1, . . . , L} represent abstract classes of users and products.1

Given a review i, the probability of sampling a word wj ∈ ri is modeled as:

P (wi
j|ui, pi) =

K∑
k=1

L∑
ℓ=1

(
P (wi

j|zu = k, zp = ℓ)P (zu = k|ui)P (zp = ℓ|pi)
)
. (4.1)

We impose a grid topology on latent classes via the channel noise methodology [85], [86].

Let’s assume y and z are two different latent classes in our grid. The channel noise for both

the product and user latent class grids is defined using the neighborhood function:

P (y|z) =
exp

(
−∥z−y∥2

2σ2

)
∑

y′ exp
(

−∥z−y′∥2
2σ2

) (4.2)

where σ > 0 controls the ’concentration’ of the transition probabilities among the neighbors

of the latent class y.2 Overall, when y and z are close to each other on the grid, the proba-

bility of being corrupted one into another is higher than when they are distant. Additionally,

when σ is close to 0, then the transition probabilities are more concentrated around y than

for larger values of σ. For each user u ∈ U , the generative process is as follows:

1. the latent class assignment zu = k is randomly sampled from the user-conditional

probability distribution P (·|u) on zu;
1More formally, zu is a high-dimensional vector whose index u takes values from 1 to K. To simplify

notation, in order to state that zu points to the k-th point grid we will simply write zu = k.
2Since the channel noise formulation is the same for both the user and product latent grids we do not

use subscripts u or p when referring to the latent class.

61

An Interpretable Alternative to Neural Representation Learning

2. the latent class assignment may be corrupted by the channel noise P (yu|zu = k),

resulting in a (possibly new) class assignment yu = k′.

For each product p ∈ P , we can proceed equivalently to get possibly corrupted assignments

yp = ℓ′ starting from the sampled assignments zp = ℓ. The topographic organization has

a twofold advantage: 1) it enables a model-based visualization tool of the word patterns

that can be easily investigated; 2) it regularises the latent class model and hence prevents

overfitting, while employing a large number of latent classes [86]. Finally, the model has now

the following form:

P (yu = k′|ui) =
K∑
k=1

P (yu = k′|zu = k)P (zu = k|ui) (4.3)

P (yp = ℓ′|pi) =
L∑

ℓ=1

P (yp = ℓ′|zp = ℓ)P (zp = ℓ|pi) (4.4)

P (wi
j|ui, pi) =

K∑
k′=1

L∑
ℓ′=1

(
P (wi

j|yu = k′,yp = ℓ′)P (yu = k′|ui)P (yp = ℓ′|pi)
)
. (4.5)

In our model the class-conditional word distribution P (wi
j|yu = k′,yp = ℓ′) is formulated as

multinomial.

4.2.2 Inference and Learning

Assuming independent data items in D, the log-likelihood of the model is:

L =
R∑
i=1

logP (ri|ui, pi). (4.6)

We will consider a simple review model assuming independence of the words appearing in

the review i :

P (ri|ui, pi) =
Si∏
j=1

P (wi
j|ui, pi). (4.7)

62

An Interpretable Alternative to Neural Representation Learning

Hence, the log-likelihood reads:

L =
R∑
i=1

Si∑
j=1

logP (wi
j|ui, pi). (4.8)

Plugging in eqs. (4.3–4.5), we obtain:

L =
R∑
i=1

Si∑
j=1

log

[K∑
k′=1

L∑
ℓ′=1

P (wi
j|yu = k′,yp = ℓ′)

K∑
k=1

P (yu = k′|zu = k)P (zu = k|ui)

L∑
ℓ=1

P (yp = ℓ′|zp = ℓ)P (zp = ℓ|pi)
]
. (4.9)

For training, we use the Expectation-Maximization (EM) algorithm enabling maximum like-

lihood estimation (MLE) in latent variable models. It iterates the Expectation (E) and

Maximization (M) steps until convergence. Detailed derivations of the following equations

are presented in Appendix B.

4.2.3 EM-step

E-step. In the E-step, the algorithm evaluates the current estimates of the model parame-

ters by computing the expected values of the latent variables. We will denote these quantities

using P̂ (·|·). Note that we have two levels of hidden variables. First, given the user and

the product they reviewed, we do not know which latent classes zu and zp represented the

(user, product) couple when writing the review. Second, we know that the underlying latent

classes zu and zp may have been disrupted to latent classes yu and yp before producing the

review, but we do not know their identity. To simplify mathematical notation, we will denote

zu = k, zp = ℓ, yu = k′ and yp = ℓ′ as zku, zℓp, yk′
u and yℓ′

p , respectively.

P̂ (zku, z
ℓ
p|u, p, w) is evaluated as:

P (zku|u)P (zℓp|p)
∑

k′
∑

ℓ′ S(k, ℓ)∑
k′′

∑
ℓ′′
P (zku|u)P (zℓp|p)

∑
k′

∑
ℓ′
S(k′′, ℓ′′)

(4.10)

63

An Interpretable Alternative to Neural Representation Learning

with S(α, β) = P (w|yk′
u ,y

ℓ′
p)P (y

k′
u |zαu)P (yℓ′

p |zβp).

Instead, P̂ (yk′
u ,y

ℓ′
p |w, u, p) is computed as:

P (w|yk′
u ,y

ℓ′
p)
∑

kG(k
′)
∑

ℓW (ℓ′)∑
k′′

∑
ℓ′′
P (w|yk′′

u ,y
ℓ′′
p)
∑
k

G(k′′)
∑
ℓ

W (ℓ′′)
(4.11)

where G(α) = P (yα
u |zku)P (zku|u) and W (β) = P (yβ

p |zℓp)P (zℓp|p).

M-step. In the M-step, the algorithm maximizes the expectation computed in the E-step

by re-estimating the model parameters. To do so, we need to specify functional forms of the

distributions for P (zku|u), P (zℓp|p) and P (w|yk′
u ,y

ℓ′
p). It is natural to model these distributions

as multinomial distributions. Thus, we assume:

P (zku|u) ∼ Multinomial (4.12)

P (zℓp|p) ∼ Multinomial (4.13)

P (w|yk′

u ,y
ℓ′

p) ∼ Multinomial. (4.14)

The update equation for P (w|yk′
u ,y

ℓ′
p) is:

P (w|yk′

u ,y
ℓ′

p) =

∑
(u,p)∈B(w)

P̂ (yk′
u ,y

ℓ′
p |u, p, w)∑

w′

∑
(u,p)∈B(w′)

P̂ (yk′
u ,y

ℓ′
p |u, p, w′)

(4.15)

where B(w) is the set of (user, product) tuples associated with the word w.

Denoting the set of words used by user u to review product p by W(u, p), we obtain the

update equations for P (zku|u) and P (zℓp|p) as:

P (zku|u) =
∑

p

∑
w∈W(u,p)

∑
ℓ P̂ (z

k
u, z

ℓ
p|u, p, w)∑

p |W(u, p)|
(4.16)

P (zℓp|p) =
∑

u

∑
w∈W(u,p)

∑
k P̂ (z

k
u, z

ℓ
p|u, p, w)∑

u |W(u, p)|
, (4.17)

where |W(u, p)| is the size of W(u, p).

64

An Interpretable Alternative to Neural Representation Learning

Topographic Initialization with SOM. The successful application of the EM algorithm

depends on the initial position in the parameter space since the algorithm can be sensitive

to parameter initialization. We follow an approach similar to the one presented in [86].

Different from their work, where the SOM was run on a dataset of user ratings, we run two

different instances of SOM (one for users and one for products) using the review information.

We set the number of nodes in SOM to be equivalent to the number of latent classes, i.e. K

for users and L for products. We denote by V the vocabulary set. For each user u, there is

an associated |V|-dimensional vector vu. Each vector dimension represents a word w in the

vocabulary and the corresponding value is the term frequency, i.e. how many times the user

has written a review using that word. The analogous reasoning is valid for products. In the

latter case, each vector dimension represents how many times a word w has been used for

reviewing the product p.

After training the two instances of SOM, the conditional latent priors for users and products,

i.e. P (zku|u) and P (zℓp|p) respectively, are computed as follows. If the user u belongs to the

SOM cluster node k ∈ Zu = {1, . . . , K}, then we softened the hard assignment using the

following transformation:

P (zku|u) =


A if u ∈ k

(1− A)/(K − 1) otherwise.
(4.18)

The parameter A is defined such that if the user u belongs to the class k, P (zku|u) = A should

be B > 1 times higher than P (zk
′

u |u) for all the other k′ ∈ Zu. Thus, A = B/(K − 1 + B).

The product conditional latent prior can be generated in an equivalent manner by changing

the parameters accordingly.

The empirical distribution for word patterns P (w|yk′
u ,y

ℓ′
p) is then computed via the following

procedure: (a) to introduce the topology, we follow the steps described in Section 4.2.1 to get

(possibly corrupted) class indices yk′
u and yℓ′

p for all users u and products p; (b) we denote

65

An Interpretable Alternative to Neural Representation Learning

with N(w, k′, ℓ′) the number of times the word w has been used by users belonging to the

latent class k′ to review products that belong to the latent class ℓ′. Thus, the empirical

distribution is estimated as:

P (w|yk′

u ,y
ℓ′

p) =
N(w, k′, ℓ′) +m

mV +
∑

w′∈V N(w′, k′, ℓ′)
. (4.19)

Due to sparseness, we apply a Laplace correction for smoothing the empirical distribution.

The parameter m is a positive number and, in this case, m = 1. For further details, we refer

the reader to [86].

Out-of-sample Extension. Suppose we have an unknown user un /∈ U reviewing a prod-

uct p̄ that is available in our dataset. Let’s denote with r̄ the associated review. Using Bayes’

rules, we can extend the model to consider users that were not included during the training

phase. In this way, we can learn the latent class assignment of unseen users as follows.

Using the independence of words assumed in (4.7), we can compute P (r̄|yk′
un
, p̄) as:

P (r̄|yk′

un
, p̄) =

∏
w∈r̄

P (w|yk′

un
, p̄) (4.20)

where

P (w|yk′

un
, p̄) =

L∑
ℓ′=1

P (w|yk′

un
,yℓ′

p̄)P (y
ℓ′

p |p̄). (4.21)

Consequently, by the Bayes’ rule, we have:

P (yk′

un
|r̄) =

P (r̄|yk′
un
, p̄)P (yk′

un
|un)∑

k′′ P (r̄|yk′′
un
, p̄)P (yk′′

un
|un)

, (4.22)

assuming P (yk·
un
|un) ∼ Unif(0, 1) as flat prior. Given the limited information about the

unknown user – we only have the words contained in their review r̄ – we use an uninformative

prior on P (yk·
un
|un) to fully exploit the information about the available words.

66

An Interpretable Alternative to Neural Representation Learning

User
 Product

Figure 4.1: A graphical example of the conditional distributions P (zku|u) and P (zℓp|p)
and their corresponding two-dimensional grids.

4.2.4 Rating Prediction Part

After running the EM algorithm, we have the estimates of the conditional distributions

P (zku|u) and P (zℓp|p) for all users and products in our dataset. These quantities represent

the probability assignments of the items to their respective latent classes. For the next

phase of our experiment, we will use the encoded review information as input for the rating

prediction task. Intuitively, given the topological organization of the latent classes on two-

dimensional grids, we can think of these quantities as images where each pixel represents

a latent class and the corresponding value is the latent class probability assignment. An

example of the model input transformation for a sampled review is given in Figure 4.1.

Given the large employment of embedding techniques for representation learning in recom-

mendation systems, we propose to use the learned latent class assignments as representations

of users and products instead. In this way, we can generate a self-explainable latent repre-

sentation of the items that, at the same time, should perform well on a rating prediction

67

An Interpretable Alternative to Neural Representation Learning

Input Layer

Convolutional
Layer

Dense Layer

MaxPooling MaxPooling

Concatenate

CNN block
 CNN block

FCN block

Flatten Flatten

Figure 4.2: The schematic view of the proposed architecture. After the input layer,
we follow the principles of related CNN-based models for rating prediction tasks. The
output r̂up represents the predicted rating for the given user-product (u,p) input.

task. The schematic view of our architecture for rating prediction is presented in Figure 4.2.

After the input layer, the CNN-block consists of the common layers used in CNN-based

models. We perform two convolution operations with batch normalization and Rectified

Linear Units (ReLU) [161] as activation function. As a result, the training is faster and

more stable. Then, we apply a max-pooling operation to take the maximum value of each

feature map obtained by the convolution operations. After the max-pooling operation, the

convolutional results are reduced to a fixed size vector for both users and products. We

concatenate the results given by the max pooling operation, and we use the resulting vector

as input for the fully connected network (FCN) block. This block simply represents a neural

network with several dense layers. More details on the structure of this block are given

in Section 4.3.1. The proposed architecture follows some principles of CNN-based models

for rating prediction, e.g. [87], [147]. We are not interested in getting better results than

state-of-the-art approaches, instead, our ultimate goal in this part is to investigate whether

our proposed model input is informative enough to get competitive results compared with

more specialized techniques and architectures. In theory, one might potentially change the

architecture as desired. The objective is the error of the predictions. Following previous

68

An Interpretable Alternative to Neural Representation Learning

works, this will be validated according to the Mean Squared Error (MSE):

MSE =
1

|T |
∑

(u,p)∈T

(ŝcoreu,p − scoreu,p)2 (4.23)

where T represents either the test or the validation set.

4.3 Experiments

In this section, we evaluate the performance of the proposed methodology. First, we analyze

the probabilistic latent model and the generated organization of user and product latent

classes. Second, we investigate the generative extension of our approach. Last, we compare

the performance of our model with state-of-the-art approaches for the rating prediction task.

4.3.1 Datasets and Settings

Datasets. The evaluation of the results, as in Chapter 3, is done using the Amazon Product

Data set. We followed the same preprocessing procedure, therefore, we refer the reader to

Section 3.3.1 for further details about the preprocessing steps and the statistics of the data

used for training.

Experimental Settings. We set the number of user latent classes K = 25 and product

classes L = 16; we evaluated the robustness of our method to changes in the hyperparameters

K and L but did not observe any significant difference in both qualitative and quantitative

analysis. This is in line with the constraint imposed by the topological organization; using

a larger number of latent classes did not lead to overfitting. The specificity parameters for

users and products, defined in (4.2), are set respectively to σu = 3 and σp = 2. For the SOM

69

An Interpretable Alternative to Neural Representation Learning

initialization (Section 4.2.3), we used the Python package Minisom.3

For the probabilistic model part, following previous works (e.g., [85], [86]), we apply the

so-called all but one protocol. From each user having at least 10 reviews, we randomly select

one review to be assigned to the test set. The main focus of this part of the experiment is on

discovering word patterns of users and products within large collections of review data, hence

we do not need a generative formulation of the model. We evaluate the training procedure

according to the normalized negative log-likelihood (NLL). Based on (3.8), we have:

NLLT = − 1

|T |
∑

(u,p,r)∈T

log P̂ (r|u, p) (4.24)

where T represents either the training or test set.

For the rating prediction task, as in previous works, the data are randomly split by reviews

into training (80%), validation (10%), and test (10%) sets. Additionally, we remove reviews

from the validation and test sets if either the associated user or product does not belong to

the training data set. The FCN block depicted in Figure 4.2 is a neural network with four

hidden fully-connected layers [128, 64, 32, 16]. We evaluate different configurations of this

block by changing the number of layers and the number of units for each layer. We select

the best configuration based on the validation scores. The final experiment was run for 200

learning iterations and validated every iteration. A single epoch performs Adam optimizer

[162] with a learning rate set to 0.02 and batch size of 256. The training metric is the MSE,

as defined in (4.23). To prevent overfitting, we monitor the validation set score using early

stopping with patience set to 10 epochs.

3https://github.com/JustGlowing/minisom

70

https://github.com/JustGlowing/minisom

An Interpretable Alternative to Neural Representation Learning

4.4 Results

In this section, we first visually evaluate the quality of the topographic organization of

the latent class into two-dimensional grids. Then, we investigate the out-of-sample user

assignments. Finally, we compare the results of the predictive task, by both considering the

quantitative aspects and the interpretability capacity of the analyzed methods.

Topographic Organization of Latent Classes. Given the model parameters estimated

in Section 4.2.3, we can analyze the organization of user and product latent classes by

inspecting the associated word distributions. The word distribution for each user latent

class, under the assumption of uninformative flat prior over latent classes, is computed as:

P (w|yk′

u) =
L∑

ℓ′=1

P (w|yk′

u ,y
ℓ′

p)P (y
ℓ′

p) =
1

L

L∑
ℓ′=1

P (w|yk′

u ,y
ℓ′

p). (4.25)

Analogically, the word-distribution for each product latent class can be derived as follows:

P (w|yℓ′

p) =
K∑

k′=1

P (w|yk′

u ,y
ℓ′

p)P (y
k′

u) =
1

K

K∑
k′=1

P (w|yk′

u ,y
ℓ′

p). (4.26)

The visualization of the most probable words associated with each latent class helps us to

evaluate the results. The list of the 10 most probable words for each product latent class

of the Automotive category is provided in Table 4.1. From the results, we can notice clear

patterns of the most probable words associated with each latent class. Additionally, we

can observe the topological organization of the latent classes: words patterns are similar for

adjacent classes in the grid. For example, adjacent classes at the top left of the grid refer

to lighting accessories, while going down to the bottom left we can deduce that the latent

classes refer to electrical and oil system tools. On the right part of the grid, instead, we

have latent classes referring to cleaning accessories. Knowing the probabilistic assignments

for a sampled item, we can easily identify the most probable latent classes and evaluate the

corresponding word distributions. This visualization tool lends itself well to other types of

71

An Interpretable Alternative to Neural Representation Learning

Table 4.1: Product-class word organization for the Automotive category.

light light blade wax
bulb fit wiper kit

bright lead great product
stock great fit great
white good good wiper

brighter bright product water
fit price well snow

price well rain blade
lead order brand wipe

replacement horn jeep rain
filter great product product
oil good hose paint

change fit great great
fit tool good pad

price price tank clay
fuel product fit good

socket code well wax
mile well try polish

wrench purchase say try
good say quality water
oil good product product

change great great jack
fluid product good great
pump mount cover wash
drain item strap shine
price quality lock spray
leak fit trailer trailer

transmission price hitch good
good door door lift
great hitch step wax

battery plug wheel towel
charge tender leather wash
power battery brush water
charger great cleaner gauge
plug product seat pressure

device cable great cloth
motorcycle motorcycle level cleaning

phone good product accurate
compressor spark trailer valve

cord winter good great

result investigation. For example, if we are interested in exploring a specific user latent class,

one may analyze how the product latent classes change when conditioned on the user class of

interest. Theoretically, the product latent classes should change according to the main topic

of the user latent class, i.e. most of the product latent classes should now be associated with

the user class of interest. The same reasoning is valid starting from a specific product latent

class. Given these considerations, we provide a flexible and straightforward tool to investigate

the latent characteristics of the items, making the results clear and understandable.

After evaluating the quality of the latent class organizations, we investigate whether

our model is able to correctly assign unseen users to the corresponding latent classes. Given

a product category, we randomly select a review r̄ written by an unknown user un from the

out-of-sample set. Then, given the review r̄, we compute P (yk′
un
|r̄) as described in (4.22).

72

An Interpretable Alternative to Neural Representation Learning

Out-of-sample Extension Results. Figure 4.3 shows the results taken from the Pet

Supplies category. To make the visualization easier and intuitive, we visualize the learned

user latent probability assignments over the user-class word distributions. First, by exam-

ining the most probable words associated with each user latent class, we can observe how

the latent classes are topologically well organized. Then, by analyzing the words used by

the unknown user listed in the bottom box, we can assume that the reviewed product is

related to the aquariums subcategory. The results show the ability to assign the unknown

user to the correct user latent classes. In fact, the most probable latent classes associated

with the new user are the ones related to aquariums, as easily perceivable by inspecting the

corresponding word lists in the grid. It is important to mention that we are able to get

meaningful latent class assignments when the words used by the unknown users are, to some

extent, informative. For example, if the words were only adjectives (e.g., good, nice) or verbs

(e.g., look, work) it would be difficult to classify unknown users correctly. This highlights

the importance of selecting a good vocabulary set as a starting point for the evaluation.

Rating Prediction and Interpretability Evaluation. We compare our method with

several baselines considering both factorization-based approaches and methods that take

advantage of the textual information for improving the rating prediction performance.

• Non-negative Matrix Factorization (NMF) is a standard baseline for CF. The

rating prediction is set as the dot product between item and user factors, i.e., q⊤i pu.

The latent factors are kept positive.

• Singular Value Decomposition (SVD) is very similar to NMF. The rating is com-

puted as a dot product between the user and the product latent factors. In both cases,

the results are poorly explainable. Indeed, it is not possible to understand user and

product characteristics from the evaluation of the latent factors.

73

An Interpretable Alternative to Neural Representation Learning

User’s review: [‘filter’, ‘shrimp’, ‘look’, ‘nice’, ‘stick’]

Figure 4.3: Results of the out-of-sample extension from the category Pet Supplies. The
words in the bottom box are the ones used by the unknown user un to review a product
p in our dataset. The considered words are included in the corresponding vocabulary
Vpet. Note that the darker the color, the higher is the probability assignment to the
corresponding latent class.

74

An Interpretable Alternative to Neural Representation Learning

• Multi-Point Co-Attention Networks (MPCN) [160] proposes a pointer-based

model to extract important reviews from user and item reviews, based on the intuition

that not all the reviews are equally informative. Once the important reviews are

selected, a co-attentive layer learns the most important words associated. In this way,

the model can learn the most informative user and product reviews for each user-item

pair.

• Deep Co-Operative Neural Networks (DCoNN) [147] learns convolutional user

and item representations from the textual information. Even though is a text-based

model, the analysis is focused only on the rating prediction performances. Additionally,

given the deep nature of the representations, the results are poorly interpretable.

• TransNets (TNET) [78] is an extension of the DeepCoNN model. It introduces an

additional transform layer that learns an approximation of the review corresponding

to the target user-item pair and, during the training phase, enforces it to be similar to

the embedding of the actual target review. The model can be used to suggest reviews

that are more similar to the one potentially written by the target user. The qualitative

evaluation just rely on the visualization of some sampled reviews by highlighting the

most similar sentences between the original review and the predicted most helpful

one. However, if singularly evaluated, the learned embeddings do not provide any

interpretable information.

• TransRev (TR) [93] is similar to TransNets in that it learns review embeddings

as a translation of the reviewer representation to the reviewed product embedding.

Ratings are predicted based on an approximation of the review embedding at test

time based on the difference between the embedding of the user and the item. As

in TransNets, the approximation is also used to suggest a tentative review to users

for further elaborations. The evaluation of the learned word embedding is performed

using t-SNE. Items and users are related to reviews by means of non-interpretable

75

An Interpretable Alternative to Neural Representation Learning

latent representations.

• TLCM stands for Transparent Latent Class Model and represents the rating prediction

model described in Section 4.2.4. This comparison helps us to investigate if the latent

representations of our probabilistic model, even though not learned ad-hoc, represent

an informative input for the rating prediction task. For the reasons explained before,

our input representations, if able to get competitive results, would be better in terms

of interpretability capacity compared to the embedding techniques presented in the

previous works.

• TLCM-LR performs a simple linear regression (LR) that, for each review, takes as

input the concatenation of the estimates of the corresponding user and product learned

by our probabilistic model. As stated in Section 4.2.4, the architecture for rating

prediction can be changed as desired. In this case, we decided to use a linear regression

model since, among other methods, it is known to be a transparent model. Following

the direction of previous investigations on the neural hype, this experiment allows us to

understand whether the use of complicated architectures is helping to make significant

progress for recommendation tasks.

As anticipated, the ultimate goal of this work is to build a review-based model suitable

for both visualizing and learning user and product characteristics. Then, driven by the

limitations of existing approaches to represent users and products through explainable latent

vectors, we propose to exploit our estimated quantities as input for rating prediction. This

idea is fully motivated by the strong correlation between ratings and reviews. In addition,

we also propose to use the same information as input for an interpretable model, i.e. a

linear regression, to understand its predictive performances compared to neural approaches.

This experimental part completes our analysis about the “phantom progress" of neural-

based approaches for representation learning and recommendation tasks, considering also

76

An Interpretable Alternative to Neural Representation Learning

the interpretability capacity of the models taken into consideration.

In terms of interpretability, as already mentioned, all the baselines can provide meaningful

representations in the latent space, but neither the single numbers contained in the vectors

nor their dimensions have an interpretable meaning [163]. The main limitation of these

techniques laid in the fact that they can capture relations among items by using vectors that

are only meaningful to each other. For instance, if we try to evaluate user vectors with-

out employing the review vectors, we would not be able to comprehend the latent textual

information associated with them. Differently, our model can directly encode the textual

information within the estimated quantities, providing vectors that are self-explainable. Ad-

ditionally, our latent representations are more compact and sparse, making them easier to

evaluate. Finally, the intuitive visualization properties provided by our square grids create

a simple tool to investigate the results, further enhancing their interpretability.

Table 4.2: MSE for TLCM and state-of-the-art approaches.

Category NMF SVD TNET MPCN TR DCoNN TLCM TLCM-LR
Instant Videos 1.628 1.206 1.007 0.997 0.884 0.957 0.961 1.004
Automotive 1.171 0.818 0.946 0.861 0.855 0.792 0.879 0.883
Baby 2.066 1.445 1.338 1.304 1.100 1.440 1.094 1.309
Beauty 2.163 1.521 1.404 1.387 1.158 1.214 1.194 1.352
Cell Phones 2.438 1.664 1.431 1.413 1.279 1.378 1.294 1.447
Digital Music 1.787 1.381 1.004 0.970 0.782 0.808 0.836 1.070
Gourmet Food 1.879 1.370 1.129 1.125 0.957 1.542 1.064 1.117
Health 2.045 1.452 1.249 1.238 1.011 1.093 1.091 1.232
Musical Instr. 1.287 0.703 1.100 0.923 0.690 0.896 0.670 0.697
Office Products 0.988 0.719 0.840 0.779 0.724 0.723 0.735 0.834
Patio 1.429 0.967 1.123 1.011 0.941 1.020 1.045 1.100
Pet Supplies 2.071 1.438 1.346 1.328 1.191 1.447 1.244 1.381
Sports 1.490 1.011 0.994 0.980 0.823 0.898 0.898 0.958
Tools and Home 1.793 1.222 1.122 1.096 0.879 1.208 0.954 1.091
Toys and Games 1.542 1.111 0.974 0.973 0.784 0.806 0.859 0.928
Videogames 2.188 1.629 1.276 1.257 1.082 1.135 1.111 1.370

1.748* 1.229* 1.143* 1.103* 0.946* 1.085* 0.996* 1.111*

77

An Interpretable Alternative to Neural Representation Learning

In terms of rating prediction performance, we independently repeat each experiment on

five different random splits and report the averaged Mean Squared Error (MSE). For a fair

comparison, we conduct and compare the baselines on the same data splits, when possible,

using the default configurations provided by the authors. If not, whether for difficulty in

reusing the source code or its unavailability, we directly copy the results from the original

papers. In detail, for SVD and NMF we used the Python package Surprise4 and we selected

the best learning parameters through grid search. For DeepCoNN, since the original authors’

source code has not been released, we used a third-party implementation.5 In this case, we

applied the default hyperparameter setting. For the remaining baselines, we copied the

results from the corresponding original papers. Results in terms of MSE are reported in

Table 4.2. The asterisk indicates the macro MSE across all the product categories. From

the results, in line with the conclusions of existing works, review-based methods outperform

the ones based only on the numerical information. We can observe that our model is able

to outperform most of the state-of-the-art approaches in the analyzed categories and has

comparable performances with the best one, i.e. TransRev. Additionally, it is worth to

mention that our simplest version of the architecture, i.e. TLCM-LR, is also able to get

comparable results against most of the state-of-the-art approaches.

This demonstrates that: 1) by carefully encoding the textual information into the latent

representations, it is possible to get similar results in comparison with more complicated

techniques that provide dense and high-dimensional vector representations of the items; b)

in line with the conclusions of previous investigations on CF data, also in case the textual

information is used, we do not need to employ complicated neural-based models to get com-

petitive results. The latent representations proposed in our work, even though not learned

to specifically perform well on a rating prediction task, are able to maintain competitiveness

in comparison with more specialized architectures. This clearly suggests that one may po-

4http://surpriselib.com/
5https://github.com/chenchongthu/DeepCoNN

78

http://surpriselib.com/
https://github.com/chenchongthu/DeepCoNN

An Interpretable Alternative to Neural Representation Learning

tentially use the proposed model input with nice interpretable properties, without worsening

the rating prediction task considerably.

4.5 Summary

Recently, several approaches for rating predictions of textual reviews in the framework of

deep neural networks have appeared in the literature [78], [89], [92], [93], [147], [160]. Given

the highly stochastic nature of the data and relative data sparsity, one can legitimately

ask to what extent can the full predictive power of deep networks be utilized in this con-

text. The question is even more relevant when one realises that clear interpretability of

the deep network functionality is still an open problem [8]. To answer this question, we

present an approach for product rating prediction using a relatively simple and interpretable

latent class probabilistic model utilizing topographic organization of user and product latent

classes based on the review information. In existing works, the review information is usu-

ally exploited to enhance the rating prediction performances, but is not fully inspected to

understand user and product features. In contrast, we propose a deeper understanding of

the data, presenting a two-step approach that starts from the interpretable organization of

textual information to arrive at the rating prediction task. The organization of the latent

classes on 2-dimensional grids provides a visualization tool that can be used to statistically

investigate user and product features from a review-based perspective. Through this orga-

nization, we can arrange complicated and unstructured textual data in a simple way. The

thorough analysis in the experimental section demonstrates the ease of analyzing the latent

review patterns using tools from probabilistic theory. The visualization of the results, pre-

sented in Section 4.4, shows that the lower-dimensional latent representations of users and

products are a good approximation of the textual input space. Consequently, driven by the

assumption that ratings and reviews are strongly correlated, we propose to use the resulting

79

An Interpretable Alternative to Neural Representation Learning

latent features as input for a rating prediction task. In this part, we contribute to the debate

about the “phantom progress" of deep learning approaches for recommendation tasks. Our

investigation, differently from the previous ones, is mainly focused on methods that take

advantage of the textual information for rating prediction tasks, and includes an evaluation

that considers the capacity of such models to represent users, products, and reviews utilizing

interpretable latent vectors. The results suggest that, also in the textual-based case, the use

of dense and complicated representations is not fully motivated. Indeed, even though our

representations are not learned for a rating prediction task specifically, the results are com-

parable to models that learn ad-hoc representations. Nonetheless, being highly interpretable,

the proposed latent representations overcome the limitations of the common embedding tech-

niques used in most of the considered previous works. Finally, the prediction results of our

linear regression model suggest that we do not need to implement deep architectures either.

This simple model is able to outperform some of the baselines and get comparable results

with the remaining ones, while being fully transparent. Naturally, there is always a trade-off

between model capabilities and interpretability. The nice and explainable visualization prop-

erties of our constrained model may affect the modeling capabilities for rating prediction.

On the other hand, better modeling capabilities through common embedding techniques and

deep architectures provide representations that are created for performing well on a specific

task, but at the price of losing the human interpretation of the results.

80

Chapter Five

Learning to Explain Graph Black-box

Models

5.1 Motivations

In the previous chapters, we have seen how to instill interpretable concepts into representa-

tion learning tasks using textual information. The proposed solutions help investigate the

features the model thinks are relevant for prediction and create a ’translation’ of the numer-

ical representations to human-understandable information. However, oftentimes, we do not

have a source of intelligible information to exploit for learning self-interpretable vectors. In

these cases, to increase human trust in ML-based models, we should try to explicitly discover

the inner reasoning of the black-box models by using self-interpretable models. Since graphs

occur naturally in several domains such as chemistry, biology, recommender systems (as in

the previous chapters), and medicine, Graph Neural Networks (GNNs) have experienced

widespread adoption. Following a trend towards building more interpretable machine learn-

ing models, there have been numerous recent proposals to provide explanations for GNNs.

Most of the existing approaches, as seen in Chapter 2, provide post-hoc explanations starting

81

Learning to Explain Graph Black-box Models

from an already trained GNN to identify edges and node attributes that explain the model’s

prediction. However, as highlighted in Faber, K. Moghaddam, and Wattenhofer [46], there

might be some discrepancy between the ground-truth explanations and those attributed to

the trained GNNs. Indeed, post-hoc explanations are often not able to faithfully represent

the mechanisms of the original model [164]. Furthermore, a recent work has also shown that

post-hoc attribution methods are often not better than random baselines on the standard

evaluation metrics for explanation accuracy and faithfulness [129]. Unfortunately, as dis-

cussed in Section 2.4.4, the very definition of what constitutes a faithful explanation is still

open to debate and there exist several competing positions on the matter. To recall the

definition of faithfulness we introduced in Chapter 2 that we will use in this methodological

part, an explanation is considered to be faithful if (i) it is a significantly smaller subgraph

of the input graph and (ii) we know that only its structure is used in the message-passing

operations for the prediction.

To overcome the limitations of post-hoc methods, a recently proposed alternative is the

learning to explain (L2X) paradigm [12]. The core difference to post-hoc methods is that

the models are trained to, in the forward pass, discretely select a small subset of the input

features as well as the parameters of a downstream model that uses only the selected features

to make a prediction. The selected features are, therefore, faithful by design as they are the

only ones used by the downstream model. Since the subset of features is sampled discretely,

L2X requires a method for computing gradients of an expectation over a discrete probability

distribution. [12] proposed a gradient estimator based on a relaxation of the discrete samples

and tailored to the k-subset distribution. However, since the original work only considers the

case of selecting exactly-k features, directly applying prior methods to graph learning tasks is

not possible and requires significant changes. Thus, since prior work’s gradient estimators do

not work with arbitrary optimization problems but are restricted to the k-subset distribution,

using the L2X paradigm for graphs is highly non-trivial.

82

Learning to Explain Graph Black-box Models

With this work, we bring the L2X paradigm to graph representation learning to address

the problems related to graph-based (black-box) models and GNN post-hoc explainers. In

the original paper, the instance-wise feature selector in defined as a model which returns

a distribution over the subset of features given the input vector. Likewise, to adapt the

idea to work for graphs, we have to assume to work on a distribution of graphs where –

given the matrix of edge weights (unnormalized probabilities) θ – we sample a subset of

edges (i.e., a new adjacency matrix) Z from the set of feasible solutions F of the chosen

optimization problem. The important ingredient is a recently proposed method for comput-

ing gradients of an expectation over a complex exponential family distribution [165]. The

method facilitates approximate gradient backpropagation for models combining continuously

differentiable GNNs with a black-box solver of combinatorial problems defined on graphs.

Crucially, this allows us to learn to sample subgraphs with beneficial properties such as being

connected and sparse. Contrary to prior work, this also creates a dependency between the

random variables representing the presence of edges. The proposed framework L2xGnn,

therefore, learns to select explanatory subgraph motifs and uses these and only these motifs

for its message-passing operations. To the best of our knowledge, this is the first method for

learning to explain GNNs. The proposed framework is extensible as it can work with any

optimization algorithm for graphs imposing properties on the sampled subgraphs.

We compare two different sampling strategies for obtaining sparse subgraph explanations re-

sulting from two optimization problems on graphs: (1) the maximum-weight k-edge subgraph

and (2) the maximum-weight k-edge connected subgraph problem. We show empirically that

L2xGnn when combined with a base GNN does not lose accuracy on several benchmark

datasets. Moreover, we evaluate the explanations quantitatively and qualitatively. We also

analyze the ability of L2xGnn to help in detecting shortcut learning which can be used for

debugging the GNN. Given the characteristics of the proposed method, our work improves

model interpretability and increases the clarity of known black-box models as GNNs while

83

Learning to Explain Graph Black-box Models

maintaining competitive predictive capabilities.

5.2 Model Definition

We propose a method that learns both (i) the parameters of a graph generative model and

(ii) the parameters of a GNN operating on sparse subgraphs approximately sampled from

said generative model in the forward pass. In line with prior work on learning to explain [12],

the maximum probability subgraph is then used at test time to make the prediction and,

therefore, serves as the faithful explanation. Since we aim to sample graphs with certain

properties (e.g., connected subgraphs) we need a new approach to sampling and gradient

estimation. Contrary to prior work on edge masking [110] which treats edges as indepen-

dent binary random variables, we use a recently introduced method for backpropagating

through optimization algorithms. This allows us to select subgraphs with specific properties

and, therefore, to explicitly model dependencies between edge variables. Intuitively, our ap-

proach consists of three main components. In the first part, an upstream model hv learns the

edge weights θ(i,j) for each edge (i, j) belonging to the given input graph. In the subsequent

component, the learned edge matrix θ is given as input to an optimization algorithm opt.

The algorithm considers the weights θ as unnormalized probabilities to sample discretely a

new adjacency matrix Z. Finally, the resulting sampled subgraph z is used in the last com-

ponent, the downstream model fu, to make the final prediction. A graphical representation

of our approach is presented in Figure 5.1. Considering the proposed workflow, we can iden-

tify two main challenges related to our method: a) how to learn θ such that we can improve

the selection of the subgraph z; b) how to estimate and backpropagate the gradient through

a discrete component (i.e., opt). In the following subsections, we will explain our framework

in more detail and provide technical solutions for the introduced challenges. In Subsection

5.2.1, we formalize the problem and describe rigorously our framework. In Subsection 5.2.2,

84

Learning to Explain Graph Black-box Models

we describe the gradient estimation method used in this work. Finally, in Subsection 5.2.3,

we detail how to use and adapt the introduced concepts to work explaining GNNs.

5.2.1 Problem Statement and Framework

We aim to jointly learn the parameters of a probability distribution over subgraphs with

certain properties and the parameters of a GNN operating on graphs sampled from said

distribution in the context of the graph classification problem. Here, the training data

consists of a set of triples {(A,X,y)j}, j ∈ {1, ..., N}, where A is an n×n binary adjacency

matrix, X ∈ Rn×d a node attribute matrix with d the number of node attributes, and y the

target graph label. First, we have a learnable function hv : A× X → Θ where A is the set

of all n × n adjacency matrices, X the set of all attribute matrices, v are the parameters

of h, and Θ the set of possible edge parameter values. The function, which we refer to as

the upstream model, maps the adjacency and attribute matrix to a matrix of edge weights

θ ∈ Rn×n. Intuitively, θi,j is the prior probability of edge (i, j).

Next, we assume an algorithm opt : Θ → A which returns the (approximate) solutions to

an optimization problem on edge-weighted graphs. Examples of such optimization problems

are the maximum-weight spanning tree or the maximum-weight k-edge connected subgraph

problems. The optimization algorithm is treated as a black box. One can choose the opti-

mization problem according to the application’s requirements. We have found, for instance,

that the connected subgraphs lead to better explanations in the domain of chemical com-

pound classification. Contrary to prior work, the optimization problem creates a dependency

between the binary variables modeling the edges.

For every binary adjacency matrix Z ∈ A, we write Z ∈ F if and only if the adjacency

matrix is a feasible solution (not necessarily an optimal one) of the chosen optimization

85

Learning to Explain Graph Black-box Models

problem. We can now define a discrete exponential family distribution as

p(Z;θ) =

 exp (⟨Z,θ⟩F −B(θ)) if Z ∈ F ,

0 otherwise.
(5.1)

where ⟨·, ·⟩F is the Frobenius inner product and B(θ) is the log-partition function defined as

B(θ) = log

(∑
Z∈F

exp (⟨Z,θ⟩F)

)
.

Hence, p is a probability distribution over adjacency matrices that are feasible solutions to

the optimization problem under consideration. Each feasible adjacency matrix’s probability

mass is proportional to the product of its edge weights. For example, if the optimization

problem is the maximum-weight k-edge connected subgraph problem, the distribution assigns

a non-zero probability mass to all adjacency matrices of graphs that have k edges and are

connected.

Given an optimization problem, we would like to sample exactly from the above probability

distribution p(Z;θ). Unfortunately, this is intractable since computing the log-partition

function is in general NP-hard. However, as in prior work [165], we can use perturb-and-

MAP [166] to approximately sample from the above distribution as follows. Let ϵ ∼ ρ(ϵ)

be a n × n matrix of appropriate random variables such as those following the Gumbel

distribution. We can then approximately sample an adjacency matrix Z from p(Z;θ) by

computing

Z = opt(θ + ϵ).

Hence, we can approximately sample by perturbing the edge weights (unnormalized proba-

bilities) θ and by applying the optimization algorithm to these perturbed weights.

In the final part of the model (the downstream model) we use the sampled Z as the input

adjacency matrix to a message-passing neural network fu : A × X → Y computing ŷ =

fu(Z,X).

86

Learning to Explain Graph Black-box Models

opt

ϵInput graph Sampled graph

zhv fu

Figure 5.1: Workflow of the proposed approach. The upstream model hv learns to
assign weights θ·,· for each edge in the input graph. The edge matrix θ – perturbed with ϵ
– is then utilized as input by the optimization algorithm opt to sample a subgraph z with
specific characteristics. Finally, the downstream model fu uses only the information
about the sampled (sub)graph to make a prediction.

In summary, we have the following model architecture for training input data (A,X,y):

θ = hv(A,X) with A ∈ A,X ∈ X , (5.2)

Z = opt(θ + ϵ) with ϵ ∼ ρ(ϵ), ϵ ∈ Rn×n, (5.3)

ŷ = fu(Z,X) with ŷ ∈ Y , fu : A×X → Y . (5.4)

Figure 5.1 illustrates the architecture. With ω = (u,v) the learnable parameters of the

model and the target variable y the loss is now defined as:

L(A,X,y;ω) = Eϵ∼ρ(ϵ)[ℓ(fu(Z,X),y)], (5.5)

with Z = opt(θ + ϵ), θ = hv(A,X), and ℓ : Y × Y → R+ a point-wise loss function. The

gradient of L with respect to u is

∇uL(A,X,y;ω) = E[∂ufu(Z,X)⊺∇yℓ(ŷ,y)]

which can be estimated by Monte-Carlo sampling. In contrast, the gradient of L with respect

to v is:

∇vL(A,X,y;ω) = ∂vhv(A,X)⊺∇θL(A,X,y;ω),

where the challenge is to estimate ∇θL(A,X,y;ω) = ∇θEϵ∼ρ(ϵ)[ℓ(fu(Z,X),y)] because

Z = opt(θ+ ϵ) is not continuously differentiable woth respect to θ. While it would be pos-

sible to use the score function estimator, its high variance typically makes it less competitive

in practice [165].

87

Learning to Explain Graph Black-box Models

5.2.2 Implicit Maximum-Likelihood Learning

The variant of I-MLE we use in this work estimates ∇θL(A,X,y;ω) by implicitly creating

a target distribution q(Z;θ′) using perturbation-based implicit differentiation [167]. Here,

the parameters θ are moved in the direction of −∇Zℓ(fu(A,X),y)), the negative gradient

of the downstream loss with respect to the sampled adjacency matrix Z, to construct θ′

q(Z;θ′) := p(Z;θ − λ∇Zℓ(fu(Z,X),y)) (5.6)

with Z = opt(θ+ ϵ) and λ > 0 the strength of the perturbation. Intuitively, by moving the

weights θ into the direction of the negative gradients of Z, the resulting distribution q is more

likely to generate samples with a lower downstream loss. We approximate ∇θL(A,X,y;ω)

with a single-sample Monte Carlo estimate of the gradients of the KL divergence between p

and q:

∇θL(A,X,y;ω) ≈ 1

λ
(opt(θ + ϵ)− opt(θ′ + ϵ)) . (5.7)

In other words, ∇θL(A,X,y;ω) is approximated by the difference between an approximate

sample from p(Z;θ) and an approximate sample from q(Z;θ′). In this way we move the

distribution p(Z;θ) closer to q(Z;θ′). For further details on I-MLE we refer the reader to

the original paper [165].

5.2.3 L2xGnn: Learning to Explain GNNs with I-MLE

We now describe the class of L2xGnn models we use in the experiments. First, we need to

define the function hv(A,X). Here we use a standard GNN (see equation 2.1) to compute

for every node i and every layer ℓ the vector representation hℓ
i = hv(A,X)i,1:d. We then

compute the matrix of edge weights by taking the inner product between each pair of node

embeddings. More formally, we compute θi,j = ⟨hℓ
i ,h

ℓ
j⟩ for some fixed ℓ. Typically, we

choose ℓ = 1.

88

Learning to Explain Graph Black-box Models

Algorithm 1 Greedy algorithm optcon for the maximum-weight k-edge connected subgraph

problem.
Input:

Input graph G = (V,E)

Number of edges k

Edge weights θ
Initialize:

e = argmaxei,j θi,j

Set of selected edges S = {e}

Set of edges adjacent to selected edge N = N (e)
while |S| < k and |N | > 0 do

e = argmaxei,j∈N θi,j

S = S ∪ {e}

N = N ∪N (e)

N = N − S

end while

Return: Adjacency matrix Z of the subgraph induced by the set of selected edges S.

In this work, we sample the noise perturbations ϵ from the sum of Gamma distribution [165].

Other noise distributions such as the Gumbel distribution are possible.

Sampling Constrained Subgraphs. An advantage of the proposed method is its ability

to integrate any graph optimization problem as long as there exists an algorithm opt for

computing (approximate) solutions. In this work, we focus on two optimization problems:

(1) The maximum-weight k-edge subgraph and (2) the maximum-weight k-edge connected

subgraph problems. The former aims to find a maximum-weight subgraph with k edges. The

latter aims to find a connected maximum-weight subgraph with k edges. Other optimization

problems are possible but we found that sparse and connected subgraphs provide a good

89

Learning to Explain Graph Black-box Models

efficiency-effectiveness trade-off.

Computing maximum weight k-edge subgraphs is highly efficient as we only need to select

the k edges with the maximum weights. In order to compute connected k-edge subgraphs

we use a greedy approach. First, given a number k of edges, we select a single edge ei,j

with the highest weight θi,j from the input graph. At every iteration of the algorithm, we

select the next edge such that it (a) is connected to a previously selected edge and (b) has

the maximum weight among all those connected edges. A more detailed description of the

greedy algorithm is given in Algorithm 1.

Finally, we need to define the function fu (the downstream function) of the proposed frame-

work. Here, we again use a message-passing GNN that follows the update rule

hℓ
i = γ

(
hℓ−1
i ,□j∈N (vi)ϕ

(
hℓ−1
i ,hℓ−1

j , rij
))
. (5.8)

The neighborhood structure N (·), however, is defined through the output adjacency matrix

Z of the optimization algorithm opt

j ∈ N (vi) ⇐⇒ Zi,j = Zj,i = 1. (5.9)

Hence, if after the subgraph sampling, there exists a node vi which is an isolated node in

the adjacency matrix Z, that is, Zi,j = Zj,i = 0 ∀j ∈ {1, ..., n}, the embedding of the node

will not be updated based on message passing steps with neighboring nodes. This means

that, for isolated nodes, the only information used in the downstream model is the one from

the nodes themselves. Conceptually, Z works as a mask over the messages mℓ
ij computed at

each layer ℓ.

The adjacency matrix Z is then used in all subsequent layers of the GNN. In particular, for

one layer ℓ we have

Hℓ = Gnnℓ(A⊙Z,Hℓ−1), (5.10)

90

Learning to Explain Graph Black-box Models

where ⊙ is the Hadamard product. Finally, the remaining part of the L2xGnn network for

the graph classification is

hG = Pool(Hℓ) ŷ = η(hG), (5.11)

where we use a global pooling operator to generate the (sub)graph representation hG that

will then be used by the MLP network η(·) to output a probability distribution ŷ over the

class labels. Finally, a loss function is applied whose gradients are used to perform back-

propagation. At test time, we use the maximum-probability subgraph for the explanation

and prediction, that is, we do not perturb at test time.

5.3 Experiments

In this section, we analyze the performance of the proposed approach. First, we evaluate

the predictive performance of the model compared to baselines. Second, we analyze the

explanatory subgraphs for datasets for which we know the ground-truth motifs. Finally,

we analyze whether the generated output can be helpful for model debugging purposes.

We also report several ablation studies to investigate the effects of different model choices

on the results. For the remainder of the manuscript, we use L2xGnndsc and L2xGnn

for referring to the maximum-weight k-edge subgraph and to the maximum-weight k-edge

connected subgraph problem respectively.

5.3.1 Datasets and Settings

Datasets. To understand the change in the predictive capabilities of the base models

when integrating L2xGnn, we use six real-world datasets for graph classification tasks:

MUTAG [168], PROTEINS [169], YEAST [170], IMDB-BINARY, IMDB-MULTI [171], and

DD [172]. In Table 5.1, we report the statistics of the datasets used for graph classification

91

Learning to Explain Graph Black-box Models

tasks. We use datasets from different domains including biological data, social networks,

and bioinformatics data. For a comprehensive evaluation, we include datasets with different

characteristics, such as a larger number of graphs or a larger number of nodes and edges.

To quantitatively evaluate the quality of the explanations, we use datasets that include

Table 5.1: Statistics of the datasets.

Number of Nodes (avg) Edges (avg) Graphs Classes

DD 284.32 715.66 1178 2
MUTAG 17.93 19.79 188 2
IMDB-B 19.77 96.53 1000 2
IMDB-M 13.00 65.94 1500 3
PROTEINS 39.06 72.82 1113 2
YEAST 21.54 22.84 79601 2

ground-truth edge masks. In particular, we use MUTAG0 and BA2Motifs. MUTAG0 is a

dataset introduced in Tan, Geng, Fu, et al. [115] which contains the benzene-NO2 (i.e., a

carbon ring with a nitro group (NO2) attached) as the only discriminative motif between

positive and negative labels. BA2Motifs is a synthetic dataset that was first introduced in

Luo, Cheng, Xu, et al. [107]. The base graphs are Barabasi-Albert (BA) graphs. 50% of

the graphs are augmented with a house-motif graphs, the rest with a 5-node cycle motif.

The discriminative subgraph leading to different predictions is the motif attached to the BA

graph.

Experimental Settings. To evaluate the quality of our approach, we use L2xGnn with

several GNN base models including GCN [30], GIN [22] and GraphSAGE [20]. We compare

the results when using the original model and when the same model is combined with our

XAI method. For model selection and evaluation, to fairly compare the methods, we follow

a previously proposed protocol1. We perform a 10-fold cross validation where the hyperpa-

rameter selection is done according to the validation accuracy. The selection is performed

1https://github.com/pyg-team/pytorch_geometric/tree/master/benchmark/kernel

92

https://github.com/pyg-team/pytorch_geometric/tree/master/benchmark/kernel

Learning to Explain Graph Black-box Models

for the number of layers (L) [1, 2, 3, 4] and the number of hidden units (H) [16, 32, 64, 128].

For both parameters, the selected numbers represent a standard range of values to decide

the characteristics of the backbone architecture. For a fair comparison with the backbone ar-

chitectures, we select the best configuration for each dataset, and we integrate our approach

into the best model. Instead of fixing a value k for each input graph, we compute k based

on a ratio R of edges to be kept. Once the hyperparameters of the default model are found,

we select the best ratio R (in terms of percentage of edges to keep) from the set of values

[0.4, 0.5, 0.6, 0.7] based again on the validation accuracy. We do not include extreme values

for two reasons: (1) smaller values for R lead to reduced predictive capabilities and not

meaningful explanatory subgraphs; and (2) higher values would not remove enough edges

compared to the original input. Finally, we choose the perturbation intensity λ from the

values [10, 100, 1000] taken from the original paper [165].

Hyperparameter Selection. Experiments were run on a single Linux machine with Intel

Core i7-11370H @ 3.30GHz, 1 GeForce RTX 3060, and 16 GB RAM. The best hyperparam-

eter configuration for each model and dataset used for graph classification tasks is reported

in Table 5.2.

Table 5.2: Hyperparameter settings for graph classification tasks. H and L represent
the number of hidden units and the number of layers respectively.

Dataset
GCN GIN GraphSAGE

H L R λ H L R λ H L R λ

DD 128 2 0.6 10 64 1 0.5 100 128 1 0.6 100
MUTAG 128 3 0.6 1000 128 4 0.5 10 128 3 0.4 10
IMDB-B 128 3 0.4 100 64 3 0.4 1000 64 1 0.4 10
IMDB-M 64 3 0.6 10 128 4 0.6 10 64 1 0.4 100
PROTEINS 128 3 0.7 100 128 4 0.5 10 64 3 0.4 10
YEAST 128 3 0.6 10 128 3 0.6 10 32 4 0.5 100

93

Learning to Explain Graph Black-box Models

Table 5.3: Prediction test accuracy (%) for graph classification tasks over ten runs.

Method
Dataset

DD MUTAG IMDB-B IMDB-M PROTEINS YEAST

GCN 72.0 ± 2.4 73.4 ± 8.3 73.1 ± 3.2 50.0 ± 2.8 71.8 ± 4.4 88.1 ± 0.1
L2xGcndsc 71.9 ± 3.1 73.9 ± 11.1 66.0 ± 5.4 50.3 ± 3.2 71.1 ± 3.4 88.2 ± 0.2
L2xGcn 71.9 ± 3.6 74.5 ± 8.2 73.4 ± 4.7 49.0 ± 2.2 72.0 ± 5.3 88.1 ± 0.1

GIN 72.2 ± 2.7 82.7 ± 5.1 72.1 ± 5.0 49.0 ± 4.7 70.8 ± 4.5 88.3 ± 0.1
L2xGindsc 73.9 ± 5.1 81.4 ± 9.2 65.0 ± 5.0 48.8 ± 3.2 68.5 ± 2.9 88.2 ± 0.1
L2xGin 72.0 ± 3.0 82.5 ± 7.8 72.4 ± 4.5 47.9 ± 3.5 70.9 ± 3.4 88.0 ± 0.2

GraphSage 72.1 ± 3.9 73.4 ± 7.5 72.2 ± 4.8 50.7 ± 3.7 71.3 ± 5.1 88.2 ± 0.1
L2xGsgdsc 72.7 ± 3.8 75.1 ± 7.7 73.8 ± 2.8 50.6 ± 3.2 71.3 ± 4.1 88.0 ± 0.1
L2xGsg 72.5 ± 3.9 79.8 ± 8.1 73.0 ± 4.1 50.8 ± 2.7 70.7 ± 4.6 88.1 ± 0.2

5.4 Results

Graph Classification Comparison with Base GNNs. Following the experimental pro-

cedure proposed in Zhang, Liu, Wang, et al. [125], Table 5.3 lists the results of using L2xGnn

with base GNN architectures for graph classification tasks. The primary goal of this work

is not to provide a better predictive model, but to provide faithful explanation masks while

maintaining similar predictive performance. This analysis is important since inherent inter-

pretable networks are known for creating a trade-off with the predictive capabilities of the

model, and practitioners may not be willing to sacrifice the prediction accuracy for increased

transparency [173]. Nevertheless, we observe that L2xGnn is competitive and often even

outperforms the base GNN models on the benchmark datasets.

Explanation Accuracy. We compare the proposed method with popular post-hoc ex-

planation techniques including the GNN-Explainer [106], PGE-Explainer [107], GradCAM

[103], GNN-LRP [122], and SubgraphX [111]2. We train a 3-layer GIN for 200 epochs with

hidden dimensions equal to 64 and a learning rate equal to 0.001. We save the best model
2Implementations taken from the Dig library [174].

94

Learning to Explain Graph Black-box Models

Table 5.4: Evaluation of explanation accuracy (%) on synthetic graph classification
datasets using a 3-layer GIN architecture. The lowest standard deviation for each metric
is underlined. With the exception of L2xGnn, none of the approaches can guarantee
faithful explanations where the explanation is exclusively used during message passing
operations

Dataset BA-2MOTIFS MUTAG0

Acc. Pr. Rec. F1 Acc. Pr. Rec. F1

GNN-Exp. 44.6 ± 2.4 22.7 ± 0.9 62.9 ± 3.3 32.9 ± 1.0 47.4 ± 2.3 42.2 ± 2.4 69.2 ± 2.4 50.2 ± 2.1

GradCAM 77.1 ± 11.5 50.1 ± 16.1 72.4 ± 23.2 59.0 ± 19.0 78.0 ± 1.3 85.6 ± 2.8 60.8 ± 3.9 68.8 ± 2.2

PGE-Exp. 36.7 ± 18.9 17.5 ± 5.9 66.6 ± 22.5 27.7 ± 9.4 65.0 ± 9.6 57.3 ± 12.3 54.7 ± 12.2 54.9 ± 12.0

GNN-LRP 77.3 ± 2.5 34.3 ± 16.8 36.4 ± 19.7 33.0 ± 15.7 71.7 ± 7.3 78.6 ± 9.2 43.5 ± 16.7 53.4 ± 17.1

SubgraphX 81.5 ± 5.6 54.0 ± 12.9 74.2 ± 16.5 60.4 ± 14.2 72.2 ± 2.1 76.1 ± 2.8 47.6 ± 5.9 56.8 ± 3.3

L2xGin 78.0 ± 0.6 49.5 ± 0.8 90.2 ± 1.4 63.8 ± 1.0 74.1 ± 4.3 65.6 ± 3.9 82.8 ± 5.2 70.7 ± 4.3

L2xGindsc 80.0 ± 1.2 52.1 ± 1.6 94.7 ± 2.7 67.1 ± 2.0 71.0 ± 3.0 62.4 ± 4.1 78.1 ± 3.2 66.9 ± 3.5

according to the validation accuracy and we compare it with the post-hoc techniques. In our

case, we integrate L2xGnn into the same architecture and learn the edge masking during

training as described before. In Table 5.4, we report the explanation accuracy evaluation

with respect to the ground-truth motifs in comparison with post-hoc techniques. The expla-

nation problem is formalized as a binary classification problem, where the edges belonging

to the ground-truth motif are treated as positive labels. We observe that L2xGnn obtains

better or the same results as the baseline GNN models. While for the post-hoc explanation

techniques we cannot guarantee that the GNNs use exclusively the explanation subgraphs

for the prediction [102], our method, by providing faithful explanations, overcomes this limi-

tation. It is exactly the provided explanation that is used in the message-passing operations

of L2xGnn.

C

C

C C

C

C

N

O

O

Figure 5.3:
Benzene-NO2

motif.

Visual Evaluation of the Explanations. In Figure 5.2, we present

some of the subgraphs identified by L2xGnn when combined with two dif-

ferent base GNNs. Based on prior studies and chemical domain knowledge

[112], [115], [168], carbon rings (the blue circles in the pictures) and NO2

groups are known to be mutagenic. Interestingly, we can notice that, when using the infor-

95

Learning to Explain Graph Black-box Models

L2xGcn

L2xGcndsc

L2xGin

L2xGindsc

Figure 5.2: Visualization of some of the subgraphs selected by L2xGnn for MUTAG0

on the test set. The solid edges represent the ones sampled by our approach. The
subscript dsc indicates the maximum weight k -edge subgraph problem (i.e., possibly
disconnected subgraphs). Black, blue, red, and gray nodes represent carbon (C), nitro-
gen (N), oxygen (O), and hydrogen (H) atoms respectively.

mation of connected subgraphs, the models are able to recognize a complete carbon ring with

a NO2 group in most of the cases. In some cases, the carbon ring is not complete, but the

explanations are still helpful to understand which motifs are potentially important for the

prediction. With the subscript dsc, we can observe the results of the sampling strategy when

we do not require subgraphs to be connected. In this case, the carbon rings are not always

identified. Instead, the NO2 group is always considered important for the prediction. More

generally, as also reported in Yuan, Yu, Wang, et al. [111], studying connected subgraphs

results in more natural motifs compared to the motifs obtained without the connectedness

constraint. A visual comparison of the explanations generated by L2xGnn and by the base-

lines can be found in Figure 5.6. The graph visualization supports the numerical evaluation

carried on in Table 5.4. In fact, one can see that the explanations generated by the post-hoc

approaches may vary substantially depending on the given input graph. In our case, instead,

the explanations remain constant regardless of the input information. This claim supports

the explanation accuracy analysis, where our approach has one of the smallest standard de-

96

Learning to Explain Graph Black-box Models

viation among all the considered methods. Additionally, we also included the explanations

generated with an attention-based GNN, namely GAT [21]. Although having a similar pre-

dictive performance in the graph classification task (99.6 ± 0.03), the resulting explanations

are not qualitatively comparable with our approach. This is in line with previous works [106],

[173], [175] asserting that graph attention models are not able to generate attention weights

with high-fidelity, and consequently, cannot provide faithful and meaningful explanations.

Explanation Consistency. One crucial property for explanatory methods is consistency.

For instance, if an explanation algorithm is applied to the same data instance multiple times,

the generated explanations should be unchanged. Also, when different random seeds are used

for the same architecture, the generated explanations should be stable. For the first case, we

report the results in Table 5.5. Our method preserves its consistency when it is applied to the

same data instance multiple times at test time. This is in line with the assumptions of our

approach. In fact, since perturbations for subgraph sampling are removed at test time, this

behavior is guaranteed. In Table 5.6, we report the explanation accuracy of our approach

when using the same backbone architecture with different model initializations. Specifically,

we compare a 3-layer GIN model using five different seeds for model initialization on the

same data split. From the results, we can observe the ability of our method to generate

consistent explanations irrespective of the differences across models.

Table 5.5: Explanation accuracy (%) on multiple test runs over the same data in-
stances.

Dataset BA-2MOTIFS

Acc. Pr. Rec. F1

L2xGin 75.9 ± 0.0 47.0 ± 0.0 90.0 ± 0.0 61.7 ± 0.0

L2xGindsc 77.9 ± 0.0 49.5 ± 0.0 94.4 ± 0.0 64.8 ± 0.0

Dataset MUTAG0

Acc. Pr. Rec. F1

L2xGin 71.0 ± 0.0 63.7 ± 0.0 78.4 ± 0.0 67.7 ± 0.0

L2xGindsc 70.8 ± 0.0 63.4 ± 0.0 77.0 ± 0.0 67.1 ± 0.0

97

Learning to Explain Graph Black-box Models

Table 5.6: Explanation accuracy (%) on different model initializations using a 3-layer
GIN architecture.

Dataset BA-2MOTIFS

Acc. Pr. Rec. F1

L2xGin 75.9 ± 0.0 47.0 ± 0.0 90.0 ± 0.0 61.7 ± 0.0

L2xGindsc 77.9 ± 0.0 49.4 ± 0.0 94.3 ± 0.1 64.8 ± 0.0

Dataset MUTAG0

Acc. Pr. Rec. F1

L2xGin 73.8 ± 3.8 66.8 ± 3.7 81.8 ± 4.2 71.2 ± 3.8

L2xGindsc 68.7 ± 1.6 61.5 ± 2.6 74.4 ± 3.7 64.9 ± 1.9

Shortcut Learning Detection. By generating faithful subgraph explanations, our ap-

proach can be used to detect whether the predictive model is focusing on the expected

features or if it is affected by shortcut learning. This is particularly important for GNNs,

where seemingly small implementation differences can influence the learning process of the

model [110]. To this end, we use the BA2Motifs dataset [107]. We trained two different

models, GCN and GIN, achieving a test accuracy of 0.67 and 1.0 respectively. Taking a

closer look at the explanations of the first model, we observed that most of the correct pre-

dictions were (incorrectly) correlated with the cycle motif and that the explanations were

similar to the ones reported in Figure 5.4. The explanatory results show that the model

is not learning the expected discriminative motifs and, consequently, the accuracy for the

test set is poor. This insight can help users to change the configuration of the architecture

or to use a different model (e.g., GIN). More generally, the results highlight that faithful

explanations can facilitate model analysis and debugging.

GCN GIN

House motif: False House motif: False House motif: True House motif: False

Figure 5.4: Example of model analysis based on the generated explanations.

98

Learning to Explain Graph Black-box Models

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ratio

70

75

80

85
A

cc
u

ra
cy

MUTAG

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Ratio

65

70

75
PROTEINS

L2xGcn

L2xGin

Figure 5.5: Effect of the edge ratio on the prediction accuracy (%).

Ablation Studies. In Table 5.3, we compare the two sampling strategies. From the results,

the connected sampling is able to get better results than the non-connected counterpart on

most datasets. In fact, the connectivity of subgraphs is essential to grasp the complete

information about the important patterns, especially for chemical compound data where

connected atoms are usually expected to create molecules or chemical groups. This aspect is

also supported by the results obtained in the explanation accuracy task, where the connected

strategy returns better explanations for the chemical dataset. Additionally, as previously

mentioned, evaluating connected structures rather than just important edges looks more

natural and intelligible. In Figure 5.5, we analyze the effect of the quantity of retained

information on the prediction accuracy. A smaller ratio indicates that we retain fewer edges

during training and, consequently, the resulting subgraphs are more sparse and, therefore,

interpretable. As one can see, this affects the predictive capabilities only when R is small.

Starting from R = 0.5, the ratio does not affect particularly the predictive capabilities of

the model. In fact, for graph classification tasks, some of the information contained in

the initial computational graph does not condition the prediction as the information may

be redundant or noisy. For instance, considering the MUTAG dataset, we know that the

initial graphs contain on average 20 edges. The discriminative motif benzene-NO2, instead,

contains around 9 edges, meaning that we ideally need 50% of the original edges to obtain

good results. This is in line with the findings of this analysis and the graph classification

results previously reported in Tables 5.3 and 5.4.

99

Learning to Explain Graph Black-box Models

Comparison with Non-post-hoc Methods. Among the plethora of post-hoc meth-

ods for graphs, ProtGNN [125], KerGNN [176], and GSAT [173] are noteworthy excep-

tions. The first approach proposes a framework to generate explanations by comparing

input graphs with prototypes learned during training, The second one combines graph ker-

nels with the message passing paradigm to learn hidden graph filters. The latter, instead,

leverages stochastic attention to select task-relevant subgraphs for interpretation. Although

they all provide built-in explanations, given the introduction of new mechanisms to compute

graph representations that differ from standard GNNs computations, the aforementioned

approaches are not faithful by design (i.e., they do not reflect the reasoning process of the

original backbone architecture). In contrast to these methods, our approach relies solely

on standard GNNs, making it suitable to explain them faithfully. Additionally, in terms

of explanatory capability, the learned prototypes are not directly interpretable and need to

be matched to the closest training subgraphs to be human-understandable. Graph filters,

instead, do not necessarily match existing patterns in the instance-based case. In both cases,

the output can only provide a general idea of the important structures used by the model for

prediction but fail at revealing precisely the instance-level explanation for each input graph.

Comparison with Graph Structure Learning Approaches. Recently, there have been

related methods for learning the structure of graph neural networks. Following the taxon-

omy proposed in Zhu, Xu, Zhang, et al. [177], the structure learning methods most related

to L2xGnn fall into the postprocessing category, and more specifically, under the discrete

sampling subcategory. All existing methods use variants of the Gumbel-softmax trick which

is limited in modeling complex distributions. Moreover, only when the straight-through

version of the Gumbel-softmax trick is used, one can obtain truly discrete and not merely

relaxed adjacency matrices in the forward pass. In contrast, L2xGnn always samples purely

discrete adjacency matrices. It is, to the best of our knowledge, the only method that allows

us to model complex dependencies between the edge variables through its ability to integrate

100

Learning to Explain Graph Black-box Models

a combinatorial optimization algorithm on graphs. Other strategies include sampling edges

between each pair of nodes from a Bernoulli distribution [178] or sampling subgraphs for

subgraph aggregation methods in a data-driven manner [179]. All these methods, however,

are not concerned with the problem of explaining the behavior of GNNs explicitly.

5.5 Summary

In this chapter, we propose L2xGnn, a framework that can be integrated into GNN architec-

tures to learn to generate explanatory subgraphs which are exclusively used for the models’

predictions. Our experimental findings demonstrate that the integration of L2xGnn with

base GNNs does not affect the predictive capabilities of the model for graph classification

tasks. Furthermore, according to the definition of faithfulness provided before, the resulting

explanations are faithful since the retained information is the only one used by the model for

prediction. Hence, differently from most of the common techniques, our explanations reveal

the rationale of the GNNs and can also be used for model analysis and debugging.

A limitation of the approach is the reduced efficiency compared to baseline GNN models.

Since we need to integrate an algorithm to compute (approximate) solutions to a combina-

torial optimization problem, each forward-pass requires more time and resources. Moreover,

depending on the choice of the optimization problem, we might not capture the structure

of explanatory motifs required for the application under consideration. If for a medium

graph two or more disconnected subgraphs are required, the algorithm opt would have to

be changed to account for this.

101

Learning to Explain Graph Black-box Models

GNNExpl

GradCAM

PGEExpl

GNN LRP

SubgraphX

GAT

L2xGsgdsc

L2xGsg

Figure 5.6: Comparison of the generated explanations for MUTAG0 on the test set.
The solid edges are the ones considered responsible of a correct prediction. Black, blue,
red, gray, and green nodes represent carbon (C), nitrogen (N), oxygen (O), hydrogen
(H), and chlorine (Cl) atoms respectively.

102

Chapter Six

Conclusions

With the increase of AI-based solutions in real-world applications comes a change in the

requirements related to these methods. The wide adoption of machine learning models based

on massive data information could create automatic decision systems that we cannot entirely

understand. As a consequence, biased or unethical choices could occur more frequently.

Thus, before exploiting decisions based upon black-box models, a series of concerns related

to trustworthiness, faithfulness, and reliability should be taken into account. All of these

aspects are related to what we now call Explainable AI (XAI).

Summary. Throughout this manuscript, we present novel approaches that could help hu-

mans better understand the reasoning behind a certain model-based decision. First, we

propose alternative ways of creating the latent vector representations which are usually used

by the models to encode the input information. In particular, using the additional textual

information oftentimes available along with the original data, we generate interpretable vec-

tors for which we exactly know the meaning of each dimension and value.

In Chapter 3, the creation of these interpretable text-based vectors is coupled with a learn-

ing task, namely, a rating prediction task. As a result, the learned vectors not only explain

the characteristics of the instances but also reveal which information the model thinks is

103

Conclusions

relevant to the learning task. Additionally, by overcoming the limitation of common embed-

ding techniques, the vectors can be evaluated and inspected both singularly and collectively.

Indeed, through this method, we provide a new ’interactive’ tool that can help understand

the properties, differences, and similarities of the data considered. The evaluation of sin-

gle vectors provides human-understandable information about specific instances (see Figure

3.4), while the evaluation of a group of vectors can give insights regarding the organization

and properties of the whole dataset (Figure 3.2).

In Chapter 4, following a similar purpose, we present an alternative way of generating in-

terpretable latent representations. Without relying on the neural design of common ML

architectures, we propose a fully transparent probabilistic model that creates a topographic

organization of latent classes. Differently from neural-based models where explanations are

typically generated through a modification of a difficult-to-interpret network (e.g., by inte-

grating an attention mechanism), in our case, interpretability is at the core of the proposed

approach. Rather than implementing an architecture capable of creating explanations with-

out a true understanding of the data, we present a probabilistic model grounded on data

understanding which, in turn, is inherently interpretable. Also, in contrast with neural-

based embedding techniques, instead of modeling each instance separately, we model classes

of users and products. As a result, the latent codes are more compact and sparse. As before,

the output of this probabilistic model lends itself to nice visualization and analysis of the

results (Figure 4.3). Afterward, given the recent debates on the effective improvements of

deep networks in comparison with ’old-fashioned ’ approaches, we continue our analysis by

using the learned vectors for a rating prediction task. The limited expressiveness of con-

strained low-dimensional representations, such as the ones presented here, should limit the

ability of the learning model to discriminate the input information. However, the predic-

tive results suggest otherwise. Although the simplicity of the information carried by our

vectors, the results were similar compared to more sophisticated and high-dimensional rep-

resentations. Surprisingly, also the combination of our interpretable compact vectors with

104

Conclusions

an interpretable model (i.e., a regression model), was able to achieve competitive results.

Thus, the outcome of our experimental analysis suggests that, for some learning tasks, the

use of complicated and deep architecture is not fully motivated. Instead, we could use ap-

proaches and representations much more interpretable without compromising the predictive

capabilities significantly.

Finally, in Chapter 5, we take a step forward and present a novel approach that learns to

explain the inner mechanisms of graph black-box models. Instead of trying to interpret the

internal representations generated by the model, the main goal is to extract which part of

the input is effectively used during inference for a given output (Figure 5.2). Our experi-

mental findings suggest that the integration of L2xGnn with base GNNs, although filtering

some information out, does not affect the predictive capabilities of the model for graph

classification tasks. Furthermore, since we provide explanations that faithfully uncover the

inner mechanisms of the base model, our approach can also be used to analyze potential

learning problems (Figure 5.4) and modify the architecture to achieve the desired learning

capabilities.

Evaluation of the Explanations. As previously stated, measuring the quality of expla-

nations is still an open problem since a shared definition of what interpretability really is

does not exist. In Chapter 3, in a textual context, we provide a quantitative evaluation

of the generated explanations. The main motivation is that, instead of just relying on the

visual human assessment, a metric could facilitate the immediate evaluation of the explana-

tions. In our case, considering how textual information is processed by humans, we propose

to use two different metrics. Starting from two different sets of words, we employ Jaccard

similarity (see Eq. 3.12) to understand the direct correspondences between the words in the

two sets, and the Word Mover’s Distance (Eq. 3.13) to evaluate their semantic similarity.

In this way, we can have a better idea of the quality of the explanations by both consider-

ing the lexical and semantic similarities of groups of words. Differently, in Chapter 5, we

105

Conclusions

make use of ground-truth datasets to evaluate the accuracy of our approach in detecting the

discriminative motifs of the model’s predictions. In the introductory chapters we mentioned

that, usually, there might be some problems and discrepancies when evaluating explanatory

methods with ground-truth datasets. This is particularly true when we analyze post-hoc

explanations where we cannot assure a direct match between the generated explanations,

the expected ones, and the information effectively used by the model. However, since our

explanations faithfully reflect the model reasoning, the limitations related to the evaluation

of post-hoc techniques no longer exist.

Future Works. To facilitate and guide the evaluation of the explanations, in Chapter 3,

we propose two quantitative metrics for assessing the quality of the textual-based represen-

tations. In general, automatic-computed metrics can help humans evaluate the generated

explanations rapidly. However, as already stated, interpretability remains something per-

sonal. One could find an explanation particularly insightful, while another one could find it

meaningless or difficult to understand. Furthermore, depending on the data and objective,

interpretability can have a different definition and, therefore, a universal metric cannot be

created. For this reason, although it would be ideal to have machines evaluate automatically

the explanations, we should make a step toward a more human-centric view of explainability

and research in general. As we propose in [16], external stakeholders (i.e., research beneficia-

ries, end-users) should be involved by researchers in all research stages, from data collection

to output evaluation. In this way, we would be able to fully understand the requirements

and needs of the final ’evaluator’, and we could provide models and outputs truly human-

understandable.

Sometimes, apart from the predictive accuracy, it is important to understand the degree of

confidence of the model for its predictions. The so-called model uncertainty, thanks to break-

through applications as [180], has become popular and can help increase the transparency

of the models. Through model uncertainty, we can provide a measure of belief about the

106

Conclusions

predictions. This is particularly significant in critical domains, where conventional point

estimates could be insufficient for relying on a computer-based decision. In this scenario, to

prevent wrong actions, confidence estimates would be beneficial to assist humans during the

decision process. Similarly, also in the field of XAI, the introduction of model uncertainty

estimates could increase human trust in ML-based models. In fact, in XAI as well, the gen-

erated explanations may be unstable and, therefore, uncertainty quantities could be useful

to assess the reliability and stability of explanatory methods. The first attempt at modeling

uncertainty for explainability was recently proposed in [181]. Motivated by the fact that

small perturbations of the input could substantially change the corresponding explanation,

the authors propose a Bayesian framework to generate explanations with uncertainty esti-

mates for post-hoc scenarios. The direction is still new and deserves more attention in the

future. For this reason, for future works, it would be interesting to develop new approaches

that will be able to provide confidence measures along with the explanatory output.

To conclude, through the methodologies proposed in this thesis, we demonstrate that inter-

pretable constrained models and representations may result in a relatively small reduction

in terms of predictive capabilities. However, the gain in model and data understanding is so

significant that we can sacrifice pure predictive performance to increase model transparency,

especially for critical tasks. Following this direction, we also show that the use of deep and

complicated systems is not fully motivated in some scenarios. Additionally, even though

it would be convenient to have machines automatically evaluate the provided explanations,

interpretability is still conditioned by the human perspective. Therefore, whether we want

to understand the inner mechanisms of black-box models or their latent representations, we

should move toward a human-centric view of research since only through a full interaction

between humans and machines we can improve all the aspects related to XAI. We hope that

the contributions and perspectives presented in this thesis can be a modest starting point

for future evaluations on this matter.

107

Appendix One

Addendum to Chapter 3

In Chapter 3, we propose an approach to build text-based vector representations start-

ing from a vocabulary of 2000 words. However, although the complexity and the high-

dimensionality of the data, sparse representations are usually expected in many applications.

For music or movie tag classification, for instance, among thousands of possible candidates,

only a few of them are associated with each input sample. The same reasoning holds for the

number of words associated with each user or product in an e-commerce system scenario.

Despite the availability of thousands of words, a set of 20 words would probably be enough

to understand the user’s taste or product characteristics. Additionally, we may impose some

sparsity constraints to limit the memory usage in limited-memory devices or simply to set

a threshold on the maximum number of features to select. For all the above reasons, in

[15], we present an approach to explicitly learn the sparsity of the latent representations

with a twofold objective: a) model how sparse the representations should be; b) learn sparse

data structures when a quantified sparsity constraint is in place. In this way, the learned

sparsity degree is not fixed but fits the corresponding observation. Thanks to the flexibility

in deciding the number of non-zero features to select while maintaining it below the defined

threshold, the model reduces data dimensionality and is applicable when (hard) sparsity

constraints are required. In order to achieve such flexibility, an auxiliary random variable is

108

Addendum to Chapter 3

Figure A.1: Schematic view of the encoder-decoder architecture for learning sparse
latent representations.

introduced to model the sparsity of the representations and to specify the maximum number

of non-zero features required. More specifically, the model is a sparse deep latent generative

model that combines the strength of deep learning approaches with the flexibility of Bayesian

inference. In other words, we extend deep latent models [182]–[188] to explicitly model the

sparsity of the representations. The inference is based on amortized variational methods

[182], [183], [189]–[191], where we employ a encoder-decoder architecture for inference and

learning. A schematic view of the architecture is presented in Figure A.1.

The creation of the sparse representations is based on a two-step sampling approach per-

formed in the encoder part of the architecture. Basically, the encoder part consists of two

different encoders: 1) a feature encoder which simply models the feature representation, as

in a classical encoder; 2) a sparsity encoder to learn how sparse each latent vector should

be. In this way, the model is capable of focusing on and extracting the important features

only. The results of the two encoders are then combined through summation to create a

single sparse vector representation which is in turn used in the decoder part to reconstruct

the original input. We test the results in both unsupervised (image reconstruction) and su-

pervised (multi-class multi-label classification) settings achieving in both cases competitive

109

Addendum to Chapter 3

and promising results.

Although we have not tried to integrate this idea in some of the approaches proposed in this

thesis, this method may be potentially used to, e.g., further define the characteristics of the

interpretable word-based vectors proposed in Chapter 3. In this context, we could set a limit

on the number of words used to explain each item and let the architecture decide how many

words are needed to generate a meaningful explanation for each user or product. In this way,

by defining some additional properties of the explainable vectors, their interpretability can

be further improved.

110

Appendix Two

Derivations of EM Algorithm Equations

B.1 E-step Derivations

First, we estimate P̂ (zku, zℓp|w, u, p) as:

P (w|u, p, zku, zℓp)P (zku|u, p)P (zℓp|u, p)∑
k′′

∑
ℓ′′
P (w|u, p, zk′′u , z

ℓ′′
p)P (zk′′u |u, p)P (zℓ′′p |u, p)

. (B.1)

By model assumptions, zu is independent from products and zp is independent from users,

so we have P (zku|u, p) = P (zku|u) and P (zℓp|u, p) = P (zℓp|p). Consequently:

P (w|u, p, zku, zℓp) =
∑
k′

∑
ℓ′

P (w,yk′

u ,y
ℓ′

p |u, p, zku, zℓp)

=
∑
k′

∑
ℓ′

[
P (w|u, p, zku, zℓp,yk′

u ,y
ℓ′

p)P (y
k′

u |u, p, zku)P (yℓ′

p |u, p, zℓp)
]

=
∑
k′

∑
ℓ′

P (w|yk′

u ,y
ℓ′

p)P (y
k′

u |zku)P (yℓ′

p |zℓp),

(B.2)

and so P̂ (zku, zℓp|w, u, p) is equal to

P (zku|u)P (zℓp|p)
∑

k′
∑

ℓ′ S(k, ℓ)∑
k′′

∑
ℓ′′
P (zku|u)P (zℓp|p)

∑
k′

∑
ℓ′
S(k′′, ℓ′′)

, (B.3)

with S(α, β) = P (w|yk′
u ,y

ℓ′
p)P (y

k′
u |zαu)P (yℓ′

p |zβp).

Analogously, to compute P̂ (yk′
u ,y

ℓ′
p |w, u, p), we have:

P (w|u, p,yk′
u ,y

ℓ′
p)P (y

k′
u |u, p)P (yℓ′

p |u, p)∑
k′′
∑

ℓ′′ P (w|u, p,yk′′
u ,y

ℓ′′
p)P (yk′′

u |u, p)P (yℓ′′
p |u, p)

(B.4)

111

Derivations of EM Algorithm Equations

with

P (yk′

u |u, p) =
∑
k

P (yk′

u , z
k
u|u, p)

=
∑
k

P (yk′

u |u, p, zku)P (zku|u, p)

=
∑
k

P (yk′

u |zku)P (zku|u).

(B.5)

Following the same reasoning:

P (yℓ′

p |u, p) =
∑
ℓ

P (yℓ′

p , z
ℓ
p|u, p)

=
∑
ℓ

P (yℓ′

p |u, p, zℓp)P (zℓp|u, p)

=
∑
ℓ

P (yℓ′

p |zℓp)P (zℓp|p).

(B.6)

Hence, P̂ (yk′
u ,y

ℓ′
p |w, u, p) becomes:

P (w|yk′
u ,y

ℓ′
p)
∑

kG(k
′)
∑

ℓW (ℓ′)∑
k′′

∑
ℓ′′
P (w|yk′′

u ,y
ℓ′′
p)
∑
k

G(k′′)
∑
ℓ

W (ℓ′′)
, (B.7)

where G(α) = P (yα
u |zku)P (zku|u) and W (β) = P (yβ

p |zℓp)P (zℓp|p).

B.2 M-step Derivations

For the M-step, we assume the functional forms of the distributions for P (zku|u), P (zℓp|p) and

P (w|yk′
u ,y

ℓ′
p) as:

P (zu|u) ∼ Multinomial (B.8)

P (zp|p) ∼ Multinomial (B.9)

P (w|u, p) ∼ Multinomial. (B.10)

We introduce latent indicator variables δi,jk,k′,ℓ,ℓ′ such that if the user ui belonging to latent

user class k (that was corrupted through channel noise to latent user class k′) used the word

112

Derivations of EM Algorithm Equations

wi
j when reviewing the product pi belonging to latent product class ℓ (corrupted by channel

noise to latent product class ℓ′), then δi,jk,k′,ℓ,ℓ′ = 1, otherwise δi,jk,k′,ℓ,ℓ′ = 0.

The complete-data log likelihood is then:

LC =
R∑
i=1

Si∑
j=1

K∑
k′=1

L∑
ℓ′=1

K∑
k=1

L∑
ℓ=1

δi,jk,k′,ℓ,ℓ′[
log

(
P (wi

j|yui = k′,ypi = ℓ′)

P (yui = k′|zui = k)P (zui = k|ui)

P (ypi = ℓ′|zpi = ℓ)P (zpi = ℓ|pi)
)]
.

(B.11)

The expected complete data log-likelihood is:

LC =
R∑
i=1

Si∑
j=1

K∑
k′=1

L∑
ℓ′=1

K∑
k=1

L∑
ℓ=1

E[δi,jk,k′,ℓ,ℓ′][
logP (wi

j|yk′

ui ,yℓ′

pi) + logP (yk′

ui |zkui)

+ logP (yℓ′

pi |zℓpi) + logP (zkui |ui) + logP (zℓpi |pi)
]
.

(B.12)

For convenience, we will write LC as:

LC =
R∑
i=1

Si∑
j=1

∆
ui,pi,wi

j
u,p,w

K∑
k′=1

L∑
ℓ′=1

K∑
k=1

L∑
ℓ=1

E[δi,jk,k′,ℓ,ℓ′][
logP (w|yk′

u ,y
ℓ′

p) + logP (yk′

u |zku)

+ logP (yℓ′

p |zℓp) + logP (zku|u) + logP (zℓp|p)
]
,

(B.13)

113

Derivations of EM Algorithm Equations

where ∆α
a = 1 if and only if a = α, otherwise ∆α

a = 0. We maximize the expected complete

data log-likelihood extended with Lagrange multiplier terms:

< LC > =
R∑
i=1

Si∑
j=1

∆
ui,pi,wi

j
u,p,w

K∑
k′=1

L∑
ℓ′=1

K∑
k=1

L∑
ℓ=1

P̂ (zku, z
ℓ
p,y

k′

u ,y
ℓ′

p |u, p, w)[
logP (w|yk′

u ,y
ℓ′

p) + logP (yk′

u |zku)

+ logP (yℓ′

p |zℓp) + logP (zku|u) + logP (zℓp|p)
]

+
∑
u∈U

λu

(∑
k

P (zku|u)− 1

)

+
∑
p∈P

λp

(∑
ℓ

P (zℓp|p)− 1

)

+
∑
k′,ℓ′

λk′,ℓ′

(∑
w∈V

P (w|yk′

u ,y
ℓ′

p)− 1

)
.

(B.14)

By setting ∂<LC>

∂P (w|yk′
u ,yℓ′

p)
= 0, we have:

∂ < LC >

∂P (w|yk′
u ,y

ℓ′
p)

= 0 ⇐⇒

K∑
k=1

L∑
ℓ=1

P̂ (zku, z
ℓ
p,y

k′

u ,y
ℓ′

p |u, p, w)
1

P (w|yk′
u ,y

ℓ′
p)

+ λk′,ℓ′ = 0.

(B.15)

Then

P (w|yk′

u ,y
ℓ′

p) = −

∑
(u,p)∈Bw

∑
k

∑
ℓ

P̂ (zku, z
ℓ
p,y

k′
u ,y

ℓ′
p |u, p, w)

λk′,ℓ′

= −

∑
(u,p)∈Bw

P̂ (yk′
u ,y

ℓ′
p |u, p, w)

λk′,ℓ′
,

(B.16)

where B(w) is the set of (user, product) tuples associated with the word w. Substituting

P (w|yk′
u ,y

ℓ′
p) back to the constraint we have:

∑
w

P (w|yk′

u ,y
ℓ′

p) = 1 ⇐⇒

λk′,ℓ′ = −
∑
w

∑
(u,p)∈B(w)

P̂ (yk′

u ,y
ℓ′

p |u, p, w),
(B.17)

114

Derivations of EM Algorithm Equations

and so

P (w|yk′

u ,y
ℓ′

p) =

∑
(u,p)∈B(w)

P̂ (yk′
u ,y

ℓ′
p |u, p, w)∑

w′

∑
(u,p)∈B(w′)

P̂ (yk′
u ,y

ℓ′
p |u, p, w′)

. (B.18)

By setting ∂<LC>
∂P (zku|u)

= 0, we have:

∂ < LC >

∂P (zku|u)
= 0 ⇐⇒

K∑
k′=1

L∑
ℓ′=1

L∑
ℓ=1

P̂ (zku, z
ℓ
p,y

k′

u ,y
ℓ′

p |u, p, w)
1

P (zku|u)
+ λu = 0.

(B.19)

Denoting the set of words used by user u to review product p by W(u, p), we obtain:

P (zku|u) = −

∑
p

∑
w∈W(u,p)

∑
k′

∑
ℓ′

∑
ℓ

P̂ (zku, z
ℓ
p,y

k′
u ,y

ℓ′
p |u, p, w)

λu

= −

∑
p

∑
w∈W(u,p)

∑
ℓ

P̂ (zku, z
ℓ
p|u, p, w)

λu
.

(B.20)

Substituting P (zku|u) back to the constraint we have:

K∑
k=1

P (zku|u) = 1

⇐⇒ λu = −
∑
k

∑
ℓ

∑
p

∑
w∈W(u,p)

P̂ (zku, z
ℓ
p|u, p, w)

⇐⇒ λu = −
∑
p

|W(u, p)|

(B.21)

and so

P (zku|u) =
∑

p

∑
w∈W(u,p)

∑
ℓ P̂ (z

k
u, z

ℓ
p|u, p, w)∑

p |W(u, p)|
. (B.22)

By setting ∂<LC>
∂P (zℓp|p)

= 0, we have:

∂ < LC >

∂P (zℓp|p)
= 0 ⇐⇒

K∑
k′=1

L∑
ℓ′=1

K∑
k=1

P̂ (zku, z
ℓ
p,y

k′

u ,y
ℓ′

p |u, p, w)
1

P (zℓp|p)
+ λp = 0.

(B.23)

115

Derivations of EM Algorithm Equations

Then,

P (zℓp|p) = −

∑
u

∑
w∈W(u,p)

∑
k′

∑
ℓ′

∑
k

P̂ (zku, z
ℓ
p,y

k′
u ,y

ℓ′
p |u, p, w)

λp

= −

∑
u

∑
w∈W(u,p)

∑
k

P̂ (zku, z
ℓ
p|u, p, w)

λp
.

(B.24)

Substituting P (zℓp|p) back to the constraint we have:

∑
ℓ

P (zℓp|p) = 1

⇐⇒ λp = −
∑
k

∑
ℓ

∑
u

∑
w∈W(u,p)

P̂ (zku, z
ℓ
p|u, p, w)

⇐⇒ λp = −
∑
u

|W(u, p)|

(B.25)

and finally:

P (zℓp|p) =
∑

u

∑
w∈W(u,p)

∑
k P̂ (z

k
u, z

ℓ
p|u, p, w)∑

u |W(u, p)|
. (B.26)

116

References

[1] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catanzaro, “Megatron-

lm: Training multi-billion parameter language models using model parallelism,” arXiv

preprint arXiv:1909.08053, 2019.

[2] T. Brown, B. Mann, N. Ryder, et al., “Language models are few-shot learners,” Ad-

vances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.

[3] D. Lepikhin, H. Lee, Y. Xu, et al., “{gs}hard: Scaling giant models with conditional

computation and automatic sharding,” in International Conference on Learning Rep-

resentations, 2021.

[4] P. Goyal, M. Caron, B. Lefaudeux, et al., “Self-supervised pretraining of visual fea-

tures in the wild,” arXiv preprint arXiv:2103.01988, 2021.

[5] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed rep-

resentations of words and phrases and their compositionality,” Advances in neural

information processing systems, vol. 26, 2013.

[6] W. L. Hamilton, “Graph representation learning,” Synthesis Lectures on Artifical In-

telligence and Machine Learning, vol. 14, no. 3, pp. 1–159, 2020.

[7] P. D. Hoff, A. E. Raftery, and M. S. Handcock, “Latent space approaches to social

network analysis,” Journal of the american Statistical association, vol. 97, no. 460,

pp. 1090–1098, 2002.

117

REFERENCES

[8] C. Rudin, “Stop explaining black box machine learning models for high stakes de-

cisions and use interpretable models instead,” Nature Machine Intelligence, vol. 1,

no. 5, pp. 206–215, 2019.

[9] J. Lin, “The neural hype and comparisons against weak baselines,” in ACM SIGIR

Forum, ACM New York, NY, USA, vol. 52, 2019, pp. 40–51.

[10] W. Yang, K. Lu, P. Yang, and J. Lin, “Critically examining the" neural hype" weak

baselines and the additivity of effectiveness gains from neural ranking models,” in

Proceedings of the 42nd international ACM SIGIR conference on research and devel-

opment in information retrieval, 2019, pp. 1129–1132.

[11] R. Geirhos, J.-H. Jacobsen, C. Michaelis, et al., “Shortcut learning in deep neural

networks,” Nature Machine Intelligence, vol. 2, no. 11, pp. 665–673, 2020.

[12] J. Chen, L. Song, M. Wainwright, and M. Jordan, “Learning to explain: An information-

theoretic perspective on model interpretation,” in International Conference on Ma-

chine Learning, PMLR, 2018, pp. 883–892.

[13] G. Serra, Z. Xu, M. Niepert, C. Lawrence, P. Tiňo, and X. Yao, “Interpreting node em-

bedding with text-labeled graphs,” in 2021 International Joint Conference on Neural

Networks (IJCNN), IEEE, 2021, pp. 1–8.

[14] G. Serra and M. Niepert, “Learning to explain graph neural networks,” arXiv preprint

arXiv:2209.14402, 2022.

[15] Z. Xu, D. O. Rubio, G. Serra, and M. Niepert, “Learning sparsity of representations

with discrete latent variables,” in 2021 International Joint Conference on Neural

Networks (IJCNN), IEEE, 2021, pp. 1–9.

[16] B. Kotnis, K. Gashteovski, J. Gastinger, et al., “Human-centric research for nlp: To-

wards a definition and guiding questions,” in HCI+NLP Workshop at 2022 Annual

118

REFERENCES

Conference of the North American Chapter of the Association for Computational Lin-

guistics (NAACL), 2022.

[17] R. Wilson, Introduction to Graph Theory. Longman, 1996.

[18] R. Diestel, Graph Theory. Springer Berlin Heidelberg, 2016.

[19] P. Veličković, “Message passing all the way up,” in ICLR 2022 Workshop on Geomet-

rical and Topological Representation Learning, 2022.

[20] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation learning on large

graphs,” in Proceedings of the 31st International Conference on Neural Information

Processing Systems, 2017, pp. 1025–1035.

[21] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph

attention networks,” in International Conference on Learning Representations, 2018.

[22] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural networks?”

In International Conference on Learning Representations, 2018.

[23] A. Duval and F. D. Malliaros, “Graphsvx: Shapley value explanations for graph neu-

ral networks,” in Joint European Conference on Machine Learning and Knowledge

Discovery in Databases, Springer, 2021, pp. 302–318.

[24] Z. Ying, J. You, C. Morris, X. Ren, W. Hamilton, and J. Leskovec, “Hierarchical graph

representation learning with differentiable pooling,” Advances in neural information

processing systems, vol. 31, 2018.

[25] M. Zhang, Z. Cui, M. Neumann, and Y. Chen, “An end-to-end deep learning archi-

tecture for graph classification,” in Proceedings of the AAAI conference on artificial

intelligence, vol. 32, 2018.

[26] J. Lee, I. Lee, and J. Kang, “Self-attention graph pooling,” in International conference

on machine learning, PMLR, 2019, pp. 3734–3743.

119

REFERENCES

[27] E. Luzhnica, B. Day, and P. Lio, “Clique pooling for graph classification,” arXiv

preprint arXiv:1904.00374, 2019.

[28] J. Huang, Z. Li, N. Li, S. Liu, and G. Li, “Attpool: Towards hierarchical feature repre-

sentation in graph convolutional networks via attention mechanism,” in Proceedings of

the IEEE/CVF International Conference on Computer Vision, 2019, pp. 6480–6489.

[29] Y. Ma, S. Wang, C. C. Aggarwal, and J. Tang, “Graph convolutional networks with

eigenpooling,” in Proceedings of the 25th ACM SIGKDD international conference on

knowledge discovery & data mining, 2019, pp. 723–731.

[30] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” in International Conference on Learning Representations, 2017.

[31] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in convolutional

neural networks on graphs,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2017, pp. 3693–3702.

[32] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks

for graphs,” in International conference on machine learning, PMLR, 2016, pp. 2014–

2023.

[33] H. Xuanyuan, P. Barbiero, D. Georgiev, L. C. Magister, and P. Lió, “Global concept-

based interpretability for graph neural networks via neuron analysis,” arXiv preprint

arXiv:2208.10609, 2022.

[34] G. Dall’Aglio, Calcolo delle Probabilità. Zanichelli, 2003.

[35] G. Casella and R. L. Berger, Statistical inference. Cengage Learning, 2021.

[36] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-

plete data via the em algorithm,” Journal of the royal statistical society: series B

(methodological), vol. 39, no. 1, pp. 1–22, 1977.

120

REFERENCES

[37] I. Lage, E. Chen, J. He, et al., “An evaluation of the human-interpretability of expla-

nation,” arXiv preprint arXiv:1902.00006, 2019.

[38] H. Lakkaraju, D. Slack, Y. Chen, C. Tan, and S. Singh, “Rethinking explainability as

a dialogue: A practitioner’s perspective,” arXiv preprint arXiv:2202.01875, 2022.

[39] R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi,

“A survey of methods for explaining black box models,” ACM computing surveys

(CSUR), vol. 51, no. 5, pp. 1–42, 2018.

[40] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, et al., “Explainable artificial intelli-

gence (xai): Concepts, taxonomies, opportunities and challenges toward responsible

ai,” Information fusion, vol. 58, pp. 82–115, 2020.

[41] C. Molnar, Interpretable Machine Learning, A Guide for Making Black Box Mod-

els Explainable, 2nd ed. 2022. [Online]. Available: https : //christophm.github . io/

interpretable-ml-book.

[42] G. Ras, N. Xie, M. van Gerven, and D. Doran, “Explainable deep learning: A field

guide for the uninitiated,” Journal of Artificial Intelligence Research, vol. 73, pp. 329–

397, 2022.

[43] C. Rudin, C. Chen, Z. Chen, H. Huang, L. Semenova, and C. Zhong, “Interpretable

machine learning: Fundamental principles and 10 grand challenges,” Statistic Surveys,

vol. 16, pp. 1–85, 2022.

[44] P. Schmidt and F. Biessmann, “Quantifying interpretability and trust in machine

learning systems,” arXiv preprint arXiv:1901.08558, 2019.

[45] F. Doshi-Velez and B. Kim, “Towards a rigorous science of interpretable machine

learning,” arXiv preprint arXiv:1702.08608, 2017.

121

https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book

REFERENCES

[46] L. Faber, A. K. Moghaddam, and R. Wattenhofer, “When comparing to ground truth

is wrong: On evaluating gnn explanation methods,” in Proceedings of the 27th ACM

SIGKDD Conference on Knowledge Discovery & Data Mining, 2021, pp. 332–341.

[47] M. T. Ribeiro, S. Singh, and C. Guestrin, “" why should i trust you?" explaining the

predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining, 2016, pp. 1135–1144.

[48] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”

Advances in neural information processing systems, vol. 30, 2017.

[49] M. T. Ribeiro, S. Singh, and C. Guestrin, “Nothing else matters: Model-agnostic

explanations by identifying prediction invariance,” arXiv preprint arXiv:1611.05817,

2016.

[50] X. Zhao, W. Huang, X. Huang, V. Robu, and D. Flynn, “Baylime: Bayesian local

interpretable model-agnostic explanations,” in Uncertainty in Artificial Intelligence,

PMLR, 2021, pp. 887–896.

[51] A. Perotti, P. Bajardi, F. Bonchi, and A. Panisson, “Graphshap: Motif-based expla-

nations for black-box graph classifiers,” arXiv preprint arXiv:2202.08815, 2022.

[52] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning deep features

for discriminative localization,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 2921–2929.

[53] M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep networks,”

in International conference on machine learning, PMLR, 2017, pp. 3319–3328.

[54] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Grad-

cam: Visual explanations from deep networks via gradient-based localization,” in Pro-

ceedings of the IEEE international conference on computer vision, 2017, pp. 618–626.

122

REFERENCES

[55] C. Lawrence, T. Sztyler, and M. Niepert, “Explaining neural matrix factorization with

gradient rollback.,” in AAAI, 2021, pp. 4987–4995.

[56] F. Wang and C. Rudin, “Falling rule lists,” in Artificial intelligence and statistics,

PMLR, 2015, pp. 1013–1022.

[57] H. Lakkaraju, S. H. Bach, and J. Leskovec, “Interpretable decision sets: A joint frame-

work for description and prediction,” in Proceedings of the 22nd ACM SIGKDD in-

ternational conference on knowledge discovery and data mining, 2016, pp. 1675–1684.

[58] N. Elhage, N. Nanda, C. Olsson, et al., “A mathematical framework for transformer

circuits,” Transformer Circuits Thread, vol. 1, p. 1, 2021.

[59] W. Gurnee and M. Tegmark, “Language models represent space and time,” in The

Twelfth International Conference on Learning Representations, 2023.

[60] A. Chattopadhyay, S. Slocum, B. D. Haeffele, R. Vidal, and D. Geman, “Interpretable

by design: Learning predictors by composing interpretable queries,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 45, no. 6, pp. 7430–7443,

2022.

[61] T. Speith, “A review of taxonomies of explainable artificial intelligence (xai) meth-

ods,” in 2022 ACM Conference on Fairness, Accountability, and Transparency, 2022,

pp. 2239–2250.

[62] W. Samek and K.-R. Müller, “Towards explainable artificial intelligence,” in Explain-

able AI: interpreting, explaining and visualizing deep learning, Springer, 2019, pp. 5–

22.

[63] J. B. Tenenbaum, V. d. Silva, and J. C. Langford, “A global geometric framework for

nonlinear dimensionality reduction,” science, vol. 290, no. 5500, pp. 2319–2323, 2000.

[64] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear

embedding,” science, vol. 290, no. 5500, pp. 2323–2326, 2000.

123

REFERENCES

[65] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding

and clustering,” Advances in neural information processing systems, vol. 14, 2001.

[66] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional networks: A

comprehensive review,” Computational Social Networks, vol. 6, no. 1, pp. 1–23, 2019.

[67] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social repre-

sentations,” in Proceedings of the 20th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2014, pp. 701–710.

[68] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-scale infor-

mation network embedding,” in Proceedings of the 24th international conference on

world wide web, 2015, pp. 1067–1077.

[69] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in Pro-

ceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery

and data mining, 2016, pp. 855–864.

[70] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network embedding as ma-

trix factorization: Unifying deepwalk, line, pte, and node2vec,” in Proceedings of the

eleventh ACM international conference on web search and data mining, 2018, pp. 459–

467.

[71] C. Hacker, “k-simplex2vec: A simplicial extension of node2vec,” in NeurIPS 2020

Workshop on Topological Data Analysis and Beyond, 2020.

[72] Y. Wang, L. Dong, X. Jiang, X. Ma, Y. Li, and H. Zhang, “Kg2vec: A node2vec-based

vectorization model for knowledge graph,” Plos one, vol. 16, no. 3, e0248552, 2021.

[73] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translat-

ing embeddings for modeling multi-relational data,” Advances in neural information

processing systems, vol. 26, 2013.

124

REFERENCES

[74] X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative

filtering,” in Proceedings of the 26th international conference on world wide web, 2017,

pp. 173–182.

[75] R. Socher, D. Chen, C. D. Manning, and A. Ng, “Reasoning with neural tensor net-

works for knowledge base completion,” Advances in neural information processing

systems, vol. 26, 2013.

[76] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional recurrent neural net-

work: Data-driven traffic forecasting,” in International Conference on Learning Rep-

resentations, 2018.

[77] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec, “Graph

convolutional neural networks for web-scale recommender systems,” in Proceedings

of the 24th ACM SIGKDD international conference on knowledge discovery & data

mining, 2018, pp. 974–983.

[78] C. Tu, Z. Zhang, Z. Liu, and M. Sun, “Transnet: Translation-based network represen-

tation learning for social relation extraction.,” in IJCAI, 2017, pp. 2864–2870.

[79] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network representation learn-

ing with rich text information,” in Twenty-fourth international joint conference on

artificial intelligence, 2015.

[80] D. Shen, X. Zhang, R. Henao, and L. Carin, “Improved semantic-aware network em-

bedding with fine-grained word alignment,” in Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, 2018, pp. 1829–1838.

[81] S. Al-Sayouri, E. Gujral, D. Koutra, E. E. Papalexakis, and S. S. Lam, “T-pine:

Tensor-based predictable and interpretable node embeddings,” Social Network Anal-

ysis and Mining, vol. 10, no. 1, pp. 1–11, 2020.

125

REFERENCES

[82] C. T. Duong, Q. V. H. Nguyen, and K. Aberer, “Interpretable node embeddings

with mincut loss,” in Learning and Reasoning with Graph-Structured Representations

Workshop-ICML, 2019.

[83] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Biolog-

ical cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[84] C. M. Bishop, M. Svensén, and C. K. Williams, “Gtm: The generative topographic

mapping,” Neural computation, vol. 10, no. 1, pp. 215–234, 1998.

[85] T. Hofmann, “Probmap–a probabilistic approach for mapping large document collec-

tions,” Intelligent Data Analysis, vol. 4, no. 2, pp. 149–164, 2000.

[86] G. Polčicová and P. Tiňo, “Making sense of sparse rating data in collaborative filtering

via topographic organization of user preference patterns,” Neural Networks, vol. 17,

no. 8-9, pp. 1183–1199, 2004.

[87] S. Seo, J. Huang, H. Yang, and Y. Liu, “Representation learning of users and items

for review rating prediction using attention-based convolutional neural network,” in

International Workshop on Machine Learning Methods for Recommender Systems,

2017.

[88] N. Jakob, S. H. Weber, M. C. Müller, and I. Gurevych, “Beyond the stars: Exploit-

ing free-text user reviews to improve the accuracy of movie recommendations,” in

Proceedings of the 1st international CIKM workshop on Topic-sentiment analysis for

mass opinion, 2009, pp. 57–64.

[89] J. McAuley and J. Leskovec, “Hidden factors and hidden topics: Understanding rating

dimensions with review text,” in Proceedings of the 7th ACM conference on Recom-

mender systems, 2013, pp. 165–172.

126

REFERENCES

[90] G. Ling, M. R. Lyu, and I. King, “Ratings meet reviews, a combined approach to

recommend,” in Proceedings of the 8th ACM Conference on Recommender systems,

2014, pp. 105–112.

[91] Y. Bao, H. Fang, and J. Zhang, “Topicmf: Simultaneously exploiting ratings and

reviews for recommendation,” in Twenty-Eighth AAAI conference on artificial intel-

ligence, 2014.

[92] A. Almahairi, K. Kastner, K. Cho, and A. Courville, “Learning distributed repre-

sentations from reviews for collaborative filtering,” in Proceedings of the 9th ACM

Conference on Recommender Systems, 2015, pp. 147–154.

[93] A. Garcia-Duran, R. Gonzalez, D. Onoro-Rubio, M. Niepert, and H. Li, “Transrev:

Modeling reviews as translations from users to items,” in European Conference on

Information Retrieval, Springer, 2020, pp. 234–248.

[94] Y. Zhang, X. Chen, et al., “Explainable recommendation: A survey and new perspec-

tives,” Foundations and Trends® in Information Retrieval, vol. 14, no. 1, pp. 1–101,

2020.

[95] M. F. Dacrema, P. Cremonesi, and D. Jannach, “Are we really making much progress?

a worrying analysis of recent neural recommendation approaches,” in Proceedings of

the 13th ACM conference on recommender systems, 2019, pp. 101–109.

[96] Y. Xian, Z. Fu, H. Zhao, et al., “Cafe: Coarse-to-fine neural symbolic reasoning for ex-

plainable recommendation,” in Proceedings of the 29th ACM International Conference

on Information & Knowledge Management, 2020, pp. 1645–1654.

[97] C. Chen, M. Zhang, Y. Liu, and S. Ma, “Neural attentional rating regression with

review-level explanations,” in Proceedings of the 2018 World Wide Web Conference,

2018, pp. 1583–1592.

127

REFERENCES

[98] S. Yu, Y. Wang, M. Yang, B. Li, Q. Qu, and J. Shen, “Nairs: A neural attentive inter-

pretable recommendation system,” in Proceedings of the Twelfth ACM International

Conference on Web Search and Data Mining, 2019, pp. 790–793.

[99] X. Dong, J. Ni, W. Cheng, et al., “Asymmetrical hierarchical networks with attentive

interactions for interpretable review-based recommendation,” in Proceedings of the

AAAI conference on artificial intelligence, vol. 34, 2020, pp. 7667–7674.

[100] L. Hu, S. Jian, L. Cao, and Q. Chen, “Interpretable recommendation via attraction

modeling: Learning multilevel attractiveness over multimodal movie contents,” in IJ-

CAI International Joint Conference on Artificial Intelligence, 2018.

[101] T. Chen, H. Yin, G. Ye, Z. Huang, Y. Wang, and M. Wang, “Try this instead: Per-

sonalized and interpretable substitute recommendation,” in Proceedings of the 43rd

International ACM SIGIR Conference on Research and Development in Information

Retrieval, 2020, pp. 891–900.

[102] H. Yuan, H. Yu, S. Gui, and S. Ji, “Explainability in graph neural networks: A tax-

onomic survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

2022.

[103] P. E. Pope, S. Kolouri, M. Rostami, C. E. Martin, and H. Hoffmann, “Explainability

methods for graph convolutional neural networks,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp. 10 772–10 781.

[104] F. Baldassarre and H. Azizpour, “Explainability techniques for graph convolutional

networks,” arXiv preprint arXiv:1905.13686, 2019.

[105] B. Sanchez-Lengeling, J. Wei, B. Lee, et al., “Evaluating attribution for graph neural

networks,” Advances in neural information processing systems, vol. 33, pp. 5898–5910,

2020.

128

REFERENCES

[106] R. Ying, D. Bourgeois, J. You, M. Zitnik, and J. Leskovec, “Gnnexplainer: Generating

explanations for graph neural networks,” Advances in neural information processing

systems, vol. 32, p. 9240, 2019.

[107] D. Luo, W. Cheng, D. Xu, et al., “Parameterized explainer for graph neural network,”

Advances in neural information processing systems, vol. 33, pp. 19 620–19 631, 2020.

[108] T. Funke, M. Khosla, M. Rathee, and A. Anand, “Z orro: Valid, sparse, and stable

explanations in graph neural networks,” IEEE Transactions on Knowledge and Data

Engineering, 2022.

[109] D. Loveland, S. Liu, B. Kailkhura, A. Hiszpanski, and Y. Han, “Reliable graph neural

network explanations through adversarial training,” arXiv preprint arXiv:2106.13427,

2021.

[110] M. S. Schlichtkrull, N. D. Cao, and I. Titov, “Interpreting graph neural networks

for {nlp} with differentiable edge masking,” in International Conference on Learning

Representations, 2021.

[111] H. Yuan, H. Yu, J. Wang, K. Li, and S. Ji, “On explainability of graph neural networks

via subgraph explorations,” in International Conference on Machine Learning, PMLR,

2021, pp. 12 241–12 252.

[112] W. Lin, H. Lan, and B. Li, “Generative causal explanations for graph neural net-

works,” in International Conference on Machine Learning, PMLR, 2021, pp. 6666–

6679.

[113] W. Lin, H. Lan, H. Wang, and B. Li, “Orphicx: A causality-inspired latent vari-

able model for interpreting graph neural networks,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2022, pp. 13 729–13 738.

129

REFERENCES

[114] A. Lucic, M. A. Ter Hoeve, G. Tolomei, M. De Rijke, and F. Silvestri, “Cf-gnnexplainer:

Counterfactual explanations for graph neural networks,” in International Conference

on Artificial Intelligence and Statistics, PMLR, 2022, pp. 4499–4511.

[115] J. Tan, S. Geng, Z. Fu, et al., “Learning and evaluating graph neural network expla-

nations based on counterfactual and factual reasoning,” in Proceedings of the ACM

Web Conference 2022, 2022, pp. 1018–1027.

[116] Q. Huang, M. Yamada, Y. Tian, D. Singh, and Y. Chang, “Graphlime: Local in-

terpretable model explanations for graph neural networks,” IEEE Transactions on

Knowledge and Data Engineering, 2022.

[117] M. Vu and M. T. Thai, “Pgm-explainer: Probabilistic graphical model explanations for

graph neural networks,” Advances in neural information processing systems, vol. 33,

pp. 12 225–12 235, 2020.

[118] Y. Zhang, D. Defazio, and A. Ramesh, “Relex: A model-agnostic relational model

explainer,” in Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and

Society, 2021, pp. 1042–1049.

[119] S. Gui, H. Yuan, J. Wang, Q. Lao, K. Li, and S. Ji, “Flowx: Towards explainable

graph neural networks via message flows,” arXiv preprint arXiv:2206.12987, 2022.

[120] R. Schwarzenberg, M. Hübner, D. Harbecke, C. Alt, and L. Hennig, “Layerwise rele-

vance visualization in convolutional text graph classifiers,” in Proceedings of the Thir-

teenth Workshop on Graph-Based Methods for Natural Language Processing (Text

Graphs-13), 2019, pp. 58–62.

[121] J. Hu, T. Li, and S. Dong, “Gcn-lrp explanation: Exploring latent attention of graph

convolutional networks,” in 2020 International Joint Conference on Neural Networks

(IJCNN), IEEE, 2020, pp. 1–8.

130

REFERENCES

[122] T. Schnake, O. Eberle, J. Lederer, et al., “Higher-order explanations of graph neural

networks via relevant walks,” IEEE transactions on pattern analysis and machine

intelligence, vol. 44, no. 11, pp. 7581–7596, 2021.

[123] Q. Feng, N. Liu, F. Yang, R. Tang, M. Du, and X. Hu, “DEGREE: Decomposition

based explanation for graph neural networks,” in International Conference on Learn-

ing Representations, 2022.

[124] H. Yuan, J. Tang, X. Hu, and S. Ji, “Xgnn: Towards model-level explanations of graph

neural networks,” in Proceedings of the 26th ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, 2020, pp. 430–438.

[125] Z. Zhang, Q. Liu, H. Wang, C. Lu, and C. Lee, “Protgnn: Towards self-explaining

graph neural networks,” in Proceedings of the AAAI Conference on Artificial Intelli-

gence, vol. 36, 2022, pp. 9127–9135.

[126] L. C. Magister, D. Kazhdan, V. Singh, and P. Liò, “Gcexplainer: Human-in-the-loop

concept-based explanations for graph neural networks,” arXiv preprint arXiv:2107.11889,

2021.

[127] Y. Gao, T. Sun, R. Bhatt, D. Yu, S. Hong, and L. Zhao, “Gnes: Learning to explain

graph neural networks,” in 2021 IEEE International Conference on Data Mining

(ICDM), IEEE, 2021, pp. 131–140.

[128] Z. Yu and H. Gao, “Motifexplainer: A motif-based graph neural network explainer,”

arXiv preprint arXiv:2202.00519, 2022.

[129] C. Agarwal, M. Zitnik, and H. Lakkaraju, “Probing gnn explainers: A rigorous theoret-

ical and empirical analysis of gnn explanation methods,” in International Conference

on Artificial Intelligence and Statistics, 2022, pp. 8969–8996.

[130] C. Agarwal, O. Queen, H. Lakkaraju, and M. Zitnik, “An explainable ai library for

benchmarking graph explainers,” 2022.

131

REFERENCES

[131] T. Hamaguchi, H. Oiwa, M. Shimbo, and Y. Matsumoto, “Knowledge transfer for out-

of-knowledge-base entities: A graph neural network approach,” in Proceedings of the

26th International Joint Conference on Artificial Intelligence, 2017, pp. 1802–1808.

[132] S. Rhee, S. Seo, and S. Kim, “Hybrid approach of relation network and localized graph

convolutional filtering for breast cancer subtype classification,” in IJCAI, 2018.

[133] A. Fout, J. Byrd, B. Shariat, and A. Ben-Hur, “Protein interface prediction using

graph convolutional networks,” Advances in neural information processing systems,

vol. 30, 2017.

[134] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an, “Graph convolutional

encoders for syntax-aware neural machine translation,” in Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing, 2017, pp. 1957–

1967.

[135] D. Beck, G. Haffari, and T. Cohn, “Graph-to-sequence learning using gated graph

neural networks,” in Proceedings of the 56th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 2018, pp. 273–283.

[136] L. Song, Y. Zhang, Z. Wang, and D. Gildea, “N-ary relation extraction using graph-

state lstm,” in Proceedings of the 2018 Conference on Empirical Methods in Natural

Language Processing, 2018, pp. 2226–2235.

[137] Y. Zhang, P. Qi, and C. D. Manning, “Graph convolution over pruned dependency

trees improves relation extraction,” in Proceedings of the 2018 Conference on Empir-

ical Methods in Natural Language Processing, 2018, pp. 2205–2215.

[138] M. Narasimhan, S. Lazebnik, and A. Schwing, “Out of the box: Reasoning with graph

convolution nets for factual visual question answering,” Advances in neural informa-

tion processing systems, vol. 31, 2018.

132

REFERENCES

[139] D. Teney, L. Liu, and A. van Den Hengel, “Graph-structured representations for visual

question answering,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2017, pp. 1–9.

[140] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, “Relation networks for object detection,”

in Proceedings of the IEEE conference on computer vision and pattern recognition,

2018, pp. 3588–3597.

[141] Y. Miao, L. Yu, and P. Blunsom, “Neural variational inference for text processing,”

in International conference on machine learning, PMLR, 2016, pp. 1727–1736.

[142] Y. Miao, E. Grefenstette, and P. Blunsom, “Discovering discrete latent topics with

neural variational inference,” in International conference on machine learning, PMLR,

2017, pp. 2410–2419.

[143] A. Martins and R. Astudillo, “From softmax to sparsemax: A sparse model of atten-

tion and multi-label classification,” in International conference on machine learning,

PMLR, 2016, pp. 1614–1623.

[144] A. Laha, S. A. Chemmengath, P. Agrawal, M. Khapra, K. Sankaranarayanan, and

H. G. Ramaswamy, “On controllable sparse alternatives to softmax,” Advances in

neural information processing systems, vol. 31, 2018.

[145] X. Yan, J. Guo, Y. Lan, and X. Cheng, “A biterm topic model for short texts,” in

Proceedings of the 22nd international conference on World Wide Web, 2013, pp. 1445–

1456.

[146] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender

systems,” Computer, vol. 42, no. 8, pp. 30–37, 2009.

[147] L. Zheng, V. Noroozi, and P. S. Yu, “Joint deep modeling of users and items using re-

views for recommendation,” in Proceedings of the tenth ACM international conference

on web search and data mining, 2017, pp. 425–434.

133

REFERENCES

[148] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of machine

learning research, vol. 9, no. 11, 2008.

[149] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word embeddings to doc-

ument distances,” in International conference on machine learning, PMLR, 2015,

pp. 957–966.

[150] X. Zhao and G. Serra, Interpretable node embedding, US Patent App. 16/841,762,

Oct. 2021.

[151] G. Lample, M. Ott, A. Conneau, L. Denoyer, and M. Ranzato, “Phrase-based &

neural unsupervised machine translation,” in Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, 2018, pp. 5039–5049.

[152] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep

bidirectional transformers for language understanding,” in Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), 2019,

pp. 4171–4186.

[153] N. Parmar, A. Vaswani, J. Uszkoreit, et al., “Image transformer,” in International

Conference on Machine Learning, PMLR, 2018, pp. 4055–4064.

[154] A. Dosovitskiy, L. Beyer, A. Kolesnikov, et al., “An image is worth 16x16 words:

Transformers for image recognition at scale,” in International Conference on Learning

Representations, 2020.

[155] J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma, “Neural attentive session-based

recommendation,” in Proceedings of the 2017 ACM on Conference on Information

and Knowledge Management, 2017, pp. 1419–1428.

134

REFERENCES

[156] S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan, “Session-based recommendation

with graph neural networks,” in Proceedings of the AAAI conference on artificial

intelligence, vol. 33, 2019, pp. 346–353.

[157] M. F. Dacrema, S. Boglio, P. Cremonesi, and D. Jannach, “A troubling analysis of

reproducibility and progress in recommender systems research,” ACM Transactions

on Information Systems (TOIS), vol. 39, no. 2, pp. 1–49, 2021.

[158] M. Ludewig and D. Jannach, “Evaluation of session-based recommendation algo-

rithms,” User Modeling and User-Adapted Interaction, vol. 28, no. 4, pp. 331–390,

2018.

[159] D. Jannach and M. Ludewig, “When recurrent neural networks meet the neighborhood

for session-based recommendation,” in Proceedings of the Eleventh ACM Conference

on Recommender Systems, 2017, pp. 306–310.

[160] Y. Tay, A. T. Luu, and S. C. Hui, “Multi-pointer co-attention networks for recom-

mendation,” in Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, 2018, pp. 2309–2318.

[161] A. F. Agarap, “Deep learning using rectified linear units (relu),” arXiv preprint

arXiv:1803.08375, 2018.

[162] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Interna-

tional Conference on Learning Representations, 2015.

[163] L. K. Şenel, I. Utlu, F. Şahinuç, H. M. Ozaktas, and A. Koç, “Imparting interpretabil-

ity to word embeddings while preserving semantic structure,” Natural Language En-

gineering, vol. 27, no. 6, pp. 721–746, 2021.

[164] C. Rudin, “Stop explaining black box machine learning models for high stakes deci-

sions and use interpretable models instead. manuscript based on c. rudin please stop

explaining black box machine learning models for high stakes decisions,” in Proceed-

135

REFERENCES

ings of NeurIPS 2018 Workshop on Critiquing and Correcting Trends in Learning,

2018.

[165] M. Niepert, P. Minervini, and L. Franceschi, “Implicit mle: Backpropagating through

discrete exponential family distributions,” Advances in Neural Information Processing

Systems, vol. 34, pp. 14 567–14 579, 2021.

[166] G. Papandreou and A. L. Yuille, “Perturb-and-map random fields: Using discrete op-

timization to learn and sample from energy models,” in 2011 International Conference

on Computer Vision, 2011, pp. 193–200.

[167] J. Domke, “Implicit differentiation by perturbation,” Advances in Neural Information

Processing Systems, vol. 23, pp. 523–531, 2010.

[168] A. K. Debnath, R. L. Lopez de Compadre, G. Debnath, A. J. Shusterman, and C.

Hansch, “Structure-activity relationship of mutagenic aromatic and heteroaromatic

nitro compounds. correlation with molecular orbital energies and hydrophobicity,”

Journal of medicinal chemistry, vol. 34, no. 2, pp. 786–797, 1991.

[169] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and

H.-P. Kriegel, “Protein function prediction via graph kernels,” Bioinformatics, vol. 21,

no. suppl_1, pp. i47–i56, 2005.

[170] X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining significant graph patterns by leap

search,” in Proceedings of the 2008 ACM SIGMOD international conference on Man-

agement of data, 2008, pp. 433–444.

[171] P. Yanardag and S. Vishwanathan, “Deep graph kernels,” in Proceedings of the 21th

ACM SIGKDD international conference on knowledge discovery and data mining,

2015, pp. 1365–1374.

[172] R. Rossi and N. Ahmed, “The network data repository with interactive graph analytics

and visualization,” in Twenty-ninth AAAI conference on artificial intelligence, 2015.

136

REFERENCES

[173] S. Miao, M. Liu, and P. Li, “Interpretable and generalizable graph learning via stochas-

tic attention mechanism,” in International Conference on Machine Learning, PMLR,

2022, pp. 15 524–15 543.

[174] M. Liu, Y. Luo, L. Wang, et al., “DIG: A turnkey library for diving into graph deep

learning research,” Journal of Machine Learning Research, vol. 22, no. 240, pp. 1–9,

2021. [Online]. Available: http://jmlr.org/papers/v22/21-0343.html.

[175] J. Yu, T. Xu, Y. Rong, Y. Bian, J. Huang, and R. He, “Graph information bottleneck

for subgraph recognition,” in International Conference on Learning Representations,

2020.

[176] A. Feng, C. You, S. Wang, and L. Tassiulas, “Kergnns: Interpretable graph neural

networks with graph kernels,” arXiv preprint arXiv:2201.00491, 2022.

[177] Y. Zhu, W. Xu, J. Zhang, Q. Liu, S. Wu, and L. Wang, “Deep graph structure learning

for robust representations: A survey,” arXiv preprint arXiv:2103.03036, 2021.

[178] L. Franceschi, M. Niepert, M. Pontil, and X. He, “Learning discrete structures for

graph neural networks,” in International conference on machine learning, 2019, pp. 1972–

1982.

[179] C. Qian, G. Rattan, F. Geerts, C. Morris, and M. Niepert, “Ordered subgraph aggre-

gation networks,” arXiv preprint arXiv:2206.11168, 2022.

[180] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation: Representing

model uncertainty in deep learning,” in international conference on machine learning,

PMLR, 2016, pp. 1050–1059.

[181] D. Slack, A. Hilgard, S. Singh, and H. Lakkaraju, “Reliable post hoc explanations:

Modeling uncertainty in explainability,” Advances in Neural Information Processing

Systems, vol. 34, pp. 9391–9404, 2021.

137

http://jmlr.org/papers/v22/21-0343.html

REFERENCES

[182] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in International

Conference on Learning Representations, 2014.

[183] D. J. Rezende, S. Mohamed, and D. Wierstra, “Stochastic backpropagation and ap-

proximate inference in deep generative models,” in International conference on ma-

chine learning, PMLR, 2014, pp. 1278–1286.

[184] K. Gregor, I. Danihelka, A. Mnih, C. Blundell, and D. Wierstra, “Deep autoregressive

networks,” in International Conference on Machine Learning, PMLR, 2014, pp. 1242–

1250.

[185] K. Sohn, H. Lee, and X. Yan, “Learning structured output representation using deep

conditional generative models,” Advances in neural information processing systems,

vol. 28, 2015.

[186] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with gumbel-softmax,”

in International Conference on Learning Representations, 2017.

[187] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribution: A continuous

relaxation of discrete random variables,” in International Conference on Learning

Representations, 2016.

[188] G. Tucker, A. Mnih, C. J. Maddison, J. Lawson, and J. Sohl-Dickstein, “Rebar: Low-

variance, unbiased gradient estimates for discrete latent variable models,” Advances

in Neural Information Processing Systems, vol. 30, 2017.

[189] S. Gershman and N. Goodman, “Amortized inference in probabilistic reasoning,” in

Proceedings of the annual meeting of the cognitive science society, vol. 36, 2014.

[190] C. Zhang, J. Bütepage, H. Kjellström, and S. Mandt, “Advances in variational infer-

ence,” IEEE transactions on pattern analysis and machine intelligence, vol. 41, no. 8,

pp. 2008–2026, 2018.

138

REFERENCES

[191] P. Dayan, G. E. Hinton, R. M. Neal, and R. S. Zemel, “The helmholtz machine,”

Neural computation, vol. 7, no. 5, pp. 889–904, 1995.

139

	Title Page
	Abstract
	1 Introduction
	1.1 Motivations
	1.2 Contributions and Scope
	1.3 Outline

	2 Background & Related Works
	2.1 Graph Neural Networks
	2.1.1 Basics of Graphs
	2.1.2 Message-passing Graph Neural Networks

	2.2 Probabilistic Modeling
	2.2.1 Basic Definitions
	2.2.2 Useful Distributions
	2.2.3 Statistical Inference

	2.3 Explainable AI
	2.4 Related Works
	2.4.1 Graph Representation Learning
	2.4.2 Topographic Organization in Latent Models
	2.4.3 Text-based Recommendation Models
	2.4.4 Explainability Methods for GNNs

	3 Improving the Interpretability of Representation Learning Techniques
	3.1 Motivations
	3.2 Model Definition
	3.2.1 The Generative Process
	3.2.2 Inference and Learning

	3.3 Experiments
	3.3.1 Datasets and Settings.

	3.4 Results
	3.5 Summary

	4 An Interpretable Alternative to Neural Representation Learning
	4.1 Motivations
	4.2 Model Definition
	4.2.1 Topological Organization of the Latent Model
	4.2.2 Inference and Learning
	4.2.3 EM-step
	4.2.4 Rating Prediction Part

	4.3 Experiments
	4.3.1 Datasets and Settings

	4.4 Results
	4.5 Summary

	5 Learning to Explain Graph Black-box Models
	5.1 Motivations
	5.2 Model Definition
	5.2.1 Problem Statement and Framework
	5.2.2 Implicit Maximum-Likelihood Learning
	5.2.3 L2xGnn: Learning to Explain GNNs with I-MLE

	5.3 Experiments
	5.3.1 Datasets and Settings

	5.4 Results
	5.5 Summary

	6 Conclusions
	A Addendum to Chapter 3
	B Derivations of EM Algorithm Equations
	B.1 E-step Derivations
	B.2 M-step Derivations

	References

