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Abstract

To solve the theoretical problems associated with quantum gravity and the
unification with the other forces, many theories have been proposed such as string
theory, which predict violations of the inverse square law of gravity (ISL) at sub-
millimetre distances. To search for such experimental signatures we developed a
magnetically levitated cryogenic torsion balance, the SSTB, and a set of masses
with modulated mass density across their surfaces. The lateral force has to be
measured as one mass is moved in front of the other with a micropositioner
without any electrostatic shield interposed between them. The expected New-
tonian and electromagnetic forces have been studied to optimise the design of
the masses. The torque sensitivity of the SSTB has been modelled, including
the servo loop controlling the float rotation and the effect of the seismic noise.
The performances at 4.2K of the SSTB are discussed, from the effective damping
of its parasitic modes to its tunable natural stiffness, and a torque sensitivity
of 2 x 107'°Nm/vHz at 30mHz has been measured. This noise limit is most
probably due to coupling with ground tilt. Two tests with the manufactured
prototypes of the masses have been performed. During the first test a torque
due to electrostatic and magnetic forces of 8.4 x 10711 £1.5 x 107'* Nm has been
measured at a mass spacing of 42+ 14um at the spatial periodicity of the density
modulation. During the second test by covering both masses with a 1um gold
layer the detected signal was reduced to 1.91 x 107 £ 4.7 x 1072 Nm at a spa-
cing of 30 + 10um. To look for new violations of the ISL of gravity the torque
sensitivity of the SSTB has to be further improved.
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Chapter 1

Testing gravity at micrometre
distances: motivations and

current results

1.1 Introduction

In this PhD thesis I will discuss a test of the inverse square law (ISL) of grav-
ity at micrometre distances that we are developing at the School of Physics and
Astronomy of the University of Birmingham. The gravitational law of Newton
was discovered more than three hundreds years ago, however it has no experi-
mental proofs for distances between masses, which are shorter than a fraction
of a millimetre. This lack of evidence is due to the extreme weakness of gravity
with respect to the other known forces, such as, for example, the electrostatic
or the magnetic force. In recent years experimental efforts to test Newton’s law
at sub-millimetre distances have increased worldwide, because of the opportun-
ity they offer to verify possible experimental signatures of proposed theories of
quantum gravity. In the last few years many theoretical works, which are mainly,
but not exclusively, related to string theory, have indicated that the gravitational
interaction does not follow the 1/r? law at distances as large as tens of microns.
Such violations are accessible by present table-top experiments.

During the last few years at the University of Birmingham, motivated by
these theoretical interests, we have been developing a novel test of Newton’s law
of gravity at micrometre distances. Our experiment uses a spherical supercon-

ducting torsion balance, the SSTB, which has been developed by our group and



which is currently in its second version (MKII), to measure the lateral forces
between two test masses. Our masses have mass density modulations across their
surfaces as source of the gravitational signal. Our test of the ISL of gravity will,
we think, let us explore many of the hypothesised violations of Newton’s law
within the next few years.

This chapter is divided into three sections: the first section is a review of all
the theoretical motivations which have been the catalyst for this particular field
of research field. The second section is a review of all past, current and possible
future experimental tests of the Newtonian law at sub-millimetre distances in-
cluding our table-top experiment. The third section presents a synopsis of this
PhD thesis.

1.2 Theoretical motivations

In the following section I will present the theoretical framework which has mo-
tivated renewed interest in the experimental search for violations of the ISL of
gravity at micrometre distances. I will start with a brief historical introduction of
the gravitational force, beginning with Kepler and ending with Einstein’s theory
of General Relativity. I will also discuss the open problems of gravity, which are
related to the lack of a complete quantum theory of the gravitational force. I
will discuss the possible experimental signatures associated with the violation of
the ISL of gravity at sub-millimetre distances, which might prove or constrain
possible approaches to quantum gravity. Such signatures of quantum gravity will
be accessible by the next generation of table-top experiments testing the ISL of

gravity at micrometre distances.

1.2.1 Brief history of gravity

I will begin the history of classical gravity with the astronomical observations
of planetary orbits, which were carefully documented by the Danish astronomer
Tycho Brahe (1546-1601). These observations were used by the German math-
ematician and astronomer Johannes Kepler (1571-1630) to establish his three
famous eponymous laws modelling the planetary motions. Kepler stepped away
from the Ptolemaic conception that nature should be described by perfect geo-

metries, as circles, and modelled the motions of the planets as ellipses with the



Sun at one of the foci. In the same period Galileo Galilei (1564-1642) studied
the effect of gravity on bodies on Earth and established that their acceleration
in free fall is independent of their mass. Galileo also defined the first principle of
relativity, by stating that the laws of physics are unchanged in any system which
is moving at any constant speed and in any directions. The British physicist Sir
Isaac Newton (1643-1727) in his 1687 treatise "Philosophise Naturalis Principia
Mathematica" presented his three laws of motions, which explained and extended
Galileo’s observations about the motion of objects on Earth, and the universal
law of gravitation. The Newtonian law of gravity explained Kepler laws of the
planetary orbits in terms of an attractive force which is inversely proportional to
the square of the distance between the planets. By stating that the motion of the
objects on Earth and the motion of the planets are governed by the same physical
laws, Newton made the first unification in the history of physics. For more than
300 years Newton’s law of gravitation stood unchallenged, successfully explaining
the motion of the known planets and even predicting the existence of two new
ones, Neptune and Pluto. However small inconsistencies between the theory and
the observations remained unexplained. For example, Newtonian gravity was not
able to fully model the precession of the perihelion of Mercury, which was 43
sec per century larger than expected. At the beginning of the 20" century, the
gravitation theory was revolutionised by the work of the German physicist Albert
Einstein (1879-1955), who was not satisfied by the tacitly supposed instantan-
eous action at a distance of gravity. In 1905 Einstein extended the principle of
Galilean or Newton’s relativity to all the physical laws including electromagnet-
ism, accordingly modifying the laws of mechanics and the concept of space-time
to satisfy a new additional principle that the speed of light is constant and the
same when measured by any inertial observer. In 1915-1916, with his theory of
General Relativity, Einstein stated that the acceleration due to the gravitational
force is locally equivalent to the effect of an accelerated reference frame. Einstein
remodelled the gravitational field as the consequence of the local curvature of the
space-time geometry which is deformed by the presence of mass-energy distribu-
tion. The new theory of gravity not only successfully explained the precession
of the Mercury orbit but also predicted new effects, which were verified during
the following years. First, the deflection of light due to the Sun, which was pre-
dicted by General Relativity, was verified by Eddington and coworkers in 1919
during a solar eclipse. Then the time delay of light due to the presence of the



gravitational field, which was predicted by Shapiro in 1964, was verified by radar
measurements in the following years. Many more tests of GR followed (see [91]
for a review) of which perhaps the most famous is the study of the binary pulsar
B1913+16 by Joseph Taylor and Russell Hulse, in 1974, where the effect of the
possible emission of gravitational waves was first observed.

The history of gravity however was not, and is not, over yet, because as I will
discuss, fundamental experimental and theoretical issues are still not understood
or explained within GR. It is possible that a new thought revolution, like those

of Kepler, Galilei, Newton or Einstein is still to come.

1.2.2 Problems with gravity

The problems with GR arose as soon as physicists started to compare its predic-
tion with the ones derived from the Standard Model of particle physics, which
describes all the forces apart from gravity and all the particles within a quantum
field theory. For example, GR predicts black hole singularities which are forbid-
den by the fundamental principles of quantum mechanics, such as the Heisenberg
uncertainty principle. As we will see, there are also other open issues, which are
all related to the fact that, despite the formidable efforts of several generations
of physicists, there is not yet a quantum theory of gravity which is theoretically

complete and experimentally verified.

The small cosmological constant and dark energy

General Relativity has faced significant problems since its advent when it was first
used to predict the evolution of the Universe. The solution of GR predicted a
dynamic universe, which was in contrast with the conception of a static universe,
current at that time. This dynamic solution forced Einstein to introduce an
additional free parameter into his equations, called the cosmological constant,
which theoretically lead to the conception of a static universe. However after the
discovery of the redshift of distant galaxies by Slipher (see [89] for review) and the
formulation of the Hubble law describing an expanding universe, the cosmological
constant was quickly dropped from Einstein equations. Quantum field theory
suggested that would instead be necessary to include a cosmological constant.
This cosmological constant has to be associated with the energy density of the

quantum vacuum, which would theoretically not be empty anymore and which



would give origin to other experimentally verified effects such as the Casimir force.
Unfortunately the predicted vacuum energy density is extremely high, p,,. =~
109g/em? [15]. From the simple cosmological constraints given by the Hubble
expansion, the experimental upper bound on the vacuum energy density is | p, .| <
107*g/cm? [89], which is approximately 10'?° smaller than the theoretical value.
Because it is possible to model the cosmological constant as three terms [16]
(a bare cosmological constant added to the metric tensor in the GR action, a
cosmological constant given by a dynamic scalar field and a cosmological constant
given by the zero point fluctuations of the quantum fields), it was thought that
in some way the total cosmological constant might be exactly balanced and equal
to zero. The puzzle has become much more intricate during the last ten years
because of the growing experimental evidence of a non-null cosmological constant.
In 1998 the observation of the redshift of Type I supernovae [64][63] showed
that the universe is going through an accelerated expansion. This expansion
was attributed to a new repulsive form of energy, which was christened dark
energy and which constitutes approximately 76% of the total mass of the universe.
Dark energy was immediately associated with a non-null cosmological constant.
The energy density of this reborn cosmological constant is &~ 8 x 1073%g/cm?
[93], which is extremely small and still unexplained by the quantum field theory.
Additional independent evidence of a non null cosmological constant was found
in the following years through the study of the cosmic microwave background by
WMAP [10][80][79], which confirmed the supernovae results. (for a review see
[16] and [68]).

The hierarchy problem

Another theoretical problem which afflicts gravity, is that of the hierarchy prob-
lem: we do not understand why gravity is so much weaker than all the other
known forces or equivalently why two of the fundamental energy scales in nature,
the electroweak scale and the Planck scale, are so different. The electroweak
scale is mpw ~ 250GeV /c* [03], while the Planck scale mp, = +/hc/G =
2.43x 10 GeV/c2. To try to understand the reasons for the small ratio mgy/mp;

is one of the open questions of contemporary physics.



The renormalisation problem

It is also well know that General Relativity is a non-renormalizable theory. This
means that, if we try to quantise it as we do for the electromagnetic field, we can
not reformulate the theory in such a way that all the divergent integrals associated
with the exchange of multi virtual particles become finite and calculable [3]. We
do not have, therefore, a consistent way to quantify gravity within the usual

framework of the quantum field theory.

The problem of quantum gravity

For many years a large amount of work has been undertaken worldwide to de-
velop a quantum theory of gravity and to unify the gravitational interaction
with the Standard Model of particle physics. Many different theoretical ap-
proaches have been followed in these years, of which we should at least mention the
string/superstring/M theory and loop quantum gravity. In simple terms string
theories substitute point-like particles with strings, which vibrate in space-time
with added extra dimensions giving origin to the observed particles and naturally
reproducing gravity (see [70] for an introduction). A principal feature of string
theories is that there are not only the 3+1 dimensions of the Standard Model and
General Relativity, but many more (now up to a total of 11, including the known
ones). These extra dimensions have not yet been observed, because they are gen-
erally thought to be closed on themselves with dimensions near the Plank length.
The idea of extra dimensions is not new in physics. In 1921, Kaluza-Klein in their
attempt to unify electromagnetism with General Relativity, had already added a
fifth extra dimension to space-time. Extra dimensions might have some possible
experimental signatures which could be tested by future table-top experiments
or by upcoming particle accelerators [27].

In the attempt to merge General Relativity with Quantum Mechanics, loop
quantum gravity tries instead to quantise space-time itself by using the technique
of loop quantisation [67].

However all these attempts to quantise the gravitational field have one feature
in common one feature: the lack of any experimental evidence confirming their
validity. On the one hand all these theories are still being developed and are only
recently at the stage of predicting experimental signatures. On the other hand

any experimental test of the gravitational force is extremely difficult because of



the extreme weakness of this force with respect to all the other known forces. As
we will see, there has especially recently been high expectation that some of these
signatures of quantum gravity scenarios will be experimentally tested in the near

future.

1.2.3 Possible violations of Newton’s law at small dis-

tances

Many theoretical solutions to the previous issues, which are mainly, but not
exclusively, associated with the string theory, predict violations of the inverse
square law of gravity at submillimetre distances (for a detailed review see [1] and
[25]). Even if these possible deviations can take many different analytical forms,
in this preliminary study we will adopt only the most common and standard
parametrisation. The model, which is used to compare the theoretical predictions
with experimental results, is a Yukawa type potential, which at the distance r
from a source mass m is given by the equation:
V(r) = —GTm(l +ae?) (1.1)
G is the gravitational constant measured at infinite distance. o and A\ are
respectively the strength and the range of the force violating the inverse square
law of Newton. The constraints on the possible couples («, \) can be plotted in a
figure as fig[1.1], where the grey upper area is the experimentally excluded area of
the parameter space. I will here review the expected violations of the ISL of grav-
ity presented in fig[T.1], while in the next section I will describe the experimental

efforts, present and future, to constrain these theoretical expectations.

Compactified Large Extra Dimensions

To solve the hierarchy problem Arkani-Hamed et al. [6][7] proposed that there
are in reality not two different energy scales, the Planck and the electroweak
scales, but just one: the electroweak one in a higher dimensional space-time.
Their motivations reside in the fact that, while electroweak interactions have been
probed almost at the distance associated to the electroweak scale, {gw ~ 10~ %¥m,
we have no experimental evidence that gravity exists and follows the Newtonian

law at distances smaller than a fraction of a mm. The Planck scale was derived



by assuming that gravity is unchanged down to distances comparable with the
Planck length of 1073*m and which are more than 30 orders of magnitude smaller
than any experimental evidence of the gravitational interaction. Arkani-Hamed
et al. assumed that there are n extra dimensions compactified on a torus of radius
R. The new Planck scale within these 4 4+ n dimensions, Mpj41y), is assumed to
be equal to the string electroweak scale, M* ~ 1TeV/c? [54][1] and is related to
the usual Planck scale in the 4 dimensions by the equation:

Mp, ~ Mg, - R (1.2)
In this scenario, the gravitation potential at distances which are comparable with
the radius R takes the form of a Yukawa potential with « = 8n/3 and A = R [1].
The radius R of n equal compact dimensions, for n = 1, is ~ 10'?2m, which had
already been excluded by the observations within the solar system. For n =2 R
is expected to be ~ 100um, which had been ruled out by recent table-top exper-
iments [40] and by astrophysical bounds [37]. For n > 2 there is no experimental
evidence excluding or confirming the existence of such extra dimensions. However
if the compactification is not on a torus but on other geometries, as for example
spheres [44], or if the compactifications are not the same among all the different
extra dimensions [25] we might expect different (a, A) values for n = 2, which
had not yet been excluded by any experiments. Burgess [14] recently presented
another scenario with Supersymmetric Large Extra Dimensions (SLED) with a
radius of ~ 10um, which, within a supersymmetric field theory, allows for a small
cosmological constant and which predicts possible violations of the ISL of gravity

at micrometre distances.

String moduli

Superstring theory also predicts the existence of scalar particles, called moduli,
which describe the size and the shape of all the compact extra dimensions [4].
The masses of these moduli are acquired when the supersymmetry is broken, in
which case it is supposed that their masses depend on the scale M* at which
supersymmetry breaking occurs. Some moduli might couple differently with Up
and Down quarks, leading to a microscopic force, which would depend on the
atomic number of the atoms of the masses, and which violates the Equivalence

Principle. In the case of a measured violation of the ISL of gravity, it is possible



to check the dependency of the signal on the atom species of the masses and
to discriminate some of these signals from the ones due, for example, to extra
dimensions [I]. Different kind of moduli have been postulated:

Radius modulus: this modulus is a low mass spin-0 field, which stabilises the
volume of the extra dimensions and fixes their radius. The radius moduli exchange

produces a force with Yukawa potential, which is characterized by strength [40]:

n
o=
n -+ 2

(1.3)

with n the number of extra dimensions. The range of the interaction is given
by:

1TeV
M,c?

From equation it is clear that the force due to the radius exchange does

A~ 24 [ ] mm (1.4)

not diminish as the number of new dimensions increases, which instead occurs
with the Yukawa potential associated to extra dimensions [I].

Gluon modulus: as the name indicates, the gluon modulus is related to the
possible coupling of the moduli field with the gluons of the Standard Model [24].
The expected strength and ranges of the deviations from the ISL of gravity due
to the gluon modulus have been recently updated by Dimopoulos and Geraci [25]
as plotted in fig[I.1]

Strange modulus: this modulus is responsible for the possible coupling of the
modulus field with the strange quarks [24]. Its strength is expected to be always
stronger than gravity as plotted in fig[1.1]

Dilaton: string theory also predicts another scalar field, the Dilaton, whose

coupling strength, «, is between unity and few thousand as shown in ﬁg[25].

Fat graviton and vacuum energy scenarios

According to Sundrum [82] one possible solution of the cosmological problem is
that the graviton is a "fat" particle which means that it is not a point like particle
but has finite size l4,4,. Sundrum predicted that such a graviton will be insensitive
to all the quantum vacuum physics happening at scales smaller than its own
size, effectively reducing the theoretical cosmological constant. Assuming that
the observed energy density associated with the cosmological constant is given

by the usual power counting [15] and limited in this scenario by the graviton

9



size, Sundrum found that [,,, had to be bigger than 20um. Because in this
model the Newtonian force also becomes weaker at distances smaller than [g,q,,
it was recently possible to experimentally set an upper limit on the size of the
"fat" graviton as lg.q, < 98um [2]. This scenario can be explored by future
experiments. According to Beane [§] there is also another mechanism, which
might possibly solve the cosmological problem. The experimental result of the
smallness of the vacuum energy might be due to the existence of a new quanta,
which has not yet been experimentally found and which, at distances smaller
than its Compton wavelength, might prevent gravitational and electromagnetic
vacuum fluctuations. Beane shows that this new field is associated with a Yukawa
type deviation from the ISL of gravity with @ ~ 1 and A between 50um and
120pm. Again the experimental results from [43] strongly constrain this scenario
to A < 56pm with 95% of confidence level.

To explain the smallness of the cosmological constant, Mota and Shaw [59]
predicted the existence of a new scalar field, the Chameleon, which is highly
non-linear and which acquires mass by interacting with matter. This field might
mimic a violation of the ISL at short distances, but its detection may have been
missed up till now because the electrostatic shield used during most ISL tests

might have possibly shielded the Chameleon field too.
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Figure 1.1: Expected violations on the ISL of gravity and current experimental
upper limits at 95% confidence level.
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1.3 Experimental investigations

Up to now the most stringent constraints on possible Yukawa type deviations
from the ISL of gravity are given by astronomical tests for ranges of 10%2m,
which are approximately the size of the solar system (see fig[1.2], source [1]). The
best constraints down to strengths of o ~ 107!° are given by the Lunar Laser
Ranging (LLR), which monitors the Moon orbit by using a laser source on Earth
and a few photoreflectors positioned on the Moon surface. At distances smaller
than a fraction of a mm we did not have any proof of the existence of Newtonian
gravity until a few years ago. Motivated by the reviewed theoretical issues and
by an interest in exploring gravity at small distances, a number of experiments
have recently been successfully completed and many more are currently planned
to test the ISL of gravity at distances between a fraction of a millimetre and a
few micrometres.

In the following sections I will review all these experiments, introducing the
problems, which make them so difficult to realise, and presenting the solutions
they adopted. I will briefly introduce our experimental approach, which I will

discuss in detail in the next few chapters.
107
1072
1073

AL A R R

Excluded
region

)
N~
- geophysical

e

10 {_aboratory 7

P g
L Earth-{AGEOS

Il
[S)
S

10-? L —
LAGEOS-Lunar

102 10° 102 104 10° 10® 10 10" 10%

Figure 1.2: Current constraints on Yukawa type violations of the ISL at large
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1.3.1 Experimental problems

As mentioned previously, we did not have any experimental proof of the existence
of the Newtonian gravity at distances, which were smaller than a fraction of a
millimetre until a few years ago. This lack of experimental results both was and
is due to the extreme weakness of the gravitational interaction, which strongly
decreases with the distance and the mass involved in the experimental tests.
For example, for two spheres of radius r at a distance proportional to r, the
gravitational force acting between them scales as r%. As we will see in detail in
chapter 3] the expected gravitational force is usually weaker than the electrostatic
or magnetic forces. At very short distances, less than few microns, it is even
weaker than the Casimir force, which is associated with the zero-point vacuum
fluctuation of the electromagnetic field.

All the experiments that I will review are in some way designed to minimise
these spurious forces. Some of them are also designed to minimise the gravit-
ational force (they are called null experiments) but not to cancel out possible
deviations from the ISL of gravity. To minimise the ratio between the expected
Newtonian and Yukawa forces (assumed with unit strength), many experiments
adopt a planar geometry for their test masses. They therefore reduce as much
as possible the thickness of the masses involved in the gravitational interaction.
To reduce the effect of the electrostatic forces, all the experiments - which are
specifically designed to test the ISL of gravity - interpose an electrostatic shield
(a few tens of microns thick) between the masses. This approach, even if suc-
cessful, strongly limits the minimum achievable distance between the masses and
possibly might also shield the expected signals due to the Chameleon fields. Only
the Casimir tests, which indirectly derive the results on the violations of the ISL
of gravity from Casimir measurements, do not use such shields. All the force
measurements are ultimately limited by thermal noise. The power spectrum of
thermal noise is inversely proportional to the quality factor ) of the oscillator,
which is used for the force measurements, and is directly proportional to the tem-
perature T'. Therefore to reduce such thermal noise, the experiments are located
inside high vacuum chambers and some of them are cooled down to a few Kelvin.

Micromechanical oscillators with high quality factor had been lately extens-
ively adopted to test the ISL of gravity at micrometre distances and to measure

the Casimir forces. Because these oscillators cannot sustain heavy masses, the
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strongest constraints on the Yukawa type violations of Newton’s law are still given
by the experiments, which are based on torsion balances. To increase their sens-
itivity the torsion balances have in general a very small torsional elastic constant
and their torque measurements are usually made at very low frequencies. During
these experiments particular care should be taken to isolate the measurements
from the low frequency seismic noise, the 1/f noise of the electronics and any
possible low frequency drift of the ambient parameters, such as the temperature,

which may influence the results.

1.3.2 Past experiments

I will present here the experiments which have set the most stringent upper
limits on the possible Yukawa type violations of the ISL of gravity in the last few
years. I will discuss the technical solutions they adopted to solve the difficulties I
mentioned above, and which are associated with testing gravity at sub millimetre
distances. I will introduce also a new complementary experimental approach,
which is based on condensed atoms and optical lattices. Theses new techniques
have very recently been developed to measure weak forces at short distance and

might also be used to test Newton’s law at micrometre distances.

Casimir force measurements with a torsion balance at the University

of Washington

The best upper limits on the Yukawa forces, with ranges between 0.6um and
4.2pm, are given by the work of Lamoreaux at the University of Washington [47].
He measured the Casimir force between a spherical lens and a plane by using a
torsion balance, which was kept at room temperature and under vacuum. Both
masses were made of quartz and coated with a double layer of Copper and Gold.
During the torque measurements the masses were positioned at a relative distance
between 0.6pm and 12.3um. The position of the torsion balance was controlled
by using a feedback system, which applied a voltage difference between two com-
pensator plates fixed to the vacuum can and to the pendulum (see ﬁg). The
force between the masses was measured by recording the servo effort, which was
necessary to keep the torsion balance at a fixed angular position as a function
of the distance between the masses. The force sensitivity of the torsion balance
was approximately 2.6 x 107'*N/v/Hz and only limited by its thermal noise. Be-

13



cause no electrostatic shield was set between the masses, the measured dominant
force was the electrostatic one, which was fitted to an analytical model at large
distances and subtracted from the original data. Lamoureaux [47] found that
the resulting force was in good agreement within 5% with the predicted Casimir
force between a sphere and a plane. A few years later Bordag et al. [13], in a
review of the Casimir experiments, re-analysed the Casimir results and looked
for deviations of the ISL of gravity. They concluded that the Lamoreaux work
had led to an improvement of the upper limits on the strength a of Yukawa type
deviations for ranges A between 0.6pum and 4.2um (see ﬁg.
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The microcantilever of the University of Stanford

The group of Stanford [22][71] used a micro cantilever, which was kept in vacuum
and at a temperature of 10K, to explore the possible violations of the ISL of
gravity at ranges of a few micrometres. They measured the force between a small
gold cube (50pum x 50pum x 30um, 1.64ug ) and a mass made of five alternating
gold and silicon bars (100um x 100um x 1mm). The first mass was mounted
on the top of a microcantilever and the second one on a piezoelectric bimorph
actuator, which was moved in one direction (see fig[L.4). The two masses were
separated by a rigid 3um thick electrostatic shield to screen any possible electro-

static or Casimir force acting between them. The screen also set the minimum
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reachable distance of 25um. The source mass was oscillated in the horizontal
direction with an amplitude of £100 — 125um. In such a way the resulting driv-
ing force, which was associated with its density modulation, was at a frequency
(90 — 120H ) which was a subharmonic of the cantilever resonant frequency. It
was therefore possible to minimise non-linearity and vibrational couplings of the
microcantilever. Additionally, the cantilever and the bimorph were separated by
a vibrational isolation stage and the seismic noise was reduced with a passive
isolation system. To measure the force between the masses, the displacement of
the microcantilever was monitored with a fibre optical interferometer and later
converted to an equivalent force measurement. The force sensitivity of this in-
strument was 2.5 x 10~'9N/y/Hz, which was limited only by the small thermal
noise given the high () of the cantilever. The thermal noise was also used as
a reference force to calibrate the force readout. The Stanford group fitted the
possible Yukawa forces to their force measurements and set new upper limits on

the Yukawa strengths for ranges between 4.2 and 23um.
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Figure 1.4: Schema of the experiment of the Stanford group [22][71].

The double torsional oscillator of the University of Colorado

The ISL test, which was conducted by Long et al. [51][50][52], had a double
torsional oscillator as a force sensor which was kept under vacuum and at con-
stant room temperature (7' = 305K). The source mass was a tungsten plate
(35mm x Tmm x 0.305mm), which was driven vertically by a PZT bimorph at the

resonant frequency of the torsional oscillator, ~ 1kHz. Its oscillation amplitude
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was monitored with a capacitive sensor. The force sensitivity of the torsional
oscillator was measured to be 2.8 x 10" N/vHz [52] and was limited by its
thermal noise. As with the previous experiment, the thermal noise was used to
calibrate the capacitive readout as torque measurement. The contributions of the
acoustic and vibrational background noise to the torque noise were attenuated
with passive vibration isolation system. Because the source board and the oscil-
lator were separated by a 60um thick conducting shield, the minimum distance
between them was 108um. The geometry of the test masses, being planar with a
thickness of 0.2 — 0.3mm, was optimal to maximise the ratio between a possible
Yukawa force (with unit strength) and gravity. The experiment of Long et al.
improved the previous upper limits on Yukawa type deviations from the ISL of
gravity by many orders of magnitude for A between 23um and 120pum. A cryo-
genic update of the Colorado experiment [52] would improve its current explored
area by a factor of 40 in strength (see ﬁg.

{ toJRET Torsion Axis

Transducer Probe

Detector Mount

Stiff Shield Detector

Source Mass

PZT Bimorph

S rd

Tuning Block

Source Mount

Figure 1.5: Schema of the experiment of Long et al.[5]]

The torsion balance of the University of Washington

The experiment of the gravitation group at the University of Washington was
one of two experiments to rule out Yukawa type violation of the ISL of gravity
for || <1 for ranges A as small as 197um [40] at 95% confidence level and in a
recent update as small as 56m [43]. The experiment was based on a room tem-
perature fibre torsion pendulum, which suspended a detector mass over a source
mass made of two disks. Both masses had a number, n , of holes, which, ma-

chined in circle, constituted the negative masses to test Newton’s law. Because
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Washington experiment had been designed to be a quasi null test of gravity, the
holes in the two disks, which constituted the source mass, were azimuthally dis-
placed in such a way that their Newtonian forces cancelled each other out at a
chosen distance between the attractor and the detector mass. At this particular
distance only the non Newtonian forces would have been measured by the tor-
sion balance. The source and the detector mass were separated by 20um thick
electrostatic shield, which screened the electrostatic and Casimir forces between
them. The screen constrained the minimum distance between the disks to b5um.
The source mass was rotated at some nominal frequency w and the correspond-
ing twist of the torsion balance was recorded with an optical autocollimator [40].
Constant torque calibration was given by the gravitational coupling between two
sets of three spheres: the first set was positioned on the torsion balance while the
second one was on a turntable which rotated at a constant frequency around the
vacuum vessel. The rotation speed of the attractor mass was chosen with respect
to the natural period of the torsion balance in such a way that the main harmonic
of the driving torque signal was at a frequency, nw, high enough to suppress the
1/f noise. The rotation speed was also chosen such that the amplitudes of the
second and third harmonics, 2nw and 3nw, were not too much reduced by the
pendulum transfer function of the balance. To reduce possible spurious electro-
static or magnetic interferences, the torsion balance and the source mass were in-
cluded in an almost complete Faraday cage and partially shielded with mu-metal
plates. The torsion balance reached a torque sensitivity of 3.2 x 10~ Nm/ VHz
or 10712N/ V'Hz, which was near its thermal noise limit. With this experimental
apparatus the Washington group was able to set the strongest constraints on the
strength of the possible Yukawa violations of the ISL for ranges 120um g A <
3.5mm [40] and very recently for 9um g A < 3.8mm [43].

The torsion balance of the University of Huazhong

Just after the results of Kapner et al. [43] became known, also the gravitational
group from the University of Huazhong [86] published additional results on the
violations of the ISL of gravity, which, for ranges between 20um and 0.5mm,
confirmed the new constraints given by the Washington group. The Huazhong
ISL test was based on planar test masses and on a servo controlled torsion balance
working under vacuum. The angular displacement of the balance was monitored

by an optical autocollimator. Because their experiment was also designed to
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Figure 1.6: Schema of the torsion balance used by Hoyle, Kapner et al [40][43].
The electrostatic shield had not been drawn.

be a quasi null test of gravity, they use two additional masses on the opposite
side of the torsion balance with respect to the test ones to cancel out the total
Newtonian torque at a chosen distance between the masses. These were separated
by a gold coated 56um thick glass membrane. A cylindrical mass on a rotating
turntable near the vacuum chamber was used to calibrate the voltage servo effort
as torque measurement. The driving torque was modulated at the frequency
of 0.46mH z, which was above the resonant frequency of the torsion balance,
by moving the source masses in the z direction (see ﬁg by £80um using a
piezoelectric translator (PZT). With a torque sensitivity of 9.5 x 10~ Nm /v Hz,
which was limited by electrostatic noise above the thermal noise, the Huazhong
group excluded Yukawa violation from the ISL of gravity with |a| < 1 for A >
66um at 95% confidence level.

1.3.3 Possible future experiments

Here I very briefly introduce all the other experiments, which are still in the
study phase to possibly test the ISL of gravity at micrometre distances in the
near future.

The double-paddle oscillator of the University of Dusseldorf

One group currently developing an experimental test of the ISL of gravity at

micrometre distances is based at Dusseldorf University [29][52][30]. Their exper-
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Figure 1.7: Schema of the torsion balance used by Tu et al. [86]

imental approach is based on a planar configuration for the test masses and on
the use of a single crystal silicon oscillator as a force sensor. This oscillator has a
high quality factor (Q ~ 10°) and has shown torque sensitivity of 10~ Nm /v/Hz,
which was limited at the resonance by its thermal noise [29]. The design of Dus-
seldorf experiment - which has been constructed (see fig[1.§) - has the oscillator
as test mass and a series of platinum cylinders on a rotating support as source
masses. The cylinders generate a driving gravitational signal at the resonant fre-
quency of the oscillator (=~ 6kHz). The source and test masses are separated by
a H0um thick stainless steel electrostatic shield and are all kept under vacuum.
The oscillation amplitude of the oscillator head is monitored by an optical readout
system, while the distance between the source and test masses is varied. Even
if the experiment had sufficient force sensitivity to explore new possible viola-
tions of the ISL of gravity, the results are limited by a systematic signal, which
is probably due to a magnetic coupling between the oscillator and the driving
motor. The authors have proposed [30] a new experimental design, which will
be based on one oscillator detector and two source oscillators, one on each side
of the detector (see fig[l.§). The head of the sensor will be covered by a 1um
gold layer on one side and with a copper layer on the other side. With this new
design the gravitational, electrostatic and Casimir forces will counter balance on
the oscillator sensor. The sensor will detect only possible deviations from the ISL
of gravity, due to the different densities of the copper and gold layer. Dusseldorf
group proposes to cool down the new experiment to liquid Helium temperature in
order to further enhance the oscillator quality factor up to @ ~ 10® and in order

to lower its thermal noise. With this configuration, if not limited by any other
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systematic effect, the possible area of the Yukawa strength, Dusseldorf group will
explore is plotted in fig[T.11].
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Figure 1.8: Schema of the current and proposed experiments of the Dusseldorf
group to test the ISL of gravity at micrometre distances [30].

The differential accelerometer of the University of Maryland

Paik and colleagues [60] of the University of Maryland have proposed a cryogenic
space experiment, ISLES, to test the ISL of gravity at distances of 100um, whose
ground version might be able to explore a large area of the Yukawa type deviations
at sub-millimetre distances. The concept of the experiment is again for it to be
a null experiment. The possible Yukawa forces between a central disk and two
lateral superconducting disks will be be detected by using a superconducting
circuit, which is sensitive only to differential acceleration. Owning to the short
distances between the disks (= 100um) the gravitational force between the disks
will remain constant, when the source mass will be driven along its symmetry axis.
Any deviation from the Newtonian gravity would cause a differential acceleration
between the two masses. The superconducting test masses will be magnetically
coupled with a superconducting circuit and the induced differential acceleration
will be picked up by using a few SQUIDS, coupled with the circuit. According
to [60] the ground version of ISLES will capable of exploring Yukawa violation of
the ISL of gravity for |a| < 1 for ranges as small as 10um (see fig[L.11)).

Trapped condensed atoms

In recent years to probe weak forces at micrometre distances a new kind of sensor

- based on condensed atoms - has been under study both theoretically and ex-
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perimentally [25][38][92][17][26]. Among all the literature on this sensor I should
mention particularly the seminal work of Dimopoulos and Geraci [25], who pro-
poses an experiment to test the ISL of gravity at micrometre distances. Their
experimental set up is based on an array of Bose-Eistein condensed (BEC) atoms
( ~ 10% ), which are trapped near a surface at the nodes and antinodes of a laser
standing wave (see ﬁg perpendicular to the surface. In their project design,
after the atoms are loaded in the laser traps in a coherent superimposition of
states, the de Broglie phases of the center of mass wave function will develop
differently depending on the potential to which they are subjected. After an
interrogation time of 1 — 10sec the wave functions of their center of mass will
have accumulated a relative phase shift because of their different distances from
the surface. The laser will then be turned off and the differential phase will be
detected by measuring the interference pattern, that the condensate will develop
[25]. The surface reflecting the laser is an electrostatic/Casimir shield and a mass
with periodic density modulation (see ﬁg) will be placed behind it. By mov-
ing sideway this source mass, a periodic change of the gravitational forces will
be detected as a periodic signal by the BEC sensor, while all the Casimir and
patch field effects will instead be rejected as common mode. With this experi-
ment the authors [25] predicted that they will be able explore different new areas
of the allowed Yukawa deviations for A < 50um depending on the phase sensit-
ivity of the instrument (see ﬁg). Their projections are perhaps optimistic,
considering that, for example, they proposed using an electrostatic shield which
is only 420nm thick. However these new force sensors based on trapped atoms
(with either this or an alternative design [26][17][92]) will surely play a key role
in the study of weak forces at very short distances. For example, magnetically
trapped atoms have recently been used to study the Casimir-Polder force at dis-
tance between 6 and 12 um and to confirm the upper limits on Yukawa deviations
[38] for ranges, A, between 10~7 and 10~5m. Because at present the BEC sensors
are not expected to reach enough force sensitivity to explore new interactions for
|a] <1 at any range, they should be considered as a valid complement to but not
substitutive of the current experimental approaches, which are based on torsion

balances and microscillators.
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Figure 1.9: Schema of the experiment proposed by Dimopoulos and Geraci [25].

1.3.4 Our approach: the Spherical Superconducting Tor-

sion Balance of the University of Birmingham.

The experimental approach to test the ISL of gravity at micrometre distances,
that we are developing at the University of Birmingham, is based on a spherical
superconducting torsion balance (SSTB) This balance uses the Meissner effect
to levitate a superconducting float over the magnetic field, which is generated
by a superconducting coil. The rotation of the float is monitored by using a
interferometric or capacitive readout, and is kept at a constant angular position
by using a PID feedback loop. The servo effort is applied back to the float by
the magnetic field of superconducting coils, which are acting on the float. This
actuator circuit is also used to give an arbitrary restoring stiffness to the balance.
We use eddy current damping to drastically reduce any spurious oscillations of
the torsion balance. The experiment is kept under vacuum and at a temperature
of 4.2K. The design of the torsion balance offers many advantages with respect
to the fibre one. Because it has a very short effective pendulum length (a few
mm), it is expected to be less sensitive to ground tilt noise. Because it is not
based on a fiber, it does not have all the noise sources associated with it, such
as the noise due to the mechanical dissipation of the elastic energy in the fibre
material. The magnetic levitation can sustain a heavy float (> 100gr) with the
samples to investigate. We can freely choose its natural resonant frequency and
better tune its sensitivity. We can interrupt the levitation to better investigate all
the noise sources and the systematics. The first version of the SSTB had already

been successfully used to measure the possible coupling between spin and matter,

22



improving the present measurements of many order of magnitude [34].

It is not only the design of the torsion balance which is very innovative; the
design of our ISL test of gravity also offers novel features. The source and test
masses are made of alternate stripes of different materials in order to create a
density contrast in the z direction (see fig[1.10). The source mass is flat while the
test mass, which is attached to the float, is curved. The curvature is chosen such
the distance between the two masses does not change even during the pendulum
motion of the float. One facet of our design, which is innovative for an experiment
specifically designed to test the ISL of gravity, is that we do not to have any
rigid electrostatic shield between the two masses. To reduce any electrostatic or
Casimir forces we covered the masses with a uniform gold layer 1um thick. We
do not measure the perpendicular force between the masses, as most of other
experiments do, but rather the transversal one. Along this direction some of
the spurious forces are expected to be greatly reduced while the gravitational
torque is left unchanged. We also use a new kind of commercial micropositioner
(Attocube), which is able to move by steps of a fraction of a micrometre up to
a maximum distance of few millimetres. We perform long torque scans in the x
direction to obtain a large statistics and to extract the signal from the noise. We
can also characterise the measured signal versus the frontal distance y between
the masses (see fig]l.10). In this way we can try to understand the origin of
spurious torques and, if possible, to reduce or fit them out of the data.

We expect that the limiting torque sensitivity of the SSTB , which is given
by the thermal noise, is 3.9 x 10" Nm/vHz or 9 x 10~'*N/+/Hz corresponding
to a quality factor of () ~ 420 due to residual gas damping.

In ﬁgI plotted the expected («, \) area that we will be able to explore
with the Birmingham SSTB at its thermal noise after 100 days of integration
time with two masses, which have a 160um pitch of the density modulation and
which are positioned at a y distance of 5um. As shown in the figure, with such a
configuration we will be able to either rule out or confirm possible violations to
the ISL of gravity due to the strange modulus and the vacuum energy scenario
associated with the cosmological constant. We will also be able to set stronger
constraints on the dilation, the radius modulus and the SLED scenarios too. It
will furthermore be possible to explore smaller strengths of the Yukawa type
deviations at shorter ranges, if we develop and adopt new test masses with a

much shorter pitch of the density modulation.
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1.4 Thesis synopsis

This thesis is devoted to two main goals: on the one hand to present the study,
development and first results of our ISL test of gravity; on the other hand to
present the expected and measured performances of the SSTB. I review here the
synopsis of the following chapters of this PhD thesis.

In chapter [4 1 will present our test masses, which are made of a set of al-
ternating gold and Aluminium stripes coated with a covering gold layer. Their
design and manufacture was developed to minimise the spurious forces, which
can strongly limit our tests of gravity. One of the two masses is attached to a flat
support, which is moved by a micropositioner in two directions. The second mass
is glued onto a curved support, which is connected to the float. I will discuss the
metrology which characterise the surface topographies of our masses.

In chapter [5 1 will review all the possible forces which, to the best of our
knowledge, act between the masses. I will start by discussing the Newtonian
signal, which is given by the mass density modulation of gold and aluminum
stripes. I will present the analytical model, which I developed to predict such a
signal and to optimise the geometry of the masses. I will estimate the spurious
electrostatic forces due to periodic corrugations of the surfaces and/or due to
surface contact potentials. These forces, if not minimised, will strongly limit
our ability to search for violations of the ISL of gravity at micrometre distances.
Good knowledge of the expected amplitude and phase of such electrostatic signal
will let us fit and effectively subtract them out of the measured data. I will
also characterise the expected signals due to the Casimir forces, which are given
by the same periodic surface corrugations, and present the magnetic forces due
to the contrast in the magnetic susceptibilities of gold and aluminum stripes.
I will complete the review of the expected signals by presenting the numerical
model, which predict the possible Yukawa-type forces acting between the masses.
The Yukawa model is a standard parametrisation of the possible hypothesised
violations of Newton’s law among the past and current experimental searches for
such signals. I will end this chapter by presenting the strengths and ranges of the
Yukawa-type deviations that we would potentially explore with our experiment.

In chapter[41 will briefly review the experimental apparatus we use to test the
ISL of gravity at micrometre distances. I will present all the subsystems which

are necessary to magnetically levitate and servo control the SSTB at 4.2K and
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to modify the relative positions of the test masses during the experiment.

In chapters[d and[fl1 will discuss the theoretical analysis of all the subsystems
of the servo loop, which control the angular position of the SSTB. I will predict the
transfer function between the applied and the measured torque and the expected
torque noise spectrum. To successfully test the ISL of gravity at micrometre
distances, we need not only to reduce all the spurious forces, as much as possible,
but also to ensure that the torque sensitivity of the SSTB is as good as possible. A
theoretical model of the sensitivity of the SSTB is therefore necessary to optimise
the design of the apparatus. This model will also be used to estimate the origins
of possible unexpected torque noise levels by comparing them with the analytical
predictions. In chapter[J1 will discuss the analytical model which I developed to
predict the dynamic of the SSTB float given its metrology, such as its moments of
inertia or the damping and elastic coefficients associated with its angular motions.
This model is used to estimate the transfer function between the applied torque
and the float angle. The effect of all the possible components of the seismic
noise (horizontal, vertical and tilt) on the float will be estimated. I will evaluate
their equivalent input torque noise, which is applied to the float. Under certain
conditions, that I will define, the torque noise induced by the seismic noise will
limit the SSTB torque sensitivity and, ultimately, our ISL tests of gravity.

In chapter[( T will analyse in detail the transfer functions and noise sources
of all the subsystem of the servo loop controlling the SSTB. I will analyse the
capacitive sensor, that we adopted as a temporary solution to monitor the angular
position of the float, while the optical readout is still being developed [62]. I
will discuss the transfer function of the digital compensator and of the magnetic
actuating system. The latter is based on superconducting circuits with permanent
currents stored within them. Such currents, which can be modified by an external
current source, are used to feedback the torque to the float which is necessary to
keep it at a constant angular position. The chapter will end with the analysis
of the closed loop transfer function of the servo system between the applied and
measured torque and with the discussion of the expected torque noise.

In chapter[]1 will present the experimental performances of the SSTB which
we obtained during our first tests of Newton’s law of gravity at micrometre dis-
tances. In this chapter I will discuss the protocol we defined to calibrate the servo
effort of the SSTB. I will characterise the performances of the SSTB, discussing,

for example, the damping of the parasitic oscillations or the tunable natural

26



stiffness. I will present the measured closed loop transfer function between the
applied and the measured torque. In this chapter I will also discuss the torque
noise spectrum of the SSTB, which was measured during the ISL tests, and the
further measurements we conducted to investigate its origin.

In chapter[§ T will present the experimental results associated with the first
tests of ISL of gravity at micrometre distances, which we obtained with three
prototypes of the test masses. The chapter will firstly be dedicated to the methods
we defined to characterise the alignment of the masses during the ISL experiments
and to minimise the voltage difference between them. I will report the torque
signals we measured with such masses above the noise level of the SSTB and all
the tests we ran to characterise them.

In chapter[91 will discuss the possible origins of the measured signals, given
the experimental results and our theoretical models of the expected torques. The
thesis will end by discussing which parameter area describing the Yukawa type
deviations of the ISL of gravity we actually explored during our first tests of
Newton’s law at micrometre distances. I will indicate the possible improvements
of the SSTB and of the test masses, which are necessary to explore new violations

of the ISL of gravity at micrometre distances in future experiments.
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1.5 Conclusions

In this chapter I have reviewed all the theoretical motivations behind the re-
newed interest in testing gravitational law at submillimetre distances. I have
discussed the main open issues, which afflict the current theory of gravity such
as, for example, the cosmological or hierarchy problems. I have shown how some
of the possible solutions to these issues, which are mainly but not exclusively
related to string theory, predict violations of the ISL of gravity at submillimetre
distances. These violations, which are usually modeled as Yukawa type forces,
will be tested by the next generation of table-top experiments. I have reviewed
some of the theoretical scenarios which predict such violations of Newton’s law,
from large supersymmetric extra dimensions to the exchange of scalar particles
or to the hypothesised existence of a "fat" graviton. I have reviewed the current
experimental tests of the ISL of gravity. I have discussed all the problems of such
precision measurements and the solutions which have been developed in the past
or are planned for the future. I have shown how these tests are currently based on
two classes of instruments: micromechanical oscillators, which look for violations
to the ISL of gravity at distances of a few micrometres, and torsion balances,
which give the strongest constraints on the violations of Newton’s law at dis-
tances larger than ~ 10um. The current constraints on Yukawa type violations,
which have strengths comparable with Newtonian gravity, are set by the torsion
balance of Washington University down to a minimum range of roughly 60um. I
also have discussed the emerging approaches which are based on trapped atoms
or optical lattices and which will be a complementary method to test the ISL of
gravity at micrometre distances. I have briefly introduced our experiment, which
is based on a spherical superconducting torsion balance to measure lateral forces
between two test masses. The masses have a mass density modulations across
their surfaces as source of the gravitational signal. I have discussed some of the
innovations of our experiment, such as, for example, the lack of any electrostatic
shield between the masses and the counter-measures, which we have taken in its
place to reduce spurious forces. I have showed how our experiment will, we think,
allow us to explore some of the hypothesised theoretical signatures of quantum

gravity in the near future.
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Chapter 2

The test masses

2.1 Introduction

For the ISL test of gravity at micrometre distances we needed to fabricate two
test masses, which would let us measure gravity within 10% at distances of 5 —
20pum. We manufactured three masses, which were characterised by mass density
modulations across their surfaces given by alternating gold and aluminium stripes.
This lateral density contrast produced a lateral force between the test masses,
which was the gravitational signal we wanted to test. We covered both masses
with a uniform 1um gold layer to suppress the expected lateral Casimir forces
due to the modulation in the gold and aluminium conductivity. We know that
the covering gold layer would also suppress the electrostatic forces due to contact
potentials, which at micrometre distances limit our sensitivity to violations of the
ISL of gravity. One mass was flat while the mass attached to the torsion balance
was cylindrical. With this geometry the distance between the masses remained
constant even when the float oscillated around an axis parallel to their surfaces.
In this chapter I will describe the method we developed to manufacture the test

masses and the metrology measurements I took in order to characterise them.
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2.2 Manufacture and assembly

The masses were manufactured at the Millimeter Wave group at Rutherford Ap-
pleton Laboratory under the supervision of Dr. J. Spencer with a technique
which we summarise in fig[2.1] and which lead to aluminium-gold features with
periodicity down to =~ 160um. The procedure started from an aluminium foil,
which was machined to obtain the aluminium ridges according to requirements.
The gold was electrodeposited over the aluminium substrate and some of the top
layer was skimmed off to obtain a final flat surface. We found that some fissures
or crevasses of ~ 20um depth and ~ 50um width were left on the surface of the
masses because of non-uniform deposition of the gold layer. To circumvent this
problem the test masses were reversed and their new top surface was machined
off down to the gold stripes to obtain a uniformly flat surface as shown in fig[2.2.
The masses were then transferred to our department, where they were glued to
their copper supports. One support was flat, while the other one was curved.
The cylindrical support was obtained by the electrodeposition of copper on
an aluminium mandrel by BJS, London. The aluminium was then removed with
a solution of potassium hydroxide. One mass was glued onto a semi cylindrical
support which was then attached to the float, while the other one was glued
on the flat support. The flat and cylindrical masses were polished with a glass
slab and a stainless steel tool respectively, and carborundum powder. Afterwards
their curvature was measured with a coordinate measurement machine (CMM).
We repeated the last two steps till we reached the required curvature. At this
point the production procedure became different for the cylindrical and the flat
test masses. For the flat mass we thermally evaporated a 1um gold layer over
the top surfaces of the mass and support obtaining what we called “mass C”.
This mass is shown in fig[2.5. For the cylindrical mass the procedure was not
so straightforward: with the first prototype we manufactured we found that it
was not possible to directly evaporate the gold layer over the mass, when it
was glued onto the cylindrical support. During the evaporation process the thin
copper support could not leak enough heat away with the result that the mass
became partially detached. We still used this mass however after having cut
away its damaged extremes and covered the rest of it with a conductive silver
paint (a solvent containing silver particles, the “Acheson Electrodag 1415M”).

This curved mass, which was the first of its kind to be manufactured, was called
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1- Alluminium base
2- Grooves machined
3- Gold filled by electro deposition

g 4- Skimmed the top surface

5- Flipped up-side down and
skimmed away the top surface

6- Glued to the Copper substrate
and polished the top surface

7-CMM measurements

8- Gold evaporated on the top

Figure 2.1: Schema illustrating the manufacture of the test masses.

“mass A” and is shown in fig[2.3] The assembling procedure was improved with
a second prototype we later received. We left the aluminium mandrel under the
copper curved support until the mass was with the gold layer in the evaporator.
Because the aluminium mandrel was a good heat sink, the test mass was not
damaged during the evaporation of the gold layer. To safeguard the integrity of
the test mass during the etching process of the aluminium, which followed, the
mass was covered with a silicon rubber layer which we later removed. The new

curved mass, which I called the “mass B”, is shown in fig[2.4]

2.3 Metrology

During the process of polishing the masses and after the ISL test of gravity, I
characterised the surfaces of the masses by using a Mytutoyo-Crysta-Apex CMM:
the procedure consisted of measuring the height of a number of points on the
surfaces with respect to a reference plane by means of a 1mm radius sphere,
which descended onto the mass until touching it. For a hole of 400um width
the maximum depth the probe was able to measure was 20um. However because
these height measurements relied on the contact between the small sphere and the
surfaces of the masses, there was a risk that the surfaces themselves could possibly
be damaged during the characterisation process. To avoid compromising the
integrity of the surfaces, during the polishing process I took height measurements

at a few points only in order to check the long range curvature. After the ISL
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Figure 2.2: Picture of a section of the test mass as it arrived from RAL.

Figure 2.3: Test mass A on the cylindrical support.
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Figure 2.4: Test mass B on the cylindrical support attached to the float.

Figure 2.5: Test mass C on the flat support.
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experiment I measured the curvature again this time at sufficient points to reveal
any corrugation at a pitch of 400um.

To estimate how much the surfaces deviated from a perfect flat plane or cylin-
der, I fitted such geometries to the measurements and took the difference between
the original data and the fitted one. Because the flat and the cylindrical surfaces
were found not to be parallel to the reference plane, which I used during the
CMM measurements, it was necessary to fit a possible 3D rotation and one or
two translations of the plane or of the cylinder to the experimental data. This
was obtained by taking the original data set (x,y, z) (see the reference frame in
fig[2.2) and creating the new one defined by the equation:

xfit xr
Zfit z

where A(6, ¢, 1) is 3x3 matrix defining a 3D rotation [36] depending on three
Euler angles 0, ¢ and 1. In the case of the fit to a cylinder of radius r, yyi4 is
defined by the equation:

Yrig = —Yo T V/ r2 + (Z — 20)2 (2.2)

zo and gy are the two offsets, which define the translations in z and y directions.
For the fit to a tilted plate, y;;, was simply set to be equal to —yo. The obtained
Y Was least squared fitted to the original y data by using the MATLAB function
nlinfit. 1 took the difference between the original data sets and the fitted data
and obtained the results of fig[2.§ [2.6] and [2.7]. T also plotted the height profiles
for z constant in the middle of the masses (fig)2.10},[2.12/ and |2.13)). I found that

the central profiles of mass A, B and C are characterised by standard deviations

respectively of 13, 9.4 and 3.8um. I evaluated the amplitude spectrum of all

the central scans [83] (fig|2.10| 2.12 and [2.14). For the masses A, B and C the

measured amplitude spectrum at the spatial frequency of kg = 1/400um~1 was

respectively 0.54, 0.31 and 0.71pm. The flat mass C had also an amplitude
spectrum signal above the noise level at the spatial frequency of 1/200um ™1,

which has an amplitude of 0.49um.
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(um) Mass A | Mass B | Mass C
Average depth 19.7£135]1624+£94 | 9£3.8
ko corrugation amplitude 0.54 0.31 0.71

Table 2.1: Average depths and corrugation amplitudes at the spatial frequency
of the mass density modulation for the prototypes of the test masses.
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Figure 2.6: 3D topography of the mass A
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Figure 2.7: 3D topography of the mass B
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Figure 2.8: 3D topography of the mass C
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Figure 2.9: Central profile of mass A
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Figure 2.10: Amplitude spectrum of the central profile of mass A.
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Figure 2.11: Central profile of mass B.
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Central profile of cylindrical mass on lug B
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Figure 2.12: Amplitude spectrum of the central profile of mass B.
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Figure 2.13: Central profile of mass C. This plot is based on a CMM measurements
just on the center x axis and with larger number of points per mm with respect

to fig[2.§
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Figure 2.14: Amplitude spectrum of the central profile of mass C.

2.4 Conclusion

I have presented here the first three prototypes of the test masses we manufactured
and characterised, which we used for the test of the ISL of gravity at micrometre
distances. We defined the method to produce the mass density contrast on the
masses by using alternated gold and aluminium stripes. We found that while the
manufacture of the flat mass was straightforward, the fabrication of the cylindrical
one was more complex due to the low thickness of its copper support. Because
of the thin support, the curved mass was easily damaged during the thermal
deposition of the gold layer. We finally obtained one flat mass and two cylindrical
masses. The first cylindrical mass to be manufactured was partially covered
by silver paint, while the second one was uniformly covered by a gold layer. I
characterised the topography of the test masses with CMM measurements and
found that the amplitude spectrum of the measured corrugations was 0.5um at
ko = 1/400um~'. There is a possibility that these CMM measurements may
have damaged the test masses and, in future, they should be substituted with
non-contact measurements. These first prototypes of the test masses were used

to perform the preliminary tests of the ISL of gravity with our experiment.
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Chapter 3

The expected torques

3.1 Introduction

This chapter is dedicated to the analysis of all the possible torques which, to the
best of our knowledge, I expect we will measure with the torsion balance and
the test masses. I will start by presenting an analytical model of the Newtonian
force, which is acting between the masses because of the mass density contrast
across their surfaces. I will discuss how I used this model to optimise the test
mass geometries for the ISL test. I will model the electrostatic forces, which are
due to periodic corrugations of the surface topographies of the test masses and/or
to periodic surface potentials. These potentials are given by contact potentials
between the gold and aluminium stripes. They will give origin to a measurable
force in the case they are not well screened by the top gold layer. I will also
model the lateral Casimir forces due to surface corrugations, which dominates
gravity at distances shorter than 6um. I will discuss the magnetic force, which
are due to the differences in the magnetic susceptibilities of the aluminium and
gold stripes. I will discuss the numerical model we developed to predict the
possible Yukawa forces, which might act between the masses. I will define the
method to set preliminary upper limit on their strength, o, and range, A\, given
the experimental results. I will also show how it is possible to optimise the
parameters of the test mass geometries according to which (a, A) area we would

like to explore during the experiment.
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3.2 Newtonian torques

In this section I will analyse the expected Newtonian torques, which are given by
our test masses and their supports. I will start by developing an analytical model
of the Newtonian torques, which are due to the mass density modulation of the
test masses and I will use the analytical results to define the optimal geometry. 1
will discuss the models used to predict to Newtonian background torque, due to
the interaction between the test masses and their copper supports. Again I will
use the obtained results to optimise the geometry of the support of the flat mass

and to minimise the background Newtonian torque.

3.2.1 Analytical model for the torque due to the density
modulation

I develop here the analytical model of the Newtonian torques, which are due to

the mass density modulations. I start by modelling the Newtonian potential,

which is given by a periodic mass distribution along the x direction. Then I

will integrate the potential over all the dimensions of the source and target mass

to get their total gravitational potential. Finally I will differentiate the resulting

potential to obtain the torque, which is acting on the torsion balance as a function

of the relative position of the test masses in the = direction.

General case:

I start therefore from the Poisson differential equation for the Newtonian po-
tential, ¢, given a mass density distribution p, which is limited to the space of

negative y and is infinite along the z direction:

V2 (z,y) = 4rGp fory <0 (3.1)
V3¢ (z,y) = 0fory >0 (3.2)

where G = 6.674 x 1071'm3kg~1s72 is the gravitational constant. The asso-

ciated Newtonian fields in the # and y directions are given by the equations:
f:c:_ IQS(.I',:I/), fy:_ay¢(x7y) (33)
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Figure 3.1: Diagram showing the x and y coordinates and the gaussian integra-
tion.

From Gaussian integration around an infinitesimal section of the surface (see
fig]3.1)), it follows that:

fy(x,0) = —27Gpdy (3.4)

I assume that the mass density is periodic in the = direction with period A
(p(z,y) = p(x + nA,y) with n € N), symmetric with respect to x = 0 (p(z,y) =
p(—x,y)), separable in the product of two functions depending only on z and y
(p(x,y) = pop.(7)p,(y)) and independent of z.

I also assume that the gravitation potential is expressed as the product of two
functions, of which one is periodic in x with period A. The global solution of the
Laplace equation is obtained by separation of variables [5] and is expressed
by the equation:

> 2 27
ole,y) = Coy + Y Creos(i-a)e 5 (3.5)
=1

with Cy and C) constants, which are set by the boundary conditions. The

force fields in the x and y directions are given by the equations:

fz = Z C’l— sin l—a:) IR (3.6)
2w 2 | _j2x
fy = —Co+1 Z C’lx Cos(lxx)e PXv (3.7)

=1

Now as the density p,(z) is periodic in x, it can be expanded in a Fourier

series as:
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_ g - n2m
p. () = 5 +;ancos(—A x) (3.8)
where [5]:
2 /A/2 n2m
ap, = — p.(x) cos(——x)dx 3.9
INCCEC S (39)

Now eq[3.4 implies that:

2 o
l—ﬂa:

= 2 2
—Co+1 g C’l% cos( n ) = —27Gp, <% + E an, cos(nTﬂx)) dy (3.10)
=1 n=1

and therefore
Co = 2rGpyRdy, 1 =n, C3 = —21Gp,“ldy (3.11)

The solution for the gravitational potential of eq[3.5 becomes the equation:

— _@ _ _ _ —TA Y
o(z,y) = —21Gp, ( 5 Y+ o 231 - cos( A x)e ) dy (3.12)

and the Newtonian field in the two x and y directions are given by:

nm _2nm

- 2
fe = —ZWGpOZan sin(Tm)e L Vdy (3.13)
n=1

27171' _2nmw

fy = —2nGp, (—% + Zan cos(Ta:)e Ly) dy (3.14)
n=1

Analogous formulae can be calculated for a Fourier integral expansion of a

non-periodic density distribution.

Example: In the case p,(z) = cos (¥z), it follows that a,. = 0 and a; = 1,
which implies from eq[3.13 and [3.14] that f, and f, are given by the following

equations:
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2nm

2
fo = —27ersin(%:v)e_Tydy (3.15)

2 nim
fy = —QWGpcos(Kﬂx)e_%ydy (3.16)

Given a sinusoidal mass density distribution in x, the induced force fields are
periodical in x as the mass density and they decay exponentially with the distance

Y.

Torque solution for our test mass geometry

In the following subsection I will present the solution of eq[3.14 and in the
case of the geometry, that we adopted for our test masses (see ﬁg). I assume
now that the density modulation p,(x) is a square wave function with amplitude
1, symmetric with respect to zero, of width W and periodicity A. This function

inside the interval —A/2 < & < A/2 is represented by the equation:

o (x) = % (Sign(W + 22) + Sign(W/2 — 7)) (3.17)

where the function Sign(z) gives -1, 0 or 1 depending on whether x is negative,
null, or positive.

The transform series of this square wave has the following Fourier coefficients:

2W
- 3.18
agp A ( )
2 sin (=W
>0 = —T(WA) (3.19)

and therefore its gravitational potential is given by the formula:

%% ANE sin( ) 2nT | _2nx
o(z,y) = =27G(py — pa) (—Ker—Z 5 cos(——x)e” A | dy

(3.20)

p; and p, are the mass densities of the two metals constituting the mass
density contrast, which is associated with the square wave. Because the eq[3.20
has been numerically found to very quickly converge as a function of K, for

practical purposes K can be chosen as small as 10.
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Figure 3.2: Schema representing the test masses (not in scale). The case of the

tilt mass is analysed in section [3.6,

Under the small angle hypothesis, I integrate now the previous potential over
all the dimensions of the source and test mass: for the flat bar I integrate over
its thickness L, in the y direction; for the curved rib, which has radius R, I

integrate over its extension L, in the z direction and over the width W in the z

direction (see figi3.2)). Assuming © = arcsin (L,/R), the integral is expressed by

the equation:

®(d,, d,) = / / / /R cos 0p(x, + dy, dy + yp + y, ) dypdy,df,dz, (3.21)

~W/2-© 2 0
where d, and d, are the distances as shown in fig[3.2. T multiply the integral
by the mass density contrast (p; — py) of the curved mass and the number of ribs

L./A, where L, is the total length of the mass in the z direction.
After solving all the integrals of eq[3.21] (see appendix [A]), I find that the

gravitational potential between the masses is expressed by the equation:
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Flat mass Cylindrical mass

L,. 2Rsin©L:W3d KAt (2 sin(”’rw))2
_ _ 27T Yy Y A
®(ds dy) = —21G(py — p;)* ] n +;(2m) —
’[’L27T _27mnLy 2 _ 2nmdy AR ’[’L’]TR
cos(*d,) (1—e § ) R ei(y[0)) (3:22)

erf(z) is the error function or integral of the Gaussian distribution and is given

by the equation:

erf(z) = %/etht (3.23)

The final expressions for the x and y components of the gravitational force

are given by the equations:

oL, K ( A )3 (ZSin(nzr\W)fsjn(%dI) (1_6_27”;%)2

F, = —2nG(p, — —
TGPy — pa) I 2 onm i
2nmdy AR nmtR
e —erf(y/ —— .24
e & \/n er (\/ A O) (3.24)
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-cos(“5dy) (1 - 6—2’”&“’ f @@)) (3.25)

The torque, which is acting on the float, is given by the vector product ExF.

F, = —21G(p; — py)°

R is the vector connecting the center of rotation of the float with the center of mass
(CM) of the curved mass and F is the force acting on the masses, F= (Fy, F,0).
If Rgoat is the distance between the rotation axis of the float and the center of
mass of the curved mass and if (d,, d,, d.) is the vector connecting the centers of
mass of the two masses, Ris simply given by (d,,d, + Rfoat, d.). Therefore the

component of the torque on the rotation axis of the float is given by the formula:

I, = RxF-(0,0,1)=d,F, +d,F, — FyRpoa (3.26)
— F, Reoat (3.27)

Q

The last approximation is possible because d, (less than 3.5mm) and d, (~
10 — 100p4m) are much smaller than Rg.,: and because F, and F, have similar
peak to peak amplitudes. As definition of the peak to peak torque I use the

following equation:

Fx(A/47 dy) — Fx(A/4 + A> dy) _
2

Tp(d,) = Reoat ( Fo(AJ4+ A2, dy)) (3.28)

which will exclude any linear drift in the torque due to the relative displace-
ment of the centers of mass. The analytical model, which I developed here, does
not take into account this torque drift, because the number of bars of the test
mass is supposed infinite. However the numerical model, which we developed for
comparison (see section , will take it in consideration. So for consistency I
use the same definition in both cases, because in the future it might be possible
to update the analytical model and include also this extra torque due to the CM

displacement.
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3.2.2 Results and optimisation of the test masses

In this subsection I present all the results, which are obtained by using the ana-
lytical model of eq[3.24], [3.25 and [3.28 When not specified otherwise, the model
parameters are chosen as in the table [3.1]:

’ Description \ Parameter \ Value ‘
Periodicity of density contrast A 400pum
Width of the gold bar/ribs w 200pum
Components of the Fourier series K 10
Gold density 01 = Pau | 19320kg/m?>
Aluminium density Py = Pa 2700kg/m?
Distance between the masses d, 15pm
Radius of the cylindrical mass and of the float | R = Rgoat 46.86mm
Extension of the test masses in the z direction L, 10mm
Length of the test mass in the x direction L, dem
Thickness of the test mass in the x direction L, 150pum

Table 3.1: Parameters of the test masses which I assumed during the calculations.

First of all I plot the two components of the force, F, and F,, over the dis-
placement of the masses in the = direction (ﬁg, where I did not considere
the torque offset of F,: I find that both forces are out of phase by 7/2 and have
the same amplitudes ~ 2.1 x 107 N. The equivalent torque is given by the
eq and it is equal to 8.7 x 10~ Nm. By looking at the amplitude spectrum
of the expected torque in fig[3.5, it is evident that only the odd harmonics of
the main spectral component are present and they quickly decay as n=%2 (n is
the harmonic number, see eq). The hypothesis, that it is sufficient to sum
until K = 10 in eq3.24] is satisfied. In fig[3.6 I also show the Newtonian signal,
which exponentially decreases with the distance. According to eq3.24, the decay
constant of the exponential is A/(27), which in our case is ~ 64um.

Thanks to the analytical model I developed, it was also possible to identify
the optimal parameters, which give the maximum Newtonian signal and keep
the manufacture of the masses as simple and robust as possible. For example, I
found that, for any given choice of the parameters, the maximum gravitational
signal is obtained when the width of the gold bars and ribs, W, is half of the
pitch A (see fig]3.7). From eq[3.24 and fig[3.§ T also found that for a given width
W, 1 obtain 80% of the maximum signal with a thickness, L,, that is just 3/4
of the width W. In the case of W = 200um, the 80% of the maximum signal
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Figure 3.4: F, and F), versus the displacement of the test masses in the x direction.
The equivalent total torque is reported on the left side of the graph .
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Figure 3.6: Peak to peak Newtonian torque versus the distance d, between the
test masses.

is reached for just L, = 150pm. As shown in fig]3.9 the Newtonian torque is
expected to increase as I increase the pitch of the mass density modulation. As it
will be discussed in section[3.6], the amplitude of possible Yukawa torques at short
distances increases as the pitch is decreased, because the total number of bars
and ribs per unit of length is increased. Therefore a balanced choice of the pitch
A has to be made to optimise both the Newtonian and Yukawa signals for the
ISL test. I also found that it is not worthwhile to increase the vertical size, L.,
of the test masses beyond 10mm (see ﬁg. In the same figure with the blue
rectangular box I also show the signal loss due to the aluminium horizontal bars,
which we designed to make the test masses more rigid and robust (see ﬁg).
This signal loss is just a negligible 5%.

As I will discuss in section [3.6], we also developed a numerical model to predict
the Newtonian signal in the limit of the Yukawa signal for infinite range, A. The
results of the numerical model are in agreement with the ones of analytical model.
With the numerical model I also studied the effect of a possible misalignment
angle, ¢., between the bars and ribs of the flat and curved mass (see ﬁg).
From fig[3.11] it is clear that it is possible to tolerate even an misalignment angle

~ 1° without losing more than 10% of the expected Newtonian signal.
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¢, between the facing bar and ribs of the two masses. It was obtained through
numerical simulation (see section [3.6)).

3.2.3 Error budget on the Newtonian predictions

In this subsection I discuss the error budget for the Newtonian signal of eq[3.24
and to evaluate, which are the tolerances to measure gravity within 10% at
a distance of 15um between the masses.

The percentage error on the Newtonian torque I' is given by the expression:

e 0T

«

where the sum is performed in quadrature on all the parameters . For all

the parameters apart from W and L., f, had been analytically obtained from
eql3.24) and according to the next equation:

a JdI'y,
«= =" 3.30
o= £ (3.30)
For L. and W, if or,, is defined by:
or,, = Ippla+0a) = Tpp(@) (3.31)

fr.and fy are given by the dominant term of the equation:
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f = Ippla+0a) = Thp(a) a (3.32)

Fpp(a) Oq

In fig[3.12] T plot the percentage error on the torque given the error on W and
L,. Given the numerical values of all the parameters « of table[3.1], f, are shown
in table for a distance of 15m between the masses. In the same table under
the label o, /a, I report the percentage error on every parameter such that, when
they are all summed in quadrature according to eq[3.29, the total error on the
Newtonian signal is 10%. I supposed that the contributions of each parameter
on the total Newtonian error are all the same. Therefore because there are 10

parameters, in table I report the percentage error on each « such that:

&f_l()%
a’® V10

In the same table, under the label o, I reported the actual errors on each

= 3.16% (3.33)

parameter, which correspond to the previously defined o, /«

Lo | Jo | dafa | oa |
P Au 2.32 1.36% | 253g/m?
A 2.16 1.45% 6.3um
L, 1 3.2% | 1.26mm

Reoat 1 3.2% 1.6mm
L, 0.5 6.3% 9.5um
R 0.5 6.3% 3.2mm
Ol 0.32 9.5% | 253kg/m?
W (—1+sin(m/25%)%) /S~ ~10% | 20um
d, 0.15 20.2% 3.2um
L, | (=1+19Erf(0.1+0.1-%=))/2k= | 27% 2.7mm

TOTAL 10%

Table 3.2: Table of all the coefficients f, to estimate the percentage total error
on the estimate of the Newtonian signal. o,/a is the percentage error on each
parameter «, such that their sum in quadrature gives 10% error of the Newtonian
signal according to eql3.29. o, is the numerical error on « corresponding to each
percentage error o, /.
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3.2.4 Newtonian Torques between masses, supports and

micropositioner

In this section I will briefly discuss the Newtonian torques, which are acting on
the torsion balance and which are given by the gravitational interaction between
all the elements supporting the test masses. I will compare them with the ex-
pected peak to peak torque given by the mass density modulation. By using the
analytical formula for the Newtonian potential, which is given by a source par-
allelepiped [55], I found the expression of its force field at a generic point in the
space. With Wolfram Mathematica I numerically integrated the resulting torque
(given by eq over a test parallelepiped, which is attached to the float shell. I
therefore calculated the torques for all the different combinations of the elements

of the supports and masses. The elements are given by the following list:

1. a lug attached to the torsion balance, which is modelled as a the difference
of two copper parallelepipeds. The parallelepipeds are slightly offset such
that the central cavity is open on one side (see fig[3.15). This lug is the

support for the curved test mass.

2. asupport for the flat mass, which is attached to the top of a micropositioner.
As for the lug, this part has been modelled as a the difference of two copper
parallelepipeds, which are slightly offset to have the resulting cavity open
on the bottom side (see ﬁg. The design of this support had been
optimised to minimise the torque it exerts on the lug and on the curved

test mass.

3. the top moving part of the micropositioner, which had been modelled as a
simple titanium parallelepiped and which is positioned under the support

of the flat mass.

4. the source and the test masses had been modelled as simple gold paral-

lelepipeds.

I evaluated the torques, which are given by all the possible combinations of
the previous elements versus d, with d, = 15um fixed (ﬁg and versus d,
with d, = 2mm (fig . The result is that, for example, at a distance of
15um, the Newtonian signal, which is given by the support of the test mass,
is 100 times bigger than the expected peak to peak signal due to the density
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modulation. This large torque drift will not be a problem during the experiment
because it is possible to fit it out of the measured data and it will not influence
the signal at the spatial frequency of interest, which is associated with the density
modulation. However this Newtonian drift, if not minimised, might force us to
increase the dynamic range of the SSTB torque measurements and possibly lose

torque sensitivity.

Attocube
Test Mass Side to Side
motion
Attocube Optlmlzetd
In out suppor

motion

Figure 3.14: Attocubes and support of the flat test mass.

Lug supporting
the cylindrical mass

cylindrical mass

Top

Figure 3.15: Top and bottom view of the curved support for the test mass which
has to be attached to the float.
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3.3 Electrostatic torques

In this section I will analyse some of the possible torques, which might arise
between the test masses due to the electrostatic forces. Firstly I will consider
the case of the torques, which are induced by periodic perturbations of the to-
pographies of the test masses. Secondly I will model the torques, which are due
to periodic surface voltage modulations on the masses in the case of perfect to-
pographies, because contact potentials [45] at the interface between the gold and
aluminium stripes are known to induce such voltage modulation. Finally I will
model the torques due to the coupling between periodic surface corrugations and

potentials.

3.3.1 Torque due to periodic fluctuations of the surface
topography

Given a plate and cylinder facing each other, I want to characterise the force
due to periodic fluctuations of the topographies of their surfaces. Thanks to
the proximity force theorem [12] I model this force as the integral sum over the
surface of all the forces associated with infinitesimal cross sections facing each
other. I do not take into account the contributions of the forces between cross
sections not facing each other. At distances, which are much smaller than the
surface dimensions, this approach is considered a reasonable approximation [12].
I start to analyse an infinitesimal cross section of the two surfaces of area dA,

whose capacitance is given by:
edA
d

where ¢ = 8.854 x 107'2F/m is the vacuum permittivity and d is the average

aC = (3.34)

distance between the two infinitesimal plates. d is the sum of the average distance,
dy, between the plate and the cylinder on the considered small cross section and
the fluctuations, fiand fs, of the height of the flat and cylindrical surfaces. For
small distances z from the symmetry plane of the cylinder, which is perpendicular

to the flat mass (see fig{3.3), the distance dy can be expressed as:
52

dg%dy+2R

(3.35)
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d, is the distance between the cylinder and the flat mass and R is the radius of

the cylinder. dC' is given by the following equation:

A
dC(x, z,d,) = ; « (3.36)
dy+ 55 + fi(z,2) = fole — do, 2)

where (z,z) are the coordinates of the infinitesimal cross sections over the

surfaces of the masses and d, is the displacement of the flat mass with respect
to the cylindrical one in the x direction. For simplicity, I name here d, as £ and
I assume that the fluctuations are smaller than the minimum distance between
the plates, fi(z) — fo(x — &) < d,. In this case the previous expression of the

capacitance is expressed by the equation:

dO(z, 2, €) ~ edd | filz2) = folz =& 2) N (fl(a:,z) — fol(x — g,z)>2

dy+3: | dy+ f5 dy + 37
(3.37)
Given the formula for the electrostatic energy between the two capacitor
plates, dE(x,2,&) = 1/2V2dC(x, 2,£), which is due to a voltage difference V'
between the masses and the work done by the voltage supply to keep the voltage
constant, dW(x,z,£) = —V?2dC(z, z,£), the resulting force in the ¢ direction is

given by the equation [28]:

AF(r,7,€) = +5V70dC(r, 2,€) (3.38)

I substitute now eql3.37in eq[3.38 and dA with dxdz. I integrate the resulting
force dF over the surface of the plate to obtain the total force F':

L./2 Ly/2
F(§) = / / dF (z,z,&)dxdz (3.39)

~L./2J—L./2
where L, and L, are the dimensions of the flat test mass. To solve the integral
I need to separate it in the two variables of integration, x and z. This is possible
if the corrugations are periodic in z and independent from z. Therefore F'(§)

becomes the equation:
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L./2 Z Ly/2
Fi§) = v d—)Qag / he—Odet (340)

~L.)2 (d 4 2 “L./2
L./2 Lz/2
—2 / y ) / 2) folz — €)dx+ (3.41)
L /2 d + 2= Z
L./2 dz Lz/2
e (dy+ 5)° s

The first double integral is null because f, has null mean. The third one is
null too because it is the derivative in £ of the variance of f5, which for a periodic
function is independent of where it is taken. The second double integral is solved

and approximated for Rd, < L., obtaining:

3mV2R

F(¢) = —Vie— -
€ 8dy/?

O¢corria(€) (3.43)

corri2(€) is the correlation of f; and f over the x direction and is given by

the equation:

Ly /2
corraa€) = [ fia)fler - ) (3.44)

~L./2
In the case f; and f; are periodic functions with period A and amplitudes
Ajand —A, (f = Asin(27d,/A)) from eq[3.43] and [3.44 The amplitude of the

resulting torque is given by the equation:

3712V2R L,

| p—— RﬂoatE‘/z d5/2 A —Z A1 Ay sin(2md, /) (3.45)
y

Assuming a periodic corrugation of 0.5um with the same period of the density
modulation and a voltage difference of 50mV’, the expected peak to peak torque

for our masses at a distance of 15um is 5.67 x 107 Nm.

3.3.2 Torque due to periodic fluctuations of the surface

potentials

I consider now the case of test masses with perfect topographies ( f; = fo = 0)
but with periodic voltages across their surfaces, which are due to the contact

potentials [49] between the gold and aluminium stripes because of their different
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work functions [45]. Because for the aluminium the work function is between 4.06
and 4.26eV and for the gold is between 5.47 and 5.31eV [49], I expect a contact
potential difference within 1 and ~ 1.4V between the two metals. By covering the
gold and aluminium surfaces with an uniform gold layer of 1um thickness, this
periodic fluctuation of the surface potentials is expected to be null. However if the
contact potentials are not completely screened by the gold layer, the associated
torque might mimic a possible violation of the ISL of gravity. Therefore it is

important to model this signal to detect it within the experimental data.

The analytical model

I start to model the torque on the masses given by non-uniform voltages V; and V;
on the flat and cylindrical surfaces. As done in section[3.3.1], I use the proximity
force theorem [12] to model the force on an infinitesimal cross section of the
two surfaces and I obtain the total force by integrating the result on the surface
dimensions, x and z. The infinitesimal capacitance, dC, and its force dF between

the two cross-sections are given by the following equations

edrdz

dC(z,z,§) =~ 5 3.46
w20 = (3.4
dF = %(Vl(x, 2) — Va(z — &,2))%dC(x, 2) (3.47)

¢ models the translation of one mass with respect to the other one in the x
direction and eq[3.47 follows from [77]. The total force is given by the equation:

=/ z/
F() = /L : /_L : dF(x,z,&)dxdz (3.48)

—L./2J)—L./2
As in the case of the varying topography, I suppose that V;(z, z) and V5(z, 2)
are periodic in x with period A and independent from z. I separate the integration
of eq[3.4§ into the product of two integrals in z and x obtaining, for small d,, the

equation:
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F() = _62\/\/? arctan (2\/2—;?> Ogcorryz(§) (3.49)
—€ \/j?ﬂ- 85007"7"12 (5) (350)
where
La/2
corrz(§) = / Vi(x)Va(z — §)dx (3.51)
—L./2

The eq is an approximation of eq within ~ 15%, given the numerical

value of the parameters for our test masses of table [3.1].

Example of sin function potentials

In the simple case where V; and V5 are sine functions with period A and amp-
litudes Vo and Vs and supposing that L, is an integer multiple of A, J¢corria(§)

is given by the equation:

Ogccorrip(§) = —W% sin(2m/A&)VipVag (3.52)

and that:

20V2Rx? L,
T 22 in(2m/AE) VigVag (3.53)

Vi, &

It is interesting to notice that the predicted torque has opposite phase with

I'~ _Rﬂoat6

respect to the one due to periodic corrugation of eq[3.45 and it differently decays
with the distance d,. It is easy to show that this torque is independent from the

the voltage, which is applied between the masses.

Contact potentials

I model here the voltage variations due to the contact potential as square waves
Vi and V5, which are varying with a period A between 1, and V + V.. and given
by the equations:
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Vi(z) = Vo+ % [F (2mx/A) + 1] (3.54)
Vale—€) = Vo £ F (2n(r —€)/A) + 1 (359)

F (2mz/A) is a representation of the square function with period A and amp-

litude between 41 and is given by the equation:

F2ma/A) = (%Zsin((%— 1)2m/A)> (3.56)

2k —1
k=0

Supposing that L, is an integer multiple of A, the derivate in £ of the eq
with V; and V3, which are given by the eq3.54] and [3.55, is the expression:

O¢corria(€) = —%VfF(Qﬂx/A) (3.57)

From eq the torque due to contact potentials is given by the equation:

2V2R7 L,
\/_yA

For example, assuming a voltage difference V. = 1V, which can be due to the

Lot = — Raoare ———————V2F (272 /\) (3.58)

contact potentials between the gold and aluminium stripes, the expected peak to
peak torque at 15um distance is 1.7 x 10~8 Nm. This signal is much larger than
the other expected signals at the spatial frequency of the density modulation. It
is absolutely necessary to cover the gold and aluminium stripes with an uniform

gold layer, which will null the voltage modulation due to the contact potentials.

3.3.3 Torque due to coupling between periodic corruga-

tions and potentials

I consider now the most general case with both the corrugations and potentials,
which are periodically varying across the surfaces of the test masses. The force

on the infinitesimal cross section for this case is given by the following expression:

edA

dF(z, z, ——8 5
(0,50 = 30l

(Vi(z —a,2) — Va(z —a — £,2) + AV)>
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- filz,z) — falz — &, 2) n (fl(:p,z)—f2(:r—§,z)> ] (3.59)

22 22
dy"’ﬁz dy‘l‘ﬁz

where, to the surface periodic potentials, I also added a voltage difference,
AV, which is applied between the masses. For simplicity, the phase between the
corrugation and potential functions is chosen to be null, « = 0, for each mass.

By integrating the previous force over the surfaces of the test masses, according
to eqf3.48, eql3.59 becomes the expression:

F(f) = Fcor(f) + Fpt(f) +
- Lo/2
Mo [ 00 = el ~ 0P (o) = ol — )P

- L2
+2Avfiaf (Vi(2) fola — &) + Va(z — &) fi(z))dz (3.60)

42 ) L

with F,.(§) and F,(£) given by the eq and [3.50. The fourth term has
been obtained by solving the integral in z with the equation:

+e€

/Lz/2 edz VRr (3.61)

e (dy+2)° 42
which is a good approximation within 1% for the parameters of our test masses

of table 311
I suppose now that Vi, V5, fi and fy are sin functions with period A and
amplitudes Vp1, Voa, A1 and —A,. From the general expression of the force of

eq the torque acting of the torsion balance is given by the equation:

Fel(f) = FCOT + 1—‘pt + Fcor+pt (362)

with T, and 'y given the eq[3.45 and while the I'srip¢ is given by the

following sum:

Ceoript = ko + Tt + Trovav (3.63)

with
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9 72VR L, .

o Rioat€ — —5———sin(2wd, /A)
16 33/2,/2 A
(A1 AV — A3ViVy — ASVi Vs + A A5V (3.64)
3 VR L, .
Fkl = Rﬂoateoﬁmf Sll’l(47de/A)
(AV2 — 44, AWV, + A2V2) (3.65)
2R L,
Thosay = Rﬂoatei—AVsin(%rdx JA) (A1Va — AsV7) (3.66)

V2dy? A

The signal I'.,,4,¢ for a null voltage difference between the masses, AV = 0,
is characterised by two spectral amplitudes: one, I'yg, at the spatial frequency of
the density modulation, 1/A, and the other one, I'y;, at its second harmonics. If
there is a voltage difference between the masses, another additional term, I'yo 1Ay,
is added to the main harmonic. This signal, which is given by eq[3.60, linearly
changes with the voltage AV which is applied to the masses. The signal I'y; at
the second harmonics of the density modulation is instead independent of the
applied voltage.

I'c; is given by the three terms of eq[3.62, According to the presence or not
of the corrugations and potentials on the test masses, different combinations of
the three signals, I'cor, Iy and I'cppype, might be present in the measured torque
as shown in table [3.3 Because the test mass C (see chapter [2) is well covered
by a screening gold layer but the test mass A is not, the periodic potentials on
the first mass are null but they are not on the second one. When using these two
test masses we should measure the signal I'cor + I'coripe but not the signal I'y,
because it has to be null according to the eq[3.53.

For example, if the surface potentials on the mass A are not well screened
(V4 = 1V'), while on the mass C they are null, if the corrugation amplitudes of
both masses are 0.5um and if the voltage difference is 50mV, the expected peak
to peak torques at d, = 15um are Iy = 1.7x 107" Nm, T'y; = —5.67x 1072 Nm
and Tyoray = 1072 Nm.

If a voltage difference is present between the masses, Vj, because for example
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[y Vi=Vo=0]| (Vixor V5) =0| Vi #0and Vo, #0
Al = AQ =0 0 0 Fpt
(AlXOI' A2) =0 0 Fcorert Fpt + Fcor‘+pt
Al 7é 0 and AQ # 0 1_\cor Fcor + Fcorert Fcor + 1—‘pt + Fcor+pt

Table 3.3: Components of the electrostatic torque which are not null for different
combinations of the surface corrugations and potentials.

of contact potentials, when an opposite voltage V4, is applied to them, AV is
equal to V., — Vo If there are just the periodic corrugations present on the test
masses and not surface potentials, it is possible to measure V by varying the
applied Vj,, until the measured torque I'., is minimum (null) at Vg, = Vo . If
the periodic potentials are also present on the masses, the voltage, Vi,in, which
will be found to minimise the measured torque, I'cor + I'copype, is DOt anymore V4

but the following expression:

24V, 2d,V,
34; | 34,

If it is possible to independently measure Vj (for example by measuring the

Vinin = Vo — (3.67)

torque due to the capacitance between the facing the test masses, see chapter @
and compare it with the Vi,;,, which we measure it by minimising the measured
torque at the spatial frequency 1/A, we will be able to detect the presence of

surface potentials over the masses.

3.4 The Casimir torques

The Casimir force is a macroscopic consequence of the quantisation of the electro-
magnetic field, which predicts that the quantum vacuum is not empty but filled
by the ground state of the quantum electromagnetic field. In the presence of
metal plates the possible modes of these zero-point electromagnetic fields are re-
duced in the area between the plates with respect to the all the possible modes in
free space. Because it becomes possible to change the electromagnetic zero-point
energy, or Casimir energy, associated with these plates by simply modifying their
separation y, a force between them arises. This force which was first predicted by
Casimir in 1948 [18] and experimentally verified by Lamoreaux in 1997 [47] (for
a review of the theoretical and experimental work on the field see [57][13]), has

to be taken into account when testing gravity at very short distances, because it
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is the dominant force at distances, which are smaller than a few microns. The
Casimir energy density for unit area for two parallel plates of infinite conductivity
strongly depends on the distance between the plates because it is given by the
equation [18§]:
w2he
E= _T()y?) (3.68)
with i = 1.054x 10734.J /s the reduced Plank constant and ¢ = 2.997 x 108m /s
the vacuum speed of light.
Two possible lateral forces might be present between our test masses, which
are associated with the Casimir forces: the lateral Casimir force due to periodic
oscillations of the topography of the test masses and the lateral Casimir force due

to the modulations of the plasma wavelength of the gold and aluminium stripes.

3.4.1 Lateral torques due to surface corrugations

Following the approach, which was previously adopted in literature for a sphere-
plate [21] and a plate-plate [76], I model here the Casimir force between a cylinder
and a plane due to sinusoidal corrugations on both surfaces. For perturbations,
f1 and f, of the surface topography with the same assumptions of section [3.3.1],

the total force is given by the equation:

a/Lz/2 /Lﬂ”/2 m2hedzdz (3.69)
C)orgp ) n.2 720(dy + 2+ fi(w) — falz — €))? '

When solved as in section [3.3.], the previous integral becomes the equation:

Fle) = —TVE o orrle) (3.70)

15361/2d,2
with corri2(§) given by the eq.

Periodic case

In the case f; and fy are sine functions of period A and amplitudes A; and
—As, from eq the torque, which is due to the Casimir force, is given by the

equation:

77107?4\/_ L,
1536v/2dy/* A
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For example in the case of corrugations with amplitude of 0.5um, the the peak

to peak torque at 15um is 5.2 x 10~ Nm while at 5um is 7.3 x 10~ Nm.

3.4.2 Lateral torques due modulation in conductivity

A more realistic estimate of the Casimir energy for parallel metallic plates has also
to take into account the finite conductivity of the metals (see [58] for a review)
and the eql3.68 has to be corrected with terms, which are powers of the metal
plasma wavelength \,. In the case where the metals on the surface have different
plasma wavelengths, like gold (A, = 0.14pm) and aluminium (A, = 0.11um),
an additional lateral Casimir force will be present between the masses, which is
associated with the correlation of the plasma wavelengths [76]. This force might
possibly mimic violations of the inverse square law of gravity. It is possible to
make this force null by covering the two surfaces with a uniform 1um thick gold
layer. It has been numerically [46] and experimentally shown [39] that a 30nm

gold layer is thick enough to shield the variations of the plasma wavelengths.

3.5 The magnetic torques

During the ISL test of gravity magnetic forces will be acting between the masses,
which are due to differences in magnetic susceptibilities, Ax = x 4, — X 4;, between
the gold and aluminium and to the presence of a magnetic field By perpendicular
to the mass surface (see fig]3.18). According to [78][74] the resulting torque is
given by the following equation (see appendix [B)):

Lz/2
<AXBO)2L$ . / dz
Cay ~ Rpgat—0o—2t 2 27 /Ad, . 3.72
s~ Boow=—g ——sin /) [ o e @ T 2Ry o)
—Lz/2

where p1, = 47 x 107"H/m is the vacuum permeability. For the magnetic
susceptibility of aluminium, x 4, = 2.2 x 107°, and gold, x4, = —3.7 X 107>, and
a magnetic field of 4T, the expected torque is 107 Nm at 15um. With respect
to the other expected torques, this torque is negligible, however unwanted con-
taminants during the manufacture process might possibly increase the magnetic

susceptibility contrast and the resulting torque above the noise level of the SSTB.
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Figure 3.18: Schema illustrating the diamagnetism and paramagnetism properties
of the gold and aluminium stripes of the test masses under an incident magnetic
field BO«

3.6 The Yukawa torques

In this section I will consider the possible Yukawa forces which might act between
the test masses. I will discuss the numerical model we developed and the method
I defined to set upper limits on the allowed Yukawa torques given the geometries
of our test masses and the expected sensitivity of the torsion balance.

The classical Newtonian potential solution of the Poisson equation for two

point like masses is given by the well known equation:

mims

oy (r)=-G (3.73)

r

with G the Newtonian constant. At small ranges there might exist also other
forces between the masses, which are mediated by hypothetical bosons of mass
my (see chapter . These forces are governed by the Yukawa potential, which is

given by the following equation:

by (r) = —GTAT2 e=r/A (3.74)

r

where « indicates the strength of the interaction and A = i/(myc) its range.

3.6.1 The numerical model for the Yukawa torques

There are in the literature many analytical models of the possible Yukawa in-
teraction between two masses of different geometries [I] but at present it is not
possible to apply any of them to the geometry of our test masses. We developed
a numerical model to predict the Yukawa forces between our test masses for any
given (a, A). I start from extending eq[3.74] to the case of two masses of volumes,

V1 and Va, with mass densities, p, (21, y1, 21) and py(z2, Y2, 22). The Yukawa com-
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ponent of the force in the = direction is given by the following double volume

integral:
d
F, = G/ pr(enyn,2) U Po@2:9222)) o—rix gy | v, (3.75)
i i) Vs T
with
2 2 2
r= \/(1‘1 —22)" + (Y1 — y2)” + (21 — 22) (3.76)

I consider the geometry of our test masses as represented in fig[3.2. I have a
flat slab of dimensions L, x L, x L, and a section of a hollow cylinder of length
L., thickness L,, angular section +£0 and external radius R. The slab and the
cylinder are made of two series of alternating gold and aluminum bars or ribs.
Each single bar or rib has the same dimensions of the slab or cylinder apart from
the extension in the z direction, which is W. Bars and ribs are periodically placed
in the z direction with pitch A (see fig[3.2). I also include in this numerical model
the possibility of rotating one mass with respect to the other one of an angle ¢,
around the y axis. I want to estimate how much gravitational signal I lose as a
function of the misalignment angle ¢, between the bars and ribs. The integral of
eq[3.75]is the sum of two terms: the Yukawa force between an aluminium slab and
an aluminium hollow cylinder of width L,; the Yukawa force between bars and
ribs of width W which have mass density given by p,4, — p4;- I will consider just
the second term, because it is the only one which depends on the periodicity A
of the density contrast. The second term is also the only one, which is extracted
from the experimental data by spectral analysis. The Yukawa force due to the

periodic density contrast in the x direction is given by the equation:

Fy (dy, dy) = aG (pay — PA1)2 Z Z fij(dz, dy) (3.77)

i= j=1
fij(dy,d,) is the volume integral between one single bar ¢ and rib j and is given

by the equation:
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/2 W/2 Ly/2 L:/2 —rig/x
fildardy) / / [ ] S dadn )
Ly/2 wye \J-L,/2J)-L./2 Tij

‘R cos 0,dx,.df,.dy, (3.78)

with the square of r;; given by the following equation:

2= (mp—a, + A —5) +d)’ + (Y — ye +dy + R(1 — cos,))” +
+ (2 — Rsin ¢,) (3.79)

The new coordinates (xy, yp, 25) and (., y,, 0,) are expressed in the reference
systems of each bar and rib (see fig[3.2)), N is the total number of bar and ribs
and © is equal to arcsin(L,/2/R). d, is the distance between the centres of mass
of the slab and hollow cylinder projected on the z axis. d, is the distance in
the y direction between the surfaces of the two masses. I also suppose that all
the rectangular bars are infinitely long in the z direction. By using the NAG
routines [66] and assuming o = 1, we numerically integrated eq. To check
the validity of this method and of the numerical integration, I compared the
analytical prediction for the Newtonian force of eq[3.24 with the numerical result
of the numerical model in the limits A — oo. Both approaches agree within few

parts per thousand.

3.6.2 Setting upper limits on (a, \)

At the end of the ISL test of gravity at micrometre distances, from the experi-
mental data we would like to set upper limits on the (a, A) values of the Yukawa
forces which are compatible with the measurements. In the next section I will
discuss the method I defined to set such upper limits given the torque sensitivity
of the torsion balance and the error budget of our Newtonian and Yukawa models.
Before deriving them I have to make a small comment about our knowledge of
the gravitational constant G.

I implicitly assumed that the value of the gravitational constant is the real
one without taking into account the effect of possible long range Yukawa interac-

tions. Under this assumption I will find that an ISL test performed at micrometre
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distances constrains also the Yukawa forces with A as large as desired, which is
clearly absurd. To have a method to set upper limits at any A, I have to also
include in the analysis the fact that the knowledge of G is limited at some finite
distance. When added together and differentiated with respect to the distance,
the Newtonian and the Yukawa potentials of eq[3.73 and [3.74], give a force ex-
pressed by the equation:

mims

F=-G

(L+a(l+r/X)e ) (3.80)

From the previous equation it is clear that the force will be just the New-
tonian one only for r — oo. Only the measurement at this distances can give
us the real value of the gravitational constant. Instead from the measurement
of the gravitational constant at a finite distance, 4, in the estimate of the real
G 1 should take into account the possible corrections due to not yet excluded
long range Yukawa interactions. The gravitational constant is expressed by the

formula:

C:lab
(1 +aY()

where Y(A) = (1 4+ ryqp /) e Teb/A,

Now given an experimental value for the force Feyp,, I want to set a limit on the

G = (3.81)

possible strength, «, of the Yukawa force with range A, which is compatible with
the measurement. The experimental result is given by the sum of the Newtonian

and the Yukawa force:

Fexp = -G (fN + Oéfy) (382)
Glap
- _(1 —f-OéY) (fN +OéfY) (3 83)

and « is given by the equation:

_ fexp - fN
a = ) = fo? (3.84)
it
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Because in the range of interest, 1077 < A < 1073m, assuming 7., ~ 10™3m,

Y (A) can be considered as null. fe, is given by the equation:

fexp = _Fexp/Glab (386)

Now if during the experiment we only measure a noise signal, which has null
average and standard deviation o, , the upper limit at the 95% confidence level
on the allowed « (averaged for a > 0 and «a < 0) is given by twice the standard

deviation on «, 0. 0, is given by the formula:

Ox 2U2Fexp oa \? 5 oo \? )
() e i) i () e o

where o, and oy, are the standard deviation of our estimates of fy and fx.

When solved using eq[3.84 the previous equation becomes the following one:

_ 1 2O-%'exp fN ? UfN 2 fexp_fN 2 Ufy 2

o \/(f_Y) @+ (f_Y> <f_N> +( Iy ) (fY> (3.88)
- 1\20% P[00\ o 2
-\ (5) @ (%) [(f_) (%) e

where the last equation is valid for fe, = 0. I will assume in the following that

the theoretical Newtonian and Yukawa signals are known in total within 10%. It
is possible to derive the error budget for the Newtonian signal by the analysis
done in section[3.2} It is instead much more complex to derive the error budget for
the Yukawa signal, because it implies a set of numerical stochastic simulations
to estimate the effect of each parameter on the Yukawa torque. However this
Montecarlo analysis is beyond the scope of this PhD thesis and it might be also

avoided by developing a substitutive analytical model for the Yukawa torques.

3.6.3 Predictions

I report here some of the results, which I obtained with the numerical simulations
for our test masses. The expected Newtonian forces for three different ranges 15,
30 and 50pm versus d, with d, = 15um and A = 400pum and assuming a = 1
are plotted in fig[3.19] The Yukawa force is rapidly decaying with the range and
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it is almost a perfect sinusoid. A spectral analysis of the signals shows that the
amplitude at the main spatial frequency (1/400um™") is ten times bigger that its

next harmonic at 3/400m~t. Only the odd harmonics are present in the Yukawa

signal.
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Figure 3.19: Yukawa force for a = 0 for different ranges of interaction, A.

In fig]3.20]I plot how the peak to peak amplitude of the Yukawa force changes
versus the range for different pitches of the density contrast (A = 400 and 160um)
and for different distances between the masses (d, = 15 and 5um). In ﬁg
the peak to peak Yukawa force for A ~ 1mm is the Newtonian signal, which is
expected between the masses. From fig[3.20] it is evident that by reducing the
pitch from 400 to 160um the Newtonian signal is reduced by almost three orders
of magnitude, while the Yukawa signal increases just for ranges, which are smaller
than =~ 2um. By reducing the distances between the masses from 15 to 5um the
Newtonian signal decreases by 30%, but the Yukawa peak to peak force increases
by a factor of five thousands for A = 1um.

In figf3.21] T plot the peak to peak Yukawa torque versus the separation
between the masses for three different values of the force range. I fit them to
an exponential decays of the kind, A + Bexp(y/t;), with A, B and t; the fitting
constants. For example for a Yukawa range of A\ = 15um, the fitted decaying
constant, t1, is 14.0 & 0.4pm while for bigger ranges, 30 and 50um, the fitted ¢;
are respectively 28.3 + 0.3um and 40.7 £ 0.4um. For ranges shorter than 30um
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Figure 3.20: Yukawa signals versus range for different pitches and distances
between the masses.

the decaying constant ¢; is given by the range of the force. At larger ranges it
is possible to numerically evaluate t;, which is more and more influenced by the
decaying constant of the Newtonian force (t; = A/2/m) obtained for A ~ 1mm
(see also section [3.2).

In ﬁg I plot the area of the parameters («, \), which is possible to explore
for different settings of the test masses and torque sensitivities of the torsion
balance. With the test masses with pitch A = 400um at a relative distance of
15,m and with the torque sensitivity of the MKI SSTB, 7 x 10~ "“Nm /v Hz, [32]
we can test the Newtonian gravity within 30% after only one day of integration
time and explore new areas of the (a, A) plot. With a smaller pitch, for example
160pum, we will not be able anymore to directly measure gravity but we will be
able to explore a slightly bigger area of the («, \) plot for ranges smaller than
10pm. Still in principle with the best possible sensitivity of the SSTB, which
is given by its thermal noise, 3.9 x 107 Nm/ VHz, (see chapter @) and after
100 days of integration time, we will measure gravity within 20% at a distance

d, = Spm.
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Figure 3.21: Yukawa force for & = 1 versus the distance between the masses for
different ranges and fit to exponential decays.
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Figure 3.22: Explorable (a, A) area for different pitches of the mass densities and
distance between the masses with different torque sensitivities of the SSTB and
integration time.
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3.7 Torque summary

In table I summarise the properties of all the signals, which I modelled in
this chapter, and in fig[3.23| I plotted their expected torque amplitudes versus
the distance d,. For this plot I assumed a voltage difference V of 90mV, an
amplitude of 0.5um for the periodic surface corrugations, a background magnetic
field perpendicular to the masses of 4T and the susceptibility contrast associated
with the gold and aluminium stripes, Ay = 5.9x 1075 (see section. As shown
in fig3.23] the biggest torque, which I expect we will measure, is given by the
electrostatic torques due to the surface corrugations of the test masses while the
torque due to the difference in magnetic susceptibilities of gold and aluminium
stripes is the least relevant. The Casimir torque, which is due to periodic surface
corrugations, is expected to dominate the Newtonian torque only at distances
smaller than 6pm. I did not plot the torques, which are due to periodic variations
of the surface potentials, because they should be screened by the uniform gold
layer which covers the top surfaces of the test masses.

During the ISL test of gravity one of this torques, which I name I'y, might limit
the area of the («, \) plot, which is possible to explore. In this case the upper
limit at 95%CL on possible Yukawa deviations will be given by the equation:

la| > Qexp + 204 (3.90)
1—‘S/Glab - fN

exy = ———F—— 3.91

P fY(A) ( )

where o, is given by the eq
As plotted in fig[3.24] the presence of an electrostatic torque, I'.,., which is

not possible to fit out of the data (because for example of poor statistics), will
prevent us from exploring new area of the parameter space of the Yukawa type
violations of the ISL of gravity. It is crucial to minimise as much as possible the
expected spurious signals or at least to be able to well characterise them. In such
a way it will be possible to fit them out of the original data, as it usually done

during the Casimir experiments [13].
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Figure 3.23: The possible peak to peak torques versus distance I expect to find
with our test masses.I did not include the electrostatic forces due to contact

potentials which should be screened by the top Gold layer.
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Figure 3.24: The possible (a, A) upper limits if the measurements are limited
only by the electrostatic torques due to periodic corrugations of 0.5um and 90mV
voltage difference. I suppose we cannot fitting them out of the data.
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Torque | ky | k1 | Dependence on d, | Dependence on other factors
I'vew + 10 e’% none
Iy 710 e ¥ for d, << % (unknown)
Teor |+ 10 dy, V2,
Loyt — 10 dy 1/2 none
—5/2 ;-3/2
T |+ 2| @ dj57§’<kl>(k°) Viag (only ko)
LAy + | 0 | numeric (see fig{3.23) B3
Ty |+10 " T

Table 3.4: Properties of all the torques we have modelled in this chapter.

3.8 Conclusion

In this chapter I reviewed and modelled all the possible forces which, to the best
of our knowledge, act between the test masses during the ISL experiments. I
presented the analytical model, which predicts the Newtonian force due to the
mass density contrast of the test masses and which was used to optimise the
geometry of the test masses. The model predicts that at a distance of 15um
the expected peak to peak Newtonian torque is 8.7 x 1071 Nm and it exponen-
tially decays with the distance between the masses. I also discussed the error
budget, which is associated with the Newtonian predictions and what is the max-
imum error is possible to tolerate on each model parameter to measure gravity
at micrometre distances within an error of 10%. I also reviewed the background
Newtonian signals, which are due to the gravitational interaction between the
masses, their supports and the micropositioner. Their maximum torque will be
100 times bigger than the gravitational torque due to the mass density modu-
lation. This signal, because it is not at the spatial frequency of the expected
Newtonian or Yukawa torque, does not directly influence our ISL tests. However
it has to be minimised because it might reduce the torque sensitivity by requiring
an increase of the dynamic range of the torque measurements.

I also discussed the electrostatic forces between the masses due to periodic
corrugations of the surfaces. With a distance between the surfaces of 15um, with
a periodic corrugation of 0.5um and with same the periodicity of the density
contrast, the predicted electrostatic torque, which is given by 50mV of voltage
difference between the masses, is 5.67 x 10'*Nm. These forces are 100 times

bigger than the expected Newtonian torques and have to be reduced by manufac-
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turing masses with smaller surface corrugations. I also modelled the electrostatic
torques, which is due to periodic fluctuations of the surface potential because
of unscreened contact potentials between the gold and aluminium stripes. This
torque is expected to be 1.7 x 1078 Nm and is clearly very large when compared
with the expected Newtonian torque. By covering the surfaces with an uniform
1um gold layer, I expect to have it nulled by screening the voltage fluctuations.
I also modelled the case where both periodic surface corrugations and potentials
are present over the masses. I found that the expected signal has a spectral com-
ponent also at twice of the spatial frequency, which is associated with the periodic
corrugation. Moreover the presence of both periodic surface corrugations and po-
tentials causes a discrepancy between the estimate of voltage difference present
between the masses and the voltage, which will minimise the measured torque
at the main harmonic. For unscreened voltage potentials of 1V on just one of
the masses and corrugation of 0.5um amplitude, if the voltage difference between
the masses is null, the expected torque is 1.7 x 107'* Nm at the main harmonic
and is 5.67 x 1072Nm at the second harmonic. If a voltage difference of 50mV
is present between the masses, a 107° Nm signal is added to the torque at the
main harmonic. I modelled the Casimir lateral forces between our test masses,
which are due to periodic corrugations of the surfaces, and found that they are
expected to be stronger than the Newtonian signal at distances shorter than 6um.
At 15um the Casimir torque due to periodic corrugations of 0.5um amplitude is
5.2 x 107 Nm . The torque, which is due to the contrast in the magnetic sus-
ceptibilities of gold and aluminium stripes, is also negligible with respect to the
other forces. For a incident magnetic field of 4uT" at 15um distance it is expected
to be 2 x 1071 Nm . I presented the numerical model we developed to predict
the Yukawa torques for any given range. I discuss the method I defined to set the
upper limit on the strength of Yukawa forces for any range given an experimental
result and the geometry of our test masses. With the manufactured test masses
and reaching a torque sensitivity of the MKI SSTB [32],we will be able to test
the Newtonian gravity within 30% at 15um distance after one day of integration
time. However we will explore new areas of the («, \) plot, only if we will be able
to reduce or fit out the torques given by the electrostatic forces due to surface

corrugations.

81



Chapter 4

The experimental apparatus

4.1 Introduction

In this chapter I will introduce the experimental apparatus we use to test the
inverse square law of gravity at micrometre distances. I will start by describing
all the components of the superconducting spherical torsion balance. I will de-
scribe the test masses, which are situated inside the experimental chamber and
kept under vacuum at a temperature of 4.2K. I will present all the additional
components of the experimental apparatus, which are not specific to the ISL test
of gravity as, for example, the subsystems which are used to monitor and control
the ambient parameters (temperature, pressure, magnetic field and electric po-
tentials). I will briefly describe the electronic packages which are used to control
the torsion balance, measure the applied torques and set the relative position
of the test masses. I will leave the detailed analysis of the transfer function of
torsion balance between the applied and measured torque to the next chapters,

where I will also discuss its expected torque sensitivity.

4.2 The SSTB principles

To test the ISL of gravity at micrometre distances we use a superconducting
spherical torsion balance (SSTB), which has been developed over the last ten years
by the Birmingham gravitational group. The first version of this balance has been
successfully used to improve the constraints on the coupling between the quantum
mechanical spin and ordinary matter by many orders of magnitude [34]. The

second version (MKII) of the balance is employed to test Newton’s law at small
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distances and to measure the Casimir forces at 4.2K within 1% [33]. The SSTB
relies on the magnetic suspension of a superconducting float over the magnetic
field created by a superconducting coil. When below a critical temperature, T,
and a critical magnetic field, H., the float becomes superconductive and a perfect
diamagnet, it expels all the magnetic flux from itself according to the Meissner
effect [45]. All the magnetic field created by the coil (see Fig[4.1)) is compressed
under the internal surface of the superconducting float. This magnetic pressure
generates a vertical lift, which counterbalances the float weight at some height of
equilibrium. The lift capacity, which is related to the magnetic pressure ( ~ the
square of the magnetic field), depends on the square of the current circulating in
the superconducting coil. The maximum lift capacity is limited by the maximum
magnetic field, that the superconductor can sustain without becoming normal.
For this reason for the MKII SSTB, the float, the bearing coil and all the wirings
are made of niobium, a type II superconductor, which can sustain high critical
magnetic field (H. = 1500G at 4.2K') without losing its superconductivity [45].
To measure the torques acting on the torsion balance, the MKII SSTB adopts
a servo loop system. The servo keeps the float at a fixed angular position by
applying the necessary torque effort, which is eventually the torque measurement.
I will discuss in detail the expected transfer function and torque sensitivity of this

servo system in the following chapters.

Magnetic Lift

. Float
Gravity

Bearing

Levitation
coil

Figure 4.1: Schema of the semispherical float levitated over the magnetic field
generated by a bearing coil.



4.3 The experimental vacuum chamber

I will begin the description of the experimental apparatus by introducing all the
main elements present inside the experimental vacuum chamber of the SSTB (see
figid.2)). T will discuss the float, the levitation bearing, the capacitive transducer,

the source mass with its micropositioners, the damping and the actuator circuits.

Mu metal shield

Lead shield

AB temperature
sensor

Capacitive
readout

Actuator |}
coil

Resistive wire
for the annealing g

Figure 4.2: Photo of the inside of our experimental chamber. The pillar in the
front is used by the Casimir experiment, with which we share the SSTB.

4.3.1 The float

The SSTB float is an almost semi spherical niobium shell, which was obtained
by deep drawing from a flat thick metal sheet by Plansee Metals, Austria. Its
sphericity is known within 0.2mm, which was the thickness of the original metal
sheet. On the float, which was used for the ISL test, six rectangular windows
have been cut away (see ﬁg for the feedback control system. The positions
of the window cuts have been chosen in such a way that the float moments of
inertia, I, and I, are approximately equal (see ﬁg. We have fitted a double
ring structure to the float, which sustains the samples to study and which can
be changed according to the needs of different experiments. For the ISL test

the support structure has a mirror for the capacitive readout on one side and
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Niobium float

Au mirror for

angular readout Test mass

support

Removable
ring structure

Figure 4.3: Photo of the float for the ISL test: it is visible the Nb float and the
double ring structure with the mirror and lug, which are attached to it. The
principal axis of inertia are shown in red.

Weight 100.94¢g Radius 43mm
I, |1.64x10"*kg-m? Pendulum length 8.78mm
I, 1.60 x 10~*kg - m? Nominal height 0.6mm
I.. 1.82 x 10~*kg - m? | Polar angle of the float 70°

Table 4.1: Dimensions of the float

the sample mass on the opposite side (see ﬁg). The mirror was obtained by
evaporating titanium and gold layers over a rectangular optical window. Small
pieces of copper were glued onto the base of this structure to balance the float in
such a way that its bottom rim is parallel to the local horizontal plate, when it
is suspended over an air bearing.

The float has the center of buoyancy (CB), which is located at a very small
distance (~ 9 mm) over its center of mass (CM) (see figll.4). The float has
therefore a pendulum arm length, which is smaller than the usual one of the fibre
torsion balance. For these reasons one of the great advantages of the SSTB is
the reduced coupling of the float pendulum motion with the horizontal ground
noise [35] (see chapter . A good sphericity of float top also guarantees a small
pendulum stiffness [19], which minimises the coupling of the SSTB torque noise
with the ground tilt noise. The float has a copper disk, which is attached on its
inside (see ﬁg and which is employed to damp down the pendulum oscillations

of the float (see Section 4.3.3)).
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Damper disk

Damper coill
Macor
bearing
Pendulum Actuator
length coil

Levitation
transformer

Figure 4.4: Solidworks side section of the float over the pillar, which shows the
position of the center of mass (CM) and the center of buoyancy (CB).

Damper

Disk

Figure 4.5: Float shell as seen from the bottom: the 6 windows cuts and the
damper disk are clearly visible.
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4.3.2 The levitation bearing

The bearing generates and maintains the magnetic field, which is necessary to
levitate the float. It consists of an almost semi spherical support made of MA-
COR, which is concentric with the float. Over the bearing a spiraling groove
has been machined to host a niobium wire (see ﬁg). The bearing is made of
MACOR because it is very easy to machine, is a good electric insulator and has
thermal expansion very similar to niobium. The wire is a hard drawn niobium
wire from Supercon of 0.25mm diameter, which is able to sustain a maximum
critical current of 45A at 4.2K. To maximize the lift capacity and minimising
the maximum field which is achievable without losing the superconductivity, the
spacing between each wire has previously been optimized by [85] and [35]. The
optimal spacing was found to be comparable to the gap between the bearing and
the float at its nominal levitation high (i.e. when the two spherical surfaces of
the float and of the bearing are concentric). In the centre of the MACOR bearing
there is also a cylindrical hole with, at its base. a superconducting coil adopted
to generate a magnetic field. This field is used to diminish the pendulum oscilla-
tions of the float by eddy current damping in the small copper cylinder, which is
attached under the float.

Damper coil g
Y MACOR support

Levitation coil

Actuators coils 2 Levitation pillar

Figure 4.6: Actuator coils on the pillar. The levitation and damper coils are also
visible.
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Levitation bearing

Damper coil

Number of turns 32 Number of turns | 30
Pitch of the winding | ~ 1mm || Radius 20mm
Initial polar angle 20° Height 2.5mm
Final polar angle 60°

Table 4.2: Table with the properties of the levitation and damper bearing.

Setting up the levitation The superconductive properties of niobium are
also used in the experiment for the zero resistance, that a superconductor poses
to the passage of currents. Thanks to this property we can store a permanent
current in a superconducting loop, which consists of the levitation coil and the
secondary circuit of a toroidal transformer. Along the superconducting loop there
is a heat switch, which is used to warm up the superconductor to normal state
when necessary (see Figld.7). To store a permanent current in the loop we take

advantage of the property of flux conservation over any superconductor loop [65].

We store the current through the following procedure (see figl4.7):

1. We set a DC current in the heat switch, which has been attached to the
secondary loop of the levitation transformer, and we set the current I,
through the charging wires of the primary loop. Because no current is

flowing through the secondary loop of the circuit, its total magnetic flux ¢

is given by the equation:

¢ =I,M

where M is the mutual inductance of the transformer.

2. We turn off the current in the heat switch and wait for a few seconds so
that the secondary loop become superconducting. We turn off the charging

current ,,. The superconducting loop reacts to conserve the magnetic flux

¢ and generates a permanent current such that:

Using the conservation of flux we equate eq[4.2 and eq[4.1]:

[lev -

M
I
L+ L., 7
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Figure 4.7: Two figures representing the two phases necessary to charge the
bearing circuit: a) charging phase; b)stored current. In reality the copper core is
a toroid.

Lift Capacity /I, | 0.3 g/A?
Vertical fy 18H 2
Horizontal fy 5Hz
Pendulum f, 1Hz

Table 4.3: Characteristics of the magnetic suspension [31]

L, is the inductance of the transformer and L. is the inductance of the lev-
itation coil. The stored current, [, in the superconducting loop will persist
unless we heat the secondary loop with the heat switch again or unless the circuit
becomes normal. In our case, because we have L. ~ 3.6nH and M ~ /L,L:, L,
and L; were chosen such that the transformer ratio is 4 : 1. The superconducting
transformer is made of a copper toroid with wrapped around it two supercon-
ducting wires. The transformer is situated in a cavity inside the levitation pillar
(see ﬁg whose walls are covered by niobium sheets for magnetic insulation.

The characteristics of the magnetic suspension of the torsion balance have
been numerically studied in the past using models of varying levels of complexity
[35][73][84][85]. These works predicted the lift capacity of the torsion balance for
a given stored current and the horizontal, vertical and tilt stiffness of the float
with respect to the bearing [35]. Given the properties of our float and the bearing,
we summarize the finding of the numerical results for the SSTB MKII in table

31).
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4.3.3 The damper circuit

In the MACOR shell also, as previously mentioned, there is the superconducting
coil of the damper circuit, which can be made normal using another heat switch.
The damper circuit can be charged through the steps shown in fig[4.8. While the
heat switch is turned on, we set the current to flow through the superconduct-
ing loop. We then turn off the heat switch and trap the current, I4,,, which
permanently flows around the superconducting loop. In the present version of
the torsion balance the parasitic modes of the float are damped down by Eddy
current loss in a conductive medium [41]. The pendulum, the horizontal and the
vertical oscillations of the float with respect to the bearing are passively damped
down by dissipating their energy through Joule heating of a conductive volume.
The damping method depends on which oscillations we want to control. The
pendulum and horizontal modes are damped down by using the small copper
cylinder, which is attached under the float (see Fig[4.5) and which, thanks to
the motion of the float, oscillates over the magnetic field created by the damper
coil. The magnetic flux, which is coupled with the cylinder, varies in time with
the oscillations and generates Eddy currents in the copper by Ampere/Faraday
and Ohm’s laws [41]. These currents are then dissipated by the Joule heating of
copper. We found that 4A stored in the damper circuit suffices to critically damp
the pendulum mode [33] (see chapter [7)). The vertical oscillations of the float are
instead damped down by coupling a copper transformer with the bearing circuit.
When the float vertically oscillates the inductance of the bearing is modulated
inducing a change of the current stored in the superconducting circuit. The mag-
netic field at the surface of the transformer is proportional to the stored current
and exponentially attenuated by the Eddy currents inside the transformer over
the distance of the skin depth, § [23]. The transformer radius has been chosen
to be comparable with the skin depth, § &~ 2.2mm, which is associated with the
frequency of the horizontal motion. In such a way we optimise the damping of

these modes while keeping the transformer volume minimum.

4.3.4 The source sample and its micropositioners

Inside the experimental chamber - as shown in figl4.2] and [4.9 in front of the
test mass, which is connected to the float, there is the pillar, which supports

the source mass. The mass is screwed on the top of two Attocube slip-stick
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Figure 4.8: Schema of the damping circuit and of the two phases to charge it
with a permanent current: a) and b) charging phase; ¢) stored current.

micropositioners (ANPx100/LT). The support of the flat mass can be moved in
the z and y direction up to few millimeters of steps, which are smaller than
100nm. On the side of the support there is also a capacitive plate which is
used to monitor its displacement in the y direction. The head of a Fluxgate
magnetometer (Bartington Instruments) is positioned near the source mass (see
fig and is used to monitor the magnetic field acting on the masses. We can
apply a magnetic field to the masses by using a superconducting magnetic coil,
which is wrapped around the pillar supporting the micropositioners. We can
also control the voltage of the source mass through a wire, which is connected
to it. The mass support is electrically insulated from the copper pillar and the
experimental chamber because of the Attocubes, whose top section is electrically

insulated from the bottom one by design.

4.3.5 The capacitive readout

The capacitive transducer for the angular readout is situated in front of the float
on the opposite side with respect to the test masses (ﬁg). The transducer
is made of a gold-coated mirror, which is attached to the float, and two metallic
plates on its sides, which are supported by insulating spacers on a copper pillar.
The transducer transforms angular displacements of the float in capacitance dif-
ferences between the previous plates. The float, through a very thin gold wire,
and the two plates are electrically connected to the outside of the cryostat with
coaxial cables. The capacitive transducer is part of a capacitive bridge circuit
and transforms the capacitance differences in a voltage output. I will analyse in

detail the expected transfer function and sensitivity of the capacitive sensor in
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Figure 4.9: Photo of the pillar with the Attocube and the source mass. Additional
sensors are shown too.

chapter [6]

4.3.6 The magnetic actuator circuit

To apply a torque to the float we use a set of four superconducting coils (ﬁg),
which are partially shielded by the float shell (see ﬁg). The float, when it
rotates, modifies their inductances. The coils are connected to a superconducting
circuit, where we store permanent currents and add a variable current offset by
using two superconducting transformers and two heat switches (see chapter )
By modifying the currents flowing in the coils, we can change the magnetic fields
applied to the float and rotate it in any chosen direction and/or give it a natural
stiffness. T will analyse the magnetic actuation as the capacitive transducer in
detail in the following chapters. I will model its transfer function and magnetic
stiffness versus the currents which are stored in the superconducting circuitry (see
chapter @

While the levitation transformer is inside the levitation pillar, the supercon-
ductive circuitry of the magnetic actuator is instead located under the base plate
of the experimental chamber (see ﬁg almost completely inside a niobium
sheet box, which is used for magnetic shielding. Outside the box there are all the

heat switches, the actuator transformers and the joints between all the supercon-
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Figure 4.10: Photo showing the current capacitive readout and the thin gold wire
attached to the float top.

ductive wires.

4.3.7 Temperature sensors and magnetic shields

Inside the vacuum chamber there are also a few temperature sensors made of Allen
Bradley carbon resistors [90]: one on the top of the vacuum chamber (visible
in ﬁg, one on its base and one inside the levitation pillar. The resistance
of these temperature sensors increases with the decrease of the temperature as
shown in the example data of fig/f.12. By measuring their resistances we can
directly monitor the temperature inside the chamber down to a few Kelvin. A
high resistance wire is also wrapped around the levitation pillar, which can be
used to anneal the float, the levitation coil and transformer when necessary.

To minimise the magnetic fields, which are acting on the test masses and on
the float, a mu-metal and a superconducting lead box encloses the experimental
chamber (see figlt.2) and [4.13). The chamber is electrically insulated from the
copper can by a set of MACOR spacers on its top and a plastic foil on its walls
and base. The electric potential of the chamber is controlled through a coaxial

wire, which is connected to the bottom copper plate under the levitation pillar.
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Figure 4.11: Superconductive circuitry under the base plate of the experimental
chamber.
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Figure 4.12: Temperature versus the Allen Bradley resistence.
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Figure 4.13: Photo of the vacuum can showing all the magnetic shields.

4.4 The cryostat and the cryogenic insert

On the outside of the experimental chamber, on its top and bottom, there are
two additional Allen Bradley resistors which are used to measure the Helium level
inside the cryostat. On the stainless steel plate, which is connected under the
vacuum can, there are the heaters which are employed to boil off any residual
liquid nitrogen or helium, when it is necessary. The copper can is suspended
from the top plate of the cryogenic insert (see ﬁg) by a stainless steel cable,
which sustains all the load. The three vacuum pipes, which are connected to the
can through three springy bellows, do not sustain the can weight. In this way
when the cryogenic insert is inside the Janis cryostat, the vacuum can is sitting
on its base plate, releasing the tension of the stainless wire. The cryostat is
positioned on a concrete block, which is separated from the surrounding building
by rubber cylinders to further reduce its coupling with the seismic noise. Between
the Janis cylinder and the ground there is a simple tilt stage (see ﬁg), which
is made of three adjustable feet and by which it is possible to tilt the dewar in
three directions. Coaxial and manganin/copper wires connect the experimental
chamber with the outside of the cryostat, whose number, section and material
has been chosen to minimise the heat leaking from the external environment to
the vacuum can. There are also a pressure gauge and a gas gate, which are
connected to the vacuum pipes on the outside of the cryostat. The latter is used

to introduce the helium exchange gas in the vacuum chamber in a controlled
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manner by alternatively opening and closing each of its two valves.

Cryogenic insert Closed experimental chamber

=

Stainless steel Base heaters
cable AB temperature
Elastic sensor

vacuum pipes

Figure 4.14: Photos showing the cryogenic insert and the closed experimental
chamber.

4.5 External hardware and software

Near the cryostat on two racks which are situated outside of the seismic isolation
block, are all the electronics which are used to control the torsion balance, to
measure the torque servo effort and to move the Attocube micropositioners (see
fig . An Andeen-Hagerling ultra-precision capacitance bridge (model AH
2550A) is adopted to measure all the capacitances involved in the experiment,
such as the one which measures the Attocube displacement in the = direction
or the capacitance between the source and the test mass. An Agilent function
generator (model 33120A) gives the AC signal, which drives the SSTB capacitor
bridge and transforms the angular displacement of the float in a voltage signal
(see chapter [f] for details) by mean of a FEMTO phase lock-in amplifier (model
LIA-BVD-150-H). This voltage output is digitised by a 16 bit digital to analogue
cards (Measurement Computing model PCI-DAS6035), which is connected to the
PCI bus of a PC and elaborated by a digital servo program. The program was
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Figure 4.15: Photos showing the Janis dewar with the vacuum pipe and feed-
through on the top and the levelling tilt system on its base. The Helmotz coils
have not been used for the ISL tests.

developed in Agilent Vee on Windows XP. The servo output is transformed back
to an analogue signal by a 16-bit digital to analogue card and a summing amplifier
(see chapter |§| for details). The output voltage controls a current source, whose
output is sent back to the magnetic actuator circuit of the SSTB and is mon-
itored through a resistor by a Keithley 2000 digital multimeter. The multimeter
readout is recorded as an ASCII file by a PC Vee program through the GPIB bus
connection. On the same rack of the previous electronics there is also a Thurlby
Thandar Instruments power supply (model TSX-820), which is employed to store
the currents in the levitation and the actuator circuits. On the rack is the control
box of a Fluxgate magnetometer (MAG-01), which measures the magnetic field
in the experimental chamber near the test masses. Because of the large numbers
of wires which are grouped within four 15-pin connectors, and the coaxial cables
coming from the Janis dewar an interface panel has been developed and mounted
on the rack to simplify and facilitate the electrical connections (see fig[4.16). A
relay box on the same rack, which is controlled by the PCI digital cards, and
the Attocube control unit on a second rack are used to automatically move the
Attocubes in the x and y direction according to instructions given by a Vee pro-
gram. The vacuum in the experimental chamber is created at first with a Edwards
Rotary vane vacuum pump (model RV5) down to 107! — 1072mBar and with a

Variant turbo molecular pump (model V70) down to lower pressures.
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Figure 4.16: Electronics to monitor and control the SSTB for the ISL test of
gravity.

4.6 Conclusion

In this chapter I have reviewed all the components of the experimental appar-
atus, which we are using to test the ISL of gravity at micrometre distances. I
have discussed the principles of the MKII SSTB, which is based on the magnetic
levitation of a superconducting float at 4.2K. The current version of the SSTB
adopts a servo loop system to keep the float at a constant angular position. The
float angle is monitored by a capacitive sensor as a temporary solution. The
feedback torque is applied to the float through a system of superconducting cir-
cuits, coils and an opening on the float shell. The same circuitry is used to give a
tunable, natural stiffness to the torsion balance. By design, the spurious oscilla-
tions of the float are reduced by Eddy current damping in the copper core of the
levitation transformer, and in the copper cylinder, which is attached under the
float. In front of the curved mass, which is connected to the float, the flat mass
is supported by a set of two micropositioners, which can move it in the z and
y directions up to a distance of a few millimetres by steps smaller than 100nm.
The torsion balance, the test masses and the whole experimental chamber are
enclosed in a magnetic shield box and are electrically isolated from the vacuum
can. Their temperature and magnetic field are monitored by a few sensors. The

torsion balance has also its coupling with the seismic noise reduced by the con-
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crete block over which the cryostat is positioned and which is isolated from the
main building by rubber spacers. With this experimental apparatus we plan to
verify Newton’s law of gravity down to micrometre distances. In the following
chapters I will discuss the expected and measured torque sensitivity of the torsion
balance and the transfer function between the applied and measured torque. I
will also present the experimental results that we obtained during the first tests

of the ISL of gravity at micrometre distances.
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Chapter 5

The float dynamics and the

seismic torque noise

5.1 Introduction

In this chapter, I will study the dynamics of the torsion balance with two goals
in mind: first to determine the transfer function of the float between the applied
torque and the float angle; second, to estimate the influence of the ground seismic
noise on the torque noise to which the float is subjected. There are already some
simplified models, which describe the dynamics of the torsion balance and the
seismic coupling [35] [75]. These models are based on the representation of the
torsion balance as a simple point mass which is attached at the end of a pendulum
arm and which has two possible angular degrees of freedom. These models did
not explicitly consider the effect of the three moments of inertia of the float on
its dynamics. Even if, in these works, the coupling of the float with the seismic
noise was separately analysed with other dedicated models, the direct coupling
with the horizontal and tilt seismic noise was not directly taken into account. In
the following chapter I will present a new model of the float dynamics, which I
have developed. This model, given the three moment of inertia of the float and
some measured parameters (such as the elastic and damping coefficients) predicts
the transfer function of the float between the applied torque and the float angle.
The model also describes the effect of the horizontal, vertical and tilt seismic
noise on the torque, to which the float is subjected. This model will predict new
contributions to the torque noise, which have not previously been considered and

which may explain the torque noise level we measured during our ISL tests.
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5.2 3D dynamics of the SSTB

I will begin by presenting the new model of the torsion balance, which is a pen-
dulum of mass m, pendulum arm [ and with the three moment of inertia I, I,,,
I,., around the three principal axes of inertia z?, y? and 2P (see ﬁg. In the
following analysis I will consider two possible motions of the float, a pendulum
one associated with the angle f and a torsional motion associated with the angle
¢. I will also include the stiffness acting on these two angular degrees of freedom
and also the effect of the ground vibrations and tilt. I will not include the stiffness
associated with the horizontal and vertical oscillations of the float. These spuri-
ous oscillations have respectively resonant frequencies of 5 and 18 Hz. Because
the float rigidly moves with the laboratory ground at the low frequency of interest
between a few mH z to approximately 1H z, this omission can be considered as a

valid approximation.

5.2.1 Coordinate changes

To model the dynamic of the torsion balance I follow an approach based on Euler’s
angles similar to [36], and I use a set of coordinate changes to represent the effect
of the seismic noise, the float angular free motions (pendulum and torsional) and
the tilt of its center of mass with respect to the gravity direction. In fig[5.1] I
summarise the sequence of all the coordinate changes discussed in the following

paragraphs.

f"'__._h‘x : /-—'_‘-\ rP
BODY Principal axis
' SPACE : space
y e

r k
Magnetic axis
space

Laboratory
space

Figure 5.1: Schema illustrating the different changes of coordinate, which I used
to model the SSTB dynamics.
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From laboratory space to inertial space

I will begin with the coordinates associated with the “laboratory space”, r’ =

(2L, y%, 21). Such space is subjected to a tilt rotation as a function of time with
respect to an inertial coordinate frame, which is given by 7* = (2% 9", 2%). I
represent the coordinates change from the laboratory space to the inertial one

with the following matrices (see fig[5.2):

rt = Uprt 5.1
Ur Up,Uoy (5.2)
cosfOr(t) 0 —sinfp(t)
Up, = 0 1 0 (5.3)

sinfr(t) 0 cosOp(t)

cos¢p singy 0O
Up, = —singy cos¢gp 0 (5.4)
0 0 1

Up, is a rotation around the axis y* of an angle 07(t) and Uy, is a rotation

around the axis Uy,.2" of an angle ¢,.

From the inertial space to the buoyancy space

I am now in what I call the “inertial space”, if I do not consider the effect of
the Earth’s rotation. In this reference frame the gravitational force is directed
along the axis 2z and the float is a rigid body, whose rotations about its centre of
buoyancy (CB) are described by two angles, # and ¢. The centre of buoyancy of
the float is at a distance R’ from the axis origin (see ﬁg. The distance R’ is
defined by the equation:

R" = Up.R* (5.5)
X

R = |y (5.6)
Z
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R describes the position of CB in the laboratory space and is used to model
the effect of the horizontal and vertical seismic vibrations on the float. I move
now to the reference frame - called the “buoyancy space” - which is centered on

float CB, with the transformation:

r8 =yt — R (5.7)
Because R’ might be different from zero, the CB space is generally not an
inertial coordinate system.
From the buoyancy space to the body space

The free motions of the float around CB are represented by the following trans-
formations from the CB coordinates, 7¢Z, to the one I name the “body coordin-

ates”, r:

r = Ur® (5.8)

U = Uyly (5.9)
cosfO(t) 0 —sind(t)

Uy = 0o 1 0 (5.10)

sind(t) 0 cosd(t)

cosp(t) sing(t) 0

U, = —sing(t) cosp(t) 0 (5.11)
0 0 1

I associate the pitch angle 6 with the rotation of the float along the y; axis
and the yaw angle ¢ with the rotation around the Uyz; axis. I call r the “body

coordinates” space because, with respect to them, the float position is fixed.

From the body space to the principal axis space

The starting equilibrium position of the float may not be the one with its centre
of mass (CM) located under its centre of buoyancy on the z axis but a position
slightly rotated. A restoring torque can act on the float due to the elastic constant
k¢ (associated with the pendulum oscillations of the float) and the angle between

the magnetic symmetry axis of the levitation bearing, 2%, and the symmetry axis
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Figure 5.2: Schema showing the coordinate changes used to model the dynamic
of the torsion balance and the seismic noise.

of the float, z*. This torque might possibly change the initial equilibrium position
of the float. If the centre of mass of the float is not along the z* axis (see ﬁg
but along a different axis, z?, which is tilted with an angle 6, with respect to z*,
the float then rotates by an angle 5. The rotation stops when the elastic torque is
balanced by the gravitational torque acting on the centre of mass which is tilted
at an angle o with respect to z. Mass asymmetry of the float might cause the
displacement of CM off the z* axis [35]. For 6, ¢, 7 and ¢ null, the balancing of

the two previous torques at the equilibrium position is expressed by the following
condition (see fig5.3)):
— Bkg + mglsin (o) =0 (5.12)

The passage from the body coordinate space to the space, which I call the
“principal axis space”, r? = (2P, y?, 2P) (defined by the principal axis of inertia of

the float), is given by the following equations:
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P = U,.r (5.13)
1 0 0

Uy = 0 cosa sina (5.14)
0 —sina cosa

U, is a rotation of an angle a around the x axis as shown in fig[5.3
In this coordinate frame the moments of inertia of the float at its centre of

buoyancy are given by the matrix:

Iw +mi? 0 0
I= 0 Ly +mi®> 0 (5.15)
0 0 I,
Az
//’ ) h\\
| b
/! \
!/ \
i 3
; =B e
/ / d
1 | !
! / I
.*.f ~4 ;}
/ /9| !
Lf@'::?_t‘ l ,'I
(a) “—""--ﬁ.,_-;

Figure 5.3: Schema showing the coordinate space associated with the principal
axis of inertia (27, ?, 2?) and the magnetic axis, z*. Here § = ¢ = 0 = 0.

From the body space to the z* axis space

It is also useful to define the coordinate change from the body space to the one
associated with the z* axis. Under ideal conditions the z* axis coincides with the
revolution symmetry axis of the float shell [35], but it is possible that trapped
magnetic flux or asphericity of the float shell might move z* to a different angular

position. The coordinate change from r to 7* is given by the equation:
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k= Ugr (5.16)
1 0 0

Usg = 0 cosfB sinf (5.17)
0 —sinf cospf

5.2.2 Kinetic energy

I will proceed now to write down the kinetic energy of the float in the inertial
space. I can decompose the float into a series of small masses, m;, whose positions

in the inertial coordinate system are given by the equation:

di =R +U "4, (5.18)

where d; are expressed in the body reference system and U~! is the inverse
matrix of U. We should remember that, as the rotations preserve the vector
lengths, the matrix U is an orthogonal matrix and its inverse matrix is simply

equal to its transposed:

Ut=u" (5.19)

Because I suppose the float to be a rigid body, i.e. the derivative with respect
to the time of d; is null (d; = 0), the velocity in the inertial system of the j*

mass is given by the following equation:

di = R+U ' UU"d; (5.20)
= R +uw xdf? (5.21)

w? is the instantaneous angular velocity of the rigid body expressed in the
CB coordinate system such that [36]:
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wl‘
B — WGP (5.22)
W0
0 —wZCB wgB .
(WBx) = WOB 0 —wiB | =U"'U (5.23)
wiB WP 0

where U~! is the derivative matrix with respect to the time of the inverse
matrix of U. It can be shown that the total kinetic energy of the whole body is
given by the following equation [36]:

T = %ij <d§)2 (5.24)

1 .\ 2 NT
= §m(Rl> —l—m(Rz) Wl x

1
G5 (W)L (5.25)

with 7% the moments of inertia of the float and 7P the position of its centre
of mass, both expressed in the CB coordinate system. I call the third term of
eq[5.25], 7,4, which is the kinetic energy associated with the rotations of the rigid
body around CB.

After some simple linear algebra from eql5.23| and [5.19, I find that:

$sinb
W = 0 (5.26)
b cosb

which is easily verified by inspection of fig[5.2.

ICB

The matrix of the moments of inertia is instead given by the equation:

19 =U.U, 1.U U (5.27)

with U;! the inverse matrix of U,.
The velocity of the float centre of buoyancy, Rf, as seen in the inertial co-

ordinate system, is equal to:
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R = Up.U;'Up.RY + UpR" (5.28)
= Ur(wk x R* + RY) (5.29)

wk is the instantaneous angular velocity of the laboratory coordinate system,
which is expressed in the laboratory reference system and defined as (wkx) =
U-'Ur [36]. Now if T assume that X and Y are very small, ~ 0, and that Z is
equal to Zy + Z;(t) with Zy a time independent constant, it is possible to show
that, to the first order in X, Y, 67 and 67, the previous equation is equal to the

following one:

X — ZyOr
R ~ Ur. Y (5.30)
Z
If Zy is not null, which means that the center of buoyancy of the float is not
at the pivot point of the ground tilt, the ground tilt noise will act on the float
CB as an equivalent horizontal seismic noise, when it is expressed in a inertial

coordinate system. In the following analysis I suppose Zy ~ 0 and that:

R' ~ UrR" (5.31)

CB

cm )

The centre of mass position, .~ in the CB coordinate system is simply given

by the expression:

8 — Uutut |l o (5.32)

— cos (a) sin (6) + cos (6) sin (a) sin (¢)
= cos (¢) sin («) (5.33)
— cos (a) cos (f) + sin («) sin (0) sin (¢)

I proceed now to evaluate the third term of eql5.25|, that I name the rotational
kinetic energy of the float, T,.;. After some linear algebra, having approximated

for small angle o and removed all terms with order higher than three, 7., is given
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by the following expression:

Ty = (WCB)T OB ,CB

N — DN —

(((Zyy +mi?) cos (0)* + (Iie + ml®) sin (¢)2) 0+ (5.34)

Q

I, — 1.+ mlz) cos (¢) 200 + [Zz<b2) (5.35)

—

The second term of eqJ5.25|, Ty;sp, after approximating for small angles, o and
07, and after excluding all terms with order higher than three, is the following

expression:

Thsy = m (Ri)T - wOB x yCB (5.36)
~ —lm(—Z (0 + Or cos by + arsin 6) (5.37)

+X (0 cos by + crcos(o + or)9) (5.38)

+V (Bsin g, +asin(o+ 61)6)) (5.39)

Because the first term of eq does not depend on any of the two degrees
of freedom, ¢ and 6, which govern the dynamics of the torsion balance, it is not
necessary to include it in the calculus of the total kinetic energy of the system to

evaluate the Fuler-Lagrange equations in ¢ and 6.

5.2.3 Potential energy

Now I examine the three potential energies associated with the float dynamics:
the gravitational potential associated with the float CB, V,, the elastic potential
associated with the pendulum motion, Vj, and the elastic potential associated

with the torsional motion, V.

Gravitational potential energy

I start with the gravitational potential of the centre of mass of the float, which

can be written as:
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v, = mg(0 0 1).sL, (5.40)
= mg (0 0 1) (R +r5H) (5.41)
Because R’ does not depend on the variables, ¢ and 6, I do not include it

in the calculus of the potential energy as I have previously done for the kinetic

energy. For small o and 6, V, is given by the following equation:

2 p2
V, = —mgl <1 — % — % — aflsin (qﬁ)) (5.42)

Pendulum elastic potential energy

The potential energy, which is due to the restoring torque given by the elastic
constant kg and the angle, 6., between the float axis z* and the magnetic axis of
the levitation bearing, 2%, is:

L,

where 6;, is given by the expression:

((ek)E.ek)* + ((eh)-.ek)?

f,, = arctan 5.44
: (k) 549
0
(et = U utugst) oo (5.45)
1

(e®)L is the unit vector associated with the 2* direction and represented in

z
L L L

the laboratory coordinate system which has (e, e, e;) as reference unit vectors.

For small angles, #, 3 and 67, excluding all the third order terms, 67 is given by
the following equation (see in fig[5.4 for the simple case with § = 0):

07 ~ 0% + 3% + 0, + 2007 cos (¢pg) — 208 sin (@) + 2807 sin (¢ + ¢r)  (5.46)
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Figure 5.4: Schema indicating the tilt angle of the levitation pillar axis, z*, with
respect to the magnetic axis of the float for § = 0: a) untilted case ( 7 = 0) and
b) tilted case.

Torsional elastic potential energy

For small angles, # and 67, I can reasonably assume that the potential energy

due to the stiffness kg4 is given by the equation:

‘%Z%%@HﬁﬁQ (5.47)

with ¢, a constant reference angle.

5.2.4 Euler-Lagrange differential equations

I compose the Lagrangian for our torsion balance which is given by the following

sum:

L =Tt + Thisp— Vo — Vo — Vi (5.48)

I proceed to evaluate the Euler-Lagrange equations governing the motion of
the float for the variables, ¢ and 6.

General equations in ¢

From eq[5.48 I evaluate the differential equation associated with ¢, which is given
by:
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oL d (0L

In the previous expression I substitute ¢ with ¢’ + ¢, to consider different
possible orientations of the pendulum motion with respect to the one given by
U,. After removing all the third order terms, adding the damping term b¢<b/ and
the applied external torque I'g, I find the equation:

L.d+ by + kg = To + T, (5.50)

with

T, = — (I, — L.+ mi?) cos (¢,) af (5.51)
+% (Lo — I,,) sin (26) 6 (5.52)
+koB07 cos(dy + ér) (5.53)
+ima(cos(¢g + d7) X + sin(¢g + ¢7)Y) (5.54)

where for simplicity I also supposed that ¢, = ¢, and dropped the index of
¢', writing only ¢. The input spurious torque, I',,, is composed by the following

terms:

1. A term proportional to é, which I name the pendulum acceleration term.
This term is maximum when the pendulum rotation # is perpendicular to
the tilt rotation « for ¢, = 0.

2. A term proportional to 92, which I call the inertia asymmetry term, and
which derives from Euler’s equations [36] [75]. It non linearly couples the
velocity of pendulum mode 0 into the torsional mode and is null for I, =1

vy
or ¢0 - 0.

3. A term proportional to 67, which I name the direct tilt term and which is
due to the direct effect of the tilt oscillations of the laboratory ground. It
is not null kg[8 # 0.

4. A term proportional to X and Y, which I call the direct horizontal term

and which is due to the direct effect of horizontal seismic vibrations.
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Only the first two terms have previously been found [35] but they are here
expressed in terms of the moment of inertia which I can directly measure or derive
from the CAD drawings of the float. To further evaluate the effect of these first
two terms on the dynamic of the torsion balance, it is necessary to estimate 0
and 6.

Simplified equations in 6

From the Lagrangian of eql5.48 I can also write the Euler-Lagrangian equation

oL d (0L
- (%) ~0 (5.55)

If T assume I,, = I, and keep just the first order terms in 0, 01, Or, o and

in 6:

R, the previous equation becomes the following expression:

(I +mi?) 0+ b + (kg + glm) 0 =T, (5.56)

with

T, =lm (X cos g + V sin (pT) — kg cos oy (5.57)

where I added the damping term b0 into eq . At first order the dynamic
of the pendulum motion of the float is only influenced by the horizontal and tilt

vibrations of the laboratory reference system with respect to the inertial frame.

5.3 SSTB transfer functions and input noise

In the following sections, given the differential equations governing the pendulum
and torsional motions of the float, I will present the resulting transfer functions
between the external applied torques and the angles, ¢ and 6.

I will evaluate the input torque noises acting on the float due to the horizontal
and tilt seismic noises. For comparison, I will also estimate the torque noise, which

is given by the thermal noise.
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5.3.1 SSTB transfer function

I start from eqJ5.50}, from which I derive the transfer function, 7' (I'cyy, ¢), between
the applied torque, I'c,; = I'g + I');, and the resulting float angle, ¢. Under the

initial conditions:

Pp(t=0)=¢(t=0)=0 (5.58)

I write eq[5.50] as the following one:
(L.s> + bgs + kg) Y (s) = R(s) (5.59)

Y (s) and R (s) are respectively the Laplace transforms of ¢ (t) and e, (t) [5].
The transfer function Gpoat = T (T'ept, @) is defined as:
Y(s)
Goa = 5.60
fl t(s) R(S) ( )
1

= 5.61
]ZZSQ + b¢8 + k¢ ( )

If the previous equation is expressed in the Fourier domain by setting s = iw,

the amplitude of the transfer function is given by the expression:

1
[Zz\/ + (27,w)?
with v, = bs/(21..) and w¢ = ky/1...

T (Cewt, d) ( (5.62)

5.3.2 Pendulum transfer function

The transfer function between the applied torque I', of eq@ and the pendulum

angle, 6, is expressed instead by the equation:

1
Iys? + bgs + (kg + glm)

T (T,,0) = (5.63)

with Iy = I,, + mi®>. In the Fourier domain for v, = by/(2[y) and w? =
(ko + glm) /Iy, the amplitude of the previous transfer function is given by the

expression:

1

T (I, 0) (w)| = I@\/(WQ — w?)2 + (27,w)?

(5.64)
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5.3.3 Input seismic noise

Now, given the amplitude spectrum densities of the seismic horizontal acceleration

and tilt noise, S)l-(/2 = S;-,/ ? and 5’914 2 (which T suppose not to be correlated), I

present the spectra of the input torque noises, 51112 2, S%g i, S%ﬁ( ® and SIE/ 3, which
6

are associated respectively with eql5.51], [5.52, [5.53 and [5.54.

Pendulum noise spectra

To evaluate the power spectra, Sr, and Sl"é2, I need first to know the power
spectrum density, Sy, of the pendulum oscillations, which are excited by the
seismic noise. Thanks to eqs]5.57 and [5.63, Sy can be written as the following
equation [61]:

Se =T (T, 0)* (I*m?>Sy + k3 Se,) (5.65)

From Sy, I simply obtain the power spectrum density of the pendulum accel-

eration with the equation:

S; = w'Sy (5.66)
= W'T(T,,0)% (I*Pm*Sy + k3 So,) (5.67)

)
The spectrum of 6, S;2, is instead less straightforward to evaluate. S(;g/ ? had

been shown by [75] and [35] to be equal to:
St = wiv/Ta (6%) (5.68)

with 79 = 1/7,. <92> is the standard deviation of the pendulum angle and is

given by the equation:

8

Sydw (5.69)

) -

—

0
— / (I*m2Ss + k3Sey) T (T, 0)% dw (5.70)
0
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Torque noise due to the asymmetry of the moment of inertia

The power spectrum density, SpéQ, of the torque noise, which is associated with

the inertia asymmetry term of eql5.52, is given by the following equation:

1
Z ([xcfc - [yy)2 SéQ (571)

where I have considered the worst case for [sin 2¢,| = 1.

S =
Lo

Torque noise due to the pendulum acceleration

The power spectrum density, Sr;, of the torque due to the pendulum acceleration

of eql5.51], is given in the worst case by the following equation:

Sr, =

2

with 7" (', 0) given by eq/5.63

(Iyy — L= + mi®)? ®*T (T, 0)* (IPm®S + k2Ss,) (5.72)

Torque noise from the direct coupling with the seismic noise

The power spectrum densities of the torque noises, which are given by the direct
coupling of the float angle with the seismic noise, are given in the worst cases by

the following equations:

Sty, = k5B So, (5.73)
Sr. = PPm*a*Sy (5.74)

X

5.3.4 Input thermal noise

For comparison I have also calculated the expected amplitude spectrum density
of the input thermal torque noise, S%/T 2h, which is supposed to be white and given
by the fluctuation dissipation theorem [48]. For a system, which is characterized
by damping coefficient b4 and which is at temperature T, SI{/T Qh is given by the

following equation:

St = \/ab, KT (5.75)

with Kp = 1.38 x 1072 J/K the Boltzman constant.
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5.4 Model parameters and predictions

Before presenting all the expected input torque noise levels given by the seismic
noise, it is necessary for me to provide a numerical estimate of all the defined

parameters.

5.4.1 Seismic noise spectra

[ will begin by describing the seismic noise, which is represented by three compon-
ents: the vertical, the horizontal and the tilt seismic noise. I directly measured
the vertical seismic noise down to 1H z with a geophone, HS-10, from Geo Space
LP, USA, on the isolation block where the cryostat is positioned. At 1H z I found
S}/ > = 105ms2/v/Hz which is in agreement with the previous estimate [35].
Because I know that S;(.,/Q = 252/2 [9], T assumed S;(.,m = 2. x 107 ms2Hz/?
for frequencies bigger than 1Hz. For frequencies, f, which are instead between

10mHz and 1Hz, I have modelled the horizontal seismic noise with 5)12/2 =

2. x 107°/ f2ms~2Hz%/? to include the observed drop of the seismic noise at such
frequencies (see for example [I1] and [56] about the Earth ambient noise spectrum
at low frequencies). In my seismic model I have not included the microseismic
peak, which is observed at ~ 0.15H z and which has no effect at frequencies of the
torque measurements smaller than 20m H z. Because I do not have any measured
data about the seismic tilt of our laboratory, I assume an amplitude spectrum
density, 591; 2, equal to 10~%rad/ vHz and constant at all the frequencies [53] as it

was assumed in the previous study of our SSTB [35].

5.4.2 Torsion balance

I present here the parameters, which describe the torsion balance and its dynam-

ics:

e the torsion balance for the ISL test has a mass of m = 100g and moments of
inertia along the axis x,y, 2 (Lyz, Iy, I..) = (1.60,1.64,1.82) x 10~ *kg x m?.
The moments of inertia are derived from the 3D Solidworks drawing of the

float (with the test masses), which is used for ISL experiment.

e the pendulum mode is characterized by a pendulum arm [ = 8.78mm.

With such a pendulum arm length, the compound pendulum frequency fy
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corresponds to the measured one of 1.1H z:

1 [ky+mgl
fo = %\/ 1. (5.76)

The damping factor of the pendulum mode for 4A in the damper circuit

L (or equivalently by ~ 6 x 107%kg - m?/s or Q =~ 19),

is 7o = 0.18 s~
while the tilt stiffness has been numerically estimated [35] to be kg =
2.9 x 107"Nm/rad. A tilt stiffness kg, which is even two orders of mag-
nitude higher cannot be excluded. Trapped magnetic flux in the float shell
or magnetic impurities in the damper disk, which might couple with the
levitation magnetic field, or deformations of the shape of the float shell [19]

might possibly boost ky to larger values.

e The torsional mode, when the current is stored in the actuator supercon-
ducting circuits, has k;, = 4.5 x 10°°Nm/rad (for period of ~ 40s) and
Yy~ 1.85x107*s™! (or equivalently by, = 6.73 x 10"kg-m?/s or Q ~ 420).

e The tilt angle, 3, is assumed to be no larger than 1°, which implies an
extremely small a =~ 5.5 x 10~ "rad as given by eq/5.12,

5.4.3 Expected transfer functions and torque noises

Given the numerical values from the previous paragraph, in fig[5.5 I plot the
amplitude of the transfer functions |T"(I'eyt, ¢) | and |T'(T',, 6) |, multiplied re-
spectively by the torsional and the pendulum stiffness, ky and ky. In table[5.1]1

give instead the expected torque noise at a frequency of 20mH z for all the noise

terms I have so far modelled.

Source | Nm/vHz | Source | Nm/VHz
S 25 x1078 ] 527 |22x1078

Top X
SEE 129 %1071 | S 132 x 1072
7]
Sp2 13.9% 1071

Crp

Table 5.1: Different components of the expected torque noise, which are due to
the seismic and the thermal noise at 20mHz.

eq

The smallness of the expected o implies that the acceleration term due to

5.72| has a torque noise spectrum, Sllg 2, which is negligible at 20mH z with
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Figure 5.5: Amplitudes of the transfer functions |1 (I'est, ¢) | and |T" (T, 0) | mul-
tiplied respectively by the associated stiffness k, and ky.

respect to the other noise terms, being of the order of 3.2 x 1072 Nm/v Hz. At

these frequencies the term, which is given by the direct coupling of the horizontal

seismic oscillations to the torque (eq5.74)), gives a torque noise spectrum, 511{(2 =
2.2 x 107® Nm/+/Hz which still is smaller than the expected thermal noise,
SY2 3.9 % 10715, for a temperature of 4.2K.

Lrp

The torque noise, which is given by the difference of the moment of inertia

I, and I, and which is given by eq}5.71, has noise spectrum Sllﬂg z =29 x
10" Nm/v/Hz, a few times larger than the thermal noise. As is clear from table
and figl5.6, the biggest contribution to the torque noise is given by the direct
coupling between the tilt seismic noise and the torsional angle ¢: the expected
torque spectrum 5'1112 i is 25 x 10713 Nm/ v/ H = - which, I notice, is also the typical

noise level which was achieved during the spin coupling experiment with the
MKI SSTB [34]. As expressed by eq[5.73], this contribution to the torque noise is
independent of the mass and moment of inertia of the float and depends only on
the ground tilt noise level, 5914 ?. on the tilt stiffness, kg, and the observed tilt, 3,
of the float. Because the values of these parameters are similar to the ones used
[35] for the MKI SSTB, I expect that my prediction for S%é i also applies to the

previous version of torsion balance.
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Figure 5.6: Amplitude spectrum densities of the torque noise, which are given by
different seismic noise terms between 1mHz and 1H z.

5.5 Conclusion

In this chapter I have discussed the model of the torsion balance that, given the
moments of inertia of the float and its elastic and damping coefficients, predicts
the differential equations governing the dynamics of the float. I have used this
analytical model to evaluate the transfer function between the applied torque and
the float angle ¢ and to estimate the effect of the seismic noise on the torque,
to which the float is subjected. The new model, compared with previous work,
predicts new contributions to the torque noise, which are due to seismic noise.
These new terms are due to the difference of moment of inertia, /,, and I,,, or
to the direct coupling of tilt seismic oscillations with the float angle ¢. For our
SSTB the contribution of the former is expected to be 2.9 x 10*14Nm/\/m at
a frequency of 20mH z. The contribution of the latter is instead predicted to be
around 2.5 x 10~ N'm /v/Hz, for a tilt coupling dT'/dfp = 2.5 x 10~ Nm /rad and
a ground tilt noise of 10~*rad//Hz. However, the effect of the tilt noise might be
larger by a few orders of magnitude, if the tilt coupling is boosted to higher values
by asymmetries of the shape of the float shell or by magnetic flux trapped inside
it. The expected thermal noise for the MKII SSTB is 3.9 x 10~ Nm/v/Hz.
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Chapter 6

The servo loop and the expected

torque sensitivity

6.1 Introduction

The mechanism of the torque measurement of the torsion balance is based on
a servo loop principle: when the torsion balance is subjected to a torque, I'.,
spurious or the one we want to study, what we measure is the torque necessary to
keep the balance at a constant angular position, I'.,;. The torsion balance, when
it is subjected to an input torque, rotates in one direction by an angle which is
defined by the transfer function of the float, Geat (see eq. Instead of letting
the float freely rotate, by using the servo system of fig[6.1], we automatically apply
a torque to the float with the opposite sign with respect to the input torque. In
this way the balance is kept at a constant angle. This chapter is dedicated to the
analysis of all the elements of the servo loop in order to reach the following two

goals:

1. To define the closed loop transfer function between the input torque and

the servo effort, we consider to be our torque measurement.

2. To characterise all the noise sources which contribute to the noise of the

measured torque.

I will analyse the capacitive sensor, which was adopted to read the float angle
during the preliminary test of the inverse square law of gravity. I will predict

and measure its transfer function, G¢g, and its noise level. I will discuss the
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digital compensator and, through numerical simulation, I will define its open
loop transfer function, Hprr2p. I will present the transfer function, Hj;4, and
the noise level of the magnetic actuator adopted to feed back torque to the float
and to control its angle. After having described all the subsystems, I will analyse
the servo loop as a whole system and I will predict the closed loop transfer
function between the applied and the measured torque. Thanks to the developed
analytical model of the servo system I will briefly study the angular stability of
the torsion balance. I will conclude our analysis of the SSTB by modelling the

contribution of all the different noise sources to the output torque noise.

Applied Torque The Torsion Balance The capacitor readout Voltage readout
. - v
o Crioat Ccs ol
The current source Reference
and magnetic actuator The compensator voltage
HMA - Hp||2D Vet

Servo effort
readout

Figure 6.1: Global schema of the SSTB servo system

6.2 The capacitive readout

In the final design of the MKII SSTB we will use a homodyne low temperature
interferometer [62] to read out the angular position of the float. However because
this device is currently being developed, we used a capacitive sensor readout for
the preliminary tests of the SSTB and of the ISL of gravity. This angular readout
system, even though a temporary solution, has enough angular sensitivity for the
preliminary tests of the ISL of gravity. The following section is dedicated to
the analysis of the capacitive sensor, which converts the angular position of the
torsion balance to a voltage output. Because the signal we are looking for is a low
frequency one, to avoid the 1/ f noise of the electronics, we use a lock-in technique
which boosts the signal at high frequency in the detection chain and recover it at
its end by using a lock-in amplifier. Our capacitive readout is composed of the

following subsystems:
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e 1. a capacitive transducer, which transforms the angular displacement of

the float in the change of two capacitances.

2. a capacitance bridge with its preamplifier, which, given a high fre-
quency AC voltage signal as input, transforms the difference of the
previous capacitances into an amplitude modulation of the AC voltage

output.

3. a lock-in amplifier which recovers the voltage modulation from the

high frequency carrier.

6.2.1 Capacitive transducer

The capacitive transducer is the first step of our readout system and transforms
angular displacements of the float, A¢, in variations of the two capacitances, C4
and Cs, between a common a gold coated mirror connected to the float, and two
metal plates on its sides. The plates are connected through insulating spacers to
a pillar facing the float (see ﬁg. The capacitance between two plates of area
A and separated by a distance d is given by the equation:

A

C(d) ~ €0 (6.1)

where ¢y = 8.85pF/m is the permittivity of vacuum. For the capacitive trans-
ducer of the SSTB the two capacitances, C; and (5, are associated with the
distances, d; and ds, between the two side plates and the central one (see ﬁg).

d; and dy are given by the expressions:

dy = (D;t)+(h+R)¢ (6.2)

g, = P 2‘” —(h+R)o (6.3)

where D is the measured distance between the two plates, t is the thickness
of the gold coated mirror, R is the radius of the float and h is the distance of the
plates from the float shell (see figl6.2 and table [6.1]).

The difference of two capacitances is given by the formula:
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Insulator

Figure 6.2: Picture and schema of the capacitive plates and the float.

Al 257em? || h | Tmm
D | 3.50mm t | 1.8mm
R | 46.86mm

Table 6.1: Parameters of the capacitive transducer. A is an average value.

B 8A(h + R)¢
ACO) = O T aihr R o
8A(h + R)
€ EEE b (6.5)
= (3.4 x107°F/rad)¢ (6.6)

Eql6.5 had been derived in case of small angular displacement and it is a good
approximation within 1% for angles smaller than ~ 5 x 10~%rad. Because the
capacitive transducer is not linear for large angles (|¢| = bmrad), we have to try
to set the float working position as near as possible to the null angular position

of the capacitive bridge.

6.2.2 The capacitance bridge

The second stage of the angular readout is the capacitive bridge and its preamp-
lifier, which transform the previous AC(¢) in the amplitude modulation of an
high frequency AC voltage signal. During the experiment we used two different
configurations of the capacitance bridge: the first one was adopted when we had
to calibrate the torque effort of the SSTB and the Attocube motion; the second

one was used when we were taking the torque measurements necessary for the
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Figure 6.3: Schema of the capacitor bridge, which was used during the torque
measurements.

ISL tests of gravity. The two configurations mainly differ in terms of where the

AC reference voltage is applied to the system.

Measurement configuration

This configuration uses a transformer and a reference AC signal to apply two
current signals to the capacitive plates facing the float. The change in the dif-
ference of the capacitance AC' modulates the current signal coming out from the
float through the thin gold wire, which is attached to its top. Outside the cryostat
a current pre-amplifier transforms and amplifies the previous current signal in a
voltage output, V,,;, which will be read by the digital servo compensator. For
a detailed analysis of the transfer function and expected output noise of such a
capacitive bridge I refer to the appendix|[C. This configuration has the advantage
that the float is set to virtual ground through the op-amp, and that the electro-
static forces between the ISL test masses are reduced with respect to the other
configuration of the capacitive bridge, where we apply the reference AC voltage
to the float.

From our theoretical model of the capacitive bridge and the pre amplifier I
expect (see appendix |C]):

= Ry woVo (6.7)

meas. A/ 1+ W(ZJR?CJ%

where wy and Vj are the frequency and the amplitude of the reference AC

d‘/out
dAC
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Capacitive bridge (measurement mode)
Ry | L5MQ R, 15MQ
Oy 10pF C, 0.33nF

Creoaz 400pF L=M 20mH
wo |2 X T0kHz ||V, 0.5 x V2V

Table 6.2: Numerical values of all the components of the capacitive bridge used
during the torque measurements

Capacitive bridge (calibration mode)
R; 10k02 R; 20002
Cy 4.7pF L=M 20mH

Ccoaz 4OOpF
wo |2m xT0kHz | Vg V2V

Table 6.3: Numerical values of all the components of the capacitive bridge used
during the calibration of the torque effort

signal. Assuming the value of table I expect |dVyy:/dAC| = 69.8mV/pF
while from room temperature measurements we found instead |dV,;/dAC],, ... =
71.53 £ 0.05mV/pF .

From the analysis of all the different noise sources of the op-amp (see appendix
, the noise level predicted for the amplifier output, is around 0.12uV/ VHz.

This noise level is mainly given by the voltage noise of the op-amp which is

meas.

amplified by the high capacitance to ground of the coaxial cable, C\,,., bringing
the current from the float to the pre-amplifier input. The measured noise at the
output of the amplifier was ~ 15uV/ V' Hz, which was attributed to pick-up noise
inside the vacuum can. Improved shielding inside the vacuum can may remove

this extra noise source for future experiments.

Calibration configuration

This configuration was used during the calibration of the torque effort and of
the Attocube displacement, where an accurate knowledge of various capacitances
is necessary. As shown in figl6.4], the capacitive sensor is made of two parts: firstly
the capacitive bridge which applies the reference AC voltage signal to the float.
It transforms the difference of capacitances AC' to a voltage signal V,;, between
the output terminal a and b of a transformer. Secondly, the pre-amplifier which
amplifies the signal V,;, to V.

As shown in fig]6.4) with this configuration of the capacitance bridge we apply

two AC signals added together to the float: one is used for the capacitive sensor
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Figure 6.4: The schema of the capacitive bridge, which was used during the
calibration of the SSTB.

—_— sumr

Figure 6.5: Summing amplifier, which is used to add the drive signals together of
the Andeen-Hagerling and of our capacitive bridge.

and the other one for the Andeen-Hagerling ultra precision capacitance bridge (see
chapter |4). The two signals are added together thanks to the summing amplifier
circuit showed in figl6.5. We employ the Andeen-Hagerling capacitance bridge to
perform the necessary capacitance measurements while at the same time servo
controlling the torsion balance. We could not have taken these measurements with
the capacitive bridge adopted for the torque measurements. This configuration
of the capacitive bridge does not suit the torque measurements necessary for the
ISL test of gravity, because of the large voltages, which are applied to the float,
and because of the large electrostatic forces, which are therefore induced between
the test masses.

I do not discuss here an analytical model for this capacitive bridge and its

preamplifier, because it is beyond the scope of this work, and furthermore unne-
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cessary to predict the torque noise spectrum of the SSTB. From room temperature
measurements (see [6.2.3)) I found that:

~ 3mV/pF (6.8)

calib.

dv;)ut
dAC

For this capacitive bridge, the output voltage noise of the preamplifier was meas-

ured to be 80nV /v Hz.

6.2.3 The lock in amplifier

A FEMTO LIA-BVD-150-H phase lock-in amplifier is used to extract the low
frequency signal, which is associated with the angular motion of the float from the
AC high frequency voltage signal at the output of the capacitive bridges. For the
capacitive bridge of the torque measurements, the lock-in sensitivity was 100mV,
which corresponded to a measured transfer function of T'Fjyerin(100mV) = 60.
When we used the capacitive bridge for the calibration of the SSTB, the lock-in
sensitivity was 30mV’, which corresponded to a measured transfer function of
T Flockin(30mV) = 200. For the capacitive bridge of the torque measurements,
combining the results from the theoretical estimation of the dAC/d¢ and the

previous experimental estimate of |dV,,:/dAC], ..., I find that:
dVou
‘ y ¢t o 1460V /rad (6.9)

During the low temperature experimental run we measured |dV,,;/d¢| =

meas.

1500 + 157V/rad (see chapter [7)). For the capacitive bridge of the torque calibra-

tion, the transfer function is expected to be:

d ou
’ Vou ~ 208V /rad (6.10)

dg

calib

During the low temperature experimental run we measured |dV,,;/dd|
38V/rad (see chapter [7)).
The measured input voltage noise of the lock-in amplifier is ~ 200nV /v H z.

, =11+

cali

This noise level is smaller than the output voltage noise of the capacitive bridge
of the torque measurements but is larger than the output voltage noise of the
capacitive bridge of the torque calibrations. An intermediate additional amplifier

is therefore necessary to make the noise from the pre-amplifier the dominant noise
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for the capacitive bridge of the torque calibrations [87].

6.3 The digital servo compensator

In this section I will discuss the core of the servo system of our torsion bal-
ance: the digital servo compensator. This subsystem has as input the voltage
signal associated with the angular position of the float, and as output the signal
controlling the feedback torque, which is applied back to the float. If the float
is subjected to an external torque, the digital compensator applies an opposite
feedback torque to it which, at least at low frequency, cancels it perfectly. I can
divide the digital compensator into three stages: the digitalisation of the analogue
voltage, the digital PIT?D compensator (see the following) and the passage from
digital to analogue output. Because we want to sample the analogue signal at
50H z, firstly we filter this signal with an anti-aliasing low pass filter, which is
characterised by a cutoff frequency of 25H 2. The signal is digitalised by 16-BIT
analogue to digital converter (Measurement Computing PCI-DAS6035), which is
running on the PCI bus of a PC. The digital signal is given as input to the digital
compensator program developed with HP Vee.

The digital compensator has a proportional (P), a differential (D), a integral
(I) and a double integral (I?) term (see ﬁg. If V. = Vi, — Ve is the error
voltage signal with respect to a reference signal, V.., setting the angular position

of the float the four previous terms are represented by the following equations:

Ve = Kpl, (6.11)
V.

Vp = K 6.12

D D5, (6.12)
t

Vi = KI/Vedt’ (6.13)

t
Ve = Kp / / V.dt (6.14)
0

Kp, K;, K2 and Kp are the proportionality constants for each term. The
output voltage of the PII*D compensator, V,,,, is given by the sum of the four
terms. In the Fourier space the transfer function of the compensator, T'Fprr2p,

is represented by the following equation:

129



ove
ot
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Figure 6.6: Schema of the digital compensator developed in HP-VEE.

Vou : K K
TFPII2D: Vt:KP‘i‘ZWKD—ZjI— 122

e

(6.15)

w

with Vout and \76 the Fourier transforms of V,,; and V..

In order to reduce the effect of the noise at high frequencies, a Savitzky—Golay
smoothing filter [69] is applied to the error voltage input, V., which is least-
square fitted to a straight line. Using this procedure we obtain a more accurate
estimate of the error voltage input and of its derivative [33]. To avoid having a
loop execution time of the program, 7.,. , which is too long and introduces an
unwanted large phase shift of the voltage output, the buffer size n of the fitted
data set has been chosen such that 7., < 15ms. The loop execution time also
fixes the sampling rate of the data acquisition, which is now around at 66 H z.

In figl6.7 and fig[6.§ I plot the amplitude and phase of the open loop transfer
functions for each term of the digital compensator. The transfer function was

obtained by injecting simulated data into the compensator input and by assuming
(Kp, K1, K2, Kp)set = (1,1,1,1) (6.16)

It is clear from figl6.7 and fig6.§ that at up to 0.1Hz, the PIT?D transfer func-
tions follow the expected theoretical behavior. At higher frequencies they are
greatly reduced by the low pass Savitzky—Golay smoothing filter within the Vee
program. However I had not included any low pass filter in the analytical model

I had developed. I found that for frequencies smaller than =~ 0.1Hz, the total
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Figure 6.7: Amplitude of the transfer functions for the different terms of the
compensator for unity input parameters.

transfer function, which fits to the data, is given by the following equation:

TFprrep (f)

Q

—[Kp+iKpf x (5.69 £ 0.09)

. KI K]?
_ _ 6.17
"Fx(629+001)  f2x (3051 £ 0.05)] (6.17)
K, K
—[Kp+iw x Kp (0.9 +0.01) —i—L — =L (6.18)

w2

with w = 27 f and where I introduced the minus sign to guarantee the stability

of the servo system. Only the proportional term, K, which is given as input

parameter to the Vee program, has to be corrected by 10% to obtain the correct

parameter for the analytical model.

During the test of the ISL of gravity we used the optimal parameters:

(Kp, K1, K2, Kp)ser = (2,1.2 x 09,1072, 10)

(6.19)

which guaranteed that the servo effort exactly cancelled the applied torque at

low frequencies (see chapter [7)).

The digital signal from the compensator is transformed to an analogue signal

via a PC based PCI bus 16-BIT digital-to-analogue converter card.
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Figure 6.8: Phase of the transfer function of the different terms of the com-
pensator for unity imput parameters.

6.4 The magnetic actuator

In this section, I will present the actuator system of the torsion balance by which
we give a natural stiffness to the float and counter balance the applied torque.
In principle the torsion balance will have the best torque sensitivity with a null
or very small torsional stiffness (see section[6.6.1)). During the tests of the ISL of
gravity we found that it was necessary to set a minimum stiffness corresponding
to a period of = 30 —40sec to balance an unwanted spurious torques acting on the
SSTB. This spurious torque might be due to an asphericity of the float shell or to
magnetic flux, which was trapped within the shell itself. Without this added large
natural stiffness, the torsion balance stuck on one of the two capacitive plates,
making any torque measurements impossible.

The basic idea of the magnetic actuator is the conservation of the magnetic
flux in a superconducting circuit and the modulation of the inductances of such
circuit as function of the angular position of the float. The inductances are
the ones associated with the four superconducting rectangular coils (see fig[4.6),
which are connected together in pairs as shown in fig[6.11 Because the coils
are facing four rectangular windows cut out of the float shell (see ﬁg and
ﬁg, when the float rotates in one direction, two of the float windows overlap
more over the respective coils while the other pair overlaps less (see figl6.10). In

this way the inductances of the four coils are modulated by the rotation of the
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shell

Actuator
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Figure 6.9: Photo of the superconductive coil, when it is partially covered by the
niobium shell of the torsion balance

float: the inductances of the first pair of coils are decreased, while the ones of
the second pair are increased, when the float angle is increased. Because of the
conservation of the magnetic flux in a superconducting loop, this modulation of
the inductances changes the currents flowing in the superconductive circuits and
the total stored energy as a function of the float rotation. As a consequence, a
torque is exerted back to the float, giving it a natural restoring stiffness. Thanks
to a flux transformer coupled with the two superconducting circuits (F'T; see
ﬁg, we can change the magnetic fluxes, which are stored in each of them.
By adding magnetic flux to one circuit and subtracting it from the other one, it
is possible to modify the total stored energy and to apply a torque back to the
balance. The following section is divided into two parts: firstly, the discussion
and modelling of the superconducting actuator circuits; secondly, the description
of the current source, which modulates the magnetic fluxes within the circuits

and which applies a variable torque to the balance.

6.4.1 The superconducting transducer circuit

By looking at the circuit of fig]6.11] we can write the equations for the system
using a method similar to the Maxwell mesh method which, when applied to the
two superconducting circuits, has to satisfy the conservation of their magnetic

fluxes, ®; and ®,. For our circuits, ®; and ®, are given by the following system

[33],135] [34]:
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Figure 6.10: Schema of the float and of the four niobium coils, whose inductances
are modulated by the float rotation.

HS,

§ HS,

Figure 6.11: Schema of the superconducting circuit, which is used to apply a
torque (or restoring stiffness) back to the torsion balance.
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q)l = il(Ll +LC+L5) —ZQ(MC+MS) (620)
Q) = ir(Ly+ Le+ Ly) — in (M, + M)

where

Ll - Lll + L12 (621)
Ly = Lo+ Ly

are the sum of the inductances of the superconducting coils connected in
pairs. 47 and iy are the currents stored in the two superconducting loops by
means of the superconducting transformer F'T, (see ﬁg and the heat switches
(HS; and HS;). The procedure for storing i; and iy is similar to the one we
employed to store the levitation current (see chapter @) M. and M, are the
mutual inductances between the two superconducting loops due to the associated
flux transformers, which we employ respectively to store the initial currents in
the circuits and to modify them with a variable offset current, di. L. and L, are
the inductances of the secondary circuits of the two transformers. The eq[6.20)

can be rewritten as:

® =i (6.22)

with

(6.23)

Li+ L.+ Ly —(M,+ M)
—(M.+ M) Lo+ L.+ Lg

> = @;) (6.24)

i = <2) (6.25)

The total energy stored in the superconducting circuits is given by the equa-

tion:
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1

E = 5@{\1:*1@0 (6.26)
with
1 L Lc Ls MC MS
N - (6.27)
x MC+M5 L2+LC+L5
and
sc= (L1 + Le+ Lg) (Lo + Le + Lg) — (M, + M;)? (6.28)

If 710 and 799 are the initial stored currents in the two superconducting loops,

for Ly = Ly > M. + M, the initial stored magnetic flux is:

Dy = L(ZFO) (6.29)

120
We approximate the inductances L; and L, for small angles ¢ with the fol-

lowing equations:

Ly = L+a¢— B¢ 6.30)
Ly = L—a¢— B¢ (6.31)
By assuming that
Lc = Mc ) Ls = Ms (632)
we find that
@1:1<L+MC+MS—¢<a+ﬁ¢> M. + M, ) 6.3
5 Mc+Ms L+M0+M5+¢<a_5¢)
with
¢ = L(L+2(M.+ M,)) — (a® +2(L + M.+ M,)3)¢* + 5°¢* (6.34)

From the previous equation, eql6.26, from eq[6.29 and assuming
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o = io+ Ai (6.35)
ig = 1dg— A (6.36)

for » = 0 the torque acting on the float is given by the equation:

(6.37)

o <8E(gb)> 2 Aial
B ¢ ),o L+2(M.+ M)

The resulting natural torsional stiffness, k,, is instead given by the expression:

ky = (-f?)(ﬁzo (6.38)

_2&2 (0?4 LB) +i§ (L + 2(M. + M,)) (o® 4 (L + 2(M. + M,)) 3)
(L 4 2(M, + M,))?

kg for L >> M, + Mj is approximated by the equation:

a2
ko ~ =2 (Ai® +43) (f + ﬁ) (6.39)

By storing two different currents, 719 and 99, in the two circuits, it is possible

to create an extra torque I' at ¢ = 0 (see eqf6.37)) to counterbalance any spurious

torque acting on the float. The natural stiffness k4 is employed to make the float

oscillate around an equilibrium position, before servo controlling it to a fixed

angular position.

Applying an extra torque to the float

By setting an external current 07 through the flux transformer FTj, it is

possible to couple an additional torque to the float. Because the flux transformer

is wound in such a way that it subtracts flux from the first circuit and adds flux

to the second one, the extra flux coupled to the system is given by the equation:

—i
0P = M, 6.40
() (6.40)
The stored energy becomes the equation:

1

E
2

(Do + 0®) T (g + 0D) (6.41)
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Value Error Units
L |5733x107"[ 10719 H
al 9.21x107" | 4x107° | H/rad
Bl 8x1077 10" | H/rad?

Table 6.4: Inductance values for the couples of coils L; and L.

Inductance (H)
M, 5x 1076
M,| 1-2x10°
M, 4Ax10°°

Table 6.5: Inductances of the flux transformers.

At ¢ = 0 the extra applied torque added to I" of eq[6.37]is given by the equation:

M,
L+ 2(M, + M)
M,
YL+ 2(M, + M)

Tevra = —2iga §i (6.42)

= — (i1 +12)

5i (6.43)

which for i; = i is equivalent to the expression found in [33]. To the stiffness
of the system, which is given by the eql6.38, we add an extra term which for
L >> M.+ M; is given by the equation:

2AiLM,;6i — M26i2
L3

keatra = 2 (0 + L) (6.44)

Model parameters and expected results

From room temperature measurements based on a copper reproduction of the
niobium coils we adopted for the SSTB, I found that the change of the inductance
of a coil pair is characterised by the parameters of table [6.4].

The values of all the other inductances of the actuator circuits are shown in
table [6.5] and had been chosen in such a way as to have a 1 to 1 transformation

ratio in both the flux transformers. The predicted natural stiffness is

kg ~ —4.56 x 107° (A¢* +43) Nm/rad (6.45)

while the expected servo torque is given by the formula:

Lentra = 3.66 x 1077 (i1 + i3) 6iNm (6.46)
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Figure 6.12: Schema of the current source, which is used to actuate the torsion
balance

6.4.2 The current source

To apply the external torque given by the eql6.37, a current di is generated by a
computer controlled current source [33], whose output is monitored by a Keithley
2000 digital multimeter (see ﬁg. For the configuration of the current source
(see ﬁg the voltage read by the multimeter is equal to the voltage controlling
the current source. Because the resolution of the input voltage of the multimeter
is 10V within a range of £10V and the voltage output of the digital card has a
resolution of 1501V, it was found necessary to use a summing amplifier circuit to
improve the resolution of the signal controlling the current source. The output
voltage of the servo system is split into two signals, V; and V5, where the first is the
requested voltage driven at 16-bit and the second one is 30 times the difference
between the desired output and V;. The two signals are summed through a
voltage summing amplifier such that Vi, = V3 + V5/30 (see figl6.12)), which has a
quasi 21-bit resolution of 5uV'. V,,; is given as input to a voltage follower circuit
composed by a high precision op-amp and controlling a high power current source.
Such current source generates the current 97 through the unknown 7,4 of the
actuator circuit (typically a few Ohm). The maximum generated current is set
by R..; = 402 to be 250mA. R,.; also sets the conversion between the readout
voltage and current, now 25mA/V. A low pass filter is positioned between Vg
and the multimeter to exclude all the high frequencies, which are not of interest.

From the noise measurements shown in fig6.13] the current noise of the cur-

rent source follows an 1/f behavior at low frequencies. The amplitude spectrum
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Figure 6.13: The amplitude spectrum density of the output current noise of the
current source.

density (ASD) of the current noise, Sé/; , fits the following function with a 1%

error on the parameters:

1/2 _8 — 6.46 % 10_10 Y

6.5 The servo system

So far I have described all the single subsystems of the torsion balance whose open
loop transfer functions I have individually analysed. To understand the torsion
balance as a servo system it is necessary also to study the closed loop transfer
functions between the torque input and the readout torque.

It can be shown that, given a system of NV subsystems connected in a servo loop
as in ﬁg, the closed loop transfer function, Ty, (4, j), from any input point 4

to any output point j can be written as the following equation (see Appendix[D)):
i<n<j

11 .

TCL(ZJJ) = all (648)
1-][#

H,,, is the transfer function of each single subsystem and ¢ < n < j stands for
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(1 <n < N)&(1 <n < j). The previous formula makes it possible to evaluate
the transfer function between the torque signal, to which the float is subjected,
and the torque servo readout, which we actually measure. Thanks to eq[6.48,

it is possible to predict the effect of all the noise sources to the final torque

measurement.
Output signal
|—>Y
Hi e Hy F--+4 H Hi |-+
|
A i
B !
Hy =€ 4 Ha Xk By fomem

{ Input signal
R

Figure 6.14: Block diagram of a general servo system with N blocks and the
input and output: R; and Yj.

In figl6.1)T provided a simplified block diagram of the servo system controlling
the MKII SSTB: I',,; is the torque which is applied to the float by mean of the
masses, ['css is the torque which we actually measure and V,.; is the constant
reference voltage which sets the equilibrium position of the torsion balance. For
the sake of simplicity I assume V,.; to be null (¢ = 0). In the Laplace space I

can write the transfer functions of each term of figl6.1] as the following equations:

1

Glont = 6.49

float [z282+b¢8+]€¢ ( )
AT

Gos = y <bt = 1460V /rad (6.50)

SK 2K K+ K
Hpipep = SR I;;—S ke (6.51)
dr
Hya = o = 18X 10 Nm/V (6.52)

Gioat, Gos, Hprrzp and Hyr4 are respectively the transfer functions of the
float, the capacitive angular readout of the measurement configuration, the di-
gital compensator and the magnetic actuator (assuming i; + iy, = 2A). For
sake of simplicity in eql6.50] and I did not consider any phase shift due to
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the capacitive readout or the magnetic actuation. For this analysis I assumed
I.=182x10"%kg-m? by =2.16 x 10" "kg-m?/s and ky, = 4.5 x 10" °Nm/rad
(for period of ~ 40s) (see also chapter [5)). For the analytical model, I assumed
the parameters, which define the PII2D compensator, as equal to the ones of

eq[6.19

The open loop transfer function, Ty, is given by the equation:

Tor = Gaeat - Ges - Hprzp - Hya (6.53)

. ﬂﬂs‘gKD—FSQKP—FSK[—l—KIz (654)
 dedV s2(1..s2 +bgs + ky) '

According to eql6.48 and figl6.1], the transfer function between the input

torque and the readout torque is given by the expression:

Tor,
T(Cops, Topp) = —2— 6.55
(Deats Tegr) Ty, (6.55)
$Kp+ s2Kp + sK; + Kp2)9 4
_ (s"Kp VY (6.56)

§2 (1,582 + bys + ky) + ($3Kp + s2Kp + sK; + KIQ%%

Because, if s = iw, for w — 0 the previous equation has —1 as limit, the
servo effort at very low frequencies has the opposite phase with respect to the
applied torque but it has the same amplitude. The expected amplitude and
phase of T'(I'cyt, I'efy), for w > 0, are presented in ﬁg and . The effect
of the differential gain on the closed loop transfer function at high frequencies is
clear. The analytical model predicts that the phase of the T'(I'cp, I'esy) is m/2 for
sufficient high frequencies, because the effect of the differential gain dominates
the output of the compensator. As will be shown in chapter [7, this result does
not agree with the measured T'(I'.,s, I sf), because the analytical model does not
include yet the effects of the low pass filters, which are present in the servo system
and which effectively reduce the gain of the differential term at high frequencies.

To study now the stability of readout output of the torsion balance or equival-
ently its angular stability, it is necessary to look at the transfer function between
the voltage reference, V,.r, and the voltage angular readout, V,,, of the torsion
balance. Again thanks to eq[6.48, it can be shown that:
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Figure 6.15: Amplitude of the transfer function, T'(Tcys, Iesr), between the ap-
plied torque and the servo effort output.
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Figure 6.16: Phase of the trasfer function, T'(I'ess, Icss), between the applied
torque and the servo effort output.
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Figure 6.17: Poles and zeros of the transfer function T'(V,.s, Vout).

T(V;’efy %ut) - T(Fe:vty Feff) (657)

To study the stability of the system I look at the poles of the transfer function
which, as presented in fig[6.17), are all left half-plane poles. The system is therefore
asymptotically stable [81].

In the time domain (see ﬁg I plot the step response function of the
voltage readout, V,,;, of the torsion balance, given a 1V change in the reference
voltage V,..s: the step response time has a overshoot of 48% (for the definition see
figl6.18 and [81]); the settling time (time to reach the final value within +5%) is

only 11 sec, which is smaller than the assumed natural period of the float (=~ 40s).
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overshoot=(B-A)/A*100%

Voltage readout (V)

Time (sec)

Figure 6.18: Step response function of the angular position of the torsion balance.

6.6 Noise budget

To predict the expected angular and torque effort noise of the torsion balance, I
will use this section to analyse how all the noise sources propagate through the
servo system and effect the measured torque noise. For the sake of simplicity I
group here the transfer functions of the float, Gigoat, and of the capacitor readout,
Ggas, into the transfer function G and the transfer functions of the compensator,
Hprp2p, current source and magnetic actuator, Hysa, into H (see ﬁg.

Equivalent input /2 Readout 12
Torque Noise Tin Voltage Noise “\/...4

/2 112
=i Actuator
S]'ac‘. Torque Noise

Figure 6.19: Schema of the servo system of the SSTB and all the main noise
sources entering the servo loop.

The noise sources, whose effect I want to model, can be divided into three
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groups depending on where they enter the servo loop:

1. Equivalent input torque noise, S%{Z all the noise sources, which can be
modelled as an equivalent torque noise acting on the torsion balance (for

example the seismic and the thermal noise).

2. Readout output noise, S‘l/-/iad: the voltage noise, which is at the output of

the capacitor readout.

3. Actuator torque noise, Slléit: the equivalent torque noise of the actuator,
which is given by the current noise of the current source. In the servo loop

it is just before the torque readout.

51{{2, S‘l//fead, and S%ﬁt are defined here as the amplitude spectrum densities
[61] of the considered noise sources and in general are functions of w. To model
the effect of these noise sources on the measured torque noise, I need to evaluate
the transfer functions between each noise source and the desired output. If there
is a linear system with transfer function 7'(iw) between an input X (w) and an
output f/(w), a stochastic process with amplitude spectrum density at the in-
put Sif(iw) produces an output noise, which is characterised by an amplitude

spectrum density S;f (iw) given by the following equation [61]:

Si2(iw) = | T (iw)| 322 (iw) (6.58)

Supposing here that all the noise sources are independent, I will sum in quadrature

the contributions of each noise source to obtain the total noise.

6.6.1 Servo effort torque noise

Firstly, I evaluate the analytical models of all the transfer functions between the
three different groups of noise sources and the servo effort readout, plotting them

under the assumptions of the previous section.

Transfer function of the equivalent input torque noise

From figl6.19 and from eql6.48, I can write the transfer function between the

equivalent input torque noise, S /2 and the measured torque effort noise, S%Z IE

T'in>
12 o2 v, GH
| T(Stins Stess) = |m| (6.59)
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which is equivalent to |T'(Tept, e s)| given by and plotted in ﬁg. As
found in the previous section, for s = iw and in the limit of low frequencies I find

that
lim|T'(Spi, Sy )l = 1 (6.60)

Transfer function of the readout noise

The transfer function between the readout noise, Sy ,cq.q, and the measured torque

effort noise is given by the equation:

gl/2 H
I"eff)| = |1 _ GH|

which is plotted in fig{6.20} In the limit of small frequencies the previous equation

IT(S2 s (6.61)

becomes:
. 12 o1z \ do
}JILI%JT(SV'read? Sl"eff)| hm’ | - k¢> dV (662)
10° ! L
10' 4
o % - -
0|3 10"+
HE
5w=- v
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10"_ —— e
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Frequency (Hz)
Figure 6.20: Transfer function, |T' (S‘l//fwd, S%Z f)|, between the readout noise and

the torque effort normalized to unit at low frequencies.

Transfer function of the actuator torque noise

The transfer function between the actuator torque noise, S%ﬁt, and the torque

effort noise is given by the equation:
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1

IT(Stoeer Stz = 17— g7 = (6.63)
_ 52 (Ieffg;? +bys + ky) (6.64)
82 (Lefps? + bys + k) + (s°Kp + s2Kp + sK; + Kp2) G 4 '

which is presented in figl6.21]. In the limit of small frequencies, the previous

equation becomes the expression:

2
. /2 o1/2 wk
ilg(l)’T(SFéchFéff)‘ = ‘ dv(i)dr (6'65)
274 av

The previous equation is null for w = 0, which means that at extremely low
frequencies the noise of the current source has no effect on the measured torque.
The torque noise generated by the current source is cancelled at low frequencies
by the output of the PII?D compensator, because of the large gain of the in-
tegrator and double integrator at these frequencies. This theoretical result was
also independently verified through MATLAB Simulink numerical simulations,
by measuring the torque effort and using a white noise source in place of the cur-
rent source. As shown in fig[6.22], the simulated torque effort has an amplitude
spectrum density which at 10mH z is reduced by a few orders of magnitude with
respect to the input torque noise due to the current source.

This reduction of the contribution of actuator torque noise to the torque effort
at low frequencies was indirectly proved with experimental measurements as I will

show in chapter [7]

Total noise and predictions

Because 1 assume that all the different noise sources are independent and not

correlated, the total noise budget for the torque effort is given by the equation:

GH 1 \?2 1 2
Sﬁéfcf = |m|\/5rmm + Stinsm + (|5|> SVread + (|G_H ) Sract (6.66)

511“{2% and S%z/ism are the amplitude spectrum densities of the thermal and
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Figure 6.21: Transfer function, |T (Sll{lit, SIEZ )|, between the actuator noise and
the torque effort.
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Figure 6.22: Actuator and servo effort noise based on a MATLAB simulink sim-
ulation.
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Source ASD at 10mHz (Nm/vHz)
Readout 5x 10712

Seismic (tilt) 2.5 x 10713
Thermal 3.9 x 1071
Actuator 1x1071

Table 6.6: Amplitude spectrum densities at 10mH z of the different torque noise
sources.

seismic noise given respectively by eq and . S%fi is the sum in quadrature
of these two components. At very low frequencies the previous equation becomes

the equation:

. do 2
olJli%Ségff = \/ StinTh + Srinsm + Svread (l%W) (6.67)

It is clear that by reducing the natural stiffness of the instrument it is possible
to lower the contribution of the readout noise to the servo effort noise. The
amplitude spectrum densities of each noise source at 10mH z is summarised in
table and plotted for different frequencies in figl6.23. In practice we will not
see the increase in the torque effort noise at high frequencies due to the readout
noise as shown in figl6.23, because we included in the servo loop and PII2D
compensator a few low pass filters, which effectively reduce the noise at these
frequencies. The effect of the low pass filters were not included in the analytical
model of the servo system of the SSTB.

By decreasing the kg, from eq[6.67] it is clear that it is possible to decrease
the contribution of the readout noise to the servo effort noise. For example,
with a period of T' &~ 150sec, the contribution from the readout noise equals the
contribution from the seismic noise. A higher level of torque effort noise due to
the seismic noise might be also possible if the elastic pendulum stiffness ky or k3
are greater than expected (see eq[5.73).

6.7 Conclusion

This chapter has been dedicated to the analysis of the servo loop of the torsion
balance and of all its subsystems. The scope of this analysis has been to define the
transfer function between the applied and the measured torque and to indicate

the noise sources which contribute to the output torque noise. I have discussed
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Figure 6.23: Predicted torque effort noise spectrum for the different noise sources.

the capacitive sensor, which we adopted during the preliminary test of the ISL of
gravity to monitor the angular position of the float. This sensor was developed in
two configurations: the first configuration was used during the calibrations of the
SSTB; the second one was used during the torque measurements. The latter con-

~ 1460V /rad

and was limited by pick up noise in the vacuum can. By a using numerical sim-

figuration was characterised by a transfer function of (dV,,./d¢), ...
ulation I have analysed the open loop transfer function of the PII%D digital
compensator. We have modelled the magnetic actuator and its superconducting
circuit predicting the natural stiffness, which we can give to the torsion balance.
We have also modelled the torque which is applied to the float versus the current,
07, which is generated by an external current source. I have estimated the closed
loop transfer function of the servo system between the applied and the measured
torque, which, for the choice of the servo parameters adopted during the ISL ex-
periments, has unity gain and phase shift of 180° at low frequency. For the same
choice of the servo parameters, the angular position of the float has been proved
asymptotically stable. The step response associated with the change of 1V of the
reference voltage, V,.r (used to set the angular position of the float), has settling
time of just 11s, which is much shorter than the assumed natural period of the
torsion balance (/& 40s). I have analysed the contribution of each noise source to

the measured torque noise. With a typical natural period of the torsion balance
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of 40s, the largest contribution to the torque noise is expected to be given by
the readout noise. At low frequencies, this noise limit is 5 x 10~'">Nm/v/Hz.
However, this torque noise is strongly dependent on the chosen natural stiffness.
Just an increase in the natural period of merely a few times is enough to decrease
the readout torque noise below the expected torque noise given by the seismic
noise, 2.5 x 10""*Nm/v/Hz. The contribution of the seismic noise could also be
much larger, if the tilt coupling of the float was to be larger than expected, as is
described in chapter [ In the next chapter I will discuss the SSTB performances,
we actually measured during the low temperature tests of the ISL of gravity at

micrometre distances.

152



Chapter 7

Experimental performance of the
MKII SSTB

7.1 Introduction

In this chapter I will present the low temperature performances of the MKII
SSTB, we obtained during the preliminary tests of the ISL of gravity. I will
present the experimental procedure, we adopted to cool down the torsion balance
to 4.2K, setup its levitation and control it. I will define the method, we employed
to calibrate the torque measurements. I will discuss the results about the calib-
ration of the magnetic actuator system and compare them with the theoretical
expectations. I will analyse the experimental performances of the damping sys-
tems, which we built to reduce the spurious oscillations of the torsion balance by
dissipation of eddy currents. We will characterise the closed loop transfer func-
tion of the servo system between the applied and measured torque and compare
it with the theoretical estimate. I will also give an indirect experimental proof of
the reduction of the actuator torque noise at low frequencies, which is due to the
servo feedback as predicted in chapter [6. I will present the amplitude spectrum
density of the torque, we measured with the MKII SSTB during the ISL tests
of gravity. I will discuss some preliminary measurements of the coupling factor
between the ground tilt and the torque, which is applied to the float. This coup-
ling factor might explain the measured torque noise of the SSTB. To conclude
I will discuss the possible modifications of MKII SSTB, which are necessary to

improve its performance.
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7.2 Set up procedure

In this section I will briefly describe the procedure, which was required to set the

torsion balance ready to take the torque measurements. Firstly we reached the

cryogenic temperatures, which are necessary to make the niobium and the lead

superconducting; secondly we stored the currents in the levitation, damper and

actuator circuits to levitate the float and make it oscillate around an equilibrium

position.

7.2.1 The vacuum and cooling process

The cooling of the experimental vacuum chamber to 4.2K consisted of the fol-
lowing steps (see fig7.1)):

1.

After having hermetically closed the experimental vacuum chamber and the
cryostat, we evacuated the atmospheric gas inside the experimental room

and we introduced 1mBar of He gas.

. We evacuated the cryostat and filled it up with ~ 40 liters of liquid ni-

trogen, which, during approximately 48 hours, cooled down the vacuum
chamber and the cryogenic insert to 77.2K. We monitored the temperature

by measuring the Allen Bradley resistances as described in chapter [4.

We expelled all the liquifed nitrogen left in the cryostat, firstly by blowing
it out with pressurised nitrogen gas and then by boiling off, what was left,

thanks of resistive heaters at the bottom of the cryostat (see chapter [4).

. We slowly introduced the cold He gas and the liquid He until a level detector

indicated that the liquid had almost reached the first baffle of the cryostat

insert.

We waited for a period of approximately thirty minutes after which the
vacuum chamber was uniformly at 4.2K and the He gas pressure was meas-

ured to be around 2 x 10~2mBar at the vacuum gauge.

Because the torque sensitivity of the torsion balance was not limited by the

thermal noise associated with the gas damping (see chapter @, it was not neces-

sary to further reduce the pressure inside the vacuum chamber. Usually a He fill

was enough to keep the experiment cold for a period between 4 to 5 days. After

154



this period the temperature inside the vacuum chamber started to increase above
4.2K and it was necessary to repeat the last two points of the cooling process.
The refilling and cooling took up to a few hours to be completed, during which
any experiment had to be stopped.

Liguid N/He pipe

JL_T]

experimental

cryostat

Figure 7.1: Simplified shema illustrating the cooldown of the SSTB.

7.2.2 Establishing the levitation and the servo control

After the cooling down to 4.2 K, we stored 4.51 A in the primary of the transformer
of the levitation circuit and we levitated the float over the bearing pillar (see
chapter @ Because the float turned in one preferred direction until its capacitive
plate touched one of the two plates on its sides, we had to store at least a total
current of 1.5A in the actuator circuits (see section [6.4) to make the float freely
oscillate with a period of ~ 40s. We stored 4A in the damper circuit to damp
down the 1Hz pendulum oscillations (see chapter [4) and we turned on the digital

servo compensator to control the float to the desired position (see section [6.3).
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7.3 The calibration protocol

To calibrate the torsion balance, we had to estimate the following constants:

1. dV,u/d¢, which is the conversion factor between the angular displacement,
¢, of the torsion balance and the voltage output, V,,;, of the capacitive

bridge.

2. dless/dV.ss, which is the conversion factor between the voltage readout,
Vers, of the current source controlling the magnetic actuator (see section
6.4) and the torque applied to the float, I'. ;.

As I will see, these two calibration factors are related to the calibration of the
displacement of one single step of the Attocubes, which we used to modify the
position of the test masses in the z and y directions (see figl7.2)).

7.3.1 Calibration of the Attocubes

The first step of the calibration protocol was the calibration of the one step
displacement of the two Attocubes at 4.2K. As introduced in chapter [4, we
monitored the x and y position of the support of the flat mass with respect the

float by measuring two capacitances (see ﬁg and chapter @)

C, is the capacitance between the support of the flat mass and a dedicated ca-
pacitive plate on its side. It was used to monitor the movement of the flat

mass in the z direction.

C, is the capacitance between the support of the flat mass and the float. It was

used to monitor the movement of the flat mass in the y direction

The calibrations of the Attocube displacement for a given number of steps
in the x and y directions followed two different procedures. Because the results
about the Attocube calibration are slightly different at each cool down of the
torsion balance, I report here the calibrations we measured during the two tests
of the ISL of gravity (see chapter named “I run” and “II run”. For all
the calibrations the voltage signal, which was controlling the Attocube, had an
amplitude of 20V.
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Figure 7.2: Schema of the capacitances monitoring the x and y displacements of
the flat mass.

Motion in the z direction

The calibration of the step motion in the x direction, (dz/dn),, was done by

4
measuring the total number of steps, ns,:, which were necessary at 4.2K to fully
displace the Attocube between its two extreme positions. The distance between
the two positions, L., was measured with a caliper at room temperature and
found to be 7+ 0.02mm. By monitoring the capacitance C, versus the number of
steps, n, the two extreme positions was identified where the gradient dC.,/dn be-
came null. The calibration of the step motion in the opposite direction, (dz/dn)_,
was done by comparing the measurements of C, versus n for both directions (see
fig]7.3). We scaled (dx/dn)_ in such a way that the two measurements over-
lapped. The results for (dr/dn), and (dx/dn)_ for both experimental runs are
reported in table . The value of (dz/dn)_ was found to be 2% smaller than

the value of (dz/dn), .

Motion in the y direction

Because it was not possible to displace the Attocube in the y direction for its full
motion, we needed to calibrate its step motion, dy/dn, using a different procedure
with respect to dz/dn. We firstly calibrated (dy/dn)_ at room temperature by
measuring with a caliper the displacement of the Attocube for a chosen number
of steps. We found (dy/dn)_ = 0.556 +0.02um/step. 1 fitted the measured value
of U, versus the number of steps, n, with the expected capacitance of a cylinder

facing an infinite plate. This capacitance is given by the following equation [72] :
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Figure 7.3: Calibration of the Attocube step motion in the positive and negative
x directions.

Lo
®arccosh(h/R)

with L the length of the cylinder (L = 4em) and R its radius (R = 46mm).

« is a scaling factor, which models the fact that the curved support is not a full

Cy(h) = 2me (7.1)

cylinder. h is the distance between the plate and the cylinder axis, and it is given

by the sum:

dy

where hg is an unknown distance offset. Assuming the measured value for
(dy/dn)_ at room temperature and by least square fitting the function of eq to
the room temperature data (see fig[7.4) I found the value for the correction factor
a = 0.57240.006 for our capacitances. I used this value to fit the measurements
of Cy, versus n taken at 4.2K and obtained the associated (dy/dn)_ (see table
7.1). By directly comparing the capacitance measurements for the Attocube
displacement in the two y directions I found that the two calibration constants
(dy/dn), and (dy/dn)_ still differed of only a 2% (see table [7.1]).
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I run (pm) | 11 run (pm)
). | 0.156 £ 0.006 | 0.159 £ 0.006
dy/dn)_ | 0.159 4+ 0.006 | 0.156 &+ 0.006
). | 0.111 +0.002 | 0.108 £ 0.002
dx/dn)_ | 0.109 £ 0.002 | 0.106 £ 0.002

Table 7.1: Calibration constants for the possible movements of the two Attocubes
for the two low temperature runs of this work. The control voltage of the Attocube
was set to 20V.
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Figure 7.4: C, versus the attocube motion in the y direction at 300 and 4.2K and
the fits performed on the two data sets.
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7.3.2 Capacitive bridge calibration

The second part of the calibration protocol was to determine the factor, dV,,;/d¢,
which transforms the angular motion of the torsion balance, ¢, to the voltage
output of the capacitive bridges, V,,;. For this calibration we measured the
change of the angular motion of the torsion balance versus the y displacement of
the test mass. I compared the voltage results with the expected angular value
and obtain dV,,,/d¢.

Because of the presence of the flat mass in front of the cylindrical support,
the motion of the float was constrained between two angular values. These posi-
tions corresponded to two voltage outputs of the capacitive sensor I named Vi,
and Vijax. As shown in fig[7.5 the difference between these two values linearly
decreases as the flat mass approaches the cylindrical one. I linearly fitted Vi,

and V., versus the step number n of the Attocube and obtained the gradients
dVinin/dn and dViax /dn.

10—
94 e = VYmin
8] ® Vmax
7] ‘* = = -linear fit Vmin
% - - - - linear fit Vmax
5] i ]
4] o b
S 34 ...-/ ]
5 2: iy - ]
= 13 BY Tl i
0 = _ ~ Contact point
-1 4] _ =~ between the masses ]
2] v 2l
3] = 4 B
i a
—_——
-50 0 50 100 150 200 250 300 350 400

Step number in the y direction

Figure 7.5: Example plot of the minimum and maximum voltage outputs of the
capacitive bridge versus the displacement of the support.

From a theoretical approach I expect that, for example, the change, A¢

min»

of the minimum angle reached by the torsion balance versus the change, Ay, in

the y position of the support is governed by the following equation:

A¢

min __

Pr— P _ 2

Ay

dy—dy D
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Vour =A+DB-n A (V) B (V/step)
Vinin 8.80+0.06 | 0.0161+5 x 1072
Vinax —344+0.15| —0.0171+2 x 1074

Table 7.2: Results of the linear fits of fig[7.5]

Flat Mass (far and near positions)

Possible
contact
./ points

Figure 7.6: Schema of the flat test mass approaching the lug. The possible
minimum angles of the torsion balance, ¢; and ¢,, depend on the distances, d;
and dy, between the test masses according to eql7.3

where D is the length in the x direction of the shortest test mass (D =
24.98mm for the mass A, see chapter [2) and d; and ds are the distances between
the masses, which corresponded to the minimum possible angles, ¢; and ¢, (see

fig and . The same result is valid also for A¢,,.. /Ay.
The calibration factor dV,,;/d¢ is given by the equation:

Flat Mass (far position) y Flat Mass (near position)
| motion [
2. dq

dac ===

Rotated float

Figure 7.7: Schema of the flat test mass approaching the lug for two different
distances between the flat support and the float and showing the change in the
minimum angles, ¢; and ¢,.
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d‘/:)ut o dein d?/ A¢ ! (7 4)
dp dn \dnAy ’
AViin D ((dy\
= i 2 (%) (7.5)

I followed the same procedure for V,,,, and found the respective calibration
factor dV,,;/d¢. This value was averaged with the value obtained from dVi,;,/dn.
For example from the linear fits to the Vi, and Vi, data of fig[7.5 and presented
in table , assuming the (dy/dn), of table|7.1| (data from the “/1 run”), I found
AVt /dp=1304+40V /rad. We often found very convenient to move the flat mass
on one side and estimate dV,,;/d¢ only from the measurements of V., or Vi
versus the number of Attocube steps. In this way the calibration of the capacitive
sensor was performed, just before the procedure of torque calibration of the SSTB,
which I will explain in the next section. Because of the non-perfect cylindrical
and flat geometries of the test masses, the previous procedure was repeated many
times during the experiment and all the estimates of dV,,;/d¢ were then averaged
together.

For the capacitive bridge of the measurement mode with a PSD sensitivity of
100mV, with a drive signal of amplitude Vy = 0.5v/2V and frequency of 70kHz

I obtained on average:

d
‘ Vout = 1500 + 157V/rad (7.6)

de

meas.

which is in agreement with the expected value of 1460V/rad (see chapter [6],
eq. For the capacitive bridge, we adopted during the torque calibration of
the SSTB with a PSD sensitivity of 30mV, with a drive signal of amplitude
Vo = V2V and frequency of 70kH z, by following a similar analysis, on average I

found:

= 211 + 38V/rad (7.7)

calib.

dv:)ut
do

while from room temperature measurements I expected 208V /rad (see chapter

B calfT0).
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Fit to C, = A+ B-V,;; +C- V7,
A | 1871 £0.03pF | C |0.76 £ 0.05pF/V?
B | 1.51 £0.03pF/V

Table 7.3: Results of the polynomial fit of fig[7.§

7.3.3 Actuator calibration

The third step of the calibration protocol was the calibration of the torque ac-
tuator. We needed to estimate the calibration of the conversion factor dI'/dV, ;s
between the voltage signal, which was read from the current source, V.s¢, and
the torque, which was applied to the torsion balance, I'.y¢. For this scope we
applied a voltage difference, Vg, between the torsion balance and the support
of the test masses .We measured the voltage effort V. ¢, which was necessary to
keep the float at a constant angular position versus the applied voltage V4. The
calibration factor dl'.s;/dV.;; was obtained by comparing the results with the

theoretical prediction, which is given by the following equation:

_ 1dG,
- 2do

Vh is any residual voltage difference, which was present between the float and the

r (Viag — Vo)’ (7.8)

flat test mass even when we did not apply any voltage to it.
Firstly we measured the capacitive C}, versus the set voltage, V,.;. We fitted
the results with a second order polynomial and obtained dC,/dV,.; around a

chosen set point (see fig[7.§ and table [7.3). We obtained dC,/d¢ thanks of the

following equation:

d‘/out
do

For these measurements it was necessary to use the capacitive bridge of the calib-

dC,  dC,

d¢ B d‘/:ref (79)

calib.

ration mode, which allowed the use of the AH capacitive bridge (to measure the
investigated capacitances) while we recorded the angular position of the float. For
a correct calibration it was important to measure dC,/dV,.; around a set point
which was within the limit of linear output of the capacitive sensor. Otherwise
the calibration factor might be found a few times smaller than the true value. The
actuator calibration was performed when the flat mass support was completely
moved to one side. In this way we maximised dC,,/dV,.; and minimised the error
on the torque calibration.

Secondly we moved the float to a predetermined angular position and meas-
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Figure 7.8: Plot of the capacitance C}, between the float and the test mass support
versus the set point.

Fit to Veff = B(Vdaq — %)2 +V;
£ | 0.00372 £ 107°V 1 Vo | 0.15+£0.01V
V1102731 £8 x 1074V

Table 7.4: Results of the polynomial fit of fig[7.9

ured the servo voltage effort, V¢, which was necessary to keep the torsion bal-
ance at that position for any applied voltage, V;q,. We fitted the results with the

function:

Verr = B(Vdaq - %)2 +Vi (7.10)

V; is the voltage effort, which was necessary to balance the spurious torques
acting on the float, when the voltage difference between the masses, V4, — Vo,

was null.

From the eq[7.8, [7.9] and we found that:
dr1dC, [dVou| 1
AVery  2dVier | A9 |oga B
For example for the capacitive data of fig[7.§ and table[7.3 and for the voltage
effort data of ﬁg and table (taken for V,.; = 0V') I found:

(7.11)

dless
dVeyy

=4.28x107° £ 7.7 x 107°Nm/V (7.12)
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Figure 7.9: Plot of the voltage, V.;s, monitoring the output the current source
required to keep the torsion balance at a constant position versus the voltage
difference applied between the float and test mass support.

where we stored 1.6 and 0.54A in the actuator circuits.

7.4 Characterisation of the SSTB

At this point we had the torsion balance levitated and ready to take torque meas-
urements. This section is dedicated to the further analysis of the SSTB and to
understand the limits and the validity of the previous analytical description of
its expected performances. I will firstly proceed to analyse how the torque cal-
ibration constant changed versus the currents, which were stored in the actuator
circuits. I will show that even if we correctly predicted the change of the cal-
ibration constant versus the stored currents, the calibration constant is not null
when there is not any current stored. This result indicated a possible coupling
of the actuator coils with the levitation current. The natural stiffness, which is
given by the actuator circuits, will be shown to be in agreement with the theoret-
ical predictions. I will characterise the performance of the eddy current damper,
showing that 4A in the damper circuit was sufficient to quickly damp down any
1H z pendulum oscillation of the torsion balance. The 5H z horizontal oscillation
were damped down even without any current stored in the damper, presumably
because of the levitation field. We will characterise the transfer function of the

servo system between the applied and the measured torque. We will show that
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Figure 7.10: Measured calibration constants dl'css/dV. s versus the sum of the
current stored in the detector coil and the corresponding linear fit (see table[7.5).

at low frequencies the torque servo effort had the same amplitude but 180° phase
shift with respect to the torque acting on the torsion balance. I will show how the
torque noise level we reached during the ISL tests was around 2x 107 N/ VHz.
This noise level corresponded to an angular noise of ~ 4.5 x 10~°rad/ V' Hz. This
torque noise level was more than one order of magnitude higher than the torque
noise level we reached during previous Casimir experiments [33]. I will show that
the most probable origin of this noise level was a large coupling of the torsion
balance with the ground tilt noise. Preliminary measurements of the coupling

constant between tilt angle and servo torque seemed to confirm this hypothesis.

7.4.1 Torque calibration versus stored currents

To characterise the magnetic actuator of the MKII SSTB, we repeated the pro-
cedure of the actuator calibration (see[7.3.3) for different values of the currents,
71 and io, which were stored in the actuator circuits and for opposite polarities
of the current, I;.,, which was stored in the levitation circuit. In fig[7.10 I plot
the values of the calibration factors dl'.sr/dV.s; versus the sum of the stored
currents. Their respective linear fits are presented in table [7.5.

The calibration factor dI'css/dV.;s was governed by a couple of linear equa-
tions, which had compatible gradients but different offsets. These offsets de-
pended on the polarities of the levitation current (see table [7.5). From eq[6.46
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Fit to dl“eff/dV;ff =A + B (il + iQ)
e A (Nm/V) B (Nm/V/A)
+18A | 6.1x10°+107° | —258 x 1078 +4.6 x 107
—184 | —62x1077+1077 | =234 x 1078 +4.2 x 107*

Table 7.5: Results of the linear fits of fig.

and knowing that V.;r = 40Q 07 (see section , we expected the gradient
|dTCess/(dVeypd (iy + i2))| to be 3.38 x 1078 Nm/V/A. This estimate was near but

not compatible within 20 with the average of the measured values:

r
' dlesy =246 x 1078 £3.1 x 107°Nm/V/A (7.13)

AVeppd (i1 + 12)

From the experimental data we found a correlation between the polarity of

the levitation current and the offset of the linear fits. This result indicates a
possible coupling between the levitation current and the actuator circuit. This
coupling might be due different possible reasons. The rectangular windows cut
into the niobium shell might store some magnetic flux, which couple with the
magnetic field generated by the actuator coils and modify the torque calibration.
Moreover the actuator coils might be directly coupled with the magnetic field of

the levitation bearing.

7.4.2 Measured moment of inertia

We were able to measure the moment of inertia of the float by measuring the
change of the torque effort, which was necessary to keep the torsion balance
at different angular positions. For these measurements we used the capacitive
sensor of the calibration mode. By comparing the resulting torsional stiffness,
k4, with the measured natural period of the float I derived the moment of inertia
I... For example as shown in fig[7.11] we changed the position of the float by
modifying the reference voltage, V,.r, while we kept measuring the corresponding
servo effort, V,;r. From the measured gradient dV.;r/dV,.; (see table and
from the associated calibration constants of eq[7.12 and of eql7.7, the resulting

torsional stiffness is given by the equation:
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Figure 7.11: Plot of the measured torque effort versus the voltage set point.

dlers dVegs |dVous
3 (7.14)
v AdVeps dViey | Ao | iy
= 537x107°+£96 x 107" Nm/rad (7.15)

Knowing the natural period of the torsion balance was 1" = 36.6s, the moment
of inertia is given by the following formula:
I.= ko _ 1.8 x 107* £ 6 x 10 °kg - m>. (7.16)
(2m/T)?
This experimental value is compatible with the expected value, which was
given by the CAD drawings, I,, = 1.82 x 10~%kgm?.
The fact that the measured moment of inertia of the float was compatible
with the expected value confirmed the correctness of the calibration constant of

the capacitive sensor of the calibration mode.

Fit to ‘/eff :A—FB"/Tef
A B
0.266 £0.01 | —0.594 + 0.01

Table 7.6: Results of the linear fits of fig.
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7.4.3 Natural stiffness versus stored currents

From eq I expect the natural torsional stiffness, k4, of the torsion balance
to be linear versus the sum of the square of the currents, which are stored in the
actuator coils. Assuming I, = 1.82 x 107*kg - m?, I plotted k, versus (i} + i3)
and linearly fitted the results (fig]7.12). The fitted gradient dk,/d(i? + 3) given
in table [7.7]is compatible with the expected theoretical value of dky/d(i2 + i3) =
2.279 x 1075Nm /rad/A%. This value was derived within the theoretical analysis
of the actuator circuits (see section ) thanks to eq.

3 - . T . r . : v
Natural stiffness versus the sum s

2.0x10°° of square of the stored currents ) . 7
]l = - -Linearfit k =A+B"(i *+) ;
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Figure 7.12: Natural stiffness of the torsion balance versus the sum of the square
of the currents, which were stored in the actuator circuit.

Fit to ky, = A+ B(i] +i3)
A (Nm/rad) B (Nm/rad/A?)
38x1077+25x 10772325 x 1076+ 5.5 x 1078.

Table 7.7: Results of the linear fits of fig. [7.12)

169



7.4.4 Damping of the parasitic modes

In this section I will analyse the experimental performance of the damper mech-
anism of the MKII SSTB, which was adopted to damp down its parasitic oscil-
lations. The pendulum and horizontal oscillations were monitored by measuring
the capacitance between the float and a temporary copper plate positioned on its
side.

I briefly discuss here the method I used to measure the quality factor of the
damping of the parasitic modes. If we impulsively excite the pendulum mode at
t = 0, the solution of eq[5.50] governing the dynamic of the pendulum motion is
the function [5]:

A
0(t) = —e " sin(wit + @) (7.17)
[U.Jl
with
y=do ) =\ hetam Y (7.18)

Ty a1,

Iy is the moment of inertial of the float relative to axis of the pendulum mode,
by is the damping coefficient and ky is the restoring stiffness.

From the fit of the pendulum angle, or of the equivalent voltage readout of
the capacitive sensor, to the eq[7.17]it is possible to measure the quality factor @
which is defined by the equation [42]:
2mE

=35 (7.19)

E is the energy stored in the oscillations and AFE is the energy loss per period.
The previous equation, given eq, for wy > ~ is approximated by Q ~ w;/27.
In practice, given a data set of the voltage readout of the capacitive sensor,
I extracted the subset, which I was interested in. I fitted it with a general poly-
nomial and subtracted the result from the original data set to remove any low

frequency drift. I fitted the resulting data set with the function:

y(t) = Asin(2Qvt + ¢)e™ (7.20)

and estimated the coefficients A , @, v and ¢ by using the least square method
within the MATLAB statistics toolbox .
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Damping of the pendulum mode

For no stored current in the damper circuit the measured quality factor () was
~ 4000 (or 7 ~ 1000s) due to viscous He gas damping and to the magnetic field
of the levitation bearing, which was acting on the copper damper. For a current
of 4A, which was stored in the damper circuit, I found ) = 19 £ 3, which was
associated with a decay time 7 of 5.4 + 1.5s. This stored current was sufficient to
quickly damp down the ~ 1Hz pendulum oscillations. The Q values associated
with other stored currents, /44y, are plotted in ﬁg and fitted to a rational
polynomial of second order. The results of the fit are presented in table[7.8. I
obtained that the measured () value were inversely proportional to the square of
the current, which was stored in the damper circuit. This result is in agreement
with the fact that the power loss per second of the pendulum mode is expected to
be proportional to the square of the magnetic field present in the copper damper
[23] and therefore to the square of the current, Iy4m,, which is stored in the

damper coil and which is generating such magnetic field.
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Figure 7.13: Q for the pendulum oscillations versus the current stored in the
damper circuit and fit to a rational polynomial.

Fit to Q = (a +b- Lagmp + ¢~ 13,,,) "
a b (A) c (A7?)
0.004 £ 0.004 | —0.001 4+ 0.005 | 0.0027 4 0.0016

Table 7.8: Results of the fits to a rational polynomial of fig.
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Damping of the horizontal mode and of the vertical mode

I measured the ) of the horizontal parasitic oscillations from a data set, which
showed the 5Hz oscillations together with the 1Hz ones due to the pendulum
mode. I found that the horizontal oscillations were damped down with a Q) = 74+
8 or 7 = 5+ 1s. Because no current was stored in the damper circuit, the damping
of these oscillations were due to a mechanism which was independent from the
current stored in the damper coil. Their damping might have been related to
the eddy currents, which were generated in the damper by the magnetic field of
the levitation bearing. By monitoring the capacitance between the float and a
temporary plate, which was positioned over its top, we tried to also characterise
the damping of the 30H z vertical oscillations of the balance. Because I found no
evidence of the vertical oscillation, I conclude that the eddy current damping in

the levitation transformer was working effectively [33].

7.4.5 Servo System closed loop transfer function

To further characterise the performances of the MKII SSTB we had to measure
the closed loop transfer function, 7'(I'cye, Iess), between the input torque, I'eyy,
which was acting on the float, and the torque effort, I'.; (see eq)6.55]), which was
applied to the float by the magnetic actuator to keep it at a constant angular
position. Instead of applying an external torque to the float and measuring the
servo effort I'. sy to derive T'(I'ep, I'ery), we summed an additional voltage, Vi,
to the input of the current source and measured the voltage output, Vp;r2p, of
the digital compensator (see ﬁg. We obtained the transfer function between
Vewr and Vprp2p, T (Vewr, Verrzp), which is equivalent to T'(Iege, Leyy).

We measured the phase and amplitude of T'(V.,, Vprr2p) by comparing the
phase and amplitudes of V., and Vprr2p, where V,,, is an AC modulated signal.
By repeating the procedure for different frequencies we obtained figure 133].
In the same figure, for comparison I also plotted the theoretical prediction for
T(Teut, Leffort), which was obtained by assuming a natural period of the torsion
balance of T = 38s. The theoretical model is consistent with the experimental
results at low frequencies, f < 0.1 — 0.5H z, within the limit of validity of the
developed analytical model (see chapter [6). The analytical model in fact does
not take into account the low pass filters, which were present in the servo loop.

The result of fig[7.15]is also an indirect proof of the reduction of the actuator
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noise at low frequencies, that I predicted in chapter [, The torque noise, which
is applied to the float by the current source and magnetic actuator, can be con-
sidered as equivalent voltage noise at the input of the current source. We have just
verified that the transfer function between the input of the current source and the
output of the digital compensator at low frequencies is T'(Vy,, Vprp) &~ —1. This
result means that any low frequency component of the equivalent input voltage
noise of the current source is almost completely cancelled by the voltage output
of the digital compensator. This cancellation of the voltage noise of the current
source results in the reduction at low frequency of the actuator noise which is

applied to the float, as expected from chapter [6]

7.4.6 Torque noise spectrum

Ultimately the performance of the torsion balance is defined by the amplitude
spectral density of the torque noise, which for a given time interval defines the
torque sensitivity of the torsion balance. During the ISL tests of gravity we found
that in average the amplitude torque spectrum density was 2 x 107*°Nm/ VHz
at low frequencies (see ﬁg which corresponded to a displacement noise of
~ 4.5 x 10 °rad/ VHz. In ﬁgI also plot the equivalent torque noise given by
the readout circuit, which we measured when the float was not levitated. This
voltage noise is transformed into angular noise and multiplied by the natural
stiffness of the torsion balance to obtain an equivalent torque spectrum. The
torque noise level, which was given by the readout system, was at least one order
of magnitude lower than the one, which was obtained when the float was levitated
and servo controlled. This result indicates that the limiting torque noise was not
due to the readout noise but instead to other noise sources, like the seismic noise.
In previous experiments with the MKII SSTB, during Casimir measurements, we
obtained a lower noise level, ~ 10~"'Nm/v/Hz [33], which was near the noise

limit given by the readout circuit.

7.4.7 Tilt coupling

To further investigate the origin of the measured torque noise we did some pre-
liminary measurements of the coupling constant, k¢, between the ground tilt
and the torque, which was acting on the float (see eq in chapter @ From
chapter o] I theoretically know that for a tilt angle 6 in a direction ¢, the torsion
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Figure 7.16: Amplitude spectrum density of the torque effort necessary to keep
the torsion balance at a constant position: black is the torque noise level obtained
when the float was levitated and servo controlled, the red one is the equivalent
torque noise level obtained from the readout sensor which was measured when
the float was not levitated.

balance is subjected to a torque, which is given by the eq[5.53. By measuring
dl.s¢/d0r for different values of ¢, I can derive ky3. By acting on the three tilt
stages of the cryostat base (see section ), we measured the torque, I'csf, versus
the tilt angle, O, for three values of ¢, and linearly fitted the results (see ﬁg
and table . The measured gradients dI'.r;/dfr were fitted themselves to a
sinusoidal function in ¢, with a period of 27 (see fig[7.1§ and table[7.10). I found
that:

ko3 =8.77Tx 107" £ 1.7 x 10"*Nm/rad (7.21)

These results about the tilt coupling are given by preliminary measurements
and need to be confirmed by further experimental investigations. They predict a
torque noise level, which is associated with the tilt ground noise, of the same order
of magnitude of the one we measured during the ISL runs. In fact by supposing a
tilt ground noise of 10~*rad/ VHz (see chapter and given the coupling constant
of eq, from eq the expected torque noise level is ~ 9 x 10" Nm/ VHz.

A few reasons can explain the large coupling between the measured torque
and the ground tilt. One reason is that, because during the ISL runs we were not
able to anneal the float due to a broken connection, some magnetic flux might

have been trapped in the float shell. Trapped magnetic flux can interact with the
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Fit to Feff :A+B¢9T
op (deg) A (Nm) B (Nm/rad)
0 —6.34 x 107% | 2.14 x 10~
120° —6.34 x 107® | —8.65 x 10~
240° | —6.34 x 107 | 6.02 x 1077

Table 7.9: Results of the linear fits of fig. [7.17]
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Fit to dl.;;/d0r = A -sin (27 (¢ — ¢y) /360)
¢, (deg) A (Nm/rad)
194.8 +0.9 877 x 107"+ 1.7x 1078

Table 7.10: Results of the linear fits of fig.

magnetic field of the levitation bearing and increase the expected tilt coupling
of the float. Another reason is that during the ISL we substituted the damper
cylinder, which was attached underside the float, with a new one. The new
damper might have contained some magnetic impurities, which coupled with the
levitation field increasing the tilt coupling. Moreover asymmetries of the shape
of the float shell, which can couple with the levitation magnetic field, might have

increased the tilt coupling too [19].

7.5 Possible improvements

In this section I discuss the possible modifications that can be applied to the
SSTB to improve its performance given the experimental results, which were
presented in this chapter.

In order to reduce the influence of the tilt seismic noise, which is most probably
the limiting noise source of the SSTB, we have to install an active vibration
isolation on a base of the cryostat. Otherwise we can reduce the tilt coupling

constant, k93, by many possible approaches:

e We can insert a lifting device under the float in the levitation pillar. In this
way it will be possible to position the float at the nominal height, before
activating the levitation field. This choice will minimise the creation of

magnetic fluxes, which couple the float with the bearing.

e In the legs of the lifting device we can insert some heaters, to thermally

cycle the float and eliminate any residual trapped magnetic flux.

e We can fabricate a new float by using an electro formed copper shell, as
we did for the MKI float, and have niobium sputtered in its inside. In this
way we will have a float with much better sphericity and smaller residual

torque, which is given by the coupling with the bearing.

e We can use a new float without any window cut on it. In this way we

will avoid any magnetic flux trapped inside the float windows. We will
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have to apply the torque to the float otherwise, for example by using a
superconducting insert or with superconducting plates attached outside the
float.

The possibility to have a float with smaller residual torsional torque, which a
electro formed float better guarantees, can also lead to a much smaller minimum
natural stiffness and a smaller contribution of the readout noise to the torque
noise.

The capacitive readout system is just a temporary solution and it has to
be substituted with the optical readout, which is under development within our
group [62]. An optical readout of the float angle will bring many advantages.
The SSTB will have a much better angular sensitivity than now. It will permit a
much easier and more precise calibration of the torque effort versus the voltage
effort. It will let us use only one readout system even when we need to apply
voltages to the float to measure the capacitances with a capacitive bridge and to
keep controlling the float position. Moreover the optical readout will lead to a
much simpler and less time consuming calibration protocol.

To further improve the duty-cycle another possible solution is to install a
permanent cryocooler to keep the torsion balance almost indefinitely at 4.2K.
This solution will improve the duty cycle of the SSTB and it will increase its

torque sensitivity.
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7.6 Conclusions

In this chapter I presented the experimental performances of the MKII SSTB,
we obtained during the preliminary tests of the ISL of gravity at micrometre
distances. I discussed the protocol, we defined to calibrate the torque effort of
the torsion balance. We found that most of the behavior of the torsion balance
followed the theoretical predictions. The damping of the parasitic pendulum
oscillations was found to be proportional to the square of the current, which
was stored in the damper circuit. A current of 4A in this circuit was shown
to be sufficient to damp down such oscillations within few seconds. The closed
loop transfer function of the servo system between the applied and measured
torque was measured and, at low frequencies, found to be in agreement with the
analytical model of chapter [6] I gave indirect experimental evidence of the re-
duction of the torque noise from the current source thanks of the feedback loop.
The gradient of the torque calibration constant versus the sum of the currents,
which were stored in the actuator circuits, |dlcsr/(dVesrd (i1 + i2))|, was found
2.46 x 1078 + 3.1 x 107°Nm/V/A. This value is near its theoretical estimate of
section[6.4] but it was not fully compatible with it within 20. The torque calibra-
tion constant, dI'cr¢/dV.ss, was found not null even when no current was stored
in the actuator circuits. The sign of this offset of the torque calibration constant
depended on the polarity of the current, which was stored in the levitation circuit.
These results are evidence of a magnetic coupling between the levitation and the
actuator circuits, which might be due to the pick up of the levitation magnetic
field by the actuator coils.

The torsion balance during the ISL tests was characterised by an unexpected
large torque noise spectrum. The torque noise level was 2 x 1071°Nm/ VHz at
30mHz and it was more than one order of magnitude larger than the one we
measured during the previous Casimir experiments [33]. From preliminary meas-
urements I suspect that the origin of this torque noise is a large coupling constant
between the ground tilt and the measured torque. This constant, dI"/dfr, was
estimated to be around 8.77 x 107" Nm/rad. A possible cause of the measured
dl’/dfr might be some magnetic flux, which might be trapped in the float shell
and coupling with the levitation field. Another reason might be the presence
of magnetic impurities in the damper cylinder or asymmetries of the float shell,

which can couple with the levitation magnetic field from the bearing coil.
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Many solutions to decrease the contribution of the tilt noise to the torque
noise of the SSTB are possible. We can thermally cycle the float and reduce
the magnetic flux, which might be trapped in its shell. We can install a new
seismic active insulation system at the base of the cryostat, which will reduce
the tilt noise acting on the float. By using a new electro formed copper float,
which will have sputtered niobium on its inside, we can reduce the contributions
of both the seismic and the readout noise to the measured torque noise. The
new and improved float can lead to a smaller coupling with the ground tilt and
it will require a small natural stiffness to be able to freely oscillate around an
equilibrium position. The reduced natural stiffness of the torsion balance will
decrease the contribution of the readout noise to the measured torque noise. To
decrease the readout noise and to simplify the calibration procedure, a solution
is to adopt a optical readout system, which is now under development [62] and
which is expected to have a better angular sensitivity than the current capacitive
readout. The installation of a cryocooler will reduce the time spent to cool down
and calibrate the torsion balance with respect to the total time, which is available
for the torque measurements. This increase of the duty cycle of the SSTB will

lead to an enhancement of its torque sensitivity.
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Chapter 8

First tests of the ISL of gravity

at micrometre distances

8.1 Introduction

In this chapter I will present the first results, which we obtained with the tests
of the ISL of gravity at micrometre distances. I will review all the preliminary
procedures, which are necessary to have the test masses ready for the torque
measurements. [ will discuss the alignment of the masses, the calibration of their
relative distance, the cancellation of the voltage difference between them and the
measurement of the misalignment angle, ), between the x motion of the flat
mass and its surface. I will describe the method, by which we took the torque
measurements for the ISL tests of gravity and describe the procedure, which we
adopted to increase the signal to noise ratio of possible coherent signals. The
experimental results about the tests of the ISL of gravity will be divided in two
groups: the “I run” will include all the torque measurement, which were taken
using the test masses A and C (see chapter ; the “Il run” will include the
torque measurements, which we obtained using the mass C and the improved
curved mass B (see chapter [2). I will present the periodic signals, which we
measured during both experimental runs above the noise level of the SSTB. I will
study the dependence of the spectral components of these signals on the distance
between the masses, on the voltage and on the magnetic field, which we applied
to them. The signal, which we measured during the I/ run with the improved
mass B, is smaller than the one found during the I run. In the next chapter I will

interpret the signals, which we measured, according to the analytical models of
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the possible forces, which, to the best of our knowledge, are acting between the

masses.

8.2 Setting up for the ISL test

In this first section I will present all the preliminary work that has to be completed
before taking any torque measurements for the ISL test. I will discuss the align-
ment of the test masses, the calibration of the absolute distance between them,
the measurement of the misalignment angle of the Attocube motion, 2, with re-
spect to its nominal x direction and the minimisation of the voltage difference
between the masses.

In the following sections, D, is the displacement of the Attocube in the z
direction with respect to the zero position which is when the support of the flat
mass positioned all on one side of the torsion balance (see fig[8.1). D, is instead
the measured distance between the surfaces of the test masses. With respect to
the variables I used for the analytical models of chapter E)], d, and d,, D, is equal
to d, — 3.5mm while D, is equal to dy, — 2t 4, — h1 — ha. t4, is the thickness of the
Gold layer covering the density mass modulation and hjand hy are the average
depths of the long range routhness of the surfaces of the masses (see table )

8.2.1 Test mass alignment

For a correct ISL test we need that the cylindrical surface of the mass on the
float is parallel to the planar surface of the other mass. To guarantee this parallel
condition we performed a first rough alignment of the masses at room temperature
and then a more accurate one at 4.2K. At room temperature we moved the flat
mass in the central position for D, ~ 3.5mm and then we rotated the copper
pillar around its central vertical axis. By doing this we minimised the capacitance
between the flat and the curved mass, that we measured with the AH capacitive
bridge (see Chapter. Once this position was found, we fixed the support on the
underlying base plate by fastening its base screws. At 4.2K, after the float was
levitated, the optimal parallel position between the masses was found by taking
the average position between the minimum and the maximum voltage output
of the capacitive readout, (Vinin, Vimax). These voltages are obtained by rotating

the float to the two extreme angular positions, where the curved mass touched
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the flat mass. We found that the parallel position, defined by this procedure, is
independent of the distance between the test masses, D,, (see for example ﬁg
of chapter [7)). With this technique, for example given the data of fig[7.5 and table
[7.2], we estimated the angular position, which satisfies the parallel condition given
by (Viin, Vinax), within o, = 2.3 x 10™*rad.

8.2.2 Calibration of the absolute distance between the

masses

The data about (Vinin, Vinax) versus the number of the Attocube steps in the y
direction, as the one of fig[7.5], was used to measure the distance D, between the
surfaces of the two test masses. Because we found that D, changes as a function
of D,, such distance measurements had been usually performed with the flat
mass, which was moved to the position with D, = 0. Because at this position
the distance D, was measured to be minimum. Given the value of (Vinin, Vinax)
versus the step number of the Attocube motion, n, the position, ng, for which
the masses are touching each other, is defined by the condition Vi, = Vinax- 1o
is give by the following equation:
ng = —H — Nyast (8.1)
Anin, Amaxs Bmin and B, are the parameters of the linear fit performed
over Viyin and Viax versus n (for example Viin = Amin + Bmin * 7). Nyast i the
step number of the last voltage measurement, which was taken while the masses
were approaching. For example from the data of fig{7.5 and table we found
ng = 12+ 6steps. Given the calibration of the Attocube displacement for a single
step in the y direction, (dy/dn), (see table [7.T]), the found no implies that the
last measurements of Vi, and V. were taken at a distance D, ~ 2 £+ 1um.
At this distance however, as soon as we moved the flat mass in the x direction,
the two masses touched at some point and we could not complete the torque
measurements. On average the error on the distance between the test masses was

found to be ~ 1um.
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Figure 8.1: Schema illustrating the misaligment angle, €2, between the z motion
of the support of the flat mass and the surface of the mass as seen from the top.

8.2.3 Tilt angle of the Attocube motion

As previously mentioned, during the ISL tests we found that the direction of the
Attocube displacement in the x direction was not parallel to the flat surface of the
mass by an angle €2 (see fig. . By measuring the capacitance C, between the
float and the support of the flat mass with the AH capacitive bridge (see chapter@
versus the Attocube position D, (see fig[8.2)), we found that the function Cy(D,)
is not symmetric with respect to the central position (D, = 3.5mm) as we would
expect given the symmetry of the problem for 2 = 0. To estimate this tilt angle 2
we measured the distance, AD,,, we moved the support in the y direction to keep
the two masses at a constant distance, D,o, while we progressively increase D,.
D,y was identified by the associated (Vinin, Vimax)o- The measured misalignment
angle, 2, was 0.15° = 0.01° for the I run (see figl8.3 and fit results in table
and 0.3° £+ 0.02° for I run.

Fit to AD, = A+ B- D,
A B Q) = arctan(B) (deg)
0.1£0.7um | 2.7 x 1072 £2 x 10~* 0.15° £ 0.01°

Table 8.1: Results of the linear fit of fig. [8.3. Here D, and D, are given in meters.

8.2.4 Voltage cancellation between the masses

Before starting the ISL torque measurement, it was also necessary to minimise
the possible voltage difference between the masses, V{), which could give origin to
spurious electrostatic torques (see chapter [J). We cancel V; by applying a DC
voltage of the opportune sign to the flat mass. To measure V;; we used the same
technique, which I described in the section for the torque calibration of the
voltage servo effort of the SSTB. Firstly we moved the support of the flat mass

184



6.58 - ' 5 ]
6.56 - i
6.54 - ]
6.52 I _-
6.50 - ]

6.48 - =

C, (pF)

6.46 .
6.44 - .

642 ]
1

6.40 - =

0 1 2 3 4 5 6 7
D, (mm)

Figure 8.2: Capacitance between the float and the support of the flat mass, Cy,
versus its position in the x direction, D,.
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Figure 8.3: Correction of the y position of the flat mass, AD,, necessary to keep
the masses at a constant distance, D,o, while increasing D,.
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at the x position (usually for D, = 0 or D, = Tmm) where the gradient of C,
versus the float angle ¢, dC,/d¢, was the biggest. In this position the torque,
which was applied to the float for a given voltage difference (see eq), was
the biggest. WIth the flat mass in the chosen position we measured the voltage
effort, V.ss, which was necessary to keep the torsion balance at a fixed angular
position while we applied a set of voltages, V44, to the flat mass. By fitting
the measured (Vjaq, Voss) with the expected second order polynomial of eq7.10,
we derived the voltage difference between the test masses V. We applied a DC
voltage with amplitude —V; to the flat mass and canceled the measured voltage
difference within the error of its estimate.

During the ISL experimental runs we measured a weighted average V, =

147.9 + 0.5mV with an average error of ~ 15mV on the single estimate.

8.3 Method measuring the torques

I describe here the method, by which we took the torque measurements to study
possible violations of the inverse square law of gravity at micrometre distances.
We placed the support at the x position, D, = Omm, which corresponded to
the minimum distance, D,, between the masses. We slowly moved the flat mass
in the x direction and continuously measured the torque effort versus the D,
position. The speed of such torque scan, dD,/dt, was chosen in such a way
that the frequency of a possible signal, which was coming from the 1/400~!um
periodicity associated with the mass density modulation, was much smaller than
the natural frequency of the torsion balance, which is typically fy ~ 25mH z.
In our tests we sent a control signal to the Attocubes with frequency of 20H z
and amplitude of 20V. This settings, given the Attocube calibration constant
(dz/dn), of table , corresponded in a scan speed of dD, /dt ~ 2.2um/s or to
a signal frequency of ~ 5.5mHz. A full scan in the z direction from D, = 0
to D, = 7Tmm took around 50 minutes to be completed. Afterwards we quickly
moved the support in the reverse direction back to its original position without
recording any torque measurement. If necessary the torque scan was repeated.
The described process for the torque measurements was automated and run for
days without interruptions. If desired, every fixed number of torque scans in the
direction, the y position of the test mass and the voltage applied to the masses was

automatically changed. Therefore we obtained the torque effort measurements,
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Figure 8.4: Example of two servo effort measurements versus the x position of
the test mass and the their relative polynomial fits.

Very, versus the position D, of the test mass as shown in ﬁg@.

A drift in the signal might be present because of a possible voltage difference
between the masses and the change of the distance D, between them during the
x scan (see section . From the original dataset I selected a subset whose
length was a fixed integer multiple of 400um, because I wanted to consistently
extract the spectral information around ko = 1/400um ™! from different samples.
I removed the low frequency drift by fitting the measured signal with a 5th order
polynomial (see section and by subtracting the fitted function from the
original signal. By using numerical simulations I checked that this procedure
does not modify the signal at the spatial frequency we are interested in. An
example of the final result is shown in fig[8.5,

8.3.1 Coherently averaged amplitude spectrum

From each of the measured torque scans I evaluated the associated fast discrete
Fourier transform with the MATLAB function “fft”. I obtained a real and an
imaginary amplitude, (R, I'), versus the spatial frequency, k. At each k I averaged
the (R, I) of all the torque scans and obtained (R, I). From this value I evaluated

the one-sided amplitude spectrum of the torque scans with the equation [83]:

2

Ntot

AS(k) = |(R,1,)|

(8.2)

where ny; is the total number of torque measurements of each scan. The amp-

litude spectrum spans from the minimum spatial frequency 1/L to the maximum
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Figure 8.5: Torque servo effort signal after having removed the long range drift
with the polinomial fit.

one ky/2, where L is the total length of the scan in micrometers and ks = n4; /L
is the sampling spatial frequency. The amplitude spectrum, which is defined by
the eq[8.2] is such that for a sin wave signal of amplitude A and frequency ko,
its amplitude spectrum at kg is exactly A. By coherently averaging the torque
scans, the amplitude of any periodic signal remains constant while the amplitude
of any stochastic signal decays as 1/1/m, where m is the number of scans. The
error of the spectral amplitude at the frequency of interest was simply chosen
as the average of the amplitude spectrum over the nearby frequencies where the

possible expected signals are know no to have harmonic components (for example

see ﬁg.
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Figure 8.6: Coherently averaged amplitude spectrum of the samples of fig[8.5

8.4 Torque results from the I run

In this section I will present the experimental results relative to the torque scans
for the ISL tests of gravity at micrometre distances, which were obtained with the
test masses A and B (see chapter [2) and which I grouped under the label of “I
run”. I acknowledge that the quality of the surface of the curved mass A was not
ideal to test gravity at short distances because it was not fully covered by a gold
layer but just partially by a silver paint as shown in chapter[2 and fig[2.3. However
I should discuss here the torque results obtained with these masses, because they
let us test some of the expected torques, which were modelled in chapter[3. The
torque measurements of the I run will give us some indications about the possible
origins of the torque we measured during the “I7 run” with the improved mass
C. The results of the “I run” also taught us some unexpected lessons on how
to further improve our experimental set up to investigate the ISL of gravity at
micrometre distances. With these preliminary masses we succeed in performing
torque scans down to a minimum distance, D, of 13um (without taking into
account the roughness of test masses and the thickness of their gold/silver paint
layers). To our knowledge torque measurements at such short distance had never
been measured without an electrostatic screen positioned between the samples
during a dedicated test of the ISL of gravity.

As T will show, with these masses we measured a periodic signal which had

spectral components at even and odd harmonics of the spatial frequency associ-
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ated with the periodicity of the density modulation (k = 1/400um ™", 2/400um ™",
3/400pum =" and 4/400um='). The amplitudes of these spectral components de-
creased with the increase of the distance, D,, between the masses. I will show
that we minimised but not cancelled the measured periodic signal by modify-
ing the voltage applied to the flat mass. While the 1/400um~! and 3/400um ™"
spectral amplitudes changed according to a parabola in the applied voltage, the

I showed instead a linear de-

spectral amplitude associated with k& = 1/200pum™~
pendence on the voltage. I will also present the measured linear dependence of
the spectral amplitudes at k = 1/400pum=", 3/400pum=" and 4/400pum~' on the
sum of the currents, which were stored in the actuator circuits (see section[6.4).
This result indicates that the measured torques are coupled with the magnetic
field generated by the actuator coils. At D, = 13um the spectral amplitude at
ko = 1/400pum ™=t was 8.4 x 107" £ 1.5 x 1071 Nm.

As previously mentioned, I will leave the physical interpretation of these sig-

nals to the next chapter.

8.4.1 Torques versus distance

Firstly we checked the dependence of the torque signals on the distance, D,,
between the masses. With a complete automatic procedure we performed two
torque scans for each distance from a minimum distance D, of 13pm up to a max-
imum one of 35um (see fig. B.7). The periodic signals we measured were clearly
above the torque noise level of the SSTB and decreased as D, was increased. I
performed the average spectral analysis of each couple of scans, as described in
the previous section. The results are presented in fig[8.8. The main spectral com-
ponents of the measured signals were at four spatial frequencies (k = 1/400um ™1,
2/400pm™=1, 3/400um ™" and 4/400um ™) which are even and odd harmonics of
the main spatial frequency associated with the periodicity of the density modu-
lation (kg = 1/400um™1). In ﬁgI plot the found spectral amplitudes at these
frequencies as a function of the distance D, between the masses. In the next

chapter I will discuss which equations best fit their measured decays.

8.4.2 Torques versus applied voltage

We also checked the dependence of the measured signals on the voltage, which

was applied to the flat mass , V4. With a complete automatic procedure we
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Figure 8.7: I run: measured torque versus the D, position of the flat mass
at different distances, D,, between the masses. The torque was detrended as
explained in section

changed Vg, every 4 scans which were performed at a distance of ~ 24pm. The
torque results are shown in fig[8.10| and their amplitude spectra in fig[8.11].

In figl8.12/T plot the spectral amplitude of the signal for the different harmon-
ics of kg versus the voltage, which was applied to the flat mass. I found that the
amplitudes of the modes at 1/400pum=1, 3/400um =" and 4/400um =" followed a
parabola, whose minima were not null and happen at three different values of the
applied voltage, Vj, respectively —3.54+0.5V, 7+ 1V and 240.6V (see table.
We expected instead Vo = 0.37 £ 0.01V by performing direct voltage measure-
ments as described in section . The spectral amplitude at k = 2/400um "
linearly depended on the applied voltage (as fig[8.13 and table[3.3).

Fit to Ty = A+ B (Viug — Vo)’

k (pm~") A (N'm) B (Nm/V?) Vo (V)
17400 [129x 1070 +8x 107 [29x 1072 +3x 10 ¥ | -35+05
3/400 [885x 100 +9x10 2| 11x10 2+1x10 0| 7+1
47400 [3.05x 1070 £4x 107238 x 10 P £7x 10| 2£0.6

Table 8.2: Result of fit to a second order polynomial of fig[8.12 and [8.13
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Figure 8.8: I run: spectral amplitudes of the measured signals at the different
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and relative exponential fits for the January run.
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Figure 8.10: I run: torque versus side to side position for different values of the
voltage applied to the flat mass, V.
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Figure 8.11: I run: amplitude spectra of the torque scans performed with different
voltages, Vy,q, applied to the flat mass.
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Figure 8.12: I run: spectral amplitude at 1/400um =" and 4/400um ™" versus the
voltage applied to the flat mass.
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Figure 8.13: I run: spectral amplitude at 2/400um ™" and 3/400um ™" versus the
voltage applied to the flat mass.
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Fit to Feff =A + B‘/daq
) A (Nm) B (Nm/V)
2/400 [1079£5x 1072 | —1.64 x 10T £7.4 x 1013

Table 8.3: Result of the linear fit to the 2k, data of fig

8.4.3 Torques versus the actuator currents

We also changed the current stored in the actuator circuit to modify the magnetic
field, which was indirectly applied to the masses though the actuator coils. In
fact through one of the window cuts on the Niobium shell, which was behind
the support of the curved mass, the magnetic field, which was generated by the
actuator coils and the levitation bearing, reached the mass from the back of the
support. As shown in fig[8.14] and table I found that the spectral amplitudes

I and 4/400um™" linearly

at the spatial frequencies k = 1/400um™", 3/400um™
changed with the sum of the stored currents, i; + iz (see section . This
result indicates a possible magnetic origin of these spectral components as I will
further discuss in the next chapter. The gradient of the spectral component at

k=2/ 400pm =t versus i; + iy was instead compatible with zero within 20.
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Figure 8.14: I run: spectral amplitudes at different k£ versus the change of the
sum of the actuator currents and their relative linear fit.
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Fit to Feff =A + B (Zl + 22)
k(um™) | A (107" Nm) | B (107"*Nm/A)
1/400 84+7 10+£2
2/400 160 £+ 10 5.6 t4
3/400 226 =20 18+ 6
4/400 78 £6.6 9.6 £2

Table 8.4: Result of a linear fits of fig[8.14]

8.5 Torque results of the II run

In this section I will present the results relative to the ISL tests of gravity at
micrometre distances, which we obtained with the flat mass C and the new curved
mass B (see chapter during the “IT run”. The mass B with respect to the mass
A of the “I run” had a surface quality, which had been greatly improved with
respect to the previous one. It was successfully polished and covered by the gold
layer.

I will see how with these test masses we performed torque scans down to a
minimum distance D, of 3um without considering the surface roughness of the
masses. With these masses we found a torque signal above the noise level which
showed a spectral component just at the spatial frequency ko = 1/400pum ™. Twill
show how this signal was smaller than the one measured during the I run because
its largest kg spectral amplitude was equal to 1.91 x 107 £ 4.7 x 10712Nm at
a distance of D, = 5.4um. Because the torque noise of the SSTB was the same
during both runs, it took longer time to integrate the signal above the noise level
during the /7 run with respect to the previous run and it was much more difficult
and time consuming to fully characterise it. I will show that even though we
had a reduced number of torque measurements, we were still able to measure a
possible dependence of the signal on the distance, D,. I will also discuss how
we were able to modify but not cancel the signal spectral amplitude by changing
the voltage applied to the flat mass. We had not found any clear dependence of
the measured signal on the magnetic field, By, which was directly applied to the

masses through a dedicated coil (see chapter [4).

8.5.1 Torques versus distance

Even if during the I run the signal was close to the noise level such that it was
not clearly visible in the space domain (see for example in ﬁg), we studied the
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I versus the dis-

possible dependence of the spectral amplitude at kg = 1/400pum ™~
tance D, between the masses. We performed a number of scans at each distance,
respectively 8, 11, 17 and 23 scans for the distances 4.5, 5.4, 7.3 and 10.4um.
I coherently averaged the torque measurements for each distance (see ﬁg).
During these scans the voltage difference between the masses was cancelled up
to few mV. By plotting the ko spectral amplitude versus D, (ﬁg, we had
not found a clear trend of the data. The signal increased with the decrease of the
distance D, down to D, = 5.4um where it was 1.91x 10711 +£4.7x 102 Nm. It be-
came smaller at a shorter distance, because it was 8.8 x10724+4.6 x 10712Nm at a
distance of 4.5um. During the I1 run we were also able to take three torque scans
at the distance of 3pum finding a torque amplitude of 1.28 x 10~ £4.3x 10712 Nm.
During these torque scans at D, = 3um the voltage difference between the masses

was not fully cancelled but was 0.148V. Further investigation of the found signals

are necessary once the torque sensitivity of torsion balance is improved.
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Figure 8.15: Example of the measured torque versus the D, position of the flat
mass at the distance D, = 5.4pum.

8.5.2 Torque versus applied voltage

At the distance D, of 6m we took a series of torque scans versus the voltage,
Viaq, that we applied to the flat mass: 16 scans with 0.153V, 9 scans with 0V
and 11 scans with —0.3V. After these scans, the superconducting circuits of the

SSTB became normal and we had to refill the cryostat of the liquid helium and
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Figure 8.16: I run: amplitude spectrum of the measured signal versus the dis-
tance D, between the masses.
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Figure 8.17: I run: spectral amplitude at & = 1/400um ™" versus the distance
D, between the masses.
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restore the actuator and levitation currents. We could not take other torque
measurements with higher applied voltages to be directly compared with the one
we had already measured. Because of the lost of the levitation we could not com-
plete the torque calibration of the servo effort for the taken torque scans, which
I present as Volts and not Nm. I analysed the averaged spectrum of these scans
as plotted in ﬁg and plotted their spectral amplitudes at kg = 1/400um ™!
versus Vg in ﬁg I fit the amplitudes with second order polynomials (see
table . I found that even though we were able to modify the signal amplitude
by applying a voltage to the flat mass we could not cancel it. The voltage offset,
Vo = 147mV, which minimised the kg spectral amplitude, was found compatible
with the voltage difference, Vj = 151 + 6mV, we measured between the masses
according to the procedure described in section [3.2)

In another data set, which after the He fill was calibrated in Nm and which
was taken at a similar distance with respect to the previous scans, we found that
with Vj,, = —3V the measured spectral amplitude at ko was 3.1 x 10711 + 7.4 x
10~12Nm. With Viag = 0.144V the ky amplitude was 3.9 x 1072 +£4 x 1072 Nm
which was within the measured torque noise of the SSTB. I will discuss in the
next chapter which are the implications of these torque measurements under the

assumptions of the expected electrostatic forces I modelled in section [3.3
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Vv =0153V
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anf(v}

k (1/um))

Figure 8.18: I run: amplitude spectrum of the servo effort versus the voltage
Viiaq applied to the flat mass
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Figure 8.19: IT run: torque effort spectral amplitude at k = 1/400um =" versus
the voltage applied to the flat mass.

Fit to ‘/eff =A + B (‘/;iaq - %)2
k(um™h) | AWV) | BV | Vo (mV)
1/400 12x107*]23x107° 147

Table 8.5: Result of fit to a second order polynomial of fig[8.19

8.5.3 Torques versus applied magnetic field

We performed a few sets of torque scans versus the magnetic field, By, which we
applied to the surfaces of the masses by using a superconducting coil wounded
around the support of the flat mass as described in chapter [4. The scans were
performed at a distance of D, = 6.2um. The voltage difference between them
was cancelled up to a few mV. In fig[8.20/I plotted the torque spectral amplitude
at ko versus the magnetic field By, which was varied between 0 and 8.4uT. As
shown in table [8.6 the fitted gradient of the measured torque versus the applied
magnetic field had been found compatible with zero. In the following chapter I

will compare this result with the one, which were obtained during the I run.

Fit toI'c;f =a+c- By
k (um™1) a (Nm) ¢ (Nm/uT)
1/400 39x 10712 £36x1072 | 4x 1078 £6.7x 1075

Table 8.6: Result of the linear fit of fig
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Figure 8.20: IT run: spectral amplitude at k& = 1/400um ™"

field, which was applied to the surface of the test mass.

versus the magnetic

8.6 Conclusion

In this chapter I presented all the experimental results, which we obtained during
our first tests of the ISL of gravity at micrometre distances with our prototypes
of the test masses. I reviewed all the procedures, which we defined to set up the
instrument before the torque measurements. I discussed the alignment of the test
masses, the calibration of the absolute distance between them, the cancellation
of their voltage difference and the measurement of the misalignment angle, €2,
between the z motion of the flat mass and its surface. We aligned the test masses
within an error of few tenth of mrad, estimated the distance between them with
an average error of 1um and cancelled the voltage difference between them within
few tens of mV. The misalignment angle, €2, was found to be on average 0.22°.
In this chapter I presented the torque results, which we took during two separate
runs of the ISL tests of gravity. During both runs we used the same flat mass,
but during the I run we used the curved mass A, while during the /7 run we used
the much improved test mass B. During these experimental runs to test the ISL
of gravity at micrometre distances, we measured periodic signals above the noise
level of the SSTB. During the I run the measured signal was characterised by
spectral amplitudes above the noise level at four spatial frequencies, which were
even and odd harmonics of 1/400um ™. The signal, which we measured during
the T run, had only one spectral component above the noise at ky = 1/400um .

The signal of the I run had a ky spectral amplitude, which was 8.4 x 10711 4
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1.5x 107" Nm at the distance D, between the masses of 13m, while the signal of
the 77 run had a ko amplitude of 1.91x 10~ " +4.7x 10~ Nm at the distance D, =
5.4pm. During the /I run we took torque measurements down to a minimum
distance between the masses of D, = 3um. However this distance D, does not
include the roughness of the surfaces of the test masses, which have standard
deviations between 4 and 14um. The spectral amplitudes of the signal, which we
found during the I run, decreased with the increase of the distance between the
masses. Such decay was not fully confirmed for the small signal of the I run.

During both runs we increased the signal amplitude by applying a voltage
difference, V44, between the masses. The induced variation of almost all the
spectral amplitudes of the signal of the I run followed a second order polynomial
in the applied voltage. However the amplitude of the IT harmonics at 2/400um ™
of the I run showed a linear dependence on V.

During the I run we also found a correlation between the signal spectral
amplitudes and the sum of the currents, which were stored in the actuator circuits.
This result indicates a coupling between the measured torque and the magnetic
field, which was generated by the actuator coils. In the I1 run we applied a
magnetic field directly to the test masses but, within the errors of the torque
measurements, we did not confirm the result of the I run. Because the signal
found during the I7 run had low SNR, further experimental investigations are
necessary to better characterise such signal, once the torque sensitivity of the
SSTB will be improved.

The interpretation of the measured signals according to our theoretical models
of the torques, which are acting between the test masses, will be discussed in the

next chapter.
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Chapter 9

Analysis of the results of the ISL

tests

9.1 Introduction

In this chapter I will compare the torque results of our first experimental tests of
the ISL of gravity with the models, which I developed to describe the expected
torques acting between our masses (see chapter ) By doing this I will try to
understand the origins of the measured torques. In fact even though the measured
torque sensitivity of the torsion balance did not let us explore new Yukawa type
deviations from the ISL of gravity, we were able to characterise the torques, which
were acting between the masses. We experimentally discriminated between the
different components of the measured torques (electrostatic or magnetic) with
the scope to further reduce them or at least to confidently fit them out of the
original data. I will also show how the electrostatic torques, which were due to
periodic surface corrugations, had been very useful during the ISL test, because
they make possible to estimate the phase of all the measured signals. I will also
show how the upper limits on the Yukawa type deviations, which were set by the
results of the I run, were better than the ones given by the results of the /7 run.
This difference in the upper limits was due to the high SNR of the signals of the

I run.

203



9.2 Possible origins of the measured torques

I proceed now to analyse the torque results we obtained during our first exper-
imental runs with the prototypes of test masses A, B and C (see chapter ) I
will show how test mass A, which was not uniformly covered by a gold layer but
instead by a silver paint, let us investigate which forces acted between the masses
and which strategies we should adopt to reduce them. Because I am interested
here more in the study of the measured torques than in setting a rigorous upper
limit on the Yukawa forces (which have already been excluded - see chapter|[l]), in
the following section, I will make some simplifications about the test mass geo-
metries and their relative motion. A complete analysis of the measured torques
should also take into account the non-ideal topographies of the test masses (see
chapter |2) and the change of the distance D, as a function of the lateral mo-
tion D,. However I will consider the test masses as ideally flat and cylindrical
and at a constant relative distance, which I will estimate from the torque signals
and/or from the performed CMM measurements (see chapter [J). Even though
in the previous chapter I made a full spectral analysis of the torque measure-
ments, estimating all their spectral harmonics, in the following analysis I will
primarily study the amplitude of the main harmonic at the spatial frequency -
ko = 1/400m ™ - of the density modulation.

9.2.1 Torques from the I run

I will start by looking at the torque results, which were obtained with the mass

prototypes A and C during the “I run”.

Dependence on the distance D,

To investigate the origin of the measured ky amplitudes I analysed how the torque
signal changes versus the distance D, between the masses. It was possible to
fit many possible functions to the experimental data of fig[8.9 (see table [3.4):
the exponential decay associated with Yukawa type forces, the decay due to the
contrast in magnetic susceptibility, the decays associated with the electrostatic
forces due to an uniform potential difference, periodic surface potentials and/or
corrugations (see Chapter table ) However only the fit, which was associated

with the 1/ Dg/ ? decay, predicts a distance offset D,y between the masses (see
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fig[9.1] and table which is consistent with their measured topographies (see
section and table. The estimated D, from the 1/ DS/ ®fit is ~ —234+2um
while the average distance between the masses, which is expected from the CMM
measurements and which is given by the sum of their average depths (see chapter
and table [2.1)), is 29 + 14um.

From the theoretical models of chapter [3, I know that the k¢ torque, which
is associated with the 1/ Dg/ 2 decay, is related to the presence of periodic surface
corrugations and a voltage difference between the masses and/or to the coupling
between unscreened contact potentials and surface corrugations. By applying
a voltage difference between the masses we were able to discriminate between
these two kinds of torques, because it is possible to cancel only the first torque
by applying the appropriate voltage (see chapter ) During the I run we were
not able to cancel the measured torque signal by applying a voltage difference,
so I deduced that unscreened contact potentials were present at least on one of
the masses. I assume that the measured ky corrugation amplitude of the flat
mass is 0.6um (see section and that there are unscreened contact potentials
only on the curved mass. From the gradient « of table and from eq[3.64], the
theoretical model predicts that the amplitude of the contact potentials is +6.8V.
This voltage value is large with respect to the contact potential expected between
gold and aluminium (=~ 1.5V see Section. Therefore other electrostatic forces,
which I had not yet modelled, must be present and influencing the result.

The presence of an uncomprehended electrostatic force is also suggested by
the second harmonic of the torque signal, k;. Its amplitude decays with distance
as 1/ Dg/ ? (see ﬁg and table as expected from eq. If I assume that a
periodic contact potential is present only on the surface of the curved mass, it is
possible to estimate its voltage amplitude from eq[3.65 and from the parameter
A of the fit of the k; amplitude versus the distance between the masses (see table
. The theoretical model predicts that this voltage amplitude is ~ +40V which
is too large for a contact potential.

Even the electrostatic torque associated with the 1/ Dg/ 2 decay can not fully
explain the magnitude of the ky measured torque, because of the fitted torque
offset, —4.5 x 107'2Nm (B in the table . In the following sections I will see
that this torque offset may have a magnetic origin. I will consider this residual

torque as the limiting torque for the I run when I will estimate the upper limits
on the Yukawa forces (see section[9.3).
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Figure 9.2: I run: torque amplitude of the 2/400um ! signal versus the measured
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Fitted function: I'.;; = A(D, — D) **+ B
Dyo (um) A (Nm x pm®/?) B (Nm)
ko | —22.7+ 1.8 6.8 x 107" £ 10" —45x 1072 £22x 10712
k1| —302£27|44x10°£8x107" | —6.0 x 107 £1.2 x 1071

Table 9.1: T run: fit results of fig[9.1 and
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Dependence on the applied voltage

The presence of surface corrugations on the test masses was further confirmed by
the measurements of the torque signal versus the voltage which was applied to the
masses, Vgqq. The ko torque amplitude is well fitted by a second order polynomial
in Viaq (see figl8.12) as expected from eq[3.45 (section [3.3). From the coefficient
dlepp/dVi, = 2.9 x 107 Nm/V? of the fit (see table and assuming an
estimated distance, d,,, between the masses of 52.7 + 14um (D, = 24pm plus the
estimated offset D,y = 28.7+14pm from table I found an average corrugation
amplitude of 0.3 £0.1um. From the CMM measurements I expected a geometric
average of 0.6um (see section .

During the tests with the applied voltages, Vg4, the £y torque was minimised
for Vi, = —3.5V while we independently estimated (see section ) that the
voltage difference between the masses, Vp, was —0.16V. According to eq3.67]
of section this discrepancy between the voltage estimates is associated to
the presence, on the surface of one mass, of periodic contact potentials, which
were coupled with periodic corrugations of the surface of the other one. In this
case, according to eq[3.67] and given the measured ko amplitude of the surface
corrugations of the mass C (see section and table|2.1)), the theoretical model
predicts that voltage amplitude of the contact potentials on the curved mass A
is £85mV.

The torque measurements versus the applied voltages also pose a number of
problems: firstly we found that the measured amplitude of the second harmonic,
k1, linearly changed with the applied voltage, suggesting the presence of an ad-
ditional uncomprehended electrostatic force. Secondly the torque measurements
associated with the applied voltages, which we took at the beginning of the I
run, showed larger amplitudes than the torque measurements, which were taken
in the subsequent phases of the experiment after a few He fills. However it seems
that all these issues were associated with test mass A, because they were not
present in the data of II run during which the said mass was substituted with

the improved mass B (see chapter [2)).

Dependence on applied magnetic field

I now consider the dependence of the measured torque on the magnetic field,
which was incident on the test masses. In fig[8.14 I showed that it was possible to
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fit the ko amplitude by a linear function on the sum of the currents ¢; and iy which
were stored in the actuator circuit. This change of the torque amplitude could
not be attributed to an error associated with a multiplicative constant on the
torque calibration: in that case the calibrated torque would have differed from the
real one just by a multiplicative factor, which was independent from the stored
currents. Therefore the change of the amplitude torque, which was associated
with kg, versus iy + io is a real effect. I can say that the test masses are mostly
influenced by the magnetic field produced by one coil only. The magnetic field
of this coil directly leaked to the back of the support of the curved mass through
a window cut of the float shell. Because at this stage of the analysis I do not
know which coil was responsible for the field reaching the test masses, in fig[9.3 I
plotted the ky amplitude versus each of the currents stored in the actuator circuits
and fitted the data with second order polynomials. Because, from the results of
table[9.2] the measured torques versus the current i; showed the best fit with the
expected function, I assume that the magnetic field reaching the test masses is
simply the one from the coil associated with this current. Fig[9.3 and table
show that the torque amplitude depended on the square of the applied magnetic
field as expected from eq[3.72 However I cannot attribute this torque change to
the torque, which is due by the contrast in magnetic susceptibilities of chapter
, because its sign (see C' of table is opposite to what is expected. Eq
shows that the para/diamagnetic torque has the same phase of the electrostatic
torque, which is due to the surface corrugations and a voltage difference applied
between the masses. If it is possible to increase the torque signal by applying a
voltage to the masses because of the electrostatic forces due to the corrugations,
in the case the magnetic torque is due to the para/diamagnetism, it should also
be possible to increase the torque by applying a magnetic field to the masses.
However, this result is the opposite of what we actually measured (see table
and fig[9.3)).

The fitted torque also had the same sign of the residual torque of fig[9.1 and
table 9.1, which suggests a possible common magnetic origin. Ferromagnetic
impurities left by the manufacturing process over the gold/aluminium stripes can
in principle cause a torque, which is dependent on the applied magnetic field.
However a dedicated analysis of this magnetic torque has yet to be developed in
order to confirm or either exclude this hypothesis against the measurement.

A conservative estimate of the magnetic field versus the current, which is
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Lepr=A+C(I—Iy)?
A0 Nm) [ C (10-2Nm/A3) | T (A)
1 1.14 £ 0.05 —-3.9+0.9 223+0.6
19 1.1+£0.2 —2.7+£27 3.2+3.3

Table 9.2: I run: table showing the results of the fit to a second order polynomial

of fig[0.3

stored in one actuator coil, is dBy/di ~ 20 — 40uT'/A (I obtained this result by
modelling the coil as a classic solenoid). From the fit associated with i; of table
, I derived that dl.sy/diy = 1.7 x 107"*Nm/A at iy = 0. Therefore, from the
previous estimate of dBy/di, I obtained the gradient:
dlepp/dBy =~ 4 — 9 x 107 ¥ Nm/uT (9.1)

This value is the gradient of the measured torque versus the magnetic field, which

was applied to the masses, at By = 0.
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Figure 9.3: I run: torque amplitude of the 1/400um 'signal versus each of the
current, which were stored in the actuator circuit.

9.2.2 Torques from the /] run

The torque measurements of the I/ run, which were performed with masses B
and C showed a great reduction of the signal measured at the spatial frequency
ko. Moreover all the higher harmonics of ky were absent above the noise level.

However, because the torque signal had a low signal-to-noise ratio, it was very
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difficult and time-consuming to measure and characterise it. A measurement of
the torque amplitude that in the I run took only one hour to be completed, during
the /1 run took between the 10 and 20 hours depending on the distance d,, between
the masses. The necessary helium fills and the associated setting-up procedures
were present between different torque measurements, and made more difficult to
compare their results than during the I run. Eventually to further investigate
the origin of the measured torques with these masses, additional tests will be

required once the torque sensitivity of the torsion balance has been improved.

Dependence on distance D,

Due to the small number of the torque measurements versus the distance, D,,
of figl8.17] I cannot fit any possible decay to the data set and thus measure the
offset distance between the masses, Do, which was due to the surface roughness,
as done for the I run. From the CMM measurements of chapter [2 I assume an

average distance offset between the masses of 25 4+ 10um.

Dependence on applied voltage

As in the previous run, we were able to modify but not cancel out the measured
torque by applying a voltage difference between the masses (see ﬁg). The
possible dependence of the induced torque on the square of the applied voltage
suggests the presence of the electrostatic torque due to periodic surface corrug-
ations on the test masses. In this case the measured increase of the torque,
which was obtained by applying 3V on the test masses, implies the presence of
a corrugation amplitudes of 0.4 + 0.2um. From the CMM measurements I ex-
pected 0.46pm. Moreover, the voltage which minimised the torque amplitude,
Viaqg = 147mV | was compatible with the weighted average, 151 & 7mV’, of all the
voltage difference estimates, which were performed during the /7 run (see section
8.2.4).

Dependence on applied magnetic field

During the I7 run, we directly applied a magnetic field up to 8.4uT to the sur-
faces of test masses through a dedicated coil (see chapter [4). We found that the
dependence of the measured torque to the magnetic field was compatible with
zero within the errors, being dT.;;/dBy = 4 x 10713 £7x 107 ¥ Nm /uT (see table
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B.6). By comparing this result with the one of the I run of eq[9.1], I found that
the null result of the /7 run did not completely exclude the magnetic torque, we
measured during the [ run. Both measurements of dI'.r;/dBy are compatible

within the errors.

9.2.3 Torque summary

In the following section I will summarise which torque signals I think we observed
during the first two experimental runs with the SSTB, and the prototypes of the

masses to test the ISL of gravity at micrometre distances.

Electrostatic torque due to periodic surface corrugations

This torque, which in tables and I called I',,,, is due to the electrostatic
forces acting between the masses because of the periodic surface corrugations
and an applied voltage difference. During the I run I'.,. was present in the raw
torque measurements, because, as shown in table[9.3, we were able to change the
ko torque amplitude by applying a voltage difference between the masses, V-
The induced change was found to be proportional to Vd2aq as I expected from
eqf3.45] From the results of the I run, the estimated average amplitude corrug-
ation was 0.3 & 0.1um, half the expected value from the CMM measurements.
The experimental data of the I1 run, even though it bears a reduced significance
due to the low SNR, confirms the presence of this electrostatic torque. The es-
timate of the corrugation amplitude obtained during the /7 run, 0.4 4+ 0.2um, is
compatible with the CMM measurements of table [2.1]

Electrostatic torques due to periodic surface potentials on both masses

This torque, which in tables and I call T, is given by the electrostatic
forces due to periodic contact potentials on the surface of both test masses (see
section [3.3). During the / and I/ runs we did not find any evidence of I,

because the typical D, 12 decay of its ky amplitude was not measured.

Electrostatic torques due to periodic surface corrugations and at least

one periodic surface potential

This torque, which in tables and I call T'copypt, is associated with the

presence of both periodic surface potentials and periodic surface corrugations on
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the surface of the masses. There is some evidence to suggest the presence of this
kind of torque in the data, which was collected during the I run. Firstly the
ko torque amplitude decayed with distance as 1/ Dg/ % as expected from eq
and it was not possible to cancel it by applying a voltage, V., to the masses.
Secondly by modifying the voltage - Vj,, - applied to the masses, the kg torque
was minimised at a voltage which was larger than the direct estimate of voltage
difference between the masses. This discrepancy is predicted in the presence of
both periodic corrugations and contact potentials over the masses by eql3.67.
However, assuming that the periodic potentials were on only one mass, the two
estimates of the amplitudes of the contact potentials obtained from eq[3.64 and
[3.67] are not in agreement, being respectively 68mV and 6.8V. The presence of
another electrostatic torque, for example due to trapped charges, may be the
cause of this discrepancy.

There is no evidence that this kind of torque was present during the I7 run
because the second harmonic at the spatial frequency k; = 1/200um ™! was absent

above the noise level.

Magnetic torques due to contrast in magnetic susceptibilities

I named this kind of torque I's, in table and and it is associated with
the presence of a contrast in the magnetic susceptibilities of the gold and alu-
minium stripes. During the I run we found a dependence of the measured torque
on the applied magnetic field as expected from eq[3.72 but the sign of this mag-
netic torque was opposite to what it is expected from its analytical model (see
section . Therefore the torque due to a periodic contrast in the magnetic
susceptibilities was not the origin of the measured magnetic component of the
torque.

During the I7 run we found no evidence of any dependence of the measured
signal on the applied magnetic field. However, due to the smaller magnetic fields,
which was applied to the mass, with respect to the I test, this null result does

not rule out the presence of the magnetic torque we previously found.

Other torques

Other electrostatic torques, which I had not yet modelled, were present in the

torque measurements of the I run. These uncomprehended torques are respons-

212



ible for the linear dependence of the k; signal on the applied voltage Vg, and
for the change of the kg amplitude during the different measurements of the I
run. These spurious torques, which may be related to trapped charges, must to
be attributed to the particular conditions of test mass A, which was covered by
a silver conductive paint and not by a gold layer. There is no evidence of the
presence of such electrostatic signal within the torque measurements, which were
taken during the I7 run and which were obtained with the improved test mass
B.

An unexpected magnetic torque was measured during the I run and was not
fully excluded by the measurements of the /1 run. It may be related to ferro-
magnetic impurities which might have been deposited within the gold /aluminium
stripes during the manufacturing process. However, this hypothesis has still to

be fully studied and verified against the measurements.

I run Fcor Fcpt Fcm’—"—pt I‘AX
ko 4 (=) + YES (+) — NO (+)
k1 (0) (0) (+) (0)

YES (d,”"? ko)

£(d YES (d4;%?) | NO (d;*/?
(dy) (dy”'") (dy ") YES (72 k)

? (=~constant)

f(Vitag) YES (deaq) (no) YES (Viag) (no)
£(B?) (no) (no) (no) YES (Bj)
Conclusion found not found found? not found

Table 9.3: Comparison of the measured torques of the I run with the modelled
signals, whose expected properties are shown in parentheses.

IT run Fcor Fcpt Fcorert FAX
ko + (—) (+) NO (+)
o 0 (0) 0 (0) NO (&) 0 (0)

7 (d,°* ko)

f(d,) ?(d"%) | 7 (dy ") NOW 1) ? (~constant)

f(Vieg) | YES (Vi) | (no) NO (Vidaq) (no)

f(Bg) (no) (no) (no) NO (53)
Conclusion found not found not found not found

Table 9.4: Comparison of the measured torques of the II run with the modelled
signals, whose expected properties are shown in parentheses.
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9.3 Explored strengths for Yukawa type forces

Following the approach, which was defined in section[3.6, I now set upper limits on
the possible (or already excluded) Yukawa type deviations to the ISL of gravity.
Again, this analysis has more a propaedeutic goal than the scope of setting the
most rigorous upper limits possible. While a rigorous analysis should take into
account the particular topographies of the test masses and the change of d, versus
d,, for the sake of simplicity I here consider the masses to be perfectly flat or
cylindrical and at a constant relative distance. In fig[9.4 I plot the upper limits

on (a, A) for three different scenarios:

1. The upper limit, which is given by the I run after I subtracted the 1/ dz/ 2

decay from the measured data. I assumed that the measurements were
limited by the torque offset of —4.5x 1071242.2 x 102 Nm at the minimum
total distance d, = 42 £ 14um.

2. The possible upper limit given by the measured signal during the /7 run
1.9 x 107" £ 5 x 107'2Nm at the total distance d, = 31 £ 10pum.

3. The potential upper limit I will be able set on (a, A) plot, given the present
torque sensitivity of the torsion balance, 2 x 10" Nm/v/Hz, at the min-
imum reached total distance, d, ~ 30pm and for a nominal integration time
of 1 day. For example during the I run we took torque measurements for

a total of ~ 4.7 days of integration time.

From the third upper limit it is clear that to be able to explore not yet
excluded regions of the possible Yukawa type deviations of the ISL we have to
improve the torque sensitivity of the torsion balance and/or increase its duty
cycle. However it is interesting to note that in principle with the prototypes of
test masses of the I run I was able to set stronger upper limit than with the
improved ones of the /1 run. Even though during the first ISL test we measured
large signals above the noise level, because they had such a good SNR, I was
able to effectively characterise their possible origins and to fit them out of the
original data set. The standard deviations, which describe the surface roughness
of the test masses, is currently larger than the minimum distance D, which was
reached between the masses. To increase the parameter region of the Yukawa type

deviations, which we would like to explore during an ISL test, we would have to
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reduce the long period corrugations of the test masses, which are responsible for

the large standard deviations of the surface roughness.
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Figure 9.4: Upper limits to Yukawa type forces given the two experimental runs
and the possible upper limit at 95% confidence level with the present torque
sensitivity of the SSTB, after a nominal integration time of 1 day.
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9.4 Conclusions

In this chapter I discussed the possible origins of the torque signals we measured
during the first experimental tests of the ISL of gravity, which we performed with
three prototypes of our test masses.

I showed that for the I run the torque signal at the spatial frequency of the
density modulation was given by the sum of many different signals. The strongest
component was given by the electrostatic torque, which was due to the coupling of
periodic surface corrugations of one mass with periodic electrostatic potential on
the surface of the other. The surface of mass A, because it was not well covered by
an uniform layer of gold, presented the periodic surface potentials, which are given
by the contact potentials of the gold and aluminium stripes. The torque, which
was due to the coupling of the corrugations on both masses and the presence of a
voltage difference between them, was also used to estimate the average amplitude
of the corrugations. It was further adopted as a reference signal to establish the
phase of the other measured signals. From the results of the I run the estimated
average amplitude corrugation ~ 0.3 £+ 0.1um was half the expected value from
the CMM measurements of chapter [2. The decay, with the distance D,, of the

I was used to fit a

electrostatic torque at the main spatial frequency 1/400um™
minimum distance - D,o- between the masses, which was due to their surface
roughness. From the data of the I run the fitted D,y ~ —23pm was found to be
compatible with the CMM measurements, which predicted D,y ~ —29 £ 14pm.

During the I run we found evidence of the dependence of the measured torque
on the magnetic field, which was applied to the masses by the actuator coils
through a window cut in the float shell. However, the phase of the measured mag-
netic signal excludes the para/diamagnetic origin, which is related to the periodic
contrast of the magnetic susceptibilities and which we modelled in chapter[3. The
measured magnetic torque may be related to ferromagnetic impurities left by the
manufacturing process over the masses, but this hypothesis has still to be fully
investigated and verified.

The linear dependence of the second harmonic of the measured signal on the
voltage, which was applied to the masses, also indicated the presence of another
kind of electrostatic torque. However this signal, which has still to be fully
understood, must be associated with the particular conditions of the test mass

A. The presence of signal at the k; harmonic and its linear dependence on the
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applied voltage was not found during the /7 run when we substituted the mass
A with the improved mass B.

During the I run it was much more difficult and time consuming to charac-
terise the torque measurements with respect to the I run, because the measured
ko signal was weaker and had smaller SNR (the SSTB torque noise level was
in fact unchanged). Because during the /7 run, at the second harmonic of the
density modulation, k; = 2/400um ™!, there was no signal above the noise level,
I deduced that the surface contact potentials of test mass B were better screened
with respect to mass A and that their associated torque was reduced below the
SSTB noise level.

During the 11 run, by applying a voltage difference to the masses we confirmed
the presence of periodic surface corrugations whose amplitude was 0.4+0.2um and
compatible with the CMM estimates. However, during the /7 run I could not
fit the torque measurement versus the distance and therefore obtain the offset
distance between the masses, Dyo. The associated CMM estimate was —25 +
10pm.

During the I test we found no evidence of the dependence of the measured
torque on the applied magnetic field but, because of the smaller applied magnetic
field with respect to the I run, I cannot exclude the presence of the magnetic
signal which was detected during the I run.

Because the torque signal of the I run was stronger than the one measured
during the /1 run, I was able to better characterised it and subtracted the elec-
trostatic signal, which was decaying as D 5/ 2, from the original data-set. The
upper limit on the Yukawa violations of the ISL of gravity which was obtained
from the data of the I run, was therefore better than the one given by the data
of the II run. However both upper limits were in the already excluded area of
the Yukawa type violations. An improvement of torque sensitivity of the torsion
balance is necessary to further characterise the torques, which were measured
with the improved masses B and C, and to explore new possible violations of

Newton’s law of gravity.
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Chapter 10
Overall conclusions

In the last few years many theories related to quantum gravity hypothesised
new violations of the ISL of gravity at sub millimetre distances. In this PhD
thesis I presented the experimental test of Newton’s law of gravity at micrometre
distances that we are developing at the School of Physics and Astronomy of
the University of Birmingham. Our approach is based on a novel design of the
sample masses and on the use of the spherical superconducting torsion balance
(SSTB), which is magnetically levitated at 4.2K and which is currently in its
second version. Another novel feature of our experimental approach is the lack
of any electrostatic shield between the masses.

As shown in this thesis, during the last few years we studied, manufactured
and characterised the first prototypes of the test masses for our ISL tests of
gravity. To optimise the design of the geometry of these masses, I developed the
analytical models of the gravitational and electromagnetic forces, which are acting
between them. The Newtonian torque, which is due to the mass density modu-
lations associated with the gold and aluminium stripes constituting the masses,
is expected to be 8.7 x 1071 Nm at a distance of 15um between the masses. For
comparison the thermal noise of the torsion balance is 3.9 x 10~ Nm/v/Hz. 1
created the analytical models which describe the electrostatic forces due to pos-
sible periodic corrugations and/or unscreened contact potentials over the surface
of the test masses. I found that, in the case where the contact potentials are
properly screened by a uniform gold layer over the test masses, the electrostatic
torques, which are due to periodic surface corrugations, will be the strongest sig-
nal we will measure. This signal is expected to be 5.67 x 1074 Nm for 50mV

of voltage difference between the masses, an average corrugation amplitude of
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0.5um and at a distance between the masses of 15um. I also presented the mod-
els for the weak torque due to the Casimir force, which are given by the periodic
surface corrugations, and the torque due to the magnetic force, which is given
by the periodic contrast of magnetic susceptibilities of the gold and aluminium
stripes. I completed the modelling of expected torques by presenting the numer-
ical models of the possible Yukawa forces which might violate the ISL of gravity
at submillimetre distances.

This thesis was also dedicated to the analysis of the MKII SSTB, which was
developed during the last few years to measure the Casimir force at 4.2K and
to test the ISL of gravity at micrometre distances. A lot of work was dedicated
toward the goal of defining an overall analytical model of the SSTB. This model
predicts the expected torque sensitivity of the balance given all the known noise
sources and help us to identify the necessary modifications to improve the instru-
ment. I developed a full 3D model of the dynamics of the torsion balance, which,
given the metrology of the float (for example its moments of inertia or its natural
torsional stiffness), predicts the coupling of the float with all the components
of the seismic noise (horizontal, vertical and tilt). I expect that the dominant
contribution to the input torque noise, to which the float is subjected, is given
by the direct coupling of the float with the tilt noise. This model predicts that,
given some assumptions on the tilt seismic spectrum and on the tilt coupling of
the float, the torque noise, which is given by the ground oscillations, is around
2.5 x 107 ¥ Nm/VHz.

The MKII SSTB, with respect to its previous version, is based on a servo
system which is adopted to keep the float at a constant angular position. To pre-
dict the transfer function between the torque, which is externally applied to float,
and the feedback torque, which we measure, and to quantify the expected meas-
ured torque noise level, it was necessary to analyse the servo loop of the SSTB.
I presented the analytical models of all the subsystems of the servo loop, like the
capacitive readout, the digital PII2D compensator and the magnetic actuator
system. I characterised their open loop transfer functions and measured their
noise spectra. I predicted the closed loop transfer function of the SSTB between
the applied and measured torque and I found that, for 30 — 40s natural period of
the torsion balance, the expected dominant torque noise is 5 x 1072 Nm/ VHz.
This theoretical noise limit is given by the the readout noise of the capacitive

bridge. I found that if we are able to increase the natural period by a factor of
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a few, we will easily reduce this noise contribution below the expected seismic
torque noise. Thanks to the analytical model of the servo loop, I showed that the
torque noise given by the current source is also greatly reduced by the feedback
loop of the torsion balance.

The second part of this PhD thesis was dedicated to the presentation and
discussion of the low temperature results we achieved with the SSTB and with
the sample masses during the first tests of Newton’s law of gravity.

I discussed the torque calibration protocol of the SSTB, which we defined
during the ISL tests of gravity. I compared the measured performances of the
SSTB with the associated theoretical predictions. We are able to damp down the
parasitic modes of the SSTB by Eddy current dissipation as it was planned and to
change the natural stiffness of the balance by modifying the current, which were
stored in the actuator circuits as it was theoretically expected. We also measured
the closed loop transfer function of the SSTB between the applied and measured
torque, which at low frequencies is in agreement with the analytical model. T had
indirect evidence of the reduction at low frequencies of the torque noise, which
is given by the current source and which was cancelled out by the feedback loop.
We also measured the additional torque offset, which was acting on the float
and which we had to counterbalance by storing the appropriate currents in the
actuator circuits. Because of these currents the maximum period of the torsion
balance was limited to &~ 30—40s. This extra torque, which was also found during
the Casimir tests, might be related to asymmetries of the float shell which couple
with the levitation magnetic field. The torque noise level, we measured during
the ISL tests, was 2 x 107 Nm/v/Hz at 30mHz and higher than the expected
value. After some preliminary tests we found a large coupling of the measured
torque with the ground tilt, dT'/df7 = 8.77 x 107" Nm/rad, which may explain
the origin of the torque noise. This tilt coupling might be due to magnetic flux
trapped within the float, to asymmetries of the float shell itself or to magnetic
impurities in the damper cylinder of the float.

In this PhD thesis I also discussed the first preliminary tests of Newton’s law
of gravity at micrometre distances, that we performed with the manufactured
prototypes of the test masses. 1 discussed the procedures, we defined during
these experiments, to set up the alignment of the masses within a few tenths
of mrad, to calibrate their relative y distance within 1um and to cancel the

voltage difference between the masses within a few tens of mV. We measured
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an unexpected misalignment angle between the x motion of the micropositioner
and the surface of the test masses, which was found to be on average 0.22°. As
a consequence the D, distance between the masses linearly varied with the D,
position of the flat mass. During these first ISL tests, we also found that we
were able to take torque measurements down to a minimum distance between the
masses of D, = 3um. This distance does not include the roughness of the surfaces
of the masses, which had standard deviations between ~ 4 and ~ 10um. This
minimum distance, which was reached thanks to the lack of any electrostatic
screen between the masses and to the angular stability of the torsion balance
(4.4 x 10_5md/\/H_z at 30mHz for 40s natural period), is, to our knowledge,
the smallest distance between masses, which had been reached during a test of
the ISL of gravity.

The ISL tests with the prototypes of the test masses were very useful to check
most of the expected torques acting between them and reveal new possible ones
which might limit the sensitivity to violations of Newton’s law. We successfully
performed two experimental runs, which I called the I and I7 run, during which
we measured periodic signals at the spatial frequency of the density modulation,
ko, (but not exclusively) with two combinations of the test masses. During the 1
run we used the flat mass C and the curved mass A, which was the first one to be
manufactured, and which was not well covered by the gold layer but partially by
a Silver paint. During the I run we substituted the mass A with the improved
mass B, which was well covered by an uniform gold layer. The signal we meas-
ured during the I run was found to have a bigger amplitude and richer spectral
components of the signal of the I7 run. While the signal of the first run had kg
spectral component 8.4 x 10~ +1.5x 107 Nm at the distance of D, = 13um, the
signal of the 11 run was a few times smaller, being 1.91 x 10~ £4.7 x 1072 Nm
at the distance of D, = 5.4um. The signal of the I run had also other spectral
components at higher harmonics of kg, as 2kq, 3ko and 4k, which were above the
noise level, while the signal of the I run had none.

It was possible to properly characterise the signal of the I run because of its
high SNR. The measured torque was found to decrease with the increase of the
distance D, and to increase with the voltage, which was applied to the masses.
We also measured a correlation between the measured torque and the currents,
which were stored in the actuator circuits. This correlations indicates a coupling

of the measured signal with the magnetic field of the actuator coils. In fact the
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magnetic field from at least one coil was able to reach the masses through the
windows cut in the float shell behind the support of the curved mass.

A improved torque sensitivity is instead necessary to fully characterise the
signals we measured during the /1 run, which had lower SNR with respect to the
ones of the [ run.

Given the experimental evidence and the theoretical models of the expected
torques, I think that the signal, we measured during the I run, is made of the
sum of a few signals of different origins. The main component is the electrostatic
torque, which is due to the coupling of the surface corrugations on the flat mass
with the periodic contact potentials on the surface of the curved mass A because
this mass was not well covered by the top gold layer. As expected from the
theoretical model of this electrostatic torque, the ky signal was found to decrease
with the distance D, between the masses as D, 5/2 and we were not able to cancel
it by applying a voltage difference to the masses.

We also found that we were able to excite the torque, which is due to the sur-
face corrugations, by applying a voltage difference to the masses. We were able
to use this signal as a reference to determine the phase of the other measured
torques. A signal of magnetic origin was detected, because of its dependence on
the applied magnetic field. This magnetic torque was not due to the contrast of
magnetic susceptibilities, because of its opposite sign with respect to our analyt-
ical estimate. Perhaps ferromagnetic impurities left by the manufacture or by the
polishing process on the masses might be the cause of this magnetic signal but
further theoretical and experimental investigation is necessary to both confirm or
either exclude such this hypothesis. During the I run we also measured a linear
dependence of the second harmonic (k1 = 2kg) of the signal to the voltage, which
was applied to the masses. The k; amplitude was also found to decrease with
the distance D, as D, 5/2, Probably another electrostatic torque, which I have
not yet understood and modelled but which is maybe due to trapped charges,
is responsible of the measured characteristics of the k; amplitude. This signal
was specifically associated with test mass A because the k; amplitude was not
detected above the noise level during the I/ run, when we substituted mass A
with the improved mass B. With the I/ run we proved that we were able to
effectively reduce the size of the spurious signals by improving the quality of the
test masses. However the reduced signals were more difficult to characterise as

they approached the torque noise level. During the I/ run we were still able
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to excite the electrostatic torque due to the surface periodic corrugations. The
amplitude of the corrugation was ~ 0.4um. We did not confirm the presence of
the magnetic torque, which was found during the I run, or clearly established the
dependence of the measured signals on the distance, D,, between the masses.

Given the measured spurious signals and torque noise of the SSTB, which were
measured during this preliminary tests of the ISL of gravity, we did not explore
new parameter areas describing possible Yukawa type deviations of Newton’s
law. However these preliminary tests and the theoretical analysis of the expec-
ted forces were extremely useful. Thanks to them I can establish which are the
improvements to the masses and to the balance, which are necessary to explore
the expected ISL violations of gravity at micrometre distances with future exper-
iments. The first improvement which has to be addressed is the enhancement of
the torque sensitivity of the SSTB. We need a reduction of the torque noise level
of the SSTB to properly characterise the torque signals from the masses B and
C and, if possible, to fit them out of the data as done for the I run.

The biggest gain will come from a new electroformed copper float with niobium
sputtered on its inside. The new float would reduce both the coupling with the
ground tilt noise and the residual torque acting on the float. Therefore with the
new float we would be able to choose a longer natural period for the SSTB and
decrease the effect of the readout noise on the torque noise. The new float has to
be left untouched without any windows and it should be magnetically actuated
otherwise with a superconducting insert or with external superconducting plates.
The lack of any window cuts on the float shell will isolate the test masses from
the magnetic fields of the levitation and actuation coils.

A low frequency tilt meter can be used to characterise the tilt spectrum of
laboratory ground and to confirm the tilt seismic noise as the actual noise source
which limits the torque sensitivity of the SSTB. Moreover the tilt meter should
be included in an active isolation system to actively reduce the ground tilt which
is acting on the float.

To reduce magnetic fluxes, which might be trapped within the float shell, a
lifting and heating device based on a Attocube can be used to lift the float and
thermally cycle it before activating the levitation field.

The optical interferometric readout, which we are developing within our group
[62], should be used in place of the capacitive readout to further reduce the

readout noise and the associated torque noise. The optical readout will also
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greatly simplify the calibration protocol of the SSTB, because we will be able to
apply voltages to the float while in the same time accurately read out its angular
position.

It will be also very useful to adopt a cryocooler to increase the duty cycle of the
SSTB and reduce the time spent for its calibration with respect to the time ded-
icated to the torque measurement. To reduce the spurious forces, we measured,
we have to ensure that no magnetic tools are used during the manufacture and
polishing process of the test masses. An additional Attocube micropositioner has
to be adopted to compensate for the misalignment angle between the direction
of motion of the flat mass and its surface.

We will have to adopt a non contact procedure (like optical) to character-
ise the topographies of the masses and to improve the polishing process of the
surfaces such that the standard deviation of their roughness is reduced below a
few microns. It is however important to leave some periodic surface corrugations
on the masses. Such periodic corrugations had been proven to be very useful
to estimate the phase of the signals which cannot be measured otherwise. The
torque, which is given by the periodic corrugation, and a voltage applied to the
masses can also be used to measure the distance between the masses, without
letting them to touch.

It will be very useful to study a new manufacturing process and produce new
masses with much smaller pitch, down to tens of microns or even less. These new
masses will let us explore possible Yukawa violations of Newton’s law at even

smaller ranges with respect to the masses we manufactured so far.
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Appendix A

Integration of the Newtonian

potential

In this appendix I gives some more details about the integration of eql3.21| to
obtain eq describing the gravitational potential between the curved and flat
test mass. I here rewrite eq3.21] as:

w/2 @L—i-

W
(I)(d:vvdy):_27rG(pl_p2)// /Rcos@ o (dy + s + )+

~W/2-© Re2 0
2

7’L7TW 2’/L7T 277.77

A K
W—; cos A (2, +dy))e”

Wyt t90)) dy, dy,d6, da, (A1)

where y, and g, are the variables of integration respectively over the y ex-
tension of the flat mass and of the rib, 6, is the variable of integration over the
angular extension of the curved rib and z, over its x extension (see fig[3.2)). The
result of the integration of the previous equation over on the thickness of the flat

mass in the y direction is the expression:

w/2 o Ly+E& R0

O(dy,d,) = —21G(py — ps) / / / Rcosd|( ( g (dy+y")))+

-W/2— R02
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(A.2)
I exclude therefore the constant term proportional to WL2/(2A) because it will
give origin just to a constant additive term of the potential, which is independent
of d, and d,. The result of integration over the rib thickness in the y direction is

then given by the equation:

w/2 e
ROPLAW LW L3W
O(dy, dy) = =27G(py — py) / /RCOSH[— SA oA A dy+
—-W/2-©
2sin(2Z%) o 2rniy N2 s 02
—e A *7(7+dy)
+Z<2n7r) ™ cos( A (vr +da)) (1 ¢’ ) e |dbdz,
(A.3)

I exclude again all the constant terms, which are independent of d,, and d,. Hence

I integrate on the angular extension of the rib, obtaining;:

w/2
2RL}W sin © K 2 sm(””w)
®(dy, dy) = —27G(p; — po) / [_—dy + Z (2n7r)

™m
—W/2 n=1

2mnLy 2 2nmdy
-cos(QnTﬂ(xr—i—dx)) (1o 5) e 1/%6&( HXR@)]dx,, (A4)

where erf(z) is the error function, integral of the Gaussian distribution and is

given by the equation:

erf(z \/_/ *dt (A.5)

I finally integrate over the rib thickness in the = direction and find the equa-

tion:
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where I used the trigonometric identity:

sina — sin 8 = 2 cos <¥> sin (a ;— B) (A.7)

Hence I multiply the integral by the mass density contrast (p; — py) of the

curved mass and the number of ribs L,/A where L, is the total length of the
mass in the x direction, obtaining eqi3.22}

L. 2Rsin®OL3W2d, <L/ A \* (2sin(22¥))?
®(d,,d,) = —QWG(Pl—Pz)QK[_ Ay y+z(2n7r) ( =
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Appendix B

Dia-paramagnetic torque

For completeness we report here the analysis of [74] about the expected magnetic
torques due to the contrast in magnetic susceptibilities between the gold and
aluminium stripes and to the presence of a magnetic field By perpendicular to
the mass surface (see fig[3.18). According to [78] the energy density for unit area

of a parallel plane configuration is given by the equation:

1 1 = ik d’k
E,, — ’u_o// TR s (2 JAa) Cra(k)e 5<27T)2

with Cya(k) the Fourier transform of the 2-d cross correlation function per

(B.1)

unit of area of the B-fields, B,,, measured at the surfaces of the masses. If the
masses are in an uniform background magnetic field, éo, the bulk of the masses

will be polarised and have magnetisation field:

— X —
M = B B.2
2, B2

At the surface of the masses the magnetisation gives origin to the field H:

—

B = 1 (M + ﬁ) (B.3)

For the continuity of the magnetic fields B at the surfaces we have H=—M.
Hence the expected value of B at the surfaces of the masses is given by the

equation:
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Q

If the susceptibility contrast depends just on x and not on z we have that:

1 Cha(dy)

E = __ B.
PP o 2w /A sinh(27/Aa) (B-6)
with
1
Cha(dy) = = / By (2) Bpo(z — dy)dx (B.7)
0

If we assume also the susceptibility contrasts are sin functions of z with amp-

litude Ax/2 given by the equations:

—

A _
Bpi(z) = HOTX sin (27 /Ax) By (B.8)

Bua(x —d,) = _ﬂo% sin (27 /A(z — d,)) By (B.9)

The total energy integrated over all curved surface is therefore given by the

equation:
Lz/2
£ _ _LmAX2Bg cos (2m/Ad,,) / dz (B.10)
e 8o 27 /A sinh(27/A (d, + 22/(2R))) '
—Lz/2

The force acting between the masses is therefore given by the expression:

Lz/2

dz
sinh(27/A (d, + 22/(2R)))

2
% sin (27/Ad,) /
Ho

—Lz/2

Fay ~ — (B.11)

from which we obtain the torque given by eq[3.72,
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Appendix C

The capacitive bridge: transfer
function and noise analysis

To model the output current of the capacitive bridge to the input of the pre-
amplifier, I write its mesh equations [20], [34] (see fig|C.1). Supposing that the

coupling between s, and [s; is negligible and that Ly = Ly = L3 = L, the mesh

equations describing the capacitive bridge are the following ones:

LiwL —iwMIg +iwly, = V) (C.1)

1
—iwMI, + I, < :

1wl

—i—iwL) — IpiwM = 0 (C.2)

. . 1 .
iwMI, — LyiwM + I (iwC'Q + ZwL) = 0 (C.3)
o M
| ] s, S
:VD |p 1 T
%) :
| < S !
: |—2 |S2 = :
| = :

Figure C.1: Capacitor bridge in the measurement configuration.
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The previous system when solved will give the solution for I; and I, whose

sum is given by the simple formula:

IS = Isl + ]52 = ZACCU% (C4)

The pre amplification stage of the measurement mode is given by a charge
amplifier (see fig}6.3) whose voltage output can be written as [88]:

Vour = =21 (C.5)

with Z; the impedance of the feedback line given by the parallel impedance
of C¢ and Ry. |V, is given by the equation

Ry

H/out‘ = 5 2 2Is (06)
\/1+wRCY
By substituting Iy with eq[C.41T find:
A R
‘dA(; = ! woVo (C.7)

meas. \/ 1 -+ W%R?C]%

Thanks to the Norton theorem the capacitive bridge of the measurement mode
can be modelled as an ideal current source, I, in parallel with an output imped-

ance Z, which is approximated by the equation:

1
Zs N —————~
iw(Ch + Cs)

The noise model for the amplification stage is shown in fig|C.2 where four

(C.8)

noise sources have been considered [87]: the voltage (FE,) and current noise (I,,)
source of the op-amp AD745 and the voltage Johnson noise sources (V,,; and
Vop) of the resistances, Ryand R,. C,., is the capacitance to ground of the
coaxial cable connecting the float to the pre amplifier input. Assuming that the
compensation impedance is chosen to minimize the effect of the bias current and
that all the mentioned noise sources are not correlated, the voltage noise at the

output V. is given by the following formula [87]:
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Figure C.2: Noise model for the amplifier in the masurement mode.
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(C.9)
The amplitude spectrum densities of the Johnson voltage noises, V,,; and V,,,,,

are given as white noise level as V/v/ Hz by the equations [87]:

Va
Vnout = ([an)2 + !

V., = \/AKsTR, (C.10)
V., = AK5TR; (C.11)

with Kp the Boltzman constant and 7" the ambient temperature of the amp-
lifier. If Z;, is the input impedance of the pre amplifier, which is given by the
parallel impedance of Z, and C.,4., the not inverting gain, G,,;,., is given by the

equation:

Zy
. — 12
annv + Zl (C )

inchoam

= — C.13
1+iWCfRf ( )

C
~ 1 o C.14
+ (C.14)
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Noise source | Output Voltage noise (nV/v/Hz)
I, 15
E, 118
R, 30
Ry 23
Total 124

Table C.1: Table of the contribution to the output voltage noise of the pre amp-
lifier of the capacitive sensor.

where the last equation as been obtained in the limit of w > 1/CyR;.

In the measurement mode the adopted operational amplifier AD745 has cur-
rent noise I,, = 6.9fA/+/Hz and voltage noise E, ~ 2.9nV/v/Hz at T0kHz. The
capacitance to the ground C.,,, was measured to be C,,,, = 400pF and the op-
erational amplifier has R, = 1.5MQ and C, = 0.33nF" (see ﬁg. The working
temperature is the room temperature one T' = 293K. In the table I report
the output noise contribution for each element according of the predictions of the
eq[C.9

The actual noise level predicted for the amplifier output is given mainly by
the voltage noise of the op-amp which is amplified due to the high capacitance to
ground of the coaxial bringing the current from the float to the amplifier input.
This noise has to be summed in quadrature with the measured input noise of our
lock-in amplifier ~ 200nV/ vV Hz to obtain the total lock-in input noise.
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Appendix D

General transfer function for a

servo loop

The demonstration of eql6.4§ is quite straightforward. From figl6.14 I can write
that:

1<n<j i<n<N

v, = [[ #. ][] H.B (D.1)
j<n<t
B = |[[ H.Y;+ R (D.2)

Hence by substitution of eq[D.2 in eq/D.]]

i<n<N 1<n<y

g, T H.
Y, = 11 11 R

J all i
1-[ &

The transfer function between R; and Y; is therefore given by the equation

(D.3)

Y.
Tor(R;,Y;) = ﬁj (D.4)
i<n<j
H,
e 0.5

all

1—HHn

where i < n < j stands for (i <n < N)&(1 <n <j).
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