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ABSTRACT

This work concentrates on the selection and improvement of di�erential equa	
tion based models of the penicillin G fermentation
 Published penicillin fer	
mentation models have been reviewed and compared with regard to their
abilities to predict fermentation behaviour� genetic algorithms have been ap	
plied to the design of optimal experiments for model parameter estimation�
and a new approach to assessing the theoretical identi�ability of model struc	
tures has been proposed
 When applied to the best penicillin fermenation
model yet found� this new approach suggests that the model�s parameters
are uniquely identi�able


The best performing model was shown to be a morphologically structured
model for which measurement data related to the various morphologically
distinct regions were obtained using image analysis
 This model was modi�ed
to increase its speed of execution� and extended to describe fermentations
where lactose was present in the inoculum


Design criteria from the �eld of optimal experiment design were combined
with genetic algorithms as a technique for searching through the range of pos	
sible input combinations� subject to constraints on the fermenter operation�
to develop experimental feed pro�les


The theoretical identi�ability of the fermentation model has been assessed
for the �rst time� using a novel approach to identi�ability testing which uses
a symbolic mathematics package� along with subsequent post	processing� to
determine almost at a glance whether or not a fermentation model should be
uniquely identi�able
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�� INTRODUCTION

The University of Birmingham Centre for Bioprocess Engineering Rolling

Grant Project B� �Monitoring and Physiological Control of Productive Fer	

mentations� proposes to combine physiological models of fermentations with

Arti�cial Neural Networks �ANNs� to produce hybrid models and to inves	

tigate their applicability for use in monitoring and controlling the penicillin

fermentation


The work described in this thesis forms part of that larger body of work

aimed at developing control and optimisation applications based on physio	

logical models of the penicillin fermentation
 It is intended that the result	

ing applications should be the best that can currently be achieved� based

solely on physiological equation models� and that the applications developed

would provide a baseline for performance against which schemes using arti�	

cial neural networks� and hybrid schemes incorporating both arti�cial neural

networks and physiological model equations� could be compared


��� The Penicillin Fermentation

The penicillin fermentation has been performed industrially since the Second

World War
 The original Penicillium notatum cultures had yields of only �

mg�l� but searching many di�erent varieties of Penicillium led to the identi�	
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cation of the higher	yielding variant Penicillium chrysogenum
 A systematic

process of deliberate exposure to mutagens and screening to �nd high yield	

ing mutants� along with improvements in fermentation operation and media

have given an increase in titre to over � g�l �Primrose� �����


The world market in penicillin is competitive� with recent developments

in India and China leading to oversupply and a consequent drop in the price

of penicillin from � ���bu in the middle of ���� to � ��bu in the second

quarter of ����� but the size of the market as a whole is still considerable� de	

spite a drop in production from about �� metric tons in ���� to around

��� metric tons in ���� �Chemical Market Reporter� �����
 With the

market remaining competitive� and new producers in India and China in	

creasing their output� the improved operation and control of fermentations

remain important concerns for penicillin producers


��� Fermentation Modelling

Fermentation models are produced for two main reasons� to test hypotheses

about the way in which the fermentation behaves� and to provide a relatively

quick and cheap way of experimenting with fermentation feed pro�les and

control strategies
 In this thesis we are mainly concerned with being able

to predict the behaviour of a fermentation� with the goal of using a model

which describes the fermentation well in developing an open	loop optimal

feed pro�le to maximise the pro�tability of the fermentation


Although unstructured models� where the biomass is treated as an aver	

aged� lumped whole have been used to model the penicillin fermentation� the

validity of using such an approach to model fermentations which employ �la	
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mentous fungi has been challenged �Nielsen� ������ since  the growth mech	

anism of �lamentous fungi is � � � completely di�erent from that of unicellular

organisms! and so  for a complete description of fermentation processes it is

� � � important to consider the hyphal structure!


����� Types of model

Sch"ugerl ������ gave the following list of levels on which models used in

biotechnological applications may be developed
 �Both the level on which

the models are developed and descriptive names for the type of models were

given
�

� molecular or enzyme level �enzyme synthesis models�

� intracellular component level �structured cell models�

� cellular level �kinetic models�

� cellular environmental level �unstructured reactor models�

� dynamic cellular environmental level �structured reactor models�

Since the availability of on	line fermentation measurements is essential

for models to be used as part of a control system� it is not currently pos	

sible to develop control systems based around Sch"ugerl�s �rst two levels of

model� enzyme synthesis models and structured cell models� as on	line mea	

surements of enzyme and intracellular concentrations are not feasible
 Of the

remaining three levels listed� the cellular level and the cellular environmental

level are commonly combined when constructing fermentation models� with

simple kinetics being used to describe biomass growth� product formation
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and substrate consumption� and the assumption commonly being made that

the fermenter is well	mixed and so may be approximated by a continuous

stirred tank reactor �CSTR�


The models considered in this work are typically made up of terms de	

scribing processes which are known or proposed as occurring during the

course of the penicillin fermentation
 Historically such models have been

built up using terms familiar to fermentation engineers� such as Monod�

Contois and inhibition kinetics �Nielsen and Villadsen� �����
 �The equa	

tions de�ning the models considered in the course of this work are given

in Appendix A
� Although these do not describe the underlying metabolic

processes carried out by the organism� they are generally accepted as be	

ing good approximations to the gross� overall behaviour observed during the

fermentation �Nielsen and Villadsen� �����


Attention has speci�cally not been focussed on models based around ar	

ti�cial neural networks� as one of the goals of the overall project within

which the work described in this thesis lies is to provide the best exploita	

tion of knowledge	based di�erential equation models of the penicillin fer	

mentation� against which the performance of pure arti�cial neural network

models and hybrid di�erential equation�arti�cial neural network models in

control	related applications may be compared


��� Model�based Control Applications

Provided that a model gives a su�ciently close description of how the fer	

mentation proceeds� it may be possible to make practical use of it
 Three of

the more common applications of models in fermentation control strategies
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are to estimation of states and rates� open	loop optimisation of feed pro�les

�and other input pro�les�� and to the construction of controllers themselves


��	�� Estimation

The use of models in constructing state and rate estimators for use with fer	

mentations occurs often in the published literature
 A range of techniques has

been applied to the on	line estimation of fermentation states� with extended

Kalman �lter approaches possibly being the most common �Tarbuck et al��

����� N�ahl�#k and Burianec� ����� Pons et al�� ����� Shi and Yuan� �����

Lee and Ricker� ����� Myers et al�� ������ recursive parameter estimation

�Montesinos et al�� ����� is an alternative that has been applied to a struc	

tured model describing the Candida rugosa fermentation
 Di Massimo et al�

������ applied both partially and fully adaptive estimators to the estimation

of biomass concentration using o�gas measurements taken from an industrial

penicillin fermentation


Estimators have also been constructed to track growth and production

rates on	line �Hardwicke et al�� ����� Cazzador and Lubenova� ����� Farza et al��

����� and have been integral in the construction of control schemes associ	

ated with pre	designed� open	loop optimal fermentation trajectories �Gattu

and Za�riou� ����� King� �����
 It is therefore not unreasonable to assume

that ultimately an on	line estimator for the penicillin fermentation may be

constructed using the re�ned models available after using the methods de	

scribed later in this thesis
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��	�� Optimisation

The use of models in seeking optimal control trajectories for the penicillin

fermentation has a long history� and many attempts at this have been made

over the years �Fishman and Biryukov� ����� Lim et al�� ����� San and

Stephanopoulos� ����� van Impe et al�� ����� van Impe and Bastin� �����

Rodrigues and Filho� �����
 The models used as the bases for these designs

were the model due to Ramkrishna et al� ������� the widely used model of

Bajpai and Reu������� and the model of Nicolai et al� ������


��	�	 Control

The use of models in the construction of controllers for fermentations is al	

most inextricably bound up with the previous two model applications
 Since

on	line measurements of fermentations tend to be limited� with o�gas analysis

being the most common high	rate measurement� such analysis is frequently

used as input to state estimators with the state estimate produced being

employed as the measured value in controllers designed to track pre	designed

optimal trajectories �King� �����


Montague at al� ������� working with models of the penicillin fermen	

tation� combined an extended Kalman �lter with a self	tuning controller


Van Impe and Bastin ������ used the penicillin	G fermentation to illustrate

the performance of adaptive controllers making use of three di�erent sets of

available measurements� biomass and substrate concentrations� the substrate

concentration only� and on	line measurement of the carbon dioxide evolution

rate �CER�


It is anticipated that future work� following on from that described here�
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will consider the use of the best	performing di�erential equation based models

in the optimisation� estimation and control of the penicillin fermentation


��� The Importance of Good Models

The better the model �ts and predicts fermentation data� the closer to the

optimum any �optimal� feed pro�le designs based on the model will be� the

less di�culty there is likely to be in constructing on	line estimators �using the

more frequent o�gas� dissolved oxygen concentration and dissolved species

�HPLC� measurements� to produce estimates of biomass concentrations be	

tween sample intervals for use as a part of a control scheme� and the easier it

may be to produce a robust control scheme which can cope with inaccuracies

in the model
 For these reasons� this thesis concentrates on selecting the

best performing of the existing published models of the penicillin fermenta	

tion� and on designing experiments to produce data on the basis of which

con�dence in the model�s parameters may be increased


��� Layout of this Thesis

This thesis outlines the process by which the best of the available penicillin

fermentation models was identi�ed and re�ned� and then goes on to describe

theoretical applications concerned with model identi�cation and model iden	

ti�ability


� Chapter two

In order to be con�dent that we have found the best basis against

which to compare the ANN applications� it was considered reasonable
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to start with the penicillin fermentation model which best describes the

behaviour of the penicillin fermentation� both in �tting to measured

data and in predicting the behaviour of fermentations


� Chapter three

Having found the best	performing of the existing penicillin fermenta	

tion models� some work was then necessary to improve the performance

of the model for our purposes
 This involved simplifying part of the ex	

isting model� with consequent improvements in simulation speed� and

adding a model state and relationships to describe the way in which an

additional substrate� lactose� is used during the fermentation


� Chapter four

On the basis of this modi�ed fermentation model� work was then car	

ried out on optimal experiment design� with the goal of improving con	

�dence in the model parameter estimates
 This involved using genetic

algorithms� which are introduced later in this chapter


� Chapter �ve

Attention was also been paid to the question of whether or not the

parameters which �t the model to the data are unique or not
 Ex	

isting nonlinear model identi�ability techniques were reviewed� and a

simple approach was developed from these� which is shown to give the

same conclusions as the existing methods� but which seems simpler to

use
 Although limited in its power with respect to one of the exist	

ing methods� the simple approach is considered to be adequate for our

purposes
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��� Hardware and Software

All the work described in this thesis was carried out using IBM compatible

personal computers
 Two di�erent operating systems were used� Microsoft

Windows �
�� running over Microsoft DOS �
�� and Red Hat Linux release

�
� �Kernel �

���
 The modelling and experiment design work was done

on a Windows PC� using Matlab �
�c with Simulink �
�c� also using the

Matlab Optimization Toolbox� and the Genetic and Evolutionary Algo	

rithms Toolbox �Pohlheim� �����
 Version �
� of the Watcom C compiler

was used to produce cmex �les and for Simulinkmodel acceleration� Maple V

release � was used to produce matricial di�erentials and to generate C code�

and to perform manipulations and simpli�cations to the model equations�

with Perl �
� �on the Linux PC� being used as the scripting language for

post	processing Maple text output
 This thesis was written using LATEX��

running on a Linux PC




�� SELECTING THE BEST MODEL

��� Introduction

The penicillin fermentation is an industrially important antibiotic fermenta	

tion� and is commonly studied as a model system for secondary metabolite

production
 A large number of models of the process have been published

in the literature� ranging in complexity from simpler unstructured models

such as that of Bajpai and Reu� ������� where the biomass is modelled as

a single lumped mass� to more complex morphologically structured models

such as that of Megee et al� ������ where the biomass is broken down into

distinct fractions by association with product formation� or on the basis of

observable morphological di�erences
 �Here� models that divide the biomass

solely into live and dead fractions are regarded as unstructured
�

In this chapter� we consider penicillin models with regard to their use	

fulness for optimisation and control studies
 It is anticipated that the fer	

mentation may be controlled by varying the substrate concentration in the

fermenter� that penicillin is the product of interest� and that both the rate of

biomass growth and the rate of penicillin production depend on the substrate

concentration� as well as the biomass concentration
 Hence a minimum re	

quirement for us to consider a model for such uses is that it represent biomass�

substrate and penicillin concentrations
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First we consider the bases of the terms from which the models are con	

structed� with regard to the ways in which they represent observed features

of the fermentation
 Then we present a comparison of the performance of

the models in tuning and validation against a single� common pair of fermen	

tation records


The models were originally de�ned for a range of di�erent fermentation

conditions� both in terms of fermenter scale and of medium composition


Our comparison here is based on two sets of fed	batch fermentation data

produced for identical conditions of fermenter scale and medium composi	

tion �Paul et al�� ������ di�ering only in their input feed rate pro�les
 These

fermentations were performed using a penicillin	G producing strain of Peni�

cillium chrysogenum� and so the models are being compared particularly with

reference to penicillin	G producing fermentations


��� Model Structure Comparison

As mentioned earlier� models of the penicillin fermentation should include

at least states representing the biomass� substrate �commonly modelled as a

single limiting component� often glucose� and penicillin concentrations� and

our e�orts have been focussed on how accurately the collected models predict

these three states


As originally published� some of the models included additional nutri	

ent states� such as dissolved oxygen �Bajpai and Reu�� ����� lactose and

lysed biomass concentrations �Kluge et al�� ������ or additional products

�Megee et al�� ����� or product precursors �Nestaas and Wang� ������ or

additional expressions� such as the carbon dioxide production rate �Mon	
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tague et al�� �����
 Since the data we have used in comparing the perfor	

mance of the models do not include measurements for any of the above �the

measured data are for the biomass concentrations� both as individual� mor	

phologically distinct fractions and as total biomass concentration� and for the

glucose and penicillin concentrations�� we cannot consider them here
 When

these models were built for tuning and comparison� the in$uence of such

terms on biomass growth� substrate consumption and penicillin formation

was neglected� with these terms being replaced with constants
 �The carbon

dioxide production has been modelled as being dependent on biomass con	

centration and growth rate� and penicillin formation rate �Montague et al��

������ but no in$uence of the dissolved carbon dioxide concentrations on

biomass� substrate or penicillin concentrations was modelled
� As a result of

setting such terms constant� two of the models were e�ectively reduced to a

common form �Bajpai and Reu�� ����� Montague et al�� �����


The following models have been compared�

� Unstructured

� Fishman and Biryukov ������

� Heijnen et al� ������

� Bajpai and Reu� ��������

� Nicolai et al� ������

� Kluge et al� ������

� Menezes et al� ������

� Tiller et al� ������
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� Morphologically structured

� Megee et al� �����

� Nestaas and Wang ������

� Cagney et al� ������

� Paul and Thomas ������

Of the above models� the majority �Fishman and Biryukov� ����� Ba	

jpai and Reu�� ���� van Suijdam et al�� ����� Nestaas and Wang� �����

Cagney et al�� ����� Tiller et al�� ����� described generic penicillin produc	

ing fermentations
 Most of the others �Heijnen et al�� ����� Nicolai et al��

����� Menezes et al�� ����� Paul and Thomas� ����� referred speci�cally to

the production of penicillin	G
 Only the model of Kluge et al� ������ was

originally proposed as describing a penicillin	V forming fermentation


The model of Megee et al� ����� was originally proposed as a general

model for mould growth� associating product formation with di�erent frac	

tions of the mould
 Although it was originally presented with reference to

Aspergillus awamori� it is considered here as a candidate for use in modelling

the penicillin fermentation because of the model�s general structure
 In us	

ing this model to describe the penicillin fermentation� we have assumed that

both of the non	growth	associated products given in the original model �see

Appendix A
�� are penicillin
 The growth	associated product in the original

model has been ignored


The penicillin fermentation has a number of distinct observed features�

each of which may be represented by a term in the models
 These include

the following�
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�
 Biomass terms

�a� Biomass growth

�b� Conversion between biomass fractions

�c� Biomass lysis

�
 Substrate terms

�a� Growth related consumption

�b� Production related consumption

�c� Maintenance related consumption

�
 Penicillin terms

�a� Formation

�b� Hydrolysis

�
 Dilution terms

To describe the fed	batch fermentation data used here� these would be

of the form F �Zin�Z�
V

� where F is the input feed rate� Z is the concen	

tration of some model state in the fermenter� Zin is the concentration

of the same state in the feed� and V is the volume of medium present

in the reactor


The models for the penicillin fermentation that have been published in

the literature have used di�erent symbols to describe similar states found and

processes occurring in the models
 To ease comparison between the models�

they have been collected together here� rewritten in a common form
 The
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model descriptions may be found in Appendix A
� for unstructured models

and Appendix A
� for morphologically structured models


����� Biomass terms

Biomass growth

Growth is described� for the majority of the models� by either Monod kinetics�

dX

dt
%

�XSX

KS � S

or Contois kinetics


dX

dt
%

�XSX

KXX � S

Of these� the Monod expression was historically the �rst �Monod� ������

and has been widely used� as it is simple and models using it are easily anal	

ysed
 The models of Heijnen et al� ������ �Eqn A
��� Nicolai et al� ������

�Eqn A
��� and Kluge et al� ������ �Eqn A
��� calculate the growth rate

from the substrate uptake rate� which is modelled using a Michaelis	Menten

kinetic �mathematically identical to the Monod expression�
 The morpho	

logically structured models of Megee et al� ����� �Eqns A
������� Cagney

et al� ������ �Eqns A
������ and Paul and Thomas ������ �Eqns A
��
���

all model growth behind the hyphal tips as following Monod kinetics� with

the formation of new hyphal tips by branching from other hyphal states also
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modelled as following Monod kinetics
 According to Nielsen and Villadsen

�������  the Monod model has been shown to correlate fermentation data

for many di�erent organisms
! However�  the satisfactory �t of the Monod

model to many experimental data should never be misconstrued to mean

that the Monod equation is a mechanism of fermentation processes
!

The Contois expression �Contois� ����� is an alternative to the Monod

expression� used in modelling systems where the biomass increases to a con	

centration considered to have a signi�cant direct e�ect on the speci�c growth

rate� causing it to decrease with increasing biomass concentration
 This form

was �rst used in modelling the penicillin fermentation by Bajpai and Reu�

����� �Eqn a
��� and has subsequently been used in models based thereon

�Montague et al�� ����� Nicolai et al�� ����� Menezes et al�� ����� �Eqns A
���

A
�� and A
��� respectively�


Nestaas and Wang ������ divided the growth into two phases� a �growth

phase� and a �production phase�
 In the �growth phase� the rates of growth of

both tips and bulk hyphal material were linearly proportional to the concen	

tration of tips �Eqns A
������
 In the �production phase� tip growth ceased

and the growth rate of bulk hyphal material remained linearly proportional

to the tip concentration �Eqns A
�����


Conversion between biomass fractions

Morphologically structured models �Megee et al�� ���� Nestaas and Wang�

����� Cagney et al�� ����� Paul and Thomas� ����� �Subsections A�
�� A�
��

A�
� and A�
�� include terms which describe the rate at which one biomass

fraction changes to another� say from being growing tips to general hyphal
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material
 These include expressions to describe processes which have previ	

ously been named �di�erentiation�� �degeneration� and �dormancy�
 Provided

that these sets of expressions are internally consistent� with material being

conserved as it moves from one state to the next� there is little that can be

said about them at this time


Biomass lysis

Autolysis terms describe the rate at which the biomass is destroyed


Van Suijdam et al� ������� modelling the growth of Penicillium chryso�

genum in pelleted form� stated that it is known that mycelia in fermentations

undergo lysis at low oxygen or substrate concentration
 Indeed� it is generally

accepted that microorganisms will eventually lyse at low oxygen or substrate

concentration
 However� we assume here that the oxygen concentration in

the fermentation broth does not fall to levels liable to result in lysis


There are models which include a state representing dead or dormant

biomass �Megee et al�� ���� Fishman and Biryukov� ����� Nestaas and

Wang� ����� Cagney et al�� ����� Menezes et al�� �����
 These do not model

lysis as such� but do include �death� terms for the conversion of biomass from

a live� active state into an inactive state


A number of models include lysis terms which result in the destruction

of biomass
 Kluge et al� ������ �Eqn A
�� and Paul and Thomas ������

�Eqn A
��� model lysis as proceeding at a rate linearly proportional to the

concentration of �inactive� biomass
 Tiller et al� ������ use an age	dependent

term to calculate the lysis coe�cient �Eqn A
���
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����� Substrate terms

Carbon balancing suggests that there should be substrate consumption or

endogenous metabolism terms expressing the utilisation of substrate material

in the formation of biomass and product
 It is also appreciated that viable

biomass uses energy� derived from substrate� for biomass maintenance


Growth related consumption

All of the models considered describe the growth	related consumption of

substrate using a constant yield coe�cient


Production related consumption

Most of the models considered here model penicillin production related sub	

strate consumption using a constant yield coe�cient
 There are only two

exceptions which do not have a substrate consumption term associated with

product formation �Megee et al�� ���� Fishman and Biryukov� �����


Nicolai et al� ������ included a term to describe endogenous production�

occurring at low substrate concentrations �Section A �
��
 This took the

form of a modi�er� ��� e�S�EP �� multiplied by the production rate� where S

is the substrate concentration and EP is a constant


Maintenance related consumption

The model of Fishman and Biryukov ������ does not have a term to describe

consumption of substrate associated with the maintenance requirements of

the biomass
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Of the models that do consider biomass maintenance� four do so by means

of a linear term proportional to the amount of biomass present �Bajpai and

Reu�� ���� Nestaas and Wang� ����� Montague et al�� ����� Tiller et al��

����� �Eqns A
��� A
��� A
�� and A
��� respectively�
 In a model this type of

term can result in substrate being consumed even when there is no substrate

present
 Although this is mathematically feasible� it is clearly a biological

impossibility


Four models �Megee et al�� ���� Cagney et al�� ����� Menezes et al�� �����

Paul and Thomas� ����� use a Monod type �Michaelis	Menten� expression

to describe the maintenance substrate consumption rate �Eqns A
��� A
���

A
�� and A
��� respectively�
 This term goes to zero as the substrate goes

to zero� thus avoiding the feasibility problem associated with a term purely

proportional to the biomass concentration


The model of Nicolai et al� ������ has a complex substrate consumption

expression� which models endogenous metabolism �Eqn A
���
 The main	

tenance term in this model is of the form ms � �� � e�S�Em�� where ms is

the maintenance coe�cient� S is the substrate concentration� and Em is a

constant


Heijnen et al� ������ �Eqn A
�� and Kluge et al� ������ �Eqn A
���

consider the biomass maintenance as consuming a portion of the substrate

taken up by the hyphae
 This has the e�ect of reducing the growth rate� but

does not a�ect the rate of substrate uptake itself� which is modelled using

Michaelis	Menten kinetics


The maintenance term is easier to understand for unstructured mod	

els� where it represents consumption of substrate which is not associated
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with either growth or product formation
 For the morphologically struc	

tured models� what has been referred to here as the maintenance term is

often proportional to the terms used to describe conversion between biomass

states
 This conversion contributes neither to biomass growth nor to product

formation� and so may be regarded as a maintenance process


����	 Penicillin terms

Penicillin is a secondary metabolite of Penicillium chrysogenum� and its pro	

duction is known to be non	growth	associated
 Its rate of formation is known

to be reduced at high glucose concentrations� presumably as a result of some

inhibition or repression mechanism
 The mechanism of this is not yet known�

and so no speci�c form can be indicated for the penicillin formation term


Formation

The most common form for the production term is a type of inhibition kinet	

ics �rst used in the context of penicillin fermentation modelling by �Bajpai

and Reu�� ����


Production rate %
�PSX

KP � S�� � �S�KI��

This is used in both unstructured and morphologically structured models


In the unstructured models �Bajpai and Reu�� ����� Montague et al�� �����

Nicolai et al�� ������ production has been associated with the total amount of

biomass present in the system �Eqns A
��� A
�� and A
�� respectively�
 The
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Fig� ��� Product formation relation used by Heijnen et al�� ����

structured models �Cagney et al�� ����� Paul and Thomas� ����� associate

the production with a speci�c portion of the biomass �Eqns A
� and A
���


In none of the structured models is production associated with the hyphal

tips� where hyphal growth is most active
 Menezes et al� ������ observed

no catabolite repression of production in their work� and so replaced the

inhibited formation term with a simpler� Monod	type product formation term

�Eqn A
���


Two models �Heijnen et al�� ����� Tiller et al�� ����� relate the prod	

uct formation rate to the speci�c growth rate of the biomass �Eqns A
� and

A
���
 Both assume a minimal growth rate� below which product forma	

tion decreases with decreasing growth rate
 Tiller et al� ������ also make

use of a maximal growth rate� above which the product formation starts to

decrease with increasing growth rate
 These two relationships are shown in

Figures �
� and �
�
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Fig� ��� Product formation relation used by Tiller et al�� ����
��p� is the lower limit of the maximum penicillin formation rate�
�p� is the upper limit of the maximum penicillin formation rate�	

Other models have used age	associated production �Fishman and Biryukov�

����� �Eqn A
��� or production via a postulated intermediate �Nestaas and

Wang� ����� �Eqns A
������
 As stated earlier� in Section �
�� the two non	

growth	associated products in the model of Megee et al� ����� �Eqns A
��	

��� have been lumped together and assumed to be penicillin
 Their rates of

formation are described using Monod kinetics
 All of these expressions can

represent non	growth associated kinetics� and any of these expressions could

be associated either with the total biomass present� or with some distinguish	

able portion of the biomass


The term used by Kluge et al� ������ �Eqns A
������ may be shown to
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be equivalent to a steady	state inhibition rate expression� with an additional

constant in its numerator� subject to a �rst order lag


Hydrolysis

It is known that penicillin undergoes hydrolysis to penicilloic acid in aqueous

solution �Benedict et al�� ������ and that the reaction is �rst order with

respect to penicillin
 Three of the models do not have hydrolysis terms

�Megee et al�� ���� Fishman and Biryukov� ����� Heijnen et al�� �����


����� Dilution terms

The descriptions of the models given in Appendix A
� do not include dilution

terms� but the models as built and tuned do
 The general derivation of the

dilution terms is as follows


Generally� for species X in reactor volume V 


Accumulation % In� Out� Reaction

The total quantity of speciesX present in the reactor is xV �concentration

times volume�
 Rewriting the above equation we have

d&V�x'

dt
% Qixf �Qoxo � V�r ��
��

V
dx

dt
� x

dV

dt
% Qixf �Qoxo � V�r ��
��
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the volume rate expression is given by

dV

dt
% Qi �Qo ��
��

So� dividing throughout by V � we obtain the general form

dx

dt
�
x�Qi �Qo�

V
% �r � Qixf �Qoxo

V
��
��

For a batch reactor� Qi % Qo % 

dx

dt
% �r ��
��

For a fed	batch reactor� Qo % 

dx

dt
% �r � Qi�xf � x�

V
��
��

For a CSTR� Qi % Qo

dx

dt
% �r � Qixf �Qoxo

V
��
��

So� to model a generic reactor� useful for batch� fed	batch and continuous

fermentation� we have�

dx

dt
% �r � Qixf �Qoxo

V
� �Qi �Qo�x

V
��
��

In the above� Qi is the feed rate to the fermenter� xf is the concentration
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Biomass Substrate Penicillin
Model Name Growth L
 G
r
 P
r
 M
 Production H

Megee et al� Monod

p p p p
Monod �

Fishman and Biryukov Monod � p � � Age	related �
Heijnen et al� Monod � p p p

Linear �
Bajpai and Reu� Contois � p p p

Inhibited
p

Nestaas and Wang Linear
p p p p

Precursor
p

Cagney et al� Monod
p p p p

Inhibited
p

Montague et al� Contois � p p p
Inhibited

p
Kluge et al� Monod

p p p p
See App
 A

p
Nicolai et al� Contois � p p p

Inhibited
p

Menezes et al� Contois
p p p p

Monod
p

Tiller et al� Monod
p p p p

See App
 A
p

Paul ( Thomas Monod
p p p p

Inhibited
p

Tab� ��� Summary of features included in the models
�
p

 Feature present� �
Feature absent	

�L�
Lysis� G�r�
Growth related� P�r�
Production related�
M�
maintenance� H�
Hydrolysis�

of species X in the feed� Qo is the rate of removal of liquor from the fermenter�

xo is the concentration of speciesX in the stream leaving the fermenter� and x

is the concentration of species X in the fermenter
 The distinction between

xo and x is made� because in the case of online measurement of dissolved

species using HPLC� the sampled stream leaving the fermenter is �ltered�

and so the concentration of insoluble biomass fractions in the sample stream

is zero� which is not the same as that in the fermenter
 The withdrawal of

a �ltered sample stream acts in such a way as to concentrate the insoluble

species in the fermenter


����� Summary of model features

Table �
� summarises the terms found in the models
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��� Comparing Model Performance

The models� performances in �tting to and predicting fermentation behaviour

were compared using data supplied by Paul ������


��	�� Fermentation method

The data used in tuning and validating the models were taken from two � litre

working volume fermentations carried out using a pre	production strain of

Penicillium chrysogenum under the same conditions of fermenter scale and

medium composition
 The fermentation protocol used was that described

by �Paul et al�� �����
 The two fermentations di�ered only in the substrate

feed pro�le used
 The �rst data set used was produced using a constant

feed pro�le� whilst the second was produced using a feed pro�le with a step�

followed by a decreasing ramp
 Both feed pro�les are shown in Figure �
�


These feed pro�les were used in the original work of Paul et al� ������ to

investigate the in$uence of substrate concentration on the rate of vacuole

formation and hyphal di�erentiation


The two data sets produced� for constant feed rate� and time	varying feed

rate� comprise eighteen and nineteen measurement times respectively� with

all states �four biomass states and three soluble species� being measured

coincidentally at irregular intervals which vary from four to twelve hours

�measurements being more frequent during the �rst � or so hours of the

fermentation�


Image analysis was used to measure the relative proportions of di�ering

morphological fractions� following the method used by Paul et al� ������


The fractions identi�ed here are those used by Paul and Thomas ������ in
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Fig� ��� Feed proles used in generating the data sets used
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their model
 These will not necessarily be the same as� nor correlate well

with� the fractions de�ned in other morphologically structured models� as

image analysis was not used in determining the biomass fractions for the

earlier models


��	�� Modelling and tuning methods

The models were built using Matlab and Simulink� and tuned using rou	

tines from the Matlab Optimisation toolbox
 Simulink is a block	diagram

oriented modelling tool� the Simulink block diagram for the model of Paul

et al� ������ is shown in Figure �
�
 A least squares routine �Levenberg	

Marquardt algorithm� was used to tune each model�s parameters� with the

target error function being calculated as follows


� Simulate the model over the time period of the reference data set� using

a fourth order Runge	Kutta algorithm


� Interpolate linearly within the model output to obtain simulated values

corresponding to the times of the experimental measurements


� Calculate the di�erence between the measured and simulated values


� Weight the di�erences for each model state by the inverse of the max	

imum value in the measured data set for that state
 Weighting each

state using ���noise variance�� a commonly used approach� was con	

sidered� but the approximate assumption that the noise is Gaussian

becomes less true for low state values 	 considering particularly the low

values observed for the glucose and penicillin concentrations 	 with the
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distribution of the noise possibly becoming skewed in favour of positive

noise values
 The approach used here attempts to normalise the di�er	

ence values with respect to the maximum measured values of each of

the states


� Square and sum the weighted di�erences
 �This is done by the optimi	

sation routine�it works on the matrix of weighted di�erences
�

Mathematically� the target function can be expressed as follows�

Error %
nX
i��

��
Xmeas�i� �Xsim�i�

max�Xmeas�

��

�

�
Smeas�i� � Ssim�i�

max�Smeas�

��

�

�
Pmeas�i� � Psim�i�

max�Pmeas�

��
�

where the summation is carried out for all times corresponding to measure	

ment times� and the subscriptsmeas and sim denote measured and simulated

values respectively


��	�	 Validation results

If a model were to predict perfectly the behaviour of the system� there would

be a residual least squared error between simulated and measured data� re	

lated to the noise on the measurements
 Assuming that the noise is Gaussian

and proportional to the magnitude of the measurement �this is a simpli�ca	

tion� as errors are likely to be larger relative to the measurement value for

small values�� this expected residual error can be calculated
 Here we have

assumed that the percentage errors on the three measured states are as fol	

lows� Biomass � �)� Substrate � �)� Penicillin � �)
 Expected residual
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errors for the constant and time	varying input data sets are given in Table

�
�
 Since the magnitudes of the expected error values are proportional to

the assumed percentage errors� expected error values for other percentage

errors may be obtained by appropriately scaling the values given here


State Constant Input Varying Input
Biomass ��)� 
� 
��
Substrate ��)� 
� 
�
Penicillin ��)� �e	� �e	�
Overall � �� � ���

Tab� ��� Expected residual errors for a perfect model �normalised for each state
with respect to its maximum measured value� and summed to give the
overall error	

For both of the sets of fermentation data� the models were tuned as

described above� and then validated against the set of data not used in the

tuning
 The results of validating the models are shown in Figures �
� to �
��


For comparison purposes� the summed least squares errors for biomass� sub	

strate and penicillin concentrations� along with an overall value� have been

tabulated
 Errors for tuning using the constant feed pro�le and validating

against the time	varying pro�le are given in Table �
�
 Errors for the converse

are given in Table �
�
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Model Name Summed Squared Error
Biomass Glucose Penicillin Overall

Paul and Thomas 
� 
� 
� 
��
Kluge et al� 
� 
�� 
�� 
��
Cagney et al� 
� 
�� 
� 
��
Megee et al� 
�� 
�� 
�� 
�
Nicolai et al� 
� 
�� 
� 
��
Menezes et al� 
� 
�� 
�� 
��
Bajpai and Reu� 
� 
�� 
�� �
�
Fishman and Biryukov 
�� 
�� 
�� �
��
Heijnen et al� 
� 
�� �
�� �
��
Tiller et al� 
� 
�� 
�� �
��
Nestaas and Wang 
�� ��
�� �
�� ��
��

Tab� ��� Validation results for tuning using the constant feed data set �normalised
for each state with respect to its maximum measured value in the time�
varying feed data set� and summed to give the overall error	

��� Discussion

����� Diculty in tuning models

Tuning biological models is di�cult
 There is no guarantee that the �opti	

mum� parameter sets reached using optimisation methods are global� opti	

misation techniques may converge to a local optimum� depending on initial

conditions
 There may also be di�culties in determining exact values for

speci�c parameters as model terms may often be reduced to simpler forms

for extreme values of model states
 For example� consider the Contois ex	

pression for the speci�c growth rate� �XXS��KXX � S�
 At low substrate

concentrations� this expression reduces to the linear form� �XS�KX 
 �These

two forms are plotted for comparison in Figure �
�
� In the data sets used
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Model Name Summed Squared Error
Biomass Glucose Penicillin Overall

Paul and Thomas 
� 
� 
� 
��
Cagney et al� 
� 
�� 
� 
��
Menezes et al� 
�� 
� 
�� 
��
Nicolai et al� 
� 
�� 
�� 
��
Megee et al� 
�� 
�� 
�� 
��
Bajpai and Reu� 
� 
� 
�� 
��
Kluge et al� 
� 
�� 
�� �
�
Heijnen et al� 
� 
�� �
�� �
��
Tiller et al� 
�� 
�� 
�� �
��
Fishman and Biryukov 
�� 
�� �
�� �
��
Nestaas and Wang �
�� ��� �
�� ���

Tab� ��� Validation results for tuning using the time�varying feed data set �nor�
malised for each state with respect to its maximum measured value in
the constant feed data set� and summed to give the overall error	

here� the substrate concentration is reduced almost to zero after the �rst

� hours of the fermentation
 Whilst there is a large discrepancy between

the Contois expression and its linearised form for the �rst � hours of the

fermentation� this corresponds to only four or �ve measured data points
 So�

although we may be con�dent that we have obtained an appropriate ratio of

�X to KX � we should be a little less certain about the absolute values


Given that the morphologically structured models have more states and

parameters than unstructured models� they have more �degrees of freedom�

when being tuned� and so it might be supposed that by varying their param	

eters they may be �tted to a wider range of data
 There is also the possibility

that models may be �over	�tted� to the data used in tuning� thereby mod	

elling both the fermentation behaviour and the noise on the measurements
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The average prediction errors from Tables �
� and �
� are all greater than

the expected best possible prediction errors in Table �
�
 For the assumed

percentage errors used in calculating the expected errors� this suggests that

none of the models has been �over	�tted� to the experimental data


����� Comparison of models� performances

For comparison purposes� the models are divided into three groups
 The

unstructured models are divided into two groups� those which are related to

the model of Bajpai and Reu� �Bajpai and Reu�� ���� Nicolai et al�� �����

Menezes et al�� ����� Tiller et al�� ������ and those which are unrelated

�Fishman and Biryukov� ����� Heijnen et al�� ����� Kluge et al�� �����
 The

morphologically structured models �Megee et al�� ���� Nestaas and Wang�

����� Cagney et al�� ����� Paul and Thomas� ����� are treated as a single

group


Unstructured models related to the model of Bajpai and Reu� ������

Graphs comparing the fermentation behaviour predicted by unstructured

models related to the model of Bajpai and Reu� ����� with the measured

fermentation data are given in Figures �
� and �
�


The two models which do not have explicit biomass destruction terms

�Bajpai and Reu�� ���� Nicolai et al�� ����� predict the biomass pro�le

better than the other two� neither overestimating the biomass concentration

at the end of the growth phase� nor predicting an excessive decline in the

biomass concentration during the production phase


The four models have di�erent expressions describing the rate of sub	
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strate consumption associated with biomass maintenance
 The poorest per	

formance in predicting the substrate pro�le is that of Tiller et al� �������

which uses an age	dependent maintenance term
 For low substrate concen	

trations� both the exponential form used by Nicolai et al� ������ to describe

the in$uence of endogenous maintenance� and the Monod form used for the

maintenance term by Menezes et al� ������ may represent the maintenance

substrate consumption better than the linear form used in Bajpai and Reu�

�����


The model of Menezes et al� ������ di�ers from the others in that it uses

a Monod kinetic to describe the penicillin production rate� as opposed to the

substrate inhibition kinetic
 This causes the predicted penicillin concentra	

tion to start increasing earlier than is observed for the measured values
 Using

an inhibition kinetic makes the penicillin production rate extremely sensitive

to changes in the substrate concentration� this is the most likely explanation

for the di�ering penicillin pro�les generated by the models of Bajpai and Reu�

������ Nicolai et al� ������ and Tiller et al� ������
 �Tiller et al� ������

relate the penicillin production rate to the speci�c growth rate as shown in

Figure �
�
 This may be considered equivalent to a crude approximation to

the substrate inhibition kinetic
�

The divergence between the measured and predicted penicillin concen	

trations for the model of Bajpai and Reu� ������ for fermentation times

greater than �� hours� tuned on constant feed rate data and validated on

time	varying data �Figure �
�� may be due to small errors in the prediction

of the associated glucose concentration
 The penicillin production kinetic�

�PSX��KP �S���S�KI��� when plotted as a function of glucose concentra	
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tion� has a narrow peak� and small errors in the predicted glucose concentra	

tion therefore cause disproportionate changes in the shape of the predicted

penicillin pro�le


Unstructured models not related to the model of Bajpai and Reu� ������

Graphs comparing the fermentation behaviour predicted by unstructured

models not related to the model of Bajpai and Reu� ����� with the measured

fermentation data are given in Figures �
� and �
�


The model of Fishman and Biryukov ������ models only �actively grow	

ing� biomass
 Here we have assumed that only growing hyphal tips are �ac	

tively growing biomass�
 The models of Heijnen et al� ������ and Kluge et

al� ������ predict their respective biomass pro�les reasonably well� whilst

that of Fishman and Biryukov ������ performs badly
 This may be because

the assumption that only hyphal tips are �actively growing� is poor or due to

the di�culties in relating the states of Fishman and Biryukov ������ to the

reference states of Paul and Thomas ������


The model of Fishman and Biryukov ������ predicts the substrate con	

centration during the growth phase reasonably well� but in the production

phase of the fermentation the model consistently predicts substrate values

which are higher than the measured values
 This is probably due to the

presence of a postulated inhibitor in the model
 The model of Kluge et al�

������ predicts the substrate concentration in the growth phase better than

does the model of Heijnen et al� ������ when tuning on data obtained using

a constant feed rate �Table �
��� but worse when tuned on data obtained

using a time	varying feed rate �Table �
��
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The model of Heijnen et al� ������ has a function describing the penicillin

production rate which relates it to the speci�c growth rate �illustrated in

Figure �
��
 This expression saturates with increasing speci�c growth rate�

thus approximating a Monod type kinetic� in contrast with the more common

substrate inhibition kinetic� which passes through a maximum
 Using this

form to describe the penicillin production rate results in a predicted penicillin

concentration pro�le of the wrong form� increasing earlier than the measured

values� and levelling o� after the initial growth phase


Structured models

Graphs comparing the fermentation behaviour predicted by morphologically

structured models with the measured fermentation data are given in

Figures �
� and �
��


Three of the four morphologically structured models considered here are

similar in form �Megee et al�� ���� Cagney et al�� ����� Paul and Thomas�

�����
 The other morphologically structured model �Nestaas and Wang�

����� is fundamentally di�erent in that its description of the fermentation is

divided into two distinct portions��growth� and �growth and production�
 All

three similar models include at least three distinct biomass fractions� growing

tips� productive hyphae �just �behind� the tips�� and degenerating material


The model of Megee et al� ����� has three productive hyphal portions� two

of which are associated with non	growth	associated products


The model of Nestaas and Wang ������ performs far worse in predicting

fermentation behaviour than the other models
 In this model� the biomass

growth rate is described as being independent of the substrate concentration
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The rate of penicillin production� via a precursor� is described as being depen	

dent solely on the biomass concentration
 The constructed equation describ	

ing changes in the substrate concentration is derived from these expressions�

and so is also independent of the substrate concentration
 This means that

the predictions made by this model only depend on the data for which it

is originally tuned� and are� with the exception of the predicted substrate

pro�le� independent of the input feed pro�le
 The substrate concentration

predicted by the model is calculated from feeding and consumption terms


Since the substrate concentration in$uences neither the biomass growth rate

nor the product formation rate� the substrate consumption term is �xed

when the model is tuned
 Changes in the feed pro�le thus directly a�ect the

predicted substrate concentration
 Therefore� however well tuned this model

may be for a given data set� it is not useful for control or optimisation


The model of Megee et al� ����� does not predict the biomass concen	

tration as well as the other two
 However� as this model has �ve biomass

states� with many terms describing transitions between them� it is hard to

identify any single explanation for this
 It is possible that this model has

a structure for which the parameters cannot be accurately identi�ed using

only the available measurements of the total biomass� substrate and penicillin

concentrations


The models of Cagney et al� ������ and Paul and Thomas ������ both

make good predictions of the biomass pro�le
 From Figures �
� and �
�� it

can be seen that the separation between the predictions of Paul and Thomas

������ and Cagney et al� ������ decreases for simulation times greater than

� � hours
 In Figure �
�� the predictions are seen to cross
 This observation
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may be due to the presence in the model of Paul and Thomas ������ of a

biomass lysis term� which that of Cagney et al� ������ does not have


In the model of Cagney et al� ������� the overall growth rate of biomass

is described by one term


�X
n��

dXn

dt
%

��X�S

KS � S

Here Xn are the individual biomass states �tips� subapical fractions� de	

generate regions� in the Cagney model� X� represents the hyphal tips� �� is

the speci�c growth rate� by extension� of the biomass� S is the substrate con	

centration� and KS is a Monod	type constant
 The above expression depends

on X� and S
 The rate of change of X� itself is given by the following


dX�

dt
%

�X�S

KS � S
� �X�

�� S

Here X� is the concentration of the subapical fraction� � is a branching

coe�cient� and � and � are di�erentiation coe�cients
 For low values of S this

expression becomes negative� resulting in decreasing X� and thus a reduction

in the overall growth rate of biomass
 Eventually� the overall growth rate of

biomass may be reduced to less than the e�ect of the dilution� at which

point the total biomass concentration will start to decrease
 This point is

not reached with the model as tuned for either of the two data sets considered

here


As degenerated hyphae� the state assumed to undergo lysis� is involved
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in neither penicillin formation nor substrate consumption� lysis terms only

directly in$uence the biomass concentration
 The addition of a lysis term to

this model would introduce a rate of decrease term to the expression describ	

ing the overall biomass concentration
 This may improve the prediction of

overall biomass concentration towards the end of the fermentation� and may

also cause a change in the proportions of the other biomass states� possibly

improving the model�s substrate and penicillin predictions


The main di�erence between the fermentation prediction errors of Cagney

et al� ������ and Paul and Thomas ������� illustrated in Figures �
� and

�
�� and summarised in Tables �
� and �
�� is in the substrate error
 This is

possibly due to the fact that the model of Paul and Thomas ������ has two

additional substrate consumption states� associated with maintenance of the

hyphal tips and growth by extension of the productive hyphal state


The poorer performance of the model of Megee et al� ����� in predicting

the substrate concentration is associated with the di�erences in biomass and

penicillin production and also the fact that the model of Megee et al� �����

does not have production	related substrate consumption


Both Cagney et al� ������ and Paul and Thomas ������ perform bet	

ter than Megee et al� ����� in predicting the penicillin concentration
 The

model of Megee et al� ����� uses Monod kinetics to describe the rates of

formation of its two non	growth	associated products� assumed here to repre	

sent penicillin� whereas Cagney et al� ������ and Paul and Thomas ������

both use a form of substrate inhibited kinetic to describe the rate of penicillin

production


It is possible for a model using Monod kinetics to reproduce the observed
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penicillin production behaviour� which is known to be substrate inhibited� if

the concentration of the biomass states associated with product formation

varies
 How well such a model can predict the penicillin pro�le is constrained

by the requirement that the model also predict the biomass pro�le with

reasonable accuracy


����	 Quantitative comparison of the prediction errors

Examining the graphs of Figures �
� to �
�� only enables us to make a crude

comparison between the performance of the models
 More detailed compar	

ison may be made with reference to the tabulated errors given in Tables �
�

and �
�
 These error values have been calculated in the same manner as the

error values used in tuning the models� being weighted for each state with

respect to the inverse of the maximum value measured for that state
 This

scheme was used in tuning because it was considered that using the absolute

error values could result in a tuning that favoured those pro�les with larger

absolute values� thereby resulting in tunings which �tted the biomass pro�le

well� and the penicillin pro�le poorly
 The maximum values were chosen for

weighting so as to avoid the divide	by	zero errors that would be caused if

initial or �nal values were used for weighting� or if normalised errors were

used instead of weighted errors� and to attempt to avoid the biasing that

would be caused if average values were used


Most of the models perform better in predicting the performance of a

constant feed rate fermentation� having been tuned on fermentation data ob	

tained using a time	varying feed rate
 This may be explained by considering

the time	varying data as passing through a wider range of fermentation con	
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ditions� and thus providing richer information on which to tune the model


The change in performance of the model of Megee et al� ����� is not consid	

ered to be signi�cant
 The reason for the model of Nestaas and Wang ������

failing to make better predictions when tuned using time	varying feed rate

data has been explained above
 The model of Fishman and Biryukov ������

may fail to perform better with time	varying feed rate data tuning because it

is a particularly simple model� describing penicillin formation as being age	

related� not including terms to describe substrate consumption associated

with biomass maintenance or penicillin formation� and also not including a

penicillin hydrolysis term
 The largest change in the error due to an indi	

vidual state for the model of Kluge et al� ������� which also performs better

when tuned with constant feed rate data� is that of the penicillin state
 It

seems that� although this model is capable of being tuned to match either of

the two sets of fermentation data considered here� its penicillin production

expression is largely una�ected by the data set used in calculating prediction

errors
 This may be because the penicillin production expression itself is not

su�ciently sensitive� particularly to changes in the glucose concentration


After considering the variation in performance due to changing the order

in which the data sets were used in tuning and validation� we consider changes

in the relative performance of the models
 Apart from the models which

perform more poorly when tuned on time	varying data� mentioned above� the

models whose relative performance changes are those of Megee et al� ������

Nicolai et al� ������ and Menezes et al� ������
 The ranking of these three

models is reversed when tuned using time	varying feed rate fermentation

data� as opposed to constant feed rate fermentation data
 This may be due
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Ranking Model Name Error
� Paul and Thomas 
��
� Cagney et al� 
�
��%� Nicolai et al� 
�
��%� Menezes et al� 
�
� Megee et al� 
��
� Kluge et al� 
��
� Bajpai and Reu� 
��
� Heijnen et al� �
�
� Tiller et al� �
�
� Fishman and Biryukov �
�
�� Nestaas and Wang ��

Tab� ��� Average summed squared error in predicting fermentation performance

to changes between the two data sets in the sensitivities of the prediction

errors to variation in model parameters


Since how well a model predicts fermentation data depends on the data

set used to tune the model� we have used the average overall prediction errors

to determine which models perform better �see Table �
��


The two best models are both morphologically structured �Cagney et al��

����� Paul and Thomas� ����� and make good predictions of the penicillin

concentration
 This is likely to be a consequence of their being able to re	

late penicillin production speci�cally to one fraction of the biomass� situated

between the growing tips and older� degenerating portions of the hyphae
 Un	

structured models are incapable of associating penicillin production so closely

to a portion of the biomass
 The two unstructured models which predict most

closely the penicillin concentration �Nicolai et al�� ����� Menezes et al�� �����

include terms which decrease the concentration of biomass associated with
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penicillin production
 In the model of Nicolai et al� ������� this is a conse	

quence of endogenous metabolism at low substrate concentrations� whereas

the model of Menezes et al� ������ includes a term to describe biomass death


��� Conclusions

Morphologically structured models have some practical disadvantages when

compared with the simpler unstructured models
 The model of Paul and

Thomas ������� along with the other morphologically structured models� di	

vides the biomass into a number of distinct states which ideally need to be

determined directly
 This implies that additional equipment� e
g
 an im	

age analyser or the �ltration probe� is needed if the maximum bene�t is

to be derived from using such models
 Morphologically structured models

have a greater number of states than unstructured models and as a conse	

quence are slower to simulate than unstructured models
 Morphologically

structured models also tend to have a larger number of parameters than

unstructured models
 Combined with the greater number of states of mor	

phological models� this means that tuning their parameters takes longer than

for unstructured models


However� the better performance of the morphologically structured mod	

els suggests that their additional complexity has bene�ts in terms of pre	

dictive performance
 The best performing morphologically structured model

has an overall prediction error less than one third of that of the best unstruc	

tured model
 If this could be translated into a corresponding improvement

in fermentation control� this might well make up for the premium incurred

in obtaining additional equipment� e
g
 an image analyser for measuring
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directly distinct biomass fractions


As engineers we are interested in using di�erential equation based models

in designing optimal feeding strategies for the penicillin fermentation and in

developing improved methods for controlling the fermentation
 To do this

we need models which describe the fermentation well
 The rest of this thesis

builds upon the best performing morphologically structured model� that of

Paul and Thomas ������


��� Notation

EM Endogenous maintenance coe�cient� g�S�l��

EP Endogenous production coe�cient� g�S�l��

F Feed rate to fermenter� lh��

KI Inhibition coe�cient� g�S�l��

KP Inhibition coe�cient� g�S�l��

KS Monod coe�cient for glucose� g�S�l��

KX Contois constant� g�S�g�DW���

P Concentration of penicillin� g�P�l��

Qi Flow rate into fermenter� lh��

Qo Flow rate out of fermenter� lh��

S Concentration of glucose� g�S�l��

V Volume of broth in fermenter� l
X Concentration of biomass� g�DW�l��

X� Concentration of biomass fraction �� g�DW�l��

Z Concentration of a model state� gl��

Zin Concentration of a model state fed to the fermenter� gl��

meas Subscript denoting measured value

sim Subscript denoting simulated value
ms Maintenance coe�cient� g�S�g�DW���h��

rP Rate of formation of penicillin� moles h��

rPO Maximum rate of formation of penicillin� moles h��

r Rate of consumption of some species in the fermenter�
gl��h��
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t Time� h
x Concentration of some general species X� gl��

xf Concentration of some general species X fed to the
fermenter� gl��

xo Concentration of some general species X leaving the
fermenter� gl��

Greek Symbols
� Degeneration numerator coe�cient� g�S�l��h��

� Di�erentiation denominator coe�cient� g�S�l��

� Speci�c growth rate� h��

�P Penicillin production constant� h��

�X Growth constant h��

�p� Minimum speci�c growth rate associated with maximum
rate of penicillin production� h��

�p� Maximum speci�c growth rate associated with maximum
rate of penicillin production� h��

�� Growth rate� h��

� Branching numerator coe�cient� h��

� Penicillin production rate� g�P�g�DW���h��
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mu0 Term

Gamma1 Term

mue Term

X0 calculation

X1 calculation

mup*rhoc... Term
P calculation

S calculation

m0 Term

m1*rhoc... Term

V calculation
1. Volume

2. (dV/dt) * (1/V)
3. Feed Rate

V
V

X0
X0 Concentration

X1
X1 Concentration

S
S

P
P

X2 calculation

X2
X2 Concentration

X3
X3 Concentration

X3 calculation

X4
X4 Concentration

mua
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Degenblk1
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Fig� ��� Simulink block diagram for the model of Paul et al� �����	
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Fig� ��� Comparison of nonlinear and linearised expressions for specic growth
rate �
 nonlinear� �� linear	 The nonlinear growth rate was taken from
the model of Bajpai and Reu�� tuned for time�varying feed data� The
linearised growth curve was calculated using the predicted substrate con�
centration from the tuned model� � �X � ����� KX � ����	
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Fig� ��� Predicted and measured concentrations for unstructured models related
to the model of Bajpai and Reu� tuned for constant feed rate fermenta�
tion data and validated against time�varying feed rate fermentation data
� � Measured data� � Bajpai and Reu�� � � Menezes et al��
�� Nicolai et al�� � � � Tiller et al�	
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Fig� ��	 Predicted and measured concentrations for unstructured models related
to the model of Bajpai and Reu� tuned for time�varying feed rate
fermentation data and validated against constant feed rate fermentation
data
� � Measured data� � Bajpai and Reu�� � � Menezes et al��
�� Nicolai et al�� � � � Tiller et al�	
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 Predicted and measured concentrations for unstructured models not
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rate fermentation data and validated against time�varying feed rate
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�� Heijnen et al�� � �actively growing biomass� �Fishman and Biryukov		
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models tuned for time�varying feed rate fermentation data and validated
against constant feed rate fermentation data
� � Measured data� � Megee et al�� � � Cagney et al��
�� Paul and Thomas� � � � Nestaas and Wang	



�� SIMPLIFICATIONS AND EXTENSIONS TO THE PAUL

AND THOMAS MODEL

��� Simplifying the Vacuolation Process Model

As shown in the preceding chapter� the penicillin fermentation model of Paul

and Thomas ������ is the best performing model of those considered in this

thesis in predicting the behaviour of penicillin producing fermentations of

Penicillium chrysogenum
 It is a morphologically structured model which

divides the biomass up into a number of distinct states�

� hyphal tips� the actively growing area of the hyphae �Region X��

� non	growing region of the hyphae� the region of the hyphae just behind

the tips �Region X��

� growing vacuoles� divided by size into a number of �bins� �Region X��

� fully vacuolated hyphae� in which the vacuoles have grown to �ll the

hyphal compartments �Region X��

� lysed material� formed by the destruction of fully vacuolated hyphal

compartments �This model state is di�cult to measure directly
�

�Region X��
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However� this model is extremely complex and could prove di�cult to

use in controller design or as a part of some kind of hybrid di�erential equa	

tion�neural network based model scheme
 Most of this complexity is due to

the way in which the vacuole formation and growth processes are described

in the model
 The distribution of vacuole sizes changes as the fermenta	

tion proceeds� with small vacuoles being formed and growing until hyphal

compartments become completely vacuolated� at which point the vacuole

is considered to have given rise to a degenerated hyphal compartment and

ceases to be regarded as vacuole
 In the model� the vacuole size distribution

is discretised� with the vacuoles being divided into a number of �bins�� which

correspond to distinct� non	overlapping size ranges
 The number of vacuoles

in each size range is represented by a model state
 The rates of change of

these states have relatively high values� which could cause the model as a

whole to be numerically �sti��� needing a more specialised numerical integra	

tion routine to solve it accurately
 As a result of the additional states and

the fact that the system is �sti��� the original model is slow to simulate


Here ways are considered in which the vacuolation part of the model could

be replaced� or removed� with the aim of increasing the speed with which the

system can be simulated� without� one hopes� too great a loss in performance

as a result of using a simpli�ed model


	���� Simpli
cations considered

The processes described in the vacuolation portion of the model of Paul and

Thomas ������ are shown in Figure �
�
 Vacuoles �X�� form in the non	

growing region �X��� grow� and eventually reach a size where whole hyphal
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Fig� ��� Diagram showing the vacuolation process as modelled in Paul and
Thomas �����	� The boxed area indicates those parts of the model af�
fected by the model simplication�

compartments are vacuolated �X��
 At this point� the vacuoles are regarded

as having given rise to fully vacuolated hyphal compartments
 In the model of

Paul and Thomas ������� penicillin production is associated with the volume

of cytoplasm present in the non	growing region
 The process of vacuolation

therefore reduces the volume of penicillin	producing cytoplasm


An attempt has been made to replace the existing description of the

vacuolation process with much simpler terms� similar to those used elsewhere

in penicillin fermentation models
 Two possible candidate structures were

considered


� A structure in which material in the non	growing region gives rise to

partially vacuolated material� which then gives rise to fully vacuolated
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In this simpli�ed model� the vacuole formation
and growth processes are described approximately�
using one formation and one destruction kinetic


Fig� ��� Conversion from non�growing hyphae to fully vacuolated hyphae via an
intermediate� partially vacuolated state

hyphal material �see Figure �
��


� A structure in which material in the non	growing region is considered

as passing directly to fully vacuolated hyphal material �see Figure �
��


Both these structures are intended to describe only the observed gross

changes in the hyphae and make no attempt to describe the mechanisms by

which vacuole formation and growth take place


Three possible types of kinetic were considered for use in describing each

step in each of the candidate structures


� a �rst order kinetic� kX� �F�
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Fig� ��� Conversion directly from non�growing hyphae to fully vacuolated hyphae

� a conversion kinetic� kX
L	S

� �C�

� a substrate inhibition kinetic� kXS

L	S	S�

M

� �I�

For each candidate structure� two alternative forms� with and without

degeneration of the fully vacuolated hyphae �assumed to be �rst order�� were

considered


This means that� in total� �� di�erent candidate model structures were

tuned and compared �� single	step models and �� two	step models�
 However�

it was only necessary to construct two general model structures� one for

single	step models and one for two	step models
 The three kinetics being

considered for each step were constructed in parallel� with software �$ags�

being used to determine which kinetic was operating �in any group of three

parallel kinetics�
 This also made it possible to automate the tuning of

the candidate models� by writing scripts to go through the set of candidate

models sequentially� tuning each in turn and saving the resulting parameter

sets to �les
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The following short forms are used to refer to the candidate model struc	

tures�

� single	step models describing a transition directly from state X� to

state X�� are denoted by �
F�C�I� �� where the transition kinetic used in

the model is indicated by the superscript on the arrow� being one of

the three possibilities� First order �F�� Conversion �C� or Inhibited �I�


� two	step models describing transition from state X� to state X� and

thence to state X� are denoted by �
F�C�I� �

F�C�I� �� where the super	

scripts on the arrows denote the transition kinetics used in the model�

from the three options considered� First order �F�� Conversion �C� and

Inhibited �I�


Where the destruction of fully vacuolated hyphal compartments �biomass

state X�� has been modelled� the words  �with lysis�! are appended to the

above short forms


Consequential modi
cations

In the original model of Paul and Thomas ������� the rates of penicillin

production and of the maintenance	related substrate consumption terms are

dependent on the volume concentration of active cytoplasm
 In the simpli�ed

models� this dependence on the volume concentration of active cytoplasm has

been replaced by dependence on the mass concentration of the non	growing

regions of the hyphae
 The equations de�ning the models considered here

are given in Appendix A
�
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	���� Comparing the simpli
ed models

Each of the simpli�ed model structures was built and tuned against fermenta	

tion data supplied by Paul ������
 Two sets of data were used� both having

been obtained under the same conditions of fermenter scale and medium

composition� but with di�erent initial fermentation conditions and feed pro	

�les being used
 One set of data was obtained for a fermentation carried

out with constant feed rate� and the second for a fermentation carried out

with a time	varying feed rate
 These data sets were the same as those used

in tuning models from the published literature in the course of selecting the

best performing penicillin fermentation model �see Figure �
� for details�


Each model was tuned using the �rst set of fermentation data and used

to predict the performance of the fermentation for the second set of fermen	

tation data� and vice versa
 Because model tunings depend on the data

used in tuning the model� the models were compared on the basis of how

well they predicted the measured fermentation data
 For the model tunings�

all parameters in any given candidate model structure were optimised� with

tuning being carried out using as many of the measured model states as was

appropriate for the type of model �all biomass states� glucose and penicillin

concentrations for two	step models� omitting only the vacuolated biomass

state when considering single	step models�


The models were built using Matlab and Simulink� and tuned using

routines from the Matlab Optimisation toolbox
 A least squares routine

�Levenberg	Marquardt algorithm� was used to tune each model�s parameters�

with the target error function being calculated as follows�

� Simulate the model over the time period of the reference data set�
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using a fourth order Runge	Kutta algorithm or Gear�s algorithm� both

supplied in Simulink


� Log the model output to obtain simulated values corresponding to the

times of the experimental measurements


� Single	step models were tuned to �t the biomass states X�� X�

and X� �omitting the vacuolated state�� along with the glucose

and penicillin concentrations


� Two	step models were tuned to �t the biomass states X�� X��

X� and X� �all the biomass states�� along with the glucose and

penicillin concentrations


� Calculate the di�erence between the measured and simulated values


� Weight the di�erences for each model state by the inverse of the max	

imum value in the measured data set for that state


� Square and sum the weighted di�erences
 �This is done by the optimi	

sation routine�it works on the matrix of weighted di�erences
�

Mathematically� the target function can be expressed as follows�

Error %
nX
i��

X
all measured values

�
valuemeas�i� � valuesim�i�

max�valuemeas�

��

��
��

where the summation is carried out for all measurement times and the

subscripts meas and sim denote measured and simulated values respectively


The above equation indicates that the error expression contains contributions
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from the biomass� substrate and product states modelled
 For the case of

single	step models� this means that summation is carried out for X�� X�� X��

S and P � whilst for two	step models� summation is carried out for X�� X��

X�� X�� S and P � that is� with an additional measured biomass state� X�


	���	 Results � Single step models

The results presented here are for predicting the behaviour of a fermenta	

tion whose data have not been used in tuning the model and so obtain	

ing a set of model parameters
 Two summary tables of errors are shown

�Tables �
� and �
��
 The tabulated data include summed squared error val	

ues for all �ve model states considered� three biomass states �vacuoles are

ignored in the single	step models�� glucose and penicillin� along with a to	

tal error value� formed by adding the entries in each row of the table
 The

summary tables of errors are given to four decimal places� as this is the stan	

dard format generated from Matlab� and thus the easiest to obtain directly

for inclusion in this document
 The average prediction errors� provided as a

summary of the calculated errors� may be found in Table �
�
 The average

prediction errors were calculated by hand and are only given to two decimal

places
 This is su�cient for comparison between the various candidate model

structures


The best performing single	step model is that in which the conversion

of X� to X� is described by an inhibited kinetic� with X� being considered

to undergo �rst order degeneration �degeneration was only considered as

being �rst order�
 The graphs associated with the best averaged �ts to the

measured fermentation data are given in Figures �
� and �
�
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Tab� ��� Prediction errors for single�step models tuned on constant feed prole
data� predicting time�varying feed prole data ��w�l�	 denotes models
with lysis considered�

The biomass fractions make the largest contributions to the summed

squared error �well over half the total summed squared error value�� with

X� making the largest contribution of all the biomass states
 Since X� does

not in$uence growth� substrate consumption� or product formation� how	

ever� the magnitude of this error is relatively unimportant� and may even

be a consequence of the lack of in$uence of X� on other states� errors
 The

best	performing single	step model�s poor performance in �tting X�� shown

in Figures �
� and �
�� is� therefore� unimportant
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Tab� ��� Prediction errors for single�step models tuned on time�varying feed pro�
le data� predicting constant feed prole data ��w�l�	 denotes models
with lysis considered�

Model Structure Total

�
F� � �
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�
F� � �with lysis� �
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�
C� � �
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�
C� � �with lysis� �
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�
I� � �
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�
I� � �with lysis� �
�

Tab� ��� Average total prediction errors for the single�step models
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Fig� ��� Comparing predictions of data obtained using a constant feed rate� for
models tuned with data obtained using a time�varying feed rate� validated
against data obtained using a constant feed rate�

Model �
I� � �with lysis	� �
 Measured data� �� simple model	



�� Simpli�cations and Extensions to the Paul and Thomas Model ��

0 20 40 60 80 100 120 140 160
0

20

40

B
io

m
as

s 
g(

X
) l−1

0 20 40 60 80 100 120 140 160
0

5

10

15

G
lu

co
se

 g
(S

) l−1

0 20 40 60 80 100 120 140 160
0

2

4

6

P
en

ic
ill

in
 g

(P
)l−1

0 20 40 60 80 100 120 140 160
0

5

10

B
io

m
as

s 
X

0 
g(

X
)l−1

0 20 40 60 80 100 120 140 160
0

10

20

30

B
io

m
as

s 
X

1 
g(

X
)l−1

Predicted Behaviour

0 20 40 60 80 100 120 140 160
0

2

4

Time h

B
io

m
as

s 
X

3 
g(

X
)l− 1

Fig� ��� Comparing predictions of data obtained using a time�varying feed rate�
for models tuned with data obtained using a constant feed rate� validated
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Model �
I� � �with lysis	� �
 Measured data� �� simple model	
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	���� Results � Two step models

The results presented here are for predicting the behaviour of a fermenta	

tion whose data have not been used in tuning the model and so obtaining

a set of model parameters
 Two summary tables of errors are shown in

Tables �
� and �
�� with the associated graphs being given in Figures �
� and �
�


The tabulated data include summed squared error values for all �ve model

states considered� all four biomass states� glucose and penicillin� along with a

total error value� formed by adding the entries in each row of the table
 The

average prediction errors� provided as a summary of the calculated errors�

may be found in Table �
�


The best performing two	step model is that in which the conversion of

X� to X� and of X� to X� are both described by �rst order kinetics� with X�

being considered to undergo �rst order degeneration �degeneration was only

considered as being �rst order�


Again� the biomass fractions make the largest contributions to the summed

squared error �well over half the total summed squared error value�� with the

degenerated biomass state �X�� often making the largest contribution of all

the biomass states
 Since X� does not in$uence growth� substrate consump	

tion� or product formation� however� the magnitude of this error is relatively

unimportant� and may even be a consequence of the lack of in$uence ofX� on

other states� errors
 The best	performing two	step model�s poor performance

in �tting X�� shown in Figures �
� and �
�� may� therefore� be considered to

be unimportant
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Tab� ��� Prediction errors for two�step models tuned on constant feed prole data�
predicting time�varying feed prole data ��w�l�	 denotes models with lysis
considered�
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Tab� ��� Prediction errors for two�step models tuned on time�varying feed prole
data� predicting constant feed prole data ��w�l�	 denotes models with
lysis considered�
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Model Name Total
The Original Model �
�
Two Step Models

�
F� �

F� � �
��

�
F� �

F� � �w
l
� �
��

�
F� �

C� � �
��

�
F� �

C� � �w
l
� �
�

�
F� �

I� � �
�

�
F� �

I� � �w
l
� �
��

�
C� �

F� � �
��

�
C� �

F� � �w
l
� �
��

�
C� �

C� � �
��

�
C� �

C� � �w
l
� �
��

�
C� �

I� � �
��

�
C� �

I� � �w
l
� �
��

�
I� �

F� � �
��

�
I� �

F� � �w
l
� �
�

�
I� �

C� � �
��

�
I� �

C� � �w
l
� �
�

�
I� �

I� � �
��

�
I� �

I� � �w
l
� �
��

Tab� ��� Average total prediction errors for the two�step models ��w�l�	 denotes
models with lysis considered�
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Fig� ��� Comparing predictions of data obtained using a time�varying feed rate�
for models tuned with data obtained using a constant feed rate� validated
against data obtained using a time�varying feed rate�

Model �
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F� � with lysis� �
 Measured data� �� simple model	
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Fig� ��	 Comparing predictions of data obtained using a constant feed rate� for
models tuned with data obtained using a time�varying feed rate� validated
against data obtained using a constant feed rate�

Model �
F� �

F� � with lysis� �
 Measured data� �� simple model	
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	���� Discussion

From the tables of average summed squared prediction errors� Tables �
�

and �
�� it may be found that the best performing single	step model is is

that in which the conversion of X� to X� is described using an inhibition

kinetic and which contains a lysis term� ��
I� � �with lysis��� and that

the best performing two	step model is that in which the conversion of X�

to X� is described as using a �rst order kinetic� conversion of X� to X� is

also described using a �rst order kinetic� and which contains a lysis term

��
F� �

F� � �with lysis��


It is not possible to make a direct comparison between the averaged

summed squared prediction errors for these two models� as they have been

tuned against di�ering numbers of model states


Some of the arguments in favour of choosing the two	step model are as

follows


� It is likely to be easier to extend a two	step model to include a de	

scription of the vacuolation process than a single	step model� when the

details of the vacuolation process are better understood


� More data were used in tuning the two	step models than in tuning

the single	step models �the additional vacuole state data�� and so the

two	step models are based on more process information


� The two	step model makes better predictions of the glucose and peni	

cillin concentrations
 Since glucose is most likely to be the controlled

variable for the fermentation� and penicillin is the product of principal
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interest� it is particularly important that the model should describe

these two states well


� The two	step model describes the concentration of hyphal tips better

than does the single	step model


Against these reasons� the following arguments were advanced for consid	

ering the single	step models


� The single	step model is simpler and has fewer states and parameters

than does the two	step model


� The single	step model �ts the active cytoplasm concentration better

than the two	step model does


It is di�cult to be certain that any particular model tuning is globally op	

timal �that the best of all possible parameter sets has been found�
 Parameter

optimisations starting with di�ering initial parameter sets may terminate in

local optima� or termination of the parameter estimation routine may oc	

cur because the parameter set has entered a region of the parameter space

in which the summed squared error varies extremely slowly with changes in

parameter values� thus being approximately �$at�


So� for the reasons listed above� and since the di�erences in the summed

error values for the two best models seem to be mainly in the X� state�

which has no in$uence on glucose consumption� biomass growth or penicillin

formation �unlike X�� X� and X��� the best two	step model was used in the

work following from model simpli�cation
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��� Including Lactose as a Second Substrate

Thus far� the results presented have been based around a model of the peni	

cillin fermentation in which only a single carbon	providing substrate� glucose�

is assumed to be present
 However� industrially this is not the case� as the

carbon source used is frequently complex
 Experimentally� lactose was found

to be present in the inocula for the fermentation experiments carried out in

the department at levels that can not be considered to be negligible �� �g�L�


The presence of lactose in the experimental data sets provided an opportu	

nity to extend the model so as to consider conditions in which more than one

carbon source is present


	���� A previous two substrate penicillin fermentation model

A penicillin fermentation model based on lactose and glucose as substrates

has previously been published by Kluge et al� ������
 In this model� the

focus is quite strongly on the rates of uptake of the two substrate species

from the fermentation medium� with rates of growth and product formation

being calculated after subtraction of the biomass�s maintenance requirements

from the total rate of substrate uptake


Super�cially� this approach is similar to that of Nielsen ������� but it

di�ers in that in the model of Kluge et al� ������ no consideration is made

of enzyme concentrations within the biomass that are associated with the

uptake of di�erent substrates from the medium
 In the model of Nielsen

������� these enzyme concentrations vary with time� changing according to

the availability of substrates in the medium� and so the model is capable of

describing the delays in converting from growth on one substrate to growth on
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a second
 The model of Nielsen ������ assumes that� after uptake� the sugar

substrates that it considers are converted into the same energy	providing

compound and so that there is no di�erence in the way in which the organism

obtains energy from its internal sources


The model of Kluge et al� ������ di�ers in that no enzyme structures are

assumed� and instead considers the rate of uptake of lactose as being related

to the rate of uptake of glucose
 Kluge et al� ������ have the following pair

of equations�

dS

dt
% �qSXA � &Sf � S'D ��
��

dL

dt
% �qLXA � &Lf � L'D ��
��

where qS and qL are the speci�c uptake rates for glucose and lactose� respec	

tively� Sf and Lf are the glucose and lactose concentrations in the feed� D

is the dilution rate �Feed�V olume�� and XA is the concentration of active

biomass
 The speci�c consumption rates qS and qL are given by�

qS %
qS�S

KS � S
��
��

qL %
qL�L

�KL � L�

�

�� � CLSqS�
��
��
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where qS� and qL� are the maximum speci�c uptake rates of glucose and

lactose� KS and KL are Michaelis	Menten uptake expression coe�cients� and

CLS is a coe�cient relating the repression of lactose uptake to the glucose

uptake rate
 Substituting for qS in the expression for qL� the following is

obtained�

qL %
qL�L

�KL � L�

KS � S

�KS � �� � CLSqS��S�
��
��

%
qL�L

KL � L

�
� �

CLSqS�S

KS � S

�
��

��
��

In Kluge et al� ������� biomass growth is then described as follows


dX

dt
� �AXA ��
��

where

�A %

�
qS � �qL �m� �P

YPS

�
YXS ��
��

Here �A is the speci�c growth rate of active biomass� � is a coe�cient re	

lating the nutritional value of lactose to that of glucose� m is a maintenance

coe�cient� �P is the speci�c penicillin production rate� and YPS and YXS are

yield coe�cients for the production of penicillin and biomass� respectively�

from substrate


Relating substrate and uptake in this way� using Michaelis	Menten en	

zyme uptake kinetics� is conceptually di�erent from using Monod kinetics to

describe the growth of an organism� and then calculating from the growth
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rate the necessary growth	related rate of substrate uptake


The Michaelis	Menten enzyme uptake kinetics based approach� as used

by Kluge et al� ������� starts by calculating the rate of substrate uptake�

and then relates the growth rate of the biomass to the excess of uptake over

requirements for maintenance and product formation
 The Monod kinetic

based approach starts from a correlation between substrate concentration

and biomass growth rate� and calculates the growth related substrate con	

sumption from this� usually by assuming a time	invariant yield coe�cient of

biomass from substrate
 The substrate consumption rates related to biomass

maintenance and� through a second yield coe�cient� to the product forma	

tion rate are then added on� and the total is taken to be the rate of removal

of substrate from the medium


Theoretically� it would appear that the former� Michaelis	Menten uptake

based� approach is more valid� because the latter� Monod growth based� ap	

proach can give rise� theoretically� to uptake rates which exceed the physical

limitations of organisms being modelled


The use of such an approach has the drawback that it is� mathemati	

cally� possible for the growth rate to become negative if the maintenance and

production associated consumption of substrate should exceed the rate at

which substrate is taken up by the organism� as may well be the case for

low substrate concentrations such as those observed during the production

phase of a penicillin fermentation
 Di�culties could arise in attempting to

avoid this problem� by matching the consumption rates to the uptake rates�

in determining how the consumption of substrate should be split between

maintenance and product formation
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	���� Two substrates in the Paul and Thomas ������ model

It was observed that the lactose present in the fermentation was carried over

from the inoculum� and that the lactose concentration remained approxi	

mately constant �subject to dilution by the glucose	containing feed� until

such time as the glucose concentration was signi�cantly reduced� at which

point the lactose was rapidly consumed


Paul ������ proposed the following form for the lactose consumption ki	

netic


dL

dt
% � �LL

�KSL � L�

X� �X�

�� � S�KSI�
��
��

Here �L is the maximum speci�c consumption rate of lactose� KSL is a Monod

coe�cient� and KSI is an inhibition coe�cient


In the above equation� the lactose consumption rate decreases with in	

creasing glucose concentrations� thereby giving a higher rate of lactose con	

sumption at lower glucose concentrations
 Lactose consumption� or uptake�

is assumed to be associated with the active biomass fractions� the hyphal tips

�X�� and the active� penicillin	producing subapicial regions �X��
 Note that

the rate of lactose consumption falls to zero as the lactose concentration falls

to zero� thus satisfying the logical boundary condition that no concentration

can ever become negative


To minimise the impact of adding the lactose term to the simpli�ed model�

the consumption of lactose has been likened to converting the lactose in the

medium to glucose in the medium� which is then taken up by the organism

in the usual way
 This is not intended to describe any physical process
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Using this approximation to describe the consumption of lactose from the

medium means that the bulk of the model� the equations describing growth

and product formation� may be left unchanged and solely glucose based�

and that the only equation that needs to be modi�ed is the glucose rate of

change equation
 As long as the rate of lactose uptake in the fermentation is

small� remaining less than the total rate of substrate utilisation for growth�

maintenance and product formation� then this crude approximation should

be reasonable
 As the two substrate model currently stands� it is probably

only justi�ed to use the model to describe fermentations where lactose is

present in relatively small amounts at the start of the fermentation� and

where glucose is fed throughout at a rate su�cient to account for the bulk of

the substrate taken up by the organism
 The model is not considered to be

suitable for use in describing growth on lactose as a single substrate 	 such

conditions are far from those for which the model has been developed and

applied to date


When the conversion of lactose to glucose is added to the equation used in

the model to describe the change in the glucose concentration� the following

equation is obtained


dS

dt
%� ����X�S

K� � S
� �e�eX�S

Ke � S
� m�X�S

K� � S
� m�	cvicS

K� � S

� �p�p	cvicS

KP � S�� � S�KI�
�

�LL

�KSL � L�

X� �X�

�� � S�KSI�

��
���
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��� Notation

CLS Constant allowing for lactose uptake repression in the
presence of glucose uptake� g�DW�hg�S���

D Dilution rate� h��

KI Inhibition coe�cient� g�S�l��

KL Monod coe�cient for lactose� g�L�l��

KP Inhibition coe�cient� g�S�l��

KS Monod coe�cient for glucose� g�S�l��

KSI Inhibition coe�cient for lactose conversion� g�S�l��

KSL Monod coe�cient for lactose� g�L�l��

K� Monod type denominator term� g�S�l��

K� Monod type denominator term� g�S�l��

K� Monod type denominator term� g�S�l��

Ke Monod type denominator term� g�S�l��

L Concentration of lactose� g�L�l��

Lf Concentration of lactose fed to the fermenter� g�L�l��

L Biomass conversion kinetic coe�cient� g�S�l��

M Inhibited biomass conversion kinetic coe�cient� g�S�l��

P Concentration of penicillin� g�P�l��

S Concentration of glucose� g�S�l��

Sf Concentration of glucose fed to the fermenter� g�S�l��

X Concentration of biomass� g�DW�l��

XA Concentration of active biomass� g�DW�l��

X� Concentration of biomass state � �hyphal tips�
g�DW�l��

X� Concentration of biomass state �� �subapicial regions�
g�DW�l��

X� E�ective concentration of biomass state �� �vacuoles�
g�DW�l��

X� Concentration of biomass state ��
�fully vacuolated regions� g�DW�l��

X� E�ective concentration of biomass state ��
�lysed material� g�DW�l��

YPS Yield coe�cient for penicillin with respect to substrate�
g�P�g�S���

YXS Yield of biomass with respect to glucose� g�DW�g�S���

meas Subscript denoting measured value
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sim Subscript denoting simulated value
k First order biomass conversion coe�cient� h��

m Maintenance coe�cient� g�S�h��

m� Maintenance coe�cient for state � g�S�g�DW���h��

m� Maintenance coe�cient for state �� g�S�g�DW���h��

qL Uptake rate of lactose g�L�g�DW���h��

qL� Uptake coe�cient for lactose� g�L�g�DW���h��

qS Uptake rate of glucose� g�S�g�DW���h��

qS� Uptake coe�cient for glucose� g�S�g�DW���h��

t Time� h
vic Volume concentration of active cytoplasm� m�l��

Greek Symbols
� Coe�cient relating nutritional value of glucose

to that of lactose� g�S�g�L���

�e Coe�cient relating substrate consumption to biomass
extension� g�S�g�DW���

�p Coe�cient relating substrate consumption to product
formation� g�S�g�P���

�� Coe�cient relating substrate consumption to biomass
growth� g�S�g�DW���

�A Speci�c growth rate of active biomass� h��

�L Speci�c conversion rate for lactose� g�L�g�DW���h��

�P Penicillin production rate� g�P�h��

�P Penicillin production constant� g�P�g�DW���h��

�� Speci�c growth rate� g�X�g�X����h��

�e Speci�c growth rate� g�X��g�X���h��

	c Density of cytoplasm� gm��
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��� The Form of the Equations

The penicillin fermentation is considered here as being described by a non	

linear di�erential equation based model of the following form


*x�t� % f�x�t�
 �
 u�t�� ��
��

y�t� % g�x�t�
 �
 u�t�� ��
��

In the above� x�t� is a vector of time	varying model states� � is a set of

assumed time	invariant parameters� and u�t� is some time	varying input to

the model �such as the feed rate of substrate to the fermenter�
 The output of

the model is y�t�� this second equation may be used to relate measurements

to the model states
 Frequently the measurements are the model states�

such as biomass� substrate and product concentrations� and volume in the

fermenter� but other measurements are possible� for example� carbon dioxide

production rate �CPR�� which has been modelled previously �Montague et al��

����� as being related to biomass growth and maintenance� and to penicillin

production� ie
 a relationship of the form CPR � � *X � �X � � *P 
 For

simplicity� we will here assume that only the states are measured� that is�

that y�t� % x�t�
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Typically� there exists no analytical solution to a model of this type� and

so numerical integration is needed to calculate the state trajectories over

time
 Here the models were numerically integrated using Simulink� a block	

diagram oriented modelling tool associated with Matlab� which provides

a number of numerical integration algorithms
 The two algorithms most

frequently used in this work were a fourth order Runge	Kutta method� and

Gear�s algorithm


��� Tuning the Model Parameters

In order to use the model for practical purposes� it must �rst be tuned so as

to accurately represent the fermentation
 This was done using the Matlab

least squares based optimisation routine leastsq to adjust the parameters so

as to minimise the summed weighted squared error between the fermentation

data measured at a number of sample intervals� and values generated using

the model


The least squares error between the measured and simulated values may

be expressed as follows


E %
nX
i��

�m�ti�� x�ti��
�W �m�ti�� x�ti�� ��
��

In the above� E is the error value� m�t� is a vector of measurement values

at some time t� x�t� is the corresponding vector of simulated values� and

the summation is carried out for n sample times
 The matrix W is a time	

invariant weighting matrix� frequently a diagonal matrix with one weight per

state along the leading diagonal
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To avoid possible bias in the parameter set obtained� as a result of a state

with large absolute values dominating the tuning of the parameters� the error

value at each measurement interval� for each model state� was divided by the

maximummeasured value of the model state in question
 This is equivalent to

using a diagonalW matrix� with ���max�x��� along the diagonal
 Weighting

on the basis of initial� �nal or minimum values would have resulted in divide	

by	zero errors� and it was considered that weighting on the basis of average

values would have been biased� since zero values would depress the average

value of a state�s measurements
 �The measured data included zero values

for some initial� �nal and intermediate values
�

����� A geometrical interpretation of the errors

The error function E can be considered as a hypersurface given by

E % E���� E� ��
��

where E��� denotes a general error value for some parameter set �� and E�

is the minimum value of the error function that we are seeking


E� % E�b� ��
��

In the above� b denotes the parameter set at the optimal tuning
 Ex	

pressed as a Taylor expansion around the optimum � � �

E��� % E� �
E

� �

����
��b

�� � b� �
�

�
�� � b��

�E

� � �

����
��b

�� � b� � � � � ��
��



�� Improving Parameter Con�dence 
�

First and second derivatives of scalars with respect to vectors are de�ned

as follows�

E

�
%

�
���	

�E
���

�E
���

�E
���



���� ��
��

E

� �
%
h
�E
���

�E
���

�E
���

i
��
��

�E

�� �
%

�
���	

��E
�����

��E
�����

��E
�����

��E
�����

��E
�����

��E
�����

��E
�����

��E
�����

��E
�����



���� ��
��

The derivative of a vector with respect to another vector� for example� x���

is as follows�

x

�
%

�
���	
�x�
���

�x�
���

�x�
���

�x�
���

�x�
���

�x�
���



���� ��
��

Because E has a minimum at � % b � � �

E

� �

����
��b

% 

and

�E

� � �
is positive de�nite
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So� neglecting higher terms� we have � � �

E��� � E� �
�

�
�� � b��

�E

� � �

����
��b

�� � b� ��
���

Hence�

E � �

�
�� � b��

�E

� � �

����
��b

�� � b� ��
���

which describes a hyperparaboloid
 Curves of constant E are hence hyperel	

lipsoids


For the error function in Equation �
�� the �rst two derivatives of the

error function with respect to the parameters may be expressed as follows

�Eykho�� �����


E

�
%� �

nX
i��

�
x�ti�

�

�
�

W �m�ti�� x�ti�� ��
���

�E

� � �
%�

nX
i��

�
x�ti�

�

�
�

W

�
x�ti�

�

�
� �

nX
i��

�
�x�ti�

� � �

�
W �m�ti�� x�ti��

��
���

The second of the above equations is not strictly correct� as �x�ti��� �
�

is a tensor
 However� close to the optimal parameter set� for noise	free mea	

surements perfectly described by the model� the error between measured and

simulated values goes to zero� &	ti
 lim��b�m�ti�� x�ti�� % '� and so this

second term vanishes
 �For cases where the model structure is not capable

of matching the data� or where there is a relatively large noise contribution

to the error in �tting the model� this will� however� not be the case� and it
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may be worthwhile comparing the relative magnitudes of the the two terms

in Equation �
�� in such circumstances
�

The sensitivity of the model states to the parameter values �x�t���� is

described by the following equation� obtained by di�erentiating Equation �
�

with respect to the parameter vector � �Holmberg� �����


d�x�t�
��

dt
%

f

x

x�t�

�
�
f�t�

�
��
���

In optimisation� it is generally assumed that� close to the optimal point�

the errors of a system vary in a quadratic manner �Norton� �����
 That is to

say� that contours of constant error around the tuning point form ellipsoids

�ellipses in the case of a two	parameter system�
 For a least squares objective

function of the type given in Equation �
�� the above equations show that

close to an optimum� where the errors may be approximately described by a

Taylor series expansion� this is always the case


����� Considering ellipsoids

Substituting for �E��� � in Equation �
�� from Equation �
��� ignoring

the second term which vanishes close to the optimal parameter set we obtain

the following�

E � �

�
�� � b��

�
nX
i��

�
x�ti�

�

�
�

W

�
x�ti�

�

��
�� � b� ��
���

which is a quadratic equation
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Consider a general quadratic equation of the following form


E % X �AX ��
���

If we assume that A is a diagonal matrix� and that the X vector has only

two elements� x� and x�� then this may be rewritten in the simpler form

E % a��x
�
� � a��x

�
� ��
���

which is the equation describing a three	dimensional paraboloid


For �xed values of E� the above equation is analogous to that for an

ellipse� written in terms of the major and minor axis lengths


E % x���a
� � x���b

� ��
���

It can be seen that a�� is analogous to ��a� and� similarly� a�� is analogous

to ��b�


A quadratic function is plotted in Figure �
�� which shows the paraboloid

for the function� two elliptical contours of constant error value� and the major

and minor axes corresponding to one of the error contour ellipses


��� Optimal Experiment Design

The �eld of optimal experiment design aimed at improving the quality of

system models is well established �Walter and Pronzato� ����
 Most of the

work published in this �eld is concerned with the improvement of models�

system predictions by improving the con�dence with which model parame	
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Fig� ��� Paraboloid surface� two elliptical error contours and specimen major and
minor axes for the quadratic function E � x�� � x����

ters are estimated
 Optimal experiment works have focussed on selecting the

conditions under which experiments should be carried out �Hosten� �����

Hosten and Emig� ����� Pinto et al�� ����� designing the inputs used to

excite systems being modelled �Murray and Rei�� ����� Espie and Macchi	

etto� ����� Versyck et al�� ������ improving the positioning of sensors� and

on selecting portions of the measured data �Yoo et al�� ����� Kalogerakis and

Luus� ����� or sampling rates �Murray and Rei�� ����� Jacquez and Greif�

����� so as to maximise parameter con�dence


Various optimisation criteria have been advanced� most of which are re	
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lated to the information matrix �Fisher Information Matrix� or its inverse�

the parameter variance	covariance matrix �Hosten� ����� Pinto et al�� ����

Walter and Pronzato� ����
 Sequential schemes� in which data are gradu	

ally accumulated over a number of experiments and model tuning is based

on the total data available� as well as single	shot� best next experiment ap	

proaches are described
 The use of reparameterisation �Agarwal and Brisk�

����� Bilardello et al�� ����� and of rescaling the parameters �Pinto et al��

����� as means of improving con�dence in the parameters to be estimated

also appears in the literature
 Examples of dynamic systems used to illus	

trate the design of experimental inputs based on information matrix related

design criteria include the continuous yeast fermentation �Espie and Macchi	

etto� ������ a batch fermentation of Trichosporon cutaneum �Baltes et al��

������ model Monod and Haldane processes �Versyck et al�� ����� and �xed

bed heat transport �Murray and Rei�� �����


Improved experiment design for parameter estimation is particularly im	

portant with respect to fermentation modelling� as performing fermentations

to generate data for model tuning is both costly and time	consuming
 The

data sets supplied by Dr
 Gopal Paul� used in this thesis� are typically taken

from week	long fermentations� with additional time being taken to prepare

inocula� media and equipment� and for biomass sampling� image analysis

measurements and subsequent post	processing of the data obtained so as to

get it into a form suitable for use in modelling


An alternative approach� which has received attention in recent years�

is the more goal	oriented approach of designing only experiments which are

optimal with regard to economic or productivity criteria� and using the data
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from these as a basis for sequential model re�nement �Galvanauskas et al��

����� Galvanauskas et al�� �����
 This leads to repeated passes through a

cycle of designing an economically optimal input� performing an experiment

using this input� re�ning the model parameters with emphasis on those pa	

rameters to which the economically optimal pro�le is most sensitive� and

returning to the design of an economically optimal input
 This approach

may have the advantage that� since it concentrates primarily on the region

around the economically optimal trajectory� a simpler model may be applied

over this subset of fermentation conditions and be capable of predicting the

behaviour of the process in this range just as well as a more complex fer	

mentation model� tuned over a wider range of fermentation conditions
 If a

model is to be used to improve understanding of the system� as well as for

improving the performance of a production process� then this highly goal	

centred approach may well focus on too narrow a set of fermentation con	

ditions
 Example processes used as illustrations �Galvanauskas et al�� �����

Galvanauskas et al�� ����� are maximising the biomass in an Escherichia coli

fermentation� maximising the amount of biomass produced with respect to

glucose supplied in a baker�s yeast fermentation� and maximising the concen	

tration of penicillin at a prede�ned �nal fermentation time for a Penicillium

chrysogenum fermentation


��	�� Criteria for experiment design

Two criteria are commonly used to determine convergence of calculus	based

techniques�
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� the change in function value from one iteration to the next is less than

some small value

� the change in the parameter set from one iteration to the next �the

�distance� moved� is less than some small value

It is also common for these techniques to be abandoned if a minimum is

not found within a given number of iterations
 One of the goals of experi	

ment design is to improve the quality of existing parameter estimates
 If the

parameter optimisation algorithm has terminated prematurely� as a result of

exceeding a �xed number of iterations� then the parameter set thus obtained

may not be suitable for use in designing experiments� because it may not be

located at a minimum of the objective function


Since one of the criteria commonly used to determine convergence in

optimisation routines is that the change in error value for an update to the

parameter values be less than some speci�ed value� surfaces that are �steeper�

close to the optimal point are likely to get closer than those that are �shal	

lower�


If we consider also the shape of the ellipsoids around the optimal point�

it seems reasonable that we would wish the ellipsoids to be close to spher	

ical
 Since we are considering the region close to the optimum parameter

set� in which we have assumed that the Taylor series expansion provides a

good approximation to the error surface� the surfaces of constant error close

to the optimum parameter set will always be ellipsoids
 �For the majority

of the gradient descent methods described below in Section �
�� progress di	

rected towards the minimum only occurs when the error contours around

the minimum form hyperspheres
� In ellipsoids with relatively long axes the
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optimisation routine is likely to reach a point on said long axis� and then

to attempt to progress along the �bottom of the valley� towards the optimal

point
 Since the error values are likely to change slowly along such a �valley��

we �nd ourselves in a position where� although we may be sure of having

obtained the correct ratio between some of the parameters being tuned� we

cannot be as certain of their absolute values
 It should be noted that the

principal axes of the ellipsoids are almost certainly not going to lie parallel

to the axes along which the parameters vary


Much work in the area of optimal experiment design has been based on

criteria derived from the Fisher Information Matrix �FIM�
 In its continu	

ous form� the FIM may be de�ned as follows �Munack� �����
 �Alternative

de�nitions based on the logarithm of the sensitivities exist� but are less im	

mediately comprehensible
�

FIM %

Z T

�

�
x�t�

�

�
�

W

�
x�t�

�

�
dt ��
��

In discrete form� this becomes the following�

FIM %
nX
i��

�
x�ti�

�

�
�

W

�
x�ti�

�

�
��
���

Comparing Equation �
�� with Equations �
�� and �
��� we see that the

FIM is an approximation to the second derivative of the expression for the

error surface� which is the dominant term in the Taylor series expansion

de�ning the error surface in the neighbourhood of an optimal parameter set
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Hence

E � �� � b��FIM�� � b� ��
���

The FIM is related to the inverse of expectation of the square of the error

in the parameter set� that is to say � � �

E &� +� � b�� +� � b��' 
 FIM�� ��
���

�The FIM is the inverse of the covariance matrix for the modelling errors
�

For a derivation of the FIM� see Eykho� ������


The FIM in Equation �
�� is de�ned as the sum of a series of product

terms� each of which comprises the transposed sensitivity matrix� multiplied

by the diagonal weighting matrix� multiplied �nally by the sensitivity matrix


Thus we can see that the FIM is always going to be a diagonally symmetric

matrix


Diagonally symmetric matrices can always be decomposed in the following

manner �Bronshtein and Semandyayev� �����


FIM % V �DV ��
���

where FIM is the diagonally symmetric Fisher Information Matrix� V is a

matrix made up row	wise of the eigenvectors of FIM and D is a diagonal

matrix with the eigenvalues of FIM along the diagonal
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Substituting from Equation �
�� into Equation �
��� we obtain

E %�� � b��V �DV �� � b� ��
���

rearranging this becomes

E %&�� � b��V �'D&V �� � b�' ��
���

which is equivalent to

E %�,����D�,��� ��
���

where

,�� %&V �� � b�' ��
���

This form of the equation for the error is the same as that in Equation �
���

and so the properties of the general error �hyper�ellipsoids centred on the

optimal parameter set are simply related to those for the two	dimensional

ellipses de�ned by Equation �
�� and Equation �
��
 Since elements on the

diagonal of a diagonal matrix are related to the lengths of the axes of an

ellipsoid� a�� � ��a�� �see Subsection �
�
� for more details�� and D is a di	

agonal matrix with the eigenvalues of the FIM along the diagonal� then the

eigenvalues of the FIM may be related to the lengths of the axes of error

ellipsoids� � � ��l�� where � is some eigenvalue of the FIM� and l is the

length of the corresponding axis of the error ellipsoid
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A number of criteria based on the FIM� and having geometric interpreta	

tions based around the ellipsoids of constant error value� have been advanced

for use in the optimal design of identi�cation experiments �Hosten and Emig�

����� Pinto et al�� ���� Walter and Pronzato� ����
 The most common of

these are summarised� along with their conventional names and one possible

geometrical interpretation� in Table �
�


Criterion Formula Interpretation
A min�tr�FIM���� minimise mean variance
simpli�ed A max�tr�FIM�� minimise mean variance
C min�tr�FIM�� minimises relative �mean� volume
D max�det�FIM�� minimises ellipsoid volume
E max��min�FIM�� minimises longest axis

modi�ed E min�cond�FIM� % �max�FIM�
�min�FIM�

� spherical as possible

Tab� ��� Criteria for optimal experiment design derived from the Fisher Infor�
mation Matrix �FIM	� �min and �max are the minimum and maximum
eigenvalues of the FIM� The above denitions are taken from Walter and
Pronzato �����	

The criteria given in Table �
� are not entirely independent of one an	

other
 �This is to be expected� as they are related to the properties of the

same geometric structures
� Consider the A� D and modi�ed E	optimality

criteria


tr �FIM� %
�maxX
�min

�

det�FIM� %
�maxY
�min

�

cond �FIM� % �max��min
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��min denotes the minimum eigenvalue and �max denotes the maximum eigen	

value
� If the desired reduction in the modi�ed E	optimality criterion were

to be achieved solely by decreasing the maximum eigenvalue ��max�� then

the desired reduction in the modi�ed E	optimality criterion would lead to

corresponding� undesirable decreases in the A and D	optimality criterion


��� Multi�rate Extension to the Information Matrix

It may be possible to construct the information matrix for cases where data

are measured at more than one sample rate� as is the case for fermentation

data� measuring biomass concentrations at a relatively low sample rate and

the concentrations of soluble species �by means of online HPLC� for example�

at a higher rate


If we consider the information matrix as an approximation to the second

derivative of the error surface� then we can quickly calculate its form
 Con	

sider a simple least squares error� based on data measured at two di�erent

sampling rates
 �The sampling rates do not need to be regular
� Then the

error value is given by the following expression

E %
n�X
i��

�m��ti�� x��ti��
�W��m��ti�� x��ti�� ��
���

�
n�X
i��

�m��ti�� x��ti��
�W��m��ti�� x��ti��

where the measurements m� and m� �of states x� and x� respectively� are

measured at n� and n� sample intervals over the measurement period
 �The

subscripts � and � refer to two sets of measurement data� taken from the
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same experiment at two di�erent sample rates for distinct sets of measured

variables
 There should be no duplication of measurements between sets �

and �
�

The two summed terms in the above expression are independent of each

other� and can be di�erentiated separately� giving

�E

� � �
%

n�X
i��

x��ti�
�

�
W�

x��ti�

�
�

n�X
i��

�x�ti�

� � �
W��m��ti�� x��ti�� ��
��

�
n�X
i��

x��ti�
�

�
W�

x��ti�

�
�

n�X
i��

�x��ti�

� � �
W��m��ti�� x��ti��

In the above second derivative expression� the second term on each line

vanishes close to the optimal parameter set� with the simulated values ap	

proximating the measured values� and we are left with the summation of two

information matrix expressions� after the pattern of Equation �
��


�E

� � �
%

n�X
i��

x��ti�
�

�
W�

x��ti�

�
�

n�X
i��

x��ti�
�

�
W�

x��ti�

�
��
���

����� Example of multi�rate information matrix expression

The calculation of two information matrix expressions may be illustrated us	

ing the example of a model having two states �x and y� and three parameters

�a� b� and c�
 Denoting x�a by xa for simplicity� we obtain the following

expression


FIM��	�� %

�
���	
xa ya

xb yb

xc yc



����
�
	W� 

 W�



�
�
	xa xb xc

ya yb yc



� ��
���
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or� as a summation

FIM� � FIM� %

�
���	
xa

xb

xc



����
h
W�

i h
xa xb xc

i
�

�
���	
ya

yb

yc



����
h
W�

i h
ya yb yc

i

��
���

Multiplying through in either case gives us

FIM��	�� %

�
���	
W�xaxa �W�yaya W�xaxb �W�yayb W�xaxc �W�yayc

W�xaxb �W�yayb W�xbxb �W�ybyb W�xbxc �W�ybyc

W�xaxc �W�yayc W�xbxc �W�ybyc W�xcxc �W�ycyc



����

��
���

In order to calculate a combined information matrix for data sampled

at multiple rates� therefore� we simply calculate the individual information

matrices for each distinct sampling rate� and add them together


As an example of this� information matrices were calculated for the model

of Paul et al� ������� using an experimental input designed to be optimal for

the sampling of all measured states at a uniform �	hour sample interval�

considering instead biomass states to be measured at �	hour intervals and

the soluble states to be measured at the much higher rate �online HPLC� of

�	minute intervals
 The information matrix based solely on data obtained for

all measured states� both biomass and soluble species� at the �	hour sampling

rate had a determinant of the order �e��� whilst that obtained by combining

data obtained for the biomass states at the �	hour sampling rate with data
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obtained for the soluble species at the higher �	minute sampling rate had a

determinant of the order �e��


Taking into consideration the higher rate at which the soluble species

were measured results in a joint con�dence ellipsoid for parameter estimation

which is signi�cantly smaller than is the case for the uniform �	hour sample

rate
 When the individual eigenvalues of the two information matrices were

compared� those for the information matrix formed by summating the pair of

matrices for the two sampling rates were found to be� with a single exception�

smaller than those for the single	rate information matrix


It should be noted that the information matrices corresponding to the two

sampling rates� obtained for biomass states alone� and for soluble species

alone� both had determinants of zero� indicating that the volumes of the

joint con�dence ellipsoids for parameter estimation were in�nite
 This may

be explained by referring to the sensitivities of the states considered in each

case to the complete set of parameters
 If there was a parameter to which

all the states in a particular subset were insensitive� then the corresponding

column in the sensitivity matrix would contain only zeros� and hence the

row and column in the resulting information matrix would be all zeros� and

the determinant of the information matrix would be zero
 As modelled� the

biomass states have no dependence on the penicillin hydrolysis rate� �h� and

the soluble states have no dependence on the rate of lysis of degenerated

hyphal compartments� �a
 Hence the individual information matrices for the

two sampling rates have determinants of zero
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��� Calculus Based Optimisation Techniques

There are a range of methods� broadly described as �hill	climbing� �or �valley	

seeking��� used in optimisation
 At each iteration they use gradient informa	

tion supplied either as explicit derivatives of the objective function� or calcu	

lated from numerical �experiments�� small perturbations around the current

parameter set� to determine in which �direction� the function value decreases

most rapidly� and then move in that direction
 In this way� the algorithm

progresses until a local minimum is reached


The following descriptions of calculus based optimisation techniques are

taken from Eykho� ������


����� Steepest descent

In this method� update proceeds according to the following equation


��i� �� % ��i�� -
E

�

����
����i�

��
���

Here - is a positive constant
 Some compromise must be sought between

speed of convergence and size of -
 Too large a value will cause the optimi	

sation routine to oscillate around the optimal point� too small a value will

take an inordinately long time to come close to it


����� Steepest descent with minimisation along a line

This method proceeds exactly as for the preceding steepest descent method�

with - being chosen so as to minimise the objective function in the direction

E�� for each parameter update
 Typically� points are evaluated along the
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direction of steepest descent until an increase is detected between values� a

quadratic function is �tted through the evaluated points� and the minimum

of the quadratic is used as starting point for the next iteration


����	 Newton�Raphson

According to Section �
�
�� curves of constant error value �E� form hy	

perellipsoids
 For an ellipsoid� lines of steepest descent do not necessarily

point towards the minimum� unless the ellipsoid happens to be circular �see

Figures �
� and �
��


It seems reasonable to suppose that a steepest descent method will be op	

timal when the surfaces of constant E are �hyper�spheres� such that progress

in the direction of steepest descent is also progress towards the minimum


This may be achieved by transforming the ellipsoids into spheres in another

space �with respect to a modi�ed parameter vector� and then using the steep	

est descent method


Since

�E

� � �

����
��b

��
���

is symmetric and positive de�nite� it can always be decomposed into a prod	

uct made up a diagonal matrix with its eigenvalues on the leading diagonal

�D� and a matrix made up� row	wise� of its eigenvectors �V �


�E

� � �

����
��b

% V �DV ��
���
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Fig� ��� Contours and arrows indicating steepest descent directions for an ellip�
soidal objective function

Substituting Equation �
�� into Equation �
�� leads to

E�z�� % E� �
�

�
z�

�

Dz� ��
���

where

z� % V �� � b�
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Fig� ��� Contours and arrows indicating steepest descent directions for a circular
objective function

De�ning

z % D
�

� z� and z� % D�
�

� z

we get

E�z� % E� �
�

�
z�z ��
���

In this z	space� the surfaces of constant E are hyperspheres
 Performing
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steepest descent with - % ��

z�i � �� % z�i�� E

z

����
z�z�i�

Di�erentiating Equation �
��

E

z

����
z�z�i�

% z�i�

and so z�i � �� % z�i� � z�i� % 
 Because � � b % V �D�
�

� z with V � and D

positive de�nite� � � b %  also holds


Transforming back from z	space to �	space gives�

��i� �� % ��i��

�E

�� �

�
��

��b

E

�

����
����i�

��
��

In most cases the second derivative will be a function of �� however it

is often assumed to be almost independent of �� and so Equation �
� may

be taken as de�ning the Newton	Raphson method� provided that the second

derivative is calculated for the current values of �


��i� �� % ��i��

�E

�� �

�
��

����i�

E

�

����
����i�

��
���

����� Gauss�Newton

Calculating second derivatives using small perturbations around the current

parameter set is likely to be di�cult and time	consuming� but it is possible to

simplify the expression given above in Equation �
�� for least	squares criteria


Di�erentiating Equation �
� twice gives the following expressions for its �rst
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and second derivatives


E

�
% ��

TX
n��

x�tn�
�

�
W �m�tn�� x�tn��

�E

� � �
% �

TX
n��

x�tn�
�

�
W

x�tn�

�
� �

TX
n��

�x�tn�

� � �
W �m�tn�� x�tn��

Close to the minimum� the second term in the second derivative term

can be neglected� as x � m
 Substituting the above simpli�cations into

Equation �
� gives us the following


��i� �� % ��i���
TX

n��

x�tn�
�

�
W

x�tn�

� �

���
����i�

�
TX

n��

x�tn�
�

�
W �m�tn�� x�tn��

���
����i�

��
���

Eykho� ������ states that�

The Gauss	Newton method is preferable to the steepest descent

on account of the quadratic convergence� although� contrary to

the steepest descent method� the convergence is not guaranteed


����� Marquardt method

The Marquardt method is� in e�ect� a compromise between the steepest

descent method and the Gauss	Newton method


Let ��i� be the centre of a hypersphere in the parameter space
 We seek

the minimum on the hypersphere according to Lagrange minimising E����
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subject to the restriction


,� % ��i� ��� ��i�

,� �,� % constant

Hence

E

,�
� �,� %  ��
���

Taking a Taylor expansion of x �implies that the assumed hypersphere

need not be a pure hypersphere�

x�i � �� % x�i� �
x

� �

����
����i�

,�

or

x�i � ��

,� �
� x

� �

����
����i�

��
���

So Equation �
�� becomes

�
TX

n��

x�tn�
�

�

����
����i�

W

�
m�tn�� x�tn�� x�tn�

� �

����
����i�

,�

�

��,� % 

which implies
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In the above� if � % � then the update is as per the Gauss	Newton

method� if � %�� then the update is e�ectively as per the steepest descent

method� but with a step size of .

By varying �� the convergence properties may be altered


��� Introduction to Genetic Algorithms

The study of genetic algorithms �GAs� within the �elds of computer science

and engineering has its roots in the recently re	published monograph by John

Holland ������� �rst published in ����
 In that volume� GAs are presented

as modelling the processes which occur during the evolution of a population

of individuals under the action of what Holland describes as �reproductive

plans�
 Emphasis is placed on the abilities of such plans in maximising returns

�minimising losses�� with the two	armed bandit problem �pp
��	��� being

used as an example
 It is� perhaps� important to note that GAs are not

explicitly treated as function optimisers� as pointed out by De Jong �������

although modi�cations have been made over the years which have rendered

the basic GA structure applicable to a range of optimisation problems


The oft	cited volume written by David E
 Goldberg ������ provides an

excellent introduction to the theory and practice of genetic algorithms� giv	

ing details of both the theoretical foundations of GAs and citing examples

of applications to a wide range of problems
 �The title of the book in itself�

�Genetic Algorithms in Search� Optimisation� and Machine Learning�� be	

trays the broad scope of GAs
� Following this book� the number of people

working with GAs seems to have increased dramatically� possibly due in part

to the decreasing cost of computer hardware on which to run GA programs
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Work continues on both the theoretical underpinnings of GAs� as de	

scribed in conference proceedings such as the Foundations of Genetic Algo	

rithms series �Whitley� ����� Whitley and Vose� ������ and on the practi	

cal applications of GAs to engineering and other problems �Davidor� ����

GALESIA� ����� GALESIA� �����
 The vast majority of the work done to

date using GAs has been based on computer simulations� but more recently

work has started on the direct application of GAs to problems in science

and engineering� using GAs to search for regions of optimal experimental

performance� for example� �Weuster	Botz et al�� �����


More importantly� because they make use of a population of values� ge	

netic algorithms o�er an implicitly parallel approach to the minimisation of

complex� potentially multimodal� functions which is not prone to terminating

at a local minimum� as gradient descent based minimisation techniques are


The fundamental concepts of genetic algorithms are loosely based on ideas

taken from biology
 The parameters of the problem are encoded in a pop�

ulation of genes �vectors of numbers�� and� over the course of a number of

generations� selection is applied with the result that these genes evolve so as

to progress towards optimal solutions
 GAs work with a coding of the prob	

lem parameters� the genotype� as opposed to the parameters themselves� the

phenotype� starting from an initial population of chromosomes and at each

generation allowing the �ttest chromosomes to mate and produce o�spring

in the subsequent generation
 The �tness values of the chromosomes provide

the only problem	speci�c information used by the algorithm� and so the algo	

rithm may be applied to discontinuous as well as continuous functions� unlike

calculus based optimisation techniques
 In addition� the implicitly parallel
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nature of the algorithm� using a population of individuals� reduces the risk

of the problem becoming trapped in a local� non	global� minimum
 However�

there are some problems which are termed GA	deceptive� which are di�cult

for GAs to optimise


Various attempts have been made to combine the best features of GAs

with those of calculus based� or simulated annealing based optimisationmeth	

ods
 Such hybrid schemes are not considered here� as we are treating the GAs

simply as a means of �nding the neighbourhoods in which the optimal so	

lutions to the various problems treated here lie
 We have applied GAs to

the estimation of parameters of complex� nonlinear� morphologically struc	

tured models of the penicillin fermentation� and also to searches for optimal

fermentation feed pro�les for model parameter estimation �based on criteria

related to the Fisher Information Matrix� and for maximising an economic

performance criterion for the fermentation


����� Genetic algorithms� a HOWTO

Populations of chromosomes evolve through a number of generations� with

genetic operators to perform selection for ��tter� individuals� the population

gradually drifts in the direction of an optimal point


A canonical genetic algorithm as described by De Jong ������ is given in

Figure �
�


This canonical algorithm forms the basis for most simple GAs
 It includes

two of the three basic genetic operators involved in the execution of a ge	

netic algorithm 	 selection and recombination
 The third common operator�

mutation� is applied after the recombination stage is completed
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Randomly generate an
initial population

Compute and save the fitness
for each individual

in the current population

Generate the next generation by probabilistically
selecting individuals from the population to produce

offspring via genetic operators

Define selection probabilites
for each individual in the population
such that the probaility of selection

is proportional to the fitness

Fig� ��� A Canonical Genetic Algorithm
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GA operators

In coding and analysing GAs� the primary focus of attention is on the opera	

tors used in the course of the algorithm
 Tbe most commonly used operators

are those which mimic most closely the behaviour of genetic operators in

nature and are as follows


� Selection� whereby chromosomes with higher �tness values produce

more o�spring in the breeding population than chromosomes with lower

�tness values


� Recombination� in which pairs of chromosomes in the breeding popu	

lation exchange information by swapping portions of the chromosomes

beyond a randomly determined cutting point


� Mutation� which acts randomly� normally with a low probability� chang	

ing the value of a single bit in binary codings
 In this way� schemata

which have been lost from the population may be reintroduced to it�

albeit with low probability
 High mutation rates tend to overwhelm

the convergence abilities of the GA� leading to the need for increased

numbers of generations for optima to be found


Other� less commonly used operators include the elitist operators which

act to replace a random individual in the new population with the best in	

dividual found thus far
 �Normally this individual would not have its �tness

recalculated� unless the GA were being applied in conditions with dynami	

cally varying �tness values
� Elitist algorithms� in which the GA retains the

best individual found to date within the current population� have been shown

to converge eventually to the global optimum �Yao and Sethares� �����
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Another less common operator is the inversion operator� in which the

worst individual in the population is replaced with the bitwise complement of

an individual selected at random from the whole population
 This mechanism

preserves the number of schemata present in the population


����� Analysis of convergence

Regardless of whether or not a Genetic Algorithm �nds the neighbourhood of

the global optimum for a given problem �which is� after all� what we are using

them for�� without mutation a GA will eventually converge to the point where

every individual in the population is identical
 Louis and Rawlins ������ give

an exposition of an analysis of the time to convergence for a population of

binary strings� based on the mean Hamming distance between members of

the population


The average Hamming distance of a population is the average distance

between all its members� with the Hamming distance being the summed

bitwise di�erence between each pair of strings considered
 For a population

of N individuals� each individual is half of N�� pairs �distance calculations��

and the total number of interpair distances from which the average distance

is calculated is N�N � ����� the distance from individual A to individual B

is the same as that from B to A


If the strings in the population are l bits long� then� for an initially random

population� the mean Hamming distance may be approximated by a normal

distribution with mean h� �h� % l��� and standard deviation s� �s� %
p
l���


As mentioned before� in the absence of mutation� the average Hamming

distance of the converged population is zero
 Over the time to convergence�
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the Hamming distance drops from l�� to � and for a simple GA this can

only be due to the in$uences of selection and crossover


The in�uence of crossover on Hamming distance

For a simple� single	point crossover operator� whereby the two parents are

replaced by their o�spring� the Hamming distance will be una�ected
 As

Louis and Rawlins ������ point out� the sole e�ect of simple crossover is to

change the order in which the bitwise contributions of points in each pair of

strings are summed


The in�uence of selection on Hamming distance

How individuals are selected for mating in the next generation depends on the

problem to which the Genetic Algorithm is being applied
 Louis and Rawlins

������ suggest that selection with probability greater than ��� reduces the

average Hamming distance from generation to generation� and attempt to

obtain an upper bound for the time to convergence
 Said upper bound is

assumed to occur for a completely $at �tness function� which is regarded

as the worst possible
 On such a surface� they state that a GA can do

no better than random search� as� for the function f�x� % constant� no

useful information may be obtained to aid any algorithm in searching for an

optimum


The convergence of a GA on a $at function is stated to be caused by

genetic drift� whereby small random variations in the initial distribution of

alleles result in their gradual accumulation and eventual convergence
 The

proof �Louis and Rawlins� ����� begins by calculating the time for a single
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allele to become �xed due to so	called genetic drift
 The probability that

k copies of an allele i are produced in the next generation is given by the

binomial probability distribution

�
� N

k

�
A pki ��� pi�

N�k ��
���

where N is the number of individuals in the population� pi is the proportion

of allele i present in the current population


Using this distribution� it is possible to calculate the probability of a

particular frequency of occurence of allele i in subsequent generations
 The

solution to this problem �a classical problem in population genetics� can be

approximated� for intermediate allele frequencies and population sizes
 If

f�p
 t� is the probability that the frequency of an allele has the value p in

generation t � � p � ��� then

f�p
 t� %
�p���� p��

N

�
�� �

N

�t

This speci�es the probability that the allele has not converged
 The probabil	

ity that an allele is �xed �has converged� at generation t is obtained simply�

as follows


P�t� % �� f�p
 t� ��
���
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Combining the two preceding equations� we obtain

P�t� % �� �p���� p��

N

�
�� �

N

�t

and assuming that alleles are independent of one another� which seems to be

a reasonable assumption for a $at �tness function� the probability that all

alleles are �xed at generation t for chromosomes of length l is given by

P�t
 l� %

�
�� �p���� p��

N

�
�� �

N

�t
�l

The above equation gives the probability of convergence of a genetic algo	

rithm on a $at function
 From it may be obtained an estimate of the upper

bound on the time to convergence for a binary GA� given the population size

�N� and the chromosome length �l�
 Since this is the probability of conver	

gence for a function in which selection plays no role in directing the search

by the GA� the equation may also be considered as providing a lower bound

on the likelihood of the GA having converged after t generations
 It should

be noted� however� that this approximation is valid for �intermediate allele

frequencies and population sizes�
 The exact meaning of this phrase is worth

some consideration


The probability surface described by the above equation� as a function of

population size �N� and number of generations �t� is given in Figure �
�


Louis and Rawlins ������ extend the above approximation for a $at �tness

function� and apply it to predicting the time to convergence for more realistic

problems
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Fig� ��� Probability of convergence for a GA as a function of population size and
number of generations �all chromosomes were �� bits long	

computing the rate of decrease in the Hamming average while

a GA is working on a particular problem allows us to predict

roughly the time to Hamming convergence
 �Louis and Rawlins�

�����

It is assumed that similarity between chromosomes implies similarity be	

tween �tness values �the similarity assumption� � this is true for unimodal

functions� and for multimodal functions genetic drift is alleged� ultimately�

to cause behaviour which may be predicted by the following model� unless

countered by niching or other diversity	preserving schemes
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Generally� the change in average Hamming distance from generation to

generation is given by

ht	� % f�ht�

which relates ht� the Hamming average in generation t� to the Hamming

average in the subsequent generation


Assuming that f�ht� is linear� and given that� without mutation� the �nal

Hamming average is zero� Louis and Rawlins ������ obtain the equation

ht	� % aht

Solving this recurrence� we obtain

ht % ath�

where h� is the initial Hamming average� l�� for a randomly initialised pop	

ulation


��	 Selecting a Search Method

The experiment design problem addressed here is that of designing an input

feed pro�le for the fermentation such that the best possible experiment can

be performed� subject to a �xed� pre	speci�ed measurement sample rate�

and assuming that the optimal parameter set to be found will be in the

neighbourhood of the parameter set thus far obtained
 Input pro�les may be

parameterised in a number of ways�
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� piecewise linear interpolation between speci�ed values

� spline interpolation between speci�ed points

� piecewise constant� �stairstep�� pro�le

� sum of exponential or periodic waveforms

� polynomial of variable order

� output of a neural network

For the work done here� the input pro�le has been speci�ed as a piecewise

constant� �stairstep�� pro�le� as such a pro�le may simply be obtained manu	

ally� making adjustments to the feed rate at each measurement sample time


An approach for which manual input is feasible was chosen to avoid possible

complications and delays in producing a computer	controlled pro�le� as could

be required for any of the other candidate parameterisation methods


Having chosen the way in which the input pro�le is to be parameterised�

it is necessary to search for pro�le parameters which give rise to the optimal

experiment design
 It has previously been stated �Munack� ����� that using

gradient descent techniques may give rise to suboptimal experiment designs�

because gradient descent techniques can become entrapped in local minima�

and thus terminate without �nding the global optimum
 Genetic algorithms

�GAs� have been found to perform well on �potentially� multimodal objective

functions� and have a high probability of �nding the neighbourhood of the

global optimum on such objective functions �Goldberg� �����
 The perfor	

mances of gradient descent methods and genetic algorithms were compared�

for a simple function having two minima
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����� Gradient descent�based optimisation algorithms

As an illustration of the way in which gradient descent	based optimisation

routines may become trapped in local minima� consider the minimisation of

the function shown in Figure �
�
 This function is based on a quartic polyno	

mial in x� added to a minimum quadratic in y� which give a �valley� shaped

function with two minima along the �valley�
 The function has been rotated

so that the lines of steepest descent are not parallel to the parameter axes


This �gure has two minima� a global minimum at approximately �	��	�� and

a local minimum at approximately ��
����
 When seeking the minimum of

this function using a gradient descent technique �see Section �
� for details��

which minimum is found depends on where the minimisation is started from


Figure �
� shows a contour plot of this function� with a line drawn across it�

dividing those points from which the global optimum is obtained from those

from which the weaker local minimum is obtained


����� Genetic algorithms

As an alternative to gradient descent	based optimisation methods� consider

the progress made using genetic algorithms �GAs� to minimise the function

shown in Figure �
�


Applying a genetic algorithm to the simple function mentioned above�

and plotted in Figure �
�� the population of points is found to rapidly �clus	

ter� around the lower of the two minima of the function
 The populations

evaluated in the �rst nine generations are shown in Figure �
�
 The spread

of the points is initially random� with values constrained to lie between ��
for all parameter pairs �subplot ��� converges �rst into an area covering both
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minima �subplot ��� and over the subsequent generations the space being

searched closes down around the lower of the two minima of the objective

function
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��
 Designing Optimal Experiments Using Genetic

Algorithms

Table �
� lists several commonly used optimal experiment design criteria�

along with geometrical interpretations of their e�ects on ellipsoids of con	

stant error value� centred on the optimal parameter set
 Of these� the D

optimality criterion� corresponding to minimising the volume of these error

ellipsoids� and the E optimality criterion� corresponding to making the er	

ror ellipsoids as �spherical� as possible� are� perhaps the most common
 Of

these two� D optimality was considered to be more appropriate� with smaller

error ellipsoids being thought preferable to �rounder� errror ellipsoids
 For

widely ranging parameter values� with a range of sensitivities of error value

to parameters� the E optimality criterion could result in an experimental de	

sign for which the error ellipsoids� although �rounder�� were larger than for

the undesigned case� thus implying that �xing the model parameters to lie

within a larger range after a designed experiment was an improvement
 A D

optimal experiment design� on the other hand� should produce smaller error

ellipsoids� and hence less variation in the parameters for given error values


Optimal experiment designs have been produced based on the D opti	

mality criterion using genetic algorithms as the search method
 This section

describes how the input feed pro�le was parameterised and how the genetic

algorithm search was implemented� listing the parameters used to control

the GA�s operation� the range of feed values considered and the constraints

applied to the optimisation� and gives details of the objective function used

in the search
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����� Input feed pro
le parameterisation

As mentioned above in Section �
�� the �stairstep� pro�le was chosen as the

way of de�ning the input feed pro�le� as it is easy to use as a part of a genetic

algorithm search� and it is possible to apply the resulting designed inputs

manually
 After discussions with Paul ������� the input pro�le was divided

into piecewise constant portions each � hours long
 The original experiment

design work �Syddall et al�� ����� was done on the basis of piecewise constant

input pro�les with � hour long portions� but this was felt to be infeasible�

should the adjustments need to be made by hand during the fermentation


To ease manual implementation of the feed pro�le� each �step� in the pro�le

was speci�ed as being eight hours long
 The length of the fermentation was

�xed at �� hours and so the input pro�le was de�ned by �fteen parameter

values
 �The initial conditions for the fermentation were �xed at an �average�

set of values
� It was assumed that biomass samples are taken at eight hour

intervals� coincident with the changes in the input feed rate� and that the

soluble components in the fermentation broth are measured� using online

HPLC� at half	hourly intervals
 The information matrix considered for these

designs was a multi	rate information matrix as described in Section �
�


����� Genetic algorithm parameters

Two di�erent genetic algorithm implementations provided in the Genetic and

Evolutionary Algorithms Toolbox �GEAT� �Pohlheim� ����� were used� one

for �real	valued� problems �� bit accuracy over the search range�� and one for

binary valued problems �using which the search was implemented using � bit

accuracy over the same search range�
 The sizes of the spaces being searched
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by the two methods di�er greatly
 For a stairstep input de�ned by �fteen

parameters� � bit accuracy implies a search through ��� combinations for

each parameter� resulting in a search through some ���� possible combinations

�approximately �
��
 The case of � bit accuracy� with �� combinations per

parameter gives a total of ��� combinations �approximately ����


Since the accuracy with which the inputs to the fermenter can be applied

is limited� and since the smaller � bit search space can be searched e�ectively

using smaller genetic algorithm populations running over fewer generations

than for the � bit search space� the � bit binary coded genetic algorithm

was chosen for the �nal experiment designs


The population sizes and numbers of generations needed for convergence

were determined experimentally� running repeated designs until approximate

correlation between successive results was obtained
 The genetic algorithm�s

operating parameters determined in this way are given in Table �
� for both

the � bit and � bit codings
 Also given in the table are the probabilities

of crossover and mutation used by the algorithm
 Examples of scripts and

functions to be used with the Genetic and Evolutionary Algorithm Toolbox

�Pohlheim� ����� are given in Tables B
� and B
� in Appendix B


����	 Feed rate limits and constraints

The range of input values searched using the genetic algorithms was bounded

such that  l�hr � feed rate � 
��� l�hr
 The lower bound is no feed

rate� and the upper bound corresponds to a feed rate of approximately

�� g�glucose��hr for glucose fed at a concentration of � g�l
 This upper

limit is in excess of the feed rates used by Paul ������ in the course of the
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Discretisation � bits � bits
Population size � �
Number of subpopulations � �
Percentage retained between generations �) �)
Number of generations �� �
Probability of mutation� per bit 
� 
��
Probability of crossover 
� �

Tab� ��� Genetic algorithm operating parameters

previous work here in the department� and the optimal experiment designs

remain below this limit throughout the designed feed pro�les


In addition to de�ning the range of permissible input feed rates to be

searched for an optimal experiment design� constraints were imposed on the

fermentation behaviour
 The volume in the fermenter was initially con	

strained to remain within the working volume of the fermenter ��l in a �l

fermenter� initial volume �l�
 Experiment designs produced using this con	

straint gave rise to total biomass concentrations that were considered� in

the judgement of Paul ������� to be liable to cause the dissolved oxygen

concentration in the fermenter to fall to levels at which oxygen availabil	

ity to the organism would become limiting
 Under such circumstances� the

model� which does not describe changes in the dissolved oxygen concentra	

tion� nor the in$uence of dissolved oxygen concentration on biomass growth

and product formation� would become inappropriate� and the experiment

designs would no longer be valid


A second constraint was de�ned in the hope of avoiding excessively low

dissolved oxygen concentrations
 This was a constraint on the total biomass



�� Improving Parameter Con�dence ���

concentration� which was to remain below � g�l throughout the fermen	

tation
 Limiting the total biomass concentration should limit the biomass

growth and maintenance rates� and the penicillin production rate� all of which

processes consume energy and therefore oxygen
 Restricting all of these rates

should therefore also restrict the total oxygen demand of the organism� hope	

fully avoiding an excessive decrease in the dissolved oxygen tension


����� Objective function for optimal experiment design

For the problem of �nding a D optimal experiment design� the genetic al	

gorithm is searching for that input pro�le which maximises the determinant

of the information matrix
 Since the GEAT �Pohlheim� ����� is designed to

minimise objective functions supplied by the user and uses the ranking of

individuals within the population to determine their �tness rather than their

absolute values� maximising a value can be replaced by either minimising the

negated value or minimising the inverse of the value
 Minimising the negated

value was chosen here
 That is to say�

To maximise det�FIM�

minimise � det�FIM�

When using genetic algorithms� constraints are most commonly dealt with

by applying some form of penalty function to the basic objective function�

so as to render those individuals which breach constraints less �t than those

that do not� thereby reducing the probability that o�spring of constraint	

breaching individuals will be produced in the next generation
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Goldberg ������ gives an example of a penalty function �pp ��	���


To minimise g�x�

subject to hi�x� 
 
 i % �
 �
 � � � 
 n

the constrained form of the objective function becomes

minimise g�x� � r
nX
i��

/ &hi�x�'

where / is a penalty function �for example� the square of the violation� and

r is a penalty coe�cient


For the case of constraining the experiment design criteria� such a penalty

function was di�cult to de�ne� due to the great di�erence between the mag	

nitudes of the constraint violations �� �� and the penalty	free objective

functions �
 �e���
 Since the GEAT �Pohlheim� ����� used in this work uses

a ranking	based selection method� with lower values having greater probabil	

ities of being selected for producing the next generation� the absolute values

for the chromosomes are less important than their relative order
 This means

that a penalty function could be constructed for the initial case of a single

constraint in which the objective function returns a positive value associated

with the amount by which the constraint is broken� for cases where the con	

straint is broken� and �det�FIM� for the others
 For broken constraints�

the objective function returns larger values for larger constraint breaches� so

that individuals which only just breach the constraint rank better than those

which grossly breach the constraint
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For the case of D optimal experiment design� attempting to maximise

det�FIM�� subject to a constraint that the volume remain below � litres�

the objective function becomes

F %

���
��
R
V �t�dt 	V �t� � ��
 if anyV �t� � ��

� det�FIM� if constraints satis�ed

This penalised objective function returns negative values consistently for

valid input pro�les� with the objective function values becoming more nega	

tive for better experiment designs


When the total biomass constraint was added to the experiment design

criteria� the objective function was only penalised for exceeding the biomass

concentration if the volume constraint was satis�ed
 With this ordering of

penalty criteria� the model equations are only integrated numerically when

it is known that the volume constraint will not be broken
 Since calculating

whether or not the volume constraint would be breached can be done quickly�

using the net feed rate and the initial volume� without needing to numer	

ically integrate any model equations� this ordering of penalties saves time

in executing the genetic algorithm
 As executing the objective function for

a genetic algorithm is frequently the most time	consuming step� this order	

ing was considered to be more time	e�cient
 For example� the constrained
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D	optimal objective function became�

F %

�������
������

R
V �t�dt 	V �t� � ��
 if anyV �t� � ��R
Xt�t�dt 	Xt�t� � Xt�MAX 
 if anyXt�t� � Xt�MAX

� det�FIM� if all constraints satis�ed

where Xt�t� is the total biomass concentration at time t and Xt�MAX is the

biomass constraint value ��g�l for our purposes�
 In practice� the integrated

values for V �t� and Xt�t� were approximated by summating over all values

for which their respective constraints were exceeded


Implementation detail

Since objective function evaluation is the major contributor to the time taken

to carry out a genetic algorithm search� the objective function was coded in

such a way as to avoid carrying out the time consuming numerical integration

of the model and its associated information matrix calculations in cases where

constraints were violated


Firstly� the feed pro�le values were checked to see whether or not the

volume constraint would be breached as follows�

� calculate the net feed rate in each � hour period� by adding the precur	

sor addition rate to the glucose feed rate and subtracting the sample

removal rate

� calculate the total volume change in each � hour period �by multiplying

the net feed rate by ��
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� calculate the cumulative sum of the volume changes

The resulting vector of volume changes was then compared to the permis	

sible change in volume ��l�� and only if all elements of the vector satis�ed

the constraint was the model numerically integrated
 In the early stages of

the genetic algorithm search� this quick check saves a lot of time� since the

proportion of individuals which breach the volume constraint is initially high


The possibility of numerically integrating the model without its associated

information matrix calculations was considered� but was not implemented�

due to time constraints


��� Results

Three sets of optimal experiment designs were produced for three di�ering

sets of search criteria� all using two	rate FIMs as the basis for determinant

calculations


� � bit ��real	valued�� search constrained only on feed and working vol	

ume

� � bit search constrained only on feed and working volume

� � bit search constrained on feed� working volume and on total biomass

concentration

Five replicate genetic algorithm searches were run for each design criterion�

using genetic algorithm routines from the GEAT �Pohlheim� ������ with the

genetic algorithm operating parameters speci�ed in Table �
�
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The values used for these constraints are described above
 Although the

� bit search was superseded� for reasons of speed and achievability� by the �

bit search� its results are presented for comparison with those achieved using

the � bit search method
 The results obtained using the �rst two sets of search

criteria are given brie$y� with those obtained using the third� most realistic�

set of search criteria being given in more detail
 In the summary table of

determinant values found� Table �
�� determinant values based on a single	

rate FIM sampling at � hour intervals are given for the same experiment

designs as were produced for the � bit constrained design criterion


����� Experiment designs � real�valued

The experiments were designed to be optimal with respect to the D optimal

experiment design criterion given above in Table �
�
 The only constraints

on the GA search were the minimum and maximum input feed rates� and the

total volume permissible in the fermenter
 The resulting determinant values

are given in Table �
�
 The corresponding feed pro�les and volumes over the

course of fermentation are shown in Figure �
�� and the simulated values for

the biomass states and for the modelled soluble species �glucose� lactose and

penicillin� are shown in Figure �
�


����� Experiment designs � � bit binary�valued� unconstrained

The only constraints on the GA search were the minimum and maximum

input feed rates� and the total volume permissible in the fermenter
 The

experiments were designed to be optimal with respect to the D optimal ex	

periment design criterion given above in Table �
�
 The resulting determinant
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Coding Determinant
Run � Run � Run � Run � Run �

� bit 
�e�� �
�e�� �
�e�� �
�e�� �
�e��
� bit �unconstrained� �
�e�� �
e�� �
�e�� �
�e�� �
�e�
� bit �constrained� �
e�� �
�e�� �
�e�� �
�e�� �
�e��
� bit �single	rate� 
�e�� �
�e�� �
e�� �
�e�� �
�e��

Tab� ��� Determinant values for ve experiment designs for the �� bit ��real�
valued�	 coding� and for the � bit binary valued genetic algorithm coding�
both with and without the constraint on total biomass concentration�
sorted into ascending order
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D optimal experiment designs based on the model of Paul et al� �����	
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values are given in Table �
�
 The corresponding feed pro�les and volumes

over the course of fermentation are shown in Figure �
��� and the simulated

values for the biomass states and for the modelled soluble species �glucose�

lactose and penicillin� are shown in Figure �
��


����	 Experiment designs � � bit binary�valued� constrained

In addition to the minimum and maximum input feed rate constraint� and

the total permissible volume constraint� an additional constraint on simulated

total biomass concentration was added in the hope of avoiding low dissolved



�� Improving Parameter Con�dence ��


0 24 48 72 96 120
0

5

10
X

0

0 24 48 72 96 120
0

20

40

X
1

0 24 48 72 96 120
0

10

20

X
2

0 24 48 72 96 120
0

2

4

6

X
3

0 24 48 72 96 120
0

20

40

S

0 24 48 72 96 120
0

2

4

L

0 24 48 72 96 120
0

5

10

Time (hours)

P

Fig� ���� Simulated biomass and soluble species concentrations for unconstrained
� bit D optimal experiment designs based on the model of Paul et al�
�����	



�� Improving Parameter Con�dence ���

oxygen concentrations during the practical experiment
 The experiments

were designed to be optimal with respect to the D optimal experiment design

criterion given above in Table �
�
 The resulting determinant values are given

in Table �
�� and the input pro�le corresponding to the best determinant

value is given in Table �
�
 The corresponding feed pro�les and volumes over

the course of fermentation are shown in Figure �
��� and the simulated values

for the biomass states and for the modelled soluble species �glucose� lactose

and penicillin� are shown in Figure �
��


The D optimal experiment design criterion is derived from the Fisher In	

formation Matrix� which in turn depends on the sensitivities of the states to

the model parameters at the sample intervals
 Graphs showing the sensitiv	

ities of the model states fX�
 X�
 X�
 X�
 S
 L
 Pg are shown in Figures �
��

to �
��
 These state sensitivity pro�les were calculated using Equation �
��

from Section �
�
� and so depend on the variation of the glucose concentra	

tion with time during the simulation


Indirect e�ects may be observed in� for example� the sensitivity pro�le

for X���� �the sensitivity of the concentration of hyphal tips to a vacuole

degeneration coe�cient�
 The equation describing the change inX� with time

does not contain ��� �� only occurs in the equations describing the variation

with time of X�� X� and X�
 However� the change in X� does depend on X��

which depends more directly on the value of ��� and so changes in the value

of �� have an indirect e�ect on X�


The graphs of state sensitivities to parameters shown in Figures �
�� to �
��

may be divided into three categories


�
 those in which the state is largely insensitive to the parameter� such as
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X����� S���� and P��a

�
 those in which the sensitivity of the state to the parameter changes

gradually throughout the fermentation� such as X����� X��m��

and X��m�

�
 those in which the graph shows three phases� corresponding� broadly�

to changes in the glucose concentrations

�a� the initial� high glucose concentration �for times less than �

hours�

�b� intermediate values �for times between � and � hours�

�c� the �nal� low glucose concentration �for times greater than �

hours�

�The sensitivities of the lactose concentration to the parameters depend

more strongly on the lactose concentration itself� with the lactose con	

centration having �intermediate� values for fermentation times between

� and � hours
�

The sensitivity traces are related to the substrate concentrations
 Were

this not the case� attempting to design improved experiments for model pa	

rameter estimation by modifying the glucose feed pro�le to the fermentation

would be impossible


���� Discussion

Although the determinant values obtained for the � bit design are greater

�better� than those obtained for the corresponding � bit design� it is not
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Tstart �hr� Tstop �hr� Feed Rate �g��hr�
 � ��
�
� �� �
�
�� �� 

�� �� 

�� � ��

� �� �
�
�� �� �
�
�� �� �
�
�� �� 
�
�� � �
�
� �� �
�
�� �� 

�� �� 


�� ��� 

��� �� ��
�

Tab� ��� Feed prole specication for the best � bit constrained D optimal exper�
iment design �glucose fed at a concentration of ���g�L	



�� Improving Parameter Con�dence ���

1.9e+027
6.9e+026
3.9e+026
1.9e+026
1e+026  

0 20 40 60 80 100 120
0

5

10

15

20

25

Time (hours)

F
ee

d 
R

at
e

1.9e+027
6.9e+026
3.9e+026
1.9e+026
1e+026  

0 20 40 60 80 100 120
4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

Time (hours)

V
ol

um
e

Fig� ���� Input feed rates and simulated volume proles for constrained � bit D
optimal experiment designs based on the model of Paul et al� �����	
�Feed rate in g�hr at ���g�glucose	�L� Volume in L	



�� Improving Parameter Con�dence ���

0 24 48 72 96 120
0

2

4

6
X

0

0 24 48 72 96 120
0

10

20

30

X
1

0 24 48 72 96 120
0

5

10

15

X
2

0 24 48 72 96 120
0

2

4

6

X
3

0 24 48 72 96 120
0

20

40

S

0 24 48 72 96 120
0

2

4

L

0 24 48 72 96 120
0

2

4

6

Time (hours)

P

Fig� ���� Simulated biomass and soluble species concentrations for constrained
� bit D optimal experiment designs based on the model of Paul et al�
�����	



�� Improving Parameter Con�dence ���

0 120
−100

0

100

200

∂X0/∂ μ0

0 120
−20

−10

0

10

∂X0/∂K0

0 120
−300

−200

−100

0

∂X0/∂ γ1

0 120
0

10

20

30

∂X0/∂K1

0 120
−10

−5

0

5

∂X0/∂ μe

0 120
−5

0

5

10

∂X0/∂Ke

0 120
−20

−10

0

10

∂X0/∂ μ2

0 120
−100

−50

0

50

∂X0/∂ μ1

0 120
−40

−20

0

20

∂X0/∂ μ3

0 120
−1

0

1

∂X0/∂ μa

0 120
−1

−0.5

0

∂X0/∂ α0

0 120
−2

−1

0

∂X0/∂ αe

0 120
−6

−4

−2

0

∂X0/∂m0

0 120
−10

−5

0

∂X0/∂m1

0 120
0

0.2

∂X0/∂K2

0 120
−0.4

−0.2

0

∂X0/∂ αp

0 120
−10

−5

0

∂X0/∂ μp

0 120
0

1

2

3

∂X0/∂Kp

0 120
−0.1

−0.05

0

∂X0/∂Ki

0 120
−2

−1

0

1

∂X0/∂ μl

0 120

0

0.2

∂X0/∂Ksl

0 120
−400

−200

0

200

∂X0/∂Ksi

0 120
−1

0

1

∂X0/∂ μh

Fig� ���� Sensitivity of X� to the model parameters for a � bit constrained D
optimal experiment design based on the model of Paul et al������	�
The ��� correspond to the ��hour sample intervals�



�� Improving Parameter Con�dence ���

0 120
−400

−200

0

200

∂X1/∂ μ0

0 120
−50

0

50

100

∂X1/∂K0

0 120
−500

0

500

∂X1/∂ γ1

0 120
−20

0

20

40

∂X1/∂K1

0 120
0

10

20

30

∂X1/∂ μe

0 120
−30

−20

−10

0

∂X1/∂Ke

0 120
−100

−50

0

∂X1/∂ μ2

0 120
−600

−400

−200

0

∂X1/∂ μ1

0 120
−200

−100

0

∂X1/∂ μ3

0 120
−1

0

1

∂X1/∂ μa

0 120
−4

−2

0

∂X1/∂ α0

0 120
−10

−5

0

∂X1/∂ αe

0 120
−30

−20

−10

0

∂X1/∂m0

0 120
−30

−20

−10

0

∂X1/∂m1

0 120
0

0.5

1

1.5

∂X1/∂K2

0 120
−1.5

−1

−0.5

0

∂X1/∂ αp

0 120
−40

−20

0

∂X1/∂ μp

0 120
0

5

10

15

∂X1/∂Kp

0 120
−0.4

−0.2

0

∂X1/∂Ki

0 120
−2

0

2

4

∂X1/∂ μl

0 120

−0.2

0

∂X1/∂Ksl

0 120
−500

0

500

∂X1/∂Ksi

0 120
−1

0

1

∂X1/∂ μh

Fig� ���� Sensitivity of X� to the model parameters for a � bit constrained D
optimal experiment design based on the model of Paul et al������	�
The ��� correspond to the ��hour sample intervals�



�� Improving Parameter Con�dence ���

0 120
−200

−100

0

100

∂X2/∂ μ0

0 120
0

20

40

∂X2/∂K0

0 120
−200

−100

0

100

∂X2/∂ γ1

0 120
−5

0

5

10

∂X2/∂K1

0 120
0

5

10

∂X2/∂ μe

0 120
−15

−10

−5

0

∂X2/∂Ke

0 120
−300

−200

−100

0

∂X2/∂ μ2

0 120
0

200

400

∂X2/∂ μ1

0 120
0

100

200

∂X2/∂ μ3

0 120
−1

0

1

∂X2/∂ μa

0 120
−3

−2

−1

0

∂X2/∂ α0

0 120
−6

−4

−2

0

∂X2/∂ αe

0 120
−15

−10

−5

0

∂X2/∂m0

0 120
−15

−10

−5

0

∂X2/∂m1

0 120
0

0.5

∂X2/∂K2

0 120
−1

−0.5

0

∂X2/∂ αp

0 120
−20

−10

0

∂X2/∂ μp

0 120
0

5

10

∂X2/∂Kp

0 120
−0.2

−0.1

0

∂X2/∂Ki

0 120
0

0.5

1

∂X2/∂ μl

0 120
−0.1

−0.05

0

∂X2/∂Ksl

0 120
0

100

200

∂X2/∂Ksi

0 120
−1

0

1

∂X2/∂ μh

Fig� ���	 Sensitivity of X� to the model parameters for a � bit constrained D
optimal experiment design based on the model of Paul et al������	�
The ��� correspond to the ��hour sample intervals�



�� Improving Parameter Con�dence ��	

0 120
−40

−20

0

20

∂X3/∂ μ0

0 120
0

5

10

∂X3/∂K0

0 120
−20

−10

0

10

∂X3/∂ γ1

0 120
−1

0

1

2

∂X3/∂K1

0 120
0

1

2

∂X3/∂ μe

0 120
−4

−2

0

∂X3/∂Ke

0 120
0

10

20

30

∂X3/∂ μ2

0 120
0

50

100

150

∂X3/∂ μ1

0 120
0

20

40

60

∂X3/∂ μ3

0 120
−100

−50

0

∂X3/∂ μa

0 120
−1

−0.5

0

∂X3/∂ α0

0 120
−1.5

−1

−0.5

0

∂X3/∂ αe

0 120
−4

−2

0

∂X3/∂m0

0 120
−6

−4

−2

0

∂X3/∂m1

0 120
0

0.1

0.2

∂X3/∂K2

0 120

−0.2

0

∂X3/∂ αp

0 120
−6

−4

−2

0

∂X3/∂ μp

0 120
0

1

2

∂X3/∂Kp

0 120
−0.1

−0.05

0

∂X3/∂Ki

0 120
0

0.2

∂X3/∂ μl

0 120
−0.03

−0.02

−0.01

0

∂X3/∂Ksl

0 120
0

20

40

60

∂X3/∂Ksi

0 120
−1

0

1

∂X3/∂ μh

Fig� ���
 Sensitivity of X� to the model parameters for a � bit constrained D
optimal experiment design based on the model of Paul et al������	�
The ��� correspond to the ��hour sample intervals�



�� Improving Parameter Con�dence ��


0 120
−1000

−500

0

500

∂S/∂ μ0

0 120
−20

−10

0

10

∂S/∂K0

0 120
0

500

1000

∂S/∂ γ1

0 120
−100

−50

0

50

∂S/∂K1

0 120
−100

−50

0

50

∂S/∂ μe

0 120
0

10

20

∂S/∂Ke

0 120
0

50

100

∂S/∂ μ2

0 120
−500

0

500

∂S/∂ μ1

0 120
0

100

200

∂S/∂ μ3

0 120
−1

0

1

∂S/∂ μa

0 120
−2

−1

0

1

∂S/∂ α0

0 120
−10

−5

0

5

∂S/∂ αe

0 120
−20

−10

0

10

∂S/∂m0

0 120
−40

−20

0

20

∂S/∂m1

0 120
−1

−0.5

0

0.5

∂S/∂K2

0 120
−1

0

1

2

∂S/∂ αp

0 120
−20

0

20

40

∂S/∂ μp

0 120
−20

−10

0

10

∂S/∂Kp

0 120
−0.05

0

0.05

∂S/∂Ki

0 120

0

0.1

∂S/∂ μl

0 120
−5

0

5
x 10

−3
∂S/∂Ksl

0 120
0

10

20

∂S/∂Ksi

0 120
−1

0

1

∂S/∂ μh

Fig� ���� Sensitivity of S to the model parameters for a � bit constrained D op�
timal experiment design based on the model of Paul et al������	� The
��� correspond to the ��hour sample intervals�



�� Improving Parameter Con�dence ���

0 120
−200

−100

0

100

∂L/∂ μ0

0 120
0

10

20

∂L/∂K0

0 120
0

50

100

∂L/∂ γ1

0 120
−4

−2

0

2

∂L/∂K1

0 120
−20

−10

0

10

∂L/∂ μe

0 120
0

10

20

∂L/∂Ke

0 120
−5

0

5

∂L/∂ μ2

0 120
0

10

20

∂L/∂ μ1

0 120
0

2

4

∂L/∂ μ3

0 120
−1

0

1

∂L/∂ μa

0 120

−0.2

0

∂L/∂ α0

0 120
−2

−1

0

1

∂L/∂ αe

0 120
−4

−2

0

2

∂L/∂m0

0 120
−4

−2

0

2

∂L/∂m1

0 120
0

0.05

0.1

∂L/∂K2

0 120
−0.2

0

∂L/∂ αp

0 120
−4

−2

0

2

∂L/∂ μp

0 120
0

1

2

∂L/∂Kp

0 120
−0.04

−0.02

0

0.02

∂L/∂Ki

0 120
−10

−5

0

5

∂L/∂ μl

0 120
0

0.5

1

∂L/∂Ksl

0 120
−2000

−1000

0

1000

∂L/∂Ksi

0 120
−1

0

1

∂L/∂ μh

Fig� ���� Sensitivity of L to the model parameters for a � bit constrained D op�
timal experiment design based on the model of Paul et al������	� The
��� correspond to the ��hour sample intervals�



�� Improving Parameter Con�dence ���

0 120
−100

−50

0

50

∂P/∂ μ0

0 120
−20

0

20

40

∂P/∂K0

0 120
−50

0

50

100

∂P/∂ γ1

0 120
−10

−5

0

5

∂P/∂K1

0 120
−2

0

2

4

∂P/∂ μe

0 120
−5

0

5

∂P/∂Ke

0 120
−5

0

5

∂P/∂ μ2

0 120
−60

−40

−20

0

∂P/∂ μ1

0 120
−20

−10

0

∂P/∂ μ3

0 120
−1

0

1

∂P/∂ μa

0 120
−1

−0.5

0

0.5

∂P/∂ α0

0 120
−2

−1

0

1

∂P/∂ αe

0 120
−5

0

5

∂P/∂m0

0 120
−10

−5

0

5

∂P/∂m1

0 120

0

∂P/∂K2

0 120

0

∂P/∂ αp

0 120
0

50

100

150

∂P/∂ μp

0 120
−60

−40

−20

0

∂P/∂Kp

0 120
0

0.5

1

1.5

∂P/∂Ki

0 120
−0.5

0

0.5

1

∂P/∂ μl

0 120
−0.05

0

0.05

∂P/∂Ksl

0 120
−100

0

100

200

∂P/∂Ksi

0 120
−300

−200

−100

0

∂P/∂ μh

Fig� ���� Sensitivity of P to the model parameters for a � bit constrained D
optimal experiment design based on the model of Paul et al������	�
The ��� correspond to the ��hour sample intervals�
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possible to precisely implement the designed � bit feed pro�le
 Discussions

with Paul ������ suggested that the feed rate could be controlled in steps of

around 
� to �
 g�glucose��hr
 The upper bound on the input feed pro�le

corresponds approximately to a feed rate of ��g�glucose��hr� and so dividing

the range into �� to �� divisions would correspond to the achievable intervals


On this basis� using � bit designs� having ���% ��� divisions of the input range

was considered to be adequate for practical purposes


The di�erence of � orders of magnitude between the � bit and � bit

designs corresponds� on average� to reducing the range over which each of

the �� model parameters may vary for a given error value� for the � bit case�

to two thirds of the corresponding range for the � bit case
 The addition of

the total biomass concentration constraint to the � bit design crierion results

in a further decrease in the determinant values obtained


The di�erence in the range of determinant values obtained for the con	

strained and unconstrained � bit experiment designs may be due to changes

in the size and shape of the search space containing acceptable feed pro�les


For the unconstrained design� the whole of the search space is acceptable�

but adding constraints reduces the size of the search space and may produce

an acceptable search space which is non	convex or discontinuous
 Since the

search space for the constrained case is smaller than for the unconstrained

case� the range of possible determinant values is narrower and this may go

some way towards explaining the narrower range of determinant values found

in the constrained case


The determinant values obtained for the experiment designs have been

compared with those obtained for a number of simpler input pro�les
 These
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are�

� a constant feed rate� feeding the same total volume to the fermenter as

the best � bit constrained designed pro�le

� two square pro�les� stepping between values that are half of and one

and a half times the constant feed rate value�

� low	high� starting with the feed rate set to half the constant feed

rate value

� high	low� starting with the feed rate set to one and a half times

the constant feed rate value

� a ramped feed rate� starting from zero feed and rising over the ��

hours of the fermentation to a �nal value double the constant feed rate

�therefore delivering the same total feed to the fermenter�

All these simple feed pro�les result in determinant values which are less

than those for the designed experiments �see Table �
��
 The square wave

pro�les are the best performing of the simple feed pro�les with respect to the

D optimal experiment design criterion� but even they give rise to determinant

values which are several orders of magnitude smaller than the designed feed

pro�les
 The reason for the extremely poor performance of the ramped feed

pro�le is not clear� but may be due to such a pro�le causing much smaller

changes in the values of the biomass� substrate and penicillin concentrations

during the fermentation than the other inputs� and so producing data over

a smaller portion of the model�s state space than the other input pro�les
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Feed Pro�le Determinant
two	rate FIM single	rate FIM

Constant feed �
�e�� �
�e	�
Square wave �low	high� �
�e�� �
�e�
Square wave �high	low� �
�e�� �
�e�
Ramped feed �
e	� �
�e	��

Tab� ��� Determinant values for simple feed proles� calculated for both single�
rate and two�rate information matrices

One way of assessing the e�ectiveness of this experiment design process

would be by examining the parameter values obtained� and their con�dence

intervals� on tuning to data obtained from actually running the optimal ex	

periment designs
 Work on running such a design has been planned� and is

intended to be carried out in the near future
 Parameter estimation based

on the data obtained should be carried out using Simusolv and an exist	

ing ACSL model� since Simusolv may be used to produce estimates of the

parameter con�dence intervals for the model parameters
 Comparing the

parameter con�dence intervals obtained in tuning to data from the experi	

ment design with those for the parameters tuned from earlier experiments

will provide a means of assessing whether or not the designed experiments

may lead to an improvement in the parameter con�dence intervals


���� Notation

A diagonal matrix
CPR carbon dioxide production rate� g�CO��h

��

D diagonal matrix with eigenvalues along the diagonal
E summed squared error
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E� minimum value of the summed squared error
FIM Fisher Information Matrix
H a schema
L lactose concentration� g�L�l��

N number of individuals in a genetic algorithm�s population
P concentration of Penicillin� g�P�l��

P�t� probability that an allele in a chromosome is �xed
S glucose concentration� g�S�l��

V matrix made up� row	wise� of eigenvectors of the FIM
V volume in the fermenter� l
V binary alphabet of alleles� f��g
V 	 augmented binary alphabet� f
 �
 �g
W weighting matrix
W� weighting matrix for measurement rate �
W� weighting matrix for measurement rate �
X biomass concentration� g�DW�l��

Xt total biomass concentration� g�DW�l��

X� concentration of hyphal tips� g�DW�l��

X� concentration of subapicial regions� g�DW�l��

X� e�ective concentration of vacuoles� g�DW�l��

X� concentration of degenerated regions� g�DW�l��

a length of axis of a con�dence ellipsoid
a nominal model parameter
a�� �rst element on the diagonal of matrix A
a�� second element on the diagonal of matrix A
a�� % �
 � � � � n position along a chromosome
b optimum parameter set
b length of axis of a con�dence ellipsoid
b nominal model parameter
c nominal model parameter

f�x�t�
 �
 u�t�� function relating rate of change of the model states
x�t� to the states� x�t�� parameters� �� and
inputs� u�t�

f�i� �tness of individual i
f�p
 t� frequency of allele having value p in generation t
g�x�t�
 �
 u�t�� function relating the model output y�t� to
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the states� x�t�� parameters� �� and
inputs� u�t�

g�x� general genetic algorithm �tness function
h� mean Hamming distance of initial population
hi�x� constraint function
k cardinality of alphabet �number of characters�
l length of axis of error ellipsoid
l length of chromosome
m measured value
m� value measured at rate �
m� value measured at rate �
m�H
 t� number of members of schema H in generation t
n number of individuals in genetic algorithm�s population
o�H� order of schema H
p�i� probability of string i being selected for reproduction
pc probability of crossover at a given point
psc probability of a schema surviving single point crossover
pm probability of mutation occuring at a given point
psm probability of a schema surviving mutation
s� standard deviation of Hamming distances in initial population
t time� h
ti measurement time i
u inputs
x model states
x �rst model state
x� �rst element of x vector
x� second element of x vector
x� simulated values sample at measurement rate �
x� simulated values sample at measurement rate �
xa
 xb
 xc derivatives of �rst model state wrt
 nominal parameters
ya
 yb
 yc derivatives of second model state wrt
 nominal parameters
y model outputs
y second model state
z� modi�ed parameter space in Newton	Raphson method

Greek Symbols
- constant modifying length of step in gradient descent
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/&hi�x�' penalty function applied for constrained genetic algorithm

� coe�cient relating CPR to *X
� coe�cient relating CPR to X
� parameter set
+� estimate of parameters� �
,�� modi�ed distance from optimum parameter set

� coe�cient relating CPR to *P
��H� length of schema H
� eigenvalue of the FIM
� variable modi�er used in Marquardt�s method
�� vacuole degeneration coe�cient in model of

Paul et al� ������

� wildcard



�� CONSIDERING MODEL IDENTIFIABILITY

The problem of model identi�ability is that of determining whether or not�

for a given model structure� there is in theory only one set of parameters

for which given model input�s� will generate given model output�s�
 This is

important as the model parameters may be physically signi�cant� and there

may be interest in knowing whether or not they can be estimated uniquely

for a given set of experimental measurements� or there may be di�culties in

using numerical search techniques if there is more than one possible set of

parameters for which the model will �t the data �Ljung and Glad� �����
 It

may also be true that only a few variables are available for measurement�

when �tting a model to even a limited set of data� parameter estimation

will always give some kind of answer
 However� if there exist more than

one possible set of parameters �possibly even an in�nite number of sets of

parameters�� the parameter estimates obtained may be of little practical use

�Vajda et al�� �����


In this chapter� the problem of model identi�ability is introduced� ap	

proaches to tackling the identi�ability problem taken from the engineering

literature are described� and a new approach to assessing the global identi�a	

bility of models is introduced
 Examples then demonstrate that the new ap	

proach produces results comparable with those obtained using the approaches
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taken from the literature� and this chapter concludes with an identi�ability

analysis� using the new approach� of the model of Paul et al� ������
 The

analysis shows that the model is theoretically globally identi�able


��� The Problem

Assuming a typical structure for the nonlinear model�

*x�t� % f�x�t�
 u�t�
 t
 �� x�t�
 u�t�
 �  �n
 t  &
 T '

y�t� % g�x�t�
 ��

with x�t�
 y�t� and u�t� being vector	valued� time	varying model states� out	

puts and inputs and � being a vector of parameter values
 The derivatives

of the states� *x�t� are given by the set of nonlinear di�erential equations

f�x�t�
 u�t�
 t�� and the outputs by the nonlinear relations g�x�t�
 ��
 �n

denotes a real	valued� n	dimensional vector space


For this model structure� the parameter vector � is locally identi�able if

for almost any solution +� the solution is unique in some neighbourhood of

+�
 A model is globally identi�able if the conditions for local identi�ability

apply over the whole of the parameter space� not just a neighbourhood of +�

�Jacquez and Greif� �����


For a model to be of use in describing a fermentation process� or in

the development of estimators and controllers� or in the optimisation of the

economic performance of a process� it must �rst be tuned against measured

experimental data
 There are three possible outcomes of this process


� The model is globally identi�able� there is a single� unique set of pa	
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rameters for which the model �ts the data


� The model is locally identi�able� within a given range of parameter

values �all positive� for example� there is only one set for which the

model �ts the data


� The model is unidenti�able� there exist more than one set of parameter

combinations for which the model can �t the data �possibly an in�nite

number�


The range of feasible parameter values can often be restricted� especially

in the case of fermentation models� where parameters are related to physi	

cal concepts and properties of the process
 Speci�c growth rates and yield

coe�cients must have positive values� for example
 That being the case� the

goal is to show that the models being used here to describe the fermentation

are either locally identi�able within the range of feasible parameter values or

globally identi�able� and hence suitable for our purposes


��� Theoretical Identiability

There are a number of techniques available in the engineering literature for

assessing the identi�ability properties of a model
 Three of these are the

Taylor series expansion approach �Pohjanpalo� ������ the state isomorphism

method �Vajda and Rabitz� ������ and a di�erential algebra based method

�Ljung and Glad� �����
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����� The Taylor series approach

This method is based on solving the set of equations generated by taking

successively higher derivatives of the basic model equations to give expres	

sions for the parameters in terms purely of measurable quantities 	 typically

the measured inputs and outputs of the process


Assuming a typical structure for the nonlinear model�

*x�t� % f�x�t�
 u�t�
 t
 �� x�t�  �n
 t  &
 T '

y�t� % g�x�t�
 ��

then taking derivatives and inserting assumed �known� values for their initial

conditions� the following set of equations is obtained�

g�k��x��
 �� % ak�� k % 
 � � � 
�

�g�k� is the kth time derivative of g� and ak�� is the �theoretically obtainable�

initial value for the kth derivative
�

This method� based on the Taylor series expansion of the model equations

may� in theory at least� be easily performed �Chappell et al�� ����


�
 Di�erentiate x�t
 �� and y�t
 ��


�
 Evaluate y�i��	
 �� by substitution of quantities already known from

y�	
 �� and lower derivatives of x �� i�


�
 Check on the independence of the equations in successive derivatives

and on what parameters� if any� can be identi�ed at each stage in the
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di�erentiation


�
 If not all parameters have been identi�ed� then repeat the procedure

from step �


Although the above method seems simple enough� in practice it rapidly

becomes algebraically involved� especially where models are nonlinear in the

parameters
 The use of computational algebra packages� such as Maple� helps

to a certain degree� but even so this method is limited in practice to simpler

models with few state equations and few parameters


����� The state isomorphism approach

The following is taken from the paper of Vajda and Rabitz ������


Consider a parametrised nonlinear system


0
x����
� �

���
��

*x�t
 �� % f�x�t
 ��
 �� � uh�x�t
 ��
 ��

y�t
 �� % g�x�t
 ��
 ��
 x�
 �� % x����

��
��

Let M and 1 be bounded� connected and open sets in �n and �q� re	

spectively� such that x  M and �  1� where � represents the constant

parameter vector
 It is assumed that the vector �elds f��
 �� and h��
 ��� and
the function g��
 �� � M � �m are real analytic onM for all �  1
 Vajda and

Rabitz ������ considered the problem of identi�ability of the above model

system in the experiments with given initial condition x���� and bounded

inputs U &
 t�'� de�ned over the range &
 t�'
 Let 0
x����
� denote the input	

output map of the system
 Then parameter values �
 2�  1 are said to

be indistinguishable �denoted by � � 2�� in the set of possible experiments
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�x����
 U &
 t�'�� if 0
x����
� �u� % 0

x����
�

�u� for all u  U &
 t�'
 �That is to say�

two experiments with di�erent parameter sets are indistinguishable if the

same inputs produce the same measured outputs for all permissible inputs
�

The system is globally identi�able at � if 2� � �
 2�  1 implies 2� % �
 The

system is locally identi�able at � if there exists an open neighbourhood W of

� in 1 such that 2� % �
 2�  W implies 2� % �


Vajda and Rabitz ������ referred to previous work on identi�ability� in

which three factors had been considered�

�
 the relationship between the local identi�ability and the local observ	

ability of a system

�
 the functional expansion of the input	output map� eg
 using a Taylor

series expansion

�
 the local state isomorphism approach of nonlinear realisation theory

Of these three� the �rst was discounted as being explicitly local� the

second was considered to result in conditions for identi�ability which were

su�cient� but not necessary� from a practical point of view �for Vajda and

Rabitz�� and so Vajda and Rabitz ������ concentrated on the third approach�

aiming to extend the state isomorphism approach to the global identi�ability

of nonlinear systems


In addition to assuming the analyticity of the system� it is assumed that

the system satis�es both the controllability rank criterion �CRC� and the

observability rank criterion �ORC�
 �The CRC and ORC are covered well in

�Ray� �����
� The problem of global identi�ability may then be summarised
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as follows� Given the model system ��
�� and �  1� �nd all 2�  1 and

systems of the form

0
x����
�

�

���
��

*2x��t
 2�� % f�2x��t
 2��
 2�� � uh�2x��t
 2��
 2��

y�t
 2�� % g�2x��t
 2��
 2��
 2x��
 2�� % 2x��2�� % x��2��

��
��

such that

0
x����
� �u� % 0

x����
�

��
��

for all u  U &
 t�'


Vajda and Rabitz ������ describe this as a highly restricted problem of

system equivalence
 First� both ��
�� and ��
�� are locally reduced and have

the same subset M in �n as their state spaces
 Second� in addition to the

input	output map� the known system structure is also invariant under the

feasible class of local state isomorphisms
 The analysis is based on the con	

struction of all such transformations
 This idea had previously been applied

to linear systems� where equivalence transformations are linear� although lo	

cal state isomorphisms between ��
�� and ��
�� generally are solutions of a

set of partial di�erential equations� their construction is relatively simple for

certain locally identi�able systems of practical interest
 Vajda and Rabitz

������ also showed that any local state isomorphism preserving the struc	

ture of a homogeneous system is linear� and suggested that� because of this�

the local state isomorphism method is very simple for this class of systems�

and that the known conditions for global identi�ability of linear and bilinear

systems are special cases of their results
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The condition for identi�ability advanced by Vajda and Rabitz ������

was as follows


Consider �
 2�  1� an open neighbourhood V of x���� in �n� and any

analytic map � � V � �n de�ned on V such that

��x��2��� % x���� ��
��

rank
�

2x
% n for all 2x  V ��
��

f���2x�
 �� %
�

2x
f�2x
 2�� ��
��

h���2x�
 �� %
�

2x
h�2x
 2�� ��
��

g���2x�
 �� % g�2x
 2�� ��
��

for all 2x  V 
 Then there exists t� �  such that ��
�� is globally identi�able

at � in the experiments �x����
 U &
 t�'� if and only if the above conditions

imply 2� % �


����	 The di�erential algebraic approach

A recent paper �Ljung and Glad� ����� advances a technique for assessing the

identi�ability of nonlinear models by using methods pioneered in the �eld of

di�erential algebra� in particular an algorithm indicated by Ritt �Ritt� ����

Kolchin� �����
 This algorithm enables the generation of a set of character�

istic sets of prime di�erential ideals from a set of di�erential polynomials


In the paper �Ljung and Glad� ������ a naive description of the method is

provided� which gives an overview of how this di�erential algebra based tech	

nique works
 A summary of that is given here� in preference to the far more
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involved and abstruse more mathematically complete and correct version�

also o�ered in Ljung and Glad ������


Start from a set of di�erential polynomials describing the model

gi�u
 x
 y
 �
 p� %  i % �
 �
 � � � 
 r ��
��

where u�t� and y�t� are the measured input and output values� x�t� are non	

measurable state variables� � is a vector of time	invariant parameters and p is

a di�erentiation operator
 �Note that the formal development of the method

is based around polynomial descriptions
 Other types of relationship would

need to be replaced with a suitable polynomial approximation
 Ljung and

Glad ������ give the illustration of replacing x % sin�y� with *x� % *y����x��
�
From this set of di�erential polynomials an in�nite number of other poly	

nomials may be formed by di�erentiating� adding� scaling and multiplying

the original di�erential polynomials
 If the in�nite set of all these expressions

is denoted by G� then any solution u
 y satisfying the original set of di�eren	

tial polynomials will satisfy all equations in G
 Ljung and Glad ������ state

that it is su�cient to select a �nite subset of G that has the same solution set

as the original set of di�erential polynomials� and ask whether there might

exist a set of di�erential polynomials that would make it easier to establish

identi�ability


An analogy may be drawn with linear algebra and linear spaces and bases


A �nite basis is su�cient to describe in�nitely many vectors in the space�

and there are in�nitely many bases� each de�ned by a �nite set of vectors


Certain questions are more easily answered in one basis than another Three

criteria are given to de�ne a �good� basis �Ljung and Glad� �����
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� Expressions should not contain the variable x� since it is not known to

us


� Expressions should not contain higher powers of �� since this would

make it more di�cult to assess the identi�ability


� It is OK if the expressions contain powers and derivatives of u and y�

since these anyway are known to us


It was suggested that the �best� expression in G would take the following

form�

3��y
 u
 p� %  ��
��

i
e
 a di�erential algebraic expression in terms only of u and y
 The next

best would be of the type�

/��y
 u
 p� � �3��y
 u
 p� %  ��
���

from which it was suggested that the value of � could be uniquely determined

only if the function

3��y
 u
 p�

has full rank


Determining whether or not equations of the form of Equation �
�� may

be found is determined by searching over G with a procedure reminiscent of

the Gauss	elimination algorithm
 Take an arbitrary element
 If it contains
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unwanted features� try to eliminate them by the allowed algebraic manipu	

lations
 In this way� a �better� element is created in each step� and �nally

the existence or otherwise of equations of the type shown in Equation �
��

is determined
 Formally� this is Ritt�s algorithm


In the original paper� step	by	step details of the working of the version of

Ritt�s algorithm used are not given �Ljung and Glad� ������ but a few simple

illustrations of the inputs and outputs of the algorithm are shown
 One of

these is shown later� in Section �
�


��� A New Approach to Identiability

This section outlines a new approach to assessing the identi�ability of non	

linear models� based broadly on the notion of �nding a �linear regression� for

each parameter in terms of measurable states and inputs only� as advanced

by Ljung and Glad ������
 The method outlined here is similar to that �rst

advanced by Pohjanpalo ������� with the exception that here no attempt

is necessarily made to solve explicitly for each parameter for which an at	

tempt is being made to assess identi�ability
 The approach here may also be

considered as marginally more generic than that of Pohjanpalo ������� as it

does not focus exclusively on the information contained in the �germ� of the

dynamic system behaviour �its initial conditions and derivative values�


��	�� The test

A model system is considered to be globally identi�able if the following state	

ments are true
 Starting from the model equations� a set of expressions can

be obtained in which all the parameters present in the original model are
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found� and in which the only states� inputs and outputs present are measur	

able� each expression including at least one term made up only of measurable

states� inputs and outputs
 Assuming that the groups of parameters present

in each expression may be equated to distinct� non	zero constants� the set of

simultaneous equations which can be formed� relating the parameters to the

constants may be solved uniquely to give each parameter as being linearly

related to a function made up solely of constants


One possible procedure to follow to determine identi�ability according to

the above is as follows


�
 multiply throughout each equation in turn� so as to eliminate divisor

terms

�
 substitute between expressions to eliminate unmeasurable quantities

�
 collect together the terms in each expression� grouping them by unique

groups of measurable states and outputs

�
 assuming that the groups of parameters associated with each unique

group of measurable states and outputs can be equated to distinct�

non	zero constants� generate a set of simultaneous equations

�
 attempt to solve the resulting simultaneous equations for the individ	

ual parameters �as solutions are generated for each parameter in turn�

substitute an assumed constant value for the parameter�

If any parameters are present in the set of simultaneous equations only as

powers other than unity� then there exists the possibility of more than one
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feasible set of equations� and global identi�ability may not be shown
 How	

ever� the system may still have only a single feasible parameter set


This approach to determining model identi�ability has been based on

the assumption that the measurable quantities may be approximated� as

functions of time� by high order polynomials� di�erentiable at least one more

time than there are terms in the longest expression


This new approach to determining the identi�ability has advantages over

the existing approaches
 The theory on which it is based is simpler than that

underlying the approaches of Vajda et al ������ or Ljung and Glad �������

and the approach does not call for the repeated calculations which are a

feature of the approach of Pohjanpalo ������


The approach of Pohjanpalo ������ suggests that constant values be de	

�ned for all measurable initial conditions� and their progressive derivatives�

whilst the new approach merely assumes that expressions made up solely of

measurable states and their derivatives will evaluate to constants� which as	

sumption may be justi�ed� since such expressions are to be equated to groups

made up solely of parameters� which are assumed to be time	invariant


��	�� The problem

What are su�cient conditions for it to be possible to obtain independent

expressions for parameters in terms solely of states and inputs�outputs�

Consider a general di�erential polynomial expression�

k��� � k��� � � � �� kn�n %  ��
���
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where the ki are expressions made up only of parameters �assumed constants��

and the �i are distinct groups of states and their derivatives �or inputs or out	

puts�� i
e
 no two terms ki�i
 kj�j have the same ��� assumed to be multiply

di�erentiable
 �A di�erential polynomial of the form given above may al	

most always be formed from the equations given in a fermentation model


Multiplying through by divisor terms� such as �Km � S� from the Monod

expression� will eventually give a �simple� di�erential polynomial of the form

above
�

Di�erentiating a di�erential polynomial containing distinct groups of states

produces a new di�erential polynomial containing distinct groups of states

and their derivatives


k� *�� � k� *�� � � � �� kn *�n %  ��
���

When any di�erential polynomial in which the groups of states are distinct

is multiplied by any group of states� the groups of states in the resulting

di�erential polynomial remain distinct
 Multiplying Equation �
�� by *�� and

Equation �
�� by �� gives the following pair of equations


k��� *�� � k��� *�� � � � �� kn�n *�� %  ��
���

k��� *�� � k��� *�� � � � �� kn�� *�n %  ��
���

Subtracting the second of these equations from the �rst results in a di�eren	

tial polynomial with one fewer parameter group than the original� in which
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all the groups of states are distinct


k�� *���� � �� *��� � � � �� kn� *���n � �� *�n� %  ��
���

It is not possible for more than parameter group to be eliminated in one

step following this procedure� since the groups of states are distinct
 Given

a di�erential polynomial with distinct groups of states�

atm � btn % 

Di�erentiating with respect to time gives�

matm�� � nbtn�� % 

Multiplication and subtraction give�

mbtn	�m��� � nbtm	�n��� % 

Assuming that m
n and b are all non	zero� the only case for which the left	

hand side of this expression equals zero is that for which m and n are equal�

which cannot be true if the groups of states are distinct� as was assumed


The procedure of di�erentiation� multiplication and subtraction may be

repeated� eliminating one parameter group at a time until only a single pa	

rameter group remains� at which point an expression may be formed for that

parameter solely in terms of states� inputs� outputs and their derivatives�

provided that a term consisting only of groups of states is present in the
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original expression


For a di�erential polynomial of the type in Equation �
��� there are four

possible structures�

� Case � all terms in the di�erential polynomial are made up of groups

of parameters multiplied by groups of inputs�outputs�states

� Case � one term in the di�erential polynomial is made up only of

parameters

� Case � one term in the di�erential polynomial is made up only of

inputs�outputs�states

� Case � there is one term in the di�erential polynomial made up only

of parameters� and one made up only of inputs�outputs�states

The four cases are not all identi�able
 A simple illustration of each case is

given here


Case �

Consider the simple Case � system�

aX � bY % ��
���

where �a
 b� are parameters and �X
 Y � are inputs�outputs�states


Di�erentiating�

a *X � b *Y % ��
���
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Cross	multiplying by the inputs�outputs�states associated with a�

aX *X � bY *X % ��
���

aX *X � bX *Y % ��
��

Subtracting the second from the �rst�

b�Y *X � *Y X� % ��
���

This last equation is only true if either b %  or �Y *X� *Y X� % � and so this

simple Case � system is not identi�able


Case �

Consider the simple Case � system�

aX � bY � c % ��
���

where �a
 b
 c� are parameters and �X
 Y � are inputs�outputs�states


Di�erentiating�

a *X � b *Y % ��
���

which is equivalent to a Case � system and so� again� the system is not

identi�able
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Case 	

Consider the simple Case � system�

aX � bY � Z % ��
���

where �a
 b� are parameters and �X
 Y
 Z� are inputs�outputs�states


Di�erentiating�

a *X � b *Y � *Z % ��
���

Cross	multiplying by the inputs�outputs�states associated with a�

aX *X � bY *X � Z *X % ��
���

a *XX � b *Y X � *ZX % ��
���

Subtracting the second from the �rst� and solving for b�

b %
*ZX � Z *X

Y *X � *Y X
��
���

and solving for a�

a %

�
�Z *X � *ZX�Y *X

Y *X � *Y X
� Z *X

�
�X *X ��
���

So� with the exception of those cases for which any of the denominators in

the expressions of a and b is zero� this Case � system is identi�able
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For Case � systems� if all �i are unique and di�erentiably analytic� then

each ki may be found as an expression made up solely of the �i and their

derivatives


Case �

Consider the simple Case � system�

aX � b� Y % ��
��

where �a
 b� are parameters and �X
 Y � are inputs�outputs�states
 Di�eren	

tiating the above produces a Case � system�

a *X �  � *Y % ��
���

and so can be solved for a�

a %�
*Y
*X

��
���

and� substituting for a� can be solved for b�

b %� Y �
*Y X
*X

��
���

and so Case � systems are identi�able
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��	�	 What if not all �i are measurable�

Clearly the chances of identifying all ki are less if all the data described by

the model are not available
 Can �i be eliminated without eliminating ki�

Consider a di�erential polynomial expression made up of n terms� as in

Equation �
��
 For some �i� � � i � n�

�ki�i %
i��X
j��

kj�j �
nX

j�i	�

kj�j ��
���

�i % �

�Pi��
j�� kj�j �

Pn
j�i	� kj�j

�
ki

��
���

�Note that kn %  for a Case � system
�

With a single di�erential polynomial� this gets us nowhere
 However�

with a set of di�erential polynomials� such as those which make up a typical

fermentation model� it may be possible to substitute progressively for the

unknown states� provided that the di�erential polynomials are linearly inde	

pendent
 In that case� given at least one more di�erential polynomial than

there are unmeasurable states� it should be possible to obtain a di�erential

polynomial which contains only parameters and � expressions made up only

of measurable states� inputs and outputs


At this point the original di�erential polynomial expressions have been

converted� by substituting for unmeasurable quantities� into a set of equiva	

lent expressions� now made up of groups of the original ki and �i�

k�G��G � k�G��G � � � �� knG�nG %  ��
���
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where the kiG are the new �groups� of parameters� and the �iG are the new

�groups� of measurable quantities and their derivatives
 Again� knG %  is

necessary for an identi�able� Case �� system


Given a di�erential polynomial made up of parameters and measurable

quantities only� expressions can be obtained for each group of parameters�

kiG� Thus�

kiG % fiG���
 p� ��
���

for all the kiG present in the di�erential polynomial used to obtain the pa	

rameter group expressions
 p is the di�erential operator
 Expressions may

be obtained for each of the kiG in terms only of groups of measurable states�

inputs and derivatives ��iG�


It is not necessary to evaluate the fiG���
 p�
 These expressions are only

needed to check for conditions for which the kiG have undetermined values


Since all the kiG expressions will be expressed as the quotient of one expres	

sion made up of measurable quantities and another expression of the same

type� there will be conditions for which the divisors have the value zero� and

for those cases it is not possible to solve for the kiG


��	�� Finding ki from kiG

This is not enough� yet� to ensure that unique expressions can be obtained

for all the parameters present in the original model equations �ki�
 That

can only be done if all the original parameters are present in the kiG groups�

and they are either present singly in the kiG expressions� or present only
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in conjunction with other parameters that may be obtained individually by

substitutions from other kiG groups


After obtaining a di�erential polynomial with the form of Equation �
���

it is necessary to be able to solve the set of polynomials given by setting

the kiG expressions present in the di�erential polynomial equal to constant

values which would be obtained by evaluating the fiG���
 p�
 These constant

values are denoted by the /i in the expression below
 In other words it is

necessary to solve the set of equations�

gi�k�
 k�
 � � � 
 kn��� % /i ��
���

where there exists one equation for each group of parameters in Equation �
���

for the assorted ki parameters from the original model equations
 �The above

expression is simply a rewritten form of Equation �
���
 The types of solu	

tions obtained from these expressions will determine the number of sets of

parameter values for which the model may display identical behaviour
 If all

�ki� are linearly related to the /i� then there will be single unique solutions

for each� higher powers will have more roots� but these may lie outside the

range of valid parameter values
 Most fermentation model parameters are

de�ned to be positive� for example


If it is not possible to obtain distinct linear expressions for all �ki� inde	

pendent of the other model parameters� then there will exist a set of possible

parameter values� possibly in�nite� although bounded by physical feasibility


For example� if k� � k� % /��� then there are an in�nite number of solutions

for k� and k�� but the constraint that k� � 
 k� �  means that both k� and

k� must lie in the range  � value � /��
 In this case� although the system
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does not exhibit global identi�ability� it does exhibit bounded identi�ability


��� Pohjanpalo�s Compartmental Model

Pohjanpalo ������ gave the example of a compartmental model which was

unidenti�able when all rates were considered to be linear� but which be	

came identi�able when one of the compartments was considered to possess

only a limiting number of binding sites for entering molecules� giving rise

to Langmuir saturation
 This example is used here to check that the new

identi�ability test gives results consistent with the approaches used before�

showing unidenti�ability for the linear model and identi�ability for the non	

linear model


����� The linear model

The linear model was as follows


*x��t� % ����� � ����x��t� ��
���

*x��t� % ���x��t�� ���x��t� ��
��

y�t� % x��t� ��
���

In this case� only one of the two compartments �x��t� and x��t�� is con	

sidered to be measurable� and an attempt is being made to demonstrate

identi�ability for f���
 ���
 ���g

However� there is no immediately evident way of eliminating x��t� from

the set of expressions� and so only the summed pair of parameters present in

the *x��t� expression� ��� � ���� may be identi�ed
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����� The nonlinear model

Adapting the linear equations to describe Langmuir saturation in the second

compartment� the model equations become�

*x��t� % ����x��t�� ���&�� s�x��t�'x��t� ��
���

*x��t� % ���&�� s�x��t�'x��t�� ���x��t� ��
���

y�t� % x��t� ��
���

In the case of the nonlinear model� there is one additional parameter to

identify� s�� the saturation factor for compartment �


Solving Equation �
�� for x��t�� the following is obtained�

x� %
*x� � ���� � ����x�

���s�x�
��
���

The explicit time dependence of the states x� and x� has been omitted from

here on to attempt to make the equations simpler and clearer


Di�erentiating this expression gives�

*x� %
���s�x�"x� � ���s� *x

�
�

����s�x���
��
���

Substituting for x� and *x� in Equation �
��� and simplifying� gives�

x�"x� � *x�� % ����s�x
�
� � ���s�x

�
� *x� � �����s�x

�
� � ���x� *x� � �����x

�
� ��
���

where �� % ���� �����
 Since the measurement vector y is identical to state

vector x�� expressions in x� and its derivatives are equivalent to expressions
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in the measured variable y and its derivatives� and so no substitution has

been made for x�


Collecting together terms in the same powers of x� and its derivatives�

the following table is generated


x�� ����s����� � ��� ��
���

x�� ����� ��
���

x�� *x� ���s� ��
��

x� *x� ��� ��
���

x�"x� � ��
���

*x�� �� ��
���

The last two rows in this table show that the nonlinear model is a Case

� system� and so is identi�able� provided that expressions for each of the

parameters in the original model can be formed from the parameter groups

in the above table


Since successive groups of terms can be eliminated� expressions can be

obtained for each group of associated parameters in terms only of the mea	

surable state �x�� and its derivatives
 Attempting then to obtain expressions

for the individual parameters� it would be possible to proceed as follows�

working with the right	hand expressions from the rows mentioned in the

following�

�
 from expression �
�� an expression may be obtained for ���

�
 dividing expression �
�� by expression �
�� it is possible to solve for ��
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�
 dividing expression �
�� by expression �
� it is possible to obtain an

expression for ���� � ��� from which it is possible to solve for ���

�
 since there now exist expressions for �� and ���� it is possible to solve

for ���� as �� % ���� � ����

�
 given ��� � it is possible to solve for s� from expression �
�

And so solutions have been found for all parameters in the nonlinear

model�

f���
 ���
 ���
 s�g
 The new method for assessing model identi�ability has

been shown to give the same results for this pair of related examples as did

the earlier method of Pohjapalo ������


��� An Example from Ljung and Glad ������

The following example� taken from an earlier paper on identi�ability �Chap	

pell et al�� ����� was used in Ljung and Glad ������ to illustrate the dif	

ferential algebraic approach�using Ritt�s algorithm�
 Chappell et al� �����

applied the Taylor series expansion approach of Pohjanpalo ������ and the

similarity transform method of Vajda and Rabitz ������ to the example of

a biological system modelled as having biomass growth described by Monod

kinetics and a �rst order death kinetic� and showed that both methods found
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the system to be theoretically identi�able


*x�t� % � Vmx�t�

km � x�t�
� k��x�t� ��
���

x�� % D ��
���

y�t� % cx�t� ��
���

Here the goal is to identify the set of parameters fVm
 km
 k��
 cg
 D� the

initial biomass concentration� is initially assumed to be unknown
 Both the

Ritt algorithm method and the new approach given above in Section �
�

lead to the same conclusions regarding the identi�ability or otherwise of the

system as did the methods applied by Chappell et al������


����� The Ritt�s algorithm results

The results from applying Ritt�s algorithm to this problem are somewhat

lengthy
 Here y�n� denotes the nth derivative of y� with *y and "y being the

�rst and second derivatives as normal


��y�"y� � �y� *yy���"y� � �y� *y�y���"y � �y� *y�y���
�

���y *y�"y� � ��y *y�y���"y � �y *y�y��� � � *y�"y�

�� *y�y��� %

��
���

*Vm % ��
���
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��Vm *y� � �yVm"y *y
� � � *y�y�y���Vm

�� *y�y�y���Vm � *y�y���Vmy
� � � *y�"y�Vmy

�

��y���"y�Vmy� *y � "y�Vmy
��c

�� *y
 � ��y"y *y� � ��"y�y� *y� � �"y�y� *y� %

��
���

�y�y��� *y � y�"y� � �y *y�"y � � *y��k��

�y *y�y��� � �y *y"y� � � *y�"y %
��
��

�� *y
 � ��"yy *y� � �� *y�y�"y� � � *y�y�"y��km

�� *y�y�"yy���Vm � � *y�y�y���Vm � �y�"y�Vm *y�

� *y�y���
�

Vmy
� � � *y�y�"y�Vm � �"y�y�y���Vm *y

�"y�y�Vm %

��
���

From the above equations� the following results were deduced �Ljung and

Glad� �����


� The structure is neither locally nor globally identi�able� as a conse	

quence of the *Vm %  expression
 �This expression shows that Vm is a

constant� but does not �x its value
 Since Vm is present in Equations

�
�� and �
��� the values of c and km depend on the value of Vm� and

so the system is not identi�able
�

� k�� is globally identi�able� from Equation �
�


� If Vm were known� then c would be globally identi�able� according to

Equation �
��


� If Vm were known� then km would be globally identi�able� according to

Equation �
��
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In other words� the system as it stands is not globally identi�able� but would

be� if the value of any of fc
 km
 Vmg were known


����� Results following the new approach to identi
ability

After substituting y�t��c throughout for x�t�� and rearranging the original

equations� the following equation is obtained


ckm *y � y *y � cVmy � ckmk��y � k��y
� %  ��
���

Collecting together groups of terms in the same powers of y and its deriva	

tives� the following table can be constructed


*yy �� ��
���

y� k�� ��
���

*y c � km ��
���

y c � Vm � c � km � k�� ��
���

The �rst row in the above table shows that this is a Case � system� and

so could be identi�able
 From the table� it can immediately be seen that

k�� is globally identi�able
 It may also be seen that it should be possible to

derive expressions for c � km� and� hence� for c � Vm
 Given the value of any

one of the three remaining unidenti�able parameters fc
 km
 Vmg� it should

be possible to uniquely identify the other two


If the initial x concentration� D had been known� then a value for c could

immediately be obtained from the ratio of y�� to x��
 Thus� for known ini	
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tial conditions� the system is theoretically identi�able
 This is the conclusion

reached with all methods applied� the Ritt�s algorithm approach �Ljung and

Glad� ������ the Taylor series and similarity transform approaches considered

in Chappell et al� ����� and the new approach given above in Section �
�


��� Identiability Analysis of the Model of Paul et al� ����
�

The new method for assessing identi�ability is here applied to the model

of Paul et al� ������
 This method involves attempting to �nd expressions

in terms only of states� outputs and their derivatives for the following ��

parameters


f���mue�m��m�� ���mup�muh���� alphae� alphap�

K��Ke�K��K��Kp�Ki� ��� ���mua�Ksl�Ksi�mul� ��g

Maple has been used to perform algebraic manipulations on the model

equations� and output taken from Maple was then fed into a program written

in the programming language Perl� which collected together terms containing

identical groups of measured quantities �inputs and outputs� and produced

tabular output with the groups of measured quantities in one column and

the associated groups of parameters in the other
 The results of the Maple

session are shown in the body of the following text� with the Perl output

being used as the basis for the tables also given in the following
 �Details of

the Perl program are given in Appendix C
�

The Maple commands used to perform what would otherwise be tedious

hand	cranked algebra are �simplify�� to rearrange the original equations� �col	
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lect�� to group equations by parameter	containing expressions and �sort�� to

make things easier to make sense of


It should be noted that the following simple Maple examples do not use

subscripts consistently
 What is shown here is how Maple interprets the

commands typed� without too much concern for the cosmetic appearance of

the mathematics being performed
 Commands typed at the Maple prompt

will be shown as in the following example�

	 restart�

The equations that de�ne the model were set up one by one� checking each

to see which parameters are identi�able� based on that particular equation


The expressions here are based on those given in Paul et al�


����� The X� expression

The illustration of the new method starts with the equation describing the

rate of change of concentration of the growing tips� X�t� �Xexpr�
 The

expressions for rho��t� and v�c�t� are de�ned �rst� to ensure their availability

later


	 rho��t� �� X��t����X��t��rho��X	�t���

	 v�c�t� �� X��t���	
rho��t�� � X	�t��

	 X�expr �� � diff�X��t�t� � mu�
S�t�
X��t���K��S�t��

� gamma�
X��t���K��S�t�� � Sigma�
X��t��V�t��

	 X�expr �� sort�collect�simplify�X�expr 
 �K��S�t�� 
 �K��S�t��


 V�t���mu�gamma�K�K��distributed�fX��t�X��t�S�t�V�t�g��
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X�expr �� ��X��t	 S�t	�V�t	 � ��K� X��t	 S�t	V�t	

� ��X��t	 S�t	� � ��X��t	 S�t	V�t	 � �
�

�t
X��t		 S�t	� V�t	

� ��K� X��t	V�t	 � ����X��t	� �
�

�t
X��t		V�t		K� K�

� ����X��t	 S�t	� �
�

�t
X��t		 S�t	V�t		K�

� ����X��t	 S�t	� �
�

�t
X��t		 S�t	V�t		K�

The term 0� is the summed feeding and sampling terms� all of which

a�ect the concentrations of the insoluble states


At this point� the equation describing the rate of change of the concen	

tration of the growing tips has been entered� multiplied throughout by the

denominator terms from the Monod expressions in order to form a polyno	

mial without quotient terms �which is easier to manipulate� and easier to

interpret�� collected together terms containing particular parameters� and �	

nally sorted the terms in the equation according to the measurable states

that they contain


Using the Perl program from Appendix C to combine groups in like states

and inputs� a table is produced relating the groups of states to their associ	

ated collections of parameters


S�t�� � 0� �X�t� ��

S�t�� � V �t� �
�


t
X�t�

�
��

S�t�� � V �t� �X��t� ��

�
�


t
X�t�

�
� V �t� � S�t�� 0� �X�t� � S�t� �K �K�
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�
�


t
X�t�

�
� V �t�� 0� �X�t� �K �K�

S�t� � V �t� �X�t� ���
S�t� � V �t� �X��t� �K� � �

V �t� �X�t� �K � ��

The �rst two rows of the above table show that theXexpr expression de�nes

a Case � system� and so by di�erentiating the original rate expression� a series

of expressions can be obtained� containing successive derivatives of the states

and inputs� with the original collections of parameters being associated with

derivatives of the original groups of states


By performing Gauss	elimination on the set of derivative expressions thus

obtained �multiplying equations by groupings of states� inputs and deriva	

tives�� it is possible to eliminate successively the original groups� so as to

obtain expressions in which the collections of parameters in the right	hand

column above are expressed in terms only of states� inputs and derivatives


To determine whether or not the individual parameters are uniquely iden	

ti�able� it is necessary to determine whether or not expressions can be found

for each parameter� solely in terms of states� inputs and derivatives
 For

the above case� expressions can be obtained for each collection of parame	

ters in the right	hand column
 Since the model parameters are assumed to

be constants� independent of the fermentation time� each of the expressions

to which groups of parameters are equated must also be constant
 These

constants should not be evaluated� however� as they may contain high	order

derivatives of measurable quantities� whose estimation is likely to be prone to
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a�ected by the noise generated in calculating derivatives
 If an attempt were

to be made to estimate parameter values �say� for use as an initial guess to be

used in parameter estimation� then calculating the values of these constants

at a number of measurement times should reduce the error in the parameter

estimates thus obtained


�

��

�K�

��K

K �K�

KK�

Treating these as equations with each of the above equal to a constant�

these become�

� % c�

�� % c�

�K� % c�

��K % c�

K �K� % c�

KK� % c�

Expressions have immediately be obtained for � and ��� and using these
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expressions for K and K� can be derived�

K� % c��c�

K % c��c�

Hopefully� these will be consistent with the expressions obtained forK �K�

and KK�


From the X expression� it has been possible to obtain expressions for

the four parameters f�
 K
 ��
 K�g and so these parameters may now be

reasonably considered to be �known�� and so it is not necessary to solve for

them again
 Thus there now remain �� parameters for which expressions are

sought


fmue�m��m��mup�muh���� alphae� alphap�

Ke�K��Kp�Ki� ��� ���mua�Ksl�Ksi�mul� ��g

����� The X� expression

The sequence of operations is repeated for the expression describing the rate

of change of the concentration of the subapical regions �X�expr�� starting

by multiplying through� collecting and sorting the terms from the original

expression


	 X�expr �� � diff�X��t�t� � mue
S�t�
X��t���Ke�S�t��

�mu�
S�t�
X��t���K��S�t�� � gamma�
X��t���K��S�t��

� mu	
rho
X	�t� � Sigma�
X��t��V�t��
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	 X�expr �� sort�collect�simplify�X�expr 
 �Ke�S�t�� 
 �K��S�t��


 �K��S�t�� 
 V�t���mueKemu�K�gamma�K�mu	�distributed�

fX��t�X��t�X	�t�S �t�V�t�g��

X�expr �� ���X��t	 S�t	�V�t	� �� �X��t	 S�t	� V�t	

�mue X��t	 S�t	�V�t	� ��X��t	 S�t	�

� ��K� X��t	 S�t	� V�t	� ��Ke X��t	 S�t	�V�t	

� �� �K� X��t	 S�t	� V�t	� �� �K� X��t	 S�t	�V�t	

� �� �Ke X��t	 S�t	� V�t	 �mue K� X��t	 S�t	�V�t	

�mue K� X��t	 S�t	�V�t	 � ��X��t	 S�t	� V�t	

� �
�

�t
X��t		 S�t	�V�t	� ��Ke K� X��t	 S�t	V�t	

� �� �Ke K� X��t	 S�t	V�t	 � �� �K� K� X��t	 S�t	V�t	

� �� �Ke K� X��t	 S�t	V�t	 � ��Ke X��t	 S�t	V�t	

� ��K� X��t	 S�t	V�t	 �mue K� K� X��t	 S�t	V�t	

� �� �Ke K� K� X��t	V�t	 � ��Ke K� X��t	V�t	

� ��Ke ���K� ���K� ���Ke K� ���Ke K�

� ����X��t	� �
�

�t
X��t		V�t		Ke K� K� ���K� K�

�� �� ���X��t	 S�t	� �
�

�t
X��t		 S�t	V�t	

�� �� ���X��t	 S�t	� � �
�

�t
X��t		 S�t	� V�t	

This is a more complicated result than that obtained by manipulations

on the �rst expression� but the same sequence of operations can still be

carried out
 Starting by combining groups containing like groups of states�

inputs and derivatives� a table can be made as before
 Since the )� and

)�� returned by Maple� contain no parameters� they are treated as single

units for the purposes of the following
 This makes the task a little easier
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Running the Perl parsing program� the following are obtained


S�t�� � 0� �X��t� ��

S�t�� � V �t� �
�


t
X��t�

�
��

S�t�� � V �t� �X�t� ��e

S�t�� � V �t� �X��t� ��
S�t�� � V �t� �X��t� ��� � 	

�
�


t
X��t�

�
� V �t� � S�t�� �K �K� �Ke

�0� � S�t�� �X��t�

�
�


t
X��t�

�
� V �t�� 0� �X��t� �K �K� �Ke

S�t� � V �t� �X��t� �K� �Ke � �
V �t� �X�t� �K �Ke � ��

S�t�� � V �t� �X��t� �K� � ��Ke � �
V �t� �X��t� �K �K� �Ke � �� � 	

�
�


t
X��t�

�
� V �t� � S�t� �K �K� �K �Ke �K� �Ke

�0� � S�t� �X��t�

S�t�� � V �t� �X�t� �K � �e�K� � �e� ��

S�t� � V �t� �X�t� �K �K� � �e�K � �� �Ke � ��
S�t�� � V �t� �X��t� ��� � 	 � �K �K� �Ke�

S�t� � V �t� �X��t� ��� � 	 � �K �K� �K �Ke �K� �Ke�
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Again� the �rst two rows of the above table shows that the X�expr is a

Case � system
 Assuming that each of the right hand sides can be equated

to some parameter	free expression obtained by repeatedly di�erentiating the

original expression and performing Gauss	elimination on the resulting set of

expressions� each element of the right	hand column can be set equal to a

constant


mue % d� ��
���

�� % d� ��
���

���	 % d� ��
���

mue�K �K�� � �� % d� ��
��

���Ke�K�� % d� ��
���

���	�K �Ke�K�� % d� ��
���

���K �Ke� �mueKK� % d� ��
���

��KeK� % d� ��
���

���	�KK� �K�Ke�KeK� % d
 ��
���

��KeK % d�� ��
���

���	KeKK� % d�� ��
���

�K �Ke�K�� % d�� ��
���

�KK� �K�Ke�KeK� % d�� ��
���

�KeKK� % d�� ��
��
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Assuming that 	� the biomass density� has been measured by some other

method� independent of the fermentation dynamics� then expressions for

mue� � and �� may immediately be obtained


Thereafter� a little more work is needed
 K may be obtained by dividing

Equation �
�� by Equation �
��� giving K % ��	d�������d��


Obtaining an expression for Ke is only a little more complicated
 Multi	

plying Equation �
� by �K �Ke�� and subtracting Equation �
�� gives us

the following expression


�eK� � �eKKe� �eK�Ke % d��K �Ke�� d�

Substituting into this for K�Ke from Equation �
�� �K�Ke % �d����� an
expression can be obtained solely in terms of Ke and the already known ��

mue and K
 Since this expression is linear in Ke� there can only be one

solution for Ke


From this point on� it is relatively simple to obtain expressions for the

remaining parameters K� and ��� using Equations �
�� and �
��


If the expressions obtained for �� ��� K� and K� from working on

the expression Xexpr had been reused� then it would only be necessary to

have obtained expressions for �e� �� and Ke from the expression X�expr


If it were not possible to assume prior knowledge of the value of 	� then it

would only have been possible to obtain an expression for ��	� but this would

not have been important as �� and 	 only occur in the X�expr expression

combined as ��	


From the X� expression� further expressions for the three parameters

fmue
 ��
 Keg have been obtained� and so these parameters may now rea	
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sonably be considered to be �known�� and so there is no need to solve for them

again
 Thus there are now �� parameters remaining for which expressions

are sought


fm��m��mup�muh���� alphae� alphap�

K��Kp�Ki� ���mua�Ksl�Ksi�mul� ��g

����	 The X� expression

The next expression illustrates a di�culty which may arise in attempting to

use this technique to show identi�ability of a model structure


	 X	expr �� � diff�X	�t�t� � mu�
X��t� � mu	
X	�t� � mu�
X	�t�

� Sigma�
X	�t��V�t��

	 X	expr �� sort�collect�simplify�X	expr 
 V�t���mu�mu	mu��

distributed�fX��t�X��t�X	�t�S�t�V�t�g��

X�expr �� ��X��t	V�t	� ��X��t	V�t	 � ��X��t	V�t	

� ��X��t	� �
�

�t
X��t		V�t	

Collecting together terms with like groups of states and inputs� the fol	

lowing table can be produced�

0� �X��t� ��

V �t� �
�


t
X��t�

�
��

V �t� �X��t� ���

V �t� �X��t� ���� ��
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It may be immediately seen that it is possible to obtain an expression for ��


However� using only this one equation� it would not be possible to obtain

independent expressions for �� and ��
 However� an expression for �� was

obtained by analysing the X� expression� and so an expression can now be

obtained for ��


Thus there now remain �� parameters for which expressions are sought


fm��m��mup�muh���� alphae� alphap�

K��Kp�Ki�mua�Ksl�Ksi�mulg

����� The X	 expression

Starting in the same way as for the previous expressions� with the following�

	 X�expr �� � diff�X��t�t� � mu�
rho
X	�t� � mua
X��t�

� Sigma�
X��t��V�t��

	 X�expr �� sort�collect�simplify�X�expr 
 V�t���mu�mua�

distributed�fX��t�X��t�X	�t�X��t�S�t�V�t�g��

X�expr �� �� �X��t	V�t	 �mua V�t	X��t	

� �
�

�t
X��t		V�t	 � ��X��t	

Collecting together terms in like groups of states and inputs� and produc	

ing the following table�

0� �X��t� ��

V �t� �
�


t
X��t�

�
��
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V �t� �X��t� ��a
V �t� �X��t� ��� � 	

From which it can be seen that it should be possible to obtain independent

expressions for mua and ��� assuming that 	 is known
 Using the expression

thus obtained for ��� an expression may then be obtained for ��


As an example� the steps involved in obtaining expressions formua and ��

are shown
 First the original expression �X�expr� is di�erentiated� obtaining

two equations in the two �unknowns�


�mua&V X�' � ��&V X�'� &0�X��
�


t
X�

�
V ' %  ��
���

�mua *
&V X�' � ��

*
&V X�'�

*
&0�X��

�


t
X�

�
V ' %  ��
���

The �t� have been dropped� and dot notation has been used to denote dif	

ferentiation� for compactness
 The * denotes di�erentiation of the term�s�

under the line


Multiplying Equation �
�� by
*

&V X�' and Equation �
�� by &V X�'� the

following are obtained�

�mua&V X�'
*

&V X�' � ��&V X�'
*

&V X�'� &0�X��
�


t
X�

�
V '

*
&V X�' % 

��
���

�mua *
&V X�'&V X�' � ��

*
&V X�'&V X�'�

*
&0�X��

�


t
X�

�
V '&V X�' % 

��
���



�� Considering Model Identi�ability ���

Subtracting Equation �
�� from Equation �
��� an expression is obtained

containing only terms with mua as a parameter


�mua&V X�'
*

&V X�' �mua
*

&V X�'&V X�'� &0�X� �

�


t
X�

�
V '

*
&V X�'

�
*

&0�X� �

�


t
X�

�
V '&V X�' % 

��
���

Rearranging the above expression� the following expression is obtained

for mua�

mua %
�&0�X� �

�
�
�t
X�
�
V '

*
&V X�'� *

&0�X� �
�
�
�t
X�
�
V '&V X�'

*
&V X�'&V X�'� &V X�'

*
&V X�'

��
���

To obtain an expression for ��� substitute for mua in Equation �
��


��&0�X� �
�
�
�t
X�
�
V '

*
&V X�'� *

&0�X� �
�
�
�t
X�
�
V '&V X�'

*
&V X�'&V X�'� &V X�'

*
&V X�'

&V X�'

���&V X�'� &0�X��
�


t
X�

�
V ' % 

��
���

and hence�

�� %
&0�X�� � �

�t
X�
�
V '

	���X�	� �
�t
X��V �

�
�V X���

�
���X�	� �

�t
X��V ��V X��

�
�V X���V X����V X��

�
�V X��

&V X�'

&V X�'

��
���
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From the X� expression� the only parameter for which an expression can be

obtained� for which an expression had not already been obtained� is mua


Thus there now remain �� parameters for which expressions are sought


fm��m��mup�muh���� alphae� alphap�

K��Kp�Ki�Ksl�Ksi�mulg

����� The X� expression

The following X�expr contains only a single parameter� but cannot be used

in determining the identi�ability of the model� as the state X��t�� the de	

generated biomass� is not measurable


	 X�expr �� � diff�X��t�t� � mua
X��t� � Sigma�
X��t��V�t��

	 X�expr �� simplify�X�expr
V�t���

X�expr �� �� �
�t

X��t		V�t	 �mua V�t	X��t	� ��X��t	

����� The S expression

When evaluated� the glucose expression �Sexpr� runs to several pages �listed

in Appendix C�
 Perhaps some conclusions may be drawn about its likely

identi�ability by looking at the initial di�erential expression


	 Sexpr �� � diff�S�t�t� �alpha�
mu�
S�t�
X��t���K��S�t��

� alphae
mue
S�t�
X��t���Ke�S�t�� � m�
X��t�
S�t���K��S�t��

� m�
rho
v�c�t�
S�t���K	�S�t��

� alphap
mup
rho
v�c�t�
S�t���Kp�S�t�
���S�t��Ki��

� mul
L�t�
�X��t��X��t�����Ksl�L�t��
����S�t��Ksi���
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� Sigma	
S�t��V�t� � �Ff
sf��V�t��

	 Sexpr �� sort�collect�simplify�Sexpr 
 �K��S�t��
 �Ke�S�t��


 �K��S�t�� 
 �K	�S�t�� 
 �Kp�S�t�
���S�t��Ki��


 ��Ksl�L�t��
����S�t��Ksi��� 
 V�t���alpha�mu�K�alphaemue

Kem�m�K�K	alphapmupKpKimulKslKsi�distributed�

fX��t�X��t�S�t�L�t�V�t�g��

�S�t�
t

� �� �� S�t�X��t�

K � S�t�
� alphaemue S�t�X�t�

Ke� S�t�

�m�X�t�S�t�

K� � S�t�
� m� 	 v�c�t�S�t�

K� � S�t�
� alphapmup 	 v�c�t�S�t�

Kp � S�t��� � S�t��Ki�

�
mul L�t� �X�t� �X��t��

�Ksl � L�t�� �� � �S�t��Ksi��
� 0� S�t�

V �t�
�
Ff sf

V �t�
% 

��
���

Examining the above equation with regard for how the model�s param	

eters are distributed among the terms reveals that there are three pairs of

parameters which do not occur singly� and which� therefore� cannot occur

singly when the expression is multiplied throughout by the quotient expres	

sions� so as to obtain a di�erential polynomial without quotients
 These are

��� ���� �alphaemue� and �alphapmup�
 Unless expressions can be obtained

for one parameter from each of these three pairings� it will not be possible to

uniquely identify a parameter set� and it will only be possible to derive an ex	

pression for the product of two parameter terms
 That being the case� there

will be an in�nite number of possible solutions for each pair of parameters


����� The L expression

The lactose expression �Lexpr�� however� has been evaluated
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	 Lexpr �� � diff�L�t�t� � mul
L�t�
�X��t��X��t�����Ksl�L�t��


����S�t��Ksi���� Sigma	
L�t��V�t��

	 Lexpr �� sort�collect�simplify�Lexpr


 ��Ksl�L�t��
����S�t��Ksi��� 
 Ksi 
 V�t���mulKslKsi�

distributed�fX��t�X��t�S�t�L�t�V�t�g��

Lexpr �� �� �
�t

L�t		 S�t	V�t	 L�t	 � ��S�t	 L�t	�

� ��� �
�t

L�t		 S�t	V�t	 � ��S�t	 L�t		Ksl

� ��� �
�t

L�t		V�t	 L�t	 � ��L�t	�	Ksi

� ��� �
�t

L�t		V�t	 � ��L�t		Ksi Ksl

� ��X��t	V�t	 L�t	 �X��t	V�t	 L�t		Ksi mul

Collecting together groups of like states� inputs and derivatives� the fol	

lowing table can be constructed�

L�t� � S�t� � V �t� �
�


t
L�t�

�
��

L�t�� � S�t� � 0� ��

�
�


t
L�t�

�
� V �t� � L�t�� 0� � L�t�� �Ksi

�
�


t
L�t�

�
� V �t� � S�t�� 0� � S�t� � L�t� �Ksl

�V �t� �X�t� � L�t�� V �t� �X��t� � L�t� �Ksi � �l

�
�


t
L�t�

�
� V �t�� 0� � L�t� �Ksi �Ksl

All parameters are present independent of one another and so expressions

may be obtained from Lexpr for each of Ksl� Ksi� and mul
 It may well be
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simpler� however� to obtain an expression for ��Ksi� rather than for Ksi


Thus there now remain � parameters for which expressions are sought


fm��m��mup�muh���� alphae� alphap�K��Kp�Kig

����� The P expression

Finally� the identi�ability of parameters in the penicillin expresion �Pexpr�

is investigated


	 Pexpr �� � diff	P	t
�t
 � muprhov�c	t
S	t
�	Kp�S	t


	��S	t
�Ki

 � muhP	t
� Sigma�P	t
�V	t
�

	 Pexpr �� sort	collect	simplify	Pexpr  	Kp�S	t


	��S	t
�Ki

  Ki  V	t

��mup�Kp�Ki�muh�� distributed
�

fX�	t
�X�	t
�S	t
�P	t
�V	t
g
�

Pexpr �� �muh S�t	�V�t	 P�t	� �
�

�t
P�t		 S�t	�V�t	

� ��S�t	� P�t	�muh Ki S�t	V�t	 P�t	

�muh Kp Ki V�t	 P�t	

� ��� �
�t

P�t		 S�t	V�t	 � ��S�t	 P�t		Ki

� �
�

�
X��t	 S�t	V�t	 � �

�
X��t	 �S�t	V�t		Ki mup

� ��� �
�t

P�t		V�t	 � ��P�t		Kp Ki

Collecting together terms containing like groups of states� inputs and

derivatives� the following is obtained�

P �t� � S�t�� � 0� ��
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S�t�� � V �t� �
�


t
P �t�

�
��

�0� � P �t� � S�t��
�


t
P �t�

�
� V �t� � S�t� �Ki

P �t� � S�t�� � V �t� ��h

�0� � P �t��
�


t
P �t�

�
� V �t� �Ki �Kp

��� � V �t� � S�t� �X��t�� ��� �X��t� � 	 � V �t� � S�t� �Ki � �p
P �t� � S�t� � V �t� �Ki � �h

P �t� � V �t� �Ki �Kp � �h

Again� all parameters are associated independently with di�erent groups of

states� inputs and derivatives� and so expressions may be obtained for each

in terms only of measurable quantities
 �Assuming that 	 is known
� That is

to say� expressions can be obtained for the parameters fmuh
mup
Kp
Kig
from the P expression


Thus there now remain � parameters for which expressions are sought


fm��m�� ��� alphae� alphap�K�g

����� Identi
ability result for the model of Paul et al� ������

Having examined all bar one of the expressions in the model of Paul et al�

������ to see for which parameters expressions can be obtained solely in

terms of states� outputs and their derivatives� six parameters remain� all of

which are found in the S expression
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fm��m�� ��� alphae� alphap�K�g

By examining the output of a Perl program written to decompose the

expressions generated from Maple into unique groups of states� outputs and

derivatives� and their associated groups of parameters� it is possible to de	

termine whether or not these remaining six parameters are identi�able �see

Appendix C�


Upon analysing the S expression� the parameter m� is found to be the

lone parameter associated with one group of states� the parameter � is

found associated only with the known parameter �� K� is found to be the

only �unknown� parameter in a number of expressions� as is alphap� thus two

parameters remain� m and alphae
 These two may be solved by eliminating

between a pair of linearly independent expressions in which they are the only

unknown parameters
 Thus it has been shown that it is possible to form

expressions for each of the model�s parameters in terms solely of measurable

states and inputs� and their derivatives� and so the model of Paul et al� ������

is theoretically globally identi�able


��	 Notation

D initial biomass concentration in example from
Ljung and Glad ������

Km Monod denominator term� g�S�l��

K Monod denominator coe�cient� g�S�l��

K� denominator coe�cient� g�S�l��

K� denominator coe�cient� g�S�l��

Ke di�erentiation denominator coe�cient� g�S�l��

Ki inhibited penicillin production coe�cient� g�S�l��
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Kp inhibited penicillin production coe�cient� g�S�l��

Ksi inhibited lactose conversion coe�cient� g�S�l��

Ksl inhibited lactose conversion coe�cient� g�S�l��

L concentration of lactose �� g�L�l��
M system�s state space
P concentration of penicillin �� g�P�l��
S concentration of glucose �� g�S�l��
U &
 t�' set of possible experimental inputs
V neighbourhood around a parameter set
V volume in the fermenter� l
Vm Monod numerator coe�cient in example from

Ljung and Glad ������
W neighbourhood around a parameter set
X� concentration of biomass fraction �� g�DW�l��

X
 Y
 Z groups of states� inputs and outputs for the novel
identi�ability method

a
 b
 c nominal constant parameters for the novel identi�ability
method

ak�� value of k	the derivative at time 
c constant relating output to state in example from

Ljung and Glad ������
c� nominal constant
f�� function de�ning rate of change of model states
f�G�� expression relating some group of group of constant

parameters to system states� input and outputs� and
the di�erentiation operator in the novel identi�ability
method

g�� function de�ning model outputs
g�� function de�ning system output for Vajda et al� ������
g��u
 x
 y
 �
 p� di�erential polynomial as de�ned in the method of

Ljung and Glad ������
g�k� k	th derivative of output function g��
h�� function de�ning system input in$uence on rate of

of change of model states after Vajda et al� ������
k� group of constant parameters in the novel identi�ability

method
k�G group of groups of constant parameters in the novel
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identi�ability method
km Monod denominator coe�cient in example from

Ljung and Glad ������
k�� death rate coe�cient in example from

Ljung and Glad ������
m
n nominal powers of time
m maintenance coe�cient� g�S�g�DW���h��

m� maintenance coe�cient� g�S�g�DW���h��

p di�erential operator
2p parameter vector
s� constant in Pohjanpalo�s compartmental model
t time� h
u�t� inputs to model
x�t� model state vector
x��t� �rst model state in Pohjanalo�s compartmental model
x��t� second model state in Pohjanalo�s compartmental model
y�t� outputs from model
y�i��	
 �� i	the derivative of the output vector at time

marginally greater than zero �limiting case�
�n n	dimensional space of real	valued numbers

Greek Symbols

0
x��p�
p system as de�ned by Vajda et al� ������

0� summed feeds and abstractions� lh��

/� nominal constant in novel identi�ability method
/��y
 u
 p� di�erential algebraic expression in the method of

Ljung and Glad ������
3��y
 u
 p� di�erential algebraic expression in the method of

Ljung and Glad ������
1 system�s parameter space
� inverse yield coe�cient for biomass on glucose� g�S�g�DW���

alphae inverse yield coe�cient for biomass on glucose� g�S�g�DW���

alphap inverse yield coe�cient for penicillin on glucose� g�S�g�P���

gamma� di�erentiation numerator coe�cient� g�S�h��

�� group of time	varying states� input and output in the
novel identi�ability method

��G group of groups of time	varying states� input and output
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in the novel identi�ability method
� vector of model parameters
� analytic map in state isomorphism method
��� constant in Pohjanpalo�s compartmental model
��� constant in Pohjanpalo�s compartmental model
��� constant in Pohjanpalo�s compartmental model
�� ��� � ���
� Monod numerator coe�cient� h��

�� vacuole formation coe�cient� m�g��h��

�� vacuolation rate coe�cient�h��

�� vacuole formation coe�cient� h��

mua autolysis rate coe�cient� h��

mue Monod numerator coe�cient� h��

muh hydrolysis rate coe�cient� h��

	 biomass density� gm��



�� CONCLUSIONS AND FURTHER WORK

The work described in this thesis has contributed to the aims of the University

of Birmingham Biochemical Engineering Centre Rolling Grant Project B�

�Monitoring and Physiological Control of Productive Fermentations�� and

towards the goal of providing a control implementation� designed on the basis

of di�erential	equation based fermentation models which may then serve as

a base case against which the performance of Arti�cial Neural Network and

hybrid models may be compared


��� This Thesis

The literature was examined for existing models of the penicillin fermenta	

tion� and these were built and tuned using data supplied by Paul �������

and their abilities to predict fermentation data were compared �Chapter ��


The best performing of these models� that of Paul and Thomas ������� was

simpli�ed to increase its simulation speed� removing� for the time being� a

description of the vacuolation process which involved a number of states and

made the model numerically �sti��� and extended to include a description of

the way in which lactose present in the inoculum is consumed in the fermen	

tation� thus producing the model of Paul et al������� �Chapter ��


Attention then switched to the con�dence with which the parameters
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of the model are known� and to ways of designing experiments to improve

con�dence in the parameter values
 In this work� genetic algorithms were

applied to the problem of �nding feed pro�les for the fermentation which

would give rise to data that would� when used in parameter estimation�

decrease the size of the joint con�dence volume �the region of parameter space

across which parameters may vary with the error remaining below a certain

value�
 It was shown that the addition of constraints derived from practical

considerations reduced the extent to which the parameter con�dence could

be improved �Chapter ��


In parallel with this work� the problem of the identi�ability of model

parameters was considered
 Reviewing the available literature on identi�a	

bility criteria for nonlinear models suggested a novel approach to assessing

the theoretical identi�ability of models� closely related to and inspired by

existing approaches �Chapter ��
 This approach was compared with existing

approaches� and found to give the same results for a number of specimen

problems� before being applied to the problem of assessing the identi�ability

of the model of Paul et al�������� which� according to the new approach�

turns out to be theoretically identi�able� provided that the density of the

biomass is known� and all model states are measurable


��� Future Work

Now that the best existing model describing the penicillin fermentation has

been identi�ed� this model�s parameters have been shown to be theoretically

identi�able� and experiments have been designed to improve the con�dence

with which the model�s parameters are known� attention should focus on the
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use of the model in developing control	related applications� the open	loop

economic optimisation of the model� the construction of estimators and the

design of controllers


����� Open�loop economic optimisation

Searching for a feed pro�le that maximises the pro�tability of the fermen	

tation� subject to practical constraints is a task to which genetic algorithms

seem to be well suited
 Recent work �Simutis and L"ubbert� ����� has sug	

gested that�

 it does not make much sense to use the very complicated classical

optimisation procedures like Pontryagin�s maximum principle for

most optimisation tasks in practical bioengineering!

and showed that the chemotaxis algorithm� simulated annealing and evolu	

tionary programming gave results that were comparable with those obtained

using classical approaches in earlier work
 Iterative dynamic programming

has also been applied to the optimisation of fermentation feed pro�les �Luus�

������ with the results obtained over a range of fermentation durations sug	

gesting that the function relating performance index �total mass of product

at the end of the fermentation� to time passes through a number of maxima


It may well be the case that genetic algorithms also produce comparable

results for open	loop optimisation� given a similar input feed pro�le param	

eterisation
 Applying genetic algorithms to searching for an economically

optimal input feed pro�le should involve only minor modi�cations to exist	

ing Matlab routines
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����� Estimators

Extended Kalman �lters have often been used in constructing estimators for

bioprocess applications� particularly in estimating biomass concentrations

between sample intervals
 For the penicillin fermentation as described by

the model of Paul et al� ������� these would presumably be attempting to

estimate the individual biomass fractions� X�� X�� X� and X� from available

online measurements of o�gas composition and� via HPLC� of the concentra	

tions of the soluble states S� L� and P 
 �The model of Paul et al� ������

would need to be augmented with the addition of a carbon dioxide production

rate term before o�gas composition measurements were useful
�

One problem with the construction of extended Kalman �lters for nonlin	

ear systems is that of determining the identi�ability of the nonlinear systems

in question �Ray� �����
 In Ray ������� the observability is de�ned in the fol	

lowing way
 Recalling the general noise	free model structure from Chapter ��

*x�t� % f�x�t�
 �
 u�t�� ��
��

y�t� % g�x�t�
 �
 u�t�� ��
��

If these model equations are linearised about a nominal state trajectory 4x�t��

which satis�es the model equations and has the initial conditions 4x�� % 4x��

de�ning�

�x�t� % x�t�� 4x�t� �y�t� % y�t�� 4y�t� ��
��

A�t� %
f

x

����
�x�t�

C�t� %
g

x

����
�x�t�

��
��
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then the noise	free linearised system becomes�

� *x�t� % A�t��x�t� �x�� % �x� ��
��

�y�t� % C�t��x�t� ��
��

De�ning the fundamental matrix solution �mapping from the initial states

x� to the current states x�t��

*/�t
 t�� % A�t�/�t
 t�� /�t�
 t�� % I ��
��

the criterion for the observability of our general nonlinear system is the ma	

trix M�
 tf �� given by�

M�
 tf � %

Z tf

�

/�t
 ��C ��t�C�t�/�t
 �dt ��
��

is positive de�nite for tf � � i
e
 that all the eigenvalues of M�
 tf � are

positive


This observability test depends on the model�s parameter set� and� more

critically� on the input to the system
 Ray ������ states that�  simple lin	

earised observability tests are usually adequate for nonlinear problems!� but

perhaps an alternative approach could be taken


Genetic algorithms could be applied to the problem of searching for in	

puts� constrained as for experiment design in Chapter �� that gave rise to

conditions where M�
 t� had the minimum eigenvalues over as much of the

fermentation as possible
 The results of such a search would either �nd in	

put scenarios for which the fermentation model is not observable� or increase
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con�dence in the model being observable
 �Due to their probabilistic nature�

genetic algorithms cannot show that the model is observable
� Whether or

not the existence of feed pro�les for which the model was not observable was

important or not would depend on how close the unobservable pro�les were

to any open	loop economic optimum feed pro�les that were developed� as

optimal feed pro�les are the ones of greatest potential interest and bene�t


����	 Controllers

Having designed open	loop optimal feed pro�les� and constructed estimators�

the task of controller development remains
 Presumably such controllers

would regulate the fermentation so as to follow a prede�ned optimal state

trajectory


Montague et al� ������ presented the combination of estimators and

controllers in following prede�ned state trajectories and showed that adaptive

controllers performed better than proportional plus integral control
 In their

conclusions� they suggested that the generalised predictive control law is

particularly applicable to fermentation systems� and indicated the need for

an optimised biomass pro�le� based on applying optimisation methods to a

process model


The best performing di�erential equation based physiological model of the

penicillin fermentation has been identi�ed
 It has been shown that this model

has� theoretically� uniquely identi�able model parameters� and experiments

have been designed to improve the con�dence with which the model param	

eters have been estimated
 Thus the best currently achievable position has

been reached� from which optimisation� estimator construction and controller
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design may be done on the basis of di�erential equation based physiological

fermentation models
 The provision of a base case against which the perfor	

mance of arti�cial neural networks and hybrid models may be compared is

now simply a matter of time


��� Notation

A f�x
C g�x
I identity matrix
M�
 tf � observability test matrix
f�� model state derivative function
g�� model output function
t time� h
u model inputs
x model states
4x model states on nominal state trajectory
y model outputs

Greek Symbols
/�t
 t�� state transition matrix from time t� to time t

x�t� % /�t
 t��x�t��
� model parameter vector



APPENDIX



A� MODELS CONSIDERED IN THIS WORK

A�� Unstructured Models

Symbols used in the models are de�ned in the above notation list


A���� Fishman and Biryukov ������

Fishman and Biryukov ������ used an extended version of the model of

Ramkrishna et al� ������ in a theoretical study of optimal control of the

penicillin fermentation
 This is the �rst study of this type that we have been

able to �nd
 The extension to the original model was an additional term

describing a postulated penicillin production mechanism� relating penicillin

production to both the amount of biomass present and its mean age
 This

model does not contain a expression to describe the rate of consumption of

substrate related to penicillin production


dX

dt
%

�XSX

KS � S
�KIX �A
��

dS

dt
% � �

YXS

�XSX

KS � S
�A
��

dI

dt
%

aT�XSX

KS � S
�KaT�IX �A
��
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dP

dt
% X


a� � a�

��
X

� a�
����

�

X

�
�A
��

d��
dt

% X �A
��
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A���� Heijnen et al
 ������

Heijnen et al� ������ took a di�erent approach to the modelling of the sys	

tem from that used in the other models considered thus far
 Their model

development method concentrated on consideration of reactions involving

chemical species known to be involved in the fermentation
 This resulted in

the following set of equations� expressed in terms of concentration of species

in moles per kg of broth


d�VH �XH�

dt
% XH

dVH
dt

� VH
dXH

dt

% rX �A
��

d�VH � SH�
dt

% SH
dVH
dt

� VH
dSH
dt

% rS � �S �A
��

d�VH � PH�
dt

% PH
dVH
dt

� VH
dPH
dt

% rP �A
��

dVH
dt

%
X

�feeds� evaporation� � ���rO � ���rC �A
��

rS % �qs�max
SHXHVH
�KS � SH�

�rP � rPO� %

��
� ���� ��� �XHVH � 
 �� h��

���� ��� �XHVH



����
� � �� h��

rPO % ��PHVH

rX %


�rS �msHXHVH � �rP � rPO�

YPSH

�
� YXSH

rO %

�
�

YXSH

� ����

�
rX � �msHXHVH
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�

�
�

YPSH
� ���

�
�rP � rPO�

rC %

�
�

YXSH

� ��

�
rX � �msHXHVH

�

�
�

YPSH
� �

�
�rP � rPO�

Here� VH represents the mass of broth present in the reactor� whilst XH �

SH � and PH are concentrations in moles kg��
 �S is the rate of glucose feed

to the reactor �moles h���
 The numbers used in the equations are values

taken from Heijnen�s paper
 These numbers are not dimensionless� but have

the dimensions of the ratios which they represent� obtained from elemental

balancing


The form of the expression for the penicillin production rate shows an

increase in penicillin production rate with increasing substrate concentration�

rising to a maximum �Figure �
��




A� Models Considered in This Work ���

A���	 Bajpai and Reu������������

This model contains di�erential equations for the biomass� substrate� product

and dissolved oxygen concentrations
 The biomass growth rate is described

by Contois type kinetics� giving a growth rate dependent on the concentration

of biomass as well as substrate and oxygen concentrations
 This could be

important for high concentrations of biomass� where di�usional limitations

in transport of substrate to the surface of the hyphae� could possibly limit

the growth rate


The equations used by Bajpai and Reu� to describe the system are as

follows


dX

dt
%

�XS

�KXX � S�

O�

�KO�
X �O��

X �A
��

dS

dt
% � �XSO�X

YXS�KXX � S��KO�
X �O��

� �PSO
P
� X

YPS�KP � S�� � �S�KI���KOPX �OP
� �
�msX �A
���

dP

dt
%

�PSO
P
� X

�KP � S�� � �S�KI���KOPX �OP
� �
�KhP �A
���

dO�

dt
% � �XSO�X

YXO�KXX � S��KO�
X �O��

� �PSO
P
� X

YPO�KP � S�� � �S�KI���KOPX �OP
� �

�mOX � kLa�O
�

� �O�� �A
���
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A���� Montague et al
 ������

Montague et al� ������ took the model proposed by Bajpai and Reu�������

and used it as a basis for the development of a form of parameter adaptive

control
 They used the original model� removing the dissolved oxygen con	

centration term� and including a term for the generation of carbon dioxide by

the system
 Measurements of the carbon dioxide production rate were used

as a part of an inferential scheme for estimating the biomass concentration


Their equations� unsurprisingly� strongly resemble those of Bajpai and Reu�


dX

dt
%

�XS

�KXX � S�
X �A
���

dS

dt
% � �XSX

YXS�KXX � S�
� �PSX

YPS�KP � S�� � �S�KI��

�msX �A
���

dP

dt
%

�PSX

�KP � S�� � �S�KI��
�KhP �A
���

dCO�

dt
%


�

k�

dX

dt
�mcX � k�

�PSX

�KP � S�� � �S�KI��

�
V �A
���

In the original paper by Montague et al�� it is suspected that there is a

misprint� as the given expression for CO� generation in the paper is described

as including a term proportional to the rate of penicillin synthesis
 The term

given in equation A
�� as k�

P SX

�KP	S��	�S�KI��
is given in the paper as k�
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A���� Nicolai et al
 ������

This model was presented as an update to the models of Heijnen et al� ������

and Bajpai and Reu������� attempting to fuse the two and account for both

endogenous and maintenance metabolism� with a smooth transition between

the two


The speci�c growth rate of the biomass in this model is calculated from

the substrate uptake rate� after deductions for biomass maintenance and

penicillin production substrate requirements
 At low substrate concentra	

tions� the resulting low substrate uptake rate leads to a negative growth rate

for the biomass� equivalent to the consumption of part of the biomass to meet

maintenance and production requirements


dX

dt
% �X �A
���

dS

dt
% ��X �A
���

dP

dt
% �X �KhP �A
��

� % �p
S

KP � S � S��KI

� % �substr � YXS

�
exp��S�EM �ms �

exp��S�EP ��

YPS

�

�substr %
�XS

KXX � S

� %
�substr
YXS

�ms��� exp��S�EM �� �
���� exp��S�EP ��

YPS



A� Models Considered in This Work ���

A���� Menezes et al
 ������

This is another model based on that of Bajpai and Reu������
 The model

uses the same Contois kinetics to describe the biomass growth as did the ear	

lier model� and has the same inhibited penicillin production kinetics
 How	

ever� there is an additional term to describe the conversion of biomass from

a live to a dead state
 Both biomass states are modelled� total biomass being

the sum of the live and dead fractions


The equations used are as follows


dX

dt
%

�XS

�KXX � S�
X �KdX �A
���

dS

dt
% � �XSX

YXS�KXX � S�
� �PSX

YPS�KS � S�

� msSX

Kml � S
�A
���

dP

dt
%

�PSX

KS � S
�KhP �A
���

dXdead

dt
% KdX �A
���
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A���� Tiller et al
 ������

The model proposed by Tiller et al� ������ is based on that of Bajpai and

Reu������� distinguishing between �growing and producing� X� and �non	

growing and producing� X� cells
 It also includes a term for cell lysis� by

which the concentration of the non	growing biomass state is decreased


The given equations are as follows


dX�

dt
%

�
�S�maxS

KS � S
�
�PM�maxPM

KPM � PM

�
X� � k��X� �A
���

dX�

dt
% k��X� � klyX� �A
���

dS

dt
% � �S�maxSX�

YXS�KS � S�
� ��X� �X��

YPS
�ms�X� �X�� �A
���

dPM

dt
% � �

YPM

�PM�maxPM

KPM � PM
X� �R�klyX� �A
���

dP

dt
% ��X� �X���KhP �A
���

In the above set of equations� the coe�cients kly� k�� and m are dependent

on the mean age of the hypha� as follows


kly % aly � bly��

k�� % f����

ms % bm � am��

�� %
�

X�t�

Z t

�

X���d�

As Tiller et al� did not observe glucose inhibition� they described the
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product formation rate � as a function of the speci�c growth rate �
 The

shape of the relationship used is plotted in Figure �
�
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A���� Kluge et al
 ������

Kluge et al� ������ outline a model for penicillin production which is unstruc	

tured� and has a complex expression for penicillin production
 It considers

nutrient uptake for multiple substrates �glucose� lactose and lysed biomass�


Nutrient uptake is modelled using Michaelis	Menten kinetics� with main	

tenance and penicillin production substrate requirements being subtracted

from the uptake rate� and the result used to calculate the biomass growth

rate


The biomass is divided into active and inactive portions
 Biomass de	

activation is modelled as being linearly proportional to the concentration of

active biomass
 The lysis rate is modelled similarly� being linearly propor	

tional to the concentration of inactive biomass


The rate of change of the penicillin production rate is subject to a �rst

order lag term� thus delaying the production of penicillin


The given equations are as follows


dXI

dt
% �IXA � klyXI �A
��

dXA

dt
% qTYXSXA � �IXA �A
���

dY

dt
% R�klyXI � qYXA �A
���

dS

dt
% �qSXA �A
���

dL

dt
% �qLXA �A
���

dP

dt
% �PXA �KhP �A
���
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d�P
dt

%

�
KR

KR	S
�P� �qTYXS �KA�� �P

�
TP

�A
���

where

qT % qS � �qL � �qY �ms � �p
YPS

�A
���

qY %
qY �Y

KY � Y

qS %
qS�S

KS � S

qL %
qL�L

�KL � L��� � CL�sqS�

The TP acts as the time constant in a �rst order lag
 If allowed to come

to steady state� the value of the speci�c production rate would be �neglecting

lactose and lysed biomass terms��

�PSS %
�PS � A

KP � S�� � S�KI�

where

�P %
KRYPS�PO�YXS�qSO �ms� �KA�

KR�YPS � YXS�PO� �KSYPS

KP %
KRKS�YPS � YXS�PO�

KR�YPS � YXS�PO� �KSYPS

KI %
KR�YPS � YXS�PO� �KSYPS

YPS

A %
KRYPS�PO�KAKS � YXSmsKS�

KR�YPS � YXS�PO� �KSYPS
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A�� Morphologically Structured Models

A���� Megee et al
 ������

Megee et al� ����� were the �rst to present a morphologically structured

model� with four hyphal states being identi�ed by association with di�er	

ent products �X�
 X�
 X�
 X��
 In addition� the growing hyphal tips were

modelled as a distinct hyphal state X�� as was a dormant stateQ


In using this model� originally applied to Aspergillus awamori� to describe

the penicillin fermentation we have assumed that product states P� and P�

represent penicillin
 Product state P� is growth associated� and so is unsuited

to representing penicillin


The equations given in the paper are as follows


dX�

dt
%

�X
i��

�iXiS

�i � S
� ��X�

�� � S
�A
���

dX�

dt
%

��X�S

K� � S
�

��X�SP�

�K� � S��K� � P��
� ��X�S

�� � S

� ��X�

�� � S
� ��SX�

�� � S
�

��X�

�� � S
�A
���

dX�

dt
%

��X�SP�

�K� � S��K� � P��
� ��X�S

�� � S
�
��SX�

�� � S

� ��X�

�� � S
� ��SX�

�� � S
�A
��

dX�

dt
%

��X�S

�� � S
�
��SX�

�� � S
� ��X�

�� � S
� ��SX�

�� � S
�A
���
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dX�

dt
%

��SX�

�� � S
�A
���

dS

dt
% � �

YXS

��X�S

K� � S
�

�X
i��

�i	��iXiS

�i� S

�
�X
i��

�i	��i	�XiSP�

�Ki	� � S��Ki	� � P��
�A
���

dP�

dt
%

����X�S

K� � S
� ��X�P�

K� � P�
� ��X�P�

K� � P�
�A
���

dP�

dt
%

����X�S

�� � S
�A
���

dP�

dt
%

����X�S

�� � S
�A
���

dQ

dt
%

�X
i��

�iXi

�i � S
�A
���

The terms in the di�erential equations for the biomass states may be

thought of as describing the following processes


� Branching � the formation of new hyphal tips


� Di�erentiation � the �aging� of the hyphae from one state to another


� Dormancy � the process by which hyphal material enters the dormant

state
 �Here material may pass from any but the hyphal tip state

directly to the dormant state
�

� Assimilation � this process is ill	de�ned
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Of these processes� all but assimilation are found in the other morpho	

logically structured models


Note that the dormant biomass state Q is regarded� for our purposes� as

being lysed biomass� and is not included when calculating the total biomass

concentration
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A���� Nestaas and Wang ����	�

Nestaas and Wang ������ proposed a model which built on the foundations

of the model of Megee et al� ������ applying Megee et al��s proposed mor	

phological structure to measurable quantities
 In this model� three hyphal

states were identi�ed�

�
 tips �X��

�
 producing cells �X��

�
 degenerated cells �X��

The substrate concentration during the fermentation is not modelled in

the paper
 Instead� as glucose is �never allowed to accumulate in the broth��

an expression is given for the rate of glucose consumption
 This expression

is independent of the glucose concentration in the medium


Penicillin production is modelled as being formed via a precursor
 �The

precursor conversion is expressed by �masked� second	order kinetics &pP ��X'

in order to minimize the role of this postulated component in the overall

carbon balance� �Nestaas and Wang� �����
 Hydrolysis of penicillin in the

medium is assumed to follow �rst order kinetics


The model is divided into two sets of equations� one for use during an

initial rapid growth phase� and one for use during a subsequent production

phase


The model equations are as follows
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For rapid growth�

dX�

dt
% ��X� �A
���

dX�

dt
% ���maxX� �A
���

For the production phase�

dX�

dt
%  �A
��

dX�

dt
% ��X

�

� � k�X� �A
���

dX�

dt
% k�X� �A
���

dP

dt
% kpen

�pP ��

X� �X� �X�

�KhP �A
���

dpP

dt
% kpX� � R�kpen

�pP ��

X� �X� �X�

�A
���

The following equation describing the substrate concentration in the fer	

mentation has been constructed using expressions given by Nestaas and

Wang
 This di�ers slightly from the formulation given by Nestaas and Wang

in that the product formation related substrate consumption term has been

corrected from that given in the original paper


dS

dt
% ���X� �X� �X��

YXS

�ms�X� �X��� kpX�

YpPS
�A
���
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A���	 Cagney et al
 ����	�

Cagney et al� ������ used an updated form of the model described by Nes	

taas and Wang ������� in conjunction with a �ltration probe� to attempt to

provide additional information regarding the di�erent morphological states

de�ned in the model
 The Cagney model represents the whole course of the

fermentation� and is not divided into �growth� and �production� phases


Again the biomass is divided into three fractions�

�
 tips �X��

�
 producing cells �X��

�
 degenerated cells �X��

The model equations are as follows


dX�

dt
%

�X�S

KS � S
� ��X�

�� S
�A
���

dX�

dt
%

��X�S

KS � S
� �X�S

KS � S
�

��X�

�� S
� ��X�

�� S
�A
���

dX�

dt
%

��X�

�� S
�A
���

dS

dt
% � �

YXS

��X�S

KS � S
� �

YPS

�PX�S

Kp � S�� � S�KI�

� msX�S

Kml � S
�A
���

dP

dt
%

�PX�S

Kp � S�� � S�KI�
�KhP �A
��

�A
���



A� Models Considered in This Work ���

A���� Paul and Thomas ������

Paul and Thomas ������ proposed a morphologically structured model sim	

ilar in format to the original model of Megee et al� �����


The following morphological states are distinguished in the model


�
 growing tips �X��

�
 non	growing regions �X��

�
 vacuoles �notionally X��not shown here�

�
 degenerated regions �X��

�
 autolysed biomass �X��

The relative quantities of the �rst four portions of the biomass were as	

sessed using image analysis techniques� thus facilitating the validation of the

model
 The autolysed biomass state is included to keep track of the amount

of biomass lysed


The equations given are as follows


dX�

dt
%

��X�S

�� � S
� ��X�

�� � S
�A
���

dX�

dt
%

�sX�S

KS � S
� ��X�S

�� � S
�

��X�

�� � S
� ��rk � rl�

�

�
	�ks4nk �A
���

dX�

dt
%

��rk � rl�
�

�
	�ks4nk � �aX� �A
���

dX�

dt
% �aX� �A
���

dS

dt
% � �

YXS�

��X�S

�� � S
� �

YXSe

�sX�S

KS � S
� ms�X�S

�� � S
� ms�	cvicS

�� � S
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� �

YPS

�p	cvicS

Kp � S�� � S�KI�
�A
���

dP

dt
%

�p	cvicS

Kp � S�� � S�KI�
�KhP �A
���

dV

dt
% F �A
���

This model also incorporates a representation of the process by which

vacuoles form and grow� giving rise to the inactive biomass state� X�
 Vac	

uoles were not considered to contribute to the overall biomass concentration�

but are signi�cant in estimating the volume �and therefore the mass� of non	

growing regions X� from the total hyphal volume
 For full details of this see

Paul and Thomas ������
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A�� Model Simplication

The original model of Paul and Thomas ������� given in appendix A
�
� has

been simpli�ed in this work so as to reduce the time taken per simulation�

and also to make the model easier to analyse


Two types of simpli�cation were considered�

� two step models� in which subapical regions are modelled as forming

vacuoles� which subsequently give rise to degenerated regions of the

biomass

� one step models� in which subapical regions are modelled as forming

degenerated regions directly

A�	�� The two step models

The two step models retain the division of biomass into distinct fractions

that was used in the original model


The equations are as follows


dX�

dt
%

��X�S

�� � S
� ��X�

�� � S
�A
���

dX�

dt
%

�sX�S

Ks � S
� ��X�S

�� � S
�

��X�

�� � S
� Kinetic�X� �A
��

dX�

dt
% Kinetic�X� �Kinetic�X� �A
���

dX�

dt
% Kinetic�X� � �aX� �A
���

dX�

dt
% �aX� �A
���

dS

dt
% � �

YXS�

��X�S

�� � S
� �

YXSe

�sX�S

Ks � S
� ms�X�S

�� � S
� ms�X�S

�� � S
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� �

YPS

�pX�S

Kp � S�� � S�KI�
�A
���

dP

dt
%

�pX�S

Kp � S�� � S�KI�
�KhP �A
���

dV

dt
% F �A
���

In the above set of equations� Kinetics � and � are those describing vacuole

formation and destruction� respectively
 These are chosen from the three

candidate kinetics� �rst order� k� conversion� k��L�S�� and inhibition kinetic�

kS��L� S � �S��M��


The symbol X� represents some numerical measure of the total amount

of vacuoles present
 �This state was not considered in tuning the simpli�ed

models
�
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A�	�� The one step models

The one step models retain the division of biomass into distinct fractions

that was used in the original model


The equations are as follows


dX�

dt
%

��X�S

�� � S
� ��X�

�� � S
�A
���

dX�

dt
%

�sX�S

Ks � S
� ��X�S

�� � S
�

��X�

�� � S
� Kinetic�X� �A
���

dX�

dt
% Kinetic�X� � �aX� �A
���

dX�

dt
% �aX� �A
��

dS

dt
% � �

YXS�

��X�S

�� � S
� �

YXSe

�sX�S

Ks � S
� ms�X�S

�� � S
� ms�X�S

�� � S

� �

YPS

�pX�S

Kp � S�� � S�KI�
�A
���

dP

dt
%

�pX�S

Kp � S�� � S�KI�
�KhP �A
���

dV

dt
% F �A
���

In the above set of equations� Kinetics � describes the conversion of

biomass from non	growing regions to degenerated regions
 This is chosen

from the three candidate kinetics� �rst order� k� conversion� k��L � S�� and

inhibition kinetic� kS��L � S � �S��M��


There is no model state in the one step model representing vacuoles
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A�� Paul and Thomas ����
�

The original model of Paul and Thomas ������� has been simpli�ed and

extended in the course of the work described in this thesis� so as to give a

new form of the model� that published in Paul et al� ������


The same morphological states are distinguished in this model as in the

original model of Paul and Thomas ������


�
 growing tips �X��

�
 non	growing regions �X��

�
 vacuoles �notionally X��not shown here�

�
 degenerated regions �X��

�
 autolysed biomass �X��

In addition to the soluble species modelled in the original model� terms

have been added to describe the consumption of lactose


The equations are as follows


dX�

dt
%

��X�S

�� � S
� ��X�

�� � S
�A
���

dX�

dt
%

�sX�S

KS � S
� ��X�S

�� � S
�

��X�

�� � S
� ��X�	 �A
���

dX�

dt
% ��X� � ��X� � ��X� �A
���

dX�

dt
% ��X�	� �aX� �A
���

dX�

dt
% �aX� �A
���

dS

dt
% � �

YXS�

��X�S

�� � S
� �

YXSe

�sX�S

KS � S
� ms�X�S

�� � S
� ms�	cvicS

�� � S



A� Models Considered in This Work ���

� �

YPS

�p	cvicS

Kp � S�� � S�KI�
�

�LL

�KSL � L�

�X� �X��

�� � S�KSI�
�A
���

dL

dt
% � �LL

�KSL � L�

�X� �X��

�� � S�KSI�
�A
��

dP

dt
%

�p	cvicS

Kp � S�� � S�KI�
�KhP �A
���

dV

dt
% F �A
���
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A�� Notation

A Numerator term in steady state simpli�cation of the
penicillin production term in Kluge et al� �������
g�P�g�S�g�DW���h��l��

CO� Volume of CO��l
CL�s Constant allowing for lactose uptake repression in the

presence of glucose uptake� g�DW�hg�S���

EM Endogenous maintenance coe�cient� g�S�l��

EP Endogenous production coe�cient� g�S�l��

F Feed rate to fermenter� lh��

I Concentration of inhibitor� g�I�l��

K Deactivation constant� lg�I���h��

KA Biomass growth o�set term� h��

KI Inhibition coe�cient� g�S�l��

KL Monod coe�cient for lactose� g�L�l��

KO�
Contois constant for O�� g�O��l

��

KOP Contois coe�cient for penicillin production� g�S�g�DW���

KP Inhibition coe�cient� g�S�l��

KPM Monod coe�cient for pharmamedia� g�PM�l��

KR Constant for catabolite repression by glucose� g�S�l��

KS Monod coe�cient for glucose� g�S�l��

KSI inhibited lactose conversion coe�cient� g�S�l��

KSL inhibited lactose conversion coe�cient� g�S�l��

KX Contois constant� g�S�g�DW���

KY Monod coe�cient for lysed material� g�Y�l��

Kd Death coe�cient for active biomass� h��

Ke Monod coe�cient for biomass growth� h��

Kh Penicillin hydrolysis coe�cient� h��

Kml Michaelis	Menten maintenance coe�cient� g�S�l��

K�
 K�
 K� Monod type denominator �glucose� terms� g�S�l��

K�
 K�
 K�
 K� Monod type denominator �P�� terms� g�P��l
��

L second order biomass conversion coe�cient
L Concentration of lactose� g�L�l��

M inhibition coe�cient for biomass conversion
O� Concentration of O�� g�O��l

��

O�

� Interfacial oxygen concentration O�� g�O��l
��

OP
� Concentration of O� a�ecting penicillin production� g�O��l

��
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P Concentration of penicillin� g�P�l��

PH Concentration of penicillin in the model of
Heijnen et al� ������� moles�P�kg��

Pn Concentration of product Pn� g�Pn�l
��

PM Concentration of pharmamedia� g�PM�l��

Q Concentration of dormant biomass state� g�DW�l��

R� E�ective Pharmamedia�lysed biomass ratio� g�PM�g�DW���

R� E�ective lysed biomass�viable biomass ratio� g�Y�g�DW���

R� Precursor to penicillin conversion coe�cient� g�pP�g�P���

Note that the three ratios R� were not present in the
original models� but are included here for dimensional
consistency�

S Concentration of glucose� g�S�l��

SH Concentration of glucose in the model of
Heijnen et al� ������� moles�S�kg��

Tp Time constant for rate of change of penicillin
production rate� h

V Volume of broth in fermenter� l
VH Mass of broth in fermenter in the model of

Heinen et al� ������� kg
X Concentration of biomass� g�DW�l��

XA Concentration of active biomass� g�DW�l��

XH Concentration of biomass in the model of
Heijnen et al� ������� moles�X�kg��

XI Concentration of inactive biomass� g�DW�l��

Xdead Concentration of dead biomass� g�DW�l��

X� Concentration of biomass fraction �� g�DW�l��

X�

� Concentration of biomass fraction  at the end of
the growth phase
in the model of Nestaas and Wang ������� g�DW�l��

Y Concentration of lysed material� g�Y�l��

YPM Yield of biomass with respect to pharmamedia�
g�DW�g�PM���

YPO Yield coe�cient for penicillin with respect to oxygen�
g�P�g�O��

��

YPS Yield coe�cient for penicillin with respect to substrate�
g�P�g�S���

YPSH Yield coe�cient for penicillin with respect to substrate in
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the model of Heijnen et al� ������� moles�P�moles�S���

YXO Yield coe�cient for biomass with respect to oxygen�
g�DW�g�O��

��

YXS Yield of biomass with respect to glucose� g�DW�g�S���

YXSH Yield of biomass with respect to glucose in the model of
Heijnen et al� ������� moles�DW�moles�S���

YXS� Yield of biomass with respect to glucose for state �
g�DW�g�S���

YXSe Yield of biomass with respect to glucose for state e�
g�DW�g�S���

YpPS Yield coe�cient for penicillin precursor with respect to
substrate� g�pP�g�S���

Z Concentration of a model state� gl��

meas Subscript denoting measured value

sim Subscript denoting simulated value
a� Coe�cient of age function� g�P�g�DW���h��

a� Coe�cient of age function� g�P��g�DW���h��

a� Coe�cient of age function� g�P�lg�DW���h��

a Area for gas�liquid mass transfer� m�

aly Polynomial coe�cient for lysis rate� h��

bly Polynomial coe�cient for lysis rate� h��

am Polynomial coe�cient for maintenance rate� h��

bm Polynomial coe�cient for maintenance rate� h��

aT Stoichiometric coe�cient� g�I�g�DW���

aT� Stoichiometric coe�cient� g�I�g�DW���

f�� Inactivation rate parameter� h��

k �rst order biomass conversion coe�cient
k� Degeneration coe�cient� h��

k� CO� �yield� on biomass growth� g�DW�l��

k� Penicillin production related coe�cient for CO�

formation� l�g�P���

k�� Inactivation coe�cient� h��

kl Gas�liquid mass transfer coe�cient� m��h��

kly Lysis coe�cient� h��

kp Precursor formation coe�cient� g�pP�g�DW���h��

kpen Coe�cient for rate of formation of penicillin from
precursor� g�P�g�DW�g�pP���h���

ks Vacuole growth rate constant� l��h��
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mO Maintenance coe�cient for oxygen� g�O��g�DW���h��

mc Maintenance	related coe�cient for CO� formation�
g�CO��g�DW���h��

ms Maintenance coe�cient� g�S�g�DW���h��

msH Maintenance coe�cient in the model of Heijnen et al�
������� moles�S�moles�DW���h��

ms� Maintenance coe�cient for state � g�S�g�DW���h��

ms� Maintenance coe�cient for state �� g�S�g�DW���h��

4nk Number of vacuoles in bin k
pP Concentration of penicillin precursor� g�pP�l��

qL Uptake rate of lactose g�L�g�DW���h��

qL� Uptake coe�cient for lactose� g�L�g�DW���h��

qS Uptake rate of glucose� g�S�g�DW���h��

qS� Uptake coe�cient for glucose� g�S�g�DW���h��

qS�max Maximum speci�c glucose consumption rate�
moles�S�moles�X���h��

qT Total rate of use of glucose and equivalents for biomass growth
in the model of Kluge et al� ������� g�S�h��

qY Uptake rate of lysed material� g�Y�g�DW���h��

qY � Uptake coe�cient for lysed material� g�Y�g�DW���h��

rC Rate of consumption of carbon� moles h��

rO Rate of consumption of oxygen� moles h��

rS Rate of consumption of glucose� moles h��

rP Rate of formation of penicillin� moles h��

rPO Maximum rate of formation of penicillin� moles h��

rX Rate of formation of biomass� moles h��

rk Radius of smallest vacuoles� m
rl Radius of largest vacuoles� m
t Time� h
vic Volume of active cytoplasm� m�

Greek Symbols
� Coe�cient relating nutritional value of lysed material

to that of glucose� g�Y�g�S���

�n Coe�cient relating substrate consumption to P�

assimilation� g�S�g�DW���

� Coe�cient relating nutritional value of lactose to that
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of glucose� g�L�g�S���

�n Product n production coe�cient� g�Pn�g�DW���

�n Maintenance coe�cient n �for conversion between
biomass states�� g�S�g�DW���

�n Degeneration numerator coe�cient n� g�S�l��h��

�n Degeneration numerator coe�cient n� h��

�� Biomass age function� g�DW�hl��

�� Mean age of biomass� h
� Di�erentiation denominator coe�cient� g�S�l��

�n Di�erentiation denominator coe�cient n� g�S�l��

� Speci�c growth rate� h��

�I Speci�c inactivation rate� ��

�L maximum lactose conversion rate
�P Penicillin production constant� h��

�PM�max Growth rate with respect to Pharmamedia� h��

�PO Penicillin production coe�cient� g�P�g�DW���

�PSS Steady state penicillin production constant�
g�P�g�DW���h��

�S�max Growth rate with respect to glucose� h��

�X Growth constant h��

�� Growth rate� h��

�� vacuole formation coe�cient
�� vacuole growth coe�cient
�� vacuole loss coe�cient
�a Autolysis coe�cient� h��

�n Speci�c growth rate n� h��

�substr Speci�c growth rate on substrate� h��

� Branching numerator coe�cient� h��

�n Branching numerator coe�cient n� h��

�n Di�erentiation denominator coe�cient n� g�S�l��

� Penicillin production rate� g�P�g�DW���h��

� the constant
	� Density of biomass fraction �� gm��

	c Density of cytoplasm� gm��

� Substrate consumption rate� g�S�l��

�n P� formation rate coe�cient� g�P��g�DW���h��

� Time� h
�S Rate of feeding of glucose� moles h��
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�n Di�erentiation coe�cient n� h��



B� MATLAB ROUTINES

This appendix contains sample listings of Matlab programs typical of those

used in the course of the work described in this thesis
 Examples of the

following programs are given


� eg tune�m�script to run least squares optimisation of model parame	

ters

� eg targ�m�Matlab function� called as the objective function for least

squares optimisation

� eg data�m�script to set up initial values for parameters and a typical

feed pro�le

� fb���m�script containing measured fermentation data� called to spec	

ify reference values for eg targ�m

� eg scrga�m�script to run Genetic Algorithm based optimisation

� eg objga�m�Matlab function to serve as the objective function for

Genetic Algorithm based optimisation �this function calls eg targ�m�

and therefore the function being minimised by both least squares rou	

tine and Genetic Algorithm is the same
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A Simulink block diagram for the model used by the above example

scripts and functions is shown in Figure �
�
 This example model is that of

Paul et al� ������
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� This script file runs a least squares optimisation on

� an example model�

�

� MTS July ����

� Declaring the parameters to be tuned to be global

� so that changes made to their values by the optimisation

� routine when calling the objective function are reflected

� in their values used by SIMULINK in the MATLAB workspace�

global mu� mue m� m� gamma� mup muh

global alpha� alphae alphap K� Ke K� K	 Kp Ki

global mu� mu	 mua Ksl Ksi mul mu�

� Setting globals for initial conditions and input feed rate

� so that they may be modified along with the parameter values�

global Qi

global x�init x�init x	init x�init x�init sinit linit vinit pinit

� Creating a vector of control options

� for the optimisation routine

options � foptions� � The default vector

options��� � �� � Report progress

options���� � ����
sqrt�eps�� � Minimum step length for df�dx

options���� � ����
sqrt�eps�� � Maximum step length for df�dx

� Initialising parameter values for the optimisation

eg�data

� Creating the initial parameters vector for the optimisation

x� � �mu� mue m� m� gamma� mup muh alpha� ���

alphae alphap K� Ke K� K	 Kp Ki ���

mu� mu	 mua Ksl Ksi mul mu���

� Creating the variable �dataname�

dataname � �fb����

� Calling the MATLAB least squares optimisation routine

�x� � leastsq��eg�targ��x��options��dataname��

Tab� B�� Listing for eg tun�m
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function �error� � eg�targ�xdataname�

� Function to simulate the updated Paul�Thomas model

� and return the errors between measured and simulated state values�

�

� Inputs

� x vector containing parameter values for optimisation

� dataname string containing the name of the data set to be used

�

� MTS July ����

� Declare globals for optimisation

� The parameters to be optimised need to be declared global

� so that any changes to the parameter values made in this

� program �as a consequence of the optimisation algorithm�

� affect the corresponding parameter values in the MATLAB

� workspace which are used in simulating the SIMULINK model�

global mu� mue m� m� gamma� mup muh

global alpha� alphae alphap K� Ke K� K	 Kp Ki

global mu� mu	 mua Ksl Ksi mul mu�

� Setting globals for initial conditions and input feed rate

� Again this is so that values changed here �dependent on

� the data set used� are reflected in the MATLAB workspace�

global Qi

global x�init x�init x	init x�init x�init sinit linit vinit pinit

� Running a script file to load in data values

eval�dataname�

� Avoiding negative parameter values

x�abs�x��

� Creating parameter values from the input x vector

mu� � x���� mue � x�	�� m� � x���� m� � x����

gamma� � x���� mup � x���� muh � x���� alpha� � x����

alphae � x���� alphap � x����� K� � x����� Ke � x��	��

K� � x����� K	 � x����� Kp � x����� Ki � x�����

mu� � x����� mu	 � x����� mua � x����� Ksl � x�	���

Ksi � x�	��� mul � x�		�� mu� � x�	���
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� Call the simulation

� Here Gear�s algorithm is being used on the model �eg�modl�

� running from time � � to the maximum in the reference times

� vector �T�ref� with no specified initial conditions

� ��� � initial conditions have specified above as x�init etc

� since the order of the states may change on resaving the model�

� and with tolerance �e�� minimum step length �e�� and

� maximum step length ��� �Time units for simulations are hours��

� �fred� is used as a dummy variable to store the returned

� simulation time� If SIMULINK integration routines are called

� from the command line without output variables the states are

� automatically plotted graphically which takes time and so

� is undesirable as well as unnecessary for parameter optimisation�

�fred��gear��eg�modl��� max�T�ref������e�� �e��� �����

� Interpolate to find the simulated values at measurement times

� Here we are tuning for glucose �S� penicillin �P� lactose �L�

� and all biomass states �X� X� X	 X�� excluding the

� unmeasurable lysed state �X���

x��value � interp��fred X� T�ref��

x��value � interp��fred X� T�ref��

x	�value � interp��fred X	 T�ref��

x��value � interp��fred X� T�ref��

glucose�value � interp��fred S T�ref��

pen�value � interp��fred P T�ref��

l�value � interp��fredLT�ref��

�� Obtaining simulated values at measurement times

�� Alternative form typically for models with hourly output

�� sampling times and reference data at hourly intervals�

� x��value � X��T�ref����

� x��value � X��T�ref����

� x	�value � X	�T�ref����

� x��value � X��T�ref����

� glucose�value � S�T�ref����

� pen�value � P�T�ref����

� l�value � L�T�ref����

� Calculate the absolute errors between measured and simulated values
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x��error � �x��value � X��ref��max�X��ref��

x��error � �x��value � X��ref��max�X��ref��

x	�error � �x	�value � X	�ref��max�X	�ref��

x��error � �x��value � X��ref��max�X��ref��

glucose�error � �glucose�value � S�ref��max�S�ref��

pen�error � �pen�value � P�ref��max�P�ref��

l�error � �l�value � L�ref��max�L�ref��

� Concatenate values to form a matrix so as to return a

� single error variable to the least squares routine�

� ��� indicates continuation from line to line in MATLAB

error � �x��errorx��errorx	�errorx��error���

glucose�error pen�error l�error��

Tab� B�� Listing for eg targ�m
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� This is a script to set up parameters for use in the

� SIMULINK simulation of the example model�

� Model parameters to be optimised

mu� � ������ mue � ��	�� m� � ���	�� m� � ���	��

gamma� � ������	� mup � ���	���� muh � ������ alpha� � 	���

alphae � ����� alphap � ����� K� � ����� Ke � �����

K� � ����� K	 � ������ Kp � �����	� Ki � ���	��

mu� � ����	� mu	 � ���	�� mua � ����	e��� Ksl � �������

Ksi � �����e��� mul � ������� mu� � �����e���

� Fixed parameters �biomass density�

rho � �����

rho� � rho�

� Feed rate parameters

f � ������

fx � ������

sf � ����

t�ref � �� 	� 	� ��� ������

Qi � ��sf
�� � � � ���� �� Feed � precursor dilution

Qo � �� � � � ����

sr � �����

� NOTE that all SIMULINK model parameters relevant to a specific

� data set are set up in that data set�s script file called from

� within the optimisation�s objective function� The file �fb���m�

� is given as an example�

Tab� B�� Listing for eg data�m
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� Data obtained from a fixed feed rate fermentation

� FB���

� TIME A� A� A	 A� AT S SL P

data � �

��� ���� ���� ���� ���	 ���� ���	 ���� ����

���� ���� ���� ���� ���� ���� ���� ���� ����

	��� ���� ���	 ���� ���� ���� ���� ���� ����

	��� 	��� ����� ���� ���� �	��� ���� ���� ���	

	��� 	��� ����� ���� ���� ����� 	��� ���� ��	�

���� 	��� ����� 	��� ���� ���	� ��� ���� ���	

���� 	��� ����� ��		 ���� ����� ��� 	��� ����

���� 	�	� ����� ���� ���� 	���	 ��� ���� 	���

���� 	��� ����	 ��	� ���� 		��� ��� ��� ����

���� 	��� ����� ���� 	��� 		��� ��� ��� ��	�

���� ���� ����	 ���� ���� 	���� ��� ��� ����

����� 	��� 	��	� ���� 	��� 	���� ��� ��� ����

�	��� 	�	� ����� ���� ���� 	��	� ��� ��� ����

��

� �Unpacking� reference vectors from the data matrix

� �Although not necessary this makes things easier to handle�

T�ref � data�����

X��ref � data��	��

X��ref � data�����

X	�ref � data�����

X��ref � data�����

Xt�ref � data�����

S�ref � data�����

L�ref � data�����

P�ref � data�����

� Initial Conditions and feed�sample rate information

x�init����� x�init����� x	init����� x�init���	� x�init�����

sinit ����	� linit����� pinit�����

vinit ������ FI������� SRI������� FXI�������

Qi � �FI�FXI�SRI�
ones�size�Qi���

Tab� B�� Listing for fb���m
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� Script file to run Genetic Algorithm optimisation of parameter

� values in the example model�

� Declaring the parameters to be tuned to be global

� so that changes made to their values by the optimisation

� routine when calling the objective function are reflected

� in their values used by SIMULINK in the MATLAB workspace�

global mu� mue m� m� gamma� mup muh

global alpha� alphae alphap K� Ke K� K	 Kp Ki

global mu� mu	 mua Ksl Ksi mul mu�

� Setting globals for initial conditions and input feed rate

� so that they may be modified along with the parameter values�

global Qi

global x�init x�init x	init x�init x�init sinit linit vinit pinit

� Customising the options for the Genetic Algorithm

goptions���� � 	� � Output

goptions����� � ���� � MAXGEN

goptions�	��� � ��� � NIND

goptions�	��� � �� � SUBPOP

goptions�	��� � 	� � SP

goptions�	��� � �� � INITFUNCTION

goptions����� � �� � STATEPLOT

goptions������ � �������� � selection function

goptions���� � �� � mutation function

goptions������ � ���	���� � recombination function

goptions�	��� � �� � SAVE	FILE

� Initialising parameter values for the optimisation

eg�data

� Creating the initial parameters vector for the optimisation

x� � �mu� mue m� m� gamma� mup muh alpha� ���

alphae alphap K� Ke K� K	 Kp Ki ���

mu� mu	 mua Ksl Ksi mul mu���

� Obtaining the bounds for our Genetic Algorithm search

objfun � �eg�objga��

bounds � feval�objfun �� �x���

VLB � bounds����� VUB � bounds�	���

method � �	�

Tstart � �� Tend � 	� Fmax � ������ Raw�Time � t�ref�

� Calling the Genetic Algorithm optimsation routine

�xnew GOPTIONS� � tbxdbga�objfun goptions VLB VUB method��

Tab� B�� Listing for eg scrga�m



B� Matlab Routines ��	

function �ObjVal t x� � eg�objga�Chrom switchx��

� This function is based on those provided with the

� Genetic and Evolutionary Algorithm Toolbox �GEAT�

� of Harmut Pohlheim

� Technical University Ilmenau ����

� http���www�systemtechnik�tu�ilmenau�de��pohlheim�GA�Toolbox�index�html

�

� MTS July ����

� global variable for setting initial bounds

� global x�

� Compute population parameters

�Nind Nvar� � size�Chrom��

� Check size of Chrom and do the appropriate thing

� if Chrom is �� then

if Nind �� �

� lower and upper bound identical for all n variables

ObjVal � ��e��
x����
x���

� compute values of function

else

� Start computation of objective function

ObjVal � zeros�Nind���

for indrun � ��Nind

� Convert vector from GA into parameter vector

x � Chrom�indrun����

� Call the least squares objective function

� from conventional model tuning

� The �sum�sum������	�� calculates the SSE

ObjVal�indrun� � sum�sum�eg�targ�x�fb������	���

end

end

Tab� B�� Listing for eg objga�m



C� PERL PROGRAM FOR PARSING MODEL EQUATIONS

A program written in Perl was used to automate the processing of the output

generated from algebraic manipulations in Maple
 Although distinguishing

groups of terms on the basis of the measured quantities in them is relatively

simple for small model systems� the large volume of output generated in

analysing the simpli�ed lactose	incorporating model of Paul and Thomas

������ was such that the e�ort involved in writing a program to carry out

the sorting operation was less than that which would have been needed to

perform the sorting manually


To generate the input for the Perl program� the model equations must

be entered into Maple� multiplied throughout by their divisor terms and

the resulting expressions sorted
 Exporting the resulting Maple session as

plain text produces a �txt �le which may then be used as input to the

Perl program
 �Note that the output style option in Maple should be set to

linetype notation
�

The Perl program prompts for the name of a �txt �le� which is then used

as input
 Each Maple output line is split into its individual terms� sorting

states and parameters� and output is then written to three sets of �les


� a �out �le� containing tabulated output for each expression� consisting

of a column of parameters and one of associated� distinct groups of
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states

� a �all �le� containing a sorted list of all parameter groups found in

the Maple output within the �txt �le

� a group of �tex �les� one for each expression in the Maple output�

containing tables suitable for use with LATEX

C�� The Perl Program

The Perl program is listed here


���usr�bin�perl

� This script is intended to read in a text file containing

� all the parameter groups generated by a differential equation�

� reorder the terms in each group alphabetically�

� sort the reordered groups alphabetically�

� and then write them to an output file�

� Where are we reading from and writing to�

print �Enter file to be sorted� �	chop
�sourcename�STDIN��	

� Check that we have a superficially valid filename

unless 
�sourcename���txt���

die �The input file should be a �txt file��

�

� Create the various output file names

�outname � �sourcename	 �outname �� s�txt�out�	 � Full output

�allname � �sourcename	 �allname �� s�txt�all�	 � All parameter groups

�texname � �sourcename	 �texname �� s�txt��	 � Latex tables

� Keep the user informed about progress

print �Reading from �sourcename and writing to �outname��n�	

print �Also writing parameters to �allname��n�	

print �This could take a while� Please be patient��n�	
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� A little light formatting

format SORTED �

� �

�currentlist��ckey� �key

�� � �

�currentlist��ckey� �key

�

� The format lines for LISTALL originally had �listall��key�� NOT �fred

format LISTALL �

�

�fred

�� �

�fred

�

� Attempting to cheat on the permissible word breaks

�� � ������	 � We add ��� as another mathematically permissible line�break

� Open the files involved

open
RAWLIST� ��sourcename��	

open
SORTED� ���outname��	

open
LISTALL� ���allname��	

� open
TEXOUT� ���texname��	

� The main workhorse loop of the program

while 
�nextgroup � RAWLIST�� � � Reading a line at a time

�currentlist � 
�	 � Clearing the current list

� We only bother to process the line if it�s Maple output

� ie� if it starts with a ��� and contains a ����

if 

index
�nextgroup����� �� �� �� 
�nextgroup���������


�name� �expr� � split
������nextgroup�	 � Split the name and expression

�name �� s��s��g	 � Remove spaces from the name

�expr �� s��s��g	 � Remove spaces from the expr

print SORTED ��name �� �n�	 � Write the name to file

print �Parsing �name�n�	 � Say what we�re doing
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� Break up the expression into terms� go through element by element

foreach �elem 
�barray��break�expr
�expr�� � � subroutines at end

� Break each element into parameters and states


�params� �states� � �split�by�stars
�elem�	 � subroutines at end

� We need to see something in the file if a group has no parameter

if 

�params eq ���� �� 
�params eq ���� �� 
�states ne ���� �

�params � �params����	

�

� Add the parameter group to a hash indexed by state groupings

�currentlist��states� � �currentlist��states� � �params	

�listall�join
�� ���name��states�� � �listall�join
�� ���name��states�� � �params	

�

� Sort the collated parameter groups in the currentlist

foreach �key 
keys
�currentlist�� � � Each parameter group in turn

�parray � sort
�break�expr
�currentlist��key���	 � Split and sort

�currentlist��key� � join
����parray�	 � Reassemble

�

� Sort the keys of the hash by entry length 
or alphabetically�

� by�current�length is subroutine at end

�sortedlist � sort by�current�length keys
�currentlist�	

� Write suitably modified output to the TEXOUT file

open
TEXOUT� ���texname�name�tex��	

print ��texname�name�tex�n�	

print TEXOUT ���subsection��name� �n�	

print TEXOUT ���begin�align�� �n�	

foreach �key 
�sortedlist� �

�texentry � �slash�greek
�currentlist��key��	

�texkey � �slash�greek
�tex�key
�key��	

print TEXOUT �texkey � � �� � � �texentry � ������n�	

�

print TEXOUT ���end�align�� �n�n�n�	
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close
TEXOUT�	

� Write each key and entry to the SORTED output file

foreach �key 
�sortedlist� �

�ckey � �key	 � Dummy variable to allow array referencing

write SORTED	 � Generate the �out file

�

� Spacing out the various sections in the �out file

print SORTED ��n�n�	

�

�

� Sort the collated parameter groups in the overall list

foreach �key 
keys
�listall�� � � Each parameter group in turn

�parray � sort
�break�expr
�listall��key���	 � Split and sort

�listall��key� � join
����parray�	 � Reassemble

�

� Sort the keys of the overall list by entry length 
or alphabetically�

�longsort � sort by�length keys
�listall�	 � by�length is subroutine

foreach �key 
�longsort� � � Produce the �all file


�name��states� � split
�� ���key�	

�fred � �name � ��t� � �listall��key�	 � Dummy variable for LISTALL

write LISTALL	

�

� Close the files involved

close
RAWLIST�	

close
SORTED�	

close
LISTALL�	

� close
TEXOUT�	

����������������������������������������������������������������������

����������������������� SUBROUTINES FOLLOW ���������������������������

����������������������������������������������������������������������
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sub by�current�length �

� Compare the lengths of the two strings� or their names� alphabetically



�currentlist��a� �� tr���c� �� 
�currentlist��b� �� tr���c�� �� 
�a cmp �b�

�

sub by�length �

� Compare the lengths of the two strings� or their names� alphabetically



�listall��a� �� tr�������������� �� 
�listall��b� �� tr��������������� ��



�listall��a� �� tr���c� �� 
�listall��b� �� tr���c�� ��



�listall��a� �� tr���������� �� 
�listall��b� �� tr����������� ��


�a cmp �b�

�

sub break�expr � � To break an expression into terms at � or �

� but only if ��� is outside 
�

� Declare some local variables���

local
�expr� � ��	

local
�barray�	

local
�counter��breakable��arraycount�	

� A more intelligent �split�

� NOTE� Since the expression will always start with

� a 
����� then �arraycount needs to be set to ��

� to ensure that the first term is stored in �barray �!�

� Perl numbers from �� and we increment �arraycount

� whenever we encounter a 
�����

�counter � �	 �breakable � �	 �arraycount � ��	

� In an expression� the first term may be unsigned�

� Since we wish all terms to be signed� we prepend a ��� if needed�

if 

substr
�expr����� ne ���� �� 
substr
�expr����� ne ����� � � If no ���

�expr � ��� � �expr	 � Prepend �

�

while 

�test � substr
�expr��counter������ ne ��� � � Split at ��� not in 
�

if 

�test eq ��� �� �test eq ���� �� �breakable� � � If ��� � not in 
�

�arraycount��	 � New array element

� elsif 
�test eq �
�� � � If an opening bracket
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�breakable��	 � Breakable false 
��

� elsif 
�test eq ���� � � If a closing bracket

�breakable��	 � Breakable true 
��

�

�barray �arraycount! � join
����barray �arraycount!� �test�	 � Add character

�

�barray	 � Return array of terms

� � End of subroutine���

sub split�by�stars � � To split a term into its component states and parameters

� Declare some local variables���

local
�expr� � ��	

local
�counter��breakable��arraycount��sign�	

local
�barray��statelist��paramlist�	

� A more intelligent �split�

�counter � �	 �breakable � �	 �arraycount � �	

� First remove the ��� from the term

if 
substr
�expr����� eq ���� �

�sign � ���	

�counter��	

� elsif 
substr
�expr����� eq ���� �

�sign � ���	

�counter��	

� else �

�sign � ���	

�

while 

�test � substr
�expr��counter������ ne ��� � � Splitting at � outside 
�

if 

�test eq ���� �� �breakable� �

�arraycount��	

� elsif 
�test eq �
�� �

�breakable��	

�barray �arraycount! � join
����barray �arraycount!� �test�	

� elsif 
�test eq ���� �

�breakable��	

�barray �arraycount! � join
����barray �arraycount!� �test�	



C� Perl Program for Parsing Model Equations ���

� else �

�barray �arraycount! � join
����barray �arraycount!� �test�	

�

�

foreach �term 
�barray� � � Going through the terms

if 

index
�term��
������ �� 
index
�term��Sigma������� �

if 
substr
�term����� eq �
�� � � Bracketed term� special sort

�sortedterm � ��	

substr
�term����� � ��	 � Get rid of opening bracket

substr
�term������ � ��	 � Get rid of closing bracket

�termarray � �break�expr
�term�	 � Split it up���

foreach �termkey 
�termarray� � � Go through the array


�tparams��tstates� � �split�by�stars
�termkey�	

if 

�tparams eq ���� � 
�tparams eq ����� �

� Empty parameter group

�sortedterm � �sortedterm � �tparams � �tstates	

� else �

� We have some parameters

�sortedterm � �sortedterm � �tparams � ��� � �tstates	

�

�

��term � �
� � �sortedterm � ���	 � Replace brackets around term

�

�statelist � 
�statelist��term�	 � It�s a state term

� else �

�term �� s�
�������g	 � It�s a parameter term

�paramlist � 
�paramlist��term�	

�

�

� Rejoining the components� with the sign joining the params

�states � join
����sort
�statelist��	

�params � �sign � join
����sort
�paramlist��	

�returnarray � 
�params� �states�	

� � End of subroutine���
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sub slash�greek �

� Subroutine to replace greek letter names with their LaTeX equivalents

local
�new� � ��	

�new �� s�
alpha������ �g	

�new �� s�
gamma������ �g	

�new �� s�
mu������ �g	

�new �� s�
rho������ �g	

�new �� s�
Sigma������ �g	

�new	

� � End of subroutine���

sub tex�key �

� Subroutine to convert the array key into LaTeX

local
�new� � ��	

�new �� s�diff�
���left�
 ��frac����partial������partial t���	

�new �� s��t�����right���	

�new	

� � End of subroutine���

C�� A Maple Session

The portion of a Maple session related to the glucose concentration�s di�er	

ential equation is given here


� Sexpr �� � diff�S�t��t� �alpha�	mu�	S�t�	X
�t���K��S�t�� �

alphae	mue	S�t�	X��t���Ke�S�t�� � m�	X��t�	S�t���K
�S�t�� �

m
	rho	v
c�t�	S�t���K�S�t�� � alphap	mup	rho	v
c�t�	S�t���Kp�S�t�	�
�

S�t��Ki�� � mul	L�t�	�X��t��X
�t�����Ksl�L�t��	�
��S�t��Ksi��� �

Sigma	S�t��V�t� � �Ff	sf��V�t��

� Sexpr �� sort�collect�simplify�Sexpr 	 �K��S�t��	 �Ke�S�t�� 	 �K
�

S�t�� 	 �K�S�t�� 	 �Kp�S�t�	�
�S�t��Ki�� 	 ��Ksl�L�t��	�
�

�S�t��Ksi��� 	 Ki 	 Ksi 	

V�t����alpha��mu��K��alphae�mue�Ke�m��m
�K
�K�alphap�mup�Kp�Ki�mul�Ks

l�Ksi��distributed���X��t��X
�t��S�t��L�t��V�t����
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Sexpr �� �alphae	mue	V�t�	X��t�	S�t���	L�t��m�	V�t�	X��t�	S�t���	L�t��

alpha�	mu�	V�t�	S�t���	X
�t�	L�t��alphae	mue	Ksl	V�t�	X��t�	S�t����

m�	Ksl	V�t�	X��t�	S�t����alphae	mue	K	V�t�	X��t�	S�t���	L�t��

m�	Ksi	V�t�	X��t�	S�t���	L�t��alphae	mue	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	V�t�	X��t�	S�t���	L�t��m�	K	V�t�	X��t�	S�t���	L�t��

alphae	mue	Ksi	V�t�	X��t�	S�t���	L�t��m�	Ke	V�t�	X��t�	S�t���	L�t��

m�	K�	V�t�	X��t�	S�t���	L�t��m�	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K
	V�t�	X��t�	S�t���	L�t��alpha�	mu�	Ksl	V�t�	S�t���	X
�t��

diff�S�t��t�	V�t�	S�t���	L�t��alpha�	mu�	K	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K
	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ki	V�t�	S�t���	X
�t�	L�t��Sigma	S�t���	L�t��

alphae	mue	Ksl	Ksi	V�t�	X��t�	S�t����m�	K�	Ksl	V�t�	X��t�	S�t����

alphae	mue	K	Ksl	V�t�	X��t�	S�t����

alphae	mue	Ki	Ksl	V�t�	X��t�	S�t����m�	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	Ksl	V�t�	X��t�	S�t����m�	K	Ksl	V�t�	X��t�	S�t����

m�	Ke	Ksl	V�t�	X��t�	S�t����m�	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K
	Ksl	V�t�	X��t�	S�t����m�	K	Ksi	V�t�	X��t�	S�t���	L�t��

m�	Ke	K	V�t�	X��t�	S�t���	L�t��

alphae	mue	Kp	Ki	V�t�	X��t�	S�t���	L�t��

m�	Kp	Ki	V�t�	X��t�	S�t���	L�t��m�	K�	K	V�t�	X��t�	S�t���	L�t��

m�	Ke	Ki	V�t�	X��t�	S�t���	L�t��m�	K�	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K
	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K
	K	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	Ki	V�t�	X��t�	S�t���	L�t��

m�	K�	Ke	V�t�	X��t�	S�t���	L�t��

alphae	mue	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

m�	Ke	Ksi	V�t�	X��t�	S�t���	L�t��m�	Ki	Ksi	V�t�	X��t�	S�t���	L�t��
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alphae	mue	K�	K	V�t�	X��t�	S�t���	L�t��

alphae	mue	K	Ki	V�t�	X��t�	S�t���	L�t��

m�	K	Ki	V�t�	X��t�	S�t���	L�t��m�	K�	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	K
	V�t�	X��t�	S�t���	L�t��

alphae	mue	K
	Ki	V�t�	X��t�	S�t���	L�t��

alpha�	mu�	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	K
	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	K	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Kp	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K
	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K
	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ki	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K
	K	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	K
	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K	Ksi	V�t�	S�t���	X
�t�	L�t��Ff	sf	S�t���	L�t��

m�	K	Ki	Ksl	V�t�	X��t�	S�t����m�	K�	Ke	Ksl	V�t�	X��t�	S�t����

alphae	mue	K�	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K
	Ki	Ksl	V�t�	X��t�	S�t����m�	Ke	K	Ksl	V�t�	X��t�	S�t����

m�	K�	Ksl	Ksi	V�t�	X��t�	S�t����m�	K	Ksl	Ksi	V�t�	X��t�	S�t����

m�	Ki	Ksl	Ksi	V�t�	X��t�	S�t����m�	Ke	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K
	K	Ksl	V�t�	X��t�	S�t����

alphae	mue	Ki	Ksl	Ksi	V�t�	X��t�	S�t����
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alphae	mue	K�	K	Ksl	V�t�	X��t�	S�t����

alphae	mue	K	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	K
	Ksl	V�t�	X��t�	S�t����m�	K�	K	Ksl	V�t�	X��t�	S�t����

alphae	mue	K
	Ksl	Ksi	V�t�	X��t�	S�t����

m�	K�	Ki	Ksl	V�t�	X��t�	S�t����alphae	mue	K	Ki	Ksl	V�t�	X��t�	S�t����

m�	Kp	Ki	Ksl	V�t�	X��t�	S�t����alphae	mue	Kp	Ki	Ksl	V�t�	X��t�	S�t����

m�	Ke	Ki	Ksl	V�t�	X��t�	S�t����m�	K�	Ke	K	V�t�	X��t�	S�t���	L�t��

m�	K�	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

m�	Kp	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	K
	K	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	K	Ki	V�t�	X��t�	S�t���	L�t��

m�	K�	Kp	Ki	V�t�	X��t�	S�t���	L�t��

m�	K�	Ke	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	Kp	Ki	V�t�	X��t�	S�t���	L�t��

m�	K�	K	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	K	Ksi	V�t�	X��t�	S�t���	L�t��

m�	K	Kp	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K	Kp	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	K
	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K
	K	Ki	V�t�	X��t�	S�t���	L�t��

m�	K�	K	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K
	K	Ksi	V�t�	X��t�	S�t���	L�t��

m�	K	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	K
	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K
	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K
	Kp	Ki	V�t�	X��t�	S�t���	L�t��

m�	Ke	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

m�	K�	Ke	Ki	V�t�	X��t�	S�t���	L�t��m�	Ke	K	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	Kp	Ki	Ksi	V�t�	X��t�	S�t���	L�t��
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alphae	mue	K	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

m�	Ke	Kp	Ki	V�t�	X��t�	S�t���	L�t��

m�	Ke	K	Ksi	V�t�	X��t�	S�t���	L�t��

alpha�	mu�	Ki	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	K
	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	K
	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	Kp	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	K	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	K	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	K
	K	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K
	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	K	Ki	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K
	K	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	K
	K	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K
	K	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	K
	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Kp	Ki	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K	Kp	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	Ki	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	K	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	K
	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K
	Kp	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	K	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K
	Ki	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	Kp	Ki	V�t�	S�t���	X
�t�	L�t��

alphae	mue	K	Kp	Ki	Ksl	V�t�	X��t�	S�t����

m�	K�	K	Ksl	Ksi	V�t�	X��t�	S�t����m�	Ke	K	Ksl	Ksi	V�t�	X��t�	S�t����
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alphae	mue	K
	Kp	Ki	Ksl	V�t�	X��t�	S�t����

m�	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	K
	Ki	Ksl	V�t�	X��t�	S�t����

m�	K�	Ke	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	Kp	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K�	K	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	K
	K	Ksl	V�t�	X��t�	S�t����

m�	K�	Ke	K	Ksl	V�t�	X��t�	S�t����m�	K	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

m�	K�	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K
	K	Ksl	Ksi	V�t�	X��t�	S�t����

m�	K�	Ke	Ki	Ksl	V�t�	X��t�	S�t����m�	K�	Kp	Ki	Ksl	V�t�	X��t�	S�t����

m�	Ke	Kp	Ki	Ksl	V�t�	X��t�	S�t����m�	K	Kp	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K�	K
	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K
	K	Ki	Ksl	V�t�	X��t�	S�t����

m�	Ke	K	Ki	Ksl	V�t�	X��t�	S�t����m�	Ke	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

m�	K�	K	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	K	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K
	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	K	Kp	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	K	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

m�	K�	Ke	Kp	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	K
	Kp	Ki	V�t�	X��t�	S�t���	L�t��

m�	K�	Ke	K	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	K
	K	Ki	V�t�	X��t�	S�t���	L�t��

m�	K�	Kp	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

m�	K�	K	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

m�	K�	Ke	Ki	Ksi	V�t�	X��t�	S�t���	L�t��
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alphae	mue	K�	K
	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

m�	K	Kp	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

m�	Ke	Kp	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K
	K	Kp	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K
	Kp	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

m�	K�	Ke	K	Ksi	V�t�	X��t�	S�t���	L�t��

m�	K�	K	Kp	Ki	V�t�	X��t�	S�t���	L�t��

alphae	mue	K
	K	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

m�	Ke	K	Kp	Ki	V�t�	X��t�	S�t���	L�t��

m�	Ke	K	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K	Kp	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	K
	K	Ksi	V�t�	X��t�	S�t���	L�t��

alphae	mue	K�	Kp	Ki	Ksi	V�t�	X��t�	S�t���	L�t��

alpha�	mu�	Ke	K	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	Kp	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	K
	Kp	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	Kp	Ki	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K
	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K
	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	K
	K	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	K	Kp	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K
	K	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	K	Ki	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	K
	Ki	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	K
	K	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	Ki	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K	Kp	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K
	K	Kp	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	K
	K	Ki	V�t�	S�t���	X
�t�	L�t��
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alpha�	mu�	Ke	K
	Ki	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	K
	K	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K	Kp	Ki	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K
	Kp	Ki	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	K
	K	Ki	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	K	Ki	Ksi	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	K
	Kp	Ki	V�t�	S�t���	X
�t�	L�t��

alpha�	mu�	Ke	Kp	Ki	Ksi	V�t�	S�t���	X
�t�	L�t��

m�	K�	Ke	K	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K�	K	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

m�	K�	Ke	Kp	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K
	K	Kp	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

m�	Ke	K	Kp	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K
	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

m�	Ke	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

m�	K�	K	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K
	K	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

m�	K�	K	Kp	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K�	K
	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	K
	Kp	Ki	Ksl	V�t�	X��t�	S�t����

m�	K�	Ke	K	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	K
	K	Ksl	Ksi	V�t�	X��t�	S�t����

alphae	mue	K�	K
	K	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K�	K	Kp	Ki	Ksl	V�t�	X��t�	S�t����

alphae	mue	K�	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

m�	Ke	K	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

m�	K�	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

m�	K	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t����

m�	K�	Ke	Ki	Ksl	Ksi	V�t�	X��t�	S�t����
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m�	K�	Ke	K	Ki	Ksi	V�t�	X��t�	S�t��	L�t��

alphae	mue	K�	K	Kp	Ki	Ksi	V�t�	X��t�	S�t��	L�t��

m�	K�	K	Kp	Ki	Ksi	V�t�	X��t�	S�t��	L�t��

alphae	mue	K�	K
	Kp	Ki	Ksi	V�t�	X��t�	S�t��	L�t��

m�	K�	Ke	K	Kp	Ki	V�t�	X��t�	S�t��	L�t��

m�	K�	Ke	Kp	Ki	Ksi	V�t�	X��t�	S�t��	L�t��

m�	Ke	K	Kp	Ki	Ksi	V�t�	X��t�	S�t��	L�t��

alphae	mue	K�	K
	K	Ki	Ksi	V�t�	X��t�	S�t��	L�t��

alphae	mue	K�	K
	K	Kp	Ki	V�t�	X��t�	S�t��	L�t��

alphae	mue	K
	K	Kp	Ki	Ksi	V�t�	X��t�	S�t��	L�t��

alpha�	mu�	Ke	K
	K	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K
	Kp	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	K
	K	Kp	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K	Kp	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K	Ki	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	K	Kp	Ki	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K
	K	Ki	Ksl	V�t�	S�t���	X
�t��

alpha�	mu�	K
	K	Ki	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K
	Ki	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	K
	Kp	Ki	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	Kp	Ki	Ksl	Ksi	V�t�	S�t���	X
�t��

alpha�	mu�	Ke	K
	Kp	Ki	Ksi	V�t�	S�t��	X
�t�	L�t��

alpha�	mu�	Ke	K	Kp	Ki	Ksi	V�t�	S�t��	X
�t�	L�t��

alpha�	mu�	K
	K	Kp	Ki	Ksi	V�t�	S�t��	X
�t�	L�t��

alpha�	mu�	Ke	K
	K	Ki	Ksi	V�t�	S�t��	X
�t�	L�t��

alpha�	mu�	Ke	K
	K	Kp	Ki	V�t�	S�t��	X
�t�	L�t��

alphae	mue	K
	K	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t���

m�	K�	Ke	K	Ki	Ksl	Ksi	V�t�	X��t�	S�t���

alphae	mue	K�	K
	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t���

alphae	mue	K�	K
	K	Ki	Ksl	Ksi	V�t�	X��t�	S�t���
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m�	K�	K	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t���

alphae	mue	K�	K
	K	Kp	Ki	Ksl	V�t�	X��t�	S�t���

alphae	mue	K�	K	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t���

m�	Ke	K	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t���

m�	K�	Ke	K	Kp	Ki	Ksl	V�t�	X��t�	S�t���

m�	K�	Ke	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t���

alphae	mue	K�	K
	K	Kp	Ki	Ksi	V�t�	X��t�	S�t�	L�t��

m�	K�	Ke	K	Kp	Ki	Ksi	V�t�	X��t�	S�t�	L�t��

alpha�	mu�	Ke	K
	K	Ki	Ksl	Ksi	V�t�	S�t��	X
�t��

alpha�	mu�	K
	K	Kp	Ki	Ksl	Ksi	V�t�	S�t��	X
�t��

alpha�	mu�	Ke	K
	K	Kp	Ki	Ksl	V�t�	S�t��	X
�t��

alpha�	mu�	Ke	K	Kp	Ki	Ksl	Ksi	V�t�	S�t��	X
�t��

alpha�	mu�	Ke	K
	Kp	Ki	Ksl	Ksi	V�t�	S�t��	X
�t��

alpha�	mu�	Ke	K
	K	Kp	Ki	Ksi	V�t�	S�t�	X
�t�	L�t��

alphae	mue	K�	K
	K	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t��

m�	K�	Ke	K	Kp	Ki	Ksl	Ksi	V�t�	X��t�	S�t��

alpha�	mu�	Ke	K
	K	Kp	Ki	Ksl	Ksi	V�t�	S�t�	X
�t����

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki	Kp	Ke���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	Ki	Kp	Ke	m
���

diff�S�t��t�	V�t�	S�t��	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t��	L�t��	Ksi	Ki	Kp	K	K
���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ksi	Ki	K	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	K	K
�

��
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	Ke	K�	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	Ki	Kp	K
	K�	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	m
���diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	Kp	Ke���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��
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Ff	sf	S�t���	L�t��	Ksi	Ki	Kp	K
���diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	Kp	K
���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	K
	Ke�

��diff�S�t��t�	V�t�	S�t���Sigma	S�t����

Ff	sf	S�t���	Ksi	Ksl	Ki	Kp	K
	Ke���diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	Kp	K���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	K����


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	Ke	K�	m
���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	K
	K��

��
�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	Ke	K�	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	Ki	Ke	K�	m
���

diff�S�t��t�	V�t�	S�t���Sigma	S�t����

Ff	sf	S�t���	Ksi	Ksl	Ki	Kp	K	Ke���diff�S�t��t�	V�t�	S�t���

Sigma	S�t����Ff	sf	S�t���	K�	Ke	K	Kp	Ki	Ksl���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki	K����diff�S�t��t�	V�t��Sigma	S�t��

Ff	sf�	K�	Ke	K
	K	Kp	Ki	Ksl	Ksi���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	K�	K
���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Kp	Ki���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	K�	Ke���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki	K	K
���
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	Kp	K
	K�	m
���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki	K
	K����diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	K���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��
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Ff	sf	S�t���	L�t��	K�	Ke	K���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksl	Ki	Kp	K
	Ke���diff�S�t��t�	V�t�	S�t��	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t��	L�t��	Ksi	Ki	Kp	K	Ke���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ke	K����

diff�S�t��t�	V�t�	S�t���Sigma	S�t����

Ff	sf	S�t���	K�	K
	K	Kp	Ki	Ksl���diff�S�t��t�	V�t�	S�t���

Sigma	S�t����Ff	sf	S�t���	Ksi	Ksl	Ki	Kp	K	K
���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	Kp	K��

��
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K	K
	K�	Ki	mup	alphap���

diff�S�t��t�	V�t�	S�t��	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t��	L�t��	Ksi	Ki	Kp	K	K����diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	K	K���V�t�	X��t�	S�t��	L�t��

V�t�	S�t��	X
�t�	L�t��	Ki	K
	Ke	K�	Ksi	mul���

diff�S�t��t�	V�t�	S�t���Sigma	S�t����

Ff	sf	S�t���	Ksi	Ksl	Ki	K	K
	K����diff�S�t��t�	V�t�	S�t��

Sigma	S�t���Ff	sf	S�t��	K�	K
	K	Kp	Ki	Ksl	Ksi���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	Kp	Ke	K�	m
���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki	Ke	K����diff�S�t��t�	V�t�	S�t��	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t��	L�t��	K�	Ke	K	Kp	Ki���

diff�S�t��t�	V�t�	S�t��Sigma	S�t���

Ff	sf	S�t��	K�	Ke	K	Kp	Ki	Ksl	Ksi���diff�S�t��t�	V�t�	S�t��	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t��	L�t��	Ke	K
	K	Kp	Ki���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki	K
	Ke���diff�S�t��t�	V�t�	S�t��	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t��	L�t��	Ksi	Ki	Kp	K
	Ke���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ke	K
���diff�S�t��t�	V�t�	S�t���	L�t��
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Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ksi���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki���
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	Ke	m
��V�t�	X��t�	S�t���	L�t��

V�t�	S�t���	X
�t�	L�t��	K	Ke	Ksi	mul���diff�S�t��t�	V�t�	S�t��	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t��	L�t��	Ksi	Ki	K	K
	K����

diff�S�t��t�	V�t�	S�t��	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t��	L�t��	K�	K
	K	Kp	Ki��V�t�	X��t�	S�t���	L�t��

V�t�	S�t���	X
�t�	L�t��	Ki	Kp	Ksi	mul���diff�S�t��t�	V�t�	S�t��	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t��	L�t��	Ksi	Ki	Kp	Ke	K����

diff�S�t��t�	V�t�	S�t��Sigma	S�t���

Ff	sf	S�t��	Ksi	Ksl	Ki	K	K
	Ke	K����diff�S�t��t�	V�t�	S�t�	L�t��

Sigma	S�t��	L�t��Ff	sf	S�t�	L�t��	Ksi	Ki	Kp	K
	Ke	K����

diff�S�t��t�	V�t�	S�t��	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t��	L�t��	Ksi	K	K
	Ke	K����diff�S�t��t�	V�t�	S�t���

Sigma	S�t����Ff	sf	S�t���	Ksi	Ksl	K	K
	Ke	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	K
	Ke	K��

��diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	K
	Ke	K����diff�S�t��t�	V�t�	S�t��	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t��	L�t��	Ksi	Ki	K
	Ke	K����

diff�S�t��t�	V�t�	S�t��Sigma	S�t���

Ff	sf	S�t��	K�	Ke	K
	K	Kp	Ki	Ksl���
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	m
���diff�S�t��t�	V�t�	S�t�	L�t��

Sigma	S�t��	L�t��Ff	sf	S�t�	L�t��	Ksi	Ki	Kp	K	K
	Ke���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	K	K
	K��

��diff�S�t��t�	V�t�	S�t���Sigma	S�t����

Ff	sf	S�t���	Ksi	Ksl	Ki	Kp	K
	K����diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ksi	K	Ke	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	K
	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	K����
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�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K	K
	Ki	mup	alphap���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ke	K����
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K	Ke	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K	Ke	Ki	mup	alphap���


�	V�t�	S�t��	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t��	L�t��	Ksi	K	K
	Ke	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K	K
	Ki	mup	alphap���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ke	K
	K���
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K	K�	Ki	mup	alphap���


�	V�t�	S�t��	X
�t��


�	X�t�	rho	V�t�	S�t���	Ksi	Ksl	K	K
	Ke	Ki	mup	alphap���


�	V�t�	S�t��	X
�t��


�	X�t�	rho	V�t�	S�t���	Ksi	Ksl	K	K
	K�	Ki	mup	alphap���


�	V�t�	S�t��	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t��	L�t��	Ksi	K	K
	K�	Ki	mup	alphap���


�	V�t�	S�t��	X
�t��


�	X�t�	rho	V�t�	S�t���	Ksi	Ksl	K
	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t��	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t��	L�t��	Ksi	K
	Ke	K�	Ki	mup	alphap���

diff�S�t��t�	V�t�	S�t���Sigma	S�t����

Ff	sf	S�t���	Ke	K
	K	Kp	Ki	Ksl���diff�S�t��t�	V�t�	S�t��

Sigma	S�t���Ff	sf	S�t��	Ke	K
	K	Kp	Ki	Ksl	Ksi���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	K	K
	Ke�
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��diff�S�t��t�	V�t�	S�t��	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t��	L�t��	Ksi	Ki	Kp	K
	K����diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ksi	K
	Ke���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	K	K
	K����
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K
	Ki	mup	alphap���


�	V�t�	S�t�	X
�t��


�	X�t�	rho	V�t�	S�t��	Ksi	Ksl	K	K
	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t��	X
�t��


�	X�t�	rho	V�t�	S�t���	Ksl	K	K
	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t�	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t�	L�t��	Ksi	K	K
	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K
	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K
	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��



C� Perl Program for Parsing Model Equations �
�


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K
	Ke	Ki	mup	alphap���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	K�	Ke	K
���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	Kp	K
���

diff�S�t��t�	V�t�	S�t�	L�t��Sigma	S�t��	L�t��

Ff	sf	S�t�	L�t��	K�	Ke	K
	K	Kp	Ki���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	K�	Ke	K
	K���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	K���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	K
���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	K�	K
	K���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	K����
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K
	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K
	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	Kp	Ke	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K	K
	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	K
	Ke	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K	K
	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K	K
	Ke	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K	K
	Ke	Ki	mup	alphap���
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�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K	Ke	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K	Ke	Ki	mup	alphap���


�	V�t�	S�t��	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t��	L�t��	K	K
	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t��	X
�t��


�	X�t�	rho	V�t�	S�t���	Ksi	Ksl	K	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t��	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t��	L�t��	Ksi	K	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K
	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ke	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ke	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K
	Ke	Ki	mup	alphap�

�V�t�	X��t�	S�t��	L�t��V�t�	S�t��	X
�t�	L�t��	Ki	K	Ke	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	K	Ke	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	K
	Ke	K�	Ksi	mul�

�V�t�	X��t�	S�t�	L�t��V�t�	S�t�	X
�t�	L�t��	Ki	Kp	K	Ke	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ksi	mul�

�V�t�	X��t�	S�t�	L�t��V�t�	S�t�	X
�t�	L�t��	Ki	K	K
	Ke	K�	Ksi	mul�

�V�t�	X��t�	S�t��	L�t��V�t�	S�t��	X
�t�	L�t��	K	K
	Ke	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	K
	Ke	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	K
	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	K
	K�	Ksi	mul�

�V�t�	X��t�	S�t��	L�t��V�t�	S�t��	X
�t�	L�t��	Ki	Kp	K
	Ke	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	K	Ksi	mul�
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�V�t�	X��t�	S�t��	L�t��V�t�	S�t��	X
�t�	L�t��	Ki	Kp	Ke	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	Ke	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ke	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	Kp	Ke	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	Ke	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	Kp	K
	Ksi	mul���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K	K�	Ki	mup	alphap�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	K
	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	Kp	K	Ksi	mul�

�V�t�	X��t�	S�t��	L�t��V�t�	S�t��	X
�t�	L�t��	Ki	Kp	K
	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	K
	Ke	Ksi	mul�

�V�t�	X��t�	L�t��V�t�	X
�t�	L�t��	Ki	Kp	K	K
	Ke	K�	Ksi	mul�

�V�t�	X��t�	S�t�	L�t��V�t�	S�t�	X
�t�	L�t��	Ki	Kp	K
	Ke	K�	Ksi	mul���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	K
	Ke	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K
	Ke	m
��V�t�	X��t�	S�t���	L�t��

V�t�	S�t���	X
�t�	L�t��	Ki	K	Ke	Ksi	mul��V�t�	X��t�	S�t��	L�t��

V�t�	S�t��	X
�t�	L�t��	Ki	Kp	K	K
	Ksi	mul���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	K
	K�	m
�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	Kp	K�	Ksi	mul���

diff�S�t��t�	V�t�	S�t���Sigma	S�t����

Ff	sf	S�t���	Ksi	Ksl	Ki	K
	Ke	K����
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	Ki	Kp	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	Ki	K
	Ke	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	K
	Ke	K�	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	K
	Ke	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	Ki	K
	m
���
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diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki	Kp	K���
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K
	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K
	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	Ki	Kp	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	Ki	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	Ki	K
	m
�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	K	K
	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	K	K
	Ksi	mul���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	K
	Ki	mup	alphap�

��
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K
	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ke	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	Ki	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K�	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K
	Ke	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K
	Ke	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	K�	Ki	mup	alphap�

��
�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	Ki	mup	alphap�

��
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	mup	alphap���
�	V�t�	S�t���	X
�t��
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�	X�t�	rho	V�t�	S�t����	Ksl	Ke	Ki	mup	alphap���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ke	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	K
	K�	m
���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K	Ki	mup	alphap���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	Ki	K
	Ke	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	Kp	K
	Ke	m
���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	Ke	m
���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	Kp���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl���


�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K	K�	Ki	mup	alphap���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki	K���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksl	Ki	K���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksl	Ki	K	K
	K����diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	Ke	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	Ke	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	K	Ke���

diff�S�t��t�	V�t�	S�t��	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t��	L�t��	Ki	Kp	K
	Ke	K����diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksl	K	K
	Ke	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	K
	Ke	K����

diff�S�t��t�	V�t�	S�t�	L�t��Sigma	S�t��	L�t��

Ff	sf	S�t�	L�t��	Ksi	Ki	Kp	K	K
	K����diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ksi	K����

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	K	K
	Ke���diff�S�t��t�	V�t�	S�t���	L�t��
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Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ksi	Ke���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ke���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki	K	K
	Ke���diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	K	K
	Ke���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	Ke���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	K	Ke���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	K	Ke���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ke���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	K
���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	K	K
���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksl	Ki	K
���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksl	K	K
���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksi	Ksl	Ki	K����diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ksi	Ki	Kp���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	Kp���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki	K���
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	K
	K�	m
���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	K	Ke���

diff�S�t��t�	V�t�	S�t���Sigma	S�t����

Ff	sf	S�t���	Ksi	Ksl	Ki	Kp	Ke	K����diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksl	Ki���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	K	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	K	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	K	Ke	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ke	K����
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diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	Kp	K
���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki	K	K
���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	Kp	K	K
���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	K	K
���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki	Kp	K����diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	K
	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	K
	K����

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki	Kp	Ke���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksl	Ki	Kp	K���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksl	Ki	Kp	Ke���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	Kp	K���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	Kp	K	K
�

��diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki	Kp	K
	K����diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	Kp	K	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	Kp	K����

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki	K	K����diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksl	Ki	K	K����diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	Kp	K	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	K	K
	Ke���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki	K����diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	Kp	K	Ke���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	K	Ke���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	Kp	K	Ke�

��diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��
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Ff	sf	S�t���	L�t��	Ki	K
	Ke���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksl	Ki	K
	Ke���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	Kp	K
	Ke���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki	K	Ke���diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksl	K
	Ke���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	K	K
	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	K	K
	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	Kp	K
	K��

��diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksl	Ki	Kp	Ke	K����diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksl	K���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ki	Kp	Ke	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	K
���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	Ke���

diff�S�t��t�	V�t�	S�t��	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t��	L�t��	Ksi	Ki	K	K
	Ke���diff�S�t��t�	V�t�	S�t���

Sigma	S�t����Ff	sf	S�t���	Ksi	Ksl	Ki	K	K
	Ke���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	Ke���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	K	Ke���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksi	Ksl	K
���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ksi	K
���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki	K
���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksi	Ksl	Ki	K
���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ksi	K	K
���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki	K	Ke	K����diff�S�t��t�	V�t�	S�t����
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Sigma	S�t����Ff	sf	S�t����	Ksl	Ki	K	Ke	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksl	K
	K����

diff�S�t��t�	V�t�	S�t���Sigma	S�t����

Ff	sf	S�t���	Ksl	Ki	Kp	K
	Ke	K����diff�S�t��t�	V�t�	S�t��	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t��	L�t��	Ki	K	K
	Ke	K����

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki	Ke���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksl	Ki	K
	Ke	K����diff�S�t��t�	V�t�	S�t���

Sigma	S�t����Ff	sf	S�t���	Ksl	Ki	K	K
	Ke	K����


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	Ki	Kp	K
	Ke	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	Ki	Kp	Ke	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	K�	m
���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	K
	Ke���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K
	Ke	K�	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	Ki	K
	K�	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K
	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	K�	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	Ki	Ke	m
���
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K
	m
���
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	Kp	K
	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	Ki	Kp	K
	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	Ke	m
���
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	m
���
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	K�	m
���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	K	K����diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ksi	K
	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	K	K����



C� Perl Program for Parsing Model Equations ���

diff�S�t��t�	V�t�	L�t��Sigma	S�t�	L�t��

Ff	sf	L�t��	Ksi	Ki	Kp	K	K
	Ke	K����diff�S�t��t�	V�t�	S�t��	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t��	L�t��	Ksi	Ki	K	Ke	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	K	Ke	K��

��diff�S�t��t�	V�t�	S�t���Sigma	S�t����

Ff	sf	S�t���	Ksi	Ksl	Ki	K	Ke	K����diff�S�t��t�	V�t�	S�t�	L�t��

Sigma	S�t��	L�t��Ff	sf	S�t�	L�t��	Ksi	Ki	Kp	K	Ke	K����

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	Ke	K��

��diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki	Kp	K����diff�S�t��t�	V�t�	S�t���

Sigma	S�t����Ff	sf	S�t���	Ksi	Ksl	Ki	Kp	K	K����


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ki	Kp	K�	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksl	Ki	K�	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	K
	K�	m
���


�	V�t�	S�t��	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t��	L�t��	Ksi	Ki	Kp	K
	K�	m
���


�	V�t�	S�t��	X
�t��


�	X�t�	rho	V�t�	S�t���	Ksi	Ksl	Ki	Kp	K
	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	Ke	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ke	K�	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	Ke	K�	m
���


�	V�t�	S�t��	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t��	L�t��	Ksi	Ki	Kp	Ke	K�	m
���


�	V�t�	S�t��	X
�t��


�	X�t�	rho	V�t�	S�t���	Ksi	Ksl	Ki	Kp	Ke	K�	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K
	Ke	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksl	Ki	Kp	K�	m
���
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�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	K
	Ke	m
�

��
�	V�t�	S�t��	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t��	L�t��	Ksi	Ki	Kp	K
	Ke	m
���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ke	m
�

��
�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ke	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	Ke	m
���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	m
���


�	V�t�	S�t��	X
�t��


�	X�t�	rho	V�t�	S�t���	Ksl	Ki	Kp	K
	Ke	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	Kp	Ke	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K
	Ke	K�	m
�

��
�	V�t�	S�t�	X
�t��


�	X�t�	rho	V�t�	S�t��	Ksi	Ksl	Ki	Kp	K
	Ke	K�	m
���


�	V�t�	S�t��	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t��	L�t��	Ksi	Ki	K
	Ke	K�	m
���


�	V�t�	S�t��	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t��	L�t��	Ki	Kp	K
	Ke	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	Kp	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	m
���
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	K
	Ke	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K
	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	K
	m
���
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	K
	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	Kp	K
	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	Kp	K
	m
�



C� Perl Program for Parsing Model Equations ���

��
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	Kp	Ke	m
���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K
	m
�

��
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K
	Ke	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K
	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K
	Ke	K�	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K
	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	K
	K�	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	Kp	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	K�	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	Kp	K�	m
�

��
�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ki	Ke	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	Kp	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��
�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	K�	m
�

��
�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	Ksi	Ki	K�	m
���
�	V�t�	S�t��	X
�t��


�	X�t�	rho	V�t�	S�t���	Ksi	Ksl	Ki	Kp	K
	Ke	m
���


�	V�t�	S�t��	X
�t��


�	X�t�	rho	V�t�	S�t���	Ksi	Ksl	Ki	K
	Ke	K�	m
���


�	V�t�	S�t���	X
�t��
�	X�t�	rho	V�t�	S�t����	Ksi	Ksl	Ke	K�	m
���


�	V�t�	S�t�	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t�	L�t��	Ksi	Ki	Kp	K
	Ke	K�	m
���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K	K
	Ki	mup	alphap�
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�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	K	Ksi	mul���


�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t��	K	K�	Ki	mup	alphap�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ke	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	K
	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	Ki	Ksi	mul�

�V�t�	X��t�	S�t�	L�t��V�t�	S�t�	X
�t�	L�t��	Ki	Kp	K	K
	K�	Ksi	mul���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	Ki	K	Ke�

��diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ki	K
	Ke	K����diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	K	K
���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	K���diff�S�t��t�	V�t�	S�t����Sigma	S�t����

Ff	sf	S�t����	Ksi	Ksl	Ki���diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��Ff	sf	S�t���	L�t��	Ksi	Ki	Ke���

diff�S�t��t�	V�t�	S�t����Sigma	S�t����Ff	sf	S�t����	Ksi	Ksl	K���

diff�S�t��t�	V�t�	S�t��Sigma	S�t���

Ff	sf	S�t��	Ksi	Ksl	Ki	Kp	K
	Ke	K����diff�S�t��t�	V�t�	S�t�	L�t��

Sigma	S�t��	L�t��Ff	sf	S�t�	L�t��	Ksi	Ki	K	K
	Ke	K��

�V�t�	X��t�	S�t��	L�t��V�t�	S�t��	X
�t�	L�t��	Ki	K	K
	K�	Ksi	mul�

�V�t�	X��t�	S�t���	L�t��V�t�	S�t���	X
�t�	L�t��	K	K
	K�	Ksi	mul�

�V�t�	X��t�	S�t��	L�t��V�t�	S�t��	X
�t�	L�t��	Ki	Kp	K	K�	Ksi	mul���

diff�S�t��t�	V�t�	S�t���	L�t��Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t��	Ksi	Ki��V�t�	X��t�	S�t�	L�t��

V�t�	S�t�	X
�t�	L�t��	Ki	Kp	K	K
	Ke	Ksi	mul��V�t�	X��t�	S�t���	L�t��

V�t�	S�t���	X
�t�	L�t��	K	K�	Ksi	mul��V�t�	X��t�	S�t��	L�t��

V�t�	S�t��	X
�t�	L�t��	Ki	K	K
	Ke	Ksi	mul��V�t�	X��t�	S�t���	L�t��

V�t�	S�t���	X
�t�	L�t��	K	K
	Ke	Ksi	mul��V�t�	X��t�	S�t���	L�t��

V�t�	S�t���	X
�t�	L�t��	Ki	K	K�	Ksi	mul��V�t�	X��t�	S�t��	L�t��
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V�t�	S�t��	X
�t�	L�t��	Ki	Kp	K	Ke	Ksi	mul

C�� Output from the Perl program

The corresponding LATEX output from the Perl program was used to produce

the following


Sexpr ��

�
 L�t�	S�t���	V�t�	diff�S�t��t�

�
 L�t�	S�t���	Sigma

�m
 �
�	V�t�	S�t���	X
�t�	L�t��


�	X�t�	rho	V�t�	S�t���	L�t�

�Ksl �diff�S�t��t�	V�t�	S�t����

Sigma	S�t����Ff	sf	S�t���

�Ff	sf L�t�	S�t���

�Ksl	m
 �
�	V�t�	S�t���	X
�t��


�	X�t�	rho	V�t�	S�t���

�Ksi	mul V�t�	X��t�	S�t���	L�t��

V�t�	S�t���	X
�t�	L�t�

�alpha�	mu� L�t�	S�t���	V�t�	X
�t�

�alphae	mue�m� L�t�	S�t���	V�t�	X��t�

�Ksl	alpha�	mu� S�t���	V�t�	X
�t�

�K��K
�K�Ke�Ki�Ksi �diff�S�t��t�	V�t�	S�t���	L�t��

Sigma	S�t���	L�t��

Ff	sf	S�t���	L�t�

�K�	K
	K	Ke	Ki	Kp	Ksi �diff�S�t��t�	V�t�	L�t��

Sigma	S�t�	L�t��Ff	sf	L�t�

�Ksl	alphae	mue�Ksl	m� S�t���	V�t�	X��t�

�K�	K
	K	Ke	Ki	Kp	Ksi	Ksl �diff�S�t��t�	V�t��Sigma	S�t��

Ff	sf
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�K�	K
	K	Ke	Ki	Kp	Ksi	mul V�t�	X��t�	L�t��V�t�	X
�t�	L�t�

�K
	K	Ke	Ki	Kp	Ksi	alpha�	mu� L�t�	S�t�	V�t�	X
�t�

�K
	K	Ke	Ki	Kp	Ksi	Ksl	alpha�	mu� S�t�	V�t�	X
�t�

�K�	Ksl�K
	Ksl�K	Ksl�Ke	Ksl�Ki	Ksl� �diff�S�t��t�	V�t�	S�t����

Ksi	Ksl Sigma	S�t����Ff	sf	S�t���

�K�	m
�K
	m
�Ke	m
�Ki	alphap	mup� �
�	V�t�	S�t���	X
�t�	L�t��

Ki	m
�Ksi	m
 
�	X�t�	rho	V�t�	S�t���	L�t�

�K�	K
	K	Ke	Ki	Ksi	alphap	mup� �
�	V�t�	S�t�	X
�t�	L�t��

K�	K
	Ke	Ki	Kp	Ksi	m
 
�	X�t�	rho	V�t�	S�t�	L�t�

�K�	K
	K	Ki	Kp	Ksi	alphae	mue� L�t�	S�t�	V�t�	X��t�

K�	K	Ke	Ki	Kp	Ksi	m�

�K�	Ksi	mul�K
	Ksi	mul�K	Ksi	mul� V�t�	X��t�	S�t���	L�t��

Ke	Ksi	mul�Ki	Ksi	mul V�t�	S�t���	X
�t�	L�t�

�K�	K
	K	Ke	Ki	Ksi	Ksl	alphap	mup� �
�	V�t�	S�t�	X
�t��

K�	K
	Ke	Ki	Kp	Ksi	Ksl	m
 
�	X�t�	rho	V�t�	S�t�

�K�	K
	K	Ki	Kp	Ksi	Ksl	alphae	mue� S�t�	V�t�	X��t�

K�	K	Ke	Ki	Kp	Ksi	Ksl	m�

�K�	Ksl	m
�K
	Ksl	m
�Ke	Ksl	m
� �
�	V�t�	S�t���	X
�t��

Ki	Ksl	alphap	mup�Ki	Ksl	m
� 
�	X�t�	rho	V�t�	S�t���

Ksi	Ksl	m


�K
	alpha�	mu��K	alpha�	mu�� L�t�	S�t���	V�t�	X
�t�

Ke	alpha�	mu��Ki	alpha�	mu��

Ksi	alpha�	mu�

�K
	Ksl	alpha�	mu��K	Ksl	alpha�	mu�� S�t���	V�t�	X
�t�

Ke	Ksl	alpha�	mu��

Ki	Ksl	alpha�	mu��

Ksi	Ksl	alpha�	mu�

�K�	K
�K�	K�K�	Ke�K�	Ki�K�	Ksi� �diff�S�t��t�	V�t�	S�t���	L�t��

K
	K�K
	Ke�K
	Ki�K
	Ksi�K	Ke� Sigma	S�t���	L�t��

K	Ki�K	Ksi�Ke	Ki�Ke	Ksi�Ki	Kp� Ff	sf	S�t���	L�t�
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Ki	Ksi

�K�	alphae	mue�K�	m��K
	alphae	mue� L�t�	S�t���	V�t�	X��t�

K	alphae	mue�K	m��Ke	m��

Ki	alphae	mue�Ki	m��

Ksi	alphae	mue�Ksi	m�

�K�	K
	K	Ke	Ki	Kp� �diff�S�t��t�	V�t�	S�t�	L�t��

K�	K
	K	Ke	Ki	Ksi� Sigma	S�t��	L�t��Ff	sf	S�t�	L�t�

K�	K
	K	Ki	Kp	Ksi�

K�	K
	Ke	Ki	Kp	Ksi�

K�	K	Ke	Ki	Kp	Ksi�

K
	K	Ke	Ki	Kp	Ksi

�K�	K
	K	Ke	Ki	Ksi	mul� V�t�	X��t�	S�t�	L�t��

K�	K
	K	Ki	Kp	Ksi	mul� V�t�	S�t�	X
�t�	L�t�

K�	K
	Ke	Ki	Kp	Ksi	mul�

K�	K	Ke	Ki	Kp	Ksi	mul�

K
	K	Ke	Ki	Kp	Ksi	mul

�K
	K	Ke	Ki	Kp	alpha�	mu�� L�t�	S�t��	V�t�	X
�t�

K
	K	Ke	Ki	Ksi	alpha�	mu��

K
	K	Ki	Kp	Ksi	alpha�	mu��

K
	Ke	Ki	Kp	Ksi	alpha�	mu��

K	Ke	Ki	Kp	Ksi	alpha�	mu�

�K�	K
	K	Ke	Ki	Kp	Ksl� �diff�S�t��t�	V�t�	S�t��

K�	K
	K	Ke	Ki	Ksi	Ksl� Sigma	S�t���Ff	sf	S�t�

K�	K
	K	Ki	Kp	Ksi	Ksl�

K�	K
	Ke	Ki	Kp	Ksi	Ksl�

K�	K	Ke	Ki	Kp	Ksi	Ksl�

K
	K	Ke	Ki	Kp	Ksi	Ksl

�K�	Ksl	alphae	mue�K�	Ksl	m�� S�t���	V�t�	X��t�

K
	Ksl	alphae	mue�

K	Ksl	alphae	mue�K	Ksl	m��



C� Perl Program for Parsing Model Equations ��	

Ke	Ksl	m��Ki	Ksl	alphae	mue�

Ki	Ksl	m��Ksi	Ksl	alphae	mue�

Ksi	Ksl	m�

�K
	K	Ke	Ki	Kp	Ksl	alpha�	mu�� S�t��	V�t�	X
�t�

K
	K	Ke	Ki	Ksi	Ksl	alpha�	mu��

K
	K	Ki	Kp	Ksi	Ksl	alpha�	mu��

K
	Ke	Ki	Kp	Ksi	Ksl	alpha�	mu��

K	Ke	Ki	Kp	Ksi	Ksl	alpha�	mu�

�K�	K
	Ksi	mul�K�	K	Ksi	mul� V�t�	X��t�	S�t���	L�t��

K�	Ke	Ksi	mul�K�	Ki	Ksi	mul� V�t�	S�t���	X
�t�	L�t�

K
	K	Ksi	mul�K
	Ke	Ksi	mul�

K
	Ki	Ksi	mul�K	Ke	Ksi	mul�

K	Ki	Ksi	mul�Ke	Ki	Ksi	mul�

Ki	Kp	Ksi	mul

�K�	K
	Ksl�K�	K	Ksl�K�	Ke	Ksl� �diff�S�t��t�	V�t�	S�t����

K�	Ki	Ksl�K�	Ksi	Ksl�K
	K	Ksl� Sigma	S�t����Ff	sf	S�t���

K
	Ke	Ksl�K
	Ki	Ksl�K
	Ksi	Ksl�

K	Ke	Ksl�K	Ki	Ksl�K	Ksi	Ksl�

Ke	Ki	Ksl�Ke	Ksi	Ksl�Ki	Kp	Ksl�

Ki	Ksi	Ksl

�K�	K
	m
�K�	Ke	m
�K�	Ki	alphap	mup� �
�	V�t�	S�t���	X
�t�	L�t��

K�	Ki	m
�K�	Ksi	m
�K
	Ke	m
� 
�	X�t�	rho	V�t�	S�t���	L�t�

K
	Ki	alphap	mup�K
	Ki	m
�

K
	Ksi	m
�K	Ki	alphap	mup�

Ke	Ki	alphap	mup�Ke	Ki	m
�

Ke	Ksi	m
�Ki	Kp	m
�

Ki	Ksi	alphap	mup�Ki	Ksi	m


�K
	K	alpha�	mu��K
	Ke	alpha�	mu�� L�t�	S�t���	V�t�	X
�t�

K
	Ki	alpha�	mu��

K
	Ksi	alpha�	mu��
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K	Ke	alpha�	mu��

K	Ki	alpha�	mu��

K	Ksi	alpha�	mu��

Ke	Ki	alpha�	mu��

Ke	Ksi	alpha�	mu��

Ki	Kp	alpha�	mu��

Ki	Ksi	alpha�	mu�

�K�	K
	K	Ke	Ksi	mul� V�t�	X��t�	S�t��	L�t��

K�	K
	K	Ki	Ksi	mul� V�t�	S�t��	X
�t�	L�t�

K�	K
	Ke	Ki	Ksi	mul�

K�	K
	Ki	Kp	Ksi	mul�

K�	K	Ke	Ki	Ksi	mul�

K�	K	Ki	Kp	Ksi	mul�

K�	Ke	Ki	Kp	Ksi	mul�

K
	K	Ke	Ki	Ksi	mul�

K
	K	Ki	Kp	Ksi	mul�

K
	Ke	Ki	Kp	Ksi	mul�

K	Ke	Ki	Kp	Ksi	mul

�K�	K
	K	Ke	Ki	alphap	mup� �
�	V�t�	S�t��	X
�t�	L�t��

K�	K
	K	Ki	Ksi	alphap	mup� 
�	X�t�	rho	V�t�	S�t��	L�t�

K�	K
	Ke	Ki	Kp	m
�

K�	K
	Ke	Ki	Ksi	alphap	mup�

K�	K
	Ke	Ki	Ksi	m
�

K�	K
	Ki	Kp	Ksi	m
�

K�	K	Ke	Ki	Ksi	alphap	mup�

K�	Ke	Ki	Kp	Ksi	m
�

K
	K	Ke	Ki	Ksi	alphap	mup�

K
	Ke	Ki	Kp	Ksi	m


�K�	K
	K	Ki	Kp	alphae	mue� L�t�	S�t��	V�t�	X��t�

K�	K
	K	Ki	Ksi	alphae	mue�



C� Perl Program for Parsing Model Equations ���

K�	K
	Ki	Kp	Ksi	alphae	mue�

K�	K	Ke	Ki	Kp	m��

K�	K	Ke	Ki	Ksi	m��

K�	K	Ki	Kp	Ksi	alphae	mue�

K�	K	Ki	Kp	Ksi	m��

K�	Ke	Ki	Kp	Ksi	m��

K
	K	Ki	Kp	Ksi	alphae	mue�

K	Ke	Ki	Kp	Ksi	m�

�K
	K	Ksl	alpha�	mu�� S�t���	V�t�	X
�t�

K
	Ke	Ksl	alpha�	mu��

K
	Ki	Ksl	alpha�	mu��

K
	Ksi	Ksl	alpha�	mu��

K	Ke	Ksl	alpha�	mu��

K	Ki	Ksl	alpha�	mu��

K	Ksi	Ksl	alpha�	mu��

Ke	Ki	Ksl	alpha�	mu��

Ke	Ksi	Ksl	alpha�	mu��

Ki	Kp	Ksl	alpha�	mu��

Ki	Ksi	Ksl	alpha�	mu�

�K�	K
	K�K�	K
	Ke�K�	K
	Ki� �diff�S�t��t�	V�t�	S�t���	L�t��

K�	K
	Ksi�K�	K	Ke�K�	K	Ki� Sigma	S�t���	L�t��

K�	K	Ksi�K�	Ke	Ki�K�	Ke	Ksi� Ff	sf	S�t���	L�t�

K�	Ki	Kp�K�	Ki	Ksi�K
	K	Ke�

K
	K	Ki�K
	K	Ksi�K
	Ke	Ki�

K
	Ke	Ksi�K
	Ki	Kp�K
	Ki	Ksi�

K	Ke	Ki�K	Ke	Ksi�K	Ki	Kp�

K	Ki	Ksi�Ke	Ki	Kp�Ke	Ki	Ksi�

Ki	Kp	Ksi

�K�	K
	K	Ksi	mul�K�	K
	Ke	Ksi	mul� V�t�	X��t�	S�t���	L�t��

K�	K
	Ki	Ksi	mul� V�t�	S�t���	X
�t�	L�t�
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K�	K	Ke	Ksi	mul�

K�	K	Ki	Ksi	mul�

K�	Ke	Ki	Ksi	mul�

K�	Ki	Kp	Ksi	mul�

K
	K	Ke	Ksi	mul�

K
	K	Ki	Ksi	mul�

K
	Ke	Ki	Ksi	mul�

K
	Ki	Kp	Ksi	mul�

K	Ke	Ki	Ksi	mul�

K	Ki	Kp	Ksi	mul�

Ke	Ki	Kp	Ksi	mul

�K�	K
	K	Ke	Ki�K�	K
	K	Ke	Ksi� �diff�S�t��t�	V�t�	S�t��	L�t��

K�	K
	K	Ki	Kp�K�	K
	K	Ki	Ksi� Sigma	S�t���	L�t��

K�	K
	Ke	Ki	Kp�K�	K
	Ke	Ki	Ksi� Ff	sf	S�t��	L�t�

K�	K
	Ki	Kp	Ksi�K�	K	Ke	Ki	Kp�

K�	K	Ke	Ki	Ksi�K�	K	Ki	Kp	Ksi�

K�	Ke	Ki	Kp	Ksi�K
	K	Ke	Ki	Kp�

K
	K	Ke	Ki	Ksi�K
	K	Ki	Kp	Ksi�

K
	Ke	Ki	Kp	Ksi�K	Ke	Ki	Kp	Ksi

�K�	K
	Ksl	m
�K�	Ke	Ksl	m
� �
�	V�t�	S�t���	X
�t��

K�	Ki	Ksl	alphap	mup� 
�	X�t�	rho	V�t�	S�t���

K�	Ki	Ksl	m
�K�	Ksi	Ksl	m
�

K
	Ke	Ksl	m
�

K
	Ki	Ksl	alphap	mup�

K
	Ki	Ksl	m
�K
	Ksi	Ksl	m
�

K	Ki	Ksl	alphap	mup�

Ke	Ki	Ksl	alphap	mup�

Ke	Ki	Ksl	m
�Ke	Ksi	Ksl	m
�

Ki	Kp	Ksl	m
�

Ki	Ksi	Ksl	alphap	mup�
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Ki	Ksi	Ksl	m


�K
	K	Ke	Ki	alpha�	mu�� L�t�	S�t���	V�t�	X
�t�

K
	K	Ke	Ksi	alpha�	mu��

K
	K	Ki	Kp	alpha�	mu��

K
	K	Ki	Ksi	alpha�	mu��

K
	Ke	Ki	Kp	alpha�	mu��

K
	Ke	Ki	Ksi	alpha�	mu��

K
	Ki	Kp	Ksi	alpha�	mu��

K	Ke	Ki	Kp	alpha�	mu��

K	Ke	Ki	Ksi	alpha�	mu��

K	Ki	Kp	Ksi	alpha�	mu��

Ke	Ki	Kp	Ksi	alpha�	mu�

�K�	K
	K	Ke	Ki	Ksl	alphap	mup� �
�	V�t�	S�t��	X
�t��

K�	K
	K	Ki	Ksi	Ksl	alphap	mup� 
�	X�t�	rho	V�t�	S�t��

K�	K
	Ke	Ki	Kp	Ksl	m
�

K�	K
	Ke	Ki	Ksi	Ksl	alphap	mup�

K�	K
	Ke	Ki	Ksi	Ksl	m
�

K�	K
	Ki	Kp	Ksi	Ksl	m
�

K�	K	Ke	Ki	Ksi	Ksl	alphap	mup�

K�	Ke	Ki	Kp	Ksi	Ksl	m
�

K
	K	Ke	Ki	Ksi	Ksl	alphap	mup�

K
	Ke	Ki	Kp	Ksi	Ksl	m


�K�	K
	K	Ki	Kp	Ksl	alphae	mue� S�t��	V�t�	X��t�

K�	K
	K	Ki	Ksi	Ksl	alphae	mue�

K�	K
	Ki	Kp	Ksi	Ksl	alphae	mue�

K�	K	Ke	Ki	Kp	Ksl	m��

K�	K	Ke	Ki	Ksi	Ksl	m��

K�	K	Ki	Kp	Ksi	Ksl	alphae	mue�

K�	K	Ki	Kp	Ksi	Ksl	m��

K�	Ke	Ki	Kp	Ksi	Ksl	m��
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K
	K	Ki	Kp	Ksi	Ksl	alphae	mue�

K	Ke	Ki	Kp	Ksi	Ksl	m�

�K
	K	Ke	alpha�	mu�� L�t�	S�t���	V�t�	X
�t�

K
	K	Ki	alpha�	mu��

K
	K	Ksi	alpha�	mu��

K
	Ke	Ki	alpha�	mu��

K
	Ke	Ksi	alpha�	mu��

K
	Ki	Kp	alpha�	mu��

K
	Ki	Ksi	alpha�	mu��

K	Ke	Ki	alpha�	mu��

K	Ke	Ksi	alpha�	mu��

K	Ki	Kp	alpha�	mu��

K	Ki	Ksi	alpha�	mu��

Ke	Ki	Kp	alpha�	mu��

Ke	Ki	Ksi	alpha�	mu��

Ki	Kp	Ksi	alpha�	mu�

�K�	K
	alphae	mue�K�	K	alphae	mue� L�t�	S�t���	V�t�	X��t�

K�	K	m��K�	Ke	m��

K�	Ki	alphae	mue�K�	Ki	m��

K�	Ksi	alphae	mue�K�	Ksi	m��

K
	K	alphae	mue�

K
	Ki	alphae	mue�

K
	Ksi	alphae	mue�K	Ke	m��

K	Ki	alphae	mue�K	Ki	m��

K	Ksi	alphae	mue�K	Ksi	m��

Ke	Ki	m��Ke	Ksi	m��

Ki	Kp	alphae	mue�Ki	Kp	m��

Ki	Ksi	alphae	mue�Ki	Ksi	m�

�K
	K	Ke	Ki	Ksl	alpha�	mu�� S�t���	V�t�	X
�t�

K
	K	Ke	Ksi	Ksl	alpha�	mu��
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K
	K	Ki	Kp	Ksl	alpha�	mu��

K
	K	Ki	Ksi	Ksl	alpha�	mu��

K
	Ke	Ki	Kp	Ksl	alpha�	mu��

K
	Ke	Ki	Ksi	Ksl	alpha�	mu��

K
	Ki	Kp	Ksi	Ksl	alpha�	mu��

K	Ke	Ki	Kp	Ksl	alpha�	mu��

K	Ke	Ki	Ksi	Ksl	alpha�	mu��

K	Ki	Kp	Ksi	Ksl	alpha�	mu��

Ke	Ki	Kp	Ksi	Ksl	alpha�	mu�

�K�	K
	K	Ke�K�	K
	K	Ki� �diff�S�t��t�	V�t�	S�t���	L�t��

K�	K
	K	Ksi�K�	K
	Ke	Ki� Sigma	S�t���	L�t��

K�	K
	Ke	Ksi�K�	K
	Ki	Kp� Ff	sf	S�t���	L�t�

K�	K
	Ki	Ksi�K�	K	Ke	Ki�

K�	K	Ke	Ksi�K�	K	Ki	Kp�

K�	K	Ki	Ksi�K�	Ke	Ki	Kp�

K�	Ke	Ki	Ksi�K�	Ki	Kp	Ksi�

K
	K	Ke	Ki�K
	K	Ke	Ksi�

K
	K	Ki	Kp�K
	K	Ki	Ksi�

K
	Ke	Ki	Kp�K
	Ke	Ki	Ksi�

K
	Ki	Kp	Ksi�K	Ke	Ki	Kp�

K	Ke	Ki	Ksi�K	Ki	Kp	Ksi�

Ke	Ki	Kp	Ksi

�K�	K
	K	Ke	Ki	Ksl� �diff�S�t��t�	V�t�	S�t���

K�	K
	K	Ke	Ksi	Ksl� Sigma	S�t����Ff	sf	S�t��

K�	K
	K	Ki	Kp	Ksl�

K�	K
	K	Ki	Ksi	Ksl�

K�	K
	Ke	Ki	Kp	Ksl�

K�	K
	Ke	Ki	Ksi	Ksl�

K�	K
	Ki	Kp	Ksi	Ksl�

K�	K	Ke	Ki	Kp	Ksl�
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K�	K	Ke	Ki	Ksi	Ksl�

K�	K	Ki	Kp	Ksi	Ksl�

K�	Ke	Ki	Kp	Ksi	Ksl�

K
	K	Ke	Ki	Kp	Ksl�

K
	K	Ke	Ki	Ksi	Ksl�

K
	K	Ki	Kp	Ksi	Ksl�

K
	Ke	Ki	Kp	Ksi	Ksl�

K	Ke	Ki	Kp	Ksi	Ksl

�K�	K
	K	Ksl�K�	K
	Ke	Ksl� �diff�S�t��t�	V�t�	S�t����

K�	K
	Ki	Ksl�K�	K
	Ksi	Ksl� Sigma	S�t����Ff	sf	S�t���

K�	K	Ke	Ksl�K�	K	Ki	Ksl�

K�	K	Ksi	Ksl�K�	Ke	Ki	Ksl�

K�	Ke	Ksi	Ksl�K�	Ki	Kp	Ksl�

K�	Ki	Ksi	Ksl�K
	K	Ke	Ksl�

K
	K	Ki	Ksl�K
	K	Ksi	Ksl�

K
	Ke	Ki	Ksl�K
	Ke	Ksi	Ksl�

K
	Ki	Kp	Ksl�K
	Ki	Ksi	Ksl�

K	Ke	Ki	Ksl�K	Ke	Ksi	Ksl�

K	Ki	Kp	Ksl�K	Ki	Ksi	Ksl�

Ke	Ki	Kp	Ksl�Ke	Ki	Ksi	Ksl�

Ki	Kp	Ksi	Ksl

�K
	K	Ke	Ksl	alpha�	mu�� S�t���	V�t�	X
�t�

K
	K	Ki	Ksl	alpha�	mu��

K
	K	Ksi	Ksl	alpha�	mu��

K
	Ke	Ki	Ksl	alpha�	mu��

K
	Ke	Ksi	Ksl	alpha�	mu��

K
	Ki	Kp	Ksl	alpha�	mu��

K
	Ki	Ksi	Ksl	alpha�	mu��

K	Ke	Ki	Ksl	alpha�	mu��

K	Ke	Ksi	Ksl	alpha�	mu��
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K	Ki	Kp	Ksl	alpha�	mu��

K	Ki	Ksi	Ksl	alpha�	mu��

Ke	Ki	Kp	Ksl	alpha�	mu��

Ke	Ki	Ksi	Ksl	alpha�	mu��

Ki	Kp	Ksi	Ksl	alpha�	mu�

�K�	K
	Ke	m
�K�	K
	Ki	alphap	mup� �
�	V�t�	S�t���	X
�t�	L�t��

K�	K
	Ki	m
�K�	K
	Ksi	m
� 
�	X�t�	rho	V�t�	S�t���	L�t�

K�	K	Ki	alphap	mup�

K�	Ke	Ki	alphap	mup�K�	Ke	Ki	m
�

K�	Ke	Ksi	m
�K�	Ki	Kp	m
�

K�	Ki	Ksi	alphap	mup�

K�	Ki	Ksi	m
�

K
	K	Ki	alphap	mup�

K
	Ke	Ki	alphap	mup�K
	Ke	Ki	m
�

K
	Ke	Ksi	m
�K
	Ki	Kp	m
�

K
	Ki	Ksi	alphap	mup�

K
	Ki	Ksi	m
�

K	Ke	Ki	alphap	mup�

K	Ki	Ksi	alphap	mup�

Ke	Ki	Kp	m
�

Ke	Ki	Ksi	alphap	mup�

Ke	Ki	Ksi	m
�Ki	Kp	Ksi	m


�K�	K
	Ksl	alphae	mue� S�t���	V�t�	X��t�

K�	K	Ksl	alphae	mue�

K�	K	Ksl	m��K�	Ke	Ksl	m��

K�	Ki	Ksl	alphae	mue�

K�	Ki	Ksl	m��

K�	Ksi	Ksl	alphae	mue�

K�	Ksi	Ksl	m��

K
	K	Ksl	alphae	mue�
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K
	Ki	Ksl	alphae	mue�

K
	Ksi	Ksl	alphae	mue�

K	Ke	Ksl	m��

K	Ki	Ksl	alphae	mue�

K	Ki	Ksl	m��

K	Ksi	Ksl	alphae	mue�

K	Ksi	Ksl	m��Ke	Ki	Ksl	m��

Ke	Ksi	Ksl	m��

Ki	Kp	Ksl	alphae	mue�

Ki	Kp	Ksl	m��

Ki	Ksi	Ksl	alphae	mue�

Ki	Ksi	Ksl	m�

�K�	K
	K	Ki	alphap	mup� �
�	V�t�	S�t���	X
�t�	L�t��

K�	K
	Ke	Ki	alphap	mup� 
�	X�t�	rho	V�t�	S�t���	L�t�

K�	K
	Ke	Ki	m
�K�	K
	Ke	Ksi	m
�

K�	K
	Ki	Kp	m
�

K�	K
	Ki	Ksi	alphap	mup�

K�	K
	Ki	Ksi	m
�

K�	K	Ke	Ki	alphap	mup�

K�	K	Ki	Ksi	alphap	mup�

K�	Ke	Ki	Kp	m
�

K�	Ke	Ki	Ksi	alphap	mup�

K�	Ke	Ki	Ksi	m
�K�	Ki	Kp	Ksi	m
�

K
	K	Ke	Ki	alphap	mup�

K
	K	Ki	Ksi	alphap	mup�

K
	Ke	Ki	Kp	m
�

K
	Ke	Ki	Ksi	alphap	mup�

K
	Ke	Ki	Ksi	m
�K
	Ki	Kp	Ksi	m
�

K	Ke	Ki	Ksi	alphap	mup�

Ke	Ki	Kp	Ksi	m
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�K�	K
	K	Ke	Ksl�K�	K
	K	Ki	Ksl� �diff�S�t��t�	V�t�	S�t����

K�	K
	K	Ksi	Ksl� Sigma	S�t����Ff	sf	S�t���

K�	K
	Ke	Ki	Ksl�

K�	K
	Ke	Ksi	Ksl�

K�	K
	Ki	Kp	Ksl�

K�	K
	Ki	Ksi	Ksl�

K�	K	Ke	Ki	Ksl�

K�	K	Ke	Ksi	Ksl�

K�	K	Ki	Kp	Ksl�

K�	K	Ki	Ksi	Ksl�

K�	Ke	Ki	Kp	Ksl�

K�	Ke	Ki	Ksi	Ksl�

K�	Ki	Kp	Ksi	Ksl�

K
	K	Ke	Ki	Ksl�

K
	K	Ke	Ksi	Ksl�

K
	K	Ki	Kp	Ksl�

K
	K	Ki	Ksi	Ksl�

K
	Ke	Ki	Kp	Ksl�

K
	Ke	Ki	Ksi	Ksl�

K
	Ki	Kp	Ksi	Ksl�

K	Ke	Ki	Kp	Ksl�

K	Ke	Ki	Ksi	Ksl�

K	Ki	Kp	Ksi	Ksl�

Ke	Ki	Kp	Ksi	Ksl

�K�	K
	K	Ki	alphae	mue� L�t�	S�t���	V�t�	X��t�

K�	K
	K	Ksi	alphae	mue�

K�	K
	Ki	Kp	alphae	mue�

K�	K
	Ki	Ksi	alphae	mue�

K�	K	Ke	Ki	m��K�	K	Ke	Ksi	m��

K�	K	Ki	Kp	alphae	mue�
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K�	K	Ki	Kp	m��

K�	K	Ki	Ksi	alphae	mue�

K�	K	Ki	Ksi	m��K�	Ke	Ki	Kp	m��

K�	Ke	Ki	Ksi	m��

K�	Ki	Kp	Ksi	alphae	mue�

K�	Ki	Kp	Ksi	m��

K
	K	Ki	Kp	alphae	mue�

K
	K	Ki	Ksi	alphae	mue�

K
	Ki	Kp	Ksi	alphae	mue�

K	Ke	Ki	Kp	m��K	Ke	Ki	Ksi	m��

K	Ki	Kp	Ksi	alphae	mue�

K	Ki	Kp	Ksi	m��Ke	Ki	Kp	Ksi	m�

�K�	K
	K	alphae	mue� L�t�	S�t���	V�t�	X��t�

K�	K
	Ki	alphae	mue�

K�	K
	Ksi	alphae	mue�

K�	K	Ke	m��K�	K	Ki	alphae	mue�

K�	K	Ki	m��

K�	K	Ksi	alphae	mue�

K�	K	Ksi	m��K�	Ke	Ki	m��

K�	Ke	Ksi	m��

K�	Ki	Kp	alphae	mue�K�	Ki	Kp	m��

K�	Ki	Ksi	alphae	mue�

K�	Ki	Ksi	m��

K
	K	Ki	alphae	mue�

K
	K	Ksi	alphae	mue�

K
	Ki	Kp	alphae	mue�

K
	Ki	Ksi	alphae	mue�

K	Ke	Ki	m��K	Ke	Ksi	m��

K	Ki	Kp	alphae	mue�K	Ki	Kp	m��

K	Ki	Ksi	alphae	mue�



C� Perl Program for Parsing Model Equations ���

K	Ki	Ksi	m��Ke	Ki	Kp	m��

Ke	Ki	Ksi	m��

Ki	Kp	Ksi	alphae	mue�

Ki	Kp	Ksi	m�

�K�	K
	Ke	Ksl	m
� �
�	V�t�	S�t���	X
�t��

K�	K
	Ki	Ksl	alphap	mup� 
�	X�t�	rho	V�t�	S�t���

K�	K
	Ki	Ksl	m
�

K�	K
	Ksi	Ksl	m
�

K�	K	Ki	Ksl	alphap	mup�

K�	Ke	Ki	Ksl	alphap	mup�

K�	Ke	Ki	Ksl	m
�

K�	Ke	Ksi	Ksl	m
�

K�	Ki	Kp	Ksl	m
�

K�	Ki	Ksi	Ksl	alphap	mup�

K�	Ki	Ksi	Ksl	m
�

K
	K	Ki	Ksl	alphap	mup�

K
	Ke	Ki	Ksl	alphap	mup�

K
	Ke	Ki	Ksl	m
�

K
	Ke	Ksi	Ksl	m
�

K
	Ki	Kp	Ksl	m
�

K
	Ki	Ksi	Ksl	alphap	mup�

K
	Ki	Ksi	Ksl	m
�

K	Ke	Ki	Ksl	alphap	mup�

K	Ki	Ksi	Ksl	alphap	mup�

Ke	Ki	Kp	Ksl	m
�

Ke	Ki	Ksi	Ksl	alphap	mup�

Ke	Ki	Ksi	Ksl	m
�

Ki	Kp	Ksi	Ksl	m


�K�	K
	K	Ki	Ksl	alphap	mup� �
�	V�t�	S�t���	X
�t��

K�	K
	Ke	Ki	Ksl	alphap	mup� 
�	X�t�	rho	V�t�	S�t���
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K�	K
	Ke	Ki	Ksl	m
�

K�	K
	Ke	Ksi	Ksl	m
�

K�	K
	Ki	Kp	Ksl	m
�

K�	K
	Ki	Ksi	Ksl	alphap	mup�

K�	K
	Ki	Ksi	Ksl	m
�

K�	K	Ke	Ki	Ksl	alphap	mup�

K�	K	Ki	Ksi	Ksl	alphap	mup�

K�	Ke	Ki	Kp	Ksl	m
�

K�	Ke	Ki	Ksi	Ksl	alphap	mup�

K�	Ke	Ki	Ksi	Ksl	m
�

K�	Ki	Kp	Ksi	Ksl	m
�

K
	K	Ke	Ki	Ksl	alphap	mup�

K
	K	Ki	Ksi	Ksl	alphap	mup�

K
	Ke	Ki	Kp	Ksl	m
�

K
	Ke	Ki	Ksi	Ksl	alphap	mup�

K
	Ke	Ki	Ksi	Ksl	m
�

K
	Ki	Kp	Ksi	Ksl	m
�

K	Ke	Ki	Ksi	Ksl	alphap	mup�

Ke	Ki	Kp	Ksi	Ksl	m


�K�	K
	K	Ki	Ksl	alphae	mue� S�t���	V�t�	X��t�

K�	K
	K	Ksi	Ksl	alphae	mue�

K�	K
	Ki	Kp	Ksl	alphae	mue�

K�	K
	Ki	Ksi	Ksl	alphae	mue�

K�	K	Ke	Ki	Ksl	m��

K�	K	Ke	Ksi	Ksl	m��

K�	K	Ki	Kp	Ksl	alphae	mue�

K�	K	Ki	Kp	Ksl	m��

K�	K	Ki	Ksi	Ksl	alphae	mue�

K�	K	Ki	Ksi	Ksl	m��

K�	Ke	Ki	Kp	Ksl	m��
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K�	Ke	Ki	Ksi	Ksl	m��

K�	Ki	Kp	Ksi	Ksl	alphae	mue�

K�	Ki	Kp	Ksi	Ksl	m��

K
	K	Ki	Kp	Ksl	alphae	mue�

K
	K	Ki	Ksi	Ksl	alphae	mue�

K
	Ki	Kp	Ksi	Ksl	alphae	mue�

K	Ke	Ki	Kp	Ksl	m��

K	Ke	Ki	Ksi	Ksl	m��

K	Ki	Kp	Ksi	Ksl	alphae	mue�

K	Ki	Kp	Ksi	Ksl	m��

Ke	Ki	Kp	Ksi	Ksl	m�

�K�	K
	K	Ksl	alphae	mue� S�t���	V�t�	X��t�

K�	K
	Ki	Ksl	alphae	mue�

K�	K
	Ksi	Ksl	alphae	mue�

K�	K	Ke	Ksl	m��

K�	K	Ki	Ksl	alphae	mue�

K�	K	Ki	Ksl	m��

K�	K	Ksi	Ksl	alphae	mue�

K�	K	Ksi	Ksl	m��

K�	Ke	Ki	Ksl	m��

K�	Ke	Ksi	Ksl	m��

K�	Ki	Kp	Ksl	alphae	mue�

K�	Ki	Kp	Ksl	m��

K�	Ki	Ksi	Ksl	alphae	mue�

K�	Ki	Ksi	Ksl	m��

K
	K	Ki	Ksl	alphae	mue�

K
	K	Ksi	Ksl	alphae	mue�

K
	Ki	Kp	Ksl	alphae	mue�

K
	Ki	Ksi	Ksl	alphae	mue�

K	Ke	Ki	Ksl	m��
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K	Ke	Ksi	Ksl	m��

K	Ki	Kp	Ksl	alphae	mue�

K	Ki	Kp	Ksl	m��

K	Ki	Ksi	Ksl	alphae	mue�

K	Ki	Ksi	Ksl	m��

Ke	Ki	Kp	Ksl	m��

Ke	Ki	Ksi	Ksl	m��

Ki	Kp	Ksi	Ksl	alphae	mue�

Ki	Kp	Ksi	Ksl	m�



D� GENERATING THE FISHER INFORMATION MATRIX

USING MAPLE

The symbolic mathematics package Maple was used to simplify the calcu	

lation of the Fisher Information Matrices used in searching for optimal ex	

periment designs
 This appendix contains a listing� automatically generated

from Maple �in LATEX format�� which describes how the Fisher Information

Matrix was �rst calculated symbolically from the model equations describ	

ing the simpli�ed and lactose	incorporating version of the model of �Paul

and Thomas� ������ and then illustrates the use of Maple�s C code genera	

tion facility to produce snippets of code that were subsequently spliced into

S	functions for use with Simulink
 The raw output as obtained from Maple

has been modi�ed slightly so as to improve its layout on the printed page


D�� Start of Maple Session� and Introductory Comments

	 restart�

This �le needed to be modi�ed on ������ to take into consideration the

fact that the model proper does not just make use of the feed rate �of glucose��

but also takes into consideration the rate of addition of PAA precursor�

and the rate of abstraction of �ltered liquor for HPLC analysis




D� Generating the Fisher Information Matrix Using Maple ���

The practical upshot of this is that the F in the insoluble species equations

�X�X��X��X��X� and V� is replaced by �F�FX	SR��

and the F in the soluble species equations �S�L�P� is replaced by �F�FX�


D�� Model Equations

We start by entering the equations de�ning the model


	 rho� �� X��		X��rho
�X�
�

	 v�c �� X��	�rho�
 � X��

	 X�expr �� mu�X�S�	K��S
 � gamma�X��	K��S


� 	F�FX�SR
X��V�

	 X�expr �� mueX�S�	Ke�S
 �mu�X�S�	K��S


� gamma�X��	K��S
 � mu�X�rho � 	F�FX�SR
X��V�

	 X�expr �� mu�v�c � mu�X� � mu�X� � 	F�FX�SR
X��V�

	 X�expr �� mu�X�rho � muaX� � 	F�FX�SR
X��V�

	 X�expr �� muaX� � 	F�FX�SR
X��V�

	 Sexpr �� �alpha�mu�X�S�	K��S
 � alphaemueX�S�	Ke�S


� m�X�S�	K��S
 � m�rhov�cS�	K��S


� alphapmuprhov�cS�	Kp�S	��S�Ki



� mulL	X��X�
�		Ksl�L
	��	S�Ksi


 � Fsf�V � 	F�FX
S�V�

	 Lexpr �� � mulL	X��X�
�		Ksl�L
	��	S�Ksi




� 	F�FX
L�V�

	 Pexpr �� muprhov�cS�	Kp�S	��S�Ki

 � muhP

� 	F�FX
P�V�

	 Vexpr �� 	F�FX�SR
�



D� Generating the Fisher Information Matrix Using Maple ���

D�� Nonlinear State Derivative Vector

Next we construct the nonlinear state derivative vector from the model equa	

tions


	 stateqs �� array	����
�

	 stateqs��� �� X�expr�

	 stateqs��� �� X�expr�

	 stateqs��� �� X�expr�

	 stateqs��� �� X�expr�

	 stateqs��� �� Sexpr�

	 stateqs��� �� Lexpr�

	 stateqs��� �� Pexpr�

	 stateqs��� �� Vexpr�

	 eval	stateqs
�

�
��X� S

K� � S
� ��X�

K� � S
� �F � FX � SR	X�

V
�
mue X� S

Ke � S

� ��X� S

K� � S
�

��X�

K� � S
� ��X� �� �F � FX � SR	X�

V
�

����� ��X� � ��X� � �F � FX � SR	X�

V
�

��X� ��mua X� � �F � FX � SR	X�

V
��	���X� S

K� � S

� alphae mue X� S

Ke � S
� m� X� S

K� � S
� m� ���S

K� � S

� alphap mup ���S

Kp � S �� �
S

Ki
	
�

mul L �X� �X� 	

�Ksl � L	 �� �
S

Ksi
	
�
F sf

V



D� Generating the Fisher Information Matrix Using Maple ���

� �F � FX 	S

V
� � mul L �X� �X� 	

�Ksl � L	 �� �
S

Ksi
	

� �F � FX 	L

V
�

mup ���S

Kp � S �� �
S

Ki
	
�muh P � �F � FX 	P

V
� F � FX � SR

�

�� ��
�

�

X�

�
� �

�
X�

D�� States Vector

Then we construct the states vector� this must be in the same order as the

nonlinear state derivative vector


	 states �� array	����
�

	 states��� �� X��

	 states��� �� X��

	 states��� �� X��

	 states��� �� X��

	 states��� �� S�

	 states��� �� L�

	 states��� �� P�

	 states��� �� V�

	 eval	states
�

�X� � X� � X� � X� � S� L� P� V �
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D�� Calculating the Derivatives wrt the States

Generating the delf delx matrix


	 delf�delx �� array	���������
�

	 for i to � do for j to � do delf�delx�i�j� ��

diff	stateqs�i��states�j�
 od od�

	 delf�delx�

	 eval	delf�delx
�

�
� ��

K� � S
� F � FX � SR

V
�

��S

K� � S
� � � � �

��X�

K� � S
� ��X� S

�K� � S	�
�

��X�

�K� � S	�
� � � � �

�F � FX � SR	X�

V �

�
�
mue S

Ke � S
�

��

K� � S
� � ��S

K� � S
� F � FX � SR

V
� ��� � � � �

mue X�

Ke � S
� mue X� S

�Ke � S	�
� ��X�

K� � S
�

��X� S

�K� � S	�
� ��X�

�K� � S	�
� �

� � �
�F � FX � SR	X�

V �

�
�
� �

�

�

��

�
� ��

�
��� �� � ��� F � FX � SR

V
� � � � � � � � �

�F � FX � SR	X�

V �

�
�
� � � � �� � � �mua � F � FX � SR

V
� � � � � � �

�F � FX � SR	X�

V �

�
�
�� alphae mue S

Ke � S
� m� S

K� � S
�

mul L

�Ksl � L	 �� �
S

Ksi
	

��	���S

K� � S

� �

�

m� S

K� � S
� �

�

alphap mup S

Kp � S �� �
S

Ki
	

�
mul L

�Ksl � L	 �� �
S

Ksi
	

�
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�

�

m� �S

K� � S
�
�

�

alphap mup �S

Kp � S �� �
S

Ki
	

� � ��	���X�

K� � S

�
	���X� S

�K� � S	�
� alphae mue X�

Ke � S
�

alphae mue X� S

�Ke � S	�

� m� X�

K� � S
�

m� X� S

�K� � S	�
� m� ���

K� � S
�

m� ���S

�K� � S	�

� alphap mup ���

Kp � S �� �
S

Ki
	
�

alphap mup ���S �� � �
S

Ki
	

�Kp � S �� �
S

Ki
		�

� mul L �X� �X� 	

�Ksl � L	 �� �
S

Ksi
	�Ksi

� F � FX

V
�

mul �X� �X� 	

�Ksl � L	 �� �
S

Ksi
	
� mul L �X� �X� 	

�Ksl � L	� �� �
S

Ksi
	
� � �

�F sf

V �
�

�F � FX 	S

V �

�
�

�
� mul L

�Ksl � L	 �� �
S

Ksi
	

� � mul L

�Ksl � L	 �� �
S

Ksi
	

� � � � �

mul L �X� �X� 	

�Ksl � L	 �� �
S

Ksi
	�Ksi

�

� mul �X� �X� 	

�Ksl � L	 �� �
S

Ksi
	

�
mul L �X� �X� 	

�Ksl � L	� �� �
S

Ksi
	

� F � FX

V
� � �

�F � FX 	L

V �

�
�
�� � �

�

mup S

Kp � S �� �
S

Ki
	

� ��

�

mup �S

Kp � S �� �
S

Ki
	

� � �

mup ���

Kp � S �� �
S

Ki
	

�
mup ���S �� � �

S

Ki
	

�Kp � S �� �
S

Ki
		�

� � �
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�muh � F � FX

V
�
�F � FX 	P

V �

�
�

�� � � � � � � � � � � � � � ��

�� ��
�

�

X�

�
� �

�
X�

D�� Parameters Vector

This is an arbitrary ordering of the parameters� but the same ordering should

be used in the SIMULINK model
 �By this� I mean that the order in which

parameter arguments are passed to the S	function calculating the sensitivity

matrix should be the same order as that used in calculating the sensitivity

matrix in Maple
 Although this is not strictly necessary� it is simpler to use

the same parameter order in both places than it is to convert from one list

order to another in moving from Maple to SIMULINK
�

	 parameters �� array	�����
�

	 parameters��� �� mu��

	 parameters��� �� K��

	 parameters��� �� gamma��

	 parameters��� �� K��

	 parameters��� �� mue�

	 parameters��� �� Ke�

	 parameters��� �� mu��

	 parameters��� �� mu��
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	 parameters��� �� mu��

	 parameters���� �� mua�

	 parameters���� �� alpha��

	 parameters���� �� alphae�

	 parameters���� �� m��

	 parameters���� �� m��

	 parameters���� �� K��

	 parameters���� �� alphap�

	 parameters���� �� mup�

	 parameters���� �� Kp�

	 parameters���� �� Ki�

	 parameters���� �� mul�

	 parameters���� �� Ksl�

	 parameters���� �� Ksi�

	 parameters���� �� muh�

	 eval	parameters
�

���� K� � ��� K� � mue� Ke� ��� ��� ��� mua� 	�� alphae � m� �

m� � K� � alphap � mup� Kp� Ki � mul � Ksl � Ksi � muh �

D�	 Calculating the Derivatives wrt the Parameters

Generating the delf delp matrix
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	 delf�delp �� array	����������
�

	 for i to � do for j to �� do delf�delp�i�j� ��

diff	stateqs�i��parameters�j�
 od od�

	 delf�delp�

	 eval	delf�delp
�

�
X� S

K� � S
� � ��X� S

�K� � S	�
� � X�

K� � S
�

��X�

�K� � S	�
� � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � � � � � �

�
�
� X� S

K� � S
�

��X� S

�K� � S	�
�

X�

K� � S
� � ��X�

�K� � S	�
�

X� S

Ke � S
�

�mue X� S

�Ke � S	�
� �X� � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � �

�
�� � � � � � � � � � � � �X� � �� � X� � � � � � � � � � � � � � � � � �

� � � � � � � � � � ��

�� � � � � � � � � � � � X� � � � � � � �X� � � � � � � � � � � � � � � �
� � � � � � � � � � ���
� 	�X� S

K� � S
�
	���X� S

�K� � S	�
� � �

m� X� S

�K� � S	�
� �alphae X� S

Ke � S
�

alphae mue X� S

�Ke � S	�
� � � � � � � � � ���X� S

K� � S
� �mue X� S

Ke � S
�

� X� S

K� � S
� � ���S

K� � S
�
m� ���S

�K� � S	�
� � mup ���S

Kp � S �� �
S

Ki
	

�

� alphap ���S

Kp � S �� �
S

Ki
	
�
alphap mup ���S

�Kp � S �� �
S

Ki
		�

�

� alphap mup ���S�

�Kp � S �� �
S

Ki
		� Ki�

�
L �X� �X� 	

�Ksl � L	 �� �
S

Ksi
	

�
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� mul L �X� �X� 	

�Ksl � L	� �� �
S

Ksi
	
�

mul L �X� �X� 	S

�Ksl � L	 �� �
S

Ksi
	�Ksi�

� �

�

�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� L �X� �X� 	

�Ksl � L	 �� �
S

Ksi
	
�

mul L �X� �X� 	

�Ksl � L	� �� �
S

Ksi
	
�

� mul L �X� �X� 	S

�Ksl � L	 �� �
S

Ksi
	�Ksi�

� �

�

�
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

���S

Kp � S �� �
S

Ki
	
� � mup ���S

�Kp � S �� �
S

Ki
		�

�

mup ���S�

�Kp � S �� �
S

Ki
		�Ki�

� � � � � � � �P
�

�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� � � � � � ��

�� ��
�

�

X�

�
� �

�
X�

D�
 Generating C code for use in the SIMULINK S�function

Maple�s C code utilities were used to automatically produce C code describ	

ing the calculation of the delf delp and delf delx matrices in terms of the

stated parameters and states
 This code was then be copied into a template

S	function� with the parameters used here being related to a vector of pa	

rameters passed into the S	function from SIMULINK and the states being

related to the inputs passed into the S	function in SIMULINK
 This required
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a few small modi�cations to the standard S	function template


The Maple command to include the C utilities in the current session� mak	

ing them available for subsequent use� is readlib	C
�� and the command

used to generate the two sets of optimised C code for the two derivative ma	

trices were C	delf delp� optimized
� for the derivative with respect to the

parameters� and C	delf delx� optimized
� for the derivative with respect

to the states
 The outputs of these two commands� and the C S	function

produced using the Maple	generated C are not shown here� for reasons of

brevity
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IMPROVING THE ESTIMATION OF PARAMETERS

OF PENICILLIN FERMENTATION MODELS

M�T� Syddall � G�C� Paul � C�A� Kent ���

� Centre for Bioprocess Engineering� School of Chemical

Engineering� The University of Birmingham� Edgbaston�

Birmingham� B�� �TT� United Kingdom

Abstract� Models for use in control and estimation applications should match the
process as closely as possible� Fermentation process models are usually complex� con�
taining many states and parameters� Obtaining accurate estimates of the parameters
of such models is a costly and time�consuming process� Here we show a way of reducing
the time and cost by designing optimal experiments for parameter identi�cation� The
method presented uses genetic algorithms to search for input pro�les which optimise
scalar functions of the Fisher information matrix� thus maximising the improvement
in the parameter estimates that may be obtained from each experiment performed�
The Penicillium chrysogenum penicillin�G fermentation� a secondary metabolite fer�
mentation� is used as an example�

Keywords� Fermentation processes� Modelling� Parameter estimation� Genetic
algorithms� Optimal experiment design

�� INTRODUCTION

The use of di�erential equation based physio�
logical models in the design of optimal produc�
tion strategies for penicillin fermentations 	Lim
et al� �
��� San and Stephanopoulos �
�
 and
in the design of advanced controllers for the fer�
mentation 	di Massimo et al� �

�� van Impe and
Bastin �

� has previously been reported in the
literature�

The models on which these approaches were based
contain parameters which must be estimated from
experimental data� which can often cause di��
culties� Nihtil�a and Virkunnen 	�
�� reported
lack of con�dence in parameter estimates obtained
tuning bacterial models with data from batch
fermentations� Holmberg 	�
�� demonstrated the
theoretical identi�ability of a model incorporating
Michaelis�Menten kinetics� but went on to show
that� given limited samples of noisy data� this

� Author to whom correspondence should be addressed

same model was not practically identi�able� al�
though more frequent sampling did help to im�
prove con�dence in the estimates obtained� The
fact that algorithmic parameter estimation meth�
ods such as Marquardt methods do not necessarily
lead to global optima was also mentioned�

These di�culties may be related to the geome�
try of the least squares error surface on which
the parameter estimation is performed� Holmberg
and Ranta 	�
�� showed that the niveau curves
	contours of constant error about the optimal
parameter set were long and narrow�

Series of experiments are often performed� gener�
ating incremental improvements in the quality of
the parameter estimates� This is typically costly
and time�consuming� particularly in the case of
fermentation modelling� where a single experi�
ment may take a week or more� Designing exper�
iments so as to gain the maximum improvement
in the parameter estimates could save time and



money in the development of models for use in
advanced fermentation control�

�� TUNING THE MODEL PARAMETERS

Throughout this work� the penicillin fermentation
is considered as being described by a nonlinear
di�erential equation based model of the following
form�

�x	t � f	x	t���u	t 	�

y	t � g	x	t���u	t 	�

In the above� x	t is a vector of model states� �
is a set of time�invariant parameters� and u	t is
the vector of inputs to the model� The output of
the model is y	t� this second equation is used
to relate measurements to the model states� 	In
our case� for simplicity� we assume y	t � x	t�
The model structure used in this work is given in
section ����

In order to be able to make use of the model
for practical purposes� it must �rst be tuned so
as to most accurately represent the fermentation�
This may be done using a least squares based
optimisation routine� with an objective function
of the following form�

E �
�

�

nX
i��

	m	ti� x	ti
�W	m	ti� x	ti	�

In the above� E is the error value�m	ti is a vector
of measurement values at times ti� the summation
is carried out for n sample times� and W is a
weighting matrix� In our case� W is a diagonal
matrix� with the maximum values of the measured
states along the diagonal� The prime � denotes
vector or matrix transposition�

��� A geometrical interpretation of the errors

The error function E can be considered as a
hypersurface given by

E �E	�� Ej��b 	�

where b denotes the optimal parameter set� and
hence Ej��b gives the minimum value for E�

If we assume that the error surface is smooth
and continuous with respect to the parameter
values around the optimal parameter set� we can
approximate the surface using a Taylor expansion
around the optimum�

E	� � Ej��b �
�E

���

����
��b

	� � b

�
�

�
	� � b�

��E

�� ���

����
��b

	� � b

� higher order terms

	�

Because E has a minimum at � � b � � �

�E

��

����
��b

� �

and
��E

�� ���
is positive de�nite

Neglecting terms above the second derivative� and
substituting equation � into equation �� we have
� � �

E �
�

�
	� � b�

��E

�� ���

����
��b

	� � b 	�

which describes a hyperparaboloid� Surfaces of
constant E are hence hyperellipsoids�

The second derivative of the error value� given
in equation �� with respect to the parameters� is
given by the following equation 	Eykho� �
���

��E

�� ���
�

nX
i��

�
�x	ti

��

�
�

W

�
�x	ti

��

�

�
nX

i��

�
��x	ti

����

�
W	m	ti� x	ti

	�

The second term vanishes close to the optimal
parameter set� as lim��b	m	ti� x	ti � ��

�x	t��� is given by the following equation� ob�
tained by di�erentiating equation ��

d�x�t�
��

dt
�

�f

�x

�x	t

��
�

�f	t

��
	�

�� THE FISHER INFORMATION MATRIX
AND OPTIMAL EXPERIMENT DESIGN

The Fisher Information Matrix 	FIM� forms the
basis of several criteria used in the design of
optimal experiments for model identi�cation 	see
Table �� For a derivation of the FIM� see Eykho�
	�
��� In its discrete form� applicable for cases
where measurements are taken at discrete sample
intervals rather than continuously� the FIM may
be de�ned as follows�

FIM�
nX

i��

�
�x	ti

��

�
�

W

�
�x	ti

��

�
	


Comparing equations � and 
 shows that the the
FIM is an approximation to the second derivative



Criterion Formula Interpretation

A min�tr�FIM���� minimise mean variance
simpli�ed A max�tr�FIM�� minimise mean variance
C min�tr�FIM�� minimises relative �mean� volume
D max�det�FIM�� minimises ellipsoid volume
E max��min�FIM�� minimises longest axis

modi�ed E min�cond�FIM� �
�max�FIM�
�min�FIM�

� spherical as possible

Table �� Criteria for optimal experiment design� derived from the Fisher Information
Matrix 	FIM �min and �max are the minimum and maximum eigenvalues of the

FIM� The above de�nitions are taken from Walter and Pronzato 	�

�

of the error surface� being the �rst term in the

expression for ��x�ti�
�� ��� �

The FIM has been used in the design of exper�
imental conditions for estimating parameters of
batch fermentations 	Yoo et al� �
�� and fed�
batch fermentations 	Kalogerakis and Luus �
���
Munack 	�
�
 has shown that fed�batch fermen�
tations are better� from the point of view of iden�
ti�ability� than batch fermentations and his work
was focussed on seeking out an input trajectory
that made identi�cation as robust as possible�

�� USING GENETIC ALGORITHMS TO
SEARCH FOR OPTIMAL INPUTS

The FIM depends on the model structure and pa�
rameter set used� on the input applied to the fer�
mentation� and� in its discrete form� on the sam�
pling interval used in obtaining measurements�
Given a model structure and an estimate of its pa�
rameters� if the sampling rate is �xed� an optimal
experiment may be designed by seeking out the
input pro�le which maximises one of the design
criteria given in Table ��

Munack 	�
�
 stated that the gradient technique
used in searching for an optimal input pro�le
may have stopped in a suboptimal point� thereby
�nding a good local optimum� but not necessarily
a global optimum� Genetic algorithms 	GAs have
been shown to behave well on multimodal func�
tions 	Goldberg �
�
� being less likely to become
stuck in local optima than conventional optimisa�
tion techniques� GAs only need to calculate the
objective function in the course of their search �
no use is made of derivatives� and GAs may be
used where the search surface is neither smooth
nor di�erentiable�

In order to use genetic algorithms� the problem
to be solved must �rst be encoded as a string�
which the genetic algorithm acts on as it searches�
In each generation� the algorithm evaluates the
�tness of every string in the population� mates the
strings according to their �tnesses 	reproduction�
exchanges information between pairs of strings
randomly 	crossover� and �nally changes a small
number of string elements with a low probability
	mutation�

Here we are using GAs to search for fermentation
inputs which optimise the experiment design ac�
cording to the D and modi�ed E criteria� two of
the more commonly used criteria� 	In our work�
we have attempted to maximise the reciprocal
of the condition number� rather than minimising
the condition number itself�the two approaches
are equivalent� For use with the genetic algo�
rithm� our input pro�le has been divided into
a stepped input� with discrete portions having
constant value� In this way� the input pattern is
only determined by the values of the alleles being
modi�ed by the genetic algorithm� This stepped
input pro�le is simple to specify using computer
control� and may be applied by hand� The length
of each �step� in the input pro�le was chosen to be
�ve hours as this was considered reasonable for
manual implementation� should that be needed�
The choice of a �ve hour interval also reduces
the length of the strings and hence the size of
the search space being searched by the genetic
algorithm�

��� Example � the Penicillin Fermentation

The results of computer studies aimed at �nding
the best input for use in identifying the param�
eters of a penicillin fermentation model derived
from that of Paul and Thomas 	�

�� given in
Table �� are presented here� This model is used
to illustrate the application of the GA input op�
timisation technique to a complex fermentation
model� for which conventional optimal control re�
lated methods would prove mathematically in�
volved�

The parameter set used in the model is given in
Table ��

In this work� the Genetic and Evolutionary Algo�
rithm Toolbox for Matlab 	Pohlheim �

� was
used� An initial population size of ���� with �
subpopulations was selected� running over a max�
imum of ��� generations� with the feasible input
pro�les bounded between � and ������� dm��hr�
The upper input limit was set to be the rate which
would �ll the working volume of the fermenter
	�dm� in a ��dm� fermenter over the course



dX�

dt
�
��X�S

K� � S
�

��X�

K� � S
����

dX�

dt
�
�eX�S

Ke � S
�

��X�S

K� � S
�

��X�

K� � S
� ��X�� ����

dX�

dt
� ��vic � ��X� � ��X� ��	�

dX�

dt
� ��X��� �aX� ��
�

dX�

dt
� �aX� ����

dS

dt
� �

����X�S

K� � S
�

�e�eX�S

Ke � S
�

m�X�S

K� � S
�

m��cvicS

K� � S

�

�p�p�cvicS

KP � S�� � S�KI�
�

dL

dt
����

dL

dt
� �

�LL�X� �X��

�KSL � L��� � S�KSI�
���

dP

dt
�

�p�cvicS

KP � S�� � S�KI�
� �hP ����

dV

dt
� F ����

Table �� Model of Paul and Thomas
	�

�� simpli�ed to increase simula�
tion speed 	equations �� to ��� and
extended to consider lactose present
at the start of the fermentation
	equations �� and ��� X� � morpholog�
ically distinguished biomass fractions� S
� glucose concentration� L � glucose con�
centration� P � penicillin concentration�
V � broth volume� F � input feed rate�
for clarity� dilution terms have been

omitted

Parameter Valu e Parameter Value

�� ���


 Ke ������
�� �����
 Kp �����

�� ����
� Ki ��
�
�� 	��	e�
 �� ����
�e �����	 �e ���

�a ����
� �p ����
�p ���	�� m� ���	�
�l ��	�� m� ���	�	
�h ����	� KSL �����
K� ���
�	 KSI �����e�

K� ������ �� ����		
K� ��
���

Table �� Table of parameters used in
simulating the model

of the fermentation 	assumed to be ��� hours�
starting from a typical initial volume 	���dm��

�� RESULTS

Both D and modi�ed E optimal experiment de�
signs improved over the course of the ��� gen�
erations used� giving quite distinct input pro�les
at the end� Figure � shows the D and modi�ed
E input designs produced� along with results of
simulations performed using these input pro�les�
In Table �� the designed inputs� values for both

Criterion Constant D�optimal E�optimal
Input Input Input

D ���e� ����e	� 
���e��
Modi�ed E ��
�e	� ����e�� ��
�e��

Table �� Values of design criteria ob�
tained using GA�designed input pro�les

criteria are compared with the values for a typi�
cal constant input feed pro�le� The two designed
inputs produce better values for the criterion for
which they were designed than does the constant
feed pro�le 	a greater D criterion value for the D�
optimal design� and a greater E criterion value for
the E�optimal design�

However� the graphs of the simulated fermenta�
tion results suggest that a practical fermentation
carried out using the D�optimal input design could
run into di�culties with low oxygen concentra�
tion from around �� hours on� That the �optimal�
design gives rise to what may be a practically
impossible situation could be because either the
model does not describe the dissolved oxygen con�
centration or the maximum feed pro�le permitted
is excessive�

The fact that both designed inputs produce �bet�
ter� values for the criterion for which they were
not designed than for the constant input feed
pro�le may be because the two experiment design
criteria compared in this work are not entirely
independent 	det FIM �

Q���max

���min
� � Geomet�

rically� the D criterion is attempting to minimise
the volume of the con�dence ellipsoids� whilst the
E criterion is attempting to improve the �round�
ness� of the same ellipsoids�

�� CONCLUSIONS

Genetic algorithms have been shown to be use�
ful in designing optimal experiments for param�
eter estimation for complex� nonlinear fermen�
tation models� for which optimal control based
approaches to experiment design could prove in�
volved�

In the future it is intended that the E�optimal
experiment design will be implemented� as the
current D�optimal design may encounter practical
di�culties� this should not be implemented� There
is also scope for work investigating the design of
experiments using scaled parameter values� so as
to obtain designs with equal percentage errors� as
opposed to equal absolute error magnitudes� for
all of the parameters�
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