
Exact Real Search:
Formalised Optimisation and Regression in

Constructive Univalent Mathematics

by

Todd Waugh Ambridge

A thesis submitted to the University of Birmingham for the degree of
Doctor of Philosophy

School of Computer Science
College of Engineering and Physical Sciences

University of Birmingham
14th July 2023

University of Birmingham Research Archive
e-theses repository

This unpublished thesis/dissertation is under a Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA

4.0) licence.

You are free to:

Share — copy and redistribute the material in any medium or format

Adapt — remix, transform, and build upon the material for any purpose, even commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were

made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you

or your use.

ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions

under the same license as the original.

No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from

doing anything the license permits.

Notices:

You do not have to comply with the license for elements of the material in the public domain or where your use is

permitted by an applicable exception or limitation.

No warranties are given. The license may not give you all of the permissions necessary for your intended use. For

example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

Unless otherwise stated, any material in this thesis/dissertation that is cited to a third party source is not included in

the terms of this licence. Please refer to the original source(s) for licencing conditions of any quotes, images or other

material cited to a third party.

https://creativecommons.org/licenses/by-sa/4.0/

Abstract

The real numbers are important in both mathematics and computation theory. Com-
putationally, real numbers can be represented in several ways; most commonly using
inexact floating-point data-types, but also using exact arbitrary-precision data-types
which satisfy the expected mathematical properties of the reals. This thesis is concerned
with formalising properties of certain types for exact real arithmetic, as well as utilising
them computationally for the purposes of search, optimisation and regression.

We develop, in a constructive and univalent type-theoretic foundation of mathemat-
ics, a formalised framework for performing search, optimisation and regression on a
wide class of types. This framework utilises Martín Escardó’s prior work on searchable
types, along with a convenient version of ultrametric spaces — which we call closeness
spaces — in order to consistently search certain infinite types using the functional
programming language and proof assistant Agda.

We formally define and prove the convergence properties of type-theoretic variants
of global optimisation and parametric regression, problems related to search from the
literature of analysis. As we work in a constructive setting, these convergence theorems
yield computational algorithms for correct optimisation and regression on the types of
our framework.

Importantly, we can instantiate our framework on data-types from the literature
of exact real arithmetic. The types for representing real numbers that we use are the
ternary signed-digit encodings and a simplified version of Hans-J. Boehm’s functional
encodings. Furthermore, we contribute to the extensive work on ternary signed-digits
by formally verifying the definition of certain exact real arithmetic operations using
the Escardó-Simpson interval object specification of compact intervals.

With this instantiation, we are able to perform our variants of search, optimisation
and regression on representations of the real numbers. These three processes comprise
our framework of exact real search; we close the thesis by providing some computational
examples of this framework in practice.

ii

I dedicate this thesis to my father, Michael Andrew Ambridge.
I miss the chats that we could have had about Computer Science.

Acknowledgements

The writing of this thesis could not have been done without significant academic,
technical, motivational and emotional input from a large number of people. This short
note cannot capture everyone that I am thankful for, and so I would simply like to thank
every colleague, friend and family member who has supported me on this academic
journey, which I have found both terribly challenging and hugely rewarding.

Most of all, I would first like to thank my supervisors, Professors Dan Ghica and
Martín Escardó. To Dan, I thank you for our many enjoyable and enlightening conver-
sations, for always having faith in me and my work, and for always being a motivating
and encouraging supervisor. To Martín, I thank you for educating me in constructive
mathematics and type theory, for being rigorous in your expectations of me and my
work, and for going completely above-and-beyond in your role as a second supervisor. I
look forward to continuing to work with both of you, as a fellow teacher and researcher,
in the future.

I also thank John Longley and Ulrich Berger for agreeing to examine this thesis
and for giving me an interesting, rigorous and engaging viva. Your comments have
improved this thesis tenfold, and for that I am exceedingly grateful.

I next thank three peers of mine over the past four years: George Kaye, Tom de
Jong and Andrew Sneap. George and I have been friends since our undergraduate days,
and embarking on parallel academic journeys has meant I am a constant companion of
his wit, charm and pedantry — of which he has all three in great measure. Tom has
supported me ever since we started our Ph.D.s at the same time, and I’m very happy
that we became great friends — and his patience and thoughtfulness in answering
my countless questions has been a tremendous help. Andrew and I have collaborated
throughout the latter half of my Ph.D., and I have found our collaboration immensely
rewarding — I have enjoyed my transition from his co-supervisor, to his colleague, to
his friend. I also want to thank these three for their contributions to this thesis: Tom
for his fantastic template (sorry for butchering it with better line spacing), George

iv

for much-needed technical support and Andrew for the time we have spent in Java
together.

Further, I thank the University of Birmingham’s School of Computer Science Theory
Group for the continual help and support, and moreover the sense of community and
belonging over the past four years. The ill-named Lab Lunch has proved a supportive
setting for workshopping ideas and getting feedback, but the help has been more keenly
felt by the fact I can call many of you friends. In particular, I would like to thank Ayberk
Tosun, Paul Levy, Sonia Marin, Eric Finster, Anupam Das, Paul Taylor and Achim Jung.

I would further like to thank my office-mates Qamar Natsheh and Mubashir Ali,
for their kind words and support especially in these last few weeks. In the wider
academic community, I would like to thank the CCC research community, especially
Alex Simpson with whom I had some very interesting discussions. I also give my thanks
to the DOÜVK community at the School of Computer Science for their camaraderie —
thank you Jacqui, Matthew, Jon, Anna, Bruno, Tobias, Charlotte, Charlie and Yan.

Outside of my studies, I thank all of my friends who have supported me: especially
my brotherhood of school friends, Callam, James, Ollie, Owen, Will and Todd, and the
friends I have made since moving to Birmingham, Freddie, Fran, Charlie, Cathy, Adam
and Tom. Thank you also to my family: to Jody, to Colin, to Nana Vee, and to my lovely
girls Cocoa, Lola and Sookie.

There are two people left to thank, who have been there in my best and worst
moments, and who have helped more than I can express in words. To Alice, I say thank
you for your encouragement and support, for your love and companionship, for putting
up with me and for being my best friend — I look forward to the next chapter of our
lives together, where hopefully the word “thesis” does not feature so much. Finally,
to my mum, I simply say thank you for everything you have ever given me, which is
everything I have.

Table of Contents

Abstract i

Acknowledgements iii

Table of Contents v

1 Introduction 1

1.1 Thesis outline and key contributions 3
1.1.1 Reading the formal proofs of this thesis 4

2 Constructive Univalent Type Theory via Agda 5

2.1 A brief introduction to type theory . 6
2.2 Agda notation for constructive type theory 7

2.2.1 Type universes . 7
2.2.2 Function and Π-types . 8
2.2.3 Natural number and integer types 9
2.2.4 Unit, empty and negated types 10
2.2.5 Disjoint union of types . 11
2.2.6 Binary product and Σ-types . 12
2.2.7 Identity types . 13

2.3 Univalent mathematics in TypeTopology 14
2.3.1 Function extensionality . 15
2.3.2 Propositions and unique proofs 16
2.3.3 Propositional extensionality . 19
2.3.4 Type equivalences . 19
2.3.5 Univalence . 21
2.3.6 Propositional truncation . 23
2.3.7 Homotopy sets and beyond . 24

Table of Contents vi

2.4 Fundamental concepts for this thesis 25
2.4.1 Decidability and discreteness 25
2.4.2 Finite types . 26
2.4.3 Vectors and sequences . 27

3 Searchability and Continuity 30

3.1 Searchable Types . 31
3.1.1 Background and motivation . 31
3.1.2 Searchable types in MLTT . 31
3.1.3 Searching finite types . 33
3.1.4 Can we search infinite types? 35

3.2 Closeness Spaces . 37
3.2.1 Motivation via metric spaces 38
3.2.2 Extended naturals and definition of closeness spaces 40
3.2.3 Closeness relations and continuity 43
3.2.4 Totally bounded closeness spaces 46
3.2.5 Examples of (totally bounded) closeness spaces 47
3.2.6 Pseudocloseness spaces . 59

3.3 Searching infinite types . 60
3.3.1 Uniformly continuously searchable closeness spaces 60
3.3.2 Examples of uniformly continuously searchable closeness spaces 62
3.3.3 Tychonoff theorem for uniformly continuously searchable spaces 65

4 Generalised Optimisation and Regression 69

4.1 Global Optimisation . 70
4.1.1 Orders and approximate orders 72
4.1.2 Generalised global optimisation 79

4.2 Parametric Regression . 82
4.2.1 Generalised parametric regression 83
4.2.2 Convergence theorems for parametric regression 84

5 Real Numbers 88

5.1 Escardó-Simpson interval object . 89
5.1.1 Cancellative midpoint algebras 89
5.1.2 Iteration property . 91
5.1.3 Finite approximations . 94
5.1.4 Bipointed convex bodies . 96
5.1.5 Arithmetic on [−1, 1] by assuming an interval object 100

vii Table of Contents

5.2 Verified ternary signed-digit encodings 103
5.2.1 Background and definition in our type theory 103
5.2.2 Representation via the interval object 105
5.2.3 Exact real arithmetic . 107

5.3 Ternary Boehm encodings . 117
5.3.1 Definition in our type theory 118
5.3.2 Verification of Boehm encodings via Dedekind reals 121
5.3.3 Exact real arithmetic . 125
5.3.4 Representing compact intervals 128

6 Exact Real Search 132

6.1 Exact Real Search using signed-digit encodings 133
6.1.1 Suitability for search, optimisation and regression 133
6.1.2 Uniformly continuous exact real arithmetic 138
6.1.3 Agda-extracted examples . 144

6.2 Exact Real Search using ternary Boehm encodings 152
6.2.1 Suitability for search, optimisation and regression 153
6.2.2 Java-implemented examples . 154
6.2.3 Java-implemented branch-and-bound examples 162

7 Conclusion 168

7.1 Summary of contributions . 168
7.2 Further work . 169

7.2.1 Verification of the order and closeness relations on ternary-
signed digit encodings . 169

7.2.2 Verification of arithmetic on ternary Boehm encodings 169
7.2.3 Towards practical implementations of exact real search 173

A Formal Agda Framework 175

B Java Implementation of Ternary Boehm Encodings 178

Bibliography 182

Chapter 1

Introduction

The real numbers are a fundamental structure in a variety of fields such as real analysis,
calculus, optimisation theory and regression analysis [Lib08; YS09]. The reals are also
important computationally; the re-burgeoning field of machine learning, for example,
is heavily dependent on floating-point representations of real numbers, wherein they
are used to model continuous parameters of artificial neural networks [WCB+18].
Arithmetic on floating-point numbers is incredibly, and increasingly, efficient [WK19],
but not without fault: floating-point methods represent real numbers as one of finitely-
many dyadic rationals1, leading to representation and calculation errors [JR21; Gol91].
There are, however, alternative approaches to real number computation, such as interval
arithmetic — wherein functions are evaluated by their behaviour on intervals of the
real numbers [AM00] — or arbitrary-precision ‘exact real’ computation [BCRO86].

Using exact real computation, any (computable) real number can be represented
to any degree of precision, and manipulated correctly with respect to the represented
real number [Tur37; BCRO86]. This means that, in situations where “floating-point
algorithms can lead to completely erroneous results ... exact real number computation
provides guaranteed correctness" [Sim98]. The applications of exact real computation
have thus far largely focused on arithmetic; indeed, perhaps the most omnipresent use
of exact reals is in the built-in Android smartphone calculator app [Boe17]. In this
thesis, we investigate another application of exact real computation: the construction
of formally verified algorithms for search, optimisation and regression.

Search has previously been performed on exact reals. For example, Simpson uses
1A dyadic rational is a rational number of form 𝑛

2𝑖 .

2

an earlier algorithm by Berger to search for the global minimum value of a real-valued
function in the compact interval [−1, 1] [Sim98; Ber90]. The representation of [−1, 1]
utilised by Simpson is the ternary signed-digit encodings, which has been extensively
explored in the literature of exact real arithmetic [Plu98; Di 93; Ber09]. More recently,
Escardó implemented search algorithms using the ternary signed-digits in Haskell
[Esc11b], as part of his wider work on searchable sets [Esc08].

In this thesis, we use searchable types in order to construct algorithms for global
optimisation and parametric regression on the ternary-signed digits. Global optimisa-
tion is the problem of finding a global minimum argument to a (usually real-valued)
function in a compact interval, while parametric regression is the problem of finding
parameters that fit a (usually real-valued) model function to some reference data [Lib08;
YS09].

In order to build formally verified algorithms, we will work in a constructive foun-
dation for performing mathematics and computation in tandem. When working con-
structively, a mathematician cannot rely on the law of excluded middle, proofs by
contradiction or principles of omniscience2 [BB12]. Instead, in order to show the truth
of a claim, a constructivist must show exactly how it holds. In the case where the claim
relates to an algorithm, they must genuinely construct that algorithm. A constructive
approach to mathematics, therefore, provides additional challenges; but there are also
advantages: one could extract the algorithm from the constructive proof, and use it
computationally with the knowledge it satisfies the claim. For this purpose, we develop
our work entirely within the functional programming language, and proof assistant,
Agda. By working in Agda — which itself is based on Martin-Löf ’s constructive type
theory (MLTT) [BDN09; NPS90] — we effectively program formalised type-theoretic
mathematical definitions, statements and proofs, and can immediately extract and
run algorithms based on these structures’ computational content. Our constructive,
type-theoretic formalisation is defined within Escardó ’s Agda library for univalent
mathematics TypeTopology [Esc23].

We first develop a framework for search, optimisation and regression on a wide class
of types, using the work on searchable types already defined by Escardóin TypeTopol-
ogy [Esc11a]. Then, we formalise the ternary-signed digit encodings and verify many
of their exact real arithmetic operations in Agda; similar to di Gianantonio’s formal ver-
ification of the ternary signed-digits in Coq [CD06]. For this purpose, we first formalise
a specification of [−1, 1], namely the Escardó -Simpson interval object [ES01]. We
instantiate our general framework on the ternary signed-digits, allowing us to extract

2Such as LPO, WLPO or LLPO, which are used at various points in this thesis to show that something
is contructively invalid.

3 Chapter 1. Introduction

algorithms for search, optimisation and regression on this representation. Following
this primary instantiation, in order to investigate the framework’s applicability (and
whether or not in can lead us towards efficient practical implementations) we utilise
another type for representing exact real numbers: a simplified definition of the Boehm
encodings, which are used today — nearly thirty-years on from their original definition
— in the Android calculator app [Boe99; Boe20].

1.1 Thesis outline and key contributions

In Chapter 2, we introduce the constructive and univalent type-theoretic foundation
of mathematics in which we build our formal framework for search, optimisation and
regression. We will establish the notation of the thesis informally, based on the syntax
of Agda.

In Chapter 3, we review and define the two key mathematical concepts of the thesis:
searchability and uniform continuity. We review the literature on searchable types, and
their current status in constructive type theory as implemented by Martín Escardó, and
contribute an extension of his work in order to be able to consistently search certain
infinite types in Agda by introducing uniform continuity on a convenient version of
ultrametric spaces that we call closeness spaces. We give a version of the totally bounded
property for closeness spaces, and show that a variety of types yield closeness spaces.
The key technical contribution of this section is the formalised result which shows
these uniformly continuously searchable types are closed under countable products
(Theorem 3.3.14).

In Chapter 4, we use uniformly continuously searchable closeness spaces to define
our formal convergence properties of global optimisation and parametric regression on
a wide class of types. For this purpose, we introduce approximate linear preorders, which
approximately order elements of closeness spaces. The key contribution of this section
— the statement of the type-theoretic variants of global optimisation (Theorem 4.1.26)
and parametric regression (Theorems 4.2.6, 4.2.9 and 4.2.10) — is methodological rather
than technical, as the proofs of their convergence follow naturally from the concepts
we have introduced.

In Chapter 5, we review and define within Agda two types for representing real
numbers: ternary signed-digit encodings and ternary Boehm encodings. On the former,
we formally verify exact real arithmetic operations (namely, negation, binary and
infinitary midpoint and multiplication) using the Escardó -Simpson interval object
specification of closed intervals — which we also review and formalise in this section.
On the latter, we define the type in Agda, prove the correctness of its structure and

1.1. Thesis outline and key contributions 4

show how it yields representations of compact intervals that we can then use for search.
The key technical contributions of this section are:

• The Agda formalisation of the Escardó-Simpson interval object specification of
closed intervals (Section 5.1),

• The Agda formalisation of the ternary signed-digit encodings and their afore-
mentioned arithmetic operations (Section 5.2),

• The formal verification in Agda that these operations for exact real arithmetic
on the ternary-signed digits are correct with respect to the specification of those
operations on the interval object (Theorems 5.2.10, 5.2.21, 5.2.32 and 5.2.36).

In Chapter 6, we bring our formal framework full-circle by instantiating it on these
two types for representing real numbers. Example evaluations of algorithms for search,
optimisation and regression — either extracted from Agda or implemented in Java —
are then given to show the use of the framework in practice. A contribution of this
section is the formal result that the arithmetic operations we define on the ternary
signed-digit encodings are uniformly continuous (Section 6.1.2).

Finally, in Chapter 7, by way of conclusion we discuss some further avenues for
this line of work.

1.1.1 Reading the formal proofs of this thesis

A chief contribution of this thesis is that most of its mathematical content — both from
the literature and our own contributions — is formalised in Agda within the library
TypeTopology [Esc23]. We describe the constructive and univalent philosophy of
TypeTopology in the intoduction to Chapter 2.

The reader is invited to explore our Agda formalisation by ‘clicking’ on the symbols
at the top left of each mathematical environment. This will take them directly to the
Agda function which formalises that definition or proof. The different files of the
library are described in Appendix A.

For the purpose of clarity, we use three different symbols:
• The library book symbol denotes a statement we are recalling from the
literature and which we have not formalised, nor does a formalisation appear
within TypeTopology,

• The topological donut symbol denotes a statement formalised within Type-
Topology, usually by Martín Escardó, but sometimes by another collaborator,

• The rune of Gandalf symbol denotes a statement formalised for this thesis by the
author. Sometimes, this will be a repetition from the literature or TypeTopology,
but in other cases this will be one of our main contributions, as outlined in
Section 1.1.

Chapter 2

Constructive Univalent Type Theory

via Agda

We wish to perform mathematics in a way that supports computer programming by
default, in order to extract computational content from our mathematical proofs. As
discussed in Chapter 1, this means that we will be utilising a constructive approach to
mathematics. But we want to go further; we do not wish to just support programming
but to actively program formal mathematics. For this purpose, we work formally
in a constructive and univalent foundation of mathematics: the variation of Martin-
Löf constructive type theory (MLTT) provided by the functional programming language
and proof assistantAgda [Mar75; BDN09]. More specifically, wework inTypeTopology,
an Agda library by Martín Escardó and a growing number of collaborators interested
in formalising both new and previous theorems in univalent mathematics [Esc23]. This
thesis is second only to Tom de Jong’s recent thesis on Domain Theory in Constructive
and Predicative Univalent Foundations in having the majority of its results formalised
within TypeTopology [dJon23].

The philosophy of this thesis is aligned with that of TypeTopology, the full extent of
which is given on the library’s webpage [Esc23]. In particular, wework in a small version
of MLTT — which we introduce in Section 2.2 — and we adopt the univalent approach
to mathematics introduced by Voevodsky and popularised by The HoTT Book [Uni13].
This latter point means that, even when not invoking the univalence axiom itself,
we utilise the terminology and the perspective of univalent mathematics, which we
detail in Section 2.3. Our framework is hence compatible with other formalisations

2.1. A brief introduction to type theory 6

of univalent mathematics, such as the UniMath library for Coq [VAG+] — unlike
UniMath however, we do not assume the propositional resizing axiom. When we
do use axioms such as function extensionality or univalence, we make them explicit
parameters to those proofs or modules which use them. Finally, we restrict ourselves
to those features of Agda which allow us to remain consistent, and avoid inconsistent
assumptions such as the ‘type-in-type’ axiom (which assumes the type of all types is
an element of itself).

We begin this chapter with a brief introduction to MLTT, before recalling concepts
of this theory and explaining how they are written in general Agda. We then introduce
the aspects of univalent mathematics that we utilise, before recalling some fundamental
concepts that are used throughout the following chapters of the thesis.

2.1 A brief introduction to type theory

A type theory is a set of rules for formally reasoning about the behaviour of a system of
terms such as a logical calculus, foundation of mathematics, philosophical theory, or
programming language [Pie02]. Informally, the rules assign to each term a type that is
used to determine the behaviour of such terms, such as which methods of the theory
can manipulate them. These methods, such as functions, are themselves terms of more
complicated types formed from simpler types using type families.

Early type theories were developed by Russell in the 1900s as foundations of mathe-
matics alternative to those built within naive set theory, which he famously showed
yielded inherent paradoxes [WR27]. Soon thereafter, Church’s simply typed lambda-
calculus utilised Ramsey’s simple theory of types to ensure that each term of the calculus
is well-typed [Chu40]. Later, in 1972, Per Martin-Löf introduced MLTT as a “full scale
system for formalising intuitionistic mathematics" [Mar75]. Martin-Löf’s intention to
fully-formalise Bishop-style constructive mathematics (discussed in Chapter 1) had
clear motivations: the internal computation rules of type theories are happily married
to the ability to extract computational content from constructive proofs.

In MLTT, a mathematical proposition is interpreted as a type. An element (i.e. a
program) of such a type is considered a proof of the proposition, and can therefore be
computed to yield a constructive witness of that proof. These types are built from type
families which interpret the connectives of intuitionistic logic, and are often dependent
on types that model more fundamental mathematical structures (such as the natural
numbers) or, indeed, other propositions. This is known as the propositions as types
interpretation [Uni13]. This interpretation means that two proofs 𝑎1, 𝑎2 : 𝐴 of the same
mathematical statement may be very different programs, and this difference is often

7 Chapter 2. Constructive Univalent Type Theory via Agda

relevant to proving later corollaries of that statement — this is called proof relevance.
The most significant dependent type family of MLTT is the identity type family,

which is used to interpret statements about term equality. We can say that two elements
𝑎1, 𝑎2 : 𝐴 are equal if we can construct an element of type (𝑎1 = 𝑎2) [Mar75]. This makes
our foundation of mathematics very rich: we can begin to reason directly about the
equality of mathematical objects/programs in the way that a mathematician/program-
mer would naturally do so. Matching equality in MLTT more and more closely to a
natural notion of mathematical equality is the primary concern of the field of univalent
type theory [Uni13]; an area that this thesis operates within, and which we shall return
to later in Section 2.3.

2.2 Agda notation for constructive type theory

There are already a variety of formal introductions to MLTT’s types and type families,
from various perspectives and levels of introduction (for example, see [MS84; Gam09]
or the Appendices of [Uni13]). We assume the reader has some familiarity with type
theory, and in this section instead recall the constructions and concepts of MLTT and
show how to write them in Agda. In the remainder of the thesis, however, we will
write mathematics informally, in the style of The HoTT Book [Uni13]. This section can
therefore be thought of as the documentation required to be able to read this thesis’
Agda formalisation.

2.2.1 Type universes

Recall that a type universe is a type whose elements are themselves types [Mar75].
MLTT utilises a countable sequence of type universes, U0 : U1 : U2, ...; the integer indices
of these type universes are sometimes called universe levels [BCDE23].

In Agda, type universes are explicitly stratified into countably-many universe levels.
There is therefore a lowest level lzero and a successor operation lsuc. This successor
function forms a semilattice, whose join is given as the binary operation _⊔_.

lzero : Level

lsuc : (l : Level) → Level

⊔ : (l1 l2 : Level) → Level

As Level is a semilattice, the supremum function is associative (𝑢 ⊔ (𝑣 ⊔𝑤) ≡ (𝑢 ⊔ 𝑣) ⊔𝑤),
commutative (𝑢 ⊔ 𝑣 ≡ 𝑣 ⊔ 𝑢) and idempotent (𝑢 ⊔ 𝑢 ≡ 𝑢) — furthermore, the successor

2.2. Agda notation for constructive type theory 8

operation is a homomorphism (lsuc (𝑢 ⊔ 𝑣) ≡ lsuc𝑢 ⊔ lsuc 𝑣). Note that the preceding
equations are definitional equalities and not equalities induced by the identity type
former (introduced in Section 2.2.7).

Each universe level i is mapped to a type universe Seti such that Seti : Setlsuc i,
meaning there is indeed, as in MLTT, a countable sequence of type universes. Fur-
thermore, there is a type universe Set𝜔 that is larger than every type universe, but is
not part of the hierarchy — for example, the expression (𝑖 : Level) → Set𝑖 has type
Set𝜔 [Imp15].

The notation of type universes in TypeTopology aligns the above closer to that of
MLTT [Esc13b]:

open import Agda.Primitive public

using (_⊔_)

renaming (lzero to U0

; lsuc to _+

; Level to Universe

; Set𝜔 to U𝜔

)

Set is renamed to Type, and universes are mapped to type universes using the ‘dot
function’. We prefer this notation as not all types are sets in MLTT, and furthermore
the very small difference in syntax between universes U and type universes U · allows
the reader of a TypeTopology file to align these concepts in their mind, as we do when
working in MLTT [Esc19].

Formally, we follow these conventions of TypeTopology; informally, universes
are implicit in most of our work. Where necessary, we use U ,V, ... to range over type
universes.

2.2.2 Function and Π-types

Functions are built-in to Agda, and interpret statements that are universally quantified
over a type. We give the curried projection functions for every type (in every universe)
as example function definitions:

fst : {X : U ·} {Y : V ·} → X → Y → X

fst {U} {V} {X} {Y} x y = x

9 Chapter 2. Constructive Univalent Type Theory via Agda

snd : {X : U ·} {Y : V ·} → X → Y → Y

snd {U} {V} {X} {Y} x y = y

Note that implicit arguments (i.e. the types and the universes they are elements of) are
given in braces in the type definition, and can be accessed using braces in the function
definition.

Dependent functions (elements of Π-types), where the type of the output depends on
that of the input, are also built-in using the same syntax. In TypeTopology, we match
this syntax to that of MLTT by defining a universe-valued dependent function Π as
below (although, for brevity of code, we almost always utilise the usual Agda notation
of Π-types):

Π : {X : U ·} (Y : X → V ·) → U ⊔ V ·

Π {U} {V} {X} Y = (x : X) → Y x

Elements of Π-types 𝑓 : Π(𝑥 : 𝑋) (𝑌 𝑥) are therefore dependent functions that, on input
of 𝑥 : 𝑋 , output 𝑓 (𝑥) : 𝑌 𝑥 — usual functions are just dependent functions where the
type family 𝑌 is constant.

2.2.3 Natural number and integer types

The natural numbers are defined inductively using the data keyword:

data N : U0
· where

zero : N

succ : N → N

A type defined by data is given by a list of its constructors; here, N is defined using
the Peano inductive definition. Note, therefore, that the constructor succ : N → N

is itself an Agda function from natural numbers to natural numbers. We will write
naturals in the expected shorthand way, e.g. 0 := zero and 𝑛 + 1 := succ 𝑛.

In Agda, functions on inductive types can be defined by pattern matching, i.e. by
considering the function’s output for each of its constructors. As an example, we define
addition on the natural numbers as an infix operation by pattern matching:

2.2. Agda notation for constructive type theory 10

+N : N → N → N

0 +N y = y

succ n +N y = succ (n +N y)

The integers Z are also defined using data. The two constructors are for negative
and non-negative numbers:

data Z : U0
· where

pos : N → Z

negsucc : N → Z

Again, we will write integers in the expected shorthand way; e.g. 0 := pos 0, and
−6 := negsucc 5.

2.2.4 Unit, empty and negated types

Recall, by the propositions-as-types interpretation, that any pointed type (i.e. a type
that we can exhibit an element of) represents the trivially true proposition. The unit
type 1, which has one constructor and which we often use for representing truth, is
defined as follows:

data 1 {U} : U · where

★ : 1

The empty type 0, which has no constructors, can also be defined using data:

data 0 {U} : U · where

Note that there are unit and empty types in every universe.
Recall that negation is interpreted inMLTT by empty-valued functions. We therefore

define the type family ¬𝑋 given any type 𝑋 as follows:

¬ : (X : U ·) → U ·

¬ {U} X = X → 0

11 Chapter 2. Constructive Univalent Type Theory via Agda

Exhibiting an element of ¬𝑋 therefore amounts to defining a function that proves any
element of 𝑋 leads to false.

In the opposite direction, by the principle of explosion any proof of false itself implies
anything. This can be defined in Agda as a dependent function by pattern matching:

0-elim : {X : U ·} → 0 → 𝑋

0-elim {U} {𝑋} ()

The special pattern () is used here by Agda to denote that there is no pattern for
that element (i.e. the element of type 0), and thus we do not have to define the function
for that case.

2.2.5 Disjoint union of types

Given two types, we can form their disjoint union type, which has one constructor for
each side of the disjunction:

data _+_ {U} {V} (X : U ·) (Y : V ·) : U ⊔ V · where

inl : X → X + Y

inr : Y → X + Y

These types represent disjoint statements in intuitionistic logic, as we must provide
a witness as to which side of the disjunction holds. Furthermore, the form of disjunction
that disjoint union types represent is inclusive, and yields a direct answer as to which
of the two statements holds — even if both could feasibly hold, the element can only
reduce to one side of the disjunction.

Disjoint unions are therefore in general structure and not property. Indeed, we often
use them in the definition of mathematical structures; as an example, the three-point
type can be given by a disjunction of the unit type:

3 : U0
·

3 = 1 + 1 + 1

We will return to discussion of properties versus structure in Section 2.3.2.

2.2. Agda notation for constructive type theory 12

2.2.6 Binary product and Σ-types

Given two types, we can form their binary product type, whose elements are pairs. We
define these as non-dependent versions of dependent pairs (elements of Σ-types), where
the type of the second projection of the pair depends on that of the first. Σ-types are
defined coinductively using the record keyword:

record Σ {U} {V} {X : U ·} (Y : X → V ·) : U ⊔ V · where

constructor _,_

field

pr1 : X

pr2 : Y pr1

Then, binary product types can be easily be defined as following type family:

× : U · → V · → U ⊔ V ·

X × Y = Σ {U} {V} {X} (𝜆x.Y)

A type defined by record is given by a list of its fields; in this way, records are
Agda’s built-in version of Σ-types.

Recall that, as mathematical statements, Σ-types interpret constructive existence:
proving there is an element 𝑎 : 𝐴 which satisfies the statement 𝐵(𝑎) : V , for a type
𝐴 : U and type family 𝐵 : 𝐴 → V , is performed by constructing an element of type∑

(𝑎 : 𝐴) (𝐵(𝑎)). In general, this element can be defined in multiple ways, yielding (by
proof relevance) multiple proofs of existence.

Σ-types are therefore in general structure and not property. They are used to define
both collections and the more restricted notion of subtypes. As an example, we give
below the collection of even natural numbers N𝑒 :

is-even : N → U0
·

is-even 0 = 1

is-even 1 = 0

is-even (succ (succ n)) = is-even n

Ne : U0
·

Ne = Σ n : N , is-even n

13 Chapter 2. Constructive Univalent Type Theory via Agda

An element of N𝑒 is a dependent pair: a number 𝑛 : N and a proof of evenness of type
is-even 𝑛. Later, in Section 2.3.2 we will see that N𝑒 is in fact a subtype of N: informally,
this is because for any given integer 𝑛 there is only one proof of evenness (i.e. there is
only one element of the type is-even 𝑛).

2.2.7 Identity types

Every type has an associated family of identity types. Recall that there is only a single
constructor for identity types in MLTT — so too in Agda:

data Id {U} (X : U ·) : X → X → U ·

refl : (x : X) → Id X x x

The function refl allows us only to construct elements of the type Id X x x, which
we write in TypeTopology as x = x for any x : X1, leaving the type of x implicit.

By default in Agda, it is the case therefore that Streicher’s K axiom is assumed:
refl 𝑥 is the only element of 𝑥 = 𝑥 [Str93]. However, as this cannot be proved in MLTT
(or Agda), we disable its use in TypeTopology. But, it is the case that Martin-Löf’s
induction rule for identity types only requires the consideration of elements constructed
by refl [MS84]. Martin-Löf called this rule 𝐽 [Esc19]:

J : (X : U ·) (A : (x y : X) → x = y → V ·)

→ ((x : X) → A x x (refl x))

→ (x y : X) (p : x = y) → A x y p

J {U} {V} X A f x x (refl x) = f x

From the above, we see that 𝐽 is defined in Agda by pattern matching on the element
of the identity type 𝑝 : 𝑥 = 𝑦. Once the identity type is pattern matched, 𝑥 and 𝑦 are
aligned definitionally in Agda and can be used interchangeably.

Elements of other identity types must be derived from the expected properties of
identities, which are defined in Agda as functions either by using 𝐽 or by directly
pattern matching. We prove the four key identity rules — symmetry, transitivity,
function application, and transport — by pattern matching.

1Note that we actually use a Unicode ‘long equals’ symbol in TypeTopology, as = is reserved in
Agda for definitions.

2.3. Univalent mathematics in TypeTopology 14

sym : {X : U ·} {Y : V ·} (x y : X) → x = y → y = x

sym {U} {V} {X} {Y} x x (refl x) = refl x

trans : {X : U ·} {Y : V ·} (x y z : X) → x = y → y = z → x = z

trans {U} {V} {X} {Y} x x x (refl x) = refl x

ap : {X : U ·} {Y : V ·} (f : X → Y) (x y : X) → x = y → f x = f y

ap {U} {V} {X} {Y} f x x (refl x) = refl (f x)

transport : {X : U ·} (A : X → V ·) (x y : X) → x = y → A x → A y

transport {U} {V} {X} A x x (refl x) = id

We can consider all of the above functions as proofs about identities. Note that when
working informally in this thesis we do not detail when we use these rules.

2.3 Univalent mathematics in TypeTopology

Now that we have recalled the key constructions of MLTT using Agda, we change to a
more informal approach to mathematics for the remainder of the thesis. This approach
will be amixture of English statements and proofs, pepperedwithmathematical notation
that resemblesAgda code. If the reader wishes to read the formalisation of any particular
definition or proof, they can be easily accessed by the method described in Section 1.1.1
(i.e. by simply clicking the symbol at the top of the environment).

In this section, we recall principles of the burgeoning field of univalent foundations
of mathematics — which is sometimes called univalent type theory or homotopy type
theory — from the point of view of their definition in TypeTopology. In order to get
the reader used to our informal notation, we spell out many of the recalled definitions
and proofs of this section in English and Agda-like syntax.

Four principles that we will introduce in this section that are worth mentioning in
advance are function extensionality (labelled [f]), propositional extensionality (labelled
[p]), univalence (labelled [u]) and propositional truncation (labelled [t]). These are
all axioms in MLTT, and thus we want to be especially clear about where they are
used in this thesis. If a proof uses one of these four axioms, we will mark it with
its corresponding label — for example, a proof labelled [fp] invokes both function
extensionality and propositional extensionality.

15 Chapter 2. Constructive Univalent Type Theory via Agda

2.3.1 Function extensionality

Two (possibly dependent) functions are equivalent if they are behaviourally indistin-
guishable; i.e. if they are pointwise-equal,

Definition 2.3.1. [] Two functions 𝑓 , 𝑔 :
∏

(𝑥 : 𝑋) (𝑌 (𝑥)) are pointwise-equal
𝑓 ∼ 𝑔 if 𝑓 (𝑥) = 𝑔(𝑥) holds for every 𝑥 : 𝑋 :

𝑓 ∼ 𝑔 :=
∏
(𝑥 : 𝑋)

𝑓 (𝑥) = 𝑔(𝑥).

Of course, equal functions are pointwise equal.

Lemma 2.3.2. Every function is pointwise-equal to itself.

Proof. The proof term is constructed immediately the identity type’s constructor (i.e.
reflexivity):

∼-refl : Π(𝑓 : ∏(𝑥 : 𝑋) 𝑌 (𝑥)) (𝑓 ∼ 𝑓) ,

∼-refl(𝑓 , 𝑥) := refl (𝑓 (𝑥)) .

Lemma 2.3.3. [] Given functions 𝑓 , 𝑔 :
∏

(𝑥 : 𝑋) 𝑌 (𝑥) such that 𝑓 = 𝑔, then 𝑓 ∼ 𝑔.

Proof. We utilise the given equality 𝑒 : 𝑓 = 𝑔 to build the function

transport(𝜆(ℎ : Π(𝑥 : 𝑋)𝑌 (𝑥)) .𝑓 ∼ ℎ, 𝑒) : 𝑓 ∼ 𝑓 → 𝑓 ∼ 𝑔.

Thus, by applying Lemma 2.3.2, the result follows:

happly : Π(𝑓 ,𝑔 : ∏(𝑥 : 𝑋) 𝑌 (𝑥)) ((𝑓 = 𝑔) → (𝑓 ∼ 𝑔)) ,

happly(𝑓 , 𝑔, 𝑒, 𝑥) := transport(𝜆(ℎ : Π(𝑥 : 𝑋)𝑌 (𝑥)).𝑓 ∼ ℎ, 𝑒,∼-refl(𝑋)) .

There is no way to prove (for non-trivial types) that pointwise-equal functions are
equal in MLTT. In order to be able to treat equivalent functions as equal functions, we
can add an extra axiom called (naive) function extensionality (later, in Definition 2.3.27
we will introduce the non-naive version).

Definition 2.3.4. [] We say that naive function extensionality holds for given
universes U ,V when, given 𝑋 : U , 𝑌 : 𝑋 → V and functions 𝑓 , 𝑔 :

∏
(𝑥 : 𝑋) 𝑌 (𝑥),

https://www.cs.bham.ac.uk/~mhe/TypeTopology/MLTT.Id.html#_%E2%88%BC_
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Base.html#happly
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.FunExt.html#naive-funext

2.3. Univalent mathematics in TypeTopology 16

pointwise-equality implies equality:

naive-funext(U ,V) :=
∏

(𝑋 : U)

∏
(𝑌 : 𝑋→V)

∏
(𝑓 ,𝑔 : ∏(𝑥 : 𝑋) 𝑌 (𝑥))

(𝑓 ∼ 𝑔 → 𝑓 = 𝑔)

Although we accept it as a mathematical statement and would like to use it when
reasoning about certain functions, function extensionality is independent of MLTT;
meaning it is consistent with the type theory but cannot be proved by it. As it is
consistent, one can add it as an axiom to the theory and use it in their proofs — in
Agda, this amounts to postulating the existence of a proof term (fe : naive-funext). If
one does this, however, one must be careful about where the postulated term is used.
Postulated terms have no computational interpretation; while they may help us to write
a proof, we will be unable to extract any data from said proof. In this thesis, function
extensionality is sometimes assumed in order to show that our results are correct with
regards to certain specifications — but we never assume it when computing those results
themselves.

2.3.2 Propositions and unique proofs

Under the propositions as types interpretation described in Section 2.1, the types of
MLTT can be viewed as mathematical statements, with elements of those types viewed
as proofs of the statement. Hence, by exhibiting different elements of the same type, the
truth of a statement can be given in multiple ways. Univalent type theory distinguishes
statements that can be true in multiple ways and those that can only be true in one
way, calling the latter (h)-propositions. A type interprets a proposition if it can only be
true in one way; i.e. if every element of the type is identical. These types are sometimes
referred to as subsingletons, though we simply call them propositions. If we agree that
propositions are the only types that truly interpret a mathematical proposition, then we
are aligning ourselves with the propositions as some types interpretation of dependent
type theory [Shu12].

Definition 2.3.5. [] A type 𝑋 is a proposition if all of its elements are equal:

is-prop(𝑋) :=
∏

(𝑥,𝑦 : 𝑋)
(𝑥 = 𝑦) .

Lemma 2.3.6. [] 1 is a proposition.

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Subsingletons.html#is-prop
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Subsingletons.html#%F0%9D%9F%99-is-prop

17 Chapter 2. Constructive Univalent Type Theory via Agda

Proof. 1 only has one element, ★ : 1; thus, it is trivial to prove that any two 𝑥,𝑦 : 1
are equal, as 𝑥 = ★ = 𝑦.

Lemma 2.3.7. [] 0 is a proposition.

Proof. 0 has no elements; thus, given any two 𝑎, 𝑏 : 0 we can immediately complete
the vacuous proof using 0-elim.

But it is not the case that these are the only propositions. For every proposition 𝑋 , it is
independent that (𝑋 ≃ 1) + (𝑋 ≃ 0) — a proof of this would be logically equivalent to
the classical law of excluded middle for propositions.

+-types that interpret exclusive-or statements preserve the proposition property,
meaning the type is now a property rather than structure.

Lemma 2.3.8. [] If𝑋 : U and𝑌 : V are propositions, and¬(𝑋×𝑌), then𝑋+𝑌 : U⊔V
is a proposition.

Proof.

+-is-prop : is-prop 𝑋 → is-prop 𝑌 → ¬(𝑋 × 𝑌) → is-prop (𝑋 + 𝑌)
+-is-prop(𝑝, 𝑞, 𝑓 , inl 𝑥1, inl 𝑥2) := ap(inl, 𝑝 (𝑥1, 𝑥2))
+-is-prop(𝑝, 𝑞, 𝑓 , inl 𝑥, inr 𝑦) := 0-elim (𝑓 (𝑥,𝑦))
+-is-prop(𝑝, 𝑞, 𝑓 , inr 𝑦, inl 𝑥) := 0-elim (𝑓 (𝑥,𝑦))
+-is-prop(𝑝, 𝑞, 𝑓 , inr 𝑦1, inr 𝑦2) := ap(inr, 𝑞(𝑦1, 𝑦2))

Π-types, ¬-types and Σ-types also preserve the proposition property.

Lemma 2.3.9. [] Given 𝑋 : U and 𝑌 : 𝑋 → V where every 𝑌 (𝑥) : V is a proposition,
then Π𝑌 : U ⊔ V is a proposition.

Proof. [f] We need to show that given 𝑓 , 𝑔 :
∏
𝑌 we have 𝑓 = 𝑔. We have 𝑓 ∼ 𝑔

because given any 𝑥 : 𝑋 , 𝑌 (𝑥) is a proposition (so therefore 𝑓 (𝑥) = 𝑔(𝑥)). The result
immediately follows by function extensionality.

Corollary 2.3.10. [] The negation of every type is a proposition.

Proof. [f] By Lemmas 2.3.7 and 2.3.9.

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Subsingletons.html#%F0%9D%9F%98-is-prop
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Subsingletons.html#%2B-is-prop
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Subsingletons-FunExt.html#%CE%A0-is-prop
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Subsingletons-FunExt.html#negations-are-props

2.3. Univalent mathematics in TypeTopology 18

Lemma 2.3.11. [] Given a proposition 𝑋 : U and 𝑌 : 𝑋 → V where every 𝑌 (𝑥) : V
is a proposition, then Σ𝑌 : U ⊔ V is a proposition.

Proof (Sketch). The idea is that, given (𝑎, 𝑝) : Σ(𝑎 : 𝑋)𝑌 (𝑎) and (𝑏, 𝑞) : Σ(𝑏 : 𝑋)𝑌 (𝑏), we
want to show that conclude (𝑎, 𝑝) = (𝑏, 𝑞) by first showing 𝑎 = 𝑏 and 𝑝 = 𝑞 — but
the first and last equations here do not type check, as the identity type requires
both arguments to be of the same type. As 𝑋 is a proposition, however, we have
a proof that 𝑎 = 𝑏, and therefore 𝑌 (𝑎) and 𝑌 (𝑏) are indeed the same type (we will
arbitrarily choose to call this type 𝑌 (𝑎)). The result then follows by the fact that 𝑌 (𝑎)
is a proposition and therefore 𝑝 = 𝑞.

If a type 𝑃 is a proposition, any proof 𝑝 : 𝑃 is unique. For example, the proof that
an integer is even (defined in Section 2.2.6) is unique, because each of its cases is a
proposition. Hence, N𝑒 (which we also defined in Section 2.2.6) is a subtype of Z; i.e.
it is a unique collection of elements of N. Related to this, we introduce the idea of
embeddings, which we recall are functions 𝑓 : 𝑋 → 𝑌 such that each 𝑦 : 𝑌 is reached by
at most one 𝑥 : 𝑋 .

Definition 2.3.12. [] Given types 𝑋 and 𝑌 , a function 𝑓 : 𝑋 → 𝑌 is an embedding
if each fiber of 𝑓 is a proposition. We write this as follows:

is-embedding(𝑓) :=
∏
(𝑦 : 𝑌)

is-prop ©«
∑︁
(𝑥 : 𝑋)

(𝑓 𝑥 = 𝑦)ª®¬.
As an example, the function pr1 :

∑
(𝑥 : 𝑋) 𝑌 (𝑥) → 𝑋 is an embedding if 𝑌 is a proposi-

tion; also, inl : 𝑋 → 𝑋 + 𝑌 and inr : 𝑌 → 𝑋 + 𝑌 are embeddings.
The subtype that encapsulates all interpretations of truth values in a given universe

is that universe’s type of truth values.

Definition 2.3.13. [] The type of truth values for a universe U is the type,

ΩU :=
∑︁
(𝑃 : U)

(is-prop 𝑃) .

Note that we usually leave the particular universe implicit, and simply write Ω. In this
thesis, we use truth-valued functions often, without explicitly proving (via the above
lemmas) that the values of the function are propositions. In the formalisation, this
requirement adds additional, but usually straightforward, complexity to the proofs.

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Subsingletons.html#%CE%A3-is-prop
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Embeddings.html#is-embedding
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.SubtypeClassifier.html#%CE%A9

19 Chapter 2. Constructive Univalent Type Theory via Agda

2.3.3 Propositional extensionality

Logical equivalence between types is defined in the usual way.

Definition 2.3.14. [] Two types𝑋 and𝑌 are logically equivalent 𝑋 ↔ 𝑌 if𝑋 → 𝑌

and 𝑌 → 𝑋 .

However, given our discussions in the previous subsection, we would like a distinction
of this notion for propositions.

Definition 2.3.15. A proposition (𝑃, 𝑝) : ΩU implies a proposition (𝑄,𝑞) : ΩV , writ-
ten (𝑃, 𝑝) ⇒ (𝑄,𝑞), if 𝑃 → 𝑄 .

Definition 2.3.16. Two propositions 𝑃 : ΩU and𝑄 : ΩV are propositionally equivalent
𝑃 ⇔ 𝑄 if 𝑃 ⇒ 𝑄 and 𝑄 ⇒ 𝑃 .

With this definition, which we renamed propositional equivalence, we now correctly
model logical equivalences for types that interpret propositions.

As with function extensionality, we can assume that this implies identification.

Definition 2.3.17. [] We say that propositional extensionality holds for a given
universe U when, given 𝑃,𝑄 : ΩU , propositional equivalence 𝑃 ⇔ 𝑄 implies equality
𝑃 = 𝑄 ,

propext(U) :=
∏

(𝑃,𝑄 : ΩU)
(𝑃 ⇔ 𝑄 → 𝑃 = 𝑄)

2.3.4 Type equivalences

Informally, and in general, twomathematical or computational structures are considered
to be equivalent if they can be interchanged with each other in any context. Indeed, in
(homotopy) type theory, two types are equivalent if their elements can be interchanged
within a program without changing that program’s behaviour. An early attempt at
formalising this idea type-theoretically results in quasi-inverses.

Definition 2.3.18. [] Given types𝑋 and𝑌 , a function 𝑓 : 𝑋 → 𝑌 is a quasi-inverse
if there is a function 𝑔 : 𝑌 → 𝑋 such that either composition of 𝑓 and 𝑔 is the identity
function:

is-qinv(𝑓) :=
∑︁

(𝑔 : 𝑌→𝑋)
((𝑓 ◦ 𝑔 ∼ id𝑌) × (𝑔 ◦ 𝑓 ∼ id𝑋)) .

https://www.cs.bham.ac.uk/~mhe/TypeTopology/Notation.General.html#_%E2%86%94_
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Subsingletons.html#propext
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Equiv.html#qinv

2.3. Univalent mathematics in TypeTopology 20

Definition 2.3.19. Types 𝑋 and 𝑌 are quasi-invertible if there is a quasi-inverse from
𝑋 to 𝑌 : ∑︁

(𝑓 : 𝑋→𝑌)
is-qinv(𝑓).

A trivial example of a quasi-inverse is the identity function, meaning that every type is
quasi-invertible to itself.

While quasi-inverses indeed align with the notion of equivalence in some fields
of mathematics (such as the notion of an isomorphism in category theory), there is
an outstanding issue for univalent type theory: it is not the case that is-qinv(𝑓) is a
proposition for every 𝑓 , meaning that he proof that a function is a quasi-inverse may
not be unique [Uni13]. However, the statement that a function is an equivalence should
be a property rather than structure.

Univalent mathematics has fixed this: there is a more general notion of equivalence
that does yield propositions.

Definition 2.3.20. [] Given types𝑋 and𝑌 , a function 𝑓 : 𝑋 → 𝑌 is an equivalence
if there are functions 𝑔, ℎ : 𝑌 → 𝑋 such that 𝑓 ◦ 𝑔 and ℎ ◦ 𝑓 are the identity function:

is-equiv(𝑓) :=
∑︁

(𝑔 : 𝑌→𝑋)
(𝑓 ◦ 𝑔 ∼ id𝑌) ×

∑︁
(ℎ : 𝑌→𝑋)

(ℎ ◦ 𝑓 ∼ id𝑋).

Definition 2.3.21. [] Types 𝑋 and 𝑌 are equivalent 𝑋 ≃ 𝑌 : U ⊔ V if,

𝑋 ≃ 𝑌 :=
∑︁

(𝑓 : 𝑋→𝑌)
is-equiv(𝑓).

The fact that is-qinv(𝑓) is not in general a proposition, while is-equiv(𝑓) is, may
at first be unintuitive. As an example of the former see Theorem 4.1.3 of [Uni13],
which takes 𝑋 := Σ(𝐴 : U) ∥𝐴 ≃ 2∥2 and proves that id𝑋 : 𝑋 → 𝑋 is a quasi-inverse
in two unequal ways. The (rather involved) proof of the latter follows from function
extensionality — it appears as Theorem 4.3.2 of the same reference.

Of course, every quasi-inverse is trivially an equivalence. We also note here that
any type that is equivalent to a proposition is a proposition.

Lemma 2.3.22. [] Given 𝑋,𝑌 : U such that 𝑋 ≃ 𝑌 , if 𝑋 is a proposition then so is
𝑌 .

2The propositional truncation map ∥ − ∥ is explained in Section 2.3.6.

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Equiv.html#is-equiv
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Equiv.html#_%E2%89%83_
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Equiv.html#equiv-to-prop

21 Chapter 2. Constructive Univalent Type Theory via Agda

Proof. Recall from Definition 2.3.5 that 𝑋 being a proposition means that given any
𝑥1, 𝑥2 : 𝑋 we have 𝑥1 = 𝑥2; we wish to show the same for the equivalent type 𝑌 .
Given 𝑦1, 𝑦2 : 𝑌 , we use the equivalence 𝑓 : 𝑋 → 𝑌 and its left-inverse 𝑔 : 𝑌 → 𝑋 . We
therefore have elements 𝑔(𝑦1), 𝑔(𝑦2) : 𝑋 which satisfy 𝑔(𝑦1) = 𝑔(𝑦2), and therefore
(by the ap function defined at the end of Section 2.2.7) also 𝑓 (𝑔(𝑦1)) = 𝑓 (𝑔(𝑦2)).
Using the fact that 𝑓 ◦ 𝑔 ∼ 𝑖𝑑𝑌 , we can conclude 𝑦1 = 𝑓 (𝑔(𝑦1)) = 𝑓 (𝑔(𝑦2)) = 𝑦2.

When working informally, mathematicians will often conflate equivalence and
equality; for example, we may say “the reals are the unique complete ordered field"
and forget the qualifier “up to isomorphism". However, in MLTT, these concepts are
distinct. It is obvious that equality implies equivalence:

Corollary 2.3.23. [] Every type is equivalent to itself.

Proof (Sketch). By using the identity function, which is trivially an equivalence. This
proof yields the function ≃-refl : ∏(𝑋 : U) (𝑋 ≃ 𝑋) in TypeTopology.

Corollary 2.3.24. Given two types 𝑋 and 𝑌 such that 𝑋 = 𝑌 , then 𝑋 ≃ 𝑌 .

Proof. We utilise the given equality 𝑒 : 𝑋 = 𝑌 to build the function
transport(𝜆(𝑍 : V).𝑋 ≃ 𝑍, 𝑒) : 𝑋 ≃ 𝑋 → 𝑋 ≃ 𝑌 . Thus, by applying Corollary 2.3.23,
the result follows,

id-to-equiv : Π(𝑋,𝑌 : U) ((𝑋 = 𝑌) → (𝑋 ≃ 𝑌)) ,
id-to-equiv(𝑋,𝑌, 𝑒) := transport(𝜆(𝑍 : V).𝑋 ≃ 𝑍, 𝑒,≃-refl(𝑋)) .

But it is not the case that equivalence implies equality — this is another independent
proposition in our type theory.

2.3.5 Univalence

A foundational aim of univalent mathematics is to bring equivalence and equality into
alignment. The axiom that allows us to prove that equivalence implies equality is called
univalence. Univalence is due to Vladimir Voevodsky, who desired a foundation of math-
ematics in which all objects “are invariant under equivalence of structures" [ANST21].

Definition 2.3.25. [] We say that a given universe U is univalent when, given
𝑋,𝑌 : U , the function id-to-equiv(𝑋,𝑌) : 𝑋 = 𝑌 → 𝑋 ≃ 𝑌 (defined in Corollary 2.3.24)

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Equiv.html#%E2%89%83-refl
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Univalence.html#is-univalent

2.3. Univalent mathematics in TypeTopology 22

is an equivalence,

is-univalent(U) :
∏

(𝑋,𝑌 : U)
is-equiv(id-to-equiv(𝑋,𝑌)) .

Corollary 2.3.26. [] If U is univalent, then all types 𝑋,𝑌 : U that are equivalent
𝑋 ≃ 𝑌 are equal 𝑋 = 𝑌 .

Proof (Sketch). [u] Because, by univalence, the function id-to-equiv(𝑋,𝑌) : 𝑋 = 𝑌 →
𝑋 ≃ 𝑌 is an equivalence, there is also a function equiv-to-id : 𝑋 ≃ 𝑌 → 𝑋 = 𝑌 .

We use equivalences throughout this thesis, but only invoke univalence itself once (in
Theorem 5.1.25). We do, however, use both function extensionality and propositional
extensionality, as previously discussed.

We now state function extensionality in its non-naive form, which reflects our
earlier comments on equivalence in Section 2.3.4.

Definition 2.3.27. [] We say that function extensionality holds for given universes
U ,V when, given 𝑋 : U , 𝑌 : 𝑋 → V and functions 𝑓 , 𝑔 :

∏
(𝑥 : 𝑋) (𝑌 (𝑥)), the function

happly(𝑓 , 𝑔) : 𝑓 = 𝑔 → 𝑓 ∼ 𝑔 is an equivalence,

funext(U ,V) :=
∏

(𝑋 : U)

∏
(𝑌 : 𝑋→V)

∏
(𝑓 ,𝑔 : ∏(𝑥 : 𝑋) (𝑌 (𝑥)))

(is-equiv(happly(𝑓 , 𝑔))) .

Corollary 2.3.28. If function extensionality holds for U ,V then naive function exten-
sionality holds for U ,V .

Proof (Sketch). [f] Because, by function extensionality, the function
happly(𝑓 , 𝑔) : 𝑓 = 𝑔 → 𝑓 ∼ 𝑔 is an equivalence, there is also a function
naive-fe𝑓 ∼ 𝑔 → 𝑓 = 𝑔 : which has the same type as naive function extensionality
(Definition 2.3.4).

Univalence truly captures that equivalence and identity are equivalent: indeed, it
generalises the two more specific extensionality principles.

Corollary 2.3.29. If U and V are univalent, function extensionality holds for U ,V .

Voevodsky’s original proof of this corollary is too detailed to reproduce here: we invite
the interested reader to see [Gam11].

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Univalence.html#eqtoid
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.FunExt.html#funext

23 Chapter 2. Constructive Univalent Type Theory via Agda

Corollary 2.3.30. If U is univalent, propositional extensionality holds for U .

Proof (Sketch). [u] If two propositions 𝑃,𝑄 : ΩU are propositionally equivalent
𝑃 ⇔ 𝑄 , then they are immediately equivalent 𝑃 ≃ 𝑄 . Thus, by Corollary 2.3.26 of
univalence, they are equal 𝑃 = 𝑄 .

2.3.6 Propositional truncation

Under the propositions as (some) types interpretation, we have shown the relationship
between proposition types and mathematical propositions. However, with respect
to the logical interpretation of the type theory, there are two outstanding problems:
Σ-types represent constructive existence and +-types tell us exactly which of our
premises holds. Both of these type families do not in general interpret propositions
(see Lemmas 2.3.8 and 2.3.11) and, moreover, their interpretations as statements do not
match the ‘traditional’ logical perspective of existence and disjunction.

This is resolved in univalent mathematics by a further axiom called propositional
truncation, which effectively forces a structure to become a property. In TypeTopology,
propositional truncations are axiomatised in the following way.

Definition 2.3.31. [] We say that a given universe U has propositional truncations
when there is a type truncation function ∥ − ∥ : U → ΩU and an element truncation
function | − | : 𝑋 → ∥𝑋 ∥, such that for every function 𝑓𝑋 : 𝑋 → 𝑃 , where 𝑃 is a
proposition, there exists the truncated function 𝑓∥𝑋 ∥ : ∥𝑋 ∥ → 𝑃 .

Note that although the behaviour of the truncated function 𝑓∥𝑋 ∥ is not specified in
the above axiomatisation, it indeed behaves correctly with respect to 𝑓𝑋 and | − | due to
the fact that 𝑃 is a proposition. By this, we mean that the commutative diagram for
truncations shown in Figure 2.1 commutes.

𝑋 ∥𝑋 ∥

𝑃

|−|

𝑓∥𝑋 ∥
𝑓𝑋

Figure 2.1: Commutative diagram illustrating Lemma 2.3.32.

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.PropTrunc.html#propositional-truncations-exist

2.3. Univalent mathematics in TypeTopology 24

Lemma 2.3.32. Given any type 𝑋 : U in a universe which has propositional trun-
cations and a function 𝑓𝑋 : 𝑋 → 𝑃 , where 𝑃 is a proposition, the truncated function
𝑓∥𝑋 ∥ : ∥𝑋 ∥ → 𝑃 is such that for all 𝑥 : 𝑋 we have 𝑓𝑋 (𝑥) = 𝑓∥𝑋 ∥ (|𝑥 |).

Proof. [t] The proof is immediate because 𝑓𝑋 (𝑥) and 𝑓∥𝑋 ∥ (|𝑥 |) are both of type 𝑃 ,
which is a proposition. Recall from Definition 2.3.5 that meaning that all elements of
a proposition are equal.

We can truncate Σ-types to give types for interpreting traditional existence, which
do not carry a constructive witness of the statement.

Definition 2.3.33. [] Given a type 𝑋 : U and a type family 𝑌 : 𝑋 → V we define
the traditional existence type:

∃(𝑥 : 𝑋)𝑌 (𝑥) := ∥
∑︁
(𝑥 : 𝑋)

𝑌 (𝑥)∥ .

Furthermore, we +-types can be truncated to give traditional disjunction types, which
do not label which said of their disjunction holds.

We do not use traditional disjunciton types in this thesis, though, as previously
mentioned, we do use propositional truncation; in particular for traditional existence
types.

2.3.7 Homotopy sets and beyond

A type𝑋 : U yields identities 𝑥 =𝑋 𝑦 : U . A recognition of core importance to homotopy
type theory is that 𝑥 =𝑋 𝑦 itself yields identities 𝑝 =𝑥=𝑋𝑦 𝑞 : U . This means, of course,
that that type also yields identities 𝛼 𝑝=𝑥=𝑋 𝑦𝑞

𝛽 : U — and so on ad infinitum. This
recognition illuminates the concept of homotopy-levels (or h-levels), which assigns to
some types a number that refers to how complex their yielded identity types are.

A type with exactly one element (a ‘contractible type’) has h-level 0, a type with at
most one element (i.e. a proposition) has h-level 1, a type whose identities have at most
one element has h-level 2, a type whose identities’ identities have at most one element
has h-level 3, and — again — so on and so forth. This can be formally expressed by
defining the following recursive function — which first requires us to formally define
the notion of a contractible type.

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.PropTrunc.html#PropositionalTruncation.%E2%88%83

25 Chapter 2. Constructive Univalent Type Theory via Agda

Definition 2.3.34. [] A type 𝑋 : U is contractible if there is some 𝑐 : 𝑋 such that
for all 𝑥 : 𝑋 we have 𝑐 = 𝑥 :

is-contractible 𝑋 := Σ(𝑐 : 𝑋)Π(𝑥 : 𝑋) 𝑐 = 𝑥 .

Definition 2.3.35. [] A type 𝑋 : U has h-level 𝑛 : N if has-h-level(𝑋,𝑛), defined
below, holds.

has-h-level(𝑋, 0) := is-contractible 𝑋,

has-h-level(𝑋,𝑛 + 1) := Π(𝑥,𝑦 : 𝑋) has-h-level(𝑥 =𝑋 𝑦, 𝑛).

Types with h-level 2 are also called sets— they represent types that interpret classical
sets, where elements can only be equal in one way.

Definition 2.3.36. [] A type 𝑋 : U is a set if, for any elements 𝑥,𝑦 : 𝑋 , we have
is-prop (𝑥 = 𝑦).

From there, types with h-level 𝑛 + 2 are 𝑛-groupoids, adopting terminology from
homotopy theory [Uni13].

In this thesis, we often utilise the fact that certain types are propositions or sets,
but do not utilise higher types in this way.

2.4 Fundamental concepts for this thesis

To close this chapter, we introduce for reference a number of additional concepts that
are used throughout the thesis.

2.4.1 Decidability and discreteness

We introduce three notions of decidability: decidability of types, decidability of type-
valued functions and decidable equality.

Definition 2.4.1. [] A type is decidable if we can show it is either pointed or its
negation is pointed:

decidable X := 𝑋 + ¬𝑋 .

Definition 2.4.2. [] Given a type 𝑋 : U and type-valued function 𝐵 : 𝑋 → V the
Π-type

∏
𝐵 : U ⊔ V is decidable (or complemented) if 𝐵(𝑎) : U is decidable for every

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Subsingletons.html#is-contr
https://www.cs.bham.ac.uk/~mhe/TypeTopology/MGS.hlevels.html#_is-of-hlevel_
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.Sets.html#is-set
https://www.cs.bham.ac.uk/~mhe/TypeTopology/MLTT.Negation.html#is-decidable
https://www.cs.bham.ac.uk/~mhe/TypeTopology/NotionsOfDecidability.Complemented.html#is-complemented

2.4. Fundamental concepts for this thesis 26

𝑎 : 𝐴, i.e. if we have,

complemented 𝐵 :=
∏
(𝑎 : 𝐴)

(decidable B(a)) .

We cannot in general decide whether two elements of a type are equal; types for
which we can are called discrete.

Definition 2.4.3. [] A type 𝑋 is discrete if it has decidabile equality:

discrete(𝑋) :=
∏

(𝑥,𝑦 : 𝑋)
(decidable (𝑥 = 𝑦)) .

The empty type, singleton type, natural numbers and integers are all discrete. Further-
more, given two discrete types 𝑋 and 𝑌 , both 𝑋 + 𝑌 and 𝑋 × 𝑌 are discrete.

2.4.2 Finite types

There are various notions of finiteness in TypeTopology, and more broadly in construc-
tive type theory. In this thesis, we work with only those types that are finite linearly
ordered.

Definition 2.4.4. [] The type family Fin : N → U is defined by induction:

Fin : N → U ,

Fin(0) := 0,

Fin(𝑛 + 1) := Fin(𝑛) + 1.

Definition 2.4.5. [] A type 𝐹 is finite linearly ordered if there is some 𝑛 : N such
that 𝐹 ≃ Fin(𝑛).

Note that this is structure and not property — it defines the collection of finite linear
orders on 𝐹 .

Definition 2.4.6. [] A type 𝐹 is finite if there is some 𝑛 : N such that ∥𝐹 ≃ Fin(𝑛)∥.

This is now a property. Every finite linearly ordered type is trivially finite, but univalence
implies that not every finite type is finite linearly ordered — hence, it is not provable to
provide an order for a general finite type [Esc21].

https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.DiscreteAndSeparated.html#is-discrete
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Fin.Type.html#Fin
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Fin.Bishop.html#finite-linear-order
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Fin.Bishop.html#finiteness.is-finite

27 Chapter 2. Constructive Univalent Type Theory via Agda

However, in this thesis we only utilise finite linearly ordered types for a notion of
finite, and so we abuse terminology and call these types ‘finite’ throughout.

We recall two easy lemmas concerning these finite types:

Lemma 2.4.7. [] Every finite linearly ordered type 𝐹 is discrete.

Proof (Sketch.) By induction on the 𝑛 : N such that 𝐹 ≃ Fin(𝑛). In the base case where
𝑛 := 0, then 𝐹 ≃ 0 which is vacuously discrete. In the inductive case where 𝑛 := 𝑛′+ 1,
for some 𝑛′ : N, then 𝐹 ≃ Fin(𝑛′) +1 — as both sides of this are discrete (the left-hand
side by induction and right-hand side by the fact that 1 is trivially discrete), the
overall +-type is discrete.

Lemma 2.4.8. [] Every finite linearly ordered type is a set.

Proof (Sketch.) Similarly to the above we proceed by induction and use that 0 and 1
are both sets and that the disjoint union of sets is also a set.

2.4.3 Vectors and sequences

We often require types for products beyond the binary case. For finitary products we
now introduce vectors, and for infinitary products we introduce sequences. Sequences
are of particular importance to this work, as the representations of real numbers we
use later are sequence types.

We first give both non-dependent and dependent sequences. Given a type 𝑋 : U ,
the type of (non-dependent) sequences of elements of 𝑋 is 𝑋N := (N → 𝑋). Meanwhile,
given an N-indexed family of types 𝑌 : N → U , the type of dependent sequences of
elements of 𝑌 (0), 𝑌 (1), 𝑌 (2), ... respectively is the Π-type Π𝑌 : U . Of course, the non-
dependent version is an instance of the dependent version by setting 𝑌 as the constant
function (𝜆(− : N).𝑋) : N → U .

For vectors, we formally define the dependent version.

Definition 2.4.9. [] Given a number𝑛 : N and a finite family of types𝑋 : Fin(𝑛) →
U , the type of 𝑛-size (dependent) vectors Vec(𝑛,𝑋) is defined inductively using binary

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter2.Finite.html#finite-is-discrete
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter2.Finite.html#finite-is-set
https://www.cs.bham.ac.uk/~mhe/TypeTopology/MLTT.SpartanList.html#vec

2.4. Fundamental concepts for this thesis 28

products.

Vec : Π(𝑛 : N) (Fin(𝑛) → U) → U ,

Vec(0, 𝑋) := 1,

Vec(𝑛 + 1, 𝑋) := 𝑋0 × Vec(𝑛, 𝜆𝑖.𝑋𝑖+1).

As with dependent sequences, each point of a dependent vector can have a different
type. Again, if the given type family 𝑌 is constant on a type 𝑋 , then we have defined
a non-dependent vector of elements of 𝑋 . We usually notate 𝑛-size non-dependent
vectors as {𝑥0, ..., 𝑥𝑛−1} : 𝑋𝑛 .

In the rest of the thesis we use the following (overloaded) notation for functions
that operate on both vectors and sequences. Given a vector or sequence 𝑥𝑠 , we write:

• 𝛼𝑛 for the 𝑛th element of the vector/sequence,
• head 𝑥𝑠 for the first element of the vector/sequence 𝛼0,
• tail 𝑥𝑠 for the vector/sequence with the head dropped 𝜆𝑛.𝑥𝑠𝑛+1,
• (𝑥 :: 𝑥𝑠) for the vector/sequence prepended with an element 𝑥 ,
• map(𝑓 , 𝑥𝑠) for the vector/sequence 𝑓 (head 𝑥𝑠) :: map(𝑓 , tail 𝑥𝑠),
• repeat 𝑥 for the sequence (𝜆𝑛.𝑥).

Note that these are not just notation but functions in our formalisation. For example,
the following function zipWith is the extension of map to binary functions:

Definition 2.4.10. [] Given types𝑋 ,𝑌 and𝑍 , we define the zipWith functional that
canonically lifts functions of type (𝑋 → 𝑌 → 𝑍) to those of type (𝑋N → 𝑌N → 𝑍N):

zipWith : (𝑋 → 𝑌 → 𝑍) → (𝑋N → 𝑌N → 𝑍N),
zipWith(𝑓 , 𝛼, 𝛽) := 𝜆𝑛.𝑓 (𝛼𝑛, 𝛽𝑛).

An important notion in our work is that of the equality of sequence prefixes, which
is decidable for any length of prefix if the types of the sequence are discrete.

Definition 2.4.11. [] Given an N-indexed family of types 𝑋 : N → U , two
sequences 𝛼, 𝛽 : Π𝑋 have equal 𝑛-prefixes if they are equal at every point below 𝑛:

∼𝑛 : N → Π𝑋 → Π𝑋 → U ,

𝛼 ∼𝑛 𝛽 := Π(𝑖 : N) (𝑖 < 𝑛 → 𝛼𝑖 = 𝛽𝑖)

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter2.Sequences.html#zipWith
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter2.Sequences.html#_%E2%88%BC%E2%81%BF_

29 Chapter 2. Constructive Univalent Type Theory via Agda

Lemma 2.4.12. [] Given an N-indexed family of discrete types 𝑋 : N → U , given
any sequences 𝛼, 𝛽 : Π𝑋 we can decide whether 𝛼 ∼𝑛 𝛽 for any prefix length 𝑛 : N.

Proof. In the base case, 𝛼 ∼0 𝛽 is always satisfied (as there is no natural number
below 0). In the inductive case, we decide whether 𝛼 ∼𝑛+1 𝛽 by deciding whether
𝛼 ∼𝑛 𝛽 (by induction) and whether 𝛼𝑛 = 𝛽𝑛 (by discreteness of 𝑋𝑛).

Lemma 2.4.13. Given an N-indexed family of discrete types 𝑋 : N → U , given any
sequences 𝛼, 𝛽 : Π𝑋 the type 𝛼 ∼𝑛 𝛽 , for any prefix length 𝑛 : N, is an equivalence
relation (i.e. it is reflexive, symmetric and transitive).

Proof. By those same properties (given in Section 2.2.7) on the identity type 𝛼𝑖 = 𝛽𝑖
for all 𝑖 < 𝛽 .

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter2.Sequences.html#%E2%88%BC%E2%81%BF-decidable

Chapter 3

Searchability and Continuity

In Chapter 2, we outlined our constructive and univalent foundation of mathematics
that we will work within in this thesis. Within our Agda framework, we have begun to
define a wide collection of mathematical structures, properties and propositions. Two
structures of chief importance to this thesis are searchability and total boundedness:
related concepts which are explored in this chapter in a generalised format, employed in
Chapter 4 for defining convergent optimisation and regression theorems, and equipped
in Chapter 6 for computation of such search, optimisation and regression procedures
on types for for representing real numbers.

In order to be able to express searchability on infinite types (such as those used for
representing real numbers), we need to define another key property in our framework
— continuity on functions and predicates. In Section 3.2, we define a convenient variant
of continuity on closeness spaces; a structure that we also explore in this chapter which
also allows us to define total boundedness. By the end of this chapter, we will have two
methods for constructive infinite search algorithms: by using the total boundedness
property (Theorem 3.3.6) or by using the Tychonoff theorem for searchable types (Theo-
rem 3.3.14). In the examples given in Chapter 6, we find that searchers derived from the
former theorem are usually better suited for practical purposes, though not in every
case.

31 Chapter 3. Searchability and Continuity

3.1 Searchable Types

3.1.1 Background and motivation

Martín Escardó introduced the concept of searchable sets in higher computability the-
ory [Esc08]. Informally, these sets 𝐾 are those for which we can establish a computable
functional E𝐾 , that we call a searcher. A searcher takes as input any Boolean-valued
predicate 𝑝 : 𝐾 → 2 and returns a distinguished element E𝐾 (𝑝) : 𝐾 that satisfies the
following search condition: if there is at least one element 𝑘 : 𝐾 that satisfies 𝑝 (i.e.
𝑝 (𝑘) = 1), then the distinguished element also satisfies 𝑝 .

Infinite searchers — sometimes called ‘seemingly impossible functional programs’ —
search elements of infinite spaces such as the type of binary sequences (i.e. elements
of the Cantor space 2N := N → 2) [Esc12]. The searcher on the Cantor space is
originally due to Berger [Ber90]. The more general searcher on the product space Π𝑇
of infinitely-many searchable sets 𝑇𝑖 : U (where 𝑇 : N → U) is due to Escardó [Esc08].

Of particular relevance to this thesis, infinite search programs have been previously
defined on representations of real numbers and used to perform analysis [Esc11b]. One
example is that Escardó has used infinite searchers to find solutions 𝑥 to equations
𝑓 (𝑥) = 𝑦 [Esc13a]. Another is that Simpson has used them to perform Riemann
integration and to find the global maximum value of a continuous function on the
type of ternary signed-digit encodings (introduced in Section 5.2) [Sim98]. We will
use searchable types for our own purposes of analysis (specifically, optimisation and
regression) in Chapter 4.

3.1.2 Searchable types in MLTT

For defining searchability in our Agda framework, there are a wealth of different
options, many of which are already defined in TypeTopology [Esc11a]. We follow
Escardó’s type-theoretic variants in that we have no requirement for our type 𝐾 : U to
be a set (Definition 2.3.36); further, instead of using 2 as the domain of the searched
predicates, we use a type of truth values Ω. In this section, we recall definitions and
proofs concerning searchable types — the proof techniques are shown only to get the
reader comfortable with these techniques, which will be useful when we introduce
uniformly continuously searchable types in Section 3.3.

In order to be able to test our searched predicates 𝑝 : 𝐾 → Ω, we require them to be
decidable. Note that every predicate in the original formulation was decidable, because
every function with domain 2 is trivially decidable — indeed, the type of decidable
predicates of type 𝐾 → Ω is, by function and proposition extensionality, equivalent to

3.1. Searchable Types 32

the original type of predicates 𝐾 → 2.

Definition 3.1.1. [] The type of decidable predicates on a type 𝐾 is defined by,

decidable-predicate(𝐾) :=
∑︁

(𝑝 : 𝐾→Ω)
(complemented 𝑝) .

We often leave the universe implicit — but note that it can be different to the universe
that the co-domain type lives in — and will usually leave the witness of decidability
implicit.

This gives us a definition of searchability in our type theory.

Definition 3.1.2. [] [] A function E𝐾 : decidable-predicate(𝐾) → 𝐾 is a
searcher on a given type 𝐾 if, for all 𝑝 : decidable-predicate(𝐾), it is the case that
𝑝 (E𝐾 (𝑝)) holds if there is some element 𝑘 : 𝐾 such that 𝑝 (𝑘) holds:

is-searcher(E) :=
∏

(𝑝 : decidable-predicate(𝐾))

©«
∑︁
(𝑘 : 𝐾)

𝑝 (𝑘)ª®¬ → 𝑝 (E (𝑝)) .

Definition 3.1.3. [] [] A type 𝐾 is searchable if we can define a searcher on
that type:

searchableE (𝐾) :=
∑︁

(E𝐾 : decidable-predicate 𝐾→𝐾)
is-searcher(E).

We often use the following equivalent definition, which is more convenient:

searchable(𝐾) :=
∏

(𝑝 : decidable-predicate(𝐾))

∑︁
(𝑘0 : 𝐾)

©«
∑︁
(𝑘 : 𝐾)

𝑝 (𝑘)ª®¬ → 𝑝 (𝑘0).

For non-trivial searchable types 𝐾 , the searcher is not unique. As an example,
consider two (informally defined) searchers for the 2 type:

1. E2(𝑝) := if 𝑝 (𝑡𝑡) return 𝑡𝑡 ; return 𝑓𝑓 ;
2. E2(𝑝) := if 𝑝 (𝑡𝑡) return 𝑓𝑓 ; return 𝑡𝑡 ;

Although both of these searchers satisfy the search condition, they can return differ-
ent elements given the same predicate. Therefore, the type (searchable 𝐾) is not a
subsingleton.

Note that we can always exhibit an element of a searchable type, and separately if
the element returned by the searcher does not satisfy the searched predicate then no

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#decidable-predicate
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TypeTopology.CompactTypes.html#is-compact%E2%88%99'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#searchableE
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TypeTopology.CompactTypes.html#is-compact%E2%88%99
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#searchable

33 Chapter 3. Searchability and Continuity

element does.

Lemma 3.1.4. [] [] Every searchable type is pointed.

Proof. For the given searchable type 𝐾 , we define the constant predicate 𝑝⊤(𝑘) := ⊤,
which every element satisfies. We can then introduce the element E𝐾 (𝑝⊤) : 𝐾 .

Lemma 3.1.5. [] Given a searchable type 𝐾 and any decidable predicate
𝑝 : decidable-predicate 𝐾 , if ¬𝑝 (E𝐾 (𝑝)) then for all 𝑘 : 𝐾 it is the case that ¬𝑝 (𝑘).

Proof. Assuming 𝑧 : ¬𝑝 (E𝐾 (𝑝)) then given any 𝑘 : 𝐾 we use the decidability of 𝑝 to
decide whether 𝑝 (𝑘) + ¬𝑝 (𝑘). In the latter case, the result follows trivially. In the
former case, the search condition (in Definition 3.1.2) implies that, because there is
an element satisfying the predicate, we have some 𝑞 : 𝑝 (E𝐾 (𝑝)); therefore, this case
is impossible and eliminated by 0-elim(𝑧 (𝑞)).

3.1.3 Searching finite types

Every pointed finite linearly ordered type (as defined in Section 2.4.2) is searchable. The
searcher for a finite type can simply check each element in turn (by any particular search
strategy, but we assume it checks them relative to the type’s linear order), returning
the first element that satisfies the predicate — if the type is fully exhausted, then the
searcher can return any element of the type as no such satisfying element exists.

First note that 1 is trivially searchable, and that the disjoint sum type former
preserves searchability.

Remark 3.1.6. [] [] 1 is searchable.

Proof. The searcher always returns ★ : 1. Whether or not 𝑝 (★), this satisfies the
search condition.

Lemma 3.1.7. [] [] If types 𝐾 and 𝐽 are searchable, then so is 𝐾 + 𝐽 .

Proof. Given any predicate 𝑝 : 𝐾 + 𝐽 → Ω, we want to find some element 𝑘𝑗0 : 𝐾 + 𝐽
that satisfies 𝑝 , if such an element exists. First, we define the predicates 𝑝𝐾 (𝑘) :=
𝑝 (inl 𝑘) and 𝑝 𝐽 (𝑗) := 𝑝 (inr 𝑗).
Then, we search 𝐾 to return 𝑘0 := E𝐾 (𝑝𝐾) : 𝐾 . If 𝑝 (inl 𝑘0), then we are done and
return 𝑘𝑗0 := inl 𝑘0. Otherwise, we go on to search 𝐽 and set 𝑗0 := E𝐽 (𝑝 𝐽). If 𝑝 (inr 𝑗0),

https://www.cs.bham.ac.uk/~mhe/TypeTopology/TypeTopology.CompactTypes.html#Compact%E2%88%99-gives-pointed
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#searchable-pointed
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TypeTopology.CompactTypes.html#is-compact%E2%88%99
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TypeTopology.CompactTypes.html#%F0%9D%9F%99-is-Compact
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#%F0%9D%9F%99-searchable
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TypeTopology.CompactTypes.html#%2B-is-Compact
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#%2B-searchable

3.1. Searchable Types 34

then we are done and return 𝑘𝑗0 := inl 𝑘0; if not, then there is no element of 𝐾 + 𝐽
that satisfies 𝑝 , and so we can safely return any element.

The above allows us to show that every pointed type in the family Fin : N → U is a
searchable type.

Lemma 3.1.8. [] Given any 𝑛 : N, if the type Fin(𝑛) is pointed then it is searchable.

Proof. By induction on the given 𝑛 : N. The base case, where 𝑛 := 0, is vacuous
as Fin(0) := 0 is not pointed. The inductive case, where 𝑛 := 𝑛′ + 1, requires
showing Fin(𝑛′ + 1) := 1 + Fin(𝑛′) is searchable. As 1 is trivially searchable (see
Remark 3.1.6) and Fin(𝑛′) is searchable by the inductive hypothesis, the result follows
by Lemma 3.1.7.

We next show that any type 𝐾 can be searched using a searcher on an equivalent
searchable type 𝐽 — i.e. equivalence preserves searchability.

Lemma 3.1.9. [] Given types 𝐾 and 𝐽 such that 𝐾 ≃ 𝐽 , if 𝐽 is searchable then so is
𝐾 .

Proof. Because 𝐾 ≃ 𝐽 , we have 𝑓 : 𝐾 → 𝐽 , 𝑔 : 𝐽 → 𝐾 and ℎ : 𝐽 → 𝐾 such that
𝑓 ◦ 𝑔 ∼ id𝐽 and ℎ ◦ 𝑓 ∼ id𝐾 .
Given any predicate 𝑝 : 𝐾 → Ω, we want to find some element 𝑘0 : 𝐾 that satisfies 𝑝 ,
if such an element exists. We define 𝑝′ : 𝐽 → Ω as 𝑝′(𝑗) := 𝑝 (𝑔(𝑗)) and search 𝐽 to
return 𝑗0 := E𝐽 (𝑝′) : 𝐽 . If 𝑝 (𝑔(𝑗)), then we are done and return 𝑘0 := 𝑔(𝑗).
Otherwise, 𝑝′ is never satisfied (i.e. ¬𝑝 (𝑔(𝑗)) for all 𝑗 : 𝐽) and from this we can prove
that 𝑝 is never satisfied. Given 𝑘 : 𝐾 such that 𝑝 (𝑘), we would have 𝑓 (𝑘) : 𝐽 such that
𝑝 (𝑘) := 𝑝 (ℎ(𝑓 (𝑘)) := 𝑝′(𝑓 (𝑘)), which is a contradiction. We have proved that 𝑝 is
never satisfied, and hence our searcher can return any element.

We can now show that any pointed finite linearly ordered type is a searchable type.

Lemma 3.1.10. [] Every pointed finite linearly ordered type is searchable.

Proof. By Lemmas 3.1.8 and 3.1.9.

Finally, we show that finite products preserve searchability.

Lemma 3.1.11. [] [] If 𝐾 and 𝐽 are searchable, then so is 𝐾 × 𝐽 .

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#Fin-searchable
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#equivs-preserve-searchability
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#finite-searchable
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TypeTopology.CompactTypes.html#binary-Tychonoff
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#%C3%97-searchable

35 Chapter 3. Searchability and Continuity

Proof. Given any predicate 𝑝 : 𝐾 × 𝐽 → Ω, we want to find a pair of elements
(𝑘0, 𝑗0) : 𝐾 × 𝐽 that satisfy 𝑝 , if such a pair exists. We define a family of predicates on
𝐽 ,

𝑝 𝐽 : 𝐾 → decidable-predicate(𝐽),
𝑝 𝐽 (𝑘) := 𝜆 𝑗 .𝑝 (𝑘, 𝑗).

and a predicate on 𝐾 ,
𝑝𝐾 (𝑘) := 𝑝 (𝑘, E𝐽 (𝑝 𝐽 (𝑘))),

where E𝐽 is the searcher (see Definition 3.1.2) on 𝐽 . By searching 𝐾 for an answer to
𝑝𝐾 , we in turn search 𝐽 for an answer to 𝑝 𝐽 (𝑘) — we name the former answer 𝑘0 : 𝐾
and the latter, E𝐽 (𝑝 𝐽 (𝑘0)) : 𝑌 , is dependent on the former.

We now need to show that the search condition (Definition 3.1.2) is satisfied; i.e. if
there is (𝑘, 𝑗) : 𝐾 × 𝐽 such that 𝑝 (𝑘, 𝑗) then also 𝑝 (𝑘0, E𝐽 (𝑝 𝐽 (𝑘0))). We use the search
conditions of 𝑘0 and E𝐽 (𝑝 𝐽 (𝑘0)):

1. If there is 𝑘′ : 𝐾 such that 𝑝𝐾 (𝑘′) := 𝑝 (𝑘′, E𝐽 (𝑝 𝐽 (𝑘′))) then 𝑝𝐾 (𝑘0) :=
𝑝 (𝑘0, E𝐽 (𝑝 𝐽 (𝑘0))),

2. For any 𝑘∗ : 𝐾 if there is a 𝑗 ′ : 𝐽 such that 𝑝 (𝑘∗, 𝑗 ′) then 𝑝 (𝑘∗, E𝐽 (𝑝 𝐽 (𝑘∗))).
We have 𝑝 (𝑘, 𝑗) and so by (2) we have 𝑝 (𝑘, E𝐽 (𝑝 𝐽 (𝑘))), and by (1) we then have the
conclusion.

3.1.4 Can we search infinite types?

Our intuition told us that all finite types are searchable, and likewise our intuition
tells us that all infinite types are not searchable. Indeed, searchability of the canonical
countably infinite type N is logically equivalent to the limited principle of omniscience
(LPO) [TD88].

Remark 3.1.12. Recall that LPO states that, given a binary sequence, we can decide
that either all points of the sequence are 0 or there is an explicit index at which point
the sequence is 1.

LPO : U ,

LPO := Π(𝛼 : 2N)
(
Π(𝑛 : N) (𝛼𝑛 = 0)

)
+
(
Σ(𝑛 : N) (𝛼𝑛 = 1)

)
.

Lemma 3.1.13. [] The natural numbers are searchable if and only if LPO holds.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#%E2%84%95-searchability-is-taboo

3.1. Searchable Types 36

Proof. We first prove that the searchability of N implies LPO. Given a binary sequence
𝛼 : 2N, we define the following predicate on natural numbers, which is true when
the sequence at that index is 1:

𝑝 : N → Ω,

𝑝 (𝑛) := 𝛼𝑛 = 1.

Note that this is indeed subsingleton-valued as 2 is a set (see Lemma 2.4.8),
and is decidable as 2 is discrete (see Lemma 2.4.7). Now, using the searcher
EN : decidable-predicate N → N, we obtain the element EN(𝑝) and check whether it
satisfies the predicate. If 𝑝 (EN(𝑝)), then the right-hand side of LPO holds because
𝛼EN (𝑝) = 1. If ¬𝑝 (EN(𝑝)), then the left hand side holds because, by Lemma 3.1.5,
nothing satisfies the predicate — no element of 𝛼 is 1 and therefore every element
must be 0).

To prove the opposite direction, we assume that LPO holds and want to show that
we can find an element that satisfies any given (𝑝,𝑑) : decidable-predicate N if such
an element exists. Given such a predicate, we define the following binary sequence
that is 1 whenever the index satisfies the predicate and 0 otherwise:

𝛼′ : Π(𝑛 : N) (decidable(𝑝 (𝑛)) → 2) ,
𝛼′(𝑛, inl 𝑞) := 1,

𝛼′(𝑛, inr 𝑧) := 0,

𝛼 : 2N,

𝛼𝑛 := 𝛼′(𝑛,𝑑 (𝑛)) .

The proof follows by applying LPO to 𝛼 . In the case where 𝛼𝑛 = 0 for all 𝑛 : N, then
the predicate is never satisfied and our searcher can return any element. In the case
where there is some 𝑛 : N such that 𝛼𝑛 = 1, then we also have a proof of 𝑝 (𝑛), and
the searcher can return N. In both cases, the search condition holds.

Some infinite types, however, go against our intuitions and are searchable. Specifi-
cally, Martín Escardó proved that infinitary products preserve searchability; i.e. given a
type family 𝑇 : N → U of searchable types, the type Π𝑇 : U is itself searchable [Esc08].
This result is the Tychonoff theorem for searchable types1 and it allows a wide range of

1This name comes from the relationship between the concepts of searchable types and compact
spaces in (synthetic) topology. In topology, Tychonoff’s theorem states that arbitrary products preserve
compactness.

37 Chapter 3. Searchability and Continuity

types, such as the aforementioned Cantor space 2N and those types we use in Chapter 6
for representing compact intervals of real numbers, to be searched. We therefore require
a formulation of the Tychonoff theorem in our framework for constructive type theory.
However, it is not the case that we can simply translate the original proof directly into
our setting.

Escardó’s original infinite search algorithms were written in PCF, a language which
has access to general recursion. The proof that this infinite search returns an answer
is written in the Scott model of PCF, a setting in which all PCF-definable functions
are automatically continuous. A corollary of this states that any decidable predicate
𝑝 : Π𝑇 → Ω is uniformly continuous, which means that only a finite amount of informa-
tion about a particular search candidate 𝑥 : Π𝑇 is required to determine whether or not
𝑝 (𝑥) holds. The combination of general recursion and the assumption that all functions
are continuous means that the infinite search algorithm always returns an answer.

In our setting, we deliberately do not assume that all functions are continuous (in
particular, this makes our mathematics compatible with classical mathematics) and we
do not have access to general recursion (indeed, the recursive functions of MLTT are
primitive recursive) [NPS90]. Therefore, we are required to use a different approach in
our formulation of the Tychonoff theorem. This different approach is that we rephrase
the notion of searchability to incorporate an explicit notion of uniform continuity. The
primitive-recursive infinite search algorithms themselves are then defined using the
information provided by this notion.

This results in an alternative proof of the Tychonoff theorem for searchable types,
which we give in Section 3.3.3, that does not use general recursion and explicitly assumes
that the searched predicate is uniformly continuous. Of course, this requires us first to
actually define an explicit notion of continuity within our framework, which we aim to
keep as general as possible for definition on a wide class of types; for this purpose, we
introduce closeness spaces in the next section.

3.2 Closeness Spaces

Continuity, and the stronger notion of uniform continuity, are properties of functions
𝑓 : 𝑋 → 𝑌 . Informally, continuity says that determining 𝑓 (𝑥) to a requested precision
𝜀 depends on determining 𝑥 to a certain precision 𝛿 , the modulus of continuity, which is
constructed from 𝜀 and 𝑥 . A modulus of uniform continuity, meanwhile, is constructed
only from 𝜀.

Continuity can be defined in a variety of ways; we may choose a particular definition
based on the types 𝑋 and 𝑌 , the form of topological information we have about those

3.2. Closeness Spaces 38

type, and/or the types of the precisions 𝜀 and 𝛿 . In this section, we motivate and define
within our framework a structure we call closeness spaces, which exhibit a constructively
economical definition of continuity and uniform continuity that we find convenient for
our work.

3.2.1 Motivation via metric spaces

In analysis, one common definition of continuity is between metric spaces, wherein
the distance between objects can be measured by a real-valued binary function called
a metric [Kap01; Rud64]. Although we have not yet discussed what a type for real
numbers looks like in our framework (this will be done later, in Chapter 5), the below
definitions are for illustrative purposes only, and so the reader can assume the type of
positive reals R≥0 in the below satisfies the expected properties.

Definition 3.2.1. [] A metric space is a type 𝑋 equipped with a metric 𝑑 : 𝑋 →
𝑋 → R≥0 such that,

1. 𝑑 (𝑥,𝑦) = 0 ↔ 𝑥 = 𝑦,
2. 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥),
3. 𝑑 (𝑥, 𝑧) ≤ 𝑑 (𝑥,𝑦) + 𝑑 (𝑦, 𝑧).

For functions 𝑓 : 𝑋 → 𝑌 on metric spaces, continuity says that for any 𝜀 : R≥0 there
exists a 𝛿 : R≥0 such that all elements 𝑥,𝑦 : 𝑋 that are 𝛿-close to each other (i.e.𝑑𝑋 (𝑥,𝑦) <
𝛿) will be mapped to elements that are 𝜀-close to each other (i.e. 𝑑𝑌 (𝑓 (𝑥), 𝑓 (𝑦)) < 𝜀).
This notion of closeness can be described by the following family of reflexive and
symmetric binary relations 𝐶 : R≥0 → 𝑋 → 𝑋 → Ω where, for all 𝜀 : R≥0 and 𝑥,𝑦 : 𝑋 ,
we say that 𝑥 and 𝑦 are 𝜀-close if 𝐶𝜀 (𝑥,𝑦).

Definition 3.2.2. [] Given a metric space 𝑋 , the family of closeness relations is
defined as follows,

𝐶 : R≥0 → 𝑋 → 𝑋 → Ω,

𝐶𝜀 (𝑥,𝑦) := 𝑑 (𝑥,𝑦) < 𝜀.

Lemma 3.2.3. []Given a metric space 𝑋 and distance 𝜀 : R≥0, the closeness relation
𝐶𝜀 is reflexive and symmetric.

Proof. Reflexivity follows from Definition 3.2.1.1; i.e. 𝐶𝜀 (𝑥, 𝑥) := (0 ≤ 𝜀), which is
immediately satisfied for all 𝑥 : 𝑋 . Symmetry follows from Definition 3.2.1.2; i.e.

39 Chapter 3. Searchability and Continuity

𝐶𝜀 (𝑥,𝑦) := (𝑑 (𝑥,𝑦) ≤ 𝜀) = (𝑑 (𝑦, 𝑥) ≤ 𝜀) =: 𝐶𝜀 (𝑦, 𝑥) for all 𝑥,𝑦 : 𝑋 .

By strengthening the triangle inequality property (Definition 3.2.1.3) of metric spaces
we instead define ultrametric spaces, for which closeness relations are additionally
transitive and, thus, are equivalence relations.

Definition 3.2.4. [] An ultrametric space is a type 𝑋 equipped with an ultrametric
𝑑 : 𝑋 → 𝑋 → R≥0 such that,

(i) 𝑑 (𝑥,𝑦) = 0 ↔ 𝑥 = 𝑦,
(ii) 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥),
(iii) 𝑑 (𝑥, 𝑧) ≤ max(𝑑 (𝑥,𝑦), 𝑑 (𝑦, 𝑧)).

Lemma 3.2.5. [] Every ultrametric space is a metric space.

Proof. The first two conditions are the same — the third condition of ultrametric
spaces implies that of metric spaces because clearly max(𝑑 (𝑥,𝑦), 𝑑 (𝑦, 𝑧)) ≤ 𝑑 (𝑥,𝑦) +
𝑑 (𝑦, 𝑧).

Lemma 3.2.6. []Given an ultrametric space 𝑋 and distance 𝜀 : R≥0, the closeness
relation 𝐶𝜀 is transitive.

Proof. Given 𝐶𝜀 (𝑥,𝑦) := 𝑑 (𝑥,𝑦) ≤ 𝜀 and 𝐶𝜀 (𝑦, 𝑧) := 𝑑 (𝑦, 𝑧) ≤ 𝜀 we have that
max(𝑑 (𝑥,𝑦), 𝑑 (𝑦, 𝑧)) ≤ 𝜀. By Definition 3.2.4.(ii), 𝑑 (𝑥, 𝑧) ≤ max(𝑑 (𝑥,𝑦), 𝑑 (𝑦, 𝑧))
and therefore by transitivity of the order 𝑑 (𝑥, 𝑧) ≤ 𝜀 =: 𝐶𝜀 (𝑥, 𝑧).

Corollary 3.2.7. []Given an ultrametric space 𝑋 and distance 𝜀 : R≥0, the closeness
relation 𝐶𝜀 is an equivalence relation.

Proof. By Lemmas 3.2.3 and 3.2.6.

We now use these closeness relations to define continuity and uniform continuity
on (ultra)metric spaces.

Definition 3.2.8. [] Given (ultra)metric spaces 𝑋 and 𝑌 , a function 𝑓 : 𝑋 → 𝑌 is
continuous if for all 𝑥1 : 𝑋 and 𝜀 : R≥0 there is some 𝛿 : R≥0 such that elements that

3.2. Closeness Spaces 40

are 𝛿-close to 𝑥1 map to elements that are 𝜀-close to 𝑓 (𝑥1):

metric-f-continuous(𝑓) :=
Π(𝜀 : R≥0)Π(𝑥1 : 𝑋)Σ(𝛿 : R≥0)Π(𝑥2 : 𝑋) (𝐶𝛿 (𝑥1, 𝑥2) → 𝐶𝜀 (𝑓 (𝑥1), 𝑓 (𝑥2))) .

Definition 3.2.9. [] Given (ultra)metric spaces 𝑋 and 𝑌 , a function 𝑓 : 𝑋 → 𝑌 is
uniformly continuous if for all 𝜀 : R≥0 there is some 𝛿 : R≥0 such that elements that
are 𝛿-close map to elements that are 𝜀-close:

metric-f-ucontinuous(𝑓) :=
Π(𝜀 : R≥0)Σ(𝛿 : R≥0)Π(𝑥1,𝑥2 : 𝑋) (𝐶𝛿 (𝑥1, 𝑥2) → 𝐶𝜀 (𝑓 (𝑥1), 𝑓 (𝑥2))) .

Lemma 3.2.10. [] Every uniformly continuous function between metric spaces is
continuous.

Proof. If 𝛿 : R≥0 is a modulus of uniform continuity for 𝑓 : 𝑋 → 𝑌 (i.e. it depends
only on 𝜀 : R≥0 and not on any point 𝑥1 : 𝑋) then it is a modulus of continuity for any
𝑥1.

For the special case where the domain of the function is a truth value — and hence
the function is a truth-valued predicate — the only notion of closeness we care about
in the domain is logical equivalence. Therefore, we specialise uniform continuity for
predicates.

Definition 3.2.11. [] A predicate 𝑝 : 𝑋 → Ω on an (ultra)metric space 𝑋 is
uniformly continuous if there is some 𝛿 : R≥0 such that sequences that are 𝛿-close give
the same answer to the predicate:

metric-p-ucontinuous(𝑝) := Σ(𝛿 : R≥0)Π(𝑥1,𝑥2 : 𝑋) (𝐶𝛿 (𝑥1, 𝑥2) → 𝑝 (𝑥1) ⇔ 𝑝 (𝑥2)) .

3.2.2 Extended naturals and definition of closeness spaces

It will be convenient for our purposes to avoid the use of real numbers at this point and
formulate, primarily for the purposes of continuity, an alternative notion of ultrametric
spaces which we call closeness spaces. In a closeness space, the ultrametric is replace by a
different binary function called a closeness function. The idea is that while (ultra)metrics
measure the distance between the given objects, closeness functions measure the
closeness between them: two identical elements of a type have closeness infinity. Thus,

41 Chapter 3. Searchability and Continuity

closeness functions give values on the type of extended natural numbers N∞ defined
below.

We start this subsection by recalling the TypeTopology definition of extended
naturals.

Definition 3.2.12. [] The extended natural numbers type N∞ is the type of
decreasing binary sequences,

N∞ :=
∑︁

(𝛼 : 2N)
(is-decreasing 𝛼) ,

where is-decreasing(𝛼) := ∏
(𝑖:N) (𝛼𝑖 ≥ 𝛼𝑖+1).

We can lift any natural 𝑛 : N by defining 𝑛 : N∞ as the sequence of 𝑛-many 1s
followed by infinitely-many 0s. ∞ : N∞ is therefore defined as the sequence of infinitely-
many 1s. Given this, the partial order on the extended naturals — which extends that
on the naturals — is given below, along with its minimum and maximum.

Definition 3.2.13. [] The partial order on the extended naturals is defined as
follows,

𝑢 ⪯ 𝑣 := Π(𝑛 : N) (𝑢𝑛 = 1 → 𝑣𝑛 = 1) .

Lemma 3.2.14. [] [] The partial order on extended naturals ⪯ : N∞ → N∞ → Ω

is indeed a preorder (see the later Definition 4.1.4); i.e. it is reflexive and transitive.

Proof. Both are straightforward: for reflexivity, clearly for any 𝑛 : N if 𝑢𝑛 = 1 then
𝑢𝑛 = 1; for transitivity, if we have 𝑢𝑛 = 1 → 𝑣𝑛 = 1 and also 𝑣𝑛 = 1 → 𝑤𝑛 = 1 then
𝑢𝑛 = 1 → 𝑤𝑛 = 1.

Lemma 3.2.15. Given 𝑛,𝑚 : N such that 𝑛 ≤ 𝑚, it is the case that 𝑛 ⪯ 𝑚.

Proof. Recall that 𝑛,𝑚 : N∞ are the sequences of 𝑛-many 1s and𝑚-many 1s respec-
tively; i.e. 𝑛 ∼𝑛 1 and𝑚 ∼𝑚 1. Because 𝑛 ≤ 𝑚, this means we also have𝑚 ∼𝑛 1; thus,
by transitivity of ∼𝑛 (Lemma 2.4.13) we have 𝑛 ∼𝑛 𝑚, meaning that at every point
𝑖 : N where 𝑛

𝑖
= 1 then also𝑚

𝑖
= 1.

Lemma 3.2.16. [] [] Given any 𝑢 : N∞, we have that 0 ⪯ 𝑢 and 𝑢 ⪯ ∞.

https://www.cs.bham.ac.uk/~mhe/TypeTopology/CoNaturals.GenericConvergentSequence.html#%E2%84%95%E2%88%9E
https://www.cs.bham.ac.uk/~mhe/TypeTopology/CoNaturals.GenericConvergentSequence.html#_%E2%89%BC%E2%84%95%E2%88%9E_
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.Notions.html#%E2%89%BC-refl
https://www.cs.bham.ac.uk/~mhe/TypeTopology/Ordinals.Notions.html#%E2%89%BC-trans
https://www.cs.bham.ac.uk/~mhe/TypeTopology/CoNaturals.GenericConvergentSequence.html#%E2%88%9E-largest
https://www.cs.bham.ac.uk/~mhe/TypeTopology/CoNaturals.GenericConvergentSequence.html#Zero-smallest

3.2. Closeness Spaces 42

Proof. For the former, 0 is never 1 and so, for every 𝑛 : N, the antecedent of the
implication 0

𝑛
= 1 → 𝑢𝑛 = 1 is always empty, making the overall implication always

true. For the latter, ∞ is always 1 and so the subsequent of 𝑢𝑛 = 1 → ∞𝑛 = 1 is
always true, making the overall implication always true.

In general, the partial order on the extended naturals is not decidable (i.e. we cannot
decide whether or not 𝑢 ⪯ 𝑣 for any 𝑢, 𝑣 : N∞), but it is decidable when either side is a
natural number. We give the left-hand side proof of this.

Lemma 3.2.17. [] Given any 𝑛 : N and 𝑣 : N∞, it is the case that 𝑛 ⪯ 𝑣 is decidable.

Proof. We proceed by induction on 𝑛 : N. When 𝑛 := 0, then the result follows by
Lemma 3.2.16.
When 𝑛 := 𝑛′ + 1, we want to check that for every 𝑖 : N such that 𝑛′ + 1

𝑖
= 1 then also

𝑣𝑖 = 1. It suffices to simply check whether 𝑣𝑛′ = 1, because we know 𝑛′ + 1
𝑖
= 1 for all

𝑖 ≤ 𝑛′ (by the decreasing property), and so the value of 𝑣𝑖 only matters when 𝑖 ≤ 𝑛′;
i.e. if it is 0 at any of these points then ¬(𝑛′ + 1 ⪯ 𝑣). By the decreasing property, if
𝑣𝑖 = 0 at any point 𝑖 ≤ 𝑛′, then 𝑣𝑛′ = 0.
We proceed by checking whether 𝑣𝑛′ = 1 (which is decidable by Lemma 2.4.7). If
𝑣𝑛′ = 1 then 𝑛′ + 1 ⪯ 𝑣 . On the other hand, if ¬(𝑣𝑛′ = 1) then 𝑣𝑛′ = 0 and therefore
¬(𝑛′ + 1 ⪯ 𝑣).

We can also define the minimum of two extended naturals as the extension of the
minimum of two binary digits.

Definition 3.2.18. [] The minimum of two extended naturals min(𝑢, 𝑣) : N∞ is
given via min := 𝜆(𝑛 : N).min(𝑢𝑛, 𝑣𝑛), which is clearly decreasing as its arguments
are.

We can now define closeness spaces which, by comparing the below to Defini-
tion 3.2.4, the reader can see are a kind of dual of ultrametric spaces.

Definition 3.2.19. [] A closeness space is a type 𝑋 equipped with a closeness
function 𝑐 : 𝑋 → 𝑋 → N∞ such that,

1. 𝑐 (𝑥,𝑦) = ∞ ↔ 𝑥 = 𝑦,
2. 𝑐 (𝑥,𝑦) = 𝑐 (𝑦, 𝑥),
3. min(𝑐 (𝑥,𝑦), 𝑐 (𝑦, 𝑧)) ⪯ 𝑐 (𝑥, 𝑧).

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#%E2%89%BC-left-decidable
https://www.cs.bham.ac.uk/~mhe/TypeTopology/CoNaturals.GenericConvergentSequence.html#min
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#ClosenessSpace

43 Chapter 3. Searchability and Continuity

Remark 3.2.20 (Connection between closeness and metric spaces). Every closeness
space 𝑋 is informally an ultrametric space (and, hence, a metric space): using the
closeness function 𝑐 : 𝑋 → 𝑋 → N∞, one informally defines the ultrametric 𝑑 : 𝑋 →
𝑋 → R≥0 as 𝑑 (𝑥,𝑦) := 2−𝑐 (𝑥,𝑦) , with the usual convention that 2−∞ := 0. By this
ultrametric, the distance between objects decreases towards zero as their closeness
increases towards infinity.

3.2.3 Closeness relations and continuity

The reformulated definitions of closeness relations (the reader can compare to Defini-
tion 3.2.2 on metric spaces) on closeness spaces are given below.

Definition 3.2.21. [] fe Given a closeness space𝑋 , the family of closeness relations
is defined as follows,

𝐶 : N → 𝑋 → 𝑋 → Ω,

𝐶𝜀 (𝑥,𝑦) := 𝜀 ⪯ 𝑐 (𝑥,𝑦).

As before, for all 𝜀 : N and 𝑥,𝑦 : 𝑋 , we say that 𝑥 and 𝑦 are 𝜀-close if𝐶𝜀 (𝑥,𝑦). We borrow
further terminology from topology and say that if 𝑥 and 𝑦 are 𝜀-close then they are in
the same 𝜀-neighbourhood.

Remark 3.2.22. Every element of a closeness space is 0-close to every other element
by Lemma 3.2.16.

Because closeness spaces are ultrametric spaces, closeness relations on them are
equivalence relations.

Lemma 3.2.23. [] [] [] Given a closeness space 𝑋 and precision 𝜀 : N, the
closeness relation 𝐶𝜀 is an equivalence relation (reflexive, symmetric and transitive).

Proof. Reflexivity follows from Definition 3.2.19.1 ; i.e. 𝐶𝜀 (𝑥, 𝑥) :=
(
𝜀 ⪯ 𝑐 (𝑥, 𝑥)

)
=(

𝜀 ⪯ ∞
)
, which follows for all 𝑥 : 𝑋 from Lemma 3.2.16. Symmetry follows from

Definition 3.2.1.2; i.e. 𝐶𝜀 (𝑥,𝑦) :=
(
𝜀 ⪯ 𝑐 (𝑥,𝑦)

)
=

(
𝜀 ⪯ 𝑐 (𝑦, 𝑥)

)
=: 𝐶𝜀 (𝑦, 𝑥) for all

𝑥,𝑦 : 𝑋 . Transitivity follows from Definition 3.2.1.3; i.e. 𝐶𝜀 (𝑥, 𝑧) :=
(
𝜀 ⪯ 𝑐 (𝑥, 𝑧)

)
is

proved by first showing that
(
𝜀 ⪯ min(𝑐 (𝑥,𝑦), 𝑐 (𝑦, 𝑧))

)
, which is clearly the case by

the assumptions 𝐶𝜀 (𝑥,𝑦) :=
(
𝜀 ⪯ 𝑐 (𝑥,𝑦)

)
and 𝐶𝜀 (𝑦, 𝑧) :=

(
𝜀 ⪯ 𝑐 (𝑦, 𝑧)

)
— the result

then follows by using the transitivity of ⪯ (Lemma 3.2.14).

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#C
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#C-refl
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#C-sym
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#C-trans

3.2. Closeness Spaces 44

Closeness functions are monotonically decreasing: if two elements are 𝜀2-close, then
they are 𝜀1-close for all 𝜀1 ≤ 𝜀2.

Corollary 3.2.24. [] Given a closeness space𝑋 , precisions 𝜀1, 𝜀2 : N such that 𝜀1 ≤ 𝜀2
and elements 𝑥,𝑦 : 𝑋 , if 𝐶𝜀2 (𝑥,𝑦) then 𝐶𝜀1 (𝑥,𝑦).

Proof. By Lemma 3.2.15.

Furthermore, we can always decide whether two elements are 𝜀-close.

Lemma 3.2.25. [] Given a closeness space 𝑋 , precision 𝜀 : N and elements 𝑥,𝑦 : 𝑋 ,
it is the case that 𝐶𝜀 (𝑥,𝑦) is decidable.

Proof. By Lemma 3.2.17.

Critically, we now reformulate continuity (the reader can compare toDefinitions 3.2.8,
3.2.9 and 3.2.11 on metric spaces) for closeness spaces. This definition will be used
throughout the rest of the thesis.

Definition 3.2.26. [] Given closeness spaces 𝑋 and 𝑌 , a function 𝑓 : 𝑋 → 𝑌 is
continuous if for all 𝑥1 : 𝑋 and 𝜀 : N there is some 𝛿 : N such that elements that are
𝛿-close to 𝑥1 map to elements that are 𝜀-close to 𝑓 (𝑥1):

f-continuous(𝑓) := Π(𝜀 : N)Π(𝑥1 : 𝑋)Σ(𝛿 : N)Π(𝑥2 : 𝑋) (𝐶𝛿 (𝑥1, 𝑥2) → 𝐶𝜀 (𝑓 (𝑥1), 𝑓 (𝑥2))) .

Definition 3.2.27. [] Given closeness spaces 𝑋 and 𝑌 , a function 𝑓 : 𝑋 → 𝑌 is
uniformly continuous if for all 𝜀 : N there is some 𝛿 : N such that elements that are
𝛿-close map to elements that are 𝜀-close:

f-ucontinuous(𝑓) := Π(𝜀 : N)Σ(𝛿 : N)Π(𝑥1,𝑥2 : 𝑋) (𝐶𝛿 (𝑥1, 𝑥2) → 𝐶𝜀 (𝑓 (𝑥1), 𝑓 (𝑥2))) .

Lemma 3.2.28. [] Every uniformly continuous function between closeness spaces is
continuous.

Proof. If 𝛿 : N is a modulus of uniform continuity for 𝑓 : 𝑋 → 𝑌 (i.e. it depends only
on 𝜀 : N and not on any point 𝑥1 : 𝑋) then it is a modulus of continuity for any 𝑥1.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#C-mono
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#C-decidable
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#f-continuous
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#f-ucontinuous
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#ucontinuous-continuous

45 Chapter 3. Searchability and Continuity

Definition 3.2.29. [] A predicate 𝑝 : 𝑋 → Ω on a closeness space 𝑋 is uniformly
continuous if there is some 𝛿 : N such that sequences that are 𝛿-close give the same
answer to the predicate:

p-ucontinuous(𝑝) := Σ(𝛿 : N)Π(𝑥1,𝑥2 : 𝑋) (𝐶𝛿 (𝑥1, 𝑥2) → 𝑝 (𝑥1) ⇔ 𝑝 (𝑥2)) .

As can be expected, the identity function is uniformly continuous and composition
preserves uniform continuity.

Lemma 3.2.30. [] [] The identity function is uniformly continuous and composi-
tion of functions preserves uniform continuity.

Proof. For the identity function, we need to show for all 𝜀 : N there is 𝛿 : N that
𝐶𝛿 (𝑥1, 𝑥2) implies 𝐶𝜀 (id(𝑥1), id(𝑥2)) — thus we just set 𝛿 := 𝜀.
For composition of uniformly continuous functions 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 (i.e.
for all 𝜀 : N we have some 𝛿𝜀

𝑓
, 𝛿𝜀𝑔 : N such that 𝐶𝛿𝜀

𝑓
(𝑥1, 𝑥2) → 𝐶𝜀 (𝑓 (𝑥1), 𝑓 (𝑥2)) and

𝐶𝛿𝜀𝑔 (𝑦1, 𝑦2) → 𝐶𝜀 (𝑔(𝑦1), 𝑔(𝑦2))), we need to show that for all 𝜀 : N there is some 𝛿 : N

such that 𝐶𝛿 (𝑥1, 𝑥2) → 𝐶𝜀 (𝑔(𝑓 (𝑥1)), 𝑔(𝑓 (𝑥2))). By setting 𝛿 := 𝛿 𝑓
𝛿𝑔
𝜀

, we find that
𝐶
𝛿 𝑓
𝛿𝑔
𝜀 (𝑥1, 𝑥2) → 𝐶𝛿𝑔𝜀 (𝑓 (𝑥1), 𝑓 (𝑥2)) → 𝐶𝜀 (𝑓 (𝑔(𝑥1)), 𝑓 (𝑔(𝑥2)).

Further, and importantly for the purpose of function search, we can compose uniformly
continuous functions and predicates to form a new uniformly continuous predicate.

Lemma 3.2.31. [] Given closeness spaces 𝑋 and 𝑌 , a uniformly continuous function
𝑓 : 𝑋 → 𝑌 and a uniformly continuous (and decidable) predicate 𝑝 : 𝑌 → Ω, the
predicate

𝑝 𝑓 (𝑥) := 𝑝 (𝑓 (𝑥)),

is uniformly continuous (and decidable).

Proof. The modulus of uniform continuity of the predicate 𝑝 𝑓 : 𝑋 → 𝑌 is the modulus
of uniform continuity of 𝑓 at point 𝛿 , where 𝛿 is the modulus of uniform continuity
of 𝑝 .

Finally, we note that closeness relations themselves yield uniformly continuous and
decidable predicates.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#p-ucontinuous
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#id-ucontinuous
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#f-ucontinuous-comp
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#p-ucontinuous-comp

3.2. Closeness Spaces 46

Lemma 3.2.32. [] [] Given a closeness space 𝑋 and precision 𝜀 : N, the predicates

𝑝
𝑦

𝑙
(𝑥) := 𝐶𝜀 (𝑥,𝑦) and 𝑝𝑦𝑟 (𝑥) := 𝐶𝜀 (𝑦, 𝑥)

are uniformly continuous and decidable for any 𝑦 : 𝑋 .

Proof. By the decidability (Lemma 3.2.25) and transitivity (Lemma 3.2.23) of closeness
relations.

We have shown, therefore, that closeness spaces yield a formulation of continuity
that is exactly related to continuity on metric spaces; but which we can manipulate
more conveniently for the use cases of this thesis.

3.2.4 Totally bounded closeness spaces

We previously mentioned that searchable types relate to compact spaces — recall from
topology that a metric space is compact if it is totally bounded and complete, meaning
that totally bounded spaces are generalisations of compact spaces [Sut09]. In this
subsection, we will reformulate the idea of totally bounded metric spaces for closeness
spaces, which generalise the variant of searchable types we use to search infinite types
in Section 3.3.

In order to achieve this, we first define 𝜀-nets on closeness spaces. Recall that an
𝜀-net on a metric space 𝑋 is a finite subset {𝑥0, ..., 𝑥𝑛−1} of 𝑋 such that the union of the
𝑛-many open balls with these points at their center is 𝑋 itself [Sut09].

Definition 3.2.33. [] Given a closeness space 𝑋 , a finite linearly ordered type
𝑋 ′ equipped with a function 𝑔 : 𝑋 ′ → 𝑋 is an 𝜀-net of 𝑋 if for all 𝑥 : 𝑋 there is an
element 𝑥′ : 𝑋 ′ such that 𝐶𝜀 (𝑥,𝑔(𝑥′))).

As our interpretation of the quantifier “there is" in Definition 3.2.33 is Σ, rather than ∃,
we can use the following equivalent definition.

Definition 3.2.34. [] Given a closeness space 𝑋 , a finite linearly ordered type 𝑋 ′

equipped with a function 𝑔 : 𝑋 ′ → 𝑋 is an 𝜀-net of 𝑋 if there is a function ℎ : 𝑋 → 𝑋 ′

such that for all 𝑥 : 𝑋 we have 𝐶𝜀 (𝑥,𝑔(ℎ(𝑥))).

By this definition, every element 𝑥 : 𝑋 of a closeness space 𝑋 with an 𝜀-net (𝑋 ′, 𝑔)
is represented by at least one point ℎ(𝑥) : 𝑋 ′ of the net — indeed, these points represent
the whole 𝜀-neighbourhood in which they lie. Furthermore, because closeness relations

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#C-decidable-uc-predicate-l
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#C-decidable-uc-predicate-r
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#_is_net-of_

47 Chapter 3. Searchability and Continuity

are equivalence relations for closeness spaces, two elements 𝑥′1, 𝑥′2 : 𝑋 ′ of the net either
represent the exact same 𝜀-neighbourhood of 𝑋 or completely disjoint2. As an 𝜀-net
is finite, the existence of such a net implies that the number of 𝜀-neighbourhoods of
𝑋 is also finite. Because every element of a closeness space is 0-close to every other
element, any pointed type (e.g. 1) is a 0-net for any closeness space).

Reflecting the definition on metric spaces, a closeness space is totally bounded if
there is an 𝜀-net for every 𝜀 : N.

Definition 3.2.35. [] A closeness space 𝑋 is totally bounded if, for every precision
𝜀 : N, there is an 𝜀-net of 𝑋 .

If a closeness space is totally bounded, it has a finite number of 𝜀-neighbourhoods for
every 𝜀 : N.

3.2.5 Examples of (totally bounded) closeness spaces

In this subsection, we give examples of how we can build a wide class of closeness
spaces, many of which are additionally totally bounded (and, therefore, admit search).
Note that, unlike metric spaces, closeness spaces are only ever defined on ‘intensional’
mathematical spaces, such as the Cantor space 2N, and are not defined on ‘extensional’
spaces such as the unit interval [0, 1].

In each case, we prove that the closeness space is indeed a closeness space (i.e. it
satisfies the three properties of Definition 3.2.19). When proving a closeness function is
totally bounded, the 0 case is left out due to its triviality.

Discrete closeness spaces

Definition 3.2.36. [] Given a discrete type 𝑋 , the discrete closeness function
𝑐𝑋 : 𝑋 → 𝑋 → N∞ is defined by case analysis of 𝑑 (𝑥,𝑦) : decidable(𝑥 = 𝑦) for
arguments 𝑥,𝑦 : 𝑋 ,

• If 𝑥 = 𝑦 then 𝑐𝑋 (𝑥,𝑦) := ∞,
• If 𝑥 ≠ 𝑦 then 𝑐𝑋 (𝑥,𝑦) := 0.

Lemma 3.2.37. [] Discrete types are closeness spaces by the discrete closeness
function.

2This means that each closeness space with an 𝜀-net has a minimal 𝜀-net obtained by discarding
elements of the net that represent the same 𝜀-neighbourhoods — though, in this thesis, we never require
the net to be minimal.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#totally-bounded
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#discrete-clofun'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#D-ClosenessSpace

3.2. Closeness Spaces 48

Proof. We prove that each of the three conditions of Definition 3.2.19 is satisfied:
(i) (a) If 𝑥 = 𝑦, then 𝑐𝑋 (𝑥,𝑦) := ∞ by definition.

(b) If 𝑐𝑋 (𝑥,𝑦) := ∞, then we check whether or not 𝑥 = 𝑦. If ¬(𝑥 = 𝑦), then
we get a contradiction (because 𝑐𝑋 (𝑥,𝑦)𝑛 := 1 and 𝑐𝑋 (𝑥,𝑦)𝑛 := 0 for every
𝑛 : N) and hence we can derive 𝑥 = 𝑦. Therefore, 𝑥 = 𝑦 in both cases.

(ii) Because 𝑥 = 𝑦 ↔ 𝑦 = 𝑥 and ¬(𝑥 = 𝑦) ↔ ¬(𝑦 = 𝑥), 𝑐𝑋 (𝑥,𝑦) = 𝑐𝑋 (𝑦, 𝑥).
(iii) We proceed by case analysis on 𝑑 (𝑥,𝑦) and 𝑑 (𝑦, 𝑧):

(a) In the case where both 𝑥 = 𝑦 and 𝑦 = 𝑧, then 𝑥 = 𝑧. Hence,
min(𝑐𝑋 (𝑥,𝑦), 𝑐𝑋 (𝑦, 𝑧)) ⪯ 𝑐𝑋 (𝑥, 𝑧) reduces to min(∞,∞) ⪯ ∞. This
is trivially satisfied because, at each point 𝑛 : N, it is the case that
min(∞,∞)𝑛 := 1 and ∞𝑛 := 1. This follows from Lemma 3.2.16.

(b) Alternatively, if either 𝑥 ≠ 𝑦 or 𝑦 ≠ 𝑧, then min(𝑐𝑋 (𝑥,𝑦), 𝑐𝑋 (𝑦, 𝑧)) ⪯
𝑐𝑋 (𝑥, 𝑧) reduces to 0 ⪯ 𝑐𝑋 (𝑥, 𝑧). This follows from Lemma 3.2.16.

Lemma 3.2.38. [] Given a discrete closeness space 𝑋 , if 𝑋 is finite linearly ordered
then it is totally bounded.

Proof. For any 𝜀 := 𝜀′ + 1, the only 𝜀-net is 𝑋 itself, as for any 𝑥 : 𝑋 the only element
𝑦 : 𝑌 that can satisfy𝐶𝜀 (𝑥,𝑦) is such that 𝑦 := 𝑥 ; therefore 𝑔, ℎ : 𝑋 → 𝑋 should simply
be the identity map.

Disjoint union of closeness spaces

Definition 3.2.39. [] Given closeness spaces 𝑋 and 𝑌 , the disjoint union closeness
function is defined by,

𝑐𝑋+𝑌 : 𝑋 + 𝑌 → 𝑋 + 𝑌 → N∞,

𝑐𝑋+𝑌 (inl 𝑥1, inl 𝑥2) := 𝑐𝑋 (𝑥1, 𝑥2),
𝑐𝑋+𝑌 (inr 𝑦1, inr 𝑦2) := 𝑐𝑌 (𝑦1, 𝑦2),
𝑐𝑋+𝑌 (inl 𝑥, inr 𝑦) := 0,

𝑐𝑋+𝑌 (inr 𝑦, inl 𝑥) := 0.

Lemma 3.2.40. [] Given closeness spaces 𝑋 and 𝑌 , the type 𝑋 + 𝑌 is a closeness
space by the disjoint union closeness function.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#finite-totally-bounded
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%2B-clofun'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%2B-ClosenessSpace

49 Chapter 3. Searchability and Continuity

Proof. We prove that each of the three conditions of Definition 3.2.19 is satisfied:
(i) (a) To show that 𝑐𝑋+𝑌 (𝑥𝑦1, 𝑥𝑦2) = ∞ whenever 𝑥𝑦1 = 𝑥𝑦2, we first recognise

that the equality means either 𝑥𝑦1 := inl 𝑥1 = inl 𝑥2 =: 𝑥𝑦2 (for 𝑥1, 𝑥2 : 𝑋)
or 𝑥𝑦1 := inr𝑦1 = inr𝑦2 =: 𝑥𝑦2 (for𝑦1, 𝑦2 : 𝑌) holds. As inl and inr are both
embeddings (Definition 2.3.12), in the former case 𝑥1 = 𝑥2 and in the latter
𝑦1 = 𝑦2. The former case is reduced to showing 𝑐𝑋 (𝑥1, 𝑥2) = ∞, and the
latter is reduced to showing 𝑐𝑌 (𝑦1, 𝑦2) = ∞. In either case we achieve the
result by the assumption that the underlying closeness functions satisfy
condition (i).(a).

(b) To show that 𝑥𝑦1 = 𝑥𝑦2 given 𝑐𝑋+𝑌 (𝑥𝑦1, 𝑥𝑦2) = ∞, we proceed by
induction on 𝑥𝑦1, 𝑥𝑦2. The latter two cases of the definition of the
disjoint union closeness function (Definition 3.2.39) are impossible, as
∞ ≠ 0, and thus either 𝑥𝑦1 := inl 𝑥1 and 𝑥𝑦2 := inl 𝑥2 for 𝑥1, 𝑥2 : 𝑋 or
𝑥𝑦1 := inr 𝑦1 and 𝑥𝑦2 := inr 𝑦2 for 𝑦1, 𝑦2 : 𝑋 . In the former case we now
have 𝑐𝑋+𝑌 (inl 𝑥1, inl 𝑥2) := 𝑐𝑋 (𝑥1, 𝑥2) = ∞ and want to show 𝑥1 = 𝑥2, and
in the latter we have 𝑐𝑋+𝑌 (inr 𝑦1, inr 𝑦2) := 𝑐𝑌 (𝑦1, 𝑦2) = ∞ and want to
show 𝑦1 = 𝑦2. In either case we achieve the result by the assumption that
the underlying closeness functions satisfy condition (i).(b).

(ii) To show that 𝑐𝑋+𝑌 is symmetric, we check each case of its definition (Defini-
tion 3.2.39). The first two cases are each symmetric by the assumption that the
underlying closeness functions satisfy condition (ii); the latter two cases are
already symmetries of each other, and so they are also symmetric.

(iii) To show that min(𝑐𝑋+𝑌 (𝑥𝑦1, 𝑥𝑦2), 𝑐𝑋+𝑌 (𝑥𝑦2, 𝑥𝑦3)) ⪯ 𝑐𝑋+𝑌 (𝑥𝑦1, 𝑥𝑦3) holds, we
proceed by induction on 𝑥𝑦1, 𝑥𝑦2, 𝑥𝑦3:

If all three elements are from the same side of the disjoint union, the
result follows by the assumption that the underlying closeness functions
satisfy condition (iii),
If 𝑥𝑦1 and 𝑥𝑦2, or 𝑥𝑦2 and 𝑥𝑦3, are from different sides of the disjoint
union, then the left side of the inequality reduces to 0 and we simply need
to show 0 ⪯ 𝑐𝑋+𝑌 (𝑥𝑦1, 𝑥𝑦3). This is by Lemma 3.2.16.
If 𝑥𝑦1 and 𝑥𝑦3 are from different sides of the disjoint union, then we need
to show min(𝑐𝑋+𝑌 (𝑥𝑦1, 𝑥𝑦2), 𝑐𝑋+𝑌 (𝑥𝑦2, 𝑥𝑦3)) ⪯ 0, which can only occur
if min(𝑐𝑋+𝑌 (𝑥𝑦1, 𝑥𝑦2), 𝑐𝑋+𝑌 (𝑥𝑦2, 𝑥𝑦3)) ∼ 0. This is indeed the case, as no
matter which side 𝑥𝑦2 is from, it will differ from either 𝑥𝑦1 or 𝑥𝑦3, and so
the left side of the inequality reduces to 0.

3.2. Closeness Spaces 50

Lemma 3.2.41. [] Given totally bounded closeness spaces 𝑋 and 𝑌 , the disjoint
union closeness space 𝑋 + 𝑌 is totally bounded.

Proof. For a given 𝜀 : N, both 𝑋 and 𝑌 have 𝜀-nets; i.e. there are types 𝑋 ′ and 𝑌 ′ and
functions 𝑔𝑋 : 𝑋 ′ → 𝑋 , 𝑔𝑌 : 𝑌 ′ → 𝑌 , ℎ𝑋 : 𝑋 → 𝑋 ′, ℎ𝑌 : 𝑌 → 𝑌 ′ such that for all 𝑥 : 𝑋
and 𝑦 : 𝑌 we have𝐶𝜀 (𝑥, 𝑔𝑋 (ℎ𝑋 (𝑥))) and𝐶𝜀 (𝑦,𝑔𝑌 (ℎ𝑌 (𝑦))). To show that 𝑋 +𝑌 has an
𝜀-net, we define the following functions:

𝑔𝑋+𝑌 : 𝑋 ′ + 𝑌 ′ → 𝑋 + 𝑌,
𝑔𝑋+𝑌 (inl 𝑥′) := inl 𝑔𝑋 (𝑥′),
𝑔𝑋+𝑌 (inr 𝑦′) := inl 𝑔𝑌 (𝑦′),
ℎ𝑋+𝑌 : 𝑋 + 𝑌 → 𝑋 ′ + 𝑌 ′,

ℎ𝑋+𝑌 (inl 𝑥) := inl ℎ𝑋 (𝑥),
ℎ𝑋+𝑌 (inr 𝑦) := inl ℎ𝑌 (𝑦).

We then need to show that for all 𝑥𝑦 : 𝑋 + 𝑌 we have 𝐶𝜀 (𝑥𝑦,𝑔𝑋+𝑌 (ℎ𝑋+𝑌 (𝑥𝑦)). This
follows by induction on 𝑥𝑦:

If 𝑥𝑦 := inl 𝑥 for some 𝑥 : 𝑋 then 𝐶𝜀 (𝑥𝑦,𝑔𝑋+𝑌 (ℎ𝑋+𝑌 (𝑥𝑦)) := 𝐶𝜀 (𝑥,𝑔𝑋 (ℎ𝑋 (𝑥))
(by definition of 𝑔𝑋+𝑌 , ℎ𝑋+𝑌 and Definition 3.2.39), which we have by the fact
(𝑋 ′, 𝑔𝑋) is an 𝜀-net for 𝑋 ,
Similarly, if 𝑥𝑦 := inr 𝑦 for some 𝑦 : 𝑌 then 𝐶𝜀 (𝑥𝑦,𝑔𝑋+𝑌 (ℎ𝑋+𝑌 (𝑥𝑦)) :=
𝐶𝜀 (𝑦,𝑔𝑌 (ℎ𝑌 (𝑦)), which we have by the fact (𝑌 ′, 𝑔𝑌) is an 𝜀-net for 𝑌 .

Therefore the type 𝑋 ′ +𝑌 ′, equipped with the functions we defined above, is an 𝜀-net
for 𝑋 + 𝑌 .

Finite product closeness spaces

Definition 3.2.42. [] Given closeness spaces 𝑋 and 𝑌 , the binary product closeness
function is defined by,

𝑐𝑋×𝑌 : 𝑋 × 𝑌 → 𝑋 × 𝑌 → N∞,

𝑐𝑋×𝑌 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) := min(𝑐𝑋 (𝑥1, 𝑥2), 𝑐𝑌 (𝑦1, 𝑦2)) .

Lemma 3.2.43. [] Given closeness spaces 𝑋 and 𝑌 , the type 𝑋 × 𝑌 is a closeness
space by the binary product closeness function.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%2B-totally-bounded
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%C3%97-clofun'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%C3%97-ClosenessSpace

51 Chapter 3. Searchability and Continuity

Proof. [f] We prove that each of the three conditions of Definition 3.2.19 is satisfied:
(i) (a) To show that 𝑐𝑋×𝑌 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = ∞ whenever (𝑥1, 𝑦1) = (𝑥2, 𝑦2), we

first recognise that the equality means both 𝑥1 = 𝑦1 and 𝑥2 = 𝑦2 and there-
fore, by the assumption that the underlying closeness functions satisfy
condition (i).(a), we have 𝑐𝑋 (𝑥1, 𝑥2) = ∞ and 𝑐𝑌 (𝑦1, 𝑦2) = ∞. Thus, by
definition of the binary product closeness function (Definition 3.2.42)
we only need to show that min(∞,∞) = ∞, which is immediate as
𝜆𝑛.min(1, 1) = 𝜆𝑛.1 (even without function extensionality).

(b) To show that (𝑥1, 𝑦1) = (𝑥2, 𝑦2) given 𝑐𝑋×𝑌 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) = ∞ then we
first show that 𝑐𝑋 (𝑥1, 𝑥2) = ∞ and 𝑐𝑌 (𝑦1, 𝑦2) = ∞ (these are because, by
function extensionality, ifmin(𝑢, 𝑣) = ∞ then𝑢 = ∞ = 𝑣). We now use the
assumption that the underlying closeness functions satisfy condition (i).(b)
to give us 𝑥1 = 𝑥2 and 𝑦1 = 𝑦2, and thus the result follows immediately.

(ii) The symmetry of 𝑐𝑋×𝑌 is immediate from the assumption that the underlying
closeness functions satisfy condition (ii).

(iii) We want to show that min(𝑐𝑋×𝑌 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)), 𝑐𝑋×𝑌 ((𝑥2, 𝑦2), (𝑥3, 𝑦3))) ⪯
𝑐𝑋×𝑌 ((𝑥1, 𝑦1), (𝑥3, 𝑦3)) := min(min(𝑎, 𝑐),min(𝑏, 𝑑)) ⪯ min(𝑒, 𝑓) holds, where
𝑎 := 𝑐𝑋 (𝑥1, 𝑥2), 𝑏 := 𝑐𝑋 (𝑥2, 𝑥3), 𝑐 := 𝑐𝑌 (𝑦1, 𝑦2) 𝑑 := 𝑐𝑌 (𝑦2, 𝑦3), 𝑒 := 𝑐𝑋 (𝑥1, 𝑥3)
and 𝑓 := 𝑐𝑌 (𝑦1, 𝑦3). Using the assumption that the underlying closeness func-
tions satisfy condition (iii), we have min(𝑎, 𝑏) ⪯ 𝑒 and min(𝑐, 𝑑) ⪯ 𝑓 , and
therefore min(min(𝑎, 𝑏),min(𝑐, 𝑑)) ⪯ min(𝑒, 𝑓). The result then follows by a
rearrangement of the arguments on the left-hand side of the inequality.

The following lemma, which follows easily from Definition 3.2.42, is useful when
working with closeness relations of binary product closeness spaces:

Lemma 3.2.44. [] [] [] Given closeness spaces 𝑋 and 𝑌 , the binary product
closeness space 𝑋 × 𝑌 is such that, for any 𝜀 : N and (𝑥1, 𝑦1), (𝑥2, 𝑦2) : 𝑋 × 𝑌 , we have

𝐶𝜀 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) ⇔ 𝐶𝜀 (𝑥1, 𝑥2) ×𝐶𝜀 (𝑦1, 𝑦2).

Proof (Sketch). This is straightforward to show once we recognise, by using the defi-
nition of the binary product closeness function (Definition 3.2.42), that we only need
to show that 𝜀 ⪯ min(𝑐𝑋 (𝑥1, 𝑥2), 𝑐𝑌 (𝑦1, 𝑦2)) holds if and only if both 𝜀 ⪯ 𝑐𝑋 (𝑥1, 𝑥2)
and 𝜀 ⪯ 𝑐𝑌 (𝑦1, 𝑦2) hold.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%C3%97-C-left
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%C3%97-C-right
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%C3%97-C-combine

3.2. Closeness Spaces 52

Lemma 3.2.45. [] Given totally bounded closeness spaces 𝑋 and 𝑌 , the binary
product closeness space 𝑋 × 𝑌 is totally bounded.

Proof. For a given 𝜀 : N, both 𝑋 and 𝑌 have 𝜀-nets; i.e. there are types 𝑋 ′ and 𝑌 ′ and
functions 𝑔𝑋 : 𝑋 ′ → 𝑋 , 𝑔𝑌 : 𝑌 ′ → 𝑌 , ℎ𝑋 : 𝑋 → 𝑋 ′, ℎ𝑌 : 𝑌 → 𝑌 ′ such that for all 𝑥 : 𝑋
and 𝑦 : 𝑌 we have𝐶𝜀 (𝑥,𝑔𝑋 (ℎ𝑋 (𝑥))) and𝐶𝜀 (𝑦,𝑔𝑌 (ℎ𝑌 (𝑦))). To show that 𝑋 ×𝑌 has an
𝜀-net, we define the following functions:

𝑔𝑋×𝑌 : 𝑋 ′ × 𝑌 ′ → 𝑋 × 𝑌,
𝑔𝑋×𝑌 (𝑥′, 𝑦′) := (𝑔𝑋 (𝑥′), 𝑔𝑌 (𝑦′)),
ℎ𝑋×𝑌 : 𝑋 × 𝑌 → 𝑋 ′ × 𝑌 ′,

ℎ𝑋×𝑌 (𝑥,𝑦) := (ℎ𝑋 (𝑥), ℎ𝑌 (𝑦)) .

We then need to show that for all (𝑥,𝑦) : 𝑋 ×𝑌 we have𝐶𝜀 ((𝑥,𝑦), 𝑔𝑋×𝑌 (ℎ𝑋×𝑌 ((𝑥,𝑦))))
which, by definition of 𝑔𝑋×𝑌 , ℎ𝑋×𝑌 and Definition 3.2.42, reduces to 𝜀 ⪯
min(𝑐𝑋 (𝑥,𝑔𝑋 (ℎ𝑋 (𝑥))), 𝑐𝑌 (𝑦,𝑔𝑌 (ℎ𝑌 (𝑦)))). This is by Lemma 3.2.44 and the fact that
(𝑋 ′, 𝑔𝑋) and (𝑌 ′, 𝑔𝑌) are, respectively, 𝜀-nets for 𝑋 and 𝑌 . Therefore the type 𝑋 ′ ×𝑌 ′,
equipped with the functions we defined above, is an 𝜀-net for 𝑋 + 𝑌 .

We can use the binary product closeness function to define closeness functions for
finite product types (i.e. dependent and non-dependent vectors).

Corollary 3.2.46. Given an (𝑛 : N)-size vector 𝑌 : Fin 𝑛 → U of closeness spaces, the
type of 𝑛-size dependent vectors Fin 𝑛 → 𝑌𝑛 is a closeness space.

Proof. [f] By induction and Lemma 3.2.43.

Corollary 3.2.47. Given an (𝑛 : N)-size vector 𝑌 : Fin 𝑛 → U of totally bounded
closeness spaces, the finite product closeness space of𝑛-size dependent vectors Fin𝑛 → 𝑌𝑛

is totally bounded.

Proof. By induction and Lemma 3.2.45.

Corollary 3.2.48. [f] [] Given a closeness space 𝑋 , the type of 𝑛-size vectors
Fin 𝑛 → 𝑋 is a closeness space.

Proof. By Corollary 3.2.46.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%C3%97-totally-bounded
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#Vec-ClosenessSpace

53 Chapter 3. Searchability and Continuity

Corollary 3.2.49. [] Given a totally bounded closeness space 𝑋 , the closeness space
of 𝑛-size vectors Fin 𝑛 → 𝑋 is totally bounded.

Proof. By Corollary 3.2.47.

Subtype closeness functions.

Definition 3.2.50. [] Given a type 𝑋 , closeness space 𝑌 and a function 𝑓 : 𝑋 → 𝑌 ,
the subtype closeness function 𝑐𝑋 : 𝑋 → 𝑋 → N∞ is defined by,

𝑐𝑋 (𝑥1, 𝑥2) := 𝑐𝑌 (𝑓 (𝑥1), 𝑓 (𝑥2)),

Lemma 3.2.51. [] Given a type 𝑋 , closeness space 𝑌 and function 𝑓 : 𝑋 → 𝑌 ,
the type 𝑋 is a closeness space by the subtype closeness function if 𝑓 is an embedding
(Definition 2.3.12).

Proof. Conditions 2 and 3 of Definition 3.2.19 are immediate from the fact 𝑌 is a
closeness space. The same is true of one direction of the first condition (i.e. that
𝑥 = 𝑦 → 𝑐𝑋 (𝑥,𝑦) = ∞).

For the other direction of the first condition, we have 𝑐𝑋 (𝑥,𝑦) := 𝑐𝑌 (𝑓 (𝑥), 𝑓 (𝑦)) = ∞
and need to prove 𝑥 = 𝑦. By the same condition on 𝑌 , we have 𝑓 (𝑥) = 𝑓 (𝑦), and so
𝑥 = 𝑦 follows from the fact 𝑓 is an embedding.

Corollary 3.2.52. [] Given a closeness space𝑋 and truth-valued function 𝑃 : 𝑋 → Ω,
the type

∑
(𝑥 : 𝑋) (𝑃 (𝑥)) is a closeness space.

Proof. By Lemma 3.2.51 because pr1 is an embedding.

Corollary 3.2.53. [] N∞ is a closeness space.

Proof. [f] By Corollary 3.2.52 and the later Corollary 3.2.60 applied to 2.

Corollary 3.2.54. [] Given a type 𝑋 and closeness space 𝑌 such that 𝑋 ≃ 𝑌 , the
type 𝑋 is a closeness space.

Proof. By Lemma 3.2.51 because the equivalence 𝑓 : 𝑋 → 𝑌 is an embedding.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#Vec-totally-bounded
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%E2%86%AA-clospace
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%E2%86%AA-clospace
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%E2%86%AA-ClosenessSpace
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%E2%84%95%E2%88%9E-ClosenessSpace
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%E2%89%83-ClosenessSpace

3.2. Closeness Spaces 54

Lemma 3.2.55. [] Given a type 𝑋 and totally bounded closeness space 𝑌 such that
𝑋 ≃ 𝑌 , the equivalent closeness space 𝑋 is totally bounded.

Proof. For a given 𝜀 : N, both 𝑌 has an 𝜀-nets; i.e. there is a type 𝑌 ′ and functions
𝑔𝜀 : 𝑌 ′ → 𝑌 and ℎ𝜀 : 𝑌 → 𝑌 ′ such that for all 𝑦 : 𝑌 we have 𝐶𝜀 (𝑦,𝑔𝜀 (ℎ𝜀 (𝑦))). Further-
more, by 𝑋 ≃ 𝑌 there is an equivalence 𝑓≃ : 𝑋 → 𝑌 , and thus there is a function
𝑔≃ : 𝑌 → 𝑋 such that 𝑓≃ ◦ 𝑔≃ ∼ id𝑌 . We will now show that 𝑌 ′, equipped with
𝑔 := 𝑔≃ ◦ 𝑔𝜀 : 𝑌 ′ → 𝑋 , is an 𝜀-net for 𝑋 : meaning there is some function ℎ : 𝑋 → 𝑌 ′

such that for all 𝑥 : 𝑋 we have 𝐶𝜀 (𝑓≃(𝑥), (𝑓≃ ◦ 𝑔 ◦ ℎ) (𝑥)) (by Definition 3.2.50).

This function is defined ℎ := ℎ𝜀 ◦ 𝑓 , and we give 𝐶𝜀 (𝑓≃(𝑥), (𝑓≃ ◦ 𝑔≃ ◦ 𝑔𝜀 ◦ ℎ𝜀 ◦ 𝑓≃) (𝑥))
by transitivity of 𝐶𝜀 (Lemma 3.2.23) after first proving (i) 𝐶𝜀 (𝑓≃(𝑥), (𝑔𝜀 ◦ ℎ𝜀 ◦ 𝑓≃) (𝑥))
and (ii) 𝐶𝜀 ((𝑔𝜀 ◦ ℎ𝜀 ◦ 𝑓≃) (𝑥), (𝑓≃ ◦ 𝑔≃ ◦ 𝑔𝜀 ◦ ℎ𝜀 ◦ 𝑓≃) (𝑥)):

(i) holds because (𝑌 ′, 𝑔𝜀) is an 𝜀-net for 𝑌 ,
(ii) holds because 𝑓≃ ◦ 𝑔≃ ∼ id𝑌 , and therefore (𝑔𝜀 ◦ ℎ𝜀 ◦ 𝑓≃) (𝑥) = (𝑓≃ ◦ 𝑔≃ ◦ 𝑔𝜀 ◦

ℎ𝜀 ◦ 𝑓≃) (𝑥), which in turn (by Corollary 3.2.54) yields𝐶𝑛 ((𝑔𝜀 ◦ℎ𝜀 ◦ 𝑓≃) (𝑥), (𝑓≃ ◦
𝑔≃ ◦ 𝑔𝜀 ◦ ℎ𝜀 ◦ 𝑓≃) (𝑥)) for all 𝑛 : N.

Discrete-sequence closeness functions.

Recalling the definition of sequence prefix equality from Section 2.4.3, we define the
closeness function on discrete sequence types.

Definition 3.2.56. [] Given an N-indexed type family 𝐷 : N → U of discrete
types, the discrete-sequence closeness function 𝑐Π𝐷 : Π𝐷 → Π𝐷 → N∞ is defined at
each point 𝑛 : N by case analysis of 𝑑 (𝛼, 𝛽, 𝑛 + 1) : decidable(𝛼 ∼𝑛 𝛽) for arguments
𝛼, 𝛽 : Π𝐷 :

• If 𝛼 ∼𝑛+1 𝛽 then 𝑐Π𝐷 (𝛼, 𝛽)𝑛 := 1,
• If ¬(𝛼 ∼𝑛+1 𝛽) then 𝑐Π𝐷 (𝛼, 𝛽)𝑛 := 0.

This is decreasing, because ¬(𝛼 ∼𝑛 𝛽) implies ¬(𝛼 ∼𝑚 𝛽) for all 𝑛,𝑚 : N such that
𝑚 > 𝑛.

Lemma 3.2.57. [] The product of an N-indexed type family of discrete types is a
closeness space by the discrete-sequence closeness function.

Proof (Sketch). [f] We prove each of the three conditions of Definition 3.2.19:
1. In the direction where we have 𝑐Π𝐷 (𝛼, 𝛽) = ∞, we use the decidability of

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%E2%89%83-totally-bounded
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#discrete-seq-clofun
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%CE%A0D-ClosenessSpace

55 Chapter 3. Searchability and Continuity

𝛼 ∼𝑛+1 𝛽 (Lemma 2.4.12) to ascertain that 𝛼 ∼𝑛+1 𝛽 for all 𝑛 : N (because, if this
were not the case, 𝑐Π𝐷 (𝛼, 𝛽)𝑛 would equal 0). Therefore, we immediately have
that 𝛼 ∼ 𝛽 and (by function extensionality) 𝛼 = 𝛽 . The other direction is trivial.

2. Given any 𝑛 : N, in the case where 𝛼 ∼𝑛+1 𝛽 , by symmetry of prefix equality
(Lemma 2.4.13) we also have 𝛽 ∼𝑛+1 𝛼 , and therefore 𝑐 (𝛼, 𝛽)𝑛 = 𝑐 (𝛽, 𝛼)𝑛 . The
same is true in the case where ¬(𝛼 ∼𝑛+1 𝛽).

3. Given any 𝑛 : N we need to show that if min(𝑐 (𝛼, 𝛽)𝑛, 𝑐 (𝛽, 𝜁)𝑛) = 1 then
𝑐 (𝛼, 𝜁)𝑛 = 1. The assumption means that both 𝑐 (𝛼, 𝛽)𝑛 and 𝑐 (𝛽, 𝜁)𝑛 are 1;
hence, 𝛼 ∼𝑛+1 𝛽 and 𝛽 ∼𝑛+1 𝜁 must hold. The result then follows by transitivity
of prefix equality (Lemma 2.4.13).

Lemma 3.2.58. [] Given an N-indexed type family 𝐹 : N → U of pointed finite
linearly ordered types, the discrete-sequence closeness space Π𝐹 is totally bounded.

Proof. For any 𝜀 : N, the closeness function considers only the 𝜀-prefix of the se-
quences. Therefore, the 𝜀-net is the type of 𝜀-sized dependent vectors Vec(𝜀, 𝐹0,...,𝜀−1),
where 𝐹0,...,𝜀−1 is the finite-indexed type family that is the 𝜀-prefix of 𝐹 . We de-
fine the two maps for the net: 𝑔 : Vec(𝜀, 𝐹0,...,𝜀−1) → Π𝐹 is the function that out-
puts the sequence that is the 𝜀-sized vector followed by repeating arbitrary el-
ements of 𝐹𝜀,... (which we attain from the pointedness of all types in 𝐹), while
ℎ : Π𝐹 → Vec(𝜀, 𝐹0,...,𝜀−1) is the function that gives the 𝜀-prefix of the sequence.

Lemma 3.2.59. [] [] Given an N-indexed type family 𝐷 : N → U of discrete
types and two sequences 𝛼, 𝛽 : Π𝐷 , the types 𝐶𝑛 (𝛼, 𝛽) (derived from Lemma 3.2.57) and
𝛼 ∼𝑛 𝛽 are propositionally equivalent for all 𝑛 : N.

Proof (Sketch). By induction on 𝑛 : N, though both 𝐶0(𝛼, 𝛽) and 𝛼 ∼0 𝛽 are trivially
true, and so we only need to consider the case where 𝑛 := 𝑛′ + 1 for some 𝑛′ : N.
If 𝐶𝑛+1(𝛼, 𝛽) := 𝑛 + 1 ⪯ 𝑐Π𝐷 (𝛼, 𝛽) then clearly 𝑐Π𝐷 (𝛼, 𝛽)𝑛 = 1; therefore by definition
of the discrete-sequence closeness function (Definition 3.2.56) and the decidability of
∼𝑛+1 (Lemma 2.4.12), 𝛼 ∼𝑛 𝛽 must hold. The opposite direction follows similarly, but
by the decidability of 𝐶𝑛+1 (Lemma 3.2.25).

Using the above, we define the non-dependent case; i.e. closeness spaces on types
of sequences on a single discrete type.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%CE%A0F-totally-bounded
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%E2%88%BC%E2%81%BF-to-C
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#C-to-%E2%88%BC%E2%81%BF

3.2. Closeness Spaces 56

Corollary 3.2.60. [] [] The type of sequences on any finite linearly ordered type
is a totally bounded closeness space.

Proof. [f] By Lemmas 3.2.57 and 3.2.58.

Corollary 3.2.61. [] [] Given two sequences 𝛼, 𝛽 : N → 𝑋 on a discrete type
𝑋 , the types 𝐶𝑛 (𝛼, 𝛽) (derived from Corollary 3.2.60) and 𝛼 ∼𝑛 𝛽 are propositionally
equivalent for all 𝑛 : N.

Proof. By Lemma 3.2.59.

Countable product closeness spaces.

We have already shown that the product of an N-indexed type family of discrete types
is a closeness space (by Lemma 3.2.57). We will now generalise this by showing we
can define a closeness function on the product of an N-indexed type family of closeness
spaces.

In order to do this, we will employ a diagonal argument to the countably-many
extended natural values of the closeness functions within the type family 𝑇 : N → U of
closeness spaces (when applied to any given arguments 𝛼, 𝛽 : Π𝑇). To illustrate this idea,
consider Figure 3.1 which gives potential values for 𝑐𝑇𝑖 (𝛼𝑖, 𝛽𝑖) 𝑗 : N∞ where 𝑖 ∈ {0, ..., 3}
and 𝑗 ∈ {0, ..., 5}. The diagonal argument that we employ to define 𝑐𝑐𝑠Π𝑇 (𝛼, 𝛽) : N∞ is
such that the 𝑛th digit should be 1 if the 𝑛th diagonal is made up only of 1s. For the
example, this means that 𝑐Π𝑇 (𝛼, 𝛽) := 111000.... After the third digit, no matter the
values of the other extended naturals, 𝑐2 will always contribute a 0 to the diagonal —
this shows how the result is indeed decreasing.

Index

0 1 2 3 4 5 ...
𝑐0 1 1 1 1 1 0 ...
𝑐1 1 1 1 1 1 1 ...
𝑐2 1 0 0 0 0 0 ...
𝑐3 1 1 1 0 0 0 ...

E
x
t
e
n
d
e
d
n
a
t
u
r
a
l

...

Figure 3.1: Example indices of countably-many extended naturals 𝑐𝑖 :=
𝑐𝑇𝑖 (𝛼𝑖, 𝛽𝑖) from countably-many closeness functions 𝑐𝑇𝑖 : 𝑇𝑖 → 𝑇𝑖 →
N∞ using 𝛼, 𝛽 : Π𝑇 . The first four diagonals are coloured differently
for emphasis.

This diagonalisation process can be inductively defined in our framework as follows:

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%E2%84%95%E2%86%92D-ClosenessSpace
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%E2%84%95%E2%86%92F-totally-bounded
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%E2%88%BC%E2%81%BF-to-C
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#C-to-%E2%88%BC%E2%81%BF

57 Chapter 3. Searchability and Continuity

Definition 3.2.62. [] Given an N-indexed type family 𝑇 : N → U of closeness
spaces (i.e. there is a family of closeness functions 𝑐𝑠 :

∏
(𝑛 : N) (𝑇𝑛 → 𝑇𝑛 → N∞)), the

countable product closeness function is defined by,

𝑐𝑐𝑠Π𝑇 : Π𝑇 → Π𝑇 → N∞,

𝑐𝑐𝑠Π𝑇 (𝛼, 𝛽)0 := 𝑐𝑠0(𝛼0, 𝛽0)0,
𝑐𝑐𝑠Π𝑇 (𝛼, 𝛽)𝑛+1 := min(𝑐𝑠0(𝛼0, 𝛽0)𝑛+1, 𝑐tail 𝑐𝑠Π(tail 𝑇) (tail 𝛼, tail 𝛽)𝑛).

Lemma 3.2.63. [] The product of an N-indexed type family of closeness spaces is a
closeness space by the countable product closeness function.

The proof of the above is similar to Lemma 3.2.57, but requires us to use the fact that
the underlying types of the type family are themselves closeness spaces. We recommend
viewing the formalisation for more technical details on this relatively straightforward
sizable proof.

Lemma 3.2.64. [] Given an N-indexed type family 𝑇 : N → U of totally bounded
closeness spaces, the countable product closeness space Π𝑇 is totally bounded.

Proof. The base case is vacuous (by Remark 3.2.22), and so we only consider the
inductive case. When 𝜀 := 𝜀′ + 1, the 𝜀-net is 𝑡 ′0 × 𝑡 ′𝑠 , where 𝑡 ′0 is the 𝜀-net of 𝑇0 and 𝑡 ′𝑠
is the 𝜀′-net of tail 𝑇 by the inductive hypothesis.

Countable product closeness functions truly generalise discrete sequence closeness
functions. Given a family of discrete types, one can use Lemma 3.2.37 to transform
this into a family of closeness spaces. After doing this for a particular type family, the
resulting discrete-sequence and countable product closeness functions will be identical.

Lemma 3.2.65. [] Given an N-indexed type family 𝑇 : N → U of discrete types the
discrete-sequence closeness function 𝑐Π𝑇 (Definition 3.2.56) and the countable product
closeness function 𝑐𝑐𝑠Π𝑇 (Definition 3.2.62), where 𝑐𝑠 : Π(𝑛 : N) (𝑇𝑛 → 𝑇𝑛 → N∞) is the
collection of discrete closeness functions (Definition 3.2.36) on each 𝑇𝑛 , are identical.

Proof (Sketch). [f] We prove that the two functions are pointwise-equal — the result
then follows immediately by function extensionality. To prove that, for all 𝛼, 𝛽 : Π𝑇
and 𝑛 : N we have 𝑐Π𝑇 (𝛼, 𝛽)𝑛 = 𝑐𝑐𝑠Π𝑇 (𝛼, 𝛽)𝑛 , we proceed by induction on the given 𝑛.

In the base case where 𝑛 := 0, we want to show that 𝑐Π𝑇 (𝛼, 𝛽)0 = 𝑐𝑇0 (𝛼0, 𝛽0)0 where

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%CE%A0-clofun
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%CE%A0-ClosenessSpace
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%CE%A0-totally-bounded
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%CE%A0-clofuns-id

3.2. Closeness Spaces 58

𝑐𝑇0 := 𝑐𝑠0, i.e. the discrete closeness function on 𝑇0. Using the discreteness of 𝑇0, we
ask whether 𝛼0 = 𝛽0. If it does then we have 𝛼 ∼1 𝛽 and therefore by definition of
the discrete-sequence closeness function (Definition 3.2.56) we have 𝑐Π𝑇 (𝛼, 𝛽)0 = 1.
We also have 𝑐𝑇0 (𝛼0, 𝛽0) = ∞ by definition of the discrete closeness function, and
therefore clearly also 1 = 𝑐𝑇0 (𝛼0, 𝛽0)0. The proof technique is similar in the case
where ¬(𝛼0 = 𝛽0).

In the inductive case where 𝑛 := 𝑛′ + 1 for some 𝑛′ : N, we want to show that
𝑐Π𝑇 (𝛼, 𝛽)𝑛 = min(𝑐𝑇0 (𝛼0, 𝛽0)𝑛, 𝑐Π(tail 𝑇) (tail 𝛼, tail 𝛽)𝑛′). Using the discreteness of
each type in 𝑇 , we ask whether 𝛼 ∼𝑛+1 𝛽 . If it does, then we have 𝑐Π𝑇 (𝛼, 𝛽)𝑛 = 1 and
therefore only need to show that (i) 𝑐𝑇0 (𝛼0, 𝛽0)𝑛 = 1 and (ii) 𝑐Π(tail 𝑇) (tail 𝛼, tail 𝛽)𝑛′ =
1.

(i) holds by definition of the discrete closeness function, because we have shown
that 𝛼0 = 𝛽0,

(ii) holds by the inductive hypothesis once we prove that 𝑐Π𝑇 (tail 𝛼, tail 𝛽)𝑛′ = 1;
this is by definition of the discrete-sequence closeness function and the fact
that 𝛼 ∼𝑛+1 𝛽 implies tail 𝛼 ∼𝑛 tail 𝛽 .

The proof technique is similar in the case where ¬(𝛼 ∼𝑛+1 𝛽).

We close this subsection by noting the following two lemmas concerning countable
product closeness spaces; note that these can of course be specialised for discrete-
sequence closeness spaces. The first states that if the tails of two sequences have
closeness 𝛿 : N and the head elements have closeness 𝛿+1, then the sequences themselves
also have closeness 𝛿 + 1.

Lemma 3.2.66. [] Given an N-indexed type family 𝑇 : N → U of closeness spaces,
two head elements 𝑥0, 𝑦0 : 𝑇0 and two tail sequences 𝛼, 𝛽 : Π𝑇 and some precision 𝛿 : N,
if 𝐶𝛿+1(𝛼0, 𝛽0) and 𝐶𝛿 (tail 𝛼, tail 𝛽) then 𝐶𝛿+1(𝛼, 𝛽).

Proof. When 𝛿 := 0, the result is vacuous by Remark 3.2.22, therefore we only consider
the 𝛿 := 𝛿′ + 1 case where we need to show 𝛿′ + 1 ⪯ 𝑐∗Π𝑇 (𝛼, 𝛽). By the definition
of the partial order on N∞ (Definition 3.2.13), this is reduced to needing to show
𝑐∗Π𝑇 (𝛼, 𝛽)𝛿 ′+1 = 1.

By the definition of the closeness function on countable products (Definition 3.2.62),
this means we need to show

min(𝑐𝑠0(𝛼0, 𝛽0)𝛿 ′+1, 𝑐Π(tail 𝑇) (tail 𝛼, tail 𝛽)𝛿 ′) = 1,

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%CE%A0-C-combine

59 Chapter 3. Searchability and Continuity

which holds because, by our assumptions, both arguments to the min function are 1.

The second states that any sequence is infinitely close to the composition of its own
head and tail — the point of this lemma is to avoid invoking function extensionality in
this case.

Lemma 3.2.67. [] Given an N-indexed type family 𝑇 : N → U of closeness spaces,
every sequence 𝛼 : Π𝑇 is such that 𝐶𝛿 (𝛼, head 𝛼 :: tail 𝛼), for every precision 𝛿 : N.

Proof (Sketch). Proceeding by induction on the given 𝛿 , the base case is trivial and
the inductive case is immediate by Lemma 3.2.66.

3.2.6 Pseudocloseness spaces

We have found that closeness spaces are a convenient structure to reason about the
closeness of elements of a wide variety of types in our framework. Sometimes, such as
for parametric regression (see Section 4.2), we find that we wish to use a more general
structure so that we can reason about a wider variety of types.

We borrow the terminology of ‘pseudometric spaces’ and define pseudo closeness
spaces below, in which we relax the first condition of Definition 3.2.19 such that we no
longer require elements with (pseudo)closeness∞ to be identical.

Definition 3.2.68. [] A pseudocloseness space is a type 𝑋 equipped with a pseudo-
closeness function 𝑐 : 𝑋 → 𝑋 → N∞ such that,

1. 𝑥 = 𝑦 → 𝑐 (𝑥,𝑦) = ∞,
2. 𝑐 (𝑥,𝑦) = 𝑐 (𝑦, 𝑥),
3. min(𝑐 (𝑥,𝑦), 𝑐 (𝑦, 𝑧)) ⪯ 𝑐 (𝑥, 𝑧).

The altered definitions of closeness relation (which remain equivalence relations) and
uniform continuity for pseudocloseness spaces follow naturally from those on closeness
spaces (Definitions 3.2.21, 3.2.27 and 3.2.29), and so we leave them out to avoid repetition.

The structure of a pseudocloseness space differs from a closeness space in that non-
equal elements can have pseudocloseness∞. This is required for parametric regression,
for which we here define psuedocloseness spaces for function spaces, allowing functions
to be compared at a finite number of given points.

Definition 3.2.69. [] Given a type 𝑋 , closeness space 𝑌 and (𝑛 : N)-size vector
𝑥𝑠 : Fin 𝑛 → 𝑋 of elements of 𝑋 , we define the least-closeness pseudocloseness function

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces-Examples.html#%CE%A0-C-eta
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpaces.html#PseudoClosenessSpace
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.ClosenessSpace-Examples.html#Least-PseudoClosenessSpace

3.3. Searching infinite types 60

as,

𝑐′𝑋→𝑌
(𝑛,𝑥𝑠) : (𝑋 → 𝑌) → (𝑋 → 𝑌) → N∞

𝑐′𝑋→𝑌
(𝑛,𝑥𝑠) (𝑓 , 𝑔) := 𝑐𝑌𝑛 (map(𝑓 , 𝑥𝑠),map(𝑔, 𝑥𝑠)),

where 𝑐𝑌𝑛 : (Fin 𝑛 → 𝑋) → (Fin 𝑛 → 𝑋) → N∞ is the closeness function derived
from Corollary 3.2.48.

Least-closeness pseudocloseness functions compare two functions 𝑓 and 𝑔 at a
finite number of given points {𝑥𝑠0, ..., 𝑥𝑠𝑛−1}, and return the minimum closeness found
between these points; i.e. at each point 𝑥𝑖 (where 𝑖 ∈ {0, ..., 𝑛−1}) the closeness of 𝑓 (𝑥𝑠𝑖)
and𝑔(𝑥𝑠𝑖) is computed as 𝑐𝑖 := 𝑐𝑌 (𝑓 (𝑥𝑠𝑖), 𝑔(𝑥𝑠𝑖)), and then the minimum of these values
is returned as the least-closeness pseudocloseness 𝑐′

𝑋→𝑌
(𝑛,𝑥𝑠) (𝑓 , 𝑔) := min(𝑐0, ..., 𝑐𝑛−1).

This idea is inspired by least-squares approach to regression and pseudometrics on
function spaces used in regression analysis [YS09].

3.3 Searching infinite types

We return, equipped with closeness spaces, to the problem of searching infinite types.

3.3.1 Uniformly continuously searchable closeness spaces

Recall from the close of Section 3.1.4 that we aim to restrict search to only those
decidable predicates that have a constructive witness of their uniform continuity. These
moduli of uniform continuity will be provided by closeness spaces (Definition 3.2.29).

Definition 3.3.1. [] The type of uniformly continuous and decidable predicates on
a closeness space 𝐾 is defined by,

decidable-uc-predicate(𝐾) := Σ(𝑝 : decidable-predicate K)p-ucontinuous (p).

We now formally define the restricted definition of a searchable type (Defini-
tion 3.1.3). We call a closeness space whose uniformly continuous and decidable
predicates we can search a uniformly continuously searchable closeness space.

Definition 3.3.2. [] A function E𝐾 : decidable-uc-predicate(𝐾) → 𝐾

is a uniformly continuous searcher on a given closeness space 𝐾 if, for all
𝑝 : decidable-uc-predicate(𝐾), it is the case that 𝑝 (E𝐾 (𝑝)) holds if there is some

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#decidable-uc-predicate
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#csearchable%F0%9D%93%94

61 Chapter 3. Searchability and Continuity

element 𝑘 : 𝐾 such that 𝑝 (𝑘) holds:

is-uc-searcher(E) :=
∏

(𝑝 : decidable-uc-predicate(𝐾))

©«
∑︁
(𝑘 : 𝐾)

𝑝 (𝑘)ª®¬ → 𝑝 (E (𝑝)) .

Definition 3.3.3. [] A closeness space 𝐾 is uniformly continuously searchable if
we can define a uniformly continuous searcher on that closeness space:

uc-searchableE (𝐾) :=
∑︁

(E𝐾 : decidable-uc-predicate 𝐾→𝐾)
is-uc-searcher(E).

We often use the following equivalent definition, which is more convenient:

uc-searchable(𝐾) :=
∏

(𝑝 : decidable-uc-predicate(𝐾))

∑︁
(𝑘0 : 𝐾)

©«
∑︁
(𝑘 : 𝐾)

𝑝 (𝑘)ª®¬ → 𝑝 (𝑘0) .

Remark 3.3.4. [] Every searchable closeness space is automatically uniformly
continuously searchable by discarding the continuity information.

Much like searchable types, every uniformly continuously searchable closeness
space is pointed.

Lemma 3.3.5. [] Every uniformly continuously searchable closeness space is pointed.

Proof. For the given uniformly continuously searchable space 𝐾 , define the constant
predicate 𝑝⊤(𝑘) := ⊤, which every element satisfies and therefore has modulus of
uniform continuity 0. We can then introduce the element E𝐾 (𝑝⊤) : 𝐾 .

When searching a closeness space 𝑋 , a consequence of knowing that 𝛿 : N is a
modulus of uniform continuity for the predicate 𝑝 : 𝑋 → Ω is that instead of checking
each individual candidate 𝑥 : 𝑋 , we can instead check each 𝛿-neighbourhood of 𝑋
collectively by a single representing element. If the representative satisfies the predicate,
then we can simply return it; if not, we can discard the entire 𝛿-neighbourhood in
which it lives from the search.

A corollary to this is that if the closeness space has a finite 𝛿-net then it has a finite
number of 𝛿-neighbourhoods and an answer to the predicate can be searched for. If
the closeness space is totally bounded therefore, no matter the modulus of uniform
continuity 𝛿 : N of the predicate, it can be searched.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#csearchable
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#csearchable%E2%86%92csearchable
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#csearchable-pointed

3.3. Searching infinite types 62

Theorem 3.3.6. [] If a closeness space is totally bounded and pointed, then it is
uniformly continuously searchable.

Proof. Given any uniformly continuous predicate 𝑝 : 𝐾 → Ω, where 𝐾 is the totally
bounded closeness space to search which is pointed with 𝑘∗ : 𝐾 , we take 𝐾′ to be the
𝛿-net of 𝐾 , where 𝛿 : N is the modulus of uniform continuity of 𝑝 . By definition of
nets (Definition 3.2.34), 𝐾′ is finite and there are functions 𝑔 : 𝐾′ → 𝐾 and ℎ : 𝐾 → 𝐾′

such that for all 𝑘 : 𝐾 we have 𝐶𝛿 (𝑘,𝑔(ℎ(𝑘))).

As 𝐾′ is finite and pointed (by ℎ(𝑘∗) : 𝐾), it is searchable (by Lemma 3.1.10). We
therefore search it for an answer to the predicate (𝑝 ◦ 𝑔) : 𝐾′ → Ω, which we label
𝑘′0 : 𝐾′. By the search condition (Definition 3.1.3), 𝑘′0 is such that, if there is some
𝑘′ : 𝐾 such that 𝑝 (𝑔(𝑘′)), then 𝑝 (𝑔(𝑘′0)).

We therefore take 𝑔(𝑘′0) : 𝐾 as the answer to 𝑝 , and must show that it satisfies the
search condition; i.e. given some 𝑘 : 𝐾 such that 𝑝 (𝑘), it is the case that 𝑝 (𝑔(𝑘′0)). Of
course, 𝑘 is such that 𝐶𝛿 (𝑥, 𝑔(ℎ(𝑘))), and therefore — by the uniform continuity of 𝑝
(Definition 3.2.29) — 𝑝 (𝑔(ℎ(𝑘))). Hence, because (𝑝 ◦𝑔) is satisfied, it is the case that
𝑝 (𝑔(𝑘′0)).

This theorem can be used to search a wide variety of infinite types (examples of
which are given in the next subsection), but cannot be used to give a version of the
Tychonoff theorem (as discussed in Section 3.1.4) in our framework — we will come
back to this in Section 3.3.3.

3.3.2 Examples of uniformly continuously searchable closeness

spaces

In this subsection, we give a variety of examples of uniformly continuously searchable
types. Some of these are finite or totally bounded closeness spaces, while the others
are preservation properties of continuous searchability that match up to those on the
original definition of searchability.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes.html#totally-bounded-csearchable

63 Chapter 3. Searchability and Continuity

Finite uniformly continuously searchable spaces

Lemma 3.3.7. [] Every pointed, finite linearly ordered closeness space is uniformly
continuously searchable.

Proof. By Lemma 3.1.10 and Remark 3.3.4.

Disjoint union of uniformly continuously searchable spaces

Lemma 3.3.8. [] Given uniformly continuously searchable closeness spaces 𝐾 and
𝐽 , the disjoint union closeness space 𝐾 + 𝐽 is uniformly continuously searchable.

Proof (Sketch). Given the predicate 𝑝 : decidable-predicate(𝐾+𝐽), we follow the same
technique as Lemma 3.1.7, except we also have to show that the predicates𝑝𝐾 := 𝑝 ◦ inl
and 𝑝 𝐽 := 𝑝 ◦ inr are uniformly continuous by the respective closeness functions
on 𝐾 and 𝐽 . Both of these proofs are immediate from the uniform continuity of 𝑝
by the disjoint union closeness function (Definition 3.2.39), as well as the uniform
continuity of inl and inr respectively, and Lemma 3.2.31.

Finite product of uniformly continuously searchable spaces

Lemma 3.3.9. [] Given uniformly continuously searchable closeness spaces 𝐾 and
𝐽 , the binary product closeness space 𝐾 × 𝐽 is uniformly continuously searchable.

Proof (Sketch.) [fp] We follow the same technique as Lemma 3.1.11, except we also
have to prove that — assuming the given predicate is uniformly continuous by the
binary product closeness function (Definition 3.2.42) — each predicate in the family
𝑝 𝐽 : 𝐾 → decidable-predicate(𝐽) and the predicate 𝑝𝐾 : decidable-predicate(𝐾) are
uniformly continuous by the respective closeness functions on 𝐽 and 𝐾 .
The former is straightforward by Lemma 3.2.44, while the latter uses propositional
extensionality in a similar way to the later Lemma 3.3.18 but using Lemma 3.2.44
instead of Lemma 3.2.66.

Corollary 3.3.10. Given an 𝑛 : N and an (𝑛 + 1)-size vector 𝑌 : Fin(𝑛 + 1) → U of
uniformly continuously searchable closeness spaces, the finite product closeness space of
(𝑛 + 1)-size dependent vectors Fin(𝑛 + 1) → 𝑌𝑛 is uniformly continuously searchable.

Proof. [fp] By induction and Lemma 3.3.9.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes-Examples.html#finite-csearchable
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes-Examples.html#%2B-csearchable
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes-Examples.html#%C3%97-csearchable

3.3. Searching infinite types 64

Equivalent uniformly continuously searchable spaces

Lemma 3.3.11. [] Given a closeness space𝐾 and a uniformly continuously searchable
closeness space 𝐽 such that 𝐾 ≃ 𝐽 , the equivalent closeness space 𝐾 is uniformly
continuously searchable.

Proof. Given the predicate 𝑝 : decidable-predicate(𝐾), we follow the same technique
as Lemma 3.1.9, except we also have to show that the predicate 𝑝′ := 𝑝 ◦ 𝑔 (where
𝑔 : 𝐽 → 𝐾 is derived from the proof of 𝐾 ≃ 𝐽 , see Definition 2.3.21) is uniformly
continuous by the closeness function 𝑐 𝐽 : 𝐽 → 𝐽 → N∞.
We first assume that 𝛿 : N is the modulus of uniform continuity of 𝑝 , which is uni-
formly continuous by the subtype closeness function (Definition 3.2.50) 𝑐𝐾 := 𝑐 𝐽 ◦ 𝑓
(where 𝑓 : 𝑋 → 𝑌 is the equivalence derived from the proof of 𝐾 ≃ 𝐽 which is such
that 𝑓 ◦𝑔 ∼ id𝐽 , again see Definition 2.3.21). Recall that this means given any 𝑘1, 𝑘2 : 𝐾
such that 𝐶𝛿 (𝑘1, 𝑘2) := 𝛿 ⪯ 𝑐𝐾 (𝑘1, 𝑘2) := 𝛿 ⪯ 𝑐 𝐽 (𝑓 (𝑘1), 𝑓 (𝑘2)) then 𝑝 (𝑘1) ⇔ 𝑝 (𝑘2).
We will show that 𝛿 is also the modulus of uniform continuity for (𝑝 ◦ 𝑔); i.e. given
𝑗1, 𝑗2 : 𝐽 such that 𝐶𝛿 (𝑗1, 𝑗2) := 𝛿 ⪯ 𝑐 𝐽 (𝑗1, 𝑗2) then 𝑝 (𝑔(𝑗1)) ⇔ 𝑝 (𝑔(𝑗2)). Because
for 𝑖 ∈ {1, 2} we have 𝑗𝑖 = 𝑓 (𝑔(𝑗𝑖)) then we also have 𝐶𝑛 (𝑗𝑖, 𝑓 (𝑔(𝑗𝑖))) for all
𝑛 : N. Therefore, by transitivity of the closeness relation (Lemma 3.2.23) we have
𝐶𝛿 (𝑓 (𝑔(𝑗1)), 𝑓 (𝑔(𝑗2))) := 𝛿 ⪯ 𝑐 𝐽 (𝑓 (𝑔(𝑗1)), 𝑓 (𝑔(𝑗2))), and thus the result follows by
the uniform continuity of 𝑝 .

Finite-sequence uniformly continuously searchable spaces

One proof that discrete-sequence closeness spaces are uniformly continuously search-
able comes from the fact that all such closeness spaces are totally bounded.

Corollary 3.3.12. [] Given an N-indexed type family 𝐹 : N → U of finite lin-
early ordered types, the discrete-sequence closeness space Π𝐹 is uniformly continuously
searchable.

Proof. By Lemma 3.2.58 and Theorem 3.3.6.

Corollary 3.3.13. [] The type of sequences on any finite linearly ordered type is a
uniformly continuously searchable closeness space.

Proof. By Corollary 3.3.12.

However, when extracting a search algorithm from this corollary, the 𝛿-net (where

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes-Examples.html#%E2%89%83-csearchable
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes-Examples.html#dep-discrete-finite-seq-csearchable
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes-Examples.html#discrete-finite-seq-csearchable

65 Chapter 3. Searchability and Continuity

𝛿 : N is the modulus of uniform continuity of the predicate being searched) must be
fully computed before search can begin. This can cause efficiency issues, that are mildly
improved by instead extracting a proof from the Tychonoff theorem (Theorem 3.3.14)
for uniformly continuously searchable types instead3.

3.3.3 Tychonoff theorem for uniformly continuously searchable

spaces

Theorem 3.3.6 allows us to prove that the Cantor space and most of the types we wish to
search in Chapter 6 are indeed uniformly continuously searchable. However, in much
the same way that searchability does not imply finiteness, continuous searchability
does not imply totally boundedness. This means that we cannot combine the theorem
and Lemma 3.2.64 to prove that continuous searchability preserves countable products.
In this subsection, we use a different proof technique, inspired by Escardó’s (in [Esc08])
but which is not general recursive, to prove the Tychonoff theorem for uniformly
continuously searchable spaces.

Theorem 3.3.14 (Tychonoff theorem). [] Given an N-indexed type family𝑇 : N →
U of uniformly continuously searchable closeness spaces, the countable product closeness
space Π𝑇 (see Definition 3.2.62) is uniformly continuously searchable.

The proof is by induction on the searched predicate’s modulus of uniform continuity
𝛿 : N. When 𝛿 := 0, then the result is trivial. Otherwise, the idea of the technique is that
we recursively construct finitely-many uniformly continuous and decidable predicates
that test sequences 𝑥𝑠 : Π𝑇 with fixed prefixes of elements. Each time the fixed prefix
increases towards 𝛿 , the modulus of uniform continuity decreases towards 0; thus, the
result will follow by 𝛿-many applications of the inductive hypothesis.

We first define the following family of ‘tail predicates’.

Definition 3.3.15. [] Given an N-indexed type family 𝑇 : N → U , a decidable
predicate 𝑝 : decidable-predicate(Π𝑇) and a fixed head element 𝑥 : 𝑇0, we define the
decidable tail predicate as follows:

𝑝𝑡 : decidable-predicate(Π𝑇) → 𝑇0 → decidable-predicate(Π(tail 𝑇)),
𝑝𝑡 (𝑝, 𝑥) := 𝜆𝑥𝑠.𝑝 (𝑥 :: 𝑥𝑠).

3In actuality, we rewrite the Tychonoff theorem specifically for finite-sequence spaces (as can be seen
in the Agda formalisation), but the proof method is similar, and simpler, and so we leave it out to avoid
repetition.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes-Examples.html#tychonoff
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes-Examples.html#tail-predicate-tych

3.3. Searching infinite types 66

Lemma 3.3.16. [] Given an N-indexed type family 𝑇 : N → U of uniformly
continuously searchable closeness spaces and a uniformly continuous and decidable
predicate 𝑝 : decidable-uc-predicate(Π𝑇) with modulus of uniform continuity 𝛿 +1 : N,
the tail predicate 𝑝𝑡 (𝑝, 𝑥) for any fixed head element 𝑥 : 𝑇0 is uniformly continuous with
modulus of uniform continuity 𝛿 : N.

Proof. This follows immediately from the uniform continuity of 𝑝 and Lemma 3.2.66.

This family of ‘tail predicates’ is matched by a family of ‘head predicates’, which are
defined mutually recursively with the proof of Theorem 3.3.14.

Definition 3.3.17. [] Given an N-indexed type family 𝑇 : N → U of uniformly
continuously searchable closeness spaces and a uniformly continuous and decidable
predicate 𝑝 : decidable-uc-predicate(Π𝑇) with modulus of uniform continuity 𝛿 +
1 : N, we define the decidable head predicate as follows:

𝑝ℎ : decidable-uc-predicate(Π𝑇) → decidable-predicate(𝑇0),
𝑝ℎ (𝑝) := 𝜆𝑥 .𝑝 (𝑥 :: EΠ(tail 𝑇) (𝑝𝑡 (𝑝, 𝑥))),

where EΠ(tail 𝑇) : decidable-predicate(Π(tail 𝑇)) → tail 𝑇 is the uniformly continu-
ous searcher (see Definition 3.3.2) derived from the inductive hypothesis of Theo-
rem 3.3.14.

Lemma 3.3.18. [] Given an N-indexed type family 𝑇 : N → U of uniformly
continuously searchable closeness spaces and a uniformly continuous and decidable
predicate 𝑝 : decidable-uc-predicate(Π𝑇) with modulus of uniform continuity 𝛿 +1 : N,
the head predicate 𝑝ℎ (𝑝, 𝑥) is uniformly continuous with modulus of uniform continuity
𝛿 + 1 : N.

Proof. [fp] Given 𝑥,𝑦 : 𝑇0, we need to show that if 𝐶𝛿+1(𝑥,𝑦) then 𝑝 (𝑥 ::
EΠ(tail 𝑇) (𝑝𝑡 (𝑝, 𝑥))) implies 𝑝 (𝑦 :: EΠ(tail 𝑇) (𝑝𝑡 (𝑝,𝑦))). Because 𝑝 is uniformly con-
tinuous with modulus of uniform continuity 𝛿 + 1, this means showing that 𝐶𝛿 (𝑥 ::
EΠ(tail 𝑇) (𝑝𝑡 (𝑝, 𝑥)), 𝑦 :: EΠ(tail 𝑇) (𝑝𝑡 (𝑝,𝑦))).

Because we have 𝐶𝛿+1(𝑥,𝑦), we use Lemma 3.2.66 to reduce this to needing to show
𝐶𝛿 (EΠ(tail 𝑇) (𝑝𝑡 (𝑝, 𝑥)), EΠ(tail 𝑇) (𝑝𝑡 (𝑝,𝑦))). Using propositional extensionality (Defini-
tion 2.3.16), this follows from the fact that 𝑝𝑡 (𝑝, 𝑥) (𝑥𝑠) ⇔ 𝑝𝑡 (𝑝,𝑦) (𝑥𝑠) for all 𝑥𝑠 : Π𝑋 ,
which we prove below.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes-Examples.html#tail-predicate-tych
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes-Examples.html#head-predicate-tych
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter3.SearchableTypes-Examples.html#head-predicate-tych

67 Chapter 3. Searchability and Continuity

Because 𝐶𝛿+1(𝑥,𝑦) and 𝑥𝑠 is infinitely close to itself (Definition 3.2.19), then by
Lemma 3.2.66 we have 𝐶𝛿+1(𝑥 :: 𝑥𝑠,𝑦 :: 𝑥𝑠) and (by symmetry) 𝐶𝛿+1(𝑦 :: 𝑥𝑠, 𝑥 :: 𝑥𝑠).
Therefore, using the uniform continuity of 𝑝 , we have 𝑝𝑡 (𝑝, 𝑥) (𝑥𝑠) ⇔ 𝑝𝑡 (𝑝,𝑦) (𝑥𝑠).

To reiterate, the idea is that, given any uniformly continuous and decidable predicate
𝑝 with modulus of uniform continuity 𝛿 + 1, the head of the sequence 𝑥 is computed
by finding an answer to the head predicate 𝑝ℎ (𝑝), which requires finding an answer
to the tail predicate 𝑝𝑡 (𝑝, 𝑥). As the tail predicate has modulus of uniform continuity
lower than the original predicate, it is recursively valid (i.e. it does not break Agda’s
termination checker) to search for such an answer to the tail predicate. The process
then continues until the final tail predicate has modulus of uniform continuity 0.

Proof of Theorem 3.3.14. [fp] By induction on the modulus of uniform continuity
𝛿 : N on the predicate 𝑝 : decidable-uc-predicate(Π𝑇) to be searched.

When 𝛿 := 0, then by Remark 3.2.22 any element of Π𝑇 will satisfy the predicate.
Therefore, recalling Lemma 3.3.5, we return the element(

𝜆𝑛.E𝑇𝑛 (𝑝⊤)
)
,

where E𝑇𝑛 : decidable-uc-predicate(𝑇𝑛) → 𝑇𝑛 is the uniformly continuous searcher
on 𝑇𝑛 .

When 𝛿 := 𝛿′ + 1, then by Lemma 3.3.16 and the inductive hypothesis we construct
the head predicate

𝑝ℎ (𝑝) := 𝜆𝑥.𝑝 (𝑥 :: EΠ(tail 𝑇) (𝑝𝑡 (𝑝, 𝑥))),

which in turn constructs a tail predicate. By Lemma 3.3.18, this head predicate is
uniformly continuous and can thus be searched because𝑇0 is uniformly continuously
searchable — therefore, we define

𝑥0 := E𝑇0 (𝑝ℎ (𝑝))) .

We then, by Lemma 3.3.16 and the inductive hypothesis, also define

𝑥𝑠0 := EΠ(tail 𝑇) (𝑝𝑡 (𝑝, 𝑥)) .

3.3. Searching infinite types 68

We return (𝑥0 :: 𝑥𝑠0) : Π𝑇 as our answer to the predicate.

We now need to show that, if there is some 𝛼 : Π𝑇 satisfying 𝑝 (𝛼), then indeed
𝑝 (𝑥0 :: 𝑥𝑠0). By Lemma 3.3.16 and the inductive hypothesis, for any 𝑥 : 𝑋 the tail
predicate 𝑝𝑡 (𝑝, 𝑥) is such that if there is some 𝑥𝑠 : Π(tail 𝑇) satisfying 𝑝𝑡 (𝑝, 𝑥) (𝑥𝑠)
then 𝑝𝑡 (𝑝, 𝑥) (EΠ(tail 𝑇) (𝑝𝑡 (𝑝, 𝑥))). Therefore, because

𝑝𝑡 (𝑝, 𝛼0) (tail 𝛼) := 𝑝 (𝛼0 :: tail 𝛼),

(by Lemma 3.2.67), we have

𝑝𝑡 (𝑝, 𝛼0) (EΠ(tail 𝑇) (𝑝𝑡 (𝑝, 𝛼0))) := 𝑝 (𝛼0 :: EΠ(tail 𝑇) (𝑝𝑡 (𝑝, 𝛼0))) =: 𝑝ℎ (𝑝, 𝛼0).

Of course, 𝑥0 : 𝑇0 is such that if there is some 𝑥 : 𝑇0 satisfying 𝑝ℎ (𝑝) (𝑥) then 𝑝ℎ (𝑝) (𝑥0).
Therefore, because we have shown 𝛼0 satisfies 𝑝ℎ (𝑝) (𝛼0), we have

𝑝ℎ (𝑝) (𝑥0) := 𝑝 (𝑥0 :: EΠ(tail 𝑇) (𝑝𝑡 (𝑝, 𝑥0))) =: 𝑝 (𝑥0 :: 𝑥𝑠0),

which is what we wanted.

Chapter 4

Generalised Optimisation and

Regression

We are interested in how the general view of search on infinite structures yielded by
uniformly continuously searchable types can be applied to the purposes of performing
optimisation and regression.

These foundational concepts of analysis are usually defined on real-valued functions
of multiple real variables. Informally, given a type R of real numbers, the central goal of
optimisation is to compute, with mathematical guarantees, an argument which gives
an approximately optimal value (e.g. a local/global minimum or maximum) of some
given objective function 𝑓 : R𝑑 → R in the compact intervals [𝑎0, 𝑏0], ..., [𝑎𝑑−1, 𝑏𝑑−1],
subject to some given constraints and degree of approximation. The applications are
numerous and obvious, in all areas of computational sciences, but in particular, this
problem subsumes many aspects of parametric regression if the objective function is a
loss function, representing a kind of distance between a parameterised model and a
reference model (or just some sampled data), that we wish to minimise [CM02].

In this chapter, we provide a methodological contribution by describing type-
theoretic variants of optimisation and regression to the general class of types (i.e.
totally bounded and uniformly continuous searchable closeness spaces) we introduced
in Chapter 3.

4.1. Global Optimisation 70

−1 −0.8 −0.6 −0.4 −0.2 0.2 0.4

0.1

0.2

0.3

𝑥

𝑓 (𝑥)

Figure 4.1: Graph of the function 𝑓 (𝑥) = 𝑥6 − 𝑥4 + 𝑥3 + 𝑥2 with
−1.1 ≤ 𝑥 ≤ 1.

4.1 Global Optimisation

Much of the recent literature in optimisation theory has focused on local optimisation1

and methods for computing it efficiently, such as gradient descent and supporting
techniques such as automatic differentiation [BPRS18]. Local optimisation is attractive
because it can be computed efficiently, even for functions with high dimensionality.

However, there exists a mathematically attractive alternative: computing a global
minimum argument of 𝑓 in [𝑎, 𝑏], which can, for many problems, producemuch stronger
correctness guarantees than a local minimum [NTvD22]. A global minimum argument
is an argument choice 𝑥𝑠 : R𝑑 such that 𝑓 (𝑥𝑠) is a global minimum value of 𝑓 — i.e., for
any other choice 𝑦𝑠 : R𝑑 , we have 𝑓 (𝑥𝑠) ≤ 𝑓 (𝑦𝑠).

Remark 4.1.1. [] Given endpoints 𝑎, 𝑏 : R such that 𝑎 ≤ 𝑏, we write 𝑥 ∈ [𝑎, 𝑏] to
mean any real 𝑥 : R such that 𝑎 ≤ 𝑥 ≤ 𝑏.

Definition 4.1.2. [] Given a function 𝑓 : R → R and endpoints 𝑎, 𝑏 : R, a given
point 𝑥0 ∈ [𝑎, 𝑏] is a global minimum argument of 𝑓 in the compact interval [𝑎, 𝑏] if
for all 𝑥 ∈ [𝑎, 𝑏] we have 𝑓 (𝑥0) ≤ 𝑓 (𝑥).

For example, in Figure 4.1, a global minimum argument of 𝑓 (𝑥) in the compact
interval [−1.1, 1] is 𝑥 ≈ −0.90047 (which yields a global minimum value 𝑓 (𝑥) ≈
−0.04366), while a local minimum is 𝑥 = 0 (which yields a local minimum value
𝑓 (𝑥) = 0).

1Optimisation often concerns itself with finding maxima, rather than minima — however, as these
two problems are equivalent (we can find a maxima of 𝑓 by finding a minima of −𝑓), we will only focus
on finding minima.

71 Chapter 4. Generalised Optimisation and Regression

In constructive mathematics, computing a global minimum value of a function on
a compact interval is possible. For example, Simpson achieves this using the ternary
signed-digit encoding of real numbers in the compact interval [−1, 1] (explored in
Section 5.2) [Sim98]. Nevertheless, the constructive existence of a global minimum ar-
gument — an argument to the function which gives a minimum value — is a consequence
of the extreme value theorem which is not valid in constructive mathematics, meaning
that they cannot in general be computed [TD88]. The fact that a global minimum
argument is non-computable on the reals relies on the lack of a linear ordering: in con-
structive mathematics we cannot decide, for 𝑥,𝑦 : R, whether (𝑥 ≤ 𝑦) + (𝑦 ≤ 𝑥) [KK11;
TD88]. Indeed, this is sometimes referred to as the analytic lesser limited principle of
omniscience (LLPO) [Shu18].

Despite the non-computability of a global minimum argument, it is the case that,
subject to continuity and compactness constraints (which are reasonable for many
problem domains), an approximate global minimum argument 𝑥 of 𝑓 is computable
such that 𝑓 (𝑥) is a global minimum value up to a given precision 𝜀.

Definition 4.1.3. [] Given a function 𝑓 : R → R, endpoints 𝑎, 𝑏 : R and any
precision 𝜀 : R, a given point 𝑥0 ∈ [𝑎, 𝑏] is an 𝜀-global minimum argument of 𝑓 in
the compact interval [𝑎, 𝑏] if for all 𝑥 ∈ [𝑎, 𝑏] such that ¬𝐶𝜀 (𝑓 (𝑥0), 𝑓 (𝑥)) we have
𝑓 (𝑥0) ≤ 𝑓 (𝑥).

Any algorithm which computes an 𝜀-global minimum argument of a given function
𝑓 : R → R, for any precision 𝜀 : R, is a global optimisation algorithm2.

We are interested in constructing, for our wide class of types, global optimisation
algorithms which are general (few assumptions regarding a particular shape of the
function graph) and complete (guaranteed to find the solution within a specified margin
of error). In particular, we focus on algorithms in the style of Piyavskii, which apply to
continuous functions andwhich discretise the domain of the function similar to a branch-
and-bound-style optimisation algorithm [Piy72; Kea92]. The continuity property is
used for such algorithms to guarantee that the granularity of the domain can be used
to bound the imprecision of the value of the objective function.

In this section, we outline howwithin our frameworkwe can describe the convergent
global optimisation of functions 𝑓 : 𝑋 → 𝑌 , where the types𝑋 and𝑌 are kept as general
as possible (and include those types that in Chapter 5 we introduce to our type theory
in order to encode the real numbers).

2Global optimisation algorithms in general are defined for functions of multiple real variables;
however, as our generalised perspective will eliminate the difference between the two, we stated only
the single argument version for ease of presentation.

4.1. Global Optimisation 72

4.1.1 Orders and approximate orders

In order to reason about the minima of functions 𝑓 : 𝑋 → 𝑌 , our theory must have a
concept of an order on those value types 𝑌 . We remain general in our idea of exactly
which types these are, as we wish to establish a theory of generalised optimisation and
regression.

We first recall some basic notions of orders on a given type.

Definition 4.1.4. [] For any type 𝑋 , a binary relation ≤ : 𝑋 → 𝑋 → Ω is a
preorder on 𝑋 if it is reflexive and transitive:

(i) 𝑥 ≤ 𝑥 ,
(ii) 𝑥 ≤ 𝑦 → 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧.

Definition 4.1.5. [] For any type 𝑋 , a binary relation ≤ : 𝑋 → 𝑋 → Ω is a linear
preorder on𝑋 if it is a preorder and if, for all 𝑥,𝑦 : 𝑋 , it is the case that (𝑥 ≤ 𝑦)+(𝑦 ≤ 𝑥)
holds.

Definition 4.1.6. [] For any type 𝑋 , a binary relation ≤ : 𝑋 → 𝑋 → Ω is a partial
order on 𝑋 if it is an antisymmetric preorder; i.e. if for any 𝑥,𝑦 : 𝑋 such that 𝑥 ≤ 𝑦
and 𝑦 ≤ 𝑥 it is the case that 𝑥 = 𝑦.

Definition 4.1.7. [] For any type 𝑋 , a binary relation ≤ : 𝑋 → 𝑋 → Ω is a linear
order on 𝑋 if it is a preorder that is both antisymmetric and linear.

The easiest example of a class of types with linear orders are the finite linearly
ordered types.

Remark 4.1.8. [] Every finite linearly ordered type 𝐹 has a linear order ≤𝐹 : 𝐹 →
𝐹 → Ω inherited from Fin(𝑛) as discussed in Section 2.4.2.

Recall that in the preamble to this section, we noted that we cannot compute a global
minimum argument of a function 𝑓 : R → R because we cannot prove constructively
that the expected preorder on the reals is linear. We illustrate this further, without
using the reals, by the following motivating example of a class of infinite types 𝐷N

(where 𝐷 is a discrete set) which has a partial order ≤𝐷 : 𝐷 → 𝐷 → Ω whose linearity
— similarly to that of the reals — amounts (in non-trivial cases) to a constructive taboo.
This example is not just chosen for its intelligibility; this class of types is crucial for our
later purposes of representing computable real numbers.

We first define the usual lexicographic order on the discrete-sequence type 𝐷N —

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder.html#is-preorder
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder.html#is-linear-preorder
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder.html#is-partial-order
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder.html#is-linear-order
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#finite-order

73 Chapter 4. Generalised Optimisation and Regression

recall from the literature that this order says 𝛼 ≤𝐷N 𝛽 if at every point 𝑛 : N that 𝛼 and
𝛽 agree prior to, we have 𝛼𝑛 ≤𝑠𝑒𝑞𝐷 𝛽𝑛 . For example, setting 𝐷 := 2,

{0, 0, 0, 1, 0, ...} ≤𝑠𝑒𝑞𝐷 {0, 0, 0, 1, 1, ...} ≤𝑠𝑒𝑞𝐷 {0, 1, 0, 1, 1, ...} ≤𝑠𝑒𝑞𝐷 {1, 1, 1, 1, 1, ...}.

Definition 4.1.9. [] Given a preorder ≤𝐷 : 𝐷 → 𝐷 → Ω on a discrete set 𝐷 , the
lexicographic order ≤𝐷N : 𝐷N → 𝐷N → Ω on 𝐷N is defined:

≤𝐷N : 𝐷N → 𝐷N → Ω,

𝛼 ≤𝐷N 𝛽 := Π(𝑛 : N) (𝛼 ∼𝑛 𝛽 → 𝛼𝑛 ≤𝐷 𝛽𝑛) .

Lemma 4.1.10. [] Given a partial order ≤𝐷 : 𝐷 → 𝐷 → Ω on a discrete set 𝐷 , the
lexicographic order ≤𝐷N : 𝐷N → 𝐷N → Ω is a preorder on 𝐷N.

Proof. [f] We prove both reflexivity and transitivity of the lexicographic order:
(i) Given 𝛼 : 𝐷N, then 𝛼 ≤𝐷N 𝛼 because, by reflexivity of the partial order on 𝐷 ,

𝛼𝑛 ≤𝐷 𝛼𝑛 for all 𝑛 : N.
(ii) Given 𝛼, 𝛽, 𝜁 : 𝐷N, such that 𝛼 ≤𝐷N 𝛽 and 𝛽 ≤𝐷N 𝜁 we need to show that, given

any 𝑛 : N such that 𝛼 ∼𝑛 𝜁 we have 𝛼𝑛 ≤𝐷 𝜁𝑛 . We continue by induction on the
given 𝑛.

In the case where 𝑛 := 0 then we have 𝛼0 ≤𝐷 𝛽0 and 𝛽0 ≤𝐷 𝜁0, because
𝛼 ∼0 𝛽 and 𝛽 ∼0 𝜁 trivially hold; therefore 𝛼0 ≤𝐷 𝜁0 holds by transitivity
of the partial order on 𝐷 .
In the case where 𝑛 := 𝑛′ + 1 then we have 𝛼 ∼𝑛′+1 𝜁 (and hence tail 𝛼 ∼𝑛′

tail 𝜁) and want to show that (tail 𝛼)𝑛′ ≤𝐷 (tail 𝜁)𝑛′. We do this by
invoking the inductive hypothesis after first proving tail 𝛼 ≤𝐷N tail 𝛽 and
tail 𝛽 ≤𝐷N tail 𝜁 .

In order to prove that tail 𝛼 ≤𝐷N tail 𝛽 , we need to show that, given
any 𝑖 : N such that tail 𝛼 ∼𝑖 tail 𝛽 we have (tail
𝑎𝑙𝑝ℎ𝑎)𝑖 ≤𝐷 (tail 𝛽)𝑖 . This follows from the fact that 𝛼 ≤𝐷N 𝛽 once
we show that 𝛼 ∼𝑖+1 𝛽 ; i.e. for all 𝑗 : N such that 𝑗 < 𝑖 + 1 we have
𝛼 𝑗 = 𝛽 𝑗 . This is shown by induction on 𝑗 .

In the case where 𝑗 := 0, we have both 𝛼0 ≤𝐷 𝛽0 (trivially from
𝛼 ≤𝐷N 𝛽) and 𝛽0 ≤𝐷 𝛼0 (by 𝛼 ∼𝑛′+1 𝜁 and 𝛽 ≤𝐷N 𝜁). Therefore
𝛼0 = 𝛽0 follows by antisymmetry of the partial order on 𝐷 .
In the case where 𝑗 := 𝑗 ′ + 1 then we have 𝑗 ′ < 𝑖; therefore
𝛼 𝑗 ′+1 = 𝛽 𝑗 ′+1 follows immediately from tail 𝛼 ∼𝑖 tail 𝛽 .

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#discrete-lexicorder
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#discrete-lexicorder-is-preorder

4.1. Global Optimisation 74

The proof that tail 𝛽 ≤𝐷N tail 𝜁 is by the same reasoning.

Assuming this order is linear allows us to prove a constructive taboo, the weak
principle of omniscience (WLPO) — therefore, the linearity of this order is constructively
invalid.

Remark 4.1.11. WLPO states that, given a binary sequence, we can decide whether or
not all points of the sequence are 1. Another way of saying this is that, given any
extended natural number, we can decide whether or not it is equal to infinity.

WLPO : U ,

WLPO := Π(𝑢 : N∞) (is-decidable(𝑢 = ∞)) .

Note that WLPO is implied by LPO (Remark 3.1.12). Martín Escardó has previously
shown that WLPO is equivalent to the existence of a function 𝑓 : N∞ → 2 that is
discontinuous in the sense that, given some 𝑢 : N∞, it is the case that 𝑓 (𝑢) = 0 if 𝑢 = 𝑛

(for some 𝑛 : N) but 𝑓 (𝑢) = 1 if 𝑢 = ∞ [ES16].

WLPO′ : U ,

WLPO′ :=

Σ(𝑓 : N∞→2)Π(𝑢 : N∞)
((
Σ(𝑛 : N) (𝑢 = 𝑛) → 𝑓 (𝑢) = 0

)
× (𝑢 = ∞ → 𝑓 (𝑢) = 1)

)
.

Lemma 4.1.12. [] [] The linearity of the lexicographic order ≤𝐹N : 𝐹N → 𝐹N →
Ω on 𝐹N, where 𝐹 is a finite linearly ordered type with more than one element, is logically
equivalent to WLPO.

Proof. The first, rather straightforward step, is showing that the linearity of
≤𝐹N : 𝐹N → 𝐹N → Ω implies the linearity of ⪯ : N∞ → N∞ → Ω (as defined
in Definition 3.2.13). The idea here is that, because 𝐹 is finite linearly ordered and
has more than one element, we define an order-preserving function 𝜌 : 2 → 𝐹 —
i.e. for 𝑎, 𝑏 : 2 if 𝑎 ≤2 𝑏 then 𝜌 (𝑎) ≤𝐹 𝜌 (𝑏) — that we use pointwise to define an
order-preserving function map(𝜌) : 2N → 𝐹N. This means that, given any 𝑢, 𝑣 : N∞,
it is the case that 𝑢 ⪯ 𝑣 holds if and only if map(𝜌, fst(𝑢)) ≤𝐹N map(𝜌, fst(𝑣)) holds.
Using this, the linearity of ≤𝐹N implies the linearity of ⪯.
We can now proceed with the core of the proofa, i.e. that the linearity of ⪯ implies
WLPO′ (as given in Remark 4.1.11). Using the linearity of ⪯, we define a function
linearity-decider : N∞ → N∞ → 2 that on input of two extended naturals 𝑢, 𝑣 : N∞

https://www.cs.bham.ac.uk/~mhe/TypeTopology/Taboos.BasicDiscontinuity.html#%E2%84%95%E2%88%9E-linearity-taboo
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#linear-finite-lexicorder-implies-WLPO

75 Chapter 4. Generalised Optimisation and Regression

checks which side of (𝑢 ⪯ 𝑣) + (𝑣 ⪯ 𝑢) holds and returns 0 if the left-hand side holds
and 1 if the right-hand side holds. Of course, given two identical items either 0 or 1
can be returned. We make the following three observations for all 𝑛 : N:

1. linearity-decider(𝑛,∞) = 0,
2. linearity-decider(∞, 𝑛) = 1,
3. linearity-decider(∞,∞) could be either 0 or 1.

Using these observations and the function, we define a discontinuous function
𝑓 : N∞ → 2 that returns 0 on a finite input and 1 on an infinite input. We do
this by comparing∞ to itself and defining 𝑓 based on what is output.

If linearity-decider(∞,∞) = 1 then we define 𝑓 (𝑥) := linearity-decider(𝑥,∞).
On finite input (when 𝑥 = 𝑛 for some 𝑛 : N), it is the case that 𝑓 (𝑥) :=
linearity-decider(𝑛,∞) = 0 (by the first observation above). On infinite in-
put (when 𝑥 = ∞) then it is the case that 𝑓 (𝑥) := linearity-decider(∞,∞) = 1.

If linearity-decider(∞,∞) = 0 then we define 𝑓 (𝑥) :=
flip

2
(linearity-decider(∞, 𝑥)). On finite input, it is the case that

𝑓 (𝑥) := flip
2
(linearity-decider(∞, 𝑛)) = flip

2
(1) = 0 (by the second

observation above). On infinite input (when 𝑥 = ∞) then it is the case that
𝑓 (𝑥) := flip

2
(linearity-decider(∞,∞)) = flip

2
(0) = 1.

In both cases we have defined a discontinuous function, and therefore the linearity
of ⪯ allows us to defineWLPO′ and (by Remark 4.1.11)WLPO itself.

aThis interesting proof was written and shown to me by Martín Escardó while I was completing
my thesis corrections, who gave me permission to reproduce it here.

A global optimisation algorithm must compute an approximate global minimum
argument; in order to do this, we require some form of approximate linear preordering
that relates to the underlying pre-order we are unable to prove the linearity of. We
therefore use our closeness spaces to define this concept of approximate linear preorders.

Definition 4.1.13. [] For any closeness space 𝑋 , an N-indexed family of binary
relations ≤− : N → 𝑋 → 𝑋 → Ω is an approximate linear preorder if, for any 𝜀 : N,
the relation ≤𝜀 : 𝑋 → 𝑋 → Ω is a linear preorder satisfying,

(i) decidable(𝑥 ≤𝜀 𝑦),
(ii) 𝐶𝜀 (𝑥,𝑦) → 𝑥 ≤𝜀 𝑦,

The idea of the above definition is that two elements of a closeness space with an
approximate linear preorder can be ordered in a decidable way and that 𝜀-close elements
must be considered indistinguishable from the point of view of the approximate order.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder.html#is-approx-order

4.1. Global Optimisation 76

In the following definition, we state what it means for an approximate linear preorder
to relate to the genuine preorder.

Definition 4.1.14. [] For any closeness space 𝑋 , an approximate linear preorder
≤− : N → 𝑋 → 𝑋 → Ω relates to a preorder ≤ : 𝑋 → 𝑋 → Ω if the following hold:

(i) 𝑥 ≤ 𝑦 → ∃(𝑛 : N)Π(𝜀 : N) (𝑛 < 𝜀 → 𝑥 ≤𝜀 𝑦),
(ii) Π(𝑛 : N) (𝑥 ≤𝑛 𝑦) → 𝑥 ≤ 𝑦

This first half of the above relationship says that if the two elements are genuinely such
that 𝑥 ≤ 𝑦 then eventually the approximate order recognises this; the second half says
that if the two elements are always approximately ordered such that 𝑥 ≤𝑛 𝑦 then they
genuinely have that order.

We briefly note here that approximate linear preorders yield uniformly continuous
and decidable predicates.

Lemma 4.1.15. [] [] Given an approximate linear preorder ≤− : N → 𝑋 →
𝑋 → Ω on a closeness space 𝑋 , the predicates

𝑝
𝑦,𝜀

𝑙
(𝑥) := 𝑥 ≤𝜀 𝑦 and 𝑝𝑦,𝜀𝑟 (𝑥) := 𝑦 ≤𝜀 𝑥

are uniformly continuous and decidable for any 𝑦 : 𝑋 .

Proof. The decidability of the predicates is immediate from Definition 4.1.13.(i). The
modulus of uniform continuity for both predicates is 𝜀 : N: we show this for 𝑝𝑦,𝜀

𝑙
; the

proof for 𝑝𝑦,𝜀𝑟 is identical.

Given 𝑥1, 𝑥2 : 𝑋 such that 𝐶𝜀 (𝑥1, 𝑥2), we want to show that 𝑥1 ≤𝜀 𝑦 implies 𝑥2 ≤𝜀 𝑦.
By the closeness of 𝑥1 and 𝑥2, we trivially have 𝑥2 ≤𝜀 𝑥1 from Definition 4.1.13.(ii).
The result then follows by the approximate linear preorder’s transitivity.

Returning to our motivating example, we show that sequences of finite linearly
ordered types have an approximate linear preorder.

Definition 4.1.16. [] Given a preorder ≤𝐷 : 𝐷 → 𝐷 → Ω on a discrete set 𝐷 , the
approximate lexicographic order ≤−

𝐷N : N → 𝐷N → 𝐷N → Ω on 𝐷N is defined:

≤𝜀
𝐷N : N → 𝐷N → 𝐷N → Ω,

𝛼 ≤𝜀
𝐷N 𝛽 := Π(𝑛 : N) (𝑛 < 𝜀 → 𝛼 ∼𝑛 𝛽 → 𝛼𝑛 ≤𝐷 𝛽𝑛) .

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder.html#ApproxOrder-Relates.approx-order-relates
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder.html#approx-order-uc-predicate-l
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder.html#approx-order-uc-predicate-r
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#discrete-approx-lexicorder

77 Chapter 4. Generalised Optimisation and Regression

Lemma 4.1.17. [] Given a linear order ≤𝐷 : 𝐷 → 𝐷 → Ω on a discrete set 𝐷 , the
approximate lexicographic order ≤−

𝐷N : N → 𝐷N → 𝐷N → Ω is an approximate linear
preorder.

Proof. [f] The proof that 𝛼 ≤𝜀
𝐷N 𝛽 is a preorder is almost identical to Lemma 4.1.10,

and so we avoid repeating it here. In order to prove this preorder is linear, we proceed
by induction on 𝜀 : N.

In the case where 𝜀 := 0 then both 𝛼 ≤0
𝐷N 𝛽 and 𝛽 ≤0

𝐷N 𝜁 are trivially proved.
We arbitrarily choose the former and show that for all 𝑖 : N such that 𝑖 < 0 and
𝛼 ∼𝑖 𝛽 we have 𝛼𝑖 ≤ 𝛽𝑖 vacuously holds because 𝑖 < 0 is empty.
In the case where 𝜀 := 𝜀′ + 1, we proceed by the linearity of the linear order
on 𝐷 – i.e. we check which side of (𝛼0 ≤𝐷 𝛽0) + (𝛽0 ≤𝐷 𝛼0) and the inductive
hypothesis – i.e. we checkwhich side of

(
tail 𝛼 ≤𝜀 ′

𝐷N tail 𝛽
)
+
(
tail 𝛽 ≤𝜀 ′

𝐷N tail 𝛼
)

holds.
In the case where 𝛼0 ≤𝐷 𝛽0 and tail 𝛼 ≤𝜀 ′

𝐷N tail 𝛽 then it is straightforward
to show that 𝛼 ≤𝜀

𝐷N 𝛽 . The case where 𝛽0 ≤𝐷 𝛼0 and tail 𝛽 ≤𝜀 ′
𝐷N tail 𝛼 is

similarly straightforward.
In the case where 𝛼0 ≤𝐷 𝛽0 and tail 𝛽 ≤𝜀 ′

𝐷N tail 𝛼 , we use the discreteness
of 𝐷 to check whether or not 𝛼0 = 𝛽0 holds. If it does, then also 𝛽0 ≤ 𝛼0
by reflexivity of the linear order on 𝐷 , and hence 𝛽 ≤𝜀

𝐷N 𝛼 . If it does not,
then we show that 𝛼 ≤𝜀

𝐷N 𝛽 by induction on the 𝑖 : N that is such that
𝑖 < 𝜀 and 𝛼 ∼𝑖 𝛽 in order to show that 𝛼𝑖 ≤ 𝛽𝑖 .

The case where 𝑖 := 0 is trivial as we already have 𝛼0 ≤𝐷 𝛽0.
The case where 𝑖 := 𝑖′ + 1 is vacuous as there is a contradiction
between 𝛼 ∼𝑖 ′+1 𝛽 and 𝛼0 ≠ 𝛽0.

The case where 𝛽0 ≤𝐷 𝛼0 and tail 𝛼 ≤𝜀 ′
𝐷N tail 𝛽 uses the same technique

as the previous case.
Following this, we prove the numbered conditions of Definition 4.1.13:

(i) In order to prove that the linear preorder is decidable, we again proceed by
induction on 𝜀 : N. Recall from the above that the base case is trivial; in the
case where 𝜀 := 𝜀′ + 1 we use the induction hypothesis to check whether or not
𝛼 ≤𝜀 ′

𝐷N 𝛽 holds. If it does not, then 𝛼 ≤𝜀
𝐷N 𝛽 clearly does not hold. If it does, we

next check whether or not 𝛼 ∼𝜀 ′ 𝛽 holds (by Lemma 2.4.12).
In the case where 𝛼 ∼𝜀 ′ 𝛽 holds, we further check whether or not 𝛼𝜀 ′ ≤ 𝛽𝜀 ′

(by the fact that any linear order on a discrete type is decidable). If it does
not, then 𝛼 ≤𝜀

𝐷N 𝛽 clearly does not hold. If it does, then 𝛼 ≤𝜀
𝐷N 𝛽 holds;

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#discrete-approx-lexicorder-is-approx-order

4.1. Global Optimisation 78

i.e. if there is an 𝑖 : N that is such that 𝑖 < 𝜀 and 𝛼 ∼𝑖 𝛽 then 𝛼𝑖 ≤ 𝛽𝑖 . If
𝑖 < 𝜀′ then 𝛼𝑖 ≤ 𝛽𝑖 immediately follows by 𝛼 ≤𝜀 ′

𝐷N 𝛽 and 𝛼 ∼𝜀 ′ 𝛽 . If 𝑖 = 𝜀′,
then the result is immediate as we have 𝛼𝜀 ′ ≤ 𝛽𝜀 ′ .
In the case where 𝛼 ∼𝜀 ′ 𝛽 does not hold, then 𝛼 ≤𝜀

𝐷N 𝛽 holds; i.e. if there
is an 𝑖 : N that is such that 𝑖 < 𝜀 and 𝛼 ∼𝑖 𝛽 then 𝛼𝑖 ≤ 𝛽𝑖 . If 𝑖 < 𝜀′ then
then, as above, the result is immediate. If 𝑖 = 𝜀′, then result is vacuous as
there is a contradiction between the assumptions that both ¬𝛼 ∼𝜀 ′ 𝛽 and
𝛼 ∼𝑖 𝛽 .

(ii) By Lemma 3.2.59, the assumption that 𝐶𝜀 (𝛼, 𝛽) is propositionally equivalent
to 𝛼 ∼𝜀 𝛽 . Therefore we assume the latter statement and want to show that
if there is an 𝑖 : N that is such that 𝑖 < 𝜀 and 𝛼 ∼𝑖 𝛽 then 𝛼𝑖 ≤ 𝛽𝑖 . Beecause
𝑖 < 𝜀, the assumption tells us that 𝛼𝑖 = 𝛽𝑖 , and therefore the result follows by
reflexivity of the linear order on 𝐷 .

Lemma 4.1.18. [] Given a discrete set 𝐷 , the approximate lexicographic order
≤−
𝐷N : N → 𝐷N → 𝐷N → Ω relates to the lexicographic order ≤𝐷N : 𝐷N → 𝐷N → Ω.

Proof. [t] We prove the numbered conditions of Definition 4.1.14:
(i) Assuming 𝛼 ≤𝐷N 𝛽 , then for all 𝑖 : N such that 𝛼 ∼𝑖 𝛽 we have 𝛼𝑖 ≤ 𝛽𝑖 .

This means that 𝛼 ≤𝜀
𝐷N 𝛽 for all 𝜀 : N, and so by setting 𝑛 := 0 we have∑

(𝑛 : N)
∏

(𝜀 : N) (𝑛 < 𝜀 → 𝑥 ≤𝜀 𝑦). The result then follows by truncating this
final proof term.

(i) Assuming 𝛼 ≤𝑛
𝐷N 𝛽 holds for all 𝑛 : N, we need to show that given any 𝑖 : N

such that 𝛼 ∼𝑖 𝛽 we have 𝛼𝑖 ≤ 𝛽𝑖 . This is easy: for the given 𝑖 we simply use
the proof that 𝛼 ≤𝑖+1

𝐷N 𝛽 .

Therefore, there are indeed infinite types that we can perform global optimisation on,
so long as we use closeness spaces (or metric spaces, as in the case of the real numbers)
to utilise approximate linear preorders. We illuminate this in Section 4.1.2.

Before doing that — for the later purposes of regression in Section 4.2 wherein we
will optimise functions with co-domain N∞ — we show that the extended naturals have
an approximate lexicographic order that coincides with the established order on them
(as defined in Definition 3.2.13).

Definition 4.1.19. [] [] Given a preorder ≤ : 𝑋 → 𝑋 → Ω and an approximate
linear preorder ≤− : N → 𝑋 → 𝑋 → Ω on a closeness space 𝑋 , and a type family
𝑃 : 𝑋 → V , we define the inclusion order on the type Σ𝑃 and the inclusion approximate

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#LexicographicOrder-Relates.discrete-approx-lexicorder-relates
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#%CE%A3-order
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#%CE%A3-approx-order

79 Chapter 4. Generalised Optimisation and Regression

order on the corresponding closeness space (defined in Corollary 3.2.52) by the
following:

(𝑥, 𝑝𝑥) ≤ (𝑦, 𝑝𝑦) := 𝑥 ≤ 𝑦,
(𝑥, 𝑝𝑥) ≤𝜀 (𝑦, 𝑝𝑦) := 𝑥 ≤𝜀 𝑦,

Lemma 4.1.20. [] [] Given a preorder ≤ : 𝑋 → 𝑋 → Ω and an approximate
linear preorder ≤− : N → 𝑋 → 𝑋 → Ω on a closeness space 𝑋 , and a truth-valued type
family 𝑃 : 𝑋 → Ω, the inclusion approximate order on the closeness space Σ𝑃 is indeed
an approximate linear preorder which relates to the inclusion preorder on Σ𝑃 .

Proof (Sketch). [t] Because the definition of the inclusion orders simply compares
the first arguments by the original orders — and discards the second arguments —
each property we are required to prove for the inclusion orders is immediate from
the fact the original orders satisfy those same properties.

Corollary 4.1.21. [] There is an approximate lexicographic order on N∞ which
relates to the standard lexicographic preorder (as defined in Definition 3.2.13).

Proof. [t] By Lemmas 4.1.17, 4.1.18 and 4.1.20.

4.1.2 Generalised global optimisation

The definition of a global minimum argument of a function whose domain is linearly
ordered is intuitive, and we can always compute a global minimum argument of such a
function if the codomain is pointed and finite linearly ordered.

Definition 4.1.22. [] For any type𝑋 and preorder ≤ : 𝑌 → 𝑌 → Ω on a type𝑌 , an
element 𝑥0 : 𝑋 is a global minimum argument of a function 𝑓 : 𝑋 → 𝑌 if 𝑓 (𝑥0) ≤ 𝑓 (𝑥)
for all 𝑥 : 𝑋 .

Lemma 4.1.23. [] For any pointed finite linearly ordered type 𝑋 and linear preorder
≤ : 𝑌 → 𝑌 → Ω on a type 𝑌 , every function 𝑓 : 𝑋 → 𝑌 has a global minimum
argument.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#%CE%A3-approx-order-is-approx-order
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#%CE%A3Order-Relates.%CE%A3-approx-order-relates
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ApproxOrder-Examples.html#%E2%84%95%E2%88%9E-approx-lexicorder
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.GlobalOptimisation.html#is-global-minimal
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.GlobalOptimisation.html#finite-global-minimal

4.1. Global Optimisation 80

Proof. Recall from Definition 2.4.4 of finite linearly ordered types that 𝑋 ≃ Fin(𝑛)
for some 𝑛 : N, and therefore that (by Definition 2.3.21) there is some equivalence
𝑔 : 𝑋 → Fin(𝑛).

We proceed by induction on 𝑛. When 𝑛 := 0 then 𝑋 ≃ 0, which is not pointed and
therefore the result follows vacuously. When 𝑛 := 1 then 𝑋 ≃ 0 + 1, and thus 𝑋 has
only one element 𝑔(inr ★) : 𝑋 which must, by reflexivity of the linear preorder, be
the global minimum argument of 𝑓 .

When 𝑛 := 𝑛′ + 1 then 𝑋 ≃ Fin(𝑛′) + 1. We use the inductive hypothesis to find
the global minimum argument 𝑥 : Fin(𝑛′) of the function (𝑓 ◦ 𝑔 ◦ inl) : Fin(𝑛′) → 𝑌 .
This means that only 𝑔(inl 𝑥) : 𝑋 or 𝑔(inr★) : 𝑋 can be the global minimum argument
to 𝑓 . We therefore use the linearity of the linear preorder to find out which side
of (𝑓 (𝑔(inl 𝑥)) ≤ 𝑓 (𝑔(inr ★)) + (𝑓 (𝑔(inr ★)) ≤ 𝑓 (𝑔(inl 𝑥))) holds — if the left-hand
side holds then 𝑓 (𝑔(inl 𝑥)) ≤ 𝑓 (𝑥) for all 𝑥 : 𝑋 , while if the right-hand side holds
then 𝑓 (𝑔(inr ★)) ≤ 𝑓 (𝑥) for all 𝑥 : 𝑋 .

Replacing the order with an approximate linear preorder, we now state the general
version of the global optimisation problem using closeness spaces. Similarly to the
above, it is the case that any function on pointed finite linearly ordered codomain and
whose domain has an approximate linear preorder has a computable global minimum
up to any degree of precision.

Definition 4.1.24. [] For any type 𝑋 and approximate linear preorder ≤− : N →
𝑌 → 𝑌 → Ω on a closeness space 𝑌 , an element 𝑥0 : 𝑋 is an 𝜀-global minimum
argument of a function 𝑓 : 𝑋 → 𝑌 , given any precision 𝜀 : N, if 𝑓 (𝑥0) ≤𝜀 𝑓 (𝑥) for all
𝑥 : 𝑋 .

Lemma 4.1.25. [] For any pointed finite linearly ordered type 𝑋 and approximate
linear preorder ≤− : N → 𝑌 → 𝑌 → Ω on a closeness space𝑌 , every function 𝑓 : 𝑋 → 𝑌

has an 𝜀-global minimum argument given any precision 𝜀 : N.

Proof. By definition of approximate linear preorders (Definition 4.1.13), the relation
≤𝜖 : 𝑋 → 𝑋 → Ω is a linear preorder. Therefore, the result immediately follows by
Lemma 4.1.23.

As we saw in Definition 4.1.3, real global optimisation is performed on compact
intervals of the real numbers. Recall that a metric space is compact if it is totally bounded
and complete, and that there is a relationship between compact spaces and searchable

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.GlobalOptimisation.html#is_global-minimal
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.GlobalOptimisation.html#F-%CF%B5-global-minimal

81 Chapter 4. Generalised Optimisation and Regression

sets. As we are only minimising uniformly continuous functions, we do not require
completeness3. Furthermore, uniformly continuous searchability (see Definition 3.3.3)
is inappropriate for global optimisation. This is because, in order to prove the search
condition when searching for a global minimum argument, we would have to prove
that such an argument exists anyway. Therefore, our generalised global optimisation
theorem takes place on totally bounded closeness spaces.

By using the totally bounded (see Definition 3.2.35) and uniformly continuous
(see Definition 3.2.27) properties, we reduce the problem of searching the potentially
infinite space 𝑋 for an 𝜀-global minimum into that of searching a finite 𝜀-net (see
Definition 3.2.34) for an element which represents a 𝜀-global minimum. This approach
is intuitive, and reflects approaches to arbitrary-precision global optimisation in the
literature [FG09]. Furthermore, it is exactly the same process as what was performed in
Section 3.3, wherein we used uniform continuity to search a potentially-infinite space.

Theorem 4.1.26. [] Given a pointed totally bounded closeness space 𝑋 and approx-
imate linear preorder ≤− : N → 𝑌 → 𝑌 → Ω on a closeness space 𝑌 , any uniformly
continuous function 𝑓 : 𝑋 → 𝑌 has an 𝜀-global minimum given any precision 𝜀 : N.

Proof. Given the requested precision 𝜀 : N, by total boundedness we obtain a 𝛿-net
𝑋 ′ of 𝑋 , where 𝛿 : N is the modulus of uniform continuity of 𝑓 for 𝜀. Recall from
Definition 3.2.34 that 𝑋 ′ is such that there are 𝑔 : 𝑋 ′ → 𝑋 and ℎ : 𝑋 → 𝑋 such that
for all 𝑥 : 𝑋 we have 𝐶𝛿 (𝑥,𝑔(ℎ(𝑥))).

By Lemma 4.1.25, we can compute an 𝜀-global minimum of the function 𝑓 ◦𝑔 : 𝑋 ′ → 𝑌 ,
i.e. we have 𝑥′0 : 𝑋 ′ such that 𝑓 (𝑔(𝑥′0)) ≤𝜀 𝑓 (𝑔(𝑥′)) for all 𝑥′ : 𝑋 ′.

Then, given any 𝑥 : 𝑋 , it is the case that𝐶𝛿 (𝑥,𝑔(ℎ(𝑥)) and thus, by Definition 4.1.13.(i),
that 𝑓 (𝑔(ℎ(𝑥))) ≤𝜀 𝑓 (𝑥).

Therefore, given any 𝑥 : 𝑋 , we have 𝑓 (𝑔(𝑥′0)) ≤𝜀 𝑓 (𝑔(ℎ(𝑥))) ≤𝜀 𝑓 (𝑥) and thus, by
transitivity of the approximate linear preorder, 𝑔(𝑥′0) : 𝑋 is an 𝜀-global minimum
argument of 𝑓 .

Finally, we apply our theorem to our motivating example, and show that we can
optimise functions on sequences of finite linearly ordered types via their lexicographic
orders.

3Informally, we do not require completeness due to the fact that uniformly continuous functions on
metric spaces extend uniquely to the completion of that space and, further, the completion of a totally
bounded metric space is compact [TD88].

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.GlobalOptimisation.html#global-opt

4.2. Parametric Regression 82

Corollary 4.1.27. Given finite linearly ordered types 𝐹 and 𝐺 , with 𝐹 pointed, any
uniformly continuous function 𝑓 : 𝐹N → 𝐺N has, for any requested precision 𝜀 : N, an
𝜀-global minimum via discrete-sequence closeness spaces (see Definition 3.2.56) and the
approximate lexicographic ordering on 𝐺N.

Proof. Recall that, by Corollary 3.2.60, the discrete-sequence closeness space of a
finite linearly ordered type 𝐹 is totally bounded. The result then follows from Theo-
rem 4.1.26 by Lemma 4.1.17.

4.2 Parametric Regression

The work of this section was previously published as part of a joint paper with Dan R.
Ghica at the Logic in Computer Science (LICS) 2021 conference [GA21].

Parametric regression analysis is a set of algorithms for estimating the relation-
ship between a dependent variable 𝑦 (outcome) and several independent variables
{𝑥0, ..., 𝑥𝑛−1} (predictors), where the outcome is a function of the observations that
has potentially, and indeterminably, been distorted. A parameterised function is pro-
posed as a model for this function. The value of the parameters is then computed such
that, given finitely-many predictor-outcome observations, a loss function between the
observed outcomes and those estimated by the model on input of the predictors is
minimised [YS09].

Therefore, parametric regression is the problem of finding — given finitely-many
predictor-outcome observations — (approximations of) best choice parameters for
a given parameterised model function using a given loss function. As with global
optimisation in Section 4.1, we first state this problem using real numbers.

Definition 4.2.1. [] Given 𝑛, 𝑖, 𝑑 : N, some loss function 𝐿 : R → R → R≥0, some
parameterised model function 𝑀 : R𝑖 → (R𝑑 → R) and finitely-many predictor-
outcome observations {(𝑥𝑠0, 𝑦0), ..., (𝑥𝑠𝑛−1, 𝑦𝑛−1)} : (R𝑑 × R)𝑛 , the parameters 𝑝𝑠∗ : R𝑖

are best choice if they minimise the loss between the outcomes estimated by the
regressed function𝑀𝑝𝑠 : R𝑑 → R and the observed outcomes; i.e. if they are a global
minimum of the function

(
𝜆(𝑝𝑠 : R𝑖).∑𝑛

𝑗=0 𝐿(𝑀𝑝𝑠 (𝑥𝑠𝑖), 𝑦𝑖)
)
: R𝑖 → R≥0.

The choice of a particular loss function — i.e. a pseudometric on the function space
(R𝑑 → R) — is a field in its own right, but a common example is the least-squares
method 𝐿(𝑥,𝑦) := 𝑑𝑅 (𝑥,𝑦)2. As an example of a particular model function, consider
linear regression where the model𝑀 : R2 → (R → R) is defined𝑀(𝛼,𝛽) (𝑥) := 𝛼𝑥 + 𝛽 .

83 Chapter 4. Generalised Optimisation and Regression

Based on the above rationalisation of the parametric regression problem, we view it
as an instance of the global optimisation problem explored in the previous section. As
with global optimisation, therefore, we cannot in general compute a best choice set of
parameters — but we can compute parameters that are, for some degree of precision,
approximately best choice.

Definition 4.2.2. [] Given 𝑛, 𝑖, 𝑑 : N, some loss function 𝐿 : R → R → R≥0,
some parameterised model function 𝑀 : R𝑖 → (R𝑑 → R), finitely-many predictor-
outcome observations {(𝑥𝑠0, 𝑦0), ..., (𝑥𝑠𝑛−1, 𝑦𝑛−1)} : (R𝑑 × R)𝑛 and any precision
𝜀 : R≥0, the parameters 𝑝𝑠∗ : R𝑖 are 𝜀-best choice if they minimise the loss between
the outcomes estimated by the regressed function 𝑀𝑝𝑠 : R𝑑 → R and the ob-
served outcomes up-to-𝜀; i.e. if they are an 𝜀-global minimum of the function(
𝜆(𝑝𝑠 : R𝑖).∑𝑛

𝑗=0 𝐿(𝑀𝑝𝑠 (𝑥𝑠𝑖), 𝑦𝑖)
)
: R𝑖 → R≥0.

4.2.1 Generalised parametric regression

By generalising Definition 4.2.2, we eliminate the need to specify the arity of our pa-
rameter/predictor spaces. We replace the notion of an arbitrary loss function such
as least-squares by the least-closeness pseudocloseness function (defined in Defi-
nition 3.2.69); this means that rather than minimising loss we seek to maximise
the least-closeness. Furthermore, we replace the idea of predictor-outcome obser-
vations {(𝑥𝑠0, 𝑦0), ..., (𝑥𝑠𝑛−1, 𝑦𝑛−1)} : (𝑋 × 𝑌)𝑛 by a combination of predictor outcomes
{𝑥0, ..., 𝑥𝑛−1} : 𝑋𝑛 and a function O : 𝑋 → 𝑌 which can be thought of as the oracle of
the outcome observations — the (potentially distorted) function from which they arise
on input of the predictors; i.e. O(𝑥𝑠𝑖) = 𝑦𝑖 .

Definition 4.2.3. [] Given a function 𝑓 : 𝑋 → 𝑌 where 𝑌 is a pre-ordered type,
𝑥0 : 𝑋 is a global maximum of 𝑓 if for all 𝑥 : 𝑋 we have 𝑓 (𝑥0) ≥ 𝑓 (𝑥).

Definition 4.2.4. Given a type of predictors 𝑋 , closeness space of outcomes 𝑌 ,
type of parameters 𝑃 , some parameterised model function 𝑀 : 𝑃 → (𝑋 → 𝑌),
finitely-many predictor observations {𝑥0, ..., 𝑥𝑛−1} : 𝑋𝑛 (for some 𝑛 : N), some or-
acle function O : 𝑋 → 𝑌 and any precision 𝜀 : N, the parameter 𝑝∗ : 𝑃 is 𝜀-best
choice if it maximises the least-closeness pseudocloseness between the predic-
tors’ outcomes as estimated by the regressed function 𝑀𝑝∗ : 𝑋 → 𝑌 and as ob-
served from the oracle up-to-𝜀; i.e. if 𝑝∗ is an 𝜀-global maximum of the function(
𝜆(𝑝 : 𝑃).min(𝑐𝑌 (𝑀𝑝 (𝑥0),O(𝑥0)), ..., 𝑐𝑌 (𝑀𝑝 (𝑥𝑛−1),O(𝑥𝑛−1))

)
: 𝑃 → N∞.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ParametricRegression.html#is_global-maximal

4.2. Parametric Regression 84

In this way, we have now re-imagined parametric regression as the process of
approximating a black-box oracle with a parameterised model using a pseudocloseness
function. Therefore, our generalised parametric regression not only (i) generalises
from reals to closeness spaces, but also (ii) methodologically generalises the problem of
regression.

We can go one step further and remove explicit observations of the oracle altogether,
allowing us to generalise the type of oracles themselves from function spaces to pseu-
docloseness spaces. By doing this, instead of using the least-closeness pseudocloseness
function, we use the pseudocloseness function that the pseudocloseness space of oracles
is equipped with.

Definition 4.2.5. Given a type of parameters 𝑃 , a pseudocloseness space of oracles𝑂 ,
some oracleO : 𝑂 and some parameterised model function𝑀 : 𝑃 → 𝑂 , the parameter
𝑝∗ : 𝑃 is 𝜀-best choice if it maximises the closeness between the regressed function
𝑀𝑝∗ and the oracle O up-to-𝜀; i.e. if 𝑝∗ is an 𝜀-global maximum of the function(
𝜆(𝑝 : 𝑃).𝑐′

𝑂
(𝑀𝑝,O)

)
: 𝑃 → N∞.

We use this second generalisation of regression when stating and proving our
convergence theorems for regression in the next subsection. However, for the practical
purposes of Chapter 6, we return to the less general Definition 4.2.4, which defines
regression on function spaces by using the least-closeness pseudocloseness function. We
note here that, as Definition 4.2.5 is a generalisation of Definition 4.2.4, the convergence
theorems proved on the former still hold for the latter.

4.2.2 Convergence theorems for parametric regression

Convergence properties of interpolation, another way of constructing models out of
data, have been studied extensively by Weierstrass-style theorems [Pin00]. In this
section, we make a methodological contribution by providing several convergence
properties of our generalised variant of parametric regression (Definition 4.2.5) using
optimisation and search. The contribution here is more methodological than technical,
as the proofs follow naturally from the structures and theorems of Chapters 3 and 4.
The statements on the other hand are not obvious and require a different conceptual,
not just mathematical, perspective on parametric regression analysis.

Convergent parametric regression via global optimisation

Guarantees that can be made on computing an 𝜀-global minimum of the loss function
can be automatically considered as guarantees on the precision of the regressed model.

85 Chapter 4. Generalised Optimisation and Regression

Recall that the convergence of interpolation guarantees that any oracle (subject
to hygiene conditions) can be reconstituted to any desired precision if the number of
samples is large enough [Pin00]. A similar theorem cannot hold for regression, for the
simple reason that in regression we must commit to a model which may or may not be
similar to the oracle function. For example, if our oracle has quadratic behaviour, no
amount of data will yield a precise linear approximation of it. This commitment to a
particular model must be taken into account in formulating convergence properties for
regression. If the model is completely wrong then, of course, convergence cannot be
achieved.

However, even in the case where the model is incorrect, we can still employ gen-
eralised global optimisation (as long as our types permit that) in order to compute an
𝜀-best choice parameter of the model up to any precision.

Theorem 4.2.6 (Regression as minimisation). [] Given a totally bounded closeness
space of parameters 𝑃 , pseudocloseness space of oracles 𝑂 oracle O : 𝑂 , and any param-
eterised uniformly continuous model function 𝑀 : 𝑃 → 𝑂 , we can compute an 𝜀-best
choice parameter for𝑀 given every precision 𝜀 : N.

Proof. Recall that N∞ is a closeness space (Corollary 3.2.53) and has an approximate
lexicographic order (Corollary 4.1.21). Therefore, we can perform 𝜀-global maximi-
sationa on it using Theorem 4.1.26. We then compute an 𝜀-global maximum of the
function

(
𝑐′
𝑂
(O, 𝑀 (𝑝))

)
: 𝑃 → N∞, where 𝑐′𝑂 : 𝑂 → 𝑂 → N∞ is the pseudoclose-

ness function on 𝑂 . The function that we maximise is uniformly continuous by the
ultrametric property of the pseudocloseness space (Definition 3.2.68).

aMaximisation can be achieved by the same theorem as minimisation by simply swapping the
order in which elements are evaluated by the approximate order.

Convergent regression via uniformly continuous search

Our first convergence theorem stated that we can compute a 𝜀-best choice parameter
given minimal conditions on the oracle and parameter types, as well as the model
function. We now consider computing parameters for regression that are not neces-
sarily 𝜀-best choice, but which maximise the pseudocloseness to an acceptable level
parameterised by 𝜀. These convergence theorems require additional conditions, but are
more ‘practical’ in the sense that we do not necessarily have to exhaust all possible
candidate solutions in order to return an acceptable parameter for the given 𝜀 (as we
see later in the examples of Section 6.1.3, such as Example 6.1.35).

A general and absolute guarantee of precision can only be given if the model is the

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ParametricRegression.html#optimisation-convergence

4.2. Parametric Regression 86

same as the oracle up to the value of the model parameters; i.e. the model is chosen
correctly, and the oracle is not distorted. If this is the case then, by using uniformly
continuous search, we can indeed maximise the pseudocloseness between the regressed
and true oracles and, further, we can make it arbitrarily large.

To express this property we introduce the concept of a synthetic oracle, which is
simply an oracleO “synthesised” from a model function𝑀 by applying it to an arbitrary
and unknown parameter 𝑘 ; i.e. O := 𝑀 (𝑘).

Definition 4.2.7. Given type of parameters 𝑃 and type of oracles 𝑂 , an oracle O : 𝑂
is synthetically constructed from𝑀 if there is some parameter choice 𝑝 : 𝑃 such that
O = 𝑀𝑝 .

Definition 4.2.8. [] Given a uniformly continuously searchable type of parameters
𝑃 and pseudocloseness space of oracles𝑂 , we define the parametric regressor function
reg : N → (𝑃 → 𝑂) → 𝑂 → 𝑃 as,

reg(𝜀, 𝑀,O) := E𝑃
(
𝜆(𝑝 : 𝑃).𝐶𝜀 (𝑀𝑝,O)

)
,

where E𝑃 : decidable-uc-predicate(𝑃) → 𝑃 is the uniformly continuous searcher on
𝑃 (as introduced in Definition 3.3.2).

Theorem 4.2.9 (Convergence of distortion-free regression). [] Given a uniformly
continuously searchable type of parameters 𝑃 , pseudocloseness space of oracles𝑂 , param-
eterised uniformly continuous model function𝑀 : 𝑃 → 𝑂 and oracleO : 𝑂 synthetically
constructed from𝑀 , we can use the parametric regressor reg : N → (𝑃 → 𝑂) → 𝑂 → 𝑃

to build the regressed oracle 𝜔 : 𝑂 using only 𝜀,𝑀 and O (i.e. 𝜔 := reg(𝜀, 𝑀,O)) such
that 𝐶𝜀 (𝜔,O), for any precision 𝜀 : N.

Proof. The result follows from the later Theorem 4.2.10 by setting Ψ := id; i.e. the
distortion function is just the identity function, as the oracle we query is not distorted
from the true oracle.

Note that a raw intuition of this theorem statement can be misleading: the regressor
sees the synthetic oracle as a black box process, so it is not simply searching for the
parameter of the synthetic oracle 𝑘 . It is searching for any parameter that makes the
pseudocloseness between the true and regressed oracles 𝜀-large.

The more traditional case is when the oracle is prone to some distortion. We model
this case in our framework by using a distortion function Ψ : 𝑂 → 𝑂 which is applied

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ParametricRegression.html#p-regressor
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ParametricRegression.html#perfect-convergence

87 Chapter 4. Generalised Optimisation and Regression

to the true synthetic oracle O : 𝑂 to yield the distorted oracle OΨ : 𝑂 . It is this distorted
oracle that the parametric regressor receives and can query for observations.

We cannot anymore expect to be able to maximise the pseudocloseness between
the regressed and true oracles to any degree of precision. However, we can guarantee
that the pseudocloseness between the regressed and true oracles is bounded by that
between the regressed and distorted oracles.

Theorem 4.2.10 (Convergence of distortion-prone regression). [] Given a uni-
formly continuously searchable type of parameters 𝑃 , pseudocloseness space of oracles𝑂 ,
parameterised uniformly continuous model function𝑀 : 𝑃 → 𝑂 , oracle O : 𝑂 syntheti-
cally constructed from𝑀 and distortion function Ψ : 𝑂 → 𝑂 , we can use the parametric
regressor reg : N → (𝑃 → 𝑂) → 𝑂 → 𝑃 to build the regressed oracle 𝜔 : 𝑂 using only
𝜀,𝑀 and ΨO (i.e. 𝜔 := reg(𝜀, 𝑀,ΨO)) such that if 𝐶𝜀 (ΨO,O) then 𝐶𝜀 (𝜔,O), for any
precision 𝜀 : N.

Proof. We just need to show that 𝐶𝜀 (ΨO, 𝜔) as then the result will follow by transi-
tivity of the closeness relation (Lemma 3.2.23) and the assumption that 𝐶𝜀 (ΨO,O).

Because 𝜔 := reg(𝜀, 𝑀,ΨO) := E𝑃 (𝜆(𝑝 : 𝑃).𝐶𝜀 (𝑀𝑝,O)), the result follows if there is
some 𝑝′ : 𝑃 such that 𝐶𝜀 (𝑀𝑝 ′,O). Because the model is synthetically constructed, we
can set 𝑝′ as the parameter from which it was constructed, and the result follows
immediately.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter4.ParametricRegression.html#s-imperfect-convergence

Chapter 5

Real Numbers

We introduced our type-theoretic framework usingAgda in Chapter 2, the core concepts
of searchability and continuity in Chapter 3, and our generalised variants of global
optimisation and parametric regression — algorithms usually defined explicitly on real
numbers — in Chapter 4. We now wish to take our work full circle: to program within
our framework instantiations of these processes that operate on representations of
(compact intervals of) the real numbers.

Constructive approaches to representing the real numbers are well-studied: the
Cauchy reals and Dedekind reals are representations that have been previously defined
and used in dependent type theory for analysis [Uni13; Boo20]. In practice, however,
the Dedekind reals are inconvenient for computation, owing to the fact every real
number is represented uniquely by exactly one Dedekind real [GNSW07]. The Cauchy
reals do not have such a uniqueness property, and as such have been found to be
more convenient for computation: different variations of Cauchy (i.e., convergent)
sequences of rational numbers have been used as representations of real numbers for
the purpose of performing exact real computation. In this chapter, we introduce two
such convenient representations of (Cauchy) real numbers from the literature: ternary
signed-digit encodings and ternary Boehm encodings [Di 93; Boe20].

We formalise the structure and some of the algorithms of the signed-digit encodings
of the compact interval [−1, 1] within our Agda framework and — going beyond this
— prove the correctness of these definitions. In order to achieve this latter goal of
verification, we further formalise the Escardó-Simpson interval object, an axiomatic
specification of the real numbers which supports constructive mathematics by de-

89 Chapter 5. Real Numbers

sign [ES01].
In classical mathematics, the real numbers are axiomatised as the unique complete

Archimedean field (see e.g. [Tre13]). This approach does not work in constructive
mathematics – for example, as we discussed in Section 4.1, the axiom that such reals
have a linear order is the analytic LLPO [Shu18]. The alternative use of the interval
object in this chapter is therefore appropriate; furthermore, it has the advantage of
having fewer operations and axioms and so is easier to work with in practice.

For the Boehm encodings, we formalise and prove the correctness of Boehm’s defi-
nition; though the correctness of his arithmetic operations is relegated to further work
(see Section 7.2.2). For the sake of variation, we use a different approach to verifying
the structure of the Boehm encodings, and instead use the Dedekind reals [Bau08]. We
seek to show that every ternary Boehm encoding of a real number gives a Dedekind
real encoding of that real number.

5.1 Escardó-Simpson interval object

In 2001, Martín Escardó and Alex Simpson proposed a categorical specification of closed
real intervals which supports constructive mathematics by design [ES01]. The basic
structure is that of bipointed midpoint algebras, on which we give a universal property
that is a variation of the completeness axiom, which serves as a computation principle
for these real numbers.

In their paper, Escardó and Simpson worked in the generality of a category with
finite products, but wrote that their specification “applies to a variety of computational
settings ... such as intuitionistic type theory" [ES01]. In this section, we contribute to
this line of work by formalising the work in constructive type theory using Agda. We
will use this type in Section 5.2 in order to verify the signed-digit encodings.

This work was previously published as part of a joint paper with Dan R. Ghica at
the Logic in Computer Science (LICS) 2021 conference [GA21], and given as a talk at
theWorkshop on Homotopy Type Theory/Univalent Foundations (HoTT/UF) [Amb20b;
Amb20a].

5.1.1 Cancellative midpoint algebras

We start off by defining the type of midpoint algebras.

Definition 5.1.1. [] A magma is a set 𝐴 equipped with a binary function to

5.1. Escardó-Simpson interval object 90

itself,
MagmaU :=

∑︁
(𝐴 : U)

(is-set(𝐴) × (𝐴 → 𝐴 → 𝐴)) .

For a given magma, we write (𝐴, ⊕) : Magma with the proof terms implicit.

Definition 5.1.2. [] A magma (𝐴, ⊕) is a midpoint algebra if it is,
(i) idempotent,

∏
(𝑎 : 𝐴) (𝑎 ⊕ 𝑎 = 𝑎),

(ii) commutative,
∏

(𝑎,𝑏 : 𝐴) (𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎),
(iii) transpositional,

∏
(𝑎,𝑏,𝑐,𝑑 : 𝐴) ((𝑎 ⊕ 𝑏) ⊕ (𝑐 ⊕ 𝑑) = (𝑎 ⊕ 𝑐) ⊕ (𝑏 ⊕ 𝑑)).

For such a structure, we write (𝐴, ⊕) : Midpoint-algebra with proof terms (i)-(iii)
implicit.

Functions between midpoint algebras that preserve the structure are called midpoint
homomorphisms.

Definition 5.1.3. [] Given two midpoint algebras (𝐴, ⊕𝐴) and (𝐵, ⊕𝐵), a function
ℎ : 𝐴 → 𝐵 is a midpoint homomorphism if it preserves the midpoint operation:

is-midpoint-hom((𝐴, ⊕𝐴), (𝐵, ⊕𝐵), ℎ) :=
∏

(𝑎,𝑏 : 𝐴)
(ℎ(𝑎 ⊕𝐴 𝑏) = ℎ(𝑎) ⊕𝐵 ℎ(𝑏)) .

If the midpoint algebras are the same, we write is-midpoint-hom((𝐴, ⊕𝐴), ℎ) as short-
hand.

Lemma 5.1.4. [] [] The identity function is a midpoint homomorphism and
composition preserves homomorphisms.

Proof. For the identity function on a midpoint algebra (𝐴, ⊕𝐴), we need to show that
for all𝑎 : 𝐴wehave id𝐴 (𝑎⊕𝐴𝑎) = id𝐴 (𝑎)⊕𝐴id𝐴 (𝑎); this is clearly the case by reflexivity.
For composition of functions 𝑓 : 𝐴 → 𝐵 and 𝑔 : 𝐵 → 𝐶 between midpoint algebras
(𝐴, ⊕𝐴), (𝐵, ⊕𝐵) and (𝐶, ⊕𝐶), we want to show that 𝑔(𝑓 (𝑎1 ⊕𝐴 𝑎2)) = 𝑔(𝑓 (𝑎1)) ⊕𝐶
𝑔(𝑓 (𝑎2)) for all 𝑎1, 𝑎2 : 𝐴. This is the case because 𝑔(𝑓 (𝑎1 ⊕𝐴𝑎2)) = 𝑔(𝑓 (𝑎1) ⊕𝐵 𝑓 (𝑎2))
(because 𝑓 is a midpoint homomorphism) and then 𝑔(𝑓 (𝑎1) ⊕𝐵 𝑓 (𝑎2)) = 𝑔(𝑓 (𝑎1)) ⊕𝐶
𝑔(𝑓 (𝑎2)) (because 𝑔 is a midpoint homomorphism).

The midpoint algebras we utilise for the interval object satisfy an additional property
called cancellation.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#Midpoint-algebra
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#is-%E2%8A%95-homomorphism
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#id-is-%E2%8A%95-homomorphism
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#%E2%8A%95-hom-composition

91 Chapter 5. Real Numbers

Definition 5.1.5. [] A magma (𝐴, ⊕) is cancellative if for all 𝑎, 𝑏, 𝑐 : 𝐴 it is the case
that 𝑎 ⊕ 𝑐 = 𝑏 ⊕ 𝑐 implies 𝑎 = 𝑏.

R𝑛 is a cancellative midpoint algebra closed under the binary midpoint function
𝜆(𝑥,𝑦 : R𝑛) . 12 (𝑥 + 𝑦), as are various subsets of R, such as the rationals.

5.1.2 Iteration property

Starting from 0 and 1, the midpoint function can be used to generate every dyadic
rational point in [−1, 1]. In order to generate all rational and irrational numbers, the
interval object requires its own version of the classical completeness axiom; recall that
this informally states that the real line has no “gaps” or “missing points” [Tre13]. This
property, which is called iteration, states that there is an operator 𝑀 : 𝐴N → 𝐴 that
gives the ‘infinitely iterated’ midpoint of a stream of points of𝐴. Formally, this operator
is defined by two sub-properties.

Definition 5.1.6. [] Given a magma (𝐴, ⊕) and function 𝑀 : 𝐴N → 𝐴, the first
iteration sub-property is defined by:

iterative1(𝐴, ⊕, 𝑀) :=
∏

(𝛼 : 𝐴N)
(𝑀 (𝛼) = 𝛼0 ⊕ 𝑀 (tail 𝛼)) .

Definition 5.1.7. [] Given a magma (𝐴, ⊕) and function𝑀 : 𝐴N → 𝐴, the second
iteration sub-property is defined by:

iterative2(𝐴, ⊕, 𝑀) :=
∏

(𝛼,𝛽 : 𝐴N)

©«
∏
(𝑖 : N)

(𝛽𝑖 = 𝛼𝑖 ⊕ 𝛽𝑖+1)ª®¬ → 𝛽0 = 𝑀 (𝛼).

Definition 5.1.8. [] A magma (𝐴, ⊕) is iterative if there is a function𝑀 : 𝐴N → 𝐴

such that both iteration sub-properties are satisfied:

iterative(𝐴, ⊕) :=
∑︁

(𝑀 : 𝐴N→𝐴)
(iterative1(𝐴, ⊕, 𝑀) × iterative2(𝐴, ⊕, 𝑀))

The first sub-property characterises the iteration operator, while the second gives
a computation rule for it with respect to a second stream which corresponds to the
iteration on the first. Both of these sub-properties are indeed properties rather than ad-
ditional structure on the magma; i.e. given any magma (𝐴, ⊕) and function𝑀 : 𝐴N → 𝐴,

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#cancellative
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#iterative
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#iterative
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#iterative

5.1. Escardó-Simpson interval object 92

the types iterative1(𝐴, ⊕, 𝑀) and iterative2(𝐴, ⊕, 𝑀) are propositions (Definition 2.3.5),
by the fact that 𝐴 is a set. This further (by Lemma 2.3.11) means that the composition
of these two properties is a property for any given magma and function. We now
prove that the type iterative(𝐴, ⊕) itself is a property for any magma (𝐴, ⊕); the proof
comes from the fact that for any given magma, any function satisfying both iteration
sub-properties is unique.

Lemma 5.1.9. [] Given a magma (𝐴, ⊕) any two functions that satisfy both iteration
sub-properties are pointwise-equal.

Proof. Given two functions 𝑀1, 𝑀2 : IN → I that satisfy the two iteration sub-
properties, we want to show that for any 𝛼 : IN, it is the case that𝑀1(𝛼) = 𝑀2(𝛼).

To do this, we define a sequence 𝛽 : IN which gives the behaviour of 𝑀1(𝛼) as a
sequence: i.e. 𝛽𝑖 := 𝑀1(𝜆𝑛.𝛼𝑛+𝑖). By the first iteration sub-property on 𝑀1, for any
𝑖 : N we have that 𝛽𝑖 = 𝛼𝑖 ⊕ 𝛽𝑖+1. Therefore by the second iteration sub-property on
𝑀2, we have that 𝛽0 = 𝑀2(𝛼); i.e.𝑀1(𝛼) = 𝑀2(𝛼).

Corollary 5.1.10. [] Given amagma (𝐴, ⊕) the type iterative(𝑀, ⊕) is a proposition.

Proof. [f] By Lemma 5.1.9 and function extensionality, any two functions that satisfy
both iteration sub-properties are equal. Hence, because both sub-properties are
subsingletons, the result follows by Lemma 2.3.11.

From these sub-properties, Escardó and Simpson prove some expected properties
about our iterative midpoint operator.

Lemma 5.1.11. [] Given an idempotent magma (𝐴, ⊕) and 𝑀 : 𝐴N → 𝐴 which
satisfies the second iteration sub-property,𝑀 is itself idempotent,∏

(𝑎 : 𝐴)
(𝑀 (𝜆(− : N).𝑎) = 𝑎) .

Proof. By the second iteration sub-property (Definition 5.1.7), if we set 𝛼, 𝛽 := 𝜆 − .𝑎
then once we to prove the antecedent — that for all 𝑖 : N we have (𝜆 − .𝑎)𝑖 = (𝜆 −
.𝑎)𝑖 ⊕ (𝜆 − .𝑎)𝑖 — the result will follow. The antecedent just asks us to show that
𝑎 = 𝑎 ⊕ 𝑎 holds, which is by the idempotency of ⊕ (Definition 5.1.2).

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#iterative-uniqueness%C2%B7
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#iterative-uniqueness
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.M-idem

93 Chapter 5. Real Numbers

Lemma 5.1.12. [] Given a transpositional magma (𝐴, ⊕) that is iterative by
𝑀 : 𝐴N → 𝐴, it is the case that𝑀 satisfies the following homomorphic property,∏

(𝜃,𝜁 : 𝐴N)
(𝑀 (𝜃) ⊕ 𝑀 (𝜁) = 𝑀 (𝜆(𝑖 : N).𝜃𝑖 ⊕ 𝜁𝑖))) .

Proof (Sketch). By the second iteration sub-property (Definition 5.1.7), if we set 𝛼 :=
𝜆𝑖.𝜃𝑖 ⊕ 𝜁𝑖 and 𝛽 := 𝜆𝑖.𝑀 (𝜆𝑛.𝜃𝑛+𝑖) ⊕ 𝑀 (𝜆𝑛.𝜁𝑛+𝑖) then once we prove the antecedent
— that for all 𝑖 : N we have 𝑀 (𝜆𝑛.𝜃𝑛+𝑖) ⊕ 𝑀 (𝜆𝑛.𝜁𝑛+𝑖) = (𝜃𝑖 ⊕ 𝜁𝑖) ⊕ (𝑀 (𝜆𝑛.𝜃𝑛+𝑖+1) ⊕
𝑀 (𝜆𝑛.𝜁𝑛+𝑖+1)) — the result will follow. The antecedent follows by the first iteration
sub-property (Definition 5.1.6) and the transpositionality of ⊕ (Definition 5.1.2).

Lemma 5.1.13. [] Given a transpositional magma (𝐴, ⊕) that is iterative by
𝑀 : 𝐴N → 𝐴, it is the case that𝑀 is symmetric,∏

(𝜃 : (𝐴N)N)

(
𝑀 (𝜆𝑖.𝑀 (𝜆 𝑗 .𝜃𝑖, 𝑗)) = 𝑀 (𝜆𝑖.𝑀 (𝜆 𝑗 .𝜃 𝑗,𝑖))

)
.

Proof (Sketch). [f] By the second iteration sub-property (Definition 5.1.7), if we set
𝛼 := 𝜆𝑛.𝑀 (𝜆 𝑗 .𝜃 𝑗,𝑛) and 𝛽 := 𝜆𝑛.𝑀 (𝜆𝑖.𝑀 (𝜆 𝑗 .𝜃𝑖, 𝑗+𝑛)) then oncewe prove the antecedent
— that for all 𝑛 : N we have 𝑀 (𝜆𝑖.𝑀 (𝜆 𝑗 .𝜃𝑖, 𝑗+𝑛)) = 𝑀 (𝜆 𝑗 .𝜃 𝑗,𝑛) ⊕ 𝑀 (𝜆𝑖.𝑀 (𝜆 𝑗 .𝜃𝑖, 𝑗+𝑛+1))
— the result will follow. The antecedent follows by the first iteration sub-property
(Definition 5.1.6) and the above homomorphic property (Lemma 5.1.12).

For the specific details of the latter two proofs, we invite the interested reader to view
the formalisation.

The iteration property also gives us the notion of an iterated midpoint homomor-
phism (or ‘𝑀-homomorphism’). Any midpoint homomorphism is automatically an
𝑀-homomorphism.

Definition 5.1.14. [] Givenmidpoint algebras (𝐴, ⊕𝐴) and (𝐵, ⊕𝐵) that are iterative
by functions 𝑀𝐴 : 𝐴N → 𝐴 and 𝑀𝐵 : 𝐵N → 𝐵, a function ℎ : 𝐴 → 𝐵 is an iterated
midpoint homomorphism if,

is-M-hom((𝐴, ⊕𝐴), (𝐵, ⊕𝐵), 𝑀𝐴, 𝑀𝐵, ℎ) :=
∏

(𝛼 : 𝐴N)
(ℎ(𝑀𝐴 (𝛼)) = 𝑀𝐵 (𝜆𝑛.ℎ(𝛼𝑛)) .

If the midpoint algebras are the same, wewrite is-M-hom((𝐴, ⊕𝐴), 𝑀, 𝑓) as shorthand.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.M-hom
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.M-symm
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.%E2%8A%95-homs-are-M-homs

5.1. Escardó-Simpson interval object 94

Lemma 5.1.15. [] Given midpoint algebras (𝐴, ⊕), (𝐵, ⊕) : Midpoint-algebra that
are iterative by functions𝑀𝐴 : 𝐴N → 𝐴 and𝑀𝐵 : 𝐵N → 𝐵, if a function ℎ : 𝐴 → 𝐵 is a
midpoint homomorphism then it is also an iterated midpoint homomorphism.

Proof. In order to show that ℎ(𝑀𝐴 (𝛼)) = 𝑀𝐵 (𝜆𝑛.ℎ(𝛼𝑛)) for any 𝛼 : 𝐴N we first define
a sequence 𝛽 : 𝐵N which gives the behaviour of ℎ(𝑀𝐴 (𝛼)) : 𝐵 as a sequence: i.e. 𝛽𝑖 :=
ℎ(𝑀𝐴 (𝜆𝑛.𝛼𝑛+1)). We next show for all 𝑖 : N we have 𝛽𝑖 = ℎ(𝛼𝑖) ⊕ 𝛽𝑖+1. Once, we have
done this, our result will follow by the second iteration sub-property (Definition 5.1.7).

𝛽𝑖

:= ℎ(𝑀𝐴 (𝜆𝑛.𝛼𝑛+𝑖))
= ℎ(𝛼𝑖 ⊕ 𝑀𝐴 (𝜆𝑛.𝛼𝑛+𝑖+1)) by the first iteration sub-property ((Definition 5.1.6),

= ℎ(𝛼𝑖) ⊕ ℎ(𝑀𝐴 (𝜆𝑛.𝛼𝑛+𝑖+1)) by the fact ℎ is an ⊕-homomorphism,

:= ℎ(𝛼𝑖) ⊕ 𝛽𝑖+1 by (i).

5.1.3 Finite approximations

We formalise one final structure for iterative midpoint algebras: finite approxima-
tions, the existence of which is equivalent to having the cancellation property (Defini-
tion 5.1.5) [ES01].

Definition 5.1.16. [] Given a midpoint algebra (𝐴, ⊕), two sequences 𝛼, 𝛽 : 𝐴N

are 𝑛-approximately equal, for a given 𝑛 : N, if,∑︁
(𝑤,𝑧 : 𝐴)

(𝛼0 ⊕ (𝛼1 ⊕ ...(𝛼𝑛−1 ⊕𝑤)) = 𝛽0 ⊕ (𝛽1 ⊕ ...(𝛽𝑛−1 ⊕ 𝑧))) .

Definition 5.1.17. [] A midpoint algebra (𝐴, ⊕) that is iterative by𝑀 : 𝐴N → 𝐴

has finite approximations if given two sequences 𝛼, 𝛽 : 𝐴N that are 𝑛-approximately
equal for all 𝑛 : N, then𝑀 (𝛼) = 𝑀 (𝛽).

We formalise the more straightforward direction first: that having finite approxima-
tions implies the cancellation property.

Lemma 5.1.18. [] A midpoint algebra (𝐴, ⊕) : Midpoint-algebra that is iterative
by𝑀 : 𝐴N → 𝐴 and has finite approximations is cancellative.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.%E2%8A%95-homs-are-M-homs
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObjectApproximation.html#n-approx
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObjectApproximation.html#approximation
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObjectApproximation.html#cancellation-holds

95 Chapter 5. Real Numbers

Proof. Given 𝑎, 𝑏, 𝑐 : 𝐴 such that (𝑎 ⊕ 𝑐) = (𝑏 ⊕ 𝑐), we wish to show that 𝑎 = 𝑏.
This follows from the idempotency of 𝑀 (Lemma 5.1.11) once we show that
𝑀 (𝜆 − .𝑎) = 𝑀 (𝜆 − .𝑏), which we will show using the finite approximation property
𝐷𝑒𝑓 𝑖𝑛𝑖𝑡𝑖𝑜𝑛 5.1.16. Therefore, we simply need to show that for any 𝑛 : N, we have
(𝜆− .𝑎)0 ⊕ ((𝜆− .𝑎)1 ⊕ ...((𝜆− .𝑎)𝑛−1 ⊕𝑐)) = (𝜆− .𝑏)0 ⊕ ((𝜆− .𝑏)1 ⊕ ...((𝜆− .𝑏)𝑛−1 ⊕𝑐)).
We proceed by induction on 𝑛. The first base case where 𝑛 := 0 is trivial, as we only
need to show that 𝑐 = 𝑐; the second base case where 𝑛 := 1 requires us to show that
(𝑎 ⊕ 𝑐) = (𝑏 ⊕ 𝑐), which we have already assumed.

The inductive case where 𝑛 := 𝑛′ + 1 for some 𝑛′ : N requiers us to show that 𝑎 ⊕
(𝑎 ⊕ 𝑤𝑎) = 𝑏 ⊕ (𝑏 ⊕ 𝑤𝑏) where 𝑤𝑎 := (𝜆 − .𝑎)0 ⊕ ((𝜆 − .𝑎)1 ⊕ ...((𝜆 − .𝑎)𝑛′−1 ⊕ 𝑐))
and𝑤𝑏 := (𝜆 − .𝑏)0 ⊕ ((𝜆 − .𝑏)1 ⊕ ...((𝜆 − .𝑏)𝑛′−1 ⊕ 𝑐)). By the inductive hypothesis,
both 𝑎 ⊕𝑤𝑎 = 𝑏 ⊕𝑤𝑏 and𝑤𝑎 = 𝑤𝑏; the result then follows by the below equational
reasoning:

𝑎 ⊕ (𝑎 ⊕𝑤𝑎)
= (𝑎 ⊕ 𝑎) ⊕ (𝑎 ⊕𝑤𝑎), by idempotency of ⊕,
= (𝑎 ⊕ 𝑎) ⊕ (𝑎 ⊕𝑤𝑎), by idempotency of ⊕,
= (𝑎 ⊕ 𝑎) ⊕ (𝑏 ⊕𝑤𝑏), by the inductive hypothesis,

= (𝑎 ⊕ 𝑏) ⊕ (𝑎 ⊕𝑤𝑏), by transpositionality of ⊕,
= (𝑎 ⊕ 𝑏) ⊕ (𝑎 ⊕𝑤𝑎), by the inductive hypothesis,

= (𝑎 ⊕ 𝑏) ⊕ (𝑏 ⊕𝑤𝑏), by the inductive hypothesis,

= (𝑏 ⊕ 𝑎) ⊕ (𝑏 ⊕𝑤𝑏), by commutativity of ⊕,
= (𝑏 ⊕ 𝑏) ⊕ (𝑎 ⊕𝑤𝑏), by transpositionality of ⊕,
= (𝑏 ⊕ 𝑏) ⊕ (𝑎 ⊕𝑤𝑎), by the inductive hypothesis,

= (𝑏 ⊕ 𝑏) ⊕ (𝑏 ⊕𝑤𝑏), by the inductive hypothesis,

= 𝑏 ⊕ (𝑏 ⊕𝑤𝑏), by idempotency of ⊕.

The converse to the above is rather more complicated; we give the idea below.

Theorem 5.1.19. [] A cancellative midpoint algebra (𝐴, ⊕) : Midpoint-algebra
that is iterative by𝑀 : 𝐴N → 𝐴 has finite approximations.

Proof (Sketch). [f] We first prove the finite-cancellation property: that for any𝑤, 𝑧 : 𝐴
and 𝛼 : 𝐴N, if for any 𝑛 : N we have 𝛼0⊕ (𝛼1⊕ ...(𝛼𝑛−1⊕𝑤)) = 𝛼0⊕ (𝛼1⊕ ...(𝛼𝑛−1⊕𝑧)),
then 𝑤 = 𝑧. The proof of this is straightforward by the fact ⊕ is cancellative and

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObjectApproximation.html#approx-holds

5.1. Escardó-Simpson interval object 96

induction on 𝑛 : N.

We next prove one-sided approximation: that for any 𝑎 : 𝐴 and 𝜃 : 𝐴N, if we have a
sequence 𝜁 : 𝐴N such that 𝑎 = 𝜃0 ⊕ (𝜃1 ⊕ ...(𝜃𝑛−1 ⊕ 𝜁𝑛)) for all 𝑛 : N, then 𝑎 = 𝑀 (𝜃).
The proof of this is by the second iteration sub-property (Definition 5.1.7), as if we set
𝛼 := 𝜃 , 𝛽0 := 𝑎 and 𝛽𝑖+1 = 𝜁𝑖+1 then once we prove the antecedent — that for all 𝑖 : N

we have 𝛽𝑖 = 𝛼𝑖 ⊕ 𝛽𝑖+1 — the result will follow. The antecedent follows by induction
on 𝑖 . In the base case, where 𝑖 := 0, we give 𝑎 = 𝜃0 ⊕ 𝜁1 by the above equation
concerning 𝛼 and 𝜃 when 𝑛 := 1. In the inductive case, where 𝑖 := 𝑖′ + 1 for some
𝑖′ : N, we give 𝜁𝑖 = 𝜃𝑖 ⊕ 𝜁𝑖+1 by the equation when 𝑛 := 𝑖 + 1 and the finite-cancellation
property.

Finally, we prove that we have finite approximations: that for all 𝛼, 𝛽 : 𝐴N, if we have
sequences 𝜃, 𝜁 : 𝐴N such that 𝛼0 ⊕ (𝛼1 ⊕ ...(𝛼𝑛−1 ⊕ 𝜃𝑛)) = 𝛽0 ⊕ (𝛽1 ⊕ ...(𝛽𝑛−1 ⊕ 𝜁𝑛))
for all 𝑛 : N, then 𝑀 (𝛼) = 𝑀 (𝛽). This follows by cancellation once we prove that
𝑀 (𝛼) ⊕𝑀 (tail 𝜃) = 𝑀 (𝛽) ⊕𝑀 (tail 𝜃), and in turn this follows by the homomorphic
property (Lemma 5.1.12) once we prove that𝑀 (𝜆𝑖.𝛼𝑖 ⊕ 𝜃𝑖+1) = 𝑀 (𝜆𝑖.𝛽𝑖 ⊕ 𝜃𝑖+1). We
prove this using one-sided approximation: by setting 𝛽′ := 𝜆𝑖.𝛽𝑖 ⊕ 𝜃𝑖+1 the result
is reduced to showing that there is a sequence 𝛾 : 𝐴N such that 𝑀 (𝜆𝑖.𝛼𝑖 ⊕ 𝜃𝑖+1) =

𝛽′0 ⊕ (𝛽′1 ⊕ ...(𝛽′𝑛−1 ⊕ 𝛾𝑛)) for all 𝑛 : N.

This sequence is defined 𝛾𝑛 := 𝑀 ((𝛽𝑛 ⊕ 𝜁𝑛+1) :: (𝜆𝑖.𝛼𝑖+𝑛+1 ⊕ 𝜃𝑖+𝑛+2)). Given any 𝑛 : N,
we prove that𝑀 (𝜆𝑖.𝛼𝑖 ⊕𝜃𝑖+1) = (𝛽0⊕𝜃1) ⊕ ((𝛽1⊕𝜃2) ⊕ ...((𝛽𝑛−1⊕𝜃𝑛) ⊕𝑀 ((𝛽𝑛⊕𝜁𝑛+1) ::
(𝜆𝑖.𝛼𝑖+𝑛+1 ⊕ 𝜃𝑖+𝑛+2)))) by various straightforward rearrangementsa of ⊕ and𝑀 , and
by the assumption that 𝛼0 ⊕ (𝛼1 ⊕ ...(𝛼𝑛−1 ⊕ 𝜃𝑛)) = 𝛽0 ⊕ (𝛽1 ⊕ ...(𝛽𝑛−1 ⊕ 𝜁𝑛)).

aFor specific details on these rearrangements, we invite the interested reader to view the formali-
sation.

Corollary 5.1.20. [] Given amidpoint algebra (𝐴, ⊕), some type𝑋 and two functions
𝑓 , 𝑔 : 𝑋 → 𝐴N, if for all 𝑥 : 𝑋 and 𝑛 : N we have that 𝑓 (𝑥) and𝑔(𝑥) are 𝑛-approximately
equal, then (𝑀 ◦ 𝑓) : 𝑋 → 𝐴 and (𝑀 ◦ 𝑔) : 𝑋 → 𝐴 are pointwise-equal.

Proof. [f] By Theorem 5.1.19.

5.1.4 Bipointed convex bodies

Adding iteration to a cancellative midpoint algebra gives us the structure we call an
abstract convex body.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObjectApproximation.html#fg-approx-holds

97 Chapter 5. Real Numbers

Definition 5.1.21. [] A convex body is a cancellative midpoint algebra (𝐴, ⊕) that
is iterative by𝑀 : 𝐴N → 𝐴. For such a structure, we write (𝐴, ⊕, 𝑀) : Convex-body
with the𝑀 operator explicit and the proof terms implicit.

Every line segment of R𝑛 is an abstract convex body; following this fashion, a closed
line segment corresponds to a bipointed convex body [ES01].

Definition 5.1.22. A bipointed convex body is a convex body (𝐴, ⊕, 𝑀) with two
distinguished points (the ‘endpoints’) 𝑢, 𝑣 : 𝐴,

Bipointed-convex-body :=
∑︁

((𝐴,⊕,𝑀) : Convex-body)
(𝐴 ×𝐴) .

Note that the above defines the type of bipointed convex bodies.

Finally, a closed and bounded line segment – called an interval object – is defined as
a bipointed convex body that satisfies the following universal property.

Definition 5.1.23. [] A bipointed convex body (𝐴, ⊕𝐴, 𝑀𝐴, 𝑢, 𝑣) satisfies the uni-
versal property of interval objects if, given any bipointed convex body (𝐵, ⊕𝐵, 𝑀𝐵, 𝑠, 𝑡)
there is a uniquea function ℎ : 𝐴 → 𝐵 that maps the endpoints of𝐴 to their respective
endpoints of 𝐵 and is a midpoint homomorphism,

is-interval-object((𝐴, ⊕𝐴, 𝑀𝐴, 𝑢, 𝑣)) :=
∏

((𝐵,⊕𝐵,𝑀𝐵,𝑠,𝑡) : Bipointed-convex-body)

∃!
(ℎ : 𝐴→𝐵)

((ℎ(𝑢) = 𝑠) × (ℎ(𝑣) = 𝑡) × is-midpoint-hom((𝐴, ⊕𝐴), (𝐵, ⊕𝐵), ℎ)) .

aNote we use here the TypeTopology notation for Σ-types that have a unique witness. Given a
type𝑋 : U and𝑌 : 𝑋 → 𝑉 , unique existence is the type that proves Σ𝑌 is a singleton: i.e.∃!(𝐴 : 𝑋→V) :=∑

(𝑝 : Σ𝐴)
∏

(𝑞 : Σ𝐴) (𝑝 = 𝑞).

The idea of the universal property is illustrated in Figure 5.1.

Definition 5.1.24. [] An interval object is a bipointed convex body that satisfies
the universal property of interval objects,

interval-objectU :=
∑︁

((𝐴,⊕,𝑀,𝑢,𝑣) : Bipointed-convex-body)
is-interval-object((𝐴, ⊕, 𝑀,𝑢, 𝑣)) .

For such a structure, we write (𝐴, ⊕, 𝑀,𝑢, 𝑣) : interval-object with the proof term of
the universal property implicit.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#Convex-body
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#is-interval-object
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#Interval-object

5.1. Escardó-Simpson interval object 98

u v

s t

u ⊕ v

s ⊕ t

h

Figure 5.1: Illustration of the universal property Definition 5.1.23;
the map ℎ : 𝐴 → 𝐵 maps points on the bipointed convex body
(𝐴, ⊕𝐴, 𝑀𝐴, 𝑢, 𝑣) to the relative point on the bipointed convex body
(𝐵, ⊕𝐵, 𝑀𝐵, 𝑠, 𝑡). The colours used here are as in the illustration.

Note that the above defines the type of interval objects. This type is in fact a subsingleton
in any univalent universe: we proved this using Escardó’s TypeTopology version of
the structure identity principle [Esc20; ANST20].

Theorem 5.1.25. [] For any universe U such that is-univalent(U), it is the case
that is-prop(interval-objectU).

Proof (Sketch). [fu] By the universal property (Definition 5.1.23), any two interval
objects are equivalent — thus, by univalence, they are equal. For the full proof, see
[Amb20c].

Given this, we will only ever want to use the map derived from the universal property
from an interval object to cast objects from and to the same underlying convex body.

We define, using the universal propertymap, the following affinemaps on an interval
object, which cast objects from that interval object onto “sub-intervals” of that object.

Definition 5.1.26. [] Given an interval object (𝐴, ⊕, 𝑀,𝑢, 𝑣) we define the affine
map affine : 𝐴 → 𝐴 → 𝐴 → 𝐴 as,

affine(𝑠, 𝑡, 𝑎) := ℎ(𝑎),

whereℎ : 𝐴 → 𝐴 is themap derived from the universal property, whichmaps elements
from the interval object to the ‘sub-interval’ bipointed convex body (𝐴, ⊕, 𝑀, 𝑠, 𝑡).

Lemma 5.1.27. [] [] Given an interval object (𝐴, ⊕, 𝑀,𝑢, 𝑣), the affine
map affine(𝑠, 𝑡) : 𝐴 → 𝐴, for any points 𝑠, 𝑡 : 𝐴, correctly maps the endpoints; i.e.
affine(𝑠, 𝑡, 𝑢) = 𝑠 and affine(𝑠, 𝑡, 𝑣) = 𝑡 .

Proof. By the correct mapping of endpoints requirement in Definition 5.1.23.

https://www.cs.bham.ac.uk/~mhe/TypeTopology/TWA.SIP-IntervalObject.html#interval-object-prop
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.affine
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.affine-equation-l
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.affine-equation-r

99 Chapter 5. Real Numbers

Lemma 5.1.28. [] Given an interval object (𝐴, ⊕, 𝑀,𝑢, 𝑣), the affine map
affine(𝑠, 𝑡) : 𝐴 → 𝐴, for any points 𝑠, 𝑡 : 𝐴, is a midpoint homomorphism,

is-midpoint-hom((𝐴, ⊕), affine(𝑠, 𝑡)) .

Proof. By the midpoint homomorphism requirement in Definition 5.1.23.

Corollary 5.1.29. [] Given an interval object (𝐴, ⊕, 𝑀,𝑢, 𝑣), the affine map
affine(𝑠, 𝑡) : 𝐴 → 𝐴, for any points 𝑠, 𝑡 : 𝐴, is an𝑀-homomorphism,

is-M-hom((𝐴, ⊕), 𝑀, affine(𝑠, 𝑡)) .

Proof. By Lemmas 5.1.15 and 5.1.28.

Many properties of our later-defined computational functions are proved by the
following lemma, which gives the uniqueness of the affine map.

Lemma 5.1.30. [] Given an interval object (𝐴, ⊕, 𝑀,𝑢, 𝑣), the affine map
affine(𝑠, 𝑡) : 𝐴 → 𝐴, for any points 𝑠, 𝑡 : 𝐴, is identical to any function 𝑓 : 𝐴 → 𝐴

that satisfies (i) 𝑓 (𝑢) = 𝑠 , (ii) 𝑓 (𝑣) = 𝑡 and (iii) is-midpoint-hom(𝑓).

Proof. By the uniqueness requirement in Definition 5.1.23.

The affine map functional is the computational seed of the interval object, forth
from which springs the algorithms we will define on the interval, which represent
algorithms on the real numbers. Two basic examples are the identity function and any
constant map.

Lemma 5.1.31. [] Given an interval object (𝐴, ⊕, 𝑀,𝑢, 𝑣), the identity function
id : 𝐴 → 𝐴 is given by the affine map affine(𝑢, 𝑣) : 𝐴 → 𝐴.

Proof. The function id : 𝐴 → 𝐴 trivially satisfies (i) id(𝑢) = 𝑢, (ii) id(𝑣) = 𝑣 and (iii)∏
(𝑎,𝑏 : 𝐴) (id(𝑎 ⊕ 𝑏) = id(𝑎) ⊕ id(𝑏)). Therefore, by Lemma 5.1.30, id = affine(𝑢, 𝑣).

Lemma 5.1.32. [] Given an interval object (𝐴, ⊕, 𝑀,𝑢, 𝑣), the constant function
(𝜆(− : 𝐴).𝑥) : 𝐴 → 𝐴, for any 𝑥 : 𝐴, is given by the affine map affine(𝑥, 𝑥) : 𝐴 → 𝐴.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.affine-is-%E2%8A%95-homomorphism
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.affine-M-hom
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.affine-uniqueness
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.affine-uv-involutive
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.affine-constant

5.1. Escardó-Simpson interval object 100

Proof. For any 𝑥 : 𝐴 the function (𝜆(− : 𝐴).𝑥) : 𝐴 → 𝐴 trivially maps both endpoints
of 𝐴 to the only endpoint 𝑥 of the sub-interval, and is a midpoint homomorphism
by idempotency of ⊕ in Definition 5.1.2. Therefore, by Lemma 5.1.30, (𝜆(− : 𝐴).𝑥) =
affine(𝑥, 𝑥).

5.1.5 Arithmetic on [−1, 1] by assuming an interval object

For the rest of this section, we assume that an interval object I : interval-objectU is
given in any given type universe U — we will not try to construct the interval object in
this thesis.

Assumption 5.1.33. [] We assume the existence of I := (I, ⊕, 𝑀,−1, +1) to specify
the closed real interval [−1, 1].

Note that we abuse notation and write I both for the interval object itself and the set
over which it operates.

Of course −1, +1 : I represent those same numbers. Using the midpoint, we can also
represent other dyadic numbers in this interval.

Definition 5.1.34. [] The distinguished element 0 : I is given by −1 ⊕ +1.

Arithmetic functions such as negation and multiplication are not further axioms
of this specification. They are instead defined, and their properties derived, from the
existing — rather small number — of axioms in the interval object specification. In
particular, as we saw with the two trivial examples above, the affine map is used to
define both negation and multiplication.

Negation

Negation is defined by using the affine map that ‘flips’ the interval, casting elements of
I to their negated counterparts.

Definition 5.1.35. [] Negation is defined on the interval I as the unique function
− : I → I,

−𝑥 := affine(+1,−1, 𝑥).

Lemma 5.1.36. [] [] [] Negation is the unique function on I that negates every
element of the object, i.e.,

(i) −(−1) = +1,

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.O
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.%E2%88%92_
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.%E2%88%921-inverse
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.+1-inverse
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.%E2%88%92-is-%E2%8A%95-homomorphism

101 Chapter 5. Real Numbers

(ii) −(+1) = −1,
(iii)

∏
(𝑥,𝑦 : I) (−(𝑥 ⊕ 𝑦) = −𝑥 ⊕ −𝑦).

Proof. By Lemmas 5.1.27, 5.1.28 and 5.1.30.

We can further show that negation behaves as we expect; for example by showing it
has a unit and is involutive.

Corollary 5.1.37. [] Negating 0 : I gives back 0.

Proof. By definition 0 := −1 ⊕ +1, so we wish to show that −(−1 ⊕ +1) = −1 ⊕ +1.
By Lemma 5.1.36, −(−1 ⊕ +1) = −(−1) ⊕ −(+1) because negation is a midpoint
homomorphism; then, because negation negates the endpoints, we have −(−1) ⊕
−(+1) = +1 ⊕ −1. The final step +1 ⊕ −1 = −1 ⊕ +1 follows by the commutativity of
the midpoint operator in Definition 5.1.2.

Lemma 5.1.38. [] Negation on I is an involution, i.e. −(−𝑥) = 𝑥 for all 𝑥 : I.

Proof. We first use the fact that negation negates the endpoints (Lemma 5.1.36)
to derive − − (−1) = −(+1) = −1 and − − (+1) = −(−1) = +1. Also, because
negation is a midpoint homomorphism (Lemma 5.1.36) and the composition of two
homomorphisms is itself a homomorphism (Lemma 5.1.4), double negation is a
midpoint homomorphism. Therefore, because any affinemap is unique (Lemma 5.1.30)
and double negation is a midpoint homomorphism that maps the endpoints of I to
themselves, it is the case that (𝜆(𝑥 : I). − (−𝑥)) = affine(−1, +1). The proof follows
by the fact that, due to its identification with affine(−1, +1), double negation gives
the identity map (Lemma 5.1.31) and therefore −(−𝑥) = id(𝑥) = 𝑥 for all 𝑥 : I.

Multiplication

Multiplication by some 𝑥 : I is defined by using the affine map that maps the interval to
the sub-interval [−𝑥, 𝑥].

Definition 5.1.39. [] Multiplication is defined on the interval I as the unique
function ∗ : I → I → I,

𝑥 ∗ 𝑦 := affine(−𝑥, 𝑥,𝑦).

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.O-inverse
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.%E2%88%92-involutive
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development._*_

5.1. Escardó-Simpson interval object 102

Lemma 5.1.40. [] [] [] Multiplication of some 𝑥 : I is the unique function on I

that multiplies elements of the object by 𝑥 , i.e.,
(i) 𝑥 ∗ −1 = −𝑥 ,
(ii) 𝑥 ∗ +1 = 𝑥 ,
(iii)

∏
(𝑥,𝑦 : I) (𝑥 ∗ (𝑦 ⊕ 𝑧) = (𝑥 ∗ 𝑦) ⊕ (𝑥 ∗ 𝑧)).

Proof. By Lemmas 5.1.27, 5.1.28 and 5.1.30.

Furthermore, multiplication also behaves as expected in a variety of ways.

Lemma 5.1.41. [] Multiplication on I satisfies −1 ∗ 𝑦 = −𝑦.

Proof. The function 𝜆𝑦.−1∗𝑦 := affine(−(−1),−1). By Lemma 5.1.36, this is pointwise-
equal to affine(+1,−1), which is the negation function.

Lemma 5.1.42. [] Multiplication on I satisfies +1 ∗ 𝑦 = 𝑦.

Proof. The function 𝜆𝑦.+1∗𝑦 := affine(−(+1), +1). By Lemma 5.1.36, this is pointwise-
equal to affine(−1, +1), which by Lemma 5.1.31 is the identity function.

Lemma 5.1.43. [] [] Multiplication on I satisfies 𝑥 ∗ 0 = 0 and 0 ∗ 𝑦 = 0.

Proof. The former follows by Lemma 5.1.40. The latter follows because the function
𝜆𝑦.0∗𝑦 := affine(−0, 0), and by Corollary 5.1.37 this is pointwise-equal to affine(0, 0);
this, by Lemma 5.1.32, is the constant function that outputs 0.

Theorem 5.1.44. [] Multiplication on I is commutative.

Proof. Given any 𝑥,𝑦 : I, we wish to show that 𝑥 ∗𝑦 = 𝑦 ∗𝑥 ; i.e. that affine(−𝑥, 𝑥,𝑦) =
𝑦 ∗𝑥 . This is proved by showing affine(−𝑥, 𝑥) = 𝜆𝑦.𝑦 ∗𝑥) by Lemma 5.1.30. Therefore,
we must show that (1) −1 ∗ 𝑥 = −𝑥 , (2) +1 ∗ 𝑥 = 𝑥 and (3) is-midpoint-hom(𝜆𝑦.𝑦 ∗ 𝑥).

The first two conditions are given by Lemmas 5.1.41 and 5.1.42. The third is more
complicated: given any 𝑦′, 𝑧′ : I we need to show that (𝑦′ ⊕ 𝑧′) ∗ 𝑥 = (𝑦′ ∗ 𝑥) ⊕
(𝑧′ ∗ 𝑥). This is given by another application of Lemma 5.1.30 wherein we show
affine(−(𝑦′ ⊕ 𝑧′), 𝑦′ ⊕ 𝑧′) = 𝜆𝑥.(𝑦′ ∗ 𝑥) ⊕ (𝑧′ ∗ 𝑥). Therefore, we must now show
that (1) (𝑦′ ∗ −1) ⊕ (𝑧′ ∗ −1) = −(𝑦′ ⊕ 𝑧′), (2) (𝑦′ ∗ +1) ⊕ (𝑧′ ∗ +1) = (𝑦′ ⊕ 𝑧′) and (3)
is-midpoint-hom(𝜆𝑥.(𝑦′ ∗ 𝑥) ⊕ (𝑧′ ∗ 𝑥).

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.*-gives-negation-l
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.*-gives-id-l
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.*-is-%E2%8A%95-homomorphism-l
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.*-gives-negation-r
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.*-gives-id-r
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.*-gives-zero-l
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.*-gives-zero-r
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.*-commutative

103 Chapter 5. Real Numbers

For the first condition, by Lemma 5.1.40.(i) and (iii) we have that (𝑦′ ∗ −1) ⊕ (𝑧′ ∗
−1) = (−𝑦′ ⊕ −𝑧′) = −(𝑦′ ⊕ 𝑧′). For the second, by Lemma 5.1.40.(ii) we have that
(𝑦′ ∗+1) ⊕ (𝑧′ ∗+1) = (𝑦′⊕ 𝑧′). The third is again more complicated: given any 𝑎, 𝑏 : I,
the result is given by the following equational reasoning:

(𝑥 ∗ (𝑎 ⊕ 𝑏)) ⊕ (𝑦 ∗ (𝑎 ⊕ 𝑏)),
=((𝑥 ∗ 𝑎) ⊕ (𝑥 ∗ 𝑏)) ⊕ (𝑦 ∗ (𝑎 ⊕ 𝑏)) by Lemma 5.1.40.(iii),

=((𝑥 ∗ 𝑎) ⊕ (𝑥 ∗ 𝑏)) ⊕ ((𝑦 ∗ 𝑎) ⊕ (𝑦 ∗ 𝑏)) by Lemma 5.1.40.(iii),

=((𝑥 ∗ 𝑎) ⊕ (𝑦 ∗ 𝑎)) ⊕ ((𝑥 ∗ 𝑏) ⊕ (𝑦 ∗ 𝑏)) by trans. of ⊕ (Definition 5.1.2).

Lemma 5.1.45. [] Multiplication on I satisfies ((𝑥 ⊕ 𝑦) ∗ 𝑧) = (𝑥 ∗ 𝑧) ⊕ (𝑦 ∗ 𝑧).

Proof. By Lemma 5.1.40 and Theorem 5.1.44.

Theorem 5.1.46. [] Multiplication on I is associative.

The proof that multiplication is associative has a similar proof technique as the proof
of commutativity (Theorem 5.1.44). For the full details, we invite the interested reader
to view the formalisation.

5.2 Verified ternary signed-digit encodings

5.2.1 Background and definition in our type theory

Boehm et al.’s early paper on exact real arithmetic explores multiple representations of
real numbers, one of which is an approach where a real number is represented by an
infinitary sequence of digits [BCRO86].

The idea is that a (base 2) digit encoding of a real number in the compact interval
[0, 𝑑] (for some 𝑑 : N) is an infinitary seqeuence of digits 𝛼 : {0, ..., 𝑑}N. The real number
represented by such a digit encoding J𝛼K : [0, 𝑑] is defined by,

J𝛼K :=
∞∑︁
𝑛=0

𝛼𝑖

2𝑛+1 .

For example, with 𝑑 := 2, J{0, 2, 0, 2, 0, ...}K = 0.666... and J{0, 1, 0, 1, 0, ...}K = 0.333....
This approach is problematic, however, as even addition is not definable [BCRO86].
An illuminating example is the addition of the two above realisers of 0.666... and

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.*-is-%E2%8A%95-homomorphism-r
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.IntervalObject.html#basic-interval-object-development.*-assoc

5.2. Verified ternary signed-digit encodings 104

0.333.... Computing only the first digit of the output requires the function to look
at an infinite number of digits of the input, because (for example) J{0, 2, 0, 2, 0, ...}K +
J{0, 1, 0, 1, 0, ..., 0, 0, 0, ...}K = 0.9..., whereas J{0, 2, 0, 2, 0, ...}K+J{0, 1, 0, 1, 0, ..., 0, 2, 0, ...}K =
1.0....

However, the signed-digit encoding representation does not have this problem. A
signed-digit encoding of a real number in a compact interval [−𝑑,𝑑] (for some 𝑑 : N) is
an infinitary sequence of digits 𝛼 : {−𝑑, ..., 𝑑}N. The real number represented by such a
signed-digit encoding J𝛼K : R is defined by,

J𝛼K :=
∞∑︁
𝑛=0

𝛼𝑛

2𝑛+1 ,

which can be infinitely unfolded using a midpoint operator 𝑥 ⊕ 𝑦 := 𝑥+𝑦
2 :

J𝛼K := 𝛼0 ⊕ (𝛼1 ⊕ (𝛼2 ⊕ ...)) .

This representation of the reals uses extra ‘redundant’ digits than is necessary for
representing each number in the interval. The redundant digits, however, are what
enable addition (and multiplication) to be defined at the expense of having multiple
representations for the same real number. In the previous addition example, the second
item of the sequence could have been set as 2 and then, if necessary, corrected by
negative digits later [Plu98] [Esc11b].

In this section, we recall the type of ternary signed-digit encodings of real numbers
in the compact interval [−1, 1], as extensively explored in the literature of exact real
arithmetic [Di 93; Plu98; Ber09]. Every real number in [−1, 1] can be represented by a
function of typeN → {−1, 1}, but by using the redundant representationN → {−1, 0, 1}
we can perform exact real arithmetic on representations of this compact interval.

Our formalisation is based on Escardó’s Haskell library for exact real computation
on ternary signed-digits [Esc11b]. We first convert his definitions of various arithmetic
functions to Agda, which is non-trivial as we must convince Agda’s termination
checker. Following this, we verify the correctness of his algorithms using the interval
object seen in Section 5.1, showing that they encode the correct operations on the real
numbers.

Definition 5.2.1. [] The type of ternary digits 3, equivalent to Fin(3), is defined
by its elements 1, 0, 1 : 3.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#%F0%9D%9F%9B

105 Chapter 5. Real Numbers

Definition 5.2.2. [] A ternary signed-digit encoding of a real number in [−1, 1] is
any function 𝛼 : 3N.

5.2.2 Representation via the interval object

A representation map takes a representation of a real to the real that it represents.

Definition 5.2.3. [] [] [] Given a type of real numbers R, a type for
representing reals 𝐾 and a representation map J−K : 𝐾 → R, the 𝑛-ary function
𝑓 : 𝐾𝑛 → 𝐾 (for 𝑛 : N) realises a function 𝑓 : R𝑛 → R if,∏

((𝑥0,...,𝑥𝑛−1) : 𝐾𝑛)
J𝑓 (𝑥0, ..., 𝑥𝑛−1)K = 𝑓

(
J𝑥0K, ..., J𝑥𝑛−1K

)
.

The idea here is that in order to verify 𝑓 : 𝐾𝑛 → 𝐾 realises 𝑓 : R → R, using the
representation map J−K : 𝐾 → R, we show that the diagram in Figure 5.2 commutes.

𝐾𝑛 𝐾

R𝑛 R

𝑓

𝑓

J−K × ... × J−K J−K

Figure 5.2: Commutative diagram illustrating Definition 5.2.3.

The identity map always has a realiser, and the composition of two realisers is a
realiser of the composition of the two realised functions; i.e. the diagrams in Figure 5.3
commute.

𝐾 𝐾

R R

id𝐾

idR

J−K J−K

𝐾 𝐾 𝐾

R R R

𝑓

𝑓

J−K J−K

𝑔

𝑔

J−K

Figure 5.3: Commutative diagrams illustrating Lemma 5.2.4.

Lemma 5.2.4. [] [] The identity map is realised by the identity map, and
composition preserves realisers.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#%F0%9D%9F%9B%E1%B4%BA
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#_realises%C2%B9_
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#_realises%C2%B2_
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#_realises%E1%B4%BA_
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#id-realiser
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#%E2%88%98-realiser

5.2. Verified ternary signed-digit encodings 106

Proof. For the identity map, we need to show that for all 𝑘 : 𝐾 we have Jid𝐾 (𝑘)K =
idR

(
J𝑘K

)
; this is clearly the case by reflexivity. For composition of functions

𝑓 , 𝑔 : 𝐾 → 𝐾 , which realise 𝑓 , 𝑔 : R → R respectively, we want to show that
J𝑔(𝑓 (𝑘))K = 𝑔(𝑓 (J𝑘K)). This is the case because J𝑔(𝑓 (𝑘))K = 𝑔(J𝑓 (𝑥)K) (because
𝑓 realises 𝑓) and then 𝑔(J𝑓 (𝑥)K) = 𝑔(𝑓 (J𝑘K)) (because 𝑔 realises 𝑔).

We define the representation map for ternary signed-digit encodings, which maps
such encodings of reals in [−1, 1] to the numbers they represent on the interval object
I, using the infinitary midpoint operator𝑀 : IN → I.

Definition 5.2.5. [] We define the representation map from ternary digits 3 to the
interval object I,

⟨−⟩ : 3 → I,

⟨1⟩ := −1,
⟨0⟩ := 0,

⟨1⟩ := +1,

Definition 5.2.6. [] We define the representation map from ternary signed-digit
encodings 3N to the interval object I,

⟨⟨−⟩⟩ : 3N → I,

⟨⟨𝛼⟩⟩ := 𝑀 (map(⟨−⟩, 𝛼)) .

In order to verify that an operation on ternary digits 𝑓 ′ : 3𝑛 → 3 or one on ternary
signed-digit encodings 𝑓 : (3N)𝑛 → 3N correctly realises an operation on the interval
object 𝑓 : I𝑛 → I, we will show that the diagrams in Figure 5.4 commute.

3𝑛 3

I𝑛 I

𝑓 ′

𝑓

⟨−⟩𝑛 ⟨−⟩

(3N)𝑛 3N

I𝑛 I

𝑓

𝑓

⟨⟨−⟩⟩𝑛 ⟨⟨−⟩⟩

Figure 5.4: Commutative diagrams illustrating Definition 5.2.3 (which
is itself illustrated in Figure 5.2) using the representation maps defined
in Definition 5.2.5 (left) and Definition 5.2.6 (right).

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#%E2%9F%A8_%E2%9F%A9
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#%E2%9F%AA_%E2%9F%AB

107 Chapter 5. Real Numbers

5.2.3 Exact real arithmetic

Negation

Negation on signed-digit encodings is straightforward to define — we simply flip every
digit of the sequence.

Definition 5.2.7. [] [] We first define the negation function flip on ternary
digits in the expected way:

flip : 3 → 3,

flip(1) := 1,

flip(0) := 0,

flip(1) := 1.

Then, the negation function neg on ternary signed-digit encodings is defined as
follows:

neg : 3N → 3N,

neg(𝑥) := map(flip, 𝑥).

We then verify these operations; i.e. we show that the following diagrams commute.

3 3

I I

flip

−

⟨−⟩ ⟨⟨−⟩⟩

3N 3N

I I

neg

⊕

⟨⟨−⟩⟩ ⟨⟨−⟩⟩

Figure 5.5: Commutative diagrams illustrating Lemma 5.2.8 (left) and
Theorem 5.2.10 (right).

Lemma 5.2.8. [] The negation function on ternary digits realises the negation
function on the interval object.

Proof. We prove ⟨flip(𝑡)⟩ = −⟨𝑡⟩ by case splitting on the given 𝑡 : 3. In the 𝑡 := 0 case,
we show ⟨0⟩ = −⟨0⟩ by Corollary 5.1.37. In the other two cases, the proof follows by
the mapping of the endpoints in Lemma 5.1.36.

In order to verify negation on signed-digit encodings, we use the fact that the map

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#flip
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#neg
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#flip-realiser

5.2. Verified ternary signed-digit encodings 108

function preserves a realiser; this is illustrated by the diagram in Figure 5.6.

3 3

I I

⟨−⟩

𝑓

⟨−⟩

𝑓

=⇒
3N 3N

I I

⟨⟨−⟩⟩

𝑓

⟨⟨−⟩⟩

map 𝑓

Figure 5.6: Commutative diagram illustrating Lemma 5.2.9.

Lemma 5.2.9. [] If a function 𝑓 : 3 → 3 on ternary digits realises a midpoint
homomorphism 𝑓 : I → I on the interval object, then map(𝑓) : 3N → 3N realises 𝑓 on
signed-digit encodings.

Proof. [f] We want to show that, for all 𝛼 : 3N, ⟨⟨map(𝑓 , 𝛼)⟩⟩ = 𝑓 (⟨⟨𝛼⟩⟩). By func-
tion extensionality and Definition 5.2.6, the left-hand side of the equation becomes
𝑀 (𝜆𝑛.⟨𝑓 (𝛼𝑛)⟩). By the fact that 𝑓 realises 𝑓 , it further becomes 𝑀 (𝜆𝑛.𝑓 (⟨𝛼𝑛⟩)).
By Lemma 5.1.15, 𝑓 is an 𝑀-homomorphism, and therefore the equation becomes
𝑓 (𝑀 (𝜆𝑛.⟨𝛼𝑛⟩)); which is definitionally equal to the conclusion by Definition 5.2.6.

Theorem 5.2.10. [] The negation function on signed-digit encodings realises the
negation function on the interval object.

Proof. [f] By Lemmas 5.2.8, 5.2.9 and 5.1.36.

Binary midpoint

The midpoint functions — both binary and infinitary, which are intended to realise ⊕
and𝑀 , respectively — are much more complicated to define on signed-digit encodings.
We follow the definitions Escardó gave in [Esc11b], formalising them in Agda for our
framework.

The binary midpoint defined here sums two encodings of type 3N (which encodes
the interval [−1, 1]) to achieve an encoding of type 5N (which encodes the interval
[−2, 2]) which is then divided by two to output an encoding once again in 3N.

Definition 5.2.11. [] The type of quinary digits 5, equivalent to Fin(5), is defined
by its elements 2, 1, 0, 1, 2 : 5.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#map-realiser
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#neg-realiser
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#%F0%9D%9F%9D

109 Chapter 5. Real Numbers

Definition 5.2.12. [] We define the addition function on ternary digits add3 : 3 →
3 → 5 in the expected way by pattern matching (e.g. add3(1, 1) := 2), etc.).

Now we define the halving function div2 : 5N → 3N corecursively (though, as we see in
the below Remark 5.2.14, we define the function by induction in ourAgda formalisation).
When the first element is 2, 0 or 2, the output is straightforward. Otherwise, the
definition must ‘offset’ the output using the redundant digits 1 and 1.

Definition 5.2.13. [] We define the halving function from quinary signed-digit
encodings to ternary signed-digit encodings as,

div2 : 5N → 3N,

div2(2 :: 𝛼) := 1 :: div2(𝛼),
div2(1 :: 2 :: 𝛼) := 1 :: div2(0 ::𝛼),
div2(1 :: 1 :: 𝛼) := 1 :: div2(1 ::𝛼),
div2(1 :: 0 :: 𝛼) := 0 :: div2(2 ::𝛼),
div2(1 :: 1 :: 𝛼) := 0 :: div2(1 ::𝛼),
div2(1 :: 2 :: 𝛼) := 0 :: div2(0 ::𝛼),
div2(0 :: 𝛼) := 0 :: div2(𝛼),
div2(1 :: 2 :: 𝛼) := 0 :: div2(0 ::𝛼),
div2(1 :: 1 :: 𝛼) := 0 :: div2(1 ::𝛼),
div2(1 :: 0 :: 𝛼) := 0 :: div2(2 ::𝛼),
div2(1 :: 1 :: 𝛼) := 1 :: div2(1 ::𝛼),
div2(1 :: 2 :: 𝛼) := 1 :: div2(0 ::𝛼),
div2(2 :: 𝛼) := 1 :: div2(𝛼).

Remark 5.2.14. [] We actually define this function in Agda using an auxiliary
function

div2′ : 5 × 5 → 3 × 5

such that we define

div2(𝛼)0 := pr1(div2′(𝛼0, 𝛼1)),
div2(𝛼)𝑛+1 := div2(pr2(div2′(𝛼0, 𝛼1) :: tail(tail 𝛼))).

The values of div2′ can be seen in Definition 5.2.13. For example div2′(1, 2) := (1, 0).

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#_+%F0%9D%9F%9B_
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#div2
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#div2-aux

5.2. Verified ternary signed-digit encodings 110

We use this function to define the binary midpoint function.

Definition 5.2.15. [] The binary midpoint function on ternary signed-digit
encodings is defined by adding the two sequences and then halving the result:

mid : 3N →3N → 3N,

mid(𝛼, 𝛽) := div2(zipWith(add3, 𝛼, 𝛽)) .

To verify that mid correctly realises ⊕, we utilise the following halving map half and
prove its relationship to div2

Definition 5.2.16. [] We define the halving map from quinary digits to the interval
object as,

half : 5 → I,

half (2) := −1,
half (1) := −1 ⊕ 0,

half (0) := 0,

half (1) := +1 ⊕ 0,

half (2) := +1.

3 × 3 5

I × I I

add3

⊕

⟨−⟩×⟨−⟩ half

3N × 3N 5N 3N

I × I I I

zipWith(add3)

⊕

⟨⟨−⟩⟩×⟨⟨−⟩⟩ 𝑀◦map(half)

div2

⟨⟨−⟩⟩

mid

Figure 5.7: Commutative diagrams illustrating Lemma 5.2.19 (left) and
Lemmas 5.2.18 and 5.2.20 and Theorem 5.2.21 (right).

We first prove the following lemma about the auxiliary function div2′ (Remark 5.2.14).

Lemma 5.2.17. [] Given any 𝑥,𝑦 : 5 and 𝑧 : I, we have

⟨𝑎⟩ ⊕ (half 𝑏 ⊕ 𝑧) = (half 𝑥 ⊕ (half 𝑦 ⊕ 𝑧)),

where 𝑎, 𝑏 : 3 × 5 := div2′(𝛼0, 𝛼1).

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#mid
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#half
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#div2-aux-%EF%BC%9D

111 Chapter 5. Real Numbers

Proof. The cases where 𝑎 := {2, 0, 2} are trivial. The ten other cases all require slightly
different approaches, but all are just the rearrangement of elements of the midpoint
algebra by idempotency, commutativity and transpositionality (Definition 5.1.2).

Lemma 5.2.18. [] Given any quinary signed-digit encoding 𝛼 : 5N, we have that
⟨⟨div2(𝛼)⟩⟩ = 𝑀 (map(half, 𝛼)).

Proof. [f] By using Corollary 5.1.20, this is reduced to showing map(⟨−⟩, div2(𝛼))
andmap(half, 𝛼), for any 𝛼 : 5N, are 𝑛-approximately equal for any 𝑛 : N. In the base
case, when 𝑛 := 0, the proof is trivial — we can set 𝑧,𝑤 : I as any elements of I, and
so we only need to consider the inductive case where 𝑛 := 𝑛′ + 1.

Recall from Definition 5.1.16 that this means we must give some 𝑧,𝑤 : I that satisfy

⟨div2(𝛼)0⟩⊕(⟨div2(𝛼)1⟩⊕ ...(div2(𝛼)𝑛⊕𝑤)) = half (𝑥0)⊕(half (𝛼1)⊕ ...(half (𝛼𝑛)⊕𝑧)) .

By taking (𝑎, 𝑏) : 3 × 5 := div2′(𝛼0, 𝛼1) this reduces to

⟨𝑎⟩⊕(⟨div2(𝑏 :: 𝛼′)1⟩⊕...(div2(𝑏 :: 𝛼′)𝑛⊕𝑤)) = half (𝛼0)⊕(half (𝛼1)⊕...(half (𝛼𝑛)⊕𝑧)),

where 𝛼′ := tail(tail(𝛼)). By using the inductive hypothesis on the sequence 𝑏 :: 𝛼′,
this becomes

⟨𝑎⟩ ⊕ (half (𝑏) ⊕ ...(half (𝛼𝑛) ⊕ 𝑧)) = half (𝛼0) ⊕ (half (𝛼1) ⊕ ...(half (𝛼𝑛) ⊕ 𝑧)) .

Therefore, the result follows by Lemma 5.2.17.

We next show that halving an added sequence in the representation space realises
the midpoint operation.

Lemma 5.2.19. [] Given any ternary digits 𝑎, 𝑏 : 3, we have that half (add3(𝑎, 𝑏)) =
⟨𝑎⟩ ⊕ ⟨𝑏⟩.

Proof. [f] By induction on 𝑎, 𝑏 : 3, as well as the idempotency and commutativity of
⊕ by Definition 5.1.2.

Lemma 5.2.20. [] Given any ternary signed-digit encodings 𝛼, 𝛽 : 3N, we have that
𝑀 (map(half, zipWith(add3, 𝛼, 𝛽))) = ⟨⟨𝛼⟩⟩ ⊕ ⟨⟨𝛽⟩⟩.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#div2-realiser
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#half-add-realiser
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#half-add-realiser

5.2. Verified ternary signed-digit encodings 112

Proof. [f] By function extensionality and Lemma 5.2.19,
𝑀 (map(half, zipWith(add3, 𝛼, 𝛽))) = 𝑀 (𝜆𝑛.⟨𝛼⟩ ⊕ ⟨𝛽⟩). The result then fol-
lows by Lemma 5.1.12.

Using the two lemmas we have proved, we can now complete our verification of
the midpoint operation.

Theorem 5.2.21. [] The midpoint function on signed-digit encodings realises the
midpoint operator on the interval object.

Proof. [f] By Lemmas 5.2.18 and 5.2.20.

Infinitary midpoint

The infinitary midpoint function is obviously more complicated, both to define and
verify. Escardó defines the infinitary midpoint on signed-digit encodings by using
another intermediary signed-digit representation (this time of the interval [−4, 4]).

Definition 5.2.22. [] The type of nonary digits 9, equivalent to Fin(9), is defined
by its elements 4, 3, 2, 1, 0, 1, 2, 3, 4 : 9.

Definition 5.2.23. [] We define the addition function on quinary digits add5 : 5 →
5 → 9 in the expected way by pattern matching.

We also define the quartering function div4 : 9N → 3N by induction, and the related
function quarter : 9 → I on nonary digits.

Definition 5.2.24. [] We define the quartering function div4 : 9N → 3N from
nonary signed-digit encodings to ternary signed-digit encodings similarly to how we
defined div2 : 5N → 3N.

Definition 5.2.25. [] We define the quartering map quarter : 9 → I from nonary
digits to the interval object similarly to how we defined half : 5 → I.

Lemma 5.2.26. [] Given any ternary signed-digit encoding 𝛼 : 3N, we have that
⟨⟨div4(𝛼)⟩⟩ = 𝑀 (map(quarter, 𝛼)).

Proof. [f] Similar to Lemma 5.2.18.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#mid-realiser
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#%F0%9D%9F%A1
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#_+%F0%9D%9F%9D_
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#div4
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#quarter
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#quarter-realiser

113 Chapter 5. Real Numbers

We now define Adam Scriven’s infinitary midpoint function on ternary signed-digit
encodings in our framework. This definition was first given by Scriven in his MSc
thesis, and reimplemented by Escardóin his Haskell library [Scr07; Esc11b].

Definition 5.2.27. [] The infinitary midpoint function on ternary signed-digit
encodings is defined by translating Scriven’s definition to Agda:

bigMid′ : (3N)N → 9N,

bigMid′(((𝑎 :: 𝑏 :: 𝑥) :: (𝑐 :: 𝑦) :: 𝜁))0 := add5(add3(𝑎, 𝑎), add3(𝑏, 𝑐)),
bigMid′(((𝑎 :: 𝑏 :: 𝑥) :: (𝑐 :: 𝑦) :: 𝜁))𝑛+1 := bigMid′(mid(𝑥,𝑦) :: 𝜁)𝑛,

bigMid : (3N)N → 𝐾,

bigMid := div4 ◦ bigMid′.

(3N)N 9N 3N

IN I I

bigMid′

𝑀

map ⟨⟨−⟩⟩ 𝑀◦map(quarter) ⟨⟨−⟩⟩

div4

bigMid

Figure 5.8: Commutative diagram illustrating Theorem 5.2.32.

This operation does indeed realise the iteration operator𝑀 : IN → I on the interval
object; i.e. the diagram in Figure 5.8 commutes. We prove this by using the following
lemmas.

Lemma 5.2.28. [] Given any ternary digits 𝑎, 𝑏, 𝑐 : 3, we have that
quarter(add5(add3(𝑎, 𝑎), add3(𝑏, 𝑐))) = ⟨𝑎⟩ ⊕ (⟨𝑏⟩ ⊕ ⟨𝑐⟩).

Proof. By induction on 𝑎, 𝑏, 𝑐 : 3, as well as the idempotency, commutativity and
transpositionality of ⊕ by Definition 5.1.2.

Lemma 5.2.29. [] Given any ternary signed-digit encodings 𝛼, 𝛽 : 3N and real

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#bigMid
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#%F0%9D%9F%A1s-conv-%EF%BC%9D
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#M-bigMid'-%EF%BC%9D

5.2. Verified ternary signed-digit encodings 114

number 𝑧 : I in the interval object, we have,

⟨⟨𝛼⟩⟩ ⊕ (⟨⟨𝛽⟩⟩ ⊕ 𝑧) = (⟨𝑎⟩ ⊕ (⟨𝑏⟩ ⊕ ⟨𝑐⟩)) ⊕ (⟨⟨mid(𝛼′, 𝛽′)⟩⟩ ⊕ 𝑧),

where (𝑎 :: 𝑏 :: 𝛼′) := 𝛼 and (𝑐 :: 𝛽′) := 𝛽 .

Proof. [f] By the following equational reasoning, (i) idempotency of 𝑀

(Lemma 5.1.11), (ii) commutativity and (iii) transpositionality of ⊕ (Definition 5.1.2),
and (iv) the correctness of the binary midpoint operation (Theorem 5.2.21),

⟨⟨𝛼⟩⟩ ⊕ (⟨⟨𝛽⟩⟩ ⊕ 𝑧),
:=⟨⟨(𝑎 :: (𝑏 :: 𝛼′))⟩⟩ ⊕ (⟨⟨(𝑐 :: 𝛽′)⟩⟩ ⊕ 𝑧),
=⟨𝑎⟩ ⊕ ⟨⟨(𝑏 :: 𝛼′)⟩⟩ ⊕ (⟨⟨(𝑐 :: 𝛽′)⟩⟩ ⊕ 𝑧), by (i),

=(⟨𝑎⟩ ⊕ (⟨𝑏⟩ ⊕ ⟨⟨𝛼′⟩⟩)) ⊕ (⟨⟨(𝑐 :: 𝛽′)⟩⟩ ⊕ 𝑧), by (i),

=(⟨𝑎⟩ ⊕ (⟨𝑏⟩ ⊕ ⟨⟨𝛼′⟩⟩)) ⊕ ((⟨𝑐⟩ ⊕ ⟨⟨𝛽′⟩⟩) ⊕ 𝑧), by (i),

=((⟨𝑏⟩ ⊕ ⟨⟨𝛼′⟩⟩) ⊕ ⟨𝑎⟩) ⊕ ((⟨𝑐⟩ ⊕ ⟨⟨𝛽′⟩⟩) ⊕ 𝑧), by (ii),

=((⟨𝑏⟩ ⊕ ⟨⟨𝛼′⟩⟩) ⊕ (⟨𝑐⟩ ⊕ ⟨⟨𝛽′⟩⟩)) ⊕ (⟨𝑎⟩ ⊕ 𝑧), by (iii),

=((⟨𝑏⟩ ⊕ ⟨𝑐⟩) ⊕ (⟨⟨𝛼′⟩⟩ ⊕ ⟨⟨𝛽′⟩⟩)) ⊕ (⟨𝑎⟩ ⊕ 𝑧), by (iii),

=((⟨𝑏⟩ ⊕ ⟨𝑐⟩) ⊕ (⟨𝑎⟩) ⊕ (⟨⟨𝛼′⟩⟩ ⊕ ⟨⟨𝛽′⟩⟩) ⊕ 𝑧), by (iii),

=(⟨𝑎⟩ ⊕ (⟨𝑏⟩ ⊕ ⟨𝑐⟩) ⊕ (⟨⟨𝛼′⟩⟩ ⊕ ⟨⟨𝛽′⟩⟩) ⊕ 𝑧), by (iii),

=(⟨𝑎⟩ ⊕ (⟨𝑏⟩ ⊕ ⟨𝑐⟩) ⊕ (mid(𝛼′, 𝛽′) ⊕ 𝑧)), by (iv).

Corollary 5.2.30. [] Given any ternary signed-digit encodings 𝛼, 𝛽 : 3N and real
number 𝑧 : I in the interval object, we have,

⟨⟨𝛼⟩⟩ ⊕ (⟨⟨𝛽⟩⟩ ⊕ 𝑧) = quarter(add5(add3(𝑎, 𝑎), add3(𝑏, 𝑐))) ⊕ (⟨⟨mid(𝛼′, 𝛽′)⟩⟩ ⊕ 𝑧),

where (𝑎 :: 𝑏 :: 𝛼′) := 𝛼 and (𝑐 :: 𝛽′) := 𝛽 .

Proof. [f] By Lemmas 5.2.28 and 5.2.29.

Thus, it turns out that the bigMid operation provides an 𝑛-approximation of 𝑀 for
every 𝑛 : N.

Lemma 5.2.31. [] The functions map(⟨⟨−⟩⟩) and map(quarter) ◦ bigMid′ — both
of type (3N)N → IN — are 𝑛-approximately equal for all 𝑛 : N.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#bigMid'-approx
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#bigMid'-approx

115 Chapter 5. Real Numbers

Proof. [f] By induction and Corollary 5.2.30.

Theorem 5.2.32. [] The infinitary midpoint function on ternary signed-digit en-
codings realises the iteration operator on the interval object; i.e. given any sequence of
ternary signed-digit encodings 𝜁 : (3N)N, we have ⟨⟨bigMid(𝜁)⟩⟩ = 𝑀 (map(⟨⟨−⟩⟩, 𝜁)).

Proof. [f] By Theorem 5.1.19 and Lemmas 5.2.26 and 5.2.31.

Multiplication

Finally, we define and verify multiplication. In the Haskell library, Escardó defined a
variety of multiplication functions on signed-digit encodings; we choose to define and
verify mul_version0, which uses the bigMid function [Esc11b].

Definition 5.2.33. [] The auxiliary multiplication function, which multiplies a
ternary signed-digit encoding by a ternary digit, is defined as follows:

digitMul : 3 →3N → 3N,

digitMul(1, 𝛽) := neg(𝛽),
digitMul(0, 𝛽) := 𝜆𝑛.0,

digitMul(1, 𝛽) := 𝛽.

Definition 5.2.34. [] The multiplication function on ternary signed-digit encod-
ings is defined by multiplying the first argument against each individual digit of the
second, and then taking the infinitary midpoint:

mul : 3N →3N → 3N,

mul(𝛼, 𝛽) := bigMid(zipWith(digitMul, 𝛼, repeat 𝛽)) .

This function realises the multiplication function on the interval object; i.e. the diagrams
in Figure 5.9 commute.

Lemma 5.2.35. [] The auxiliary multiplication operator realises multiplication on
the interval object; i.e. given any ternary digit 𝑡 : 3 and a ternary signed-digit encodings
𝛽 : 3N, we have ⟨⟨digitMul(𝑡, 𝛽)⟩⟩ = ⟨𝑡⟩ ∗ ⟨⟨𝛽⟩⟩.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#M-realiser
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigit.html#digitMul
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitInterval.html#mul
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#digitMul-realiser

5.2. Verified ternary signed-digit encodings 116

3 × 3N 𝐾

I × I I

digitMul

∗

⟨−⟩×⟨⟨−⟩⟩ ⟨⟨−⟩⟩

3N × 3N (3N)N 3N

I × I IN Irepeat ◦ ∗

map ⟨⟨−⟩⟩

digitMul′

⟨⟨−⟩⟩×⟨⟨−⟩⟩

𝑀

bigMid

mul

⟨⟨−⟩⟩

∗

Figure 5.9: Commutative diagrams illustrating Lemma 5.2.35
(left) and Theorem 5.2.36 (right). In the diagram, digitMul′ :=
𝜆𝛼𝛽.zipWith(digitMul, 𝛼, repeat 𝛽).

Proof. [f] By induction on 𝑡 : 3.
In the case where 𝑡 := 1, we must show that ⟨⟨neg(𝛽)⟩⟩ = −1 ∗ ⟨⟨𝛽⟩⟩. By the negation
realiser (Theorem 5.2.10), ⟨⟨neg(𝛽)⟩⟩ = −⟨⟨𝛽⟩⟩. The result follows by Lemma 5.1.41.
In the case where 𝑡 := 0, we must show that ⟨⟨𝜆𝑛.0⟩⟩ = 0 ∗ ⟨⟨𝛽⟩⟩. By the idempotency
of𝑀 (Lemma 5.1.11), ⟨⟨𝜆𝑛.0⟩⟩ := 𝑀 (map(⟨−⟩, 𝜆𝑛.0)) = ⟨0⟩ = 0. The result follows by
Lemma 5.1.43.
In the case where 𝑡 := 1, we must show that ⟨⟨𝛽⟩⟩ = 1 ∗ ⟨⟨𝛽⟩⟩. The result follows by
Lemma 5.1.42.

Theorem 5.2.36. [] The multiplication function on ternary signed-digit encodings
realises the multiplication operation on the interval object.

Proof. [f] By the following equational reasoning, (i) the correctness of the infinitary
midpoint operation (Theorem 5.2.32), (ii) the correctness of the auxiliary multipli-
cation operation (Lemma 5.2.35), (iii) the fact right-multiplication — i.e. 𝜆𝑦.𝑥 ∗ 𝑦 for
a given 𝑥 : I — is a midpoint homomorphism (Lemma 5.1.45), and (iv) the fact that
midpoint homomorphisms are𝑀-homomorphisms (Lemma 5.1.15),

⟨⟨mul(𝛼, 𝛽)⟩⟩,
:=⟨⟨bigMid(zipWith(digitMul, 𝛼, repeat 𝛽))⟩⟩,
=𝑀 (map(⟨⟨−⟩⟩, zipWith(digitMul, 𝛼, repeat 𝛽))) by (i),

:=𝑀 (𝜆𝑛.⟨⟨digitMul(𝛼𝑛, 𝛽)⟩⟩),
=𝑀 (𝜆𝑛.⟨𝛼𝑛⟩ ∗ ⟨⟨𝛽⟩⟩) by (ii),

=𝑀 (𝜆𝑛.⟨𝛼𝑛⟩) ∗ ⟨⟨𝛽⟩⟩ by (iii) and (iv),

:=⟨⟨𝛼⟩⟩ ∗ ⟨⟨𝛽⟩⟩.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.SignedDigitIntervalObject.html#mul-realiser

117 Chapter 5. Real Numbers

5.3 Ternary Boehm encodings

We shall see in Chapter 6 that the ternary signed-digit encodings are an ideal type
for formalising the convergence of what we call ‘exact real search’. However, in that
section it will also become clear that the efficiency of the algorithms extracted from the
convergence theorems of search, optimisation and regression on that type leave much
to be desired. For this reason, we introduce another type — ternary Boehm encodings —
that yield more efficient algorithms at the expense of being more difficult to formalise
in our Agda framework1.

In the 1990s, Hans-J. Boehm produced a practical Java library for exact real arith-
metic [Boe99]. Since then, Boehm’s library has been developed to become the un-
derpinning of Google’s bespoke Android calculator mobile phone application [Boe17;
Boe20]. The star of the library is the class CR, objects of which Boehm calls constructive
reals. Objects 𝑥 of CR have a single private method approximate, which takes a (small)
integer and outputs an (effectively unbounded) integer. The input integer 𝑛 denotes the
requested precision-level of the constructive real, while the output integer 𝑥𝑛 denotes
an integer approximation — scaled relative to the given precision-level — of the real
number J𝑥K : R which 𝑥 encodes.

Every object of CR is therefore a bi-infinite sequence of integer approximations
of a real number, which is constructed and manipulated to ensure that the following
condition about its relationship to the real number it encodes always holds:

𝑑R(J𝑥K, 2𝑛𝑥𝑛) < 2𝑛 .

In this section, we will show how we re-rationalise this class — adapted slightly for
the purposes of exact real search — within our Agda framework as the type T. We will
then verify the structure of the type by defining the representation map J−K : T → R;
for this purpose, we utilise the Dedekind reals rather than the interval object, both
for the sake of variety and because elements of T represent reals without reference
to a particular compact interval. However, following this, we will show how we use
subtypes of T to represent only reals in particular compact intervals, as this is required
for search. Finally, we will discuss how Boehm defines exact real arithmetic on CR by
using interval arithmetic.

1Hence, we have not verified the ternary Boehm encodings to the same extent as the ternary signed-
digit encodings.

5.3. Ternary Boehm encodings 118

5.3.1 Definition in our type theory

In order to define CR in our type theory, we start off by representing the class as
functions 𝑥 : Z → Z. It is helpful to think of the integer approximation 𝑥𝑛 : Z, at any
precision-level 𝑛 : Z, as an interval approximation of J𝑥K — namely, 𝑥𝑛 represents to the
open interval (2𝑛 (𝑥𝑛 − 1), 2𝑛 (𝑥𝑛 + 1)) , which clearly contains J𝑥K.

As we wish to use these encodings for search, the open interval structure is not
ideal. Therefore, we alter CR by changing the order used in the relationship above
from strict to non-strict. This is done because we require the use of compact intervals
for search, though it makes little difference to the way CR objects are manipulated
algorithmically. Furthermore, for stylistic reasons we make two further changes. Firstly,
with the ternary signed-digits we used higher precision-levels 𝑛 to mean more precise
integer approximations, rather than less, and so we alter CR so that we can do the same.
Furthermore, we slightly reposition the interval codes to avoid unnecessary subtraction
in our formalisation.

By making the two changes above, the functions 𝑥 : Z → Z we define for CR in our
type theory must satisfy

𝑑R(J𝑥K, 2−𝑛 (𝑥𝑛 + 1)) ≤ 2−𝑛,

meaning that they are an infinitary sequence of integers, with each input-output pair
(𝑥𝑛, 𝑛) : Z2 representing the compact interval with dyadic rational endpoints[

𝑥𝑛

2𝑛 ,
𝑥𝑛 + 2
2𝑛

]
.

We illustrate the structure of these encodings in Figure 5.10, which shows some
possible interval approximations of real numbers in [−3, 3] at precision-levels 0, 1 and 2
— note that the intervals halve in size as the precision-level increases further down the
illustration. We refer to this as the ternary structure, because each interval represented
by (𝑛,𝑚) : Z2 in the structure is perfectly trisected into three representations (2𝑛,𝑚+1),
(2𝑛 + 1,𝑚 + 1) and (2𝑛 + 2,𝑚 + 1) on the next precision-level.

This structure can be ‘navigated’ by the following operations on integer approxima-
tions. The operations downLeft, downMid and downRight take an integer that refers to
an interval on an arbitrary precision-level and return one which refers, respectively, to
one of the three possible trisections on the next precision-level. Meanwhile, upLeft and
upRight do the reverse. The names here are colour coded with respect to the colours in

119 Chapter 5. Real Numbers

(-2,1) = [-1,0]

(-3,1) = [-1.5,-0.5] (-1,1) = [-0.5,0.5].

(2,1) = [1,2]

(1,1) = [0.5,1.5] (3,1) = [1.5,2.5]

(0,1) = [0,1](-4,1) = [-2,-1]

(-5,1) = [-2.5,-1.5]

(-6,2)

(-7,2) (-5,2)

(-2,2)

(-3,2) (-1,2)

(-4,2)(-8,2)

(-9,2)

(4,2)

(3,2) (5,2)

(8,2)

(7,2)

(6,2)(2,2)

(1,2)

(0,2)(-10,2)

(0,0) represents [0,2]

(-1,0) represents [-1,1]

(-2,0) represents [-2,0]

(-3,0) represents [-3,-1]

(-6,1) = [-3,-2]

(1,0) represents [1,3]

(4,1) = [2,3]

(-11,2)

(-12,2) (10,2)

(9,2)

Figure 5.10: Ternary structure underlying the Boehm encodings. Each
interval approximation is represented by an integer pair. The coloured
arrows illustrate how the structural operations downLeft, downMid,
downRight, upLeft and upRight work.

Figure 5.10, which illustrate how the operations work for particular intervals.

downLeft,downMid, downRight, upLeft, upRight : Z → Z,

downLeft(𝑘) := 2𝑘,

downMid(𝑘) := 2𝑘 + 1,

downRight(𝑘) := 2𝑘 + 2,

upRight(pos 𝑘) := pos (𝑘/2),
upRight(negsucc 𝑘) := negsucc (𝑘/2),

upLeft(𝑘) := upRight(𝑘 − 1).

Definition 5.3.1. [] [] Given two integers 𝑛,𝑚 : Z, we say that 𝑛 is below 𝑚

if the interval represented by (𝑛, 𝑖 + 1) : Z2 is a strict subinterval of that which is
represented by (𝑚, 𝑖) : Z2 for any 𝑖 : Z:

below : Z → Z → Ω,

𝑛 below𝑚 := downLeft𝑚 ≤ 𝑛 ≤ downRight𝑚.

Equivalently, this can be defined as follows:

below′ : Z → Z → Ω,

𝑛 below′𝑚 := (𝑛 = downLeft𝑚) + (𝑛 = downMid𝑚) + (𝑛 = downRight𝑚).

To further illustrate how ternary Boehm encodings work, let us now give an example

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#_below_
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BelowAndAbove.html#_below'_

5.3. Ternary Boehm encodings 120

encoding 𝑥 : Z → Z which is intended to represent the real number 2 : R; 𝑥 could be
defined in a variety of ways:

• 𝑥0 = 1, 𝑥1 = 2, ...
• 𝑥0 = 1, 𝑥1 = 3, ...
• 𝑥0 = 1, 𝑥1 = 4, ...
• 𝑥0 = 0, 𝑥1 = 2, ...
• 𝑥0 = 0, 𝑥1 = 3, ...

All of these are valid representations of 2 as a ternary Boehm encoding because the
two interval approximations intersect. However, we wish in our type theory to restrict
ourselves to only those encodings that follow the ternary structure — the last item in
the above list would not, therefore, be valid.

Definition 5.3.2. [] A sequence of integers 𝑥 : Z → Z is ternary if,

ternary(𝑥) :=
∏
(𝑛 : Z)

(𝑥𝑛+1 below 𝑥𝑛) .

Restricting ourselves in this way will allow us to remove cases that are difficult to
reason about, and to define continuity and search similarly to how we defined it for the
ternary signed-digit encodings.

Definition 5.3.3. [] The type of ternary Boehm encodings is defined as the collec-
tion of ternary sequences:

T :=
∑︁

(𝑥 : Z→Z)
ternary(𝑥).

Returning to our illustration, we show one possible map that takes any integer to a
ternary Boehm encoding that represents it.

Definition 5.3.4. The function that maps any integer to a ternary Boehm encodings
is defined as follows:

Z-to-T : Z → T,

Z-to-T(𝑛) (pos 0) := 𝑛,

Z-to-T(𝑛) (pos (𝑖 + 1)) := downLeft𝑖+1(𝑛),
Z-to-T(𝑛) (negsucc 𝑖) := upRight𝑖+1(𝑛).

Before proceeding, we invite the reader to verify in their minds that this map is indeed

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#ternary
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#%F0%9D%95%8B

121 Chapter 5. Real Numbers

correct.

5.3.2 Verification of Boehm encodings via Dedekind reals

In this subsection, we will formally verify that the above definition of ternary Boehm
encodings does indeed represent real numbers. The application of this work is for
the future verification of exact real arithmetic on the Boehm encodings (discussed in
Sections 5.3.3 and 7.2.2).

We first quickly recap the Dedekind reals, which we use for the type of real numbers
R in this section. The work of implementing and formalising the Dedekind reals (as
well as the rationals and dyadic rationals) for the Agda library TypeTopology was
performed by Andrew Sneap in his M.Sci. project [Sne21].

The Dedekind reals can be defined over any dense subset of the real numbers, and
are usually defined over the rationals Q. We choose to instead define them over the
dyadic rationals Z[1/2] — i.e. those rational numbers of form 𝑧

2𝑛 for 𝑧, 𝑛 : Z — as this will
be more convenient when verifying the structure of T, whose interval approximations
have dyadic endpoints. We use the dyadics informally in this thesis; simply noting they
are a discrete set with a partial order, and that there is a function 𝜄 : Z × Z → Z[1/2]
which map pairs of integers (𝑧, 𝑛) : Z × Z to the dyadic rational 𝑧

2𝑛 .

Definition 5.3.5. [] A Dedekind real number (𝐿, 𝑅) : R consists of two predicates
on dyadics 𝐿, 𝑅 : Z[1/2] → Ω (the left cut and the right cut respectively) that satisfy,

1. ∃(𝑝 : Z[1/2])𝐿(𝑝),
2. ∃(𝑞 : Z[1/2])𝑅(𝑝),
3.

∏
(𝑝 : Z[1/2])

(
𝐿(𝑝) ⇔ ∃(𝑝 ′ : Z[1/2]) (𝐿(𝑝′) × 𝑝 < 𝑝′)

)
,

4.
∏

(𝑞 : Z[1/2])
(
𝑅(𝑞) ⇔ ∃(𝑞′ : Z[1/2]) (𝑅(𝑞′) × 𝑞′ < 𝑞)

)
,

5.
∏

(𝑝,𝑞 : Z[1/2]) (𝐿(𝑝) × 𝑅(𝑞) → 𝑝 < 𝑞),
6.

∏
(𝑝,𝑞 : Z[1/2]) (𝑝 < 𝑞 → 𝐿(𝑝) ∨ 𝑅(𝑞)).

Now recall the definitions of representation maps in Section 5.2.2. In order to define
the representation map J−K : T → R on ternary Boehm encodings, we first look at
how one can represent real numbers as sequences of dyadic rational intervals that
satisfy the nested and positioned properties (defined below). We will then show that —
as we illustrated in the previous subsection — every ternary Boehm real 𝜒 : T can be
transformed into such a sequence of dyadic intervals, and therefore that we can indeed
define J𝜒K : R.

https://tnttodda.github.io/thesis/html/TWA.Thesis.AndrewSneap.DyadicReals.html#%E2%84%9D-d

5.3. Ternary Boehm encodings 122

Definition 5.3.6. [] The type of valid representations of dyadic intervals Z[1/2]𝐼 is
defined as the type of pairs of dyadics such that the first is smaller than the second:

Z[1/2]𝐼 :=
∑︁

((𝑙,𝑟) : Z[1/2]×Z[1/2])
(𝑙 ≤ 𝑟) .

For convenience, we simply refer to elements of this type as dyadic intervals.

Definition 5.3.7. [] One dyadic interval covers another if,

covers : Z[1/2]𝐼 → Z[1/2]𝐼 → Ω,

(𝑙1, 𝑟1) covers (𝑙2, 𝑟2) := (𝑙1 ≤ 𝑙2) × (𝑟2 ≤ 𝑟1).

Definition 5.3.8. [] A sequence of dyadic intervals 𝜒 : Z → Z[1/2]𝐼 is nested if
every interval in the sequence covers the next:

nested : (Z → Z[1/2]𝐼) → Ω,

nested(𝜒) := Π(𝑛 : N) (𝜒𝑛 covers 𝜒𝑛+1) .

Definition 5.3.9. [] A sequence of dyadic intervals 𝜒 : Z → Z[1/2]𝐼 is positioned
if it contains arbitrary small intervals,

positioned : (Z → Z[1/2]𝐼) → Ω,

positioned(𝜒) := Π(𝜀 : Z[1/2]) (𝜀 > 0) → Σ(𝑛 : N) (𝑟𝑛 − 𝑙𝑛 ≤ 𝜀) (where (𝑙𝑛, 𝑟𝑛) := 𝜒𝑛).

Lemma 5.3.10. [] a If a sequence of dyadic intervals 𝜒 : Z → Z[1/2]𝐼 is nested and
positioned, there is a real number L𝜒M : R which it represents.

aIn Agda, the formalisation of this proof currently requires the use of a number of unformalised
lemmas about dyadic numbers.

Proof. [t] The proof is due to Andrew Sneap. The Dedekind cuts 𝐿, 𝑅 : Z[1/2] → Ω

are defined as follows:

𝐿(𝑝) := ∃(𝑛 : Z) (𝑝 < pr1(𝜒𝑛)) ,
𝑅(𝑞) := ∃(𝑛 : Z) (pr2(𝜒𝑛) < 𝑞) .

The idea of 𝐿 is that a rational number is less than the represented number if there is

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#%E2%84%A4[1/2]%E1%B4%B5
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#_covers_
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#nested
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#positioned
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#%E2%A6%85_%E2%A6%86

123 Chapter 5. Real Numbers

an interval in the sequence that it is smaller than the lower endpoint of. The idea of
𝑅 is the opposite of this. The first four properties of the cuts (Definition 5.3.5) are
proved by properties of the dyadics, while the fifth is by the nested property and the
sixth is by the positioned property.

Any interval that has dyadic endpoints with the same denominator can be repre-
sented as a triple of integers.

Definition 5.3.11. [] We call a triple of integers (𝑘, 𝑐, 𝑝) : Z3 such that 𝑘 ≤ 𝑐

(the proof term of which we leave implicit) a dyadic interval code when we use
it for the purpose of representing the dyadic interval Z3-to-Z[1/2]I(𝑘, 𝑐, 𝑝) :=
(𝜄 (𝑘, 𝑝), 𝜄 (𝑐, 𝑝)) : Z[1/2]𝐼 (which has width 𝑐−𝑘

2𝑝).

Given a sequence of dyadic interval codes 𝜒 : Z → Z3, we overload terminology by
saying 𝜒 is nested/positioned to mean that map(Z3-to-Z[1/2]I, 𝜒) is nested/positioned.

Corollary 5.3.12. [] If a sequence of dyadic interval codes 𝜒 : Z → Z3 is nested
and positioned, it represents the real number L𝜒M′ := Lmap(Z3-to-Z[1/2]I, 𝜒)M : R.

Proof. [t] By Lemma 5.3.10.

The dyadic intervals underlying the structure of T (illustrated in Figure 5.10) can be
represented by pairs of integers.

Definition 5.3.13. [] We call a pair of integers (𝑘, 𝑝) : Z2 a ternary interval code
when we use it for the purpose of representing the interval Z2-to-Z[1/2]I(𝑘, 𝑝) :=
(𝜄 (𝑘, 𝑝), 𝜄 (𝑘 + 2, 𝑝)) : Z[1/2]𝐼 (which has width 1

2𝑝−1).

Furthermore, every ternary interval code (𝑘, 𝑝) gives a dyadic interval code

Z2-to-Z3(𝑘, 𝑝) := (𝑘, 𝑘 + 2, 𝑝),

such that the below diagram commutes.

Z2 Z3

Z[1/2]𝐼

Z2-to-Z3

Z2-to-Z[1/2]I
Z3-to-Z[1/2]I

Given a sequence of ternary interval codes 𝜒 : Z → Z2, we overload terminology by

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#%E2%84%A4%C2%B3
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#%E2%A6%85_%E2%A6%86'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#%E2%84%A4%C2%B2

5.3. Ternary Boehm encodings 124

saying 𝜒 is nested/positioned to mean that map(Z2-to-Z[1/2]I, 𝜒) is nested/positioned.

Corollary 5.3.14. [] If sequence of ternary interval codes 𝜒 : Z → Z2 is nested and
positioned, it represents the real number L𝜒M′′ := Lmap(Z2-to-Z3, 𝜒)M′ : R.

Proof. [t] By Corollary 5.3.12.

For sequences of ternary interval codes, being positioned is implied by a stronger
property we call the normalised property. A sequence of such interval codes is nor-
malised if the precision-level of the output interval is always identical to that which
was requested.

Definition 5.3.15. [] A sequence of ternary interval codes is normalised if the
precision-level of the code at every point 𝑛 : N is always exactly 𝑛.

normalised : (Z → Z2) → Ω,

normalised(𝜒) := Π(𝑛 : N) (pr2(𝜒𝑛) = 𝑛) .

Lemma 5.3.16. [] a If a sequence of ternary interval codes is normalised, then it is
positioned.

aIn Agda, the formalisation of this proof currently requires the use of a number of unformalised
lemmas about dyadic numbers.

Proof. Recall from Definition 5.3.9 that, given some 𝜀 : Z[1/2] > 0 we wish to find an
interval in the sequence whose width is at most 𝜀.
We define 𝑞 : Z to be any integer such that 2

2𝑞 < 𝜀. By the normalised property,
𝑞 = 𝑝𝑟2(𝜒𝑞) and, by definition of ternary interval codes, 𝜒𝑞 has width 2

2𝑞 , which is
smaller than 𝜀.

If a sequence of ternary interval codes 𝜒 : Z → Z2 is normalised, we can effectively
discard the precision-level information in the output and simply consider it as an
integer sequence map(pr1, 𝜒) : Z → Z. Further, if 𝜒 is nested, then map(pr1, 𝜒) is
ternary (Definition 5.3.2).

Lemma 5.3.17. [] a Given a normalised sequence of ternary interval codes, it is
nested if and only if it is ternary.

aIn Agda, the formalisation of the proof of this lemma currently requires the use of a number of
unformalised lemmas about dyadic numbers.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#%E2%A6%85_%E2%A6%86''
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#normalised
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#normalised-positioned
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#ternary-nested

125 Chapter 5. Real Numbers

As the resulting integer sequence is ternary, it is clearly a ternary Boehm encoding (Def-
inition 5.3.3). Indeed, the type of ternary interval codes that are nested and positioned
are equivalent to the type of ternary Boehm encodings T.

Definition 5.3.18. [] We define the inclusion map from ternary Boehm encodings
to sequences of ternary interval codes by the following:

to-interval-seq : T → (Z → Z2),
to-interval-seq(𝜒)𝑛 := (𝜒𝑛, 𝑛).

Lemma 5.3.19. [] The type of nested and normalised sequences of ternary interval
codes that are equivalent to the type of ternary Boehm encodings:∑︁

(𝜒 : Z→Z2)
(nested(map(pr1, 𝜒)) × normalised(𝜒)) ≃ T.

Proof. [f] Converting from T → (Z → Z2) is done by to-interval-seq, while convert-
ing in the other direction is done bymap(pr1); in both cases, we prove the necessary
properties of the constructed representation using Lemma 5.3.17. It is then trivial to
see that these two functions yield identities.

Corollary 5.3.20. [] Any given ternary Boehm encoding 𝑥 : T represents the real
number

J𝑥K := L𝜆𝑛.(𝑥𝑛, 𝑛)M′′ : R.

Proof. [ft] By Lemma 5.3.19 and Corollary 5.3.14.

5.3.3 Exact real arithmetic

Boehm defines arithmetic operations on CR by looking to the interval arithmetic on the
dyadic rational intervals [Boe20]. In this subsection we follow this same process in order
to informally define negation, addition and multiplication on T. The definitions here
differ to those on CR because elements of T are different to those of CR (for example we
must satisfy the ternary property, Definition 5.3.2); furthermore, we give simpler, more
convenient definitions than Boehm’s, though this is at the expense of some efficiency.

Note that the definitions of this subsection are informal — we do not define these
operations in our formal library and have not verified their correctness; indeed, this is
ongoing work as discussed in Section 7.2.2. We will, however, use these definitions in

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#to-interval-seq
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#ternary-normalised%E2%89%83%F0%9D%95%8B
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#%E2%9F%A6_%E2%9F%A7

5.3. Ternary Boehm encodings 126

our own proof-of-concept Java library for exact real search on ternary Boehm encodings
in Chapter 6.

Negation

Negation on dyadic intervals is defined by

−
[
𝑘

2𝑝 ,
𝑐

2𝑝

]
:=

[
−𝑐
2𝑝 ,

−𝑘
2𝑝

]
.

Hence, negation on dyadic interval codes Z3 is defined by −(𝑘, 𝑐, 𝑝) := (−𝑐,−𝑘, 𝑝). The
width of the output interval is the same as that of the input interval, meaning that if the
input was in fact a ternary interval code Z2, then the output also would be a ternary
interval code on the same precision-level. Therefore, we can easily define negation on
ternary Boehm encodings.

Definition 5.3.21. Negation on ternary Boehm encodings is defined by the following:

− : T → T,

−𝑥 := 𝜆𝑛. − 𝑥𝑛 − 2.

Addition

Addition on dyadic intervals is defined by[
𝑘1
2𝑝1 ,

𝑐1
2𝑝1

]
+
[
𝑘2
2𝑝2 ,

𝑐2
2𝑝2

]
:=[

2𝑝2−min(𝑝1,𝑝2)𝑘1 + 2𝑝1−min(𝑝1,𝑝2)𝑘2
2max(𝑝1,𝑝2)

,
2𝑝2−min(𝑝1,𝑝2)𝑐1 + 2𝑝1−min(𝑝1,𝑝2)𝑐2

2max(𝑝1,𝑝2)

]
.

As we are looking to define this operation on T, whereon we can approximate the
elements to any precision-level we like, we can consider the simpler case where the
precision-levels of the inputs are identical. Hence, addition on dyadic interval codes Z3

in the case where the precision-levels of the inputs is identical is defined by (𝑘1, 𝑐1, 𝑝) +
(𝑘2, 𝑐2, 𝑝) := (𝑘1 + 𝑘2, 𝑐1 + 𝑐2, 𝑝). The width of the output interval in this case is

(𝑐1 + 𝑐2) − (𝑘1 + 𝑘2)
2𝑝 ,

127 Chapter 5. Real Numbers

meaning that given two ternary interval codes on precision-level 𝑝 the width would be

(𝑘1 + 2 + 𝑘2 + 2) − (𝑘1 + 𝑘2)
2𝑝 =

1
2𝑝−2 .

In order to achieve an output interval approximation of a ternary Boehm encoding at a
requested precision-level 𝑝 : Z, therefore, the input ternary Boehm encodings must be
evaluated to precision-level 𝑝 + 2.

Definition 5.3.22. Addition on ternary Boehm encodings is defined by the following:

+ : T → T → T,

𝑥 + 𝑦 := 𝜆𝑛.(𝑥𝑛+2 + 𝑦𝑛+2).

Multiplication

Multiplication on dyadic intervals is defined by[
𝑘1
2𝑝1 ,

𝑐1
2𝑝1

]
∗
[
𝑘2
2𝑝2 ,

𝑐2
2𝑝2

]
:=

[
min(𝑘1𝑘2, 𝑘1𝑐2, 𝑐1𝑘2, 𝑘2𝑐2)

2𝑝1+𝑝2 ,
max(𝑘1𝑘2, 𝑘1𝑐2, 𝑐1𝑘2, 𝑘2𝑐2)

2𝑝1+𝑝2

]
.

As with addition, we can consider the simpler case where the precision-levels of the
inputs are identical. Hence, multiplication on dyadic interval codes Z3 in the case
where the precision-levels of the inputs is identical is defined by (𝑘1, 𝑐1, 𝑝) ∗ (𝑘2, 𝑐2, 𝑝) :=
(min(𝑘1𝑘2, 𝑘1𝑐2, 𝑐1𝑘2, 𝑘2𝑐2),max(𝑘1𝑘2, 𝑘1𝑐2, 𝑐1𝑘2, 𝑘2𝑐2), 2𝑝). The width of the output in-
terval varies based on the inputs — this is related to the fact that multiplication is
continuous but not uniformly continuous. In the case where both intervals are positive,
for example, the width of the output interval is

((𝑘1 + 2) (𝑘2 + 2)) − 𝑘1𝑘2
22𝑝 =

𝑘1 + 𝑘2 + 2
22𝑝−1 =

1
22𝑝−1−log2(𝑘1+𝑘2+2)

.

This case in fact supercedes all others, and so in order to achieve an output interval
approximation of a ternary Boehm encoding at a requested precision-level 𝑝 : Z, the
input ternary Boehm encodings must be evaluated to precision-level (𝑝 + log2(abs(𝑘1) +
abs(𝑘2) + 2) + 1)/2.

Definition 5.3.23. Multiplication on ternary Boehm encodings is defined by the

5.3. Ternary Boehm encodings 128

following:

∗ : T → T → T,

𝑥 ∗ 𝑦 := 𝜆𝑛.(𝑥 (𝑛+log2(abs(𝑥𝑛)+abs(𝑦𝑛)+2)+1)/2 + 𝑦(𝑛+log2(abs(𝑥𝑛)+abs(𝑦𝑛)+2)+1)/2).

5.3.4 Representing compact intervals

A key difference between ternary Boehm encodings T and ternary signed-digit encod-
ings 3N is that with the former we can represent real numbers across the real line,
whereas with the latter we can only represent reals in a given compact interval (in
this thesis, we use the example of [−1, 1]). However, T is not a uniformly continuous
searchable type — in order to search the ternary Boehm encodings, we will have to
restrict ourselves to particular compact intervals. In this subsection, we define three
subtypes of T that can be used to represent real numbers that are in the compact interval
[𝑘2𝑖 ,

𝑘+2
2𝑖], which is represented by the ternary interval code (𝑘, 𝑖) : Z2.
The first subtype T(𝑘, 𝑖)1 is straightforward to define: it is simply the type of ternary

Boehm encodings which ‘pass through’ the interval encoded by (𝑘, 𝑖) at precision-level
𝑖 .

Definition 5.3.24. [] For every ternary interval code (𝑘, 𝑖) : Z2 there is a subtype
T(𝑘, 𝑖)1 of ternary Boehm encodings in the compact interval [𝑘2𝑖 ,

𝑘+2
2𝑖] defined as the

collection of ternary Boehm encodings that feature the interval approximation (𝑘, 𝑖):

T(𝑘, 𝑖)1 :=
∑︁
(𝑥 : T)

(𝑥𝑖 = 𝑘) .

This subtype is useful because it is easy to map back to elements of T by simply taking
the first projection.

The second subtype T(𝑘, 𝑖)2 is a little less convenient to work with directly, but is
more convenient for the purpose of defining a closeness function (which we will do in
Chapter 6). Elements 𝑥 : T(𝑘, 𝑖)2 are N-indexed sequences that only give the interval
approximations of the represented real number J𝑥K for precision-levels greater than 𝑖 —
i.e. for any 𝑛 : N, an interval approximation of J𝑥K is represented by the interval code
(𝑥𝑛, 𝑖 + 1 + 𝑛) : Z2.

Definition 5.3.25. [] For every ternary interval code (𝑘, 𝑖) : Z2 there is a subtype
T(𝑘, 𝑖)2 of ternary Boehm encodings in the compact interval [𝑘2𝑖 ,

𝑘+2
2𝑖] defined as the

collection of sequences of type ZN that locate, after the interval approximation (𝑘, 𝑖),

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#CompactInterval
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#CompactInterval2

129 Chapter 5. Real Numbers

any ternary Boehm encoding:

T(𝑘, 𝑖)2 :=
∑︁

(𝜒 : ZN)

(
𝜒0 below 𝑘 × Π(𝑛 : N) (𝜒𝑛+1 below 𝜒𝑛)

)
.

We can convert from each of these definitions to the other.

Definition 5.3.26. [] Given any ternary interval code (𝑘, 𝑖) : Z2, the function

T(𝑘, 𝑖)1-to-T(𝑘, 𝑖)2 : T(𝑘, 𝑖)1 → T(𝑘, 𝑖)2

is defined for every ((𝑥, 𝑏), 𝑒) : T(𝑘, 𝑖)1 where
• 𝑥 : Z → Z,
• 𝑏 : ternary(𝑥),
• 𝑒 : 𝑥𝑖 = 𝑘 .

We first define the sequence

𝜒 : ZN,

𝜒𝑛 := 𝑥𝑖+1+𝑛 .

The proof that (𝜒0 below 𝑘) is then by 𝑏𝑖 : (𝑥𝑖+1 below 𝑥𝑖) and 𝑒; the proof that
Π(𝑛 : N) (𝜒𝑛+1 below 𝜒𝑛) is by 𝑏.

Definition 5.3.27. [] Given any ternary interval code (𝑘, 𝑖) : Z2, the function

T(𝑘, 𝑖)2-to-T(𝑘, 𝑖)1 : T(𝑘, 𝑖)2 → T(𝑘, 𝑖)1

is defined for every (𝜒, 𝑏0, 𝑏𝑠) : T(𝑘, 𝑖)2 where
• 𝜒 : ZN,
• 𝑏0 : 𝜒0 below 𝑘 ,
• 𝑏𝑠 : Π(𝑛 : N) (𝜒𝑛+1 below 𝜒𝑛).

We first define the sequence

𝑥 : Z → Z,

𝑥𝑛 := 𝑘 (when 𝑛 = 𝑖),

𝑥𝑛 := 𝜒𝑛−1−𝑖 (when 𝑛 > 𝑖),

𝑥𝑛 := upRight(𝑘) (when 𝑛 < 𝑖).

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#CompactInterval-1-to-2
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#CompactInterval-2-to-1

5.3. Ternary Boehm encodings 130

The proof that (ternary(𝑥)) is then by 𝑏0 and 𝑏𝑠 ; the proof that 𝑥𝑛 = 𝑘 is immediate.

Despite the fact that, given a particular interval code (𝑘, 𝑖) : Z2, the types T(𝑘, 𝑖)1
and T(𝑘, 𝑖)2 can represent the same real numbers, the types are not equivalent. This is
because T(𝑘, 𝑖)1 contains more information about locating the represented real number
than T(𝑘, 𝑖)2, and this information cannot be recovered when converting from the
latter to the former — indeed, in Definition 5.3.27 we used the upRight function to
prepend arbitrary interval approximations of the real number for precision-levels higher
than 𝑖 . Despite this, it is the case that the composition of the two functions defined
above preserves the represented real number. The informal idea of this is that from
precision-level 𝑖 : Z the ternary Boehm encoding (and thus, the underlying dyadic
interval approximations) are identical — hence, the limit of the two sequences is the
same real number.

We now connect the two representations of real numbers in compact intervals that
we use in this thesis, and show that the second subtype defined in this subsection is
equivalent to the type of ternary Boehm encodings.

Lemma 5.3.28. [] Given any ternary interval code (𝑘, 𝑖) : Z2, it is the case that
T(𝑘, 𝑖)2 ≃ 3N.

Proof (Sketch). [f] Although the formalisation is rather involved, the intuition here
is clear. We convert any ternary Boehm encoding in a compact interval 𝜒 : T(𝑘, 𝑖)2
into a ternary signed-digit encoding 𝛼 : 3N by using the values of 𝑏0 : 𝜒0 below 𝑘 and
𝑏𝑠 :

∏
(𝑛 : N) 𝜒𝑛+1 below 𝜒𝑛. If, at any point 𝑛 : N in the sequence, 𝜒𝑛 goes downLeft

then 𝛼𝑛 = 1; if 𝜒𝑛 goes downMid then 𝛼𝑛 = 0; and else if 𝜒𝑛 goes downRight then
𝛼𝑛 = 1. Following the opposite method, we can also convert in the other direction;
and clearly either composition of these conversions gives an identity.

Finally, we give the third subtype for representing compact intervals using T. We
can remove the redundant interval approximations from the structure of T(𝑘, 𝑖)2, which
reflects the ability to represent the same real number as any ternary signed-digit
encoding 3N as a function N → 2 (discussed in Section 5.2.1).

Definition 5.3.29. [] Given two integers 𝑛,𝑚 : Z, we say that 𝑛 is split-below𝑚 if

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#CompactInterval2-ternary
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#_split-below_

131 Chapter 5. Real Numbers

𝑛 is either downLeft𝑚 or downRight𝑚:

split-below : Z → Z → Ω,

𝑛 split-below𝑚 := (𝑛 = downLeft𝑚) + (𝑛 = downRight𝑚).

Definition 5.3.30. [] For every ternary Boehm interval code (𝑘, 𝑖) : Z2 there is a
subtype T(𝑘, 𝑖)3 of ternary Boehm encodings in the compact interval [𝑘2𝑖 ,

𝑘+2
2𝑖] defined

as the collection of sequences of type ZN that locate, after the interval approximation
(𝑘, 𝑖), only those ternary Boehm encodings that never use downMid:

T(𝑘, 𝑖)3 :=
∑︁

(𝜒 : N→Z)

(
𝜒0 split-below 𝑘 × Π(𝑛 : N) (𝜒𝑛+1 split-below 𝜒𝑛)

)
.

Therefore, this subtype defined is equivalent to the Cantor type 2N, as at each
interval approximation there are two choices for the next.

Lemma 5.3.31. [] Given any ternary Boehm interval code (𝑘, 𝑖) : Z2, it is the case
that T(𝑘, 𝑖)3 ≃ 2

N.

Proof. [f] Similar to Lemma 5.3.28.

Split-belowness trivially implies belowness, and hence every element of T(𝑘, 𝑖)3 can
be mapped to one in T(𝑘, 𝑖)2 — and, hence, one in T(𝑘, 𝑖)3 — all of which represent the
same real number.

As discussed in Section 5.2.1, there is a problem when using the Cantor type 2N

for representing real numbers: namely, it is unsuitable for computation due to its lack
of redundant digits. This problem extends to the equivalent subtype T(𝑘, 𝑖)3, and so
it is important to understand that we do not (and indeed cannot) use this type for
computation in our framework. The reason for its introduction here is instead for
the purposes of search — in Section 6.2.1, we will see that it is this subtype which is
most suitable for searching the type of ternary Boehm encodings in the given compact
interval

[
𝑘
2𝑖 ,

𝑘+2
2𝑖
]
(for any (𝑘, 𝑖) : Z2). Indeed, this further means that the type 2N is

suitable for searching ternary signed-digit encodings, as we explore in Section 6.1.1.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#CompactInterval3
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter5.BoehmVerification.html#CompactInterval3-cantor

Chapter 6

Exact Real Search

Our generalised framework for search, optimisation and regression introduced in
Chapters 3 and 4 has been shown to operate on a wide class of types. Optimisation takes
place on totally bounded (Definition 3.2.35) closeness spaces (Definition 3.2.19) equipped
with a preorder (Definition 4.1.4) and approximate linear preorder (Definition 4.1.13);
whereas search takes place on uniformly continuously searchable (Definition 3.3.3)
closeness spaces — further, recall that totally boundedness implies uniformly continuous
searchability (Theorem 3.3.6). Regression can take place on either of the above classes of
closeness space, depending on whether we perform it via optimisation (Theorem 4.2.6)
or search (Theorems 4.2.9 and 4.2.10).

In this thesis’ final chapter, we bring this generalised framework full circle by in-
stantiating it on the two representations of real numbers we explored and verified in
Chapter 5: ternary signed-digits and ternary Boehm encodings. In order to achieve
this, we formalise that each type’s representations of real numbers in compact intervals
— i.e. 3N itself for the former and the subtype T(𝑘, 𝑖)3 for any given (𝑘, 𝑖) : Z2 (Defini-
tion 5.3.25) for the latter — are members of the aforementioned class of types, in that we
can perform search, optimisation and regression on them. We then formalise, only for
3N, that the exact real arithmetic functions we wish to search, optimise and regress are
indeed uniformly continuous functions — proofs that are required for the algorithms to
run. Finally, we give a variety of toy, proof-of-concept examples of search, optimisation
and regression using these functions.

On signed-digit encodings, our example Haskell algorithms are compiled directly
from instantiations of the formal Agda proofs of convergence (we explain how in the

133 Chapter 6. Exact Real Search

final paragraph of Appendix A). This means that, while the extracted computation is
relatively inefficient, we have formalised the fact that it will compute a correct answer.
Meanwhile, our examples of the framework working on ternary Boehm encodings are
written in a Java library which informally reflects the ideas of the formal framework; we
sacrifice direct proofs of convergence in order to attain more efficient proof-of-concept
algorithms.

6.1 Exact Real Search using signed-digit encodings

Some of the work of this section was previously published as part of a joint paper with
Dan R. Ghica at the Logic in Computer Science (LICS) 2021 conference [GA21].

6.1.1 Suitability for search, optimisation and regression

In this subsection, we show that the type of ternary signed digit encodings 3N —
explored in Section 5.2 — is a member of our class of types in that we can perform
search, optimisation and regression upon it. We show, therefore, that 3N is a totally
bounded and uniformly continuously searchable closeness space with a preorder and
approximate linear preorder.

3N
is a continuously searchable closeness space

The closeness space on 3N is a discrete-sequence closeness space (Definition 3.2.56), as
the type 3 is finite and, therefore, discrete. Further, by the finiteness of 3, this closeness
space is totally bounded.

Corollary 6.1.1. [] The type of ternary signed-digit encodings 3N is a totally
bounded closeness space.

Proof. [f] Because 3 is finite and discrete, the result follows from Corollary 3.2.60.

There are two proofs of uniformly continuous searchability we can employ for 3N.
The first is directly from the above fact that 3N is totally bounded: this yields the totally
bounded uniformly continuous searcher.

Corollary 6.1.2. [] [] The closeness space of ternary signed-digit encodings 3N

is uniformly continuously searchable.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitSearch.html#%F0%9D%9F%9B%E1%B4%BA-totally-bounded
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitSearch.html#%F0%9D%9F%9B%E1%B4%BA-csearchable-tb
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitSearch.html#%F0%9D%9F%9B%E1%B4%BA-csearchable

6.1. Exact Real Search using signed-digit encodings 134

Proof 1. By Corollary 6.1.1 and Theorem 3.3.6.

The second proof is inspired instead by Berger’s searcher on the Cantor space and
Escardó’s on countable product spaces (which we formalised in Section 3.3.3): this
yields the decreasing-modulus uniformly continuous searcher.

Proof 2. By Corollary 3.3.12.

In the examples given in Section 6.1.3, it will become apparent that the totally bounded
searcher is almost always more efficient than the decreasing-modulus searcher; specifi-
cally, the decreasing-modulus searcher is only better in Example 6.1.35.

By combining the proofs of Corollary 6.1.2 with the examples in Sections 3.2.5,
3.3.2 and 3.3.3, we further have (among other things) that arbitrary products of 3N are
uniformly continuously searchable and totally bounded closeness spaces. However, we
do not usually wish to search 3N directly, because (as discussed in Section 5.2) there
are infinitely-many redundant representations of any number that features a 0, and
so a direct searcher will have inherent inefficiencies. Instead, we search 3N indirectly
using the Cantor type 2N. Recall that every real number in [−1, 1] can be represented
as a sequence N → {−1, 1} and, hence, by using 0 for −1, as a sequence 2N. We can
therefore trivially define the following inclusion map from 2

N to 3N:

Definition 6.1.3. [] We define the inclusion map −↑ : 2N → 3N that converts
representations of [−1, 1] as Cantor sequences 2N to ternary signed-digit encodings
of the same number by mapping every 0 to 1.

Using this map, which is trivially uniformly continuous, we can convert a uniformly
continuous function 𝑓 : 3N → 𝑋 , for any closeness space𝑋 , into a uniformly continuous
function 𝑓 ↑ : 2N → 𝑋 with the same modulus of uniform continuity. For our examples,
therefore, we usually convert the uniformly continuous predicates and functions on
3N that we wish to search, optimise and regress into ones on 2N that we can search,
optimise and regress indirectly using uniformly continuous searchers on 2N.

Corollary 6.1.4. [] The Cantor type 2N is a totally bounded closeness space.

Proof. [f] Because 2 is finite and discrete, the result follows from Corollary 3.2.60.

Corollary 6.1.5. [] [] The Cantor closeness space 2N is uniformly continuously
searchable.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitSearch.html#_%E2%86%91
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitSearch.html#%F0%9D%9F%9A%E1%B4%BA-totally-bounded
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitSearch.html#%F0%9D%9F%9A%E1%B4%BA-csearchable-tb
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitSearch.html#%F0%9D%9F%9A%E1%B4%BA-csearchable

135 Chapter 6. Exact Real Search

Proof 1. By Corollary 6.1.4 and Theorem 3.3.6.

Proof 2. By Corollary 3.3.12.

3N
has an approximate linear preorder

A preorder on 3N is given by the lexicographic order (Lemma 4.1.10), whereas an approx-
imate linear preorder is given by the approximate lexicographic order (Lemma 4.1.17).
Recall that these are defined by the following:

𝛼 ≤3N 𝛽 := Π(𝑛 : N) (𝛼 ∼𝑛 𝛽 → 𝛼𝑛 ≤𝐷 𝛽𝑛) ,
𝛼 ≤𝜀

3N 𝛽 := Π(𝑛 : N) (𝑛 < 𝜀 → 𝛼 ∼𝑛 𝛽 → 𝛼𝑛 ≤𝐷 𝛽𝑛) .

However, it is not appropriate to use these orders for optimisation and regression on
ternary signed-digit encodings, because the lexicographic ordering of the representa-
tions of type 3N does not amount to the numerical ordering of the real numbers of type
I. As an example, consider the following different representations 𝑧𝛼, 𝑧𝛽 : 3N of 0 : I:

𝑧𝛼 := 01111111 . . . and 𝑧𝛽 := 11111111

By the above lexicographic order on 3N, it is the case that 𝑧𝛼 ≤ 𝑧𝛽 but ¬(𝑧𝛽 ≤ 𝑧𝛼).
This issue also propagates to the approximate ordering. Escardó has shown that the
lexicographic ordering on signed-digit encodings and the ordering on the encoded
numbers can indeed coincide by introducing a normalisation operator onorm : 3N ×
3N → 3N × 3N [Esc98]. The idea is that the normalised pair represents the same
numbers (i.e. ⟨⟨𝛼⟩⟩ = ⟨⟨pr1(onorm(𝛼, 𝛽))⟩⟩ and ⟨⟨𝛽⟩⟩ = ⟨⟨pr2(onorm(𝛼, 𝛽))⟩⟩) but that, on
the normalised pair, the lexicographic and numerical orderings coincide.

We take a simpler approach to the problem, and utilise the equivalence between 3N

and the type T(−1, 0)2 of ternary Boehm encodings used for representing the interval
[−1, 1]. This equivalence, given in Lemma 5.3.28, yields a ‘normalisation’ map

integer-approx : 3N → (N → Z),

where the 𝑛th integer 𝑘 of the sequence integer-approx(𝛼), for any 𝛼 : 3N, refers to
the 𝑛th ternary interval code (Definition 5.3.13) approximation of 𝛼 — i.e., the interval[
𝑘
2𝑛 ,

𝑘+2
2𝑛

]
, in which ⟨⟨𝛼⟩⟩ lies. Any two signed-digit encodings whose 𝑛-prefixes evaluate

to the same interval approximations will therefore have the same value of 𝑘 .
The formal definition of the normalisation map is given in Definition 6.1.6, and

6.1. Exact Real Search using signed-digit encodings 136

(-1,0) represents [-1,1]

(-2,1) = [-1,0]

(-1,1) = [-0.5,0.5]

(0,1) = [0,1]

(-2,2)

(-3,2) (-1,2)

(-4,2) (2,2)

(1,2)

(0,2)

Figure 6.1: Illustration of the interval approximation evaluations of
𝑧𝛼 := 01111111 . . . and 𝑧𝛽 := 11111111 . . . at the first three precision-
levels.

its use is informally visualised in Figure 6.1, which shows the relationship between
the evaluations of 𝑧𝛼 and 𝑧𝛽 and their normalised interval approximations. From this
illustration, we can read off that

integer-approx(𝑧𝛼) := −1,−1, 0, 0, . . . and integer-approx(𝑧𝛽) := −1, 0, 0, 0,

Definition 6.1.6. [] The normalisation map integer-approx : 3N → (N → Z),
which maps every ternary signed-digit encoding 𝛼 : 3N to a sequence of integers
such that, for any 𝛼 : 3N, integer-approx(𝛼)𝑛 refers to the 𝑛th ternary interval code
(Definition 5.3.13) approximation of 𝛼 is defined as follows:

3-to-down : 3 → (Z → Z),
3-to-down 1 := downLeft,

3-to-down 0 := downMid,

3-to-down 1 := downRight,

integer-approx′ : Z → 3N → N → Z,

integer-approx′(𝑘, 𝛼, 0) := 𝑘,

integer-approx′(𝑘, 𝛼, 𝑛 + 1) := integer-approx′(3-to-down(head 𝛼, 𝑘), tail 𝛼, 𝑛),

integer-approx : 3N → N → Z,

integer-approx 𝛼 := integer-approx′(𝛼,−1).

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitOrder.html#integer-approx

137 Chapter 6. Exact Real Search

Using the normalisation map, we define the following preorder and approximate
linear preorder on ternary signed-digit encodings 3N, which are correct with respect
to the numerical ordering on the interval object I. However, the order on I is not well
established, and we have not formalised its notion or verified the correctness of the
preorder — we discuss this as further work in Section 7.2.1.

Definition 6.1.7. [] We define the real-order preserving linear preorder on 3N by
using the normalisation map integer-approx : 3N → (N → Z):

≤3N : 3N → 3N → Ω,

𝛼 ≤3N 𝛽 := ∃(𝑛 : N)
(
Π(𝑖 : N) (𝑛 ≤ 𝑖 → integer-approx(𝛼)𝑖 ≤ integer-approx(𝛽)𝑖)

)
.

Lemma 6.1.8. [] The real-order preserving preorder is indeed a preorder (Defini-
tion 4.1.4).

Proof. [t] Using propositional truncation (recall this from Section 2.3.6), we prove
both reflexivity and transitivity of the real-order preserving preorder:

(i) For any 𝛼 : 3N, we have that integer-approx(𝛼)𝑖 ≤
integer-approx(𝛽)𝑖 by reflexivity of the order on the inte-
gers. Therefore, by setting 𝑛 := 0 we have a proof term
(0, 𝑝) : Σ(𝑛 : N)

(
Π(𝑖 : N) (𝑛 ≤ 𝑖 → integer-approx(𝛼)𝑖 ≤ integer-approx(𝛽)𝑖)

)
.

The result then follows by truncating this proof term; i.e.
| (0, 𝑝) | : ∃(𝑛 : N)

(
Π(𝑖 : N) (𝑛 ≤ 𝑖 → integer-approx(𝛼)𝑖 ≤ integer-approx(𝛽)𝑖)

)
.

(ii) Given 𝛼, 𝛽, 𝜁 : 3N such that 𝛼 ≤3N 𝛽 and 𝛽 ≤3N 𝜁 , we wish
to show that 𝛼 ≤3N 𝜁 . To do this, we define a function
𝑓 : Σ((𝑛,𝑚) : N×N) (Π(𝑖 : N) (𝑛 ≤ 𝑖 → integer-approx(𝛼)𝑖 ≤ integer-approx(𝛽)𝑖)
×(𝑚 ≤ 𝑖 → integer-approx(𝛽)𝑖 ≤ integer-approx(𝜁)𝑖)) → ∃(𝑘 : N) (Π(𝑖 : N) (𝑘 ≤
𝑖 → integer-approx(𝛼)𝑖 ≤ integer-approx(𝜁)𝑖)), and the conclusion is given by
the truncation of 𝑓 . To define this function, we simply set 𝑘 := max(𝑛,𝑚), and
the proof that integer-approx(𝛼)𝑖 ≤ integer-approx(𝜁)𝑖 follows by transitivity
of the order on the integers.

Definition 6.1.9. [] We define the real-order preserving approximate linear preorder
on 3N by using the normalisation map integer-approx : 3N → (N → Z):

≤−
3N : N → 3N → 3N → Ω,

𝛼 ≤𝑛
3N 𝛽 := integer-approx(𝛼)𝑛 ≤ integer-approx(𝛽)𝑛 .

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitOrder.html#RealPresOrder._%E2%89%A4%F0%9D%9F%9B%E1%B4%BA_
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitOrder.html#RealPresOrder.%E2%89%A4%F0%9D%9F%9B%E1%B4%BA-is-preorder
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitOrder.html#_%E2%89%A4%E2%81%BF%F0%9D%9F%9B%E1%B4%BA_

6.1. Exact Real Search using signed-digit encodings 138

Lemma 6.1.10. [] The real-order preserving approximate linear preorder is indeed
an approximate linear preorder (Definition 4.1.13).

Proof. The proof that, given any 𝜀 : N, the relation ≤𝜀
3N : 3N → 3N → Ω is decidable

and a linear preorder is immediate from the fact that the order on the integers is a
linear preorder.

To prove that if 𝐶𝜀 (𝛼, 𝛽) then 𝛼 ≤𝜀
3N 𝛽 for all 𝛼, 𝛽 : 3N, we need to show that

integer-approx(𝛼)𝜀 ≤ integer-approx(𝛽)𝜀 . We first prove the following lemma:

𝛼 ∼𝜀 𝛽 → Π(𝑘 : Z) (integer-approx′(𝑘, 𝛼, 𝜀) = integer-approx′(𝑘, 𝛽, 𝜀)) .

Weprove this lemma by induction on the given 𝜀. In the base casewhere 𝜀 := 0, then by
definition of integer-approx′ (see Definition 6.1.6) we simply have to show that 𝑘 = 𝑘 .
In the inductive case where 𝜀 := 𝜀′ + 1 for some 𝜀′ : N, then from 𝛼 ∼𝜀 ′+1 𝛽 we have
that head 𝛼 = head 𝛽 and therefore 3-to-down(head 𝛼, 𝑘) = 3-to-down(head 𝛽, 𝑘);
the result then follows by the inductive hypothesis.

Now that we have proved the lemma, the result follows from it, Lemma 3.2.59 and
the reflexivity of the order on the integers.

Lemma 6.1.11. [] The real-order preserving approximate linear preorder relates (by
Definition 4.1.14) to the real-order preserving preorder.

Proof. [t] The first condition, that if 𝛼 ≤3N 𝛽 then ∃(𝑛 : N)Π(𝜀 : N) (𝑛 < 𝜀 → 𝛼 ≤𝜀
3N 𝛽),

is immediate, because the types are identical. The second condition, that if 𝑥 ≤𝑛
3N

𝑦 holds for all 𝑛 : N then 𝑥 ≤3N 𝑦 follows by truncating the proof term of type
Σ(𝑛 : N)Π(𝜀 : N) (𝑛 < 𝑖 → 𝛼 ≤𝑖

3N 𝛽), which is constructed by setting 𝑛 := 0 and using
the proof 𝑓 (𝑖) : 𝑥 ≤𝑖

3N 𝑦.

6.1.2 Uniformly continuous exact real arithmetic

In order to perform exact real search on ternary signed-digit encodings, we must prove
the uniform continuity of the exact real arithmetic operations. In this subsection, we
prove that negation, binary midpoint, infinitary midpoint and multiplication functions
(all defined in Section 5.2.3) are uniformly continuous via the closeness space 3N.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitOrder.html#%E2%89%A4%E2%81%BF%F0%9D%9F%9B%E1%B4%BA-is-approx-order
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitOrder.html#RealPresOrder-Relates.%E2%89%A4%E2%81%BF%F0%9D%9F%9B%E1%B4%BA-relates

139 Chapter 6. Exact Real Search

Sequence uniform continuity

Recall that discrete-sequence closeness spaces satisfy, for all 𝑛 : N, 𝐶𝑛 (𝛼, 𝛽) ⇔ 𝛼 ∼𝑛 𝛽
(Corollary 3.2.61); a fact which we use to give the following bespoke definitions of
uniform continuity on sequence functions and predicates on discrete types.

Definition 6.1.12. [] Given discrete types 𝑋 and 𝑌 , a unary sequence function
𝑓 : 𝑋N → 𝑌N is uniformly continuous if for all 𝜀 : N there is some 𝛿 : N such that
sequences that agree in their 𝛿-prefixes map by 𝑓 to sequences that agree in their
𝜀-prefixes:

seq-f-ucontinuous1(𝑓) :=
Π(𝜀 : N)Σ(𝛿 : N)Π(𝑥1,𝑥2 : 𝑋N) (𝑥1 ∼

𝛿 𝑥2) → (𝑓 (𝑥1) ∼𝜀 𝑓 (𝑥2)) .

Lemma 6.1.13. [] Given discrete types𝑋 and𝑌 , a unary sequence function 𝑓 : 𝑋N →
𝑌N is uniformly continuous by Definition 6.1.12 if and only if it is uniformly continuous
by Definition 3.2.27 from the discrete-sequence closeness space yielded by 𝑋 to the
discrete-sequence closeness space yielded by 𝑌 .

Proof. By Corollary 3.2.61.

We next define the binary version of discrete-sequence uniform continuity.

Definition 6.1.14. [] Given discrete types 𝑋 , 𝑌 and 𝑍 , a binary sequence function
𝑓 : 𝑋N → 𝑌N → 𝑍N is uniformly continuous if for all 𝜀 : N there are some 𝛿1, 𝛿2 : N

such that, given two pairs of sequence arguments, if the first pair agree in their
𝛿1-prefixes and the second pair agree in their 𝛿2-prefixes then together they map by
𝑓 to sequences that agree in their 𝜀-prefixes:

seq-f-ucontinuous2(𝑓) := Π(𝜀 : N)Σ((𝛿1,𝛿2) : N×N)Π(𝑥1,𝑥2 : 𝑋N)Π(𝑦1,𝑦2 : 𝑌N)
(𝑥1 ∼𝛿1 𝑥2) → (𝑦1 ∼𝛿2 𝑦2) → (𝑓 (𝑥1, 𝑦1) ∼𝜀 𝑓 (𝑥2, 𝑦2)) .

Note that although the proof of uniform continuity of binary sequence functions by the
above definition is logically equivalent to that using the definition of uniform continuity
on the binary product (Definition 3.2.42) of two discrete-sequence closeness functions,
the former has two moduli of continuity (one for each argument) whereas the latter
has only one (i.e. the maximum of the two). This means that the computational content
of the proofs differ.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SequenceContinuity.html#seq-f-ucontinuous%C2%B9
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SequenceContinuity.html#seq-f-ucontinuous%C2%B9-%E2%86%94-closeness
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SequenceContinuity.html#seq-f-ucontinuous%C2%B2

6.1. Exact Real Search using signed-digit encodings 140

Lemma 6.1.15. [] Given discrete types 𝑋 , 𝑌 and 𝑍 , a binary sequence function
𝑓 : 𝑋N → 𝑌N → 𝑍N is uniformly continuous by Definition 6.1.14 if and only if it
is uniformly continuous by Definition 3.2.27 from the binary product of the discrete-
sequence closeness spaces yielded by 𝑋 and 𝑌 to the discrete-sequence closeness space
yielded by 𝑍 .

Proof. Once again we use the equivalence of 𝐶𝑛 (𝛼, 𝛽) and 𝛼 ∼𝑛 𝛽 for all 𝛼, 𝛽 : 𝐷N

(where 𝐷 is discrete) and 𝑛 : N; i.e. Corollary 3.2.61.

We first show sequence uniform continuity implies closeness uniform continuity.
By the former, given 𝜀 : N, 𝑥1, 𝑥2 : 𝑋N and 𝑦1, 𝑦2 : 𝑌N, we have that there are 𝛿1, 𝛿2 : N

such that if𝐶𝛿1 (𝑥1, 𝑥2) and𝐶𝛿2 (𝑦1, 𝑦2) then𝐶𝜀 (𝑓 (𝑥1, 𝑦1), 𝑓 (𝑥2, 𝑦2)). Therefore we take
the modulus of uniform continuity for the closeness space definition to be 𝛿 :=
max(𝛿1, 𝛿2) : N, because (by Lemma 3.2.44 and Corollary 3.2.24) 𝐶𝛿 ((𝑥1, 𝑦1), (𝑥2, 𝑦2))
implies 𝐶𝛿1 (𝑥1, 𝑥2) and 𝐶𝛿2 (𝑦1, 𝑦2) and, hence, 𝐶𝜀 (𝑓 (𝑥1, 𝑦1), 𝑓 (𝑥2, 𝑦2)) as desired.

The other direction is more straightforward. Given 𝜀 : N, 𝑥1, 𝑥2 : 𝑋N and𝑦1, 𝑦2 : 𝑌N, we
have that there is 𝛿 : N such that if 𝐶𝛿 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) then 𝐶𝜀 (𝑓 (𝑥1, 𝑦1), 𝑓 (𝑥2, 𝑦2)).
Therefore we take the moduli of uniform continuity for the sequence definition to be
(𝛿, 𝛿) : N × N, because (by Lemma 3.2.44) 𝐶𝛿 ((𝑥1, 𝑦1), (𝑥2, 𝑦2)) implies 𝐶𝛿 (𝑥1, 𝑥2) and
𝐶𝛿 (𝑦1, 𝑦2) and, hence, 𝐶𝜀 (𝑓 (𝑥1, 𝑦1), 𝑓 (𝑥2, 𝑦2)) as desired.

Lastly, we define a specialisation of uniform continuity on certain infinitary sequence
functions that on discrete types is logically equivalent to uniform continuity on the
dependent product (Definition 3.2.42) of a discrete-sequence closeness type.

Definition 6.1.16. [] Given discrete types𝑋 and𝑌 , an infinitary sequence function
𝑓 : (𝑋N)N → 𝑌N is uniformly continuous if for all 𝜀 : N there are 𝑑, 𝛿 : N such that
infinitary sequences whose 𝑑-prefixes agree in their respective 𝛿-prefixes map by 𝑓
to sequences that agree in their 𝜀-prefixes:

seq-f-ucontinuousN(𝑓) := Π(𝜀 : N)Σ((𝑑,𝛿) : N×N)(
(𝑑 ≤ 𝛿) × (Π(𝛼,𝛽 : (𝑋N)N)Π(𝑛 : N) (𝑛 < 𝑑) → (𝛼𝑛 ∼𝛿 𝛽𝑛) → (𝑓 (𝛼) ∼𝜀 𝑓 (𝛽)))

)
.

Lemma 6.1.17. [] Given discrete types 𝑋 and 𝑌 , an infinitary sequence function
𝑓 : (𝑋N)N → 𝑌N is uniformly continuous by Definition 6.1.16 if and only if it is
uniformly continuous by Definition 3.2.27 from the countable product of the discrete-
sequence closeness space yielded by 𝑋 to the discrete-sequence closeness space yielded

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SequenceContinuity.html#seq-f-ucontinuous%C2%B2-%E2%86%94-closeness
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SequenceContinuity.html#seq-f-ucontinuous%E1%B4%BA
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SequenceContinuity.html#seq-f-ucontinuous%E1%B4%BA-%E2%86%94-closeness

141 Chapter 6. Exact Real Search

by 𝑌 .

Proof. We first require a relationship similar to Corollary 3.2.61 but for sequences
𝛼, 𝛽 : (𝑋N)N. Recall from the definition of countable product closeness functions (Def-
inition 3.2.62) and the accompanying visualisation of the diagonalisation argument
(Figure 3.1) that for all 𝛿 : N having 𝐶𝛿 (𝛼, 𝛽) means we have 𝛼0 ∼𝛿 𝛽0, 𝛼1 ∼𝛿−1 𝛽1,
𝛼2 ∼𝛿−2 𝛽2, etc.; i.e., for all 𝑛 : N such that 𝑛 < 𝛿 we have 𝛼𝑛 ∼𝛿−𝑛 𝛽𝑛 . Therefore, we
conclude the following relationship:

(i) 𝐶2𝛿 (𝛼, 𝛽) → Π(𝑛 : N)
(
𝑛 < 𝛿 → 𝛼𝑛 ∼𝛿 𝛽𝑛

)
,

(ii) Π(𝑛 : N)
(
𝑛 < 𝛿 → 𝛼𝑛 ∼𝛿 𝛽𝑛

)
→ 𝐶𝛿 (𝛼, 𝛽).

From this relationship, we prove the logical equivalence between the two definitions
of uniform continuity.

We first show sequence uniform continuity implies closeness uniform continuity. By
the former, given 𝜀 : N, 𝛼, 𝛽 : (𝑋N)N we have that there are 𝑑, 𝛿′ : N such that 𝑑 ≤ 𝛿′

and such that if 𝛼𝑛 ∼𝛿 ′ 𝛽𝑛 for all 𝑛 < 𝑑 then (by Corollary 3.2.61) 𝐶𝜀 (𝑓 (𝛼), 𝑓 (𝛽)).
To show that closeness uniform continuity is satisfied, we need to give some 𝛿 : N

such that if 𝐶𝛿 (𝛼, 𝛽) then 𝐶𝜀 (𝑓 (𝛼), 𝑓 (𝛽)). We set 𝛿 := 2𝛿′, as by (i) this means we
have 𝛼𝑛 ∼𝛿

′
𝛽𝑛 for all 𝑛 < 𝛿′, and therefore for all 𝑛 < 𝑑 ≤ 𝛿′. By sequence uniform

continuity as described, we hence have 𝐶𝜀 (𝑓 (𝛼), 𝑓 (𝛽)).

The other direction is again more straightforward. Given 𝛼, 𝛽 : (𝑋N)N we have by
closeness uniform continuity that there is some 𝛿′ : N such that if 𝐶𝛿 (𝛼, 𝛽) then
𝐶𝜖 (𝑓 (𝛼), 𝑓 (𝛽)). To show that sequence uniform continuity is satisfied, we need to
give some 𝑑, 𝛿 : N such that 𝑑 ≤ 𝛿 and such that if 𝛼𝑛 ∼𝛿 𝛽𝑛 for all 𝑛 < 𝑑 then
𝐶𝜀 (𝑓 (𝛼), 𝑓 (𝛽)). We set both 𝑑, 𝛿 := 𝛿′, as by (ii) this means we have 𝐶𝛿 (𝛼, 𝛽). By
closeness continuity as described, we hence have 𝐶𝜀 (𝑓 (𝛼), 𝑓 (𝛽)).

Now we have specialised definitions of uniform continuity for discrete-sequence
types which will aid us in proving our operations on 3N are uniformly continuous.
Before doing this, we note some expected facts about discrete-sequence uniform conti-
nuity.

Lemma 6.1.18. The identity function on discrete-sequences is uniformly continuous
and composition of discrete-sequence functions preserves discrete-sequence uniform
continuity.

Proof (Sketch). Similar to Lemma 3.2.30.

6.1. Exact Real Search using signed-digit encodings 142

Lemma 6.1.19. [] For any discrete types 𝑋 and 𝑌 , given any function 𝑓 : 𝑋 → 𝑌 ,
the function map(𝑓) : 𝑋N → 𝑌N is discrete-sequence uniformly continuous.

Proof. For every 𝜀 : N the modulus of uniform continuity is 𝜀 itself, because 𝛼𝜀 = 𝛽𝜀
gives (map(𝑓 , 𝛼)𝜀 = map(𝑓 , 𝛽)𝜀) := (𝑓 (𝛼𝜀) = 𝑓 (𝛽𝜀)) using ap.

Lemma 6.1.20. [] For any discrete types 𝑋 , 𝑌 and 𝑍 , given any function 𝑓 : 𝑋 →
𝑌 → 𝑍 , the function zipWith(𝑓) : 𝑋N → 𝑌N → 𝑍N is discrete-sequence uniformly
continuous.

Proof. Similar to Lemma 6.1.19.

We now explicitly prove the uniform continuity, via the above discrete-sequence
definitions (and hence, by the logical equivalences set out above and the discreteness of
3, via the necessary closeness space definitions) of the functions neg, mid, bigMid and
mul. This task takes up the rest of this subsection.

Negation

First, we prove the uniform continuity of negation.

Corollary 6.1.21. [] Negation on signed-digits encodings is a uniformly continuous
function.

Proof. Recall from Definition 5.2.7 that negation is defined neg := map(flip); there-
fore this is immediately uniformly continuous by Lemma 6.1.19.

Binary midpoint

Next, the uniform continuity of binary midpoint is slightly more complex.

Lemma 6.1.22. [] The function div2 : 5N → 3N is uniformly continuous.

Proof. By its recursive definition (Definition 5.2.13), it can be seen that determining
the value of div2(𝛼)𝜀 relies only on 𝛼𝜀 and 𝛼𝜀+1. Therefore, 𝜀 + 1 is the modulus of
uniform continuity for a given 𝜀.

Corollary 6.1.23. [] Binary midpoint on signed-digit encodings is a uniformly
continuous function.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SequenceContinuity.html#map-ucontinuous'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SequenceContinuity.html#zipWith-ucontinuous'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitContinuity.html#neg-ucontinuous'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitContinuity.html#div2-ucontinuous'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitContinuity.html#mid-ucontinuous'

143 Chapter 6. Exact Real Search

Proof. Recall from Definition 5.2.15 that binary midpoint is defined mid(𝛼, 𝛽) :=
div2(zipWith(add3(𝛼, 𝛽))). The zipWith function is uniformly continuous by
Lemma 6.1.20 and the div2 function is uniformly continuous by Lemma 6.1.22. There-
fore, the composed function mid is uniformly continuous by Lemma 6.1.18.

Infinitary midpoint

Before we come to multiplication, we must first prove the infinitary midpoint function
is uniformly continuous.

Lemma 6.1.24. [] The function bigMid′ : (3N)N → 9N is uniformly continuous.

Proof. By induction on the requested precision 𝜀 : N. In the base case, recall
from Definition 5.2.27 that bigMid′(𝜁)0 only uses (𝜁0)0, (𝜁0)1 and (𝜁1)0; therefore
𝑑, 𝛿 := 2. In the inductive case, recall from Definition 5.2.27 that bigMid′(𝜁)𝜀+1 :=
bigMid′(mid(tail(tail 𝜁0), tail 𝜁1) :: (tail(tail 𝜁))). The argument is the composition
of the successor, composition and binary midpoint functions, all of which are uni-
formly continuous (for binary midpoint, see Corollary 6.1.23); therefore, the function
is uniformly continuous by the inductive hypothesis and Lemma 6.1.18.

Lemma 6.1.25. [] The function div4 : 9N → 3N is uniformly continuous.

Proof. Similar argument to Lemma 6.1.22.

Corollary 6.1.26. [] Infinitary midpoint on signed-digit encodings is a uniformly
continuous function.

Proof. Recall from Definition 5.2.27 that infinitary midpoint is defined bigMid :=
div4 ◦ bigMid′. The result follows by Lemmas 6.1.24 and 6.1.25.

Multiplication

Finally, the uniform continuity of multiplication follows from the above.

Corollary 6.1.27. [] Multiplication on signed-digit encodings is a uniformly contin-
uous function.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitContinuity.html#bigMid'-ucontinuous'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitContinuity.html#div4-ucontinuous'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitContinuity.html#bigMid-ucontinuous'
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitContinuity.html#mul-ucontinuous'

6.1. Exact Real Search using signed-digit encodings 144

Proof. Recall from Definition 5.2.34 that multiplication is defined mul(𝛼, 𝛽) :=
bigMid(zipWith(digitMul, 𝛼, 𝜆𝑛.𝛽)). This is uniformly continuous by Lemmas 6.1.18
and 6.1.20 and Corollary 6.1.26.

6.1.3 Agda-extracted examples

We have developed, within the TypeTopology library, a large framework of Agda
proofs concerning searchable types, generalised optimisation and regression and ternary
signed-digit encodings. The true test of this framework is in extracting some proof-
of-concept computational algorithms of our generalised framework on 3N. The Agda
code is compiled into Haskell as described in Appendix A, which allows it to run faster
than if we ran it directly in Agda — though the extracted algorithms are still slow. The
reader can try these examples themselves by following the instructions in Appendix A.

Whether we are searching for an answer to a predicate or optimising/regressing
a function up to a given precision 𝜀 : N, our algorithms will — using the witness of
uniform continuity — effectively compute a finite prefix of a sequence such that any
sequence with that prefix will be a correct answer, approximate minimum or satisfactory
parameter of the model function.

For each example, we give a table which notes the answer 𝑥 : 3N computed for the
requested precision-level 𝜀 : N. In the few cases where we search 3N directly1 each
answer is given as a finite prefix and then an ellipses ‘. . .’ to notate the infinitely many
0s our algorithm repeats after the computed prefix. In the usual case where we search
3N indirectly, and hence 𝑥 is mapped from a sequence of type 2N using the map defined
in Definition 6.1.3), the ellipses ‘. . .’ instead denotes the infinitely-many 1s that the
algorithm repeats after the computed prefix. To aid illustration, we also note which
real ⟨⟨𝑥⟩⟩ : R it is that 𝑥 represents and we often give further such information, such
as the represented value ⟨⟨𝑓 (𝑥)⟩⟩ when we are minimising a particular function 𝑓 . We
note any times above one second taken to compute this answer2, which grows quickly
due to the inefficiency of our underlying arithmetic and the exhaustive nature of our
search (further discussions on this folllow in Section 6.2).

Note that, for ease of reading, we abuse notation and often write functions and
representations on 3N as if they are those numbers they represent on the reals I. For
example, we write 1

4 instead of 1 :: (1 :: (1 :: repeat 1)) — but recall that all of these
algorithms operate on the representations of the reals.

1Recall the discussion on direct and indirect search from Section 6.1.1
2For reference, all of our examples are computed using a MacBook Air M1 laptop.

145 Chapter 6. Exact Real Search

Uniformly continuous search

Search on ternary signed-digit encodings has been performed previously, for example
by Escardó in Haskell [Esc11b]. However, we still provide four examples of uniformly
continuous search as proof-of-concept examples of our explicit-continuity assumptions.

Example 6.1.28. [] We search for a ternary signed-digit encoding 𝑥 : 3N that
satisfies

𝑝 (𝑥) := −𝑥
2 ≤𝜀 14 ,

for a variety of requested precision values 𝜀 : N indirectly using the uniformly con-
tinuous searcher derived from the totally boundedness of 2N (i.e. the first proof of
Corollary 6.1.5).

The decidability and uniform continuity of the predicate 𝑝 : 3N → Ω is ensured by
that of the approximate linear preorder (Lemma 4.1.15), the uniform continuity of
mid (Corollaries 6.1.21 and 6.1.23) and the composition of these (Lemma 3.2.31).

𝜀 𝑥 ⟨⟨𝑥⟩⟩ −⟨⟨𝑥⟩⟩
2 Time (s)

5 1 . . . 0 0
10 1 . . . 0 0
15 1 . . . 0 0 1.09
20 1 . . . 0 0 24.88

Not long after this, the searcher causes a stack overflow. This was not unexpected:
recall that the totally bounded searcher in must compute a 2𝛿-sized 𝛿-net of 2N in
advance of the search.

We next try using the indirect uniformly continuous searcher derived from the
decreasing-modulus uniformly continuous searcher of 2N (i.e. the second proof of
Corollary 6.1.5).

𝜀 𝑥 ⟨⟨𝑥⟩⟩ −⟨⟨𝑥⟩⟩
2 Time (s)

3 11 . . . −0.5 0.25
6 111 . . . −0.515625 0.2578125
9 1111 . . . −0.501953125 0.25097656 35.68

This searcher doesn’t have the overflow problem, but is in this case less efficient than
the totally bounded searcher (likely because the proof of the decreasing-modulus
searcher is more computationally expensive). Note also that the two searchers
computed different answers; this is because the order inwhich they evaluate candidate
solutions differs — though of course, both are correct up to the requested precision.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitExamples.html#Search-Example1

6.1. Exact Real Search using signed-digit encodings 146

The totally bounded searcher in these examples is usually more efficient, but some-
times (due to the difference in search strategy) the decreasing-modulus searcher is
better. As in this section we wish to illustrate the correctness of our algorithms, and not
their efficiency, from now on we use whichever searcher allows us to produce better
results for the given example.

Example 6.1.29. [] We search for a ternary signed-digit encoding 𝑥 : 3N that
satisfies

𝑝 (𝑥) := 𝐶𝜀 (mul(𝑥, 𝑥), 12),

for a variety of requested precision values 𝜀 : N indirectly using the totally bounded
uniformly continuous searcher on 2N.

The decidability and uniform continuity of the predicate 𝑝 : 3N → Ω is ensured
by that of the closeness relation (Lemma 3.2.32), the uniform continuity of mul

(Corollary 6.1.27) and the composition of these (Lemma 3.2.31).

𝜀 𝑥 ⟨⟨𝑥⟩⟩ ⟨⟨mul(𝑥, 𝑥)⟩⟩ Time (s)

1 . . . −1 1
2 111 . . . −0.75 0.5625
3 111 . . . −0.75 0.5625
4 11111 . . . 0.6875 0.47265625
5 111111 . . . −0.71875 0.516601563 3.32
6 1111111 . . . 0.703125 0.494384766 24.19

The answer correctly converges towards ±
√
0.5 = ±0.707106781187 . . .; indeed, it

flips between approximations of the two answers for different levels of precision.

At 𝜀 := 7, there was a stack overflow. But the decreasing-modulus searcher did not
produce an answer in two minutes for 𝑛 := 4. Therefore, this search is much less
efficient than that in Example 6.1.28; this is because multiplication requires much
higher degrees of input precision than negation and binary midpoint.

Example 6.1.30. [] We search for a pair of ternary signed-digit encodings
(𝑥,𝑦) : 3N × 3N that satisfy

𝑝 (𝑥,𝑦) := 𝐶𝜀 (mid(𝑥,𝑦), 0),

for a variety of requested precision values 𝜀 : N indirectly using the totally bounded

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitExamples.html#Search-Example2
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitExamples.html#Search-Example3

147 Chapter 6. Exact Real Search

uniformly continuous searcher on 2N × 2
N.

The decidability and uniform continuity of the predicate 𝑝 : 3N → Ω is ensured
by that of the closeness relation (Lemma 3.2.32), the uniform continuity of mid

(Corollary 6.1.23) and the composition of these (Lemma 3.2.31).

𝜀 𝑥,𝑦 ⟨⟨𝑥⟩⟩, ⟨⟨𝑦⟩⟩ ⟨⟨mid(𝑥,𝑦)⟩⟩ Time (s)

5 11111 . . . , 0.9375, −0.03125 9.84
11111 . . . −1

10 1111111111 . . . , 0.998046875, −0.000976563
1111111111 . . . −1 75.5

We have shown we can search for two answers in parallel; although this predicate
was particularly well-suited to the search strategy of our exhaustive searcher.

Global optimisation

Using the optimisation algorithm (Theorem 4.1.26), we can optimise any function of
ternary signed-digit encodings composed from neg, mid, bigMid and mul — including
multivariable and stream functions — to any degree of precision. We give two examples
of this.

As global optimisation must evaluate a 𝛿-net of candidates (for a required degree of
input precision 𝛿 : N for the requested output precision) in advance of the optimisation
process and must check each one of these candidates, we find that it very quickly
becomes inefficient.

Example 6.1.31. [] We compute an 𝜀-global minimum of the function

𝑓 (𝑥) := neg(𝑥)

for a variety of requested precision values 𝜀 : N indirectly using the totally bounded
property of 2N.

The continuity of the function 𝑓 is by Corollary 6.1.21.

𝜀 𝑥 ⟨⟨𝑥⟩⟩ ⟨⟨𝑓 (𝑥)⟩⟩ Time (s)

10 1111111111 . . . 0.998046875 −0.999511719 7.68
11 11111111111 . . . 0.999023438 −0.999511719 30.23
12 111111111111 . . . 0.999511719 −0.999511719 117.18

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitExamples.html#Optimisation-Example1

6.1. Exact Real Search using signed-digit encodings 148

Example 6.1.32. [] We compute an 𝜀-global minimum of the function

𝑓 (𝑥) := mul(𝑥, 𝑥)

for a variety of requested precision values 𝜀 : N indirectly using the totally bounded
property of 2N.

The continuity of the function 𝑓 is by Corollary 6.1.27.

𝜀 𝑥 ⟨⟨𝑥⟩⟩ ⟨⟨𝑓 (𝑥)⟩⟩ Time (s)

1 1 . . . −1 1
2 11 . . . 0 0 1.54
3 11 . . . 0 0 81.33

Although the same answer is returned each time, the larger 𝜀 values means, especially
due to the modulus of uniform continuity of exponentiation, an exponentially larger
𝛿-net to exhaust; hence the large jump between the time taken for 𝜀 := 2 and 𝜀 := 3.

Parametric regression

For regression on ternary signed-digits, we follow the model outlined in Definition 4.2.4.
This means that we will be performing regression where the oracle O is a function
and the loss function used is the least-closeness pseudocloseness (Definition 3.2.69)
function defined from a given vector 𝑣 : (3N)𝑛 of 𝑛-many predictor observations. Recall
that this means the algorithm will only have access to the oracle at the outcomes of the
given observations.

Using the regression-as-optimisation algorithm (Theorem 4.2.6), we can find an
𝜀-best choice parameter for any uniformly continuous function.

Example 6.1.33. [] By fixing the predictor observations 𝑣 := {−1, 0, 1} : (3N)3,
we define the least-closeness pseudocloseness function 𝐿𝑣 : (𝑋 → 𝑌) → (𝑋 → 𝑌) →
N∞ between functions, which compares their values at the points in 𝑣 . For the oracle
function

O(𝑥) := mid(13 , 𝑥),

we compute an 𝜀-best choice parameter 𝑝 : 3N of the parameterised model function

𝑀 (𝑝, 𝑥) := mid(neg(𝑝), 𝑥)

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitExamples.html#Optimisation-Example2
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitExamples.html#Regression-Example1a-Optimisation

149 Chapter 6. Exact Real Search

for a variety of requested precision values 𝜀 : N indirectly by maximising the function(
𝜆𝑝.𝐿𝑣 (O, 𝑀 (𝑝↑))

)
: 2N → N∞.The shape of the model function matches the oracle

function exactly, except for the fact that the parameter is negated – we therefore
expect the computed parameter to be close to −1

3 .

The continuity of the model function is by Corollaries 6.1.21 and 6.1.23
and Lemma 6.1.18.

𝜀 𝑝 ⟨⟨𝑝⟩⟩ Time (s)

2 111 . . . −0.25
4 11111 . . . −0.3125
6 1111111 . . . −0.328125
8 111111111 . . . −0.33203125 1.26
10 11111111111 . . . −0.333007813 13.79

The optimisation has returned the value that best connects the observations; with this
parameter, the regressed function clearly matches the true oracle up to the requested
precision.

It is often more practical to use search for regression; i.e. to use the algorithms
derived from Theorems 4.2.9 and 4.2.10, depending on whether or not there is distortion
present in the oracle function.

Example 6.1.34. [] For the same predictor observations 𝑣 , oracle O and parame-
terised model function𝑀 as in Example 6.1.33, we search for a parameter 𝑝 : 3N such
that

𝜀 ⪯ 𝐿𝑣 (O, 𝑀 (𝑝)),

for a variety of requested precision values 𝜀 : N indirectly using the totally bounded
uniformly continuous searcher on 2N.

𝜀 𝑝 ⟨⟨𝑝⟩⟩ Time (s)

4 111 . . . −0.25
8 1111111 . . . −0.328125 2.20
12 11111111111 . . . −0.333007813 9.07
16 111111111111111 . . . −0.333343506 37.18

Although the parameter is not necessarily 𝜀-best choice, compared to Example 6.1.33
the search routine is quicker and (due to lack of distortion in the oracle) the regressed
function still matches the true oracle up to the requested precision.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitExamples.html#Regression-Example1a-SearchDistortionFree

6.1. Exact Real Search using signed-digit encodings 150

We continue this example by exploring what happens when we receive outcome
observations that are distorted from the true oracle.

Example 6.1.35. [] For the same predictor observations 𝑣 , oracle O and parame-
terised model function𝑀 as in Example 6.1.33, we search for a parameter 𝑝 : 3N such
that

𝜀 ⪯ 𝐿𝑣 (Ψ(O), 𝑀 (𝑝)),

directly using the decreasing-modulus uniformly continuous searcher on 3N, for
a variety of requested precision values 𝜀 : N. Ψ : (3N → 3N) → (3N → 3N) is a
distortion function that distorts the oracle like so:

Ψ(O) := 𝜆𝑥.O(mid(𝑥, 14)) .

The graph below shows the true oracle functionO (in red) plotted against the distorted
oracle function Ψ(O) (in brown), the latter of which the searcher can query at points
−1, 0 and 1.

−1 −0.5 0.5 1

−0.6

−0.4

−0.2

0.2

𝑥

𝑓 (𝑥)

𝜀 𝑝 ⟨⟨𝑝⟩⟩
1 01 . . . −0.25
2 01 . . . −0.25
3 1111 . . . 0.9375

After precision-level 𝜀 := 2, the searcher cannot find a parameter 𝑝 that allows the
least-close points (either𝑀 (𝑝,−1) and Ψ(O(−1)),𝑀 (𝑝, 0) and Ψ(O(0)), or𝑀 (𝑝, 1)
and Ψ(O(1))) to become 𝜀-close.

However, we could instead simply use optimisation to find the 𝜀-best choice param-
eter.

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitExamples.html#Regression-Example1a-SearchDistortionProne

151 Chapter 6. Exact Real Search

Example 6.1.36. [] For the same predictor observations 𝑣 , oracleO, parameterised
model function 𝑀 and distortion function Ψ as in Example 6.1.35, we compute an
𝜀-best choice parameter 𝑝 : 3N of𝑀 for a variety of requested precision values 𝜀 : N

directly using the totally bounded property of 3N.

𝜀 𝑝 ⟨⟨𝑝⟩⟩ Time (s)

1 11 . . . −0.25
2 111 . . . −0.125
3 1111 . . . −0.0625
7 11111111 . . . −0.00390625 138.13

The graph below shows the true oracle functionO (in red) plotted against the distorted
oracle function Ψ(O) (in brown) and the function𝑀 (𝑝7) (in blue) where 𝑝7 is the 𝑝
computed when 𝜀 := 7, for the interval [−1, 1]

−1 −0.5 0.5 1

−0.6

−0.4

−0.2

0.2

0.4

𝑥

𝑓 (𝑥)

Our final example for this section is inspired by linear regression.

Example 6.1.37. [] By fixing the predictor observations 𝑣 := {−1
2 ,

1
2 } : (3

N)2, we
define the least-closeness pseudocloseness function 𝐿𝑣 : (𝑋 → 𝑌) → (𝑋 → 𝑌) →
N∞ between functions, which compares their values at the points in 𝑣 . We employ
the parameterised model function

𝑀 ((𝑝1, 𝑝2), 𝑥) := mid(𝑝1,mul(𝑝2, 𝑥))

to search for a parameters 𝑝1, 𝑝2 : 3N such that

𝜀 ⪯ 𝐿𝑣 (O, 𝑀 (𝑝1, 𝑝2)),

for a variety of precision values 𝜀 : N where O is the synthetically-constructed oracle

https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitExamples.html#Regression-Example1a-OptimisationDistortionProne
https://tnttodda.github.io/thesis/html/TWA.Thesis.Chapter6.SignedDigitExamples.html#Regression-Example2-SearchDistortionFree

6.2. Exact Real Search using ternary Boehm encodings 152

function (Definition 4.2.7)
O := 𝑀 (13 ,−1).

The continuity of the model function is by Corollaries 6.1.23 and 6.1.27
and Lemma 6.1.18.

𝜀 𝑝1 𝑝2 ⟨⟨𝑝1⟩⟩ ⟨⟨𝑝2⟩⟩ Time (s)

3 11 . . . 11 . . . 0.5 0.5
4 1111 . . . 11 . . . 0.375 0.5 2.30
5 111111 . . . 11 . . . 0.34375 0.5 15.65

The graph below shows the oracle function O (in red) plotted against the function
𝑀 ((𝑝𝑖)5) (in blue) where (𝑝𝑖)5 are the 𝑝𝑖 computed when 𝜀 := 5, for the interval
[−1, 1]

−1 −0.5 0.5 1

0.1

0.2

0.3

0.4

𝑥

𝑓 (𝑥)

Thus we have concluded that we can indeed perform uniformly continuous search
and generalised global optimisation and parametric regression on ternary signed-digits.
The correctness of the algorithms are immediate, because they are extracted from our
formal Agda framework, but we enjoyed illustrating this fact. Unfortunately, but not
unexpectedly, the efficiency of the algorithms leaves a lot to be desired.

6.2 Exact Real Search using ternary Boehm encodings

The signed-digits have provided a proof-of-concept for applying our generalised perspec-
tive of optimisation and regression to types for representing real numbers. Furthermore,
we have verified the signed-digits, so that we are genuinely optimising/regressing
representations of functions on the compact interval we are searching.

There are, however, clear problems with using signed-digits for potential practical
applications of exact real search, which can be summed up in two points. Firstly,

153 Chapter 6. Exact Real Search

the arithmetic defined on the signed-digits is not user-friendly in the same way that,
say, arithmetic on the floating-point numbers are — we cannot even perform addition
using signed-digit numbers without utilising multiple representations of different
intervals. Secondly, arithmetic and search on the signed-digits is inefficient; in particular,
determining the 𝑛-approximation of a represented number requires the evaluation of
the whole 𝑛-prefix of the sequence.

The ternary Boehm encodings address both of these problems. For the former,
the Boehm encodings represent reals across the real line, meaning we can immedi-
ately perform arithmetic operations such as addition that are not suitable for compact
intervals. For the latter, although the arithmetic still remains inefficient, it is much
more eficient than that on the ternary signed-digits, and leads us towards much more
practical algorithms. Further, recall that the structure of the ternary Boehms means
that the 𝑛th interval approximation of a represented number can be determined by
evaluating exactly the 𝑛th integer approximation of the sequence.

We turn our attention in this final section, therefore, towards the potential of
practical search, optimisation and regression using the ternary Boehm encodings.
From this point on we depart from absolute guarantees of correctness in favour of
investigating whether our framework can lead us towards a practical implementation
of exact real search. Although we find a positive answer, there is much work to be
done to actually deliver on this desire — and, further still, to tie it in with guarantees of
correctness, which we discuss as further work in Section 7.2.3.

6.2.1 Suitability for search, optimisation and regression

Recall that, in Section 5.3, we re-rationalised Boehm’s encodings in our formal frame-
work as the type T and prepared them for search by defining the subtypes T(𝑘, 𝑖)𝑖 (for
𝑖 ∈ {1, 2, 3} for representing real numbers in compact intervals

[
𝑘
2𝑖 ,

𝑘+2
2𝑖
]
encoded as

pairs (𝑘, 𝑖) : Z2.

T yields continuously searchable closeness spaces

We can easily show that any type T(𝑘, 𝑖)2 is suitable for search, optimisation and
regression because we have already proved its equivalence with 3N (Lemma 5.3.28), a
type we recently proved is suitable for these processes (in Section 6.1.1). Therefore, we
can search T in the same way as we directly search 3N.

Corollary 6.2.1. T(𝑘, 𝑖)2 is a totally bounded, uniformly continuously searchable
closeness space.

6.2. Exact Real Search using ternary Boehm encodings 154

Proof. [f] By Corollary 6.1.1, via the equivalence with 3N (Lemma 5.3.28).

We can instead search T(𝑘, 𝑖)3 in the same way as we indirectly search 3N using 2N.
This is because — recalling the structural operations from Section 5.3 — we only need
to consider those interval approximations that are recursively downLeft or downRight
from (𝑘, 𝑖) : Z2 in order to to determine an answer for any of our algorithms (i.e. we
do not need to use downMid). In our Java library, we effectively search elements of
T(𝑘, 𝑖)3 as described in Section 6.2.2.

T yields approximate linear preorders

Recall that in order to determine the 𝑛th interval approximation of some 𝑥 : T, rather
than evaluating the whole 𝑛-prefix, it is enough to evaluate 𝑥𝑛 : Z. This means that we
can immediately compare these interval approximations in a more convenient way
than the order and closeness functions are used for searching 3N. For example, instead
of a predicate asking whether 𝐶𝜀 (𝑥,𝑦), requiring us to evaluate 𝑥 and 𝑦 up to 𝜀 in order
to find out (by Remark 3.2.20) whether or not 𝑑R(J𝑥K, J𝑦K) < 2−𝜀 , we can instead ask
whether |𝑥𝜀 − 𝑦𝜀 | ≤ 1. This further means our representations do not have to match at
every point up to 𝜀, only at 𝜀 itself.

Another consequence of this direct evaluation is for comparing the order of elements
of T. Recall that, for 3N, we had to introduce a new approximate linear preorder (Defi-
nition 6.1.9) which evaluates prefixes of 3N and converts them to ternary interval codes
so that they can be compared. Elements of T are trivial to convert to ternary interval
codes at any point, and therefore we can directly compare the interval approximations
without any need for exhaustive evaluation.

6.2.2 Java-implemented examples

We have written, in Java, an implementation of the ternary Boehm encodings that
allows us to perform search, optimisation and regression. The implementation is based
on the re-rationalisation of ternary Boehm encodings in our Agda library (described in
Section 5.3) as well as on our informal discussions in the previous section. We define
arithmetic operations on T by completing approximations of them defined on dyadic
interval codes Z2 (Definition 5.3.11). A base operation’s modulus of uniform continuity
is hard-coded into the function object, and composing functions builds a new modulus
of uniform continuity from its constitutent functions’.

The Java implementation is outlined in Appendix B; here we just give a brief idea of
the algorithms, which are effectively the same as the indirect algorithms on 2N that we

155 Chapter 6. Exact Real Search

used to search 3N. For the compact interval represented by (𝑘, 𝑖) : Z2, whether we are
searching for an answer to a predicate or optimising/regressing a function up to a given
precision 𝜀 : Z, our implementation will — using the witness of uniform continuity
𝛿 : Z — search the finitely-many search candidates that are recursively downLeft or
downRight of (𝑘, 𝑖) on precision-level 𝛿 . Each candidate (𝑐, 𝛿) is then cast to a ternary
Boehm encoding 𝑥 : T such that 𝑥𝛿 = 𝑐 , which can be tested against the predicate (or
passed to the function being optimised). In this way, the algorithms compute an interval
approximation of a ternary Boehm encoding such that any element of T(𝑘, 𝑖)3 that
features that interval approximation will be a correct answer, approximate minimum
or satisfactory parameter of the model function.

For each example, we give a table which notes the computed interval approximation
(𝑥𝛿 , 𝛿) : Z2 of the answer 𝑥 : T(𝑘, 𝑖)3 for the requested output precision-level 𝜀, required
input-precision level 𝛿 and searched compact interval (𝑘, 𝑖). To aid illustration, we also
note the dyadic 𝑘+1

2𝑖 at the center of the interval that (𝑘, 𝑖) represents, and we often give
further such information, such as the represented value 𝑓 (𝜀)+1

2𝜀 when we are minimising
a particular function 𝑓 .

We note any times above one second taken to compute this answer, and note that
we are broadly more efficient than on the ternary signed-digits. However, as the nature
of the search is still exhaustive, the improvements are not seismic. We discuss the
ability to perform branch-and-bound style optimisation (and search) techniques, to
further increase efficiency, in Section 6.2.3.

Uniformly continuous search

Example 6.2.2. This example is based on Example 6.1.29. We search for a ternary
Boehm encoding 𝑥 : T in [−1, 1] that satisfies

𝑝 (𝑥) := abs
((
𝑥2
)
𝜀+1 −

(
1
2

)
𝜀+1

)
≤ 1,

for a variety of requested precision values 𝜀 : Z.

𝜀 (𝑥𝛿 , 𝛿) 𝑥𝛿+1
2𝛿

(𝑥2)𝜀+1
2𝜀 Time (s)

5 (−96, 7) −0.7421875 0.550842285
10 (−2902, 12) −0.708251953 0.501620829
15 (−92688, 17) −0.707145691 0.500055028
20 (−2965826, 22) −0.707107782 0.500001416 1.03
25 (−94906272, 27) −0.707106821 0.500000057 32.4

6.2. Exact Real Search using ternary Boehm encodings 156

The answer correctly converges towards the irrational number −
√
0.5 =

−0.707106781187 It could have alternatively converged towards
√
0.5, but our

searcher evaluates candidates in ascending integer approximation order.

Due to the efficiency gains of ternary Boehm encodings, along with the better (but
not formally verified) modulus of uniform continuity on multiplication, we are able to
compute the answer to a much higher precision-level than we could in Example 6.1.29.

Example 6.2.3. This example is based on Example 6.1.30. We search for ternary
Boehm encodings 𝑥,𝑦 : T in [−1, 1] that satisfy

𝑝 (𝑥) := abs (mid(𝑥,𝑦)𝜀+1 − 0𝜀+1) ≤ 1,

for a variety of requested precision values 𝜀 : Z.

𝜀 (𝑥𝛿1, 𝛿1) (𝑦𝛿2, 𝛿2)
𝑥𝛿1+1
2𝛿1

𝑦𝛿1+2
2𝛿2 Time (s)

5 (−256, 8) (242, 8) −0.99609375 0.94921875
10 (−8192, 13) (8178, 13) −0.99987793 0.998413086
15 (−262144, 18) (262130, 18) −0.999996185 0.999950409
20 (−8388608, 23) (8388594, 23) −0.999999881 0.99999845
25 (−268435456, 28) (268435442, 28) −0.999999996 0.999999952 356.72

This answer computes quickly to a reasonably high degree of precision; although, as
we noted in Example 6.1.30, the predicate is particularly well-suited to the search
strategy of our exhaustive searcher.

Example 6.2.4. This example is of a predicate not well-suited to our exhaustive
searcher, and in a different interval than [−1, 1].

We tried search for a ternary Boehm encoding 𝑥 : T in [16, 24] that satisfies

𝑝 (𝑥) := 𝑥3 + 3𝑥 ≥𝜀 9000,

for a variety of requested precision values 𝜀 : Z. Unfortunately, even for 𝜀 := 1, the
search process hanged for over two minutes. Clearly the number of search candidates
at the level of input precision required is too great for an efficient result to be returned.
We will revisit this example later, in Example 6.2.11.

157 Chapter 6. Exact Real Search

Global optimisation

We define the optimisation algorithm on ternary Boehm encodings based on that arising
from Theorem 4.1.26; it computes the 𝛿-net of interval approximations of T(𝑘, 𝑖)3, where
𝛿 : Z is the modulus of uniform continuity of the function being optimised and (𝑘, 𝑖) is
the interval being searched for an 𝜀-global minimum.

Example 6.2.5. This example is based on Example 6.1.32. We compute an 𝜀-global
minimum of the function

𝑓 (𝑥) := 𝑥 ∗ −1

in [−1, 1] for a variety of requested precision values 𝜀 : Z.

𝜀 (𝑥𝛿 , 𝛿) 𝑥𝛿+1
2𝛿

(−𝑥)𝜀+1
2𝜀 Time (s)

1 (14, 4) 0.9375 −0.9375
2 (62, 6) 0.984375 −0.984375
3 (254, 8) 0.99609375 −0.99609375
4 (1022, 10) 0.999023438 −0.999023438
5 (4094, 12) 0.999755859 −0.999755859
6 (16382, 14) 0.999938965 −0.999938965
7 (65534, 16) 0.999984741 −0.999984741
8 (262142, 18) 0.999996185 −0.999996185 4.45
9 (1048574, 20) 0.999999046 −0.999999046 97.94

This problem was designed specifically so that we had to nearly exhaust the net;
hence, it takes a long time to compute. Compared to Example 6.1.32, we are only
able to compute slightly more precise approximations. This is because, although
multiplication’s modulus of uniform continuity and the structure of the ternary
Boehm encodings admit more efficiency than those on ternary signed-digit encodings,
the fact that we have to exhaust the 𝛿-net cannot be avoided. We will revisit this
example later, in Example 6.2.12.

Example 6.2.6. The efficiency issues seen in Example 6.2.5 become worse with a
more complicated function. We tried to compute an 𝜀-global minimum of the function

𝑓 (𝑥) := 𝑥6 + 𝑥5 − 𝑥4 + 𝑥2

in [−2, 2] (illustrated in Figure 4.1) for a variety of requested precision values 𝜀 : Z.
Unfortunately, even for 𝜀 := 1, the search process hanged for over two minutes.

6.2. Exact Real Search using ternary Boehm encodings 158

Clearly the number of candidates in the 𝛿-net is too great for an result to be returned
in reasonable time. We will revisit this example later, in Example 6.2.13.

Parametric regression

For regression on ternary Boehm encodings, we follow the rough idea of the model
outlined in Definition 4.2.4 and used in Section 6.1.3. However, as we now have access
to addition, we can tweak our loss function to be more practical. Rather than returning
the least-closeness value min(𝑐 (𝑀𝑝 (𝑥0),O(𝑥0)), ..., 𝑐 (𝑀𝑝 (𝑥𝑛−1),O(𝑥𝑛−1))), for model
function 𝑀 , oracle O, parameter choice 𝑝 and observations 𝑥0, ..., 𝑥𝑛−1, we instead
simply sum the distances3:

𝑛∑︁
𝑖:=0

abs(𝑀𝑝 (𝑥𝑖) −O(𝑥𝑖)) .

By implementing the regression-as-optimisation algorithm (Theorem 4.2.6), we can
find an 𝜀-best choice parameter for any uniformly continuous function.

Example 6.2.7. This example is based on Example 6.1.33. By fixing the predictor
observations 𝑣 := {−1, 0, 1} : (T)3, we define the absolute loss function 𝐿𝑣 : (T →
T) → (T → T) → T between functions, which sums the difference of their values at
the points in 𝑣 . For the oracle function

O(𝑥) := mid(13 , 𝑥),

we compute an 𝜀-best choice parameter 𝑝 : T in [−1, 1] of the parameterised model
function

𝑀 (𝑝, 𝑥) := mid(−𝑝, 𝑥)

for a variety of requested precision values 𝜀 : Z by minimising the function
(𝜆𝑝.𝐿𝑣 (O, 𝑀 (𝑝))) : T(−1, 0)3 → T in the interval [−1, 1].

3This is similar to using the least-squares loss function, a common loss function for parametric
regression.

159 Chapter 6. Exact Real Search

𝜀 (𝑝𝛿 , 𝛿) 𝑝𝛿+1
2𝛿 Time (s)

3 (−84, 8) −0.25
6 (−682, 11) −0.328125
9 (−5460, 14) −0.33203125
12 (−43690, 17) −0.333251953125 4.72
15 (−349524, 20) −0.33331298828125 103.59

The graph below shows the oracle function O (in red) plotted against the function
𝑀 (𝑝15) (in blue) where 𝑝15 is the 𝑝 computed when 𝜀 := 15, for the interval [0.3, 0.4].
It is hard to tell the two lines apart due to the closeness of the true parameter and
the regressed parameter.

0.32 0.34 0.36 0.38 0.4

−1

1

2

3
·10−2

𝑥

𝑓 (𝑥)

We can see that the output precisions are very close, and that the efficiency is much
improved when using ternary Boehm, encodings. We will revisit this example later,
in Example 6.2.14.

As we have discussed, it is often more practical to use our regression algorithms
that are derived from our searchers.

Example 6.2.8. This example is based on Example 6.1.34. For the same predictor
observations 𝑣 , oracle O and parameterised model function𝑀 as in Example 6.1.33,
we search for a parameter 𝑝 : T in [−1, 1] such that

𝐿𝑣 (O, 𝑀 (𝑝))𝜀 ≤ 1,

for a variety of requested precision values 𝜀 : N.

6.2. Exact Real Search using ternary Boehm encodings 160

𝜀 (𝑝𝛿 , 𝛿) 𝑝𝛿+1
2𝛿 Time (s)

3 (−218, 9) −0.42578125
6 (−1412, 12) −0.3447265625
9 (−10970, 15) −0.33477783203125 1.76
12 (−87428, 18) −0.3335113525390625 20.2
15 (−699098, 21) −0.3333559036254883 161.84

The graph below shows the oracle function O (in red) plotted against the function
𝑀 (𝑝8) (in blue) where 𝑝8 is the 𝑝 computed when 𝜀 := 8, for the interval [0.3, 0.4]

0.32 0.34 0.36 0.38 0.4

−1

1

2

3
·10−2

𝑥

𝑓 (𝑥)

We found that with the ternary signed-digit encodings, the search version of this
example (i.e. Example 6.1.34) was more efficient than the optimisation version (Exam-
ple 6.1.33). Interestingly, we find that this is reversed when using the ternary Boehm
encodings (i.e. this example is less efficient than Example 6.2.7).

Example 6.2.9. This example is based on Example 6.1.36. For the same predictor
observations 𝑣 , oracle O and parameterised model function𝑀 as in Example 6.2.8,
we compute an 𝜀-best choice parameter 𝑝 : T of𝑀 for a variety of requested precision
values 𝜀 : Z by minimising the function (𝜆𝑝.𝐿𝑣 (Ψ(O), 𝑀 (𝑝))) : T(−1, 0)3 → T in the
interval [−1, 1].

𝜀 (𝑝𝛿 , 𝛿) 𝑝𝛿+1
2𝛿 ⟩⟩ Time (s)

3 (−114, 8) −0.44140625
6 (−936, 11) −0.456542969
9 (−7506, 14) −0.458068848
12 (−60072, 17) −0.458305359 5.42
15 (−480594, 21) −0.458329201 110.76

The graph below shows the true oracle functionO (in red) plotted against the distorted

161 Chapter 6. Exact Real Search

oracle function Ψ(O) (in brown) and the function𝑀 (𝑝15) (in blue) where 𝑝15 is the
𝑝 computed when 𝜀 := 15, for the interval [−1, 1]

−1 −0.5 0.5 1

−0.6

−0.4

−0.2

0.2

𝑥

𝑓 (𝑥)

Our final example for this subsection is an instantiation of linear regression.

Example 6.2.10. This example is based on Example 6.1.37 (but with binary midpoint
replaced with addition). By fixing the predictor observations 𝑣 := {−1

2 ,
1
2 } : (T)

2,
we define the absolute loss function 𝐿𝑣 : (T → T) → (T → T) → T between
functions, which sums the difference of their values at the points in 𝑣 . We employ
the parameterised model function

𝑀 ((𝑝1, 𝑝2), 𝑥) := 𝑝1 + 𝑝2 ∗ 𝑥

to search for parameters 𝑝1, 𝑝2 : T in [−1, 1] such that

𝐿𝑣 (O, 𝑀 (𝑝1, 𝑝2))𝜀 ≤ 1,

for a variety of precision values 𝜀 : Z where O is the synthetically-constructed oracle
function (Definition 4.2.7)

O := 𝑀 (13 ,−1).

𝜀 ((𝑝1)𝛿1, 𝛿1) ((𝑝2)𝛿2, 𝛿2)
(𝑝1)𝛿1+1
𝛿1

(𝑝2)𝛿2+1
𝛿2

Time (s)

1 (0, 5) (−2048, 11) 0.03125 −0.999511719 1.3
2 (10, 6) (−8192, 13) 0.171875 −0.99987793 9.50
3 (32, 7) (−32768, 15) 0.2578125 −0.999969482 86.52

The graph below shows the oracle function O (in red) plotted against the function
𝑀 (𝑝3) (in blue) where 𝑝3 is the 𝑝 computed when 𝜀 := 3, for the interval [−1, 1]

6.2. Exact Real Search using ternary Boehm encodings 162

−1 −0.5 0.5 1

−0.5

0.5

1

𝑥

𝑓 (𝑥)

The computation when fitting a linear model to a correct oracle, even in a simple case,
is still remarkably inefficient. We will revisit this example later, in Example 6.2.15.

6.2.3 Java-implemented branch-and-bound examples

The ternary Boehms are clearly a much more efficient data-type than the ternary signed-
digits for performing exact real search, optimisation and regression on functions for
exact real arithmetic. However, the exhaustive nature of each algorithm means that the
efficiency of the search relies heavily on how coincidentally well-suited the predicate
or function is to the order in which the algorithms evaluates the candidate interval
approximations. In this final subsection, we discuss how branch-and-bound techniques
can be defined on the ternary Boehm encodings, and give examples of their use from
our Java implementation.

Branch-and-bound algorithms are a popular and well-studied technique in optimi-
sation theory that can improve the efficiency of exhaustive search by discarding any
candidates that outright cannot contain a solution [Cla99; BM07]. A (unary) branch-
and-bound algorithm works as follows:

1. Initialise the search area as some candidate interval,
2. Select some candidate from the search area using heuristic criteria,
3. Branch the candidate into multiple sub-intervals,
4. Bound the sub-intervals by computing each of their lower and upper bounds of 𝑓 ,
5. Discard any candidates in the search area that cannot contain a global minimiser

(i.e. those whose lower bound is strictly higher than another candidate’s upper
bound),

6. Repeat from step (2) until the width of the range of the search space is less than
the desired precision; then return any remaining candidate interval.

In the next iteration, the potential solution will either be the same width or thinner

163 Chapter 6. Exact Real Search

than the current. After each iteration, the remaining search area contains a solution
to the global minimisation problem; furthermore, if the width of the remaining search
area’s output is less than the desired precision 𝜀, then it is a solution to the 𝜀-global
minimisation problem.

Branch-and-bound algorithms converge given (i) the function 𝑓 is continuous, (ii)
the branching procedure ensures the width of the widest interval tends to 0, and (iii)
the bounding procedure ensures that the distance between the lower and upper-bound
estimates for each interval also tends to 0 [Kea92].

For ternary Boehm encodings, the branching procedure is the dissection of a ternary
interval code (𝑘, 𝑖) : Z2 into the two intervals (downLeft𝑘, 𝑖+1), (downRight𝑘, 𝑖+1) : Z2

directly below it. The bounding procedure, meanwhile, is the use of the function’s
modulus of uniform continuity to bound its behaviour on interval codes.

We postulate that the ternary Boehm encodings can be used to satisfy all three of
these conditions:

(i) The functions we define are indeed uniformly continuous on the intervals on
which we search them,

(i) The branching procedure halves the width of the candidate interval approxima-
tions and — as there are finitely-many candidate intervals that are only branched
up to the precision-level given by the modulus of uniform continuity — the widest
interval will be divided in finite time,

(i) The bounding procedure of the straightforward functions we have defined (in
Sections 5.3.3 and 7.2.2) will decrease the width of the output intervals as the
width of the input intervals decreases.

We aim in future work to define this class of algorithms formally in our library and
verify their convergence (see Section 7.2.3); for now, we give informal Java implemen-
tations of their use.

Uniformly continuous search

Example 6.2.11. We revisit Example 6.2.4, an example where we previously could
not even compute an answer for output precision-level 𝜀 := 1. We search for a ternary
Boehm encoding 𝑥 : T in [16, 24] that satisfies

𝑝 (𝑥) := 𝑥3 + 3𝑥 ≥𝜀 9000,

for a variety of requested precision values 𝜀 : Z using the branching searcher.

6.2. Exact Real Search using ternary Boehm encodings 164

𝜀 (𝑥𝛿 , 𝛿) 𝑥𝛿+1
2𝛿

(𝑥3+3𝑥)𝜀+1
2𝜀

50 (42, 1) 21 9324
100 (42, 1) 21 9324
150 (42, 1) 21 9324
200 (42, 1) 21 9324

Our branching searcher appears almost to have cheated. Previously, the number
of search candidates at the level of input precision required was too great for an
efficient result to be returned. But, using the branching searcher, we find that the
input precision required is in fact very low: the predicate is satisfied easily by any
interval approximation that gives an output in the upper half of the search area.

Global optimisation

Example 6.2.12. Revisiting Example 6.1.32, we compute an 𝜀-global minimum of
the function

𝑓 (𝑥) := 𝑥 ∗ −1

in [−1, 1] for a variety of requested precision values 𝜀 : Z using the branch-and-bound
technique.

𝜀 (𝑥𝛿 , 𝛿)
50 (1125899906842622, 50)
100 (1267650600228229401496703205374, 100)
150 (1427247692705959881058285969449495136382746622, 150)
200 (1606938044258990275541962092341162602522202993782792835301374, 200)
𝜀

𝑥𝛿+1
2𝛿

(−𝑥)𝜀+1
2𝜀

50 0.9999999999999982 −0.9375
100 ≈ 1.0 ≈ −1.0
150 ≈ 1.0 ≈ −1.0
200 ≈ 1.0 ≈ −1.0

Originally, this problem was designed specifically so that we had to nearly exhaust
the net. Using branch-and-bound, this no longer occurs; the simple linear shape of
the function allows the algorithm to quickly (in less than 10ms in all above cases)
’zoom in’ on the solution.

165 Chapter 6. Exact Real Search

Example 6.2.13. We revisit Example 6.2.6, an example where we previously could
not even compute an answer for output precision-level 𝜀 := 1. We compute an 𝜀-global
minimum of the function

𝑓 (𝑥) := 𝑥6 + 𝑥5 − 𝑥4 + 𝑥2

in [−2, 2] (illustrated in Figure 4.1) for a variety of requested precision values 𝜀 : Z

using the branch-and-bound technique.

𝜀 (𝑥𝛿 , 𝛿) 𝑥𝛿+1
2𝛿

(𝑓 (𝑥)𝜀+1
2𝜀

5 (−236, 8) −0.90625 −0.0625
10 (−7384, 13) −0.9013671875 −0.044921875
15 (−236058, 18) −0.900482177734375 −0.043670654296875
20 (−7553656, 23) −0.9004659652709961 −0.04366016387939453
25 (−241716810, 28) −0.9004652798175812 −0.043659746646881104

The issuewith the exhaustive algorithmwas that the 𝛿-net quickly became so granular,
due to the complex shape of the function, that there were far too many candidates
to search efficiently. The branch-and-bound technique helps to tackle this problem:
it quickly discards intervals that cannot contain the minimum, refining the search
space so that we find an answer much more efficiently.

Parametric regression

Example 6.2.14. Revisiting Example 6.2.7, we fix the predictor observations 𝑣 :=
{−1, 0, 1} : (T)3 and define the absolute loss function 𝐿𝑣 : (T → T) → (T → T) → T

between functions, which sums the difference of their values at the points in 𝑣 . For
the oracle function

O(𝑥) := mid(13 , 𝑥),

we compute an 𝜀-best choice parameter 𝑝 : T in [−1, 1] of the parameterised model
function

𝑀 (𝑝, 𝑥) := mid(−𝑝, 𝑥)

for a variety of requested precision values 𝜀 : Z by minimising the function
(𝜆𝑝.𝐿𝑣 (O, 𝑀 (𝑝))) : T(−1, 0)3 → T in the interval [−1, 1] using the branch-and-bound
technique.

6.2. Exact Real Search using ternary Boehm encodings 166

𝜀 (𝑝𝛿 , 𝛿)
50 (−1501199875790164, 52)
100 (−1690200800304305868662270940500, 102)
150 (−1902996923607946508077714625932660181843662164, 152)
200 (−2142584059011987034055949456454883470029603991710390447068500, 202)
𝜀

𝑝𝛿+1
2𝛿

50 −0.33333333333333304
100 ≈ −0.33333333333333333 . . .
150 ≈ −0.33333333333333333 . . .
200 ≈ −0.33333333333333333 . . .

The graph below shows the oracle function O (in red) plotted against the function
𝑀 (𝑝200) (in blue) where 𝑝200 is the 𝑝 computed when 𝜀 := 200, for the interval
[0.3, 0.4]

0.32 0.34 0.36 0.38 0.4

−1

1

2

3
·10−2

𝑥

𝑓 (𝑥)

The efficiency is hugely improved by using the branch-and-bound technique.

Example 6.2.15. Revisiting Example 6.2.10, we fix the predictor observations 𝑣 :=
{−1

2 ,
1
2 } : (T)

2 and define the absolute loss function 𝐿𝑣 : (T → T) → (T → T) → T

between functions, which sums the difference of their values at the points in 𝑣 . We
employ the parameterised model function

𝑀 ((𝑝1, 𝑝2), 𝑥) := 𝑝1 + 𝑝2 ∗ 𝑥

to search for parameters 𝑝1, 𝑝2 : T in [−1, 1] such that

𝐿𝑣 (O, 𝑀 (𝑝1, 𝑝2))𝜀 ≤ 1,

167 Chapter 6. Exact Real Search

for a variety of precision values 𝜀 : Z, whereO is the synthetically-constructed oracle
function (Definition 4.2.7)

O := 𝑀 (13 ,−1),

using the branching searcher.

𝜀 ((𝑝1)𝛿1, 𝛿1) ((𝑝2)𝛿2, 𝛿2)
(𝑝1)𝛿1+1
𝛿1

(𝑝2)𝛿2+1
𝛿2

Time (s)

1 (0, 2) (−2048, 11) 0.25 −0.999511719
2 (2, 3) (−8192, 13) 0.375 −0.99987793 2.38
3 (2, 3) (−32768, 15) 0.375 −0.999969482 9.67
4 (10, 5) (−131072, 17) 0.34375 −0.999998093 211.59
5 (10, 5) (−524288, 19) 0.34375 −0.999998093 871.70

The graph below shows the oracle function O (in red) plotted against the function
𝑀 ((𝑝1)5, (𝑝2)5) (in blue) where (𝑝𝑖)5 are the 𝑝𝑖 computed when 𝜀 := 3, for the interval
[−1, 1]

−1 −0.5 0.5 1

−0.5

0.5

1

𝑥

𝑓 (𝑥)

The efficiency is only mildly improved in this case. This example shows that we
require better efficiency-minded approaches for search with multiple variables.

Chapter 7

Conclusion

7.1 Summary of contributions

This thesis has developed, in a constructive and univalent Agda formalisation (Chap-
ter 2), a framework for performing search, optimisation and regression (Chapter 4) on
a wide class of types given by closeness spaces and uniformly continuously search-
able types (Chapter 3). Furthermore, we formally proved that uniformly continuously
searchable types are closed under countable products (Theorem 3.3.14).

The Escardó-Simpson interval object (Section 5.1) and the ternary signed-digit
encodings (Section 5.2) are formalised within our Agda library, and we verify the
correctness of the operations on the latter using the former (Section 5.2.3).

We extracted examples of our formal framework directly from the Agda proofs,
showing that we can perform search, optimisation and regression on formally verified
functions of the ternary signed-digit encodings (Section 6.1.3).

We formalised the structure of another type for exact real computation, the ternary
Boehm encodings (Section 5.3), and informally implemented search, optimisation and
regression algorithms on this type in Java, in a way which reflects the formal Agda
framework (Section 6.2.2).

Finally, we discussed the implementation ofmore efficient algorithms inspired by our
formal approach, and gave some examples of their evaluation using Java (Section 6.2.3).

169 Chapter 7. Conclusion

7.2 Further work

7.2.1 Verification of the order and closeness relations on ternary-

signed digit encodings

Although we have formalised the correctness of the functions that we search, optimise
and regress on the ternary signed-digit encodings 3N using the interval object I (Sec-
tion 5.2.3), we have not formally proved that search, optimisation and regression on
these representations amounts to those processes on the reals themselves.

In order to achieve this, we will need to verify that the real-order preserving orders
(Definitions 6.1.7 and 6.1.9) do indeed preserve the numerical order on the interval
object. However, this task may be somewhat involved, as the notion of an order on I is
not well established. We therefore seek to establish this notion in our formalisation of
the interval object, and then to verify our orders on 3N.

Following this, we will also need to verify that the discrete-sequence closeness
relation on 3N (Corollary 6.1.1) relates to a notion of a metric on the interval object I,
in the way informally described in Remark 3.2.20.

7.2.2 Verification of arithmetic on ternary Boehm encodings

We verified the arithmetic operations on the ternary signed-digit encodings, though we
have not yet done this on the ternary Boehm encodings. In order to achieve this, we
have begun to develop machinery for completing continuous functions approximated
via dyadic interval codes Z3 into the equivalent function on ternary Boehm encodings
T, which automatically verifies it relative to the Dedekind reals R. Using this machinery,
the idea is that we can define a wide variety of operations by following the same
blueprint each time.

We already utilise this machinery in our informal Java implementation, though
the formal work still relies on conjectures that are fairly open and which require more
work to prove both informally and formally. Although this this work is ongoing, we
give the general idea in this section.

Remark 7.2.1. In this section, we use the notation {𝑥𝑖} := {𝑥0, ..., 𝑥𝑛−1} for an 𝑛-sized
vector.

Definition 7.2.2. A multivariable function 𝑓 : R𝑛 → R is approximated by a dyadic
interval approximator 𝐴 : ((Z3)𝑛 → Z3 if,

7.2. Further work 170

1. Given two 𝑛-dimensional vectors of dyadic interval codes
{(𝑘𝑖, 𝑐𝑖, 𝑝𝑖)}, {(𝑗𝑖, 𝑏𝑖, 𝑞𝑖)} : (Z3)𝑛 and one of dyadic rationals {𝑤𝑖} : Z[1/2]𝑛 such
that 𝑘𝑖

2𝑝𝑖 ≤
𝑗𝑖
2𝑞𝑖 ≤ 𝑤𝑖 ≤

𝑏𝑖
2𝑞𝑖 ≤

𝑐𝑖
2𝑝𝑖 , it is the case that

𝐴𝑘
2𝐴𝑝 ≤ 𝐴𝑗

2𝐴𝑞 ≤ 𝑓 (𝑤) ≤ 𝐴𝑏
2𝐴𝑞 ≤ 𝐴𝑐

2𝐴𝑝 ,
where (𝐴𝑘,𝐴𝑐,𝐴𝑝) := 𝐴({(𝑘𝑖, 𝑐𝑖, 𝑝𝑖)}) and (𝐴𝑗,𝐴𝑏,𝐴𝑞) := 𝐴({(𝑗𝑖, 𝑏𝑖, 𝑞𝑖)}),

2. Given dyadic intervals {(𝑎𝑖, 𝑏𝑖)} : (Z[1/2]𝐼)𝑛 and required distance 𝜀 : Z[1/2],
it is the case that there are distances {𝛿𝑖} : Z[1/2]𝑛 such that for all vectors
{(𝑘𝑖, 𝑐𝑖, 𝑝𝑖)} : (Z3)𝑛 satisfying 𝑎𝑖 ≤ 𝑘𝑖

2𝑝𝑖 ,
𝑐𝑖
2𝑝𝑖 ≤ 𝑏𝑖 and

𝑐𝑖−𝑘𝑖
2𝑝𝑖 ≤ 𝛿𝑖 , we have 𝐴𝑐−𝐴𝑘

2𝐴𝑝 ≤
𝜀 where (𝐴𝑘,𝐴𝑐,𝐴𝑝) := 𝐴({(𝑘𝑖, 𝑐𝑖, 𝑝𝑖)}).

The first condition determines that by refining our inputs we also refine the output,
whereas the second determines that the approximator is uniformly continuous on any
compact interval.

Example 7.2.3 (Addition’s dyadic interval approximator). Addition on dyadic-
rational intervals is defined by:[

𝑘1
2𝑝1 ,

𝑐1
2𝑝1

]
+
[
𝑘2
2𝑝2 ,

𝑐2
2𝑝2

]
:=[

2𝑝2−min(𝑝1,𝑝2)𝑘1 + 2𝑝1−min(𝑝1,𝑝2)𝑘2
2max(𝑝1,𝑝2)

,
2𝑝2−min(𝑝1,𝑝2)𝑐1 + 2𝑝1−min(𝑝1,𝑝2)𝑐2

2max(𝑝1,𝑝2)

]
,

Therefore, its dyadic interval approximator is defined:

𝐴((𝑘1, 𝑐1, 𝑝1), (𝑘2, 𝑐2, 𝑝2)) :=
(2𝑝2−min(𝑝1,𝑝2)𝑘1 + 2𝑝1−min(𝑝1,𝑝2)𝑘2, 2𝑝2−min(𝑝1,𝑝2)𝑐1 + 2𝑝1−min(𝑝1,𝑝2)𝑐2,max(𝑝1, 𝑝2)) .

We use the interval approximator to define the corresponding function on dyadic
interval codes.

Definition 7.2.4. Given a multivariable function 𝑓 : R𝑛 → R which is approximated
by a given dyadic interval approximator 𝐴 : (Z3)𝑛 → Z3, the corresponding function
on dyadic interval codes is defined as follows:

𝑓 ′ : (Z → Z3)𝑛 → (Z → Z3),
𝑓 ′({𝜒𝑖})𝑛 := 𝐴({(𝜒𝑖)𝑛}) .

In order to encode a real number, the output of this corresponding function must be
nested and positioned (recall these properties from Corollary 5.3.12).

171 Chapter 7. Conclusion

Lemma 7.2.5. Given a multivariable function 𝑓 : R𝑛 → R which is approximated
by a given dyadic interval approximator 𝐴 : (Z3)𝑛 → Z3, if the input sequences of
dyadic interval codes {𝜒𝑛} : (Z → Z3)𝑛 are nested then the output of the corresponding
function on dyadic interval codes applied at these arguments 𝑓 ′({𝜒𝑖}) is nested.

Proof. By the first condition.

Conjecture 7.2.6. Given a multivariable function 𝑓 : R𝑛 → R which is approximated
by a given dyadic interval approximator 𝐴 : (Z3)𝑛 → Z3, if the input sequences of
dyadic interval codes {𝜒𝑛} : (Z → Z3)𝑛 are nested and positioned then the output of the
corresponding function on dyadic interval codes applied at these arguments 𝑓 ′({𝜒𝑖}) is
positioned.

Using the above, we prove that the corresponding function on dyadic interval codes
correctly realises the original function.

Conjecture 7.2.7. Given a multivariable function 𝑓 : R𝑛 → R which is approximated
by a given dyadic interval approximator 𝐴 : (Z3)𝑛 → Z3, the corresponding function
on dyadic interval codes 𝑓 ′ : (Z → Z3)𝑛 → (Z → Z3) is such that

𝑓 ({L𝜒𝑖M′}) = L𝑓 ′({𝜒𝑖}), M′

for all {𝜒𝑖} : (Z → Z3)𝑛 that are nested and positioned.

Proof. By Lemmas 7.2.5 and 5.3.10 and Conjecture 7.2.6.

Once we have approximated a function on dyadic interval codes, we next convert it
into the equivalent operation on ternary interval codes. This is done using a special
function join : (Z → Z3) → (Z → Z2).

Conjecture 7.2.8. There is a function join′ : Z3 → Z2, which takes as input a dyadic
interval code and outputs the narrowest ternary interval code that covers it.

Definition 7.2.9. The function join : (Z → Z3) → (Z → Z2), which converts a
sequence of dyadic interval codes into a sequence of ternary interval codes, is defined
as follows:

join := map(join′).

In order to encode a real number, this sequence of ternary interval codes must be

7.2. Further work 172

nested and positioned.

Conjecture 7.2.10. Given a sequence of dyadic interval codes 𝜒 : Z → Z3, if 𝜒 is
nested and positioned then so is join(𝜒).

Furthermore, joining the sequence does not change the real that is encoded.

Conjecture 7.2.11. Given a sequence of dyadic interval codes 𝜒 : Z → Z3, L𝜒M′ =
Ljoin(𝜒)M′.

Definition 7.2.12. Given a multivariable function 𝑓 : R𝑛 → R which is approximated
by a given dyadic interval approximator 𝐴 : (Z3)𝑛 → Z3, the corresponding function
on ternary interval codes is defined as follows:

𝑓 ′′ : (Z → Z2)𝑛 → (Z → Z2),
𝑓 ′′({𝜒𝑖}) := join(𝑓 ′({map(to-dcode, 𝜒𝑖)})).

Conjecture 7.2.13. Given a multivariable function 𝑓 : R𝑛 → R which is approximated
by a given dyadic interval approximator 𝐴 : (Z3)𝑛 → Z3, the corresponding function
on ternary interval codes 𝑓 ′′ : (Z → Z2)𝑛 → (Z → Z2) is such that,

𝑓 ({L𝜒𝑖M′′}) = L𝑓 ′′({𝜒𝑖})M′′

for all {𝜒𝑖} : (Z → Z2)𝑛 that are nested and positioned.

Proof. By Lemma 5.3.10 and Conjectures 7.2.7, 7.2.8, 7.2.10 and 7.2.11.

The final step is to normalise the inputs and output of this function.

Conjecture 7.2.14. There is a function normalise : (Z → Z2) → (Z → Z2), which
takes a nested and positioned sequence of ternary interval codes and gives back a
normalised sequence of ternary interval codes that represents the same real number.

Definition 7.2.15. Given a multivariable function 𝑓 : R𝑛 → R which is approximated
by a given dyadic interval approximator 𝐴 : (Z3)𝑛 → Z3, the corresponding function

173 Chapter 7. Conclusion

on ternary Boehm encodings is defined as follows:

𝑓 : T𝑛 → T,

𝑓 ({𝜒𝑖}) := normalise(𝑓 ′′({to-interval-seq(𝜒𝑖)})),

where to-interval-seq : T → (Z → Z2) is the map resulting from the equivalence
between the ternary Boehm encodings and normalised sequences of ternary interval
codes (Lemma 5.3.19).

Conjecture 7.2.16. Given a multivariable function 𝑓 : R𝑛 → R which is approximated
by a given dyadic interval approximator 𝐴 : (Z3)𝑛 → Z3, the corresponding function
on ternary Boehm encodings 𝑓 : T𝑛 → T is such that,

𝑓 ({J𝜒𝑖K}) = J𝑓 ({𝜒𝑖})K

for all {𝜒𝑖} : T𝑛 .

Proof. By Corollary 5.3.12 and Conjectures 7.2.13 and 7.2.14

This machinery amounts to showing that, for the above definitions, the following
diagram commutes:

T𝑛 (Z → Z2)𝑛 (Z → Z3)𝑛 R𝑛

T (Z → Z2) (Z → Z3) R

𝑓

normalise join

𝑓
′′

𝑓
′

𝑓

J−K𝑛

J−K

7.2.3 Towards practical implementations of exact real search

Our further work is largely concerned with further formalisation and verification results,
but there exists a loftier goal of this work: more efficient practical implementations
that do not sacrifice the verified correctness.

In our Agda formalisation, we have only used inefficient exhaustive methods for

7.2. Further work 174

search, optimisation and regression. In Section 6.2.3, we discussed more efficient
exhaustive methods via branch-and-bound techniques, and gave examples of our imple-
mentation in our Java code. The first step towards bridging the gap between correctness
and efficiency in our work is the formalisation of the correctness of these methods — i.e.,
the development of general convergence theorems for branch-and-bound techniques in
our Agda framework.

Following this, we would like to look at the development of efficient methods that
utilise heuristics, and the development of efficient methods for the search, optimisation
and regression of multivariable functions.

Appendix A

Formal Agda Framework

This thesis’ primary contribution is that the lion’s share of its other contributions are
fully-formalised in the programming language and proof assistant Agda.

The formalisation is available for viewing on this thesis’ GitHub repository. We
outline the formalisation’s files (divided into seven directories) below.

Chapter2

Finite.lagda.md contains the functions we require for finite linearly ordered types.

Vectors.lagda.md contains some additional functions we require for vectors.

Sequences.lagda.md contains the functions we require for sequences.

Chapter3

ClosenessSpaces.lagda.md contains the formalisation of closeness spaces and their
related lemmas, as described in Section 3.2.

ClosenessSpaces-Examples.lagda.md contains the examples of closeness spaces, as
described in Section 3.2.5.

SearchableTypes.lagda.md contains the formalisation of searchable and uniformly con-
tinuously searchable types, as described in Sections 3.1 and 3.3.

SearchableTypes-Examples.lagda.md contains the examples of uniformly continuously
searchable types, as described in Section 3.3.2. The formalised Tychonoff theorem for
uniformly continuously searchable types (Theorem 3.3.14) is at the bottom of this file.

https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter2/Finite.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter2/Vectors.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter2/Sequences.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter3/ClosenessSpaces.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter3/ClosenessSpaces-Examples.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter3/SearchableTypes.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter3/SearchableTypes-Examples.lagda.md

176

PredicateEquality.lagda.md contains a small number of lemmas for proving the equality
of uniformly continuous and decidable predicates. These lemmas are used in the
formalisations of Lemma 3.3.9 and Theorem 3.3.14.

Chapter4

ApproxOrder.lagda.md contains the formalisation of approximate linear preorders, as
described in Section 4.1.1.

ApproxOrder-Examples.lagda.md contains the examples of approximate linear pre-
orders, as described in Section 4.1.1.

GlobalOptimisation.lagda.md contains the formalisation of our generalised, type-theoretic
variant of global optimisation, as described in Section 4.1.2. The global optimisation
algorithm Theorem 4.1.26 is at the bottom of this file.

ParametricRegression.lagda.md contains the formalisation of our generalised, type-
theoretic variant of parametric regression, as described in Section 4.2. The parametric
regression convergence theorems Theorems 4.2.6, 4.2.9 and 4.2.10 are at the bottom of
this file.

Chapter5

IntervalObject.lagda.md contains the formalisation of the Escardó-Simpson interval
object, as described in Section 5.1.

IntervalObjectApproximation.lagda.md contains the formal verification of finite ap-
proximations for the interval object, as described in Section 5.1.

SignedDigit.lagda.md contains the formalisation of the ternary signed-digit encodings
and their arithmetic, as described in Section 5.2.

SignedDigitIntervalObject.lagda.md contains the formal verification of the ternary
signed-digit encodings using the interval object, as described in Section 5.2.

BoehmVerification.lagda.md contains our current formalised work on the ternary
Boehm encodings, as described in Section 5.3.

BelowAndAbove.lagda.md contains a variety of lemmas concerning the structure of
the ternary Boehm encodings.

Chapter6

SequenceContinuity.lagda.md contains the definitions and proofs concerning the spe-
cialised form of uniform continuity for sequence functions, as seen in Section 6.1.1.

https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter3/PredicateEquality.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter4/ApproxOrder.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter4/ApproxOrder-Examples.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter4/GlobalOptimisation.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter4/ParametricRegression.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter5/IntervalObject.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter5/IntervalObjectApproximation.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter5/SignedDigit.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter5/SignedDigitIntervalObject.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter5/BoehmVerification.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter5/BelowAndAbove.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter6/SequenceContinuity.lagda.md

177 Appendix A. Formal Agda Framework

SignedDigitSearch.lagda.md contains the corollaries required to instantiate our frame-
work for search, optimisation and regression on the ternary signed-digit encodings, as
described in Section 6.1.1.

SignedDigitOrder.lagda.md contains the formalisation of the real-order preserving
orders, which allows us to correctly order the reals using the ternary signed-digit
encodings, as seen in Section 6.1.1.

SignedDigitContinuity.lagda.md contains the proofs that the functions we have defined
for exact real arithmetic on the ternary signed-digit encodings are uniformly continuous,
as described in Section 6.1.1.

SignedDigitExamples.lagda.md contains the examples of our formal framework for
search, optimisation and regression applied to the ternary signed-digits, as described in
Section 6.1.3.

Main.lagda.md is a file that can be compiled into a Haskell file in order to run the
examples, should the reader desire. Before compiling, ensure that the example being
computed (from SignedDigitExamples.lagda.md) is the one desired at the correct level
of precision; then, run agda --compile TWA/Thesis/Chapter6/Main.lagda.md in the
source folder of the branch. The code can then be ran by performing
ghci MAlonzo/Code/TWA/Thesis/Chapter6/Main.hs. Once ghci has loaded, type main
and hit enter to run the example.

https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter6/SignedDigitSearch.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter6/SignedDigitOrder.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter6/SignedDigitContinuity.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter6/SignedDigitExamples.lagda.md
https://github.com/tnttodda/TypeTopology/tree/thesis/source/TWA/Thesis/Chapter6/Main.lagda.md

Appendix B

Java Implementation of Ternary

Boehm Encodings

The examples of search, optimisation and regression performed on ternary Boehm
encodings given in Section 6.2 are implemented in a small Java library written by
Andrew Sneap and Todd Waugh Ambridge.

Note that we do not utilise any of Boehm’s code (from [Boe99]), instead re-implementing
both the representation — due to our modifications (detailed in Section 5.3) — and the ba-
sic arithmetic functions — in order to align with the machinery detailed in Section 7.2.2,
which allows the function’s modulus of continuity to be easily extracted.

The implementation is available for viewing on this thesis’ GitHub repository.
We outline the implementation’s files (divided into seven packages) below, using the
type-theoretic parlance of the rest of the thesis.

DyadicsAndIntervals

Dyadic.java implements dyadic rational numbersZ[1/2] as pairsZ×Z, where (𝑘, 𝑖) : Z×Z

represents the dyadic 𝑘
2𝑖 . The structural operations defined in Section 5.3 are extended

here to the dyadics. Arithmetic and comparison operations on dyadics are also defined
here.

DyadicIntervalCode.java implements dyadic interval codes Z3 (Definition 5.3.11), where
(𝑘, 𝑐, 𝑝) : Z3 represents the dyadic interval [𝑘2𝑝 ,

𝑐
2𝑝]. We can yield the dyadic endpoints of

a dyadic interval code. Again, we extend the structural operations defined in Section 5.3

https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java
https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/DyadicsAndIntervals/Dyadic.java
https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/DyadicsAndIntervals/DyadicIntervalCode.java

179 Appendix B. Java Implementation of Ternary Boehm Encodings

to these interval codes. Arithmetic and comparison operations on dyadic interval codes
are also defined here.

TernaryIntervalCode.java implements ternary interval codes Z2 (Definition 5.3.13),
where (𝑘, 𝑝) : Z3 represents the dyadic interval [𝑘2𝑝 ,

𝑘+2
2𝑝]. We can convert any ternary

interval code into a dyadic interval code. Again, we extend the structural operations
defined in Section 5.3 to these interval codes. Comparison operations on ternary interval
codes are also defined here. Functions which ‘discretise’ the interval (i.e. convert it into
the intervals directly below it on a higher-precision level) are implemented here.

TernaryBoehm

TBEncoding.java implements ternary Boehm encodings T (Definition 5.3.3). We can
convert dyadics, integers and ternary interval codes into ternary Boehm encodings. A
ternary Boehm encoding can be converted into a sequence of dyadic interval codes or
ternary interval codes. Arithmetic on the ternary Boehm encodings is defined by the
application of particular CFunction objects in this file.

FunctionsAndPredicates

CFunction.java implements multivariable continuous functions 𝑓 : T𝑛 → T on the
ternary Boehm encodings. A function is constructed by giving its interval approximator
(Z3)𝑛 → Z3 on ternary interval codes, as well as information about the continuity of that
function. This interval approximated is ‘completed’ to a function on the ternary Boehm
encodings, in themanner described in Section 7.2.2. This class contains a large number of
static methods that define functions such as negation, addition andmultiplication. There
are also a variety of methods for the composition of functions, which automatically
computes the new interval approximators and continuity information.

UCUnaryPredicate.java implements uniformly continuous unary predicates 𝑝 : T → Ω.
A predicate is constructed by giving a function TBEncoding -> Boolean and by giving
the predicate’s modulus of uniform continuity. There are also static methods for some
simple predicates, such as 𝑝 (𝑥) := 𝑥 ≤𝜖 𝑦 for a given 𝑦 : T. Importantly, there is a
constructor for building predicates 𝑝 (𝑥) := 𝑝′(𝑓 (𝑥)) defined by functions 𝑓 — this
automatically works out the modulus of uniform continuity of the resulting predicate
by the moduli of uniform continuity of the underlying function and predicate.

UCBinaryPredicate.java implements uniformly continuous binary predicates.

https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/DyadicsAndIntervals/TernaryIntervalCode.java
https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/TernaryBoehm/TBEncoding.java
https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/FunctionsAndPredicates/CFunction.java
https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/FunctionsAndPredicates/UCUnaryPredicate.java
https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/FunctionsAndPredicates/UCBinaryPredicate.java

180

Search

SearchUnary.java implements a uniformly continuous search algorithm for unary
predicates. The constructor takes a unary predicate and a ternary interval code to
search for an answer, while the function search() actually performs the algorithm.
The algorithm sets the bounds on the search candidates on the precision-level required
(i.e. the level given by the modulus of uniform continuity) and then tests each candidate
in numerical order. As soon as an answer is found, it is returned by the algorithm, and
if no answer is found then the algorithm exhausts the space and states that no answer
was found.

SearchBinary.java implements the uniformly continuous search algorithm for binary
predicates.

Optimisation

Optimisation.java implements the global optimisation procedure (Theorem 4.1.26) for
unary functions 𝑓 : T → T. The constructor takes a function, a requested output
precision 𝜖 : Z and a ternary interval code to search for an 𝜖-global minimum. The
input precision 𝛿 required to achieve the requested output precision is computed
and the 𝛿-net of search candidates is generated. Then, each candidate is checked in
numerical order until the net is completely exhausted. The algorithm keeps track of
the current 𝜖-minimum argument to the function. Once the net is exhausted, it returns
this 𝜖-minimum argument.

OptimisationHeuristic.java implements a branch-and-bound (Section 6.2.3) global
optimisation procedure for unary functions 𝑓 : T → T. This differs to the usual algo-
rithm in that the a 𝛿-net is not computed in advance of the optimisation. Instead, the
initial candidate ternary interval code is branched into the two ternary interval codes
below it, and their output bounds for the function are computed using the interval
approximator and continuity information held in the CFunction object. This process
repeats, and any candidate interval that has a lower output bound greater than another
candidate interval’s upper output bound is discarded, as this candidate can clearly not
contain a minimum.

Regression

Regression.java implements regression algorithms (Section 4.2) via the above optimi-
sation and search algorithms. The construction of a regression algorithm requires an
oracle function, model function and list of predictor observations. The loss function
used is defined as averageModelOracleDistance(), which sums the distance between

https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/Search/SearchUnary.java
https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/Search/SearchBinary.java
https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/Optimisation/Optimisation.java
https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/Optimisation/OptimisationHeuristic.java
https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/Regression/Regression.java

181 Appendix B. Java Implementation of Ternary Boehm Encodings

the two functions’ outcomes on the observations.

Examples

Examples.java contains the examples of search, optimisation and regression that we
described in Section 6.2.2.

https://github.com/tnttodda/tnttodda.github.io/tree/master/thesis/java/ExamplesAndMain/Examples.java

Bibliography

[AM00] Götz Alefeld and Günter Mayer.
“Interval Analysis: Theory and Applications”. In: Journal of
Computational and Applied Mathematics 121.1 (2000), pp. 421–464.
issn: 0377-0427.
doi: https://doi.org/10.1016/S0377-0427(00)00342-3 (cit. on p. 1).

[Amb20a] Todd Waugh Ambridge. EscardoSimpson-LICS2001. TypeTopology. 2020.
url: https://www.cs.bham.ac.uk/~mhe/TypeTopology/TWA.Escardo-
Simpson-LICS2001.html (cit. on p. 89).

[Amb20b] Todd Waugh Ambridge. Formalising the Escardó-Simpson Closed Interval
Axiomatisation in Univalent Type Theory. Talk given at the Workshop on
Homotopy Type Theory/ Univalent Foundations 2020. 2020.
url: https://hott-uf.github.io/2020/HoTTUF_2020_paper_17.pdf
(cit. on p. 89).

[Amb20c] Todd Waugh Ambridge. SIP-IntervalObject. TypeTopology. 2020.
url: https://www.cs.bham.ac.uk/~mhe/TypeTopology/TWA.SIP-
IntervalObject.html (cit. on p. 98).

[ANST20] Benedikt Ahrens, Paige Randall North, Michael Shulman, and
Dimitris Tsementzis. “A Higher Structure Identity Principle”.
In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in
Computer Science. LICS ’20.
Saarbrücken, Germany: Association for Computing Machinery, 2020,
pp. 53–66. isbn: 9781450371049. doi: 10.1145/3373718.3394755.
url: https://doi.org/10.1145/3373718.3394755 (cit. on p. 98).

[ANST21] Benedikt Ahrens, Paige Randall North, Michael Shulman, and
Dimitris Tsementzis. “The univalence principle”.
In: arXiv preprint arXiv:2102.06275 (2021) (cit. on p. 21).

https://doi.org/https://doi.org/10.1016/S0377-0427(00)00342-3
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TWA.Escardo-Simpson-LICS2001.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TWA.Escardo-Simpson-LICS2001.html
https://hott-uf.github.io/2020/HoTTUF_2020_paper_17.pdf
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TWA.SIP-IntervalObject.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TWA.SIP-IntervalObject.html
https://doi.org/10.1145/3373718.3394755
https://doi.org/10.1145/3373718.3394755

183 Bibliography

[Bau08] Andrej Bauer. “Efficient computation with Dedekind reals”.
In: Fifth International Conference on Computability and Complexity in
Analysis, Hagen, Germany. Citeseer. 2008 (cit. on p. 89).

[BB12] Errett Bishop and Douglas Bridges. Constructive Analysis. Vol. 279.
Springer-Verlag, 2012 (cit. on p. 2).

[BCDE23] Marc Bezem, Thierry Coquand, Peter Dybjer, and Martín Hötzel Escardó.
“Type Theory with Explicit Universe Polymorphism”. In: 28th
International Conference on Types for Proofs and Programs (TYPES 2022).
Vol. 269. Leibniz International Proceedings in Informatics (LIPIcs).
Dagstuhl, Germany: Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2023, 13:1–13:16. isbn: 978-3-95977-285-3 (cit. on p. 7).

[BCRO86] Hans-Juergen Boehm, Robert Cartwright, Mark Riggle, and
Michael J. O’Donnell.
“Exact Real Arithmetic: A Case Study in Higher Order Programming”.
In: Proceedings of the 1986 ACM Conference on LISP and Functional
Programming. LFP 86. Cambridge, Massachusetts, USA: ACM, 1986,
pp. 162–173. doi: 10.1145/319838.319860 (cit. on pp. 1, 103).

[BDN09] Ana Bove, Peter Dybjer, and Ulf Norell. “A Brief Overview of Agda – A
Functional Language with Dependent Types”. In: Theorem Proving in
Higher Order Logics: 22nd International Conference Proceedings 22. 2009,
pp. 73–78 (cit. on pp. 2, 5).

[Ber09] Ulrich Berger. “From Coinductive Proofs to Exact Real Arithmetic”.
In: Computer Science Logic: 23rd international Workshop, 18th Annual
Conference of the EACSL Proceedings 23. Springer. 2009, pp. 132–146
(cit. on pp. 2, 104).

[Ber90] Ulrich Berger. “Totale Objekte und Mengen in der Bereichstheorie”.
PhD thesis. Uitgever niet vastgesteld, 1990 (cit. on pp. 2, 31).

[BM07] Stephen Boyd and Jacob Mattingley. “Branch and Bound Methods”.
In: Lecture Notes (Contrained Optimization II), Stanford University 2006
(2007), p. 07 (cit. on p. 162).

[Boe17] Hans-Juergen Boehm.
“Small-Data Computing: Correct Calculator Arithmetic”.
In: Communications of the ACM 60.8 (2017), pp. 44–49.
doi: 10.1145/2911981 (cit. on pp. 1, 117).

https://doi.org/10.1145/319838.319860
https://doi.org/10.1145/2911981

Bibliography 184

[Boe20] Hans-Juergen Boehm. “Towards an API for the Real Numbers”.
In: Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI. ACM, 2020,
pp. 562–576 (cit. on pp. 3, 88, 117, 125).

[Boe99] Hans-Juergen Boehm. Constructive Reals Calculator. 1999.
url: https://hboehm.info/new_crcalc/CRCalc.html
(cit. on pp. 3, 117, 178).

[Boo20] Auke Bart Booij. “Analysis in Univalent Type Theory”.
PhD thesis. University of Birmingham, 2020 (cit. on p. 88).

[BPRS18] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul,
and Jeffrey Mark Siskind.
“Automatic Differentiation in Machine Learning: A Survey”.
In: Journal of Marchine Learning Research 18 (2018), pp. 1–43
(cit. on p. 70).

[CD06] Alberto Ciaffaglione and Pietro Di Gianantonio.
“A Certified, Corecursive Implementation of Exact Real Numbers”.
In: Theoretical Computer Science 351.1 (2006), pp. 39–51 (cit. on p. 2).

[Chu40] Alonzo Church. “A Formulation of the Simple Theory of Types”.
In: The Journal of Symbolic Logic 5.2 (1940), pp. 56–68 (cit. on p. 6).

[Cla99] Jens Clausen. “Branch and bound algorithms - principles and examples”.
In: Department of Computer Science, University of Copenhagen (1999),
pp. 1–30 (cit. on p. 162).

[CM02] Vladimir Cherkassky and Yunqian Ma.
“Selecting of the Loss Function for Robust Linear Regression”.
In: Neural computation (2002) (cit. on p. 69).

[Di 93] Pietro Di Gianantonio.
“A Functional Approach to Computability on Real Numbers”. In:
Bulletin-European Association For Theoretical Computer Science 50 (1993).
url: https://users.dimi.uniud.it/~pietro.digianantonio/papers/
(cit. on pp. 2, 88, 104).

[dJon23] Tom de Jong.
Domain Theory in Constructive and Predicative Univalent Foundations.
2023. arXiv: 2301.12405 [cs.LO] (cit. on p. 5).

https://hboehm.info/new_crcalc/CRCalc.html
https://users.dimi.uniud.it/~pietro.digianantonio/papers/
https://arxiv.org/abs/2301.12405

185 Bibliography

[ES01] Martín Hötzel Escardó and Alex K Simpson.
“A Universal Characterization of the Closed Euclidean Interval”.
In: Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.
IEEE. 2001, pp. 115–125. doi: 10.1109/LICS.2001.932488
(cit. on pp. 2, 89, 94, 97).

[ES16] Martín Hötzel Escardó and Thomas Streicher.
“The intrinsic topology of Martin-Löf universes”.
In: Annals of Pure and Applied Logic 167.9 (2016). Fourth Workshop on
Formal Topology (4WFTop), pp. 794–805. issn: 0168-0072.
doi: https://doi.org/10.1016/j.apal.2016.04.010. url: https:
//www.sciencedirect.com/science/article/pii/S0168007216300409

(cit. on p. 74).

[Esc08] Martín Hötzel Escardó. “Exhaustible Sets in Higher-Type Computation”.
In: Logical methods in computer science 4 (2008) (cit. on pp. 2, 31, 36, 65).

[Esc11a] Martín Hötzel Escardó. CompactTypes. TypeTopology. 2011.
url: https://www.cs.bham.ac.uk/~mhe/TypeTopology/TypeTopology.
CompactTypes.html (cit. on pp. 2, 31).

[Esc11b] Martín Hötzel Escardó. Real Number Computation in Haskell with Real
Numbers Represented as Infinite Sequences of Digits. 2011.
url: https://www.cs.bham.ac.uk/~mhe/papers/fun2011.lhs
(cit. on pp. 2, 31, 104, 108, 113, 115, 145).

[Esc12] Martín Hötzel Escardó.
The Topology of Seemingly Impossible Functional Programs.
POPL TutorialFest. 2012. url: https:
//www.cs.bham.ac.uk/~mhe/.talks/popl2012/escardo-popl2012.pdf

(cit. on p. 31).

[Esc13a] Martín Hötzel Escardó. “Algorithmic Solution of Higher Type Equations”.
In: Journral of Logic and Computation 23.4 (2013), pp. 839–854.
doi: 10.1093/logcom/exr048 (cit. on p. 31).

[Esc13b] Martín Hötzel Escardó. Universes. TypeTopology. 2013. url: https:
//www.cs.bham.ac.uk/~mhe/TypeTopology/MLTT.Universes.html

(cit. on p. 8).

[Esc19] Martín Hötzel Escardó.
“Introduction to Univalent Foundations of Mathematics with Agda”.

https://doi.org/10.1109/LICS.2001.932488
https://doi.org/https://doi.org/10.1016/j.apal.2016.04.010
https://www.sciencedirect.com/science/article/pii/S0168007216300409
https://www.sciencedirect.com/science/article/pii/S0168007216300409
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TypeTopology.CompactTypes.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/TypeTopology.CompactTypes.html
https://www.cs.bham.ac.uk/~mhe/papers/fun2011.lhs
https://www.cs.bham.ac.uk/~mhe/.talks/popl2012/escardo-popl2012.pdf
https://www.cs.bham.ac.uk/~mhe/.talks/popl2012/escardo-popl2012.pdf
https://doi.org/10.1093/logcom/exr048
https://www.cs.bham.ac.uk/~mhe/TypeTopology/MLTT.Universes.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/MLTT.Universes.html

Bibliography 186

In: CoRR abs/1911.00580 (2019). arXiv: 1911.00580.
url: http://arxiv.org/abs/1911.00580 (cit. on pp. 8, 13).

[Esc20] Martín Hötzel Escardó. SIP. TypeTopology. 2020.
url: https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.SIP.html
(cit. on p. 98).

[Esc21] Martín Hötzel Escardó. Kuratowski. TypeTopology. 2021. url:
https://www.cs.bham.ac.uk/~mhe/agda-new/Fin.Kuratowski.html

(cit. on p. 26).

[Esc23] et al. Escardó Martín Hötzel. TypeTopology. Various New Theorems in
Univalent Mathematics Written in Agda. 2023.
url: https://www.cs.bham.ac.uk/~mhe/TypeTopology/
(cit. on pp. 2, 4–5).

[Esc98] Martín Hötzel Escardó. “Effective and Sequential Definition by Cases on
the Reals via Infinite Signed-Digit Numerals”.
In: Electronic Notes in Theoretical Computer Science 13 (1998), pp. 53–68
(cit. on p. 135).

[FG09] Christodoulos A Floudas and Chrysanthos E Gounaris.
“A review of Recent Advances in Global Optimization”.
In: Journal of Global Optimization 45 (2009), pp. 3–38 (cit. on p. 81).

[GA21] Dan R Ghica and Todd Waugh Ambridge.
“Global Optimisation with Constructive Reals”. In: 2021 36th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE. 2021,
pp. 1–13 (cit. on pp. 82, 89, 133).

[Gam09] Nicola Gambino. Lectures on Dependent Type Theory. 2009.
url: https://www.cs.le.ac.uk/events/mgs2009/courses/gambino/
lecturenotes-gambino.pdf (cit. on p. 7).

[Gam11] Nicola Gambino. “The Univalence Axiom and Function Extensionality”.
In: The Oberwolfach Mini-Workshop on the Homotopy Interpretation of
Constructive Type Theory (2011). Notes taken by Chris Kapulkin and Peter
LeFanu Lumsdaine. url: https:
//www.math.uwo.ca/faculty/kapulkin/notes/ua_implies_fe.pdf

(cit. on p. 22).

https://arxiv.org/abs/1911.00580
http://arxiv.org/abs/1911.00580
https://www.cs.bham.ac.uk/~mhe/TypeTopology/UF.SIP.html
https://www.cs.bham.ac.uk/~mhe/agda-new/Fin.Kuratowski.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/
https://www.cs.le.ac.uk/events/mgs2009/courses/gambino/lecturenotes-gambino.pdf
https://www.cs.le.ac.uk/events/mgs2009/courses/gambino/lecturenotes-gambino.pdf
https://www.math.uwo.ca/faculty/kapulkin/notes/ua_implies_fe.pdf
https://www.math.uwo.ca/faculty/kapulkin/notes/ua_implies_fe.pdf

187 Bibliography

[GNSW07] Herman Guevers, Milad Niqui, Bas Spitters, and Freek Wiedijk.
“Constructive analysis, types and exact real numbers”.
In: Mathematical Structures in Computer Science 17.1 (2007), pp. 3–36.
doi: 10.1017/S0960129506005834 (cit. on p. 88).

[Gol91] David Goldberg. “What Every Computer Scientist Should Know about
Floating-Point Arithmetic”.
In: ACM computing surveys (CSUR) 23.1 (1991), pp. 5–48 (cit. on p. 1).

[Imp15] Agda Implementors. Universe Levels. Agda documentation. 2015.
url: https://agda.readthedocs.io/en/latest/language/universe-
levels.html (cit. on p. 8).

[JR21] Kai Jia and Martin Rinard.
“Exploiting Verified Neural Networks via Floating Point Numerical Error”.
In: Static Analysis: 28th International Symposium Proceedings.
Berlin, Heidelberg: Springer-Verlag, 2021, pp. 191–205.
isbn: 978-3-030-88805-3. doi: 10.1007/978-3-030-88806-0_9.
url: https://doi.org/10.1007/978-3-030-88806-0_9 (cit. on p. 1).

[Kap01] Irving Kaplansky. Set Theory and Metric Spaces.
Allyn and Bacon Series in Advanced Mathematics.
Boston: AMS Chelsea Publishing, 2001 (cit. on p. 38).

[Kea92] R. B. Kearfott. “An Interval Branch and Bound Algorithm for Bound
Constrained Optimization Problems”.
In: Journal of Global Optimization 2 (1992), pp. 259–280.
url: https://doi.org/10.1007/BF00171829 (cit. on pp. 71, 163).

[KK11] Karin Usadi Katz and Mikhail G Katz.
“Meaning in Classical Mathematics: Is it at Odds with Intuitionism?”
In: arXiv preprint arXiv:1110.5456 (2011) (cit. on p. 71).

[Lib08] Leo Liberti. “Introduction to Global Optimization”.
In: Ecole Polytechnique (2008) (cit. on pp. 1–2).

[Mar75] Per Martin-Löf. “An Intuitionistic Theory of Types: Predicative Part”.
In: Studies in Logic and the Foundations of Mathematics. Vol. 80.
Elsevier, 1975, pp. 73–118.
doi: https://doi.org/10.1016/S0049-237X(08)71945-1
(cit. on pp. 5–7).

https://doi.org/10.1017/S0960129506005834
https://agda.readthedocs.io/en/latest/language/universe-levels.html
https://agda.readthedocs.io/en/latest/language/universe-levels.html
https://doi.org/10.1007/978-3-030-88806-0_9
https://doi.org/10.1007/978-3-030-88806-0_9
https://doi.org/10.1007/BF00171829
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71945-1

Bibliography 188

[MS84] Per Martin-Löf and Giovanni Sambin. Intuitionistic Type Theory. Vol. 9.
Bibliopolis Naples, 1984.
url: https://archive-pml.github.io/martin-
lof/pdfs/Bibliopolis-Book-retypeset-1984.pdf (cit. on pp. 7, 13).

[NPS90] Bengt Nordström, Kent Petersson, and Jan M Smith.
Programming in Martin-Löf’s Type Theory. Vol. 200.
Oxford University Press, Oxford, 1990 (cit. on pp. 2, 37).

[NTvD22] Lam M Nguyen, Trang H Tran, and Marten van Dijk. “New Perspective
on the Global Convergence of Finite-Sum Optimization”. In: (2022).
url: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
(cit. on p. 70).

[Pie02] Benjamin C Pierce. Types and Programming Languages. MIT Press, 2002
(cit. on p. 6).

[Pin00] Allan Pinkus. “Weierstrass and Approximation Theory”.
In: Journal of Approximation Theory 107.1 (2000), pp. 1–66.
doi: https://doi.org/10.1006/jath.2000.3508 (cit. on pp. 84–85).

[Piy72] SA Piyavskii.
“An Algorithm for Finding the Absolute Extremum of a Function”.
In: USSR Computational Mathematics and Mathematical Physics 12.4
(1972), pp. 57–67.
url: https://doi.org/10.1016/0041-5553(72)90115-2 (cit. on p. 71).

[Plu98] Dave Plume. A Calculator for Exact Real Number Computation. 1998
(cit. on pp. 2, 104).

[Rud64] Walter Rudin. Principles of Mathematical Analysis. Vol. 3.
McGraw-hill New York, 1964 (cit. on p. 38).

[Scr07] Adam Scriven.
Functional algorithms for Exact Real Integration over Invariant Measures.
Master’s thesis, Department of Computer Science, University of
Birmingham. 2007 (cit. on p. 113).

[Shu12] Mike Shulman. Propositions as Some Types and Algebraic Nonalgebraicity.
https://golem.ph.utexas.edu/category/2012/01/propositions_as_

some_types_and.html. 2012 (cit. on p. 16).

https://archive-pml.github.io/martin-lof/pdfs/Bibliopolis-Book-retypeset-1984.pdf
https://archive-pml.github.io/martin-lof/pdfs/Bibliopolis-Book-retypeset-1984.pdf
http://arxiv.org/licenses/nonexclusive-distrib/1.0/
https://doi.org/https://doi.org/10.1006/jath.2000.3508
https://doi.org/10.1016/0041-5553(72)90115-2
https://golem.ph.utexas.edu/category/2012/01/propositions_as_some_types_and.html
https://golem.ph.utexas.edu/category/2012/01/propositions_as_some_types_and.html

189 Bibliography

[Shu18] Michael Shulman.
“Brouwer’s fixed-point theorem in real-cohesive homotopy type theory”.
In: Mathematical Structures in Computer Science 28.6 (2018), pp. 856–941.
doi: 10.1017/S0960129517000147 (cit. on pp. 71, 89).

[Sim98] Alex K Simpson.
“Lazy Functional Algorithms for Exact Real Functionals”.
In: Mathematical Foundations of Computer Science: 23rd International
Symposium. Proceedings 23. Springer. 1998, pp. 456–464
(cit. on pp. 1–2, 31, 71).

[Sne21] Andrew Sneap. DedekindReals. TypeTopology. 2021. url: https://www.
cs.bham.ac.uk/~mhe/TypeTopology/DedekindReals.index.html

(cit. on p. 121).

[Str93] Thomas Streicher. “Investigations into intensional type theory”.
PhD thesis. 1993 (cit. on p. 13).

[Sut09] W. A. (Wilson Alexander) Sutherland.
Introduction to metric and topological spaces / Wilson A Sutherland. eng.
2009 (cit. on p. 46).

[TD88] Anne Sjerp Troelstra and D. Dalen.
Constructivism in Mathematics: An Introduction.
Studies in logic and the foundations of mathematics ; v. 121, 123 v. 1. 1988.
url: https://books.google.co.uk/books?id=EubuAAAAMAAJ
(cit. on pp. 35, 71, 81).

[Tre13] William F Trench. Introduction to Real Analysis. eng.
Place of publication not identified: A.T. Still University, 2013.
isbn: 0130457868 (cit. on pp. 89, 91).

[Tur37] Alan Mathison Turing. “On computable Numbers, with an Application to
the Entscheidungs Problem”.
In: Proceedings of the London Mathematical Society 2.1 (1937), pp. 230–265
(cit. on p. 1).

[Uni13] The Univalent Foundations Program.
Homotopy Type Theory: Univalent Foundations of Mathematics. Institute
for Advanced Study: https://homotopytypetheory.org/book, 2013
(cit. on pp. 5–7, 20, 25, 88).

https://doi.org/10.1017/S0960129517000147
https://www.cs.bham.ac.uk/~mhe/TypeTopology/DedekindReals.index.html
https://www.cs.bham.ac.uk/~mhe/TypeTopology/DedekindReals.index.html
https://books.google.co.uk/books?id=EubuAAAAMAAJ
https://homotopytypetheory.org/book

Bibliography 190

[VAG+] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al.
UniMath — a computer-checked library of univalent mathematics.
available at http://unimath.org. doi: 10.5281/zenodo.8427604.
url: https://doi.org/10.5281/zenodo.8427604 (cit. on p. 6).

[WCB+18] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and
Kailash Gopalakrishnan.
“Training Deep Neural Networks with 8-bit Floating Point Numbers”.
In: Advances in Neural Information Processing Systems. Ed. by S. Bengio,
H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett.
Vol. 31. Curran Associates, Inc., 2018.
url: https://proceedings.neurips.cc/paper_files/paper/2018/
file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf (cit. on p. 1).

[WK19] Shibo Wang and Pankaj Kanwar.
BFloat16: The secret to high performance on Cloud TPUs. 2019.
url: https://cloud.google.com/blog/products/ai-machine-
learning/bfloat16-the-secret-to-high-performance-on-cloud-

tpus (cit. on p. 1).

[WR27] Alfred North Whitehead and Bertrand Arthur William Russell.
Principia Mathematica; 2nd ed. Cambridge: Cambridge Univ. Press, 1927.
url: https://cds.cern.ch/record/268025 (cit. on p. 6).

[YS09] Xin Yan and Xiaogang Su.
Linear Regression Analysis: Theory and Computing. World Scientific. 2009
(cit. on pp. 1–2, 60, 82).

http://unimath.org
https://doi.org/10.5281/zenodo.8427604
https://doi.org/10.5281/zenodo.8427604
https://proceedings.neurips.cc/paper_files/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus
https://cds.cern.ch/record/268025

	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Thesis outline and key contributions
	Reading the formal proofs of this thesis

	Constructive Univalent Type Theory via Agda
	A brief introduction to type theory
	Agda notation for constructive type theory
	Type universes
	Function and Π-types
	Natural number and integer types
	Unit, empty and negated types
	Disjoint union of types
	Binary product and Σ-types
	Identity types

	Univalent mathematics in TypeTopology
	Function extensionality
	Propositions and unique proofs
	Propositional extensionality
	Type equivalences
	Univalence
	Propositional truncation
	Homotopy sets and beyond

	Fundamental concepts for this thesis
	Decidability and discreteness
	Finite types
	Vectors and sequences

	Searchability and Continuity
	Searchable Types
	Background and motivation
	Searchable types in MLTT
	Searching finite types
	Can we search infinite types?

	Closeness Spaces
	Motivation via metric spaces
	Extended naturals and definition of closeness spaces
	Closeness relations and continuity
	Totally bounded closeness spaces
	Examples of (totally bounded) closeness spaces
	Pseudocloseness spaces

	Searching infinite types
	Uniformly continuously searchable closeness spaces
	Examples of uniformly continuously searchable closeness spaces
	Tychonoff theorem for uniformly continuously searchable spaces

	Generalised Optimisation and Regression
	Global Optimisation
	Orders and approximate orders
	Generalised global optimisation

	Parametric Regression
	Generalised parametric regression
	Convergence theorems for parametric regression

	Real Numbers
	Escardó-Simpson interval object
	Cancellative midpoint algebras
	Iteration property
	Finite approximations
	Bipointed convex bodies
	Arithmetic on [-1,1] by assuming an interval object

	Verified ternary signed-digit encodings
	Background and definition in our type theory
	Representation via the interval object
	Exact real arithmetic

	Ternary Boehm encodings
	Definition in our type theory
	Verification of Boehm encodings via Dedekind reals
	Exact real arithmetic
	Representing compact intervals

	Exact Real Search
	Exact Real Search using signed-digit encodings
	Suitability for search, optimisation and regression
	Uniformly continuous exact real arithmetic
	Agda-extracted examples

	Exact Real Search using ternary Boehm encodings
	Suitability for search, optimisation and regression
	Java-implemented examples
	Java-implemented branch-and-bound examples

	Conclusion
	Summary of contributions
	Further work
	Verification of the order and closeness relations on ternary-signed digit encodings
	Verification of arithmetic on ternary Boehm encodings
	Towards practical implementations of exact real search

	Formal Agda Framework
	Java Implementation of Ternary Boehm Encodings
	Bibliography

