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Abstract

Motivated by the World Wide Web Atlas of Finite Group Representations and the re-

cent classification of low-dimensional representations of quasisimple groups in cross-

characteristic fields by Hiss and Malle, we construct with a computer over 650 rep-

resentations of finite simple groups. Explicit matrices for these representations are

available on the Internet and are included on an attached CD-ROM. Our main tool

is a GAP program for decomposing permutation modules. It uses reduction modulo

various primes and rational reconstruction to give an acceptable performance.

In addition, we define standard generators for the groups under consideration, and

exhibit black box algorithms for finding standard generators and checking whether

given elements of the group are standard generators.
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Notation and Conventions

We follow ATLAS [11] conventions for naming groups, conjugacy classes, characters

and representations. Composition series for groups are written ‘from the bottom up’.

Names of computer programs and systems are set in sans-serif. Computer output and

listings are monospaced .

β(n), γ(n) element orders involved in defining standard generators of An:

see (3.4.2)

Γ+
n , Γ−n sets of element orders used to distinguish (n − 2)-cycles from

other elements of order n− 2 in An: see section 3.5.2

∆, ∆i orbits of certain centralizers used when defining standard gener-

ators: see section 6.2

κ(n) number of semi-standard pairs

Λi an orbit of G on Ω×Ω

Λi(α) {β ∈ Ω : (α, β) ∈ Λi}

ξ(C1, C2, C3) structure constant for classes C1, C2, C3

ρ, σ representations of G

χ a character of G

Ω a set on which G acts

Ω the permutation module for the action of G on Ω

ω0 a distinguished point in Ω



(a1, a2, . . . an)i the value ai, where i is considered modulo n

(̂ ) the stretching operator: see equation (8.5.1)

〈〈· · ·〉〉 a semi-presentation: see Definition 1.13)

A the centralizer algebra of Ω: see section 8.2

B left regular representation of A : see section 8.4

C a conjugacy class of G

ccl(G) the set of all conjugacy classes of G

denom(x) the denominator of x ∈ Q

G, H, K, L finite groups

g, h elements of G

gh h−1gh; g conjugated by h

Irr(G) the set of all irreducible characters of G

L , L0 a set of genera from the Hiss-Malle classification: see section 0.2

L G, L G
0 set of groups associated with L , L0 respectively

num(x) the numerator of x ∈ Q

O ‘big-Oh’ (for orders of magnitude)

oi the required order for wi(x, y)

p a prime, usually the characteristic for G

q a prime power, usually the size of the underlying field of G

Rn conjugacy class of 3-cycles in An

S generating set for G

std the standard relations in a semi-presentation

Tn conjugacy class of transpositions in Sn

T(C ) taming set of a conjugacy class C : see Definition 1.9

wi(x, y) a word in x and y used in a definition of standard generators

x, y elements of G, usually standard generators



Chapter 0

Introduction

0.1 Representations and the Web Atlas

The World Wide Web Atlas of Finite Group Representations [57] is a rapidly expanding

on-line collection of data about the small finite simple groups and related groups. At

present it includes:

• definitions for standard generators;

• black box algorithms for finding standard generators;

• explicit group automorphisms;

• presentations;

• permutation and matrix representations;

• word programs for finding generators of maximal subgroups; and

• conjugacy class representatives.

The Web Atlas (as it is often called) contains information on all the finite simple groups

featured in the ATLAS [11] as well as some larger groups.
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Because of such tools as the MeatAxe [36, 41] of Parker, the Web Atlas has fairly

good coverage of modular representations. However, the Web Atlas has relatively few

representations over fields of characteristic zero. The main reason for this is compu-

tational difficulty. Though Parker’s methods can be adapted to work with Z, Q or its

extensions [37, 23], there are theoretical and computational problems which make the

endeavour a lot more challenging. In a finite field, splitting up a complicated module

can be done providing one is willing to wait long enough. With infinite fields, this is

not guaranteed, and one must find different methods. Added to this difficulty is that

exact computation in Q is slow, and computation in extensions of Q is even slower.

However, once we have a representation over Q, we can reduce it modulo any prime

which does not divide the common denominator. A similar operation is possible even

when dealing with algebraic extensions of Q. Thus a single characteristic zero repre-

sentation leads easily to modular representations in infinitely many characteristics.

In this thesis, we will compute many representations in characteristic zero for in-

clusion in the Web Atlas. Because of the computational difficulties, we will consider

only representations with dimension at most 250. As we will see in the next section, a

complete list of such representations for the finite simple groups is now known.

Frequently we will treat a finite group G of Lie type in the same way as we treat the

sporadic groups. In other words, we often deliberately forget (or downplay) the fact

that G belongs to an infinite family of groups and do not try to use any uniform con-

struction for the representations or generators of G. There is an obvious disadvantage

with this approach if one is interested in all representations of all finite simple groups

but because we are limiting ourselves to representations of dimension at most 250, we

are saved a substantial amount of effort if we treat the groups individually. We can use

whichever method is easiest to find each representation, without having to consider

any other representations. Deligne and Lusztig [14] provide a uniform treatment for

2



the groups of Lie type for those who require it.

0.2 The Hiss-Malle classification

Gerhard Hiss and Gunter Malle have classified absolutely irreducible representations

ρ : G → GLd(k) where G is a finite quasisimple group, the dimension d is at most 250

and the characteristic of the field k differs from the defining characteristic of G if G is a

group of Lie type [21, 22]. From their work, we can easily extract a classification of the

irreducible complex representations of the finite simple groups whose dimension does

not exceed 250. Our discussion in this section will be about this ‘derived’ classification.

We will use this (non-standard) definition:

Definition 0.1 Let ρ : G → GLd(C) be an irreducible faithful complex representation of a

finite group. The genus τ of ρ is a 3-tuple (G, d, i) where G is the group (faithfully) represented

by ρ, d is the dimension of ρ and i ∈ {−, ◦, +} is the Frobenius-Schur indicator of ρ.

In essence, the Hiss-Malle classification consists of a list L of genera, and the fol-

lowing theorem:

Theorem 0.2 (Hiss-Malle) Let ρ be an irreducible complex representation of a finite simple

group whose dimension is at most 250. Let τ be the genus of ρ. Then τ ∈ L .

The set L is defined by an explicit list (Table 3 in [21], corrected in [22]) together

with some generic examples (Table 2 in [21]) of commonly-occurring genera. The

generic examples are:

(G1) The deleted permutation representation of An with genus (An, n− 1, +)

(G2) The Weil representations of L2(q) (q ≡ 1 (mod 4)) with genus (L2(q), (q + 1)/2, +)

(G3) The Weil representations of L2(q) (q ≡ 3 (mod 4)) with genus (L2(q), (q− 1)/2, ◦)
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(G4) The cuspidal representations of L2(q) with genus (L2(q), q− 1, +)

(G5) The Steinberg representation of L2(q) with genus (L2(q), q, +)

(G6) The representations of L2(q) with genus (L2(q), q + 1, +) (induced from linear

representations of a Borel subgroup)

We define L0 to be the set L with the generic examples (G1)-(G6) deleted. In this

thesis, we will concentrate on constructing representations whose genus is in L0 (al-

though we will have something to say about the generic examples too). We miss out

the generic examples for two reasons. Firstly, there exist uniform constructions for

them in the literature, which are sketched in Chapter 7. Secondly, there are very many

of these representations to construct, and there seemed little point in adding (say) the

250-dimensional representation of A251 to the Web Atlas. We define L G (respectively

L G
0 ) to be the set of groups which have one or more genera in L (respectively L0). We

have:

L G
0 = {M11, M12, M22, M23, M24, HS, McL, Co3, Co2, J2, Suz, Fi22, He, HN,

Th, J1, J3, A5, A6, . . . A23, L3(3), L3(4), L3(5), L3(7), L3(8), L3(9),

L3(11), L3(13), L4(3), L4(4), L4(5), L5(3), L6(2), L7(2), S4(4),

S4(5), S4(7), S4(8), S4(9), S4(11), S4(13), S4(17), S4(19), S6(2),

S6(3), S6(5), S6(7), S8(2), S8(3), S10(2), U3(3), U3(4), U3(5), U3(7),

U3(8), U3(9), U3(11), U3(13), U3(16), U4(2), U4(3), U4(4), U4(5),

U5(4), U6(2), U6(3), U7(2), U8(2), U9(2), O7(3), O−
8 (2), O+

8 (2),

O−
8 (3), O−

10(2), O+
10(2), G2(3), G2(4), G2(5), Sz(8), Sz(32),

3D4(2), 3D4(3), 2F4(2)′}

(0.2.1)

4



and:

L G = L G
0 ∪ {A24 . . . A251} ∪ {L2(7), . . . L2(499)} (0.2.2)

Note that the Hiss-Malle classification gives a list of the possible genera that occur, but

it does not give information about the actual equivalence classes of representations.

‘Essentially different’ representations can have the same genus.

Example 0.3 There are 3 equivalence classes of irreducible representations with genus

(HS, 154, +).

The representations 154b and 154c are automorphic to each other under an outer automorphism

of HS. However, the representation 154a is neither automorphic nor algebraically conjugate to

154b or 154c.

We therefore need to consult the character tables of the groups in question to find out

how many equivalence classes of representations of each genus there are.

0.3 Computer packages and systems

In recent years, there have been two main general-purpose systems used for computa-

tional group theory, with several smaller systems for more specific calculations.

The GAP computer system [19] originated in RWTH-Aachen and has since moved

to St Andrews. This computer system was originally designed for computational

group theory, although its more recent versions have support for other mathematical

objects (such as rings and Lie algebras).

The Magma computer system [4] is based in Sydney, Australia. Its development is

headed by John Cannon. In some ways, Magma is a much more ambitious system than

GAP, and it is much less tied to group theory calculations.
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Most of the programs we wrote for this thesis were implemented in GAP. There

is an obvious advantage to staying with a single computer package where possible.

Most of the calculations we performed could just as easily have been performed with

Magma. We cite the following reasons for our choice of GAP over Magma:

• GAP is open-source software. If we ever needed to, we would be able to see

exactly how a given algorithm was implemented.

• GAP (due to its heritage) has better support for character table calculations than

Magma.

• It is usually easier to interrupt a calculation in GAP than in Magma.

On the other hand, Magma is sometimes faster than GAP because many of its algo-

rithms are implemented in C rather than in a higher-level language. Occasionally, we

found that the GAP functionality was too slow (in particular when dealing with finite

fields) and we had to find some alternative.

Other notable computer systems that we used during this project were:

• CHEVIE [20]. This is a package for Maple [53] for performing character table

calculations for ‘generic’ groups of Lie type (i.e. calculations which depend only

on the Dynkin diagram for the group, not the order q of the finite field).

• The Monster library of Parker and Wilson [31]. This is a set of C routines for per-

forming calculations in the Monster simple group. We make use of these routines

in section 2.1.26.

• The Perl programming language [55] has proved invaluable for many ‘clerical’

tasks, especially for the large amount of repetitive work involved in organising

our database of representations and presenting them via a Web interface.
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The computational work for this thesis was done on the Linux Beowulf cluster

funded by EPSRC grant GR/R95265/01. Each node had two AMD Athlon MP 1900+

CPUs with 2GB memory.

0.4 Outline of this thesis

Part I: Standard generators

To specify a representation ρ : G → GLd(k) of a group G, it suffices to give the images

under ρ of a set of generators of G. The Web Atlas approach is to choose a single set of

generators for each group (known as the standard generators) and to use these genera-

tors for all representations of this group. In Part I of this thesis, we will define standard

generators for all the groups in L G which do not already have them defined. In most

cases, we also give finders (black box algorithms for finding generators) and checkers

(black box algorithms for checking whether given elements of a group are standard

generators).

In Chapter 1, we will describe what is meant by ‘standard generators’, define some

basic terms and give some techniques which will be needed in later chapters to find

definitions for generators and the various black box algorithms.

In Chapter 2, we consider the sporadic simple groups and their automorphism

groups. Standard generators for these groups have already been defined by Wilson

[58], and finders have been available in the Web Atlas for a while. We produce check-

ers for these groups. This chapter provides the basis of an article published in Experi-

mental Mathematics [33].

In Chapter 3, we will consider standard generators for the alternating and symmet-

ric groups. The discussion on symmetric groups is slightly tangential to the overall

aim of this thesis (as we are concentrating on simple groups), but it provides an intro-

duction to the harder case of alternating groups.
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In Chapter 4, we consider the groups L2(q), which contribute many representations

to L (although not L0). As well as a general definition of standard generators for L2(p)

(for any p prime), we are able to produce definitions for the other L2(q) in L G.

In Chapter 5, we consider the groups S4(q) in L G in a similar fashion.

In Chapter 6, we consider the remaining groups in L G which do not have standard

generators defined either in the Web Atlas or earlier in this thesis.

Part II: Characteristic zero representations

Once we have standard generators defined, we can produce the representations.

In Chapter 7, we give constructions for the irreducible representations of An and

L2(q) and the Weil representations of S2n(q). Some of these representations correspond

to genera in L \L0, and some are used to construct representations in L0.

In Chapter 8, we describe a system we have produced for GAP called Split-P which

decomposes permutation modules. This system makes use of reduction modulo p

and rational reconstruction to improve speed. It was used to construct most of the

representations in this thesis.

In Chapter 9, we briefly describe amalgamation as a technique for producing com-

plex representations and give a construction of the representations 231a/b of M24.

In Chapter 10, we give details of certain miscellaneous techniques which were used

to find representations.

Finally in Chapter 11, we describe our database of group representations, including

details of how it was checked for accuracy and completeness.

Appendices

Appendix A is a table of representations with genera in L0, tabulated according to

whether or not the representation has been constructed and is available on the attached

CD-ROM (see Appendix C).
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Appendix B is a description of a language BBOX for black box algorithms. We

used this language to write all the black box algorithms for this thesis. The algorithms

themselves are available on the CD-ROM, as well as a BBOX interpreter for GAP.

Appendix C is a note on how to use the attached CD-ROM.
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Part I

Standard generators
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Chapter 1

Standard generators: definitions and

black box algorithms

A representation ρ : G → GLd(C) of a group G can be specified by giving the im-

ages ρ(g1), . . . ρ(gm) of a set of generators S = {g1, . . . gm}. This is the approach the

Web Atlas takes, and will be the approach we take. Thus before we can give any rep-

resentations, we must first choose the set S ⊂ G of generators. We will use standard

generators as defined by Wilson [58]. For many groups (for example, all the sporadic

groups), standard generators have already been defined and their definitions appear

in the Web Atlas. For the remaining groups, we must define them ourselves. This is

our task for Part I of this thesis.

In this chapter, we will define what it means to give a ‘definition of standard gen-

erators’ for a group and describe two types of black box algorithm which respectively

find and check standard generators. We will also describe the methods we will use in

later chapters to give definitions of standard generators.
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1.1 Introduction to standard generators

Let G be a group. In general there are many ways to generate G, but for the sake of uni-

formity and to make it easy to verify calculations and transfer results between different

representations, we wish to find an m-tuple of generators that can be characterised up

to automorphisms of G using properties that do not depend on any particular repre-

sentation of G. Our characterisation of this m-tuple will be called a definition of standard

generators, and any m-tuple satisfying the characterisation will be called an m-tuple of

standard generators. Before giving a formal definition, we give an example:

Example 1.1 Let G = A5. The group G can be generated by the permutations x = (1, 2)(3, 4)

and y = (2, 4, 5). We can characterise the pair (x, y) up to automorphisms of G (i.e. up to

conjugacy in S5) by requiring x to have order 2, y to have order 3 and xy to have order 5. This

is in fact the definition for standard generators of A5 in the Web Atlas [57].

Definition 1.2 Let G be a finite group.1 A definition of standard generators for G is a

sequence P1(x1, . . . xm), . . . Pr(x1, . . . xm) of predicates in the theory of G such that:

(SG1) There exist x1, . . . xm ∈ G which satisfy all the predicates Pi (1 ≤ i ≤ r).

(SG2) If G1
∼= G and y1, . . . ym ∈ G1 satisfy each of the predicates Pi (1 ≤ i ≤ r) then

〈y1, . . . ym〉 = G1.

(SG3) If additionally G2
∼= G and z1, . . . zm ∈ G2 satisfy each of the predicates Pi (1 ≤ i ≤ r)

then there is an isomorphism

σ : G1 → G2 (1.1.1)

induced by yi 7→ zi (1 ≤ i ≤ m).

1However, note that definitions of standard generators are really about isomorphism classes of
groups rather than groups themselves.
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Elements (y1, . . . ym) of G1
∼= G satisfying these predicates are said to be standard generators

of G1.

To make standard generators useful in practical situations, the characterising prop-

erties Pi are chosen so that an m-tuple with these properties is easy to find in any

representation of G. We will justify this by giving a black box algorithm (see section 1.6)

which outputs a set of standard generators after a small number of operations. Note

that ‘small’ in this context is a loosely-defined term, and we make no assertion about

minimality.

The main virtue of standard generators is that they allow implicit isomorphisms

of groups to become explicit, and thus make it easier to transfer calculations between

different representations. If G and H are isomorphic groups, then we can construct

an explicit isomorphism G → H by finding m-tuples (g1, g2, . . . gm) and (h1, h2, . . . hm)

of standard generators for G and H, and extending the map gi 7→ hi (1 ≤ i ≤ m) to

a group homomorphism G → H. By this mechanism, we can transfer a calculation

which is difficult in one representation, such as the determination of an element’s con-

jugacy class, to a different representation where the calculation is easier. We can even

transfer the calculation to several different representations and combine the results.

1.2 Notation for standard generators

The set up described above is more general than we need, as all the groups we will be

dealing with can be 2-generated. Thus we will always choose m = 2, and the standard

generators of a group G will be called x and y (rather than g1 and g2).2 We will also use

the notations wi(x, y), Ci and oi in the following way: standard generators for G are x

and y such that x ∈ C1, y ∈ C2 and the words w1(x, y) . . . wt(x, y) have orders o1, . . . ot

2The Web Atlas uses a and b for simple groups, c and d (and later letters) for almost-simple groups,
and capital letters for quasi-simple groups. We do not adopt this notation here.

13



respectively, where:

w1(x, y) = x (1.2.1)

w2(x, y) = y (1.2.2)

w3(x, y) = xy (1.2.3)

Example 1.3 Standard generators of the Fischer group Fi22 are x and y where x is in class 2A,

y has order 13, xy has order 11 and (xy)3xy2xy(xy2)2 has order 12 [57, 58].

Thus we have C1 = 2A, C2 = 13A, (o1, o2, o3, o4) = (2, 13, 11, 12) and:

w4(x, y) = (xy)3xy2xy(xy2)2

1.3 Definitions for standard generators

The definitions for standard generators of an group G ∈ L G can be found in various

locations throughout this thesis:

1. Certain groups had standard generators already defined in the Web Atlas [57].

We used these definitions when they were available.

2. For certain parameterised families of groups we try to provide a reasonably uni-

form definition of standard generators. The following families of groups are con-

sidered:

• alternating groups An: chapter 3

• linear groups L2(pr), p ≥ 5 prime: chapter 4

• symplectic groups S4(pr), p > 2 prime: chapter 5
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We do not provide completely uniform definitions of standard generators for all

the simple groups with a given Dynkin diagram, because we need to encode

information about the underlying field, which is difficult to do for general Galois

fields GF(q).

3. The remaining groups in L G are dealt with in chapter 6.

Note that when we give a definition of standard generators for a group G, we are

making the following assertions:

(SG1) m-tuples with the stated properties exist;

(SG2) any m-tuple with these properties generates G; and

(SG3) this definition characterises an m-tuple of elements of G up to automorphisms

of G.

The proof of these assertions will be implicit in the remarks made before the definition,

and may involve a computer calculation or reference to a computed character table. To

emphasise the fact that we are doing more than making a definition, we will label each

definition by ‘Definition-Theorem’.

1.4 Structure constants

In this section, we introduce structure constants [25, 26]. These will be useful when

looking for characterisations of standard generators later in this chapter.

Let G be a finite group with complex group algebra CG. Let the conjugacy classes

of G be C (1), C (2), . . . C (n) with class representatives g1, g2, . . . gn respectively. Then we

can define the class sums Ki ∈ CG for 1 ≤ i ≤ n by:

Ki = ∑
g∈Ci

g (1.4.1)
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The class sums form a basis of Z(CG), a subalgebra of CG. We therefore have a rule

for multiplication in Z(CG):

KiKj =
n

∑
k=1

cijkKk (1.4.2)

for some constants cijk with 1 ≤ i, j, k ≤ n. Now Ki is central in CG, so by Schur’s

lemma, in any irreducible representation, it acts like a scalar. If the irreducible repre-

sentation has character χ, then Ki acts like χ(Ki)/χ(1). Then by summing over irre-

ducible characters, we get:

∑
χ∈Irr(G)

χ(gi)χ(gj)
χ(1)

|C (i)||C (j)| =
n

∑
k=1

cijk|C (k)| ∑
χ∈Irr(G)

χ(gk) (1.4.3)

Then by column orthogonality, we obtain:

cijk =
|C (i)||C (j)|

|G| ∑
χ∈Irr(G)

χ(gi)χ(gj)χ(gk)
χ(1)

(1.4.4)

The constant cijk can be interpreted as the number of pairs (hi, hj) with hi ∈ C (i),

hi ∈ C (j) such that hihj = gk for our fixed gk ∈ C (k). Usually we are more interested in

counting conjugacy classes of triples (hi, hj, hihj) with hi ∈ C (i), hj ∈ C (j), hihj ∈ C (k).

To this end we define ξijk (1 ≤ i, j, k ≤ n) given by:

ξijk =
cijk

|CG(gk)|
(1.4.5)

=
|C (i)||C (j)||C (k)|

|G|2 ∑
χ∈Irr(G)

χ(gi)χ(gj)χ(gk)
χ(1)

(1.4.6)

=
|G|

|CG(gi)||CG(gj)||CG(gk)| ∑
χ∈Irr(G)

χ(gi)χ(gj)χ(gk)
χ(1)

(1.4.7)
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The constants ξijk are known as structure constants: we have the following equation:

ξijk = ∑
1

|CG(〈hi, hj〉)|
(1.4.8)

where the sum is over conjugacy classes of triples (hi, hj, hihj) with hi ∈ C (i), hj ∈ C (j),

hihj ∈ C (k).

We will use the notation ξ(C , C ′, C ′′) for the structure constant corresponding to

conjugacy classes C , C ′, C ′′.

1.5 Method of defining standard generators

Definition 1.4 Let G be a finite group. A definition of a semi-standard pair for G is a triple

of predicates P1(x, y), P2(x, y), P3(x, y) in the theory of G such that:

(SSP1) There exist elements x, y ∈ G which satisfy the three predicates and which generate G.

(It is not required that all such pairs of elements generate G.)

(SSP2) The predicate P1(x, y) determines the conjugacy class of x up to automorphisms of G.

(SSP3) The predicate P2(x, y) determines the conjugacy class of y up to automorphisms of G.

(SSP4) The predicate P3(x, y) determines o(xy).

A pair of elements of G satisfying these predicates is said to be a semi-standard pair for G.

We subdivide the problem of defining standard generators of G as follows:

1. Give a definition of a semi-standard pair for G.

2. Characterise the semi-standard pairs that generate G.

3. Count the number of automorphism classes of semi-standard pairs.

4. Find a condition which chooses a unique equivalence class of semi-standard

pairs, and use this to give the definition of standard generators.
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1.5.1 Defining semi-standard pairs

A semi-standard pair (x, y) for G is our starting point for standard generators of G. We

specify the G-conjugacy classes of x and y and give the order of xy.

Notation 1.5 Let C1, C2, C3 be subsets of G; usually conjugacy classes or unions thereof.

• A (C1, C2)-pair is a pair (x, y) with x ∈ C1, y ∈ C2.

• A (C1, C2, C3)-pair is a pair (x, y) with x ∈ C1, y ∈ C2 such that xy ∈ C3.

• If X is any property applicable to pairs of elements of G, we say G is X-generated if

there exists an X-pair (x, y) such that G = 〈x, y〉.

• The subset C3 is said to be a target for (C1, C2) if G is (C1, C2, C3)-generated.

In this context, a positive integer denotes the union of conjugacy classes of elements of that

order.

The first step to defining semi-standard pairs is to choose the conjugacy classes of

x and y. It is important that these classes are easy to find, but also that it is easy to find

the right conjugacy class of pairs (so |CG(x)| and |CG(y)| need to be large). Usually, the

easiest way to achieve this is to make x and y elements of low order which can be found

by powering up elements of higher order (and which are contained in larger conjugacy

classes). Because standard generators should be easy to find in any representation, we

avoid specifying conjugacy classes which are hard to distinguish from others.

Once we have chosen the classes C1 and C2 of x and y, we investigate the targets

k (in most cases, k is an integer denoting an order rather than a particular conjugacy

class). A complete list of possible classes for xy can be found by looking at the structure

constants ξ(C1, C2,−), but not all these possibilities are targets. We can get a partial list

of targets by choosing (C1, C2)-pairs (x, y) at random, throwing away any which do

not generate G, and looking at the order of xy.
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1.5.2 Characterising the semi-standard pairs that generate G

Let (x, y) be a semi-standard pair for G.

If G is to be thought of as belonging to an family of groups being considered to-

gether (e.g. G is an alternating group or G is L2(p) for p prime) then we can examine

the set of maximal subgroups of G, and see whether x and y can ever lie in one of

these subgroups. Alternatively, we can try to show that 〈x, y〉 contains a known set of

generators of G.

If G is not being treated as part of a larger family of groups, and G has a reasonably

small permutation representation, then perhaps the easiest way of proving that semi-

standard pairs generate G is to find a representative of each class of semi-standard

pairs, and checking computationally whether or not the whole of G is generated.

1.5.3 Counting equivalence classes of semi-standard pairs

We can count equivalence classes of semi-standard pairs using structure constants. By

our work in the previous section, we should know the subgroups generated by each

type of semi-standard pair. The structure constants ξAut(G)(C1, C2, C3) have a contri-

bution of 1/|CAut(G)(〈x, y〉)| for every automorphism class of pair (x, y) with x ∈ C1,

y ∈ C2, xy ∈ C3.3 If we only specified the order of xy in the definition of semi-standard

pair, then we may need to look at a number of classes C3.

1.5.4 Choosing an equivalence class

Suppose we have calculated that there are ` automorphism classes of semi-standard

pairs— that is, ` automorphism classes for a fixed triple (C1, C2, C3). Often ` is greater

than 1, so we have not yet specified our pair up to automorphisms of G. To complete

the specification, we list semi-standard pairs by random searching, recording an in-

3The classes Ci are Aut(G)-conjugacy classes.
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variant (the fingerprint) for each one. When we have a list of ` pairs, all with different

fingerprints, we know we have a complete list of representatives; one semi-standard

pair from each equivalence class.

Fingerprints have been used for various purposes before: see Parker [36] and Wil-

son [58]. In our context, a fingerprint is a list of element orders for various words in

x and y. The exact nature of the fingerprint depends on the orders of x and y. For

example, if x has order 2 and y has order 3, we would record the orders of xy, xyxy2,

xyxyxy2, xyxyxyxy2, xyxyxy2xy2, and so on. We would not (for example) record xy2,

because it must have the same order as xy. If we do not find ` distinct fingerprints

after a reasonable amount of searching, then we increase the number of words in the

fingerprint and try again.

Once we have ` distinct fingerprints, we examine the list and pick out one or more

supplementary conditions wi(x, y), 4 ≤ i ≤ t which specify a unique class in the list.

Certainly the whole fingerprint would suffice, but we would like our definition of

standard generators to be short. In most cases, specifying the orders of one or two

short words is enough.

1.6 Black box algorithms

The following definition is taken from Seress [46, chapter 2]:

Definition 1.6 A black box group G is a group whose elements can be coded as strings of

length at most N (for some integer N) over a fixed finite alphabet Q (not necessarily in a unique

way) in such a way that given strings s, t representing elements g, h ∈ G we can:

• compute a string representing the element gh;

• compute a string representing the element g−1; and

• decide whether the string s represents the identity of G.

20



We do not assume that we can decide whether a string s over the alphabet Q represents an

element of G.

Black box groups include permutation groups of finite degree (hereafter simply

permutation groups) and finite matrix groups over countable fields (hereafter matrix

groups). Note that all black box groups are finite, because any such can contain at

most ∑N
i=0 |Q|i elements. All the representations that we will deal with can be given

the structure of a black box group.

In fact, we will need slightly more than is supplied by Definition 1.6. We will re-

quire oracles for calculating the order of an element and for producing pseudo-random

elements with a nearly uniform distribution. We shall assume that all black box groups

are equipped with such oracles. Such oracles are available for permutation groups and

matrix groups.4

A black box algorithm is an algorithm which works for any black box group. In

Appendix B we describe the simple programming language BBOX which can be used

to implement black box algorithms, including the ones in this thesis. We have written

an interpreter in GAP for this language which we used to test the algorithms. It keeps

count of the various types of operations performed in the course of the algorithm,

which can provide useful information when tuning them.

In this thesis, we are interested in two types of black box algorithm: finders and

checkers. These are discussed in the following two sections.

1.7 Finders

Let G be a group with standard generators defined. We are interested in the problem

of finding specific standard generators in a group isomorphic to G.

4The oracle for calculating orders of elements g ∈ GLd(q) is due to Celler and Leedham-Green [10].
The order of g can be calculated in O(d3 log q) time providing the numbers qi − 1 for 1 ≤ i ≤ d can be
factorised.
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Definition 1.7 A finder for G is a black box algorithm which, given a black box group H,

satisfies the following properties:

(F1) If H is isomorphic to G, the algorithm must either output a set of standard generators for

H or announce that the algorithm ran out of time.

(F2) The algorithm terminates after at most Tmax operations, for some fixed integer Tmax.

We will give a finder for each group G that we consider which (on average) termi-

nates after a small number of operations if it is given a black box group of the right

isomorphism type. This provides the justification for our statement that standard gen-

erators are easy to find in any representation. For practical reasons, we want our find-

ers to terminate after a small number of operations on average (usually smaller than

Tmax).

Definition 1.8 The cost T of a finder is the average number of times the random element oracle

is consulted to find standard generators.

Because we want low-cost finders, we must choose the semi-standard pair with

some care. It may be easy to find a semi-standard pair, but in some representations it

may be difficult to prove that a candidate pair really is semi-standard; this is usually

because we cannot distinguish between two conjugacy classes containing elements of

the same order. Condition (F1) is absolute, and we must be certain (not just fairly

confident) that any elements output are standard generators.

1.7.1 Tame generators

Certain definitions for standard generators lend themselves to a particularly simple

black box algorithm.

Definition 1.9 Let C be a subset of G whose elements have the same order o (for example, a

conjugacy class). We say C is tame if there exists an integer r such that all elements of order r
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C T(C ) Class type
1A {1, 2, 3, 4, 5, 6, 7} Completely tame
2A {2, 4, 6} Completely tame
3A {6} Tame (but not completely tame)
3B {} Non-tame
4A {4} Completely tame
5A {5} Completely tame
6A {6} Completely tame
7A {} Non-tame
7B {} Non-tame

Table 1.1: Conjugacy classes in A7

in G power up to C (and there exists an element of order r in G). The set of all such r is called

the taming set T(C ) of C . If the taming set contains o, then C is completely tame.

Standard generators for a group G are called tame (resp. completely tame) if the classes

to which x and y must belong are both tame (resp. completely tame).

Example 1.10 The conjugacy classes in A7 can be classified in Table 1.1.

The following black box algorithm is a finder for groups with tame standard gen-

erators: it is called the standard finder.

Algorithm 1.11 (Standard finder) To find tame standard generators for G given by x ∈ C1,

y ∈ C2, xy of order o3 with other conditions wi(x, y) = oi, 4 ≤ i ≤ t:

1. Find an element of G with order in the set T(C1), and power it up to give an element

x ∈ C1.

2. Find an element of G with order in the set T(C2), and power it up to give an element

u ∈ C2.

3. Find a conjugate y of u such that xy has order m, and the conditions w4(x, y), . . . wt(x, y)

are simultaneously satisfied.
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4. Return x and y.

To use this black box algorithm, we only need the definition of standard generators

and the sets T(C1) and T(C2). If a generator class C containing elements of order o is

completely tame, we do not even need to specify T(C ), as we can simply take:

T(C ) = {on : n ∈ N} ∩ {o(g) : g ∈ G} (1.7.1)

1.8 Checkers

Given a group G with standard generators defined, it is sometimes useful to be able to

say whether a particular pair of elements of G is a pair of standard generators.

Definition 1.12 A checker for G is a black box algorithm which, given a black box group H

and generators x′, y′, satisfies the following properties:

(C1) If H is isomorphic to G, the algorithm must return ‘true’ or ‘false’ (depending on whether

or not (x′, y′) is a pair of standard generators for H).

(C2) If H is isomorphic to a proper subgroup of G, the algorithm must return ‘false’.

(C3) The algorithm terminates after at most Tmax operations, for some fixed integer Tmax.

We do not require the algorithm to return ‘false’ if x′ and y′ generate a group which is

not isomorphic to a subgroup of G. To require this would effectively mean calculating

a presentation for G on its standard generators, which is in general a hard problem.

The checkers that we find will be given in this thesis in the form of semi-presentations5.

5Semi-presentations can easily be turned into checkers in the sense of Definition 1.12, but the result-
ing checkers are a much more restrictive class of algorithms than general black box algorithms. Black
box algorithms obtained from semi-presentations do not include branching or (pseudo-)random group
elements. This is never a problem, as we precompute words in the standard generators whenever we
need an element which has certain properties.
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Definition 1.13 A semi-presentation for G on a pair (x, y) of standard generators of G is a

finite k-tuple of words wi(x, y), 1 ≤ i ≤ k together with a finite k-tuple of positive integers oi,

1 ≤ i ≤ k such that:

1. o(wi(x, y)) = oi for 1 ≤ i ≤ k; and

2. Each pair (x′, y′) of elements of G satisfying

o(wi(x′, y′)) = oi (1 ≤ i ≤ k)

is a pair of standard generators.

Semi-presentations are written in angled brackets 〈〈 〉〉, and the notation G ≈ P

means that P is a semi-presentation for G. For example, the notation:

L2(7) ≈ 〈〈x, y | o(x) = 2, o(y) = 3, o(xy) = 7〉〉 (1.8.1)

asserts that a pair of elements x, y ∈ L2(7) is a pair of standard generators if and only

if o(x) = 2, o(y) = 3 and o(xy) = 7. Usually however, the standard relations (that is,

the relations that can easily be deduced from the definitions of standard generators)

are abbreviated by ‘std’. Thus we would write:

L2(7) ≈ 〈〈x, y | std〉〉 (1.8.2)

Such a semi-presentation is called the standard semi-presentation, and the corresponding

checker is the standard checker.

The standard relations are usually not enough to give a checker. This is because

the standard relations do not check the conjugacy classes of x and y, which invariably

form part of the definition for standard generators. For the rest of this section, we
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will discuss ways of showing that the given candidates for standard generators are in

the correct conjugacy classes in a black box group. These techniques will be used in

Chapter 2 and elsewhere to find checkers.

1.8.1 Dihedral groups and involutions

It is well known that two involutions in a finite group generate a dihedral group D2n:

D2n = 〈a, b|a2 = b2 = (ab)n〉 (1.8.3)

If n is odd, then all the involutions of D2n are conjugate to one another. Thus we have

the following useful lemma:

Lemma 1.14 We have:

• If a and b are involutions in a group G and ab has odd order, then a and b are in the same

conjugacy class.

• Suppose C and C ′ are conjugacy classes of involutions and C ′′ is a conjugacy class of

odd order. Then

ξG(C , C ′, C ′′) = 0 unless C = C ′ (1.8.4)

Proof. Clear. �

The typical application of Lemma 1.14 is to establish the conjugacy class of an invo-

lution a. We find an involution b which is known to be in a class C (say by powering

up an element of suitable order), and then find a conjugate bg of b such that abg has odd

order. Then by the lemma, a ∈ C . This turns out to be quite useful, as we frequently

have o1 = 2.
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1.8.2 Elements of even order

If we are fortunate, we may be able to distinguish classes of even order by powering

them up to involutions and using Lemma 1.14. Sometimes this does not work (perhaps

the classes power up to the same class of involutions), but we may be able to use their

centralizers to distinguish them.

Suppose a is an element of order 2n, C and C ′ are conjugacy classes of even order

2n, and p is a prime which divides |CG(C )| but not |CG(C ′)|. Suppose further that we

know that a is either in C or C ′, and we wish to prove that it is in C . We will try to find

an element b of order divisible by p which commutes with a; because of the centralizer

orders, this will show that a is in C .

In general, finding elements in a centralizer by random methods is hard. With ele-

ments of even order, however, we have an advantage because involution centralizers

are usually easy to find. Our strategy is:

1. Find words in standard generators which generate the involution centralizer

CG(an) (or a sufficiently large subgroup thereof).

2. Find words in the generators of CG(an) which commute with a, generating a

sufficiently large subgroup of CG(a).

3. Find an element in CG(a) with order divisible by p. By the centralizer orders, we

must have that a is in C .

1.8.3 Structure constants

Sometimes structure constants can be used to establish the conjugacy class of an el-

ement. A typical case is when we have classes C1, C2, C ′
2 and C3 where C2 and C ′

2
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contain elements of the same order and:

ξ(C1, C2, C3) > 0

ξ(C1, C ′
2, C3) = 0

Thus if x ∈ C1 and y ∈ C2 ∪ C ′
2, we can establish that y ∈ C2 if we can find a conjugate

yg of y such that xyg ∈ C3.

Example 1.15 The group G = Fi23 treated in section 2.1.14 has standard generators x ∈ 2B

and y ∈ 3D such that xy has order 28. Suppose we have checked that all the orders are correct,

and that we are also able to establish that x is in class 2B. Then because ξG(2B, 3A, 28) = 0,

we know that y cannot be in 3A. For the same reason, y cannot be in 3B or 3C. Thus y must

be in 3D, and no further checking is needed.

1.8.4 Fingerprinting

If the above methods do not work, or the group G being considered is reasonably

small, we may be able to write a checker by identifying all the automorphism classes

of (o1, o2, o3)-pairs (x, y) in G and finding a condition on (x, y) which identifies the

standard pair. This is similar to the way that standard generators are defined (see

section 1.5.4), except that there may be many more pairs to consider. The number

K of classes of pairs is usually determined by considering structure constants in G

and in subgroups of G. We then look for K different fingerprints, and pick out some

conditions which uniquely specify the standard pair.

If there are too many classes of (o1, o2, o3)-pairs, or if K is difficult to determine

exactly, we may try to classify pairs of a different type (with fewer fingerprints to con-

sider). This may allow us to identify the class of x or y (or possibly both).
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Example 1.16 Let G = Co1, considered in section 2.1.12. We are able to show easily that

x ∈ 2B. To show y ∈ 3C, we could try fingerprinting the (2, 3, 40) pairs, but there are a lot of

them, and they are hard to analyse because not all of them generate G. Instead, we find a 2A

element t and a (2A, 3, 36) pair (t, yg) and find fingerprints for all such. This enables us to

prove y ∈ 3C.
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Chapter 2

The sporadic simple groups

Standard generators for the sporadic groups were defined by Wilson [58] and seekers

for these groups have been in the Web Atlas [57] for some time. In this chapter, we will

exhibit checkers for the sporadic groups and their automorphism groups. The material

in this chapter forms the basis for an article in Experimental Mathematics [33].

Recall from Definition 1.12 that a checker is a black box algorithm which verifies

that a set of elements of a group G is a set of standard generators (under the assumption

that these elements all lie in G). We described the techniques that we will need in

section 1.8.

Throughout the chapter, we will assume that G is a sporadic simple or almost-

simple group and that x and y are elements of G which we wish to show are standard

generators of G. Moreover, we assume that x and y obey the ‘standard relations’, i.e.

o(wi(x, y)) = oi for 1 ≤ i ≤ t. Thus we only need to find suitable relations which prove

x ∈ C1 and y ∈ C2.

As we remarked earlier, all the checkers will be given in the form of semi-presentations.
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2.1 Checkers for the sporadic simple groups

For convenience, we reproduce Wilson’s definitions of standard generators for the spo-

radic simple groups [58, 57] in Table 2.1 on page 32.

2.1.1 Mathieu group M11

There are unique conjugacy classes of elements of orders 2 and 4, so the standard rela-

tions suffice to give a semi-presentation. We have:

M11 ≈ 〈〈x, y | std〉〉.

2.1.2 Mathieu group M12

There are 4 automorphism classes of (2, 3, 11)-pairs, only one of which is a (2B, 3B, 11)-

pair. We have:

M12 ≈ 〈〈x, y | std, o(xyxyxy2) = 6〉〉.

2.1.3 Mathieu group M22

We need to show that y is in class 4A rather than 4B. There are 2 automorphism classes

of (2, 4A, 11)-pairs and 4 classes of (2, 4B, 11)-pairs. We found fingerprints for all of

these. We have:

M22 ≈ 〈〈x, y | std, o([x, y]) = 6〉〉.
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G C1 C2 o3 w4 o4
M11 2 4 11 xyxy2xy3 5
M12 2B 3B 11
M22 2 4A 11 xyxy2 11
M23 2 4 23 (xy)3xy2xy(xy2)2 8
M24 2B 3A 23 (xy)2xy2xy(xy2)2 4
J1 2 3 7 xyxy2 19
J2 2B 3B 7 xyxy2 12
J3 2 3A 19 xyxy2 9
J4 2A 4A 37 xyxy2 10
Co3 3A 4A 14
Co2 2A 5A 28
Co1 2B 3C 40 xyxy2 6
Fi22 2A 13 11 (xy)3xy2xy(xy2)2 12
Fi23 2B 3D 28
Fi′24 2A 3E 29 xyxyxy2 33
HS 2A 5A 11
Suz 2B 3B 13 xyxy2 15
McL 2A 5A 11 (xy)3xy2xy(xy2)2 7
He 2A 7C 17
Ru 2B 4A 13
O’N 2 4A 11
HN 2A 3B 22 xyxy2 5
Th 2 3A 19
Ly 2 5A 14 xyxyxy2 67
B 2C 3A 55 (xy)3xy2xy(xy2)2 23
M 2A 3B 29
M12.2 2C 3A 12 xyxy2 11
M22.2 2B 4C 11
J2.2 2C 5AB 14
J3.2 2B 3A 24 xyxy2 9
Fi22.2 2A 18E 42
Fi24 2C 8D 29
HS.2 2C 5C 30
Suz.2 2C 3B 28
McL.2 2B 3B 22 (xy)3xy2xy(xy2)2 24
He.2 2B 6C 30
O’N.2 2B 4A 22
HN.2 2C 5A 42

Table 2.1: Standard generators for the sporadic (almost-)simple groups
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2.1.4 Mathieu group M23

There are unique conjugacy classes of elements of orders 2 and 4, so the standard rela-

tions suffice to give a semi-presentation. We have:

M23 ≈ 〈〈x, y | std〉〉.

2.1.5 Mathieu group M24

The (2B, 3B, 23) structure constants are entirely accounted for by the subgroup L2(23),

so we only have one fingerprint for this class of pairs. There are 2 fingerprints for

(2B, 3A, 23)-pairs (one of which gives standard generators) and 2 fingerprints for (2A, 3B, 23)-

pairs. We have:

M24 ≈ 〈〈x, y | std, o(xyxyxy2) = 12〉〉.

2.1.6 Janko group J1

There are unique conjugacy classes of elements of orders 2 and 3, so the standard rela-

tions suffice to give a semi-presentation. We have:

J1 ≈ 〈〈x, y | std〉〉.

2.1.7 Janko group J2

The only non-zero (2, 3, 7)-structure constants in J2 are from (2A, 3B, 7A) (which are

accounted for L2(7), a group which contains no elements of order 12) and (2B, 3B, 7A).
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Thus the standard relation o(xyxy2) = 12 is sufficient to ensure that the pair is (2B, 3B):

J2 ≈ 〈〈x, y | std〉〉.

2.1.8 Janko group J3

The (2A, 3B, 19)-structure constant in J3.2 is 5, but there are only 4 fingerprints because

two of the automorphism classes of pairs generate L2(19), which has an outer auto-

morphism not realised in J3.2. There are 2 classes of (2A, 3A, 19)-pairs, one of which

gives standard generators. We have:

J3 ≈ 〈〈x, y | std, o(xyxyxy2) = 17〉〉.

In fact, the standard relation o(xyxy2) = 9 is superfluous in the above.

2.1.9 Janko group J4

We use Lemma 1.14 to show that x is a 2A-element (we find our reference 2A-element

by powering up an element of order 24). To show that y is in 4A, we follow the method

in section 1.8.2 and find an element in CG(y) with order 20 (the centralizers of elements

in classes 4B and 4C have orders not divisible by 5). We have:

J4 ≈ 〈〈x, y, (z, c, d, e, f , g) | std, o(z) = 24, o(x(z12)xy3xy3
) = 11,

o(g) = 20, o([g, y]) = 1; z := xyxyxy2, c := xyxy3xyxy,

d := xy2xy3xy2xy, e := c(y2(y2)c)5,

f := d(y2)(y2)d, g := (e f e)3( f e)4 f 〉〉.
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2.1.10 Conway group Co3

The structure constants are quite large for this group, so we try to eliminate as many

cases as we can before fingerprinting. Firstly we check that x is not in 3B by check-

ing o(xy2) = 24 (all elements of order 4 have their squares in 2A, so y2 is in 2A,

and the (2A, 3B, 24)-structure constant is zero). Secondly we show that y is in 4A by

finding an element w in its centralizer which has order 5. This leaves the single class

of (3A, 4A, 14)-pairs and 341 classes of (3C, 4A, 14)-pairs, for which we found finger-

prints. It turns out that the relations we added so far eliminate all the (3C, 4A, 14)-pairs.

We have:

Co3 ≈ 〈〈x, y, (u, v, w) | std, o(xy2) = 24,

o(w) = 5, o([w, y]) = 1; u := (y2(y2)xy2
)3,

v := xyxy3x2(y2(y2)xyxy3x2
)2, w := (uv2)3(uv)6〉〉.

2.1.11 Conway group Co2

We can show that x is a 2A-element by using Lemma 1.14 (where the reference 2A-

element is obtained by powering up xy, which is known to have order 28).

Structure constants and fingerprinting show that there is a single automorphism

class of pairs of type (2A, 5A, 28) corresponding to standard generators and a single

class of pairs of type (2A, 5B, 28) generating a subgroup of N(2A). It turns out that

we do not need to add any relations to those we have found already to eliminate this

second possibility. We have:

Co2 ≈ 〈〈x, y | std, o(x(xy)14) = 3〉〉.
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2.1.12 Conway group Co1

We can show that x is a 2B-element by using Lemma 1.14 (where the reference 2B-

element is obtained by powering up an element of order 42). The structure constant

(2B, 3D, 40) is quite large, and to show that y is a 3C-element, it is easier to look at

(2A, 3, 36)-pairs (see Example 1.16 above). We can find a 2A-element by powering up

xy (which is known to be of order 40). There are only two fingerprints to consider here:

one for 3C (which generates a subgroup of N(2A) and has centralizer 2 in G) and one

for 3D (which generates U6(2) : 3, with centralizer 1). We have:

Co1 ≈ 〈〈x, y, (z, a, b) | std, o(z) = 42, o(xy2
z21) = 11, o(ab) = 36,

o(ab2abab) = 18; z := xy(xyxy2)2,

a := (xy)20, b := yxyxyxyxy2〉〉.

2.1.13 Fischer group Fi22

All that needs to be checked is that x is a 2A-element. We can use Lemma 1.14, taking

the 15th power of an element of order 30 as the reference involution. We have:

Fi22 ≈ 〈〈x, y, (z) | std, o(z) = 30, o(xz15) = 3; z := xyxy2xy2〉〉.

2.1.14 Fischer group Fi23

The (2B, C , 28) structure constant is zero for C = 3A, 3B, 3C, so we only need to show

that x is a 2B-element (see Example 1.15 above). We can do this by using Lemma 1.14,
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taking the 14th power of xy (having order 28) as the reference involution. We have:

Fi23 ≈ 〈〈x, y | std, o(xy2
(xy)14) = 5〉〉.

2.1.15 Fischer group Fi′24

The only non-zero structure constant ξ(2A, C , 29) for a conjugacy class C containing

elements of order 3 is for C = 3E. Thus it suffices to check that x is in 2A. We can

do this by using Lemma 1.14, taking the 30th power of an element z of order 60 as the

reference involution. We have:

Fi′24 ≈ 〈〈x, y, (z) | std, o(z) = 60, o(x(z30)xyxy) = 5; z := (xy)6y〉〉.

2.1.16 Higman-Sims group HS

We found representatives of the classes 2A, 2B, 5A, 5B and 5C and found fingerprints

for all the automorphism classes of (2, 5, 11)-pairs. There are 84 in total. We have:

HS ≈ 〈〈x, y | std, o(xy2) = 10, o(xyxy2) = 15〉〉.

2.1.17 Suzuki group Suz

We have to consider (2A, 3C, 13)-pairs (3 fingerprints), (2B, 3B, 13)-pairs (5 fingerprints)

and (2B, 3C, 13)-pairs (63 fingerprints). Note that there are 6 automorphism classes of

(2B, 3C, 13)-pairs generating L2(25), but there are only 3 fingerprints for these because

L2(25) has an extra outer automorphism which is not realised in Aut(Suz) ∼= Suz.2.
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Thus the (2B, 3C, 13) structure constant is 66 rather than 63. We have:

Suz ≈ 〈〈x, y | std, o(xyxyxy2) = 12〉〉.

2.1.18 McLaughlin group McL

We have to consider (2A, 5A, 11)-pairs and (2A, 5B, 11)-pairs. There are 2 fingerprints

for the former type, one of which gives standard generators. We found 52 fingerprints

for the latter type: 34 from pairs generating McL, 14 from pairs generating M22, 2 from

pairs generating M11 and 2 from pairs generating L2(11). We account for the structure

constant:

ξMcL.2(2A, 5B, 11) = 65 = 34 + 14× 2 +
1
2

(2 + 2× 2)

by observing that:

• the 14 pairs generating M22 are counted twice (because M22 has an outer auto-

morphism not realised in McL.2);

• the subgroups M11 and L2(11) have centralizer of order 2 in McL.2; and

• the subgroup L2(11) has an outer automorphism not realised in McL.2.

We have:

McL ≈ 〈〈x, y | std, o(xy2) = 12〉〉.

2.1.19 Held group He

We check that x is a 2A-element by using Lemma 1.14, taking the 5th power of an el-

ement of order 10 as the reference 2A-element. We then consider (2A, 7A/B, 17)-pairs

(2 fingerprints), the single (2A, 7C, 17)-pair and the (2A, 7D/E, 17)-pairs (28 finger-
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prints). It turns out that the relations we have already are enough to prove that y is in

7C. We have:

He ≈ 〈〈x, y, (z) | std, o(z) = 10, o(xz5) = 3; z := xy2xyxy2xy2〉〉.

2.1.20 Rudvalis group Ru

The structure constants (2, 4, 13) for G = Ru are fairly complicated, as there are a

number of different subgroups of G which can be generated in this way. The only such

subgroups which have non-trivial centralizer in G are Sz(8) and 2 × Sz(8). Each is

contained in a maximal subgroup (22 × Sz(8)) : 3, so each is centralized by a subgroup

22. Both Sz(8) and 2 × Sz(8) can be (2, 4, 13)-generated in 4 different ways (up to

automorphisms), but because the automorphism of order 3 acts simultaneously on

22 and Sz(8), there are 12 automorphism classes of (2, 4, 13)-pairs in Ru generating

2 × Sz(8) and only 4 such for Sz(8). This information, together with the structure

constants for Ru and its subgroups, tells us how many fingerprints there should be.

The details are given in Table 2.2; overall there are 118 fingerprints to find. We have:

Ru ≈ 〈〈x, y | std, o(xy2) = 14, o(xyxy2) = 29〉〉.

2.1.21 O’Nan group O’N

Here it is sufficient to show that y is a 4A-element. We can do this by using the method

of section 1.8.2: we find an element z of order divisible by 3, 5 or 7 in its centralizer

(as |CG(4B)| = 28). Indeed, it is only necessary for z to be in the normalizer of the

4A-element (i.e. the involution centralizer CG(2A)) as the odd-order part of z will then
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C1 C2 Number of fingerprints Subgroups
(C1, C2, 13) arising

2A 4A 5 L3(3) : 2, L2(25)
2A 4B 4 Sz(8)
2A 4C 7 Ru, 2F4(2)′

2A 4D 29 Ru, L3(3), 2F4(2)′, L2(25).2
2B 4A 1 Ru
2B 4B 10 Ru, L2(13).2
2B 4C 32 Ru
2B 4D 30 Ru, 2× Sz(8)

Table 2.2: Fingerprints for Ru

centralize y. Hence a suitable z is fairly easy to find. We have:

O’N ≈ 〈〈x, y, (z) | std, o(z) = 5, [y, z] = 1; z := xyxy(y2(y2)xyxy)5〉〉.

2.1.22 Harada-Norton group HN

We have ξ(2A, 3A, 22) = 0, so it is sufficient to show that x is in 2A. All elements of

order 22 power up to class 2A, and we know by the standard relations that xy has order

22. Thus we can take (xy)11 as our reference involution. Now we search for z ∈ G such

that x[(xy)11]z has odd order. We have:

HN ≈ 〈〈x, y | std, o(x[(xy)11]xy2xyxyxyxy2
) = 5〉〉.

2.1.23 Thompson group Th

Here it is sufficient to show that y is a 3A-element. Observe that:

A4
∼= 〈g, h | g3 = h3 = (gh)2 = 1〉 (2.1.1)

40



and g is conjugate to h−1 in A4. Thus we can show y is a 3A-element by taking another

3A-element v−1 (we take the 7th power of an element z of order 21) and then finding

an element w such that yvw has order 2. We have:

Th ≈ 〈〈x, y, (z, v, w) | std, o(z) = 21, o(yvw) = 2; z := (xy)3y,

v := z7, w := xy2(xy)4(xy2)2(xy)2(xy2)5(xy)3〉〉.

2.1.24 Lyons group Ly

We must show that y is a 5A-element. To reduce the number of fingerprints to search,

we instead look for (3A, 5, 14)-pairs (r, s). We can find a 3A-element r by powering up

an element of order 42.

We have:

ξLy(3A, 5A, 14) = 1/3 (2.1.2)

ξLy(3A, 5B, 14) = 38/3 (2.1.3)

These structure constants are entirely accounted for by the maximal subgroup 3·McL:2.

All the (3A, 5, 14)-pairs in McL : 2 generate McL, so all the (3A, 5, 14)-pairs in Ly gen-

erate 3·McL, which is centralized by a group of order 3 in Ly. The structure constants

(2.1.2) and (2.1.3) then show that there is just 1 fingerprint for 5A and 38 for 5B. We

have:

Ly ≈ 〈〈x, y, (z, r, s) | std, o(z) = 42, o(rs) = 14, o(rsrs2) = 30;

z := (xy)5(xy2)2, r := z14, s := yxyxy2xyxyxy2〉〉.
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2.1.25 Baby Monster group B

To show that x is in 2C, we use Lemma 1.14, taking the 26th power of an element of

order 52 as our reference 2C-element.

To show that y is in 3A, we observe that all (2A, 3, 8)-pairs in B are (2A, 3A, 8)-pairs

(as can be seen from the structure constants). We found an element z ∈ 2A by taking

the 19th power of an element of order 38 and then found a conjugate yg of y such

that zyg has order 8. (Orders 2, 4 or 14 would also have worked.) Hence (z, yg) is a

(2A, 3, 8)-pair, so y must be in 3A. We have:

B ≈ 〈〈x, y, (u, v) | std, o(u) = 52, o(xu26) = 35, o(v) = 38, o(v19yx) = 8;

u := (xyxy2)2(xy)2(xyxy2)2;

v := (xy)3(xy2xy)2xy(xyxy2)2xy2〉〉.

2.1.26 Monster group M

The smallest non-trivial representation of M over any field has dimension 196882, and

while standard generators of M in the 196882-dimensional representation over GF(2)

have been computed, it is prohibitively slow and expensive in terms of storage to per-

form calculations with such enormous matrices. Instead, we use the computer con-

struction by Linton et al. [31] with an implementation by Parker and Wilson in the C

programming language [28]. We will give an overview of the way we use this con-

struction.

The Monster group M acts linearly on a 196882-dimensional vector space V over

GF(2). The group is generated by a subgroup:

H = 〈A, B, C, D, E〉 ' 31+12·2·Suz :2 (2.1.4)
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and an extra involution T. Among other things, the construction provides:

• facilities for storing and multiplying elements of the subgroup H;

• a procedure vecsuz for computing the action of an element of H on a vector

v ∈ V; and

• a procedure vecT for computing the action of T on a vector v ∈ V.

We work with elements of M expressible in the form g = h1Th2T . . . (hi ∈ H) for

reasonably short words.1 We are able to compute the order of an element g ∈ M as

follows: we choose a non-zero vector v ∈ V and compute vg, vg2, vg3 and so on,

stopping when we find n such that vgn = v. Then n divides (and is probably equal to)

the order of g. When looking for words with a given property, we will assume that n

is equal to the order. When we wish to prove our results are correct, we use the two-

vector method proposed in Linton et al. [31]. Let r and s be elements of M with orders

71 and 94 respectively, and let v be a random non-zero vector in V. Let:

v1 =
71

∑
i=1

vri (2.1.5)

v2 =
47

∑
i=1

vs2i−1 (2.1.6)

We check that v1 is a non-zero vector and v2 is a non-zero vector fixed by s2 but not s.

Then by the known information about the maximal subgroups of M, the stabilizer of

v1 and v2 is trivial, and so if n is the least integer such that v1gn = v1 and v2gn = v2,

then n is the order of g.

1Because the words we compute can grow to be arbitrarily long, this does not provide a construction
of M as black box group. This is not a practical difficulty, as we will still be able to produce a black box
algorithm. If we really want M as a black box group, we can compute the action of standard generators
x and y on a basis of V to give M as a matrix group, but as we have observed, a black box operation in
this construction would be extremely slow.
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Before performing any calculations in the computer construction, we came up with

the following strategy for finding a semi-presentation:

1. Find standard generators x, y of M.

2. Find a word c in x and y whose order is in:

S = {34, 38, 50, 54, 62, 68, 94, 104, 110}

and power it up to a give an element d ∈ 2A.

3. Find a word e such that o(xde) is in:

U = {1, 3, 5}.

This would prove that x is a 2A-element, and also that y is not a 3A-element

(because o(xy) = 29).

4. Find a word f such that o(xy f ) is in:

V = {19, 25, 31, 34, 50, 55, 68, 94}.

The structure constants for M then imply that y is not a 3C-element, so it must be

a 3B-element.

To find standard generators, we powered up a representative of class 4B from [1]

to give an involution x, and then looked for conjugates y of a 3B class representative b

from [59] such that o(xy) = 29. (We will be able to prove retrospectively that x and y
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are in the correct classes.) We used:

x = (DC3D2CD2CD2CD2CDCDCDC)2

b = (ABABAB2AB)7

y = ((ABABAB2AB)7)TBC3BT

where the elements A, B, C, D, T ∈ M are as described in [31].

We then followed the strategy described above. We have:

M ≈ 〈〈x, y, (c, d, f ) | std, o(c) = 50, o(xd) = 5, o(xy f ) = 34;

c := (xy)4(xy2)2, d := c25, f := xyxyxyxyxy2〉〉.
(2.1.7)

Step 3 turned out to be unnecessary, as we can take e = 1.

We wrote a C program Monword which uses the Parker/Wilson routines to check

the orders in (2.1.7) above. It is included on the CD-ROM (see Appendix C). It takes

just over 3 minutes to run on our system.2

2.2 Checkers for the sporadic automorphism groups

In this section, we will give semi-presentations for the 12 groups Aut(G) where G is a

sporadic simple group and Out(G) 6= 1.

2.2.1 Mathieu group M12.2

Here we know that xy is an outer element (it has order 12) and y is inner (it has order

3), and so x must be outer, and hence must be a 2C-element. There are 3 fingerprints

for (2C, 3A, 12)-pairs (corresponding to the 3 conjugacy classes of elements of order

2We compile with gcc -O3 -funroll-loops : these compiler optimisations reduce the running
time by about 50%.

45



12) and 7 fingerprints for (2C, 3B, 12)-pairs. We have:

M12.2 ≈ 〈〈x, y | std, o((xy)3xy2) = 6〉〉.

The relation o(xyxy2) = 11 becomes redundant when this extra condition is added.

2.2.2 Mathieu group M22.2

There are 13 automorphism classes of (2, 4, 11)-pairs to consider, arising from the dif-

ferent combinations of classes of elements of orders 2 and 4. The subgroups generated

in this way have trivial centralizer. We have:

M22.2 ≈ 〈〈x, y | std, o(xyxy2) = 10〉〉.

2.2.3 Higman-Sims group HS.2

We found 29 fingerprints for (2, 5, 30)-pairs; the two subgroups generated with a (2C, 5B, 30)-

pair are 5× S5 and 2×A8; they have centralizers of orders 5 and 2 (respectively) in G.

All other subgroups thus generated have trivial centralizers in G. The structure con-

stants then show that there are exactly 29 automorphism classes of (2, 5, 30)-pairs. We

have:

HS.2 ≈ 〈〈x, y | std, o([x, y]) = 3〉〉.

2.2.4 Janko group J2.2

There are 5 automorphism classes of (2, 5, 14)-pairs to find: a unique class of (2C, 5AB, 14)-

pairs (the standard generators) and 4 classes of (2C, 5CD, 14)-pairs. All these pairs
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generate J2.2. We have:

J2.2 ≈ 〈〈x, y | std, o(xy2) = 24〉〉.

2.2.5 Janko group J3.2

By considering element orders in J3, x must be in class 2B. There are 8 automorphism

classes of (2B, 3, 24)-pairs, 2 of which correspond to class 3A. All the pairs generate

J3.2. We have:

J3.2 ≈ 〈〈x, y | std, o(xyxyxyxy2) = 9〉〉.

The standard relation o(xyxy2) = 9 is redundant.

2.2.6 McLaughlin group McL.2

The only non-zero (2, 3, 22) structure constants come from (2B, 3B)-pairs, so the ele-

ments must be in the correct conjugacy classes. We have:

McL.2 ≈ 〈〈x, y | std〉〉.

2.2.7 Suzuki group Suz.2

There are 32 automorphism classes of (2, 3, 28)-pairs, 31 of which generate Suz.2, and

1 of which (the unique class of (2C, 3C, 28)-pairs) generates the subgroup S4 × L3(2).

We have:

Suz.2 ≈ 〈〈x, y | std, o(xyxyxy2xy2) = 7〉〉.
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2.2.8 Held group He.2

We can show that x is a 2B-element by using Lemma 1.14, taking the 12th power of an

element of order 24 as our reference involution. This then implies that y must be an

outer element of order 6.

To show that y is in 6C, we will use the method of section 1.8.2 and find an element

of order 15 which commutes with y (the classes 6D and 6E have centralizers whose

orders are not divisible by 5). We have:

He.2 ≈ 〈〈x, y, (z, t) | std, o(z) = 24, o(xz12) = 17, o(t) = 15, o([t, y]) = 1;

z := xy2xy2xy, t := (y3(y3)x)4((y3(y3)xy2xy)2〉〉.

2.2.9 O’Nan group O’N.2

By the orders of y and xy, we know that x is an outer element, so it must be in class

2B. There are 2 classes containing elements of order 4, and we want to show that y is

in 4A. Because the (2B, 4B, 22) structure constant is rather large, we chose not to find

fingerprints. Instead we used the method of section 1.8.2, and found an element z of

order 5 which commutes with y. Since |C(4B)| = 512 is not divisible by 5, y must be a

4A-element. We have:

O’N.2 ≈ 〈〈x, y, (t, z) | std, o(z) = 5, o([y, z]) = 1;

z := (t(y2(y2)t)7)2, t := xy2xyx〉〉.

2.2.10 Fischer group Fi22.2

We show that x is in class 2A by using Lemma 1.14, taking our reference 2A-element

as the 11th power of an element of order 22.
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Because x is an inner element and xy has order 42, y must be an outer element, so

it is in one of the classes 18E, 18F, 18G and 18H. We can show that it is either 18E

or 18F by considering the 9th power map. The element xy has order 42, so (xy)21 is

a 2D-element. Lemma 1.14 then allows us to show that y9 is a 2D-element, so y is in

class 18E or 18F. This leaves 5 automorphism classes of (2A, 18E/F, 42)-pairs to test,

2 of which generate the subgroup 3×U4(3).22 with a centralizer of order 3 in G. Each

fingerprint gives a different value of o(xy8), but it turns out that the relations added so

far already eliminate the possibility that y is in class 18F. We have:

Fi22.2 ≈ 〈〈x, y, (z) | std, o(z) = 22, o(xz11) = 3,

o((y9)xy3
(xy)21) = 3; z := xyxy5xy4〉〉.

2.2.11 Fischer group Fi24

We check that x is a 2C-element by using Lemma 1.14 (taking the 27th power of an

element of order 54 as the reference involution).

The (2C, 8, 29) structure constants are zero except for 8D (ξ = 1) and 8F (ξ = 10).

The only maximal subgroup of Fi24 containing an element of order 29 is 29 : 28, so all

the (2C, 8, 29)-pairs generate Fi24. Thus we need to find 11 different fingerprints. We

have:

Fi24 ≈ 〈〈x, y, (z) | std, o(z) = 54, o(xz27) = 3, o(xy2) = 20; z := xyxy6〉〉.

2.2.12 Harada-Norton group HN.2

By considering element orders, we know that y is an inner element and xy is an outer

element. Hence x is an outer element of order 2, so it must be in class 2C.
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To show that y is in 5A, we consider (2A, 5, 22)-pairs. We have:

ξHN.2(2A, 5A, 22) = 1/4

ξHN.2(2A, 5B, 22) = 0

ξHN.2(2A, 5CD, 22) = 1

ξHN.2(2A, 5E, 22) = 25/4 = 4 + 9/4

We claim that there are (respectively) 1, 0, 1 and 13 classes of (2, 5, 22)-pairs for the

classes 5A, 5B, 5CD and 5E. We can easily find this many fingerprints; we will show

that there cannot be any more.

Certainly any (2A, 5, 22)-pair must be contained in HN. The only maximal sub-

group of HN to contain elements of order 22 is 2.HS.2, and in fact these elements are

contained in 2.HS. Thus any (2, 5, 22)-subgroup of 2.HS.2 has centralizer of order 4 in

HN.2, because we have:

2.HS < 4.HS < HN.2

and any subgroup of HS containing elements of orders 11 and 5 must have trivial

centralizer in HS. Thus each class of pairs either contributes 1/4 (if it is contained in

2.HS.2) or 1 (if it generates HN).

We consider each class in turn:

• The structure constant shows that there is exactly 1 class of (2A, 5A, 22)-pairs.

• There are no (2A, 5B, 22)-pairs, because the structure constant is zero.

• By considering the fusion between 2.HS.2 and HN and the structure constants

in 2.HS.2, we know that all (2A, 5CD, 22)-pairs generates HN. So there is only 1

class of (2A, 5CD, 22)-pairs.
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• We observe that 4 of the fingerprints for the (2A, 5E, 22)-pairs have element or-

ders in the set {9, 19, 21, 25, 35}, showing that they cannot be contained in 2.HS.2

and must therefore generate HN. This leaves a contribution of 25/4− 4 = 9/4,

and there are 13− 4 = 9 fingerprints unaccounted for, so there must be exactly 9

classes generating subgroups of 2.HS.2.

After fingerprinting, it turns out that if (a, b) is a (2A, 5, 22)-pair then:

b ∈ 5A ⇔ o(ab2(ab)3) = 22 (2.2.1)

We can find a 2A-element t by powering up an element z of order 60. Then we can look

for g ∈ G such that (t, yg) is a (2A, 5, 22)-pair. We then use the criterion in equation

(2.2.1) to check that yg (and hence y) is a 5A element. We have:

HN.2 ≈ 〈〈x, y, (t, z) | std, o(z) = 60, o(ty) = 22,

o(ty2(ty)3) = 22; z := xy3(xy)4, t := z30〉〉.

2.3 Testing the representations in the Web Atlas

We used our semi-presentations to test the representations of sporadic simple and

almost-simple groups given in the Web Atlas. As we expected, the vast majority of

the representations satisfied the relevant semi-presentations, but a few mistakes were

discovered:

• Matrices purporting to generate a 483-dimensional representation of M23 over

GF(7) were included, but they failed to satisfy the semi-presentation. In fact no

such representation of M23 exists [27].

• One of the 896-dimensional representations of HS over GF(4) was incorrect, as
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the product of the two generators had order exceeding 100.

• Matrices purporting to generate a 104-dimensional representation of He.2 over

GF(5) in fact generated a group of order 30240.

• The 924-dimensional representation of Fi22.2 over GF(3) had non-standard gen-

erators; the second generator given was xy rather than y.
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Chapter 3

The alternating and symmetric groups

In this chapter we will define standard generators for the symmetric groups Sn and

alternating groups An (n ≥ 5). We will then exhibit finders for these groups for the

case n ≤ 25.

Black box algorithms for constructive recognition of symmetric and alternating

groups have also been investigated by Bratus and Pak [5] and Beals et al [2].

3.1 Standard generators for Sn

We begin with the symmetric groups, where the analysis is somewhat simpler. Let

G = Sn, and let:

x = (1, 2), y = (2, 3, 4 . . . n) (3.1.1)

We note that x is a transposition, y has order n− 1 and xy has order n. We seek to make

this the basis for our definition of standard generators for Sn. (This is an extrapolation

of the definition of standard generators already given in the Web Atlas for the small

symmetric groups.)

Lemma 3.1 The group Sn is generated by x and y.
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Proof. Let tk = (k, k + 1) for 1 ≤ k ≤ n− 1 and let t = (i, j) be an arbitrary transposition

with i < j. The element u = ti+1ti+2 · · · tj−1 fixes i and sends i + 1 to j. Hence t = tu
i .

Since G is generated by transpositions t, we have:

G = 〈tk : 1 ≤ k ≤ n− 1〉 (3.1.2)

The element z = (yx)i−1 sends 1 to i and 2 to i + 1. Hence ti = xz, and so G = 〈x, y〉.�

To characterise these generators, suppose x is a transposition, y an element of or-

der n − 1 (not necessarily an (n − 1)-cycle) such that xy has order n. Without loss of

generality (i.e. by conjugating by a suitable element of G), we can suppose x = (1, 2).

Because o(y) and o(xy) are coprime, each cycle in the disjoint cycle decomposition of

y must move 1 or 2. There are just two possibilities:

(S1) 1 and 2 are contained in the same cycle of y.

We can write

y = (1, ◦, . . . ◦︸ ︷︷ ︸
r−1

, 2, •, . . . •︸ ︷︷ ︸
s−1

) (3.1.3)

for integers r, s ≥ 1. Then

r + s = n− 1 (3.1.4)

and so we get:

xy = (1, •, . . . •︸ ︷︷ ︸
s−1

)(2, ◦, . . . ◦︸ ︷︷ ︸
r−1

) =⇒ lcm(r, s) = n (3.1.5)

Now r and s must be proper divisors of n, so each is at most n/2. But because

r + s = n − 1, they must take the values n/2 and n/2− 1 in some order. Since
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these are coprime, (3.1.5) implies

n =
n
2

(n
2
− 1
)

(3.1.6)

which implies n = 6.

(S2) 1 and 2 are contained in different cycles in y.

y = (1, ◦, . . . ◦︸ ︷︷ ︸
r−1

)(2, •, . . . •︸ ︷︷ ︸
s−1

) =⇒ lcm(r, s) = n− 1 (3.1.7)

xy = (1, •, . . . •︸ ︷︷ ︸
s−1

)(2, ◦, . . . ◦︸ ︷︷ ︸
r−1

) =⇒ r + s = n (3.1.8)

If r and s were both proper divisors of n− 1 then they would be at most (n− 1)/2,

which contradicts (3.1.8). Thus they must take the values n − 1 and 1 in some

order, i.e. y is an (n− 1)-cycle and xy is an n-cycle.

This analysis proves:

Lemma 3.2 Let G = Sn for n ≥ 5, n 6= 6. Suppose x ∈ G is a transposition and y ∈ G is

an element of order n − 1 such that xy has order n. Then y is an (n − 1)-cycle and xy is an

n-cycle. Moreover, there is an automorphism of G which sends x to (1, 2) and y to (2, . . . n).

Example 3.3 The case n = 6 is a genuine exception to the lemma above. Note that we can

take x = (1, 2), y = (1, 3, 2, 4, 5) so that xy = (1, 4, 5)(2, 3) has order 6, but x and y clearly

generate S5 rather than S6.

Lemma 3.2 allows us to give the following definition for standard generators of Sn,

n ≥ 5 (n 6= 6):

Definition-Theorem 3.4 Standard generators of Sn for n ≥ 5, n 6= 6 are given by an element

x of order 2 (in the smallest conjugacy class of involutions) and an element y of order n − 1

such that their product has order n. (The element y is necessarily an (n− 1)-cycle.)
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3.2 Finders for Sn

In the following sections, we will find finders for the small (i.e. 5 ≤ n ≤ 25) symmetric

groups.

Providing we can find a transposition x and an (n− 1)-cycle y′ (or elements auto-

morphic to them in the case of S6), we can find standard generators x, y by taking

conjugates y of y′ until xy has order n. The probability of finding standard generators

in any one attempt is:

p =
|CG(x)|.|CG(y)|

|G| =
2(n− 2)!(n− 1)

n!
= 2/n (3.2.1)

So the problem reduces to that of finding a transposition (section 3.2.1) and finding

an (n− 1)-cycle (section 3.2.2).

3.2.1 Finding a transposition

Let Tn denote the conjugacy class of transpositions in G. The class Tn is very small

(having centralizer of order 2(n − 2)!) so we try to find an element in it by powering

up even-order elements. For m ∈ T(Tn), all elements x of order m must contain exactly

one transposition in their disjoint cycle decomposition, and no (2r)-cycles for r > 1.

Theorem 3.6 below shows that for n ≥ 5 (and n 6= 6), the taming set T(Tn) is always

non-empty. First of all, we need a lemma.

Lemma 3.5 Any integer greater than 9 can be expressed as a sum of distinct odd primes.

Proof. This is proved by Dressler [18] using induction and the following result:

pn+1 < 2pn − 10 (n > 6) (3.2.2)

which is a strengthening of Bertrand’s Postulate. �
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Theorem 3.6 Let n ≥ 5, n 6= 6 be an integer. Then:

1. There exists an integer tn such that all elements of order tn in Sn power up to give a

transposition.

2. The taming set T(Tn) is non-empty.

Proof. Clearly part 2 follows from part 1. We can take t5 = 6, t7 = 10, t8 = 10, t9 = 14,

t10 = 14 and t11 = 18. Otherwise, suppose n > 11. By Lemma 3.5 we can write:

n− 2 =
k

∑
i=1

pi (3.2.3)

where p1, . . . pk are distinct odd primes.

Let tn = 2 ∏ pi. By (3.2.3), any element of Sn with order tn is fixed point free and is a

product of k + 1 disjoint cycles with orders 2, p1 . . . pk respectively. Hence any element

of order tn in Sn powers up to a transposition. �

Note that n = 6 is a genuine exception to Theorem 3.6. This is because the outer

automorphism of S6 swaps the conjugacy class of transpositions with the conjugacy

class of elements with cycle shape 23. We can ensure that we get one of these two

classes by powering up any element of order 6.

The taming sets T(Tn) for small values of n are given in Table 3.1, together with the

approximate probabilities of finding an element with order m ∈ T(Tn).

3.2.2 Finding an (n− 1)-cycle

The (n − 1)-cycles form a large conjugacy class in Sn, and the probability of finding

one in a random search is 1/(n − 1). They also form the largest class of elements of

order n− 1. However, it may not be possible to determine whether a given element of

order n − 1 is really an (n − 1)-cycle. Unlike transpositions, (n − 1)-cycles cannot be
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n T(Tn) p ≈
5 6 1/6
6 6a 1/3
7 10 1/10
8 10 1/10
9 14 1/14
10 14, 30 1/10
11 18 1/18
12 18, 42 1/13
13 22 1/22
14 22, 70 1/17
15 26, 70 1/19
16 26, 66, 90 1/15
17 90, 210 1/63
18 78, 110, 126 1/34
19 34, 110, 126 1/22
20 34, 130, 154 1/23
21 38, 130, 154, 330 1/23
22 38, 102, 182, 198 1/21
23 182, 198, 390, 462, 630 1/59
24 114, 170, 234, 630 1/49
25 46, 170, 234, 546, 770 1/29
26 46, 190, 238, 286, 770 1/28
27 50, 190, 238, 286, 510, 910, 990 1/27
28 50, 138, 266, 306, 910, 990, 2310 1/27
29 54, 266, 306, 570, 714, 858, 1170, 1386 1/32
30 54, 150, 230, 342, 374, 1170, 1386, 2730 1/27

aA 6-element in S6 powers up to either a 2-cycle or an element of shape 23,
but these classes fuse in Aut(S6)

Table 3.1: Taming sets for the class Tn of transpositions in Sn
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obtained from elements of higher order by powering up. However, by Lemma 3.2 an

element of order n− 1 which is not in the right class can never give an element of order

n when multiplied by a transposition. We can therefore find any element of order n− 1

and go on to the conjugating stage, bearing in mind that we will have to backtrack if

we do not find standard generators after a reasonable amount of searching. For high

values of n, this may be the best way of finding standard generators. If we wish to find

a method which does not require backtracking then we must be more careful.

For n ∈ {5, 6, 8, 9, 10, 12, 14, 17, 18, 20, 24} there is a unique conjugacy class of ele-

ments of order n − 1, so these must be the (n − 1)-cycles. The probability of finding

such an element in a random search is 1/(n− 1).

For n ∈ {5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25} there is a unique conjugacy class of ele-

ments of order n, so we can work backwards: take an element z′ of order n (probability

1/n) and look for conjugates z of z′ such that xz has order n − 1. Then y = xz is an

(n− 1)-cycle by Lemma 3.2. We have xy = x2z = z, so x and y are standard generators

of Sn, and there is no need to conjugate y any further.

This leaves the cases n ∈ {15, 21, 22}. In these cases, we can find an (n− 1)-cycle by

working upwards from smaller symmetric groups, at the cost of more random search-

ing:

• For n = 15, find an element t of order 13 (p = 1/26) and find a conjugate t′ of it

such that xt′ has order 14 (p ≈ 1/4). Then xt′ is a 14-cycle.

• For n = 21, find an element t of order 19 (p = 1/38) and find a conjugate t′ of it

such that xt′ has order 20 (p ≈ 1/6). Then xt′ is a 20-cycle.

• For n = 22, find an element t of order 19 (p = 1/114) and find a conjugate t′ of it

such that xt′ has order 20 (p ≈ 1/2). Let u = xt′ and find a conjugate u′ of u such

that xu′ has order 21 (p ≈ 1/6). Then xu′ is a 21-cycle.
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3.3 Checkers for Sn

A checker for Sn needs to verify that the first generator x is a transposition. If this is

done, then by Definition-Theorem 3.4, we only need to check the standard relations

o(x) = n− 1, o(xy) = n.

If we want a general strategy for checking Sn (n ≥ 7), we can exploit the fact that Sn

is the Weyl group for the Coxeter system of type An−1.

Sn ≈ 〈〈x, y,(t1, . . . tn−1) | std,

o(titi+1) = 3 (1 ≤ i ≤ n− 2),

o(titj) = 2 (1 ≤ i, j ≤ n− 1, |i− j| > 1);

t1 := x, ti+1 := tyx
i (1 ≤ i ≤ n− 2)〉〉

(3.3.1)

(The elements ti satisfy the Coxeter presentation for Sn, so are guaranteed to be trans-

positions, and hence x is a transposition.)

If we do not require a general solution, then we can use the dihedral trick and the

taming sets T(Tn) which we found earlier to give a shorter semi-presentation. We find

a word z in x and y with o(z) = r such that r ∈ T(Tn) and o(xzr/2) = 3. Thus x and

zr/2 are conjugate, i.e. x is a transposition:

Sn ≈ 〈〈x, y, (z) | std, o(z) = r, o(xzr/2) = 3; z := word in x and y〉〉 (3.3.2)

The following lemma gives a possible value of z for a number of small cases.

Lemma 3.7 If n is odd and 2(n− 2) ∈ T(Tn), then we can take:

z = xyn−3xy = (1, n, n− 1, . . . , 4)(2, 3), o(z) = 2(n− 2) (3.3.3)
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n z r = o(z) Permutation
17 xy2xy5xy9xy 90 (2, 17)(3, 4, . . . 11)(12, 13, 14, 15, 16)
18 xy13xy3xy2 78 (1, 3)(2, 7, 8, . . . 18)(4, 5, 6)
23 xy2xy13xy7xy 182 (2, 23)(3, 4 . . . 9)(10, 11, . . . 22)
24 xy19xy3xy2 114 (1, 3)(2, 7, 8, . . . 24)(4, 5, 6)

Table 3.2: Words for semi-presentations for Sn

If n is even and 2(n− 3) ∈ T(Tn), then we can take:

z = xyxyn−3xy2 = (1, 3)(4, 5, . . . n), o(z) = 2(n− 3) (3.3.4)

Proof. Straightforward calculation. �

For 7 ≤ n ≤ 30, the only cases not covered by Lemma 3.7 are n ∈ {17, 18, 23, 24}.

For these cases we can use the words given in Table 3.2.

3.4 Standard generators for An

The situation for the alternating groups is more complicated, as our choice of standard

generators depends on the parity of n. As before, we extrapolate the general definition

of standard generators for An from those given in the Web Atlas.

The standard generators defined in the Web Atlas for A5 and A6 differ from the

usual pattern.1 The group A5 has a triangle presentation:

A5
∼= 〈x, y | x2 = y3 = (xy)5 = 1〉 (3.4.1)

and we make this the basis of standard generators for A5: standard generators are x

of order 2, y of order 3 such that xy has order 5 (e.g. x = (1, 2)(3, 4), y = (2, 4, 5)).

1This is because there are isomorphisms A5 ∼= L2(4) ∼= L2(5) and A6 ∼= L2(9), and groups L2(q)
have an involution as their first standard generator. There are also complications because A6 has a
larger outer automorphism group than the rest of the alternating groups.
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Standard generators of the alternating group A6 are x of order 2, y of order 4 such that

xy has order 5 (e.g. x = (1, 2)(3, 4), y = (2, 4, 5, 6)).

From now on, we assume n ≥ 7. Define:

β(n) =


n− 2 if n is odd

n− 1 if n is even
γ(n) =


n if n is odd

n− 2 if n is even
(3.4.2)

Our choice for standard generators of An is:

x = (1, 2, 3); y =


(3, 4, . . . n) if n is odd

(2, 3, . . . n) if n is even
(3.4.3)

i.e. a 3-cycle and an β(n)-cycle whose product has order γ(n). In the following sections

we will try to prove a result in the spirit of Lemma 3.2 for the alternating groups.

Unfortunately, there are exceptional cases which are hard to classify.

Suppose x is a 3-cycle and y is an element of order β(n) (not necessarily a β(n)-

cycle) whose product has order γ(n). Without loss of generality, we can assume x =

(1, 2, 3). Any non-trivial cycle of y which does not involve 1, 2 or 3 is unchanged in xy.

But β(n) and γ(n) are coprime, so y cannot have any such cycles.

Hence the non-trivial cycles of y can be found among the cycles of y containing 1,

2 and 3. If we consider the cycles of y containing 1, 2 and 3, there are essentially 4

possibilities. In each case we get two number theoretic conditions on n.
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(A1) All 3 points are contained in a single cycle in the order 1, 2, 3.

y = (1, ◦, . . . ◦︸ ︷︷ ︸
r−1

, 2, •, . . . •︸ ︷︷ ︸
s−1

, 3, ?, . . . ?︸ ︷︷ ︸
t−1

) =⇒ r + s + t = β(n) (3.4.4)

xy = (1, •, . . . •︸ ︷︷ ︸
s−1

, 3, ◦, . . . ◦︸ ︷︷ ︸
r−1

, 2, ?, . . . ?︸ ︷︷ ︸
t−1

) =⇒ r + s + t = γ(n) (3.4.5)

Since β(n) 6= γ(n), this case does not occur.

(A2) All 3 points are contained in a single cycle in the order 1, 3, 2.

y = (1, ◦, . . . ◦︸ ︷︷ ︸
r−1

, 3, ?, . . . ?︸ ︷︷ ︸
t−1

, 2, •, . . . •︸ ︷︷ ︸
s−1

) =⇒ r + s + t = β(n) (3.4.6)

xy = (1, •, . . . •︸ ︷︷ ︸
s−1

)(2, ?, . . . ?︸ ︷︷ ︸
t−1

)(3, ◦, . . . ◦︸ ︷︷ ︸
r−1

) =⇒ lcm(r, s, t) = γ(n) (3.4.7)

(A3) The 3 points are contained in two cycles (2 points in one, 1 in the other).

y = (1, ◦, . . . ◦︸ ︷︷ ︸
r−1

, 2, •, . . . •︸ ︷︷ ︸
s−1

)(3, ?, . . . ?︸ ︷︷ ︸
t−1

) =⇒ lcm(r + s, t) = β(n) (3.4.8)

xy = (1, •, . . . •︸ ︷︷ ︸
s−1

)(2, ?, . . . ?︸ ︷︷ ︸
t−1

, 3, ◦, . . . ◦︸ ︷︷ ︸
r−1

) =⇒ lcm(s, r + t) = γ(n) (3.4.9)

(A4) The 3 points are contained in three cycles (1 point in each).

y = (1, ◦, . . . ◦︸ ︷︷ ︸
r−1

)(2, •, . . . •︸ ︷︷ ︸
s−1

)(3, ?, . . . ?︸ ︷︷ ︸
t−1

) =⇒ lcm(r, s, t) = β(n) (3.4.10)

xy = (1, •, . . . •︸ ︷︷ ︸
s−1

, 2, ?, . . . ?︸ ︷︷ ︸
t−1

, 3, ◦, . . . ◦︸ ︷︷ ︸
r−1

) =⇒ r + s + t = γ(n) (3.4.11)
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3.4.1 Standard generators for An, n ≥ 7 odd

For this section, we suppose n is odd and we investigate each of the cases in turn.

(A1) All 3 points are contained in a single cycle in the order 1, 2, 3.

We have already remarked that this is impossible.

(A2) All 3 points are contained in a single cycle in the order 1, 3, 2.

r + s + t = n− 2 (3.4.12)

lcm(r, s, t) = n (3.4.13)

By (3.4.12), r, s and t must be proper divisors of n, so

max(r, s, t) ≤ n/3 (3.4.14)

Because r, s and t are odd, this forces r, s and t to take the values n/3, n/3 and

n/3− 2 (in some order). Because n is odd, n/3 and n/3− 2 are coprime, (3.4.13)

implies:

n = n/3× (n/3− 2) (3.4.15)

Thus n = 15 and xy has cycle type 3× 52.

(A3) The 3 points are contained in two cycles (2 points in one, 1 in the other).

lcm(r + s, t) = n− 2 (3.4.16)

lcm(s, r + t) = n (3.4.17)
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Suppose t = 1. Then let u = r + 1, and the equations become:

s + u = n− 1 (3.4.18)

lcm(s, u) = n (3.4.19)

Then s and u are proper divisors of n (which is odd), yielding s, u ≤ n/3. Thus

n− 1 = s + u ≤ 2n/3, which contradicts our assumption that n ≥ 7. Thus t 6= 1

(this will be required for Lemma 3.8).

However, for t > 1, there are many solutions to this pair of equations. The small-

est values of n for which equations (3.4.16) and (3.4.17) have a solution are given

in Table 3.3, and can also be found as sequence A108157 in [47]. The smallest

value is n = 497.

(A4) The 3 points are contained in three cycles (1 point in each).

lcm(r, s, t) = n− 2 (3.4.20)

r + s + t = n (3.4.21)

Suppose r, s and t are all proper divisors of n− 2. Then because n− 2 is odd, we

must have:

max(r, s, t) ≤ (n− 2)/3 (3.4.22)

But this is clearly incompatible with (3.4.21). So at least one of r, s and t must

be equal to n − 2. This then forces the other two to be equal to 1, and so b is an

(n− 2)-cycle and ab is an n-cycle.

By the above analysis we get:
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n r s t
497 38 7 33
623 62 7 27
875 166 125 9

1017 194 9 145
1107 58 27 65
1199 52 11 57
1397 82 11 45
1617 62 33 85
1991 142 11 39
2093 110 13 51

n r s t
2277 142 33 65
2795 82 65 133
2873 82 17 87
3077 106 17 75
3215 454 5 189
3383 130 17 69
3629 98 19 93
3743 110 19 87
3885 248 105 11
4097 178 17 63

Table 3.3: Smallest solutions to equations (3.4.16), (3.4.17)

Lemma 3.8 Let n ≥ 7 be odd. Suppose x′ is a 3-cycle and y′ is an (n− 2)-cycle such that x′y′

has order n. Then one of the following holds:

1. x′y′ is an n-cycle, and there is an automorphism of An mapping x′ and y′ to x and y.

2. (The exceptional case.) n = 15 and x′y′ is an element of cycle shape 3× 5× 5

Definition-Theorem 3.9 Standard generators of An for n ≥ 7, n odd are given by a 3-cycle

x and an (n− 2)-cycle y such that xy has order n (and xy2 has order 15 if n = 15).

3.4.2 Standard generators for An, n ≥ 8 even

Now we suppose n is even.

(A1) All 3 points are contained in a single cycle in the order 1, 2, 3.

We have already remarked that this is impossible.

(A2) All 3 points are contained in a single cycle in the order 1, 3, 2.

r + s + t = n− 1 (3.4.23)

lcm(r, s, t) = n− 2 (3.4.24)
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By equation (3.4.23), r, s and t are proper divisors of n− 2 (even), so:

max(r, s, t) ≤ (n− 2)/2 (3.4.25)

Without loss of generality, we say r ≥ s ≥ t. On the other hand, by (3.4.23),

r ≥ (n− 1)/3 > (n− 2)/3. Combining with (3.4.25) we get:

r =
n− 2

2
(3.4.26)

Hence s + t = n/2, whence s ≥ n/4. Thus either s = (n− 2)/2 or s = (n− 2)/3.

The first possibility yields t = 1 by (3.4.23), contradicting (3.4.24). Thus

s =
n− 2

3
(3.4.27)

Then (3.4.23) forces:

t =
n− 2

6
+ 1 (3.4.28)

Now t divides n− 2, so we can write t = (n− 2)/r for r ∈ {3, 4, 5}. Thus:

n− 2
6

+ 1 =
n− 2

r
(3.4.29)

which yields:

n ∈ {8, 14, 32} (3.4.30)

(A3) The 3 points are contained in two cycles (2 points in one, 1 in the other).

lcm(r + s, t) = n− 1 (3.4.31)

lcm(s, r + t) = n− 2 (3.4.32)
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n r s t
58 11 8 3

146 13 16 5
156 17 14 5
206 29 12 5
288 19 22 7
466 139 16 93
478 25 28 9
496 29 26 9
498 55 16 7
562 107 80 33
596 31 54 35

n r s t
610 55 32 21
640 49 22 9
716 31 34 11
738 35 32 11
782 41 30 11
834 55 64 49
838 49 44 27
870 51 28 11
982 89 20 9
982 187 140 9

1028 41 38 13

Table 3.4: Smallest solutions to equations (3.4.31), (3.4.32)

Firstly, suppose t > 1. In this case, there are a number of solutions, the smallest

of which are given in Table 3.4. The relevant values of n can be found as sequence

A108750 in [47]. Note however that in this situation we have:

[x, y] = (1, 3, 2)(1, 2, 3)(1,◦,...◦,2,•,...•)(3,?,...?) (3.4.33)

Because s is even, it is at least 2. If r > 1 we have:

[x, y] = (1, 3, 2)(◦, •, ?) (3.4.34)

which has order 3. If r = 1, then we have:

[x, y] = (1, 3, 2)(2, •, ?) = (1, 3, •, ?, 2) (3.4.35)

which has order 5. Thus in particular o([x, y]) 6= 2.

Otherwise suppose that t = 1 so that y is an (n− 1)-cycle. So r + s = n− 1, and

since n − 1 is odd, either r ≥ n/2 or s ≥ n/2. If r ≥ n/2, then r + 1 = n − 2
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(because r + 1 divides n − 2), and so r = n − 3, s = 2. Alternatively, if s ≥ n/2

then s = n− 2 (because s divides n− 2), whence r = 0. By arbitrarily numbering

the points, this gives two possibilities, which can be distinguished by looking at

o([x, y]):

(a) y = (1, 4, 5, . . . , n− 1, 2, n− 2), xy = (1, n− 2)(2, 3, 4, . . . n− 1)

[x, y] = (1, 3, 2)(1, 2, 3)(1,4,5,...,n−1,2,n−2)

= (1, 3, 2)(4, n− 2, 3)

= (1, 4, n− 2, 3, 2)

(3.4.36)

(b) y = (1, 2, 4, 5, . . . , n− 1), xy = (1, 4, . . . n− 1)(2, 3)

[x, y] = (1, 3, 2)(1, 2, 3)(1,2,4,5,...,n−1)

= (1, 3, 2)(2, 4, 3)

= (1, 2)(3, 4)

(3.4.37)

The second case corresponds to our choice of standard generators for An.

(A4) The 3 points are contained in three cycles (1 point in each).

lcm(r, s, t) = n− 1 (3.4.38)

r + s + t = n− 2 (3.4.39)

As above, r, s and t are proper divisors of n− 1, which is odd. Therefore max(r, s, t) ≤

(n − 1)/3. Then (3.4.39) implies that the three numbers must take the values
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(n− 1)/3, (n− 1)/3 and (n− 1)/3− 1 in some order. But then:

lcm(r, s, t) =
(n− 1)(n− 4)

9
= n− 1 (3.4.40)

which implies n ∈ {1, 13}. But n was assumed to be even, so this is a contradic-

tion.

This analysis proves:

Lemma 3.10 Let n ≥ 8 be even. Suppose x′ is a 3-cycle and y′ is an element of order n − 1

such that x′y′ has order n− 2. Then one of the following holds:

1. y′ is an (n− 1)-cycle, x′y′ has cycle type 2× (n− 2) and [x′, y′] has cycle type 22, and

there is an automorphism of An which maps x′ and y′ to x and y;

2. y′ is an (n− 1)-cycle, x′y′ has cycle type 2× (n− 2) and [x′, y′] is a 5-cycle;

3. (The exceptional cases) y′ is an (n− 1)-cycle, x′y′ has cycle type n−2
2 × n−2

3 × (n−2
6 + 1)

and n is one of 8, 14 or 32;

4. y′ is the product of two non-trivial cycles and [x′, y′] is a 3-cycle or 5-cycle.

Example 3.11 Let x = (1, 2, 3). Here are some (n− 1)-cycles yn (with n even) such that xyn

has order n− 2 but does not have cycle shape 2× (n− 2). These exhibit the exceptional cases
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of Lemma 3.10. Observe that o([x, yn]) = 3 in each case.

y8 =(1, 4, 5, 3, 6, 2, 7) (3.4.41)

xy8 =(1, 7)(2, 6)(3, 4, 5) (3.4.42)

y14 =(1, 4, 5, 6, 7, 8, 3, 9, 10, 11, 2, 12, 13) (3.4.43)

xy14 =(1, 12, 13)(2, 9, 10, 11)(3, 4, 5, 6, 7, 8) (3.4.44)

y32 =(1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, (3.4.45)

3, 18, 19, 20, 21, 22, 23, 24, 25, 26, 2, 27, 28, 29, 30, 31)

xy32 =(1, 27, 28, 29, 30, 31)(2, 18, 19, 20, 21, 22, 23, 24, 25, 26) (3.4.46)

(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17)

Definition-Theorem 3.12 Standard generators of An for n ≥ 8, n even are given by a 3-cycle

x and an element y of order (n− 1) such that xy has order n− 2 and [x, y] has order 2. Note

that y is necessarily an (n− 1)-cycle.

3.5 Finders for An

In this section, we discuss the problem of finding a finder for An.

If we have a 3-cycle x and a β(n)-cycle y′, then we need to find a conjugate y of y′

such that all the conditions hold.

The probability p of finding a particular conjugacy class of pair (x, y) by conjugating

is given by:

p =
|CG(x)|.|CG(y)|

|An|
(3.5.1)

However, if n is odd, there are two conjugacy classes of pairs corresponding to stan-

dard generators, so the probability of finding a pair of standard generators is doubled.

The probability p′ of finding a pair of standard generators in a single conjugation is
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therefore:

p′ =


6

n(n−1) if n is odd

3
n(n−2) if n is even

(3.5.2)

So the problem is reduced to finding a 3-cycle and a β(n)-cycle.

3.5.1 Finding a 3-cycle

Let Rn denote the class of 3-cycles in An. We can find a 3-cycle in a way similar to how

we found transpositions in Sn; find integers m such that all elements in Am of order

m power up to 3-cycles. A list of taming sets T(Rn) for small n is given in Table 3.5.

Analogously to Theorem 3.6 we have:

Theorem 3.13 Let n ≥ 5, n 6= 6 be an integer. Then:

1. There exists an integer rn such that all elements of order rn in An power up to give a

3-cycle.

2. The taming set T(Rn) is non-empty.

Proof. For n ≤ 30, consult Table 3.5. For n > 30, we can write:

n− 3 =
k

∑
i=1

pi (3.5.3)

where the pi are distinct primes greater than or equal to 5 (this is by a result of Kløve

[30] analogous to Lemma 3.5). Then set rn = 3 ∏ pi as before. Any element of Sn with

this order must have k + 1 cycles of orders 3, p1, . . . pk respectively, and hence must be

in An and must power up to a 3-cycle. �

3.5.2 Finding a β(n)-cycle

For n ≤ 25, n 6= 16, 17, 22, 23, all elements of order β(n) in An are β(n)-cycles. The

probability of finding an β(n)-cycle by a random search in An is 2/β(n).

72



n T(Rn) p ≈
5 3 1/3
6 3a 1/4
7 6 1/12
8 15 1/7
9 12, 15 1/5
10 15, 21 1/6
11 21 1/10
12 21, 30 1/16
13 24 1/24
14 33, 42, 60 1/11
15 33, 105 1/13
16 33, 39, 84, 105 1/9
17 39, 105 1/16
18 39, 66, 120 1/24
19 165, 210 1/69
20 51, 78, 132, 165, 168 1/14
21 48, 51, 165, 195, 231, 420 1/11
22 51, 57, 156, 195, 231 1/12
23 57, 195, 231, 273, 330 1/19
24 57, 102, 264, 273 1/30
25 255, 273, 390, 462, 660, 840 1/60
26 69, 114, 204, 240, 255, 312, 1155 1/18
27 69, 255, 285, 357, 429, 546, 780, 924, 1155 1/18
28 69, 75, 228, 285, 336, 357, 429, 1155, 1365 1/15
29 75, 285, 357, 399, 429, 510, 1092, 1320, 1365 1/23
30 75, 138, 399, 408, 1365, 2310 1/39

aAll 3-elements in A6 fuse into one class in Aut(A6)

Table 3.5: Taming sets for the class Rn of 3-cycles in An
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n Γ+
n Γ−n

16 8, 14, 22, 28, 36, 40, 42, 63 3, 4, 10, 11, 21, 35
17 7, 8, 14, 17, 22, 28, 36, 40, 42, 63 3, 4, 10, 11, 21
22 10, 16, 18, 19, 20, 30, 34, 36, 40,

48, 52, 55, 57, 70, 72, 78, 85, 88,
90, 99, 117, 120, 132, 140, 195, 315

3, 5, 6, 8, 13, 14, 17, 28, 33, 35, 39,
45, 63, 77

23 10, 16, 18, 19, 20, 23, 30, 34, 36,
40, 48, 52, 55, 57, 70, 72, 78, 85,
88, 90, 99, 117, 120, 132, 140, 195,
315

3, 5, 6, 8, 13, 14, 17, 28, 33, 35, 39,
45, 63, 77, 273

Table 3.6: Sets Γ±n for distinguishing β(n)-cycles

For n ∈ {16, 17, 22, 23}, we can find sets Γ+
n and Γ−n satisfying the following prop-

erty:

Property 3.14 Let t be an element of An with order β(n). Then:

1. If o(xt) ∈ Γ+
n then t is an β(n)-cycle.

2. If o(xt) ∈ Γ−n then t is not an β(n)-cycle.

3. For some conjugate t′ of t, o(xt′) ∈ Γ+
n ∪ Γ−n .

Given such sets, we can identify an β(n)-cycle by taking a random element t of order

β(n) with probability approximately 2/β(n), and choose conjugates t′ of t until the

order of xt′ lies in either Γ+
n or Γ−n . If the order is in Γ+, then we have found an β(n)-

cycle, and if not, then we have found an element which is definitely not an β(n)-cycle,

so we need to return to the beginning. Sets fulfilling Property 3.14 are given in Table

3.6.

Alternatively for n = 17, 23, since n is prime, all elements of order n are n-cycles.

Find an element t of order n (probability 2/n) and then find a conjugate t′ of t such that

xt′ has order n − 2 (probability 3/((n − 2)(n − 1))). Then xt′ is the required (n − 2)-

cycle. In fact, because of the remark following Lemma 3.8, x−1 and xt′ are standard
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generators of An.

Alternatively for n = 22, find an element t of order 19 (p = 1/57) and find a

conjugate t′ of it such that xt′ has order 21 (p ≈ 1/54). Then xt′ is an (n− 1)-cycle.

3.6 Checkers for An

To check elements x, y are standard generators of An, we need some way of showing

that x is a 3-cycle and y is an β(n)-cycle. If we want a general scheme, we can use the

following presentations due to Carmichael [9, Theorem 22]:

Theorem 3.15 Let n > 3. For n odd we have:

An = 〈s, t | sn−2 = t3 = (st)n = (ts−ktsk)2 = 1 (1 ≤ k ≤ (n− 3)/2) 〉 (3.6.1)

The permutations σ = (3, . . . n), τ = (1, 2, 3) satisfy this presentation.

For n even we have:

An = 〈s, t | sn−2 = t3 = (st)n−1 = (ts(−1)k
s−ktsk)2 = 1 (1 ≤ k ≤ (n− 2)/2) 〉 (3.6.2)

The permutations σ = (1, 2)(3, . . . n), τ = (1, 2, 3) satisfy this presentation.

To use these presentations, we set t = x, s = xy (where x and y are our standard

generators).

Alternatively, we can provide checkers for 7 ≤ n ≤ 30 as follows:

3.6.1 Checking x is a 3-cycle

The first task is to show that x is a 3-cycle.

Lemma 3.16 If x, y ∈ G satisfy o(x) = o(y) = 3 and o(xy) = 2 then x is G-conjugate to

y−1. In particular, if x and y are permutations then they have the same cycle shape.
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Proof. Let H = 〈x, y〉. Then because

A4 = 〈x, y | x3 = y3 = (xy)2 = 1〉 (3.6.3)

we must have H ∼= A4. The elements representing x and y in A4 can be taken to be

(1, 2, 3) and (2, 3, 4), so x is H-conjugate to y−1. �

Hence we can prove that x is a 3-cycle by finding an element t whose order o is in

T(Rn), and then find an element u such that o(x(to/3)u) = 2. Words giving such t and

u are given in Table 3.7.

3.6.2 Checking y is an β(n)-cycle

Suppose x is known to be a 3-cycle, and we wish to show that y is an β(n)-cycle. By the

analysis in section 3.4.1, if n is odd, the standard relations are enough to show that y is

a β(n)-cycle providing n < 497. By Definition-Theorem 3.12, for n even the standard

relations are enough to show y is a β(n)-cycle. Hence for 7 ≤ n ≤ 30, we have the

following semi-presentation for An:

An ≈ 〈〈x, y, (t, u) | std, o(x(to/3)u) = 2, o(t) = o;

t, u = words in x and y〉〉
(3.6.4)

where t, u and o are as given in Table 3.7, and the standard relations ‘std’ are as given

in Definition-Theorems 3.9 and 3.12.
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n t o ∈ T(Rn) u
7 xy2xyxy 6 x2y
8 xy2 15 x2y2

9 x2y2xy 15 xy6

10 xy3 21 xy2xy3

11 x2y2xy 21 xyxy3

12 xy3xy2 30 xy5

13 x2y4xyxy 24 x2y10

14 xy4 33 x2y4

15 x2y5xy 33 xy12

16 xy8 39 1
17 x2y6xy 39 xy7

18 xy6xy2 66 xy8

19 xy5xy2xy 165 xy8

20 xy6 51 x2y6

21 x2y8xy 51 xy18

22 xy11 57 1
23 x2y9xy 57 xy10

24 xy19xy3 57 xy20

25 xy8xy2xy 255 xy11

26 xy8 69 x2y8

27 x2y11xy 69 xy24

28 xy14 75 1
29 x2y12xy 75 xy13

30 xy12xy2 138 xy14

Table 3.7: Words t, u for checking that x is a 3-cycle in (3.6.4)
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Chapter 4

The linear groups L2(q)

In this chapter, we will define standard generators for the groups in L G of the form

L2(q).

4.1 Basic facts about L2(q)

Let G = PSL2(q) = L2(q) for q = pr a prime power. We will require the following facts

about G in the sequel:

Lemma 4.1 (Dickson [24]) Any maximal subgroup of G must be one of the following:

• a Borel subgroup: the semi-direct product of Cr
p by a cyclic group of order (q− 1)/2 (or

q− 1 if q is even)

• a dihedral group

• a subfield group: L2(pm) or L2(pm).2 where m divides r.

• one of S5, A5 and A4

(Dickson gives a more precise statement of this lemma, but this weaker version is suf-

ficient for our purposes.)
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χ Parameter χ(1) χ(z)/χ(1)
1 1 1
ψ q 1
χi 1 ≤ i ≤ (q− 3)/2 q + 1 (−1)i

θj 1 ≤ j ≤ (q− 1)/2 q− 1 (−1)j

ξk k ∈ {1, 2} (q + 1)/2 (−1)(q−1)/2

ηk k ∈ {1, 2} (q− 1)/2 (−1)(q+1)/2

Table 4.1: Characters of SL2(q), q odd (z is the central element of order 2)

Lemma 4.2 Let G = L2(pr). The group G has a unique conjugacy class 2A of involutions,

with size given by:

|2A| =


q2 − 1 if q ≡ 0 (mod 2)

q(q− 1)/2 if q ≡ −1 (mod 4)

q(q + 1)/2 if q ≡ 1 (mod 4)

(4.1.1)

Lemma 4.3 Let G = L2(pr). If p 6= 3 then G has a unique conjugacy class 3A of elements of

order 3, with size given by:

|3A| =


q(q− 1) if q ≡ −1 (mod 3)

q(q + 1) if q ≡ 1 (mod 3)
(4.1.2)

If p = 3 then G has 2 conjugacy classes 3A and 3B of elements of order 3, with sizes given by:

|3A| = |3B| = (q2 − 1)/2 (4.1.3)

These classes are swapped by an outer automorphism of G.

Lemma 4.4 Let q be an odd prime power. Then SL2(q) has q + 4 irreducible characters, pa-

rameterised as in Table 4.1.
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χ Parameter χ(1)
1 1
ψ q
χi 1 ≤ i ≤ (q− 2)/2 q + 1
θj 1 ≤ j ≤ q/2 q− 1

Table 4.2: Characters of SL2(q), q even

Lemma 4.5 Let q be a power of 2. Then L2(q) ∼= SL2(q) has q + 1 irreducible characters,

parameterised as in Table 4.2.

4.2 Standard generators for L2(p)

In order to define standard generators for G = L2(q), q = pr, we will consider three

cases:

• r = 1 (prime case)

• r > 1 and p = 2 (even prime-power case)

• r > 1 and p > 2 (odd prime-power case)

Define:

λ(q) =


q prime case

q− 1 even prime-power case

(q− 1)/2 odd prime-power case

(4.2.1)

Then we get the following important consequence of Lemma 4.1.

Theorem 4.6 Let q ≥ 7 and let (x, y) be a (2, 3, λ(q))-pair in G. Then G is generated by x

and y.

Proof. Suppose not. Then let H = 〈x, y〉, and so H ≤ M for some maximal subgroup M

of G. Clearly M is not dihedral, and M cannot be S5, A5 or A4. Moreover, for m < r, no
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element of L2(pm) can have order λ(q) (the highest element order in L2(pm) is pm + 1

or (pm + 1)/2) so M cannot be a subfield group. So M must be a Borel subgroup.

Consider M, the image of the Borel subgroup modulo the elementary abelian group of

order pr. Then M is cyclic. For g ∈ M, we either have o(g) = o(g) or o(g) = o(g)/p.

Because M is cyclic, we also have:

o(xy) = o(x.y) = lcm(o(x), o(y)) (4.2.2)

But this is incompatible with (x, y) being a (2, 3, λ(q))-pair. �

Definition 4.7 A semi-standard pair for L2(q) is a pair (x, y) such that o(x) = 2, o(y) = 3

and o(xy) = λ(q).

We do not yet know that semi-standard pairs exist, but by Theorem 4.6, all semi-

standard pairs generate G. In the following sections we complete the definition of

standard generators for L2(q) for q ≤ 499.

4.2.1 Standard generators for L2(p) (prime case)

Let G = L2(p) for a prime p ≥ 7. A semi-standard pair for G is a (2, 3, p)-pair.

Lemma 4.8 Let p ≥ 5 be a prime. Then L2(p) contains two conjugacy classes C A
p , C B

p of

elements of order p. The two classes are automorphic, and their sizes are given by

|C A
p | = |C B

p | = (p− 1)(p + 1)/2 (4.2.3)

By Theorem 4.6, all (2, 3, p)-pairs generate G. We will show:

ξ(2A, 3A, C ε
p ) = 1 (4.2.4)
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for ε ∈ {A, B}. This implies that (2, 3, p)-pairs exist and are determined up to auto-

morphisms of L2(p), and thus no extra conditions are required to get a definition of

standard generators. By section 1.4, this structure constant is the product of the quan-

tities α and β, where:

α =
|2A||3A||C ε

p |
|L2(p)|2 (4.2.5)

and

β = ∑
χ∈L2(p)

tχ (4.2.6)

where

tχ =
χ(2A)χ(3A)χ(C ε

p )
χ(1)

(4.2.7)

The proof that αβ = 1 seems to require a case-by-case analysis depending on the

residue of p modulo 12.

By Lemma 4.8 and the fact that |L2(p)| = p(p − 1)(p + 1)/2, we can easily show

that:

α =


(p + 1)/(p− 1) if p ≡ 1 (mod 12)

(p− 1)/(p + 1) if p ≡ −1 (mod 12)

1 if p ≡ ±5 (mod 12)

(4.2.8)

In order to calculate β, we need a character table for L2(p). This can be read from the

character table of SL2(p), which was known by Schur [45], and is given in [17, section

38]. The relevant character entries are given in Table 4.3, which uses the following

notational device:

Notation 4.9 We adopt the following notation for periodic functions on Z:

(a1, a2, . . . an)i = aj, where j is the residue of i modulo n (4.2.9)
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χ χ(1) χ(g2) χ(g3) χ(gp)
p (mod 4) p (mod 3)

1 −1 1 −1
1 1 1 1 1 1 1
ψ p 1 −1 1 −1 0

χ2i p + 1 2(−1)i 0 (−1,−1, 2)i 0 1
θ2j p− 1 0 2(−1)j+1 0 (1, 1,−2)i −1
ξk (p + 1)/2 (−1)(p−1)/4 — 1 0 1

2(−1±√p)
ηk (p− 1)/2 — (−1)(p−3)/4 0 −1 1

2(−1±√−p)

Table 4.3: Some character values of L2(p), p ≥ 5 odd

For example, we have that ωi + ω2i = (−1,−1, 2)i for all i ∈ Z (where ω = exp(2πi/3)).

To calculate β, we will need the values of each irreducible character on the class

representatives. This information is given in Table 4.3.

We will need to split into 4 cases, depending on the residue of p modulo 12. For

convenience we define for each r ≥ 0:

∆r =
r

∑
j=1

(−1)j(−1,−1, 2)j (4.2.10)

Lemma 4.10 We have ∆r = (1, 0,−2,−3,−2, 0)r.

Proof. Direct calculation gives the first 6 values. Since ∆6 = 0 and the ith summand of

equation (4.2.10) only depends on i (mod 6), the result follows. �
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Case p ≡ 1 (mod 12)

We have p ≡ 1 (mod 3) and p ≡ 1 (mod 4). Then:

β = t1 +
(p−5)/4

∑
j=1

tχ2j + tξ1 + tξ2

= 1 +
2∆(p−5)/4

p + 1
+

2(−1)(p−1)/4

p + 1

=
p− 1
p + 1

(4.2.11)

because (p− 5)/4 must be congruent to either 2 or 5 modulo 6.

Case p ≡ −1 (mod 12)

This case is similar to the previous one. We have p ≡ −1 (mod 3) and p ≡ −1

(mod 4). Then

β = t1 +
(p−3)/4

∑
j=1

tθ2j + tη1 + tη2

= 1−
2∆(p−3)/4

p− 1
− 2(−1)(p+1)/4

p− 1

=
p + 1
p− 1

(4.2.12)

because (p− 3)/4 must be congruent to either 2 or 5 modulo 6.

Case p ≡ 5 (mod 12)

We have p ≡ −1 (mod 3) and p ≡ 1 (mod 4), and so the only term in the sum for

which tχ 6= 0 is when χ = 1. Thus β = 1.

Case p ≡ −5 (mod 12)

This case is similar to the previous one. We have p ≡ 1 (mod 3) and p ≡ −1 (mod 4),

and so the only χ for which tχ 6= 0 is when χ = 1. Thus β = 1.
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Hence we have proved:

Definition-Theorem 4.11 Standard generators of L2(p) are x and y such that x has order 2,

y has order 3 and xy has order p.

We observe that (for reasonably small p) it is easy to find elements of the correct

orders, and by conjugating by elements, it is easy to find a pair of standard generators.

For large primes p, better methods would be needed. Since we are only concerned

with complex representations of dimension less than or equal to 250, the largest value

of p that we need to consider is p = 499 (since 501 is not prime).

Remark The calculation of ξ(2A, 3A, C ε
p ) can be automated by using the CHEVIE [20]

computer package. Among other things, this package can calculate structure constants

from generic character tables. These are character tables for a family of Chevalley groups

with a fixed Dynkin diagram: the entries are a function of the field size q. In the case

L2(q), for instance, there are three generic character tables to consider, depending on

the residue of q modulo 4.

4.2.2 Standard generators for L2(2r) (even prime-power case)

Let G = L2(q) for q = 2r, r ≥ 3. A semi-standard pair for G is a (2, 3, q− 1)-pair.

These conditions are usually not enough to determine the pair up to automor-

phisms of the group.

Lemma 4.12 The group G = L2(q) (q = 2r) contains φ(q − 1)/2 classes C i
q−1 (1 ≤ i ≤

φ(q− 1)/2) of elements of order q− 1, arranged in κ(r) = φ(q− 1)/(2r) sets of r which fuse

in Aut(L2(q)). Each class has size:

|C i
q−1| = q(q + 1) (4.2.13)
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Theorem 4.13 For all classes C i
q−1 of elements of order q− 1, we have:

ξ(2A, 3A, C i
q−1) = 1 (4.2.14)

In particular, semi-standard pairs exist.

Proof. As before we have ξ(2A, 3A, C i
q−1) = αβ, with:

α =
|2A||3A||C i

p|
|L2(q)|2 (4.2.15)

and:

β = ∑
χ∈Irr(L2(q))

tχ (4.2.16)

where

tχ =
χ(2A)χ(3A)χ(C i

q−1)

χ(1)
(4.2.17)

Using Lemma 4.12 and the fact that |L2(q)| = q(q2 − 1) we have:

α =
(q2 − 1)q(q± 1)q(q + 1)

q2(q2 − 1)2

=


(q + 1)/(q− 1) if r is even

1 if r is odd

(4.2.18)

If r is odd, then q ≡ −1 (mod 3), and the only tχ which is non-zero is when χ = 1.

Hence β = 1, giving ξ = 1.
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Otherwise, r is even, and we have:

β = t1 +
(q−2)/2

∑
j=1

tχj

= 1 +
(q−2)/2

∑
j=1

(ω j + ω−j)(ρj + ρ−j)
q + 1

(4.2.19)

where ρ is a primitive (q− 1)th root of unity. Using the fact that (ω j + ω−j) = (−1,−1, 2)j,

we can rewrite this as:

β = 1 +
1

q + 1

− (q−2)/2

∑
j=1

(ρj + ρ−j) + 3
(q−2)/2

∑
j=1,3|j

(ρj + ρ−j)


= 1 +

1
q + 1

(
1 + 3

(q−4)/6

∑
k=1

(ρ3k + ρ−3k)

) (4.2.20)

Since q− 1 is divisible by 3, ρ3 is a primitive ((q− 1)/3)th root of unity, so:

β = 1− 2
q + 1

=
q− 1
q + 1

(4.2.21)

Thus ξ = 1. (Again, we could have used CHEVIE to prove this result.) �

Conditions that can be used to single out a semi-standard pair for r ≤ 14 are given

in Table 4.4. They were found by finding κ(r) = φ(q − 1)/(2r) semi-standard pairs

which all have different fingerprints, and selecting a condition which eliminated all

but one of the pairs. Since all of the classes of pairs are equally likely to be found in a

random search, we selected conditions involving smaller orders (to make calculations

faster).

Although the table goes further, the largest value of q that we will need to consider

is q = 128, since the smallest (faithful) complex representation of L2(256) has dimen-

sion 255. For very large r, this choice of standard generators is not ideal, because only
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r q κ(r) Extra conditions
3 8 1 —
4 16 1 —
5 32 3 o(xyxy2) = 11
6 64 3 o(xyxy2) = 13
7 128 9 o(xyxyxy2) = 43
8 256 8 o(xyxy2) = 85
9 512 24 o(xyxy2) = 27

10 1024 30 o(xyxy2) = 41
11 2048 88 o(xyxy2) = 23
12 4096 72 o(xyxy2) = 91
13 8192 315 o(xyxy2) = o(xyxyxy2) = o(xyxyxy2xy2) = 2731
14 16384 378 o(xyxyxy2) = 43

Table 4.4: Extra conditions for L2(q) (even prime-power case)

Group o(x) o(y) o(xy) Other conditions and notes
L2(9) 2 4 5 G ∼= A6
L2(25) 2 3 13 o(xyxyy) = 4 (forces xy ∈ 13A/B)
L2(27) 2 3 7
L2(49) 2 3 25 o(xyxyy) = 24

Table 4.5: Odd prime-power standard generators from the Web Atlas

1/2r of the elements of L2(2r) have even order.

4.2.3 Standard generators for L2(pr) (odd prime-power case)

Finally, we must consider fields GF(q) where q is a power of a prime p > 2. The Web

ATLAS already contains definitions for q ∈ {9, 25, 27, 49}, and these are given in Table

4.5. The field sizes q where L2(q) has a representation of size ≤ 250 that we have not

yet considered are therefore 81, 121, 125, 169, 243, 289, 343 and 361.

Recall that a semi-standard pair for G is a pair (x, y) such that o(x) = 2, o(y) = 3

and o(xy) = (q− 1)/2. By Theorem 4.6 each semi-standard pair generates G.

Lemma 4.14 Let G = L2(q), q = pr, r > 1, p > 2. Then:

1. G contains φ((q− 1)/2)/2 conjugacy classes of elements of order (q− 1)/2.
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2. If p = 3 and C(q−1)/2 is any one of these conjugacy classes then:

ξG(2A, 3A, C(q−1)/2) = 1 (4.2.22)

ξG(2A, 3B, C(q−1)/2) = 1 (4.2.23)

3. If p > 3 and C(q−1)/2 is any one of these conjugacy classes then:

ξG(2A, 3A, C(q−1)/2) = 2 (4.2.24)

4. Out(G) ∼= C2 × Cr

Proof. Fact 1 follows from the character table of G, and facts 2 and 3 can be proved

using CHEVIE. Fact 4 is well-known. �

Theorem 4.15 There are φ((q−1)/2
2r automorphism classes of semi-standard pairs in G.

Proof. By Lemma 4.14, the number of conjugacy classes of semi-standard pairs in G is

φ((q− 1)/2). This means there are φ((q− 1)/2)/(2r) automorphism classes. �

As for the even prime-power case, we searched at random for enough semi-standard

pairs with distinct fingerprints to ensure that we had found representatives of all the

automorphism classes of semi-standard pairs. We then selected a single condition

which uniquely specifies one of the classes. The conditions we chose for standard

generators are given in Table 4.6.

4.3 Black box algorithms for L2(q)

By Lemmas 4.2 and 4.3, the classes 2A and 3A (or 3A/B if q is divisible by 3) are

completely tame. Therefore we can use the standard finder (Algorithm 1.11) to find

generators for L2(q).
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G Extra condition
L2(81) o(xyxyxy2) = 40
L2(121) o(xyxy2) = 12
L2(125) o(xyxy2) = 21
L2(169) o(xyxy2) = 14
L2(243) o(xyxyxy2) = 11
L2(289) o(xyxy2) = 16
L2(343) o(xyxy2) = 9
L2(361) o(xyxy2) = 15
L2(529) o(xyxy2) = 8
L2(625) o(xyxy2) = 26
L2(729) o(xyxy2) = 26
L2(841) o(xyxy2) = 60
L2(961) o(xyxy2) = 13

Table 4.6: Extra conditions for L2(q) (odd prime-power case)

The situation for checkers is just as straightforward. Because there are unique con-

jugacy classes of elements of orders 2 and 3 (up to automorphisms of G), the standard

relations are enough:

L2(q) ≈ 〈〈x, y | std〉〉. (4.3.1)
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Chapter 5

The symplectic groups S4(q)

In this chapter, we will define standard generators for the symplectic group S4(q)

where the characteristic p is at least 3. We recall that we are using ATLAS notation, so

that S4(q) = PSp4(q) is a simple group, while Sp4(q) denotes the subgroup of GL4(q)

preserving a non-degenerate symplectic form.

5.1 Standard generators for S4(q), q = pr, p > 3 prime

5.1.1 Semi-standard pairs

Let p > 3 be a prime, q = pr, G = S4(q). We will show how to (2, 3)-generate the

group G.

By the information in Srinivasan’s paper, G contains two classes 2A, 2B of involu-

tions and two classes 3A, 3B of elements of order 3. If we look at the 4-dimensional

(projective) representation of S4(q) over GF(q) and diagonalise representatives of these

classes over an algebraic extension of GF(p), we get the following matrices:

2A :


1 · · ·
· 1 · ·
· · −1 ·
· · · −1

 , 2B :


i · · ·
· −i · ·
· · i ·
· · · −i

 (5.1.1)
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3A :


ω · · ·
· ω2 · ·
· · ω ·
· · · ω2

 , 3B :


ω · · ·
· ω2 · ·
· · 1 ·
· · · 1

 (5.1.2)

(where ω is a cube root of unity, and i is a square root of −1).

The group S4(q) is isomorphic to O5(q); this is shown by taking a 5-dimensional

submodule of the exterior square of the natural 4-dimensional GF(q)-module for Sp4(q).

This gives these Jordan forms for the classes 2A/B, 3A/B in O5(q):

2A :


−1 · · · ·
· −1 · · ·
· · −1 · ·
· · · −1 ·
· · · · 1

 , 2B :


−1 · · · ·
· −1 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1

 (5.1.3)

3A :


ω · · · ·
· ω2 · · ·
· · 1 · ·
· · · 1 ·
· · · · 1

 , 3B :


ω · · · ·
· ω2 · · ·
· · ω · ·
· · · ω2 ·
· · · · 1

 (5.1.4)

The matrices for O5(q) show that to generate G, we must take elements from classes

2B and 3B, since any other combination would leave invariant a 1-dimensional sub-

space of the 5-dimensional module.

Definition 5.1 Let p > 3 be prime, q = pr. A semi-standard pair for S4(q) is a pair (x, y)

of elements of S4(q) such that x is a 2B element, y is a 3B element and xy has order (q2 + 1)/2.

In order to show that each semi-standard pair is a generating pair for S4(q), we will

need the following definition and lemma.

Definition 5.2 We define (following Bereczky [3]):

• A Singer subgroup of GLn(q) is a cyclic subgroup of order qn − 1.

• Let G ≤ GLn(q) be a finite classical group. A Singer subgroup of G is an irreducible

cyclic subgroup of G of maximal possible order.

92



A generator of a Singer subgroup is called a Singer element.

Singer subgroups of classical groups need not exist, although when they exist, they are

the intersections of Singer subgroups of GLn(q) with G. Note that this is not a pure

group theoretic definition because an abstract group can be a classical group in two

different ways. Symplectic groups always have Singer elements, and they have order

(q2 + 1)/2.

Lemma 5.3 For q 6= 3, a Singer subgroup in Sp4(q) has a unique maximal overgroup: it is a

subgroup of Sp4(q) of field extension type (type C3 in Aschbacher’s classification).

Proof. See the main theorem in Bereczky [3]. �

Theorem 5.4 Each semi-standard pair for S4(q) generates S4(q).

Proof. Suppose not; then there exists a proper subgroup H of S4(q) containing elements

x and y (with x in class 2B, y in class 3B and xy with order (q2 + 1)/2). We will transfer

our work into the double cover G̃ = Sp4(q), where the semi-standard pair (x, y) lifts

to a pair (x̃, ỹ). Then x̃, ỹ and −1 are contained in a proper subgroup H̃ < Sp4(q).

Because either x̃ỹ or −x̃ỹ has order q2 + 1, H̃ contains a Singer subgroup. By Lemma

5.3, H̃ is a subgroup of L̃ ∼= Sp2(q2) : 2 = SL2(q2) : 2. This group contains a unique

conjugacy class of elements of order 3. Treating the original 4-dimensional GF(q)G̃-

module as a 2-dimensional GF(q2)L̃-module, the element ỹ (like all 3B elements) fixes

a 1-dimensional subspace: see (5.1.2). But the elements of order 3 in SL2(q2) : 2 have no

fixed points in the natural action. This yields a contradiction. �

The following lemma shows that to determine a semi-standard pair (x, y) up to

automorphism, it is sufficient to specify the conjugacy class for the product xy.

Lemma 5.5 Let C be any conjugacy class of G containing elements of order (q2 + 1)/2.
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xG 1 2B 3B C
q ≡ +1

(mod 4)
−1
(mod 4)

+1
(mod 3)

−1
(mod 3)

|CG(x)| 1
2 q4(q2 −
1) (q4− 1)

q(q − 1)
(q2 − 1)

q(q + 1)
(q2 − 1)

1
2 q(q − 1)
(q2 − 1)

1
2 q(q + 1)
(q2 − 1)

1
2(q2 + 1)

1 1 1 1 1 1 1
θ9

1
2 q(1 + q)2 1 + q 0 1 + q 0 −1

θ10
1
2 q(1− q)2 0 q− 1 0 q− 1 1

θ13 q4 q −q q −q 1

Table 5.1: Non-zero contributions for ξG(2B, 3B, C )

1. We have the following structure constants in G:

ξG(2B, 3A, C ) = 2 (5.1.5)

ξG(2B, 3B, C ) = 2 (5.1.6)

2. The corresponding structure constants in G.2 are:

ξG.2(2B, 3A, C ) = 1 (5.1.7)

ξG.2(2B, 3B, C ) = 1 (5.1.8)

Proof. 1. Examining the summation formula for structure constants (1.4.7) and the

character table for S4(q) [50]1 we see that most of the terms in the sum are zero.

For those characters where there is a non-zero contribution, the values of the

character on 3A and 3B agree, so it suffices to calculate the structure constant for

3B. The characters on which there is a non-zero contribution are given in Table

5.1, using notation from [50] for the characters.

1The character table printed at the end of [50] contains a number of minor clerical errors which we
discovered when testing whether the table was orthogonal. The calculations given in the main body of
the text appear to be correct. The correct character table is available in CHEVIE [20].
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Note that the character values depend on the residue class of q modulo 3 and

4. A straightforward calculation in each of the four cases gives the value of the

structure constants for G in equations (5.1.5) and (5.1.6).

2. The group G.2 is isomorphic to SO5(q), and because the classes 2A, 2B, 3A, 3B

and the various possibilities for C correspond to different sets of eigenvalues,

there can be no fusion of these classes in G.2, and each class remains the same

size. Each character of G either gives rise to two characters in G.2, or fuses to

give a single character of twice the degree. The effect of this is that the sum over

the characters doubles. However, the group has doubled in size, so the overall

effect on (1.4.7) is that the structure constant is halved.

This concludes the proof. �

5.1.2 Standard pairs

Lemma 5.5 shows that to complete the definition of standard generators x, y for S4(q),

we only need a condition on x and y which determines a particular conjugacy class C

of elements of order (q2 + 1)/2. Because the classes 3A and 3B are not very easy to tell

apart, we would like the condition to imply that y is a 3B element (given that it is an

element of order 3). In other words, we want a condition Pq(x, y) on elements x, y of

S4(q) such that the following definition determines the pair up to automorphisms of

S4(q):

Definition 5.6 A standard pair for S4(q) is a pair (x, y) such that x is a 2B element, y has

order 3, xy has order (q2 + 1)/2 and the condition Pq(x, y) holds. These conditions imply that

y is a 3B element.

To find a suitable condition Pq(x, y), we found representatives for each class of triple

of type (2B, 3A/B, (q2 + 1)/2). We know how many there are from the character table
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and from Lemma 5.5, and we took a fingerprint for each triple to prove that they were

mutually non-conjugate. We then selected a condition which singled out one of the

classes of triples. Suitable Pq(x, y) for small q are:

• P11(x, y) = “xyxy2 has order 10”

• P13(x, y) = “xyxy2 has order 14”

• P17(x, y) = “xyxy2 has order 5”

• P19(x, y) = “xyxy2 has order 6”

5.2 Black box algorithms for S4(q), q = pr, p > 3 prime

If we are able somehow to distinguish the conjugacy classes 2A from 2B and 3A from

3B then we can use the following procedure to find standard generators for S4(q).

Algorithm 5.7 To find standard generators of S4(q) with q = pr, p > 3:

1. Find random elements of the group, and power up those of even order to give elements x

of order 2. Continue until x is a 2B element.

2. Find random elements of the group, and power up those whose order is divisible by 3 to

give elements y of order 3. Continue until y is a 3B element.

3. Take random conjugates z = yg of y until xz has order (q2 + 1)/2 and the condition

Pq(x, z) holds (this condition ensures that we have selected the correct automorphism

class of semi-standard pairs: its auxiliary function of ensuring y ∈ 3B is not required in

this scenario).

4. Return x and z.
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Steps 1 and 2 can be performed concurrently.

If we are not able to distinguish the classes 2A/B or 3A/B, then a more complicated

strategy is needed.

5.2.1 Distinguishing the two classes of involutions

We use the following lemma to help distinguish the two classes of involution in S4(q):

Lemma 5.8 If z1 and z2 are elements of S4(q) in class 2A, then z1z2 has order at most q.

Before we give the proof, we will need some extra information about the orthogonal

group Ω5(q), which is isomorphic to S4(q) = PSp4(q) when q is odd.

Lemma 5.9 Let G = Ω5(q) acting on a 5-dimensional vector space V over GF(q) equipped

with a non-degenerate quadratic form q : V → GF(q). Then there are exactly 3 orbits of G on

V \ {0}:

• isotropic vectors v ∈ V, where q(v) = 0;

• plus type vectors v ∈ V, where the quadratic form restricted to the hyperplane v⊥ has

plus type; and

• minus type vectors v ∈ V, where the quadratic form restricted to the hyperplane v⊥ has

minus type.

The stabilizers in G of a vector of each of the three types have the following shapes:

StabG(isotropic) ∼= q3.Ω3(q) ∼= q3.L2(q) (5.2.1)

StabG(plus type) ∼= q3.Ω+
4 (q) ∼= 2·(L2(q)× L2(q)) (5.2.2)

StabG(minus type) ∼= q3.Ω−
4 (q) ∼= L2(q2) (5.2.3)

Proof. See [29] �
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Proof (Lemma 5.8). As above, we will think of S4(q) = PSp4(q) as Ω5(q), so z1 and

z2 are endomorphisms of a 5-dimensional space V over GF(q) equipped with a non-

degenerate quadratic form q : V → GF(q).

The (−1)-eigenspaces V1 and V2 of z1 and z2 (respectively) each have codimension

1. Thus the intersection V12 = V1 ∩V2 has codimension at most 2, and hence:

dim(V12) ≥ 3 (5.2.4)

For i ∈ {1, 2}, the element zi inverts the subspace Vi, so y = z1z2 acts trivially on V12.

The maximal isotropic subspaces of V have dimension 1
2(5− 1) = 2, so V12 contains a

non-isotropic point v. Because y fixes v, it is contained in a subgroup Ωε
4(q) ≤ Ω5(q)

for ε ∈ {+,−}: we can think of y acting on a 4-dimensional orthogonal space W of

type ε over GF(q).

Suppose ε = −. Then the maximum dimension of an isotropic subspace is 4
2 − 1 =

1, and so y must fix a non-isotropic point of W. Hence y ∈ Ω3(q) ∼= L2(q), and thus

cannot have order greater than q.

Otherwise, ε = +. If y fixes a non-isotropic point in W, then once again y ∈ Ω3(q)

and hence has order at most q. So we may assume that y fixes a 2-dimensional isotropic

subspace W ′ of W.

The number of isotropic vectors x in W is (q + 1)(q2 − 1), and the number of

isotropic vectors y orthogonal to x is 2q(q− 1). The general orthogonal group GO+
4 (q)

is transitive on bases (x, y) of 2-dimensional isotropic subspaces, so by the orbit-stabilizer

theorem, the order of the pointwise stabilizer of W ′ in GO+
4 (q) is:

|GO+
4 (q)|

(q + 1)(q2 − 1)2q(q− 1)
= q (5.2.5)

Now GO+
4 (q) ≥ Ω+

4 (q), so y is in the pointwise stabilizer of W ′ in GO+
4 (q). Hence it
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has order dividing q. �

Note that this lemma could also have been proved by considering the ξ(2A, 2A,−)

structure constants.

We can use the lemma to give a one-sided test to tell whether an involution z ∈

S4(q) is in class 2B or not:

Algorithm 5.10 To prove that an involution z is a 2B element:

1. Take a random conjugate zg of z.

2. Calculate w = zzg.

3. If w has order greater than q then z is in class 2B (by Lemma 5.8). Otherwise, go back to

step 1.

If the test has run several times without coming up with an element w of order greater than q,

then z is probably in class 2A.

5.2.2 Finding a 3B element

Let θ, η, ν ∈ GF(q4) be elements of order q2 − 1, q + 1 and q − 1 respectively. The

elements of projective order (q2 − 1)/2 in Sp4(q) are of two types, distinguishable by

their eigenvalues over GF(q4) [50]:

• elements with eigenvalues θi, θ−i, θqi, θ−qi for some i ∈ N;

• elements with eigenvalues ηi, η−i, νj, ν−j for some i, j ∈ N.

The first type (modulo scalars) powers up to classes 2B and 3A, and the second type

powers up to classes 2A and 3B. The two types are equally likely to be found on a

random search. Thus we can (probabilistically) find a 3B element in S4(q) as follows:

1. Find a random element t of order (q2 − 1)/2.
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2. Calculate z = t(q2−1)/4.

3. Use the test from section 5.2.1 to see whether z is a 2A or 2B element.

4. If z is a 2B element, go back to step 1.

5. If z is a 2A element, then y = t(q2−1)/6 is a 3B element.

Unfortunately, the test in section 5.2.1 cannot prove that an involution is in class 2A,

but if we perform enough iterations of the test, we have a high probability of being

right. The small probability of being wrong should not be an issue, because our extra

condition for standard generators is chosen so that it is never satisfied for a 3A element.

The finder is therefore as follows as follows:

Algorithm 5.11 (Finder for S4(q), p > 3) To find standard generators for S4(q), q = pr,

p > 3:

1. Find an element x in class 2B, using the test in section 5.2.1.

2. Find (with high probability) an element y in class 3B, using the procedure in section 5.2.2

3. Find a conjugate z of y such that xy has order (q2 + 1)/2 and such that the extra condi-

tion (see section 5.1.1) is satisfied. If no such conjugate can be found, then the element y

is probably a 3A element, so go back to step 2.

4. Return x and z.

For a checker, we only need to check that x is in class 2B (because the extra condition

Pq(x, y) then implies that y is in class 3B). We can do this by using Algorithm 5.10.
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5.3 Other groups S4(q)

The only other groups in L G of the form S4(q) which did not have definitions for

standard generators already are S4(8) and S4(9). These will be dealt with in sections

6.1.10 and 6.1.11 respectively.
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Chapter 6

The remaining groups in L G

In this chapter, we will give standard generators for groups in L G where we did not

think it worthwhile to give a ‘generic’ definition for a semi-standard pair. In each

subsection below, we will provide a definition of standard generators for a group G

using the techniques from Chapter 1.

If the standard finder (Algorithm 1.11) is not appropriate for the definition given,

we will provide a finder. If the standard checker does not work (i.e. it is not sufficient

to simply check the orders given in the definition), we will provide a checker. Table 6.1

gives the groups which need special finders and/or checkers. The approximate cost of

finding each set of standard generators is given in Table 6.4 on page 129.

6.1 Groups with a readily available character table

Finding a definition for standard generators of a group G usually requires the calcu-

lation of certain structure constants (defined in section 1.4). If the character table of G

is available, then the structure constants can be read off directly using (1.4.7). We will

consider groups where we know the character table in this section. Subsequent sec-

tions will deal with the remaining cases, which require more substantial computation

to complete the definitions of standard generators.
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Group Section Page Finder Checker
L3(13) §6.1.1 p104 std std
L4(4) §6.1.2 p106 6.4 (6.1.6)
L4(5) §6.1.3 p107 std std
L5(3) §6.1.4 p108 std (6.1.14)
U3(9) §6.1.5 p109 std std
U3(13) §6.1.6 p110 std std
U3(16) §6.1.7 p110 std std
U4(4) §6.1.8 p111 6.11 (6.1.24)
U4(5) §6.1.9 p112 std (6.1.28)
U5(4) §6.2.1 p120 std (6.2.5)
U6(3) §6.2.2 p121 std (6.2.7)
U8(2) §6.2.3 p122 std (6.2.9)
U9(2) §6.3.1 p123 6.25 (6.3.9)
S4(8) §6.1.10 p113 6.13 (6.1.32)
S4(9) §6.1.11 p114 6.16 (6.1.34)
S6(5) §6.1.12 p116 std (6.1.38)
S6(7) §6.3.2 p125 std (6.3.13)
S8(3) §6.1.13 p117 std (6.1.43)
S10(3) §6.3.3 p126 std (6.3.15)
O+

10(2) §6.1.14 p118 std (6.1.49)

Table 6.1: Finders and checkers
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C |CG(C )| Taming set
1A 270178272 any
2A 8736 4, 6, 8, 12, 14, 26, 28, 52, 56
3A 144 6, 12
4AB 8736 8, 28, 52, 56
4C 48 12
6A 48 12
7ABC 56 14, 28
8AB 56 56
12ABCD 48 —
13A 8788 26, 52
13BCD 169 —
14ABC 56 28
26A 52 52
28ABCDEF 56 56
52AB 52 —
56AB . . . L 56 —
61AB . . . T 61 —

Table 6.2: Conjugacy classes in L3(13)

6.1.1 Linear group L3(13)

Let G = L3(13). To illustrate the method, we will show the working in some detail for

this group.

Although GAP does not currently have the character table of the group G, the

generic character table for L3(q) with q ≡ 1 (mod 3) is available in CHEVIE [20]. Using

the centralizer orders in this table and some calculations in GAP to establish element

orders, we obtained the information in Table 6.2 about the conjugacy classes of G.

For a semi-standard pair, we need to find classes which are both easy to find, have

large centralizers, and have a chance of generating G. The classes 2A, 4A, 4B and

13A have large centralizers, but we cannot generate the group with a pair from these

classes.

We decide on 2A for the class of the first generator. We can certainly (2A, 13BCD)-
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No. o((xy)2y) o((xy)3y) o((xy)4y) o((xy)3yxy2)
1 4 28 61 7
2 6 61 61 7
3 12 14 28 7
4 12 28 28 14
5 12 61 56 14
6 13 28 61 14
7 14 7 8 26
8 14 28 61 3
9 14 56 61 7

10 26 56 12 3

Table 6.3: Fingerprints for (2, 3, 61)-pairs of L3(13)

generate the group, but it may be hard to distinguish between classes 13BCD and 13A.

The centralizer is only slightly smaller with 3A, and 3A is tame. Experiments with GAP

show that possible (2A, 3A)-targets1 are 56 and 61. There is little to choose between

these targets, but the structure constant calculations are slightly simpler with 61. We

define:

Definition 6.1 A semi-standard pair for L3(13) is a pair (x, y) with x of order 2, y of order

3 and xy of order 61.

Another calculation with CHEVIE yields:

ξ(2A, 3A, C ) = 3 (6.1.1)

for any of the 20 classes C containing elements of order 61. The outer automorphism

group of G is S3, and the inverse-transpose automorphism fuses pairs of classes. Thus

there are only 10 classes C ′ containing elements of order 61 in Aut(G) and for these

classes we have:

ξAut(G)(2A, 3A, C ′) = 1 (6.1.2)

1Recall that a target k is an integer such that we can find a suitable pair (x, y) satisfying o(xy) = k
which generates G.
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Providing each semi-standard pair generates the whole of G, there are exactly 10 fin-

gerprints to find. We performed a random search in GAP and found the 10 fingerprints

given in Table 6.3. We verified that each of these 10 semi-standard pairs generates G,

which proves that there are no more classes of semi-standard pairs to find. Examin-

ing the table shows that we can pick out a single class of pairs (row 1 in the table) by

adding the supplementary condition o(xyxy2) = 4. We can thus supply the following

definition of standard generators:

Definition-Theorem 6.2 Standard generators for L3(13) are a pair (x, y) such that x has

order 2, y has order 3, xy has order 61 and xyxy2 has order 4.

These generators are completely tame (see Table 6.2), so we can use Algorithm 1.11 to

find them. The associated probabilities are:

p1 = 0.594, p2 = 0.111, p12 = 0.104. (6.1.3)

We have:

EX = 9.02, EY = 35.80, (6.1.4)

and so

ET = 44.82 (6.1.5)

6.1.2 Linear group L4(4)

The group G = L4(4) can be (2B, 3D)-generated, but the class 4A is tame (T(4A) =

{12})) with larger centralizer than 3D, so we prefer (2B, 4A)-generators. The possible

targets k for (2B, 4A) are 30, 63 and 85, but for k = 30 we do not need any supplemen-

tary conditions.

Definition-Theorem 6.3 Standard generators for L4(4) are a pair (x, y) such that x is in

2B, y is in 4A and xy has order 30.
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The class 2B is not tame, but there are only two classes of involutions in G. If we

power up an element of order 2, 4, 6 or 10 found in a random search, the probability of

getting a 2B element is about 0.47. Now ξ(2A, 2A, k) = 0 for k > 5, and about 74% of

the time, the product of a 2B element with another 2B element has order larger than 5.

Thus we can use the following finder:

Algorithm 6.4 Finder for L4(4):

1. Find an element of order 2, 4, 6 or 10 and power it up to give an involution x.

2. Look for a random element z such that [x, z] has order greater than 5. If none can be

found after two attempts, go back to step 1. Otherwise, we know x is a 2B element.

3. Find an element of order 12 and power it up to give an element t in class 4A.

4. Find a conjugate y of t such that xy has order 30.

5. Return x and y.

For a checker, it is not sufficient to check the orders. Structure constants and finger-

printing show that there are 14 classes of (2B, 4B, 30)-pairs up to automorphism, and a

single class of (2A, 4B, 30)-pairs up to automorphism. We get:

L4(4) ≈ 〈〈x, y | std, o(xyxy2) = 21〉〉 (6.1.6)

6.1.3 Linear group L4(5)

The group G = L4(5) can be (2A, 3B)-generated. The class 2A is completely tame, and

3B is tame with

T(3B) = {24, 30} (6.1.7)
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The possible targets are 31 and 39. There are 6 conjugacy classes C of order 39 in G,

and for each class we have:

ξ(2A, 3B, C ) =
14
3

= 4
(

1 +
1
6

)
(6.1.8)

The outer automorphism group is D8, and there are just 3 classes C ′ of elements of

order 39 in Aut(G). Thus in Aut(G) we have:

ξAut(G)(2A, 3B, C ′) = 1 +
1
6

(6.1.9)

We found 6 different fingerprints; 3 of which generated G, and 3 of which generated a

group which has centralizer of order 6 in Aut(G) (order 3 in G), so this is a complete

set of fingerprints.

Definition-Theorem 6.5 Standard generators for L4(5) are a pair (x, y) such that x has

order 2, y is in class 3B, xy has order 39 and xyxy2 has order 20.

There are only two classes containing elements of order 3, and since there are no

(2A, 3A, 39)-pairs, the standard checker works for L4(5).

6.1.4 Linear group L5(3)

The group G = L5(3) can be generated by the tame classes 2A and 5A:

T(2A) = {10, 16, 18, 20, 40, 80} (6.1.10)

T(5A) = {5, 10, 20, 40, 80} (6.1.11)

Possible targets k are given by:

{11, 20, 24, 39, 40, 52, 104, 121} (6.1.12)
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The cases k = 11 and k = 20 are equally easy, but we chose k = 11. There are two

conjugacy classes containing elements of order 11, and they fuse in the automorphism

group L5(3).2, with:

ξL5(3).2(2A, 5A, 11AB) = 1 (6.1.13)

Definition-Theorem 6.6 Standard generators for L5(3) are a pair (x, y) such that x is in

class 2A, y has order 5 and xy has order 11.

We give the following two semi-presentations:

L5(3) ≈ 〈〈x, y | std, o(xy2) = 121, o(xy2xy3) = 3〉〉 (6.1.14)

L5(3) ≈ 〈〈x, y, (z) | std, o(z) = 80, o(xz40) = 3; z = (xy)3xy3〉〉 (6.1.15)

6.1.5 Unitary group U3(9)

The group G = U3(9) can be (2, 3)-generated, but the elements of order 3 can be diffi-

cult to tell apart. It is much simpler to use (2, 6)-generators. The classes 2A and 6A are

completely tame:

T(2A) = {2, 4, 6, 8, 10, 16, 20, 30, 40, 80} (6.1.16)

T(6A) = {6, 30} (6.1.17)

The possible (2A, 6A)-targets k are given by:

k ∈ {10, 15, 20, 30, 40, 73, 80} (6.1.18)
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Not all the (2, 6, 10)-pairs are generating pairs, so we choose to (2, 6, 15)-generate G.

There are 4 conjugacy classes of order 15, and for each class C we have:

ξ(2A, 6A, C ) = 1 (6.1.19)

The classes of order 15 fuse in Aut(G), and so all the (2, 6, 15)-pairs are equivalent.

Definition-Theorem 6.7 Standard generators for U3(9) are a pair (x, y) such that x has

order 2, y has order 6 and xy has order 15.

6.1.6 Unitary group U3(13)

The group G = U3(13) has a single conjugacy class of involutions and a single class of

elements of order 3. It can be (2, 3, k)-generated with:

k ∈ {14, 21, 42, 56, 84, 91, 157, 168, 182} (6.1.20)

Examining the character table shows that not all the (2, 3, 14)-pairs generate the group,

but all the other possibilities would make suitable choices for semi-standard genera-

tors. We choose (2, 3, 42), which gives 3 classes of semi-standard pairs.

Definition-Theorem 6.8 Standard generators for U3(13) are a pair (x, y) of elements of

U3(13) such that x has order 2, y has order 3, xy has order 42 and xyxyxy2 has order 7.

6.1.7 Unitary group U3(16)

The group G = U3(16) has a single conjugacy class of involutions and a single conju-

gacy class of elements of order 3, and G can be (2, 3, k)-generated with:

k ∈ {17, 51, 85, 241, 255} (6.1.21)
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We will define a semi-standard pair to be (2, 3, 17); although in fact not all such pairs

generate G. There are 56 classes C containing elements of order 17 in G, and:

ξ(2A, 3A, C ) =


0 for 16 classes C

1 for 32 classes C

1/17 for 8 classes C

(6.1.22)

The 32 classes with ξ = 1 fuse into 4 classes in the automorphism group, and the 8

classes with ξ = 1/17 fuse into 2 classes. Thus there are 6 equivalence classes of semi-

standard pairs, 4 of which generate the group. We found fingerprints for each class.

Definition-Theorem 6.9 Standard generators for U3(16) are a pair (x, y) such that x has

order 2, y has order 3, xy has order 17 and xyxy2 has order 5.

6.1.8 Unitary group U4(4)

The group G = U4(4) can be (2, 3)-generated, but we prefer (2, 4)-generation because

the pairs are slightly easier to find. We have classes 2A (tame with T(2A) = {20, 30}),

2B (non-tame), 4A (tame with T(4A) = {20}) and 4B (non-tame). The only combina-

tions which generate G are (2B, 4A) and (2A, 4B). The second type is slightly easier to

find because of the larger taming set for 2A.

The group is (2A, 4B, k) generated for k ∈ {20, 30, 51, 65}. There are 4 classes C of

order 20 in G, and:

ξ(2A, 4B, C ) = 1 (6.1.23)

The classes C fuse to a single class C ′ under the action of the group of field automor-

phisms of GF(16) (cyclic of order 4).

Definition-Theorem 6.10 Standard generators for U4(4) are a pair (x, y) such that x is

in 2A, y is in 4B and xy has order 20.
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The class 4B is a lot larger than the class 4A, but we still need some way of telling

the classes apart. We check that the structure constant ξ(2A, 4A, k) is zero for k > 15,

so the following black box algorithm works:

Algorithm 6.11 Finder for U4(4):

1. Find an element of order 20 or 30 and power it up to an involution x.

2. Find an element t of order 4 (not by powering up).

3. Look for a conjugate y of t such that xy has order 20. If all the orders of xy seem to be 15

or less, t is probably in the wrong class, so go back to step 2.

4. Return x and y.

The standard checker is not sufficient for G, as there are (2B, 4A, 20) and (2B, 4B, 20)

pairs. However, there are no (2A, 4A, 20) pairs, so it suffices to check that x is in 2A. We

can do this by powering up xy of order 20 to give another 2A element z, and checking

the order of xz. We have:

U4(4) ≈ 〈〈x, y | std, o(x(xy)10) = 3〉〉 (6.1.24)

6.1.9 Unitary group U4(5)

The group G = U4(5) can be (2A, 4B, k)-generated for:

k ∈ {9, 24, 63} (6.1.25)

We have:

ξG(2A, 4B, C ) = 2 (6.1.26)
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for the two classes C of elements of order 9. The group Out(G) has order 4, and the two

classes fuse to give a single class C ′ under the field automorphism x 7→ x5 of GF(52).

Hence we have:

ξAut(G)(2A, 4B, C ′) = 1 (6.1.27)

and all (2A, 4B, 9)-pairs are equivalent.

Definition-Theorem 6.12 Standard generators of U4(5) are a pair (x, y) such that x is in

2A, y is in 4B and xy has order 9.

These generators are tame, with T(2A) = {8, 24, 30, 60} and T(4B) = {8, 24, 60}, so we

can use Algorithm 1.11 to find generators. In fact, class 4B squares to 2A, so we can

find representatives of both classes together.

The standard checker is not sufficient; we need to check the classes of x and y. This

can easily be done by verifying that x and y2 are 2A elements, as the other classes of 4-

elements square to 2B. We find a 2A element z by powering up an element with order

in T(2A), and search for elements g and h such that xgz and (y2)hz have odd order. We

have:

U4(5) ≈ 〈〈x, y, (z, w) | std, o(w) = 30, o(xyz) = 5, o((y2)xz) = 5;

w = xyxy2; z = w15〉〉
(6.1.28)

6.1.10 Symplectic group S4(8)

Let G = S4(8). The outer automorphism group of G is cyclic of order 6, generated by

elements φ (the Frobenius automorphism of order 3) and γ (the extraordinary graph

automorphism of order 2 for the Dynkin diagram C2).

113



The conjugacy classes 2A and 2B of S4(8) fuse under the element γ, and we have:

T(2A/B) = {6, 14, 18} (6.1.29)

Moreover there is a unique class of elements of order 5:

T(5A) = {5, 65} (6.1.30)

The group can be (2A, 5A, 7)-generated, and if C is a class containing elements of order

7, then we have:

ξG(2A, 5A, C ) =


1 if C ∈ {7G, 7H, 7I}

0 otherwise
(6.1.31)

The classes 7G, 7H and 7I fuse under the Frobenius automorphism φ. Therefore our

definition of standard generators is:

Definition-Theorem 6.13 Standard generators for S4(8) are a pair (x, y) such that x is in

class 2A or 2B, y has order 5 and xy has order 7.

The standard checker is not sufficient; we need to make sure that x 6∈ 2C. We use

Lemma 1.14 and the fact that all elements of order 18 power up to 2A/B. We have:

S4(8) ≈ 〈〈x, y, (z) | std, o(z) = 18, o(xz9) = 9; z = xyxyxyxy4〉〉 (6.1.32)

6.1.11 Symplectic group S4(9)

The group G = S4(9) has three classes of elements of order 4:

• class 4A squaring to 2B (centralizer order 2880);

• class 4B squaring to 2A (centralizer order 2880);
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• class 4C squaring to 2B but not powerable2 itself (centralizer order 64).

Definition 6.14 A semi-standard pair for S4(9) is a pair (x, y) of elements of S4(9) where

x is in class 2B, y is in class 4B and xy has order 41.

Lemma 6.15 Each semi-standard pair for S4(9) generates S4(9).

Proof. Let G = S4(9) and suppose H = 〈x, y〉 is a proper subgroup of G. As with

Theorem 5.4, we work in the double cover G̃ = Sp4(9) and write t̃ to denote a preimage

of t ∈ G in G̃. As before, we have a Singer cycle x̃ỹ (or −x̃ỹ), so by Lemma 5.3,

the group H̃ = 〈−1, x̃, ỹ〉 is contained in a subgroup L̃ ∼= Sp2(81).2 ∼= SL2(81).2.

In the natural action of this subgroup on a 2-dimensional vector space over GF(81),

the elements of order 4 do not fix any vectors. However, all 4B elements of G̃ fix

a 2-dimensional submodule of the natural 4-dimensional GF(9)G̃-module. This is a

contradiction. �

For any class C of elements of order 41, we have the structure constant:

ξS4(9)(2B, 4B, C ) = 2 (6.1.33)

This becomes 1 in the automorphism group: Out(G) has order 4, but there is some

fusing of the conjugacy classes C . In the automorphism group, there are 5 classes of

triples to consider. We found fingerprints for all 5 (and also for the (2B, 4A, C )-triples),

which enabled us to define:

Definition-Theorem 6.16 Standard generators for S4(9) are a pair (x, y) of elements of

S4(9) where x is in class 2B, y is in class 4B, xy has order 41 and xyxy3 has order 5.

2A group element x is powerable if an element of greater order powers up to x. The definition extends
naturally to conjugacy classes.
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If y is in class 4A, then the conditions o(xy) = 41 and o(xyxy3) = 5 cannot hold

simultaneously. Thus we get the following black box algorithm:

Algorithm 6.17 Finder for S4(9):

1. Find a random element of even order and power it up to give an involution x.

2. Test whether x is a 2B element using Lemma 5.8. If it cannot be proved to be in 2B, go

back to step 1.

3. Find an element u of order o satisfying o > 4, 4 | o.

4. Test whether uo/2 is a 2A element using Lemma 5.2.1. If it is (probably) a 2A, then let

y = uo/4. This is probably a 4B element, although it may be a 4A element. If uo/2 is a

2B element, go back to step 3.

5. Find a conjugate z of y such that xz has order 41 and xzxz3 has order 5. If no such

conjugate can be found, we may have found a 4A element, so go back to step 3.

6. Return x and z.

For a checker, we only need to show x ∈ 2B (the class of y is determined by the

standard relations). We can do this with Lemma 5.8:

S4(9) ≈ 〈〈x, y | std, o(xyxyx) = 40〉〉 (6.1.34)

6.1.12 Symplectic group S6(5)

The group G = S6(5) is (2A, 8A)-generated, and the two classes are tame:

T(2A) = {4, 8, 12, 20, 24, 26, 30, 40, 52, 60, 78, 120, 130} (6.1.35)

T(8A) = {40, 120} (6.1.36)
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There are a number of possible targets k, but a convenient choice is k = 9. There is a

single conjugacy class of order 9, and we have:

ξ(2A, 8A, 9A) = 4 (6.1.37)

These 4 classes of pairs fuse to just 2 in Aut(G), and so there are 2 fingerprints to find.

Definition-Theorem 6.18 Standard generators of S6(5) are a pair (x, y) such that x is in

2A, y is in 8A, xy has order 9 and xy2 has order 31.

For a checker, we can check x ∈ 2A using Lemma 1.8.1 as usual. We can then find

the 31 fingerprints for the (2A, 8B, 9)-pairs. It turns out that the conditions we already

have are enough to show y ∈ 8A.

S6(5) ≈ 〈〈x, y, (z) | std, o(z) = 52, o(xy5
z26) = 3; z = xy3〉〉 (6.1.38)

6.1.13 Symplectic group S8(3)

The group G = S8(3) can be (2B, 4D)-generated. Possible targets k are given by:

k ∈ {14, 15, 18, 20, 21, 30, 36, 39, 40, 41, 42, 45, 60, 78, 90} (6.1.39)

For k = 14, there is a unique target class 14B, and we have:

ξ(2B, 4D, 14B) = 2 (6.1.40)

But since Aut(G) = G.2, there is a unique automorphism class of (2B, 4D, 14)-pairs.

Definition-Theorem 6.19 Standard generators for S8(3) are a pair (x, y) such that x is in

2B, y is in 4D and xy has order 14.
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These generators are tame, with:

T(2B) = {24, 72, 90} (6.1.41)

T(4D) = {84} (6.1.42)

so we can use Algorithm 1.11 to find them.

For a checker, observe that the classes of elements of order 4 which power to 2A are

4A, 4C and 4D, and ξ(2B, 4A, 14) = ξ(2B, 4C, 14) = 0. Hence we only need to check

x ∈ 2B and y2 ∈ 2A. We can do both using Lemma 1.8.1. We have:

S8(3) ≈ 〈〈x, y, (z, w) | std, o(z) = 24, o(xyz12) = 9, o(w) = 52,

o((y2)xyxyw26) = 3; z = xy3xyxy2xy, w = xyxy2〉〉
(6.1.43)

6.1.14 Orthogonal group O+
10(2)

The group G = O+
10(2) has two classes of order 20, only one of which (20A) is tame.

The group can be (2A, 20A, k)-generated with:

k ∈ {21, 30, 31, 45, 51, 60} (6.1.44)

There are 3 classes of elements of order 21, but classes 21A and 21B fuse in Aut(G) =

O+
10(2) : 2. We have:

ξ(2A, 20A, 21A/B) = 1 (6.1.45)

ξ(2A, 20A, 21C) = 0 (6.1.46)

Thus there is only one (2A, 20A, 21) pair up to automorphisms of G.

Definition-Theorem 6.20 Standard generators of O+
10(2) are a pair (x, y) such that x is
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in 2A, y is in 20A and xy has order 21.

These generators are tame, with:

T(2A) = {24, 42, 60} (6.1.47)

T(20A) = {60} (6.1.48)

so we can use Algorithm 1.11 to find them.

To check them, note that the only conjugacy class of elements of order 20 which

powers to 2A is 20A. Thus we need to show x and y10 are both in 2A, which we can do

using Lemma 1.8.1. We have:

O+
10(2) ≈ 〈〈x, y, (z) | std, o(z) = 42, o(xyz21) = 3,

o((y10)xyz21) = 3; z = xyxy8〉〉
(6.1.49)

6.2 Groups whose character table is not available

We do not have character tables for the remaining groups, so we must proceed differ-

ently.

Let G be a group. If we can find conjugacy classes C1, C2 of G such that C1 is small

and G is (C1, C2)-generated, then we can find a definition for standard generators as

follows. Let y be an arbitrary element of C2. Then CG(y) is a subgroup of G and it

acts on C1 by conjugation. Each orbit of this action corresponds to a conjugacy class of

(C1, C2)-pairs in G. Enumerating these orbits requires a lot of computation, which is

why we require C1 to be small.

Some of the groups in this section are permutation groups of large degree, and

calculating the orbits of this action directly requires too much memory. Instead, we

pick elements g of C1 at random, and calculate an invariant (a hash key in the parlance
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of computer science):

I(g) = ∑
n∈Ψ

n× ng (6.2.1)

where Ψ is a fixed but arbitrary subset of Ω (and G is a permutation group acting on

Ω). Note that by convention the elements of Ω are integers, so the multiplication in

(6.2.1) takes place in N.

If we ever see a value for I(g) which we have already seen, we discard g and try

again. Otherwise, we record I(h) for all h in the CG(C2)-orbit ∆ of g, and perform any

other calculations with the orbit that we require. We continue doing this until:

∑ |∆| = |C1| (6.2.2)

where the sum is over orbits ∆ that we have seen so far.

The formula (6.2.1) for the invariant is of course arbitrary—the point is that it is

reasonably fast to calculate and we are unlikely to find two elements g with the same

value of I(g). It is even more unlikely that there are two orbits ∆1 and ∆2 such that

{I(g) : g ∈ ∆1} ⊆ {I(g) : g ∈ ∆2} (6.2.3)

which is the only circumstance in which our strategy could fail. If we ever suspected

that this had occurred, we could always choose a different set Ψ and start again.

6.2.1 Unitary group U5(4)

The group G = U5(4) has two classes of elements of order 2. The smallest non-trivial

conjugacy class is 2A, with size 52275. The next smallest is 2B, with size 13591500,

which is too large to handle easily. We therefore choose 2A as the class for our first
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generator. The class 2A is tame, with:

T(2A) = {8, 12, 20, 26, 30} (6.2.4)

There is a unique class 12A of elements of order 12, and the group is (2A, 12A, 41)-

generated. Moreover, 1/48 of the group is in this class, so it is easy to find elements

in it (even though it is not a powerable class). The centralizer CG(12A) ' C12 × C4

acts on 2A by conjugation. A computer search taking just under 4 minutes showed

that there are 1355 orbits, 200 of which correspond to (2A, 12A, 41)-pairs. The outer

automorphism group of G is 5 :4, and so there are just 10 fingerprints to find.

Definition-Theorem 6.21 Standard generators for U5(4) are a pair (x, y) such that x is

in 2A, y has order 12, xy has order 41 and xy2 has order 15.

To check the generators, we only need to show x ∈ 2A, and since we know y6 ∈ 2A,

we can use Lemma 1.8.1.

U5(4) ≈ 〈〈x, y | std, o(xy6) = 5〉〉 (6.2.5)

6.2.2 Unitary group U6(3)

The two smallest non-trivial conjugacy classes of the group G = U6(3) are the classes

2A and 3A of sizes 44226 and 44408 respectively. The next smallest is 36420111, which

is too many points to handle comfortably. We therefore chose C1 = 2A, which is a tame

class with:

T(2A) = {122} (6.2.6)

The transvection class 3A would have worked almost as well.

We then considered classes C2 such that G can be (2A, C2)-generated and such that
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C2 can be easily found. The class 15A is the most straightforward possibility: it is a

completely tame class, and it can be powered from elements of orders 30, 60 and 120.

To finish the definition, we looked for orbits of CG(15A) on the class 2A. It took

about 21
2 minutes and about 24000 random trials to find the 492 orbits. Of these, 48

correspond to (2A, 15A, 91)-pairs. The group Out(G) has order 4, and so there were

only 12 equivalence classes of pairs.

Definition-Theorem 6.22 Standard generators for U6(3) are a pair (x, y) such that x is

in 2A, y has order 15, xy has order 91 and xy2 has order 14.

For the checker, we can use Lemma 1.8.1 again:

U6(3) ≈ 〈〈x, y, (z) | std, o(z) = 122, o(xy5xyz61) = 3; z = xy3xy〉〉 (6.2.7)

6.2.3 Unitary group U8(2)

The smallest non-trivial conjugacy class of the group G = U8(2) is the class 2A. It has

size 10965, and it is the only tame class of involutions:

T(2A) = {14, 22, 42, 44, 66, 72, 126, 132} (6.2.8)

The group G can be (2A, 14A, 85)-generated, and the class 14A is completely tame. The

centralizer CG(14A) ' C14 × C9 acts on 2A by conjugation with 133 orbits, 8 of which

correspond to (2A, 14A, 85)-pairs. The automorphism group is U8(2) : 2, and there are

just 4 equivalence classes of such pairs.

Definition-Theorem 6.23 Standard generators for U8(2) are a pair (x, y) such that x is

in 2A, y has order 14, xy has order 85 and xy2 has order 18.

We have:

U8(2) ≈ 〈〈x, y | std, o(xy7) = 3〉〉 (6.2.9)
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6.3 Groups where calculating conjugacy classes is imprac-

tical

The remaining groups are too large to compute a complete set of conjugacy classes. We

must usually be content with finding a subset of each taming set.

6.3.1 Unitary group U9(2)

Let G = U9(2), and let GF(4) = {0, 1, ω, ω2}. There are 4 conjugacy classes of invo-

lutions in G. These classes correspond to matrices in SU9(2) with the canonical forms

Mi, 1 ≤ i ≤ 4: where:

Mi = T2 ⊕ · · · ⊕ T2︸ ︷︷ ︸
i times

⊕ I2 ⊕ · · · ⊕ I2︸ ︷︷ ︸
4− i times

⊕I1 (6.3.1)

and

T2 =

 0 ω

ω2 0

 , I2 =

1 0

0 1

 , I1 =
(

1

)
(6.3.2)

The orders of their centralizers are:

|CG(2A)| = 236 · 38 · 5 · 7 · 11 · 43 (6.3.3)

|CG(2B)| = 235 · 36 · 5 · 11 (6.3.4)

|CG(2C)| = 233 · 36 (6.3.5)

|CG(2D)| = 230 · 34 · 5 (6.3.6)

Thus the class 2A is the smallest class of involutions, containing just 43605 elements.

Because any element powering up to an involution is in the centralizer of that invo-

lution, any element of even order which is divisible by 7 or 43 must power up to 2A.
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Thus:

T(2A) ⊇ {14, 28, 42, 84, 86, 126} (6.3.7)

The group G can be (2A, 17)-generated, and for any element t of order 17, we have

CG(t) ' C17 × C5 (6.3.8)

However, there are two conjugacy classes 17A and 17B of order 17 (this can be verified

by observing that the Sylow 17-subgroup S is cyclic, and if S = 〈s〉, then s is conjugate

in G to s2 but not to s3). Examining fingerprints shows that these classes do not fuse in

the automorphism group.

After about 31
2 minutes of searching, we found the 513 orbits of CG(17A) on the

class 2A, of which 36 correspond to (2A, 17A, 57) pairs. The group Out(G) is isomor-

phic to S3, so there are only 6 equivalence classes of such pairs. Similarly, there are 6

equivalence classes of pairs with the class 17B instead of 17A. We will use fingerprints

to tell the two classes apart.

Definition-Theorem 6.24 Standard generators for U9(2) are a pair (x, y) such that x is

in 2A, y has order 17, xy has order 57 and xy2 has order 17 (or equivalently, xyxy2 has order

84). Either condition fixes the class of y to be 17A.

The following algorithm can find standard generators.

Algorithm 6.25 Finder for U9(2):

1. Find an element of order 14, 28, 42, 84, 86 or 126 and power it up to an involution x in

class 2A.

2. Find an element of order 17 or 85 and power it up (if necessary) to give an element y of

order 17.
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3. Look for a conjugate y of t such that xy has order 57.

4. If xyxy2 has order 17, 36, 72, 99 or 132 then replace t by t3 and go back to step 3 (we

should only have to do this once, if at all).

5. If xyxy2 has order 45, 60 or 126 then go back to step 3. (Otherwise, xyxy2 must have

order 84.)

6. Return x and y.

To check the generators, we use Lemma 1.8.1 as usual: We have:

U9(2) ≈ 〈〈x, y, (z) | std, o(z) = 28, o(xz14) = 3; z = xy7〉〉 (6.3.9)

6.3.2 Symplectic group S6(7)

Let G = S6(7). The only conjugacy classes of G which are small enough to be amenable

to our orbit-counting approach are those of the transvections. There are two conjugacy

classes of transvections 7A and 7B, and these are swapped by the map g 7→ g3. These

classes fuse to a single class 7A/B in the automorphism group.

The Sylow 5-subgroup of S6(7) is C25, and all elements of order 5 in G are conju-

gate. By examining CG(5A), a group of order 8400, we can prove that there are two

conjugacy classes of order 35 in G, each of which powers up to a transvection. Hence

we have:

T(7A/B) ⊇ {35, 70, 175, 350} (6.3.10)

There is a single conjugacy class 9A of elements of order 9, and we have:

T(9A) ⊇ {9, 171} (6.3.11)

The group can be (7A, 9, 57)-generated. The centralizer of a 9A element is CG(9A) '
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C9 × C19. After about 21
2 minutes of computer searching, we found the 344 orbits of

the action of CG(9A) on the conjugacy class 7A, 12 of which correspond to (7A, 19, 57)-

pairs.

Definition-Theorem 6.26 Standard generators for S6(7) are a pair (x, y) such that x is in

class 7A/B, y has order 9, xy has order 57 and xy2 has order 12.

Checking these generators requires a way of showing that x is a transvection. A

transvection in G has centralizer 71+4 : 2S6(7) of index 58824 in G. This index is small

enough that it is feasible to perform a random search of words to find elements com-

muting with x. We found:

CG(x) = 〈x6y2xy7xy2, x6yxy8xy〉 (6.3.12)

By (6.3.10) above, any element of order 7 commuting with an element of order divisible

by 5 is a transvection. We have:

S6(7) ≈ 〈〈x, y, (z) | std, o(z) = 10, o([x, z]) = 1;

z = (x6y2xy7xy2)3(x6yxy8xy)5〉〉
(6.3.13)

6.3.3 Symplectic group S10(3)

Let G = S10(3). The group G contains two conjugacy classes of transvections, called

3A and 3B, and these fuse to a single class 3A/B in the automorphism group of G. We

will generate the group G with a transvection and another element. We first show that

the class of transvections is tame.

Lemma 6.27 We have:

T(3A/B) ⊇ {63, 117, 120, 123, 126, 180, 234, 240, 246, 252} (6.3.14)
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Proof. We will make use of the following fact. Let p be a prime. If the Sylow-p sub-

groups of G are cyclic of order p, then any element of G with order divisible by p is

contained in a conjugate of Hp = CG(tp), where tp is an arbitrary element of order p in

G.

(i) 120, 180 ∈ T(3A/B)

Let H be a Sylow 5-subgroup of G; it is elementary abelian of order 25. By calcu-

lating in H, we can see that G has exactly 2 conjugacy classes 5A and 5B contain-

ing elements of order 5.

• The centralizer CG(5A) has shape 5× 2.S6(3). We have 24, 36 ∈ TSp6(3)(3A/B),

where 3A/B is the class of transvections in Sp6(3).

• The centralizer CG(5B) has order 86400. It contains elements of order 5× 24,

all of which power to transvections. It does not contain any elements of

order 5× 36.

Hence any element with order 5× 24 or 5× 36 powers to a transvection in G.

(ii) 63 ∈ T(3A/B)

The Sylow 7-subgroups of G are cyclic, and the subgroup H7 has shape 28 ◦

Sp4(3). The class 3A/B of Sp4(3) corresponds to the class of transvections in

G. Because 9 ∈ TSp4(3)(3A/B), any element of order 7 × 9 must be in H7 and

must power up to a transvection.

(iii) 117 ∈ T(3A/B)

The Sylow 13-subgroups of G are cyclic, and the subgroup H13 has shape 13 ×

Sp4(3). By essentially the same argument as for p = 7, any element of order

13× 9 must power up to a transvection.
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(iv) 123 ∈ T(3A/B)

The Sylow 41-subgroups of G are cyclic, and the subgroup H41 has structure 41×

Sp2(3), and all elements of order 3 therein are transvections. Thus any element of

G of order 41× 3 must power up to a transvection.

To get the remaining orders in (6.3.14), we remark that if n ∈ T(3A/B) and G

contains elements of order kn for an integer k ≥ 1, then kn ∈ T(3A/B). All element

orders in (6.3.14) have been observed in G. �

Remark Experiments suggest T(3A/B) ⊇ {27, 48}, but the Sylow-2 and Sylow-3 sub-

groups were too large to deal with.

The group G can be (3A/B, 11)-generated, and there is a unique conjugacy class

of elements of order 11. This can be seen by observing that the Sylow-11 subgroup

of G is cyclic of order 121, and that if g has order 11, then g and g2 are conjugate.

We decided to (3A/B, 11, 121)-generate the group. After a search of approximately 11
2

minutes, we found the 244 orbits of CG(11) = C121 on the conjugacy class 3A, 22 of

which corresponded to (3A, 11, 121)-pairs.

Definition-Theorem 6.28 Standard generators of S10(3) are a pair (x, y) such that x is in

class 3A/B, y has order 11, xy has order 121 and xy2 has order 11.

Remark The standard finder takes longer to terminate on average than for most of the

other groups. Elements h ∈ 11A have small centralizers, but elements h′ ∈ G \ 11A

which satisfy 〈g, h′〉 = G and |CG(h′)| > |CG(h)| lie in conjugacy classes which are

difficult to distinguish.

For a checker, we need to show that x is a transvection, which we can do by finding

an element of order 41 which commutes with it (this is not too hard because CG(x) has

128



Group Average costa

L3(13) 45
L4(4) 56
L4(5) 53
L5(3) 67
U3(9) 33
U3(13) 81
U3(16) 46
U4(4) 81
U4(5) 36
U5(3) 37
U5(4) 100
U6(3) 110
U7(2) 31
U8(2) 58
S4(8) 28
S4(9) 43
S6(5) 160
S6(7) 373
S8(3) 66
S10(3) 249
O+

10(2) 79

a1000 trials

Table 6.4: Average cost of running black box algorithms

index 29524 in G). We have:

S10(3) ≈ 〈〈x, y, (z) | std, o(z) = 41, o([x, z]) = 1; z = xy3xy8xy3〉〉 (6.3.15)

6.4 Cost of the black box algorithms

We measured the cost of running each black box algorithms, where the cost is defined

to be the number of times the algorithm asked for a random element of the group. The

results averaged over 1000 trials are given in Table 6.4.
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6.5 Checkers for the remaining groups

We will need checkers for all groups where we produce representations. This is be-

cause we will use the checkers to verify that the representations we produce are cor-

rect. There are a number of groups which have standard generators defined in the Web

Atlas but for which we have not yet given a semi-presentation. On the accompanying

CD-ROM (see Appendix C) we provide checkers for all these groups except 3D4(3)

(where we were not able to find any representations either, so there is less need for a

checker). These checkers were made in a similar way to those described in this chapter.
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Part II

Characteristic zero representations
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Chapter 7

Known constructions

In this chapter, we describe some known constructions for representations of simple

groups which we exploited when producing our database of representations. In par-

ticular, we describe:

• The representations of An

• The representations of L2(q)

• The Weil representations of S2n(q) with q odd

We also make use of some known constructions for certain representations of the spo-

radic groups.

7.1 Representations of An

We will approach the representations of the alternating groups by restricting represen-

tations of the symmetric groups (and decomposing where necessary). A great deal is

known about the representations of Sn. In this section, we will provide a summary of

the facts we need, as well as a construction of the irreducible representations of Sn. An

exposition of this material can be found in [43].
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Definition 7.1 A partition of n is a non-increasing tuple λ = (λ1, λ2, . . . λr) of positive

integers which sums to n. We write λ a n. Such a tuple defines subsets Ωi ⊆ Ω for 1 ≤ i ≤ r

as follows:

Ωi = {µi + 1, µi + 2, . . . µi + λi} (7.1.1)

where µi = ∑i−1
j=0 λi. These subsets define the partition of Ω determined by λ.

Definition 7.2 Let λ = (λ1, . . . λr) be a partition of n.

1. The Young subgroup Sλ of λ is the stabilizer of the partition of Ω determined by λ. It

is isomorphic to Sλ1 × Sλ2 × · · · × Sλr .

2. A Young (or Ferrers) diagram of shape λ is an array of n cells arranged into r rows

with λi cells in the ith row. Cells are lined up into columns and each row is left-justified.

3. Given a cell x in a Young diagram, its hook length `(x) is the length of the longest

Γ-shaped hook whose corner is in the cell.

4. A Young tableau of shape λ is a Ferrers diagram where each cell contains an element

of Ω and each element of Ω is contained in at least one cell. A Young tableau is said to be

standard if the entries increase along each row and down each column.

5. Young diagrams and tableaux can be transposed by swapping rows and columns. The

dual partition λ> is that partition of n which corresponds to the transpose of the Young

diagram of λ.

6. A Young tabloid of shape λ is an equivalence class of Young tableaux, where two

tableaux t1, t2 are equivalent if each row of t1 is a reordering of the corresponding row of

t2. The equivalence class containing a Young tableau t will be denoted {t}.

There is an action of Sn on the set of Young tableaux of shape λ, and it is equivalent

to the regular action of Sn on itself. In this action, the Young subgroup Sλ is the sta-

133



bilizer of a particular Young tabloid, and we get an induced action of Sn on the set of

Young tabloids. This determines a CSn-module isomorphic to the trivial CSλ-module

induced up to Sn. We will call this module Mλ.

Definition 7.3 Let λ be a partition of n.

1. Let t be a Young tableau of shape λ. Then the polytabloid et associated to t is the

following element of Mλ:

et = ∑
π

sgn(π){t}π (7.1.2)

where the summation is over permutations π ∈ Sn which preserve the columns of the

tableau t.

2. The Specht module Vλ is the submodule of Mλ spanned by the polytabloids et, where t

ranges over the Young tableaux of shape λ.

Theorem 7.4 The irreducible CSn-modules are the Specht modules Vλ where λ ranges over

partitions of n. A basis for this module is given by {et}, where t ranges over standard Young

tableaux. The size of this module (and hence the number of standard Young tableaux) is given

by the hook length formula:

ρ(1) =
n!

∏x∈λ `(x)
(7.1.3)

The basis of standard polytabloids for the Specht modules gives rise to the Young

natural representation for Sn. There are efficient ways of computing it [43].

Lemma 7.5 Let λ be a partition of n, with ρ the corresponding irreducible representation of

Sn.

1. If λ = λ>, then ρ|An splits into two complex conjugate irreducible representations.

2. If λ 6= λ>, then ρ|An is irreducible. Moreover, if σ is the irreducible representation

corresponding to λ>, then ρ|An = σ|An .
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n = 5 n = 6 n = 7 n = 8 n = 8
d = 3 d = 8 d = 10 d = 21 d = 45

n = 9 n = 9 n = 10 n = 11
d = 21 d = 35 d = 224 d = 126

Table 7.1: Young diagrams for representations of Sn splitting in An

Using the hook length formula (7.1.3) we can determine which partitions give rise

to representations of dimension ≤ 250, and we can determine those which split in An.

Using this data, we construct the Young natural representation on a set of generators

for An, splitting by hand where necessary.

The representations of An with genera in L0 which are obtained by splitting repre-

sentations of Sn are given in Table 7.1.

7.1.1 The Young system

We have produced a set of GAP programs called Young which can calculate the Young

representations for the symmetric groups. (We could also have used the permutation

representation methods of Chapter 8 for this purpose.) The inputs to the main program

are a partition and a set of permutations.

Here we give a simple example of its use. The group A7 has a unique 15-dimensional

representation. We can find out which partitions of 7 correspond to this using our im-

plementation of the hook length formula (7.1.3)
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gap> P := Partitions(7);;
gap> Filtered(P, x->HookLengthFormula(x) = 15);
[ [ 3, 1, 1, 1, 1 ], [ 5, 1, 1 ] ]

So the partitions are [3, 14] and [5, 12]. These partitions are dual to each other, so the

corresponding representations of A7 are equivalent:

gap> DualPartition([3,1,1,1,1]);
[ 5, 1, 1 ]

We can take the standard generators of A7 to be (1, 2, 3) and (3, 4, 5, 6, 7), and hence

calculate the appropriate representation:

gap> M := YoungRepresentation([3,1,1,1,1], [(1,2,3), (3,4,5,6,7)]);
[ [ [ 1, 0, 0, 0, 0, -1, 1, -1, 1, 0, 0, 0, 0, 0, 0 ],

[ 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0 ],
[ 0, 1, 0, 0, 0, -1, 0, 0, 0, 1, -1, 1, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, 0, -1, 1, 0 ],
[ 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, -1, 0, 1 ],
[ 0, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 1, 0, -1, 1 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ] ],

[ [ 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 ],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ] ] ]

7.2 Representations of L2(q)

The representations of L2(q) are given in Table 7.2. Here we explain briefly how to

construct each representation.
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q Dimension Number of representations Indicator
q = 2m q− 1 m +

q 1 +
q + 1 m− 1 +

q = 4m + 1 (q + 1)/2 2 +
q− 1 m +
q 1 +
q + 1 m− 1 +

q = 4m + 3 (q− 1)/2 2 o
q− 1 m +
q 1 +
q + 1 m +

Table 7.2: Representations of L2(q)

• q-dimensional representations: this representation is the unique faithful constituent

of the permutation representation of G on q + 1 points, and is easy to find.

• (q + 1)-dimensional representations: these can be found by inducing 1-dimensional

representations of a Borel subgroup. These representations are therefore mono-

mial.

• (q + 1)/2-dimensional representations: these can be found by decomposing the

permutation of G on 2(q + 1) points. The representation decomposes as 1 + [(q +

1)/2]a + [(q + 1)/2]b + q, and we can use the Split-P system in Chapter 8 to do

this.

• (q− 1)/2-dimensional representations. These can be found by thinking of L2(q)

as PSp2(q) and constructing the Weil representation (see section 7.3).

• (q− 1)-dimensional representations. These are the cuspidal representations, which

will be described in the following section.
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7.2.1 The cuspidal representations of L2(q)

The construction of the (q − 1)-dimensional representations of L2(q) is more compli-

cated than the others. We will sketch the construction here, following Piatetski-Shapiro

[39], although the construction is described elsewhere [38, 52].

Let K = GF(q) and let L = GF(q2) be the (unique) quadratic extension of K. We

fix a non-trivial character Ψ of the additive group K (an elementary abelian p-group).

Let V be the (q − 1)-dimensional vector space of functions f : K∗ → C. We give V a

CSL2(q)-module structure as follows. Let ν be an irreducible character of L∗. Let

g =

α β

γ δ

 (7.2.1)

be an element of SL2(q). Then for f ∈ V and x ∈ K∗, we set:

(g. f )(x) = ν(δ)ψ

(
βx
δ

)
f
(αx

δ

)
(7.2.2)

if γ = 0; and

(g. f )(x) =
1
q ∑

y∈K∗
ψ

(
αy + δx

γ

)
∑

u∈L∗uq+1=y/x

ψ

(
−x(u + uq)

γ

)
ν(u) f (y) (7.2.3)

if γ 6= 0. It turns out that this makes V a CSL2(q)-module. Since we are interested in

representations of L2(q), we must make sure that all scalar matrices act trivially. If g is

a scalar matrix, then (7.2.2) implies:

(g. f )(x) = ν(δ) f (x) (7.2.4)

Hence we must ensure that ν(−1) = 1.
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Unfortunately, while it is very easy to calculate the image of any particular element

of L2(q) in this representation, the matrices that we get are not good to compute with.

Each matrix entry involves q − 1 terms, and these terms are typically the products of

(q− 1)th and (q + 1)th roots of unity. Thus multiplying two matrices in this represen-

tation is at least an O(q5) operation, and depending on how the terms are represented

on a computer (e.g. if sums of nth roots of unity are stored as lists of size n), it could

potentially be an O(q7) operation.

7.3 Weil representations of symplectic groups

Let G = Sp2n(q) with q = pr odd. We can construct a qn-dimensional representation

called the Weil representation as follows. (We follow the discussion in Szechtman [51].)

Let K = GF(q) and let V be a 2n-dimensional K-vector space equipped with a non-

degenerate symplectic form 〈 〉. Then we can define a group H to be the set:

H = {(c, w) : c ∈ K, w ∈ V} (7.3.1)

with multiplication given by:

(c, w).(c′, w′) = (c + c′ + 〈w, w′〉, w + w′) (7.3.2)

Then H is a group of order pq2n.

We can decompose V = M⊕ N into a direct sum of two totally isotropic subspaces

M, N, each having dimension n. Then the set:

A = {(c, w) : c ∈ K, w ∈ M} (7.3.3)

is an abelian subspace. By inducing up a linear character of A to H, we get a qn-
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dimensional representation of H. The group G acts by conjugation on H:

(c, w)g = (c, gw) (7.3.4)

and this conjugation action gives rise to a qn-dimensional representation of G, known

as a Weil representation.

7.3.1 The method

For elements g ∈ G, we find the effect of the action of g on a basis of V, a symplectic

space. We rewrite this action of g in terms of the corresponding extraspecial group

in a qn-dimensional representation. We then find (using standard-basis methods [36])

a matrix θ(g) which performs the corresponding conjugation. The matrix θ(g) is an

element of G0 = q1+2n : GSp2n(q), the automorphism group of the extraspecial group

q1+2n. We find enough of these elements to generate the whole group. We then search

for the subgroup G = Sp2n(q) in G0. We can do this by observing that z, the central

involution of G, is not centralized by the extraspecial group in G0.

The qn-dimensional representation then splits into 2 parts. We can perform the

splitting by considering the action of the group on the −1 and +1 eigenspaces of the

central involution z.

7.4 Other known constructions

Certain representations for groups have been constructed already. For the representa-

tions listed in Table 7.3, we use these constructions (possibly changing a basis).
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Group Dimension Indicator Source
U5(2) 10 − ATLAS
G2(3) 14 + ATLAS
2F4(2)′ 26 ◦ ATLAS (restricted from 2.F4(2))
M24 45 ◦ [32, 42]
Fi22 78 + ATLAS
Sz(32) 124 ◦ John Bray
HN 133 + [6, 35]
Th 248 + [48]

Table 7.3: Representations from other sources
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Chapter 8

Split-P : a GAP system for splitting

permutation modules

In this chapter, we describe our Split-P system, which is a set of GAP programs that

can be used to decompose a permutation module into its constituents.

We begin by giving an account of the theory of intersection matrices, and show

how it applies to the situation of decomposing permutation modules. We then describe

rational reconstruction: a technique which allows us to perform most of our calculations

in finite fields for faster computation. Finally we give an outline of the implementation

of Split-P, and show an example of its use.

The general theory up to and including Algorithm 8.8 is well-known and was used

by Rogers [42] to construct several representations of sporadic groups.

8.1 Notation

Let G be a finite group acting transitively on a set Ω of size n. Then G has a permutation

representation:

θ : G → Sn (8.1.1)
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We will write αg for the result of the action of g on a point α ∈ Ω. The permutation

module Ω is an n-dimensional vector space over C with basis:

{α : α ∈ Ω} (8.1.2)

where the G-action is defined by setting:

αg = αg (8.1.3)

and extending linearly to the whole of Ω. Let χ be the permutation character.

There is an action of G on Ω×Ω given by:

(α, β)g = (αg, βg) (8.1.4)

For n ≥ 2, this action is not transitive, because the set

Λ0 = {(α, α) : α ∈ Ω} (8.1.5)

is an orbit. Let the other orbits be labelled Λ1, Λ2, . . . Λd. The complete set of orbits is

denoted O .

For any α ∈ Ω, 0 ≤ i ≤ d, we set:

Λi(α) = {β ∈ Ω : (α, β) ∈ Λi} (8.1.6)

The sets Λi(α) for fixed α are the orbits of StabG(α) on Ω.

Observe that for any orbit Λ of G on Ω×Ω, the set Λ∗ defined by:

Λ∗ = {(β, α) : (α, β) ∈ Λ} (8.1.7)
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is also an orbit. The map

( )∗ : O → O (8.1.8)

Λ 7→ Λ∗ (8.1.9)

is known as the pairing operator on O . It is either a trivial map or an involution. The

fixed points of the pairing operator are known as self-paired orbits. The pairing operator

induces a permutation ∗ : j 7→ j∗ of the set {0, 1, . . . , d} by the relation:

Λj∗ = (Λj)∗ (8.1.10)

for 0 ≤ i ≤ d. This permutation extends to a linear map on Cd+1. For standard basis

vectors ei (0 ≤ i ≤ d) we define:

(ei)∗ = ei∗ (8.1.11)

and extend linearly to the whole of Cd+1.

For convenience, we impose a total order on Ω as follows. Choose an arbitrary

element ω0 ∈ Ω, and choose an arbitrary total order ≤i on Λi(ω0) for each 0 ≤ i ≤ d.

For α ∈ Λi(ω0) and β ∈ Λj(ω0) we set:

α ≤ β ⇔


i < j or

i = j and α ≤i β

(8.1.12)

The effect of this total ordering is that we may think of Ω as the set {1, 2, . . . n} where

each orbit of StabG(1) is a set of consecutive integers. When we give linear maps Ω →

Ω, they will be given as matrices with respect to the standard basis:

{α : α ∈ Ω} (8.1.13)
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written in the order given by ≤.

Define ωi for 1 ≤ i ≤ d to be the ≤-minimal element of Λi(ω0) (note that this

definition also applies for i = 0).

8.2 The centralizer algebra A

The centralizer algebra A of the module Ω is the set of linear maps Ω → Ω which

commute with the action of G. By Schur’s Lemma, the structure of A is determined

by the decomposition of Ω into irreducible constituents. Suppose Ω decomposes as:

Ω =
r⊕

i=1

miWi (8.2.1)

where the summands Wi (1 ≤ i ≤ r) are distinct irreducible CG-modules and the

multiplicities mi are positive integers. Then the centralizer algebra has structure:

A ∼=
r⊕

i=0

Mmi(C) (8.2.2)

where Mj(C) denotes the algebra of j× j complex matrices.

This correspondence can be exploited in the other direction. Vector subspaces which

correspond to the summands Mmi in (8.2.2) can be used to find the CG-submodules

miWi of Ω. In particular, if mi = 1, the matrix algebra Mmi is just C, and so A has

eigenspaces. An eigenvector v of A must lie in an irreducible CG-submodule of Ω,

and hence we can reconstruct the submodule by letting G act on v (we will see how to

do this in section 8.7).

8.3 Adjacency matrices

Let A : Ω → Ω be an element of the centralizer algebra. Recall that we can think of

linear maps Ω → Ω as n × n matrices where the rows and columns are labelled by
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elements of Ω (and written in the order determined by ≤). Thus A is determined by

the complex numbers Aαβ for α, β ∈ Ω, and the action of the matrix A on an element

v ∈ Ω is given by:

(vA)β = ∑
α∈Ω

vα Aαβ, β ∈ Ω (8.3.1)

The effect of conjugating such a matrix by an element of G is:

(gAg−1)αβ = Aαgβg , α, β ∈ Ω (8.3.2)

and because A commutes with the action of G, its (α, β) components must be constant

for all (α, β) pairs in each orbit Λ. This observation leads us to the following definition.

Definition 8.1 The i-th adjacency matrix Ai is the n× n matrix given by:

(Ai)αβ =


1 if (α, β) ∈ Λi

0 otherwise
(8.3.3)

for α, β ∈ Ω.

Theorem 8.2 The adjacency matrices Ai, 0 ≤ i ≤ d form a (vector space) basis of the central-

izer algebra A .

Proof. The adjacency matrices span A by our observation above, and they are linearly

independent, because the (ω0, ωi) co-ordinate of Aj is 1 if and only if i = j. �

Corollary 8.3 We have:

〈χ, χ〉 =
r

∑
i=1

m2
i = d + 1 (8.3.4)

Proof. Take the character of (8.2.1), and compute the dimension of A from (8.2.2). �
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8.4 The left-regular representation of A

Most of the time, n × n matrices are too large to handle easily. We would like a way

to transfer our calculations to a smaller representation of A . This is provided by the

left-regular representation.

The structure constants of A with respect to the basis A0, A1, . . . Ad are given by the

numbers pk
ij (0 ≤ i, j, k ≤ d) in the following equation:

Ai Aj =
d

∑
k=0

pk
ij Ak, 0 ≤ i, j ≤ d (8.4.1)

Let Bi be the matrix with co-ordinates given by:

(Bi)jk = pk
ij, 0 ≤ j, k ≤ d (8.4.2)

Then if ei is the ith standard basis vector in Cd+1 (0 ≤ i ≤ d), then

(ejBi)k =
d

∑
`=0

(ej)`(Bi)`k (8.4.3)

=
d

∑
`=0

δj`(Bi)`k (8.4.4)

= (Bi)jk (8.4.5)

= pk
ij (8.4.6)

whence:

ejBi =
d

∑
k=0

pk
ijek (8.4.7)

(compare to equation (8.4.1)). So the homomorphism A → Md+1(C) induced by Ai 7→

Bi is the left-regular representation of A . We will denote the image of this map by B.

147



Now, the structure constants pk
ij have a combinatorial description:

(Ai Aj)αβ = ∑
γ∈Ω

(Ai)αγ(Aj)γβ (8.4.8)

= |{γ ∈ Ω : (α, γ) ∈ Λi, (γ, β) ∈ Λj}| (8.4.9)

= |Λi(α) ∩Λj∗(β)| (8.4.10)

Thus:

pk
ij = |Λi(ω0) ∩Λj∗(ωk)| (8.4.11)

These numbers are quite easy to compute if n is not too large, and hence by equa-

tion (8.4.2) we can calculate matrices for the left regular representation of A without

needing to compute the adjacency matrices.

8.5 Eigenvectors of adjacency matrices

Recall from section 8.2 that we are interested in eigenvectors of A . Since the adjacency

matrices Ai span A , it is sufficient to consider simultaneous eigenvectors of the Ai.

In this section, we will see how the eigenvectors of {Ai} are related to those of {Bi}.

This connection is useful, because the matrices Bi are considerably smaller and easier

to calculate with.

The key ingredient is the stretching operator, defined by:

(̂ ) : Cd+1 → Cn

v 7→ v̂ (8.5.1)
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where for v = (v0, v1 . . . vd) we have:

v̂ = ( v0, . . . v0︸ ︷︷ ︸
|Λ0(ω0)| times

, v1, . . . v1︸ ︷︷ ︸
|Λ1(ω0)| times

, · · · vd, . . . vd︸ ︷︷ ︸
|Λd(ω0)| times

) (8.5.2)

Here we use our particular ordering for the basis vectors given in (8.1.12).

We will also need the following preliminary lemma.

Lemma 8.4 For 0 ≤ i, j, k ≤ d we have:

pk
ij = pk∗

j∗i∗ (8.5.3)

Proof. Observe that Ai∗ = A>
i . By taking transposes of equation (8.4.1) we get

Aj∗Ai∗ =
d

∑
k=0

pk
ij Ak∗ (8.5.4)

By relabelling coefficients in equation (8.4.1) we have:

Aj∗Ai∗ =
d

∑
k=0

pk∗
j∗i∗Ak∗ (8.5.5)

The result follows by comparing coefficients of Ak∗ . �

Theorem 8.5 Let v be an eigenvector of Bi with eigenvalue λ for some 0 ≤ i ≤ d. Then v̂∗ is

an eigenvector of Ai∗ with eigenvalue λ.

Proof. Let β ∈ Ω be arbitrary, and suppose (ω0, β) ∈ Λk. Then

(v̂∗Ai∗)β = ∑
α∈Ω

(v̂∗)α(Ai∗)αβ (8.5.6)

= ∑
α∈Ω

(α,β)∈Λi∗

(v̂∗)α (8.5.7)
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=
d

∑
j=0

∑
α∈Λj(ω0)
(α,β)∈Λi∗

(v∗)j (8.5.8)

=
d

∑
j=0

|Λj(ω0) ∩Λi∗∗(β)|vj∗ (8.5.9)

=
d

∑
j=0

pk
ji∗vj∗ (8.5.10)

=
d

∑
j=0

pk∗
ij∗vj∗ (by Lemma 8.4) (8.5.11)

=
d

∑
j=0

pk∗
ij vj (8.5.12)

=
d

∑
j=0

(Bi)jk∗vj (8.5.13)

=λvk∗ (8.5.14)

=(λv̂∗)β (8.5.15)

So v̂∗Ai∗ = λv̂∗, as required. �

In practice we do not worry about the pairing operator ( )∗, as it is often sufficient

to know that we have a vector v̂ which is the eigenvector for some element of A .

Corollary 8.6 If v is an eigenvector of Bi for all 0 ≤ i ≤ d then v̂ is an eigenvector of Ai for

all 0 ≤ i ≤ d.

8.6 Finding eigenvectors of elements of B

Theorem 8.5 reduces the problem of finding eigenvectors of adjacency matrices to that

of finding eigenvectors of elements B of B; that is, (d + 1)× (d + 1) matrices.

In some cases, d is sufficiently small that we can use relatively naı̈ve procedures for

finding eigenvectors. We find and factorise the characteristic polynomial p(x) of B and

then find nullspaces of matrices B− λI for roots λ of p(x).
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Linear and quadratic factors of p(x) occurring with multiplicity 1 are easy to deal

with. We are not currently able to deal with the irreducible factors of higher order.

8.7 Spinning up

We now need to describe a technique which originated with Parker’s Meataxe [36].

Let G a finite group generated by g1, . . . gm. Let k be a field, and V a finite-dimensional

kG-module. Let {w1, w2, . . . wk} be a non-empty linearly independent subset of V and

let W denote the kG-submodule of V generated by these vectors.

Algorithm 8.7 (Classical spinning up) To produce a basis S of W containing the vectors

w1, . . . wk:

1. Let S = (w1, . . . wk) be an expandable list of vectors.

2. For each w in L and each g in the set of generators

(a) Construct v = wg

(b) If v is not in the k-span of L, add v to L

(c) If |S| = dim W, stop: S is the required basis.

3. The space kL is now G-invariant, and S is the required basis.

The particular case we will be most interested in is when we have a single vector w1 in

an irreducible kG-submodule of V. In this cases, S is a basis for W.

Step 2b can be quite costly computationally. The implementation usually requires

a basis in echelon form to be maintained alongside the basis S. As we will see later in

section 8.10, if k = Q and we know dim W, we can approximate this step by reducing

modulo p for some prime p.
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8.8 Splitting in C

We have now given enough theory to present the basic implementation of Split-P.

Algorithm 8.8 (General Split-P ) To split the permutation module Ω:

1. Calculate the suborbits Λi(1) and conjugate the generators of G by a suitable element of

Sn to make the suborbits consist of consecutive integers (so that the order ≤ from (8.1.12)

is just the usual order on Z).

2. Calculate the matrices Bi using equations (8.4.2) and (8.4.11).

3. Find as many linearly independent simultaneous eigenvectors of the matrices Bi as pos-

sible using the techniques of section 8.6. Allow extra vectors to be found by hand if we do

not have a basis.

4. Expand the eigenvectors using the stretching operator (̂ ). By Theorem 8.5 these will give

eigenvectors of the matrices Ai∗ .

5. Given a stretched eigenvector f , spin it up to give a basis f1, . . . ft of a submodule W ⊆

Ω. Here we take advantage of the fact that G is a permutation group, so the action of a

group element on a vector can be calculated by permuting co-ordinates, which is much

faster than matrix multiplication.

6. Find matrices for the action of G on the modules by expressing the vectors fig as linear

combinations of the basis vectors f1, . . . ft for each generator g ∈ G and 1 ≤ i ≤ t. This

is essentially a Gaussian elimination problem.

At step 3 we may require some of the vectors to be found by hand: we do not need

all the vectors to be simultaneous eigenvectors, but not all eigenvectors of a particular

matrix Bi will be useful. It is always helpful to know what the decomposition of Ω will
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look like: for this, we use the character table of G and the permutation character of Ω

and take scalar products.

Note that some of the time we will not be interested in all the irreducible submod-

ules of Ω: some of them will be more than 250-dimensional. Thus we also needed some

way of abandoning step 5 if the module was going to be too big. This is because we do

not know of a definite way of telling in advance which irreducible submodule will be

produced by a given eigenvector, although it is possible, for example, to tell from the

eigenvectors which modules will occur in complex conjugate pairs.

8.9 Computational problems with the field Q

We now change track slightly, and explain why Algorithm 8.8 needed to be improved.

A phenomenon which frequently occurs in computational algebra is that of expres-

sion swell; that is, in exact computations, the numbers and expressions grow dramati-

cally in size as a calculation progresses, even if the final answer does not involve very

large numbers. This often causes a problem when performing calculations in Q. Us-

ing the ‘obvious’ algorithms, the cost of adding or multiplying two rational numbers

where the numerators and denominators have k digits is O(k2),1 so the cost of a sin-

gle field operation increases significantly as the numbers grow larger in size. This

can cause the entire calculation (which may have a reasonable complexity under the

assumption that field operations are O(1)) to become extremely slow and memory-

intensive.

Finite fields on the other hand do not suffer from this problem. In GAP, finite fields

are implemented with a Zech logarithm representation. Non-zero elements x ∈ GF(q)

1Asymptotically better behaviour is possible. Adding rational numbers requires the ability to
multiply, add and take the gcd of arbitrary integers. Multiplying rational numbers requires multi-
plying and taking the gcd. Adding integers cannot be done faster than O(k), but there exist algo-
rithms for gcd which are O(k2/ log k) [12, 49] and an algorithm for multiplying two integers which
is O(k log k log log k) [44].
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are represented by an integer 0 ≤ i < q − 1 called the logarithm of x. The logarithm i

satisfies x = ωi (where ω is a fixed primitive element of GF(q)). The zero element is

represented by ω−∞. We precompute a table (the successor table) which associates each

logarithm i with another logarithm j such that:

ω j = 1 + ωi (8.9.1)

For non-zero elements, we have:

ωiω j = ωi+j (8.9.2)

ωi + ω j = ωi(1 + ω j−i) (8.9.3)

Thus all field operations are cheap (and in particular, O(1)) involving only addition

and subtraction of (small) integers, taking residues modulo q− 1 and looking up values

in the successor table.

Gaussian elimination gives a typical example of the difference between the two

types of behaviour. Traditional complexity analysis shows that Gaussian elimination

is O(n3) under the assumption that field operations are O(1). However, we have seen

that this assumption is false in Q, and the real complexity is much worse than O(n3).

Table 8.1 shows the time taken by GAP to find the inverse of a random n × n matrix

with entries in [−20, 20] ⊂ Q and also in several finite fields of prime order. If Gaussian

elimination were O(n3) for Q, we would expect the time for n = 100 to be roughly 8

times larger than the time for n = 50. In fact it is 20 times larger. The timings for the

finite fields are consistent with the expected O(n3) complexity. For large matrices, the

timings are also significantly better in the finite field case. The cost of a field operation

is (for our purposes) independent of the size of the finite field once the successor table

has been calculated.
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n Time (seconds) to invert matrix with entries in
[−20, 20] ∩Z GF(11) GF(101) GF(1009) GF(10007)

30 0.87 0.01 0.01 0.01 0.01
40 3.0 0.01 0.02 0.02 0.02
50 7.6 0.03 0.02 0.02 0.03
60 16 0.04 0.05 0.04 0.04
70 32 0.06 0.07 0.07 0.08
80 58 0.10 0.11 0.10 0.10
90 96 0.14 0.15 0.15 0.15

100 152 0.18 0.20 0.21 0.21

Table 8.1: Cost of Gaussian elimination

Considerations of expression swell apply to storage costs as well as computation

times. With large matrices, computing the inverse may cause the computer to run out

of memory even though the inverse itself can easily fit into memory.

8.10 Reduction modulo p

The significantly faster performance of GAP for finite fields suggests that we should

consider whether any of the calculations in Algorithm 8.8 can be performed in a finite

field.

The slow steps are steps 5 and 6. The speed of step 5 can be significantly increased

by the following simple trick:

Algorithm 8.9 (Fast spin up) To spin up a vector v to a submodule W of Ω:

1. Choose a prime p.

2. Reduce the vector v modulo p to v.

3. Let S = {v}.

4. Spin up the vector v. Whenever a new vector vg gets added to the modulo p basis, add

the equivalent complex vector vg to the set S. (The new complex vector vg is linearly
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independent of the rest of S, because otherwise there would be a linear dependence among

the modulo p vectors.)

5. If the size of S is smaller than dim(W) then choose a different value of p and go back to

step 2. Otherwise S is a basis of W. 2

Note that the basis we end up with may be different to that found by Algorithm 8.7

(although for most values of the prime p, the bases will be the same).

8.11 Rational reconstruction

Rational reconstruction uses the observation that finite field operations are much more

efficient than rational arithmetic to speed up calculations in Q. Let C denote a cal-

culation which we wish to perform in Q. For a well-chosen prime p, we transfer the

calculation to an analogous calculation Cp over GF(p) by reducing modulo p. Because

reducing modulo p involves a loss of information, we usually have to do this for sev-

eral primes. We then merge the results of all the Cp calculations to give an answer for

the original calculation C, and check that it is correct. If it is not correct, we try again

with more primes. The process of combining the results of the Cp to give a single result

for C is called rational reconstruction.

There are definite speed gains from dealing with finite field operations rather than

rational field operations, and performing the same calculation for many different primes

is still usually faster than performing the calculation once for the rationals. Even taking

into account the time taken to make modulo p reductions and perform the reconstruc-

tion, there is often still an impressive benefit to working this way.

Moreover, working with many finite fields means that there is an easy way to ar-

2If we do not know dim(W) at this stage, then we assume S is a basis of W. It is certainly a set of
linearly independent vectors in W. In the unlikely event that our assumption is wrong and we do not
have a complete basis, we will eventually discover this when we attempt to produce our generating
matrices for the representation, so any ‘guesses’ made at this stage will be justified by later steps.
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range the calculation so that it can be run on parallel processors. We never needed to

make use of this facility, but when dealing with very large representations it might be

crucial.

8.12 Reconstructing scalars

Before we consider rational reconstruction in its general framework, we will consider

the simpler problem of reconstructing a single scalar.

8.12.1 Solution sets

The following definitions are non-standard.

Definition 8.10 For a rational number x, we can write x = r/s in a unique way with s > 0

and (r, s) = 1. We define num(x) = r, denom(x) = s.

Definition 8.11 For a rational number x, we say a prime p is good for x if p does not divide

denom(x).

Let x be a rational number and set r = num(x), s = denom(x) so that x = r/s

in lowest terms. Let P be a finite set of primes good for x. Then x can be considered

modulo p for each p ∈ P, because [s] ∈ Zp is an invertible element of Zp. Let the

residue of x modulo p be denoted mp, so that we have:

x ≡ mp (mod p) (8.12.1)

for p ∈ P. We consider (8.12.1) as a set of |P| simultaneous congruences for x. By the

Chinese Remainder Theorem, this is equivalent to a single congruence:

x ≡ m (mod ∏
p∈P

p) (8.12.2)
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for some m (which is easy to compute) satisfying 0 ≤ m < ∏p∈P p.

We now consider (8.12.2) as a congruence in an unknown quantity y:

y ≡ m (mod ∏
p∈P

p) (8.12.3)

Let XP denote the set of solutions y ∈ Q to (8.12.3) for a fixed finite set P of primes

good for x. We call XP the P-solution set for x.

Lemma 8.12 (Properties of solution sets) Let P, Q be finite sets of primes good for x. Then

we have:

• For all P, x ∈ XP.

• If y 6= x then y 6∈ XR for some set of primes R good for x.

• XP ( XQ if P ) Q.

• XP is an infinite set.

As a consequence of Lemma 8.12, we will be able to reconstruct x correctly if we take

a large enough set of primes good for x.

8.12.2 Reconstruction using the Extended Euclidean Algorithm

The basic technique for reconstructing x is:

1. Take a small set of primes P. Assume that each prime in P is good for x.

2. Calculate the ‘best’ element xP in XP. If we discover a prime p ∈ P that is not

good for x, remove it and try again.

3. Check whether xP = x. If not, enlarge the set P and go back to step 2.
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This looks circular, as it appears that we need to know x before we can calculate it.

However, x is usually defined by some property that it satisfies, so we can verify in-

stead that xP satisfies the condition that x is supposed to satisfy.

The rest of this section will be devoted to step 2 of the above procedure. Recall that

we are trying to solve the congruence y ≡ m (mod N) where N = ∏p∈P p.

We apply the Extended Euclidean Algorithm [54] to N and m as follows. Set n0 =

N, n1 = m, and perform the Euclid’s algorithm for calculating gcd(N, m):

n0 = q1n1 + n2

n1 = q2n2 + n3

...
...

...

nr−1 = qrnr + nr+1

nr = qr+1nr+1 + 0

For each 2 ≤ i ≤ r + 1 we have 0 < nr < nr−1. We can perform backward substitution

to get equations of the form:

ni = uin0 + vin1

Note that we can find the coefficients ui, vi without having to do back-substitution. We

set u0 = 1, u1 = 0, v0 = 0, v1 = 1 and using the iteration:

ui+2 = ui − qi+1ui+1

vi+2 = vi − qi+1vi+1
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Euclid’s algorithm Back-substitution
4199 = 4.900 + 599
900 = 1.599 + 301
599 = 1.301 + 298
301 = 1.298 + 3
298 = 99.3 + 1
3 = 3.1 + 0

900 = 0.N + m
599 = N − 4.m
301 = −N + 5.m
298 = 2.N − 9.m
3 = −3.N + 14.m
1 = 299.N − 1395.m

Table 8.2: Extended Euclidean Algorithm for N = 4199, m = 900

Then providing N and vi are coprime, we get:

m ≡ ni/vi (mod N)

and so ni/vi ∈ XP. This method gives several elements of XP, and our choice for the

rational reconstruction of x is that which minimises ht(y), defined by:

ht(y) = max(|num(y)| , |denom(y)|) (8.12.4)

Example 8.13 Let P = {13, 17, 19}, N = 13.17.19 = 4199, m = 900. Table 8.2 shows the

results of the Extended Euclidean Algorithm. We see the following elements of the solution set

XP:

900,−599/4, 301/5,−298/9, 3/14,−1/1395

The one with the smallest height is xP = 3/14.

Remark Using a more complicated algorithm, rational reconstruction can be achieved

in O(k log2 k log log k) time, where k is the number of binary digits in N [56]. The

algorithm described above is O(k2).
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8.13 Reconstruction of quadratic elements

The principles involved in rational reconstruction can apply to infinite fields other than

Q. We extended the method to apply to fields Q(α) such that α satisfies a quadratic

minimal polynomial f . In this case, we can write α = q1 + q2
√

β with q1, q2 ∈ Q and

β ∈ Z.

8.13.1 Non-splitting primes

Definition 8.14 We say a prime p splits f if the polynomial f reduced modulo p is reducible

in GF(p).

The primes which split f are those in which β is a quadratic residue modulo p. Thus

it is easy to determine whether a given prime splits f by using the law of Quadratic

Reciprocity.

Let p be a prime which does not split f . Then the field GF(p)[X]/( f (X)) is isomor-

phic to GF(p2). Any element x ∈ Q(α) can be written in the form t/u + αv/w where

t, u, v, w ∈ Z. A prime p is good for x if p does not divide u or w. In this case, we can

define x modulo p to be the element:

x̄ = t̄ū−1 + Xv̄w̄−1 ∈ GF(p)[X]/( f (X)) (8.13.1)

8.13.2 Reconstruction

Let x = r + αs ∈ Q[α] be an element which we are interested in reconstructing. Given a

set of primes P which are good for x and which do not split f , define xp to be x modulo

p for each p ∈ P. Suppose we can calculate xp as an element of GF(p2). Because p does

not split f , each xp can be written uniquely in the form rp + αpsp for rp, sp ∈ GF(p),

where αp is one of the roots of f in GF(p2). Using rational reconstruction, we can
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reconstruct r, s ∈ Q separately using the unique decomposition of xp. Hence we can

reconstruct x ∈ Q[α].

8.13.3 Problems with irrational reconstruction

One drawback of this technique is that because we have to restrict to fields which do

not split f , and each field has prime squared order, we have to start dealing with much

larger finite fields than with the rational case. This is a particular problem because

GAP does not have support for arbitrarily large finite fields.

The situation only gets worse with field extensions which are of higher degree than

quadratic. For this reason, we did not attempt this method with cubic or higher degree

field extensions.

8.14 Reconstruction of an action on a submodule

We have found rational reconstruction to be particularly useful in the following situa-

tion.

Let G be a permutation group acting on a set Ω and let Ω be the the corresponding

CG-module. We find a vector w(1) which generates a CG-submodule W of Ω. By spin-

ning up, we can find a basis w(1), w(2) . . . w(n) of W. We wish to find the representation

of G corresponding to this basis of W. In other words, for each generator g of G, we

wish to find a n × n matrix gW which represents the action of g on W with respect to

the chosen basis. We have:

w(i)g =
n

∑
j=1

w(j)gW
ij (8.14.1)

for 1 ≤ i ≤ n, so we wish to find the scalars gW
ij for 1 ≤ i, j ≤ n. Thus calculating gW

involves decomposing vectors v ∈ W into linear combinations of basis elements.
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8.14.1 Decomposition into linear combinations of basis elements

Suppose we wish to decompose v ∈ W into a linear combination:

v =
n

∑
i=1

λiw(i) (8.14.2)

For simplicity, we assume that the basis vectors w(1), . . . w(n) are in echelon form. If

they are not, then they are converted before our calculations begin and our final de-

composition is adjusted accordingly. If the basis vectors are in echelon form, then the

decomposition is given by the following iteration:

λi =
v(i−1)

i

w(i)
i

(8.14.3)

v(i) = v(i−1) − λiw(i) (8.14.4)

where 1 ≤ i ≤ n and v(0) = v. The assumption v ∈ W implies that v(n) = 0.

8.14.2 Complexity analysis

Under the assumption that field operations are O(1), turning the basis into echelon

form is O(n3), and calculating each (λi, v(i)) pair in the iteration above is O(n). Hence

decomposing a single vector given a basis in echelon form is O(n2), and calculating

the matrix gW for a single generator g is O(n3).

Unfortunately, the necessity of dealing with a basis in echelon form means that

the sizes of the entries can increase dramatically, so in Q, we cannot assume that field

operations are O(1).
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8.14.3 Applying rational reconstruction

This procedure is a good candidate for applying rational reconstruction. Finding ech-

elon forms and applying the vector-decomposition iteration are genuinely O(n3) and

O(n2) when working with finite fields.

Given a prime p, we reduce our basis vectors modulo p to give a basis w(1)
p , w(2)

p . . . w(n)
p

of a module Wp over GF(p). (If any of the denominators of the original basis vectors

are divisible by p, we multiply by a scalar so that the denominators disappear.) We

similarly reduce the vector v ∈ W modulo p to give vp. We then perform the decom-

position of vp to give an expression:

vp =
k

∑
i=1

λi,pw(i)
p (8.14.5)

We reconstruct λi from the various λi,p for p prime. We can test whether our calcu-

lated value is correct by verifying that (8.14.2) holds. There is a delicate trade-off here,

as the more primes are chosen, the longer it takes to give an estimate for λi but the

more likely it is that the estimate is correct. Moreover, we do not want to perform the

accuracy check too often, because it involves the slower arithmetic over Q and because

we cannot check a particular value λi until we have estimates for all λk (1 ≤ k ≤ n).

We usually started the reconstruction with 10 primes, adding 5 primes each time if the

accuracy check failed.

Note that reconstructing many scalars at once can be easier than reconstructing a

single scalar, as we have some extra ‘hints’ as to what the denominator is likely to

be. If large denominators are involved in the answer, it is usually the case that every

non-integer entry has the same large denominator (possibly with some small factor re-

moved or added). This can give us an idea as to whether our reconstruction is sensible

without actually performing the check.
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Example 8.15 The group O+
8 (2) has a 175-dimensional representation which is a constituent

of a permutation representation on 960 points. Finding the 175-dimensional submodule of Ω

is straightforward. To find the 175× 175 matrices generating this representation, we tried:

• rational reconstruction with 10 primes p, 70 ≤ p ≤ 110; and

• Gaussian elimination in Q.

Using Gaussian elimination took 2041 seconds, whereas the reconstruction method took 142

seconds including the time to check the action. Thus reconstruction was about 14 times quicker

than Gaussian elimination in Q.

8.15 Finding suitable permutation representations

Usually G has several permutation representations that are useful for finding matrix

representations. In this section, we will discuss how to search for suitable permutation

representations.

Let H be a subgroup of G. Then G acts on the (right) cosets Hg of H by right-

multiplication, which gives rise to a permutation representation of G:

G → Sym(G : H) (8.15.1)

Under this homomorphism, H gets mapped to the stabilizer of an element. Thus there

is a natural correspondence between subgroups of a group and its permutation rep-

resentations. Permutation representations of G are equivalent if there is a bijection

between the underlying sets which preserves the action. In terms of this action, con-

jugate subgroups of G give rise to equivalent permutation representations, and vice

versa.

If the full subgroup lattice of G (or the set of conjugacy classes of subgroups of G)
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is available, then all the permutation representations of G can be computed by using

this action of G.

Often we do not have the set of conjugacy classes of subgroups, and typically, this

is expensive to compute. However, we are usually not interested in the set of all per-

mutation representations, because most of them are far too large to deal with anyway.

To find the smaller representations, we can split the problem into two parts:

• Find the set of (small-degree) permutation characters of G.

• Find a subgroup H of G whose permutation representation gives rise to that per-

mutation character. (In particular, we know the order of H.)

Definition 8.16 (Burnside [8]) A table of marks for a group G is a matrix M whose rows

and columns are labelled by conjugacy classes of subgroups of G, and given subgroups H, K of

G in conjugacy classes HG, KG respectively, the (HG, KG)-entry of M is the number of fixed

points of K in the transitive action of G on the cosets of H.

Tables of marks have been computed for many simple groups, and are available as a

data library in GAP. If we are fortunate enough to have a table of marks computed

for G, then the first part has been effectively solved already, as it is easy to extract a

complete list of permutation characters from a table of marks. Otherwise, we can use

the methods of Breuer and Pfeiffer [7] to find ‘possible’ permutation characters. These

are characters of G which obey a set of necessary conditions for a character to be a

permutation character, and their methods have been implemented as GAP routines.

Unfortunately, there is no known easily-computed sufficient condition.

Once we have the characters, it is usually straightforward to find a corresponding

subgroup. In many cases, we know the maximal subgroups of G, and that gives a

fair indication of what the structure of H has to be (or at least, where we should be

looking).
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8.16 Example session with Split-P

The group U3(3) has a permutation representation on 36 points given by the action on

the right cosets of L2(7). The corresponding permutation module decomposes as

1 + 7b + 7c + 21 (8.16.1)

We will show how Split-P can be used to decompose this module.

Firstly, we find a subgroup L2(7) = 〈a, b〉 by random searching and find the appro-

priate coset action:

gap> G := PSU(3,3);
gap> repeat t := Random(G); until Order(t) mod 2 = 0; a := tˆ(Order(t)/2);;
gap> repeat t := Random(G); until Order(t) mod 3 = 0; b := tˆ(Order(t)/3);;
gap> repeat b := bˆRandom(G); until Index(G, Group(a,b)) = 36;
gap> G2 := Image(FactorCosetAction(G, Group(a,b)));
Group([ (1,13,19,7,4,22,10,16)(2,15,20,9,5,24,11,18)(3,14,21,8,6,23,12,17)(25,

33,30,34)(26,32,28,35)(27,31,29,36), (1,7,10,35,34,36,32,22)(2,6,3,15,27,
20,18,30)(4,24,14,25)(5,16,29,8)(9,17,26,23,11,31,12,33)(13,28,19,21) ])

gap> OrbitLengths(G2);
[ 36 ]

We then ask Split-P to find the intersection matrices for this representation:

gap> M := IntersectionMatrices(G2);
rec(

group := Group([ (1,31,10,14,16,8,4,28)(2,32,21,34,30,18,13,17)(3,7,25,36,
29,22,12,9)(5,20,27,35)(6,11,23,33)(15,24,26,19),

(1,14,4,33,27,24,11,8)(2,36,9,32,26,21,17,20)(3,35,16,18)(5,34,12,6,29,
13,19,22)(7,31,23,10)(15,25,30,28) ]),

matrices := [ [ [ 1, 0, 0, 0 ], [ 0, 1, 0, 0 ], [ 0, 0, 1, 0 ],
[ 0, 0, 0, 1 ] ],

[ [ 0, 1, 0, 0 ], [ 0, 0, 4, 1 ], [ 7, 0, 0, 2 ], [ 0, 6, 3, 4 ] ],
[ [ 0, 0, 1, 0 ], [ 7, 0, 0, 2 ], [ 0, 4, 0, 1 ], [ 0, 3, 6, 4 ] ],
[ [ 0, 0, 0, 1 ], [ 0, 6, 3, 4 ], [ 0, 3, 6, 4 ], [ 21, 12, 12, 12 ] ] ]

, orbitsizes := [ 1, 7, 7, 21 ], numpoints := 36,
pairing := [ 1, 3, 2, 4 ] )

Note that Split-P conjugates the original group so that the suborbits consist of con-

secutive integers. We then ask it to find the simultaneous eigenvectors over Q. One of

these will give the 21-dimensional module.
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gap> ev := FindSimultaneousEigenvectors(M.matrices);
[ [ 1, 1/7, 1/7, -1/7 ], [ 1, 1, 1, 1 ] ]

The eigenvector we want is plainly the first one. Accordingly we ask Split-P for the

matrices on this submodule.

gap> M1 := PermSubmoduleMatsRational(ev[1], M, 0, 0, [5..50]);
Finding CG-module
Prime p_1 = 11
42/42 matrix rows reconstructed, lcd = 1
rec(

mats := [ [ [ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
],

[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 ],
[ 1, 0, 0, -1, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0 ]

,
[ 0, -1, 0, -1, 1, 0, 0, 1, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ]

, [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
],

[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, -1, -1, 0, 0, 0, 1, 1, 1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ]

, [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
],

[ -1, 0, 1, 1, -1, 0, 0, -1, -1, 0, 0, 0, -1, -1, 0, 1, -1, 1, -1,
-1, 0 ],

[ 0, 0, 1, 1, 0, 0, -1, -1, -1, -1, 0, 0, -1, -1, 0, 1, -1, 0, -1,
0, 0 ] ],

[ [ 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 ],
[ 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 ],
[ 0, -1, 0, -1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0 ]

, [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0
],

[ 0, 0, -1, -1, 0, 0, 0, 1, 1, 1, -1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
,

[ 1, 0, 0, -1, 1, 0, -1, 0, 0, -1, 0, 1, 0, 0, 1, 0, 0, -1, 1, 1,
-1 ],

[ 0, -1, 0, -1, 1, 0, 0, 1, 0, 0, -1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0 ]
, [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0
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],
[ 0, 1, 0, 1, -1, -1, 0, -1, -1, -1, 1, 0, -1, 0, 0, 0, -1, 0, 0,

0, -1 ],
[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0 ],
[ 0, 1, -1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, -1

] ] ], lcd := 1 )

It has found two 21× 21 matrices giving the irreducible representation we need. To

find the 7-dimensional representations, we must look for irrational eigenvectors of the

intersection matrices.

gap> Factors(CharacteristicPolynomial(M.matrices[3]));
[ x_1-7, x_1-1, x_1ˆ2+4 * x_1+13 ]

The solutions of the quadratic x2 + 4x + 13 are x = −2± 3
√
−1. Thus we extend

the field to include
√
−1 and then find another simultaneous eigenvector:

gap> F := AlgebraicExtension(Rationals, xˆ2 + 1);;
gap> u := RootOfDefiningPolynomial(F);;
gap> N := NullspaceMat(M.matrices[3] - (-2+3 * u) * IdentityMat(4));
[ [ !7, (-2+3 * a), (-2-3 * a), !1 ] ]

We then use this eigenvector to give one of the 7-dimensional representations.

gap> M2 := PermSubmoduleMatsQuadratic(N[1], M, F, E(4), 0);
Prime p = 31
Spinning up CG-module
skip = [ 6, 7, 8, 10, 11, 12, 13, 14 ]
Calculating matrix entries for generator 1
Calculating matrix entries for generator 2
14/14 matrix rows reconstructed, lcd = 1
rec(

mats := [ [ [ 0, 1, 0, 0, 0, 0, 0 ], [ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 0, 0, 0,
0, 1, 0 ], [ 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 0, 0, 1 ],

[ 0, E(4), -1+E(4), 0, -1, 0, E(4) ],
[ -1, 0, 0, -1-E(4), 0, -E(4), -E(4) ] ],

[ [ 0, 0, 1, 0, 0, 0, 0 ], [ 0, 0, 0, 0, 1, 0, 0 ],
[ -E(4), 0, 0, 1, 0, E(4), 0 ], [ 0, -E(4), 0, E(4), 1, 0, 0 ],
[ 0, 0, 0, 1, 0, 0, 0 ], [ 0, 1, 1, -1, E(4), 0, -E(4) ],
[ -1, 0, 0, -1-2 * E(4), -1, 1-E(4), 0 ] ] ], lcd := 1 )

Here E(4) is the GAP notation for
√
−1. If we wanted the other 7-dimensional

representation, we would have used -E(4) instead.
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If we wanted to find the direct sum of 7b and 7c (writable over Q), we could have

taken a vector in the 2-dimensional nullspace of m2 + 4m + 13 (where m is the third

intersection matrix) and used the function PermSubmoduleMatsRational .
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Chapter 9

The 231-dimensional representations of

M24

The group G = M24 has two complex-conjugate irreducible 231-dimensional represen-

tations. In this chapter, we will construct these representations.

9.1 Permutation and tensor product depths

We define the permutation depth of χ to be the degree of the smallest permutation rep-

resentation of G containing χ as a constituent:

π-depth(χ) = min{|G : H| : H < G, 〈χ, 1G
H〉 > 0} (9.1.1)

This quantity is finite, as 1G
{1} is the regular representation which contains every irre-

ducible character of G. The permutation depth of χ describes roughly how difficult it

is to construct the representation ρ from a permutation representation of G.

Similarly, the tensor product depth of χ describes roughly how difficult it is to con-

struct the representation from tensor products of other representations:

⊗-depth(χ) = min{χi ⊗ χj(1) : χi, χj ∈ Irr(G) \ χGal, 〈χ, χi ⊗ χj〉 > 0} (9.1.2)
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χ χ(1) π-depth(χ) ⊗-depth(χ) Constituent of
χ2 23 24 46575 χ3 ⊗ χ16
χ3 45 40320 23805 χ2 ⊗ χ15
χ4 45 40320 23805 χ2 ⊗ χ16
χ5 231 255024 122199 χ2 ⊗ χ23
χ6 231 255024 122199 χ2 ⊗ χ23
χ7 252 276 529 χ2 ⊗ χ2
χ8 253 552 529 χ2 ⊗ χ2
χ9 483 759 5796 χ2 ⊗ χ7
χ10 770 21252 40733 χ2 ⊗ χ18
χ11 770 21252 40733 χ2 ⊗ χ18
χ12 990 159390 2025 χ4 ⊗ χ4
χ13 990 159390 2025 χ3 ⊗ χ3
χ14 1035 1288 2025 χ3 ⊗ χ3
χ15 1035 255024 1035 χ2 ⊗ χ3
χ16 1035 255024 1035 χ2 ⊗ χ4
χ17 1265 2024 5796 χ2 ⊗ χ7
χ18 1771 3542 5819 χ2 ⊗ χ8
χ19 2024 3795 2025 χ3 ⊗ χ4
χ20 2277 7590 11109 χ2 ⊗ χ9
χ21 3312 10626 11109 χ2 ⊗ χ9
χ22 3520 6072 5796 χ2 ⊗ χ7
χ23 5313 17710 5313 χ2 ⊗ χ5
χ24 5544 21252 11340 χ3 ⊗ χ7
χ25 5796 10626 11340 χ3 ⊗ χ7
χ26 10395 30360 10395 χ3 ⊗ χ5

Table 9.1: Permutation and tensor product depths for M24

where χGal is the set of Galois conjugates of χ (we exclude these to avoid ‘self-referential’

constructions for ρ). This quantity is finite, because if χ0 is a faithful character, then ev-

ery irreducible character of G is a constituent of χn
0 for some n ∈ N.

Let ρ be one of the 231-dimensional irreducible representations of M24 and let χ be

its character. We have that:

π-depth(χ) = 255024, ⊗-depth(χ) = 122199
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which are both rather high. (In fact, Table 9.1 shows that in some sense ρ is the hardest

representation of M24 to construct by the usual methods.)

9.2 The amalgam

Instead of trying to decompose a tensor product or permutation representation, we

decided to construct ρ by amalgamation. We used the following amalgam:

G = M24

mmmmmmmmmmmm

QQQQQQQQQQQQ

H = M22 : 2

QQQQQQQQQQQQ K = M21 : S3

mmmmmmmmmmmm

L = M21 : 22

In the natural representation on 24 points, the group M22 : 2 is the stabilizer of a 2-set,

M21 : S3 is the stabilizer of a 3-set, and M21 : 22 is the stabilizer of a 3-set and one of the

points therein. The character tables in GAP were used to see how the representation ρ

restricts to the subgroups H, K and L:

231

pppppppppppp

QQQQQQQQQQQQQQ

231

NNNNNNNNNNN 105⊕ 126

mmmmmmmmmmmmm

35⊕ 70⊕ 126
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9.3 The restrictions of ρ

9.3.1 Constructing ρ|H

The 231-dimensional representation of H = M22 : 2 is relatively easy to construct, as

it is a constituent of a permutation representation of H on 924 points. We must make

sure that we take the +-type representation rather than the −-type one, although it is

easy to convert between the two if we find the wrong one (both standard generators of

M22 : 2 are outer elements, so we need to take the negatives of both the generators).

9.3.2 Constructing ρ|K

The 105-dimensional representation of K = M21 : S3 can be easily constructed from one

of the permutation representations on 168 points. Again, we must make sure that we

take the +-type rather than the −-type.

The 126-dimensional representation of K is harder. It is a constituent of a permuta-

tion representation on 960 points, but since we need to work in the quadratic extension

Q(
√
−15), decomposing this representation is difficult and leads to very complicated

matrices.

We obtained better matrices by considering the subgroup K1 = 24 : (3×A5) : 2 of

index 21 in K. This has a 6-dimensional representation (actually a representation of

K1 = (3×A5) : 2) which we can induce to the required 126-dimensional representation

of K. Finding the 6-dimensional representation of K1 is straightforward; we found it

from a permutation representation of K1.

Note that there are actually two complex-conjugate 126-dimensional representa-

tions. The choice of which one to use determines which 231-dimensional representa-

tion of M24 we obtain.
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9.4 Finding the intersection L

Words for standard generators of the subgroup LH
∼= L = M21 : 2 in terms of standard

generators c, d of H can be found in the Web Atlas [57]:

g1 = c (9.4.1)

h1 = ((cddcd)−2)ddcdcd (9.4.2)

(We have taken the inverse of the second generator for consistency with our calcula-

tions in G later.)

Words for standard generators of the subgroup LK
∼= L in terms of standard gener-

ators e, f of K were found by the methods described in my MPhil thesis [34]:

g2 = e (9.4.3)

h2 = ((e f e f e f e f f )3)e f e f f (9.4.4)

9.5 Standard basis for standard generators of L

Let g, h denote standard generators of the 231-dimensional representation of L under

consideration (decomposing as 35⊕ 70⊕ 126). Define:

M1 = g + h + gh3 − 1 (9.5.1)

M2 = g + h + gh2 (9.5.2)

M3 = (gh)(ghh)4
gh + ghghhgh + (ghghhgh)−1 + 1 (9.5.3)

These matrices have nullity 1. Let vi (1 ≤ i ≤ 3) denote arbitrary non-zero vectors in

their respective nullspaces, and let Vi denote the vector subspace of V ∼= C231 obtained
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by spinning up vi. Then:

V = V1 ⊕V2 ⊕V3 (9.5.4)

and the spaces Vi have dimensions 35, 70 and 126 respectively. This defines a standard

basis of V. With respect to this basis, elements of L are in block-diagonal form.

Let S1 be the change of basis matrix with respect to g1 and h1, and define:

c′ = S1cS−1
1 , d′ = S1dS−1

1 (9.5.5)

Similarly, let S2 be the change of basis matrix matrix with respect to g2 and h2, and

define:

e′ = S2eS−1
2 , f ′ = S2 f S−1

2 (9.5.6)

9.6 Calculations in G

We define the following groups:

G0 = 〈a0, b0〉 ∼= M24

H0 = 〈c0, d0〉 ∼= M22 : 2

K0 = 〈e0, f0〉 ∼= M21 : S3

L0 = K0 ∩ H0 = 〈g0, h0〉 ∼= M21 : 2
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where:

a0 = (1, 7)(2, 17)(3, 4)(5, 13)(6, 9)(8, 15)(10, 19)(11, 18)(12, 21)(14, 16)(20, 24)(22, 23)

b0 = (1, 21, 14)(2, 9, 15)(3, 4, 6)(5, 18, 10)(13, 17, 16)(19, 24, 23)

c0 = (1, 2)(5, 24)(6, 16)(7, 9)(12, 13)(14, 18)(15, 23)(21, 22)

d0 = (1, 2)(3, 20, 23, 16)(4, 18)(5, 19, 22, 8)(6, 9, 12, 24)(7, 21)(10, 17, 13, 14)(11, 15)

e0 = c0

f0 = (1, 3, 2)(4, 5, 21)(6, 22, 17)(7, 18, 8)(9, 16, 13)(10, 19, 24)(11, 15, 20)(12, 14, 23)

g0 = c0

h0 = (4, 12, 14, 19, 11)(5, 6, 8, 24, 23)(9, 15, 17, 18, 22)(10, 20, 21, 16, 13)

These permutations were chosen so that g0 and h0 satisfy the equations given for gi

and hi in section 9.4 above. This means that we must have the correct amalgam.

9.7 Completing the amalgam

Let x, y, z be indeterminates, and let:

X = diag(x, x, . . . x︸ ︷︷ ︸
35 times

, y, y, . . . y︸ ︷︷ ︸
70 times

, z, z, . . . z︸ ︷︷ ︸
126 times

) (9.7.1)

Any element commuting with the subgroup L is of this form, so let e′′ = Xe′X−1,

f ′′ = X f ′X−1. We wish to find x, y and z such that:

〈c′, d′, e′′, f ′′〉 ∼= M24 (9.7.2)

We may pick any value for z, because this part commutes with e and f too. Without

loss of generality, we pick z = 1. Similarly, conjugating by a scalar has no effect, so we
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may assume without loss of generality that y = 1. So we only have one unknown left

to determine.

By observing cycle shapes, we see that d0 f0 is an 8A-element, so that in the 231-

dimensional representation d f should have trace −1. This yields the equation:

Tr(d f ′) = (−3
4
− 1

8
η) +

15
368

x−1 = −1 (9.7.3)

where η = (1 +
√
−15)/2 = b15. The solution is:

x = − 3
92

(η + 3) (9.7.4)

9.8 Finding standard generators

We currently have four 231 × 231 matrices c′, d′, e′′ and f ′′ which together generate

M24. We wish to find standard generators a and b. Working in this representation

is rather unwieldy, so we switch our calculations to the permutations on 24 points

defined above. The words we found are:

a = (c′d′2c′d′)5; (9.8.1)

b = ((c′d′2)2)e′′ f ′′e′′ f ′′e′′ f ′′2e′′ f ′′ ; (9.8.2)

The matrix M = a + b + b(ab2)2 − 1 has nullity 1 and can be used to reseed this

representation.
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Chapter 10

Miscellaneous techniques

While most of the representations in the shortened Hiss-Malle list can be found using

our Split-P system or by using the generic constructions given in Chapter 7, there are

some representations where other techniques were useful. In this chapter, we describe

some of these techniques.

10.1 Elementary techniques

10.1.1 Restriction

If ρ : G → GLn(C) is a representation of G, then for H ≤ G, ρ|H is a representation of

H. In some cases, we can find a useful irreducible representation of H in this manner.

Example 10.1 Let H = 2F4(2)′, the Tits group. This group is contained in the group G =

2.F4(2), and G has a 52-dimensional representation described in the ATLAS. By restricting to

H, we get the reducible representation 26ab, which can be decomposed to get two irreducibles

26a and 26b.

Example 10.2 The 45-dimensional and 231-dimensional representations of M23 can be found

by restricting representations of M24.
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Example 10.3 We have seen in section 7.1 that the representations of An can be found by

restricting representations of Sn (and splitting, in the case of a representation indexed by a

self-dual partition).

If no splitting is involved, the computational work involved here is in finding stan-

dard generators of H as words in the standard generators of G. This is straightforward

providing G has a ‘nice’ representation in which to work.

10.1.2 Induction

If σ : H → GLn(C) is a representation and H is a subgroup of G with index r, then σ

can be induced to a representation ρ : G → GLrn(C). If n is fairly small (say 1 or 2), then

the induced representation is sometimes useful for our purposes.

Example 10.4 The group G = L3(5) has a subgroup H = 52 : GL2(5) with index 31. The

subgroup H has 10 equivalence classes of 4-dimensional representations (note that the normal

subgroup 52 is always in the kernel of these representations), and these can be induced to give

the 10 equivalence classes of 124-dimensional representations of L3(5).

10.1.3 Algebraic conjugates

Some representations have several algebraic conjugates. It is straightforward in GAP

to apply a field automorphism to each matrix entry in a representation to get an alge-

braically conjugate representation. The easiest example is the case of a non-real repre-

sentation, which has a complex conjugate representation which is not equivalent.

10.1.4 Automorphs

Applying a group automorphism to a representation can sometimes give a different

representation. For instance, there are 3 representations with genus (O+
8 (2), 35, +) and

they are permuted by the outer automorphism group S3 of G = O+
8 (2). If find an
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explicit automorphisms of order 3 in Out(G), then we can use it to write down the

other 2 representations given any one.

10.2 Decomposing tensor products

Given two representations ρ, σ of a group G, we can construct the tensor product rep-

resentation ρ ⊗ σ. The construction is straightforward: take a set of generators for G,

and for each generator x form the Kronecker product ρ(x)⊗ σ(x). The character of this

representation is simply the product of the characters of ρ and σ. We can therefore use

the character table of G to write ρ ⊗ σ as a direct sum of irreducible representations.

Usually, the tensor product representation is not irreducible. However, we can some-

times use some of the techniques in this section to decompose the representation into

irreducibles.

We can also exploit the fact that the tensor square ρ⊗ ρ can always be decomposed

into symmetric and anti-symmetric parts. Matrices corresponding to these parts are

also straightforward to find, and this can save some effort. Moreover, if G has a proper

cover Ḡ, then we can use representations of Ḡ in the construction as well. This is

frequently useful if Ḡ has representations of smaller dimension than G.

10.2.1 Plesken-Souvignier splitting

Plesken and Souvignier [40] describe a way of decomposing a rational representation

into homogeneous parts. We have written a program in C [28] which uses their tech-

nique.

Let V be a QG-module which decomposes into irreducibles:

V = m1V1 ⊕m2V2 ⊕ · · · ⊕mkVk (10.2.1)

Let χi denote the character afforded by the irreducible module Vi. We have a QG-
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homomorphism ρ : QG → EndQ(V): we will denote images under this map with a

bar.

Consider the map:

θ :QG → QG

u 7→ 1
|G| ∑

g∈G
ug

(10.2.2)

Then for h ∈ G, θ(h̄) is an element of Z(EndQG(V)). It has eigenvalues χi(h)/χi(1)

with multiplicity miχi(1), and the corresponding eigenspaces are the direct summands

miVi in (10.2.1).

The main idea of [40] is that the map θ can be found as the limit of some approxi-

mations which are easier to calculate. Let S be a generating set for G and define:

θS :QG → QG

u 7→ 1
|S| ∑

g∈S
ug

(10.2.3)

Then (θS)n converges to θ inside EndC(V).

To calculate θ(x̄), we perform the iteration:

vn = (θS)n(x̄) = θS(vn−1) (10.2.4)

At various points in the iteration, we use a continued fraction expansion of the entries

of vn to guess what the limit is. We can then test our guess by checking whether the ma-

trix commutes with the group action. The iteration is not done using exact arithmetic

because of the problem of intermediate expression swell (which drastically affects the

speed of the iteration). Instead we use floating point arithmetic. This is likely to cause

problems if the common denominator for θ(x̄) is very large.
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Example 10.5 During this iteration in a particular case, one of the matrix entries is 0.133329856,

which has a continued fraction expansion:

1

7 +
1

1 +
1

1 +
1

1277 + . . .

(10.2.5)

We guess that 1277 is an error term and truncate the expansion at the previous term. This

gives an estimate of 2/15. This turns out to be the correct answer.

There are other matrices which can perform the function of θS, some of which con-

verge to θ faster.

Program Rho

We have written a program Rho which implements the Plesken-Souvignier technique

to split a representation. Early in our investigation, we used this to construct the repre-

sentations of U4(2) (reproducing the results in the Plesken-Souvignier paper [40]), but

these representations were later replaced by those obtained from permutation repre-

sentations (as these tended to have better sparsity).

Our program extends the basic method to work with fields Q(α) where α ∈ C \R

and α is quadratic over Q. The method is the same except at the limit guessing stage.

Because {1, α} forms a R-basis for C, we can write any entry of the matrix vn as r + αs,

and we can perform continued fraction recognition for r and s separately. We were not

able to find a way to cope with real extensions of Q.

When Rho was written, GAP had no support for floating point arithmetic.1 We

1The latest release (4.4.6) of GAP has some support for this, but we have not had the opportunity to
update our code to use this functionality.
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therefore performed almost all the calculations in C, providing a simple wrapper for

GAP.

Problems

One significant problem with this method of finding irreducible representations is that

the operation of tensoring means the matrices get large very quickly unless G has a

number of small representations. For many groups, the tensor product matrices are

too large for practical computations.

10.2.2 MeatAxe methods

The methods of Parker’s MeatAxe [36] can be adapted to work with representations in

extensions of Q [37, 23].

Spinning up

Let V be a CG-module with an irreducible submodule W. Suppose w ∈ W. Then we

can find a basis for W by spinning up the vector w by the action of G.

The algorithm is as follows. Let S = {g1, . . . gn} be a set of generators for S. We

maintain a list L of linearly independent vectors known to be in W, and we stop when

L spans W. Initially, L contains just the vector w. Set k = 1 to start.

Look at the kth element of L and construct the vectors wgi for 1 ≤ i ≤ n. If wgi is

linearly independent of all the vectors in L, then add it to the list. Otherwise, carry on.

After considering all values of i, increment the value of k.

The algorithm stops either when L contains dim W vectors, or when k > |L| (be-

cause then L is closed under the action of the generating set S, and so it must span a

CG-submodule).
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10.2.3 Decomposing large modules

Suppose we are interested in finding a particular rational representation ρ of the group

G. Calculations with the character table of G show that the representation can be found

by decomposing a larger rational representation σ which we are already able to con-

struct (say, a large tensor product representation). Splitting the representation over the

rationals is extremely difficult. In particular, our methods for dealing with general ma-

trix representations are not as powerful as our methods for decomposing permutation

representations, so we are restricted in terms of the maximum dimension of σ that we

can deal with.

However, we can try the following idea. Take a set of primes P, and for each p ∈ P,

calculate the representation σp, which is σ reduced modulo p. We can then use the

MeatAxe [36] to find the representation ρp, which is equivalent to ρ modulo p. We

then find a common seed vector for all the ρp and reseed them all to new representa-

tions ρ̃p. These representations are compatible, and they are equal to the reductions

of a representation ρ̃ modulo p. We can then try to reconstruct ρ̃ (which is equivalent

to ρ, the representation we wanted to find) by reconstructing each matrix entry from

the matrix entries of the ρ̃p. Note that it is harder to test whether the reconstructed

representation ρ̃ is correct; we would need a presentation for G to be absolutely sure

that we had not introduced any mistakes.

10.2.4 Floating point rational reconstruction

Another possibility that was briefly considered was that of ‘floating point’ (as opposed

to p-adic) rational reconstruction. Floating point arithmetic is not exact, but it is O(1).

We could perform our rational calculations using the computer’s floating point arith-

metic and then use continued fraction expansions to find a rational which is close to

the floating point number calculated. This approach was rejected as being too difficult
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to analyse and unlikely to scale well. There is in general no way of predicting how

large the denominators were likely to be in the final answer, and the larger the denom-

inators, the more bits the floating point representation needed to have. With the p-adic

methods, we could at least add more primes if the denominators were proving to be

too large, but with floating point arithmetic, this involves a lot more work and some

careful numerical analysis which we did not feel qualified to attempt.

10.3 Dixon’s method

John Dixon invented a method for producing representations affording a character χ

of a group G subject to the condition that there exists a subgroup H ≤ G such that χH

has a constituent with degree 1 and multiplicity 1 [16]. Unfortunately, finding such a

subgroup H is not easy in general (it seems to require computing the whole lattice of

subgroups), and there exist groups where no such subgroup exists.

Dixon’s method has been investigated by Dabbaghian-Abdoly [13] and implemented

by him as a GAP package Repsn. The method is quite slow and memory-intensive, but

it succeeded where other methods failed (notably for some small representations of the

unitary groups).
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Chapter 11

A database of group representations

We present our results as a database of group representations. This database is avail-

able on the CD-ROM attached to this thesis (see Appendix C). We intend to include

these representations in the Web Atlas [57] in the near future.

11.1 Information supplied

For each group G ∈ L G
0 , we present some or all of the following information:

• Definitions of standard generators for G and its covers (either taken from the Web

Atlas or from Part I of this thesis).

• Checkers and finders for G (see Part I).

• Complex matrix representations of G with dimension at most 250 (given in terms

of the matrices of standard generators of G).

For each matrix representation ρ supplied, we give:

• The name of the group G generated.

• The dimension of ρ.

• The Frobenius-Schur indicator of ρ.
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• The character of ρ, usually identified with a particular row in the ATLAS or in

the GAP character table library. Sometimes there is some ambiguity; this is men-

tioned in the notes.

• A ring over which the matrix entries can be written.

• Some data about the sparsity of the matrices and the sizes of the matrix entries.

• A note about how the representation was constructed, or the source if we have

used another researcher’s construction.

The database is maintained by means of a number of Perl [55] scripts which have

evolved over a period of roughly two years.

11.2 Checking the data

Large databases almost inevitably include errors. We wished to minimise the number

by performing a battery of tests on our data. We designed the tests so that they could

be run overnight without human intervention, presenting a report on which represen-

tations passed and which failed. Those that failed were corrected until all tests passed.

11.2.1 Checker test (semi-presentation)

All our representations were on standard generators. We were therefore able to make

use of the semi-presentations we calculated in Part I. We applied the checkers derived

from our semi-presentations to the representations we calculated to check whether the

generators we had were correct.

In about half a dozen cases, our representations failed the check, showing that we

had taken the wrong generators. These cases were corrected.
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11.2.2 CCL test

One common type of error in our data was mislabelling of the representations; in par-

ticular, associating them with an incorrect character. This usually occurred when there

was more than one irreducible character of the same dimension.

To reduce the risk of this problem, we checked our generators with some BBOX

programs. These computed some conjugacy class representatives and checked their

traces. If the traces agreed with the character values, then the representation passed

the test. The BBOX programs were written with the help of the conjugacy class rep-

resentatives contained in the Web Atlas. Note that we do not usually check all the

conjugacy classes of the representation, and we only perform this test when GAP has

a character table for the group.

In some cases, there was no word program to produce conjugacy class representa-

tives. In this case, we specified our conventions as to which conjugacy class was which

in the notes. Our conventions are generally not as strict as some of the Web Atlas con-

ventions (so, for example, we did not demand compatibility with the Atlas of Brauer

Characters [27]).

Example 11.1 For the group S4(5), we need to be able to distinguish 13a/b, 65a/b, 78a/b,

104a/b/c and 208a/b. One way of distinguishing these representations is by looking at their

traces on class 30A. This class and class 30B are the only classes of elements of order 30,

and they fuse under an outer automorphism of S4(5). Thus without loss of generality we say

(xy)5xy2xy2xyxy2 is in class 30A, allowing us to distinguish all low-dimensional irreducible

representations of S4(5).

11.2.3 Speeding up the tests

Certain portions of the tests are extremely slow to run with some of our representa-

tions. In particular, it is quite slow to check the order of a matrix with entries which
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are large integers or algebraic numbers. One way to speed the test is to use the ‘vector

order’, which is an approximation to the true order of a matrix.

Given G ≤ GLd(C), we choose a vector v of length n with arbitrary non-zero en-

tries (we typically chose integers in {−10, . . .− 4, 4, . . . 10}) and perform the following

iteration:

v0 = v; vi+1 = vig (11.2.1)

stopping when vm = v for some m > 0. This value m is called the vector order of g (with

respect to v). The vector order m divides, and is usually equal to, the true order o(g).1

Instead of checking the order of g (which is expensive), we check the vector order m of

g.

Another way of speeding up the tests which we did not use was to reduce the

generators modulo p before starting. We did not wish to use this method with semi-

presentations as so many of the representations were constructed using rational recon-

struction, and we wished to test whether this process had been successful. However, it

would have made certain of the conjugacy class tests significantly faster.

11.3 Scope for further work

The accompanying CD-ROM contains over 650 representations, 120 checkers and 50

finders, catalogued and presented for inclusion in the Web Atlas. It is hoped that some

of these representations will prove useful to those studying group computations.

We conclude this thesis with some remarks about possible directions for extending

this work.
1We have only come across one case where it failed to hold, and this was when n was very small

and when the entries of v were also small.
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11.3.1 Missing representations

We were not able to construct every representation with genus in L0. Appendix A

gives a list of all representations with genera in L0. Those which we were unable to

construct are given in the right-hand column. Those which we were only able to find

as a constituent of some other reducible representation are marked in bold.

A worthy project would be to construct the remaining representations. These repre-

sentations cannot be readily found from permutation representations or decomposing

tensor products. Some of them might succumb to the method of amalgamation from

Chapter 9.

11.3.2 Dealing with irrational representations

Most of our work has dealt with rational (indeed, integral) representations of the sim-

ple groups. However, some of the more interesting and useful representations require

entries from extensions of Q. While we were often able to deal with quadratic exten-

sions of Q, we never tried to look at higher order field extensions. This is partly due

to software difficulties (for example, while GAP knows that
√
−1 = exp(πi/2), it is

currently not able to evaluate
√

exp(πi/2)). It is possible that higher order field exten-

sions can be dealt with by using quotients of polynomial rings. For example, in order

to accommodate the irrational number 3
√

2 in GAP, we can use the field isomorphism:

Q( 3
√

2) ∼= Q[t]/(t3 − 2) (11.3.1)

This mechanism could also deal with irrational elements which cannot be expressed

in terms of radicals, and this would certainly be necessary when dealing with field

extensions of degree 5 and higher. Such a system would require major surgery to the

programs we used, and it remains to be seen whether the resulting representations
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would be useful.

11.3.3 Better bases

Two representations ρ, σ : G → GLd(C) are equivalent if and only if there exists

g ∈ GLd(C) such that ρ(h) = gσ(h)g−1 for all h ∈ G. However, not all represen-

tations in the same equivalence class are equally good for computation. Ideally, we

would like our representing matrices to be sparse, writeable over a small field (prefer-

ably a small ring of algebraic integers or even Z) and with small entries. Some of the

representations we provide are not optimal with respect to these criteria, and it would

be good to have these representations written with respect to a better basis.

11.3.4 Testing the rest of the Web Atlas

In section 2.3, we tested the representations of the sporadic groups and their auto-

morphism groups in the Web Atlas with the semi-presentations found in that chapter.

It would be worthwhile to use the other semi-presentations computed in Part I to test

the other representations in the Web Atlas.

11.3.5 Larger class of groups

It would be good to be able to extend this work to a larger class of groups than the sim-

ple groups. The Hiss-Malle paper [21] classifies the low dimensional representations

of quasisimple groups (that is, perfect groups G such that G/Z(G) is simple), and it

would be useful to have these representations constructed. We have made a start on

this project, and some of these representations are available on the accompanying CD-

ROM. For many of these representations, the techniques we have used in this thesis

will not be sufficient. In particular, permutation representations on small numbers of

points (which proved to be so useful in the simple group case) are often not faithful in

the quasi-simple group case.
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We could also consider the class of almost simple groups. Many of these represen-

tations can be found using the techniques of this thesis (and in particular, small degree

permutation representations are often useful).

The Web Atlas covers bicyclic extensions of simple groups. Representations of such

groups will generally be at least as hard to construct as those of quasisimple groups.

To construct all these representations would be quite an ambitious project.

11.3.6 Hard cases

The group L3(4) probably deserves a research project of its own! Its Schur multiplier

is 3× 4× 4 and its outer automorphism group is D12. It thus has a very large number

of bicyclic extensions, and a corresponding large number of representations to find.

Similarly, the group U4(3) has Schur multiplier 3 × 3 × 4 and outer automorphism

group D8.

11.3.7 Extending coverage for the sporadic groups

The sporadic groups are perhaps the most interesting of the finite simple groups, and

so it makes sense to extend the dimension limit of 250 to a larger one. An interesting

extension of this project would be:

• Find all complex irreducible matrix representations of the sporadic groups and

their bicyclic extensions up to dimension 1000.

• Find the smallest (faithful) complex irreducible matrix representation of each

sporadic groups (possibly excepting the Monster group M).

Some of these representations are probably inaccessible without developing new tech-

niques for dealing with them.
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Appendix A

Table of representations

Here we give a complete list of representations whose representation type is in L0,

together with information about whether we have constructed them.

• Representations which we have constructed and which are available on the CD-

ROM are listed in the ‘Available’ column.

• Reducible representations which we have constructed and whose irreducible con-

stituents are not available separately are listed in bold.

• Irreducible representations which are not available and which are not constituents

of any other available representation are listed in the ‘Missing’ column.

• If we do not know how many representations are of a certain representation type,

we mark the representation with a question mark (e.g. 157a · · ·? indicates that all

the representations of dimension 157 are missing).
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Table A.1: Representations available

Group Available Missing
M11 10a, 10b, 10c, 10bc, 16ab, 44, 45, 55
M12 11a, 11b, 16a, 16b, 16ab, 45, 54, 55a,

55b, 55c, 66, 99, 120, 144, 176
M22 21, 45a, 45b, 55, 99, 154, 210, 231
M23 22, 45a, 45b, 230, 231a, 231b, 231c
M24 23, 45a, 45b, 231a, 231b
HS 22, 77, 154a, 154b, 154c, 175, 231
McL 22, 231
Co3 23
Co2 23
J2 14a, 14b, 14ab, 21a, 21b, 21ab, 36,

63, 70ab, 90, 126, 160, 175, 189ab,
224ab, 225

Suz 143
Fi22 78
He 51ab 153a, 153b
HN 133a, 133b
Th 248
J1 56ab, 76a, 76b, 77a, 77bc, 120abc,

133a, 133bc, 209
J3 85ab

A5 3a, 3b, 5
A6 8a, 8b, 9, 10
A7 10a, 10b, 10ab, 14a, 14b, 15, 21, 35
A8 14, 20, 21a, 21b, 21c, 21bc, 28, 35,

45a, 45b, 45ab, 56, 64, 70
A9 21a, 21b, 27, 28, 35a, 35b, 42, 48, 56,

84, 105, 120, 162, 168, 189, 216
A10 35, 36, 42, 75, 84, 90, 126, 160, 210,

224a, 224b, 225
A11 44, 45, 110, 120, 126a, 126b, 126ab,

132, 165, 210, 231
A12 54, 55, 132, 154, 165
A13 65, 66, 208, 220
A14 77, 78
A15 90, 91
A16 104, 105
A17 119, 120
Continued on next page. . .
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Table A.1 — Continued
Group Available Missing
A18 135, 136
A19 152, 153
A20 170, 171
A21 189, 190
A22 209, 210
A23 230, 231

L3(3) 12, 13, 16abcd, 26a, 26b, 26c, 26bc,
27, 39

L3(4) 20, 35a, 35b, 35c, 45a, 45b, 63a, 63b,
64

L3(5) 30, 31a, 31b, 31c, 124a, 124b, 124c,
124d, 124e, 124 f , 124g, 124h, 124i,
124j, 125, 155a, 155b, 155c, 186

96a · · · j

L3(7) 56, 57, 152a, 152b, 152c
L3(8) 72, 73a, 73b, 73c, 73d, 73e, 73 f
L3(9) 90, 91a, 91b, 91c, 91d, 91e, 91 f , 91g
L3(11) 132, 133a, 133b, 133c, 133d, 133e,

133bcde, 133 f , 133g, 133h, 133i,
133 f ghi

L3(13) 182, 183a, 183b, 183c, 183bc
L4(3) 26a, 26b, 39, 52, 65a, 65b, 90, 234a,

234b
L4(4) 8, 85a, 85b, 189a, 189b, 189ab
L4(5) 155
L5(2) 30, 124, 155, 217
L5(3) 120, 121
L6(2) 62, 217
L7(2) 126

S4(4) 18, 34a, 34b, 50a, 51a, 51b, 51ab, 51c,
51d, 51cd, 85a, 85b, 153, 204a, 204b,
204ab, 204c, 204d, 204cd, 225abcd

S4(5) 13a, 13b, 40, 65a, 65b, 78a, 78b, 90,
104a, 104b, 104c, 130, 156, 208ab

S4(7) 25a, 25b, 126, 175a, 175b, 224 150a, 150b
S4(8) 196
S4(9) 41a, 41b
S4(11) 61a, 61b, 61ab
S4(13) 85ab
Continued on next page. . .
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Table A.1 — Continued
Group Available Missing
S4(17) 145ab
S4(19) 181ab
S6(2) 7, 15, 21a, 21b, 27, 35a, 35b, 56, 70,

84, 105a, 105b, 105c, 120, 168, 189a,
189b, 189c, 210a, 210b, 216

S6(3) 13a, 13b, 78, 91a, 91b, 105, 168, 195
S6(5) 63a, 63b
S6(7) 171a, 171b
S8(2) 35, 51, 85, 119, 135 238
S8(3) 41a, 41b
S10(2) 155, 187
S10(3) 121a, 121b

U3(3) 6, 7a, 7b, 7c, 7bc, 14, 21a, 21b, 21c,
21bc, 27, 28a, 28b, 28ab, 32a, 32b,
32ab

U3(4) 12, 13a, 13b, 13c, 13d, 39a, 39b,
52a, 52b, 52c, 52d, 64, 65a, 65bcde,
75abcd

U3(5) 20, 21, 28a, 28b, 28c, 84, 105, 125,
126a, 126bc, 144ab

U3(7) 43a, 43b, 43c 42, 43d · · · g
U3(8) 57a, 57b, 57ab, 133a, 133b, 133c 56
U3(9) 73a 72, 73b · · · i
U3(11) 111a 110, 111b, 111c
U3(13) 156, 157a · · ·?
U3(16) 240, 241a · · ·?
U4(2) 5a, 5b, 6, 10a, 10b, 15a, 15b, 20, 24,

30a, 30b, 30c, 40a, 49b, 40ab, 45a,
45b, 60, 64, 81

U4(3) 21, 35a, 35b, 90, 140, 189, 210
U4(4) 52, 221ab 51a · · · d
U4(5) 105 104a, 104b
U5(2) 10, 11a, 11b, 44, 55a, 55b, 55c, 55d,

66a, 66b, 110a, 110b, 110c, 110d,
110e, 110de, 120, 165, 176, 220a,
220b, 220c, 220d, 220ab, 220cd

U5(3) 60, 61a · · ·?
U5(4) 204a · · ·?
U6(2) 22, 231
Continued on next page. . .
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Table A.1 — Continued
Group Available Missing
U6(3) 182, 183a · · ·?
U7(2) 42, 43a · · ·?
U8(2) 85a · · ·?, 86a · · ·?
U9(2) 170

O7(3) 78, 91, 105, 168, 182, 195
O−

8 (2) 34, 51, 84, 204a, 204b
O+

8 (2) 28, 35a, 35b, 35c, 50, 84a, 84b, 84c,
175, 210a, 210b, 210c

O−
8 (3) 246

O−
10(2) 154, 187

O+
10(2) 155, 186

G2(3) 14, 64ab, 78, 91a, 91b, 91c, 104, 168,
182a, 182b

G2(4) 65, 78
G2(5) 124
Sz(8) 14a, 14b, 35abc, 64, 65a, 65b, 65c
Sz(32) 124a, 124b
3D4(2) 26, 52, 196
3D4(3) 219
2F4(2)′ 26a, 26b, 26ab, 27a, 27b, 78
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Appendix B

BBOX : a language for black box

algorithms

The BBOX language is a simple language for implementing black box algorithms for

groups. Its syntax is designed to be as close as possible to that of the straight line

programs in the Web Atlas [57]. The language is small and quite constrained, making

it easy to write an interpreter for BBOX, but it is powerful enough to implement any of

the black box algorithms described in this thesis.

We have written an interpreter for BBOX in GAP, which we used to test the finders

and checkers introduced in chapter 1 and described in later chapters. Our interpreter

is described in section B.7 below.

B.1 Example: finding an element of order 13 in L2(13)

Before giving the details of BBOX syntax, we will give an example program. The fol-

lowing program finds an element of order 13 in a group G ' L2(13). If none can

be found after 100 tries, the algorithm gives up (the probability of this happening in

L2(13) is about 6× 10−8, so the algorithm has probably been given the wrong group).

If any element is found which does not have an allowable order (given that we are
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looking in L2(13)) the algorithm gives an error message.

set X 0
lbl START

incr X
rand 1 # Let g_1 be a random element of G
ord 1 A # Let A = order(g_1)
if A notin 1 2 3 6 7 13 then fail
if A eq 13 then jmp FINISH
if X eq 100 then timeout
jmp START

lbl FINISH
oup 1 1 # Output 1 element, namely g_1

B.2 Example: finding standard generators of Fi23

The following is a BBOX program to find standard generators of Fi23. These are ele-

ments x and y such that x is in class 2B, y is in class 3D and xy has order 28.

The program falls into two main sections:

• The section starting lbl SEMISTD whose purpose is to find elements x and y in

the right conjugacy classes

• The section starting lbl CONJUGATE whose purpose is to conjugate y until xy

has order 28.

Most of the effort is in making sure that the element y is in class 3D rather than any

other class. This sometimes involves going back to the first step if we discover an

element order that we are not expecting.

This program illustrates the most important BBOX language features.

# Black box algorithm to find standard generators of Fi23

set F 0 # Have we found an element of order 2?
set G 0 # Have we found an element of order 3?
set V 0 # Timeout counter for "semi-standard" part
set Y 0 # Timeout counter for conjugating part

lbl SEMISTD
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rand 1
ord 1 A
incr V
if V gt 1000 then timeout
if A notin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 &

23 24 26 27 28 30 35 36 39 42 60 then fail
if F eq 0 then

if A in 20 28 60 then
div A 2 B
pwr B 1 2
set F 1

endif
endif
if G eq 0 then

if A in 3 6 9 12 18 then
div A 3 C # This is an element of order 3, but it
pwr C 1 3 # might not be in the right class. We may have
set G 1 # to revisit this step later.

endif
endif

if F eq 0 then jmp SEMISTD
if G eq 0 then jmp SEMISTD

set X 0 # Number of times we have tried to prove element is in 3D
set Z 0 # Are we definitely in class 3D?

lbl CONJUGATE
incr Y
if Y gt 1000 then timeout
rand 4
cjr 3 4 # Conjugate y by a random element.
mu 2 3 5 # Compute xy.
ord 5 D # Find the order of xy.

if D eq 28 then jmp FINISH # We are done (this proves that y
# is in the correct class).

if D notin 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 21 22 &
23 24 26 27 28 30 35 36 39 42 60 then

fail # This is not Fi23!

endif

if D in 13 16 17 18 20 21 22 23 24 26 27 28 30 35 36 39 42 60 then
set Z 1 # y is in class 3D.

endif

if Z eq 0 then
if D notin 3 6 8 9 10 11 12 13 14 15 16 17 18 20 21 22 23 &

24 26 27 28 30 35 36 39 42 60 then
set G 0 # y is definitely
jmp SEMISTD # not in class 3D. Try again.

endif

incr X
if X gt 1 then

set G 0 # We have haven’t been able to prove quickly
jmp SEMISTD # that y is in class 3D.

# We guess that it probably isn’t, and start
# looking again.

endif
endif
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jmp CONJUGATE

lbl FINISH
oup 2 2 3

B.3 Language basics

BBOX programs contain one instruction per line. Each instruction begins with a lan-

guage keyword. The following is a list of BBOX keywords:

add , break , call , chcl , chor , cj , cjr , com, cp , decr , div , echo , else ,

elseif , endif , fail , false , if , incr , inv , iv , jmp , lbl , mu, mul , nop ,

ord , oup , pwr , rand , return , set , sub , timeout , true

Each is described in section B.6 below, and many are illustrated in the examples in

sections B.1 and B.2.

The end of a line signals the end of one instruction. To avoid some programs having

very long lines, an ampersand ‘&’ at the end of a line acts as a line-continuation char-

acter (so the line following the ampersand is considered as part of the line containing

the ampersand).

Anything following a hash ‘#’ is ignored (this is designed for comments).

B.4 Flow control

Flow proceeds through a BBOX program until a ‘jmp ’ or ‘call ’ command is reached,

when the program moves to the appropriate ‘lbl ’ command. At a ‘return ’, the pro-

gram returns to the location of the most recent ‘call ’.

Unconditional jumps are unfashionable in computer science [15], but this type of

flow control was preferred to more structured commands (such as do . . . while or

repeat . . . until ) because it is frequently important to be able to go back to previ-

ous steps if we discover late on that we made an unlucky choice at the beginning of
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the algorithm (see for example Algorithm 6.4), and the cleanest way to express this

behaviour is with an unconditional jump. Structured commands are also harder to im-

plement, and we felt it was important to keep the language as simple as possible. Black

box algorithms are usually short enough that there is no difficulty in understanding the

flow through the program.

B.5 Types of identifier

There are two sorts of variables in BBOX: group elements (labelled by 1, 2, . . . ) and

counters (labelled by A, B, . . . ). Group elements are manipulated by black box com-

mands and oracle commands, and counters are used to conditionally control the flow

of the program. As well as variables, we will also need ordinary integers and program

labels (used to mark a particular line in the program so that it can be jumped to).

The following notation is used for the different types of identifier in the list of com-

mands below.

• g (possibly with a subscript) is a group element variable. These are labelled by

integers 1, 2, 3 . . . .

• c is a counter variable. These are labelled by Roman letters A, B, C . . . Z.

• n is an integer.

• λ (possibly with a subscript) is a scalar, i.e. a counter variable or an integer.

• L is a program label. These are case-sensitive strings of text.
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B.6 Keywords

B.6.1 Black box group commands

oup n g1 . . . gn Output a list of n group elements, namely g1, . . . gn

mug1 g2 g3 Let the group element g3 be g1 multiplied by g2. This com-

mand is not to be confused with mul (which multiplies in-

tegers).

iv g1 g2 (also al-

low inv )

Let the group element g2 be the inverse of g1.

pwr λ g1 g2 Let g2 be the λth power of g1.

cj g1 g2 g3 Let g3 be g1 conjugated by g2.

cjr g1 g2 Conjugate g1 by g2 ‘in place’.

com g1 g2 g3 Let g3 be the commutator of g1 and g2.

cp g1 g2 Copy the element g1 into g2.

B.6.2 Oracle commands

rand g Let g be a (pseudo-)random element of the group.

ord g c Let c be the order of the element g.

chor g λ Check whether element g has order λ. Fail if not.

chcl g C Check whether element g could be in conjugacy class C

(typically by taking traces or cycle types). Fail if not. Note

that this command is not really a black box command, but

was an extension to the language to allow us to perform the

conjugacy class tests described in section 11.2.2
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B.6.3 Jumping and looping commands

lbl L Marker for a program label L. This command does not do

anything.

jmp L Jump to the label L.

call L Jump to the label L and record the current position in the

callstack. The command return takes the program back.

This is useful for implementing subroutines.

return Return to the location of the most recent call instruction.

B.6.4 Counter arithmetic

add λ1 λ2 c Let the counter c be λ1 + λ2.

sub λ1 λ2 c Let the counter c be λ1 − λ2.

mul λ1 λ2 c Let the counter c be λ1 × λ2. This command is not to be

confused with mu(which multiplies group elements).

div λ1 λ2 c Let the counter c be the integer part of λ1/λ2.

modλ1 λ2 c Let the counter c be the residue of λ1 modulo λ2.

decr c Decrement the counter c.

incr c Increment the counter c.

set c λ Set the counter c to be λ.

B.6.5 Logical commands

There are two forms for logical commands:

• if predicate then statement

Single-line form. The statement is not allowed to be another if statement. If

nested logical commands are needed, use the multi-line form.
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BBOX predicate Meaning
c eq λ c = λ
c noteq λ c 6= λ
c in λ1 . . . λn c ∈ {λ1, . . . λn}
c notin λ1 . . . λn c 6∈ {λ1, . . . λn}
c lt λ c < λ
c leq λ c ≤ λ
c gt λ c > λ
c geq λ c ≥ λ

Table B.1: Predicates for the BBOX language

• if predicate then

statements

elseif predicate then

statements

. . .

else

statements

endif

Multi-line form. These can be nested. The elseif and else clauses are optional.

In both cases, the allowable forms for predicates are given in Table B.1 on page 207.
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B.6.6 Terminating commands

true End the program, and return the boolean value ‘true’ as an

answer to a decision problem.

false End the program, and return the boolean value ‘false’ as an

answer to a decision problem.

timeout Report that the algorithm has spent ‘too long’ on some task.

This may suggest that the incorrect group has been given to

the algorithm, or it may just be that we were unlucky. This

command is intended to end the program, but in the inter-

preter we implemented (see section B.7), there is an option

to continue processing after a time-out.

fail End the program, and report that the algorithm has deter-

mined that the input given is invalid (e.g. the group given

is not of the correct isomorphism type). This is a more final

mode of failure than that indicated by ‘timeout ’.

B.6.7 Debugging commands

echo string Print string to the screen. A counter c preceded by a dollar

sign $ expands to the contents of the counter.

break Pause the algorithm part way through to allow variables to

be examined by hand.

B.7 An interpreter for the BBOX language

Finally, we introduce a simple interpreter for the BBOX language written in GAP.

There are two main commands.
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B.7.1 Command: prepareblackbox

Syntax: prepareblackbox (filename)

This command loads a BBOX program into memory, transforms it into an interme-

diate form ready for executing and performs a rudimentary syntax check.

If successful, the program returns a structure containing a BBOX program ready for

running.

B.7.2 Command: blackbox

Syntax: blackbox (group, program, elements, options)

This command runs a pre-loaded BBOX program on a given group.

The parameters are:

• group: The group on which the algorithm is to be run;

• program: The BBOX program (the result of a call to prepareblackbox

• elements: A list of elements to become the initial ‘numbered’ elements. These

might be a set of group generators for example, or it could just be an empty list.

• options: A record containing various options to control the execution of the pro-

gram. Each component is optional. They have the following meanings:

– verbose: If true, print each instruction before executing. False by default.

– quiet: If true, ignore all echo instructions in the program. False by default.

– orderfunction: A function to replace GAP’s Order method. Sometimes useful

for large matrix groups, where we substitute a ‘vector order’ method.

– classfunction: A function to test whether a given element could be in a given

conjugacy classes (described by its ATLAS name). Typically this involves
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looking at traces or cycle types. This function is called when using the chcl

command.

– hardtimeout: If false, continue after reaching a timeout instruction (printing

a warning). True by default.

– allowbreaks: If true, allow break instructions, otherwise ignore them. True

by default.

If successful, the blackbox command returns a record with the following compo-

nents:

• gens: the group elements output by a oup command.

• result: a true/false value depending on how the program ended. It will be ‘true’

if the program stopped because it reached a true instruction, or if it came to the

end of the file. It will be ‘false’ if the program stopped because it reached a false

or timeout instruction. Otherwise, it will be undefined.

• multiply, invert, order, random, conjugate, conjugateinplace, commutator: the number

of times instructions of types mu, iv , ord /chor , rand , cj , cjr and com were

executed.

• timetaken: the time taken to complete the black box algorithm in milliseconds.

• vars: the contents of the 26 counters.

• callstack: the contents of the callstack.
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Appendix C

The attached CD-ROM

The representations, black box algorithms and definitions of standard generators re-

ferred to in this thesis can be found on the attached CD-ROM. We also include the

main programs that we have written: Split-P (see section 8.16), Rho (see section 10.2.1),

Young (see section 7.1.1), Monword (see section 2.1.26) and a BBOX interpreter (see sec-

tion B.7). At present, the contents of the CD-ROM are also available online at:

http://web.mat.bham.ac.uk/S.Nickerson/rep/

The simplest way to browse the CD-ROM is to use a Web browser and open the file

index.html (found in the root directory). In some operating systems, this index page

may open automatically.

Alternatively, one can browse the disc directly. The directory structure and file nam-

ing conventions are the same as those for the Web Atlas, so that (for instance) the 90-

dimensional representation of J2 can be found at spor/J2/gap0/J2G1-Zr90B0.g .

To use this representation in GAP, we would use the following syntax:

f := ReadAsFunction("J2G1-Zr90B0.g");;
gens := f().generators;;
G := Group(gens);
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