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Abstract

Upon opening our eyes, we immediately perceive the world around us. Our remarkably seamless

visual perception is a major source of information when interacting with our surroundings.

Indeed, the dominance of vision over other senses is so significant that the brain allocates

more resources to it than to any other sensory modality (Colavita, 1974; Van Essen et al.,

1992). Yet, our seemingly effortless visual experience relies on a complex network of intricately

interconnected cortical and sub-cortical structures performing real-time computations.

A central question in neuroscience is how the visual system optimally processes and routes

incoming information. Popular ideas posit that neuronal oscillations, specifically gamma (> 30

Hz) and alpha oscillations (8 - 12 Hz), coordinate visual processing and attention (Fries, 2005,

2015; Jensen, 2023; Jensen & Mazaheri, 2010; Klimesch, 2012; Klimesch et al., 2007).

In this thesis, I will present findings based on empirical and computational work showing how

gamma and alpha oscillations modulate visual inputs. The empirical part of my thesis consists

of two studies using Magnetoencephalography (MEG) in combination with a high-frequency

(subliminal) visual flicker. I will reveal that gamma oscillations in early visual regions are robust

against this external, high-frequency stimulation and do not synchronise to the visual flicker. As

I will discuss, this finding challenges the prevalent notion that gamma oscillations are critical

for inter-areal communication in the visual system (also see Schneider et al., 2021, 2023; Vinck

et al., 2023).

Following my experience with high-frequency stimulation gained in the first empirical

chapter, I will use Rapid Invisible Frequency Tagging (RIFT) in the third chapter to investigate

the neural correlates of feature-guided visual search. RIFT is a novel, subliminal stimulation
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technique used to probe cortical excitability to visual inputs (Zhigalov et al., 2019). I will

demonstrate that alpha oscillations globally modulate the cortical excitability to the visual

search display, which was further linked to improved search performance. This suggests that gain

modulation by alpha oscillations can support performance in visual attention tasks with a high

number of distracting stimuli. However, I will also discuss a set of analyses suggesting that the

response time modulation by the alpha rhythm may be linked to task duration. I will offer different

perspectives on these multi-faceted results, as well as future research directions to understand

the relationship between inhibition by alpha oscillations and visual search performance.

Inspired by these empirical results, I will finally present a dynamical artificial neural network

— a computer vision algorithm embracing the rhythmic dynamics of the visual cortex. I will

demonstrate that this network, despite not being explicitly trained for the task, can handle

multiple concurrent visual inputs by segregating them in time.

In summary, my thesis combines empirical and computational methods to explore how

gamma and alpha oscillations contribute to computational processes in the visual system. I will

conclude that while gamma oscillations reflect localised neural processes, alpha oscillations

operate at a more global scale.



To my family. Danke für alles.
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1
Introduction

Every sensation, every perception, even that which arises in us from the

observation of a beautiful landscape, a beautiful painting, or from seeing a

friend’s visage, is due to the flow of tiny electric signals. Like an “electric

storm,” these signals incessantly flow along the fibers of our peripheral

nerves or the central circuits of our brain.

Sherrington (1949)
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1.1 A brief history of electrophysiology

Neuronal activity is fundamentally electric. Although this concept has been understood for

more than a century, it took approximately 150 years from the initial recordings of electric

activity in animal muscle fibres to secure measurements of neural currents in the human brain.

The narrative of electrophysiology is both intricate and expansive; it encompasses contributions

from scientists in Italy, Germany, America, and England, the invention of the battery, and

several Nobel Prizes. Here, I offer a brief, albeit not exhaustive, outline of key events and

figures that paved the way for the first recordings of rhythmic electric current flow—neuronal

oscillations—in the human brain.

1.1.1 The discovery of electric currents in the nervous system

Scientists of the 18th century were widely fascinated with electricity, a term coined by William

Gilbert ca. 1600 (Finger, 2005b). Experimentation with electricity was the trend among aspiring

scientists; particularly the field of electrotherapy - the use of electricity to treat sickness and

injuries – drew widespread attention (Finger, 2005b; Piccolino & Bresadola, 2013). These

medical applications, often performed by individuals without any formal training, led to the

notion that electricity was the “fluid of the nerve” (Finger, 2005b).

Aloisio Luigi Galvani (1737-1798), an Italian physician practising in Bologna in the second

half of the 18th century, was inspired by these advances. He studied the fluido elettrico (elec-

trical fluid) in frog preparations (Finger, 2005b; Piccolino & Bresadola, 2013). His landmark

1791 publication entitled Commentary on the Effects of Electricity on Muscular Motion (De

viribus electricitatis in motu musculari commentarius) was among the first documentations of

what he termed animal electricity. In this work, Galvani reported that administering an electric

spark to a deceased frog’s leg muscle led to “violent contractions”. Based on these observa-

tions, and several follow-up experiments, Galvani hypothesised that the electric spark activated

inherent currents in the nerve fibres (Fara, 1995; Finger, 2005b; Piccolino & Bresadola, 2013;
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Underwood, 1955) 1.

Galvani’s remarkable findings, although later confirmed by a series of experiments, did

not immediately win the approval of his peers. One notable sceptic was Alessandro Volta,

who refuted Galvani’s idea that muscle contractions were generated by innate neural currents

(Piccolino et al., 2013). Volta argued that the observed electrical activity was due to the

electromotive properties of the metals used in Galvani’s experiments connecting the nerves and

muscle fibres. This debate persisted for years, lasting until Galvani’s death in 1798, and was

instrumental in the development of the first electric battery—the voltaic pile (Finger, 2005b).

Despite—or perhaps thanks to—the prolonged discourse between Galvani, Volta, and other

scientists, experiments in the early 19th century would conclusively affirm that nerves are

electrically excitable and that nervous energy is, indeed, electric (Finger, 2005b; Piccolino et al.,

2013).

The development of the galvanometer - named in honour of Galvani’s work and credited to

German physicisist, chemist, and mathematician Johann Schweigger (Landman, 2004; Schweig-

ger, 1836) – would lead to fundamental advances in the study of nervous conduction in the late

19th and early 20th century. Around 1850, Hermann von Helmholtz employed the galvanometer

to quantify the time delay between applying an electric spark to a muscle fibre and the onset

of the resultant muscular contraction. This experiment allowed him to reliably estimate neural

signal speed (Schmidgen, 2014; von Helmholtz, 2021).

Following his mentor’s lead, Helmholtz’s student Julius Bernstein advanced the galvanometer

ca. 1868 to measure changes in time and accomplished the first measurements of electric

discharge in neurons (Seyfarth, 2006). Moreover, he proposed notably accurate hypotheses

about the changes in intra- and extra-cellular charges in neuronal firing (Piccolino & Bresadola,

1Various theories surround Galvani’s first observations of "animal electricity," all suggesting that the initial
discovery was more serendipitous than systematic. According to some reports, Galvani made this observation
when touching a frog’s leg with a metal instrument during a thunderstorm (Fara, 1995; Finger, 2005b; Piccolino
& Bresadola, 2013). Others describe that Galvani observed said muscle contractions in the frog when preparing
a frog soup for his bedridden wife Lucia (Piccolino & Bresadola, 2013). Yet others claim that it was not Galvani
himself, who applied the electric current to the frog preparation, but his assistants who found amusement in playing
with the devices in the laboratory (Finger, 2005b), or a servant who had hung a dead frog up on a copper hook on
the balcony, causing muscle contractions every time the lifeless frog’s legs touched the iron railing (Piccolino &
Bresadola, 2013).
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2013). These ideas were later corroborated in in-depth studies of action potentials (Box 1.1

Hodgkin & Huxley, 1952; Piccolino & Bresadola, 2013).

Following the First World War, ca. 1917, Sir Edgar Adrian published seminal work that had

been started by his mentor Keith Lucas, describing several characteristics of neuronal firing,

which were again explored using an improved version of the galvanometer (Lucas & Adrian,

1917)2. Fast forward to another seminal moment in the history of electrophysiology, Alan

Hodgkin and Andrew Fielding Huxley utilised the galvanometer to measure transmembrane

currents in squid axons (Hodgkin & Huxley, 1952). Their work led to the creation of the

Hodgkin-Huxley model, a mathematical formula describing how action potentials initiate and

propagate, that is still used today (Hodgkin & Huxley, 1952; McCormick et al., 2007). The

action potential is described in detail in Box 1.1.

And, importantly, it was a galvanometer that was used for the first non-invasive recordings of

electric current from the human brain, famously performed by Hans Berger ca. 1924, a professor

of neurology and psychiatry in Jena, Germany (Berger, 1929, 1931, 1932, 1933a, 1933b, 1933c,

1934, 1935)

2A key figure in the development of an amplified galvanometer was American scientist Alexander Forbes, who
would become a close collaborator of Lucas’ and Adrian’s. In fact, Forbes was so engrossed in his work with Lucas
and Adrian, that he delayed his return from Liverpool to Boston and cancelled his ticket for the ill-fated Titanic
(Finger, 2005a).
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Box 1.1: The action potential (spike)

Neurons communicate via synapses, i.e. connections between one neuron’s axon and

another neuron’s dendrite (Figure 1.1a). At rest, the ion concentrations between the intra-

and extracellular spaces maintain a stable charge of approximately -70mV. If a synaptic

excitation is sufficiently strong to depolarise the membrane potential to around -50 mV,

an action potential is initiated near the axon hillock (Figure 1.1a and b). This event

surges the transmembrane potential to approximately +40 mV (Figure 1.1b). The action

potential, or spike, then travels down the axon to the synapse where the neuron connects

to a neighbouring neuron (Figure 1.1a). Following the spike, the cell repolarises, to the

point where the transmembrane potential drops below the resting potential of -70 mV.

Following this refractory period, the transmembrane current recovers back to its resting

potential (Figure 1.1b, see Gazzaniga, 2009; Pinel & Barnes, 2017). Depending on

the strength of the transmitted signal, the receiving neuron may perpetuate the process.

Although the action potential is known to be an "all-or-nothing" response, inputs that do

not trigger a spike may still increase or reduce the transmembrane current such that a

subsequent input may be more or less likely to cause a spike. Throughout the thesis, I will

repeatedly argue that neuronal oscillations increase or decrease the excitability within

a population, thus offering "windows of opportunity" for a spike (Moore et al., 2010).

This is based on the notion that the membrane potential of the neurons participating in

the oscillation decreases and increases rhythmically (Anderson & Strowbridge, 2014;

Buzsáki & Draguhn, 2004; Llinás, 1988).
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Figure 1.1: The synapse and action potential. a The anatomy of a pyramidal neuron and
synaptic connection with neighbouring neuron. b The time course of the action potential.
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1.2 Neuronal Oscillations

Clocks tick, bridges and skyscrapers vibrate, neuronal networks oscillate.

Buzsáki and Draguhn (2004)

In a series of seminal papers, Hans Berger describes a series of invasive and non-invasive

electrophysiological recordings from human participants, laying the foundation for the electroen-

cephalogram (EEG; Berger, 1929, 1931, 1932, 1933a, 1933c, 1934, 1935). Berger reported

rhythmic high-amplitude oscillations with a period of 90-100 ms, which he famously termed the

“alpha” rhythm (in early works also referred to as “Berger rhythm”, Adrian & Matthews, 1934).

This activity was often overlaid by or alternated with faster, lower-amplitude oscillations with a

period of about 35 ms, termed "beta" rhythm (Berger, 1929). Due to its prominence and high

amplitude, most early reports focused on studying the alpha rhythm (Adrian & Matthews, 1934;

Adrian & Yamagiwa, 1935; Berger, 1929, 1931, 1932, 1933c, 1934, 1935).

While many researchers were convinced about the cerebral origin of these oscillations

(Adrian & Yamagiwa, 1935; Berger, 1929; Hogan & Fitzpatrick, 1988), others questioned

whether they were indeed generated by the brain and did not reflect artefacts from muscular

activity (Lippold, 1970; Upton & Payan, 1970). Today, it is well-established that neuronal

oscillations are produced by transmembrane currents underlying both spiking and non-spiking

activity (Buzsáki & Watson, 2012; Einevoll et al., 2013; Lopes Da Silva & Storm Van Leeuwen,

1977).

In human participants, oscillations are generally studied non-invasively using EEG or mag-

netoencephalography (MEG), or via electrocorticography (ECoG), an array of electrodes di-

rectly placed the brain’s surface to identify seizures in patients with treatment-resistant epilepsy

(Buzsáki & Watson, 2012; Lopes da Silva, 2022). In non-human primates, oscillations can be

observed in intracranial recordings of extracellular currents, known as the Local Field Potential

(LFP, Buzsáki & Watson, 2012).

Over the last three decades, research on neuronal oscillations in cognition (Başar et al., 2000;
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Jensen & Hanslmayr, 2020; Jensen, Spaak, & Zumer, 2014; Jensen et al., 2007), psychiatric and

neurological disorders (Başar, 2013; Schnitzler & Gross, 2005; Uhlhaas & Singer, 2006, 2010),

and neuronal computation has attracted great interest (Akam & Kullmann, 2014; Buzsáki &

Vöröslakos, 2023; Salinas & Sejnowski, 2001; Varela et al., 2001). Following Berger’s termi-

nology (Berger, 1929), researchers still follow the convention to categorise neuronal oscillations

according to their frequency bands and distinguish between rhythms in the delta (0.1 – 3 Hz),

theta (4 – 8 Hz), alpha (8 – 12 Hz), beta (13 – 25 Hz), and gamma-band (>30 Hz), which

are conserved across different species—from rodents and primates to humans and even insects

(Buzsáki & Vöröslakos, 2023).

This thesis focuses on the role of gamma and alpha oscillations in visual perception and

attention.

1.2.1 Oscillations conduct the orchestra of neuronal firing

When an axon of cell A is near enough to excite a cell B and repeatedly or

persistently takes part in firing It, some growth process or metabolic change takes

place in one or both cells such that A’s efficiency, as one of the cells firing B, is

increased.

– Donald Hebb, 1949, p. 62, available at: pure.mpg.de, but see Hebb (2002)3

In "The Organization of Behavior," one of the most influential works in modern neuroscience,

Donald Hebb posits that cell assemblies—reciprocal neuronal connections—emerge when adja-

cent neurons recurrently stimulate each other (Hebb, 2002). While Hebb explicitly linked these

connections to synaptic plasticity, the computational benefit of synchronised neuronal activity

has also been discussed in the context of neuronal communication and visual perception. For

instance, the coincident firing of several neurons, e.g. in the form of coherent feedforward

inputs (Peter et al., 2021; Singer, 2018) or proximal and distal feedforward and feedback inputs

(Larkum, 2013), has been argued to increase the impact of individual spikes on the receiving

3This quote is often used in its summarized form: “Neurons that fire together, wire together”. However, it was
not Hebb who first used these words, but Carla Shatz (Collins, 2017)



Introduction 8

cell.

Moreover, transient synchronous activity between neurons has been suggested to create a

"neural word", that can be read out by a receiving population (Buzsáki, 2010; Engel & Singer,

2001). As I will detail below, this has been linked to the binding of low-level visual features

into coherent object representations (Singer, 1999; von der Malsburg, 1985, 1995). Neuronal

oscillations have long been theorised to facilitate the creation of cell assemblies by synchronising

neurons aiming to collaborate, and may thus play a role in efficient neuronal communication

(Buzsáki, 2010; Singer & Gray, 1995; Singer, 1999, 2018). These ideas indicate a computational

benefit of neuronal synchronisation (Buzsáki, 2010; Engel & Singer, 2001).

The complexity of cognitive and behavioural tasks demands more than just localised neuronal

assemblies; it also calls for coordinated interactions among distributed neural networks (Buzsáki

et al., 2013). In addition to their involvement in the formation of local neuronal partnerships,

oscillations have long been proposed to enable inter-areal communication (Bressler & Kelso,

2001; Bressler et al., 1993; Buzsáki & Watson, 2012; Buzsáki et al., 2013; Engel et al., 2001;

Varela et al., 2001). Synchronous rhythms in anatomically distant areas are often interpreted as

indicators of long-range neural connectivity, whereby the oscillations are believed to effectively

convey information between the regions (Fries, 2005, 2015; Hoppensteadt & Izhikevich, 1998;

Varela et al., 2001). The notion that long-range connections modulate neuronal activity in

distinct regions underpins the concept that cognition is an active, orchestrated process, rather

than a mere byproduct of local, sequential neuronal activation.

Two highly influential theories, known as Binding by Synchrony (Engel et al., 1991; Gray,

1994; Singer & Gray, 1995; Singer, 1999) and Communication Through Coherence (Fries,

2005, 2015), underscore the role of gamma oscillations (>30 Hz) in both the formation of cell

assemblies and inter-regional communication.
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1.3 Gamma oscillations: perceptual binding, neuronal com-

putation, and neuro-protection

In his pioneering paper on human EEG recordings, Hans Berger reported brief bursts of high-

frequency activity, lasting around 30 ms, that were prominent when participants were engaged

in cognitively demanding tasks (Berger, 1929). Consistent with these initial findings, gamma

oscillations have been frequently linked to sensory perception and cognition (Cardin, 2016;

Herrmann & Mecklinger, 2001; Herrmann et al., 2004; Jensen et al., 2007; Sohal, 2016).

In the late 1980s, the hypothesis emerged that these oscillations serve to orchestrate the

formation of cell assemblies (Gray & Singer, 1989; Gray, 1994; Singer & Gray, 1995). This

notion has since been extensively studied in a multitude of experiments, particularly in the

context of perceptual binding and neuronal communication (for review see Buzsáki & Wang,

2012; Engel et al., 2001; Fries, 2005, 2015; Gray, 1994; Singer & Gray, 1995; Singer, 1999,

2018).

1.3.1 Binding by Synchrony

As soon as an object enters our visual field, we can quickly perceive and segregate it from its

surroundings. This seamless perception relies on an intricate hierarchical visual system that

binds the neuronal representations of simple features into a unified percept of each object.

The visual ventral stream, extending from the primary visual cortex to the inferior tem-

poral cortex, plays a pivotal role in object recognition (DiCarlo & Cox, 2007). By relating

electrophysiological recordings and neuroimaging data to the representations emerging in Deep

Neural Networks (DNNs) for image classification, it has been repeatedly demonstrated that the

complexity of the neural representations increases along this hierarchically structured system

(Güçlü & van Gerven, 2015; Kruger et al., 2013; Yamins & DiCarlo, 2016; Yamins et al.,

2014). Neurons in the primary visual cortex have been consistently shown to respond to simple

features such as the orientation of contours, while neurons in higher-order areas respond to more
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complex feature conjunctions (Carandini, 2005; Felleman & Van Essen, 1991; Van Essen et al.,

1991). The increasing complexity of the neural representations along the visual hierarchy is

further coupled to increasing receptive field sizes (Reynolds & Desimone, 1999; Rolls & Baylis,

1986; Rolls et al., 2003; Tovee et al., 1994). This structure gives rise to the binding problem: the

neuronal representations of the low-level features belonging to the same object must converge

along the hierarchy such that they are integrated into a coherent percept.

Considering the complexity of our visual system, and the abundance of stimuli in our visual

world, feature binding is not a trivial task (Roelfsema, 2023). It has been proposed that the

brain might solve the binding problem with neurons that are responsive to feature conjunctions

(Reynolds & Desimone, 1999; Shadlen & Movshon, 1999). A neuron that is responsive to the

conjunction "blue triangle", could integrate the responses of one neuron responding to triangular

shapes, and another neuron responding to the colour blue. However, the feasibility of this coding

scheme is limited, as it requires the neurons to have overlapping receptive fields. Moreover, the

number of possible feature combinations in the world is likely to exceed the number of neurons

in the visual cortex (Roelfsema, 2023; Shadlen & Movshon, 1999).

The Binding by Synchrony model proposes a complementary mechanism, suggesting that

complex objects are represented by the synchronous activity of distributed neurons, each favour-

ing different features of the same object (Aertsen & Arndt, 1993; Milner, 1974; von der Malsburg,

1995, 1999) . Originally proposed by von der Malsburg (1981), this model has been updated in

the late 1980s by Singer and colleagues who hypothesised that gamma oscillations orchestrated

spiking activity in cortical areas and thus facilitated the binding (Engel et al., 2001; Gray &

Singer, 1989; Singer & Gray, 1995) . Consider the example in Figure 1.2 a, showing a scientist

focusing her gaze on an Erlenmeyer flask. According to the Binding by Synchrony model, the

flask is represented and communicated across the visual cortex through synchronous spiking of

all neurons responding to the contours of the object within a gamma cycle (Figure 1.2c, Engel

et al., 2001; Gray, 1994; Singer & Gray, 1995; Singer, 1999). Gamma oscillations have been

repeatedly shown to underlie a balance of excitation and inhibition (Börgers & Kopell, 2003;

Börgers et al., 2008; Olufsen et al., 2003; Traub et al., 1997; Whittington et al., 2011). The
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up-state of the gamma cycle has been argued to reflect a state of high excitation, thus providing

a "window of opportunity" for the neurons to discharge (Fries et al., 2007; Nikolić et al., 2013).

By concentrating the spikes within a short time window, it has been argued that the receiving

area can read them out as a coherent neuronal representation of the visual input (Engel et al.,

2001; Gray, 1994; Singer & Gray, 1995; Singer, 1999). The Binding by Synchrony model was

initially developed based on intracranial recordings in cat visual cortex showing that neurons in

early visual cortex synchronised their firing to ongoing gamma oscillations in response to visual

stimuli (Eckhorn et al., 1988; Gray & Singer, 1989). This notion was supported by further

subsequent studies based on intracranial recordings in the visual cortex of cats (Engel et al.,

1990; Fries, Neuenschwander, et al., 2001; Gray & Prisco, 1997; Gray et al., 1990; König et al.,

1995; Roelfsema et al., 1997) and non-human primates (Fries, Reynolds, et al., 2001; Havenith

et al., 2011; Maldonado et al., 2000; Womelsdorf et al., 2007).

Following the excitement generated by the Binding by Synchrony hypothesis, gamma oscil-

lations and gamma-band activity have been extensively studied in the visual cortex of humans

and non-human primates (Brunet et al., 2015; Brunet & Fries, 2019; Gieselmann & Thiele,

2008; Hoogenboom et al., 2010; Jia et al., 2011; Müller et al., 1997; Muthukumaraswamy et al.,

2010; Stauch et al., 2022; Tallon et al., 1995; Vidal et al., 2006). Moreover, several studies

have claimed that activity in the gamma-band carries stimulus- and feature-specific information

(Brunet et al., 2014; Brunet & Fries, 2019; Fries, Neuenschwander, et al., 2001; Peter et al.,

2019; Stauch et al., 2022). In line with these findings, visual attention has been linked to

enhanced gamma synchrony in visual and prefrontal areas, suggesting that these oscillations are

involved in processing the attended stimulus (Bichot et al., 2005; Buschman & Miller, 2007;

Fries, Reynolds, et al., 2001; Gregoriou et al., 2009; Kim et al., 2016; Vinck et al., 2013).

In sum, the Binding by Synchrony model, and the multitude of studies supporting its pre-

dictions, have generated considerable enthusiasm over the role of gamma oscillations in visual

perception. However, the excitement about the importance of gamma oscillations for neuronal

processing is juxtaposed by a number of reports questioning the plausibility of the Binding by

Synchony hypothesis (Roelfsema, 2023; Roelfsema et al., 2004; Shadlen & Movshon, 1999). As
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Figure 1.2: a Example: A scientist looking at an Erlenmeyer flask. b The Binding by Synchony
hypothesis predicts that features belonging to the same object are bound through synchronous
spiking in feature-selective neurons. (top) Ongoing gamma oscillation in the population, (bot-
tom) spike raster of the neurons responding to the contours and colour of the flask. The circles
signify that each feature is encoded by neurons with different receptive fields. The neurons fire
only during the excitable state of the oscillation. (This figure is strongly inspired by Engel et al.,
2001 and Roelfsema, 2023) c The Communication Through Coherence hypothesis predicts that
synchronous oscillatory activity between two populations acts as a channel for communication
between them. The blue trace associated with sender A reflects collective activity within a
neuronal population in response to the Erlenmeyer flask, the red trace reflects neuronal activity
in response to the apple. The phase relationship between sender A and the receiver is optimal
for communication, as the excitatory input from A arrives at an excitatory state in the receiver.
The signal from sender B, on the other hand, reaches the receiver in an inhibitory state, and is
unable to activate the neurons in the receiving population.

I will outline at the end of this section, this criticism has recently gained momentum.

1.3.2 Communication through Coherence

Building on concepts analogous to the Binding by Synchrony model, the Communication through

Coherence theory proposes that synchronisation between neuronal populations—typically quan-

tified using coherence metrics—facilitates communication between cortical regions (Fries, 2005,

2015). The rhythmic modulation of neuronal excitability in the gamma range is again central to

this model: Strong gamma oscillations in the "sender" neurons have been argued to concentrate

the neuronal spiking within the gamma cycle (Fries et al., 2007; Singer, 1999). If the gamma

oscillations in the sending and receiving population are synchronous, the inputs from the sending

population will reach the "receiver" neurons in a state of heightened excitability (Fries, 2005,

2015). In turn, the sender will be able to drive the receiver effectively (Başar-Eroglu et al., 1996;
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Fries, 2005, 2015; Salinas & Sejnowski, 2000).

To visualise these concepts, consider again the example motivated in Figure 1.2, whereby

the scientist focuses her gaze and attention on the flask, while the apple on the table is outside

her attentional focus. The blue and red traces in Figure 1.2c depict the gamma-band activity

in response to the flask and the apple in three different neuronal populations sender A, sender

B, and a receiver population. All areas show oscillations in the gamma band, reflected as a

balanced interplay of excitation (sawtooth-shaped peak) and inhibition (trough). According

to the Communication Through Coherence theory, as sender A wants to communicate the

representation of the flask to the receiver, the two regions will synchronise their activity in

the gamma band such that their phase relationship is optimal for communication (Fries, 2005,

2015). As the excitation triggers local inhibition in both the sender and the receiver (Börgers

et al., 2008), the excitatory inputs from sender B reach the receiver in an inhibitory state and

will be insufficient to excite the neurons in that area in order to trigger spiking. As a result, the

representations of the apple are not communicated between sender B and the receiver.

Inter-areal coherence at gamma frequencies has been especially well-documented within the

macaque visual system (Bastos, Vezoli, & Fries, 2015; Bosman et al., 2012; Grothe et al., 2012;

Womelsdorf et al., 2007). Several studies have proposed that gamma oscillations facilitate

feedforward communication by synchronising population activity across successive regions

within the visual ventral stream (Bastos, Vezoli, & Fries, 2015; Shin et al., 2023; van Kerkoerle et

al., 2014; Womelsdorf et al., 2007). This aligns well with the core premise of the Communication

through Coherence model, according to which the inter-areal synchrony orchestrates the activity

between visual areas in a manner that is conducive to effective communication. This type

of oscillatory communication has been metaphorically linked to radio signals, transmitting

information from a sender to a receiver (Hoppensteadt & Izhikevich, 1998).

Much like the Binding by Synchrony hypothesis, Communication through Coherence has

generated great excitement about gamma oscillations and a rich body of literature arguing in

favour of its predictions (Bastos, Vezoli, & Fries, 2015; Bastos, Vezoli, Bosman, et al., 2015;

Bosman et al., 2012; Michalareas et al., 2016; Womelsdorf et al., 2007). However, recent
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reports have questioned whether the coherence measure is feasible to infer that two populations

have synchronised their activity (Schneider et al., 2021; Vinck et al., 2013). I will outline the

counter-arguments to this theory in the final part of this section.

1.3.3 Gamma oscillations in cognitive tasks

Beginning in the late 1990s and extending into the early 2000s, research on gamma oscillations

has attracted great interest, generating an extensive body of literature spanning rodent, non-

human primate, and human studies (for review, see Başar et al., 2000; Başar-Eroglu et al.,

1996; Buzsáki & Wang, 2012; Herrmann et al., 2004, 2010). Attention to visual objects has

been consistently associated with an amplification of gamma oscillations, particularly in visual

area V4 (Bichot et al., 2005; Fries, Neuenschwander, et al., 2001; Fries et al., 2008; Taylor

et al., 2005; Vinck et al., 2013), and in prefrontal regions (Kim et al., 2016; Rouhinen et al.,

2013), as well as enhanced coherence between sensory and frontal areas in the gamma frequency

band (Gregoriou et al., 2009). These findings reinforce the relevance of gamma oscillations for

perception and attention.

Gamma oscillations in the MEG and intracranial recordings from the human and macaque

cortex have further been linked to working memory maintenance in both the visual and auditory

domains (Howard et al., 2003; Kaiser et al., 2003; Mainy et al., 2007; Roux et al., 2012).

Following the notion that oscillations coordinate the formation of cell assemblies (Buzsáki,

2010), gamma oscillations have also been argued to control synaptic plasticity (Galuske et al.,

2019; Salinas & Sejnowski, 2001). Indeed, gamma oscillations have been linked to long-term

memory formation and retrieval (Griffiths et al., 2019; Gruber et al., 2004; Osipova et al.,

2006; Sederberg, Schulze-Bonhage, Madsen, Bromfield, Litt, et al., 2007; Sederberg, Schulze-

Bonhage, Madsen, Bromfield, McCarthy, et al., 2007). These findings suggest that gamma

oscillations play a significant role in broader cognitive functions (Başar-Eroglu et al., 1996;

Herrmann et al., 2004; Jensen et al., 2007).

In sum, several decades of research encompassing diverse animal models and cognitive

tasks have accumulated evidence in support of the concept that gamma oscillations serve critical
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functions in neuronal communication (Fries, 2005; Fries et al., 2007). This, in turn, underscores

their importance in shaping perception, attention, and memory, among other cognitive processes

(for review see Başar-Eroglu et al., 1996; Buzsáki & Wang, 2012; Cardin, 2016; Herrmann &

Mecklinger, 2001; Herrmann et al., 2010; Jensen et al., 2007).

1.3.4 Photic stimulation in the gamma band to counter neuro-degeneration

Gamma oscillations have not only attracted attention in normal brain function but have also been

intensely investigated in clinical populations, particularly those with cognitive impairments

(Başar, 2013; Grützner et al., 2013; Uhlhaas & Singer, 2010; Uhlhaas et al., 2008). Alzheimer’s

Dementia has been shown to be marked by alterations in network activations, particularly affect-

ing inhibitory interneurons (Andrade-Talavera et al., 2023; Verret et al., 2012). As mentioned

above, gamma oscillations reflect a balanced state of excitation and inhibition, that has been pro-

posed to underlie the interplay between pyramidal neurons and inhibitory interneurons (Cardin,

2016; Whittington et al., 2011). In line with that, gamma oscillatory power and rhythmicity

have been found to be compromised in Alzheimer’s patients (see Traikapi & Konstantinou, 2021,

for review) as well as biological models of Alzheimer’s Dementia (see Andrade-Talavera et al.,

2023, for review).

A series of innovative studies have tested whether modulating neuronal gamma oscillations

through sensory stimulation could mitigate the neuropathological changes seen in Alzheimer’s

Disease (Adaikkan & Tsai, 2020; Adaikkan et al., 2019; Iaccarino et al., 2016; Singer et al.,

2018). Indeed, these studies suggest that daily optogenetic and non-invasive photic stimulation at

40 Hz might lead to an activation of neuroprotective mechanisms in mouse models of Alzheimer’s

Dementia (see Adaikkan & Tsai, 2020, for review). These effects have been attributed to the

40 Hz flicker driving gamma oscillations throughout the visual hierarchy to the hippocampus

(Adaikkan et al., 2019). The feasibility and efficacy of 40 Hz photic stimulation as a therapeutic

strategy for Alzheimer’s Disease have since been explored in preliminary human trials, yielding

encouraging results (Chan et al., 2022; He et al., 2021; Liu, Han, et al., 2022; McNett et

al., 2023). In line with the aforementioned criticism targeting the Binding by Synchrony and
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Communication through Coherence theories, these findings have also been questioned by recent

reports that were unable to replicate the neuroprotective effects on neurons and glia cells (Soula

et al., 2023).

To conclude, there is a rich body of literature supporting the involvement of gamma oscilla-

tions in visual perception, neuronal communication, and cognition. At the time of writing this

thesis, however, gamma oscillations and in particular the Binding by Synchrony and Communi-

cation through Coherence models are facing serious criticism.

1.3.5 Challenges to the involvement of gamma oscillations in perceptual

binding and neuronal communication

The first line of criticism addresses the paradigms and stimuli employed to study gamma

oscillations in the visual cortex (Hermes et al., 2015b; Ray & Maunsell, 2010). The temporal

and spectral properties of cortical gamma-band activity, particularly in non-invasive recordings

obtained with EEG and MEG, have been shown to markedly vary with task requirements and

visual inputs. For instance, short-lived, event-related gamma bursts and prolonged, narrow-

band gamma oscillations have been noted to reflect different underlying processes of visual

perception (Herrmann et al., 2004; Ray & Maunsell, 2011; Tallon-Baudry et al., 1999). Yet,

both types of gamma activity are often discussed interchangeably to argue for the pivotal role of

gamma oscillations in perception (but see Ray & Maunsell, 2011). Gamma bursts are evoked

in response to naturalistic stimuli and have been reported to be modulated by attention (Busch

et al., 2004; Lachaux et al., 2000, 2005). However, they have not been linked to perceptual

binding (Tallon-Baudry et al., 1999). Narrow-band gamma oscillations, reflecting stronger

synchrony within neuronal populations, are typically elicited using grating stimuli (Hoogenboom

et al., 2006, 2010) but are not robustly observed in response to natural stimuli (Hermes et al.,

2015b). Additionally, while the frequency of the oscillations has been shown to have a genetic

component (van Pelt et al., 2012), gamma oscillations have also been shown to be modulated

specific stimulus properties, such as spatial frequency and contrast (Muthukumaraswamy &

Singh, 2013; Muthukumaraswamy et al., 2010; van Pelt & Fries, 2013).
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This poses difficulties on both the Binding by Synchrony and Communication through Coher-

ence hypotheses: If different stimulus properties induce rhythms at different frequencies, how

can a person wearing a striped cardigan over a dress with polka dots be perceived as an entity?

If gamma oscillations are mainly induced by unnatural stimuli, how can we conclude that they

have a general relevance for visual perception? The variability of the gamma oscillations and

frequency in response to different stimuli complicates generalisable claims about their role in

visual perception (Ray & Maunsell, 2010; Sohal, 2016).

Another series of concerns have been raised based on single- and multi-unit recordings from

macaque and rodent brains (Roelfsema, 2023; Shadlen & Movshon, 1999). For example, it

has been argued that noise correlations, meaning neural synchrony, between neurons do not

necessarily change the information content encoded within the population (Averbeck et al.,

2006). Furthermore, even weak neuronal correlations can manifest as oscillatory activity in the

LFP, potentially leading to inflated interpretations of population synchrony (Mazurek & Shadlen,

2002). Neuronal correlations have further been reported to be reduced by attention (Cohen &

Maunsell, 2009). These arguments are at odds with the Binding by Synchrony hypothesis.

A third line of critique specifically targets the studies that have informed the Communication

through Coherence theory. Several methodological issues have been raised in the context

of studying and interpreting communication between two populations. For instance, coherence

between two recording sites could emerge if the LFP measured by one electrode contains afferent

synaptic inputs from the population near the second electrode (Buzsáki & Schomburg, 2015).

This problem has been argued to be exacerbated by volume conduction which further complicates

interference regarding the origin of the signal (Buzsáki & Schomburg, 2015; Buzsáki et al.,

2012). As such, coherence may therefore not reflect unequivocal evidence for inter-regional

synchrony (Buzsáki & Schomburg, 2015; Schneider et al., 2021).

Moreover, the Communication through Coherence hypothesis predicts that gamma oscilla-

tions carry visual inputs from the primary visual cortex along the visual ventral stream (Fries,

2015). However, it has been pointed out that gamma oscillations are more prominent in the

superficial layers 2/3 of visual cortical areas and comparably weak in the input layer 4 (Ray
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& Maunsell, 2015; Smith et al., 2013; Xing et al., 2012). The superficial layers have been

suggested to be more strongly involved in gain control of the deep layer neurons, rather than

feedforward communication (Quiquempoix et al., 2018).

The mounting evidence in support of the relevance of gamma oscillations in visual perception

and cognition is juxtaposed by a growing body of research questioning the predictions of Binding

by Synchrony and Communication through Coherence theories. This ongoing debate underscores

the complexity and nuance that underlie the neurophysiological processes in visual perception

and neuronal communication. In chapter 2, I will present the results of an MEG study, in which

I systematically tested whether endogenous gamma oscillations can be synchronised to a high-

frequency visual flicker. Considering the contradictory evidence regarding gamma oscillations

in the visual system outlined above, developing a tool that can modulate these oscillations would

allow causal inferences over the functional role of gamma oscillations in visual perception and

cognition. As I will demonstrate, we did not find any evidence that the gamma oscillations

were modulated by the visual stimulation. These findings were surprising considering the link

between gamma oscillations and communication along the visual hierarchy (van Kerkoerle et al.,

2014). In the final chapter, I will discuss replications of these findings based on intracranial

recordings in rodents, which have supported the main conclusions in the chapter (Schneider

et al., 2023; Soula et al., 2023). As I will discuss, these findings have important implications

for the role of gamma oscillations in inter-areal communication.
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1.4 Alpha oscillations: Idling vs. Functional Inhibition

Berger’s EEG recordings were dominated by periodic activity at 10 Hz, which he famously

referred to as the alpha rhythm (Berger, 1929). This observation was later replicated by Adrian

and Matthews (1934):

There is often [. . . ] variation in the size of the waves and sometimes the rhythm

only appears intermittently, but its frequency is so characteristic and so constant

that there is never any doubt as to its presence.

– Adrian and Matthews (1934)

1.4.1 Early views: alpha oscillations as neuronal "idling"

Berger (1929) hypothesised that cells spanning the entire cortex generated the alpha rhythm.

Adrian and Matthews (1934), however, reported that the rhythm was strongest in the occipital

lobe, and disappeared in response to visual stimuli (also see Adrian & Yamagiwa, 1935). While

Berger (1929) and Adrian and Matthews (1934) were convinced about the cerebral origin of the

rhythm, it was only shown four decades later that alpha oscillations emerge from thalamic and

cortical generators (e.g. layer 4 and 5 in primary visual cortex V1, Hogan & Fitzpatrick, 1988;

Lopes Da Silva & Storm Van Leeuwen, 1977; Lopes da Silva, 2022).

Early reports have posited that alpha oscillations signify a state of "idling" or inactivity

within the visual system (Pfurtscheller, 2001). This notion was based on the observation that

alpha oscillations are most robustly observed during relaxed wakefulness, particularly when the

eyes are closed (Adrian & Matthews, 1934; Adrian & Yamagiwa, 1935; Pfurtscheller, 2001;

Pfurtscheller et al., 1996).

It is true that, in our view, the rhythm shows the negative rather than the positive

side of cerebral activity, it shows what happens in an area of cortex which has

nothing to do, and it disappears as soon as the area resumes its normal work.

– Adrian and Matthews (1934)
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This notion conforms with electrophysiological studies that linked strong alpha oscillations

to reduced neuronal excitability, quantified by reduced spiking activity (Bollimunta et al., 2008,

2011; Dougherty et al., 2017; Haegens et al., 2011) and reduced high-frequency broadband and

gamma band activity in the LFP (Iemi et al., 2022; Spaak et al., 2012), as well as phosphenes

induced using transcranial magnetic stimulation (Romei et al., 2008, 2010). Moreover, EEG-

fMRI studies have revealed an inverse relationship between alpha power and the BOLD response

in prefrontal (Sadaghiani et al., 2012) and occipital areas (Scheeringa et al., 2012; Zumer et al.,

2014). In line with these observations, signal detection tasks have repeatedly associated strong

occipital alpha oscillations with reduced visual performance (e.g. Dĳk et al., 2008; Ergenoglu

et al., 2004; Hanslmayr et al., 2007; Iemi et al., 2017; Limbach & Corballis, 2016). These

studies suggest that strong alpha oscillations may be detrimental to neuronal processing and

perception.

1.4.2 Evidence for the functional relevance of alpha oscillations

Even though the idling hypothesis prevailed in the literature up until the beginning of the 21st

century (Cooper et al., 2003; Pfurtscheller, 2001) some early reports have also suggested a

functional role for alpha oscillations in cortical processing and perception. Berger posited that

the disappearance of the alpha rhythm in response to visual stimuli could reflect an activation of

the visual cortex, which simultaneously inhibits other brain areas (Berger, 1929). This implies

that alpha oscillations may be involved in the dynamic allocation of computational resources

(Ray & Cole, 1985).

This perspective has gained support from studies investigating modality- and task-specific

attention. For instance, multimodal attention studies have demonstrated increases in alpha power

in the occipital lobe when participants were instructed to focus on the auditory component of

an audio-visual stimulus (Brickwedde, Limachya, et al., 2022; Foxe et al., 1998; Fu et al., 2001;

Mazaheri et al., 2014). In visual attention and perception tasks, reduced alpha power is often

associated with improved performance (Legewie et al., 1969; Ray & Cole, 1985; Schupp et al.,

1994). However, tasks requiring "internal attention", such as mental arithmetic, mental imagery,
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or working memory maintenance have been shown to benefit from increased alpha power (Jensen

et al., 2002; Klimesch et al., 1999; Ray & Cole, 1985; Schupp et al., 1994). These findings

have been explained by the notion that the power of the alpha oscillations in visual cortex can be

modulated depending on whether the task benefits from attention being guided toward or away

from sensory information (Klimesch et al., 2007; Ray & Cole, 1985; Schupp et al., 1994).

This line of work suggests that these oscillations are more actively involved in perception

and cognition than predicted by the idling account (Jensen & Mazaheri, 2010; Klimesch, 2012;

Klimesch et al., 2007; Palva & Palva, 2007). As I will detail in the following, decades of research

have also argued for a functional role of the inhibitory alpha oscillations in visual attention.

1.4.3 Alpha oscillations facilitate attention through inhibition.

The capacity of our visual system is limited (Allport, 2011; Broadbent, 1958; Bundesen,

1990; Kahneman, 1973; Wolfe et al., 2006). This circumstance becomes apparent in everyday

situations such as searching for our keys: if we were able to process all objects in a visual

scene in parallel, we would find our keys immediately, regardless of the number of stimuli in

the environment. However, we have all experienced that we take longer to search for objects

in cluttered compared to tidy spaces. This everyday task is typically operationalised in visual

search experiments, which have led to a quantification of our visual (and attentional) capacity

to about 20-50 objects/second (Wolfe, 1998; Wolfe & Horowitz, 2017).

Attention has long been posited as the mechanism that enables us to effectively interact with

our environment despite these limitations (Allport, 2011; Broadbent, 1958; Treisman et al.,

1980). Based on early proposals, attention is often understood as a mechanism for stimulus

selection (Broadbent, 1958; Treisman et al., 1980) or as a channel that gates resources towards

areas that are relevant for the current behaviour (Allport, 2011). As I will outline below,

inhibition by alpha oscillations has long been proposed to facilitate both of these aspects of

attention: the selection of task-relevant stimuli (Klimesch, 2012) and the gating of cortical

resources towards task-relevant areas (Jensen & Mazaheri, 2010).
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Figure 1.3: a The Gating by Inhibition theory proposes that an increase of alpha oscillations
reduces neuronal processing of the unattended stimulus (here, the apple). In turn, this funnels
resources toward the cortical areas processing the attended stimulus (here, the Erlenmeyer
flask) (Jensen, 2023; Jensen & Mazaheri, 2010). b Alpha oscillations have been argued to
implement a duty cycle in neuronal processing. (top) During the trough of the alpha cycle,
the neuronal population is able to activate, as indicated by the spike raster. (bottom) A higher
amplitude results in a shortened duty cycle, with fewer spikes in the population (see Jensen
et al., 2012; VanRullen, 2016). c Alpha oscillations might support visual processing by
converting competing inputs into a temporal code. For this example, imagine the Erlenmeyer
flask and the apple are placed close to each other, such that they are within the same receptive
field in, for instance, the object-selective IT cortex. As attention is directed toward the flask,
the excitatory inputs to all neurons representing this item will be stronger than the inputs to
neurons responding to the features of the apple. Consequently, the neural representation of the
flask should overcome the inhibition by the alpha oscillation at an earlier phase. Through this
mechanism, the flask receives a temporal advantage over the apple (Jensen, Gips, et al., 2014;
Jensen et al., 2021).

1.4.4 Alpha oscillations in spatial attention

Numerous studies using lateralised attention tasks have suggested that occipital alpha oscillations

facilitate the allocation of attentional resources (see, for review Foster & Awh, 2019; Jensen,

2023; Jensen & Mazaheri, 2010; Klimesch et al., 2007, 2011). Spatial attention robustly triggers

an increase in alpha power in the hemisphere contralateral to the unattended side (Bahramisharif

et al., 2010; Gutteling et al., 2022; Kelly et al., 2006; Sauseng et al., 2005; van Gerven &

Jensen, 2009; Vissers et al., 2016; Worden et al., 2000; Zhigalov et al., 2019). The magnitude

of this modulation has further been linked to the participant’s ability to ignore task-irrelevant
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stimuli (Händel & Jensen, 2014; Händel et al., 2011; van Zoest et al., 2021; Zhao et al., 2023).

More recently, it has been shown that alpha oscillations can even be modulated with retinotopic

precision, whereby a decrease in alpha power is observed over receptive fields representing the

attended spatial location (Foster et al., 2017; Popov et al., 2019; Yuasa et al., 2023). These

studies underpin the hypothesis that alpha oscillations selectively reduce neural activity in

sensory regions corresponding to task-irrelevant stimuli (Jensen & Mazaheri, 2010; Klimesch,

2012).

These observations have been reconciled in the Gating by Inhibition theory which postulates

that the inhibition of task-irrelevant areas facilitates the transfer of information toward task-

relevant areas (Jensen, 2023; Jensen & Mazaheri, 2010). Figure1.3a presents this notion

based on the scenario of the scientist attending to the Erlenmeyer flask placed next to an apple

introduced in Figure 1.2a. Imagine, for simplicity, that the scientist covertly attends to the

flask, without moving her eyes. As a result of this attention shift, the amplitude of the alpha

oscillations will increase in the right hemisphere, where the apple is processed, reducing cortical

excitability in this area. According to the Gating by Inhibition hypothesis, this inhibition will in

turn funnel computational resources toward the cortical region processing the attended stimulus

(here, the left hemisphere, Jensen & Mazaheri, 2010). This is reflected in an increase in neuronal

excitability to the attended stimulus, as shown in a myriad of studies in humans (e.g. Appelbaum

& Norcia, 2009; Chen et al., 2003; Kastner et al., 1999; Morgan et al., 1996; Saenz et al., 2002)

and non-human primates (e.g. Martinez-Trujillo & Treue, 2004; McAdams & Maunsell, 2000;

Moran & Desimone, 1985; Seidemann & Newsome, 1999).

As such, while strong alpha oscillations have been associated with reduced cortical process-

ing, these ideas argue that they can be modulated in a functional way, to enhance the processing

of task-relevant stimuli.
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1.4.5 The role of alpha inhibition in attention to low-level features is un-

determined

While alpha oscillations have been most extensively studied in the context of signal detection

and spatial attention, previous work has also argued that alpha oscillations may be modulated

to facilitate the selection of visually overlapping stimuli based on their features. Snyder and

Foxe (2010) presented participants with a display of spatially overlapping, coloured, moving

dots. The authors demonstrated that when participants were cued to attend to the colour, alpha

amplitude increased in parietal areas, i.e. the dorsal stream, that has traditionally been argued to

predominantly process spatial relations and direction of movement (Milner & Goodale, 2008;

Ungerleider & Haxby, 1994). When participants were asked to attend to the colour of the

stimuli, alpha oscillations emerged from occipital sources, arguably the ventral stream that has

a preference for low-level features such as colour (Milner & Goodale, 2008; Ungerleider &

Haxby, 1994). These findings imply that alpha oscillations may be modulated to reduce the

processing of the unattended modality, and are generally conform with previous of reports on

modality-specific and spatial attention outlined above (e.g. Foxe et al., 1998; Ray & Cole, 1985;

Worden et al., 2000).

While the modulation of alpha oscillations in separate cortical areas is well-studied, fewer

insights exist on whether alpha oscillations support attention when the task-relevant and -

irrelevant features are processed in spatially proximal neuronal populations. For instance, in

visual search, the location of the search target is, by definition, unknown. However, it has been

repeatedly shown that observers complete the search faster and with higher accuracy when they

have been informed about the low-level features of the target or the distractors, such as colour or

shape (Thayer et al., 2022; Wolfe, 1994, 2021; Wolfe et al., 1989), both of which have been shown

to be processed in early visual areas V1 and V2 (Horwitz, 2020; Hubel & Livingstone, 1987;

Livingstone & Hubel, 1988). These findings can be explained by the rationale that attention

can be directed at features in a spatially unspecific way (Maunsell & Treue, 2006; Treue, 2001).

For instance, we can speed up the search for our keys when focusing on objects sharing the
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colour of the ornament on the key chain. Like spatial attention, feature-based attention has

been associated with increased excitability to target features and reduced responses to distractor

features (Martinez-Trujillo & Treue, 2004; Maunsell & Treue, 2006).

A series of preliminary studies has proposed a negative correlation between occipital alpha

oscillations and reaction time in a visual search task (Pastuszak et al., 2018, PhD thesis, chapter

4-6) – the higher the power in the alpha-band, the faster were the responses. This outcome has

been rationalised by the theory that alpha oscillations act as a uniform filter on the visual inputs

that reduces the excitability of neuronal representations across visual cortex. As attentional

modulation enhances the cortical excitability to the target, this stimulus will be able to surpass

the threshold, while the inhibition of the distractors is facilitated (Pastuszak et al., 2018, chapter

5). This idea provides an explanation of how alpha oscillations could support a visual search task

in which many distracting stimuli are present. In chapter 3, I will directly test this hypothesis

using MEG in combination with Rapid Invisible Frequency Tagging (RIFT), a novel, subliminal

visual stimulation technique, that can be used to probe neuronal excitability in visual cortex to

different stimuli on the screen (Zhigalov et al., 2019).

1.4.6 Questions surrounding gain modulation by alpha oscillations

Despite growing empirical support for the notion that alpha oscillations attenuate distracting

inputs, recent studies employing visual flicker to study spatial attention and visual search could

not reliably establish a correlation between the magnitude of the alpha oscillations and cortical

excitability (Antonov et al., 2020; Gundlach et al., 2020; Morrow et al., 2023; Zhigalov &

Jensen, 2020). Furthermore, it has been argued that the alpha rhythm observed during spatial

attention emerges from parietal, rather than occipital sources, and may therefore not be feasible

to modulate the gain of visual inputs (Zhigalov & Jensen, 2020). These findings stand in

contrast to the theories positing that alpha oscillations gate visual processing through inhibition

of task-irrelevant information (Jensen & Mazaheri, 2010).

As an alternative hypothesis, it has been argued that the visual system may rely on desyn-

chronisation in the alpha band to track and maintain the locus of attention (Foster & Awh, 2019).
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Indeed, recent work has found a link between alpha power and distractor inhibition in tasks that

demand enhanced target processing (Gutteling et al., 2022; Noonan et al., 2016). The increased

need for target processing could indirectly require a reduction of computational resources for the

distracting stimuli, manifesting as relatively enhanced alpha amplitude in task-irrelevant cortical

regions (Jensen, 2023; Peylo et al., 2021).

In chapter 3, I will link alpha oscillations to reduced cortical responses in a feature-based

attention task (Duecker et al., 2023). As I will elucidate, the discrepancies between this

outcome and those that contradict the involvement of alpha oscillations in gain modulation may

be attributable to differences between spatial and feature-based attention. Specifically, feature-

based attention may benefit from an inhibitory gating mechanism situated in early visual regions

(also see Snyder & Foxe, 2010), while spatial attention predominantly engages parietal cortical

areas (Ungerleider & Haxby, 1994).

1.4.7 Phasic modulation of neuronal excitability by alpha oscillations

As described above, many reports have investigated a somewhat continuous inhibition of task-

irrelevant cortical regions by alpha oscillations. A related body of literature has targeted the

periodicity of the alpha rhythm, and its effect on perception and attention in time (for review see

VanRullen, 2016; VanRullen et al., 2014).

Early EEG research by Lindsley (1952) has posited that the alpha rhythm creates a time

window for neural integration. In this context, the author discusses theories about the relevance

of alpha oscillations in the coordination of eye movements, a topic that has only recently rekindled

interest (Liu et al., 2023; Pan et al., 2023; Popov et al., 2021; Staudigl et al., 2017). Lindsley

postulated that the thalamic and cortical alpha rhythms periodically regulate the excitability of

visual neurons (Lindsley, 1952). These ideas predict that the perceptibility of a sensory input

changes according to the phase of the alpha cycle. Consistent with this hypothesis, several

studies have linked the pre-stimulus alpha phase to stimulus detectability (Busch & VanRullen,

2010; Callaway & Yeager, 1960; Dugué et al., 2011; Dustman & Beck, 1965; Mathewson

et al., 2009; Nunn & Osselton, 1974). These behavioural indications have been corroborated by
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evidence showing that visual evoked responses also vary with alpha phase (Dugué et al., 2011;

Gruber et al., 2014; Jansen & Brandt, 1991).

In conformity with Lindsley’s ideas, further experiments have evidenced that the perception

of two consecutively presented stimuli, such as light pulses on a screen or phosphenes induced by

transcranial magnetic stimulation, is influenced by the phase and frequency of alpha oscillations

in occipital cortex (Gulbinaite et al., 2017; Samaha & Postle, 2015; Valera et al., 1981). For

example, two flashes within the same alpha cycle integrate into a single perceptual event, while

flashes presented in separate cycles are perceived as distinct (e.g. Gulbinaite et al., 2017; Sharp

et al., 2022; VanRullen, 2016; Wutz et al., 2018), also see Buergers and Noppeney (2022) for a

critical account.

Based on these observations, alpha oscillations have been proposed to implement a duty

cycle, i.e. a time frame for periodic activation and inactivation that rhythmically modulates

perception (Jensen et al., 2012; VanRullen, 2016). Figure 1.3b depicts how the spiking activity

in a neuronal population may be modulated by an ongoing alpha oscillation. Note that the

amplitude in the panel is lower than in the bottom panel. At the peak of the oscillation,

inhibition is high, which reduces the probability of neuronal firing (Bollimunta et al., 2008;

Dougherty et al., 2017; Haegens et al., 2011; Iemi et al., 2022; Watson et al., 2018). As the

inhibition reduces toward the trough of the cycle, the neurons are able to fire, as indicated by

the spike raster (Jensen et al., 2012). An increase in amplitude, as shown in the bottom panel,

shortens the duty cycle, reflected in the reduced number of spikes within the alpha cycle (Jensen

et al., 2012).

This line of research has argued that our visual perception is not continuous but changes

along the phase of the alpha oscillations (VanRullen, 2016). Why would evolution yield a visual

system whose effectiveness is not constant, but modulated rhythmically?
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1.4.8 Alpha oscillations may implement a processing pipeline in the visual

system

The cyclic modulation of cortical excitability along the alpha cycle has been suggested to

facilitate stimulus selection (Jensen, Gips, et al., 2014; Jensen et al., 2012) - one of the key

functions of attention (Carrasco, 2011). This proposal is based on the notion that a high alpha

amplitude reflects strong inhibition, that can only be overcome by sufficiently excited neurons.

As neuronal excitability has been shown to be enhanced as a result of attention (e.g. Kastner

et al., 1999; Moran & Desimone, 1985) and stimulus salience (Beck & Kastner, 2005; Morris

et al., 1997) neurons representing potentially important stimuli will be able to overcome this

inhibition, while neurons representing irrelevant stimuli may remain silent (Jensen et al., 2012).

This mechanism may be particularly relevant in the context of spatial attention: even when

reducing computational resources in the hemisphere associated with the unattended side by

increasing the amplitude of the alpha oscillations, a sufficiently salient stimulus - signifying

potential danger - would still be able to elicit a response (Jensen et al., 2012). As such, the

periodic nature of the inhibition by alpha oscillations may be superior to a uniform inhibition,

as it allows a window of opportunity for potentially important stimuli to be processed.

A more recent extension of this idea suggests that this mechanism supports the processing

of multiple competing stimuli in time, by organising neuronal representations along the phase

of ongoing alpha oscillations in visual cortex (Jensen, Gips, et al., 2014; Jensen et al., 2021). At

the peak of the alpha oscillation, when inhibition is high, only neurons responding to attended

or highly salient stimuli would be able to reach the criticial membrane potential to initiate a

spike (Jensen, Gips, et al., 2014). As the inhibition wanes toward the trough of the alpha cycle,

weaker excitatory inputs may be able to trigger a spike. This results in a phase code, whereby

the neuronal representations of attended or salient stimuli activate before unattended stimuli

(Jensen, Gips, et al., 2014). In this way, alpha oscillations may facilitate the processing of

competing stimuli in our visual world by organising them in time (Jensen, Gips, et al., 2014;

Jensen et al., 2021).
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Consider again the example of the Erlenmeyer flask and the apple within the scientist’s visual

field. Imagine now that the two objects are placed close together and compete for processing

resources in the same cortical areas (Figure 1.3c). Object-based attention will enhance the

excitatory inputs to all neurons responding to the features of the flask. Consequently, these

neurons will be able to fire at an earlier phase of the alpha oscillations than the neurons

representing the apple. The result is a temporal code, that organises the neuronal representations

along the phase of the alpha oscillation (Figure 1.3c Jensen, Gips, et al., 2014). Furthermore,

this code may give priority to the attended stimulus, whose representations may reach higher-

order areas with a temporal advantage over the unattended stimulus (Jensen et al., 2021). As

such, this model explains why we are able to efficiently interact with out environment despite

the multitude of stimuli in our visual world.

The temporal code model is strongly inspired by intracranial recordings from the rodent and

human hippocampus, where distributed firing patterns have been shown to be organised by the

phase of ongoing theta oscillations (Jezek et al., 2011; Liebe et al., 2022; O’Keefe & Recce,

1993; Skaggs et al., 1996). In the visual system, such a temporal code could be implemented by

a coupling of spike times to the phase of the ongoing alpha oscillations (Bollimunta et al., 2008;

Haegens et al., 2011), or as phase-amplitude-coupling between alpha and gamma oscillations

(Spaak et al., 2012; van Kerkoerle et al., 2014).

The outlined framework rationalises the series of studies showing that the perceptability of

visual inputs and their associated event-related responses, change along the alpha cycle. While it

seems counter-intuitive that our continuous perception would underlie a mechanism that reduces

the efficacy of visual inputs periodically, the proposed model shows how such a mechanism can

support computationally efficient selection and processing of attended and salient stimuli.

1.4.9 Linking computational models of the visual system to Computer

Vision

Despite the limited capacity and bottleneck problems associated with our hierarchically organised

visual system, our perception of the visual world is virtually seamless. This is just one testament
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of the remarkable computational efficiency of the neocortex (Diehl et al., 2018). Historically,

the field of Machine Learning has drawn many inspirations from neuroscience to improve the

computational efficiency and performance of Artificial Neural Networks (ANNs, LeCun &

Bengio, 1995; Rosenblatt, 1958). However, the temporal dynamics of the human visual system,

despite their posited relevance for cortical computation, are rarely used to inform ANNs.

While the temporal code model presented in Figure 1.3c and outlined above elegantly de-

scribes how inhibitory alpha oscillations may facilitate the selection and processing of attended

stimuli, the proposed computational efficiency of this mechanism has so far not been demon-

strated. In chapter 4, I will draw inspiration from the rich body of research on the importance of

alpha oscillations for visual processing and attention. Specifically, I will present an ANN trained

on a computer vision problem that embraces biologically semi-realistic alpha oscillations. As I

will show, these dynamics allow the network to segregate competing visual inputs and convert

them into a temporal code as depicted in Figure 1.3.
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1.5 Questions addressed in this thesis

Gamma and alpha oscillations in the visual system have been studied for decades (Fries, 2015;

Jensen & Hanslmayr, 2020). While a rich body of literature has argued that gamma oscilla-

tions facilitate inter-areal communication along the visual hierarchy, recent reports have raised

concerns regarding the credibility of these findings. Alpha oscillations have been extensively

studied in the context of spatial attention, however, their involvement in feature-guided visual

search has so far only been implicated by preliminary studies (Pastuszak et al., 2018). Lastly,

while previous work has argued that alpha oscillations facilitate the processing of competing

visual stimuli in time, their computational efficiency has so far not been explicitly tested. To

address these uncertainties, this thesis tackles the following questions:

Can ongoing gamma oscillations in visual cortex be modulated by a high-frequency, rhyth-

mic visual flicker?

In chapter 2, I will present the results of a MEG study, in which I have systematically investigated

cortical responses to rhythmic photic stimulation in absence and presence of endogenous gamma

oscillations in early visual regions (Duecker et al., 2021). The key finding of this study is

that despite overlapping frequency ranges, the gamma oscillation and the visual responses co-

exist in visual cortex, without any indication that the external drive modulates the endogenous

rhythm. These findings challenge the Communication through Coherence hypothesis, as they

suggest that high-frequency oscillatory activity does not propagate between cortical regions.

As I will discuss, the presented results have been supported by recent reports on intracranial

recordings in mice (Schneider et al., 2021; Soula et al., 2023). I will conclude that a high-

frequency visual flicker can still be used for Rapid Invisible Frequency Tagging (RIFT) to

probe cortical excitability to visually presented stimuli, without interfering with potentially

task-relevant cortical activity in the gamma-band.
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Do cortical alpha oscillations facilitate feature-guided visual search through functional

inhibition, and, if so, how selective is this inhibition?

Chapter 3, builds on my insights from the previous chapter, and presents an MEG study in which

I used RIFT in a classic visual search paradigm the understand the neural processes underlying

feature guidance. My results reveal that the RIFT response serves as a reliable, continuous

measure of cortical excitability to visual features that is modulated to boost targets and suppress

distractors. Moreover, I will show that strong alpha oscillations correlate with improved search

performance and a globally reduced excitability to all visual inputs. I will discuss the idea

that alpha oscillations act as a threshold on the cortical responses to the visual inputs, that can

only be overcome by boosted stimuli. Through this mechanism, which I will refer to as blanket

inhibition, the observer may be enabled to focus her search on the task-relevant stimuli (Duecker

et al., 2023). I will further report some limitations in this study, that suggest that the relationship

between the magnitude of the alpha oscillations with reaction time and the RIFT response may

be confounded by task duration. An alternative explanation to the thresholding account may be

that the observed effects are a consequence of practice, fatigue, and neural adaption. To further

understand these confounds, I will discuss the results of preliminary analyses both in favour and

in contrast to the blanket inhibition account.

Do oscillatory dynamics in Artificial Neural Network generate a temporal code in response

to multiple stimuli?

In chapter 4, I will integrate concepts from Computational Neuroscience and Machine Learning,

to explore how alpha oscillations might enhance the computational efficiency of visual processing

in the context of object-based attention. This algorithm is rooted in the idea outlined above that

alpha oscillations segregated simultaneous visual inputs into a temporal code (Jensen, Gips,

et al., 2014). The dynamics enable this dynamical ANN to convert simultaneous stimuli into a

temporal code, despite only being trained on individual inputs. These simulations show how

embracing the dynamics of the human visual system can enhance the abilities of computer vision

algorithms without explicit training.
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2.1 Abstract

Over the past decades, numerous studies have linked cortical gamma oscillations (∼30-100 Hz)

to neurocomputational mechanisms. Their functional relevance, however, is still passionately

debated. Here, we asked if endogenous gamma oscillations in the human brain can be entrained

by a rhythmic photic drive >50 Hz. Such a noninvasive modulation of endogenous brain rhythms

would allow conclusions about their causal involvement in neurocognition.

To this end, we systematically investigated oscillatory responses to a rapid sinusoidal flicker

in the absence and presence of endogenous gamma oscillations using magnetoencephalography

(MEG) in combination with a high-frequency projector. The photic drive produced a robust

response over visual cortex to stimulation frequencies of up to 80 Hz. Strong, endogenous

gamma oscillations were induced using moving grating stimuli as repeatedly done in previous

research.

When superimposing the flicker and the gratings, there was no evidence for phase or fre-

quency entrainment of the endogenous gamma oscillations by the photic drive. Unexpectedly, we

did not observe an amplification of the flicker response around participants’ individual gamma

frequencies; rather, the magnitude of the response decreased monotonically with increasing

frequency. Source reconstruction suggests that the flicker response and the gamma oscillations

were produced by separate, coexistent generators in visual cortex.

The presented findings challenge the notion that cortical gamma oscillations can be en-

trained by rhythmic visual stimulation. Instead, the mechanism generating endogenous gamma

oscillations seems to be resilient to external perturbation.
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2.2 Introduction

Cortical gamma oscillations have been repeatedly linked to the formation of neuronal ensembles

through synchronization of spiking activity in rodents and primates (Brosch et al., 2002; Eckhorn

et al., 1988; Engel et al., 1991; Gray & Singer, 1989; Wehr & Laurent, 1996), including

humans (Hoogenboom et al., 2006; Müller et al., 1997; Rodriguez et al., 1999; Tallon et al.,

1995). Accordingly, they have been ascribed a supporting role for neuronal computations

within populations (Engel et al., 2001; Nikolić et al., 2013; Singer & Gray, 1995; Singer,

1999, 2009; von der Malsburg, 1999) as well as inter-regional functional connectivity (Bressler,

1990; Fries et al., 2007; Varela et al., 2001). Indeed, numerous studies have been able to link

gamma oscillations in the human brain to cognitive processes and perception (for review see

Başar-Eroglu et al., 1996; Herrmann & Mecklinger, 2001; Jensen et al., 2007; Tallon-Baudry,

2009; Uhlhaas et al., 2009), whereas anomalous gamma-band activity has been associated

with impaired cognition and awareness, as in e.g. autism spectrum disorder, schizophrenia

and Alzheimer’s dementia (see Grützner et al., 2013; Herrmann & Demiralp, 2005; Traub &

Whittington, 2010; Uhlhaas et al., 2009; Uhlhaas & Singer, 2006, for review).

In this study, we aimed to entrain, i.e. synchronize, gamma oscillations in the human visual

cortex to a rhythmic photic drive at frequencies above 50 Hz. Stimulation at such high frequencies

has recently been applied in Rapid Frequency Tagging (RFT) protocols, to investigate spatial

attention (Zhigalov et al., 2019) and audiovisual integration in speech (Drĳvers et al., 2020),

with minimal visibility of the flicker. The ability to non-invasively modulate gamma rhythms

would allow to study their causal role in neuronal processing and cognition, as well as their

therapeutic potential, as recently proposed by (Adaikkan & Tsai, 2020; Iaccarino et al., 2016).

It is widely accepted that rhythmic inhibition imposed by inhibitory interneurons forms the

backbone of neuronal gamma oscillations (Bartos et al., 2007; Buzsáki & Watson, 2012; Lozano-

Soldevilla et al., 2014; Traub et al., 1996). Indeed, Cardin et al. (2009) demonstrate evidence

for resonance, i.e. a targeted amplification, in the gamma band, in response to optogenetic

stimulation of GABAergic interneurons, but not when driving excitatory pyramidal cells (also
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see Tiesinga, 2012).

Here, we ask if a rapid photic flicker can hĳack human visual gamma oscillations; a positive

outcome would suggest that visual stimulation can modulate pyramidal-inhibitory-network-

gamma (PING) activity. To this end, we designed a paradigm that embraces the definition of

resonance and entrainment as stated in dynamical systems theory. While neuroscientific studies

widely rely on this terminology (e.g. Hutcheon & Yarom, 2000; Lakatos et al., 2019; Notbohm

et al., 2016; Schwab et al., 2006), the prerequisites of entrainment are often not sufficiently

accounted for, as pointed out by Helfrich et al. (2019). Entrainment requires the presence of

a self-sustained oscillator that synchronizes to an external drive (Pikovsky et al., 2003; Thut

et al., 2011). This synchronization is reflected by a convergence of the frequency and phase of

the endogenous oscillator to the driving force (Pikovsky et al., 2003). Similarly, resonance is

reflected by periodic responses to a rhythmic drive and an amplification of individually preferred

rhythms, but does not require the presence of self-sustained oscillations per se (Helfrich et al.,

2019; Pikovsky et al., 2003). Indeed, studies on photic stimulation at a broad range of frequencies

(Gulbinaite et al., 2019; Herrmann, 2001) including the alpha-band (Notbohm et al., 2016) have

provided evidence for both resonance and entrainment in the visual system (also see Rager &

Singer, 1998, for resonance phenomena in cat visual cortex).

In this study, oscillatory MEG responses to photic stimulation from 52 to 90 Hz were

investigated in the presence and absence of visually induced gamma oscillations. In the flicker

condition, a rhythmic flicker was applied to a circular, invisible patch. In the flicker&gratings

condition, the flicker was superimposed on moving grating stimuli that have been shown to

reliably induce strong, narrow-band gamma oscillations (Hoogenboom et al., 2006, 2010; van

Pelt & Fries, 2013). These oscillations reflect individual neuronal dynamics (Hoogenboom

et al., 2006; van Pelt & Fries, 2013) and have been shown to propagate to downstream areas in

the visual hierarchy (Bastos, Vezoli, Bosman, et al., 2015; Bosman et al., 2012; Buffalo et al.,

2011; Michalareas et al., 2016). Therefore, we will use the terms induced and endogenous

gamma oscillations interchangeably in the following. We chose moving grating stimuli to elicit

narrow-band endogenous gamma oscillations since more complex stimuli induce a broad-band
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gamma response which might not reflect oscillations (Hermes et al., 2015a; Hermes et al.,

2015b).

We expected the visual system to resonate to frequencies close the endogenous gamma

rhythm elicited by the gratings, as well as a synchronization of the gamma oscillations and the

rhythmic flicker. As we will demonstrate, the moving gratings did generate strong endogenous

gamma oscillations, and the photic drive did produce robust responses at frequencies up to 80

Hz. However, to our great surprise, there was no evidence that the rhythmic stimulation entrains

endogenous gamma oscillations.
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2.3 Materials and Methods

2.3.1 Experimental Procedure & Apparatus

The MEG data were recorded using a MEGIN Triux system housed in a magnetically shielded

room (MSR; Vacuumschmelze GmbH & co., Hanau, Germany). Neuromagnetic signals were

acquired from 204 orthogonal planar gradiometers and 102 magnetometers at 102 sensor po-

sitions. Horizontal and vertical EOG, the cardiac ECG signals, stimulus markers as well as

luminance changes recorded by a photodiode were acquired together with the neuromagnetic

signal. The data were sampled at 1,000 Hz and low-pass filtered online at 330 Hz. Structural

magnetic resonance images (MRIs), for later co-registration with the MEG data, were acquired

using a 3 Tesla Siemens MAGNETOM Prisma whole-body scanner (Siemens AG, Muenchen,

Germany), TE = 2 ms, and TR = 2 s). For two subjects, the T1-weighted images obtained in

previous experiments, using a 3 Tesla Philips Achieva Scanner (Philips North America Cor-

poration, Andover, USA), were used (scanned at the former Birmingham University Imaging

Centre). Participants were invited to two separate sessions during which the MEG data and

the anatomical images were acquired, respectively. Whenever possible, the MEG recording

preceded the fMRI scan; otherwise, the MEG session was scheduled at least 48 hours after the

fMRI session to avoid any residual magnetization from the fMRI system.

Volunteers were requested to remove all metal items (e.g. jewelry) before entering the MSR.

To enable later co-registration between fMRI and MEG data, four to five head-position-indicator

(HPI) coils were attached to the participants’ foreheads. Along with the position of the coils,

three fiducial landmarks (nasion, left and right tragus) and over 200 head-shape samples were

digitized using a Polhemus Fastrak (Polhemus, Colchester, USA). Following the preparation,

the participants were seated in upright position under the dewar, with orientation set to 60◦.

The MEG experiment consisted of fifteen blocks lasting 4 min 30 s each. Participants were

offered breaks every ∼20 min but remained seated. At the beginning of each of these recording

blocks, subjects were instructed to sit with the top and backside of their head touching the sensor



39 Harmony in early visual cortex

helmet. The positions of the HPI coils relative to the sensors was gathered at the beginning of

each recording block, but not continuously. The MEG experiment lasted ∼75 min in total.

2.3.2 Rapid photic stimulation

Stimuli were presented using a Propixx lite projector (VPixx Technologies Inc, Saint-Bruno,

QC Canada) which allows refresh rates of up to 1440 Hz. To achieve this high-frequency mode,

the projector separates the screen (initial resolution: 1920 × 1080 pixels) into quadrants and

treats them as separate frames, resulting in a display resolution of 960 × 540 pixels. The RGB

color codes for each quadrant, viz. red, green and blue, are converted to a gray scale, separately

for each frame and color, and presented consecutively within one refresh interval. The twelve

frames are presented at a refresh rate of 120 Hz, resulting in 12×120 Hz = 1440 Hz. This

approach allows to drive the luminance of each pixel with high temporal precision, allowing

for smooth sinusoidal modulations, reducing unwanted harmonics (see Figure 2.1c,d). In this

study, we applied rapid rhythmic stimulation at frequencies ranging from 52 to 90 Hz in 2 Hz

increments.

2.3.3 Experimental paradigm

Stimuli were created in MATLAB 2017a (The MathWorks, Inc. Natick, MA, USA) and

presented using the Psychophysics Toolbox Version 3 (Brainard, 1997).

Conditions The experiment consisted of two conditions that will be referred to as the flicker

and the flicker&gratings condition, respectively. Each trial began with a one-second interval,

in which a central white fixation cross was presented on a dark gray background. In the flicker

trials, a photic drive in the shape of a circular patch of diameter 2.62◦ was presented for 2 s.

Therefor, the patch’s luminance was modulated sinusoidally at frequencies between 52 and 90

Hz (Figure 2.1a). To minimize the visibility of the flicker, the mean luminance of the patch was
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Figure 2.1: The experimental paradigm. a Trials in the flicker condition. A 1 s baseline interval
with a central fixation cross was followed by a 2 s interval of the rapid flicker applied to a
circular patch of size 2.62◦. The average luminance in the flickering patch was equal to the
surrounding grey colour, making the photic drive almost unperceivable. The trials ended with
2 s of the fixation cross only. b The trials in the flicker&gratings condition. The 1 s baseline
interval was followed by 2 s of grating stimuli presented centrally on the screen, contracting
inwards. Subsequently, the flicker was imposed onto the stimuli for 2 s. The trial ended with a 2
s presentation of the moving gratings without photic stimulation. c Sinusoidal luminance change
in one pixel induced by the photic drive at 52 Hz in the flicker condition. d Luminance change
in one pixel as a result of the flicker and the gratings moving concentrically with a velocity of 4
cycles/s. To maintain a similar mean luminance between conditions, photic modulation of the
invisible patch in a ranged from 0 to 66% (mean RGB [84 84 84]), while the light grey rings
of the grating, that is 50% of the stimulus’ surface, were flickered between 33 and 99% (mean
RGB [168 168 168] per ring).

matched with the background (33% luminance, 213.5 cd/m², RGB [84 84 84]). Frequencies

were randomized and balanced across trials. The patch was centered on the fixation cross, such

that it was presented both foveally and parafoveally. Each trial ended with a two-second interval

in which only the fixation cross was presented.

In the flicker&gratings condition, the baseline interval was followed by a 2 s presentation

of a moving grating stimulus that has been shown to reliably elicit gamma oscillations in visual

cortex (e.g. Hoogenboom et al., 2006, 2010; Muthukumaraswamy & Singh, 2013; Tan et al.,

2016). The stimulus was the same size as the patch (2.62◦) and had a spatial frequency of 9.1

rings/◦ (see Figure 2.1b); the individual rings’ width was 0.11◦. The rings contracted towards
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the center of the screen with a velocity of 0.56 ◦/s, i.e. ∼4 cycles/s. In the subsequent 2 s

interval, the gratings were flickered at the respective frequencies, by sinusoidally modulating the

luminance of the entire stimulus with each screen refresh. The trial concluded with a 2 s interval

in which the concentric moving circles remained on the screen without photic stimulation. To

keep the overall brightness of the stimulation similar between conditions, the luminance of the

circular patch in the flicker condition ranged from 0 to 66% (of the projector’s maximum), while

the brightness of the gratings in the flicker&gratings ranged from 33 to 99%, with an average

luminance of 214.5 cd/m² during the presentation of the flicker. The resulting contrast between

the gray and black rings, of 66%, has been previously demonstrated to induce clearly identifiable

gamma oscillations (Self et al., 2016). The flicker was replicated in the lower right corner of the

screen, to acquire the stimulation signal with a photodiode.

The rationale of this design was to investigate if and how the resonance properties of the visual

system change when an endogenous gamma oscillator in visual cortex is activated; and whether

the flicker response modulates the ongoing oscillatory activity. Studying these two phenomena

in the flicker&gratings condition required a characterization of both the gamma oscillations and

flicker response in isolation. The former was achieved by presenting the gratings without the

flicker. To extract the flicker response, we aimed to avoid any gamma-band activity in visual

cortex. This was implemented by applying the flicker to a texture-free, invisible patch. Given the

filter properties of the visual system (see Cormack, 2005, for review), we were further interested

in identifying an upper limit of the frequencies inducing reliable responses. As we expect these

results to guide future studies employing the rapid flicker for frequency tagging, we chose an

invisible patch to avoid any confounds by response enhancement, e.g. by object-based attention

or figure-ground segregation (Self et al., 2016).

Task & time course Participants were kept vigilant by performing a simple visual detection

task that required them to respond to a 45◦ rotation of the fixation cross at the center of the

screen, which occurred once every minute (e.g. Zaehle et al., 2010). Data including the target

and/or the responses were discarded and not considered in the analysis. The rotation took place
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after a trial in the majority, i.e. 60%, of the cases. The remaining 40% of rotations took place

at any point during a trial. The experiment was divided into 15 blocks of 4.5 min, resulting in a

recording time of 75 min in total.

The 40 frequency×condition combinations were presented once in each block, in randomized

order, resulting in a total of 15 trials per flicker frequency and condition. To minimize the amount

of trials rejected by eye-blink artifacts, 3 s breaks, indicated by a motivating catchphrase or happy

face on the screen, were incorporated every five trials, i.e. every 25 - 35 seconds. Participants

were instructed to utilize these breaks to rest their eyes.

2.3.4 Participants

This project was reviewed and approved by the local Ethics Committee at the University of

Birmingham, UK. Thirty-one students of the University of Birmingham participated in the

experiment. One experimental session was terminated prematurely due to the participant not

being cooperative, resulting in a sample of thirty participants (15 female), aged 25.7 ± 3.4

years. This sample size was decided upon based on a conceptually similar study investigating

entrainment of neuronal alpha oscillations by Notbohm et al. (2016).

All volunteers declared not to have had a history of neuropsychiatric or psychological

disorders, reported to be medication-free and had normal or corrected-to-normal vision. For

safety reasons, volunteers with metal items inside their bodies were excluded at the selection

state. Prior to taking part in the study, participants gave informed consent, in accordance with

the declaration of Helsinki, to both the MEG recording and the fMRI scan and were explicitly

apprised of their right to abort the experiment at any point. The reimbursement amounted to

£15 per hour.

To allow analysis of flicker responses at frequencies with a sufficient distance to the individual

gamma frequency (IGF; see 2.4.1), i.e. ±6 Hz, 8 participants were excluded due to their IGF

being below 58 Hz. Thus, the data of 22 participants were included in the following analyses

(11 female; mean age 25.7 years).
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2.3.5 MEG sensor analysis

Analyses were performed in MATLAB 2017a and 2019b (The MathWorks, Inc. Natick, MA,

USA) using the FieldTrip toolbox (Oostenveld et al., 2010).

At the sensor level, the analysis was confined to the planar gradiometer signals, as these

provided the best signal-to-noise ratio. The sensor positions relative to the HPI coils were loaded

in from the data files and averaged for each subject.

MEG preprocessing Trials containing the target or button presses were excluded. The data

were read into MATLAB as 5 s and 7 s trials for the flicker and flicker&gratings conditions,

respectively. Artefactual sensors were identified visually during and after the recordings for

each participant, and interpolated with the data of their neighboring sensors (0 to 2 sensors per

participant). The individual trials were linearly detrended. Trials containing head movements

and/or multiple eye blinks were discarded using a semi-automatic approach. An ICA approach

(’runica’ implemented in FieldTrip) was used to project out cardiac signals, eye blinks and

eye movement.

Time-Frequency Representation of Power Time-Frequency Representations (TFRs) of power

were calculated using a sliding time-window approach (Δ𝑇 = 0.5𝑠; 0.05 s steps). A Hanning

taper (0.5 s) was applied prior to the Fourier transform. This approach induced spectral smooth-

ing of ±3 Hz. Relative power change in response to the stimulation, i.e. the moving grating

and/or the photic drive, was calculated as:

𝑃normalized =
𝑃stim
𝑃base

− 1 (2.1)

with 𝑃stim being the power during stimulation and 𝑃base being the power in the baseline interval.

The baseline interval was 0.75 - 0.25 s prior to the onset of the flicker (flicker condition) or the

moving grating stimulus (flicker&gratings condition).
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Individual Gamma Frequency The frequency band of the oscillatory activity elicited in

response to the moving grating stimulus was identified individually per participant. TFRs of

power were calculated over the first 3 seconds of each trial, that is, the baseline interval and the

presentation of the moving grating in the flicker&gratings condition and averaged over trials.

The normalized power was averaged over the 0.25 - 1.75 s interval, and the frequency bin with

the maximum relative power was considered the Individual Gamma Frequency (IGF). For each

participant, the 4 to 6 gradiometers with the strongest gamma response to the moving gratings

were selected as the Sensors-of-Interest (SOI).

Phase-Locking The average phase-synchrony between the photodiode (recording the visual

flicker) and the neuromagnetic signal at the SOI was quantified by the Phase-Locking Value

(PLV) (Bastos & Schoffelen, 2016; Lachaux et al., 1999) calculated using a 0.5 s sliding window

multiplied with a Hanning taper of equal length. The phases of both signals were calculated from

Fourier transformations, applied to the tapered segments. The PLV was computed separately

for each frequency×condition combination:

𝑃𝐿𝑉 =
1
𝑛
|
𝑁∑︁
𝑛=1

𝑒𝑥𝑝( 𝑗𝜃 (𝑡, 𝑛)) | (2.2)

where 𝜃 (𝑡, 𝑛) = 𝜙m(𝑡, 𝑛) − 𝜙p(𝑡, 𝑛) is the phase difference between the MEG (m) and the

photodiode (p) signal at time bin 𝑡 in trial 𝑛 (see Lachaux et al., 1999, p.195 and Figure 2.5 and

2.9).

Phase difference as a measure of entrainment Additionally, we investigated changes in phase

difference between the photodiode and neuromagnetic signal over time for flicker frequencies

of IGF±6 Hz, to identify intervals of strong synchrony, so-called phase plateaus. MEG and

photodiode signals (ΔT = 3 cycles = 3
𝑓 𝑓 𝑙𝑖𝑐𝑘𝑒𝑟

s) were convolved with a complex Hanning taper using

the sliding time window approach. Phase angles were derived from the Fourier transformed

time series, unwrapped and subtracted to estimate the phase difference over time for each trial.

Plateaus were defined as a constant phase angle (maximum average gradient < 0.01 rad/ms) over
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the duration of one cycle of the stimulation frequency:

∑Δ𝑇
𝑖=1 |∇𝜃𝑖 |
𝑛

⩽ 0.01𝑟𝑎𝑑/𝑚𝑠 (2.3)

with∇𝜃𝑖 being the gradient, i.e. slope, of the phase angle between MEG and photodiode signal at

a given sample 𝑖; 𝑛 being the length of the cycle in ms, rounded up to the next integer, e.g. 17 ms

for a flicker frequency of 60 Hz. This approach allowed to identify intermittent phase plateaus

in each trial. In comparison, the PLV analysis described above quantifies the phase-similarity

of the two signals over trials, and is therefore not feasible to capture brief episodes of synchrony

between the MEG signal and the stimulation.

Statistical analysis The statistical analysis was performed in RStudio Version 1.2.1355 (RStu-

dio Inc., Northern Ave, Boston, MA; R version 3.6.1., The R Foundation for Statistical Com-

puting).

2.3.6 MEG source analysis

MRI preprocessing The raw T1 weighted images were converted from DICOM to NIFTI.

The coordinate system of the participants’ individual fMRI was aligned to the anatomical land-

marks using the head-surface obtained from the fMRI and the scalp shapes digitized prior to the

recordings. Realignment was done automatically using the Iterative Closest Point (ICP) algo-

rithm (Besl & McKay, 1992) implemented in the FieldTrip toolbox and corrected manually

as necessary. The digitized headshape of one participant, for whom there was no anatomical

image available, was aligned to a standardized template brain.

Linearly Constrained Minimum Variance Beamforming The neuroanatomical origins of

the visually induced gamma oscillations and the response induced by the photic drive condition

were estimated using Linearly Constrained Minimum Variance spatial filters (LCMV; Veen

et al., 1992), implemented in the Fieldtrip Toolbox (Oostenveld et al., 2010). The MEG
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forward model was calculated using single-shell head-models, estimated based on the aligned

anatomical images, and an equally spaced 4-mm grid, warped into MNI (Montreal Neurologic

Institute) space (Nolte, 2003; Oostenveld et al., 2010; Stenroos et al., 2012); yielding 37,163

dipoles inside the brain.

The pre-processed data, epoched in 7 and 5-second trials for the respective conditions, were

band-pass filtered at 50 to 92 Hz, by applying second order Butterworth two-pass high- and

low-pass filters. To identify the peak locations of the endogenous gamma oscillations and

flicker response, respectively, segments of 0.5 s of the baseline interval (0.75 - 0.25 s prior to

stimulation) and the stimulation interval (0.75 - 1.25 s after flicker/grating onset) were extracted

from the data in both conditions. The peak source of the flicker response to the flickering gratings

was isolated based on the 2.75 to 3.25 interval, when the photic drive was superimposed on the

gratings, contrasted with the 0.75 to 1.25 interval during which the gratings were presented.

For each participant, a common covariance matrix for the 204 planar gradiometers was

computed based on the extracted time series and used to estimate the spatial filter coefficients for

each dipole location, whereby only the direction with the highest dipole moment was considered.

Data in the baseline and stimulation intervals were projected to source space by multiplying

each filter coefficient with the sensor time series. Fast Fourier Transforms of the resulting

time series, multiplied with a Hanning taper, were computed for each of the 37,163 virtual

channels, separately for the baseline and stimulation intervals, and averaged over trials. Relative

power change at the IGF and flicker frequencies was computed by applying equation (2.1) to

the Fourier-transformed baseline and stimulation intervals. The source-localized power change

values at flicker frequencies up to 78 Hz were averaged to identify a common source for the

oscillatory response to the photic drive.

2.3.7 Experimental Design & Statistical Analyses

Using the experimental set up outlined above, this study aimed to explore resonance properties

of the visual cortex, reflecting oscillatory dynamics in each participant. Furthermore, we

asked if responses to a visual flicker close to and at the IGF are enhanced when the flicker is
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superimposed on the moving grating stimuli. This would reflect a change in the oscillatory

dynamics in presence of the endogenous gamma oscillations. In this context, we hypothesized

that these oscillations would synchronize to the flicker.

The 40 frequency×condition combinations were tested in a within-subject design. Resonance

at individually preferred rhythms would be revealed by a relatively high response magnitude to

stimulation at the preferred frequency in comparison to the surrounding frequencies (Herrmann,

2001; Notbohm et al., 2016; Schwab et al., 2006) (H1). A general decrease in response to

the flicker as a function of frequency would suggest an absence of such an amplification (H0).

Entrainment of the ongoing gamma rhythm by the flicker response would result in the peak

frequency of the gamma oscillator being synchronized to the stimulation frequency. This is

reflected by a reduction in power at the IGF during the application of the flicker to the gratings,

at frequencies different from the IGF, compared to the presentation of the gratings alone (H1).

Statistical analyses were performed in R (R Core Team, 2020, version 3.6.3., using RStudio

version 1.2.5033, RStudio Inc., Boston, Massachusetts). The statistical power of the individ-

ual tests was evaluated using Bayes Factors, computed using the Bayes Factor package in R

(Morey & Rouder, 2018). As the identified IGF was found to be higher than the frequency induc-

ing the strongest flicker response in the majority of participants, we quantified their relationship

using a simple Binomial test with an a priori defined alpha level of 0.01. The linearity of the

flicker response power as a function of flicker frequency, i.e. evidence for the H0 as observed

in the results reported below, was corroborated using linear regression models implemented

in the R base package. Changes in the power at the IGF, with the onset of the flicker in the

flicker&gratings condition, were examined using a repeated measures ANOVA on the factors

time (pre and during flicker) and flicker frequency (above and below IGF).

Lastly, we compared the peak sources of the gamma oscillations and flicker responses,

identified using LCMV beamforming, in both conditions using dependent sample t-tests. As the

direction of the distances was not known a priori, the alpha level was set to 0.025. To reduce the

dimensionality of the comparisons, the obtained 3D coordinates were first projected along their

first Principal Component (Herrmann et al., 2011). The p-values of the three comparisons were
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corrected using the Benjamini-Hochberg procedure.
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2.4 Results

The aim of the current study was to characterize entrainment and resonance properties in the

visual cortex in absence and presence of gamma-band oscillations induced by visual gratings. To

this end, we drove the visual cortex with a rapid flicker at frequencies ranging from 52 to 90 Hz, in

steps of 2 Hz. The photic drive was applied either to a circular patch (the flicker condition, Figure

2.1a,c) or to the light gray rings of a moving grating stimulus (the flicker&gratings condition,

Figure 2.1b,d). We hypothesized that a photic drive in the flicker&gratings condition would

entrain the grating-induced oscillations. This would be observed as the endogenous gamma

oscillation synchronizing with the flicker. Synchronization would be reflected by a constant

phase angle between the neuromagnetic signal and the stimulation (’phase entrainment’), as

well as a reduction in power at the IGF, indicating a change in the peak frequency of the

gamma oscillator towards the flicker frequency (’frequency entrainment’; Pikovsky et al., 2003).

Moreover, we expected the presence of the induced gamma oscillator to change the resonance

properties (compared to the flicker condition), reflected by an amplification of responses to

stimulation frequencies equal to the endogenous gamma rhythm.

Response magnitudes in the flicker condition were expected to reveal resonance properties

of the visual system in absence of gamma oscillations, demonstrating favorable stimulation

frequencies to be used in future experiments applying Rapid Frequency Tagging (RFT; Drĳvers

et al., 2020; Zhigalov et al., 2019).

2.4.1 Identifying Individual Gamma Frequencies

The frequency of the endogenous gamma rhythm is known to vary between participants (Hoogen-

boom et al., 2006, 2010; Muthukumaraswamy et al., 2010; van Pelt et al., 2012). Therefore, each

subject’s Individual Gamma Frequency (IGF) was identified first, based on the 0 - 2 s interval in

the flicker&gratings condition during which the moving grating stimuli were presented without

the visual flicker (Figure 2.1c).



No evidence for gamma entrainment by rapid flicker 50

c |

-16

-8

0

8

16

IG
F

+
 (

H
z)

-0.5 0 0.5 1 1.5

time (s)

-2

0

2

-16 -8 0 8 16

IGF+ (Hz)

0.5

0

1
re

la
tiv

e 
po

w
er

 c
ha

ng
e

  b |

a |

fr
eq

ue
nc

y 
(H

z)
30

60

90

58

-4

0

4

580

1.3

2.5

re
la

tiv
e 

po
w

er
ch

an
ge

 
-3

0

3

-130

60

90

time (s)

-0.5 0 0.5 1 1.5

74

3

-3

0

30 40 50 60 70 80 90

frequency (Hz)

740

0.6

1.2

fr
eq

ue
nc

y 
(H

z)

 

0

1

re
la

tiv
e 

po
w

er
ch

an
ge

re
la

tiv
e 

po
w

er
ch

an
ge

re
la

tiv
e 

po
w

er
ch

an
ge

Figure 2.2: Identification of Individual Gamma Frequencies (IGF) and Sensors-of-Interest
(SOI). A, B The TFRs of power, power spectra (averaged over 0.25 - 1.75 s) and topographic
representations (combined planar gradiometers) of the IGF for two representative participants.
The TFRs of power were calculated from the Fourier Transforms using a 500 ms sliding window,
resulting in spectral smoothing of ±3 Hz. The IGFs were identified from the spectral peak in
0.25 - 1.75s interval of the TFRs. Identified IGFs are indicated by dashed lines. c The grand
average of the power analysis after aligning the individual TFRs and spectra to the IGF (N=22).

The Time-Frequency Representations (TFRs) of power are depicted in Figure 2.2a,b for two

representative participants. The center column shows the power averaged over time (0.25 - 1.75 s

after the stimulus onset to avoid any event-related field confounds) demonstrating distinct peaks

at 58 and 74 Hz for these participants. The topographies in the right column depict relative

power change at the identified frequencies, focally in sensors over the occipital cortex. For each

subject, the 2 - 3 combined planar gradiometers showing maximum relative power change in the

gamma band were selected for further analysis (Sensors-of-Interest; SOI) per visual inspection.

These sensors strongly overlapped between participants. The data of participants with an IGF

closer than 6 Hz to the lowest (52 Hz) drive, i.e. IGF<58 Hz, were not considered for further

analyses.

Figure 2.2c depicts the averaged TFRs of power as well as the power spectrum for the

remaining subjects (N=22), aligned to each participant’s IGF prior to averaging. The moving
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grating stimulus induced sustained oscillatory activity constrained to the IGF ± 8 Hz, with an

average relative power change of 80% in the 0.25 - 1.75 s interval compared to baseline. In

short, the moving gratings produced robust gamma oscillations observable in the individual

participants which reliably allowed us to identify the individual gamma frequencies.

2.4.2 Photic drive induces responses up to 80 Hz
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Figure 2.3: a,b The response to the photic
drive in the flicker condition and the correspond-
ing topographies for two representative subjects.
Spectra were estimated from the TFRs of power
averaged in the 0.25 - 1.75 s interval. Dashed
vertical lines indicate the participants’ IGF. The
topographies (combined planar gradiometers)
demonstrate a strong overlap with the ones in
Figure 2.2. c grand average of the responses to
the photic drive for each flicker frequency. On
average, the magnitude of the flicker response
decreases with increasing frequency and is iden-
tifiable for stimulation below 80 Hz. d grand
average flicker responses for frequencies from
52 to 90 Hz in steps of 4 Hz. The shaded ar-
eas, illustrating the standard deviation, indicate
a substantial inter-subject variability.

We next set out to quantify the rhythmic re-

sponse to the flicker as a function of frequency

in the flicker condition, in which stimulation

was applied to an invisible patch. Figure 2.3a

and b, left panel, depicts the overlaid power

spectra for the different stimulation frequen-

cies in two representative participants (the

same as in Figure 2.2). The spectra were esti-

mated by averaging the TFRs of power in the

0.25 - 1.75s interval after flicker onset. Due to

the overlap of the sensors detecting the gamma

oscillations and photic drive response (com-

pare Figure 2.2 and 2.3 right columns) the

same SOI were used as in the flicker&gratings

condition.

Both individuals showed strong responses

at the respective stimulation frequencies, with

a maximum relative power change of 200%

and 500% in subject A and B, respectively.

The identified IGFs (indicated by vertical

dashed lines) were higher than the frequen-

cies inducing the strongest flicker response in
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Figure 2.4: Average relative power change to the
photic drive (y-axis) with respect to the driving
frequencies (x-axis). a The flicker condition. Note
that the power changes mirror Figure 2.3c. Power
decreases with increasing frequency, from a rela-
tive change of ∼3 at 52 HZ to ∼.5 at 80 Hz. b The
flicker condition after the spectra were aligned to
the IGF. c The flicker&gratings condition. All
spectra demonstrate both the flicker response and
induced gamma oscillation (observed as the light
red horizontal band). Again, the amplitude of
the rhythmic stimulation response appears to de-
crease with increasing frequency. d The spec-
tra for the flicker&gratings condition aligned to
the IGF. There is no indication that the rhythmic
flicker captures the endogenous gamma oscilla-
tions.

20 out of 22 participants (exact Binomial

Test against𝐻0: 𝑝 = 0.00012, probability of

successes (IGF>flicker freq) = 0.91, Bayes

Factor 𝐵𝐹10 = 309.3). When averaged over

all participants, the magnitude of the flicker

response decreased systematically with fre-

quency (Figure 2.3c). Figure 2.4a displays

the power spectra in the flicker condition, es-

timated from the TFRs as explained above,

averaged over all participants, as a function

of stimulation frequency. These are equiv-

alent to Figure 2.3c. Diagonal values in-

dicate the magnitude of the oscillatory re-

sponses (relative to baseline) at the stimu-

lation frequencies, reaching values of up to

300% and decreasing monotonically with

frequency. This confirms an upper limit

for the stimulation of around 80 Hz. Off-

diagonal values indicate oscillatory activity

at frequencies different from the stimulation

frequency. Figure 2.4b shows the same spectra after aligning to the IGFs, prior to averaging.

Figure 2.4c and d display the spectra in the flicker&gratings condition (averaged in the 2.25

- 3.75s interval), during which the photic drive was applied to the moving grating stimulus (see

Figure 2.1b). The induced gamma band activity can be observed as the horizontal light red band

at ∼60 Hz. When aligning the spectra to the IGF (Figure 2.4d), we observe a decrease in the

flicker response but no evidence for an amplification at or close to the IGF.
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Figure 2.5: Magnitude of the flicker response as a function of frequency in the flicker (orange
line plots) and flicker&gratings (blue graphs) condition. Shaded areas indicate the standard
deviation. a The phase-locking values between the photodiode and the MEG signal over the
SOIs as a function of driving frequency. b The phase-locking values between the photodiode
and the MEG signals as a function of frequency after the spectra were aligned to the IGF.
Again, the phase-locking decreases with increasing frequency (see Table 2.1 for a statistical
quantification of the simple linear regression models). c Relative power change with respect to
baseline as a function of frequency. Generally, the power decreased with frequency, however, in
the flicker&gratings condition there is an apparent peak at ∼56 Hz. The shaded areas (standard
deviation) indicate considerable variance between participants. d Relative power change as a
function of frequency after the individual spectra were aligned in frequency according to the
IGF, demonstrating that responses to a photic drive at the IGF are not amplified. e Relative
power change as a function of frequency for each individual subject (N = 22), indicates that
the peak at ∼56 Hz in c is driven by comparably high power in that frequency range in just a
few individuals. f Flicker frequency inducing highest power values versus IGF, demonstrating
the IGF to be higher than the frequency inducing maximum power change in the majority of
participants.
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2.4.3 Magnitude of flicker response decreases as a function of frequency

The averaged TFRs of power in Figure 2.4 point to an approximately linear decrease in power of

the flicker response with increasing frequency. Literature on neural resonance and entrainment,

however, suggests the existence of a preferred rhythm at which oscillatory responses are amplified

(Gulbinaite et al., 2019; Herrmann, 2001; Hutcheon & Yarom, 2000; Notbohm et al., 2016;

Pikovsky et al., 2003). As argued in Pikovsky et al. (2003) phase-locking between the driving

signal and the self-sustained oscillator is the most appropriate metric to investigate entrainment.

Figure 2.5a,b depicts the phase-locking value (PLV) between the photodiode and the MEG

signal at the SOI (planar gradiometers, not combined). This measure reveals a systematic

decrease in phase-locking with increasing flicker frequency for both the flicker (orange) and

flicker&gratings (blue) condition (Figure 2.5a). The observed relationship is preserved when

aligning the frequencies to the IGF (2.5b, also see Table 2.1). Note the absence of increased

phase-locking at the IGF.

The magnitude of the flicker response, quantified by power change compared to baseline, as

a function of frequency, is demonstrated in Figure 2.5c-f and depicts a similar relationship to the

one observed for the PLV. The flicker condition (2.5c, orange line) revealed a systematic decrease

with frequency, whereas the flicker&gratings condition did show a peak at 56 Hz. However, this

observed increase appeared to be caused by considerable variance between the power estimates

of the individual participants (see Figure 2.5e, with each line graph depicting power estimates

per individual participant). We again aligned the spectra to the IGF before computing the grand-

average (Figure 2.5d). The absence of a peak at 0 Hz suggests no evidence for resonance at the

IGF, confirming the peak at 56 Hz in Figure 2.5c to be the result of inter-subject variability.

Indeed, simple linear regression models, fit individually to PLV and power as a function of

frequency aligned to the IGF, separately for each condition, explain a considerable amount of

the variance (see Table 2.1 and dotted lines in Figure 2.5). We then identified the individual

peak frequencies, eliciting the strongest response to the flicker in the flicker&gratings condition,

and related those to the IGF, as seen in Figure 2.5f. As observed in the flicker condition, the
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frequency inducing the strongest response to the flicker was lower than the IGF in the majority

of participants, i.e. 19 out of 22 (exact Binomial Test against 𝐻0 : 𝑝 = 0.0008, Bayes Factor

𝐵𝐹10 = 67.5).

Table 2.1: Simple linear regression models: Flicker response magnitude, quantified by phase-
locking value and relative power change as a function of distance to Individual Gamma Frequency
(IGF).

Model Estimates

𝛽1 t p *** 𝑅2 F(1,218)

flicker𝑝𝑙𝑣 −.01 −8.07 < 2.2𝑒 − 16 .23 65.07

flicker&gratings𝑝𝑙𝑣 −.01 −7.24 < 2.2𝑒 − 16 .19 52.44

flicker𝑝𝑜𝑤 −.07 −9.01 4.80𝑒 − 14 .27 81.14

flicker&gratings𝑝𝑜𝑤 −.16 −8.95 7.51𝑒 − 12 .27 80.13

2.4.4 Gamma oscillations and flicker response coexist

We initially hypothesized that entrainment of the gamma oscillations in the flicker&gratings

condition would result in the photic drive capturing the oscillatory dynamics when the driving

frequency was close to the IGF. Figure 2.6 depicts the TFRs of power relative to a 0.5 s baseline,

for one representative subject (also shown in Figures 2.2 and 2.3a). The averaged trials for

a photic drive at 52 Hz are shown in Figure 2.6a and separately for each flicker frequency in

Figure 2.6b. The IGF (58 Hz for this subject) and the respective stimulation frequencies are

indicated by dashed lines. The endogenous gamma oscillations, induced by the moving grating

stimulus, are observed as the sustained power increase from 0 - 6 s whereas the flicker response

is demonstrated by a power increase at 2 - 4 s.

The plots reveal that gamma oscillations persist at the IGF and coexist with the response to the

photic drive, which is particularly apparent for stimulation at 52 Hz (Figure 2.6a). Furthermore,

the power increase at the flicker frequency does not appear to outlast termination of the drive at

t = 4 s. In the subsequent step, we frequency-aligned the TFRs of power according to the IGF

before averaging over participants. Again, the analyses were constrained to individuals with an
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IGF above 56 Hz (N = 22).
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Figure 2.6: The time-frequency representations (IGFs) of power for one representative subject,
showing relative power change averaged over trials and SOIs in the flicker&gratings condition.
a Photic drive at 52 Hz. The moving grating stimuli were presented for 0 - 6 s, with the flicker
superimposed from 2 to 4 s. Sustained gamma-band activity is clearly observable throughout
the presentation of the stimuli, with a power increase of 300% relative to baseline. Additionally,
the rhythmic stimulation elicited a response at 52 Hz, which seems to coexist with the gamma
oscillations, indicating that the photic drive is unable to capture the dynamics of the gamma
oscillation. b The plots for the frequencies from 52 to 90 Hz. Stimulation frequencies and IGF
(here 58 Hz) are indicated by horizontal dashed lines. The flicker induced responses up to 66
Hz in this participant. Gamma oscillations persist in presence of flicker responses, suggesting
that they coexist.

The group averaged, aligned IGFs are shown in Figure 2.7 for frequencies ranging from IGF-

6 Hz to IGF+16 Hz. The endogenous gamma oscillations are observed as the power increase

extending from 0 - 6 s, and the flicker response as the power change in the 2 - 4 s interval
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Figure 2.7: Grand average IGFs of power after aligning to the IGF for each subject in the
flicker&gratings condition. The stimulation frequencies (from -6 to 16 Hz relative to the IGF)
are indicated by dashed horizontal lines. As suggested by the single subject IGFs in Figure 2.6,
the endogenous gamma oscillations and the flicker response seem to be coexistent. Thus, there
is no obvious indication of the photic drive being able to capture the dynamics of the gamma
oscillations.

marked by dashed lines, respectively. The photic stimulation induces a reliable response that

decreases toward 12 Hz above the IGF. Despite the representation of the gamma oscillations

being smoothed due to inter-individual differences, the averaged aligned IGFs of power support

the observations in the single subject data: both the gamma oscillations and flicker response

coexist in the 2 - 4 s interval. Furthermore, there is no indication of the gamma power being

reduced during the presentaiton of the flicker at frequencies close to, but different from, the IGF.

In addition to the narrow-band gamma oscillations, the gratings elicited a rhythmic response

at 4 Hz, i.e. the velocity of the concentric drift (not shown). We did not find any evidence for

an intermodulation between the frequency of the movement and the photic drive.

2.4.5 Frequency analyses with a longer time window confirm robustness

of the reported results

To assess the robustness of our results, we repeated the frequency analyses in the flicker and

flicker&gratings condition with a 2s sliding time window. The longer window substantially

increased the signal-to-noise ratio of the flicker response, to up to over 400% relative power

change in the flicker condition and more than 600% in the flicker&gratings condition (not
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shown). Besides that, the analyses replicated our reported main finding: a reduction in response

magnitude (power) with increasing frequency, in both conditions, following the same trend as

depicted in Figure 2.5c and d. The 2 s sliding time-window did however not optimally capture

the gamma power, which has a broader peak than the response to the photic drive. The 500 ms

sliding window used in our reported analyses is therefore a good compromise, allowing both a

reliable identification of a gamma peak frequency and a sufficiently high signal-to-noise ratio

and frequency resolution of the flicker response (see Figure 2.6a).

2.4.6 Oscillatory gamma dynamics cannot be captured by frequency en-

trainment
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Figure 2.8: Power change relative to baseline
at IGF in response to the moving grating stim-
uli before (T1; 0.5 - 1.5 s) and during applica-
tion of the flicker (T2; 2.5 - 3.5 s), at frequen-
cies below and above IGF (drive<IGF [-6, -4
Hz] and drive>IGF [+4, +6 Hz], respectively).
Scatters demonstrate individual values, solid
and dashed lines depict mean and standard de-
viation, respectively. The key finding is that
power at T2 is not decreased compared to T1
for either of the frequency ranges, which is
supported by a Bayesian repeated measures
ANOVA (𝐵𝐹10 = 0.274).

Synchronisation of neuronal oscillations by

rhythmic stimulation could be conceptualized

as the entrainment of a self-sustained oscilla-

tor by an external force (e.g. Helfrich et al.,

2019; Notbohm et al., 2016). Frequency en-

trainment is reflected by a change in frequency

of the ongoing oscillations towards the rhythm

of the drive. Visual inspection of the IGFs of

power in Figure 2.6 and 2.7 do not indicate

any modulation of the peak frequency of the

gamma oscillations by the flicker response,

suggesting that they do not synchronize.

To quantify these observations, we investi-

gated the power of the gamma oscillations be-

fore and during the photic drive (Figure 2.8) in

the flicker&gratings condition. A central assumption of oscillatory entrainment is the existence

of a ’synchronization region’ in the frequency range around the endogenous frequency of the

oscillator, the so-called Arnold tongue (e.g. Pikovsky et al., 2003). Driving frequencies falling
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inside this synchronization region, will be able to modulate the dynamics of the self-sustained

oscillator (also see Hutt et al., 2018). With this in mind, the following analyses only included

flicker frequencies in the vicinity of the IGF. For each participant, we considered the relative

power change induced by the moving gratings in the 0.5 - 1.5 s interval (T1) before the flicker

onset and in the 2.5 - 3.5 s interval (T2) in which both the moving gratings and the photic drive

were present. We investigated this for stimulation frequencies below the IGF (averaged power

for -6 and -4 Hz) and above (averaged power for +4 and +6 Hz). Assuming a symmetric Arnold

tongue centered at the IGF, as shown for entrainment in the alpha-band (Notbohm et al., 2016),

we expected a reduction in power at the IGF in interval T2 compared to interval T1 for both

higher and lower driving frequencies, i.e. an effect of time, but not frequency.

Figure 2.8 depicts power change at the IGF for the factors stimulation frequency (drive<IGF

and drive>IGF) and time interval (T1 and T2), averaged over the SOIs for each subject. In

accordance with the IGFs in Figure 2.7, there is no meaningful indication for gamma power

being reduced during the T2 interval as compared to the T1 interval, affirming the coexistence

of the two responses. A factorial repeated-measures ANOVA did not reveal any significant

main effects of the factors time (T1 vs T2) and frequency (drive<IGF vs drive>IGF), but a

significant interaction effect (𝐹 (1, 21) = 5.09, 𝑝 = 0.003, 𝜂2 = .003). These results were further

investigated using a Bayesian repeated-measure ANOVA. The obtained Bayes factors (𝐵𝐹10)

indicate that the variance in the data underlies the variability between participants, while the

factor time (𝐵𝐹10 = 0.233) and both factors time and frequency (𝐵𝐹10 = 0.274) do not add

any explanatory value. Evidence for the interaction effect time:frequency was found to be

inconclusive (𝐵𝐹10 = 0.53), as was the main effect of frequency alone 𝐵𝐹10 = 1.146). These

results provide evidence against the expected reduction in gamma power during rhythmic photic

stimulation at frequencies different from the IGF; suggesting that the flicker did not capture the

oscillatory gamma dynamics.
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2.4.7 Photic drive does not reliably modulate gamma phase

Synchronization of a self-sustained oscillator by an external force, can not only be described by

a change in frequency, but also ’phase approximation’ or ’phase entrainment’ (Pikovsky et al.,

2003). This phenomenon is reflected by a constant phase angle between the two oscillators

over extended intervals, so-called phase plateaus. These might occur when the frequency of

the driver is close to the endogenous frequency of the oscillator, i.e. within its Arnold Tongue

(Notbohm et al., 2016; Pikovsky et al., 2003; Tass et al., 1998). When approaching the edge of

the synchronization region, episodes of constant phase angles are interrupted by so-called phase

slips that emerge when the self-sustained oscillator briefly unlocks from the driving force and

oscillates at its own frequency. These phase slips will be observed as steps between the phase

plateaus.

The phase plateau analysis was implemented to complement the PLV analysis shown in

Figure 2.5. The PLV quantifies the average synchrony between photodiode and neuromagnetic

signal over trials using a 500 ms sliding time window. We hypothesized that in the case of

oscillatory entrainment, the gamma oscillator in the flicker&gratings condition would alternate

between locking on to the photic drive for a few cycles and slipping back to its endogenous

rhythm. Due to the short duration of the gamma cycle (∼17.2 ms for a 58 Hz IGF), this

intermittency would be smeared out by the sliding window. As there was no endogenous gamma

oscillator in the flicker condition, such an intermittency was not expected.

To investigate phase entrainment of the gamma oscillations by the photic drive, we inspected

the phase angle between the photodiode and one, individually selected, occipital gradiometer

of interest per participant. The time series of the phase were estimated per trial, separately

for the two sensors, using a sliding time-window Fourier transform approach (ΔT = 3 cycles

= 3/ 𝑓 𝑓 𝑙𝑖𝑐𝑘𝑒𝑟s; Hanning taper). Phase differences per trial were obtained by subtracting the

unwrapped phase angle time series.
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Figure 2.9: a,b Phase angle between photodi-
ode and the MEG signal (one gradiometer of
interest) at the IGF, for one representative par-
ticipant; colored lines depict individual trials.
a Phase angle 𝜃 in the flicker condition over
the duration of the flicker presentation (up-
per panel) and the first 250 ms (lower panel).
The MEG signal drifts apart from the stimu-
lation and can reach a maximum accumulated
phase difference of 60 rad, i.e. 9.54 cycles,
at the end of the stimulation and up to 15
rad, i.e. 2.39 cycles, in 250 ms. b The in-
crease in phase difference over the time of the
stimulation for the flicker&gratings condition
(upper panel) and in the first 250 ms (lower
panel). The diffusion of the phase difference
across trials is similar to the flicker condition.
Moreover, there is no clear difference in the
number and length of phase plateaus between
conditions, implying that the presence of the
gamma oscillations does not facilitate entrain-
ment at the IGF. c Fanning out across trials as
a function of frequency aligned to IGF. Trials
diffuse to a highly similar extent in both con-
ditions and across frequencies. d Number of
plateaus per trial as a function of frequency.
While the flicker&gratings conditions exhibits
more plateaus for all flicker frequencies, there
is no indication that stimulation at the IGF re-
sults in comparably strong synchronization.

Phase angle between photodiode and MEG

signal over time Figure 2.9 illustrates the

unwrapped phase angles between the MEG

and photodiode signal during the photic drive

at the IGF (here 58 Hz), in the flicker (A) and

flicker&gratings condition (B), respectively,

for the same representative participant shown

in Figure 2.2a, 2.3a and 2.6.

The colored line graphs depict individual

trials. In both conditions, the MEG signal

drifts apart from the photic drive, towards

a maximum difference of 60 radians, i.e. a

phase difference of about 9.5 cycles, by the

end of the trial (Figure 2.9a and b, top panel).

Interestingly, the direction of the phase angle

appears to change during some of the trials,

suggesting spectral instability of the gamma

oscillations. Furthermore, the graphs demon-

strate a substantial inter-trial variability. This

diffusion between trials, quantified for each

participant as the standard deviation over tri-

als at the end of the photic stimulation (t=2

in flicker and t=4 in flicker&gratings condi-

tion), converted from radian to ms, is juxtapo-

sitioned in Figure 2.9c for the two conditions.

It can be readily seen that the phase angles

between the stimulation and MEG signal fan

out highly similarly in absence and presence
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of the endogenous gamma oscillations.

Phase plateaus Visual inspection of the first 0.25 s of the phase angle times series, depicted

in Figure 2.9a,b lower panel, does not suggest a relatively high number of phase plateaus in the

flicker&gratings compared to the flicker condition, that would have been expected if the photic

drive was able to entrain the endogenous gamma oscillator. Importantly, the graphs demonstrate

the phase angles to reach values of over 2𝜋, i.e. more than one cycle, within the duration of

the first gamma cycle (17.2 ms), suggesting that even stimulation at the endogenous frequency

of the oscillator cannot capture the gamma dynamics. To verify these observations for the

entire sample, plateaus during stimulation at the IGF were identified based on the mean absolute

gradient (⩽0.01 rad/ms, see Equation 2.3) over the duration of one cycle of stimulation, i.e. 18

consecutive samples for a flicker frequency of 58 Hz. Figure 2.9d shows the average number of

plateaus per trial as a function of flicker frequency aligned to IGF, averaged over participants.

The shaded areas indicate the standard deviation. While the flicker&gratings condition exhibits

more phase plateaus than flicker for all stimulation frequencies, the number of plateaus decreases

similarly in both conditions with increasing frequency. Importantly, stimulation at the IGF did

not result in the highest number of plateaus in either condition. These results are in line with

the reported frequency analyses: responses to the photic drive in flicker&gratings show strong

similarity to the flicker condition despite the presence of the gamma oscillator. The results affirm

the observations presented in Figure 2.5a and b.

2.4.8 The sources of the gamma oscillations and the flicker responses peak

at different locations

The coexistence of the endogenous gamma oscillations and flicker response suggest that these

two signals are generated by different neuronal populations; possibly in different regions. To

test this assumption we localized the respective sources using Linearly Constrained Minimum

Variance spatial filters (LCMV; Veen et al., 1992). The covariance matrix for the spatial filters

was estimated based on the -0.75 to -0.25 s baseline in both conditions, the 0.75 to 1.25 s interval
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Figure 2.10: Source estimates using the LCMV beamformer approach mapped on a standardized
MNI brain. a Source estimation of the visually induced gamma oscillations (power change
relative to baseline), with the peak of the source identified at MNI coordinates [-6mm -100mm
-8mm]. b Source estimation of the flicker response (relative to baseline), with the average
peak source at [6mm -96mm 12mm] (in Calcarine Fissure). c Source estimation of the flicker
response in the flicker&gratings condition (relative to the gratings interval), with the average
peak source at [6mm -100mm 0mm] (in Calcarine Fissure). d Coordinates of the identified
peak sources for all participants (small scatters) and grand average (large scatters) for the IGF,
and the flicker responses in the flicker and flicker&gratings condition (green, orange and blue,
respectively). The peak sources of the flicker responses are adjacent, while the gamma sources
tend to peak at inferior locations.

with the moving gratings in flicker&gratings and the invisible flicker in the flicker condition,

as well as the 2.75 to 3.25 interval in the flicker&gratings condition in which the flicker was

applied to the grating stimulus.

Note that for each participant, one common filter was used for source estimation in both

conditions. Power values at the IGF and flicker frequencies, averaged up to 78 Hz, respectively

for the flicker&gratings and flicker condition, were estimated based on the Fourier Transform.

To extract power at the IGF and flicker frequencies, power change was computed relative to the

baseline interval at each of the 37,163 grid points using Equation 2.1. To isolate the flicker

response on the flicker&gratings condition, the flicker&gratings interval was contrasted to the

moving grating interval. Figure 2.10 illustrates the grandaverage of the source localization for
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the gamma oscillations (a), the invisible flicker response (b) and the response to the flickering

gratings (c). Consistent with previous work, the responses originate from mid-occipital regions

(Hoogenboom et al., 2006; Zhigalov et al., 2019). It is worth noting that the sources of the

gamma oscillations and response to the invisible flicker are relatively focal, while the activity

induced by the flickering gratings extends more broadly over visual cortex. Using the MNI to

Talaraich mapping online tool by Biomag Suite Web (MNI2TAL Tool) (see Lacadie et al., 2007,

2008), the peak of the gamma oscillations was located in the ventral part of the secondary visual

cortex (V2, Brodmann area 18; MNI coordinates = [-6mm -100mm -8mm], grandaverage).

The peak sources of the flicker responses in both conditions were found in the Calcarine

Fissure, at a 2mm distance to the border of the primary (V1) and secondary visual cortex (in

dorsal direction); suggesting that they are generated by neighboring, coherent sources in both

hemispheres in and close to V1 (Belardinelli et al., 2012) (MNI coordinates: flicker [6mm -

96mm 12mm]; flicker&gratings [6mm -100mm 0mm]). To compare the peak locations between

the sources in a lower dimensional space, the identified 3D coordinates were projected along

their first Principal Component (Herrmann et al., 2011). Dependent sample t-tests revealed a

significant difference in location between the peak sources of the IGF and the invisible flicker

responses, 𝑡 (21) = −3.091, 𝑝 = 0.017,Cohen’s 𝑑 = −0.845, 95% CI [−1.5− 0.2], 𝐵10 = 8.2, as

well as to the flickering gratings relative to gratings, 𝑡 (21) = −2.633, 𝑝 = 0.023,Cohen’s 𝑑 =

−0.495, 95% CI [−0.89 − 0.09], 𝐵10 = 3.45; with the Bayes Factors B10 revealing moderate

evidence for the H1 (Quintana & Williams, 2018). There was no significant difference in

location between the sources of the flicker responses in both conditions, 𝑡 (21) = 0.732, 𝑝 =

0.472, 𝐵10 = 0.28, with the Bayes Factor providing moderate evidence for the H0. Note that all t-

values were Benjamini-Hochberg-corrected for multiple comparisons. In light of the coexistence

of the two responses observed in Figure 2.6 and 2.7, these results support the notion that gamma

oscillations and flicker responses are generated by different neuronal populations.
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2.5 Discussion

In this MEG study, we explored resonance and entrainment in the human visual system in

response to a rapid photic drive >50 Hz. Strong, sustained gamma oscillations were induced

using moving grating stimuli (Hoogenboom et al., 2006, 2010; Muthukumaraswamy & Singh,

2013; van Pelt & Fries, 2013) and used to identify each participant’s gamma frequency. The

superposition of the flicker and the gratings allowed us to investigate whether the flicker is able

to entrain endogenous gamma oscillations.

The photic drive induced responses for frequencies up to ∼80 Hz, both in presence and

absence of grating-induced endogenous gamma oscillations. To our surprise, we did not find

evidence for resonance, i.e. an amplification of an individually preferred frequency in the range

of the rhythmic stimulation, in either condition, despite the IGF being above 50 Hz in all partici-

pants. Moreover, there was no indication that the endogenous gamma oscillations synchronized

with the rhythmic stimulation, i.e. no evidence for entrainment. Despite their differences,

the flicker responses in the two conditions show strong similarities in the phase and frequency

measures, supporting the notion that the flicker response coexists with the grating-induced oscil-

lations. In accordance with these results, source estimation using Linearly Constrained Minimum

Variance (LCMV) spatial filters (Veen et al., 1992), suggests that the neuronal sources of the

flicker responses in both conditions and the endogenous gamma oscillations peak at different

locations in visual cortex.

2.5.1 Flicker responses do not entrain the gamma oscillator

While the sources of the gamma oscillations and the response to the (nearly) invisible flicker

did overlap in occipital cortex, their peak coordinates were found to be significantly different.

Relative power change at the IGF peaked at sources inferior to the flicker responses in both

conditions, and was located in the left secondary visual cortex (V2) using the MNI2TAL online

tool (see Lacadie et al., 2007, 2008). The flicker peak sources were located in the Calcarine

Fissure, in close proximity to the primary visual cortex (V1). These results are in line with the
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coexistence of the endogenous oscillations indicated by the time-frequency analyses and might

be the result of the filter properties of synaptic transmission as the flicker response propagates

in the visual system (see Carandini et al., 1997; Cormack, 2005; Hawken et al., 1996; Kuffler,

1953; Ringach, 2004; Shadlen & Movshon, 1999).

Low-pass filtering at the transition from the thalamus to V1 (Connelly et al., 2016) might

attenuate the photic drive at frequencies above 80 Hz, leading to an absence of measurable

responses in this range. Low-pass filter properties in V1 in projections from granular layers

(L4a, 4c𝛼 and 4c𝛽) to supragranular (L2/3, 4b) and infragranular layers (L5,6) (Douglas &

Martin, 2004; Fröhlich, 2016; Hawken et al., 1996) might have prevented the flicker response

to converge to the neuronal circuits generating the endogenous gamma rhythms. This idea is

supported by intracranial recordings in macaques showing the strongest gamma synchronization

in response to drifting grating stimuli in V1 in supragranular layers (L2/3 and 4B) (Xing et al.,

2012), whereas steady-state responses to a 60 Hz photic flicker have been localized in granular

layer 4c𝛼 (Williams et al., 2004).

While plausible, these interpretations are conjectural based on the present data. Recent

findings by Drĳvers et al. (2020), providing evidence for non-linear integration of visual and

auditory rapid frequency tagging signals in frontal and temporal regions, challenge the notion

that the flicker response might not propagate beyond V1. Pairing the current paradigm with

intracranial recordings in non-human primates would allow to test the filtering properties without

the limitations imposed by the inverse problem in the source localization of neuromagnetic

signals (Baillet, 2013).

Flicker responses might not be wired to inhibitory interneurons orchestrating the en-

dogenous gamma rhythm Computational models, as the one demonstrated by Lee and Jones

(2013) and Tiesinga (2012), would be suitable to investigate whether the grating-induced gamma

oscillations and flicker response are likely to be generated by neuronal circuits whose wiring

is not conducive to entrainment. As the properties of neuronal gamma oscillations have been

repeatedly shown to depend on rhythmic inhibition imposed by inhibitory interneurons (e.g.
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Bartos et al., 2007; Buzsáki & Wang, 2012; Kujala et al., 2015; Lozano-Soldevilla et al., 2014;

Wilson & Cowan, 1972), entrainment should only be achieved when the flicker response is able

to modulate their activity. Indeed, Cardin et al. (2009) show resonance in the gamma range to

optogenetic stimulation of fast-spiking interneurons, but not to stimulation of pyramidal cells

(also see Tiesinga, 2012). We therefore suggest that the photic stimulation applied in our study

drives the pyramidal cells in early visual cortex. As in the optogenetic study by Cardin et al.

(2009), this drive is not sufficiently strong to entrain the GABAergic interneurons.

This interpretation is contrasted to the findings of Adaikkan and Tsai (2020) who demonstrate

that a non-invasive 40 Hz flicker evokes neuronal processes counteracting neuro-degeneration

(Adaikkan & Tsai, 2020; Singer et al., 2018). However, it should be noted that the authors under-

stand entrainment as the neural response to rhythmic stimulation, rather than a synchronization

of ongoing oscillations to an external drive (Adaikkan & Tsai, 2020). While our findings do

not question the authors’ compelling evidence that fast photic stimulation impacts neurocircuits

and glia, the current study shows that it is not trivial to attribute these effects to entrainment of

endogenous gamma oscillations.

2.5.2 Coexistence of flicker responses and oscillations versus oscillatory

entrainment

The current study was inspired by studies reporting that a visual flicker in the alpha-band

can capture the oscillatory dynamics of the visual system: resonance at distinct frequencies

(Gulbinaite et al., 2019; Herrmann, 2001; Schwab et al., 2006)1, amplitude and phase effects

outlasting the stimulation interval (Otero et al., 2020; Spaak et al., 2014) and an "Arnold

Tongue" relationship between stimulation intensity, distance to the individual alpha frequency

and flicker-response-synchrony (Notbohm et al., 2016).

Unlike the works listed above, we did not find any indication for a synchronization or

resonance of endogenous oscillations in the gamma band to the visual stimulation. Recent studies

applying photic stimulation in the alpha band, have pointed to a coexistence of endogenous

1see (Rager & Singer, 1998) for flicker responses in cat visual cortex



No evidence for gamma entrainment by rapid flicker 68

alpha oscillations and flicker responses, similar to the one we report here for the gamma band.

While retinotopic alpha modulation has been associated with suppression of unattended stimuli,

allocating attention to a stimulus flickering in the alpha band results in enhanced, phase-locked

activity (Antonov et al., 2020; Friedl & Keil, 2020; Gundlach et al., 2020; Keitel et al., 2019).

While the presented study does not allow nor aim to make generalized claims in favor or against

neuronal entrainment, it is worth noting that the ability of rhythmic sensory stimulation to entrain

endogenous oscillations is still a matter of debate.

2.5.3 Limitations & Generalizability

Interpretation of the different locations of the peak sources The results of the LCMV

beamforming are in line with the notion that gamma oscillations and flicker response are

generated by sources at different locations. Yet, due to the ill-posed inverse problem (Baillet,

2013) and the merging of coherent sources when using the LCMV approach (Belardinelli et al.,

2012) these source estimates should be interpreted with caution. Figure 2.10 illustrates that the

sources of the flicker response in the flicker&gratings condition extended more broadly over

visual cortex than the sources of the gamma oscillations and invisible flicker response, which

might be the result of the flickering rings stimulating different receptive fields (Gur & Nodderly,

1997). While our results suggest a coexistence of the gamma oscillations and flicker response,

we do not exclude that they interact.

These limitations do not seriously challenge our interpretation that the neuronal populations

generating the flicker response do not entrain the activity of the neurons engaging in the endoge-

nous gamma rhythm. Firstly, it is reasonable to assume that the peak sources reflect the flicker

response, which tends to be stronger than the endogenous gamma oscillations (see Figure 2.6 and

2.7). Secondly, the significant difference between the peak locations of the gamma oscillations

and flicker response in the flicker&gratings condition provides circumstantial evidence for the

notion that the two responses emerge from different neuronal populations, despite being elicited

by the same stimulus; albeit there is also an overlap between the sources. Intracranial recordings
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in nonhuman primates or humans would be useful to substantiate this interpretation.

Strong flicker responses despite limited stimulation strength The number of conditions that

have been tested in this paradigm, i.e. 40 frequency×condition combinations, imposed limita-

tions on the maximum number of trials per condition (N=15) and the duration of the stimulation

(2 seconds). Stimulation strength was limited to a contrast of 66% peak to trough, ensuring

equal luminance across conditions. Due to these limitations, one might be concerned that the

absence of oscillatory entrainment was caused by the limited magnitude of the photic drive.

However, we found the flicker to induce strong responses of up to 400% in the flicker&gratings

condition and over 200% in the flicker condition (e.g. see Figures 2.4 and 2.5). In light of these

response magnitudes, we argue that the absence of evidence for entrainment cannot be explained

by the photic drive being too weak.

Generalizability of the current findings to gamma oscillations associated with visual per-

ception The use of drifting gratings is a standard approach to induce strong narrow-band

gamma oscillations in humans (e.g. Hoogenboom et al., 2006, 2010; Michalareas et al., 2016;

Muthukumaraswamy et al., 2010; van Pelt & Fries, 2013; van Pelt et al., 2012) and nonhuman

primates (e.g. Bosman et al., 2012; Buffalo et al., 2011; Womelsdorf et al., 2006). One might

argue that the conclusions presented here only apply to these stimuli and that entrainment could

have been achieved using more complex stimuli such as natural images or faces. We find this

very unlikely for the following reasons:

Natural stimuli have been argued to induce gamma-band responses that are characterized

by broadband activity (Hermes et al., 2015a; Hermes et al., 2015b; Ray & Maunsell, 2010),

but also see (Bartoli et al., 2019; Brunet et al., 2014; Brunet & Fries, 2019). This is likely

explained by the fact that gamma power and frequency depend on stimulus properties such

as contrast, size and orientation (Jia et al., 2013; Muthukumaraswamy & Singh, 2013; Ray

& Maunsell, 2010; Schadow et al., 2007). As these factors vary greatly within a natural

image, the net result of the oscillatory activity in the gamma-band is a broadband response.

Moving gratings have been shown to induce stronger gamma oscillations than their stationary
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counterparts (Muthukumaraswamy & Singh, 2013; Perry et al., 2013) and were therefore chosen

for the current paradigm. We expected the flicker responses to be substantially stronger than the

grating-induced gamma oscillations, which is confirmed by Figure 2.6 and 2.7. Had we relied

on stationary gratings, the photic drive might have overshadowed weaker gamma-band activity.

Moreover, the frequencies of the endogenous gamma rhythms have been found to be higher for

moving than for stationary gratings (Muthukumaraswamy & Singh, 2013; Perry et al., 2013).

As our study aimed to investigate entrainment by a flicker with minimal visibility, the IGFs had

to be relatively high to be in the range of feasible stimulation frequencies. While the gratings’

concentric drift in our study did induce a rhythmic response at 4 Hz, there was no evidence for an

intermodulation with the flicker frequencies, nor an indication that the flicker&gratings condition

was lacking spectral precision. In line with our findings, recent work by Bauer et al. (2012),

using a superposition of a 60 Hz flicker and static gratings, has demonstrated the coexistence

of the grating-induced broadband gamma activity and the flicker response. Furthermore, the

authors report that behavior only correlated with the broadband gamma activity in absence of the

flicker. When the photic drive was applied to the static grating, the flicker response correlated

with reaction time, but behaviour did no longer relate to the broadband gamma activity.

Another concern might be that grating stimuli do not engage downstream regions to the

same extent as complex stimuli; as such they might be generated in specialized neuronal cir-

cuits. However, a number of studies in both human and non-human primates have demonstrated

that attended as well as unattended gratings induce gamma oscillations that propagate to down-

stream areas along the ventral (V4 and inferotemporal cortex) and dorsal stream (area V5 and

V7) (Bastos, Vezoli, Bosman, et al., 2015; Bosman et al., 2012; Buffalo et al., 2011; Michalar-

eas et al., 2016). For the reasons outlined above, we argue that moving grating stimuli created

the optimal conditions to investigate gamma-band entrainment, as these induced strong, sus-

tained, narrow-band gamma oscillations reflecting individual oscillatory dynamics (also see

Hoogenboom et al., 2006; van Pelt & Fries, 2013).
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2.6 Conclusion

Our results suggest that rapid photic stimulation does not entrain endogenous gamma oscillations

and can therefore not be used as a tool to probe the causal role of gamma oscillations in cognition

and perception. However, the approach can be applied in Rapid Frequency Tagging (RFT) to

track neuronal responses without interfering, for instance, to investigate covert spatial attention

(Zhigalov et al., 2019), multisensory integration (Drĳvers et al., 2020) and parafoveal reading

(Pan et al., 2020).
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3
Alpha oscillations may support the efficiency

of guided visual search by inhibiting
both target and distractor

features in early visual cortex

This chapter largely overlaps with: Duecker, K., Shapiro, K. L., Hanslmayr, S., Wolfe, J.,

Pan, Y., & Jensen, O. (2023, August 3). Alpha oscillations support the efficiency of guided

visual search by inhibiting both target and distractor features in early visual cortex [Pages:

2023.08.03.551520 Section: New Results]. https://doi.org/10.1101/2023.08.03.551520

https://doi.org/10.1101/2023.08.03.551520
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3.1 Abstract

Visual search models have long emphasised that task-relevant items must be prioritised for

optimal performance. While it is known that search efficiency also benefits from active distractor

inhibition, the underlying neuronal mechanisms are debated. Here, we used MEG in combination

with Rapid Invisible Frequency Tagging (RIFT) to understand the neural correlates of feature-

guided visual search.

RIFT served as a continuous read-out of the neuronal excitability to the search stimuli and

revealed evidence for target boosting and distractor suppression in early visual cortex. These

findings were complemented by an increase in occipital alpha power predicting faster responses

and higher hit rates, as well as reduced RIFT responses to all stimuli, regardless of their task

relevance. However, additional exploratory analysis revealed that observed effects on reaction

time may be confounded by time-on-task.

In light of these mutli-facted results, we will discuss the idea alpha oscillations in early visual

regions may implement a blanket inhibition that reduces neuronal excitability to both target and

distractor features. As the excitability of neurons encoding the target features is boosted, these

neurons may overcome the inhibition, facilitating guidance towards task-relevant stimuli. These

results provide novel insights on a mechanism in early visual regions that may support selective

attention through inhibition.
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3.2 Introduction

Visual search is a widely used paradigm, applied to operationalise the everyday task of finding

a pre-defined stimulus (target) among distracting stimuli (distractors), for instance, a friend in

a crowd. Search is more efficient when low-level features of the target, e.g., colour or shape,

are known to the observer (Egeth et al., 1984; Wolfe, 1994, 2021). For example, when we

know that our friend is wearing a yellow raincoat, we will pay less attention to people wearing

blue jackets (Figure 3.1a). The allocation of visual attention has long been suggested to involve

a priority map: a representation of the visual field in which locations are weighted based on

their salience and task-relevance (Awh et al., 2012; Koch & Ullman, 1985; Navalpakkam &

Itti, 2005; Serences & Yantis, 2006; Thompson & Bichot, 2005). Priority maps have become

a central component of models of selective attention (Awh et al., 2012; Bisley, 2011; Fecteau

& Munoz, 2006) and visual search Wolfe, 1994, 2021. In the example above, this map would

assign high priority to locations containing the colour yellow and low priority to the colour blue

(Figure3.1b).

Evidence from behavioural, electrophysiological, and neuroimaging studies leaves little

doubt that visual attention and search are guided by a mechanism akin to a priority map,

whereby neural responses to the target are boosted, and responses to the distractors are reduced

or suppressed (Andersen et al., 2008; Bayguinov et al., 2015; Bichot & Schall, 1999; Bisley

& Goldberg, 2010; Bisley & Mirpour, 2019; Chelazzi et al., 1993; Cosman et al., 2018;

Fecteau & Munoz, 2006; Gottlieb et al., 1998; Hickey et al., 2009; Ipata, Gee, Goldberg, &

Bisley, 2006; Klink et al., 2023; Luck & Hillyard, 1994a, 1994b; Mirpour et al., 2009; Motter,

1994; Müller et al., 2006; Ptak, 2012; Serences & Yantis, 2006; Sprague & Serences, 2013;

Thompson & Bichot, 2005; Thompson et al., 2005). While target boosting is known to largely

underlie gain modulation of the neural representations (Desimone & Duncan, 1995; Kastner &

Ungerleider, 2000, 2001; Mehrpour et al., 2020), it is still debated how distractor suppression is

implemented (Gaspelin & Luck, 2018a; Geng, 2014; Luck et al., 2021).

Numerous studies on spatial and temporal attention have linked neuronal alpha oscillations
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(8-12 Hz) to functional inhibition (for review see Jensen & Mazaheri, 2010; Klimesch, 2012;

Klimesch et al., 2007). Motivated by these findings, we here sought to uncover to what extent

they support distractor suppression in visual search. Alpha oscillations were long associated

with a state of inattention or idling (Adrian & Matthews, 1934; Pfurtscheller et al., 1996). In

line with that, signal detection tasks have repeatedly linked high alpha power to a higher number

of misses (Dĳk et al., 2008; Hanslmayr et al., 2007; Iemi et al., 2017). However, a series of

electrophysiological studies have demonstrated that alpha power is also reliably modulated by

attention (Gutteling et al., 2022; Hanslmayr et al., 2007; Kelly et al., 2006; Sauseng et al.,

2005; Vissers et al., 2016; Worden et al., 2000). For instance, in spatial attention tasks, alpha

power has been shown to retinotopically track the locus of attention (Foster et al., 2017; Popov

et al., 2019; Yuasa et al., 2023). Strong alpha oscillations in the visuo-cortical areas processing

unattended locations has further been linked to the participant’s ability to ignore task-irrelevant

stimuli (Händel & Jensen, 2014; Händel et al., 2011; Spaak et al., 2016; van Zoest et al., 2021;

Zhao et al., 2023). Moreover, intracranial recordings in monkeys and humans have related the

phase of the alpha oscillations to a rhythmic inhibition of neuronal excitability (Haegens et al.,

2011; Iemi et al., 2022). These studies have converged on the notion that alpha oscillations

reflect pulses of inhibition (Foxe & Snyder, 2011; Jensen & Mazaheri, 2010; Klimesch et al.,

2007; Payne & Sekuler, 2014; Van Diepen et al., 2019).

Both the idling and functional inhibition accounts predict that strong alpha oscillations are

detrimental to visual processing. However, it has also been hypothesised that alpha oscillations

facilitate performance in tasks with a lot of distracting information (Klimesch, 2012); such as

visual search among a high number of stimuli. So far, there are only preliminary results linking

strong alpha oscillations in a classic visual search experiment to faster responses (Pastuszak

et al., 2018). This relationship was found for alpha oscillations before the onset of the search

display.

Based on evidence from spatial attention tasks, one might suggest that alpha oscillations

support such a search task by selectively inhibiting distractor locations (Figure. 3.1c). This

spatially specific inhibition could however only be imposed after the display onset, when the



77 Harmony in early visual cortex

a | search example

search target

d | visual search: blanket inhibition hypothesis

preparation for search search

b | priority map c | spatial attention
selective Distractor suppression

priority

+-

Figure 3.1: Models of visual search considering a
priority map and inhibition by alpha oscillations.
a Search example: finding a person who is dressed
in yellow in a crowd of people who are dressed in
yellow and blue. b Visual search models typically
assume that search is guided by a priority map, i.e.,
a representation of the visual world, whereby each
location is weighted based on its relevance for the
current search. In this example, the location of
the people dressed in yellow is assigned a higher
priority than people dressed in blue. c Studies on
spatial attention have tested the hypothesis that al-
pha oscillations selectively inhibit distractors. In
electrophysiological recordings, this would show
as a targeted reduction of neuronal activity in areas
representing locations of people dressed in blue.
d Alternative hypothesis for visual search: alpha
oscillations implement a blanket inhibition mech-
anism, whereby an inhibitory threshold is set up
in preparation for the search (left). With the on-
set of the display, this threshold subsides as the
priority map is built (middle). Once the priority
map is established, only the boosted items in the
visual field can overcome the threshold, focusing
the search on locations that are likely to contain a
target stimulus (right).

locations of the distractors are known, and

would therefore be unhelpful in a visual

search task. Research on feature-based at-

tention has led to the hypothesis that at-

tention can also be guided by spatially un-

specific feature maps (Maunsell & Treue,

2006). These feature maps could assist in

the implementation of the priority map, and

thus distractor inhibition. As alpha oscilla-

tions have so far mainly been investigated in

the context of spatial and modality-specific

attention (Foxe et al., 1998; Mazaheri et al.,

2014; Ray & Cole, 1985), it is unknown if

and how they would support distractor sup-

pression in a feature map.

We consider the alternative hypothesis

that instead of selectively inhibiting distrac-

tors, alpha oscillations support visual search

by applying an inhibitory threshold to the

neural representations of all stimuli in the

visual field; we refer to this as blanket in-

hibition (Figure3.1d). This threshold is set

in anticipation of the search display, repre-

sented by an increase in pre-search alpha

power (Figure 3.1d, left). With the onset of

the search display, the threshold subsides,

as reflected by a decrease in alpha power in response to visual stimuli (Pfurtscheller & Lopes

da Silva, 1999, 3.1d, middle). We argue that as the blanket inhibition is applied to the priority
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map, only the boosted representations will overcome the threshold, reducing the number of

high-priority locations; thus, facilitating guidance (Figure 3.1d, right). This relationship would

be reflected by increases in alpha power paired with a reduction of the neuronal excitability to

stimuli sharing both target and distractor features.

We tested the hypotheses outlined in Figure 3.1c and d using MEG in combination with Rapid

Invisible Frequency Tagging (RIFT) (link to preregistration). MEG allows to both localise and

quantify changes in human neuronal activity with a fast temporal resolution. RIFT is a novel,

subliminal stimulation method to probe neuronal excitability in early visual regions, while

leaving endogenous spontaneous oscillations unperturbed (Duecker et al., 2021; Zhigalov &

Jensen, 2020; Zhigalov et al., 2019). The RIFT responses served as a read-out of the excitability

in early visual neurons to target and distractor features (also see Bouwkamp et al., 2023).

Relating the magnitude of the RIFT responses to alpha power before and during the search

allowed us to investigate how alpha oscillations operate on a priority map.

The neural dynamics of distractor suppression in humans and non-human primates are

typically investigated in the context of actively ignoring a singleton distractor presented among

four to six spatially organised stimuli (Donohue et al., 2020; Feldmann-Wüstefeld & Awh,

2020; Feldmann-Wüstefeld et al., 2021; Ferrante et al., 2023; Forschack et al., 2022; Gaspar &

McDonald, 2014; Gaspelin & Luck, 2018b; Hickey et al., 2009; Jannati et al., 2013; Sawaki &

Luck, 2010; Serences et al., 2004; van Zoest et al., 2021), and have so far not led to an agreement

on the underlying mechanism (Luck et al., 2021). Using RIFT, we were able to read out the

neuronal excitability to target and distractor features in a complex visual search display, without

any pop-out stimuli; in the tradition of early behavioural studies that motivated the hypotheses

that search is guided by a map of the visual field (Treisman et al., 1980; Wolfe, 1994, 2021,

Figure 3.2a).

https://osf.io/vcshj
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3.3 Methods

3.3.1 Experimental design & stimuli

Task

We applied Rapid Invisible Frequency Tagging (RIFT) in a classic visual search paradigm to

probe the neuronal excitability to the target and distractor colour in guided and unguided search.

The participants’ task was to indicate whether a cyan or yellow letter “T” was present or absent

amongst several cyan and yellow “Ls” (Figure 3.2a). The experiment was designed in blocks

of 40 trials with set sizes of either 16 or 32 items. At the beginning of a block in the guided

search condition, the letter “T” was presented in yellow or cyan, indicating the colour of the

target for the following block (Figure 3.2a). In blocks in the unguided search condition a white

“T” was shown, and the color of the target was randomised over trials. Each search display was

preceded by a 1.5-s baseline interval in which a white fixation dot was presented in the centre

of the screen. The trials were terminated with the participants’ button press, or automatically

after 4 seconds. The button press was followed by a black screen, presented for 500 ms, before

the start of the pre-search interval of the following trial. All participants complete four practice

blocks consisting of 10 trials each before the experiment. Participants were instructed to find

the target without moving their eyes. The experiment and MEG recording were paused every

10 minutes and participants were encouraged to rest their eyes and move their heads.

Display physics

The stimuli were presented using a Propixx lite projector (VPixx Technologies Inc, Quebec,

Canada), set to a refresh rate of 480 Hz. The luminance of the yellow and cyan stimuli in the

search display was modulated sinusoidally, respectively at 60 and 67 Hz (Figure3.2b, target and

distractor colours, tagging frequencies, and set sizes were randomized within participants). The

stimuli were created using the Psychophysics Toolbox version 3 (Brainard, 1997) in MATLAB

2017a (The Mathworks, Natick, MA, USA).
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3.3.2 Apparatus for data acquisition

The MEG data were acquired using a MEGIN Triux (MEGIN Oy, Espoo, Finland), with 204

planar gradiometers and 102 magnetometers at 102 sensor positions, housed in a magnetically

shielded room (Vacuumschmelze GmbH & Co, Hanau, Germany). Data were filtered online

between 0.1 and 330 Hz using anti-aliasing filters and then sampled at 1,000 Hz. The dewar

orientation was set to 60° to allow the participants to comfortably rest their heads against the

back of the sensor helmet, optimizing the recording of the neuromagnetic signals in the occipital

cortex.

The three fiducial landmarks (nasion and left and right periauricular points), the participant’s

head shape (>200 samples), and the location of four head-position-indicator (HPI) coils were

digitized using a Polhemus Fastrack (Polhemus Inc, Vermont, USA) prior to the recording. The

location of the HPI coils was acquired at the beginning of each new recording block, but not

continuously throughout the experiment.

The RIFT signals at 60 and 67 Hz were further applied to two squares at the outer corners

of the screen and recorded using two custom-made photodiodes (Aalto NeuroImaging Centre,

Aalto University, Finland), connected to the MEG system.

Eye movements and blinks were tracked using an EyeLink® eye tracker (SR Research

Ltd, Ottawa, Canada), positioned at the minimum possible distance from the participant. The

conversion of the EyeLink® Edf files was done with the Edf2Mat Matlab Toolbox designed and

developed by Adrian Etter and Marc Biedermann at the University of Zurich.

The T1-weighted anatomical scans were obtained using a whole-body 3-Tesla Philips Achieva

scanner (echo time TE=0.002s, repetition time TR=2s).

3.3.3 Participants

This study was carried out in accordance with the declaration of Helsinki and the COVID-19

related safety measures at the University of Birmingham in place between April 2021 and

January 2022. A telephone screening was conducted 48 hours before the experiment to ensure
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that all participants were safe for fMRI and free of COVID-19 symptoms. 48 volunteers with

no history of neurological disorders participated in the experiment. The participants’ colour

vision was assessed prior to the experiment using 14 Ishihara plates (Clark, 1924). Participants

for whom the eye tracking recording was missing due to technical errors were not considered

for the analysis (N=6). Three additional participants were excluded as their button presses often

exceeded into the following trials (in 160-300 trials), resulting in a total sample size of N=39.

Participants who did not show a significant tagging response (N=8) were excluded at a later

stage (see RIFT response sensor selection below), leaving 31 data sets (20 female, see below).

3.3.4 Behavioural performance

The participants’ performance on correctly detecting the presence and absence of the target was

quantified based on average reaction time and perceptual sensitivity (d’), calculated as:

𝑑′ = 𝑧(𝐻) − 𝑧(𝐹𝐴) (3.1)

with 𝑧(𝐻) being the z-scored portion of hits in target present trials and 𝑧(𝐹𝐴) being the z-scored

portion of false alarms in target absent trials.

3.3.5 MEG pre-processing

Signal Space Separation (SSS, “Maxfilter”) implemented in MNE Python was applied to sup-

press magnetic signals emerging from sources outside the participant’s brain. The remaining

pre-processing of the MEG data, frequency and source analyses, and cluster-based permutation

test were performed using the Fieldtrip toolbox (Oostenveld et al., 2010) in MATLAB 2019b.

Statistical analyses of the behavioural and eye tracking data were carried out in RStudio 1.1.456

with R version 3.6.1. (The R Foundation for Statistical Computing).

Faulty sensors were identified and corrected prior to the SSS using MNE python. The filtered

data were divided into intervals of 4.5 s, starting 2.5 s before, and extending to 2s after the onset

of the search display in each trial. Semi-automatic artefact rejection was performed on the
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4.5 s intervals, by manually identifying and rejecting epochs with a comparably high variance,

separately for gradiometers and magnetometers.

Independent Component Analysis (ICA) was used to suppress oculomotor and cardiac arte-

facts based on the 68 components that were identified for each participant. Trials with unreason-

ably short reaction times of up to 200ms, as well as trials without a response were rejected (Wolfe

et al., 2010). When comparing performance for high and low alpha trials and fast vs slow re-

sponse times, we further discarded trials with a response time of ±3 standard deviations above

the mean, separately for each condition.

3.3.6 RIFT response magnitude

The photodiode signals were replaced with a perfect sine wave with low-amplitude white noise

(SE= 0.05) for the offline analyses, extending into the baseline interval. The magnitude of the

RIFT response was quantified by calculating the spectral coherence between the MEG sensors

of interest, identified as described above, and RIFT signal. The data were bandpass-filtered

using a two-pass Butterworth filter at 60 and 67 Hz ± 5 Hz, respectively. The analytic signal was

obtained from the filtered data using the Hilbert transform. The spectral coherence was then

calculated as (Cohen, 2014, pp. 343–344):

𝑐𝑜ℎ𝑀𝐸𝐺,𝑑𝑖𝑜𝑑𝑒 (𝑡) =
| ∑𝑛

𝑘=1 𝑚𝑀𝐸𝐺 (𝑡) · 𝑚𝑑𝑖𝑜𝑑𝑒 (𝑡) · 𝑒𝑖𝜙(𝑡) |(
𝑛−1 ∑𝑛

𝑘=1 | 𝑚𝑀𝐸𝐺 |
)
·
(
𝑛−1 ∑𝑛

𝑘=1 | 𝑚𝑑𝑖𝑜𝑑𝑒 |
) (3.2)

with 𝑚𝑀𝐸𝐺 and 𝑚𝑑𝑖𝑜𝑑𝑒 being the analytic MEG and RIFT amplitude, respectively, 𝜙 being

the phase difference between the two signals, and 𝑛 being the number of trials. To obtain the

coherence to the RIFT signal of the target colour, for instance, we split the data into trials in

which the target colour was tagged at 60 and 67 Hz, and calculated the coherence separately

over these trials. Afterwards, the coherence was averaged over the two frequencies.
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3.3.7 RIFT response sensor selection

The MEG sensors containing a reliable frequency tagging response were identified using non-

parametric (Monte Carlo) statistical testing, proposed by (Maris & Oostenveld, 2007) and

implemented in the Fieldtrip toolbox. The pre-processed data were divided into a baseline (0.7

to 0.2 s before stimulus onset) and stimulation interval (0.5 s following the onset of the search

display). Coherence between a given MEG sensor and the 60 Hz photodiode signal over trials

was estimated separately for the pre-search and the search interval. The difference between the

coherence in the baseline and search interval was z-transformed using the following equation:

𝑍 =

(
𝑡𝑎𝑛ℎ−1 ( | 𝑐𝑜ℎ𝑠𝑒𝑎𝑟𝑐ℎ) | −𝑏𝑖𝑎𝑠

)
−
(
𝑡𝑎𝑛ℎ−1 ( | 𝑐𝑜ℎ𝑏𝑠𝑙 |) − 𝑏𝑖𝑎𝑠

)√︁
(2 · 𝑏𝑖𝑎𝑠)

(3.3)

Whereby 𝑐𝑜ℎ𝑠𝑒𝑎𝑟𝑐ℎ and 𝑐𝑜ℎ𝑏𝑠𝑙 are the coherence between the respective MEG sensor and the

photodiode at 60 Hz during the search and pre-search interval, respectively. The bias is calculated

as 𝑏𝑖𝑎𝑠 = 1
2𝑛−2 with 𝑛 being the number of trials.

The statistical significance of the z-transformed coherence difference (the empirical z-value)

was estimated using a permutation procedure. To this end, a null distribution for the empirical z-

value was estimated by generating 10,000 random permutations of the trial labels and calculating

the z-values for the shuffled pre-search and search interval, using Equation 3.3. If the coherence

difference obtained for the unshuffled data in the respective sensor was larger than 99% of the

null distribution, the sensor was considered to show a significant tagging response at a 1%

significance level. This procedure was completed for a total of 81 occipital and occipito-parietal

sensors to identify the sensors of interest for each participant. 31 out of 39 participants had at

least one significant gradiometer. As only 27 participants showed a significant response in at

least one magnetometer, only gradiometers were considered for the sensor and source analyses.

In total, we used the data from 31 volunteers for further analyses (20 female; aged 23.4 years

± 3.18). All participants were right-handed according to the Edinburgh Inventory (augmented

handedness score: M=84.08; STD=14.37 Oldfield, 1971).
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3.3.8 Power at the Individual Alpha Frequency

To identify the individual alpha frequency and the sensors acquiring alpha oscillations, we

calculated the Time Frequency Representation (TFR) of power over all trials for frequencies

from 4 to 30 Hz, by means of Fourier transformation applied by sliding 0.5 s windows (in

50 ms steps) multiplied by a Hanning taper. To identify each participant’s alpha sensors of

interest, the TFRs were averaged in the -1 to 0 s interval over trials. For each participant, the

four sensors exhibiting the highest power peak in the 4-14 Hz range were selected as the alpha

sensors of interest (combined planar gradiometers). We did not use the RIFT sensors of interest

to investigate alpha power, as the alpha oscillations and RIFT response do not emerge from

the same brain areas per se (Zhigalov & Jensen, 2020). The Individual Alpha Frequency was

identified as the peak in the power spectra averaged over these sensors (see Figure A.4).

3.3.9 Source localisation

The anatomical sources of the pre-search alpha oscillations and the RIFT response were estimated

using the Dynamic Imaging of Coherent Sources beamformer (Gross et al., 2001), implemented

in the Fieldtrip toolbox (Oostenveld et al., 2010).

MEG leadfield

To calculate the MEG lead field, we first aligned the fiducial landmarks in the individual T1-

weighted images with the digitised points taken prior to the experiment. The coordinate system

of the participant’s T1-weighted scan was then automatically aligned to the digitised head shape

using the iterative closest point (ICP) algorithm(Besl & McKay, 1992), implemented in the

Fieldtrip toolbox, and corrected manually as necessary. For the two participants for whom there

was no T1 scan available, the digitised fiducial landmark and head shape were aligned with a

standardised template brain provided with the Fieldtrip toolbox.

Next, the brain volume was discretised into a source grid of the equivalent current dipoles

by warping each participant’s realigned anatomical scan to the Montreal Neurologic Institute
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(MNI) coordinate system; using a template MRI scan, and an equally spaced 8 mm grid, with

5,798 locations inside the brain. The lead field was then estimated at each point in the source

grid using a semi-realistic headmodel (Nolte, 2003).

Dynamic Imaging of Coherent Sources

The sources of the RIFT response and alpha oscillations were localised using Dynamic Imaging

of Coherent Sources (DICS, Gross et al., 2001). The spatial filters for this beamformer are

calculated as a function of the forward model (estimated using the lead field matrix) and the

cross-spectral density matrix of the sensor data. Here, we used the cross-spectral matrix of

the gradiometers only. The SSS (“Maxfilter”) caused the data to be rank deficient, making the

estimate of the sensor cross-spectral density matrix unreliable. To ensure numerical stability,

we calculated the truncated singular value decomposition (SVD) pseudoinverse (Gencer &

Williamson, 1998; Westner et al., 2022) of the sensor cross-spectral density matrix. This method

decomposes the covariance matrix using SVD, selects a subset of singular values (the subset

size is defined by the numerical rank) and calculates a normalised cross-spectral density matrix

using this subset. The spatial filters are then estimated based on the normalised cross-spectral

density matrix using unit-noise gain minimum variance beamforming(Borgiotti & Kaplan, 1979;

Westner et al., 2022).

To estimate the cross-spectral density matrix for the RIFT response, we first extracted data

segments from 0 to 0.5 s (the minimum reaction time for all participants). The complex cross-

spectral density between the signal in the (uncombined) planar gradiometers and the RIFT signal

was computed based on the Fourier-transformed data segments (Hanning taper, separately for

the 60 Hz and the 67 Hz photodiode signal). The cross-spectral density matrices were used to

estimate the forward model to create a spatial filter for each frequency. The spatial filters were

then applied to the cross-spectral density matrix to estimate the RIFT response as the coherence

between each point in the source grid and the photodiode signal.

The spatial filters of the alpha oscillations were estimated based on the cross spectral density

matrix of the gradiometers at the individual alpha frequency, calculated based on the -1 to 0
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s interval (Hanning taper). Analogously to the RIFT response, the filters were than applied to

calculate power at the individual alpha frequency at each grid point.
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3.4 Results

Our experimental paradigm featured two search conditions (guided and unguided search) and

two set sizes (16 and 32), presented in a block design, with each block consisting of 40 trials

(Figure 3.2a). Participants were requested to indicate if a single iteration of the letter “T” was

presented among several iterations of the letter “L”. In the guided search condition, participants

were cued to the colour of the target “T” (either yellow or cyan) at the beginning of the block.

Importantly, as only these two colours were used throughout the experiment, participants were

able to infer the distractor colour from this cue. In the unguided search condition, a white “T”

was presented at the beginning of the block, meaning the target and distractor colours were not

cued, and the colour of the T was randomised over trials. Set size was kept constant within each

block. The target and distractor colours were frequency-tagged by modulating their luminance

sinusoidally, at 67Hz and 60Hz respectively (randomised over trials; Figure 3.2b). Participants

were instructed to perform the task while fixating a centrally presented dot.

Based on the extensive literature on visual search, we predicted search performance to be

worse (indicated by reaction time and accuracy) for more difficult searches, i.e., set size 32

relative to 16 and unguided compared to guided search (Egeth et al., 1984; Palmer, 1994; Wolfe,

1994, 2021). Indeed, these hypotheses were confirmed by the statistical analyses on the reaction

time and sensitivity (d’) outlined in the Supplementary analyses and shown in Figure 3.2c and

d. Furthermore, we found that reaction time and sensitivity did not differ for unguided search,

set size 16 and guided search, set size 32, indicating that the difficulty of these searches was

similar (see Table A.2 and Table A.4). This suggests that the participants used the colour cue at

the beginning of the block to focus their search on the target colour.

3.4.1 Rapid Invisible Frequency Tagging responses indicate target boost-

ing and distractor suppression

RIFT elicited brain responses at the respective stimulation frequencies detected in a small

number of MEG sensors over the occipital cortex (Figure 3.3a, see Figure A.1 for individual
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Figure 3.2: Experimental paradigm, Rapid Invisible Frequency Tagging (RIFT), and search
performance. a Trials were presented in a blocked design. Each block contained 20 target
absent and 20 target present trials. Set sizes (16 or 32) were the same within each block. At the
start of a block in the guided search condition, a “T” was presented in yellow or cyan, revealing
the target colour for the following 40 trials. A block in the unguided search condition began with
the presentation of a white “T”, and the target colour was randomized over trials. Note that the
search displays are not true to scale; the eccentricity of the search array amounted to 10° visual
angle, 5° on either side of the fixation dot. b RIFT at 60 and 67 Hz was applied to the colour
of the stimuli by modulating the luminance sinusoidally. In this example, yellow stimuli were
tagged at 67 Hz and cyan stimuli were tagged at 60 Hz. c Search performance decreases for more
difficult searches. A hierarchical regression approach reveals a significant main effect for set size
(𝛽 = 0.18) and guided/unguided (𝛽 = −0.14). Indicating that larger set sizes are associated with
slower responses, while guided searches are faster than unguided searches. Pairwise comparisons
reveal no significant difference in reaction time between unguided search set size 16 and guided
search set size 32 (𝑉 = 134, 𝑧 = 2.24, 𝑟 = 0.4, 𝑝 = 0.14), suggesting that participants focused
their search on task-relevant items in the guided search condition. d Analogously, for accuracy (as
measured by d’), hierarchical regression reveals a significant main effect for set size (𝛽 = −0.74)
and guided/unguided (𝛽 = 0.56), indicating that accuracy is higher in guided searches and for
set size 16 compared to 32. Again, there is no significant difference in sensitivity for unguided
search set size 16 and guided search set size 32 (𝑡 (30) = 2.2, 𝑑 = 0.2, 𝑝 = 0.23).

topographic representations per participant). Source modelling based on Dynamic Imaging of

Coherent Sources (DICS) demonstrated that the responses emerged from early visual regions

(V1, MNI coordinates [0 -92 -4], Figure 3.3b).

As outlined in our pre-registration, we hypothesised that the RIFT response reflects a priority-

map-based search strategy, indicating target boosting and distractor suppression in the guided

search condition. Figure 3.3c and d show the RIFT response as quantified by the coherence (R2)

between the MEG response (RIFT sensors of interest) and the frequency tagging signal, averaged

over participants (see 3.3 for details on the RIFT analysis). Note that the immediate increase in
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Figure 3.3: Rapid Invisible Frequency Tagging (RIFT) responses reflect a priority-map based
mechanism. a Topographic representation of the 60 Hz RIFT signal, averaged over participants
in the 0 to 0.5 s interval (t = 0 s is the onset of the search display). The RIFT response is
confined to the occipital sensors. b Source modelling demonstrates that the RIFT response was
primarily generated in the early visual cortex. The source grid has been masked to show the 1%
most strongly activated grid points (MNI coordinates [0 -92 -4]). c,d Coherence to the RIFT
signal reveals target boosting and distractor suppression in guided search. c set size 16. There
was no difference in RIFT responses between target and distractor colours; nor guided versus
unguided search. d set size 32. The RIFT responses to the guided target colour are significantly
enhanced and the responses to the guided distractor colour are significantly reduced compared
to the unguided search condition (p < 0.05; multiple comparison controlled using a cluster-based
permutation test in the 0 to 0.5 s interval).

coherence after the search display onset reflects a broad-band evoked response, rather than the

frequency-specific flicker signal. The RIFT responses for set size 16 were noticeably weak and

did not show any modulation to the target and distractor colour (Figure 3.3c). Considering that

the coherence drops to baseline after the event-related response, we argue that this is the result

of an insufficient signal-to-noise ratio caused by a comparably small number of pixels flickering

(but see 3.5).

For set size 32, we find that the RIFT responses to the target colour in the guided search

condition were significantly enhanced compared to the unguided search condition (Figure 3.3d).

This suggests a boosting of the neuronal excitability to all items sharing the known target colour.

Importantly, the responses to the distractor colour when comparing guided to unguided search

were significantly reduced, providing evidence for distractor suppression (Figure 3.3d, 𝑝 < 0.05;

multiple comparisons were controlled using a Monto-Carlo cluster-based dependent sample t-

test on the 0 to 0.5 interval, 5,000 permutations). Our findings demonstrate that knowledge

about the target and distractor colour in the guided search condition results in a modulation of
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the RIFT response consistent with the concept of a priority map, whereby target representations

are boosted, and distractor representations are suppressed. Importantly, these results serve as a

proof-of-principle, showing that RIFT is suitable to measure the neuronal excitability associated

with the priority map in visual search (also see Bouwkamp et al., 2023).

We further tested whether this modulation was relevant for performance, by sorting the trials

based on a median split of reaction time into fast and slow trials. The analyses only revealed a

weak relationship between reaction time and RIFT responses which are described in detail in

the A.1 and Figure A.2.

3.4.2 Strong pre-search alpha oscillations predict enhanced search per-

formance and reduced RIFT responses in guided search

We next aimed to identify if alpha oscillations facilitate search by modulating the neuronal

excitability associated with the visual inputs. As part of the pre-processing, we identified the

sensors showing the highest peak in the alpha-band, averaged over all conditions and trials, as

the alpha sensors of interest. We did not use the RIFT sensors of interest, as RIFT responses and

alpha oscillations do not emerge from the same brain areas per se (Zhigalov & Jensen, 2020, see

3.3 and Figure A.3 for individual topographies of pre-search alpha power). Fiure 3.4a shows the

Time-Frequency Representation (TFR) of power in the identified alpha sensors, aligned to each

individual’s alpha frequency before calculating the grand average (see Figure A.4 for individual

spectra). The TFR demonstrates that visual search was preceded by high power in the alpha

band, which was sustained during the search albeit weakened.

We hypothesised that more demanding conditions would require stronger inhibition to sup-

press a larger portion of the search display. Therefore, we expected alpha power to be stronger for

set size 32 compared to 16. A repeated measures ANOVA using the factors condition (guided

vs unguided search) and set size did not reveal any main effects or interactions of the alpha

power before or during the search (Figure A.5). This result suggests that pre-search alpha is

not modulated by the anticipated difficulty of the search task. To test our hypothesis that alpha

oscillations facilitate search, we next investigated the effect of the pre-search alpha power on
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Figure 3.4: Alpha oscillations pre visual search predict better performance and reduced RIFT
responses. a-f median split based on pre-search alpha power. a Time-Frequency Representation
(TFR) of power, aligned to each participant’s individual alpha frequency, revealing strong alpha
oscillations in the baseline that persisted during the search. b Source localisation of the contrast
between high and low alpha power (relative change), showing the 1% most strongly activated
grid points. Alpha power peaks in V1, MNI coordinates [-8 -84 12]. c (left) Reaction time is
significantly faster in trials with high compared to low alpha power (Wilcoxon signed rank test:
𝑧 = −3.53, 𝑝 = 0.0001). (right) High alpha is associated with a higher number of hits, i.e., a
correct indication of target present or absent (𝑧 = 2.12, 𝑝 = 0.017). d TFR contrast between
fast and slow trials shows that fast trials were preceded by significantly stronger power in the
alpha-band – and not in any other frequency band (controlled for multiple comparisons using
Monte Carlo cluster-based permutation dependent sample t-test, one-sided, 𝑝 < 0.01, 5, 000
permutations). e High alpha trials in the guided search condition (set size 32) are associated
with reduced RIFT responses to both the target and distractor colour (𝑝 < 0.05, permutation
test applied to the 0.15 to 0.5 s interval, 5,000 permutations) f The finding in e did not replicate
for the unguided search condition.

search performance and neuronal excitability measured by the RIFT response. Pre-search alpha

power was estimated by averaging the TFR of power of every trial over the -1 to 0 s interval.

The trials were then sorted based on the median split on power at the individual alpha frequency,

separately for each condition, i.e., set size 16 vs. 32, guided vs. unguided search, and target

present vs. absent trials. After performing the median split, the data of all conditions were

combined into high alpha and low alpha trials. The averaged spectra for each participant for the

high and low alpha trials are shown in Figure A.6, and demonstrate a clear peak in the alpha-
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band for all participants. Source localisation using a DICS beamformer revealed the maximum

difference in alpha power between high and low alpha trials in early visual areas as demonstrated

in Figure 3.4b (V1, MNI coordinates [-8 -84 12], masked to show the top 1% most strongly

activated grid points).

Figure 3.4c shows the difference in performance for trials with high compared to low pre-

search alpha power. Trials with high alpha power were associated with significantly reduced

reaction times (left, Wilcoxon signed rank test: 𝑉 = 68, 𝑧 = −3.53, 𝑝 = 0.0001, 𝑟 = 0.63, 𝑆𝐸 =

0.013). Moreover, hit rates (correct indication of target absent or present) were significantly

higher for high compared to low alpha trials, indicating that the response time effect was not

driven by a speed-accuracy trade-off (right, 𝑉 = 356, 𝑧 = 2.12, 𝑝 = 0.017, 𝑟 = 0.38, 𝑆𝐸 =

0.004). These results suggest that high alpha power in preparation for the search predicts

significantly better performance. To confirm that there was indeed a negative correlation between

reaction time and pre-search alpha power across trials, we conducted an additional analysis,

whereby we fitted a linear regression model to the reaction time data for each participant, as a

function of set size, guided vs unguided, target present/absent, and alpha power in the -1 to 0

s interval (both reaction time and alpha power were z-scored for each participant). Indeed, we

find that the regression coefficient associated with the alpha power was significantly smaller than

zero (𝑡 (30) = −4.14, 𝑑 = −0.74, 𝑝 = 0.00013, 𝑆𝐸 = 0.011), and the difference in R2 between

the full model including alpha power, and the model just including set size, guided/unguided,

target absent/present was significantly larger than zero (𝑡 (30) = 4.6, 𝑝 = 4𝑥10−5, 𝑑 = 0.82, 𝑆𝐸 =

0.001, data not shown).

To corroborate that these results are based on frequency-specific increases in the alpha-band,

and not broadband power changes, we performed a confirmatory analysis step, whereby we

sorted the trials in each condition based on a median split on reaction time, into fast and slow

trials. The TFRs for the fast and slow trials of each participant were averaged over the alpha

sensors of interest and compared using a Monte Carlo dependent sample t-test. Indeed, fast

trials were associated with significantly enhanced power in the alpha-band, in the pre-search

interval, as indicated by the black outline in Figure 3.4d (𝑝 < 0.01, 5, 000 permutations).
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Next, we asked to what extent pre-search alpha power links to modulations in the RIFT

response. Figure 3.4e shows the grand average RIFT responses in guided search, set size

32, separated for trials with high and low pre-search alpha power. Notably, trials with high

alpha power appeared to be associated with overall reduced RIFT responses. In line with that,

we found a significant reduction in RIFT responses to both the target and distractor colour

for high compared to low alpha trials, using cluster-based permutation Monte Carlo t-tests

(𝑝 < 0.05, 5, 000 permutations, note that the tests were applied to the 0.15 to 0.5 s interval, as

the attentional modulation of the RIFT responses in Figure 3.3d was observed after about 200

ms). This demonstrates that high alpha power before the search is associated with reduced RIFT

responses to all stimuli in the visual field. Surprisingly, there was no link between pre-search

alpha power and RIFT responses in unguided search, set size 32. As we did not observe a RIFT

response for set size 16 (Figure 3.3c), we did not expect to find any evidence for a modulation of

the RIFT signal by alpha power in this condition; which was indeed confirmed by our A.1 (but

see Figure A.7a,b).

The presented analyses link strong pre-search alpha oscillations in early visual areas to en-

hanced performance, as indicated by faster and more accurate responses, as well as reduced

neuronal excitability to both target and distractor features in guided search, set size 32. This

finding supports the blanket inhibition hypothesis indicated in Figure 3.1d. It should be em-

phasised that these results were not related to ocular artefacts or targeted eye movements, as

confirmed by control analyses outlined in the A.1 and Figure A.9.

3.4.3 Strong alpha power during search is linked to faster reaction times

and reduced RIFT responses in guided and unguided search

Considering the link between pre-search alpha power, behaviour, and RIFT responses, we next

set out to quantify the effect of alpha power during the search. We divided the trials based on

alpha power in the 0.25 to 0.5 s interval (median split performed separately for each condition

as described above), avoiding an extension of the sliding window into the baseline interval. The

spectra of the trials with high and low alpha power during search are shown in Figure A.8,
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Figure 3.5: Alpha oscillations during visual search predict faster response times and reduced
RIFT responses.a Source localized contrast between high and low alpha power during search,
showing the 1% most strongly activated grid points, again revealing strongest activation in early
visual cortex (MNI coordinates [-8 -84 4]). b (left) Trials with high alpha power during search
are associated with significantly faster reaction time (z = -2.7, p = 0.0026). (right) There is no
significant difference in hit rate between trials with high and low alpha power during search
(z = 0.43, p = 0.33). c Trials with high alpha power during guided search, set size 32 are
associated with reduced RIFT responses to the target colour (p<0.05, sign.) and the distractor
colour (p=0.1, trend). d Trials with high alpha power in unguided search, set size 32, were also
associated with significantly reduced RIFT responses (p < 0.05).

demonstrating a pronounced peak at the individual alpha frequency for all participants. The

source of the alpha oscillation was again located in early visual regions, as indicated by a contrast

between high and low alpha power (Figure 3.5a, MNI coordinates [-8 -84 4]).

In line with the findings reported above, we again found that response times were significantly

faster in trials with high compared to low power in the alpha-band during search (Figure 3.5b,

left, 𝑉 = 110, 𝑧 = −2.7, 𝑝 = 0.003, 𝑟 = 0.49, 𝑆𝐸 = 0.01). However, there was no significant

difference in hit rate between high and low alpha trials (Figure 3.5b, right,𝑉 = 270, 𝑧 = 0.43, 𝑝 =

0.34, 𝑟 = 0.08, 𝑆𝐸 = 0.004).

We then tested if the magnitude of the RIFT response was related to alpha power during

the search. For guided search, set size 32, we find that the responses to both the targets and

distractors are again reduced for trials with high compared to low alpha power during search

(Figure 3.5c); with a significant difference for the target colour (𝑝 < 0.05) and a trend effect for

the distractor colour (𝑝 = 0.1). Interestingly, we found that high alpha power during unguided

search, set size 32, was also associated with significantly reduced RIFT responses (Figure 3.5d).
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The RIFT responses for set size 16, guided and unguided search are shown in Figure A.7c,d.

The results only indicate a reduced event-related response to the distractor colour in the high

alpha trials, but no modulation in the later (frequency-specific) response.

The presented results demonstrate that strong alpha oscillations are present during visual

search. Moreover, the magnitude of these oscillations was associated with faster reaction times

and reduced RIFT responses in guided and unguided search, set size 32. These results again

support a blanket inhibition mechanism, that facilitates visual search through inhibition of all

visual inputs, regardless of their task-relevance.

3.4.4 Time-on-task as a confounding variable in search performance and

cortical excitability - exploratory analyses

Previous studies employing visual paradigms have reported that alpha power tends to increase

over task duration (Benwell et al., 2019). Such changes in alpha power over time have been

associated with fluctuations in visual performance (Benwell et al., 2018) and fatigue (Cajochen et

al., 1995; Craig et al., 2012; Daniel, 1967). Therefore, the observed link between increased alpha

power and search performance, and alpha power and RIFT responses, could be confounded by

time-on-task. Figure 3.6 shows the Spearman correlation between time-on-task and alpha power

in the interval pre- (left plot) and during search (right plot), suggesting that alpha power indeed

increases with task time for the majority of participants. We tested the correlation coefficients

against zero using a permutation procedure, whereby the null distribution was obtained by

randomly flipping the sign of the correlation coefficients for 5,000 iterations, and calculating the

t-values at each iteration (Nichols & Holmes, 2002). Comparing the t-statistics obtained from

the original values to this null distribution disclosed that the correlation with time-on-task was

significant for both pre-search alpha power (𝑝 < 0.0001, 𝑑 = 1.25) and alpha power during the

search (𝑝 = 0.004, 𝑑 = 0.56).

We next performed a balanced median split to control for the potential confound of time-

on-task on search performance and RIFT response. To this end, we first divided the data into

four equal time-on-task bins. Within each bin, we then split the data based on high and low
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Figure 3.6: The blanket inhibition confound with time-on-task: behaviour and RIFT responses.
a Spearman correlation coefficient for alpha power and time-on-task for individual participants
(indicated by the scatters). A permutation test reveals a significant correlation for both alpha
power pre- and during the search. b Reaction time sorted into high and low alpha power according
to a balanced median split did not replicate the previously described relationship between alpha
power and reaction time. c Similarly, the balanced median split on hit rate yielded inconclusive
results. d RIFT responses in guided search, set size 32 sorted using a balanced median split
on pre-search alpha power. e The balanced split reveals a significant reduction of the RIFT
response for trials with high alpha power. Notably, this effect appears to be largely driven by
the response to the target. f,g RIFT responses sorted into high and low alpha during the search
based on a balanced median split again reveal significantly reduced responses in high compared
to low alpha trials.

alpha power, separately for guided and unguided search, and set size 16 and 32. We combined

the trials with high alpha power from the separate bins to create a group of high alpha trials,

and did the same for low alpha power trials. Figures 3.6b and c present the comparison in

between the high and low alpha trials for reaction time and hit rate, respectively. Our analysis
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revealed no significant effect of alpha power neither on reaction time (Figure 3.6b, Wilcoxon

signed-rank test: pre-search 𝑉 (30) = 211, 𝑧 = −0.73, 𝑝 = 0.48, 𝑟 = −0.13, during search

𝑉 (30) = 194, 𝑧 = −1.5, 𝑝 = 0.48, 𝑟 = −0.19, after Benjamini-Hochberg correction) nor hit rate

(Figure 3.6c, dependent sample t-test: pre-search 𝑡 (30) = −0.55, 𝑝 = 0.58, 𝑑 = −0.1, during

search: 𝑡 (30) = −1.43, 𝑝 = 0.33, 𝑟 = −0.26, Benjamini-Hochberg corrected). These findings

suggest that the link between alpha power and search performance cannot clearly be dissociated

from effects of time-on-task on both of these variables.

Next, we looked at how the RIFT responses varied when we applied the balanced median

split based on alpha power. Figure 3.6d shows the RIFT responses to target and distractor

colours in guided search set size 32, split according to pre-search alpha power. The graphs

suggest a reduction in RIFT responses for high alpha trials. To test the main effect of alpha

power on RIFT responses, we first averaged the responses to target and distractor colours for both

high and low alpha trials. A cluster-based permutation test revealed a significant reduction in

RIFT responses for high alpha trials compared to low (Figure 3.6e, one-sided Monte Carlo test,

𝑝 < 0.05, 5,000 permutations). This result was replicated for the balanced median split based

on alpha power during the search (Figure 3.6g, 𝑝 < 0.05, 5,000 permutations). However, we

were unable to replicate the reduction in RIFT response with high alpha power for the unguided

search condition (data not shown).

In summary, while the balanced median split approach indicated that search performance

is not robustly affected by alpha power when controlling for time-on-task, the impact on RIFT

responses in guided search, set size 32 remained significant.
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3.5 Discussion

We used Rapid Invisible Frequency Tagging (RIFT), a novel approach to probe neuronal ex-

citability in visual cortex, in combination with MEG, to investigate feature-guided visual search.

In the guided search condition, the target colour was cued, and in the unguided search condi-

tion, the target colour was unknown. As expected, search performance was reduced for higher

set sizes and for unguided compared to guided search; the latter confirming that participants

used the colour cue at the beginning of the block to guide their search. The RIFT responses

in the guided search condition, set size 32, demonstrated an increase in neuronal excitability

in early visual cortex associated with the target colour and a suppression associated with the

distractor colour. Furthermore, we find that high pre-search alpha power predicts significantly

faster and more accurate responses. However, these results were not robust when accounting for

time-on-task using a balanced median split approach. Yet, high alpha power before and during

the search was associated with reduced RIFT responses to all stimuli, even when controlling for

time-on-task. In sum, we here provide neural evidence for a priority-map-based mechanism in

early visual regions that may be supported by alpha oscillations.

Our results demonstrate that a mechanism akin to a priority map guides visual search by

modulating neuronal activity in early visual regions, as indicated by increased RIFT responses

associated with the target colour and suppressed responses to distractors. Considering that the

modulation starts 200 ms after the onset of the search display, we argue that this mechanism

underlies top-down control by the ventral stream (but see below), and operates in a feature-

specific manner (Maunsell & Treue, 2006). Importantly, we provide novel insight relating alpha

oscillations to this priority-map-based mechanism. As alpha oscillations are associated with

functional inhibition, we propose that they reduce the firing of excitatory neurons in early visual

cortex in preparation for the search through a blanket inhibition mechanism. As the inhibition

subsides with the onset of the search display, the neurons associated with the boosted target

features will be able to surpass this inhibitory threshold (as depicted in Figure 3.1d). This model

explains the enhanced performance in trials with high compared to low pre-search alpha power,
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as the alpha inhibition promotes more efficient search (Figure 3.4c and 3.5a).

Our work complements previous electrophysiological recordings in humans and non-human

primates investigating visual search paradigms with smaller set sizes of up to six items (Donohue

et al., 2018, 2020; Forschack et al., 2022; Hickey et al., 2009; Ipata et al., 2009; Klink et al.,

2023; van Zoest et al., 2021), and selective attention to moving stimuli(Andersen & Müller,

2010; Andersen et al., 2008; Müller et al., 2006). Here, we used a complex display with a

large set size, in the tradition of psychophysical research on visual search (Treisman et al., 1980;

Wolfe, 1994, 2021). Recent studies have suggested that the RIFT signal does not propagate

beyond V1/V2 (Duecker et al., 2021; Schneider et al., 2023; Soula et al., 2023), which is

consistent with our source modelling results. We therefore propose that our findings provide

evidence for a retinotopically organised priority map supported by early visual regions.

Electrophysiological recordings in non-human primates have shown target boosting and

distractor suppression in the frontal eye field and lateral intraparietal cortex about 90 ms after

stimulus onset (Cosman et al., 2018; Ipata, Gee, Goldberg, & Bisley, 2006; Ipata, Gee, Gottlieb,

et al., 2006) and after about 110 ms in V4 (Klink et al., 2023). As the modulation of the

RIFT signal in this was observed at about 200 ms after search display onset, we argue that this

priority map underlies top-down control from higher-order areas in the ventral stream (Chen

& Seidemann, 2012; Kamiyama et al., 2016; Muckli, 2010; Muckli & Petro, 2013). This

time course is in line with the observation that guidance by colour takes about 200-300 ms

to be effective(Palmer et al., 2019). Our results add to the literature by demonstrating that

activity in early visual cortex contributes to priority maps in addition to e.g. lateral intraparietal

cortex(Ipata, Gee, Goldberg, & Bisley, 2006; Ipata, Gee, Gottlieb, et al., 2006; Ipata et al.,

2009; Mirpour et al., 2009), the frontal eye field (Bichot & Schall, 1999; Cosman et al., 2018;

Thompson & Bichot, 2005), V4 (Klink et al., 2023; Reynolds et al., 1999), and superior

colliculus(Bayguinov et al., 2015).

Using a feature-guided search paradigm, we associate increases in alpha power to enhanced

performance and reduced neuronal excitability to the stimuli’s colour. This result challenges the

early notion of alpha oscillations reflecting a state of inattention or idling (Pfurtscheller et al.,
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1996). Furthermore, our results show that strong alpha power is not always detrimental in visual

tasks, as suggested by signal detection paradigms (Dĳk et al., 2008; Ergenoglu et al., 2004;

Hanslmayr et al., 2007). Our finding can be explained by the notion that a substantial fraction

of the items needs to be supressed to optimise the search (Liesefeld & Müller, 2019); which we

refer to as blanket inhibition. This interpretation is in line with previous work demonstrating

that alpha oscillations reflect functional inhibition (Dugué et al., 2011; Haegens et al., 2011;

Iemi et al., 2022; Zumer et al., 2014).

Nevertheless, the correlation between alpha power and time-on-task, paired with its influence

on reaction time, could suggest an alternative interpretation: Increases in alpha power over the

course of the task may not be directly task-related but rather a signature of increased fatigue

(Benwell et al., 2019; Cajochen et al., 1995; Craig et al., 2012; Daniel, 1967), activation of the

Default Mode Network (Knyazev et al., 2011), or a decrease in cortical excitability caused by

neural adaptation (Katyal et al., 2019). However, while previous studies have found a connection

between increased alpha power and mental fatigue during visual search, this was typically tied to

a drop in task performance (Fan et al., 2015; Hanna et al., 2018). Conversely, our results suggest

an increase, or, in the case of the balanced split, no change in task performance with enhanced

alpha power. Accordingly, the association between alpha power and time-on-task might imply

that participants learn to use inhibition to reduce the distractibility of task-irrelevant stimuli.

To explore this hypothesis, we are currently developing analyses that examine the link between

reaction time and spectral power across various frequencies and time points at a single-trial

level, while controlling for time-on-task. This approach of keeping the data in its continuous

form reduces the risks of information loss and the introduction of random errors that come with

dichotomising continuous variables (McClelland et al., 2015) and may thus allow us to better

understand how alpha oscillations support visual search. At the time of writing this thesis,

the outcomes of these analyses are at a preliminary stage and, as such, are not yet ready for

dissemination.

Our findings seem inconsistent with previous studies that did not find a relationship between

flicker responses and alpha oscillations in the context of spatial attention(Antonov et al., 2020;
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Gundlach et al., 2020; Zhigalov & Jensen, 2020). We argue that this discrepancy may be

explained by the notion that feature-based attention, as required in the present task, does not

benefit from the allocation of spatial attention (Maunsell & Treue, 2006) and therefore involves

different neural mechanisms and cortical regions to the ones investigated in previous work.

For instance, spatial location and configural information have been suggested to involve the

dorsal stream (Ayzenberg & Behrmann, 2022; Konen & Kastner, 2008; Mishkin et al., 1983).

Accordingly, spatial attention paradigms have shown a modulation of alpha power in parietal

cortex(Zhigalov & Jensen, 2020). In the guided search task presented here, the search could

be sped up by using information about the target colour, which is processed in the ventral

stream (Conway, 2014; Mishkin et al., 1983). The participants further needed to distinguish

between T’s and L’s, which are defined by the spatial arrangement of the vertical and horizontal

bars. These visual stimulus properties have been argued to be processed in caudal-medial areas of

the dorsal pathway (V7), which are strongly connected to early visual and ventral regions (Freud

et al., 2016). Accordingly, the generator of the alpha oscillations in our study was found in

early visual cortex. The discrepancies between our findings and previous work could therefore

underlie the fact that feature-guided search would benefit from a gating mechanism in early

visual cortex, while spatial attention requires inhibition of task-irrelevant locations, which are

processed in the dorsal stream.

3.5.1 Limitations & Outlook

We did not find evidence for target boosting and distractor suppression for the lower set size of

16 items. Considering that the coherence drops to baseline after the event-related, frequency-

unspecific response, this most likely reflects an insufficient signal-to-noise ratio of the RIFT

response, caused by a larger distance between the stimuli and half as many pixels flickering for

set size 16 compared to 32. In future studies, it would be interesting to investigate whether this

is indeed the cause, by placing the 16 stimuli on a smaller search array or increasing the stimulus

size.

Target boosting and distractor suppression have been argued to be implemented by distinct
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mechanisms (Donohue et al., 2018; Noonan et al., 2016). In this study, participants were able to

infer the distractor colour from the cue provided at the beginning of the block, thus preventing

us from disentangling these mechanisms. In future studies, it would be useful to use RIFT in a

paradigm relying solely on distractor inhibition (Thayer et al., 2022), in which the participants

are only informed about the distractor colour, while the target colour varies. This would clarify

if and how alpha oscillations can support distractor-specific inhibition.

Our blanket inhibition model links strong alpha power to an unselective suppression of all

stimuli in the visual field. While we did not find a link between pre-search alpha power and RIFT

responses in the unguided search condition, we demonstrate this relationship for alpha power

during search. This suggests that the blanket inhibition mechanism might only be effective

when the participants have a strategy in place regarding the stimuli they want to boost and

suppress. Importantly, the negative correlation was established between the magnitude of the

RIFT response and alpha power in the same interval, showing that blanket inhibition is effective

during the search.
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3.6 Conclusion

In conclusion, our work demonstrates that guided search is associated with a modulation of

neuronal excitability in early visual regions according to a priority map. Based on previous

work, we argue that this mechanism underlies top-down control by the ventral stream. We

propose that guided search relies on a priority map affecting neuronal excitability as early

as primary visual cortex. Furthermore, we have presented evidence suggesting that occipital

alpha oscillations may facilitate the search by a blanket inhibition mechanism, that is laid

out in preparation for the search. Our working hypothesis is that alpha oscillations in early

visual regions may apply an inhibitory threshold to the entire priority map, which can only be

exceeded by boosted stimuli. This might enable the observer to focus the search on task-relevant

items while reducing the distractibility of irrelevant stimuli, as reflected by improved search

performance for higher alpha power. An alternative interpretation could be that the increase in

alpha power over time may reflect a reduction in excitability due to fatigue or neural adaptation,

and could thus not be instrumental for the task. As such, additional analyses controlling for

time-on-task will be conducted to understand the mechanisms through alpha oscillations support

visual search.
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4
Oscillations in an Artificial Neural Network

convert competing inputs into a
temporal code

Prelimiary results of this project have been previously shared in: Duecker, K., Idiart, M.,

& Jensen, O. (2021). Space-to-time-conversion: Oscillations in an artificial neural network

generate a temporal code representing simultaneous visual inputs [Montreal AI & Neuroscience

(conference abstract)]

This chapter has been developed in collaboration with Marco Idiart, Marcel van Gerven, and

Ole Jensen.
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4.1 Abstract

Deep convolutional neural networks (CNNs) resemble the hierarchically organised neural rep-

resentations in the primate visual ventral stream. However, these models typically disregard

the temporal dynamics experimentally observed in these areas. For instance, alpha oscilla-

tions dominate the dynamics of the human visual cortex, yet the computational relevance of

oscillations is rarely considered in artificial neural networks (ANNs). We propose an ANN

that embraces oscillatory dynamics with the computational purpose of converting simultaneous

inputs, presented at two different locations, into a temporal code. The network was trained

to classify three individually presented letters. Post-training, we added semi-realistic temporal

dynamics to the hidden layer, introducing relaxation dynamics in the hidden units as well as

pulsed inhibition mimicking neuronal alpha oscillations. Without these dynamics, the trained

network correctly classified individual letters but produced a mixed output when presented with

two letters simultaneously, elucidating a bottleneck problem. When introducing refraction and

oscillatory inhibition, the output nodes corresponding to the two stimuli activated sequentially,

ordered along the phase of the inhibitory oscillations. Our model provides a novel approach for

implementing multiplexing in ANNs. It further produces experimentally testable predictions of

how the primate visual system handles competing stimuli.
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4.2 Introduction

The inclusion of convolution in artificial neural networks (ANNs) marked a significant milestone

in computer vision (LeCun & Bengio, 1995). Building on this innovation, deep convolutional

neural networks (CNNs) have successfully addressed a wide range of image classification

challenges, as demonstrated by Krizhevsky et al (Krizhevsky et al., 2012) in the ImageNet

competition [see (Voulodimos et al., 2018) for review]. Originally inspired by the receptive

fields of neurons in visual cortex, the hierarchically organised representations emerging in these

networks have been repeatedly shown to map on to those identified from human MEG and fMRI

recordings of the visual ventral stream (Cichy et al., 2016, 2017; Güçlü & van Gerven, 2015)

and intracranial recordings from the non-human primate brain (Kriegeskorte, 2015; Marques

et al., 2021; Schrimpf et al., 2020; Yamins & DiCarlo, 2016; Yamins et al., 2014). Despite

the parallels between CNNs and the primate visual system, there are only few examples of

ANNs for computer vision that have drawn inspiration from the temporal dynamics of cortical

activity (Effenberger et al., 2022; Vinken et al., 2020). For instance, alpha oscillations (8-12 Hz)

dominate electrophysiological recordings from the human occipital lobe (Adrian & Matthews,

1934; Berger, 1929), however, their computational benefit has so far not been explicitly explored

in ANNs. Here, we show how embracing dynamic activations in the hidden nodes of an ANN

allows the network to process competing visual inputs. This work proposes a new framework

combining principles from computational neuroscience and machine learning. We show that

embedding biologically inspired neural dynamics in an ANN trained for image classification,

enables the network to overcome bottleneck problems when presented with multiple stimuli.

Both CNNs and the visual system of primates have a converging architecture, wherein

receptive field sizes expand progressively along the hierarchy (DiCarlo et al., 2012; Felleman &

Van Essen, 1991; Gattass et al., 2005; Hubel & Wiesel, 1962; Smith et al., 2001). Neurons in

the early layers of CNNs resemble simple cells in the primary visual cortex and possess small

receptive fields that detect edges and contours in the visual input (Carandini, 2005; LeCun &

Bengio, 1995). The receptive fields of neurons in later layers of the CNN have more expansive
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feature-selective cortex

object-selective cortex

a | b |

Figure 4.1: Concept: An interplay between object-based attention and neuronal alpha os-
cillations implements a pipelining mechanism reflected by a temporal code. a Example: A
passionfruit and an apple are competing for the processing resources of the visual system. b
Inhibitory alpha oscillations modulate neuronal firing rhythmically. The alpha oscillations are
illustrated by the black line, the aggregate neuronal responses to the passionfruit and the apple
are shown as the deep purple and red lines, respectively. As the neurons responding to the
passionfruit will receive stronger excitatory inputs, they will activate at an earlier phase of the
alpha cycle compared to the apple. Refraction causes a momentary inactivation of the neural
representation, allowing the neurons encoding the features of the apple to activate. As the apple
is processed in feature-selective cortex (e.g. V4), its representation has already been passed on
to the next stage of the hierarchy, the object-selective cortex (e.g. IT).

receptive fields, akin to the inferior temporal (IT) cortex that has been shown to be critically

involved in core object recognition (DiCarlo & Cox, 2007; Goodale & Milner, 1992; Milner &

Goodale, 2008; Ungerleider & Haxby, 1994). This hierarchical architecture has been argued to

give rise to a bottleneck problem (Broadbent, 1958): while early visual cortex has been shown

to process visual features in parallel (Chen & Seidemann, 2012; White et al., 2017, 2019),

object recognition has been argued have a limited capacity, which implies that the semantics

of multiple visual stimuli are extracted serially (Kahneman, 1973; Popovkina et al., 2021). It

has been posited that the visual and auditory systems in human and non-human primates handle

simultaneously presented stimuli through “multiplexing” (Akam & Kullmann, 2014), that is,

by dynamically switching between the activity patterns associated with each stimulus (Caruso

et al., 2018; Li et al., 2016) (also see Panzeri et al., 2010, 2015, for review). Through this

mechanism, a single neuron can contribute to the neural code of multiple stimuli (Kristan &

Shaw, 1997). This dynamic interleaving of neural responses to simultaneous stimuli requires

precise temporal coordination.

One mechanism through which the neural representations of multiple objects are organised
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in time is phase coding, which underlies a modulation of spiking activity by ongoing low-

frequency neuronal oscillations (Liebe et al., 2022; O’Keefe & Recce, 1993; Skaggs et al.,

1996) [also see (Panzeri et al., 2010, 2015) for review]. For example, place representations,

encoded in spatially distributed firing patterns, have been shown to be ordered along the phase

of hippocampal theta (4-8 Hz) oscillations (Jensen & Lisman, 1996, 2000; Jezek et al., 2011;

O’Keefe & Recce, 1993; Skaggs et al., 1996). Several conceptual and computational models

have extended on these ideas, suggesting that the items in working memory could be segregated

into cycles of ongoing gamma oscillations (Lisman & Buzsáki, 2008; Lisman & Idiart, 1995;

Lisman & Jensen, 2013). This represents a multiplexed coding scheme (Lisman & Jensen,

2013).

It has been proposed that visual perception is supported by a similar mechanism, that

underlies neuronal alpha oscillations. Alpha oscillations have long been known to reflect

functional inhibition (Jensen & Mazaheri, 2010; Klimesch et al., 2007). The strength of the

inhibition waxes and wanes along the alpha cycle, such that at the peak of the oscillation, strong

inhibition reduces the probability of neuronal firing in the population (Haegens et al., 2011;

Iemi et al., 2022). It has been proposed that only neurons receiving sufficiently strong excitatory

inputs will be able to fire at the early phases of the alpha cycle (Jensen, Gips, et al., 2014; Jensen

et al., 2012, 2021). As the inhibition reduces toward the trough of the cycle, the neurons may

fire successively according to their excitability (Jensen, Spaak, & Zumer, 2014; Jensen et al.,

2012, 2021). In this way, the interplay between inhibition by alpha oscillations and neuronal

excitability generates a temporal code.

To visualise this process, imagine the following scenario at the supermarket: While searching

for the ingredients for a passionfruit martini, your gaze lands on the key element: a passionfruit,

placed next to an apple (Figure 4.1a). With your gaze fixating on both pieces of fruit, your

visual system needs to find a way to represent and process them as coherent but separate objects.

As alluded to above, it has been proposed that ongoing inhibitory alpha oscillations in visual

cortex serve to organise the representations of simultaneously presented stimuli competing for

processing resources.
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It is well-documented that object-based attention is associated with increased neuronal

excitability (Appelbaum & Norcia, 2009; Chen et al., 2003; Kastner et al., 1999; McAdams

& Maunsell, 2000; Moran & Desimone, 1985; Seidemann & Newsome, 1999). Consequently,

all neurons responding to the features of the passionfruit receive stronger excitatory inputs

than the neurons responding to the apple and will thus overcome the alpha inhibition at an

earlier phase (Figure 4.1b, top panel). Following the burst of activation associated with the

passionfruit, refractory dynamics will momentarily deactivate its neural representation. In other

words, excitation triggers inhibition, for instance, due to the activation of GABAergic (Anderson

et al., 2000; Kopell & Ermentrout, 2004) or membrane properties such as the calcium-activated

potassium current (Storm, 1990). As the alpha inhibition decreases further, the neurons attuned

to the apple will take over. As Figure 4.1b illustrates, these dynamics implement a temporal

code, whereby the signals corresponding to the competing items activate successively along

the alpha cycle. As the passionfruit is processed earlier in the alpha cycle, it will reach the

next layer of the hierarchy with a temporal advantage over the apple. As the apple is processed

in feature-selective cortex, e.g. V4, the passionfruit has already reached the object-selective

cortex, e.g. IT cortex. In this way, the visual system might solve bottleneck problems through

pipelining: multiple stimuli are processed in parallel, while their representations are segmented

in time.

In the following, we will present how a mechanism inspired by these concepts can be

integrated into an ANN, to allow a successive read-out of competing inputs. We will refer to our

model as a dynamical artificial neural network (dynamical ANN). This work serves as a proof of

principle to demonstrate the basic principles and analyse the ensuing dynamics in the network.

Our model relates to previous work investigating emergent dynamical and oscillatory properties

in systems for information storage Hopfield, 1982 and Recurrent Neural Networks (RNNs) for

image classification (Effenberger et al., 2022) and sequence learning (Liebe et al., 2022). In

comparison to these works, we tune the dynamics of the system such that the network is able to

segment the representations of competing stimuli along the phase of ongoing oscillations in the

hidden units.
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4.3 Methods

To implement a dynamical ANN we first trained a two-layer network on a simple image clas-

sification task. After training, we added biologically inspired dynamics to the hidden layers

motivated by alpha oscillations in the human visual system. The dynamics were not included in

the training process and did not change the weights of the network.

4.3.1 Network architecture

We consider a fully connected ANN with two hidden layers, consisting of 64 and 32 hidden

nodes, respectively, and an output layer with three nodes (Figure 4.2a). A weight matrix of size

28 × 28 was applied to the input (56 × 56) with a stride of 28, such that each node in the first

layer received 4 × 28 × 28 inputs, ensuring representational invariance across the quadrants in

the input. The activation ℎ 𝑗 in each unit 𝑗 of a hidden layer was calculated as:

ℎ 𝑗 = 𝜎
(
𝑧 𝑗
)
=

1
1 + 𝑒−𝑎(𝑧 𝑗−𝑏)

(4.1)

with 𝑧 𝑗 the input to each hidden unit. The input 𝑧 𝑗 arises from the activation in the previous

layer according to 𝑧 𝑗 =
∑
𝑖 𝑤 𝑗𝑖𝑧𝑖, with 𝑤 𝑗𝑖 being the weight matrix connecting nodes 𝑖 and 𝑗 .

The slope of the sigmoid was set to 𝑎 = 2, and the sigmoid was shifted by the bias term 𝑏 = 2.5.

These parameters were fixed, such that a small input (𝑧 ≈ 0) would result in an activation ℎ

close to 0, while strong inputs well above 2.5, would result in an ℎ close to 1. Consequently, the

activations in the hidden layers were approximately binary (“all or none”, see Figure 4.2d). The

activation in each output node was calculated using the softmax function

𝑜 𝑗 = softmax(𝑧 𝑗 ) =
𝑒𝑧 𝑗∑𝐾
𝑗=1 𝑒

𝑧 𝑗
(4.2)

converting the inputs 𝑧 𝑗 into 𝐾 probabilities in the output layer (Goodfellow et al., 2016).
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Figure 4.2: The classification problem and network architecture. a A network with two fully
connected hidden layers was trained to classify three letters presented on a 56 × 56 image, in
one of four quadrants (28 × 28). Convergence of the quadrants in the first hidden layer was
implemented by sliding a 28 × 28 weight matrix over the image, with a stride of 28. After the
training, we added a refractory term 𝑟 , and pulses of inhibitory alpha oscillations 𝛼(𝑡) to each
hidden node ℎ, as shown in the inset, and Equations 4.3 and 4.4. b Example inputs from the
training set. c The network learned to classify the three letters within 10 epochs, as indicated
by the mean-squared error (MSE) loss approaching 0. d Activations in the hidden layers and
the output node in response to three inputs, presented in the three columns. The shifted sigmoid
(see main text) resulted in approximately binary activations in the hidden layers. The activations
in the output node demonstrate that the inputs are classified correctly.

The weights of the network were initialised according to a uniform distribution within the

range [−𝑥, 𝑥], where 𝑥 =
√︃

6
𝑛in+𝑛out

with 𝑛in and 𝑛out being the number of inputs and outputs to the

current layer, respectively (Glorot initialization, Glorot & Bengio, 2010). The Adam optimiser

was chosen to minimise the mean squared error loss using gradient descent (Kingma & Ba,

2017). The network weights were learned by backpropagating the error through the network

layers (as mentioned above, the bias term was fixed at 𝑏 = −2.5).
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4.3.2 Network dynamics in the hidden layers

We aimed to implement multiplexing by oscillatory dynamics into a fully connected ANN.

To this end, after training the network on an image classification task, we added biologically

inspired non-spiking dynamics to each node in the hidden layer, expressed by non-linear ordinary

differential equations (ODEs). The ODEs were solved using the Euler method with a fixed time

step of Δ𝑡 = 0.001 s. The rate of change in each hidden unit 𝑗 was defined as:

𝜏ℎ
𝑑ℎ 𝑗

𝑑𝑡
= −ℎ 𝑗 + 𝜎

(
𝑧 𝑗 − 𝑟 𝑗 − 𝛼(𝑡) + ℎ 𝑗

𝑠

)
(4.3)

where 𝜏ℎ determines the timescale at which ℎ 𝑗 approaches the sigmoid activation (see Equa-

tion 4.1). The relaxation term 𝑟 𝑗 was applied to reduce the activation of each hidden node,

ensuring an intermittent activation. The dynamics of the relaxation term are given by

𝜏𝑟
𝑑𝑟 𝑗

𝑑𝑡
= −𝑟 𝑗 + 𝑐 · ℎ 𝑗 (4.4)

with time constant 𝜏𝑟 defining the delay with which 𝑟 approaches ℎ. Rhythmic inhibition,

mimicking inhibitory neuronal alpha oscillations in the visual system (Jensen, Gips, et al.,

2014), was integrated into each ℎ 𝑗 , implemented as a 10 Hz sine wave

𝛼(𝑡) = 𝑚 · [1 + sin(2𝜋𝑡 · 10)] (4.5)

and subtracted from the input 𝑧 𝑗 ; with amplitude 𝑚 being adjustable to modulate the strength

and offset of the inhibition.

The selection of the parameters was informed by electrophysiological and computational

constraints. For instance, the timescale of the activation 𝜏ℎ was set to 0.01 s, in accordance

with the membrane time constant of excitatory neurons of 10-30 ms (Buzsáki, 2010; Harris

et al., 2003; Vogels & Abbott, 2009). The time constant of the refractory term was chosen

to be 𝜏𝑟 = 0.1 s akin to afterhyperpolarization effects caused by calcium-activated potassium
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currents (Sah & Louise Faber, 2002; Wong et al., 1979). The effect of parameters 𝑐 and 𝑠 on

the dynamics will be explored below (see Figure 4.3).

4.3.3 Fixed points of the system

The fixed points (steady-state) of ℎ and 𝑟 are defined by setting Equations 4.3 and 4.4 to zero.

Solving for ℎ and 𝑟 yields:

ℎ∗ =
𝑧

𝑐 − 1
+ 𝑠

𝑐 − 1


log

(
1
ℎ∗ − 1

)
𝑎

− 𝑏
 (4.6)

𝑟∗ = 𝑐 · ℎ∗ (4.7)

We found the fixed points numerically, using the function fsolve implemented in SciPy (Vir-

tanen et al., 2020). For small values of 𝑠 ≪ 1, the equilibrium points could be approximated as

ℎ∗ = 𝑧
𝑐−1 and 𝑟∗ = 𝑐·𝑧

𝑐−1 . Unless otherwise specified, the dynamics of all hidden nodes in the full

network were initialised at these approximated fixed points with 𝑧 = 4 (the average input size to

the first layer).
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4.4 Results

The aim of this project was to show that biologically inspired dynamics will allow a neural

network to handle competing inputs, despite having been trained on one stimulus at a time.

To illustrate these dynamics, we trained the network to classify three letters "A", "E", and "T"

(Figure 4.2a,b). The network learned to read out the images correctly within 10 training epochs

(Figure 4.2c), with the softmax activation in the output layer approaching an activation of 1

in the node of the corresponding image (Figure 4.2d). Post-training, we integrated the full

dynamical system described in Equation 4.3 and Equation 4.4, into the hidden layers. We will

first investigate the behaviour of the individual hidden nodes.

4.4.1 Network stability and parameters

Figure 4.3a demonstrates how the interplay between the input 𝑧 = 6.5 and refraction by 𝑟 (orange

trace) resulted in dynamical activations in ℎ (purple trace) with a period of approximately 100

ms. As ℎ increases, 𝑟 increases with a delay. As 𝑟 opposes ℎ, this results in refraction. The

adjustable parameters 𝑐 and 𝑠 in Equation 4.3 and Equation 4.4 were explored to identify values

resulting in robust self-sustained dynamics at a frequency of about 10 Hz in the hidden nodes.

Figure 4.3b shows how the frequency of ℎ changes as a function of 𝑐, for 𝑠 = 0.05, for different

levels of 𝑧 (ranging from 0.5 to 6.5 as indicated by the yellow to dark brown colour scale). The

parameter 𝑐 influences how strongly 𝑟 grows depending on ℎ (see Equation 4.4). Consequently,

the frequency of ℎ increases monotonically for increasing values of 𝑐. For large values of 𝑧, the

frequency changes approximately exponentially with 𝑐. To induce oscillations in the 10-12 Hz

range for a broad range of inputs 𝑧, we selected 𝑐 = 10 (indicated by the dotted box). Figure 4.3c

demonstrates how the frequency changes as a function of input size 𝑧 for 𝑐 = 10, showing that

the nodes tend to oscillate at faster rhythms for larger inputs. There is a slight tendency for the

frequency to plateau for very large values of 𝑧. This is due to 𝑟 having to oppose a strong input

while growing as a function of activation ℎ, which is bounded at 1 (Equation 4.1). As a result,

the frequency does not increase further and eventually decreases for large values of 𝑧.
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Figure 4.3: a Exemplary dynamics in ℎ for one input 𝑧 = 6.5, with 𝑐 = 10 and 𝑠 = 0.05.
The interplay between ℎ (purple trace) and 𝑟 (orange trace) leads to dynamics with a period of
approximately 100 ms. b Frequency as a function of 𝑐 for different input values 𝑧 (colour coded
from 0.5 o 6.5). High values of 𝑧 require larger values of 𝑐 to generate oscillatory dynamics in ℎ.
c A value of 𝑐 = 10 (indicated by the dotted box in b) leads to dynamics in the 8-12 Hz range for
𝑧 > 0.5, whereby the frequency of the dynamics increases approximately monotonically with
input size 𝑧. d Amplitude of ℎ as a function of 𝑐, showing that for high values of 𝑐, ℎ will not
reach an activation of 1. Values of 𝑐 < 11 seem appropriate to induce dynamics in the 10-12 Hz
range that reach the sigmoid activation of 1. e Frequency of ℎ as a function of 𝑠, indicating that
the dynamics only change marginally for all values of 𝑠 within a range of 0.005 to 0.1. Only for
very small inputs (𝑧 = 0.5), a large 𝑠 leads to fast dynamics of up to 15 Hz. f The dynamics
of ℎ and 𝑟 shown in a are entrained by the 10 Hz alpha inhibition (dotted green line). g-j The
alpha inhibition stabilises the dynamics in the 10 Hz range. g For large values of 𝑐 > 11, the
dynamics are able to escape the periodic inhibition and oscillate at a faster frequency. For small
values of 𝑧 = 0.5, the dynamics in ℎ skip one alpha cycle, and oscillate at 5 Hz. h frequency
as a function of 𝑧, for 𝑐 = 10, showing that all nodes with inputs 𝑧 > 0.5 are entrained by the
10 Hz rhythm. i The amplitude of ℎ as a function of 𝑐 in the presence of the alpha inhibition.
The amplitude tends to be slightly larger than the sigmoid activation for small values of 𝑧. j In
presence of alpha inhibition, ℎ is robustly entrained to the 10 Hz rhythm, for all values of 𝑠.

Figure 4.3d demonstrates that the amplitude of ℎ decreases as a function of 𝑐. We aimed to

induce dynamics such that ℎ would oscillate between 0 and the sigmoid activation of the current

input, which for large values of 𝑧 is close to 1. This amplitude was achieved for the selected

𝑐 = 10. Note that for 𝑧 < 4.5 the amplitude of ℎ was slightly larger than the sigmoid activation

of 𝑧. For instance, for 𝑧 = 1.5 the activation is ℎ = 𝜎(−2 · (1.5 − 2.5)) ≈ 0.12, however, the
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amplitude reached values of about 0.8 (see Figure 4.3d). We did not find this to cause problems

when integrating the dynamics into the network, as most activations in the hidden layers were

outside the linear part of the sigmoid, and thus approached an activation of 1 (Figure 4.2c, layer

1; see below for details).

Another instrumental parameter in Equation 4.3 is 𝑠, which serves to scale the various input

parameters. A small 𝑠 will effectively increase the steepness of the sigmoid, resulting in a more

step-like response. Figure 4.3e depicts the frequency of the node as a function of 𝑠 and suggests

that values ranging from 0.005 to 0.1 result in dynamics of about 10 Hz for a range of inputs 𝑧.

Based on these observations, we selected 𝑠 = 0.05.

We next explored the effects of adding pulsed inhibition at 10 Hz to the hidden dynamics

(𝛼(t) in Equation 4.3). As depicted in Figure 4.3f, the alpha inhibition (green dashed line)

entrained the dynamics, such that ℎ activated in anti-phase to the 10 Hz rhythm. Another effect

of the alpha inhibition is that 𝑟 oscillates between lower values than before. This is sensible, as

the alpha inhibition and refraction 𝑟 work together to reduce the activations in ℎ. Figure 4.3g

depicts the frequency of ℎ as a function of 𝑐, showing that in the presence of the alpha inhibition,

all hidden nodes oscillate at a frequency of 10 Hz, when 5 < 𝑐 ≤ 11, for the current input range

of 0.5 < 𝑍 ≤ 6.5. For large values of 𝑐 (𝑐 > 11) the dynamics escape the alpha rhythm when 𝑧

is sufficiently large (> 5) and oscillate at a faster rate. For small inputs (𝑧 = 0.5), ℎ appears to

skip one alpha cycle at a time and follows a 5 Hz rhythm. The frequency in ℎ as a function of

input size 𝑧 is shown in the right panel, confirming the 10 Hz entrainment. Figure 4.3i shows

the amplitude of ℎ as a function of 𝑐, demonstrating that the amplitude is most stable for 𝑐 < 11.

Notably, the amplitude of ℎ again reaches values above the sigmoid activation of 𝑧 (as described

above), however, we did not find this to interfere with the dynamics in the full network. Lastly,

the exact value of 𝑠 within the 0.005 to 0.1 range did not change the frequency, for all 𝑧 > 0.5

(Figure 4.3j).

We conclude that the entrainment and refractory dynamics of the nodes were stable for a

large range of the parameters. Based on the presented simulations, we settled on the parameters

𝜏ℎ = 0.01, 𝜏𝑦 = 0.1, 𝑐 = 10, 𝑠 = 0.05 in all following simulations, as these produced robust



Dynamical Artificial Neural Network 118

dynamics at approximately 10 Hz and an activation ℎ close to 1 for a wide range of inputs.

4.4.2 Alpha oscillations stabilise dynamics in a two-layer Neural Network

After training the network on the “A-E-T” classification problem and exploring the behaviour of

the individual nodes shown in Figure 4.3, we simulated the dynamics in the full network while

keeping the weights connecting the layers fixed.

Figure 4.4a and b show the dynamics in the output and hidden layers of the network, in

response to a single input letter, A, with 𝜏ℎ = 0.01, 𝜏𝑟 = 0.1, 𝑐 = 10, 𝑠 = 0.05, but without any

drive from the alpha oscillation (𝑚 = 0, Equation 4.5). The output node corresponding to A

(blue trace) oscillates at approximately 12 Hz (Figure 4.4a). The leftmost panel in Figure 4.4b

depicts the activations in ℎ in layer 1 as a function of time, for 𝑧’s ranging from 0.5 to 6.5 (only

unique values of 𝑧 are shown). The dynamics demonstrate that the phase of the oscillations

depends on the size of input 𝑧, leading to inconsistent phase delays between the network nodes.

Due to the softmax activation introducing lateral inhibition in the output nodes, these phase

delays cause a spurious intermittent activation of the output node corresponding to letters “E”

and “T” (orange and green traces). The right panel in Figure 4.4b, depicting ℎ as a function

of 𝑟, shows the limit cycle and fixed points (indicated by the diamond-shaped scatters) for each

input 𝑧. All units demonstrate a limit cycle behaviour but with different amplitudes.

The bottom panel shows the dynamics in the second layer. While the phase-locking between

the hidden nodes in the second layer is slightly stronger compared to layer 1, activations in the

nodes receiving smaller inputs appear to lag the nodes receiving larger inputs. The right-most

plot, showing the relationship between ℎ and 𝑟, again suggests a limit cycle behaviour, although

the amplitude of each node appears to vary over the course of the simulation. This is likely due

to the second layer receiving dynamical, non-phase-locked inputs from the first layer.

Introducing oscillatory entrainment by periodic inhibition into each layer of the network

stabilises the dynamics in the entire network. Figure 4.4c shows the dynamics in the ouput layer,

with the amplitude of the oscillatory drive set to 𝑚 = 0.5, and a phase delay of Δ𝜙 = 0 between

the layers. Comparison to the dynamics without the oscillatory drive shows that the inhibition



119 Harmony in early visual cortex

0.0 0.3 0.6
time (s)

0.0

0.5

1.0

ac
tiv

at
io

n

dynamics with refraction

0.0 0.3 0.6
time (s)

0.0

0.5

1.0

dynamics with refraction & alpha

0.0

0.5

1.0

α
 a

m
pl

itu
de

A(t) E(t) T(t) α(t)L1 α(t)L2

0.0 0.3 0.6
0.0

0.5

1.0

h

layer 1

0 4 8 0.0 0.3 0.6
0.0

0.5

1.0

h

layer 1

0 4 8

0.0 0.3 0.6
time(s)

0.0

0.5

1.0

h

layer 2

0 4 8
r

0.0 0.3 0.6
time(s)

0.0

0.5

1.0

h

layer 2

0 4 8
r

0.5 3.5 6.5
z

a |

b |

c |

d |

output layer output layer

Figure 4.4: a-b Dynamics underlying the interplay between ℎ and refraction 𝑟 (Equation 4.3
and 4.4, without the alpha inhibition. a The output node corresponding to the letter A oscillates
at about 12 Hz. The system spuriously activates the output node E and T. b (top left) The
activations in the first hidden layer show that the frequency of the oscillation depends on the
input size 𝑧, as suggested in Figure 3c. (top right) Trajectory of ℎ as a function of 𝑟, with the
fixed points indicated by the coloured diamonds. The dynamics are attracted towards a stable
limit cycle, depending on the magnitudes of the input, and orbits around the fixed point. (bottom
left) Activation of ℎ in layer 2 as a function of time. There is a notable phase lag between
the network nodes based on the input size 𝑧. (bottom right) The amplitude of the activation
in each node appears to vary over time. c-d Periodic inhibition stabilises the dynamics in the
system. c Periodic inhibition at 10 Hz with an amplitude of 𝑚 = 0.5 was added to each layer.
The read-out of the presented letter oscillates in anti-phase to the alpha inhibition. d Alpha
oscillations notably stabilise the dynamics within and between the network layers, as indicated
by the phase-locking between the nodes, and the stabilised H-R trajectories for the activations
in layer 2.

removes the spurious activation in the output nodes corresponding to “E” and “T” (orange

and green trace). This stabilisation of the read-out underlies increased synchrony both within

and between the hidden layers, as indicated in Figure 4.4d. In particular, the phase-locking

between the activations in the first layer has been notably increased by the oscillatory drive; as

shown in the time course of the activations in ℎ shown in Figure 4.4d, top left. Comparison

of the limit cycles shown in Figure 4.4b top right, and Figure 4.4d top right, demonstrates a

wider limit cycle in presence of the alpha oscillations, reflecting an increased amplitude of the
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dynamics in ℎ.

The dynamics in the second layer also show higher synchrony and stabilised trajectories

ℎ and 𝑟 in presence of the alpha oscillations (Figure 4.4d, bottom right). This is explained

by the more synchronous inputs from the first layer, and the alpha oscillations applied to the

second layer. Comparison of the plots at the bottom right in Figure 4.4b and d reveals that the

amplitude of the activation in the second layer varies less in presence of the alpha inhibition.

These simulations show that the dynamics of the multi-layer network are dramatically stabilised

by the oscillatory alpha inhibition.

4.4.3 Simultaneous presentation of two inputs produces a temporal code

The bottleneck problem in absence of the dynamics
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Figure 4.5: The bottleneck problem when the
network receives two inputs simultaneously. a
(left column) Exemplary input combinations of
the two letters. (right) Activations in the output
layer are distributed approximately evenly over
the respective nodes. b Time course of the acti-
vation in the output layer, for 𝑠 = 1, 𝑟 = 0, and
𝛼(𝑡) = 0. The shared output is a consequence
of the two items competing.

The network correctly classified individually

presented stimuli after the training, as demon-

strated in Figure 4.2c. However, when pre-

sented with two stimuli simultaneously (Fig-

ure 4.5a), the network produced a mixed out-

put. The right panel in 4.5a shows the network

activations in response to all possible inputs

of stimuli. Figure 4.6b shows the correspond-

ing time course to these simultaneous inputs,

which was achieved using Equation 4.3, with

𝑠 = 1, 𝑟 = 0, 𝛼(𝑡) = 0, with the network dy-

namics initialised at ℎ = 𝑟 = 0 in all hidden

nodes. The network distributes the activations

in the output layer over the nodes correspond-

ing to the respective inputs. This suggests that

the output layer produces a weighted average
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Figure 4.6: The dynamical artificial neural network (dynamical ANN) multiplexes simultane-
ously presented stimuli. a Examples of the simultaneous inputs. Attention towards the letter
E was mimicked by increasing the input of all pixels belonging to E while reducing the inputs
of the letters A and T. b The interplay between the excitation and refraction results in dynamic
activations in the output layer, whereby one of the two letters is read-out at a time. However,
the dynamics show notable instability, and the node corresponding to the “attended” input E
activates over longer periods of time. c Introducing pulses of inhibition (alpha oscillations) into
the network generates a temporal code in the output layer. The system first activates the node
corresponding to the attended letter E. Following that, the letters are read out as a code, ordered
along the phase of the alpha oscillation according to the input gain.

of the activations to both stimuli. This indicates a bottleneck problem when the network

needs to classify two stimuli. In contrast, the abilities of our visual systems to recognise a

stimulus do not decrease with the number of objects. As such, the visual system must be able

to segment the representations of the different stimuli. As outlined above, it has been proposed

that multiplexing in the visual system may underly oscillatory dynamics. In the following, we

will explore how the complete dynamical network presented in Figure 4.4 and described by

Equations 4.3 and 4.4 responds to simultaneous stimuli.

Refraction and alpha inhibition allow read-out of competing stimuli as a temporal code

Figure 4.6b shows how the output layer of the dynamical network responds to two simultaneous

inputs (“A” and “E”, and “T” and “E). To mimic spatial attention to letter E, we multiplied

the pixels defining the letter E with 1.2, and the pixels defining the letters A and T with 0.8

(Figure 4.6a). Figure 4.6b shows the dynamics in the output layer, based on the simulations

with parameters 𝜏ℎ = 0.01, 𝜏𝑟 = 0.1, 𝑐 = 10, 𝑆 = 0.05, without any oscillatory drive. The
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node corresponding to “E” activates first and dominates the dynamics in the first 150ms (orange

trace). Subsequently, the network starts to alternate between the two inputs, whereby the nodes

corresponding to the presented letters reach activation levels between 0.9 and 1. As such, the

interplay between activation and refraction implements a multiplexing mechanism. However,

the dynamics of the multiplexed representations are unstable. For instance, in Figure 4.6b, top

panel, the node corresponding to the letter E (orange trace) activates over longer periods of time

and reaches higher activations than the node representing A (blue).

Introducing the oscillatory alpha inhibition results in stabilised dynamics, whereby the si-

multaneous inputs are read out as a temporal code, organised along the alpha phase (Figure 4.6c).

Notably, the attended stimulus “E” activates first, within the first alpha cycle. In the second

cycle, the system starts to generate the phase code, which further stabilises with time. We

replicated these dynamics for all combinations of simultaneous inputs (two letters at a time), as

shown in Figure B.1.

A more detailed investigation of the multiplexing dynamics in the different layers is shown

in Figure 4.7; for the exemplary simultaneous input E and T (as presented in Figure 4.6a, bottom

panel). The top panels in Figure 4.7a and b indicate how strongly the hidden representations

to the combined input correspond to the activations to the individually presented inputs. For

instance, for letter “E” (orange trace) this measure of similarity was calculated as:

𝑠𝐸 (𝑡) =

∑𝐾
𝑗=1

(
ℎ𝐸𝑇
𝑗
(𝑡) ⊙ ℎ𝐸

𝑗

)
∑𝐾
𝑗=1

(
ℎ𝐸
𝑗
⊙ ℎ𝐸

𝑗

) (4.8)

with ℎ𝐸𝑇
𝑗

being the activation in hidden node 𝑗 at time point 𝑡, to the simultaneously pre-

sented letters T and E, ℎ𝐸
𝑗

being the activation in hidden node 𝑗 to the letter E in the trained,

non-dynamical network (see Figure 4.2c), and ⊙ being the Hadamard operator (element-wise

multiplication). This measure can be interpreted as a normalised dot product.

The time course of the normalized dot product indicates that the similarity between the

activations in the first layer, and the representations to both letters E and T oscillates in anti-

phase to the alpha inhibition (Figure 4.7a). Notably, the similarities to both letters follow the
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Figure 4.7: The representations of the competing inputs are segmented in the second layer of
the dynamical Neural Network in response to an input image containing the letters E and T,
as shown in Figure 5a, bottom. a (top) Layer 1: The nodes corresponding to both the letter
E and the letter T activate in anti-phase to the alpha inhibition, with no segregation in time.
Notably, the network activates the representations to the attended letter E more strongly, and
over longer periods of time. (bottom) The network activations over time suggest that a large
portion of the hidden nodes activates in anti-phase to the alpha inhibition. b Segregation of
the simultaneous stimuli can be observed in the second hidden layer. (top) The normalised dot
product suggests that the nodes corresponding to each input activate at different phases relative
to the alpha inhibition. (bottom) The temporal segmentation observed in the top panel can also
be observed as a successive activation of the nodes in the network. The alpha inhibition silences
the activation in the entire layer. c The softmax activation and the output layer reflects a temporal
code, whereby the inputs are read out along the phase of the alpha inhibition, ordered according
to the magnitude of the input.

same time course,

indicating that the first layer does not segment the competing inputs. Moreover, the ac-

tivations to the attended letter extend over the entire half-cycle, while the activations of the

unattended letter are more short-lived. The bottom panel shows a raster plot of the magnitude of

the activation in each neuron over time. The simultaneous presentation of two letters activates

a large fraction of the hidden nodes in the first layer (Figure 4.7a, bottom). Note the rhythmic

silencing of the network activations by the alpha inhibition, that affects most, but not all nodes.

This implies that the first layer activates to both stimuli in parallel.

In comparison, the activations in the second layer demonstrate that the nodes responding

to each letter are activated in succession: the normalised dot product between the current
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representations and the activations to an individual letter “E” (orange trace) precede the ones

corresponding to letter T (green trace, Figure 4.7b). The bottom panel in Figure 4.7b indicates

that a smaller fraction of the network is activated at each time point, and the successive activation

of the hidden nodes can be observed. Finally, Figure 4.7c shows the read-out in the output layer,

confirming that the representations of E and T are fully separated after the second cycle of the

alpha inhibition (also see Figure 4.6c).

In sum, our simulations show how integrating dynamics driven by excitation and refraction

enables a fully connected neural network to multiplex simultaneous inputs – a task it has not

been trained on explicitly. This mechanism is further stabilised by pulses of inhibition, akin to

alpha oscillations in the human visual system.

4.4.4 Making and breaking the temporal code: the effect of phase delay

between the layers

Previous research on neural codes in the visual and auditory system has suggested that the phase

of low-frequency oscillations in electrophysiological recordings carries information about the

sensory input (Kayser, 2009; Lopour et al., 2013; Montemurro et al., 2008). The Communication

Through Coherence theory predicts that the phase relationship between two populations is critical

for their communication (Fries, 2005, 2015) (also see (Akam & Kullmann, 2012; McLelland

& VanRullen, 2016) for computational implementations). While Communication Through

Coherence was initially proposed for oscillations in the gamma-band (Fries, 2005, 2015), related

ideas have been explored for the alpha-band (Bonnefond et al., 2017). Based on these concepts,

we next tested how different phase delays between the network layers impact the temporal code.

Figure 4.8 shows the temporal codes for different phase delays between the alpha oscillations.

Visual inspection suggests that the most robust temporal code of the two competing letters is

achieved when the oscillations are synchronous in the two layers (top left), or when the second

layer lags or precedes the first layer by 10 ms (top, second from left and bottom right). Notably,

the temporal code breaks for larger phase delays between the layers. One might have expected

an anti-phase delay between layers 1 and 2 to cut off all communication, however, the network
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Figure 4.8: The temporal code as a function of phase delay between the layers, indicated in the
title (in ms). The cleanest read-out of the two competing stimuli as a temporal code is achieved
by a phase lag of zero (top left) and if the second layer precedes or lags the first layer by 10 ms.

is still able to identify at least one of the presented stimuli, albeit with high instability.

In sum, these simulations show that the shape of the temporal code, and the number of items

that can be read-out, strongly varies based on the phase delay between the layers and is most

robust for synchronous oscillations in both layers.
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4.5 Discussion

We here demonstrate how integrating semi-realistic neuronal dynamics into an ANN enables

multiplexing during image classification. The network was first trained to classify individual

letters presented in quadrants. Post-training, the network correctly recognised the individual

inputs. When presented with two letters simultaneously, however, the output layer produced a

mixed representation of both stimuli due to the bottleneck in the network. Adding refractory

dynamics to the nodes of the network resulted in alternating activations to the simultaneously

presented inputs, suggesting that the network was able to segregate the representations. However,

the dynamics expressed notable instability and asynchrony within and between layers. Adding

oscillatory inhibition to the layers, akin to alpha oscillations in the visual system, stabilised the

dynamics in the hidden layers. When two inputs were presented simultaneously, the interplay

between activation, refraction, and pulses of inhibition resulted in a stable multiplexed code,

whereby the output nodes were activated sequentially based on the strength of the input.

Our simulations provide an implementation of the idea that inhibitory alpha oscillations in

visual cortex serve to support the processing of simultaneously presented stimuli, by segmenting

them into a temporal code (Jensen, Gips, et al., 2014; Jensen et al., 2021). As the inhibition

is strongest at the peak of the oscillations, only neurons receiving sufficiently strong excitatory

inputs will be able to activate (Haegens et al., 2011; Iemi et al., 2022; Jensen et al., 2012). In turn,

the neural representations associated with the attended stimulus will overcome the inhibition at

an earlier phase of the alpha cycle than the unattended object. This allows temporal segmentation

and thus multiplexing of simultaneously presented stimuli (Jensen, Spaak, & Zumer, 2014).

While it has been shown that simple visual features can largely be processed in parallel

(Chen & Seidemann, 2012; White et al., 2017, 2019), object recognition has been demonstrated

to be supported by serial processes (Kahneman et al., 1992; Popovkina et al., 2021). This

indicates a bottleneck problem which has been argued to arise from the converging hierarchical

structure of the visual system (Broadbent, 1958; Jensen et al., 2021; Popovkina et al., 2021;

White et al., 2019). By segmenting individual object representations in time, alpha oscillations
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have been suggested to allow the attended stimulus to pass through the network layers with a

temporal advantage over the unattended stimulus (Figure 4.1, also see (Jensen et al., 2021)).

These parallel and serial properties resulting from multiplexing can be observed in our network

simulation as well. In the first layer, the stimuli are represented in parallel, while the second

layer begins to segment them along the phase of the oscillation (Figure 4.7). These simulations

show how integrating biologically inspired dynamics into a neural network results in a system

that can multiplex simultaneous stimuli while embracing the parallel and serial properties of

visual object recognition.

Evidence for a phase-coding mechanism similar to the one presented here has been robustly

observed in recordings from the rodent and human hippocampus, whereby spiking activity has

been shown to be modulated along the phase of ongoing theta oscillations (4-8 Hz (Jezek et al.,

2011; Kamiński et al., 2020; O’Keefe & Recce, 1993; Rutishauser et al., 2010; Skaggs et al.,

1996)). The order in which a sequence of inputs has been experienced, has further been proposed

to be preserved in the spiking activity (Jezek et al., 2011; O’Keefe & Recce, 1993) but see (Liebe

et al., 2022).

Intracranial recordings from the visual cortex in non-human primates have revealed that the

phase of spontaneous alpha oscillations modulates spiking activity (Bollimunta et al., 2008,

2011; Dougherty et al., 2017; Haegens et al., 2011) and neuronal gamma oscillations (Bastos,

Vezoli, & Fries, 2015; Bosman et al., 2012; Michalareas et al., 2016; Spaak et al., 2012). In

this context, alpha oscillations have been argued to organize visual processing in a top-down

manner (van Kerkoerle et al., 2014). Intracranial and MEG recordings from the human brain

have replicated the observed phase-amplitude coupling between gamma and alpha oscillations

during visual processing (Osipova et al., 2008; Voytek et al., 2010). Recent human EEG

recordings have additionally posited that alpha waves travelling from occipital to frontal areas

are actively involved in visual processing (Alamia & VanRullen, 2023; Alamia et al., 2023)

(but see Zhigalov and Jensen, 2023 for a critical perspective). Similarly, ECoG recordings from

marmoset visual cortex have revealed travelling waves in the dorsal and ventral stream that

were linked to visual performance (Davis et al., 2020) and a modulation of neural processing
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along the visual hierarchy following saccade initiation (Kaneko et al., 2022). These reports

show that alpha oscillations may propagate over cortical areas involved in visual processing to

coordinate neural activity. It has so far not been determined, however, if this modulation results

in successive activations of the neural representations in line with our model simulations.

Our simulations result in two testable predictions. First, we propose that neural representa-

tions activate along the phase of spontaneous alpha oscillations, ordered according to attention

or salience (Jensen, Gips, et al., 2014; Jensen et al., 2012). This prediction can be tested using

electrophysiological recordings during visual tasks with more than one stimulus. The neural

representations of each stimulus could be extracted from these data using decoding methods such

as multivariate pattern analysis (Haxby et al., 2014) or linear discriminant analysis (Guggen-

mos et al., 2018). For instance, using MEG, van Es et al. (van Es et al., 2022) have recently

investigated the effect of ongoing alpha oscillations on the decoding accuracy of visual stimuli

in a spatial attention task. The authors have demonstrated that the phase of alpha oscillations

in the frontal eye field and parietal cortex of the human brain modulated the performance of

the decoder. However, a phase delay between the attended and unattended stimuli has not

explicitly been reported. Alternatively, these predictions could be tested based on intracranial

recordings from the mouse brain. Using Neuropixels probes, spiking activity and local field

potentials can be simultaneously recorded intracranially from several cortical areas in mice (and

non-human primates, (International Brain Laboratory et al., 2023; Steinmetz et al., 2021). It is

well-established that the mouse visual system exhibits a hierarchical structure similar to the one

observed in primates (de Vries et al., 2020; Siegle et al., 2021). As such, these data could be

used to test whether spiking activity is segmented along the phase of ongoing alpha oscillations,

for instance, to distinguish a figure from a background (Kirchberger et al., 2021).

The second prediction of our model is that a stable temporal code emerges from approxi-

mately synchronous oscillations in the consecutive network layers. Recent work using concurrent

iEEG and MEG recordings has suggested that interactions between alpha oscillations in pre-

frontal cortex and mediodorsal thalamus mediate visual performance (Griffiths et al., 2022). In

light of the literature on travelling alpha waves (Alamia & VanRullen, 2019, 2023; Alamia et al.,
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2023; Bahramisharif et al., 2013; Davis et al., 2020; Kaneko et al., 2022; Zhang et al., 2018)

this begs the question of whether neuronal processing along the visual hierarchy is controlled

by one driving force as suggested by our simulations, e.g. the thalamus or prefrontal cortex,

or a travelling wave propagating forward or backwards along the visual hierarchy. With recent

advances in brain-wide recordings in mice using Neuropixels probes (International Brain Labo-

ratory et al., 2023), it may be possible to investigate whether the driving force of these travelling

waves can be established.

Our network relates to previous computational models that have explored the role of biolog-

ically plausible dynamics for multiplexing and inter-areal communication (Akam & Kullmann,

2014; Jensen, 2001; Lisman & Idiart, 1995; McLelland & VanRullen, 2016; VanRullen &

Thorpe, 2001). We expand on this work by demonstrating how multiplexing and communica-

tion through synchronous oscillatory activity can enhance the computational versatility of neural

network in the context of multi-item image classification. As we aimed to provide a proof-of-

principle, we trained the network on a comparably simple classification problem involving a

small training set. The non-monotonic loss function in Figure 4.2b implies that the network

might have learned to solve the problem by memorizing the inputs and could thus show low

generalisability to new inputs (Chollet, 2021). Our aim is to expand the presented principles

to CNNs with a deeper architecture that can solve benchmark image classification problems

such as (E)MNIST (Cohen et al., 2017; LeCun et al., 1998), CIFAR-10 (Krizhevsky, 2009),

and ImageNet (Wu et al., 2015). One technical detail to consider is that modern DNNs typi-

cally implement non-linearities using the rectified linear unit (ReLU) function which reduces

the vanishing gradient problem in deep architectures and speeds up learning (Chollet, 2021;

Goodfellow et al., 2016). Since ReLUs are not bind the activations between 0 and 1, a different

set of ODEs will be needed to describe the dynamics in future versions of this model.

Alternatively, the dynamics could be integrated in additional layers with sigmoid-like acti-

vation functions, between the trained network layers, as conventionally done in spiking neural

networks (Sörensen et al., 2022; Zambrano et al., 2019). For instance, Sörensen et al. (2022)

integrated spiking dynamics into a pre-trained CNN, which allowed the network to find a target
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stimulus in a complex natural image, an ability the model did not exhibit without the spiking

dynamics. As alpha oscillations have been shown to modulate spiking activity (Bollimunta

et al., 2008, 2011; Haegens et al., 2011), it would be interesting to understand to what extent

oscillatory dynamics could serve to modulate activations in spiking neural networks. By incor-

porating spiking or non-spiking dynamics into extra layers with activations constrained between

0 and 1, the concepts presented here could be explored in pre-existing deep neural networks.

In sum, future versions of this network will expand to deeper architectures and modern image

classification benchmarks.

The rate of change in the network nodes was defined by a set of ODEs, following conventional

practice in computational neuroscience (Miller, 2018). ODEs have also found applications in

the development of RNNs. For instance, in the form of neural ODEs (Chen et al., 2018), liquid-

time constant neural networks (Hasani et al., 2020, 2022), and RNNs consisting of damped

oscillators (Effenberger et al., 2022). These networks had great success in learning long-range

dependencies in time series data (Chen et al., 2018; Hasani et al., 2020, 2022), sequences of

images (Liebe et al., 2022), and image classification when the pixels of the input are transformed

into a time series (sequential MNIST) (Effenberger et al., 2022; Hasani et al., 2022). The goal

of our work, in comparison, was to convert spatially presented inputs into a time series. The

dynamics in our model therefore do not provide information about the dependencies between

inputs but rather serve to segment them in time. However, integrating biologically plausible

dynamics into the training process would undoubtedly be interesting. Oscillatory activity in

the theta, alpha, and gamma-band has been repeatedly shown to support learning and memory

(for review see Fell & Axmacher, 2011; Hanslmayr et al., 2016). In line with this, Effenberger

et al. (2022) have shown that an RNN whose nodes reflect damped oscillators outperform the

performance of non-oscillatory RNNs when classifying the sequential MNIST data set. For

future extensions of the presented algorithm, it would be interesting to explore if and how

biologically plausible dynamics could be used to support the training process.
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4.6 Conclusion

We here present a proof-of-concept showing that integrating oscillatory dynamics based on exci-

tation, refraction, and pulses of inhibition into the hidden nodes of an ANN enables multiplexing

of competing stimuli, even though the network was only trained to classify individual inputs.

Our simulations predict that the visual system of humans and non-human primates handles

the processing of multiple stimuli by organising their neural representations along the phase

of inhibitory alpha oscillations. These predictions can be experimentally tested using simple

attention paradigms and electrophysiological recordings in humans, non-human primates, and

rodents. Future versions of the network will include extensions to deeper architectures and

modern image classification benchmarks.
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5
Discussion

Tasks such as searching for a friend in a crowd or distinguishing a passionfruit from apples at

the supermarket are integral to our daily lives. The sophisticated mechanisms underpinning our

visual perception enable us to effortlessly move our attention (and gaze) through the environ-

ment. Throughout this thesis, my objective has been to understand the properties of oscillatory

dynamics in the visual cortex, and how they support visual perception and attention.

In chapter 2, I have demonstrated that neuronal responses to a rhythmic high-frequency

flicker and endogenous gamma oscillations represent different phenomena, emerging from at

least partially distinct cortical regions. In chapter 3, I have employed the high-frequency flicker

again for Rapid Invisible Frequency Tagging (RIFT) to investigate the neural correlates of guided

and unguided search. Consistent with recent work, I have confirmed that RIFT responses are an

effective read-out of neuronal excitability in early visual regions (Ferrante et al., 2023; Gutteling

et al., 2022; Minarik et al., 2023; Pan et al., 2020; Zhigalov et al., 2019). Furthermore, for

the first time, I have tested this in the context of feature-based attention. Crucially, I found that
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alpha oscillations in early visual regions support the search through a mechanism that we have

termed blanket inhibition, which dampens the excitability of all stimuli irrespective of their task

relevance. Finally, in chapter 4, I have drawn inspiration from my empirical work to integrate

oscillatory dynamics into an Artificial Neural Network (ANN) trained on a computer vision

problem. The simulations indicate that oscillations can enable a converging system to multiplex

concurrently presented stimuli.

In the following, I will synthesise these results to argue that gamma oscillations are likely to

be relevant for local neuronal processes, while alpha oscillations operate at a more global scale.
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5.1 Summary of the core findings

In chapter 2, I used MEG to systematically investigate the properties of rhythmic flicker responses

in visual cortex, both in the absence and presence of endogenous gamma oscillations (see Duecker

et al., 2021, for the publication). My results demonstrate that the early visual cortex can be driven

by frequencies of up to 80 Hz, whereby sufficient signal-to-noise ratio was achieved with as little

as 15 trials. I reasoned that the limit on this frequency is likely imposed by low-pass filtering

in the thalamocortical connections. Notably, flickers at frequenices above 60 Hz are largely

imperceptible (see, for instance Griffiths et al., 2023; Minarik et al., 2023), rendering them

ideal for Rapid Invisible Frequency Tagging (RIFT). Employing sensory stimulation at these

high frequencies has the added benefit of allowing measures of attentional modulations with

high temporal precision. This makes RIFT a versatile tool not only for research in cognitive

neuroscience but also for brain-computer interfaces (Brickwedde, Bezsudnova, et al., 2022).

My exploration of the flicker responses at 52 to 90 Hz suggests that an optimal frequency range

for RIFT is 60 to 70 Hz, ensuring both a good signal-to-noise ratio and a largely subliminal

stimulation (also see Minarik et al., 2023, for a systematic exploration of optimum parameters

for RIFT).

The key finding in this chapter is that a rapid flicker did not entrain endogenous gamma

oscillations, even at overlapping frequencies. Instead, our results suggest a co-existence of the

two neuronal activities, with the flicker response being strongest in the primary visual cortex, and

the endogenous gamma oscillations emerging from the secondary visual cortex. This finding

was unexpected for several reasons: Firstly, gamma oscillations have long been theorised to

implement feedforward communication within the visual system (Bastos, Vezoli, Bosman, et

al., 2015; Fries, 2015; van Kerkoerle et al., 2014), with consecutive layers communicating by

entraining one another’s activity at a gamma rhythm. Secondly, 40 Hz photic stimulation has

been reported to trigger neuroprotective mechanisms in a mouse model of Alzheimer’s Disease,

an effect thats has been attributed to the entrainment of ongoing gamma oscillations (Adaikkan

& Tsai, 2020; Adaikkan et al., 2019; Iaccarino et al., 2016). Lastly, prior research has indicated
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that oscillations at lower frequencies, for instance, in the alpha-band, can be entrained by a visual

flicker (Notbohm et al., 2016; Spaak et al., 2014), but also see Keitel et al. (2014) for a critical

perspective. In the context of these findings, the observed resilience of gamma oscillations to

external perturbation was intriguing.

In chapter 3, I have drawn from my experience with high-frequency visual stimulation, to

investigate the neural correlates of visual search. Using MEG in combination with RIFT in a

classic visual search paradigm, I have uncovered three main findings:

First, I have demonstrated that the neuronal excitability in early visual cortex is modulated

in line with a priority map – to boost targets and suppress distractors (Awh et al., 2012; Koch &

Ullman, 1985; Navalpakkam & Itti, 2005; Serences & Yantis, 2006; Thompson & Bichot, 2005;

Zelinsky & Bisley, 2015). These findings align with previous work showing that early visual

cortex underlies top-down control from the visual hierarchy (Budd, 1998; Muckli, 2010; Muckli

& Petro, 2013). However, the application of these ideas to priority maps and visual search has

not been explicitly made before (Bisley & Mirpour, 2019).

Second, I have corroborated earlier preliminary findings linking the power of occipital alpha

oscillations to reaction time (Pastuszak et al., 2018). Third, going one step further, I have

revealed that alpha oscillations are associated with an overall reduced excitability to all visual

inputs, irrespective of their relevance to the task. We have coined the term blanket inhibition for

this phenomenon. The negative correlation with reaction time suggests that this global inhibition

makes the search more efficient. While prior studies on signal detection paradigms have argued

for a decrease in visual performance with increasing alpha power (Dĳk et al., 2008; Ergenoglu

et al., 2004; Hanslmayr et al., 2007; Mathewson et al., 2009), our results show that these

oscillations can be beneficial in tasks where a lot of distracting stimuli are present. However,

when controlling these effects for time-on-task, we found that the relationship between response

times and alpha power was not robust. This confound could reflect both task-related effects,

indicating that participants learned to utilise the inhibition, or task-unrelated effects, indicating

increased mental fatigue (Craig et al., 2012). These interpretations will be tested in follow-up

work.
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The link between alpha power and fast response times, revealed in chapter 3, points to a

computational benefit of these oscillations in visual processing. In chapter 4, I further delved

into this mechanism, by testing the theory that pulses of inhibition segregate and organise

competing visual inputs in time. Combining concepts from Dynamical Systems Theory and

Machine Learning, I have presented a dynamical ANN, an ANN trained on a computer vision

problem, that embraces the oscillatory dynamics of the visual system. As indicated by my

simulations, incorporating refractory terms into the network led to rhythmic activations in the

hidden nodes, oscillating at frequencies between 10 to 12 Hz. These dynamics enabled the

network to segregate the simultaneously presented inputs in time. The stability of the dynamic

output was further improved by pulsed inhibition akin to alpha oscillations in the visual cortex,

which notably synchronised the oscillatory activity within and between the network layers. As

a result, the network was able to transform the spatially presented stimuli into a temporal code,

whereby the output nodes activated along the phase of the alpha inhibition, ordered according

to the attentional bias to the letters. This algorithm offers an implementation of the notion that

alpha oscillations serve to segregate neuronal representations of visual objects into a temporal

code (Jensen, Gips, et al., 2014). As I have discussed, such a mechanism could underlie parallel

and serial processing across the visual hierarchy (Jensen et al., 2021).

The presented results provide insights into the properties of oscillatory dynamics in the

visual system. Gamma oscillations and responses to rhythmic visual inputs appeared to co-exist

in early visual areas V1 and V2. The magnitude of the alpha oscillations in early visual regions,

on the other hand, was correlated with the strength of the flicker response, suggesting that alpha

oscillations did interact with the visual inputs. I have proposed that this modulation could serve

as a threshold (chapter 3) or as a mechanism for temporal coordination (chapter 4). These results

have important implications for the role of these neuronal oscillations in visual processing and

neuronal computation.
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5.2 Novel insights & future directions

5.2.1 The low-pass filter properties of neuronal integration attenuate the

propagation of gamma oscillations along the visual hierarchy.

In chapter 2, I reasoned that the flicker was unable to entrain endogenous gamma oscillations,

as it might not affect the inhibitory interneurons that are critically involved in the emergence of

gamma oscillations (Bartos et al., 2007; Cardin et al., 2009; Traub et al., 1997; Wang & Buzsáki,

1996; Whittington et al., 2011). Furthermore, I suspected that the low-pass properties in the

communication along the visual hierarchy might have prevented the response from propagating

beyond early visual cortex (Douglas & Martin, 2004; Hawken et al., 1996).

Since chapter 2 was published in Duecker et al. (2021), these predictions have been explicitly

tested based on intracranial recordings in rodents in combination with computational modelling

(Schneider et al., 2023; Soula et al., 2023). Schneider et al. (2023) investigated responses to a

visual flicker at 20, 40 and 80 Hz in mice. In line with the proposal in chapter 2, they reported

that the flicker response did not propagate beyond early visual regions. Using computational

modelling, Schneider et al. (2023) further investigated how inhibitory interneurons and pyra-

midal cells respond to excitatory inputs at the respective stimulation frequencies. While the

inhibitory interneurons were able to follow the stimulation up to 80 Hz, the pyramidal neurons

integrated the 40 and 80 Hz inputs and responded with an overall increase in excitability. These

results corroborate the idea outlined in chapter 2 that a visual flicker might not serve to entrain

endogenous gamma oscillations, as it is unable to target the inhibitory interneurons. Soula et al.

(2023) have further replicated the findings in chapter 2, showing that a rhythmic flicker did not

entrain endogenous gamma oscillations in the mouse brain. Going one step further, they were

unable to replicate the neuroprotective mechanisms reported by Iaccarino et al. (2016) (also see

Adaikkan et al., 2019; Martorell et al., 2019; Singer, 2018). The implications of this null finding

will be addressed below. In sum, since its publication in Duecker et al. (2021), chapter 2 has

become part of a series of studies indicating that gamma oscillations in the visual system do not
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synchronise to rhythmic sensory stimulation.

This line of research has important implications for the Communication through Coherence

theory. Communication through Coherence posits that gamma oscillations transmit information

up the visual hierarchy in a cascading fashion, whereby each region entrains the oscillatory

activity of its subsequent receiving region (Bastos, Vezoli, & Fries, 2015; Fries, 2015; van

Kerkoerle et al., 2014). However, this idea is difficult to reconcile with the observation that the

low-pass filter properties of pyramidal neurons prevent the gamma rhythm from propagating

across the network layers (Schneider et al., 2023). In accordance with that, Schneider et al.

(2021) have shown that coherence between two cortical regions is not a clear indicator of

communication. Instead, coherence between two neuronal populations might spuriously emerge

if the LFP recorded from the receiving population contains afferent inputs from the sending

populations (Buzsáki & Schomburg, 2015). As such, coherence might give the illusion that the

two populations oscillate at synchronous rhythms, even in the absence of gamma oscillations in

the receiving population.

While recent findings have amplified the criticism targeted at the Binding by Synchrony and

Communication through Coherence theories (Roelfsema, 2023; Vinck et al., 2023) they cannot

negate the multitude of studies showing that spiking activity in V1 (Peter et al., 2019, 2021;

Vinck et al., 2010; Womelsdorf et al., 2012), V4 (Gregoriou et al., 2009; Vinck et al., 2013),

and FEF (Gregoriou et al., 2009) is modulated by the phase of ongoing gamma oscillations. As

such, studying gamma oscillations may still be useful for understanding neuronal computation

in the visual system (Cardin, 2016).

Previous work has reported neuroprotective mechanisms in response photic stimulation in

the gamma-band (Adaikkan & Tsai, 2020; Adaikkan et al., 2019; Iaccarino et al., 2016; Singer et

al., 2018) . These findings have led to the proposal that driving gamma oscillations with sensory

stimulation may reduce neurodegeneration in Alzheimer’s disease (Adaikkan & Tsai, 2020).

As mentioned in the introduction, the results of first human trials have also led to encouraging

findings (Chan et al., 2022; He et al., 2021; Liu, Han, et al., 2022; McNett et al., 2023). However,

more recent work has demonstrated that the visual flicker does not entrain endogenous gamma
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oscillations in the mouse brain (Soula et al., 2023). Moreover, this study was unable to replicate

the effects on neurohistochemistry and found that the animals tended to avoid the visual flicker

(Soula et al., 2023). While the roots of these discrepancies are to be determined, the recent line

of work, including the findings presented in chapter 2, suggests that the compelling effects of

photic stimulation on neurons on glia may not underlie an entrainment of ongoing oscillations.

As I will outline in the following, it is still possible that gamma oscillations may facilitate neural

processing. As such, stimulating the cortex at these frequencies may still have beneficial effects

on neural activity (also see Griffiths et al., 2023).
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5.2.2 Gamma oscillations may still support vision by increasing the infor-

mation represented by individual spikes.

How might gamma oscillations still be involved in visual processing, if not directly through

facilitating feature-binding or inter-areal communication? Recent work has suggested that

gamma oscillations may carry information about the predictability of visual inputs (Vinck &

Bosman, 2016). This is the case both for the uniformity of structures within an image (Peter

et al., 2019), as well as repeated presentations of the same stimulus (Peter et al., 2021). Spiking

activity has been shown to reduce in response to visual stimuli with a highly predictable structure

(Coen-Cagli et al., 2015). Moreover, firing rates have been repeatedly demonstrated to reduce

when the stimulus is presented repeatedly, a phenomenon termed neuronal adaptation (see Kohn,

2007, for review).

The rationale that gamma oscillations synchronise individual spikes for feature binding has

long been criticised based on the observation that they typically coincide with a sparse spiking

output (e.g. Burns et al., 2011; Xing et al., 2012). As a counterargument, it has often been pointed

out that gamma oscillations do not define when a neuron must fire, but instead, they provide a

window of opportunity (Börgers & Kopell, 2003; Nikolić et al., 2013). Peter et al. (2021) have

proposed that while neurons indeed reduce their firing in response to a repeatedly presented

stimulus, strong gamma oscillations may serve to concentrate the fewer remaining spikes within

a short time interval. Consequently, the sparse spiking output may reach the postsynaptic

neurons with high temporal precision, in turn increasing the impact of the individual spikes

(also see Larkum, 2013; Singer, 2018; Vinck & Bosman, 2016). Through this coordination of

sparse spiking activity, gamma oscillations may still be involved in organising visual processing

and communication between cortical areas (Vinck et al., 2023). This notion reconciles previous

work arguing in favour (for review see Engel et al., 2001; Fries, 2015; Fries et al., 2007; Singer

& Gray, 1995; Singer, 1999) and in contrast (see Roelfsema, 2023; Schneider et al., 2021;

Shadlen & Movshon, 1999, for review) to Binding by Synchrony and Communication through

Coherence.
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Furthermore, it has been argued that these modulatory gamma oscillations might emerge

from feedback connections (Vinck & Bosman, 2016). Indeed, strong gamma oscillations have

been repeatedly observed in the supragranular but not the granular layers; a finding that has so far

been difficult to align with the idea that gamma oscillations support feedforward communication

(Buffalo et al., 2011; Ray & Maunsell, 2015; Smith et al., 2013; Xing et al., 2012). The

association of gamma oscillations with the temporal coordination of spike timings in response

to repeated stimuli indicates that studying gamma oscillations is still informative to understanding

the neural mechanisms underlying visual perception (Cardin, 2016).

5.2.3 Gamma oscillations may support local neuronal processing.

Another surprising finding in chapter 2 was the absence of resonance phenomena, i.e. a selective

amplification of individual frequencies in the stimulation range (Hutcheon & Yarom, 2000).

Previous work applying visual flickers at a broad range of frequencies has reported a selective

amplification of stimulation frequencies below 50 Hz (Gulbinaite et al., 2019; Herrmann, 2001).

These findings and the results in chapter 2 indicate that the visual cortex does not selectively

amplify frequencies above 50 Hz. Moreover, this even happens to be the case in presence of

endogenous gamma oscillations. This interpretation is in line with a related study, where we

applied a broadband flicker (1-720 Hz) to moving grating stimuli (Zhigalov et al., 2021). Previous

work has reported that the temporal response function to a broadband stimulus, which is often

approximated based on the cross-correlation between the EEG or MEG signal and the time series

of the stimulation, exhibits a selective response in the alpha-band, termed the perceptual echo

(VanRullen & Macdonald, 2012). Our high-frequency broadband flicker revealed an additional

echo in the gamma band, which preceded the one in the alpha band (Zhigalov et al., 2021).

Interestingly, we found the peak frequency of this gamma echo to be lower than the frequency of

the gamma oscillations elicited by the moving grating stimulus. This is in line with the results in

chapter 2, showing that the flicker frequency eliciting the strongest response tended to be lower

than the individual gamma frequency. These findings indicate that the dynamics of the visual

cortex exhibit substantial heterogeneity in the gamma band.
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The heterogeneity of neuronal gamma band activity, for instance, the observation that the

peak frequency of the oscillations varies depending on the stimulus properties, has long been

argued to be problematic for the Binding by Synchrony and Communication through Coherence

theories (Hermes et al., 2015a; Hermes et al., 2015b; Muthukumaraswamy & Singh, 2013;

Muthukumaraswamy et al., 2010; Ray & Maunsell, 2010). However, computational work has

proposed a more positive stance, arguing that the spectral variability of the gamma oscillations

underlies highly flexible neural circuits (Whittington et al., 2011).

This flexibility may underpin the involvement of cortical dynamics in the gamma band

in inter-areal communication. The Communication through Resonance hypothesis posits that

a sending population could drive a receiving population by shifting its energy towards the

receiver’s resonance frequency (Hahn et al., 2014; Izhikevich et al., 2003; Vinck et al., 2023).

In comparison to Communication through Coherence, this mechanism does not require that

both populations oscillate in synchrony (Vinck et al., 2023). Instead, the receiver integrates the

incoming signal non-linearly, but may itself not exhibit oscillations at the same frequency as the

sender (Vinck et al., 2023).

Intracranial recordings from the human or non-human primate brain could help to understand

whether gamma oscillations indeed support inter-areal communication in this localised way.

For instance, Kuzovkin et al. (2018) recorded the LFP from the visual ventral stream in 100

epilepsy patients and found that activity in the high gamma band best mapped onto hidden

activations in AlexNet, a popular CNN used for image classification (Krizhevsky et al., 2012).

These data could be re-analysed using non-linear synchrony measures such as explained power

(Dowdall et al., 2023) and mutual information measures (Imperatori et al., 2019; King et al.,

2013; Park et al., 2018), to test whether consecutive layers along the visual hierarchy might

indeed drive each other’s activity at frequencies in the gamma-range. My interpretation of the

Communication through Resonance theory is that communication is facilitated by a cascade of

locally synchronised assemblies. As such, I would predict that the extent to which activations

in one neuronal population can be explained by another area decreases with increasing distance

between them. For instance, synchrony between V2 and V4 should be higher than synchrony
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between V2 and IT. This is in line with previous work arguing that gamma synchrony decays

with increasing distance (Roelfsema, 2023; Roelfsema et al., 2004).

Kuzovkin et al. (2018) further used natural stimuli such as photos of landscapes, which have

a highly predictable structure, and images of animals whose structure is less predictable. As

such, these data may further serve to test the conclusions presented by Peter et al. (2019), who

showed that gamma oscillations in primate V1 increased with increasing predictability of the

structures within an image. As Kuzovkin et al. (2018) recorded data from several regions in the

ventral stream, it would be possible to investigate whether the findings by Peter et al. (2019)

generalise to areas beyond V1.

In summary, novel results on neuronal gamma oscillations suggest that they might still

organise spiking activity and inter-areal communication in a more localised way than previously

hypothesised. Re-analysis of previously recorded data by Kuzovkin et al. (2018) could allow to

test the predictions of these novel ideas.

5.2.4 Gating by alpha oscillations may flexibly operate in different areas

for the different forms of attention.

In chapter 3, I pointed out that previous studies have not robustly observed a link between

alpha power and frequency tagging responses, which is at odds with our association of alpha

oscillations with an inhibitory mechanism modulating visual inputs (Antonov et al., 2020;

Gundlach et al., 2020; Morrow et al., 2023; Zhigalov et al., 2021). I argued that one of

the reasons for these discrepancies may be that the visual search task investigated in chapter

3 was guided by feature-based attention, while previous work has investigated inhibition by

alpha oscillations in the context of spatial attention. Accordingly, the peak sources of the alpha

oscillation in previous studies were localised in parietal cortex (Zhigalov & Jensen, 2020), while

we found the peak source of the alpha power in early visual cortex. I have reasoned that this

could reflect a gating mechanism implemented by alpha oscillations in early visual cortex, that

funnels communication between the cortical areas that are relevant for the feature-guided search

(see chapter 3 and Duecker et al., 2023).
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This theory could be tested using a combination of MEG and RIFT, paired with a modulated

version of the visual search task presented in chapter 3. In this follow-up study, attention could

either be guided toward features, as done in chapter 3, or location, for instance, the side of the

screen where the target stimulus will be presented. Accordingly, RIFT could be applied based

on stimulus colour, or stimulus location (left vs right). Based on the conclusions in chapter

3, I would predict that the coordinates of the peak sources in the two conditions will differ

along the dorsal and lateral axes. In the colour-guided search, I would predict alpha power

to increase uniformly over visual cortex, while in the spatial condition, alpha power should

be lateralised as previously shown in several spatial attention paradigms (Bahramisharif et al.,

2010; Gutteling et al., 2022; Kelly et al., 2006; Sauseng et al., 2005; van Gerven & Jensen, 2009;

Vissers et al., 2016; Worden et al., 2000; Zhigalov & Jensen, 2020). Furthermore, I predict

these lateralised sources to be localised in parietal cortex (Zhigalov & Jensen, 2020). If spatial

attention indeed benefits from gating in parietal cortex, while feature-based attention relies on

gating in early visual regions, then a modulation of the RIFT response may only be observed in

the feature-guided condition.

Contrary to the studies discussed above, Gutteling et al. (2022) have recently demonstrated

a negative correlation between alpha power and RIFT responses. In a lateralised attention

paradigm, the authors manipulated perceptual load by adding noise masks to either the target or

the distractor stimulus – or to both. The perceptual load was maximal when the target but not

the distractor stimulus was obscured by a noise mask.

In this condition, high alpha power in the hemisphere contralateral to the distractor was

linked to a reduced RIFT response. These results align well with previous proposals, suggesting

that the modulation of alpha oscillations and the reduction of resources dedicated to processing

the distracting stimulus, may be driven by an increased demand of processing resources for the

target (Jensen, 2023; Noonan et al., 2016). This proposal could be explored using the paradigm

I have outlined above. One prediction would be that a negative correlation between the RIFT

response and alpha power can only be observed for difficult searches with high set sizes.

Considering previous work that could not link alpha power and flicker responses in spatial
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attention paradigm, I offer the interpretation of the findings presented in chapter 3 that inhibition

by alpha oscillations can be flexibly utilised to implement gating mechanisms in task-relevant

regions (also see Rodriguez-Larios et al., 2022; Sokoliuk et al., 2019, for the discussion of

similar ideas). I have proposed a follow-up experiment that explicitly tests whether alpha

oscillations are modulated differently for different forms of attention.

5.2.5 The link between blanket inhibition and the temporal code

In chapter 3, I have reported that alpha oscillations are linked to reduced neuronal excitability

to all visual inputs. We suggested that in this way, alpha oscillations serve as a threshold that

is applied to all locations in the priority map (also see Duecker et al., 2023). In chapter 4, the

periodicity of the inhibition imposed by the alpha oscillation is central to the emergence of a

temporal code, as it defines when the hidden units activate. This model relies on the notion

that alpha oscillations offer windows of opportunity for neuronal activation (Jensen et al., 2012;

VanRullen, 2016). When averaging over trials without controlling for the phase of the alpha

oscillations, these effects are likely to be reflected in an overall decrease in excitability as shown

in chapter 3. In other words, the blanket inhibition mechanism may be applied in a cyclic

fashion. As the blanket inhibition reduces periodically, the neural representations of the visual

inputs may activate according to their level of excitability, thus implementing a temporal code.

This idea could be tested using cross-frequency measures on the data presented in chapter

3, to investigate whether the amplitude of the RIFT response is modulated periodically by alpha

phase. One may further hypothesise that the RIFT response to the target stimuli increases at an

earlier phase of the alpha cycle than the distractor stimuli, reflecting a temporal code. However,

there are potential confounds in these data that might disguise any effects of alpha oscillations

implementing a temporal code. First, the signal-to-noise ratio of the RIFT response may be

insufficient to identify any amplitude modulations by alpha phase, especially for the suppressed

distractors. Second, as explained above, the findings in chapter 2 suggest that the RIFT response

does not propagate beyond early visual cortex, which was supported by recent investigations

of flicker responses in mouse visual cortex (Schneider et al., 2023). Primary visual cortex has
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been shown to process low-level features, such as colour, in parallel (Popovkina et al., 2021;

White et al., 2017). As such, a temporal coordination of the neuronal responses to the target

and distractor stimuli along the visual hierarchy may not be reflected in the RIFT response.

This notion is in line with the simulations presented in chapter 4, showing that a segregation of

the competing stimuli along the phase of the alpha oscillations does not occur in the first layer.

Finally, the temporal code model considers a relatively small number of visual inputs, and has

so far not explicitly been extended to complex task such as visual search.

A more suitable way to test the idea that alpha oscillations convert competing visual inputs

into a temporal code could be achieved using relatively simple visual attention paradigms, in

combination with MEG, fMRI, and decoding methods such as Multivariate Pattern Analysis

(Cichy & Oliva, 2020; Cichy et al., 2014, 2016, 2017). Previous studies have used a fusion

of MEG and fMRI decoding to trace neuronal representations of visual objects (Cichy et al.,

2016; Mohsenzadeh et al., 2019). The decoding approach serves to relate the neuromagnetic

and hemodynamic responses acquired with the MEG and fMRI, and thus allows to isolate the

neuronal representations of visual stimuli with both high temporal and spatial precision (Cichy

& Oliva, 2020). As such, this method serves to estimate the response latency in different regions

within the visual hierarchy (Cichy et al., 2016; Mohsenzadeh et al., 2019).

As outlined in chapter 4, the temporal code has been hypothesised to result in a pipelining

mechanism in visual processing, whereby attended stimuli reach higher-order visual areas with

a temporal advantage over unattended stimuli (Jensen et al., 2021). This theory could be tested

using the MEG/fMRI-decoder, trained on individual stimuli presented laterally on the screen. By

training the decoder on stimuli presented at either position, one could isolate the neural activity

associated with translation invariant core object recognition of each stimulus (see DiCarlo &

Cox, 2007; DiCarlo et al., 2012, for reviews on object recognition in the ventral stream) presented

at a time, and the participant is instructed to attend to one of them. Following the predictions

from the pipelining model (Jensen et al., 2021, and chapter 4), the increase in decoding accuracy

of the attended stimulus in object-selective cortex, such as IT, may precede the decoding of

the unattended stimulus. Moreover, using this paradigm, it could be tested if the decoding
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of the stimuli is modulated by the phase of ongoing alpha oscillations. Indeed, van Es et al.

(2022), have recently reported that the decoding accuracy of laterally presented grating stimuli

is modulated by the phase of ongoing alpha oscillations in prefrontal cortex. By aligning the

time series to alpha phase, for instance, using the newly developed brain time toolbox (van Bree

et al., 2022) it could be tested if any delays in the neural responses to simultaneously presented

stimuli can be linked to alpha phase.

In summary, while chapter 3 argues for an approximately uniform reduction of excitability by

alpha oscillations in early visual cortex, chapter 4 suggests that alpha oscillations may modulate

neuronal responses in a temporally precise way. I have outlined an experiment using MEG-fMRI

decoding to explicitly test whether alpha oscillations can be linked to a pipelining mechanism

in visual cortex.

5.2.6 Extensions of the dynamical artificial neural network could embrace

the local and global dynamics of the visual system.

Throughout this discussion, I have argued that gamma oscillations may support visual processing

through localised neuronal processes, while alpha oscillations affect neural activity in a more

global way. To embrace these ideas, future versions of the dynamical ANN could feature both

local and global dynamics within and across the network layers.

For instance, previous work has shown that integrating local recurrences into brain-like

ANNs can improve their object recognition abilities (Kubilius et al., 2019). Gamma oscillations

have been shown to emerge from supragranular layers in the visual cortex (Buffalo et al., 2011;

Smith et al., 2013; Spaak et al., 2012; Xing et al., 2012), and may therefore serve to mediate

local neuronal activity (Vinck et al., 2023). Moreover, gamma oscillations are known to underlie

a balance of excitation and inhibition, which emerges from an interplay between pyramidal cells

and inhibitory interneurons (Cardin et al., 2009; Traub et al., 1997; Whittington et al., 2011).

Possible extensions of the dynamical ANN could therefore include the integration inhibitory

nodes and recurrent connections into each network layer. These features could lead to local

dynamics, akin to gamma oscillations, emerging during the training process, through a balance
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of excitation (through the inputs) and inhibition by the interneuron nodes (Börgers & Kopell,

2003). Previous work has proposed that the computational purpose of gamma oscillations is

to segment stimulus representations in time (Lisman & Idiart, 1995; Lisman & Jensen, 2013).

This is based on the notion that the inhibitory connections momentarily allow an individual

representation to activate, while others are silenced. As such, a testable prediction for this

extension of the model is that competing inputs may activate in consecutive cycles of the

emerging gamma oscillations.

In the current version of the model, alpha oscillations are integrated into the network by

subtracting synchronous sinewaves from the hidden activations in all nodes. Previous work

using intracranial recordings in humans and non-human primates, however, has proposed that

alpha oscillations may propagate from frontal areas backwards through visual hierarchy toward

early visual cortex (Kaneko et al., 2022; Zhang et al., 2018), or from prefrontal areas via the

mediodorsal thalamus toward visual cortex (Griffiths et al., 2022). In line with that, the phase

of frontal alpha oscillations has been linked to a modulation of visual perception and attention

(Capotosto et al., 2009), as well as decoding accuracy of visual stimuli (van Es et al., 2022).

In the current model, we found that approximately synchronous oscillations resulted in the

most stable temporal code, indicating that an inhibitory oscillatory drive emerging from one

single area may be optimal to organise activations in the hidden layer. It would be interesting

to explore the optimal phase relationship between the network layers, and whether it is best

controlled by a common pacemaker, as is the case in the current implementation, or by a

travelling wave propagating along the network layers (see Alamia & VanRullen, 2019, 2023;

Alamia et al., 2023, for recent work on alpha travelling waves in humans).

Finally, previous work has proposed that gamma oscillations organise the feedforward com-

munication along the visual hierarchy, while alpha oscillations reflect a feedback signal that

modulates this feedforward sweep (Bastos, Vezoli, & Fries, 2015; Mejias et al., 2016; Michalar-

eas et al., 2016; van Kerkoerle et al., 2014). The interplay between the activity at these different

rhythms has been argued to underlie the functional relevance of alpha oscillations: in absence

of ongoing task-relevant activity in the gamma-band, low-frequency oscillations such as the
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alpha rhythm become detrimental to performance, as they reduce excitability over long periods

(Schroeder & Lakatos, 2009). If there is a task-relevant signal these oscillations can modulate,

however, they will facilitate performance by organising neuronal activity in time (Jensen, Gips,

et al., 2014; Schroeder & Lakatos, 2009). As such, integrating both fast and slow oscillations into

future versions of the model may help to understand the functional relevance of their interaction.

To conclude, for future versions of the dynamical ANN, it would be interesting to test whether

oscillatory dynamics at different spectral scales, akin to gamma and alpha oscillations in the

visual system, could enhance the abilities of the neural network.
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6
General conclusion

The insights gathered in this thesis elucidate the involvement of gamma and alpha oscillations

in visual processing. I have demonstrated that while the visual cortex can be driven at high

frequencies above 50 Hz, endogenous gamma oscillations in this frequency range are unperturbed

by sensory stimulation. In contrast, alpha oscillations were found to modulate visual inputs. The

uncovered difference in the properties of gamma and alpha oscillations hints at a sophisticated

orchestration of neural computation in visual cortex: gamma oscillations may organise activity

in local circuits, while functional inhibition by alpha oscillations affects neuronal populations at

a more global scale.

Based on this notion, I propose that gamma and alpha oscillations take on different roles

in conducting the orchestra of neuronal firing, leading to distinct but connected sections of

musicians that maintain the harmony in early visual cortex.
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A.1 Supplementary Analyses

A.1.1 Behavioural results: Guided Search is associated with better per-

formance

We predicted that search performance would decrease for more difficult searches. Indeed,

Figure 3.2c and d, showing the mean reaction time and accuracy (d’) for each condition, demon-

strate better performance in guided compared to unguided search and smaller (16) compared to

larger (32) set sizes. We investigated these effects using a hierarchical regression approach with

linear mixed models, whereby we consecutively added the factors set size and guided/unguided

(dummy coded as 1 being “guided search”) into a model including only subject-related random

effects.

To account for the skewed distribution of the reaction time data, we used a gamma distribution

to fit the linear mixed models. A model predicting reaction time using the fixed factors set size

and guided/unguided, and the random effects associated with these factors in each participant

(𝐴𝐼𝐶 = −307.57), was superior to a model predicting reaction time as a function of subject-

related random effects and set size (𝐴𝐼𝐶 = −181.72, 𝜒2(4) = 133.86, 𝑝 < 0.0001, 𝑅2 =

0.96,Δ𝑅2 = 0.22). This additive model reveals a fixed effect for set size (𝛽 = 0.180) and

guided/unguided (𝛽 = −0.138). In short, this demonstrates an increase in reaction time for set

size 32 to compared to 16 by about 180 ms, and an increase of about 138 ms for unguided

compared to guided search (no interaction effect, see Table A.1).

Analogously, hierarchical regression of accuracy shows that d’ is best predicted by an additive

model including the factors set size (𝛽 = −0.74) and guided/unguided (𝛽 = 0.56, 𝑅2 = 0.83) and

the subject-specific random effects (see Table A.3). These results show that accuracy decreases

for larger set sizes and increases for guided compared to unguided search. The results of all post

hoc tests are shown in Table A.2 and Table A.4, and indicated in Fugure 3.2c and d. Notably,

performance was not significantly different for unguided search, set size 16 and guided search,

set size 32 (Wilcoxon signed rank test on reaction time : 𝑉 (30) = 134, 𝑧 = 2.23, 𝑝 = 0.15, 𝑟 =
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0.4, 𝑆𝐸 = 0.019; sensitivity (d’), dependent sample t-test: 𝑡 (30) = 2.2, 𝑝 = 0.23, 𝑑 = 0.2, 𝑆𝐸 =

0.081). This finding is in line with the notion that guided search allows the participants to focus

their search on items in the target colour while ignoring the distractor colour.

In sum, the behavioural findings are consistent with a priori expectations, namely an increase

in response times with set size, as well as faster responses for guided compared to unguided

search.

A.1.2 RIFT responses for fast compared to slow trials

As the analyses of the RIFT responses in guided and unguided search revealed a modulation

of neuronal excitability in line with the priority map, we asked if successful target boosting

and distractor suppression were relevant for performance. We therefore sorted the trials in each

condition according to fast and slow responses (median split on reaction time) and compared

the respective RIFT signals. Figure A.2d shows the RIFT response to the target colour for fast

and slow trials (orange and brown line, respectively), and to the distractor colour (light and dark

blue for fast and slow trials, respectively) for guided search, set size 32. We expected fast trials

to be associated with respectively a stronger response to the target colour and a weaker response

to the distractor colour, however, we did not find any significant differences between the RIFT

responses to targets and distractors for fast vs slow trials. Upon further post-hoc comparisons,

using cluster-based Monte Carlo permutations, we did find that the difference between the RIFT

responses to the target and distractor colour is significantly larger for fast compared to slow

trials, at about 200 ms after search display onset (Figure A.2e, 𝑝 < 0.05, 5,000 permutations).

We conclude that there was a weak, and rather short-lived relationship between reaction time

and the RIFT responses to target and distractor features, which was mainly driven by a strong

initial response to the target colour.
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A.1.3 Ocular artefacts and gaze bias not linked to reaction time or alpha

power

While participants were instructed to perform the task without moving their eyes, we found that

some eye movements were present during the search. As enhanced neural processing has been

suggested to underlie microsaccades (Liu, Nobre, & van Ede, 2022; Lowet et al., 2018) and

alpha oscillations have been linked to the coordination of eye movement (Liu, Nobre, & van Ede,

2022; Pan et al., 2023; Popov et al., 2021), we investigated if the reaction time effects and the

modulated RIFT responses observed for fast vs slow trials and high and low alpha power can be

explained by differences in ocular artefacts (Figure A.9).

We divided the trials in the eye tracking data in each condition based on the median reaction

time, separately for target present and absent trials in each participant (as described in the

main text). Then, we identified the number of blinks and saccades in the first 500 ms after

the search display onset (the time interval included in the RIFT analyses) and averaged these

over conditions. Note that the threshold of the eye tracker to identify a saccade was set to 0.6°.

We again analysed all main and interaction effects using a hierarchical regression approach,

by comparing the explanatory value of a model containing the factor fast/slow to the baseline

model.

For the average number of blinks during the trial, we find that a model containing the factor

fast/slow (𝐴𝐼𝐶 = −1259.3) did not explain a significantly larger portion of the variance than the

baseline model including subject-specific random effects (𝐴𝐼𝐶 = −1259.5, 𝜒2(1) = 1.9, 𝑝 =

0.17, Figure A.8a). Using the same approach on the average number of saccades revealed that a

model including the predictor fast/slow (𝐴𝐼𝐶 = −6.8) could indeed account for a larger portion

of the variance than the baseline model (𝐴𝐼𝐶 = −4.86, 𝜒2(1) = 3.9, 𝑝 = 0.05,Δ𝑅2 = 0.0014),

however, none of the pairwise comparisons reached significance (Table A.5, Figure A.8b).

To ensure that any eye movements during the search were not over-proportionally directed

at the target colour in the fast trials, we binned the eye tracking data into 100 ms intervals,

and identified the stimulus closest to the location of the gaze in each of these bins. The gaze
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bias towards the target colour was defined as the proportion of time the eyes were directed at a

position closest to a stimulus in the target colour. A value of 0.5 indicates that the participant’s

gaze time on the target and the distractor colour were the same, meaning no bias. Comparing

a linear regression model predicting gaze bias as a function of the factor fast/slow (AIC =

-8.64.09), with a baseline model (𝐴𝐼𝐶 = −865.9), did not reveal any significant main effects

of reaction time on the gaze bias (𝜒2(1) = 0.19, 𝑝 = 0.67,Δ𝑅2 = 0.0001). This shows that

participants followed the instructions and did not solve the task by moving their eyes towards

the target colour (Figure A.8c).

Applying the same analyses to trials divided according to alpha power in the -1 to 0 s baseline

interval, confirmed that the link between alpha power and RIFT response described in Fig. 4 was

not driven by ocular artefacts or a gaze bias towards the target colour. For the average number of

blinks, we found no additional explanatory value of the factor alpha high/low (𝐴𝐼𝐶 = −1270.5)

compared to the baseline model (𝐴𝐼𝐶 = −1272.2, 𝜒2(1) = 0.32, 𝑝 = 0.57,Δ𝑅2 = −0.0011,

Figure A.8d). For the number of saccades during the trial, we did find that a linear regression

model including the factor alpha high/low (𝐴𝐼𝐶 = −13.27) is superior to the baseline model

(𝐴𝐼𝐶 = −6.27, 𝜒2(1) = 9.0, 𝑝 = 0.0027,Δ𝑅2 = 0.004, Figure A.8e). Pairwise comparisons

indicate that only the unguided search condition, set size 32, showed significantly more saccades

for high vs low alpha trials (𝑡 (30) = −3.91, 𝑝 = 0.002, 𝑑 = −0.685, Benjamini-Hochberg

corrected, Table A.6). As outlined above, we did not find any influence of pre-search alpha

power on RIFT responses in unguided search, meaning that the number of saccades did not seem

to affect the RIFT response. None of the remaining comparisons reached significance. For gaze

bias, we found that the predictor alpha high/low did not add any significant explanatory value to

the baseline model (𝐴𝐼𝐶𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = −903.08, 𝐴𝐼𝐶𝑎𝑙 𝑝ℎ𝑎 = ˘902.52, 𝜒2(1) = 1.4, 𝑝 = 0.23,Δ𝑅2 =

0.006, Figure A.8f).

Finally, we applied the same analyses to the eye movement data split based on alpha power dur-

ing search. Again, a regression model containing the factor alpha high/low (𝐴𝐼𝐶 = −1218.2) did

not explain any additional variance compared to the baseline model (𝐴𝐼𝐶 = −1219.5, 𝜒2(1) =

0.73, 𝑝 = 0.39,Δ𝑅2 = 0.0001, Figure A.8g). For the average number of saccades during
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search, there was an effect of alpha power (𝐴𝐼𝐶 = −13.27 vs. 𝐴𝐼𝐶 = −6.27 for the base-

line model, 𝜒2(1) = 9, 𝑝 = 0.003,Δ𝑅2 = 0.0036). Pairwise comparisons revealed that high

alpha trials were associated with significantly less saccades in unguided search, set size 32

(𝑡 (30) = −3.91, 𝑝 = 0.002, 𝑑 = −0.685, Benjamini-Hochberg corrected, Figure A.8h). Consid-

ering that the median split based on alpha power before the search revealed the exact same effect

for unguided search, set size 32, but no effect on the RIFT response, and considering the absence

of any saccadic effects in the guided search condition, we argue that the reduced RIFT response in

unguided search, set size 32, is more likely to be linked to alpha power, rather than the number of

saccades. Lastly, we found that a model of gaze bias, including alpha high/low was not superior

(𝐴𝐼𝐶 = −902.52) to the baseline model (𝐴𝐼𝐶 = −903.08, 𝜒2(1) = 1.4, 𝑝 = 0.23,Δ𝑅2 = 0.006,

figure A.8i).

These analyses indicate that ocular artefacts and gaze bias are not significantly linked to

reaction time or alpha power. This suggests that the differences in RIFT response for fast and

slow trials, as well as trials with high alpha power in the pre-search and interval, cannot be

explained by eye movement or ocular artefacts.
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A.2 Supplementary Figures
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Figure A.1: Topoplots showing coherence to RIFT at 60 Hz for each participant. RIFT sensors
of interest are indicated by the light blue rings.
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* p < 0.05
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Figure A.2: RIFT responses for fast and slow trials. There is no modulation of the RIFT response
for fast vs slow trials for guided search, set size 16 (a) or unguided search set size 16 (b) or
32 (c). d Visual inspection of the RIFT responses in guided search set size 32 suggests higher
coherence for fast compared to slow trials, however, neither the comparisons between targets for
fast vs slow nor for the distractors revealed a significant difference (cluster-based permutation
t-test, 1,000 permutations). e Upon further inspection of the interaction effects, we find that
fast trials are associated with a larger difference in the RIFT response between the target and
distractor colour (cluster-based permutation Monte Carlo t-test, p < 0.05, 1,000 permutations).
This effect seems to mainly be driven by an initial increase in RIFT response to the target colour.
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Figure A.3: Topoplots showing power at the Individual Alpha Frequency in the -1 to 0 interval.
Alpha sensors of interest are indicated by the pink rings.
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Figure A.4: Individual alpha frequency per participant. The spectra show the Time-Frequency
Representations of power (obtained with a sliding time window using a complex Hanning taper
of 500 ms), averaged over the -1 s to 0 interval before the onset of the search display, averaged
over all trials and conditions. Individual Alpha Frequencies were identified as the peak in the
spectrum in the 4-14 Hz Frequency range.



Appendix Chapter 3 164

guided
16

ungui
 16

guided
32

ungui
32

-55

-52

-49

lo
g(

po
w

er
) 

at
 IA

F

-55

-52

-49

guided
16

ungui
 16

guided
32

ungui
32

a | alpha pre-search b | alpha during search

Figure A.5: Alpha power pre- and during search does not differ between conditions. a Power at
the individual alpha frequency in the baseline, obtained from the Time-Frequency Representation
of power, averaged over the -1 to 0 s interval for each condition. A repeated-measures ANOVA
did not reveal any main effects factors condition (guided vs unguided search; F(1,30) = 1.41, p
= 0.24) or set size (F(1,30) = 2.52, p = 0.12), nor an interaction effect (F(1,30)=0.5, p = 0.48).
b Alpha power during search for each condition, obtained by averaging over the 0.25 to 0.5 s
interval. Again, we did not find a main effect for condition F(1,30) = 0.49, p = 0.49), set size
F(1,30) = 2.4, p = 0.13), or an interaction F(1,30) = 0.26, p = 0.61).



165 Harmony in early visual cortex

frequency (Hz) frequency (Hz) frequency (Hz)

4 10 16 22 28
0

7

4 10 16 22 28
0

9

4 10 16 22 28
0

2

4 10 16 22 28
0

1

4 10 16 22 28
0

5

4 10 16 22 28
0

1

4 10 16 22 28
0

3

4 10 16 22 28
0

6

4 10 16 22 28
0

3

4 10 16 22 28
0

2

4 10 16 22 28
0

5

4 10 16 22 28
0

17

4 10 16 22 28
0

1

4 10 16 22 28
0

2

4 10 16 22 28
0

53

4 10 16 22 28
0

5

4 10 16 22 28
0

5

4 10 16 22 28
0

2

4 10 16 22 28
0

4

4 10 16 22 28
0

25

4 10 16 22 28
0

35

4 10 16 22 28
0

4

4 10 16 22 28
0

1

4 10 16 22 28
0

2

4 10 16 22 28
0

15

4 10 16 22 28
0

5

4 10 16 22 28
0

2

4 10 16 22 28
0

3

4 10 16 22 28
0

3

4 10 16 22 28
0

7

4 10 16 22 28
0

4

po
w

er
 (

T
/m

)2  x
10

-2
3   

po
w

er
 (

T
/m

)2  x
10

-2
3   

po
w

er
 (

T
/m

)2  x
10

-2
3   

po
w

er
 (

T
/m

)2  x
10

-2
3   

po
w

er
 (

T
/m

)2  x
10

-2
3   

po
w

er
 (

T
/m

)2  x
10

-2
3   

po
w

er
 (

T
/m

)2  x
10

-2
3   

po
w

er
 (

T
/m

)2  x
10

-2
3   

Figure A.6: Alpha power in the -1 to 0 baseline interval for high and low alpha trials, one
spectrum per participant. High and low alpha trials are depicted by the black and turquoise line,
respectively. The spectra were obtained by averaging Time Frequency Representations of power
over the -1 to 0 s interval the onset of the search display.
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Figure A.7: RIFT responses for set size 16 show no systematic difference between trials with
high and low alpha before pre-search (a,b) or during search (c,d). c Surprisingly, the initial
event-related RIFT response to the distractor colour was significantly reduced in trials with high
alpha power for guided set size 16r. This finding is the only evidence for attentional modulation
in the set size 16 condition.
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Figure A.8: Trials with high vs low alpha power during search. One spectrum per participant,
the black and turquoise lines show the spectra for the high and low alpha trials, respectively.
The spectra show the Time-Frequency Representations of power (obtained with a sliding time
window using a complex Hanning taper of 500 ms), averaged over the 0.25 to 0.5s interval
following the onset of the search display.
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Figure A.9: Eye blinks, saccades, and gaze bias towards the target colour for fast vs slow
trials (a-c) and trials with high and low alpha power before (d-f) and during the search (g-
h). Individual participants and grandaverage are indicated by the opaque and solid scatters,
respectively. a Average number of eye blinks in each condition compared for fast and slow
trials. A hierarchical regression approach revealed no main effect for of reacion time fast vs.
slow (𝜒2 = 1.9, 𝑝 = 0.17. b Average number of saccades per trial during the search interval
in each condition for fast vs slow trials. While there is a significant main effect for fast vs slow
(𝜒2 = 3.9, 𝑝 = 0.047,Δ𝑅 = 0.0014), the pairwise comparisons did not show any significant
differences (Table A.5) c Proportion of the trial the gaze spent near the target colour, again
showing no difference for reaction time fast vs slow (𝜒2 = 0.19, 𝑝 = 0.67). d Number of eye
blinks during the search for each condition, compared for high and low alpha trials. Hierarchical
regression does not reveal a main effect for alpha high/low 𝜒2 = 0.32, 𝑝 = 0.57. e Average
number of saccades during search for high and low alpha trials. We found a main effect for
alpha high/low (𝜒2 = 9.0, 𝑝 = 0.003,Δ𝑅 = 0.004), however, the pairwise comparisons only
reveal an effect for unguided search, set size 32, where no effect of alpha on the RIFT response
was observed. f Comparison of gaze bias in trials with high and low alpha power in the baseline,
showing no effect for alpha high vs low (𝜒2 = 1.4, 𝑝 = 0.23). g-h All findings shown in in d-f
are replicated for alpha power during search.
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A.3 Supplementary Tables

Table A.1: Hierarchical regression on reaction time, revealing a significant main effect for set
size and guided/unguided, but no interaction effect. When fitting the regression models, we
assumed that the reaction time data followed a gamma distribution.

Model AIC 𝜒2 p R2

𝑅𝑇 = 𝛽0 + 𝜖𝑠𝑢𝑏 𝑗 −117.04 0.59

𝑅𝑇 = 𝛽0 + 𝛽1 · 𝑋𝑠𝑒𝑡𝑠𝑖𝑧𝑒 + 𝜖𝑠𝑢𝑏 𝑗 −181.72 70.68 3 × 10−15 0.77

𝑅𝑇 = 𝛽0 + 𝛽1 · 𝑋𝑠𝑒𝑡𝑠𝑖𝑧𝑒 + 𝛽2 · 𝑋𝑔𝑢𝑖𝑑𝑒𝑑 + 𝜖𝑠𝑢𝑏 𝑗 −307.57 133.86 2 × 10−16 0.96

𝑅𝑇 = 𝛽0 + 𝛽1 · 𝑋𝑠𝑒𝑡𝑠𝑖𝑧𝑒 + 𝛽2 · 𝑋𝑔𝑢𝑖𝑑𝑒𝑑 + 𝛽3 ·

𝑋𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝜖𝑠𝑢𝑏 𝑗𝑠𝑒𝑡𝑠𝑖𝑧𝑒

−306.08 0.51 0.47 0.96

with:

𝜖𝑠𝑢𝑏 𝑗∗ being the subject-specific random effects on the different variables, and

𝑋𝑠𝑒𝑡𝑠𝑖𝑧𝑒 =


1, set size 16.

2, set size 32.
(A.1)

𝑋𝑔𝑢𝑖𝑑𝑒𝑑 =


0, unguided.

1, guided.
(A.2)
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Table A.2: Reaction time contrasts between conditions (dependent-sample Wilcoxon signed
rank test). SE indicates the standard of the difference between means. All comparisons are
Bonferroni corrected.

unguided search, 16 guided search, 16 unguided search, 32

guided search, 16

𝑉 (30) = 481
𝑧 = 4.57

𝑝 = 8 × 10−6

𝑟 = 0.82
𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.02

unguided search, 32

𝑉 (30) = 5
𝑧 = 4.76

𝑝 = 6 × 10−7

𝑟 = 0.86
𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.02

𝑉 (30) = 0
𝑧 = 4.86

𝑝 = 1 × 10−11

𝑟 = 0.87
𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.03

guided search, 32

𝑉 (30) = 134
𝑧 = 2.34

𝑝 = 0.148 n.s.
𝑟 = 0.40

𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.081

𝑉 (30) = 0
𝑧 = 4.86

𝑝 = 1 × 10−11

𝑟 = 0.87
𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.02

𝑉 (30) = 473
𝑧 = 4.41

𝑝 = 4 × 10−5

𝑟 = 0.79
𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.02
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Table A.3: Hierarchical regression on accuracy (d’), revealing a significant main effect for set
size and guided/unguided, but no interaction effect.

Model AIC 𝜒2 p R2

𝑅𝑇 = 𝛽0 + 𝜖𝑠𝑢𝑏 𝑗 307.1 0.48

𝑅𝑇 = 𝛽0 + 𝛽1 · 𝑋𝑠𝑒𝑡𝑠𝑖𝑧𝑒 + 𝜖𝑠𝑢𝑏 𝑗 261.56 47.54 5 × 10−12 0.68

𝑅𝑇 = 𝛽0 + 𝛽1 · 𝑋𝑠𝑒𝑡𝑠𝑖𝑧𝑒 + 𝛽2 · 𝑋𝑔𝑢𝑖𝑑𝑒𝑑 + 𝜖𝑠𝑢𝑏 𝑗 217.96 45.60 1 × 10−11 0.8

𝑅𝑇 = 𝛽0 + 𝛽1 · 𝑋𝑠𝑒𝑡𝑠𝑖𝑧𝑒 + 𝛽2 · 𝑋𝑔𝑢𝑖𝑑𝑒𝑑 + 𝛽3 ·

𝑋𝑖𝑛𝑡𝑒𝑟𝑎𝑐𝑡𝑖𝑜𝑛 + 𝜖𝑠𝑢𝑏 𝑗𝑠𝑒𝑡𝑠𝑖𝑧𝑒

219.05 0.91 0.34 0.8
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Table A.4: Sensitivity contrasts between conditions (post-hoc dependent sample t-tests, two-
sided, Bonferroni-corrected).

unguided search, 16 guided search, 16 unguided search, 32

guided search, 16

𝑡 (30) = −5.9
𝑝 = 8 × 10−5

𝑑 = −0.84
𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.11

unguided search, 32

𝑡 (30) = 7
𝑝 = 6 × 10−7

𝑑 = 0.8
𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.10

𝑡 (30) = 10.6
𝑝 = 7 × 10−11

𝑑 = 1.67
𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.12

guided search, 32

𝑡 (30) = 2.2
𝑝 = 0.23 n.s.
𝑑 = 0.8

𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.10

𝑡 (30) = 10.6
𝑝 = 7 × 10−11

𝑑 = 1.67
𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.12

𝑡 (30) = −5.6
𝑝 = 3 × 10−6

𝑟 = −0.55
𝑆𝐸𝑑𝑖 𝑓 𝑓 = 0.09
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Table A.5: Dependent sample t-tests on the number of saccades for fast vs slow trials reveals no
significant effects of reaction time on saccades. The p-values are Benjamini-Hochberg corrected,
however, none of the uncorrected p-values reached significance either.

unguided search, 16 guided search, 16 unguided search, 32 guided search, 32

𝑡 (30) = −0.92
𝑝 = 0.34

𝑡 (30) = −1.70
𝑝 = 0.30

𝑡 (30) = −1.47
𝑝 = 0.30

𝑡 (30) = −1.21
𝑝 = 0.31

Table A.6: Dependent sample t-tests on the number of saccades for trials with high vs low
pre-search alpha power. There is only a significant difference in unguided search, set size 32
for high vs low alpha power. The p-values are Benjamini-Hochberg corrected, however, none of
the results reached significance without the correction either.

unguided search, 16 guided search, 16 unguided search, 32 guided search, 32

𝑡 (30) = −1.67
𝑝 = 0.14

𝑡 (30) = −1.96
𝑝 = 0.12

𝑡 (30) = −3.91
𝑝 = 0.002

𝑡 (30) = −1.53
𝑝 = 0.14

Table A.7: Dependent sample t-tests on the number of saccades for trials with high vs low alpha
power during search. There is only a significant difference in unguided search, set size 32 for
high vs low alpha power. The p-values are Benjamini-Hochberg corrected; however none of
the results reached significance without the correction either. Comparison to the table above
suggests little variation in the average number of saccades.

unguided search, 16 guided search, 16 unguided search, 32 guided search, 32

𝑡 (30) = −1.67
𝑝 = 0.14

𝑡 (30) = −1.96
𝑝 = 0.12

𝑡 (30) = −3.91
𝑝 = 0.002

𝑡 (30) = −1.53
𝑝 = 0.14
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Figure B.1: Examples of the temporal code for all input combinations. The first letter in the title
is the one for which input gain has been increased.
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