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ABSTRACT 

The maritime defence domain presents unique challenges for the introduction of autonomous 

systems. With the Ministry of Defence predicting that intelligent information systems are the future 

of defence, recommending their integration into future systems in order to maintain a competitive 

advantage, the question is not “if”, but “how”.  

The thesis presents a user-centred design approach to the development of automated sonar 

decision-support systems. It develops this approach through an understanding of Submersible 

Maritime Platforms (SMPs) as socio-technical systems, evaluating their informational and user 

requirements using context from the Trust-in-Autonomy and Human Factors literature. 

Requirements to produce trustworthy autonomy recommendations for the maritime defence 

domain are presented. 

These requirements are then developed further through interviews with Subject Matter Experts, 

aimed to understand how they deal with informational uncertainty through the Critical Decision 

Method interview technique, to create a thorough understanding of the tasks involved in broadband 

sonar classification. This is built on through developing understanding of how they perform their 

cognitive classification process, in comparison to novices and other SMP crew members, using the 

Repertory Grid interview technique. 

These literature reviews and interviews lead to the development of the VINAS: A Visual, Intelligent 

Narrative of Autonomous systems. This visualisation uses the cognitive constructs derived from the 

repertory grid to create an explanation behind an autonomous classifier’s decision-making 

processes, to allow an operator to evaluate its performance in a transparent and understandable 

way, in order to encourage appropriate trust calibration. 

The VINAS visualisation is then evaluated through two experiments, which show that VINAS 

increases performance and trust when performing classifications utilising an autonomous classifier. 
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“To gaze into the depths of the sea is, in the imagination, like beholding the vast unknown, and from its most terrible point of 

view. The submarine gulf is analogous to the realm of night and dreams. There also is sleep, unconsciousness, or at least 

apparent unconsciousness, of creation. There in the awful silence and darkness, the rude first forms of life, phantomlike, 

demoniacal, pursue their horrible instincts.”  

- Victor Hugo, “The Toilers of the Sea” 

CHAPTER 1: INTRODUCTION 

1.1: Overview 

1.1.1: Scope 

The PhD research was undertaken as part of an ICASE (Industrial Collaborative Awards in Science and 

Technology) studentship funded by the EPSRC (Engineering and Physical Sciences Research Council) 

and the industrial sponsor, BAE Systems.  

The research was conducted within the Human Interface Technologies Team, based in the School of 

Engineering at the University of Birmingham. 

The focus of the research is Human Factors (HF), Human-Computer Interaction (HCI) and Human 

Machine Teaming (HMT), with regards to developing trust in autonomous systems (TiA) and human-

autonomy interaction within the scope of the maritime defence domain. 

1.1.2: Research Questions 

The research questions defined for the thesis are: 

RQ1: What Level and Type of Autonomy could be suitably applicable to tasks carried out in 

the process of broadband sonar classification whilst maintaining appropriate levels of trust 

in the automation? 

RQ2: How can the causes of previous SMP accidents be mitigated through the introduction 

of autonomy? 
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RQ3: How do Sonar Operators cognitively classify sounds? 

RQ4: How can an autonomous decision aid visually present a credible, understandable, and 
trustable explanation behind its decisions? 
 
RQ5: Can a Visual, Intelligent Narrative of Autonomous Systems (VINAS) improve 

performance in a classification task utilising an autonomous classifier? 

RQ6: Can a VINAS improve trust in an autonomous classifier when conducting a classification 

task? 

These research questions, and how they relate to the different parts of the thesis, are 

explained in Section 1.4. 

1.1.3: Present Work: Aims and Objectives 

The overall aim of the research described in the thesis is to determine how human-autonomy 

teaming could be utilised in future naval defence, specifically in the underwater maritime domain, in 

a trustworthy, safe, useful, and advantageous way. It seeks to determine how and where human-

autonomy teaming could support crew members aboard Submersible Maritime Platforms (SMPs) to 

conduct their work, through examining current working practices, safety concerns, and human-

machine interactions. The research identifies a specific task, broadband sonar classification, and 

examines this task from a user-centric, Human Factors perspective, to identify how human-

autonomy teaming could support operators to carry it out. 

The first objective of the research is to understand how the socio-technical system of an SMP works, 

how crew members work together, and work with machines, to complete tasks and achieve goals. 

This helped to inform an understanding of the informational needs of the crew members, which 

could be supported by the introduction of autonomy. This understanding is developed through the 

Human Factors literature concerning SMPs. 

The second objective is to understand how and why SMP accidents can occur from a systemic 

perspective. Two accidents were studied and modelled in detail, a collision that occurred in 2015, 
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and a near-miss which occurred in 2018. The causes of the accidents were mapped using an 

AcciMapping technique, to understand how they relate to each other, and how they could be 

prevented from happening again. This helped to identify a specific task which could be supported by 

autonomous information processing: broadband sonar analysis. Other informational needs are 

identified where information systems could be developed further to potentially support crew 

members manage uncertainty.  

The third objective of the work is to better understand the concepts of trust and autonomy, and how 

they relate to each other. Trust is a complex, dynamic, multi-dimensional construct, which is 

affected by many intrinsic and extrinsic factors. An understanding of the different levels, degrees 

and types of autonomy is developed. A model of trust in autonomy is presented. A comprehensive 

literature review was conducted to understand the problem-space and develop a framework from 

which to understand how trust in autonomy can be fostered and calibrated appropriately.  

The fourth objective, once a use-case for human-autonomy teaming had been identified, was to 

better understand the user, the Sonar Operator (SO). The task of broadband sonar classification was 

explored; how SOs conduct this task, how they manage and mitigate uncertainty, what their 

informational needs are to carry out the task successfully, and how they could be appropriately 

supported to carry out their work. The appropriate level, degree, and type of autonomy which could 

aid them in classification was defined. 

The fifth objective was to develop and evaluate a visualisation using the elicited user requirements 

and informational needs, which could support an SO’s cognitive classification method, and help to 

deal with the inherent informational uncertainty in the task. This was then evaluated. 

1.1.4: Problem Statement 

We find ourselves in a world of Artificial Narrow Intelligence (ANI); Artificial Intelligence which can 

outperform humans in a single-function, structured task. Since Marvin Minsky wrote “The Society of 

Mind” in 1983, there has been an explosion of ANI in all kinds of areas, from the virtual agents 
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embedded into our phones and devices, cars which can drive themselves, to the myriad uses of 

machine-learning algorithms and big data processing in domains as diverse as medicine, economics, 

logistics, entertainment, robotics, and defence. The rapid pace of development in Artificial 

Intelligence (AI) since the turn of the millennium represents the maturation of a field which has 

existed in concept for over 50 years. However, the convergence of three key factors: powerful 

hardware, advanced algorithms, and vast data sets, has now made intelligent computing a reality. 

Commercial investment in AI and robotic technologies, and the recruitment of Subject Matter 

Experts (SMEs), dwarfs that of any state (UK Development Concepts And Doctrine Centre, 2018). 

Many Silicon Valley and Chinese companies spend more annually on AI and robotics research and 

development than the entire United States government on research and development for all 

mathematics, robotics, and computer science combined (Allen and Taniel, 2017).  

The combination of the three key factors (hardware, advanced algorithms, and big data sets), if 

developed in tandem, fused, and used correctly, is set to be as revolutionary in defence as the birth 

of aviation, radio, or nuclear power. 

There is an identified need in the Ministry of Defence (MoD) to innovate in these domains, as laid 

out by the Joint Concept Note 2/18: Information Advantage, and the Joint Concept Note 1/18: 

Human-Machine Teaming. Both of these publications identify that the research and development, 

and exploitation, of intelligent information systems, AI, and machine learning, is crucial in order to 

maintain a military advantage into the next half a century and beyond.  

However, the introduction of any “bleeding edge” technology, especially in a safety-critical domain, 

is fraught with danger. Although it could be argued that partially autonomous and intelligent 

systems have been used in military technology since the Second World War, this has not been 

without mistakes. A recent example would be a fratricide incident which occurred at the start of the 

Iraq conflict in 2003, where the mis-use of the automated Patriot Missile Defence System lead to a 

British plane being shot down by their American allies (Hawley, 2017a, 2017b). Because of the rapid 
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pace of change and development of machine learning and ANI technologies, and their departure 

from standardised, well-understood current and past capabilities, new ways of working, interfacing, 

and interacting with these technologies must be researched and developed, not only to exploit their 

capabilities, but to do so safely, and in a way which fosters trust in their usage and outputs. 

This research examines how humans could interact with ANI systems in a specific aspect of maritime 

defence capability, sonar analysis. It attempts to formulate an understanding of how data collection, 

fusion, information generation and distribution is currently conducted for this task, in order to 

understand how human activity can be augmented using modern information technologies.  

Firstly, the thesis develops an understanding of how autonomous systems should be used and 

interfaced with, in order to for a user to develop an appropriately calibrated level of trust in the 

system, even when there are high levels of uncertainty. This is particularly pertinent with 

consideration to SMP operations, which are reliant on uncertain information which cannot be 

validated externally. 

 A comprehensive literature review of trust, and Human-Autonomy Teaming, is conducted, to 

provide a foundation of knowledge which underpins the central argument of the research. 

Rather than positing a specific algorithm or classification methodology, (which would probably be 

out-dated before the research is even published, due to the rapid rate of innovation in the field of 

classifier algorithms), the thesis offers a unique methodology for identifying areas of the task which 

could benefit from the inclusion of autonomous information processing. Instead of centring the 

technologic capabilities, it instead focuses on the user, the Sonar Operator, and how to support their 

highly skilled work by exploiting those capabilities, using Human Factors techniques and 

methodologies. 
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 The research does this in three ways. First, it analyses two recent accidents involving SMPs from a 

systems perspective, and tries to understand how and why these occurred, to identify where the 

inclusion of intelligent information processing could prevent them from re-occurring. 

Second, through researching the domain of SMP information processing and communication, to 

identify key actors and systems, and understand how information is used to carry out tasks 

currently. This informs the research, to better understand how the introduction of autonomous and 

intelligent information systems would transform these methods, roles, teams, and processes. 

Third, through eliciting user requirements and perspectives, using them to inform how the work and 

task of sonar classification itself works, from a naturalistic decision-making perspective. This is done 

through modelling and analysing the cognitive decision-making processes, heuristics, and 

management of uncertainty strategies, which Sonar Operators develop to perform their work, to 

develop user- and information- requirements, to best understand how to support them with the 

introduction of autonomous and intelligent information systems.  

 These findings are used to develop a visual aid which could support a Human-Autonomy Team 

working together, called a Visually Intelligent Narrative of Autonomous Systems (VINAS), and shows 

examples of how this could be used for sonar classification. Some evaluations of the VINAS are 

performed and discussed. 

1.2: Approach 

The thesis takes a user-centred design approach, based on the approach outlined in ISO 9241-210. 

ISO 9241 outlines the international standard for the ergonomics of human-system interaction, with 

part 210 focusing on human-centred design principles and activities related to the use of interactive 

systems. The standard discusses ways of enhancing human-system interaction, looking at the usage 

of both hardware and software aspects of interactive systems. Figure One shows the different stages 

of the user-centred design process outlined in the ISO. 
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Figure 1: Diagram of the user-centred design process outlined by ISO 9241, based on ISO 9241-210:2010 

As can be seen in Figure One, the user-centred design process is broken down into six stages. It is an 

iterative process of designing systems, with phases that re-occur and link back to each other, from 

understanding the context of use, to specifying user requirements, producing design solutions, and 

then evaluating those design solutions against the user requirements and context of use.  

The ISO focuses on usability, defining this as: “the extent to which a system, product or service can 

be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in 

a specified context of use” (Krippl et al., 2016, p. 269). 

The thesis follows this design process in a number of ways: 

Firstly, by understanding the context of use through developing an understanding of the SMP as a 

sociotechnical system as outlined in Chapter Three. This is followed by looking at two case studies of 

accidents involving SMPs in Chapter Four, where the activities leading to the incidents were mapped 

across different layers of the sociotechnical system with a technique called AcciMapping. This helped 

to understand the causes of the accidents from a systemic perspective, and visualise how they 

related to each other. These chapters both helped to inform the specific informational requirements 

needed to conduct a broadband classification task, and how that information is used.  
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The user requirements were then explored in Chapter Five, through a Critical Decision Method 

(CDM) interview with an SME, helping to elicit a detailed understanding of the tasks used in 

broadband sonar classification, and how these are carried out by a Sonar Operator. A timeline of the 

tasks and events which occur in the classification process was created in conjunction with the SME, 

and they provided detail around each aspect.  

The user requirements are then built on further in Chapter Six, through using the repertory grid 

interview technique with SMEs to understand their cognitive classification process. This gave insight 

into how the mental processes of classification could be translated into an explanation given by an 

autonomous classifier. Both of these chapters helped to identify key processes within the task that 

would benefit from autonomous support, and what kind of support would be most beneficial, 

centred on the user, and how they carry out these tasks. A design is presented at the end of Chapter 

Six. 

Chapter Seven then attempts to make some initial evaluations of whether the design is useful; how 

it affects performance, workload, self-confidence, and a self-reported trust measure when it is used 

in a classification task. 

1.3 Background 

The Ministry of Defence posit that in the next fifty years, the integration of artificially intelligent and 

autonomous systems, which exploit information gathering, processing and fusion technologies and 

techniques, will be key to maintaining a military advantage (UK Development Concepts And Doctrine 

Centre, 2018; UK MOD, 2018).  

The use of automation will offer opportunities to better exploit information, which will improve 

understanding, decision-making, and tempo. They state that efforts should focus on automation 

information collection, processing, and management, and that, “bespoke AI may be required for 

specific applications, such as automating the analysis of visual and audio data flows” (UK 

Development Concepts And Doctrine Centre, 2018, p. 16).  
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Automated systems can make decisions rapidly, faster than humans can monitor and restrain them 

(UK Development Concepts And Doctrine Centre, 2018). The proliferation of sensors and machine 

learning systems outperforming humans at recognition and pattern detection tasks is likely to 

increase. 

For all of the expected benefits, the “chaos and friction” which they could cause must somehow be 

effectively managed. As these systems become integrated into more systems, the probability for 

unexpected interactions that rapidly spiral out of control will increase. 

An example is given by (Allen and Taniel, 2017) of the stock market “Flash Crash” of May 2010, 

where one trillion dollars of stock market value was wiped out within minutes, because of 

unintended machine interactions. The U.S. Securities and Exchange Commission reported that this 

was “enabled and exacerbated by use of autonomous financial trading systems”. A small trader’s 

spoofing algorithm caused banks’ automated trading systems to enter an online loop, which crashed 

the stock market in under 36 minutes. 

When autonomous and ANI systems get things wrong, they can have disastrous consequences. AI 

can be fooled, and even have biases, depending on how it is trained: systems are not infallible. 

Algorithmic decision-making can be flawed, and procedural consistency is not equivalent to 

objectivity. 

Some examples of this can be seen in the recent emergence of advanced driver assistance 

technologies, sometimes referred to as “self driving” vehicles. The  NHTSA, or National Highway 

Traffic Safety Administration, a federal agency in the USA, reported how Tesla’s “Autopilot” driver 

assistance system, known as “Full Self Driving”, has been involved in 35 crashes which lead to the 

deaths of 19 people since its release in 2021 (Klippenstein, 2023).  

Although the mis-use of these systems can be attributed as a contributing factor for many of the 

crashes, with the driver not having their hands on the steering wheel, or driving whilst intoxicated, 
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the autopilot feature has been known to slam on the brakes of vehicles when moving at high speed 

(Siddiqui, F. and Merrill, 2022), known as “phantom breaking”, creating dangerous conditions. In 

another example of an eight-car collision where a child was injured, the car drove itself into a lane of 

on-coming traffic and then came to a stop (Press and Estachio, 2022). 

These incidents highlight a number of points about the introduction of autonomy. Firstly, that 

people have biases towards autonomy where they think it is more capable and intelligent than it 

really is, hence the over-reliance on the self-driving features, even though the features are 

specifically designed to be used in conjunction with an alert driver with their hands on the steering 

wheel. Secondly, that autonomy is fallible; driving into on-coming traffic should never be an action 

carried out by a self-driving car, but when conditions are less-than-optimal, autonomy can make 

mistakes, which can have disastrous or dangerous consequences. Thirdly, the behaviour of such 

systems when used in reality can be very different from the behaviour of systems in optimal 

laboratory conditions, and reliance on them, especially at high speeds, in safety critical situations, 

needs to be carefully managed and evaluated against the potential safety risks.  

Visual and audio data can be manipulated in ways too subtle for humans to be able to perceive and 

can be used to fool ANI. Part of ANI's vulnerability is its lack of real intelligence, making it possible to 

be tricked by deception. 

Automated systems are also very "brittle" (Gutzwiller and Reeder, 2020); they struggle to function in 

situations outside of their design parameters, and can fail catastrophically when faced with unique 

situations outside of their trained range. Even if they can recognise when they are reaching their 

limit of capability, they lack the contextual thinking to intuit when it is appropriate to "hand over" to 

a human operator, meaning they can demand human attention at points of high workload and 

stress, potentially passing on a problem to a human who is insufficiently engaged, with no 

opportunity to understand the issue and avert disaster. Pilots are still needed despite robust modern 
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autopilot systems, for example, as the human-in-the-loop remains essential for the rare occasions 

when autopilot can no longer cope. 

Humans are also capable of introducing problems to Human-Autonomy Teams (HATs). Human 

attention is limited, neither constant nor consistent. Passive monitoring is difficult for humans and 

holds their attention poorly. An unengaged human may not hold efficient Situation Awareness (SA) 

to suddenly orient themselves rapidly at a point of crisis (Parasuraman, Sheridan and Wickens, 

2008). Highly technical skills must be used frequently to prevent them from degrading in quality; 

removing a human-in-the-loop prevents their ability to engage sufficiently when required. Even 

when including low-level autonomy, as with current self-driving vehicles, a lack of timely 

intervention from the driver was recorded for all fatal crashes previous to 2019 (Jenssen et al., 

2019). 

Therefore, although there is an operational need to incorporate these new technologies into the 

defence domain, to maintain a tactical and defensive advantage, there is also an operational need to 

manage them, and interactions with them, safely, to mitigate the potential for them to create 

danger. 

This is why the study of Human-Machine Teaming (HMT) and Human-Autonomy teaming is 

important. Developing HATs which augment human strengths, is crucial to their success. Not only 

that, but a human operator must be able to trust the information generated and displayed by 

autonomous systems, and be able to rapidly evaluate its accuracy, in order to use it in safety-critical 

situations.  

Humans and machines have different strengths and weaknesses; one cannot simply replace another. 

They also have different ways of analysing a problem and making decisions, which may not be easily 

communicable or understandable. In order to be effective, they must work interdependently on 

problems, augmenting each other’s strengths, and mitigating each other’s weaknesses. Ways for 
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them to communicate effectively with each other, share SA, and calibrate appropriate levels of trust 

must be exploited.  

Therefore, advantages will not automatically be provided by implementing the newest, or most 

expensive, algorithm; instead, it lies with the most effective HMT. 

Through the exploration of these issues, the thesis hopes to be able to answer RQ1: “What level and 

type of autonomy could be suitably applicable to tasks carried out in the process of broadband sonar 

classification whilst maintaining appropriate levels of trust in the automation?” This understanding 

of how to create trusting interfaces is developed through a literature review which explores what 

level and type of automation could be appropriate, and how to interface with it, in order to develop 

an appropriate level of trust. 

1.3.1: Submersible Maritime Platform Operations 

The maritime domain presents new and unique challenges for HAT development. Below periscope 

depth, data transfer from the outside world is practically non-existent. External views of the 

environment are completely mediated by sensor systems, and so gaining SA, building a tactical 

picture and an understanding of an operational environment relies on complex socio-technical 

systems of data processing, fusion, and display, and information analysis, communication, and 

assimilation, between human and computer actors. This could be considered an example of 

distributed cognition.  

Distributed cognition is "characterised by multiple individuals and teams working together in pursuit 

of a common goal (comprising multiple interacting sub-goals)" (Hagberg, 1997; Hutchins, 2005; 

Stanton, 2014a). High levels of communication and coordination are vital, with technology often 

facilitating this. 

When operating covertly, very little information is available for the team aboard an SMP to develop 

understanding about their position and environment. They rely on passive SOund NAvigation and 
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Ranging, or sonar, sensor data to understand the environment, and what vessels, or contacts, are 

present in the surrounding area. Sonar "is a system for the location and ranging of objects using 

sound propagation and listening" (Fay, Stanton and Roberts, 2019). The four main functions of sonar 

are Detection, Classification, Localisation and Tracking (DCLT) (Hughes et al., 2010).  

A very high-level description is provided here, but a more detailed description can be found in 

Chapter Three. SOs use passive sonar systems to listen to noise radiated by vessels (ships or SMPs) 

using hydrophone arrays. To detect a vessel, an operator must distinguish the sound it makes from 

oceanic background noise, or sight it on their waterfall display forming a line. An estimated Direction 

of Arrival (DOA) is made from the acquired signals, in order to inform the presence of a target in a 

determined direction, known as the bearing. Analysis is then performed using DEMON (Detection 

Envelope Modulation On Noise) display, and/or LOFAR (Low Frequency Analysis and Recording). 

Both rely on spectral frequency estimation, and support the detection and classification of targets. 

This allows operators to derive the speed of a contact, and some of its engine characteristics, such as 

number of propellers. 

Tracking of a vessel is done by analysing broadband trends over time, to try and determine actions a 

vessel is taking. For every time period that a sonar array returns data, it is plotted as a line. When a 

line is added, it moves all of the others down the display, giving a waterfall-like effect  (Asplin and 

Christenson, 1988). When an SO detects a vessel, they assign it an identifier, allowing the sonar 

system to automatically track and update its location. 

Once the SO has an estimated speed for the contact, they pass the data cuts and speed on to the 

Sonar Controller (SC), who manages all SOs in the sound room. The SC acts as an informational filter 

between the sound room and control room. The SC then passes this information over to be used for 

Target Motion Analysis (TMA). TMA is the process of "analysing positional data from contacts 

derived from passive sensors to produce a location and predicted movements" (M. Murphy, 2000). 

This is a "solution", comprised of speed, course, range and bearing for a contact (Genç, 2010). This is 
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a line of best fit, as all information is derived from estimations. The more data cuts for the vessel, 

the more accurate the TMA solution can be. Once a TMA solution has been derived that seems to fit 

the contact, it can then be uploaded to a geographical display, which can be used by the Command 

team.  

Command teams have three main objectives: remain safe, remain undetected, and complete 

mission objectives (Stanton, Roberts and Fay, 2017). Generally, the Officer of the Watch (OOW) 

leads the command team, and is responsible for making safe navigational decisions. The command 

team is in the control room, separate from the sound room, where SOs work with the sonar. Control 

rooms are "nerve centres", where trained operators and advanced technology is utilised, to 

understand the environment, and develop Courses of Action (CoA), to meet operational and 

strategic goals. (Stanton and Bessell, 2014; Stanton et al., 2017). The control room contains multiple 

operators working as a team to communicate different information, utilising different sensors to 

generate knowledge of the environment, and to complete mission objectives (Ly, Huf and Henley, no 

date). 

The OOW does not have their own display; instead, they can view repeater screens of different 

displays. They have to assimilate information from the multiple screens, whilst communicating with 

the wider team, and make mental calculations and plan actions, to gain SA. SA is distributed across 

many system agents, both social and technical. Each actor, whether technology, or operator, 

contributes to the distributed situation awareness. The OOW must use this collective SA to create a 

mental, tactical picture, in order to make decisions. The command team works together, constantly 

updating the tactical picture under direction from the OOW (Dominguez, Long, Miller, Wiggins, et 

al., 2006).  

From this high-level description of operations, it can be seen that an SMP is an extremely 

complicated socio-technical system, with dynamic information sharing occurring constantly and 
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rapidly between different rooms, information systems, and team members, to try and build an 

accurate tactical and navigational picture.  

There is uncertainty inherent throughout this system, and if mistakes are made, they can be 

propagated and negatively impact the distributed SA and tactical picture. Sonar classification and 

TMA are integral to environmental understanding, even though they are mostly based on 

estimations. If an error is made during contact classification, it can have dangerous consequences, 

resulting in a lack of understanding of where a contact is in relation to own-ship, which can result in 

collisions (Washington, no date; Marine Accident Investigation Branch, 2015). 

This leads to the formation of RQ2: “How can the causes of previous SMP accidents be mitigated 

through the introduction of autonomy?” The thesis identifies why previous accidents and near 

misses occurred, and  how autonomy could be used in order to prevent them from happening again. 

Interfaces for broadband classification have changed very little over time (Fay, Stanton and Roberts, 

2019). Despite many capability advances, User Interfaces (UIs) for sonar data still consist of green 

and black waterfall displays. This can be attributed to reducing risk, SME familiarity, or maintaining 

training readiness (Hall, 2012). However, as the technologies and capabilities advance, it is sensible 

to presume displays may need to be re-designed, in order to incorporate these new technologies 

effectively, and improve the SA of the Operators.  

SMPs present an interesting paradigm for the consideration of the introduction of autonomous 

systems - their trust in technology must be high, as it mediates all understanding; however, new 

systems can introduce new risks, and new uncertainties, into an already perilous environment. 

Highly skilled operators could benefit from innovative new interfaces, for example, despite 

representing a 360° aural signal, the sonar waterfall display is not circular; this requires operators to 

mentally translate the plot of their surroundings, which could be increasing their cognitive work; 

however, in such a safety-critical, highly dynamic and uncertain environment, making even small 

changes to ways of working could have consequences which affect all parts of the system. If, as the 
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Ministry of Defence posits, the future of defence lies in the incorporation of autonomous 

information systems, this could drastically affect all aspects of the socio-technical system, including 

methods of work, roles, and crew configurations. 

This leads to research question RQ3: “How do Sonar Operators cognitively classify sounds?”  By 

understanding how subject matter experts mentally deal with this information, and come up with 

classifications, it may be possible to identify how best to support them with these cognitive tasks 

through the provision of new, autonomous tools and interfaces. This then leads to RQ4: “How can an 

autonomous decision aid visually present a credible, understandable, and trustable explanation 

behind its decisions?”, which examines how to best present this autonomously-derived information 

in order for trust to be calibrated correctly. 

This research attempts to understand how SMP crews of the future could benefit from the inclusion 

of autonomous information systems in such a way that they can be trusted appropriately, and will 

positively contribute to safety, and distributed situation awareness. Future autonomous support and 

human-machine teaming for such a complex domain takes careful consideration. 

1.4: Research Questions 

This work hopes to answer the following research questions: 

RQ1: What Level and type of Autonomy could be suitably applicable to tasks carried out in 

the process of broadband sonar classification whilst maintaining appropriate levels of trust in 

the automation? 

This question is answered by: 

- Thoroughly examining the literature in order to understand how to select an appropriate 

Level of Autonomy (LoA) which could be applied to various tasks conducted in the process of 

broadband sonar classification 

 

 

- Using the literature review to understand where different types of autonomy are 

appropriate, and which types could be applicable to the process of sonar classification 
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- Interviewing a Sonar Operator, and using this interview to identify key tasks and 

uncertainties on the classification process, to understand how autonomy could be applied to 

them 

 

As explored in the literature view, there are many different levels (Onnasch et al., 2014a) and types 

(Parasuraman, Thomas B Sheridan and Wickens, 2000a) of autonomy. Combined in two dimensions, 

these create the concept of degrees of automation. The tasks elicited from the CDM interview with a 

Sonar Operator are then evaluated to understand what type and degree of autonomy would be 

most appropriate for various tasks. 

RQ2: How can the causes of previous SMP accidents be mitigated through the introduction of 

autonomy? 

The research answers this question by analysing two recent accidents involving Royal Navy vessels, 

AcciMapping them, and evaluating where the addition of autonomous systems could help prevent 

them from happening again. 

RQ3: How do Sonar Operators cognitively classify sounds? 

 

RQ4: How can an autonomous decision aid visually present a credible, understandable, and 
trustable explanation behind its decisions? 
 

The research answers these questions by conducting a study involving the repertory grid interview 

technique to try and elicit the cognitive classification process from a Sonar Operator. This leads to 

the development of the VINAS display.  

RQ5: Can a VINAS improve performance in a classification task utilising an autonomous 

classifier? 

RQ6: Can a VINAS improve trust in an autonomous classifier when conducting a classification 

task? 
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The research answers these questions by evaluating the VINAS grid in two experiments, measuring 

the trust and performance of participants when conducting a task with, and without, a VINAS, and 

when information is congruent, and incongruent. 

 

Figure 2: How the sections of the thesis relate to each other 

In Figure Two, the different objectives of the thesis can be seen, and how they relate to each other. 

Developing an understanding of trust, and autonomy, informs an understanding of human-

autonomy teaming, and how autonomy can be interfaced with effectively in order to develop 

trustworthy human-machine teams. 

 By developing an understanding of the domain, through considering a submersible platform as a 

socio-technical system, and examining the specific task of broadband sonar classification, an 

understanding of the task and its information requirements is formed. Looking at case studies of 

accidents allows an understanding to be developed of what happens when things go wrong, and 

what the causes can be. 

All of these parts give context to understanding the Sonar Operator, their role, their tasks, and their 

requirements. This is substantiated further by interviews with an SME who has worked in this role, 
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to understand better how they carry out their tasks and how they deal with the information 

uncertainty inherent to that task.  

Understanding human-autonomy teaming, understanding the user, and understanding the task, 

allows requirements to be developed which inform how, why, and in what form, autonomy could be 

applied to the task. These requirements then underpinned the VINAS display development. This is 

reflected in the user-centred design process outlined in Figure One, with an understanding of the 

user, and understanding the tasks and their context of use both contributing to user requirements, 

and an informed design which meets those user requirements. 

1.5: Thesis Structure 

An outline of the thesis structure is as follows: 

Chapter Two presents a comprehensive review of the trust in autonomy literature and defines a 

theoretical framework from which to understand trust, and trust in autonomy. It presents a model 

for understanding trust in autonomy, and identifies key factors which affect it, which must be 

exploited within an interface design to ensure appropriate trust development, mediation, and 

calibration. Strategies for managing uncertainty and creating interdependent human-machine 

teams, with shared situation awareness, are presented and discussed. Examples of experimental 

interfaces for Human-Autonomy teams in the defence domain, which have been developed to foster 

trust and interdependence, are discussed. 

Chapter Three explains key actors, technologies, and roles within an SMP, what they do, and how 

they share and communicate information. It seeks to describe how the overall socio-technical 

system operates, how humans and machines function within that system to operate safely and 

develop a distributed understanding of their environment. It seeks to show how the tactical picture 

is generated and maintained, which is used to carry out their mission objectives. 
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Chapter Four presents the accident analyses for two incidents which involved Royal Navy SMPs. 

Visualisations of the causes of the incidents are presented, created from accident reports compiled 

by the Marine Accident Investigation Branch (MAIB). The reasons behind the incidents are discussed, 

and informational requirements which could be exploited through the use of intelligent information 

systems are identified. The role of sonar information in the accidents is contrasted. 

 Chapter Five explores the broadband sonar classification task, and the role of the Sonar Operator. It 

seeks to understand how Sonar Operators carry out the classification process, and their strategies 

for mitigating uncertainty. It presents the analysis of a Critical Decision Method interview conducted 

with an SME, and shows a high-level timeline for the task which was produced during this. The level, 

degree, and type of autonomy which could be used to support the task is defined. 

Chapter Six builds on Chapter Five by looking at the cognitive processes, constructs and concepts 

which are used in contact classification. It presents the results of experimentation which elicits these 

cognitive concepts and constructs through the use of a repertory grid interview technique. The 

methodology for the experimentation is presented. A visualisation to help explain an autonomous 

classifier’s decision-making is presented, called the VINAS. A VINAS is produced for both a Sonar 

Operator and an Officer of the Watch, showing distinct cognitive constructs derived from each. This 

is explained through their differing roles and information requirements.  

Chapter Seven presents the results of two experiments used to evaluate the efficacy of the VINAS 

grid. Experiment One evaluates how trust, performance, perceived workload, and confidence are 

affected by the inclusion of a VINAS in a simulated contact classification task, utilising a simulated 

autonomous classifier. Experiment Two tests how trust, performance, workload, and confidence are 

affected when there is incongruent information presented to make a classification decision using a 

VINAS and a simulated autonomous classifier. Results are presented and discussed. 

Chapter Eight concludes the work, and presents a summary of what the thesis has explored. 

Limitations of the current research, and ideas for further work, are discussed.  
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1.6: Published Works 

A list of works published pertaining to the research: 

- Ergonomics and Human Factors 2020 - Classifying Vessels Using Broadband Sonar: 

Considerations for Future Autonomous Support - Full conference paper, available 

at: https://publications.ergonomics.org.uk/publications/classifying-vessels-using-broadband-

sonar-considerations-for-future-autonomous-support.html 

- International Conference on Multi-Modal Interaction 2021 - Feature Perception in 

Broadband Sonar Analysis – Using the Repertory Grid to Elicit Interface Designs to Support 

Human-Autonomy Teaming - Full conference paper, available at: 

https://dl.acm.org/doi/10.1145/3462244.3479918 
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CHAPTER 2: WHAT IS TRUST? A LITERATURE REVIEW 

2.1: What is Trust? 

To understand trust in automation, and how it is affected by HSI techniques, first a concept of trust 

must be defined.  

Trust has been studied in the context of many different disciplines and fields of research including 

business, psychology, sociology, economics, decision-making, robotics, and neuropsychology. This 

multidisciplinary perspective has created confusion about what trust can be conceptualised and 

defined as, with many different schools of thought about what trust is. As well as this, trust is a 

“hypothetical construct”, unable to be directly observed or measured in any physical sense. It could 

be considered to be an “intervening” variable, residing in the human mind, and mediating a person’s 

observable responses to environmental stimuli in a similar way to mental workload. This inability to 

measure trust directly makes it difficult to describe its very nature (Muir, 1994). 

Early literature seeks to define trust as a fundamental ingredient inherent to a “healthy personality”, 

as described by Erikson in 1953. It is implied in the field of psychoanalysis in the earlier twentieth 

century that our capacity and ability to trust is borne out of early childhood, and the level of security 

one is provided in their inter-personal and familial relationships as a baby (Lunsky, 1966). 

A failure to trust others was cited as an “important determinant in delinquency” in the 1950s, with 

little regard as to the qualities, or trustworthiness, of the trustee. Instead, trust is considered to be 

an individualist trait tied to the formation of personality, and beginning with the development of 

sufficient confidence in the goodness of the mother figure (Erikson, 1950). This is then extrapolated 

to affect an individual’s trust within society as a whole, and their ability to form trust both 

interpersonally, and organisationally. This “basic trust” or “proto-trust” can impact the basic 

development and ability to learn of an individual, as education involves a reliance of trusting the 

information provided by a person without directly being able to observe the evidence for it. 
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Rotter developed this idea of intrinsic, personal trust further under the idea of social learning theory. 

Instead of seeing one’s capacity to trust being fixed from inter-personal relationships in formative 

years, social learning theory expands on this by claiming behaviour is determined more generally by 

“expectancy”; the expected outcome of a behaviour, and the value a person places in the outcome 

of that behaviour (Rotter, 1954). This affects all social learning, and social relationships, but instead 

of being set in early childhood, it is fluid, and based on previous experience. Therefore, trust is seen 

to be reactive, in the sense that experience will affect our ability and propensity to trust, and 

intrinsic, in the sense that a personal capacity to trust is developed through the internalisation of 

one’s experiences and expectations. Experiences provide positive or negative re-enforcement for 

expectations. This led to the development of Rotter’s Interpersonal Trust Scale (Rotter, 1967). 

 In the paper about the development of this scale, Rotter describes interpersonal trust as “an 

expectancy held by an individual or a group that the word, promise, verbal or written statement of 

another individual or group can be relied upon”. This touches upon two important concepts which 

are echoed through many different models of trust, even in the modern day; expectancy, and 

reliance. 

Rotter does little to separate capacity to trust from something (or someone’s) trustworthiness. 

There is also a conflation between a person’s inherent propensity to trust, and the action of trusting 

itself.  

 (Athos, Gabarro and Holtz, 1978) explored the multi-dimensional nature of trust, through clinical 

interviews. They were defined to include:  

1) integrity, honesty, and truthfulness 

2) competence, technical and interpersonal knowledge, and skills required to do one’s job 

3) consistency, reliability, predictability, good judgement in handling situations 

4) loyalty or benevolent motives, willingness to protect and save face for a person  

5) openness or mental accessibility, willingness to share ideas and information freely.  
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Many of these concepts propagate through the more modern trust literature, and also through the 

literature concerning trust in automation, especially the ideas of competency, reliability, and 

openness. However, this was seen through a lens focused on power dynamics between subordinates 

and superiors, positing that depending on the dimensions differed in importance depending on the 

relative status of an individual. For example, the work suggested that “the integrity, loyalty, and 

openness of one’s superiors are more important the superiors’ competence and consistency”.  

Butler and Cantrell (Butler and Cantrell, 1984) tested some of these hypotheses further, with 

participants responding to cues describing hypothetical superiors and subordinates. They found that 

many of them were not supported. They did show some support for the idea that “there was no 

difference between the importance of one’s subordinates and the importance of the integrity of 

one’s superiors” (Butler and Cantrell, 1984). 

 The focus on these power dynamics in both Rotter’s and Gabarro’s work was shown to be less 

important than first expected; trust is less about submission or dominance and can be seen in 

relationships which are non-hierarchical in nature. Again, aspects of honesty, integrity and 

dependability are seen to be more crucial to trusting relationships than implied subordination or 

superiority. Therefore, trust was shown to be multi-faceted, but also based on more than a person’s 

position within society. A dyadic relationship, involving some give and take between trustor and 

trustee, had been established. 

Rousseau (Rousseau et al., 1998) performed a seminal review, looking at how trust was researched 

across a wide variety of disciplines in an attempt to compare and quantify what the fundamental 

properties of trust were in an organisational context. This work brought together a plethora of 

definitions and studies, and concluded on a number of definitive characteristics of organisational 

trust. 

Rousseau defined trust in terms of vulnerability, identifying this as an intrinsic characteristic across 

many different fields of research. Trust fundamentally includes a willingness to be vulnerable, and 
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also, a willingness to take a risk; without these aspects of vulnerability and risk, there is certainty, or 

belief, but no real trust. However, trust is more than simply risk-taking or vulnerability, it is a 

psychological state which mediates those actions, rather than an action in itself. People can be 

pressured to take risks, or take risks under duress, which is distinctly different from an action which 

comes from trust.  

The second characteristic Rousseau finds across the literature is interdependence. This is defined as 

“where the interests of one party cannot be achieved without reliance upon another” (Rousseau et 

al., 1998). The degree of interdependence modifies the levels of risk and trust. Therefore the overall 

definition of trust was determined to be, “the willingness to be vulnerable under conditions of risk 

and interdependence.” 

2.1.2: Mayer’s Organisational Model of Trust 

Mayer’s integrative model of trust (Mayer et al., 1995) is one of the most referenced and widely 

used models to understand trust, and like Rousseau’s review, Mayer sets out to create clarity from 

the many different definitions of trust found in the various schools of research. Mayer shows a 

distinction between trust’s antecedents, processes, context, and the products of trust; it describes 

six primary components of trust, but only one component is trust itself. In this way, it manages to 

incorporate many different facets of trust that were identified in the earlier literature, and explain 

how they co-exist and relate to each other.  

This model has become foundational to understanding trust in automation, and is widely used as the 

basis of well-accepted models of this (see (Lee and See, 2004; Hoff and Bashir, 2015)). It also 

manages to make the distinction between pre-dispositional trust, something individual, stable over 

time, and static; with the fluid, dynamic and reactive trust that changes depending on the level of 

risk-taking and interdependence, as both identified in previous works. 

This section will attempt to explain the different components of Mayer’s model, so that the different 

components of trust can be discussed in a cohesive manner throughout the rest of the literature 
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review, and also so that the chosen models of focus for trust in autonomy can be shown to be 

logically and tangibly related to an established model of trust as a whole. It also has influenced the 

chosen measures used to understand trust in later experiments.  

 

Figure 3: Mayer's Proposed Model of Trust. Adapted from Mayer et al., 1995 

Figure Three shows a diagram of Mayer’s model. Each component has been separated, and their 

relationship to each other established. Trust can be seen to be influenced by two distinct concepts: 

Factors of Perceived Trustworthiness, and a Trustor’s Propensity. 

The three Factors of Perceived Trustworthiness are ability, benevolence, and integrity. Integrity is 

defined as “the degree to which the trustee adheres to a set of principles which are acceptable to 

the trustor”.  

 Ability is defined as “a group of skills, competencies and characteristics that enable a party to have 

influence within some specific domain”. The domain is specified because skills and competencies in 

one area, for example, a technical area, may not necessarily be present in another area, for example, 

interpersonal relationships. Therefore affordance of trust in one area may not carry over to another, 

and so this shows how trust is domain-specific.  

Benevolence is defined as “the extent to which a trustee is believed to want to do good to the 

trustor”. Benevolence is chosen distinctly from intentions, or motives, because they can represent 
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something selfish or competitive, such as profit-seeking, or something which can be motivational to 

be dishonest or deceptive for one’s own gain. Benevolence implies a relationship for its own sake, 

with no extrinsic reward for the trustee. Therefore a trustee has a positive perception towards the 

trustor. Because of the inherent risk-taking present in trust, these Perceived Factors of 

Trustworthiness provide encouragement and promote willingness to take risks.  

The second key factor influencing trust is what is called Trustor’s Propensity. Propensity relates back 

to the earlier concepts of dispositional trust identified in the works of Erikson and Rotter. Propensity 

to trust is considered to be a stable trait which influences a person’s perceptions of ability, integrity, 

and benevolence, or trustworthiness, as a whole. Propensity is considered to be innate, and is 

influenced by an individual’s culture, personality, and experiences. It impacts whether a trustor will 

trust before they have shared any experience with a trustee. It refers to long-term tendencies which 

can arise from both biological and environmental influences (Hoff and Bashir, 2015). Hoff and Bashir 

identify four primary sources in this foundational trust layer; culture, age, gender, and personality 

(Hoff and Bashir, 2015). 

Trust has been shown to vary across countries, races, religions, and generational cohorts (Garske, 

1976; Doney, Cannon and Mullen, 1998; Yoo, Donthu and Lenartowicz, 2011; Chien et al., 2017, 

2018, 2020; Hillesheim et al., 2017). These influences establish a pre-conception of a trustee’s 

trustworthiness (Kohn et al., 2021).  This predisposition to trust explains how some people can 

engage in “blind trust”, whilst others may choose not to trust even when there is ample evidence to 

do so.  

As a trustor accumulates experience with a trustee, propensity begins to play less of a role in the 

trusting relationship (Mayer et al., 1995), (Merritt and Ilgen, 2008). The inter-relationship between 

propensity to trust, and perceptions of trustworthiness, lead to the development of trust in the 

diagram above. 
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This trust then mediates the perception of risk. Mayer makes the distinction between a willingness 

to trust, and the “behavioural manifestation” of the willingness to be vulnerable, and to take a risk, 

i.e.: behavioural trust. “Trust is the willingness to assume risk; behavioural trust is the assuming of 

risk” (Mayer et al., 1995). Risk can be seen as a situational modifier (Kohn et al., 2021), in the sense 

that individuals are less likely to engage in trusting behaviour when they have a high perception of 

risk (Lyons and Guznov, 2019). Trustors therefore weigh up their trust attitude with their perception 

of a situational risk. If trust outweighs the risk, they will engage in an expression of trust and 

increasingly take a risk (Mayer et al., 1995; Colquitt, Scott and LePine, 2007; Solberg et al., 2022). 

The trustor will rely on the trustee, making themselves vulnerable in order to support and meet their 

goals. 

The outcome of this behaviour, whether positive or negative, becomes a feedback loop which 

influences future trust attitude (Mayer et al., 1995; Kohn et al., 2021). This influences the 

perceptions and evaluation of integrity, ability, and benevolence, as can be seen by the arrow 

feeding back to the start of the diagram.  

2.2: Trust in Automation 

Now that an understanding of the components and processes affecting trust and trust behaviours 

has been established, it can now be applied to the central focus of the thesis, trust in automation.  

Automation can be defined as “technology that actively selects data, transforms information, makes 

decisions, or controls processes” (Lee and See, 2004, p. 50). Bradshaw defined autonomy as, “an 

idealised characterisation of observed or anticipated interactions between the machine, the work to 

be accomplished, and the situation” (Bradshaw et al., 2013, pp. 4, 5). Both of these definitions 

encompass different aspects of autonomy; it is technology that deliberately acts, and an interaction 

between technology, situation, and work. This complex conceptualisation is similar to the 

conceptualisation of trust as an all-encompassing feeling, belief, mediator, and trigger for action.  
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The study of Trust in Automation is borne from the literature on supervisory control. As automation 

began to proliferate and become increasingly pervasive, researchers tried to understand and analyse 

the changing relationship between humans and machines in complex technical systems. Sheridan 

modelled supervisor behaviour throughout the seventies and eighties, advancing the hypothesis that 

supervisors’ intervention behaviour could be based upon their trust in automation. 

Sheridan and Hennessey observed in 1984 that "supervisory control demands that the system be 

trustworthy" (Sheridan and Hennessy, 1984). This implies that by their very existence, automated 

systems must be trustworthy, otherwise they would not be implemented in control systems, and 

therefore trust in those systems is implicit in the very act of supervisory control.  

Sheridan and Hennessey see trust as the deciding factor in overriding autonomous systems; when 

trust in the system falls, and a supervisor no longer believes automation can control a process safely 

and effectively, they will choose to override the automation and take manual control of a process or 

system (Sheridan and Hennessy, 1984).  

They also posit that the perception of trustworthiness of a system is what governs operator 

behaviour, rather than actual trustworthiness, which is a common theme to this day in TiA literature. 

They determine two dimensions of trust which affect supervisory behaviour: the predictability of the 

consequences of a system's actions, and their desirability (Sheridan and Hennessy, 1984).  

Muir attempted to model this relationship between supervisory control and trust in 1985, but this 

work remained unpublished until 1994. She posits that trust develops in machines in a 

“developmental sequence”, with stages of predictability, dependability, followed by faith, once the 

relationship and experience with the system matures (Muir, 1994).  

She identified that in order to understand the predictability of a machine, its behaviour must be 

observable, and so a system must be transparent. Once predictability can be established, through 

extensive experience with a system which is observable, to the extent where uncertain and risky 
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scenarios can be observed, beyond the normal operational parameters of the automation, an 

operator is able to evaluate its dependability.  Therefore, it can be seen that the basic components 

of trust, vulnerability, and risk, mediate the ability to trust an autonomous system to maintain 

control over its functions without manual intervention. 

Muir then posits that faith in automation must be based upon the development of an understanding 

of its predictability and dependability because of an acknowledgement of its complexity; processes 

under supervisory control being so complex, that they “defy complete understanding” (Sheridan and 

Hennessy, 1984; Muir, 1994). Faith is especially pertinent when autonomy is exposed to novel 

situations, as belief in the expected behaviour must stretch beyond any observed or available 

evidence. 

Lee and Moray build on Muir’s model of trust in machines by identifying how her “developmental 

sequence”, proposed as orthogonal to key components of trust, are actually complementary to 

them. Instead, Lee and Moray posit four dimensions to trust. The first being the “persistence of 

natural laws”. The second is identified as performance, depending on “the expectation of consistent, 

stable and desirable performance or behaviour.” The third is process, built on an understanding of 

the characteristics which govern behaviour. Their final dimension is labelled purpose, reflecting the 

intentions of the designer in creating a system (Lee and Moray, 1992). 

As Mayer established the three factors of perceived trustworthiness as ability, benevolence, and 

integrity, TiA literature has established factors of perceived trustworthiness in automation which 

directly relate back to Mayer’s model. 

Lee and See relate the “three Ps”; process, purpose, and performance, back to Mayer’s Factors of 

Perceived Trustworthiness. As performance refers to the operation of the automation, and its 

characteristics such as reliability, and predictability, it directly relates to Mayer's factor of ability; 

defining not only what the automation does, but its competency and expertise "as demonstrated by 

its ability to achieve the operator's goals" (Lee and See, 2004). 
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Process is defined as the appropriateness of the automation's algorithms for a given situation. In 

other words, process describes how the automation operates. This corresponds to Mayer's idea of 

integrity, or how consistently actions adhere to a set of acceptable principles (Lee and See, 2004). 

Considering process, trust is held in the agent, and not in its specific actions. Therefore the process 

basis of trust is reliant on inferences which can be drawn from the performance of the agent. It 

focuses on how the algorithms and operations by which it achieves its goals can be easily 

understood by the operator and can be assessed as capable at achieving them, implying a 

dispositional understanding of the automation. 

Purpose is shown to refer to "the degree to which the automation is being used within the realm of 

the designer’s intent". Therefore, it describes why the automation was developed. This is posited to 

correspond to benevolence, as it "reflects the perception that the trustee has a positive intention 

towards the trustor" (Lee and See, 2004). Purpose looks at why the automation is developed and 

whether the desired outcomes of the human and the automation are aligned between the two. This 

relates to the idea of value congruence in human-human trust, where an assessment is made on the 

intentions and motivations of the trustee. In human-automation trust, this depends on whether an 

operator is able to perceive the designer’s intent, allowing the operator to trust the automation to 

achieve the goals which it was designed to achieve. 

The three Ps of a system being presented in a transparent and accessible way are crucial for an 

Operator to develop appropriate levels of trust in a system. Lee and See (2004) define bases of trust 

that are strengthened or degraded through observation and reflection on how an autonomous 

system realistically performs, evaluating whether the process by which it achieves the operator’s 

goals is appropriate, and whether the autonomy truly reflects the designer’s intent, or purpose (E. 

Chancey et al., 2017, p. 335). These levels of trust are dynamic, transient, reactive, and are heavily 

influenced not only by knowledge, observation and familiarity with the system, but also through 

social and cultural identity, personality, personal and cognitive bias, psychology, mood, cognitive 
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load, environmental factors and past experiences (Lee and See, 2004) .  The three dimensions 

identify three separate types of goal-oriented information which contribute to the development of 

an appropriate level of trust. 

Observation of the automation’s performance will support inferences the user makes regarding the 

internal mechanisms associated with the automation’s process, as observations of the processes can 

support understanding of the designer’s intent, and therefore, the autonomy’s purpose. Having a 

clear understanding of the autonomy’s purpose will allow a user to evaluate its performance, and so 

the three dimensions also depend on each other.  

Systems that focus on making the purpose, process, and performance of the autonomy as 

transparent as possible to the operator will encourage an appropriate calibration of trust in the 

automation, as their observations and inferences regarding the automation are aligned. However, 

inconsistency in what can be inferred will lead to poor coherence (Lee and See, 2004).This is similar 

to human-human trust, as observed by Gabarro, who saw that when there was incongruency 

between the perceived intentions conveyed by a manager (their purpose) and their actions (their 

performance), this would heavily negatively impact trust in them (Athos, Gabarro and Holtz, 1978). 

Therefore, to generate stable and robust trust, it must be based on all three factors equally, as 

discrepancies between the coherence or the observation of the three elements undermine trust. 

This also affects the design of training and interfaces for automation. Making the three Ps clear to 

the operator can enhance the appropriateness of trust. However, the mere availability of 

information does not guarantee it will be interpreted by the operator, and so automation must be 

designed and presented in a way which is consistent with the cognitive processes which are 

foundational for trust development. 

 Lee and See split these cognitive processes into three categories: analytic, analogical and affective, 

with all three being assimilated in different ways. These depend on the evolution of the relationship 

between the trustee and trustor, what information is available to the trustor, and how it is 
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displayed. Just like with the process, purpose, and performance, the three influence each other. 

Affective processes can influence both analytic and analogical processes, more-so than analytic 

processes can influence affect. 

 

Figure 4: Lee and See's conceptual model of the dynamic process which governs trust and its effect on reliance. Adapted 
from Lee and See (2004) 

In Figure Four, a conceptual model of trust in autonomy and the processes which affect it are shown. 

It can be seen that the process of developing trust in autonomy is a loop, with many influences. How 

trustworthy a system is does not necessarily affect how much the user trusts it; instead, their 

perception of a system, and perceptions of automation and technology in general, mediate how 

much trust is generated.  

The diagram shows the process of moving from forming a belief, to developing trust, which leads to 

forming an intention, and then a trust-based action of compliance or reliance. Three critical 
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elements are the closed-loop dynamics of trust and reliance, the mediating effect context has on 

trust and reliance, and the role of the information display on developing appropriate levels of trust. 

 As information is gathered, trust evolves, but it is affected by many different organisational, 

cultural, and environmental contexts, such as the user’s predisposition for trust, the features of the 

interface, how confident the user feels, and constraints. Many of these contextual factors also 

influence the automation’s performance as well; for example, environmental variability, such as 

weather conditions, or a history of inadequate maintenance, could also degrade the performance of 

automation, rendering reliance inappropriate (Lee and See, 2004). 

Trust combines with other attitudes, such as perception of workload, level of engagement, perceived 

risk, and self-confidence, to form the intention of whether to rely on the automation. Once the 

intention is formed, factors such as time constraints and situational familiarity then affect whether 

the actor relies on the automation.  

Trust and its effect on behaviour and action can be seen as a dynamic interaction between the 

operator, context, automation, and interface (Jian, Bisantz and Drury, 2000). This feedback loop 

influences any interaction with the automation. If the system is under-trusted, it is unlikely to be 

used, and if it is not used, then an operator will have limited information and experience by which to 

understand its capabilities, making it difficult for trust to increase. As an integral part of trust in 

autonomy is through the observation of its behaviour, automation must be relied upon in order for 

trust to grow (Muir and Moray, 1996). 

Human-automation trust and interpersonal trust are dependent on different attributes (Hoff and 

Bashir, 2015). Whereas interpersonal trust begins with little more than predictions of a trustee's 

actions, until knowledge of their dependability or predictability is known, evolving eventually into 

faith, in the trustee's benevolence (Lee and See, 2004), human-automation trust develops in the 

reverse order. 
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As shown, people often exhibit a positive bias towards novel automated systems (Dzindolet et al., 

2003), assuming that they operate perfectly, which is essentially faith-based. This trust rapidly 

degrades when exposed to system error. As the relationship with the autonomy progresses, 

dependability and predictability replace faith as the primary basis for trust in the system (Madhavan, 

Wiegmann and Lacson, 2006). Although there are some related concepts, as expressed above in the 

synthesis of Lee and See's model of trust in autonomy, interpersonal trust directly differs from trust 

in technology in two distinct ways. 

Firstly, technology lacks intentionality, unlike humans. Whereas interpersonal trust has a basis in the 

altruism of the trustee, or their intentions for completing the same task as the trustor, automation is 

based on system capabilities, scripts, and algorithms for a specified use case (Hopko and Mehta, 

2021). Autonomy does not truly have individual intent, unlike humans (Madhavan and Wiegmann, 

2007). It can be argued that trust in autonomy is actually trust in the designer's intent once-

removed, and its design may be reflective of the designer's intents and biases. As automation in 

safety-critical systems is assumed to be designed with the improvement of the system in mind, 

operators can assume it is intended to work in support of them. The reciprocal, dyadic nature of 

interpersonal trust does not apply to trust in automation. Instead, the perceived capability, or 

purpose, of the autonomous system, is considered the primary basis for trust in automation (Chen et 

al., 2018). 

The other major difference between interpersonal trust and trust in automation is the lack of 

anthropomorphisation of many autonomous systems, and therefore, the lack of the accompanying 

social expectations (Hopko and Mehta, 2021). Users like to personify technology (Nass and Moon, 

2000a). Anthropomorphised qualities can increase trust in autonomous systems (Nass and Moon, 

2000b; Oleson et al., 2011; de Visser, Pak and Shaw, 2018a; Zhang and Yang, 2022), however, there 

is a point where this can result in an extreme degradation of trust levels, known as the uncanny 

valley (Mori, MacDorman and Kageki, 2012; Lay et al., 2016; Latoschik et al., 2017). Ascribing human 
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qualities to autonomous systems can have a harsher negative impact on trust when they fail to 

behave in the same way as people do, and can be interpreted as deceptive, especially implemented 

in safety-critical systems. 

2.2.1: Table of User Requirements 

Table One summarises the user requirements identified from the research thus far. 

Table 1: A summary of user requirements elicited from the trust in autonomy literature 

User Requirement 

Identified 

Reasoning 

A system must strive to 

be transparent (Muir, 

1994) 

Through transparency, a system’s behaviours become observable. 

Familiarity can be developed. Allows for the user to evaluate 

dependability and predictability, both crucial for trust development 

A system must be 

predictable (Muir, 1994) 

By creating predictable systems, a user is able to anticipate the 

system’s actions, and so can become familiar with a system’s 

behaviour. This also enables them to know when a system is not 

behaving correctly, so they can spot when something goes wrong 

The process behind a 

system must be 

transparent (Lee and See, 

2004) 

By understanding the processes behind a system, a user is able to 

identify how it comes to conclusions, and so can assess their efficacy 

and understand when they are correct or incorrect 

The purpose of a system 

must be transparent (Lee 

and See, 2004) 

By understanding the purpose behind a system, a user is able to 

identify whether it is working for their benefit, a key factor in 

developing trust in the system’s intentions 

The performance of a 

system must be 

By understanding the performance of a system, a user can then judge 

if it is working effectively, and develop familiarity with the way it 

works, which is crucial for correct trust calibration 
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transparent (Lee and See, 

2004) 

The three Ps must be 

presented in a way the 

user can interpret and 

understand (Lee and See, 

2004) 

Information about the three Ps must be easily understandable for a 

user to be able to analyse them effectively. Observability mediates 

the level of reliance a user will display 

 

2.2.2: The Compliance-Reliance Paradigm 

Reliance on automation must be correctly calibrated. Over- and under- reliance on automation can 

result in poor performance, or even disaster. Reliance and compliance can be seen to represent two 

different types of trusting actions, or responses, towards automation, where the reliability of each 

can affect trust differently, with trust being the attitude which influences an operator’s actions 

through reliance, or compliance.  

Compliance can be defined as a salient response to a signal issued by a system. An operator 

refraining from a response when there is no signal, implying normal operation, is reliance (Rice and 

Geels, 2010; E. T. Chancey et al., 2017). Together, reliance and compliance create dependence on a 

system. 

The reliability of the automaton impacts the responses of an operator in different ways. If a system 

is prone to giving false alarms, the rate of compliance will be degraded, as an operator may choose 

to ignore the alerts of a system. If a system is prone to misses, this can degrade reliance (Dixon and 

Wickens, 2006), as an operator cannot trust that a system has not failed to alert them to something 

important. 

The effects these types of errors have on the trust-based actions of reliance and compliance differ in 

the literature. Meyer proposes that false alarms and misses affect compliance and reliance 
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individually (Meyer, 2001). Dixon and Wickens used a UAV paradigm to investigate this and found 

that automation false alarms negatively affected both compliance and reliance (Dixon and Wickens, 

2006). This was corroborated in (Dixon, Wickens and McCarley, 2007), whereby false alarm prone 

automation was shown to hurt overall performance more than miss-prone automation. 

This effect can be explained by a number of reasons. System reliability has a mediating effect on 

these actions. If a system is quite unreliable at alerting to a problem, this may draw an operator’s 

attention to the information separately to the automation, and so they may be able to spot a miss 

without reliance on the automation. This relies on an awareness of the system’s unreliability, which 

can be framed as an understanding of the system’s performance. 

However, if a system has high reliability, this can lead to complacency in an operator, who will 

assume good performance, even when there is a system failure, and so the chances of spotting a 

miss are decreased (Rovira, McGarry and Parasuraman, 2007; E. T. Chancey et al., 2017). 

A system which gives an alarm presents a salient, explicit choice for an operator to comply. 

However, intervention without a signal is more difficult, as an operator may lack awareness of the 

unreliability of the system. Therefore, as trust develops from the observation of a system (Lee and 

See, 2004), there is a large penalty to trust when the system alerts the operator to its unreliability, 

which can affect both compliance and reliance (E. T. Chancey et al., 2017).  

In Rice (2009), participants performed a simulated combat task by examining aerial photographs for 

the presence of enemy targets. A diagnostic aid provided recommendations during each trial. By 

manipulating the reliability and response bias of the aid, Rice showed that both false alarms and 

near misses can affect both reliance and compliance actions, therefore demonstrating a multiple-

process theory of operator trust. False alarm rates were shown to have strong selective effects on 

operator compliance, and weaker nonselective effects on operator reliance. Miss-prone automation 

was shown to have a strong selective effect on operator reliance, and weaker nonselective effects 

on operator compliance (Rice, 2009). 
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Figure 5: Rice's multiple-process theory of operator trust. Weaker relationships are shown in grey. Adapted from Rice (2009) 

This shows a need for system designers to consider carefully which type of error is more critical. If a 

miss cannot be afforded, as in a safety-critical system, the automation bias must be adjusted 

accordingly. However, if a system which is sensitive and produces too many false alarms could lead 

to the “cry-wolf” effect (Breznitz, 1983) whereby the automation could be turned off or ignored 

when critical, the bias must be adjusted in the opposite direction (Rice, 2009). 

2.2.3: Automation Bias and Complacency 

Complacency and automation bias represent different manifestations of automation mis-use, with 

considerable overlap (Parasuraman and Manzey, 2010a).  

People tend to have mis-conceived, or biased, expectations of autonomous performance. Some of 

the “myths of automation” (Bradshaw et al., 2013) are that autonomy unilaterally reduces human 

workload, is self-sufficient, performs better than a human, and will eventually replace humans, 

obliviating the need for human-machine collaboration. 

The perceived benefits in performance and reduced workload are true; to an extent. Onnasch et al. 

show that when operating at perfect levels, automation does have these benefits to performance 

and workload (Onnasch et al., 2014b). However, when it fails, the consequences can be severe, with 

humans not able to quickly identify the automation failure, and so being unable to prevent or 

mitigate it suitably. 
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Even when automation has the ability to be self-sufficient, a machine is incapable of taking 

responsibility for its own actions, and so to limit risk, humans will still need to take some kind of 

responsibility, or manual control, over the autonomy. Therefore there is a significant interaction 

between the responsibility for outcomes, and the delegation of authority; ethical and moral 

considerations which govern how, and to what extent, automation can be used. This is especially 

pertinent when considering the domain of defence; autonomous team-mates cannot take 

accountability or be punished for their actions – if automation fails, who will take responsibility for 

the consequences? 

This can also lead to situations of under-reliance, where the capabilities of automation are 

purposefully limited because of a fear of the consequences if they do not achieve the expected 

result. The other extreme of this is over-trusting automation. Over-trust of automation can lead to 

complacency, and accidents, such as the grounding of the cruise ship Royal Majesty, caused by a 

failure of an automatic radar plotting aid due to a broken cable, and the loss of GPS signal, which 

was not noticed by the crew, who did not monitor the other sources of navigational information 

sufficiently, showing an over-reliance on the ARPA system (NTSB, 1997; Parasuraman and Manzey, 

2010b).  

Humans have a propensity to believe that automation performs more rationally and objectively than 

a human (Dijkstra, Liebrand and Timminga, 1998; de Visser, Pak and Shaw, 2018b). Trust can be 

rapidly degraded when a system performs erroneously, more-so with human-machine interaction 

than with human-human interaction (de Visser et al., 2016). This could be due to the expectancy of 

better performance from automation. 

There are a number of “ironies of automation” (Bainbridge, 1983); the more powerful and complex 

automation becomes, and the more it is integrated into important or safety-critical systems, the 

more important a human-in-the-loop becomes, to ensure that the automation is operating correctly. 

However, if automation takes over a complex task which requires highly skilled operation, and little 
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input from a human, human skills and performance can degrade over time and with dis-use, 

resulting in a decreased ability to intervene if a system fails. This can be the case for manual control, 

or for the application of expert knowledge, both of which can be lost if not practiced frequently. 

Humans are also ill-suited to monitoring systems for long periods of time, especially when they 

require little interaction from the human, leading to inattention, complacency, and reduced 

situational awareness.  

One of the ideal purposes of automation is to reduce human workload to increase performance of a 

task, by freeing up human attention and delegating work to an autonomous system. The irony here 

is that because of a human having responsibility for both themselves and the autonomy, this 

supervisory role can actually increase workload, as the human now has to monitor the automation’s 

activities as well as attend to their own work. The introduction of autonomy to a task not only 

introduces new supervisory tasks, but also requires an operator to know how to use the autonomy 

efficiently. This introduces additional costs on the operator to understand how the autonomy works 

and what it is doing, in order to be able to evaluate if it is behaving correctly. 

The brittle nature of automation is another problem with its integration into safety-critical systems. 

Automation has no capacity to deal with unique situations which it has not been trained on how to 

perform, which can lead to unexpected and poor performance when faced with novel situations.  

Adding or expanding the role of automation profoundly changes the human’s role in the system, and 

their interactions with it (Woods and Dekker, 2000). The addition of an automotive aide to a task can 

be considered equivalent to the introduction of a new team-mate, with new co-ordination costs 

introduced (Christoffersen and Woods, 2000), requiring them to ensure their actions are 

synchronised and consistent. 

Complacency has been implicated as a contributing factor in aviation accidents. Wiener reported 

more than half of 100 experienced airline captains stated complacency was a leading factor in 

accidents. Parasuraman (Parasuraman, Molloy and Singh, 1993) showed that complacency was 
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inversely related to automation consistency, with mean detection rate of automation failure being 

markedly higher for the variable-reliability condition compared to the constant reliability condition. 

They also found that detection of automation failure was significantly higher when that was their 

sole task. This showed complacency as an active reallocation of attention in cases of high workload, 

rather than a passive state. 

Singh, Molloy and Parasuraman studied the spatial positioning of automation and its effect on 

complacency. When the automation was centrally located, there was similar performance to 

(Parasuraman, Molloy and Singh, 1993), therefore it was not affected by a more centralised 

positioning of the automation. 

Molloy and Parasuraman (Molloy and Parasuraman, 1996) performed a similar study to 

(Parasuraman, Molloy and Singh, 1993), but this time made the automation more subtly unreliable, 

with only a single occasion of failure, and tested whether early or late failure would make a 

difference to detection rate. They found that in the singular task condition, where participants only 

monitored the automation, they mostly did spot the automation error, whether it occurred early or 

late. However, for the multi-task condition, they observed that only half of the participants spotted 

the singular failure, and even less if it occurred later. 

These studies show that automation complacency occurs even for highly reliable systems. As signal 

detection decreases with reductions in signal probability, this indicates that monitoring for 

automation failure will often result in poor performance. This complacency cost can off-set benefits 

automation can provide, especially for safety-critical systems, where misses could have grave 

consequences. 

Wickens and Dixon (Wickens and Dixon, 2007) found that once automation reliability falls below 

70%, the benefits of automation are the same as if there was no automation. They found that 

people would still use this automation if it was presented to them, however. Yet De Visser and 

Parasuraman (De Visser and Parasuraman, 2007) found that even below the 70% reliability 
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condition, automation could still support human operators if they have the raw information sources, 

which operators can combine with automation output to improve overall performance. 

These ideas of over-trust and complacency are significant and problematic when considering the 

introduction of autonomy to the maritime defence domain. They show that for tasks where misses 

could have dangerous consequences, even for very high reliability automation, incorporating such 

autonomous systems could have dangerous consequences, as they would require a high level of 

supervision and vigilance from human operators, who could easily miss a failure in performance. 

Instead, humans and automation should work together interdependently on a task, with a shared 

information space and common ground, meaning opportunities for complacency are minimised, and 

even low-reliability automation can still help with the achievement of common goals. 

This can also help to form more resilient trust with automation, as it can also help to mitigate the 

effects of automation bias, as described above. By sharing common ground and working together, 

the purpose and processes of a system are clearer to an operator, helping them to understand the 

actual capabilities of the automation, and calibrating trust more accordingly. Keeping humans in-the-

loop and sharing work interdependently prevents inattention from long periods of supervision, and 

maintains engagement, meaning reduced complacency. Thus, interdependent Human-Machine 

Teams (HMT), rather than rigid, allocated roles for humans and automation, create a more 

productive and trusting working relationship. 

2.3: Human-Autonomy Teaming 

2.3.1: Types of Autonomy 

Appropriate allocation of system functions within a Human-Autonomy team is a vitally important 

question, as introducing autonomy transforms human activity, and potentially imposes new 

coordination demands on the human operator (Parasuraman, Sheridan and Wickens, 2000; Onnasch 

et al., 2014b). Introducing autonomy into a system needs careful consideration; high levels of 
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autonomy can lead to problems with complacency, loss of situational awareness, and manual skill 

decay (Endsley and Kaber, 1999; Onnasch et al., 2014c) as the operator may over-rely on, or over-

trust the system, and so does not actively monitor the system as they expect it to perform well. 

 It can also reduce the human operator to a supervisory, passive role, and even if the autonomy is 

highly accurate, this is ill-suited to human attention, and can have heavy cost-benefit penalties if, or 

rather when, it fails. Most automation is not perfectly reliable. Automation can fail because of 

software or hardware failures, or because it is used for something outside of its functionality 

(Onnasch et al., 2014a). This, therefore, creates a trade-off between how useful automation is when 

performing at optimum capacity, and the negative consequences that can occur if the automation 

fails. 

This shows a need to maintain “directability”: allowing the prevention or modification of any action 

in a timely manner, which in turn requires a system to provide anticipatory indicators and 

explanation which can be used to quickly predict and validate its decisions (Johnson et al., 2012; 

Defense Science Board, 2016). The benefits of this are two-fold, as offering transparency, where the 

purpose, processes and performance strategies of automation is clear, also provides a strong 

foundation for developing a resilient and trusting interdependence with the autonomy (Lee and See, 

2004; Chancey et al., 2017b). 

Parasuraman et al. (2000) identified four primary types of automated systems, including information 

acquisition, information analysis, decision selection, and action implementation (Parasuraman, 

Sheridan and Wickens, 2000). These are not mutually exclusive, and vary depending on the level of 

control the human operator has over their function. This adds another dimension to the “level” of 

autonomy, as the autonomy could operate to different degrees depending on the type of action it is 

performing.  

Onnasch (Onnasch et al., 2014a) visualises this model, by plotting three levels of automation, 

manual, low, and high, against the automation actions as defined by (Parasuraman, Sheridan and 
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Wickens, 2000), and termed this “degrees of automation” (DoA). This model fits nicely with the idea 

of directability; the correct level of automation could be selected depending on what kind of 

automation type would be appropriate.  

 

Figure 6: The trade-offs between loss of SA, workload, and failure performance depending on the degree of automation and 
its reliability. Adapted from Onnasch (2014) 

Figure Six illustrates the trade-offs between high levels of automation in terms of workload, SA, and 

performance, known as the “lumberjack analogy”: “the taller the tree, the harder it falls” (Wickens 

and Dixon, 2007). Routine performance increases when automation is high, but results in extreme 

failure when automation fails to work correctly. Loss of situation awareness is directly correlated 

with performance. Workload is negatively correlated with performance; it decreases as the 

automation becomes more independent.  

Table 2: Parasuraman's Automation Actions, with examples for high and low levels 

Automation Type Type Description 

Information Acquisition Low: Mechanically move sensors, find and grasp an object,  

Medium: Organise incoming information, highlight information 

High: Filter out information  

Information Analysis Low: Extrapolate or project, show projection 
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High: Integrate inputs into a single value, augment perception and 

cognition, provide context dependent summaries 

Decision Selection Low: Recommend action 

High: Execute course of action 

Action Implementation Replace a manual function of a human 

 

 

Table Two shows a summary of examples of different types of automation, as described by 

(Parasuraman, Sheridan and Wickens, 2000).  

They are modelled loosely on the four-stage model of human-information processing, which 

describes how humans first acquire and register multiple sources of information, which refers to 

pre-perception processing of sensory data we receive. The second stage would be “conscious 

perception”, and the manipulation of retrieved information from working memory. This can include 

cognitive operations such as rehearsal, integration, and inference, occurring prior to the point of 

decision. The next stage of human-information processing is where decisions are made based on 

such cognitive processing, the fourth stage would be implementation. This is a simplistic  

interpretation of human cognition, but it can be seen how the different stages of autonomous action 

are closely coupled to it.  

2.3.1.1: Acquisition Automation 

The first level of automation action, acquisition, is related to supporting human sensory processes. 

At a low level, it could consist of mechanically moving sensors to scan and observe. Parasuraman 

uses the example of radars in air traffic control scanning the sky in a fixed pattern, or a robot using 

sensors to allow it to find and grasp an object. 

  A moderate level acquisition system will organise incoming information for an operator, maybe 

prioritising information in a list, or highlighting parts of the information. Highlighting, rather than 
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selecting, is an important distinction; highlighting does not remove any raw data, and effectively still 

lets an operator see the full reality of the picture, as does ranking information. A higher level of 

automation acquisition would filter data, therefore removing the ability of the operator to perceive 

it. 

2.3.1.2: Analysis Automation 

Analysis automation involves cognitive functions such as inferential processes and working memory 

(Parasuraman, Sheridan and Wickens, 2000). At a low level, automation could extrapolate or predict 

what happens to data over time. An example of this is a projected display used in a cockpit, showing 

the predicted path of another plane in the airspace (Chandra et al., 2009). Another example from 

aviation would be a Converging Runway Display Aid, where the approach path of an aircraft onto a 

converging runway could be visualised, reducing cognitive load by visualising what the operator 

would have to otherwise mentally compute and project. A more complex form would be an 

“information manager”, which summarises data to a user in a context-dependent way. In this way, 

information integration tries to augment current operator perceptions. 

Rovira found that information automation had less of a cost on performance than decision 

automation in a simulated C2 (Command-and-Control) task when the reliability of the automation 

was 80%. Decision automation had the biggest performance benefit, however, when reliability was 

higher. They posit that when automation is reliable yet imperfect, performance is better with an 

information support tool, as the user will still generate their own courses of action, and so is not so 

detrimentally influenced by inaccurate information. However, when the automation was only 60% 

reliable for the information automation, performance was worse, showing sensitivity to the overall 

automation imperfection (Rovira, McGarry and Parasuraman, 2007). 

2.3.1.3: Decision Automation 

Here, automation can select from decision alternatives. This could augment or replace human 

decision selections with machine decision selections. They make implicit or explicit assumptions 
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about costs and values of possible outcomes. Examples include route planning for pilots, diagnostic 

tools in medicine, and C2, such as the algorithm FOX-GA described in (Schlabach, Hayes and 

Goldberg, 1999), which generates and evaluated plans for manoeuvres. The LoAs for this action 

encompass recommendation up to execution of an action. 

2.3.1.4: Action Automation 

Parasuraman describes this stage as “involving different levels of machine execution of the choice of 

action, typically replacing the hand or voice of the human”. For example, a photocopier sorting, 

collating or stapling (Parasuraman, Sheridan and Wickens, 2000). A more complex version would be 

virtual agents, tracking user interactions and executing subtasks automatically, such as described in 

(Lewis, 1998, pp. 67–78) with regard to Norman’s Human-Computer Interaction model (Norman, 

1984). 

Rieger and Manzey conducted an experiment manipulating time pressure and reliability of an 

autonomous decision support system which was used to aid a luggage screening task. They also 

manipulated whether the participant made a decision first manually, and then was shown an 

autonomous suggestion, or first saw the autonomous suggestion, and then made a decision. They 

found that under high time pressure, reliance and performance actually decreased, but only when 

shown the autonomous suggestion first. When they made a decision manually first, their 

performance and reliance increased comparatively (Rieger and Manzey, 2022). Performance was 

worse with human intervention than it would have been with no human intervention, with 

participants making increased incorrect rejections of the decision support system’s suggestions. This 

was especially true for the high-performance condition. 

Bartlett and McCarley also showed this effect in a different experiment, where participants used 

automation to identify if a pattern on the screen had more blue or orange dots (Bartlett and 

Mccarley, 2021). Again, performance was worse in the high reliability automation condition when 
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operators were given the option to over-ride, than it would have been if the automation had done 

the task alone. 

This is problematic concerning the use of high-reliability automation. It implies that it should be used 

with a high level of autonomy in order to increase performance, however, if the automation fails, 

this can lead to the negative human-performance effects as shown above. This appears to be 

another trade-off with high-level automation, as the rapid decline in performance when it fails could 

make it unsuitable for safety critical tasks, even if performance is highly enhanced under normal 

behaviour. 

2.3.2: Transparency and Situation Awareness 

As argued above, in order to better calibrate trust, and provide improved resilience to trust, a 

transition from human-machine interaction where a human exacts control over the machine, to 

human-agent teaming (HAT), which encourages interdependence and collaboration with autonomy 

in order to accomplish a task, is needed.  

Human agent teaming posits agent transparency is essential, as it promotes three key factors for 

human-agent interaction: mutual predictability of teammates, shared understanding, and the ability 

to redirect and adapt to one another (Lyons and Havig, 2014; Chen et al., 2018). 

A challenge to HAT is enabling an autonomous agent to be able to clearly communicate its intentions 

to human team members. Capability to infer intent of a team member requires a way to facilitate 

explicit, directed communication Schaefer et al., 2016. 

A team can be defined as, "two or more people who interact dynamically, interdependently, and 

adaptively towards a common and valued goal/objective/mission, who have each been assigned 

specific roles or functions to perform, and who have a limited life-span membership" (Salas et al., 

1992). 
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By establishing common ground with team members, actions can be mutually understood and 

expected (Schaefer, Evans and Hill, 2015). This facilitates a shared understanding of mental models 

and goals. Even though autonomous agents have different decision-making processes and contexts 

compared to human team members, it is still possible to establish the development of team 

situation awareness. 

Team SA can encompass joint decisions and actions. Each individual agent may have their own SA to 

carry out goals, but a shared SA will enable coordination, so that individual sub-goals can support 

the accomplishment of overall goals (Mica R. Endsley, 1995). 

Transparent user displays enable an autonomous agent to communicate its reasoning process to a 

human agent, thus increasing the shared SA of the team. This can help to reduce ambiguity, 

misunderstandings, errors and unnecessary interactions Schaefer et al., 2016. This supports the idea 

that information transparency is a critical part of building trust in teams, and developing shared SA 

(Chen and Barnes, 2014; Ososky et al., 2014). 

The Situation Awareness Transparency (SAT) model (Barnes et al., 2014; Ososky et al., 2014) can 

help to organise information requirements for better HAT performance. It has three levels. The first 

level provides a user with basic information about the autonomous agent's current state and goals, 

intentions, and proposed actions. This is to assist the human's perception of the agent's current 

actions and plans. 

The second level provides contextual reasoning, including constraints and affordances, to assist a 

human's comprehension of the agent's behaviours. The third level includes information regarding 

the agent's projection of future states, consequences, and likelihood of success or failure, as well as 

uncertainty associated with the projections. This helps to assist the human's projection of future 

outcomes. 
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Mercado et al (Mercado et al., 2016) used the SAT model to design a display for simulated operation 

of an unmanned vehicle. They tested three levels of SAT, with the first level showing which vehicles 

were used and the path they utilised, the second level with an additional text box with the agent's 

rationale explained, and the third level with additional information about uncertainty, by modifying 

opacity and colour of the icons, and additional bullet points in the textbox explaining the reasons 

behind the uncertainty. 

Operator performance was significantly better when using the SAT level 3 display. Correct rejection 

rates were also significantly higher for the SAT level 3 display. They also measured no significant 

workload differences between the three conditions. Trust was also measured using the Trust 

Between People and Automation checklist (Jian, Bisantz and Drury, 2000). Trust was found to 

increase as transparency level increased. 

Transparency improves operators' trust in less reliable autonomy by revealing situations where an 

agent has high levels of uncertainty. This helps calibrate trust in an autonomous agent by making the 

agent's limitations clear (Schaefer et al., 2016; Chen et al., 2018). 

Lyons (Lyons and Havig, 2014) focuses on human-robot teaming, but makes valid points; they posit 

that "moving from tool to teammates requires the systems be designed with more naturalistic 

interaction styles, which may attempt to leverage the nuances of human-human interactions". 

Developing shared awareness of environmental constraints within a task domain, conveying intent, 

explaining decisions in a timely and accurate manner, and communicating limitations, and progress 

towards goals, are all positive strategies for both increasing transparency and improving team 

situation awareness. 

Chen does suggest that if level three SAT information is ambiguous, it may lead to increased 

complacency. In the RoboLeader experimentation discussed in (Chen et al., 2018), where 

participants controlled robotic vehicles in a simulated environment, when participants had limited 
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information about the environment and medium transparency reports on RoboLeader reasoning 

reduced complacent behaviour and improved performance on the operator's route selection task, 

without increasing workload. However, when timing information was added, which was potentially 

ambiguous, participant behaviour and complacency behaviour was negatively affected. For the high 

and the low transparency conditions, participants showed more complacency behaviour, and lower 

task performance.  

This shows that information requirements could be linked to both personal differences in 

complacency potential, or to knowledge of the environment, which can change dynamically 

throughout a task, and so bi-directional communication between the human and the agent could be 

beneficial, to establish better shared situation awareness. 

Lyons (Lyons et al., 2017) tested three conditions of transparency in a simulated study using 

commercial pilots to land multiple planes using an automated aid providing decision support. The 

automated aid provided no text-based reasoning in the first condition, values for likely success in the 

second condition, and logic, or rationale for its recommendations in the third condition. Trust was 

measured to be highest during the third condition, supporting the idea that sharing reasoning 

through increased transparency promotes trust in HATs. 

 

Table 3: Further user requirements identified through trust in automation literature 

User Requirement Identified Reasoning 

A system should be calibrated 

to be sensitive in order to 

minimise the chance of near 

misses (Rice, 2009) 

In a classification task within a safety-critical environment, 

missing a contact would have worse consequences than 

receiving too many false alarms for a contact, therefore systems 

should be sensitive. However, careful calibration is required, as 

false alarm and near-miss rates affect both compliance with and 

reliance on a system 
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Human-in-the-loop activities 

must be maintained in order 

to ensure adequate SA 

(Onnasch et al., 2014b) 

Complacency is high when automation is accurate, and the 

further removed an operator is from a system’s work, the harder 

it will be for them to spot when things go wrong 

Automation should be at least 

70% accurate to be 

implemented (Wickens and 

Dixon, 2007) 

If accuracy is below 70%, operators have been shown to still 

depend on automation, and performance has been shown to be 

worse when compared to no automation 

Automation should not 

replace a human when doing a 

task; human and automation 

should work together as a 

team to accomplish a task 

Teaming, with both contributing to goals, prevents the negative 

implications of low SA, high complacency, and can help trust to 

be calibrated appropriately 

Information autonomy would 

be more prudent to 

implement rather than action 

autonomy in a safety-critical 

domain (Onnasch et al., 

2014b) 

There is a heavier cost to performance when action autonomy is 

implemented when compared to information autonomy when 

considering autonomy failure. Mitigating risk is important in a 

safety-critical domain, and therefore erring on the side of 

caution when considering what type and level of autonomy to 

implement is sensible 

Information autonomy should 

seek to highlight areas of a 

display to an operator, rather 

than removing any raw 

information (Parasuraman, 

Removing data from an operator’s view makes it more difficult 

for them to validate autonomy’s performance and can lead to 

reduced SA and over-reliance. Therefore, low levels of 

information automation are best in a safety-critical domain 
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Thomas B. Sheridan and 

Wickens, 2000) 

High levels of “team SA” 

should be encouraged through 

as much context and 

transparency behind 

automation’s decisions as 

possible (Endsley and Kaber, 

1999; Schaefer, Evans and Hill, 

2015; Mercado et al., 2016; 

Chen et al., 2018) 

Explanation behind automation’s decisions can help evaluate 

their usefulness. Completing a goal as a team helps to reduce 

complacency and loss of SA. Higher performance in C2 tasks has 

been recorded when the automation offers increased levels of 

explanation for its decisions 

 

2.4: Explainable Artificial Intelligence 

As established in the trust literature, for an artificially intelligent or autonomous system to be 

trusted appropriately, its processes, performance and purpose must be transparent to the operator. 

This causes problems when considering many machine learning algorithms use classifiers which are 

opaque to the operator. 

Explanation behind decision-making is crucial to be able to evaluate the efficacy of a classifier. In 

(Freitas, 2014), they present an example of an artificial neural network which classifies tanks as 

friendly or an enemy. It had very high accuracy when classifying the test images, but in the field, the 

accuracy was very low. This was because photos of friendly tanks were taken with a sunny 

background, and photographs of enemy tanks were presented with a darker, more overcast 

background in the test data, and so the sky was the feature being used for classification. 
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In (Ribeiro, Singh and Guestrin, 2016), a model is trained to distinguish between pictures of huskies 

and wolves. However, all photographs of wolves contained a snowy background, and the model was 

distinguishing between the two by looking at whether the picture contained snow. 

In both of these cases, some kind of explanation for what was being analysed would have been 

beneficial in determining whether to trust the classifier’s output. 

A growing body of literature explores how to create more explainable artificial intelligence, known 

as eXplainable Artificial Intelligence (XAI).  

Schaekermann et al. (Schaekermann et al., 2020) compare two AI assistants which provide 

classification labels for medical time-series data. Both assistants integrate uncertainty estimates of 

their own performance. However, the “ambiguity aware” AI additionally provides a human-

interpretable argument for any ambiguous or conflicting labels. This argument was either selected 

randomly, or by experts. Schaekermann’s research shows that the provision of this human-

interpretable explanation increases performance, especially when the arguments are highly 

relevant. Conversely, when arguments are random, accuracy is heavily negatively impacted, with 

less than 50% accuracy, lower than random guessing (Schaekermann et al., 2020). 

This work makes a very important point; that self-confidence or uncertainty percentages with 

context are much more useful in decision-making than those with no context, or random or bad 

explanations, which can have a negative impact on performance, trust and perceived workload 

(Schaekermann et al., 2020). 

The explanation provided by the ambiguity aware AI was text-based, and takes up a sizeable 

proportion of the experimental interface. This type of explanation may be more suitable in a medical 

field, where screen space is less of a valuable commodity. However, in the context of SMP 

operations, screen-space is limited and precious; text-based explanations may not be the most 

appropriate. Also, when experiencing high time constraints and a heavy volume of classification 
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decisions to make, text-based explanation may focus attention on reading explanations instead of 

detecting emerging contacts.  

Ehsan et al. study automated rationale generation as a real-time explanation approach.  This is done 

by a computer model learning to translate an autonomous agent’s internal state, turning data 

representations into natural language (Ehsan et al., 2019). They did this by creating a training data 

set by getting humans to play the arcade game Frogger, and explain the rationale behind their 

decisions using a think-aloud protocol. The definition used for automated rationale generation is “a 

process of producing a natural language explanation for agent behaviour as if a human had 

performed that behaviour”. (Ehsan et al., 2018).  

Ehsan shows that users prefer detailed rationale, allowing them to form a stable mental model of 

the agent’s behaviour. However, any rationale, no matter how broad, increased confidence and 

understandability in the agent. This goes further to support a need for an explanation of 

autonomous decision-making in order to maintain trust and confidence. 

However, although this method works well for a game, with very linear constraints and predictable, 

limited behaviour, it may not be so readily applicable to a problem with more dynamic variables 

which are open to a wider range of interpretation, or that does not behave in a linear, sequential 

way. 

Again, the explanations offered were text-based, which also may not be appropriate in a domain 

with limited screen-space and a need for focused visual attention.  

Another point of contention would be the desire to make explanations “as if a human had carried 

out the behaviour”. Although the initial results seem to indicate participants felt confident in the 

rationales provided, this feels like a mis-representation of the capabilities of the system; humans 

and AI do not possess the same thought processes or ability to think contextually – providing 

rationale which could have come from a human may encourage an operator to infer other human-
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like characteristics about the system, which could lead to rapid trust degradation when the system 

behaves unexpectedly, or makes a mistake, and acts in an un-humanlike manner. 

In their paper discussing theoretical explainable AI techniques for an autonomous ferry, Glomsrud et 

al. raise some interesting points about explainability (Glomsrud et al., 2020). They posit that 

currently the methods for explaining AI or autonomy are insufficient, as they are mainly framed 

towards AI developers, and do not help actors with less familiarity or knowledge of AI systems to 

understand the decision-making processes of a system. They therefore posit that explanations 

depend on context of use, which corroborates (Ehsan et al., 2019), and that the explanation required 

changes depending on the use-case and user. However, they do not provide any additional 

information about how these explanations could be generated, or what they look like. 

They highlight the key irony that as a vehicle becomes more autonomous, it becomes more difficult 

to switch control effectively between the human and the vehicle as the demands on situational 

information and alertness of the driver are higher. Therefore it requires a closer coupling between 

the human and vehicle, despite the increase in autonomous behaviour. This corroborates the work 

of (Parasuraman, Thomas B Sheridan and Wickens, 2000b). 

Local Interpretable Model-agnostic Explanations (LIME) is a popular method for explaining the 

predictions of complex and black-box machine learning models (Dieber and Kirrane, 2020). LIME can 

be used to provide an explanation for a specific prediction. LIME then creates slightly different 

versions of the selected data points by making small changes to its features. These changes are 

random, but follow specific rules to maintain realism. These are known as “perturbed samples”. It 

then uses the perturbed samples and corresponding predictions to create a simple model, which 

approximates how the black box model behaves. LIME can then generate a list of feature 

importance scores and coefficients to show how different data was used and weighted by the black 

box model. Positive scores mean that a feature had a positive influence on prediction. The larger the 

absolute value of the score, the more influential the feature was in making the prediction (Ribeiro, 
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Singh and Guestrin, 2016). LIME has been shown to increase trust in output with its explanations, 

and outperforms other explainable models (Ribeiro, Singh and Guestrin, 2016). 

However, LIME does have some limitations. For example, the choice of perturbations applied to the 

input data can lead to differing explanations, even when the variations are very small (Dieber and 

Kirrane, 2020). This makes the results less robust. LIME can provide explanations in terms of feature 

importance, but these explanations may still not be intuitive or easy to interpret by non-expert 

operators. It also is time consuming to generate explanations, especially when a large number of 

explanations are needed, or for a real-time application. This would make LIME unsuitable for our 

research, which requires explanations on-the-fly, and which involves many nuanced feature sets 

which are extremely sensitive to change. 

Another method of providing an explanation behind AI is to use a decision tree. A decision tree is a 

machine learning algorithm used for classification and regression tasks (Blockeel et al., 2023). It 

makes decisions by recursively partitioning data based on features, resulting in a tree structure. 

Decision trees provide an easily understandable and traceable way to see how an algorithm reached 

a certain outcome. They represent a particular approach to modelling data. It also gives a visual 

representation of a problem, which could be useful in domains where text is not appropriate.  

Decision trees are often lauded as an easily assessable way of visualising a decision making process 

(Blockeel et al., 2023). However, they have limitations. Decision trees are prone to overfitting data, 

and can create very complex, overly detailed trees which do not generalise well to unseen data. This 

can make them more difficult to interpret (Dietterich, 1995). Even small changes in the input data to 

a tree can cause significant changes to the structure. This can make decision trees relatively unstable 

(Li and Belford, 2002). They also struggle to capture complex relationships between features as 

effectively as neural networks, and so are better used for problems with simplistic decision 

boundaries. 
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As well as this, bias in a data set can be greatly amplified by a decision tree, as it can learn and 

perpetuate the biases through its rules (Dietterich and Kong, 1995). They also struggle to handle 

continuous data, as they convert continuous variables to discrete ones, which can lead to 

information loss and less accurate modelling (Blockeel et al., 2023). Similarly to LIME, decision trees 

lack global understanding, and may not offer a global understanding of a model’s behaviour. They 

can struggle with high-dimensional data, which can lead to complex trees which are difficult to 

interpret.   

In conclusion, current methodologies for providing on-the-fly explanations for decisions made by AI 

are not capable of providing easily interpretable information in real-time. Explanations are very 

sensitive to biases within the training data, and can lack robustness, as very small changes can 

produce variances in explanation. They are vulnerable to adversarial examples. This is especially true 

for decision trees. Adversarial examples are data points which have been intentionally manipulated 

to cause a misclassification. Adversarial examples can be used to poison a data tree, where attackers 

can identify weaknesses in a model’s decision boundaries and manipulate the input data to cause 

erroneous classifications. They can be very small and difficult to spot. This particular weakness 

would make decision trees unsuitable for use in a defence environment, where erroneous data is 

used systematically to obfuscate or confuse.  

2.5: Discussions and Conclusion 

The literature review summarises current research into human-autonomy teaming, and highlighted 

a number of pertinent paradigms which must be taken into account when introducing new forms of 

intelligent information systems into established socio-technical systems.  

The models of trust discussed within the review both highlight that individual differences in 

propensity to trust automation, personality and culture, and pre-conceptions of a system’s 

capabilities, can all influence an individual’s initial interactions and trust towards autonomy. 



74 
 

 These pre-conceptions can cause over-reliance, through over-trust, or under-reliance, through 

distrust, depending on a person’s perceptions of their own abilities and the system’s abilities. In 

order to reduce mistrust, which can lead to inappropriate interaction with a system, operators must 

be appropriately trained and primed in order to have realistic expectations of a system’s capabilities 

and limitations.  

Mitigating these pre-conceptions through appropriate training and understanding is imperative to 

prevent mistrust, which can lead to sharp reductions in performance and trust which can be difficult 

to recover from. 

It may seem counter-intuitive, but the literature shows that perfect performance of autonomy can 

lead to worse performance overall, as it can introduce factors associated with complacency and low 

situation awareness. As well as this, when an autonomous system can work at perfect levels of 

accuracy, some studies have found operators’ expectations will lead them to reject the outputs of 

the system, as distrust and mis-calibrated expectations still affect interactions. 

Therefore, a system must operate with as much transparency as possible, allowing for operators to 

interpret and evaluate the system’s suggestions and actions accurately, which allows for more 

appropriate calibration of trust in autonomy.  

Transparency on its own may not be enough when it is difficult for users to interpret the reasoning 

behind a system’s actions, which shows a clear need for better explainability of autonomous 

systems, and so ways to facilitate understandability and inter-communication between the operator 

and autonomy are key for reconciling user preconceptions and systems’ performance in reality. 

This also must be coupled with careful design not only of the system, but of the form of interaction 

for an operator with that system. The more removed an operator is from the system’s functionality, 

the worse performance will occur when something goes wrong. Methods for ensuring the human is 



75 
 

kept in-the-loop, and not on-the-loop or even outside-the-loop is vitally important, especially with 

regards to safety-critical tasks.  

Cognitive dissonance between actual and perceived reality of performance, and of awareness of the 

reality of a situation, both incur heavy penalties on performance. Therefore robust design will always 

seek to introduce as much transparency as possible, as well as limiting erosion of an operator’s 

understanding of the true state of reality. Therefore it is recommended that any introduction of 

autonomy into the domain must attempt to keep raw information available and viewable to an 

operator, with any manipulation (highlighting, for example, or prioritising information in a display) 

not obscuring the real state-of-events, whilst still providing recommendation. This allows humans to 

form their own assessment of events when required, and facilitates better situation awareness, 

which can decrease the gap in understanding when things do inevitably go wrong. 

The results of the literature review directly help to answer RQ1. Information automation at low 

levels is preferrable in safety-critical tasks; this is because it does not hide raw data from an 

operator, and so helps to reduce the penalty to SA of high-reliability automation. Action automation 

incurs a more severe penalty when automation does not behave properly, and so should be avoided 

for safety-critical tasks. Humans and automation should work together to achieve a goal, rather than 

one carrying out the job of another; this also helps to reduce skill-loss, complacency, and over-

reliance, as well as loss of SA. Automation should be at least 70% reliable; otherwise this can lead to 

a penalty for overall performance. Automation should also try and offer high-level explanations for 

its decision-making which a human operator can easily understand; this helps to create shared, or 

team SA, and also keeps trust calibrated to an appropriate level, by helping make the performance 

and processes of automation clear to the operator, and offering them a way to assess the 

automation’s decision-making, which can help to prevent the effects of automation bias.  

It is also concluded that it would be more dangerous for a system to fail to alert an operator to a 

problem, than a system which gives too many false alarms; this is also because of safety concerns: 
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missing an important contact could have worse consequences than treating a contact with greater 

concern than warranted; it would always be better to be hyper-vigilant in this scenario, as 

underestimating a contact could have severe consequences.  
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CHAPTER 3: A SUBMERSIBLE MARITIME PLATFORM AS A SOCIO-

TECHNICAL SYSTEM 

3.1: Chapter Aims 

This chapter aims to provide context and understanding to help answer RQ1: “What Level and Type 

of Autonomy could be suitably applicable to tasks carried out in the process of broadband sonar 

classification whilst maintaining appropriate levels of trust in the automation?” This is to better 

understand and specify the context of use, as shown in the diagram in Figure 1, representing the 

user-centred design process as defined by ISO 9241. By understanding what information is used, by 

whom, and how it is generated and communicated, this can help identify areas where autonomous 

systems could help optimise the process and reduce uncertainty or cognitive load. An overview of 

the tasks and information used in an SMP to understand their environment is presented. 

3.2: Introduction to the Task 

This chapter seeks to summarise the key actors, technical systems, and information exchanges and 

interactions which occur on board an SMP to better facilitate understanding of common tasks, and 

how these could be affected by the introduction of autonomous systems. 

SMP Command teams rely on the ongoing interpretation of sensor data to navigate safely when 

operating from below periscope depth. When “going deep”, limited sensor information is available. 

SOs use signal processing techniques and frequency analysis to identify and classify contacts by 

listening to noise picked up from hydrophone arrays, contributing to a distributed, team model of 

the operating environment. Not all agents who contribute to the model have the ability to see the 

complete operational picture (Stanton, 2014a). The complete situational model is held mentally by 

the OOW. 

SMP control rooms have been described as sociotechnical systems; a system which "involves the 

interaction of human operators and technology, with interdependence to pursue broader goal-
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directed behaviours creating the conditions for successful overall performance (Salmon et al., 2006; 

Stanton et al., 2009; Walker et al., 2009). They rely heavily on effective communication and 

teamwork (Stanton, 2008). Communication and teamwork can be impactful on team workload, 

sometimes even more-so than the work itself, by either facilitating rapid and effective information 

communication, or by preventing it (Driskell, Salas and Hughes, 2010). 

Below periscope depth, SMPs are able to operate covertly, undetected from the surface. The trade-

off for remaining undetected is a lack of external information to make sense of the environment; all 

information pertaining to the operational area must be derived from integrating sensor system data 

(Dominguez, Long, Miller and Wiggins, 2006; Roberts, Stanton and Fay, 2018) or collected pre-

mission, and is mediated by complex computer systems and chain of command. Returning to the 

surface to gain information could compromise the SMP’s operations. 

3.3: Task Description 

In an SMP control room, and socio-technical systems in general, cognitive processes and situation 

awareness are distributed across actors, and often are not fully comprehended by individual actors 

(Stanton, 2014a; Roberts, Stanton and Fay, 2015). Team configurations and how the technology 

facilitating their communications is used can both influence their effectiveness. 

Onboard an SMP, verbal communication is highly structured, and follows rank hierarchy (Fay, 

Stanton and Roberts, 2019). Verbal messages are received, acknowledged, and repeated back to 

ensure that correct information has been received (R. R. Murphy, 2000). Verbal information is in this 

way filtered and aggregated, until it reaches the Officer of the Watch (Carrigan, 2009), who is usually 

in charge of the control room, and is tasked with making navigational decisions. For example, SOs 

report to the Sonar Controller, who then can communicate information to the command room via 

the Operations Officer (OPSO), therefore acting as an informational filter.  

The OOW directs the command team from within the control room, that works together to generate 

a tactical picture (Dominguez, Long, Miller, Wiggins, et al., 2006). A tactical picture is a dynamic 
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model of the SMP's environment, including the perceived positions of contacts, which are vessels or 

objects which have been detected by periscope, sonar, or radar. Contacts are analysed within the 

control room, to try and understand their behaviour in relation to own-ship. The tactical picture 

directly informs strategic and operational decisions, and so accuracy of the tactical picture is of 

strategic importance.  

A high volume of sensor data must be interpreted and communicated in order to develop a shared 

situation awareness of the developing tactical picture. As more advanced sensors and methods of 

data collection are employed in the control room, the potential for this information to exceed the 

capacity of an operator to interpret it effectively is increased (Woods, Patterson and Roth, 2002). 

This can lead to incorrect processing or interpretation of data, causing a degradation in the quality of 

the tactical picture. Highly demanding situations, such as high numbers of contacts, has been shown 

to reduce the cognitive capacities of operators, and reduce the volume of information they can 

handle (Roberts and Cole, 2018). 

Most operators use a specific display to analyse a specific kind of sensor system or information, 

using their expertise to analyse the data and communicate their extrapolations up the chain of 

command. However, the OOW, who must maintain the overall tactical picture, looks at multiple 

repeater displays for many different information types to try and assimilate information across 

different technical systems. This includes geographic and sonar information. They must try and 

quickly interpret information across these different systems, and perform mental calculations, to 

constantly update the tactical picture. The Commanding Officer (CO) may be the only person holding 

a complete tactical picture. However, the tactical picture is dynamic, and even the CO is not 

explicitly aware of all information transactions (Dominguez, Long, Miller, Wiggins, et al., 2006). COs 

are concerned with what is going to happen, and must have a big-picture understanding which is 

future-oriented in order to plan effective COAs. However, they have to do this by looking at several 

displays which present current, and near-past information, each for specific systems (Dominguez, 
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Long, Miller, Wiggins, et al., 2006). Vital signs can be dispersed across different displays, requiring 

the SO to move between them, constantly integrating different pieces of information into a 

collective picture (Dominguez, Long, Miller, Wiggins, et al., 2006) 

Sonar relies on interpretation of passive hydrophone recordings. Generally, hydrophone arrays are 

positioned at the bow and flank of SMPs, with an additional towed array able to be deployed, 

combined with an antenna system and signal processing method for ranging targets passively 

(Brinkmann and Hurka, 2009). An incident acoustic wave front curvature is measured using the sonar 

system. This allows a target range to be calculated. This is very dependent on the acoustic 

transmission conditions of the area. Background noise - both ambient noise from the ocean itself, 

and also from the SMP itself, can make it difficult to identify potential contacts. 

Detecting a vessel requires an operator to identify discreet noise against this background noise 

aurally, or visually on their waterfall display, where it forms a line, at a specific Direction of Arrival 

(DoA). Modern boats, with quieter engines or advanced hull designs, may operate quietly, and so it 

can be harder to detect their presence. They may not produce a readily discernible, clear trace 

(Matthews et al., 2005). This is exacerbated by systems not highlighting emerging traces to the 

operator. Other factors affecting the clarity of contacts are the conditions of the ocean itself, 

including weather effects and salinity, temperature and pressure (Gimse, 2017), shallowness, or the 

complexity of the sea current (Shar, Li and Shar, 2000). These can affect the accuracy of measuring 

the bearing (Shar, Li and Shar, 2000). Time-of-arrival measurements between the different 

hydrophone arrays allow range to be inferred, but this is quite inaccurate, especially at the beginning 

of detection, and is adversely affected by target distance. 

Bearing angle is displayed over time to produce a waterfall display. For every time period that a 

sonar array returns data, it is plotted as a line on the display. When a new line is added, all other 

lines are moved down, which creates the "waterfall" effect (Asplin and Christensson, 1988).  
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Once the DoA estimation has been performed, two types of analysis can be implemented to extract 

relevant signal features: DEMON (Kemper et al., 2019) and LOFAR. DEMON is a narrowband analysis 

which visualises propeller characteristics: the number of shafts, shaft rotation frequency, and blade 

set (De Moura, De Seixas and Ramos, 2011). DEMON works over the cavitation noise of the target 

propeller (De Moura, De Seixas and Ramos, 2011). It shows a demodulated broadband signal and 

can help to estimate speed by combining the frequency of the shaft with a Turns per Knot value 

(TPK), which is how many times a propeller turns per one “knot” of speed. TPK is obtained from a 

classification database, or can be estimated.  

 LOFAR is a broadband analysis, estimating the noise vibration of target machinery (De Moura, De 

Seixas and Ramos, 2011). Independent Component Analysis algorithms are employed to minimise 

signal interference from neighbouring directions to try and aid with target detection.   

Both are based on spectral estimation. Classification is typically performed using narrowband 

(DEMON). The classification is not validated by the system, and so operators are not aware if a 

classification is potentially incorrect. As the classification is not validated, this can mean the TPK 

value is incorrect for a vessel, and so speed can also be calculated incorrectly. This is dangerous, as it 

can invalidate a contact's known position. The only thing which is known to be accurate is bearing. 

Tracking is performed by analysing the broadband trends over time to try and determine what 

actions a vessel is taking (Fay, Stanton and Roberts, 2019). When a vessel is detected, operators can 

assign it an identifier, or tote, which allows the system to automatically track and update its location, 

and communicate these details to other consoles. The identifier is a tracker (Fillinger et al., 2010). 

Once a target has been initially classified, the "cuts" of the data, estimated speed, and tracker, are 

passed to the control room for TMA. A cut is a straight line, representing the Line of Bearing (LOB) 

for a signal. 
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TMA is a solution to try and determine the location and predicted movements of a contact by 

analysing positional data derived from passive sensors (Cunningham and Thomas, 2005). This is 

called a "solution", and consists of speed, range, course and bearing for a vessel  (Genç, 2010). The 

bearing is the relative direction to a contact from own-ship.  

In order to generate a solution, a Local Operations Plot (LOP) can be used. A LOP is a chart plotted 

with the previous detections of a contact, which can allow a solution to be calculated (Clarke, 1999). 

The LOB of a signal is plotted on the LOP between own-ship's position and the maximum detection 

range of a sensor, which provides an equivalent angle to the detection bearing (Fay, Stanton and 

Roberts, 2019).  

Operators can merge cuts from different sensors and treat them as a singular contact (Huf and 

Brolese, 2006) to provide more information on its behaviour. However, sometimes operators may 

merge multiple discrete contacts' cuts, which then can cause incongruent information to be 

displayed. 

Once multiple cuts have been collected, the operator can then analyse a vessel's path using a “speed 

strip”. This is a visualisation of a “vessel's historic path in the water”. There are marks along a line to 

represent where a vessel would be if the path is correct. It can then be positioned, with marks added 

to the strip for each cut. An operator aligns the strip over the cuts. If the marks intersect the cuts, it 

provides a solution as to how the vessel may be travelling. As a solution builds and becomes more 

accurate, dots, representing the strip's intervals, will form a “stack” (Huf and Brolese, 2006). 

Multiple speed strip configurations could align, which means there is ambiguity, as only one 

alignment will be correct (Cunningham and Thomas, 2005). There are infinite solutions for this, 

which must be narrowed down using all of the available information. More cuts can rule out certain 

solutions. 
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The process of TMA is manual in this sense, rather than cognitive, where operators are manipulating 

a waveform and trying to get dots to stack, searching a problem space mechanically rather than 

recognising a solution based on information presented to them (Cunningham and Thomas, 2005). 

Once a perceived to be accurate solution, which matches all of the cuts, is defined, this can then be 

shared (Huf and Brolese, 2006). This allows a contact to be plotted on a geographical view. Dead 

reckoning is used to plot positional data of a contact, extrapolating previous trends (Murphy, 2000). 

This geographical view can be seen in the command room.  

Design issues, such as transient signals not being highlighted on the waterfall, or TMA solutions not 

being constrained, can add further complexity and cognitive workload to the tasks (Fay, Stanton and 

Roberts, 2019). 

Once a contact has been classified, the OOW uses all available information to assess what the 

Closest Point of Approach (CPA) for the contact should be. The CPA defines a safe distance that must 

be maintained between own-ship and a contact. If a contact enters the CPA, a SO must call a Close 

Quarters (CQ) procedure, requiring Command to assess the situation and advise of what action 

should be taken. This is to avoid collision with the contact. 

3.4: Discussion 

Through the description and analysis of an SMP as a socio-technical system, it becomes clear that 

there are inherent uncertainties throughout the contact classification process. Although previous 

literature studies information assimilation and tactical picture generation for SMP command teams 

in detail, and posits the importance of track management and contact classification, the specific task 

itself from a stand-alone perspective, remains under-studied. 

Coming into port, getting underway, coming to periscope depth, and transiting congested and 

constrained waterways can all mean a high volume of dynamically moving contacts must be 

classified and tracked (Dominguez, Long, Miller, Wiggins, et al., 2006). This can put cognitive strain 
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on both operators and command teams, as knowing where contacts are in position to own-ship at all 

times is paramount to safety. This picture is never static, but constantly changing and moving. 

There is inherent uncertainty in track management, partly due to a combination of the limitations of 

passive sonar capabilities, and also deception techniques used by hostile forces (Kirschenbaum et al., 

2014; Stanton, 2014b; Stanton et al., 2020b). However, even though the uncertainty was 

acknowledged, it is still unclear how it is mitigated. 

Much previous work focuses on how this passive sonar data is integrated into a larger tactical 

picture held by the command team (Stanton, 2014b; Loft et al., 2015, 2016; Roberts and Stanton, 

2018a).  

Inherently, the building of the tactical picture, and the successful monitoring, classifying, and 

tracking of targets, is intertwined. Loft (Loft et al., 2016) speaks of the track manager, who 

communicates closely with the watch leader, equivalent to the OOW, to develop an understanding 

of the bearing, range and speed of contacts held by the SMP sensors, and their relation to own-ship 

and strategic landmarks. In order to safely manoeuvre, constant communication is required to 

maintain situational awareness of contacts, with range and bearing rate being constantly re-

assimilated and communicated between the two parties. 

When beneath periscope depth, track management underpins the core situational awareness of the 

SMP (Loft et al., 2016).  

Stanton, and Stanton and Bessell, (Stanton, 2014b; Stanton and Bessell, 2014) posit that SMP crews 

do not create stable mental representations of their task environment; instead, the representations 

are dynamic, and informed by frequent interactions with information displays and team members, 

with different actors monitoring different facets of the tactical picture. 
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Much of the literature focuses on building models of distributed situational awareness, 

communication and information networks, and studies how these impact the development and 

maintenance of this dynamic tactical picture (Stanton, 2014b). 

 Some of this work relies on simulations of scenarios, and therefore the contacts used in the 

scenarios represent an actual, situational truth. However, this is not altogether realistic; uncertainty 

always underlies the represented position of contacts on tactical displays (Kirschenbaum et al., 

2014), affected by the unpredictability of the ocean itself, as well as hostile contact deception and 

stealth (Loft et al., 2016).  

Contact localisation is inherently ambiguous, with multiple possible contact solutions available, as 

can be seen from this task description. In order to reduce uncertainty, Target Motion Analysis and 

SMP manoeuvres iteratively try to create convergence in the potential solutions. This process is 

repetitive, takes time, and can fail, due to ambiguity and obfuscation of contacts and tracks. This 

means there is variability in how much the tactical picture matches the “ground truth”. 

When studying the relationship between uncertainty and SA using simulated track management 

tasks, Loft found significant differences depending on the expertise of participants. Expert 

participants were less willing to answer Situation Present Assessment Method (SPAM) – a type of SA 

measurement - queries in a timely manner when compared with students, implying they were 

cognitively too busy to self-report, making it difficult to accurately infer precise measurement of SA 

and workload for expert participants. 

 What can be inferred is that much of the work of SOs is heavily cognitive, and incorporates tacit 

knowledge, meaning it is difficult to explain, evaluate and understand. Experts explained to Loft that 

“answering SA queries was not as high a priority” to them as other aspects of their simulated task.  
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When simulated tasks rely on self-report techniques during simulation, especially with experts, 

results can be limited due to the task and the self-reporting both competing for the attentional 

resources of the participant, making self-report less accurate.  

Methods for understanding workload and situational awareness often employ self-report during 

scenarios, where the method itself of measurement competes for cognitive attention with the task, 

resulting in only partial understanding of the cognitive processes and resources dedicated to the 

task. 

Previous work focuses on the development and communication of the overall tactical picture, with 

distributed focus across a larger informational network, instead of micro-focus on the task of 

classification. 

Although students, or participants without expertise, may be more willing to provide information via 

self-report, this does not accurately reflect the experiences of experts in simulation, as they lack the 

cognitive strategies that differ with expertise, and so cannot always be used to infer a realistic 

representation of the demands of the true task for an SME. 

Therefore, this thesis chooses to focus solely on the task of contact classification itself, positing that 

the actual cognitive work of contact classification is under-studied, and even sometimes mis-

represented, in previous works.  

This can be because contact positions are directly related to ground truth during simulation in 

previous studies, meaning the task is inherently different to the reality of track management, where 

ground truth is rarely, or even never, known. As discussed in the CDM interview in Chapter Five, 

sometimes Operators are informed many weeks after an event that they actually missed a contact of 

interest, only once data has been analysed back onshore. This shows how far removed from ground-

truth “in the moment” classification really is. 
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It can also be because the participants used to study track management tasks do not possess the 

expertise needed to accurately convey the mental work involved with the real-world task. 

This work hopes that by focusing and developing a broader understanding of the cognitive processes 

employed in classification, a task which underpins the formation of an accurate tactical picture, 

recommendations for autonomous support specifically for this task can be developed which will 

have an impactful effect on improving that tactical picture generation.  

Facilitating information flow between the sound room and TMA Operators would be beneficial. In 

much of the discussed research, they are situated in different rooms, causing extra steps for 

information to be shared among the two teams. Having SOs in a separate room is a legacy feature of 

an SMP (Stanton and Roberts, 2020); with waterfall displays and better noise-cancelling head-sets, it 

may be sensical to position the two tasks closer together physically, or develop better information 

exchange protocols, potentially through the use of autonomy. The OPSO is often under very high 

cognitive load, both informing the tactical picture of the OOW, and communicating with other 

operators. By providing a way for TMA and SO operators to communicate directly (with permission), 

this could potentially lower the chance of the bottleneck in the form of the SC, and give more 

cognitive bandwidth to the OPSO.  

Similar recommendations have been made in (Stanton and Roberts, 2020), who also identify that 

having SOs in the same room would have the additional benefit of helping the command team 

develop improved awareness of what is happening currently in the sound room. 

This Chapter has highlighted a number of areas within the socio-technical system which could 

benefit from some level of autonomous support. These include: 

- Focusing on broadband sonar classification, as this underpins much of the tactical picture 

used by Command to understand their operational environment, and yet it contains many 

inherent uncertainties 
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- Reducing the cognitive load of an SO when there are a high number of contacts to detect, 

classify and monitor 

- Supporting information transfer between the sonar and TMA Operators, as this currently 

requires messages to be passed back and forth between teams, and heavily relies on the SC 

and OPSO to accurately assimilate, filter and communicate information, which can lead to a 

high cognitive load for these crew members in particular 

In this way, Chapter Three helps to answer RQ1 by identifying a specific task, broadband sonar 

classification, which could benefit from the addition of some level of autonomous support. 
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CHAPTER 4: CASE STUDIES OF ACCIDENTS TO INFORM ADDITIONAL 

REQUIREMENTS 

4.1: Chapter Aims 

This chapter aims to answer RQ2: “How can the causes of previous SMP accidents be mitigated 

through the introduction of autonomy?” This is done by looking at two case studies of incidents, 

with particular regard to how sonar information was used (or mis-used) in those incidents, as the 

process of classifying contacts was highlighted in Chapter Three as a particular area where the 

introduction of autonomous support systems could be beneficial to the specific task, and to the 

information requirements of the socio-technical system in general. These incidents were chosen as 

there were issues with mis-classification of contacts in both. This chapter helps to identify further 

context of use and user requirements as outlined in Figure 1, showing the user-centred design 

process outlined in ISO 9241, by identifying examples of why this task is crucial to overall operations, 

and providing real-world examples of why the task could benefit from autonomous support. 

The chapter begins by looking at the human factors literature surrounding surface ship collisions, to 

provide a starting point to understand human factors in maritime accidents, and to help inform the 

accident analysis methodology. 

4.2: Human Factors in Surface Ship Collisions 

A large body of work exists pertaining to the human factors behind shipping accidents, specifically 

collisions. These collisions have been analysed from a human factors perspective, to highlight areas 

where risks could be reduced or mitigated, and to show how the interactions between the human 

actors and the technical systems used in surface shipping can influence or cause collisions.  

Understanding the human factors behind surface ship collisions can act as a starting point to better 

understand the human factors behind collisions involving SMPs.  
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This work is reviewed to highlight human causes behind maritime collisions. It also discusses the 

similarities and differences between surface ship collisions and collisions involving SMPs. Lastly, it 

helps to highlight that more human factors research is needed pertaining to the causes of collisions 

involving SMPs, showing a large gap in the literature. Critically reviewing the accident analyses of 

shipping collisions also helps to inform the accident analysis of the thesis and justifies the chosen 

methodologies. 

Surface ship collisions are one of the primary causes of serious casualties at sea (Graham, 2012), 

accounting for around 50% of risk when considering high-traffic shipping routes (Mou, Tak and 

Ligteringen, 2010). Although collisions are becoming less common, they represent 71% of accidents 

in European waters when including grounding (European Maritime Safety Agency, 2010). This shows 

a vital need for continuous analysis of the causes of collisions, in order to minimise their occurrence. 

Several studies highlight the role of organisational and human factors in maritime safety 

(Hetherington, Flin and Mearns, 2006; Chauvin, 2011; Chauvin et al., 2013). These factors are often 

central to the causes of surface ship collisions.  

The shipping industry is heavily regulated, with international regulations which seek to harmonise 

equipment requirements, ship design, and best operational practice within international waters. 

These regulations are set by the International Maritime Organisation (IMO). With the 

implementation of the International Safety Management (ISM) code in 1994, produced after the 

capsizing of the Herald of Free Enterprise in 1987, people in charge of a ship are required to establish 

a Safety Management System. This is less prescriptive than previous stipulations for design and 

manning. Instead, it seeks to move away from specific safety training and checklists assigned to 

specific personnel, and instead create a more inclusive culture of organisational safety in the 

shipping industry, through development of an industrial safety culture which involves all human 

actors, both on and off the ship itself. It has been mandatory for all vessels since 2002 (Chauvin et 

al., 2013).  
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It is important to note, however, that not all countries accept all of the proposed legislation. Other 

factors, such as the size of a vessel, and type of vessel, affect which legislation comes into play. This 

can create issues around communication between ships, as the expected behaviour of other vessels 

does not align with their actual behaviour. This breakdown of communications has been shown to 

be a causal factor in many collisions in multiple works (Chauvin, 2011; Chauvin et al., 2013; Sotiralis 

et al., 2016). 

However, despite an increase in regulation which highlights human and organisational factors since 

1994, the link between inappropriate operations and collisions has been clearly shown in (Chauvin et 

al., 2013) as a significant contributor to collisions. Chauvin categorises this as “unsafe leadership”, 

which can either be related to inappropriate operations (insufficient manning, too high speeds 

considering environmental conditions), or a disregard for existing rules and Safety Management 

Systems, which occurred in 33.33% of all accidents reviewed. The idea that non-compliance with 

rules and the Safety Management System increases risk of collision is supported by the Marine 

Accident Investigation Branch, who state that, “collisions should theoretically be avoided if every 

vessel abided by the International Rules for the Prevention of Collisions at Sea 1972” (MAIB, 2004).  

Chauvin et al (Chauvin et al., 2013) present a modified Human Factors Analysis and Classification 

System (HFACS) analysis, which they use to identify patterns and trends in the causes of 27 collisions 

reported by the Marine Accident Investigation Branch. They report that unsafe acts are mainly 

related to decision-making (85%), and/or the non-perception of vessels concerned in 15% of the 

accidents analysed (Chauvin et al., 2013). They also highlight poor visibility, and the mis-use of 

instrumentation, as the main environmental causes behind the accidents. This is backed up by the 

MAIB’s finding that improper use of radar appeared in 73% of the cases they investigated (MAIB, 

2004). 

Unsafe acts, non-perception of the concerned vessel, poor visibility, and the mis-use of 

instrumentation, have all been identified as contributory causes in SMP collisions, as reviewed in 
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Chapter Four, showing a strong link between the human factors which apply to surface collisions and 

the human factors which apply to SMP collisions.  

In terms of the condition of operators, Chauvin identifies deficit of attention, and poor situation 

awareness as contributory factors to collisions. They highlight the high workload on the bridge as a 

contributory factor, with navigational tasks, collision avoidance, and administrative tasks often being 

carried out concurrently, therefore detracting from attention and situation awareness. 

 A lack of situation awareness may be a problem which is compounded when considering SMP 

operations, as less external information is available when developing an understanding of the 

operational environment. As well as this, the OOW is lacking any bespoke display, and so must be 

amalgamating information from a variety of different sources, whilst also performing calculations to 

ensure navigational safety. This can lead to a reduction in attention. However, crew configurations 

and duties are regimented, with a clear chain-of-command mediating communication and duties on-

board military vessels. This means two things; situation awareness is more highly distributed across 

the socio-technical system, and operators should be able to focus their attention on particular tasks 

rather than it being spread over multiple concurrent duties.  

There are a number of limitations to Chauvin’s work. The work uses HFACS analysis, based largely on 

Reason’s Swiss Cheese Model (Reason, 1997). The Swiss Cheese Model posits that each level of the 

socio-technical system has weaknesses in it, known as voids, analogous to the holes in a slice of 

Swiss cheese. A weakness, or hole, in one layer, could allow a problem to pass through. However, 

the next level may not have a hole in the same place, stopping the problem from permeating. If the 

holes align in all of the layers of the socio-technical system, an accident occurs.  

Although the model is widely used and accepted, this is not without criticism. The model has been 

criticised for being an oversimplification of how accidents occur, with no real understanding 

developed of links between different individual, causal or organisational factors (Larouzee and Le 

Coze, 2020). Reason actually criticised the breadth of his own model, quoted as saying, “the 
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pendulum may have swung too far in our present attempts to track down possible  errors and 

accident contributions that are widely separated in both time and place from the events 

themselves” (Reason, 1997, p. 234). 

Another criticism of the Swiss cheese model would be that it can lead to a false sense of security, as 

it can make the causes of the accident seem very difficult to align. The model also does not show 

detailed links between the identified causalities, making it hard to infer the precise relationship 

between them (Perneger, 2005; Larouzee and Le Coze, 2020). 

HFACS is based on similar principles to the Swiss cheese model, and so inherits some of the 

problems associated with it. Some which are highlighted in the literature include wildly different 

reports of reliability, and little task standardisation, with the HFACS often being modified to suit a 

particular domain or organisation, leading to high levels of variability in how the method is applied 

(Cohen, Wiegmann and Shappell, 2015). Specifically, Cohen highlights how deriving the casual 

factors from accident or incident reports can cause higher variability and reduces reliability amongst 

raters (Cohen, Wiegmann and Shappell, 2015). This is the methodology used by Chauvin, who also 

modifies the HFACS to be better aligned with maritime collision analysis.  

Chauvin suggests the small number of accidents used in the analysis as a limitation. This is one 

reason the HFACS may not be an appropriate accident analysis methodology to apply to this 

research, as the number of accident reports for SMP accidents is drastically smaller, often with much 

less, or even incomplete, details of the accident provided, as not to reveal any security sensitive 

information.  

The accidents which were analysed only have two commonalities; they were reported on by the 

MAIB, and included a collision. This must have introduced many factors which lacked strong 

relationships, considering the different technologies, crewing configurations, shipping types, 

operating conditions, which would have made it difficult to identify clear patterns or relationships.  
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As well as this, although some specific problems were identified, such as poor situation awareness, 

or a failure to identify the other vessel involved in the collision, many are vague, such as an 

incomplete or ignored Safety Management System. The ways in which the Safety Management 

System can be incomplete, or why or how it is ignored, appear to be outside of the scope of the 

work, even though it is identified as a key reason for accidents occurring.  

Overall, the meta-analysis provides a good introduction to the human factors which can contribute 

to shipping collisions, but is very broad. Some of the points discussed, such as the poor 

communications between colliding ships, are specific to surface shipping, and are less relevant to the 

operations of SMPs operating covertly below periscope depth. These collision incidents have not 

been analysed from a human factors perspective, and this is a gap in the research which this thesis 

begins to address. 

Sotiralis et al. (Sotiralis et al., 2016) present a Bayesian Network model of the human factors which 

influence the risk of surface ship collisions. The model uses an event tree which represents the 

consequences of a collision event, coupled with a Bayesian network which was developed to 

calculate the probability of collision, and to model the factors which contribute to the competence 

of the OOW, their detections, assessments, and actions (Sotiralis et al., 2016). This can be used to 

quantify the probabilities of collision based on ship type, environmental conditions, and the mental 

state of the OOW. 

However, Sotiralis groups together many different kinds of collisions, occurring between different 

kinds of ships, from different nationalities, in different waters (Sotiralis et al., 2016). By grouping so 

many disparate incidents, which may have confounding factors, such as some legislation applying to 

some ships or countries and not others, different operational practices for the OOW depending on 

industry or type of ship, this may weaken the implied relationships they can infer about the causes 

of collisions.  
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Wang et al. study the causes of 200 ship collisions, using logistic analysis to work out the maximum 

impact factors behind the collisions (Wang et al., 2019). 

Like Sotiralis, they group together a high volume of different collisions. The model is linear, and so 

only deals with the "main" cause of each accident, which could be considered reductive, and does 

not help to understand the relationships between the different factors that align to cause unsafe 

conditions. They also do not specify the date range of the collisions they are analysing, or give details 

about the sources of all of their information. Wang and Sotiralis both potentially make the mistake 

of amalgamating many incidents which occurred before certain standards or regulations, such as the 

ISM code mentioned above, with recent shipping collisions. This could introduce information on 

causes of collisions which have been rectified through better equipment requirements or standards.  

Antão et al. create a model for maritime accidents by applying a Bayesian Belief Network which 

maps the main causes and types of accident and their consequences (Antão et al., 2009). The paper 

is very clear with their data, analysing reports for 857 accidents which occurred in the last ten years, 

using the database entries of the Portuguese Maritime Authority. This reduces the problems found 

in the previous works. 

 Their data draws interesting conclusions about the effects weather, time of year, and type of ship 

can have on the likelihood of collisions. However, they do not consider the human factors behind the 

accidents, instead, focusing more on environmental conditions and ship type. 

Robust models can be computed for collision causation when there is reliable and similar data 

recorded for all of the collisions analysed. From the literature, it seems that the recording of human 

factors historically has been vague when considering surface ship collisions, which has a knock-on 

effect when trying to perform quantitative analysis. This is worsened by the inclusion of disparate 

data, either because it covers a large time-frame where legislation and equipment requirements 

have radically changed, or because it is fusing data from many different kinds of environment, vessel 

types and locations. For example, the USA does not accept some fishing vessel regulations which 
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other countries abide by. Therefore collisions involving these ships could flag as collisions involving a 

disregard of rules, where the rules simply did not apply.  

The other issue is that a lot of the reports seem to have a larger focus on the “here and now” when a 

collision is occurring, which is understandable, but does mean that often the higher levels of the 

socio-technical system receive less attention. This means that when these causes are modelled using 

HFACS or the Swiss cheese model, some of the later slices or higher segments are less filled than the 

lower ones. This is an issue with what could be considered a bias within the larger data-set; 

individuals or equipment which is directly involved in an incident is often the focus, leaving larger 

issues to do with organisational culture or governing bodies unexplored to a larger degree. 

This short review has highlighted a number of factors which must be considered with regard to this 

research. Firstly, there appears to be some overlap between the human factors identified in surface 

ship collisions, and those identified for collisions involving SMPs. These include a lack of knowledge 

about the other vessel involved in the collision, the OOW’s decision-making and mental state, and 

poor situation awareness, as identified in (MAIB, 2004; Chauvin et al., 2013), just as they are 

identified in (Marine Accident Investigation Branch, 2015, 2020) with regard to SMP collisions.  

There is potentially a vast amount of data available for analysing surface ship collisions, through 

accident reports. Many incidents that are suspected of involving SMPs are never officially confirmed. 

Reports for accidents involving SMPs can take a long time to come out, sometimes many years, and 

on release are often heavily redacted for security reasons. This makes it difficult to create a large-

scale model to perform some kind of qualitative analysis; the data-set is simply unavailable. There 

are also issues with creating such a large data set even when the information is readily available, as 

confounding or conflicting information can easily be introduced to the model. 

As there is limited information available about SMP collisions, instead of trying to create a larger 

model to predict risks and trends, this thesis considers two recent SMP incidents, both involving RN 

SMPs, both with mis-classification listed as a cause, and examines and compares them in detail. Both 
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reports are compiled by the same source, and the methodology chosen to analyse the accidents 

allows them to be wholly visually mapped, with all causes connected.  This is known as AcciMapping, 

and is discussed in more detail in Chapter Four. 

This allows for a fuller picture of the data across the layers of the socio-technical system; it is less 

abstracted than the Swiss cheese model, making causality clearer, and tries to see the relationships 

between all of the different causes, rather than splitting them into different workflows as in HFACS. 

This will allow for a more thorough comparison and detailed analysis of the two chosen incidents.  

4.3: Accident Analysis 

An overview of the information requirements and transfer techniques has been established in the 

previous chapter. This information is used to build a tactical picture, the understanding of which has 

been shown to be distributed across the socio-technical system, with only the CO holding an overall 

picture, which is dynamically changing over time, and must be assimilated through constant 

reiteration, through interaction with a number of sub-systems and actors. The tactical picture is 

based on a number of information sources which contain inherent uncertainties. This is especially 

true for understanding the external environment; with this process relying on broadband sonar 

classification when operating below periscope depth. This process cannot be externally validated, 

and relies on expert analysis of hydrophone recordings, with only the bearing of contacts known. All 

other information about a contact is inferred from this bearing information. This can lead to errors, 

which then propagate through the system, and negatively impact the reliability of the tactical 

picture. 

 The research will now attempt to identify how these uncertainties can have a negative impact on 

the overall safety and operation of submersible maritime platforms. 

This serves two purposes; to firstly understand where and how the uncertainties of the task can 

negatively affect the safety of the SMP; and to therefore highlight potential areas where 

theoretically autonomous support could mitigate these effects in the future. 
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To do this, two case studies of incidents reported on by the Marine Accident Investigation Branch 

(MAIB) were chosen for further analysis.  

The incidents were analysed using a technique called AcciMapping. AcciMaps can be used to 

understand the causes of accidents and how they relate to each other, combining to create 

dangerous conditions. This is done by following Rasmussen’s “systems approach” of accident 

analysis, where individuals are not blamed for error when accidents are provoked by systemic 

deficiencies and failures (Reason, 1995; Branford, Naikar and Hopkins, 2009)(Rasmussen, 1997). 

Rasmussen developed this technique in 1997. The purpose of AcciMapping is to develop proactive 

risk-management strategies for complex socio-technical systems (Branford, Naikar and Hopkins, 

2009). The technique can be used to better understand the causes of accidents and how they relate 

to each other. These identified conditions, when combined, could lead to danger.  

Complex socio-technical systems involve a high degree of integration and coupling of information 

derived from multiple systems. Effects of a singular decision can have effects which propagate 

rapidly and widely throughout the entire system (Svedung and Rasmussen, 2002). This makes it 

important to understand the impact of decisions across the whole of the socio-technical system.  

Accidents are not caused by the “coincidental alignment” of independent failures and human errors, 

but instead, can be seen to be allowed by a systemic migration of organisational behaviour. This can 

be especially true when there are added cost or competitive benefits from operating at the edge of 

the usual, accepted practice (Svedung and Rasmussen, 2002). In other words, the structure of the 

system, and the risks that are sometimes taken to maximise the advantageousness of performance, 

are the reasons accidents occur, not at an individual level of actors within the system, who are 

simply working in a way in which the system as a whole allows them to.  
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The AcciMap is split into six levels representing increasing levels of abstraction of the socio-technical 

system, going from physical processes at the bottom, to laws and regulations at the top. Nodes are 

then connected that show how causes across the levels are related – either sequentially, or by task. 

This is particularly useful in understanding how causes can occur as side-effects of decisions made at 

different points in time by different actors, distributed at different levels of the socio-technical 

system. The activities can be functionally disconnected, with only the accidents revealing their 

relational structure (Svedung and Rasmussen, 2002). 

The AcciMap is aimed at improving the design of systems, rather than as an allocation of 

responsibility. It can allow for representative identification of factors which are sensitive to 

improvement within the system as a whole. 

4.4: Incident Selection 

The two incidents discussed were selected from accident analysis reports produced by the MAIB. 

The MAIB is an official government body in the U.K. which investigates marine accidents that involve 

U.K. vessels worldwide, or which occur in U.K. territorial waters. 

 The specific incidents discussed in this chapter were chosen because they were officially 

documented by the MAIB with a full, publicly available report available. Both involved RN SMPs. 

Inaccurate contact solutions were direct causes of both incidents. 

4.5: Karen Incident Overview 

The first incident involves a collision which occurred in the Irish Sea in 2015 between an RN SMP and 

a fishing vessel named Karen. The RN SMP snagged the fishing gear of Karen, submerging the vessel 

underwater. The crew of the Karen was unharmed. The primary cause of the collision was the mis-

classification of Karen as a merchant vessel instead of a fishing vessel, which meant the TMA 

solution derived for Karen was incorrect. An incorrect TMA solution meant that the crew’s prediction 

of Karen’s position in the water was incorrect (Marine Accident Investigation Branch, 2015).  
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This mis-classification occurred because of a lack of trawl noise – the noise trawling fishing nets 

make in the water, used in the hydrophone analysis conducted by SOs.  This is an example of 

negative confirmation bias; the absence of a classifier being used to confirm a different 

classification. Many vessels were mis-classified as merchant vessels in the operational area, meaning 

the RN’s guidance on fishing vessel avoidance was not followed, as there was a lack of awareness of 

how many fishing vessels were operating in the area. 

The RN SMP was dived, which meant that no RADAR, Automatic Identification System (AIS) 

information, or external views were available to verify the positioning of contacts in the area.  

There was also a heavy concentration of contacts in the area, and the SMP was operating at a high 

speed, meaning contacts had to be classified relatively quickly. This may have meant that attention 

was spread over a large number of tasks, meaning there was little opportunity to investigate the 

incorrect classifications further, by producing more data tracks, and refining contact solutions. 

Another cause for the collision was that the Command team had suspended the requirement for 

Close Quarter procedures, in an attempt to normalise passing close to merchant vessel contacts. 

However, there were at least two fishing vessels within 4000 yards of the SMP at the time of the 

collision. Because of the mis-classification, the crew of the SMP were not aware of the risk the close 

proximity contacts were creating, as they were perceived to be merchant vessels, and so snagging 

could not occur.  

4.5.1: AcciMapping Methodology 

The MAIB report was used as the primary source for information from which the AcciMap was 

visualised. This contained all of the factual information available about the accident, and had been 

compiled from evidence obtained directly from the RN and from the crew of Karen, as well as 

admiralty charts, plots and charts obtained directly from technical systems onboard Karen, and raw 

AIS and Vessel Monitoring System (VMS) information. Therefore it was considered to be a thorough 

and all-encompassing source to use as the basis for the diagram.  
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The AcciMap was first physically conducted on a wall using post-it notes, allowing for the actions, 

goals, beliefs and regulations to be moved around across the different abstract layers of the map. 

Firstly, key actors were identified through a “first pass” of the report, identifying actors who 

performed actions before, during, and after the incident. These actions were all recorded on 

separate post-it notes.  

Secondly, the report provided a sequence of events which occurred before, during, and after the 

collision. These were also broken down into individual events and actions, as well as contextual 

goals, and recorded on separate post-it notes.  

Actions (e.g.: “abandoned CQ procedures”, “course changed 15 degrees”) and events (“no trawl 

noise was heard”, “operating ‘fast and deep’”, “no fishing vessels identified in pre-mission planning”) 

that occurred directly before, during and after the incident were then arranged across the bottom 

four layers of the AcciMap, as they described the physical processes and activities, equipment, and 

surroundings, and their operational management. These were linked together to understand a rough 

path of causation. 

The causes of the accident were discussed with reference to this sequence of events, and also with 

regard to legislation (“COLREGs”), best practices (“fishing vessel avoidance guidelines”), and rules of 

conduct for both shipping vessels and SMPs. These were all recorded separately on post-it notes. 

The best practices, rules of conduct, and legislation governing the situation were plotted over the 

higher levels of the AcciMap, representing government policies, regulating bodies and associations, 

and local planning regulations. These were then linked to the causes as defined in the report. 

More abstract causes for the accident, such as beliefs (“belief that FV always made trawl noise”), 

goals and needs (“need to remain covert”) and expectations (“expected to maintain radio silence”) 

were then identified through a third pass, written out on post-it notes and added across the layers of 

the AcciMap depending on where and how they applied to the incident. 
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Sections of the report referring to previous accidents, and recommendations, were not included in 

the passes made in the report, as they contained information outside of the scope of the incident.  

The diagram was built on a wall, and then a digital copy of the diagram was recreated. Analysis 

started from the bottom layers of the AcciMap, linking immediate causes together, and then moved 

upwards, tracing the effect of the legislations, beliefs, and planning activities. The completed 

diagram can be seen in Section 4.4.2.  

The same procedure was followed for creating the diagram of the second incident, seen in Section 

4.6.1. This methodology followed methodologies for other AcciMap analyses (Tabibzadeh and 

Meshkati, 2015; Hamim et al., 2019; Banks, Plant and Stanton, 2020) and was also based on 

guidance found in (Rasmussen and Svedung, 2000).
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4.5.2: AcciMap for the Karen Incident 

 

Figure 7: The AcciMap produced for the collision between an RN SMP and fishing vessel Karen in 2015 
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4.6: Karen Incident Discussion 

Looking at Figure 7, reasons for the accident can be seen spanning across multiple layers of the 

socio-technical system. Key reasons for the accident have been coloured in red.  

An integral contributor to the accident was the mis-classification of Karen, as can be seen on the 

central node, which impacts many other nodes of the AcciMap. Insufficient time, and heavy 

cognitive load, both contribute to this mis-classification. These causes are impactful because, 

coupled with the lack of trawl noise identified for Karen, they reduce the possibility of collecting 

further data tracks.  

It is only through the iterative process of collecting more information on a contact that the 

ambiguous solutions are able to converge to reduce uncertainty around the solution, as stressed in 

the CDM interviews, and also in the literature (Dominguez, Long, Miller, Wiggins, et al., 2006; 

Schunn, Kirschenbaum and Trafton, 2013; Loft et al., 2016).   

The lack of trawl noise being used to discount the possibility of Karen being a fishing vessel is 

particularly pertinent, for a number of reasons. This confirmation bias is a breakdown of logic. By 

their very nature, fishing vessels do not always produce trawl noise; in fact, this noise is linked to 

one very specific circumstance, trawling nets. Fishing vessels are known to be particularly dangerous 

because of their behaviour; often engaging and disengaging their engines, and moving and stopping 

to trawl for fish.  

The expectation, or lack thereof, of finding fishing vessels in the operational area highlights a key 

area of informational need influencing safe passage. All vessels at sea have a responsibility to be 

transmitting information about their vessel using either AIS or Vessel Monitoring System (VMS) via 

radio transceiver and satellite respectively. 

AIS is an automatic tracking system communication technology, with AIS information supplementing 

marine radar to provide collision avoidance for water transport. It provides information such as 
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unique identifiers, position, course and speed, which can be displayed using electronic chart displays 

or on a screen (Roberts et al., 2004). This information allows maritime authorities to track and 

monitor vessel movements, and is required by maritime law to be fitted aboard voyaging ships with 

300 or more gross tonnage, and all passenger ships regardless of size (AIS Transponders, no date). 

VMS is a more general term which describes systems used in commercial fishing which allow 

regulatory organisations to track and monitor the activity of fishing vessels. It describes the specific 

application of monitoring commercial fishing boats. Different VMS systems employ various 

communication technologies, depending on VMS initiatives at national and regional levels.  

The Global Fishing Watch initiative combines publicly available AIS information and integrates it with 

VMS information made available through governmental partnerships globally (Global Fishing Watch 

and Dicaprio, 2018). They use machine learning to combine AIS tracking and radar, optical and night-

time imagery, and vessel registries, to produce publicly available visualisations of shipping activity 

around the world, both current and historic (Global Fishing Watch, 2019). Resources such as Global 

Fishing Watch could be useful for during pre-mission planning stages. Although this information 

cannot be accessed by the SMP crew when operating below periscope depth, it could certainly be 

used to enhance predictions around what traffic to expect, at what times, and where. 

4.7: Stena Superfast Incident Overview 

The second incident chosen for analysis was a near-miss between an RN SMP and a ro-ro ferry, Stena 

Superfast VII, in the North Channel in 2018. 

 The crew of the SMP were conducting pre-deployment safety training, with experienced members 

of the Flag Officer Sea Training (FOST) organisation on board. The SMP was operating at periscope 

depth to facilitate training exercises. This meant that they had more tools at their disposal to assess 

the operational environment, including the periscope, RADAR system, and AIS information 

broadcasts, although these were not clear, due to the short length of the periscope meaning there 

was interference, and so AIS information was intermittent. 
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A trainee periscope Watchkeeper reported sighting a new surface contact with an estimated range 

of 9000-10000 yards, which was identified as a ferry via the periscope. This information was input 

into the Submarine Command System (SMCS), and therefore was the information used by the 

Command team when making navigational decisions. None of the more experienced Watchmen 

checked the range estimate. 

The OOW estimated the speed of the ferry to be 15kts. It was travelling at an actual speed closer to 

21kts, causing a large disparity between the predicted time to CPA and the actual time to CPA. The 

periscope watchkeeper advised the OOW that the ferry was closing and heading towards the SMP. 

The OOW gave an order to turn the SMP to port, thinking this would move them out of the ferry’s 

predicted path. 

The Sonar team were tracking the ferry, and recognised the bearing was steady, despite the evasive 

manoeuvre. The sound room tried to initiate a Close Quarters (CQ) procedure. At the same time, the 

periscope was spotted by the OOW aboard the Stena Superfast, who realised there was imminent 

risk of collision, and applied the port rudder to increase CPA from the periscope. 

The CO of the SMP, upon awareness of the ferry’s turn to port, cancelled the CQ procedure and 

directed the OOW to remain at periscope depth, rather than going deep to avoid collision. They did 

not acknowledge that the ferry’s change of course was evasive action, assuming instead it was 

course correction. Therefore the near miss was not acknowledged on board the SMP. 

Once Stena Superfast had passed clear of the SMP, the master notified Belfast coastguard that the 

SMP’s periscope had passed down the starboard side of the ferry at a range of 50-100m. 
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4.7.1: Stena Superfast VII Incident AcciMap 

 

Figure 8: AcciMap for Near-Miss with Stenna Superfast VII 
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4.7.2: Stena Superfast VII Incident Discussion 

The near-miss between the Stena Superfast VII and the RN SMP had multiple causes, which can be 

seen in Figure 8. The initial range estimation of the ferry was inaccurate, and this, combined with an 

underestimation of the ferry’s speed by the OOW, meant there was significantly less time to take 

avoiding action than was calculated by the OOW. This, coupled with the turn towards the ferry, 

created a very real risk of collision. 

This example shows how inaccurate information can propagate. The incorrect range estimation led 

to inaccurate speed and CPA calculations, all of which combined to create a very likely possibility of 

collision. 

More accurate bearing information was available to the SMP’s command team from passive sonar 

and periscope camera. Command relied instead on the SMCS data, which was exclusively based on 

the inaccurate initial estimated range data, to make their navigational decisions.  

The sonar characteristics for the ferry would have presented contradictory evidence of the ferry’s 

range, however, this was ignored. Sonar Operators had detected a potentially dangerous situation 

and had called a CQ procedure. However, command decisions were made instead with the SMCS 

information, which presented a safer picture than in actuality, and so the decision was made to 

remain at periscope depth, even though the situation warranted a dive for collision avoidance. 

When the ferry was observed to alter course to port, this information was used as a “reinforcing 

bias”, fuelling the assumption that the ferry was altering course to regain its original planned track.  

When faced with incongruent information which did not align with the environmental picture 

presented by SMCS, a safer decision would have been to reassess options with consideration to the 

contradictory sources of information.  

There was also pressure to commence training at periscope depth that afternoon, which may have 

impacted the decision to cancel the CQ procedure, as well as the inaccurate representation of 



109 
 

distance to CPA and under-estimation of speed, all based on the estimated, and incorrect, range 

used in SMCS. 

Radar not being used also prevented a more accurate assessment of surface vessels, and a 

correction of the estimated range.  

The SMP was positioned in a hazardous zone, with very lively shipping traffic, and the MAIB assert 

that this was clear when viewing historical AIS data for the location. Although the OOW may have 

thought they were clear of the ferry lanes, this was not actually the case: what they saw as a thin 

line of traffic to be avoided was actually a much wider corridor. This incident again highlights how 

more visualisation and study of historical shipping information could help to obtain a more accurate 

picture of an operational environment. Both this incident, and the Karen incident show an absence 

of a realistic plot of surface shipping which contributed to poor navigational decision making. 

4.7.3: Findings 

The accident analyses present a number of observations which could influence what autonomous 

support could be introduced to aid with tasks, where, and why. This helps to answer both RQ1 and 

RQ2, identifying what kind of autonomy would be useful, and how its introduction could prevent the 

same kind of incidents from re-occurring.  

Firstly, an incomplete understanding of the surface picture, with reduced awareness of what surface 

vessels were operating in the area, contributed to both the collision and the near miss. This 

happened when operating at periscope depth, even with multiple sensor systems available to assess 

the environmental picture, and also when operating below periscope depth.  

The Karen accident occurred in a busy fishing area, and yet the crew seemed unaware of how likely 

they were to encounter fishing vessels, and the Stena Superfast VII incident occurred in a hazardous 

area, but command did not appreciate this, believing they were not navigating in the shipping lane, 

underestimating its size. 
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 This indicates that there is scope to develop a more thorough understanding of expected surface 

contacts both in the pre-mission planning stages, and through improved accuracy of plotting 

shipping routes and fishing areas. Historical AIS information could have been utilised to better 

understand hazards in the operational environment for both of the incidents described. This 

highlights a key area where increased autonomy could be beneficial for safe navigation, through the 

form of analysis of historical AIS and VMS information to better understand patterns of life and to 

analyse safer routes. Big data and machine learning can be used to accurately visualise this 

information, as shown by projects such as Global Fishing Watch, and could help to optimise routes 

by analysing historic traffic information. 

The way in which sonar information was treated was different across both incidents. Whereas for 

the Karen collision, there were high levels of ambiguity for contact classifications, with many fishing 

vessels being mis-classified as small merchant vessels, during the near miss incident, the sound room 

were aware that the ferry was much closer to the SMP than Command believed, and even went as 

far as to initiate a CQ procedure, which was overruled. 

This highlights that the inherent uncertainty around contact classification can be damaging in 

different ways. When not enough information is present to confirm a classification, this should be 

re-evaluated, as in the Karen accident, where mis-classification occurred. When information sources 

conflict, or are incongruent, as in the near miss, with SMCS and sonar data representing two distinct 

and conflicting solutions for a contact’s behaviour, this information should be re-integrated, so that 

understanding is recalibrated. Both incidents show a need for better management of information 

uncertainty.  

Although there is always going to be uncertainty when relying on a tactical picture generated 

through sensor systems and not through direct observation, better ways to evaluate and mitigate 

this uncertainty are needed. 
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Other key points to note are that better facilitation of sharing information from the sound room and 

the control room may have helped to make the disparity between the interpretations of Stenna’s 

movements clearer to command, in the near miss situation. This was highlighted in the last chapter 

also. 

Reducing the heavy cognitive demand in a high-contact situation could also be of benefit, as 

highlighted by the Karen incident. This provides examples of additional area where highlighting 

information to an SO would be useful, such as to make particularly ambiguous contacts clearer to 

operators; for example, vessels that could potentially be fishing vessels, even if trawl noise is absent. 

It is clear that sonar classification is integral to developing understanding of the tactical picture, and 

the mis-use, or dis-use of this information can create unsafe situations, as illustrated by the two case 

studies explored above.  

This provides more evidence that the specific task of broadband sonar classification could benefit 

from autonomous support, and gives examples of what kind and level of autonomy would be useful, 

helping to answer RQ1 and RQ2.  

The following chapter now builds on this, by developing an understanding of the task from a user-

centric perspective.  
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CHAPTER 5: UNDERSTANDING BROADBAND SONAR ANALYSIS 

DECISION-MAKING 

Parts of this chapter were prepared using the published work “Classifying Vessels Using Broadband 

Sonar: Considerations for Future Autonomous Support”. Section 5.4 contains text from this 

publication. 

5.1: Aims of Chapter 

This chapter aims to build on Chapter Three and Chapter Four to develop understanding of 

broadband sonar analysis. Chapters Three and Four gave a context-driven overview of the task, and 

how it is performed and used within the wider socio-technical system. They identified how crucial 

the task of classification is to building an accurate and useful tactical picture, and what can happen 

when this goes wrong.  

This chapter analyses the tasks from the perspective of an SO, to derive specific user requirements 

to answer RQ1: 

RQ1: What Level and Type of Autonomy could be suitably applicable to tasks carried out in the 

process of broadband sonar classification whilst maintaining appropriate levels of trust in the 

automation? 

 This chapter begins to answer RQ3 and RQ4: 

RQ3: How do Sonar Operators cognitively classify sounds? 

RQ4: How can an autonomous decision aid visually present a credible, understandable, and trustable 

explanation behind its decisions? 

 This is done by developing understanding of the decision-making tactics employed by an SO, and 

how the decision-making process can be best supported by an autonomous decision-aid. The 
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cognitive process of classification is explored through an interview where the SO presents a scenario 

in detail, which is then further analysed to understand the cognitive processes at play. 

5.2: Introduction to the Task 

If all knowledge and processes could be broken down into stringent sets of logical rules and 

algorithmic processes, humans would have no use onboard an SMP; they would be perfectly capable 

of running themselves. While computer systems are able to follow logical rules and process large 

amounts of information easily, they lack imaginative and contextual thinking, human experience, 

and wisdom. Or what Klein terms “tacit knowledge” (Klein, Calderwood and Macgregor, 1989).  

Explicit knowledge is objective, rational, and technical. It has a rigid structure, with fixed content, 

and is independent of context. It can be easily documented and externalised, and is therefore easy 

to share, transfer and teach. 

Tacit knowledge is subjective, cognitive, and personal. It can be context specific, is highly 

internalised, and is difficult to capture and share. It is explicitly human, and is built up through 

experience and personal wisdom. 

Critical Decision Method interviews have been used in domains such as fire-fighting (Klein and 

Klinger, 1991), weather prediction (Klein, 2009), and Naval command and control (Kaempf et al., 

2006). They focus on a method which tries to capture decision makers’ experience with situations 

involving dynamic and continually changing conditions, and their real-time reactions to these 

changes (Klein, Calderwood and Macgregor, 1989).  

They can be used to try and gain insight into how experts gain situation awareness, referring to the 

“state of knowledge of perception of elements within the environment, the comprehension of their 

meaning, and the understanding of their anticipated status in the near future” (M. R. Endsley, 1995; 

Kaempf et al., 2006). 
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The CDM  interview involves using questions which act as cognitive probes (Klein, Calderwood and 

Macgregor, 1989), to try and understand the cognitive decision-making processes that experts 

employ to carry out tasks.  

The cognitive probes used in the interview examine goals, cues employed, expectancies and courses 

of action, whether considered or taken. They also try and search for errors, either committed in the 

task by the operator, or hypothetical ones, to try and derive the strategies which can overcome 

them.  

Kaempf suggests that decision makers in command-and-control settings use “feature matching” and 

“story-building” strategies in order to build SA (Kaempf et al., 2006). Feature matching is diagnostic; 

many incidents have clear and limited feature-sets, which have meaning in the decision-maker’s 

specific domain. Story building is a diagnostic strategy where decision makers mentally simulate to 

construct a story of how a state of events may have been caused. When there is not enough 

information to trigger specific recognition of a situation, the decision maker fits the disparate pieces 

of information they do have together to try and construct a coherent explanation.  

The way in which these decisions are made fits the Recognition Primed Decision model (Klein and 

Calderwood, 2015). This is a model of decision making, which explains that experts, rather than 

playing out different courses of action in their head and choosing the best one, identify cues in the 

moment which relate to their previous experiences and classify the situation based on how they 

have dealt with it before. They found only 4% of the strategies used in decision-making with Naval 

officers involved comparing and contrasting courses of action. The decision making usually focused 

on developing situation awareness. This can be true even when the use-case is difficult. 

Klein posits that it is through experience that decision makers gain the ability to evaluate a single 

course of action through mental simulation, instead of having to generate multiple hypothetical 

solutions and compare them. This could mean that decision-making aids should have different 

designs depending on the skill level of the user. Recognition primed decision making is also more 
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practical when under pressure, or experiencing time constraints, as it results in quicker decision-

making. 

By identifying how experts make decisions, this can provide insight into how best to design training 

and decision supports for to aid them in their tasks. This can give insights into the cognitive 

processes of task performance, and how to better support them through interface designs, instead 

of focusing solely on physical components and tasks.  

5.3: Critical Decision Method Interview Technique 

CDM is a semi-structured interview technique which is used to “investigate phenomena that rely on 

subtle perceptual cues, and assessments of rapidly changing events” (Kaempf et al., 1996). It focuses 

on trying to elicit subtle aspects of domain knowledge and tasks. Probes focus on goals, 

hypotheticals, errors, and important cues. Instead of focusing on explicit knowledge, the CDM 

focuses on “critical incidents”, memorable experiences which can be recalled with detail and 

accuracy. An interviewer tries to get an expert to focus on a previous difficult or challenging 

experience where they had to apply their skills. The interviewer then uses this experience as a 

framework to try and probe for decision strategies, pattern recognition, expectancies, errors, and 

environmental cues (Kaempf et al., 1996). 

SME interviews are used as a tool to gain understanding of complex social, technical and information 

systems, as well as informing suggestions of system design improvements (Barnes, 2003; 

Dominguez, Long, Miller and Wiggins, 2006; Kaempf et al., 2006; Walker et al., 2010). 

CDM interviews are used to try and better understand tacit, as well as explicit, knowledge. They are 

used in the field of Naturalistic Decision Making to try and understand how experts make decisions 

or deal with high levels of uncertainty in their specific domains. 

In order to better understand the highly cognitive task of contact classification, the ability to extract 

meaningful insights and classifications from sound recordings and their corresponding spectrograms, 



116 
 

a CDM interview was carried out with an SME. This participant was chosen because they had ample 

experience with broadband sonar classification, working both as a Sonar Operator and a Sonar 

Controller during their career, and so had expertise in the interpretation of hydrophone recordings. 

5.4: Critical Decision Interview Methodology 

The interview methodology is as follows, and has been adapted from (Klein, Calderwood and 

Macgregor, 1989).  

First, a particular event is chosen to focus on during the interview. A scenario which involves 

challenging decision-making is optimal, usually in situations which are characterised by high time-

pressure and high informational content, and are considered to be difficult by the decision-maker. 

 The interviewer asks for a brief description of the incident, and does not interrupt the participant, 

allowing them to explain the incident in their own words, in as much detail as they would like to 

offer.  

Then, the scenario is discussed, and a timeline is created from the scenario in conjunction with the 

interviewee. This is known as the first pass. The timeline contains objectively verifiable information, 

the sequence and duration of each event reported, as well as thoughts and perceptions reported by 

the decision-maker. This creates a shared awareness of the facts, from the interviewee’s 

perspective. This also allows for any missing facts or inconsistencies to be identified and corrected, 

or fleshed out. 

 Once the timeline has been constructed, the interviewer asks questions about specific areas of the 

timeline, which are designed to better understand the decision-making processes, known as 

cognitive probes. The questions require the decision-maker to reflect on their strategies and bases 

for decisions. Questions can vary in wording and timing, depending on the scenario that has been 

described, as interviewers have heard a description of the scenario before the probing begins. The 
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interview is semi-structured, and so has a lenient format, trying to allow natural dialogue to occur as 

much as possible, to keep the interviewee suitably engaged. 

 The interviewee is encouraged to draw diagrams to help explain various aspects of the scenario, 

such as how actors are geographically related to each other, or displays they were using to make the 

decisions. This gives more context to the situation, and also helps to refresh the decision-maker’s 

memory. 

Decision points are identified within the time-line, to understand why a specific course of action was 

taken at that point. Questions are asked to elicit details around the specific decision points. Probes 

about options are asked for each decision, including hypothetical ones.  

Examples of different probes to be used in the interview process are shown in Table Four. 

 

Table 4: Examples of Critical Decision Method interview probes, from Klein, Calderwood and Macgregor, 1989 

Probe Type Probe Content 

Cues What were you seeing, hearing, smelling? 

Knowledge What information did you use in making this decision, and how was it obtained? 

Analogues Were you reminded of any previous experience? 

Goals What were your specific goals at this time? 

Options What other courses of action were considered by or available to you? 

Basis How was this option selected? Why was this option rejected? What rules were 

being followed? 

Experience What specific training or experience was necessary or helpful in making this 

decision? 

Aiding If the decision was not the best, what training, knowledge or information could 

have helped? 

Time Pressure How much time pressure was involved in making this decision? 
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Situation 

Assessment 

Imagine that you were being asked to describe the situation to a relief officer at 

this point, how would you summarise the situation? 

Hypotheticals If a key feature of the situation had been different, what difference would it 

have made in your decision? 

 

A complete set of probe questions and additional questions asked in the CDM interview are 

provided in Appendix A. 

The interview was carried out with an ex-SO, who had also worked as an SC, in person at the 

University. The focus of the interview was to understand the tasks of classifying and tracking 

contacts using sonar, and how the inherent uncertainty in the task is managed and mitigated. The 

interview lasted around two hours. It was recorded, and then transcribed.  

The situation chosen was a training exercise conducted in the Clyde straits, with several contacts 

identified in the area; seven merchant vessels, six fishing vessels, and a single warship.  

During the interview, a “timeline” was constructed of the order of events, sequentially and 

temporally, concerning the actions taken during a specific situation. The timeline was built up during 

the interview through the first pass of questions, which asked for more detail about the situation, 

the displays used, the information used, and how this was communicated.  

This was then examined in more detail and discussed with the SME. Additional details were then 

added, and further questioning took place to derive more details about the incident, and the actions 

taken, using cognitive probe questions. 

The SME was eager to share a lot of information about the task, and often would deviate from the 

questioning to try and give more details about specific actions or protocols. Therefore, additional 

questions were asked in an attempt to keep the interview focused on the specific event being 
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discussed, and to go back and discuss specific areas in more detail, when the answers had deviated 

from this task.  

After the interview, the transcription was then analysed for three specific areas of knowledge: Work 

Rules, relating to the rules and heuristics employed to carry out the task of sonar classification, 

Mission Objectives, relating to the motivation and reasoning behind the decision-making processes, 

and Fishing Vessels, identified as contacts which are particularly dangerous and have high levels of 

uncertainty because of their particular behaviours, such as stopping and starting engines, and 

staying still in the water, making them particularly challenging to track and classify.  

It was then mapped over six layers of abstraction, using a modified AcciMapping technique, to 

understand the task and its various elements from a socio-technical perspective. This kept the 

original coding used in the analysis of the transcript of the CDM interview to better visualise how the 

three different knowledge domains interacted throughout the task, and how they relate to each 

other, across the levels of the system.  

This was first made by going through all of the coded pieces of information identified in the 

transcript, and writing each piece of text on separate post-it notes, colour coded depending on 

whether it was a Mission Objective, Work Rule, or information about Fishing Vessels. The diagram 

was then constructed on a wall, to visually display at what level each of the coded actions and goals 

identified belong to within the socio-technical system. This was then used to create a digital version 

of the diagram, which can be seen in Section 4.6. 

The diagram covered a lot of information, not only pertaining to the SO, but the interactions 

between the sound room and control room, the pieces of legislation which govern why some of the 

actions had taken place, and tasks which occur before and after the actual mission, in order to give 

context to the task. 
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The diagram allowed for a specific set of actions and interactions to be identified and isolated, which 

pertained to the SO, their equipment, goals, and tasks. This was then used to create a timeline of the 

actions and decisions made by the SO, in conjunction with the timeline derived during the interview. 

This can be seen in Section 4.7. This was then used to focus on recommendations for autonomous 

support for the role of an SO, and better inform how the role could be aided with the introduction of 

autonomous systems. 

5.5: Task Description Derived from the CDM Interview 

Before a mission can begin, preliminary planning must be conducted. This involves planning a 

timeline of events, using shipping timetables, intelligence, weather reports and other external 

intelligence sources to plan a route. Other vessels expected to be in the operational area are plotted 

on charts, and exit points are established. This planning can take several days, depending on how 

complex the mission is. 

Any information pertinent to the mission must then be learnt, and drills and safety procedures are 

practiced in advance of the mission starting. Roles must be practiced in relation the Mission 

Objective (MO). Crew will re-familiarise themselves with emergency procedures.  

Once at sea, the SO’s main duty is to detect, monitor and classify all contacts. They do this by looking 

for emerging contacts on-screen. They use a cursor to highlight a potential contact and record what 

they can hear at that point.  

SOs listen to, record, and analyse sounds, using aural characteristics and frequency patterns to 

identify points of interest in ambient noise (Roberts and Stanton, 2018b). When an SO perceives a 

point of interest either over their headset or on their display, they begin to look for patterns and 

characteristics in the sound which could provide an acoustic signature and allow them to derive a 

classification. The SO will analyse the sound, beginning by working out an estimated engine RPM, 

allowing them to calculate an estimated speed, when combined with a contact’s bearing. The only 

truths they have are the frequency characteristics of the sound, and the contact bearing; course, 
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speed and range must be derived from these two key variables, when there is no visual information 

available (O.Gibson, 2007). 

Once a SO has identified a contact’s bearing, and attempted to derive the RPM and speed, they 

make an initial classification of a contact, identifying what kind of vessel it could be, such as a 

military vessel, fishing vessel, or merchant vessel, for example. Signature sounds, such as “shaft rub” 

(“Some of the couplings might be bent, so every time that shaft is rotating around a single point it’s 

going to rub against something. It’s like a womp...Womp... Womp. So we know that, and we can get 

a count off of that…”), can give indications about how well-engineered the components are of the 

contact, which can be used to help determine further details of the classification. The SO then alerts 

the SC of their initial classification of the new contact. 

The SC acts as an informational filter, passing relevant information between the Sound Room, via the 

SOs; and the Command team, via the OPSO and OOW. The OPSO then assesses the classification, 

and uses external information sources such as shipping charts and timetables, and other sensor 

information, to build up a profile of the contact. This additional information is used to try and 

determine more characteristics of the contact, such as its course and range. This information is then 

passed back to the SC, and the classification is confirmed. 

The contact is assigned a tote, is labelled, and added to the SMCS display. It is assigned a contact 

number, speed, bearing and range. 

Passive Sonar systems perform signal analysis such as DEMON and LOFAR. LOFAR estimates 

vibration, and DEMON analysis allows SOs to extract propeller features, such as the number of 

blades and shafts (Mello, Moura and Seixas, 2018). These engine features are extrapolated from 

analysis of the frequency characteristics of a sound on a DEMON display. The characteristics, when 

combined, provide a unique identifier for a contact, which can allow it to be classified. 
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 To strengthen understanding of the contact, the SO records multiple data tracks, capturing the 

sound of the contact, which can be sent for TMA. SOs’ main duties, as identified in the interview, are 

to identify, classify and monitor all potential contacts. As repeated data cuts are made, a more 

accurate TMA solution can be calculated. This can be used to identify the contact’s direction, speed, 

and movement in relation to own ship, to evaluate any potential risk. 

Once a contact has been classified, the OOW and OPSO first work out if it is closing or opening – 

approaching, or moving away from, own-ship. They use all available information to determine what 

the CPA for the contact should be. The CPA defines a safe distance which must be maintained 

between own ship and the contact. If a contact enters the CPA, creating a danger of collision, an SO 

must call what is known as a Close Quarters (CQ) procedure, requiring Command to assess the 

situation and advise what action should be taken to avoid collision, which could involve diving the 

SMP to a safer distance away from the contact. Time to CPA is calculated. 

The SO must continue to detect, classify, and monitor any emerging or displayed contacts. They 

iteratively update the bearing of the contact, with this information passed to the SC, who 

communicates it to the OPSO.   

If the contact moves close to the CPA, the SO alerts the SC, who alerts the OPSO, who must then 

decide whether to begin a CQ procedure. The SMP will then be navigated to safety, and the contacts 

will need to be re-classified. 

Reliability of the contact solution is improved by collecting more data tracks over time. Getting 

clean, useful data cuts may require the SMP to change course, allowing additional or improved data 

collection. This decision is made by the OOW, who has to balance maintaining a safe distance from 

all contacts, positioning the SMP for optimum information acquisition, remaining undetected, and 

fulfilling mission objectives. The OOW must do this whilst building and updating their 3D mental 

picture of the operational environment. 
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Sometimes one contact will obscure another. This can be dealt with by cutting a data track, and 

monitoring where the contact should reappear based on the TMA solution. In some instances, 

narrowband sonar can also be used to supplement the picture, and isolate frequencies of interest. 

When the contact emerges, the aural information can be used to confirm it is the same contact as 

before, and it will be re-classified. If the contact does not re-emerge, the OOW may decide to alter 

course to ensure safety, and to try and make the contact visible again. 

If a contact suddenly appears, identified in the interview as an “abrupt start”, the frequency band it 

occupies must be identified. This can be a worrying situation, as fishing vessels often cut their 

engines whilst fishing. Sometimes, it can be predictable, for example, when close to a port. But when 

there is potential for the contact to be a fishing vessel, extreme caution must be maintained. 

5.5.1: Additional Discussion of Task 

From this description of the task, it can be seen that there are multiple inflection points which can 

introduce uncertainty into the classification process.  

The task itself is inherently uncertain, as the variables for course, range and speed must be derived, 

with only bearing and frequency information for the hydrophone recordings being known. It is 

difficult to externally validate a contact solution, as often there are no external views available, and 

very limited data transfer options underwater to communicate and verify the contact solutions.  

This uncertainty builds over three layers which all interact with each other. Firstly, basic sensor data 

is inherently uncertain due to the nature of passive sonar. Sound transmitted through water is 

affected by temperature, pressure and salinity (Schunn, Kirschenbaum and Trafton, 2013). Ambient 

noise from the ocean itself, waves, creatures, large vessels, can all create additional noise which can 

mask and obscure sound sources. High background noise and the high similarity of man-made noises 

can make it difficult to detect subtle differences in the ambient sound. 
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On top of this, TMA is inherently uncertain, employing algorithms to extrapolate course, speed and 

range from bearing direction and rate. A TMA solution is more of a line of best fit, with multiple 

viable solutions for a contact that can be extrapolated. Being able to distinguish which TMA 

algorithm to use requires careful consideration and experience.  

The third layer of uncertainty is caused by the unpredictability of human action, which can be 

deliberate in the form of deception. Managing this uncertainty, when tracking many contacts at 

once, is a gargantuan task. 

Information is passed verbally from the SO to the SC, and then this must be conveyed to the 

Command team. Other studies have identified the SC as a bottleneck for the flow of information in 

the system (Pope, Stanton and Roberts, 2019), causing the largest disparity in information between 

them during their trials (Stanton et al., 2020a). The information requirements of the two teams 

should mean they are interdependent processes and require close informational coupling. 

As well as this, limited time to classify contacts, or a high volume of contacts to classify in an 

operational area, can also impede on an SO’s ability to thoroughly verify all contact solutions.  

During the interview, fishing vessels were described as “the most dangerous contact”. Fishing 

vessels often will not adhere to the designated fishing zones, and behave in an unpredictable 

manner, stopping and starting engines to fish. This unpredictable behaviour was discussed at length 

in the interview. As sonar analysis relies on a contact making noise, when an engine noise ceases, a 

contact can be “crossed”, leaving its position unknown.  

Knowledge of fishing areas, shipping routes and timetables are all used to understand a contact’s 

suspected position and classification, and when vessels operate outside of these regulated areas, it 

becomes harder to predict their movement and actions. This inconsistent behaviour sets fishing 

vessels apart from, for example, a merchant vessel using auto-pilot to travel in an established 

shipping lane. Fishing vessels stop and start engines, and raise and lower nets. They can change 
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direction frequently, and do not follow predictable patterns of movement, making them volatile, 

with high levels of uncertainty surrounding them. 

Fishing vessels have tell-tale characteristics which can help distinguish them from other vessel types. 

One that was mentioned multiple times in the interview was the presence of “trawl noise”, referring 

to the sound of clanking chains as fishing nets are trawled through the water.  

Trawl noise was highlighted as important to identify quickly, as snagging fishing nets is a real danger, 

which can be fatal. This was stressed many times, showing it is an important feature which signals 

danger in the classification process.  

A situation where a contact did not present trawl noise, but had similar characteristics as a fishing 

vessel, were probed many times in the interview. Secondary aural characteristics to help distinguish 

between small merchant vessels and fishing vessels were mentioned, but trawl noise was stressed to 

be a main distinguishing factor. This is an unreliable classifier in isolation, because of the discussed 

unpredictability of fishing vessel contacts; they are not always trawling. This was established in the 

case study of the Karen incident. 
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5.6: Visualisation of the Tasks Associated with Classification 

 

Figure 9: A modified AcciMap for the tasks associated with classification derived from the SME CDM interview 
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5.7: Timeline and High-Level Task Description Derived from Critical Decision Method 

Interview 

A high-level task description was derived from the CDM interview. This was an attempt to 

understand how the tasks and duties of the SO are performed; in what order, whether they repeat, 

and what information is used. This was helpful in identifying specific areas of tasks which could 

benefit from the introduction of autonomy.  

1. Planning Meeting 

- Work out a timeline of events 

o Pattern of life – shipping lanes, fishing areas, timetables, intelligence, 

environmental conditions 

- Establish exit points 

- Plans for dangerous scenarios established – what if, exit plans 

- Predicted behaviour and capability of target discussed 

- Plot other vessels in the area on chart: know what to expect 

 

2. Preparation 

- Practice role in relation to MO 

- Learn information relevant to MO 

- CQ drills 

- Emergency procedure refresh/practice/drills: sme95, fishing vessel avoidance 

 

3. Start Event 

 

4. Detect and classify all contacts 

4a: Classify contact 
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- Spot track on screen 

- Scroll cursor to it 

- Listen  

o Begin initial aural classification 

▪ Use chronograph and DEMON and SONAR to work out vessel speed, 

engine characteristics 

• Count revs over six seconds – rough shaft RPM 

• DEMON - Demodulation analysis information – no. of blades, no. of 

shafts, rev count 

• From this, work out target’s speed for TMA 

▪ Shaft rub – blade count, rev count, how well shafts have been engineered 

indication of whether vessel is commercial or military 

▪ Blade slap 

▪ Diesel noise 

▪ Engine noise 

▪ Transience 

▪ Trawl noise 

▪ In-out 

o Classify contact 

4b: Create data track 

- Pass new data track to OPSO 

- OPSO assesses classification: 

o Uses intelligence, shipping charts, shipping timetables to build up contact profile 

o Work out contact course and range 

o Communicate further information to SC 
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- Classification is confirmed 

- Track tote is added to SMC display 

o Classified – colour 

o Assigned a number 

o Speed 

o Bearing 

o Range 

4c: Begin TMA solution (OPSO, OOW) 

- Determine whether vessel is closing/opening (direction) 

- If possible, work out range 

o Define Closest Point of Approach (CPA) OOW 

o Determine when vessel will reach CPA 

o Determine vessel’s course, determine SMP’s course 

 

Monitor all tracks 

- Recursive 4a – constantly reviewing contacts and checking direction, speed 

- Detect and classify new contacts 

o Has it changed direction? 

o Has the speed increased? 

 

If bearing rate of contact changes: 

- Update contact location and speed info 

- SC pass updated info to OPSO 

- OPSO decides whether to alter course/call CQ depending on position 
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If contact moves unpredictably: 

- Increase screen update rate 

- Isolate contact, focus on contact – may be assigned individual operator 

o SC monitors situation and communicates with OPSO 

If contact moves close to CPA: 

- Show to SC 

- SC reports to OPSO 

o OPSO makes CQ decision 

▪ CQ procedure begins 

o OPSO may order manoeuvre to ensure safety 

▪ Reclassify contacts 

If contact is obscured by another contact: 

- Cut track 

- Monitor where contact should reappear based on TMA and predicted movement 

- Use narrowband sonar to supplement picture and isolate frequencies of interest 

o Look for associated frequency lines 

When contact reappears 

- Recut data track 

o Use aural classification to reclassify contacts 

Or 

When contact does not reappear 

- OOW may alter course to ensure safety and make contacts visible 

o Reclassify contacts 
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If contact abruptly appears, “abrupt start” 

- Identify what frequency band it is occupying 

o May be predictable – abrupt starts coming and going from port, for example 

- Monitor thickness of line 

o If suspected FV, THEN: 

▪ Trawler identification 

 

5.8: Level and Type of Autonomy Suitable for the Task 

The recommendations are considered with regard to automation types (Parasuraman, Thomas B 

Sheridan and Wickens, 2000a) and degrees of automation (Onnasch et al., 2014a) with applicability 

to the high-level tasks elicited from the CDM interview shown in the task description, as well as 

points considered particularly perilous, as highlighted in the interview.  

Maintaining situation awareness is of vital importance for contact classification, therefore, the 

degree of autonomy should be selected with regards to the potential penalties to high-performance 

automation on the human performance; over-reliance, complacency, and reduced SA (see literature 

review). Therefore it is posited that only low LoA and information type automation should be 

recommended, in order to prevent the trade-off in performance, and to ensure that the “raw” 

tactical picture is never obscured from the operator, in case of automation failure or erroneous 

behaviour. 

5.8.1: Information Acquisition 

Automation could be useful for highlighting (so as not to obscure the tactical picture): 

- New contacts emerging on the display 

- When a contact is moving erroneously compared with its solution 
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- The most likely database entries for TPK 

- Areas where a lost contact should re-emerge 

- The re-emergence of a lost contact 

- Contacts nearing CPA 

- A poorly fit TMA emerging 

At a higher level, it could prioritise and display: 

- Most likely classifications based on speed 

- Potential points of emergence for lost contacts 

- Cuts that need to be merged 

- An unpredictably moving contact 

- Contact approaching CPA 

- A change in bearing rate 

5.8.2: Information Analysis 

Automation could project: 

- Potential solutions (TMA) 

- Fixed points for solutions (TMA) 

- CPA 

5.8.3: Decision Selection 

Although selection appropriateness could be contested because of the safety-critical nature of the 

task, and the trade-offs in performance if reliable automation fails, it could be beneficial for some of 

the SC’s duties to be assisted through decision selection. One way decision selection automation 

could be used is by passing information directly from the SO to the OPSO. For example, if a solution 

is complete. If the SC has a high cognitive load, automating this process could prevent an 

informational bottleneck. This informational bottleneck has been observed in the literature, where 
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the SC was not efficiently passing all of the information on in a timely manner, and some things were 

missed completely  

5.8.4: Action Implementation 

This could involve: 

- Automatically classifying contacts when classification ambiguity is low, and offering 

these as suggestions 

- Deriving speed for contacts, and offering these as suggestions 

- Fixing points in TMA solutions, to reduce manual manipulations of the solutions 

However, action implementation automation is not recommended, because of the trade-offs 

described in Chapter 2. This is because, in an always ambiguous environment, 100% performance 

cannot be guaranteed. This is confounded by the idea that some targets could be implying deceptive 

technologies to make themselves harder to identify. For this reason, it seems unsafe to recommend 

more direct forms of automation. It is also prudent to assume that complacency should be 

prevented, especially when things can change very rapidly; what may appear to be a safe situation 

could very quickly degrade if contacts stop-start, re-emerge in new places, or a trawler is identified, 

all scenarios which were identified as particularly uncertain in the CDM interview. 

 In this sense, action automation should only be carried out alongside an SO’s own classification 

decisions. Automation should not take over the responsibility for classification, but instead, should 

offer a comparative classification. This also supports the findings of Chapter Two, in that working 

interdependently on classification as a HAT will optimise trust and performance. 

5.9: Conclusion 

This chapter has identified a number of specific recommendations for autonomous support in order 

to aid SOs with broadband sonar classification, helping to answer RQ1. It identifies that low level 

automation is more appropriate, in order to prevent any obfuscation of real world data from the SO. 
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It identifies a number of key areas where information could be highlighted, or projected, on current 

displays. It also provides further justification for why a human is needed in-the-loop, and how 

autonomy should be integrated in such a way that the Operator and the autonomy can work 

together interdependently. 

It builds on recommendations and informational needs derived from Chapter Three and Chapter 

Four to offer specific examples of how autonomy could support them, whilst doing so in a way which 

supports appropriate levels of trust in the autonomy, as outlined in Chapter Two.  

Now that concrete ideas for autonomous support have been developed through assessing user 

requirements, the next chapter will develop an understanding of what the autonomous support 

could look like to optimise human-autonomy team performance and trust-calibration.   
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CHAPTER 6: DISPLAY DEVELOPMENT 

Parts of this chapter were prepared using the published work “Feature Perception in Broadband 

Sonar Analysis – Using the Repertory Grid to Elicit Interface Designs to Support Human-Autonomy 

Teaming”. Section 6.4 contains tables from this publication. There is a patent application pending for 

the method and designs presented in this chapter. 

6.1: Repertory Grid Study 

In order to design a display which supports the decision-making processes behind contact 

classification, it was important to establish a better understanding of the mental processes utilised 

to obtain a classification. The previous chapter identified a number of areas of the task which could 

benefit from some form of autonomous support, and highlighted the importance of any 

classification aide being easily understood by an operator, explaining its decisions, in order to 

facilitate appropriate levels of trust in the information it could provide. In order to be explainable, an 

autonomous system would need to provide an understandable explanation behind its decision-

making processes. 

 A better understanding of what aural information is used, and how, in the classification process, 

could provide insight into ways an autonomous system can explain its reasoning to a user in a way 

which is meaningful to their understanding, and useful for quick evaluation of the classification 

decision. 

It has been established that in order to trust information from an autonomous system, performance 

is improved when the user has an understanding of – or an explanation for - where that information 

came from, and the reliability of that information. Transparency is key to trust, as discussed in 

Chapter Two, and so any uncertainty around a classification must be brought to the attention of a 

user, as discussed in Chapters Three and Five. 
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Machine learning classification systems often use classifiers which are very abstract, and not easily 

understood by humans, sometimes even the humans that created the system. This means there is a 

disparity between what information the human operator would need to be able to accurately assess 

the efficacy of a classification decision, and the capability of a machine learning classifier to provide 

that information. This is integral to establishing trustworthy relationships with autonomous systems, 

and becomes a sticking point in the introduction of higher-level autonomy. Providing further 

explanation could even go some way towards making it easier to spot when high-accuracy is 

behaving erroneously; it would be possible for a human to spot if an explanation does not make 

sense, for example, potentially adding an additional opportunity for intervention. 

Even if a classification system provides the user with a confidence percentage for its classification 

decisions, this is not enough information to provide a solid foundation of trust. A high confidence 

percentage would imply that the contact classification decision would be accurate, but with no 

knowledge of what information was used and how, it is impossible to assess this. 

A small study was developed using the Repertory Grid interview technique developed by 

psychoanalyst Kelley in 1955 (Curtis et al., 2008). The repertory grid technique is a “cognitive 

mapping technique”, which can be used to understand how “internal representations of subjects’ 

environments are constructed” (Curtis et al., 2008).  

The repertory grid elicits ratings on dichotomous constructs to build a model of cognition. It is an 

interview technique designed to understand how individuals construct their knowledge, a 

knowledge acquisition technique. It is borne from "personal construct theory", developed by Kelly. It 

is built on the epistemological premise of "constructive alternativism", based upon constructivism, 

which posits that reality does not directly reveal itself to us, but is instead subject to the different 

constructions we invent (Ford and Bradshaw, 1993). 

The questions this study hoped to answer were: 
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- How do Sonar Operators mentally classify sounds? 
- How do their techniques or skills differ from those of other sound professionals and novices? 
- How can an autonomous decision aid visually present a credible, understandable, and 

trustable explanation behind its decisions? 
- How might such a presentation differ depending on the role and experience of the end 

users? 
 

Answering these questions provides solutions to RQ3 and RQ4, developing understanding of how the 

cognitive classification process is carried out by SOs, in order to inform a display design which can 

explain its decision-making in a way in which the user can intuitively understand. 

 

6.2: Methodology 

DSTL kindly provided a set of hydrophone recordings to be used in this study. From the set, five were 

selected, each representing a different kind of contact, with different sized vessels, some containing 

aural features which are used in the classification process. These are summarised in Table 1 below. 

Table 5: A table listing the hydrophone recordings used in the repertory grid study 

Element 

Number 

Description 

1 Medium Merchant Vessel 

2 Small Merchant Vessel 

3 Large Merchant Vessel characterised by “blade slap”, meaning the 

vessel is light or empty. The propeller of the vessel is not fully 

submerged as it rides high in the water. 

4 Large Merchant Vessel characterised by “shaft rub”, which is the 

sound of poorly machined propeller shafts, or worn bearings 

5 Fishing Vessel. Characteristic “trawl noise”, the sound of trawling 

fishing nets; heard as tinkling or clunking sounds as the bobbins and 

chains contact the seabed. 
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7 second clips were created of the recordings using Logic Pro. From these clips, colour spectrograms 

were produced, showing frequency information and intensity over time for the recordings.  

 

Figure 10: An example of a spectrogram produced for the Medium Merchant Vessel hydrophone recording 

In order to better understand the effect which expertise has on the cognitive classification process, 

different sound professionals were used as participants for this study. 

Twelve participants performed the study in total. Five novice participants were used, as well as four 

sound engineers, with an average of five years’ experience of recording, mixing and making music. 

SME participants were also utilised; an ex-SO, an ex-OOW, and a current RN training professional, 

who teaches the art of sonar analysis to new recruits at HMS Colingwood, a Sonar Trainer (ST). All of 

the SME participants had experience performing sonar analysis in a professional capacity. The sound 

engineer group had no experience of sonar analysis, but did have experience in recording and 

production of live and recorded sounds in a professional capacity. 

The study was repeated with both aural information, the hydrophone recordings, and visual 

information, using the spectrograms, with each participant. 

The sounds (and their corresponding spectrograms) were divided into ten “triads”; unique groupings 

of three recordings. A triad of sounds would be played to the participant. The participant was then 

asked to use a word or phrase to describe how two sounds were the same, and distinct from, a third 

sound. These words or phrases became the “construct” column in the repertory grid.  

Once all ten triads had been listened to, producing ten constructs, the participant was then asked to 

provide an opposing word or phrase for each of the constructs. These did not have to be the literal 

opposite of the words identified as constructs, but instead, something the participant 
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conceptualised as an opposing phrase. Therefore, ten bi-polar pairs of constructs and contrasts were 

derived. 

Once the ten bi-polar pairs were established, the participant was played the five sounds individually, 

and asked if each sound belonged more to the “construct” phrase, or more to the “contrast” phrase 

for each pair. 

This process was then repeated, utilising the spectrograms instead of the hydrophone recordings, 

therefore each participant produced a repertory grid for aural information, and a repertory grid for 

visual information. An example of a completed repertory grid can be seen below. 

 

Figure 11: An Example of a Complete Repertory Grid Performed with an SO SME Using Hydrophone Recordings. 

The methodology shown in (Baber, 1996, 2015) was used to elicit the cognitive constructs from the 

repertory grid responses. This is a form of principle component analysis. The responses were split 

into two roughly equal groups by picking an arbitrary number, allowing the constructs to be 

translated into a smaller number of groupings, which explain the maximum possible variance 

(Stanton et al., 2013). Columns below the chosen value were assigned as a “0”, and above were 

labelled as a “1” in the template. The template was then compared to each row, with matching 

values in the columns totalled and provided in the “fla” column. 

When there were 4 or 5 positive matches for a construct, this was taken as a “concept”, a grouping 

of constructs which were related conceptually.  

Construct 1 2 3 4 5 Contrast Fla

Diesel 1 1 0 1 1 Quiet 3

In-out 1 1 0 0 0 Consistent 5

Blade flutter 1 1 1 1 0 Blade slap 3

Whine 1 0 0 1 0 Hum 3

Engine 1 0 0 1 1 Muffled 2

Diesel Engine 1 1 1 0 1 Steam generator 3

Flutter 1 1 0 1 1 Compressed cavitation 3

Cavitation 0 1 1 0 0 Shaft 3

In-out 1 1 0 1 0 Consistent 4

Blade flutter 1 1 1 1 0 Blade slap 3

Total 9 8 4 7 4

Template 1 1 0 0 0

Element Number
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The numbers in the “fla” column were then examined. Any emergent groupings, with the same value 

in the column, were considered to be their own cognitive concept. These were then removed from 

the grid, and the process was repeated, until all of the cognitive concepts had been defined. 

Looking at Figure 11, it can be seen that there is an emerging concept containing the pairs labelled 

“in/out, consistent”, to do with the motion of the ship in the water. This became a cognitive concept 

known as “movement”, and these rows were removed from the table, where the process was then 

repeated again.  

 

Figure 12: With the first concepts removed, another grouping begins to emerge 

All constructs were grouped and labelled as different concepts, showing a unique area of focus for 

each SME participant.  

Construct 1 2 3 4 5 Contrast Fla

Diesel 1 1 0 1 1 Quiet 4

Blade flutter 1 1 1 1 0 Blade slap 4

Whine 1 0 0 1 0 Hum 4

Engine 1 0 0 1 1 Muffled 3

Diesel Engine 1 1 1 0 1 Steam generator 2

Flutter 1 1 0 1 1 Compressed cavitation 4

Cavitation 0 1 1 0 0 Shaft 2

Blade flutter 1 1 1 1 0 Blade slap 4

Total 7 6 4 6 4

Template 1 1 0 1 0

Element Number
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Figure 13: A blank conceptual grid containing SO responses 

The VINAS grid was then coloured depending on how many constructs were present for each 

concept. If no constructs were present, the colour was white. If some constructs were present for 

the concept, it was coloured yellow. If all constructs were present for the concept, it was coloured 

green. In this way, distinct, visual patterns were created on the grid for each hydrophone recording.  

6.3: Discussion 

As expected, a participant’s unique skill-set and level of expertise affected how they interpreted the 

sounds and spectrograms. There were profound differences in the responses depending on whether 

the participant had any experience of sonar analysis. The cognitive concepts that were produced 

changed depending on the participants’ experience of sound analysis.  

The participant who had knowledge of sonar analysis had some similarities in their self-identified 

constructs and contrasts. There were some overlapping constructs. However, the conceptual 

groupings differed, even when some constructs were repeated, showing that different roles had 

different informational requirements and meanings behind each construct.  

When interpreting the recordings, the group of sound engineers with no professional sonar analysis 

experience were interested in the recording quality of the clips themselves. They did not derive 

hidden meanings from the recordings, or identify what was recorded, but focused on the medium 

itself. They used words in their constructs such as clarity, pitch and rhythm, aligning with their 

Motion Signature Clarity

Mechanism
Engine 

Configuration
Speed

Engine 

Movement
Propeller Pattern
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domain of expertise, which is to produce high-quality audio recordings. This analysis was quite 

superficial, in the sense that the sound engineers were unable to derive much meaning from the 

recordings – they identified mechanical sounds, for example, but never the mechanism which 

produced those sounds. The construct “mechanical” was elicited from 75% of the sound engineers. 

Participants who were familiar with sonar analysis always produced a construct describing the 

mechanism identified in the recordings.  

Interestingly, the sound engineers produced constructs pertaining to frequency information when 

only listening to the aural recordings, as opposed to the visual stimuli, unlike any other group of 

participants.   

The SO had starkly different conceptualisations when compared to the sound engineers. Their 

constructs, as opposed to focusing on sound quality, pitch and frequency, related back to engine 

characteristics, mechanisms and movement. The SO was able to identify an engine in every 

recording, and to a finer resolution when compared to the other SMEs. The SO picked out aural 

features pertaining to engines, mechanisms, propellers and shafts. This was conceptualised as 

“propulsion”, and is key to being able to construct an initial classification, by determining the unique 

engine configuration and aural signature of a vessel.  

There was overlap between the responses of the SO and the responses of the ST, both noticing 

specific engine characteristics in the recordings, showing evidence for similarity in their cognitive 

processes when listening.  

The SO identified “diesel” as a construct, contrasting with the word “quiet”, but also “diesel engine”, 

contrasted with “steam generator”. This shows two distinct uses of the word “diesel”; the former 

with consideration to safety, as it reveals the presence of a contact which could be moving, which 

was grouped with the concept of “motion”, and in the latter pair, identifying an engine mechanism, 

grouped within the concept “engine”. 
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The ST had some conceptual overlaps when compared with the SO and the OOW (see Table 4). They 

focused mainly on engine configuration, similarly to the SO. If the SO makes a detailed assessment of 

configuration, and the OOW is mainly interested in a summative conceptualisation of the 

configuration, the ST has a middle ground between the two approaches, identifying some engine 

characteristics, but to a lesser degree of detail when compared to the SO. Both identified noise and 

characteristics caused by propellers in the water.  

Cavitation was a distinct concept identified by the ST, again related to propellers, and also to speed. 

Engine movement concerned them, similarly to the SO, and the ST constructed the pair “rotation” 

and “stationary”, conveying thought about safety implications for a ship that may still be in the 

water nearby. The ST’s constructs identified specific markers and classifiers that lend themselves to 

training others how to identify and build up a classification based on the aural signature of the 

contact, in a similar way to the SO in their conceptualisation of “propulsion”. 

All SMEs conceptualised an engine type or mechanism, whether diesel or steam. They then 

deconstructed this mechanism to varying degrees dependent on their role. 

With regards to the visual stimuli, the spectrograms, participants again generated distinctly different 

constructs. Sound engineers were concerned with the smoothness of the signal, and tried to identify 

whether there was a visual, a repeating pattern, either temporally or in a particular frequency band. 

The sound engineers described the visual pattern presented to them and did not infer any engine 

characteristics from the spectrograms. 

The SO gained insight in different dimensions when presented with visualised frequency 

information. Their predominant conceptualisations concerned specific engine characteristics and 

speed. When they were presented with a way to visually interpret which frequency bands were 

present in the recordings, the SO built on their identification of specific engine parts by specifying 

the number of components. The ability to distinguish between specific configurations of propellers 
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and shafts, supplemented with aural interpretation, allows an SO to make an initial classification of a 

contact. 

The SO further built on this mental model by inferring movement and speed, associated with 

constructs such as “engine RPM”, “engine firing rate”, and “shaft RPM”. This shows a fusion of visual 

and aural information in the classification process, utilising both to build a more detailed 

understanding of the structure of a contact. 

The OOW interpreted visual information similarly to the sound engineers, with conceptualisations 

concerning the shape and rhythm of the presented signal, identifying patterns in its appearance. Like 

the SO, they gain a better understanding of movement by fusing together the visual and aural 

information, conceptualising whether rotation is occurring.  

The ST identified visual patterns in the spectrograms, focusing on the signal’s behaviour in terms of 

intensity, diffusion, and fundamentals. They conceptualised the “pattern” of the signal, its 

“regularity”, “similarity” and “intensity”. This indicates a methodological understanding of the 

problem, concerned with the presence of a consistent, recognisable pattern, or whether there is 

obscuration through a lack of clarity, or dissimilarities compared with what they expect to see. The 

ST commented on the “absence of the normal, the presence of the abnormal” in the classification 

process, trying to identify incongruencies between what is displayed, and their classification 

conceptualisation, exemplifying a visual form of abductive reasoning, deriving a conclusion from 

observation, rather than seeking evidence to support an already formed hypothesis.  

The ST, like the SO, conceptualised “speed”, using the construct/contrast pair “fast”, “slow”, gaining 

a new dimension when presented with the visual spectrogram, concerned with the contact’s 

movement.  
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6.4: Results 

As shown in Figure 13, the concepts that were elicited through the repertory grid technique were 

visualised in a grid pattern. 

The grid was then coloured according to how many “hits” for the constructs identified within the 

concepts were recorded for each vessel. This provided a quick, visual way to assess differences in 

how each vessel had been conceptualised. This is shown in Figure 14, with a grid developed for the 

role of the SO and using the SO and ST responses. The grid predominantly comprised concepts 

derived from the SO responses, with the inclusion of “pattern” from the ST, as this concept 

contained distinct information which could be used in frequency analysis. 



149 
 

 

 

From left to right, coloured VINAS grids are presented for: medium merchant vessel, small merchant 

vessel (top row), large merchant vessel with characteristic blade slap, large merchant vessel with 

characteristic shaft rub (middle row), fishing vessel trawling nets (bottom row). Concepts with all 

constructs present are coloured green. Concepts with some constructs present are coloured yellow. 

Concepts with no constructs present are not coloured. This created a distinct, visual pattern for each 

hydrophone recording depending on how many concepts were present for each construct. 

As can be observed in Figure 14, each grid was distinctly coloured depending on the vessel being 

represented. Differences can be visually assessed quickly. Areas with few hits, indicating a lack of 
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information or ambiguity, are highlighted to an operator, and can be quickly identified and further 

explored. 

In this way, an autonomous decision aid could use a conceptual grid to represent the narrative 

behind its own classification decisions. Coupled with confidence percentages for different 

classifications, the grid helps to highlight areas of potential ambiguity, abnormality, or distinction to 

an operator quickly.  

The interpretation of the sounds was directly influenced by the role of the SME and all 

conceptualised their interpretations of the sounds differently. Therefore this difference in depth of 

analysis and informational requirements must be reflected in what information is displayed to them.  

Both the SO and the ST, for instance, identify specific engine features and rely on these to provide 

evidence to support initial classification. Therefore an autonomous agent needs a way to signify if 

these features were observed in its analysis as well as how certain it is that those specific features 

were observed. This would provide an SO with a comparison to what they observed, a way to quickly 

spot an absence of a classifier they would expect, or the presence of an abnormality that affects 

their certainty in the classification. It also provides a starting point for further investigation when 

there are inconsistencies or contradictions in the classifiers highlighted. 

The OOW does not require the same kind of display – they are interested in how close a contact is, 

whether it is dangerous, whether it is moving towards or away from them, whether it is a vessel or 

biological – noise associated with marine life or natural processes. For the OOW, information from 

sonar analysis is only one part of their tactical picture, and so the information they need is at a 

higher resolution. Command incorporates a larger wealth of information resources into their 

decision-making process when compared with the sonar team. Frequency characteristics are 

important for sonar analysis, but not so much for making navigational decisions.  
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The SO requires that frequency information in order to develop their classification, but the OOW 

needs to know how close the contact is, directional information and speed, in order to assess any 

danger presented by the situation and develop a new course of action.  However, a VINAS grid could 

be elicited from the OOW responses and still differentiated between each vessel (see Figure 8).  

 

 

 

Pictured in Figure 15 from left to right, are grids for: medium merchant vessel, small merchant vessel 

(top row), large merchant vessel with characteristic blade slap, large merchant vessel with 

characteristic shaft rub (middle row), fishing vessel trawling nets (bottom row). The grid was 

specifically made for the role of OOW, coloured using OOW repertory grid responses. Concepts with 

all constructs present are coloured green. Concepts with some constructs present are coloured 
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yellow. Concepts with no constructs present are not coloured. The five vessels can all be 

distinguished, with less variance compared to the VINAS created from SO responses. 

6.6: Early Validation of Design 

Early validation of the design was performed by comparing the concepts extracted to a checklist of 

key features used in classification, provided by HMS Collingwood. Nearly all of the concepts featured 

in the VINAS grids were represented in the classification checklist, showing high agreeability 

between the concepts used to train, and the concepts used to explain. A summary of those features 

can be seen in the table below. 

Table 9: Matching key features from training manual to concepts derived through VINAS 

Key Feature Related to VINAS Concept 

Cavitation Clarity 

Flutter Signature 

Shaft rub Clarity 

Number of blades Signature 

In-out Motion 

Turbine whine Signature 

 

6.7: VINAS Description 

The VINAS grid provides a quick, visually assessable representation of an autonomous decision aid’s 

classification decision. If different vessels make unique patterns on the VINAS grid, and an operator 

is familiar with the pattern they expect to see for a contact, it is easy for them to visually assess the 

viability of the autonomously generated contact solution.  

If there are differences in the coloured squares compared with the ideal contact solution, this shows 

a region of uncertainty in the autonomously generated contact solution. By using the cognitive 

concepts derived from the repertory grid study, the confusion can be understood in terms of the 
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concept which is mis-coloured, giving an operator a starting point to explore and evaluate the 

classification decision. 

Therefore, the VINAS attempts to provide a narrative behind the classification process, showing 

which concepts were considered in the classification process, and which concepts have some 

confusion surrounding them.  

6.8: Requirements Evaluation Table 

Table 10: Collation of user requirements defined within thesis and how VINAS meets them 

Requirement Fulfilled by VINAS? 

A system must strive to be 

transparent (Muir, 1994) 

VINAS attempts to show transparency by offering an explanation 

for its suggested contact solutions. It does this by providing a 

visual explanation through colour-coding how many constructs 

are present for each concept represented on the grid. 

A system must be predictable 

(Muir, 1994) 

VINAS allows operators to evaluate its contact solutions by 

providing a visual demonstration of any regions of uncertainty. 

Predicted pattern can be compared to emerging pattern. 

Concepts coloured differently than expected show a region of 

uncertainty around the classification solution. 

The process behind a system 

must be transparent (Lee and 

See, 2004) 

VINAS provides an explanation behind its decision-making to 

allow any discrepancies to be spotted easily 

The purpose of a system must 

be transparent (Lee and See, 

2004) 

VINAS has a clear purpose, it shows a visual representation of a 

classification and tries to facilitate an explanation behind its 

decision-making 
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The performance of a system 

must be transparent (Lee and 

See, 2004) 

Performance can be evaluated by comparing an operator’s 

expected classification’s pattern to the pattern which emerges 

on the VINAS; if an operator is familiar with the patterns they 

expect to see, this allows quick, visual evaluation of performance 

The three Ps must be 

presented in a way the user 

can interpret and understand 

(Lee and See, 2004) 

Once a user is familiar with the patterns they expect to see on 

VINAS, they can easily translate those patterns into classification 

decisions and understand any regions of uncertainty, quickly and 

visually 

A system should be calibrated 

to be sensitive in order to 

minimise the chance of near 

misses (Rice, 2009) 

From the colouring, it will be clear if VINAS is showing any 

discrepancy in the classification suggested and classification 

emerging 

Human-in-the-loop activities 

must be maintained in order 

to ensure adequate SA 

(Onnasch et al., 2014b) 

Both human and VINAS work on classification. Classifications can 

be compared if required. Human is not removed from the loop. 

Decisions provide a visual explanation 

Automation should be at least 

70% accurate to be 

implemented (Wickens and 

Dixon, 2007) 

VINAS presents a visually assessable way of evaluating 

classification accuracy, so an operator knows how reliable the 

automation’s decisions are 

Automation should not 

replace a human when doing a 

task; human and automation 

should work together as a 

team to accomplish a task 

Both operator and VINAS can work together to classify. VINAS 

offers a comparison for classification decisions, which can help 

highlight regions of ambiguity or uncertainty to an operator 
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Information autonomy would 

be more prudent to 

implement rather than action 

autonomy in a safety-critical 

domain (Onnasch et al., 

2014b) 

VINAS does not make a classification decision for an operator, 

but instead, presents a visual pattern for comparison, and so 

should not affect an operator’s situational awareness, or induce 

complacency 

Information autonomy should 

seek to highlight areas of a 

display to an operator, rather 

than removing any raw 

information (Parasuraman, 

Thomas B. Sheridan and 

Wickens, 2000) 

VINAS does not remove any raw information, but may highlight 

any inconsistencies or regions of uncertainty in a classification 

High levels of “team SA” 

should be encouraged through 

as much context and 

transparency behind 

automation’s decisions as 

possible (Endsley and Kaber, 

1999; Schaefer, Evans and Hill, 

2015; Mercado et al., 2016; 

Chen et al., 2018) 

Context and transparency is provided through explanation; how 

concepts are coloured can be interpreted depending on a 

human’s expected classification solution; team SA is supported 

by providing explanation behind decisions which work towards a 

common goal. 

Facilitate information flow 

between SOs and TMA 

Operators 

Socio-technical system requirement, outside of the scope of SO 

performance 
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Enhanced understanding of 

surface picture 

Socio-technical system requirement, outside of the scope of SO 

tasks 

Minimise ambiguity in 

classification 

VINAS can help highlight areas of ambiguity which need further 

investigation or cannot be easily confirmed, therefore aiding 

with the identification of ambiguity 

Re-integration of information 

when it does not match over 

different sensor systems 

VINAS can help highlight regions of uncertainty around a 

classification, gives a starting point for further investigation 

Reduce cognitive load in 

heavy volume contact 

situations 

If VINAS and operator classification have high levels of 

agreement, a solution can be accepted quickly through visual 

assessment 

Highlight emerging contacts Provides potential solution for emerging contacts 

Highlight erroneously moving 

contact 

Shows areas of ambiguity for erroneously moving contacts 

Highlight most likely TPK 

database entry 

Could help to identify when a solution and speed does not match 

through visual regions of uncertainty 

Highlight area where lost 

contact should re-emerge  

Does not meet this requirement; this requirement is for a 

different part of the display 

Highlight contact nearing CPA Does not meet this requirement 

Prioritise most likely contact 

based on speed 

Outside of scope of VINAS 

Prioritise potential point of re-

emergence 

Outside of scope of VINAS 

Prioritise cuts that need to be 

merged 

Outside of scope of VINAS 
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Prioritise contact nearing CPA Outside of scope of VINAS 

Prioritise change in bearing 

rate 

Outside of scope of VINAS 

Project potential solution 

(TMA) 

Different part of the socio-technical system 

Pass information between 

SO/OPSO 

Outside of scope of VINAS 

Automatically classify contacts 

when ambiguity is low 

VINAS does this by producing a pattern for a contact which is 

quickly, visually assessable 

Derive speed for contact  VINAS could help identify which speed would be most 

appropriate by providing visualisation of a classification 

Fix points in TMA solution Requirement for different part of socio-technical system 

 

Table Ten summarises the user requirements identified through each chapter of the thesis and 

offers an explanation of how VINAS supports, or does not support, the requirement. 

Requirements defined through Chapter Two, to facilitate trust in a HAT, are generally met by the 

VINAS. Once the patterns on the grid are understood by an operator, and they know what pattern 

they expect to see depending on their own classification of a contact, VINAS will either support this 

classification, or highlight an ambiguity through a differently coloured construct. If a construct is 

coloured differently, it provides a starting point, or an area of ambiguity, around its contact solution, 

and an operator will be able to understand what area of the classification it is experiencing that 

uncertainty for. This gives a point of reference for re-assessing a classification, or highlighting an 

area where a classification may be ambiguous, and require more information before confirmation.  

In this way, VINAS supports appropriate trust building in a number of ways; it makes its performance 

transparent to an operator; it is designed with a specific purpose; the process by which it derived a 
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contact solution is also made as transparent to an operator, by offering a visual explanation of what 

constructs identified in the cognitive classification process of the operator have been identified in 

the contact solution. 

VINAS also supports requirements expressing a need for both a human and the autonomy to work 

together on a shared task. VINAS does not classify in place of an operator, but instead provides them 

with additional information with which to make classification decisions. It also does not hide any 

“raw” information from an operator, so does not negatively impact their SA. It supports the idea of 

team SA by providing a solution which is explained, which an operator’s own assessment can be 

compared to.  

Some of the requirements listed focus on different parts of the socio-technical system, such as TMA 

solutions, or facilitating information transfer. As the VINAS is a display which has been specifically 

designed to aid an SO in their task, these requirements do not apply to the VINAS display, and so it 

does not necessarily meet those requirements. 

6.9: Conclusion 

The VINAS design fulfils many of the user requirements identified in previous chapters of the thesis, 

by offering transparency and explanation behind its decision-making, and by offering support to an 

SO’s classification tasks. This is summarised in Table Ten. 

The VINAS attempts to provide a translation between the classifiers that could be used by a machine 

learning algorithm, which may not be very understandable to a human, into a visual display which 

uses classifiers derived from the human’s classification process in order to provide an explanation 

behind its decision-making. Depending on how the squares of the VINAS grid are coloured, it is 

possible to identify areas of the classification which may warrant further investigation by the human 

Operator.  
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The VINAS grid itself provides a narrative behind an autonomous systems’ decision-making process 

which can provide supporting evidence behind a classification decision.  

The next steps, shown in Chapter Seven, are to verify that the VINAS does positively impact trust and 

performance during the classification process. 

 Another need which was identified during the accident case studies was support for when 

incongruent information is offered during the classification process, and so how VINAS is used in 

those situations is evaluated. 
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CHAPTER 7: DISPLAY TESTING 

7.1: Introduction 

Two experiments were designed to test how a VINAS would affect performance in a classification 

task when using a mock-autonomous classification aide.  The experiments also attempted to 

understand what effect VINAS would have on the trust of an operator when utilising an autonomous 

classification aide. 

Therefore, this chapter attempts to answer RQ5 and RQ6: 

RQ5: Can a Visual, Intelligent Narrative of Autonomous Systems (VINAS) improve 

performance in a classification task utilising an autonomous classifier? 

RQ6: Can a VINAS improve trust in an autonomous classifier when conducting a classification 

task? 

For both of these experiments, five different hydrophone recordings were used, provided by DSTL. A 

description of each of the recordings can be seen in Table Eleven: 

Table 11: An overview of the five sounds used in Experiments One and Two with descriptions 

Recording Description 

01 This example is of dolphins and whales. The high-pitched cries and squeals are from 

dolphins, the low-pitched groans and grunts are from a humpback whale 

02 Recording of a fishing vessel. Trawl noise, often heard as clinking and tinkling 

sounds as the bobbins and chains contact the seabed, can be heard 

03 Large Merchant Vessel characterised by “blade slap”, meaning it is light/empty of 

cargo. The vessel rides high in the water with the propeller not fully submerged. 

04 Small Merchant Vessel 

05 Medium Merchant Vessel 

The recordings were all clipped to seven seconds in length. 
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A spectrogram for each of the seven second recordings was produced in audio software. 

7.2: Experimental Interface 

The different features of the experimental testbed can be seen in Figure 16 (see next page). 

 At the top of the screen, a key for interpreting the different patterns presented on the VINAS grid 

was always shown. 

 Underneath this is a spectrogram of one of the recordings used. This spectrogram, and the sound 

itself, always match and are always correct, representing a ground truth. These stimuli match the 

stimuli used in the repertory grid experimentation shown in Chapter Seven. 

Below the spectrogram on the left-hand side was a VINAS grid produced for each sound. In 

Experiment One, this was absent for half of the conditions.  

To the right of the VINAS was a bar chart showing suggested classifications, with a confidence 

percentage generated by the system. In the bottom right corner is a suggested classification for the 

sound, which the participant can accept or reject by clicking the respective button. The suggested 

classification matched the classification on the bar chart with the highest confidence percentage.  

This visualisation has been used for explaining the confidence of different developments of 

autonomous classifiers. However, it does not offer any explanation for its confidence, and so this 

research posits it does little to provide appropriate trust calibration in the classifier’s decision-

making abilities. 

In the middle of the screen were controls for playing the audio recording.
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Figure 16: A picture of the experimental test bed, showing a VINAS and suggested classification for a Small Merchant Vessel 
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After each classification decision was made, the participant would be asked to rate their self-

confidence in their classification decision on a five-point Likert scale, being asked, “How confident 

are you in your decision?” With ratings from 1: Very low, to 5: Very high. 

Trust and self-confidence are inherently related. Self-confidence has been used in other studies as a 

measure of dispositional trust (Hoff and Bashir, 2015). Self-confidence has been shown to be 

mediated by trust in a system, and fluctuations in self-confidence can be related to automation 

performance, and trust in the automation (Lee and Moray, 1992, 1994).  

 

Figure 17: A picture of the screen shown after each classification decision, asking a participant to rate how confident they 
were in their decision 

7.3.1: Experiment One Overview 

Experiment One sought to test how the inclusion of a VINAS would impact a user’s performance, 

trust, confidence, and perceived workload, when using an autonomous classifier which suggested a 

classification for a hydrophone recording. In half of the conditions, no VINAS was shown to the 

participant. This was to understand whether the inclusion of the VINAS would impact any of the 

measures in a meaningful way. 

The hypotheses for Experiment One are as follows: 
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H1: The inclusion of a VINAS would improve performance when accepting or rejecting classification 

decisions 

H2: The inclusion of a VINAS would improve trust in an autonomous system when accepting or 

rejecting classification decisions 

H3: The inclusion of a VINAS would improve self-confidence when accepting or rejecting 

classification decisions 

H4: The inclusion of a VINAS would lower perceived workload when accepting or rejecting 

classification decisions 

H4a: The inclusion of a VINAS would lower perceived frustration when accepting or rejecting 

classification decisions 

The reasoning behind the hypotheses for Experiment One is as follows. 

VINAS presents an understandable, visual explanation behind an autonomously generated 

classification. As VINAS is derived directly from a recording, it gives an accurate visual representation 

of the features of that recording which are pertinent to classification. 

 It uses classifiers derived from the cognitive classification process of an SME in sonar classification, 

and so provides a high-level description of the features of the recording which supports the 

classification decision-making process. 

 Therefore, it should provide evidence to support a classification decision, which can help improve 

performance [H1] and trust [H2] by making a classifier’s decision more transparent, and 

understandable, to a user, both key factors for developing trust in automation. 

Having supporting evidence for a classification should make it clearer to a user whether a 

classification is viable, therefore boosting their self-confidence in their decision making [H3]. 
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Providing evidence which can support a classification decision should make it easier to understand 

and evaluate, lowering perceived workload [H4] and frustration [H4a]. 

7.3.2: Experiment One Methodology 

7.3.2.1: Participants 

Thirteen participants, ten male, and three female, (age mean = 35, range = 27-52) took part in the 

experiment. Participants came from a variety of backgrounds, 5 office workers, 5 with physically 

demanding jobs, 2 students, and 1 unemployed. None had previous experience with sonar sounds or 

imagery. There was no access to expert Naval participants at this time, and so naïve participants 

were used. Because of the small and distinct range of samples, using expert participants for this 

study may not have been preferrable, as it would be very easy for an expert to be able to identify 

classifications without having to utilise VINAS for these experiments, so in a sense, using naïve 

participants allowed for a more accurate reflection of how VINAS would be used when there was 

uncertainty around a classification decision. 

7.3.2.2: Conditions 

There were two conditions for the experiment. Classification with VINAS, and Classification without 

VINAS. 

7.3.2.3: Measures 

Measures were taken for workload, trust, self-confidence, and performance. 

To measure trust, the Checklist for Trust between People and Automation (Jian, Drury and Bisantz, 

2000) was used. It is a widely-used measure that assesses beliefs in automation’s trustworthiness 

and its capabilities. It is a 12-item measure with a 7-point Likert rating scale for each question. 

Overall scores range from 7- 84. Higher scores indicate a higher level of trust in automation.  
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The Checklist was statistically derived based on conceptualisations of human-autonomy trust such as 

reliability, integrity, familiarity and honestly through cluster analysis of words associated with trust, 

and has been independently validated for efficacy by several other studies. 

A NASA TLX was used to measure workload. The NASA TLX is a subjective, multi-dimensional 

assessment tool which is widely used to rate perceived workload. This can be used to assess a 

system’s effectiveness, as well as other aspects of performance. It rates performance across six 

dimensions to determine an overall workload rating. The ratings can also be used individually to 

assess perceived mental workload, physical workload, temporal workload, perceived performance, 

perceived effort and perceived frustration with a task or system. 

Copies of both questionnaires are included in Appendix B and Appendix C respectively. 

Self-confidence was measured on a 5-point Likert scale asking, “How confident were you in your 

decision?” (see Fig. 15), with one being very low, and five being very high. 

Performance was measured by the number of correct classifications that were accepted. 

After all of the classification decisions were complete, a semi-structured interview was performed 

with each participant, designed to better understand what strategies they employed to make their 

decisions. Five questions were asked in total, which can be seen in Appendix D.  

7.3.2.3: Protocol  

The experiment was a repeated measures design. Participants classified ten sounds in total over 

both of the conditions. The conditions were randomised between each participant.  

Confidence was measured after each classification decision. NASA TLX and the Checklist between 

People and Automation were both issued after each participant had made five classification 

decisions. Once all classification decisions were made, a semi-structured interview was conducted 

with the participants. 
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Participants completed the experiment at the University of Birmingham and were seated 

comfortably in front of a laptop. They completed the classifications using the experimental interface 

shown in Figure 16. 

7.3.2.5: Data Analysis 

Statistical significance for differences between the conditions for all measures were assessed using 

paired-samples t-tests in IBM SPSS V29. Significance was set at p<0.05. Effect Size was calculated 

using Cohen’s d. 

Cohen’s d is calculated by: 

𝐷 =  
𝑀1 −  𝑀2

𝑆𝑝
 

Where 𝑀1 and  𝑀2 are sample means for groups 1 and 2, and 𝑆𝑝 represents the estimated 

population standard deviation.  

 The following measures were compared: 

-  Performance score in the VINAS present and VINAS absent conditions to test H1 

- Trust between People and Automation Checklist scores in the VINAS present and VINAS 

absent conditions to test H2 

- Self-confidence ratings in the VINAS present and VINAS absent conditions to support H3 

- Overall workload scores from the NASA TLX ratings in the VINAS present and VINAS absent 

conditions to test H4 

- Frustration scores from the NASA TLX ratings in the VINAS present and VINAS absent 

conditions to test H4a 
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7.3.3: Experiment One Results 

7.3.3.2: Performance 

For Performance Score, VINAS Present [(M = 4.23), (SD = 0.927)] was significantly higher than for the 

VINAS Absent [(M = 3.38), (SD = 1.193)] condition: [t(12)=3.811, p=0.001, d=0.801]. This supports H1, 

showing better performance with a VINAS included than without a VINAS (see Figure 15). 

 

Figure 18: Bar graph with error bars comparing mean performance score for VINAS_present and VINAS_absent conditions 

7.3.3.3: Trust 

For Trust between People and Automation Checklist score, VINAS Present [(m = 53.08), (SD = 

15.163)] was significantly higher than for the VINAS Absent [(M = 44.62), (SD= 12.997)] condition: 

[t(12)=0.003, p=0.034, d=.555]. This supports H2, showing higher trust ratings with a VINAS included 

than without a VINAS (see Figure 16). 
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Figure 19: Bar chart with error bars for mean TiA score for VINAS_Present and VINAS_Absent conditions 

3.3.3.4: Confidence 

There was not a significant difference in the confidence scores for VINAS Present [(M = 18.23), (SD = 

3.767)] and VINAS Absent [(M = 17.62), {SD = 3.097)] conditions: [t(12) = 0.519, p = 0.307, d = 0.144]. 

This does not support H3, showing no significant difference in confidence ratings with a VINAS 

included and without a VINAS. 

3.3.3.5: Workload 

A summary of the results for the paired t-tests for the NASA TLX total score, and individual scores, 

can be seen below: 

Table 12: Results of the Paired t-tests for NASA TLX comparing VINAS present and VINAS absent 

Workload 
Variable 

Condition Mean SD t-value 
Cohen’s 

d 
p-value 

Mental Demand 

VINAS 
Present 

5.23 4.512 

-0.56 -0.155 0.293 

VINAS Absent 6 4.915 

Physical Demand 

VINAS 
Present 

3.23 3.491 

0.143 0.04 0.444 

VINAS Absent 3.153 3.184 

Temporal Demand 

VINAS 
Present 

3.384 3.524 

0.662 0.184 0.26 

VINAS Absent 2.846 2.339 
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Performance 

VINAS 
Present 

7.846 4.651 

-0.636 -0.176 0.268 

VINAS Absent 8.615 5.59 

Frustration 

VINAS 
Present 

5.538 5.538 

-1.833 -0.508 0.046 
VINAS 
Absent 

8.076 8.076 

Effort 

VINAS 
Present 

5.384 4.073 

-0.867 -0.24 0.202 

VINAS Absent 6.461 4.701 

Total 

VINAS 
Present 

5.988 3.111 

-5.87 -0.163 0.284 

VINAS Absent 6.488 2.751 

 

For Frustration Score, VINAS Present [(M = 5.538), (SD = 5.125)] was significantly lower than VINAS 

Absent [(M = 8.077), (SD = 5.937)]: [t(12) = -1.833, p = 0.046, d = 0.508]. This supports H4a, showing 

a significant difference in perceived frustration with a VINAS included compared with no VINAS. 

 
Figure 20: Bar chart with error bars for mean Frustration TLX score for VINAS_Present and VINAS_Absent conditions 

Overall workload score was not found to be significant. 

7.3.4: Experiment One Discussion 

The presence of a VINAS significantly improved both performance and Trust in Automation (TiA) 

score, thus supporting both H1 and H2. Based on the Cohen’s d value, the inclusion of a VINAS had a 

large effect on performance (d = 0.8) and a medium effect (d = 0.5) on trust. 
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Although the difference was not significant, the inclusion of VINAS did also impact the self-reported 

confidence scores, with the scores being slightly higher for the VINAS Present condition.  

In Experiment One, the suggested classification was always correct, and yet participants still rejected 

the classification suggestion at times. This could be seen as evidence as to why some kind of 

explanation or narrative behind an autonomous decision maker’s choices is vital for fostering trust; 

even in perfect conditions, participants are still wary of the output of a classification aide which does 

not afford them any opportunity to understand the processes by which it works. Experiment One 

demonstrates that by providing some kind of understandable background to an autonomous 

decision, an increase in performance and trust can be observed. 

This could also account for the significantly reduced frustration scores observed when a VINAS is 

present. By providing some kind of context to the otherwise opaque suggested classification scores, 

participants may feel more comfortable in accepting a classification decision.  

Although the results were not significantly different, perceived mental workload was also lower for 

the VINAS Present condition [(M = 5.23), (SD = 4.51)] in comparison to the VINAS Absent [(M = 6.0), 

(SD = 4.92)] condition.  

There was also a reduction in perceived effort when a VINAS was present [(M=5.38), (SD = 4.07)] 

compared with when the VINAS was absent [(M = 6.46), (SD = 4.7)], although this result was also not 

significant. 

Overall, the inclusion of a VINAS has many positive effects when compared with the absence of one. 

Experiment One’s results are encouraging, and although they are somewhat limited by the small 

sample size and number of participants, they warrant further research, showing the inclusion of 

VINAS has a positive impact, even on such a small scale. 
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7.4.1: Experiment Two Overview 

Experiment Two sought to understand how the inclusion of a VINAS would impact a user’s 

performance, trust, confidence, and perceived workload, when using an autonomous classifier which 

suggested a classification for a hydrophone recording. 

 In this experiment, the accuracy of the suggested classification was manipulated, providing an 

incorrect classification suggestion for half of the classification decisions. This was to better 

understand the effects of the inclusion of VINAS when there was incongruent, or mis-matched 

information sources to use when accepting or rejecting a classification decision, creating uncertainty 

around classification decisions, and whether this would impact a user’s performance, trust in the 

automation, self-confidence, or perceived workload.  

High levels of uncertainty have been shown in the literature to have a negative effect on trust in 

autonomy (Kirschenbaum, 2002). It has also been demonstrated to have a negative impact on 

perceived workload, situational awareness, and performance (Loft et al., 2015).  

Experiment Two seeks to understand the effect of incongruent pieces of information on a 

classification decision. This is done by manipulating the reliability of the suggested classification in 

order to induce information incongruency. 

A salient choice was made not to manipulate the reliability of the VINAS, as this should always be 

based on the ground truth, which is the recording itself. Therefore, it would be unrealistic to present 

an unreliable VINAS. Instead, suggested classification is manipulated. This is because in reality, a 

classification decision could be based upon unreliable or faulty information, incorporate a source of 

information with low accuracy or reliability, or noisy information from fused information or sensor 

sources, for example. 

The hypotheses for Experiment Two are as follows: 

H1: Trust will be higher when VINAS and the suggested classification are congruent 
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H2: Performance will be higher when VINAS and the suggested classification are congruent 

H3: Self-confidence will be higher when VINAS and the suggested classification are congruent 

H4: Workload will be lower when VINAS and the suggested classification are congruent 

H5: Frustration will be lower when VINAS and the suggested classification are congruent 

H6: Effort will be lower when VINAS and the suggested classification are congruent 

When faced with uncertainty around a decision, trust, workload, and self-confidence will decrease. 

Frustration and effort will increase. Therefore, when all of the information on the screen is 

congruent, it should be expected that trust [H1], performance [H2] and self-confidence [H3] will 

score higher. 

Trying to work out what piece of information to use to make a decision may add to cognitive load, 

and therefore it could be expected that in the congruent condition, workload [H4], frustration [H5] 

and effort [H6] will be lowered. 

7.4.2: Experiment Two Methodology 

Participants, measures, and protocol were the same for Experiment Two as they were for 

Experiment One. Data analysis was conducted in the same way (see Section 7.3).  

7.4.2.1: Conditions 

There were two conditions for Experiment Two, VINAS and Suggestion congruent, and VINAS and 

Suggestion incongruent. In the incongruent condition, the suggested classification was always 

incorrect. There were five classifications for each condition.  
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7.4.3: Experiment Two Results 

7.4.3.1: Performance 

 

Figure 21: Bar chart with error bars comparing mean performance score for VINAS_Congruent, VINAS_Incongruent 

For Performance Score, VINAS Congruent [(M = 4.23), (SD = 0.927)] was significantly higher than 

VINAS Incongruent [(M = 3.62), (SD = 0.87)]: [t(12) = 2.125, p = 0.027, d = 0.59]. This supports 

hypothesis H1, that performance would be higher when the information presented was congruent. 

7.4.3.2: Trust 

For TiA score, VINAS Congruent [(M = 53.08), (SD = 15.163] was significantly higher than VINAS 

Incongruent [(M = 41.92), (SD =13.009)]: [t(12) = 2.782, p = 0.008, d = 0.722]. This supports 

hypothesis H2, that trust in automation would be higher when the information presented was 

congruent. 

 

Figure 22: Bar chart with error bars comparing mean performance for VINAS_Congruent, VINAS_Incongruent 
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7.4.3.3: Self-Confidence 

For self-confidence rating, VINAS Congruent [(M = 18.23), (SD = 3.767] was not significantly different 

to VINAS Incongruent [(M = 19.08), (SD =2.565)]. This does not support hypothesis H3. 

7.4.3.4: Workload 

A summary of the workload ratings, including total workload, can be seen below. 

Table 13: A table comparing t-test results for the Congruent and Incongruent conditions 

Workload 
Variable 

Condition Mean SD t-value 
Cohen’s 

d 
p-value 

Mental Demand 
Congruent 5.23 4.512 

-2.658 -4.6 0.062 
Incongruent 7.307 5.0888 

Physical 
Demand 

Congruent 3.23 3.491 
1.594 0.442 0.068 

Incongruent 2.846 3.236 

Temporal 
demand 

Congruent 3.384 3.524 
-1.389 -0.385 0.95 

Incongruent 4.076 3.882 

Performance 
Congruent 7.846 4.651 

-1.771 -0.491 0.051 
Incongruent 10.307 4.441 

Frustration 
Congruent 5.538 5.125 

-3.007 -0.834 0.005 
Incongruent 8.856 4.913 

Effort 
Congruent 5.384 4.073 

-1.379 -0.382 0.097 
Incongruent 6.846 4.219 

Total 
Congruent 5.988 3.111 

-1.809 -0.502 0.048 
Incongruent 6.77 2.69 

 

It can be seen from the table that overall workload, as well as frustration, were significantly lower 

when the VINAS and suggestion were congruent. 
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Figure 23: Bar chart with error bars comparing mean total workload score for VINAS_Congruent and VINAS_Incongruent 
conditions 

For the total workload score, VINAS Congruent [(M = 5.988), (SD = 3.111] was significantly lower 

than VINAS Incongruent [(M = 6.77), (SD =2.69)]: [t() = 12, p = 0.048, d = -0.502]. This supports 

hypothesis H4, that workload would be lower when information is congruent. 

7.4.3.5: Frustration 

For Frustration TLX score, VINAS Congruent [(M = 5.538), (SD = 5.125] was significantly lower than 

VINAS Incongruent [(M = 8.846), (SD =4.914)]: [t(12) -3.007, p = 0.005, d = 0.834) 

Incongruency causes a heavy penalty in terms of perceived frustration. This supports hypothesis H5, 

which stated frustration would be lower when information is congruent. 

 

Figure 24: Bar chart with error bars comparing frustration TLX score for the VINAS congruent and VINAS incongruent 
conditions 
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7.4.3.6: Effort 

There was so significant difference for effort when information was congruent. This does not 

support hypothesis H6. 

7.4.3.4: Experiment Two Discussion 

Results show that when the information was congruent, participants had higher performance and 

higher trust. This supports the literature, which states that uncertainty can degrade performance 

and trust.  

Surprisingly, participants were no more confident when the information was congruent, than when 

it was incongruent, disproving hypothesis H3. This could be for a number of reasons. If participants 

have some automation bias, they may have their self-confidence inflated by feeling that they can 

“outsmart” the autonomy. However, the difference in performance scores makes it seem like there 

was a disparity between the participant’s perceived performance, and their actual performance. This 

is supported by looking at the TLX performance scores, as participants thought they were performing 

better in the incongruent condition. 

Frustration was a lot higher when the information did not match. This could imply that the 

participants were struggling to identify which piece of information to use to make their decisions.  

Although effort was not significantly lower as was put forward in H6, it was lower for the congruent 

information condition. This was the same for temporal and mental demand, which also were 

perceived to be lower when all information matched. 

In conclusion, this goes some way to answering RQ1, RQ4, RQ5 and RQ6.  

VINAS helps to maintain appropriate levels of trust and improves performance, even when faced 

with incongruent information. It provides a credible, understandable, and trustable explanation 

behind its decisions.  
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7.5: Conclusion 

In conclusion, from the experimentation outlined above, it can be seen that the inclusion of a VINAS 

has many beneficial effects. VINAS helps to improve both performance and trust in automation in a 

significant way. It also was shown that VINAS can help to reduce perceived workload and frustration. 

However, the author acknowledges that the number of participants for both experiments were 

small, and also that the participants lacked familiarity with classification of hydrophone recordings.  

Using non-expert participants may have been beneficial for these experiments. This is because only a 

small number of hydrophone recordings were used in the experimentation, and these recordings 

were quite distinct, with clear characteristics which could be used in the classification process 

audible in the recordings. Using participants with experience of sonar classification would not have 

provided insight into how the VINAS was used, as they would have potentially been able to classify 

the recordings without using the additional information sources. Therefore, using non-expert 

participants may actually have provided more insight into how the VINAS was used, especially when 

there was uncertainty around a particular classification decision.  

Future work utilising more participants may be beneficial, and provide more rigorous results. A 

larger sample size would allow for these preliminary results to be validated.  
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CHAPTER 8: FINDINGS AND LIMITATIONS 

8.1: Discussion 

The aim of the thesis as a whole was to determine how human-autonomy teaming could be utilised 

in future Naval defence, specifically in the maritime SMP domain, in a trustworthy, safe, useful and 

advantageous way.  

This research attempted to summarise best practice in the field of trust in autonomous systems with 

regards to how, what kind, and what level of autonomous system would be appropriate to 

introduce, especially with regards to the unique properties of the socio-technical system of an SMP.  

It presented research into the decision-making schema employed by operators in command-and-

control. It did this in three ways. Firstly, by reviewing the interactions and teamwork within the SMP 

as a form of a socio-technical system, and reviewing research into how information is shared and 

used throughout that system to facilitate the achievements of goals and development of the tactical 

picture. 

 It secondly introduced a decision-making model, called the Recognition Primed Decision model, 

which has been shown in the literature to be representative of the way in which skilled operators 

make decisions when under heavy time penalties and high cognitive workload. 

It further explored whether this model was applicable to Sonar Operators through performing a 

Critical Decision Method interview with a SME, in order to understand not only the physical tasks 

they perform in order to classify, but also how they mitigate and manage the inherent uncertainties 

of the task. This is shown in Chapter Five. 

Thirdly, it then built on this by attempting to elicit some of the cognitive processes and heuristics 

which operators employ in the process of classification by conducting a study using the repertory 

grid interview technique. This is shown in Chapter Six. 
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This modelling of how operators construct their understanding and situation cognitively is 

important: the literature shows a need for explainability and inter-communication between operator 

and autonomy, as demonstrated in Chapter Two. Even if a system behaves at a level of perfect 

reliability, it can still be mis-used; and overall performance, even at high- or perfect- levels of 

reliability introduce new and dangerous opportunities for things to go wrong.  

Therefore, as posited by Chapter Two, it is vitally important for systems to produce explanation and 

transparency behind their decision-making. Understanding how operations make their decisions is 

therefore important to facilitate design features which support this.  

The research then presented an initial idea for a display which could help aid Sonar Operators with 

their classification process, known as the VINAS, developed to both aid with contact classification 

when there are high volumes of contacts to classify quickly, a need identified in Chapter Four 

through accident analysis, and to increase the explainability of an autonomous classifier, as shown to 

be required in Chapter Two.  

Finally, initial testing of the VINAS to evaluate whether it had a positive impact on trust and 

performance was performed in Chapter Seven, showing promising preliminary results. 

8.2: Thesis Objectives 

The first objective of the research was to formulate an understanding of the concepts of trust and 

autonomy and how they relate to each other. This was done in Chapter Two, with several models 

being discussed and demonstrated in the literature, and the relationship between level of 

autonomy, type of autonomy, the autonomy’s level of performance, trust, overall performance, and 

overall situation awareness being explored and established. 

The second objective of the thesis was to present an understanding of how a SMP works as a socio-

technical system. This was done in order to understand the informational requirements of each 

component and how they could potentially be facilitated or supported through the integration of 
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forms of autonomy. This was demonstrated in Chapter Three, where an explanation of how 

information is communicated was presented, along with suggestions and recommendations from 

the literature which had been developed through observational study and simulation.  

The third objective was to understand how SMP accidents can occur from a systemic perspective. 

Two accidents which had occurred since 2015 were analysed using the AcciMapping method in 

Chapter Four, identifying key areas which could be supported with intelligent information 

processing.  

These were, firstly, the planning of navigation during the pre-mission stages of operation, where 

autonomous systems could be beneficially used to better plan navigation routes depending on 

predicted oceanic traffic levels, as well as increase understanding of potential hazards in the 

operational environment, in order to facilitate safer operations. Secondly, it was identified that 

when there are large numbers of contacts to classify in periods with heavy time constraints, Sonar 

Operators could benefit from systems to help mitigate their cognitive load.  

The fourth objective of the thesis was to understand better the identified user for that use case, the 

Sonar Operator. Chapter Five, Chapter Six, and Chapter Seven aimed to do this by developing 

understanding of how the Sonar Operator performs their tasks, both physically and cognitively, in 

order to inform the design of autonomous systems which could aid in their classification process. 

This was done through modelling their task and their decision making using the Critical Decision 

Method interview technique in Chapter Five, and trying to develop sets of key cognitive constructs 

which they used in their mental classification heuristics using the Repertory Grid interview technique 

in Chapter Six.  

The fifth objective of the research was to develop a visualisation using the elicited user requirements 

and informational needs of the SO to support their classification methodology and help manage 

their uncertainty and cognitive load. This was developed through Chapter Six, with the VINAS 

visualisation being produced.   
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8.3: Thesis Research Questions 

The research questions of the thesis were as follows: 

RQ1: What Level and Type of Autonomy could be suitably applicable to tasks caried out in the process 

of broadband sonar classification, whilst maintaining appropriate levels of trust in the automation? 

The thesis presents a strong argument for low- to mid-level automation being the most suitable for 

aiding in the task whilst still maintaining appropriate levels of trust. It posits that because of the 

dangers of over-reliance and complacency, and also potential biases in users’ propensity to trust (in 

general, not just SOs), as identified in the literature in Chapter Two, that suggestive automation, 

which offers solutions without hiding the real-world picture, would be more beneficial to SOs than 

decisive information. This is especially true because of the safety-critical nature of the work, and also 

for the need to develop as accurate distributed SA as possible, which cannot be achieved without 

human-in-the-loop interactions, rather than human-on- or human-outside- the loop.  

The thesis posits that information automation is the most beneficial type of automation to be used 

in the task of sonar classification. It suggests that some action automation could be beneficial, but 

only ever along-side an SO’s own actions, so at low levels of automation. This was assessed through 

evaluation of the literature, showing information automation suffers less of a penalty to SA and 

reliance when it fails (Parasuraman, Thomas B. Sheridan and Wickens, 2000; Onnasch et al., 2014b). 

 It proposes that: 

Moderate levels of information acquisition automation would be appropriate, as certain types of 

contact (emerging, behaving unusually) and areas of the display (waiting for a contact to re-emerge) 

could be highlighted to an operator. This does not disguise the real-world picture, but could also be 

beneficial to draw attention to areas when there are heavy cognitive loads on an operator 

(Parasuraman, Thomas B. Sheridan and Wickens, 2000). 
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Low levels of information analysis automation may be beneficial to the process of TMA. This could 

involve drawing projections of the most optimal solutions, in order to reduce workload for TMA 

operators. 

The thesis argues that decision selection automation could be used to facilitate more effective 

information communication by sending solutions directly from the sound room to the control room. 

However, as the separation of the sound room and control room is not necessarily a design choice 

which will be carried further into future SMP designs, this may not be needed. Discussion of 

positioning TMA and sonar displays closer to each other to facilitate this can be found in Chapter 

Three. 

The thesis also suggests low level action automation can be beneficial, but must be carefully 

mediated. It suggests this in three ways; by deriving suggested speeds for contacts from the 

information available, and offering these as suggestions, and by fixing points in TMA solutions, to 

reduce the manual manipulations of these solutions. 

It also posits that when a SO is experiencing heavy cognitive load, low-level action automation could 

be beneficial by automatically classifying contacts, and offering classification solutions, but only as 

suggestions, and only when classification ambiguity is low. 

 VINAS would offer an extension of this, as it provides the explainability behind the classification 

decision which would allow operators to evaluate the solution’s viability, therefore, mediating the 

action automation by confining it to suggestion, but allowing it to make its own decisions 

independently of an SO, would allow the beneficial effects of this type of automation to be 

experienced with less of a penalty through loss of SA, or automation induced complacency. 

When evaluating VINAS with regards to the review of XAI in Chapter Two, it can be seen that VINAS 

provides a simple, visually assessable way to evaluate a system’s decision-making. It does not rely on 

text, or anthropomorphised agents in order to provide an explanation, which can introduce 



184 
 

additional clutter and take up screen-space, as well as drawing attention away from the tactical 

picture. It does not simply list weighted classifiers, or present a large tree, which can be 

cumbersome and slow to explore and find relevant information for evaluation. Instead, it tries to 

stick with design principles which make it simplistic, eye-catching, easy to assess, and easily 

interpretable (if familiar with classifiers used in traditional sonar classification).  

RQ2: How can the causes of previous SMP accidents be made safer through the introduction of 

autonomy? 

The thesis highlights two key areas where autonomy could be beneficial, as identified by the 

AcciMap analysis in Chapter Four. As an aid to planning routes and understanding traffic in 

operational areas in pre-mission planning, and supporting SOs with classification when they have a 

high volume of contacts to classify, as described above. 

RQ3: How do Sonar Operators cognitively classify sounds? 

The thesis explores this research question through different types of interviews with SMEs and 

presents the results through the cognitive constructs used in the VINAS display, as shown in Chapter 

Six. 

RQ4: How can an autonomous decision aid visually present a credible, understandable, and trustable 

explanation behind its decisions? 

RQ4 is demonstrated through the VINAS, which offers an explanation based on the cognitive 

classifiers derived from the two types of interview with SMEs. It tries to do this in a number of ways. 

Firstly, it offers a quick, visual way to assess a classification decision once an operator is familiar with 

the coloured patterns that emerge on a VINAS for each type of classification.  

Secondly, because the display uses specific constructs derived from SO classification decisions, if a 

region of the VINAS is coloured in an unexpected way, it becomes easier for an operator to 

understand which area of the classification has some ambiguity surrounding it. This supports 
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interdependent classification, as then an SO can apply their expertise in a way which is consistent 

with the RPD model of decision-making, looking for certain clues and elements which match with 

their previous experience to derive a classification.  

This facilitates trust in the autonomous system by offering an explanation behind its decisions which 

a human can understand. It also supports their decision-making processes by highlighting specific 

points of ambiguity embedded in a context of clues which they can relate back to their cognitive 

classification process. 

RQ5: Can a VINAS improve performance in a classification task utilising an autonomous classifier? 

RQ6: Can a VINAS improve trust in an autonomous classifier when conducting a classification task? 

Questions RQ5 and RQ6 are tested in the experimentation outlined in Chapter Seven. Preliminary 

experimentation in this area seems to show that VINAS does both improve performance and 

increase trust in an autonomous classifier, even when there is incongruent information offered by a 

system. 

8.4: Industry and Public Engagement 

The PhD was an ICASE studentship performed in collaboration with BAE Systems. ICASE studentships 

aim to facilitate industrially relevant and applied research, offering the researcher expertise outside 

of an academic setting. 

This meant there was some access to a SME during the earlier stages of the PhD, which would have 

been extremely difficult to achieve otherwise. Input from BAE Systems has enabled the research to 

be better grounded in a realistic understanding of the maritime domain.  

In the later stages of the PhD it became possible to have access to examples of future-focused 

classification systems, which provided some confirmation that the research is aligned with what the 

future capabilities in sonar classification may consist of. It also allowed the researcher to have direct 
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input into experimentation carried out in this domain, which again shows that the research is well-

aligned with future capabilities. 

As well as this, the demonstration of the work at both academic and industrial conferences was well 

received. Of particular note is the presentation of the work on VINAS at the Underwater Defence 

Technology 2022, where naval industry figureheads from around the world showed very positive 

engagement towards the research. The Ministry of Defence representatives in particular gave 

positive feedback towards the research, showing it is both pertinent and relevant to UK naval 

defence research. 

The work has also been accepted and demonstrated at various academic conferences, including the 

Naturalistic Decision-Making conference of 2019, the International Conference for Multimodal 

Interaction in 2021, and the virtual Human Factors and Ergonomics Society conference of 2020. This 

shows that the research is poignant, accepted and validated by the wider academic community, and 

aligned well with current research in these areas.  

8.5: Limitations and Future Work 

There are some limitations to the work. Only one Sonar Operator was involved in the development 

of the research (although two other SMEs were utilised in the repertory grid study), which is 

unfortunate.  

The original plan for the research was to incorporate large-scale observational studies of users, 

through observing training exercises of either Naval students or operational personnel. 

Unfortunately, because of the COVID-19 pandemic, this part of the research was never able to be 

carried out. This does put limitations on how widely applicable the principles derived are. However, 

the research has been supported by BAE Systems throughout the PhD, which does give it some 

credibility. As well as this, it has been published and demonstrated at several prestigious 

conferences, where the work has been peer-reviewed, which means that it does have some integrity 

and merit, despite the smaller sample sizes used in the initial research.  
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Participant numbers were generally low for all of the experimentation. This was due to a number of 

reasons. Firstly, the COVID-19 pandemic severely limited opportunities for in-person observation 

and experimentation for the majority of the time the research was being conducted. Secondly, due 

to the nature of the activities being studied, it was difficult to recruit participants who had expertise 

in the subject area. This was further confounded by the pandemic making it difficult to visit 

personnel.  

Therefore, the experimentation outlined in Chapter Five and Chapter Six could have benefited from 

better access to SMEs, to increase the number of experts being interviewed, and to reassert the 

validity and applicability of the research. It is unfortunate that this was not achieved, but 

understandable, considering the global pandemic severely limiting the opportunity for observation 

and networking for half of the time allotted to carrying out the PhD, and also, the fundamental 

restrictions because of the area of research being so heavily related to national defence. 

The experimentation outlined in Chapter Seven is somewhat limited as it was performed with 

participants who had no experience of sonar data. It also suffered from a small sample sizing and 

limited variables. However, the purpose of the thesis was not to specifically develop and evaluate an 

interface for classification, but instead was to inform how the introduction of automation into a 

maritime defence task could occur. The thesis has done this by presenting a unique methodology for 

deriving cognitive methodologies employed by experts, and the comprehensive literature review 

allowed for well-informed recommendations to be made. 

Further experimentation, engaging with participants with experience of sonar classification, would 

build on the results shown here, and show their replicability. Repeating the experimentation 

conducted in Chapter Seven with a larger number of participants would be beneficial, and help to 

show how robust the results are. Repeating the experimentation outlined in Chapter Seven with 

expert participants and a larger variety of hydrophone recordings would help to build on this 

foundation of research, showing how VINAS could work in more realistic scenarios.  
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APPENDICES 

Appendix A: CDM Questions 

Question Question/Probe 

Type 

Can you think of a specific example where you have been classifying 

multiple contacts? 

Scenario set-up 

Pick a specific example, perhaps a training exercise. Where is it? Scenario set-up 

And what about the quantity of other boats? Scenario set-up 

Think about just before that happened. In the time building up to that what 

are you following, what are your expectations? 

Analogue Probe 

Does the planning meeting occur when you are already on the [redacted]? Clarification 

The information displays you are using – the SONAR – are they all in the 

same area, in the same room? 

Clarification 

Is all that occurring in the same space? Clarification 

So this is onboard a t-boat? Clarification 

You’re communicating over a head-set? Clarification 

So the first thing that happens is that you are given your mission objectives, 

and then you try to spot these contacts on the SONAR display and then 

classify them? 

Scenario set-up 

 Go back to the plan. Where does that start? Scenario set-up 

What kind of things would you do to prepare? Knowledge 

probe 
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So the OOW has a route that may be taken – but the other information and 

the decisions being made at the planning meeting – do the specialists get 

responsibility for their areas? 

Clarification 

Do you create any resources at this point, like maps for example? Scenario set-up 

From there, when you start the actual mission, what’s the first thing that 

would happen? Looking at a general idea of what’s in the area. Checking it 

matches what you expect? 

Scenario set-up 

So is that all communicated from the sound room? Clarification 

what’s the defining rule for when you’re happy to pass that contact 

information on? 

Knowledge 

probe 

Where is the DEMON? Clarification 

Do you have a contingency plan? Basis probe 

What is “in-out”? Clarification 

Classification is a constantly ongoing task? Goal probe 

So each one [contact] is assigned to a channel, and you keep monitoring the 

channel? 

Clarification 

The job is specifically to manage the contacts? Goal probe 

Let’s talk more about what a track means, and whether everybody is seeing 

the same visualisation of a track, or if they have different ways of displaying 

and interpreting that. 

Knowledge 

probe 

What does the track screen look like? Clarification 

Is the display the same in every part of the submarine? Clarification 

In the sonar room, you don’t see the colours, you just see the tracks? Clarification 

Does the OOW have a copy of your screen? Clarification 



209 
 

Does the OOW have to choose which screens to look at, or can they display 

more than one screen? 

Clarification 

Let’s go back to one of the very wide tracks obscuring the others. Let’s use 

that as a specific case. When you are acting as a Sonar Operator. 

Scenario set-up 

You’re sat in the sound room focusing on your screen in front of you. You 

can see a wide track with the side lobes. What else is around you? 

Cues probe 

Who is sat next to you? Cues probe 

Who do you report that to? Scenario set-up 

What happens next? Scenario set-up 

Where do you think they [contact] will go? Basis probe 

Are you interested when it isn’t visible? Knowledge 

probe 

Do you have a prediction of where it will go next? Options probe 

Does this make you panic? Cues probe 

What do you do now you’ve lost the track? Knowledge 

probe 

Can you see the trajectory you think it will follow? Clarification 

What guidelines do you have on the screen for where you think it will come 

back out? 

Knowledge 

probe 

You are holding that information just in your head? Options probe 

How do you know where to look in order to re-gain the track? Cues probe 

Is this from training? From experience? Experience 

probe 

Your experience tells you where it will re-emerge? Experience 

probe 
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What about the fishing vessel? Clarification 

You’re hearing all of this on the sonar? Clarification 

What standard scenario do you have for these large areas of uncertainty? Knowledge 

probe 

Do you usually find all of your tracks again quickly? Analogue Probe 

Is it rare to lose the tracks? Clarification 

Why and how do you know that (where it will emerge)? Knowledge 

probe 

What extra support, if any, do you have in that situation? Aiding probe 

Think back to when you’re struggling to classify something. The Operator 

would go to the Controller? 

Options probe 

If the track disappears, and then you acquire a new track, is there a 

possibility that the new one is actually the old one? 

Basis probe 

What is your main objective in this scenario? Goal probe 

Do you classify everything? Knowledge 

probe 

Are you talking on the head-set at the same time? Clarification 

What set procedures does the OOW have for suddenly changing direction? Goal probe 

Is there a standard procedure for when you cannot re-track a contact? Knowledge 

probe 

This is decided by the OOW? Clarification 

Where does the recording go from the sound room? Clarification 

Track 03 at close quarters, when it moves into the broad tracks, the 

manoeuvring was deceptive – what would you be able to do if you had lost 

the track, but still anticipated what could happen? 

Hypothetical 



211 
 

They’re sitting on the same bearing, so what do you do now? Situation 

assessment 

What specifically is concerning you? Situation 

assessment 

What is the SMCS screen telling you about spatial arrangement that you’re 

not getting from the sonar screen? 

Knowledge 

probe 

How much time pressure is there? Time pressure 

probe 

At what frequency do you look again? Cues probe 

Which is worse; having lots of tracks you know on the screen, so you’ve got 

the workload of dealing with lots of things, or dealing with a few, but 

ambiguous, or unknown tracks? 

Hypothetical 

What strategies can you use to get rid of some of the noise? Knowledge 

probe 

What can you do to filter if there is masking occurring? Knowledge 

probe 

Let’s say T0 is when you identified the track. Focusing on something 

ambiguous. It’s new. You decide it’s definitely a fishing vessel. Let’s call that 

T0. So, what’s happening before that?  

Situation 

assessment 

T minus-one is when the track appears? Scenario set-up 

T minus-two, before the track appearing? Scenario set-up 

All of these things, about changing direction, changing depth, or the target 

moving behind a land mass, or coming into range, these are all things that 

are happening prior to the track appearing. So, I think listing those would be 

really good. Can you list them in order? 

Hypothetical 
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In the planning meeting, do you come up with lists of potential contacts? Clarification 

What would be the first thing you do in that instance [unexpected contact 

at t-zero)? 

Hypothetical 

When do you start tracking the revs? Knowledge 

probe 

What can you hear? Cues probe 

What can you see? Cues probe 

What is the first thing you look at (when classifying)? Knowledge 

probe 

List me the characteristics? Knowledge 

probe 

What is the most important thing, revs or blades? Knowledge 

probe 

Is this when you can possibly classify it? Clarification 

Work out the CPA, the speed, and then you know when you need to change 

course? 

Clarification 

If you’re a beginner, what are the main things you would look for? Experience 

probe 

What are you listening for? Cues probe 

Listening using the sonar? Clarification 

Where are you noticing the revs, blades and shafts? Knowledge 

probe 

Is it through training you can recognise toughly what the ship’s 

characteristics are? 

Experience 

probe 

Do you have tables to refer to (rev ranges)? Clarification 
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Is it possible to classify just from that, for example, a large merchant vessel, 

or do you need more information? 

Experience 

probe 

So blades and shafts, just if it’s ambiguous? Knowledge 

probe 

Is that the bare amount of information you need? Experience 

probe 

How do you validate that classification? Knowledge 

probe 

It isn’t confirmed until the OPSO reports it? Clarification 

What if you don’t know what it is from the TPK? Hypothetical 

What happens if the OPSO looks and it isn’t in the shipping lane? Hypothetical 

Is there a time limit? Time pressure 

probe 

Are there times you can think of where you’ve been unable to classify a 

contact? 

Experience 

probe 

Do you monitor a contact differently when you aren’t sure what it is? Options probe 

Will the warship try and disguise some information? Hypothetical 

What stuff (signature information) is more difficult for a contact to obscure? Experience 

probe 

You can only use passive sonar when being covert? Clarification 

Does that make a big difference in being able to classify? Experience 

probe 

Is the big difference in terms of expertise familiarity? Experience 

probe 
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How do you look after somebody new? Experience 

probe 

Give me examples of the kind of help you would give them? Aiding probe 

Trying to keep tracks from the edge? Aiding probe 

How long would it take in terms of hours at sea before they would be 

comfortable working on their own? 

Experience 

probe 

Do you specialise in one (type of sonar) or have to learn everything? Clarification 

Then you’re assigned? Clarification 

Once you’ve done your compulsory number of hours, do you pick what to 

specialise in? 

Clarification 

Do broadband and narrowband track the same contacts? Clarification 

If you’re unsure from the broadband, is gaining information from the 

narrowband the next step? 

Situation 

assessment 

If you’re not sure what a contact is, what are the steps you go through in 

your head to make it clearer? 

Situation 

assessment 

You look for that visually? Knowledge 

probe 

Is it a rare event when something is classified as unknown? Knowledge 

probe 

Is it a very bad event if something is classified as unknown? Knowledge 

probe 

What strategy would you use (if a contact is unknown) – raising the 

periscope? 

Goal probe 

If the Sonar Controller was not a human being, but a computer, with a 

holographic display, is that ludicrous? 

Hypothetical 
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Would you take an order from it? Hypothetical 

What about, in the example of an experienced operator leaning over to a 

trainee, can you imagine that as an avatar, or some other way of drawing 

attention to some aspect which may not have been done properly? 

Hypothetical 

Would this scenario be practical? It may take up screen space. What if it 

communicated via voice? Or text on the screen? 

Hypothetical 

Monitoring the sonar, if you had an autonomous system, how would it 

communicate to the Controller, should it have a voice? A face? Maybe just 

highlight things on the screen? 

Hypothetical 

Thinking about how to incorporate feedback from the system on the screen, 

as part of the display. A little dot on the track, perhaps? Would it be easy to 

mistake that for tracking? 

Hypothetical 

 

Appendix B: Semi-Structured Interview Questions 

Questions asked in semi-structured interview 

1) Could you tell the difference between the blocks? 

2) Which of the blocks do you think was the least reliable? 

3) Why? 

4) Which of the blocks do you think was the most reliable? 

5) Why? 

6) Which pieces of information on the screen were most informative?  

7) Which pieces of information did you use the most?  

8) Was this true for each block? 

9) Did you have a strategy for making your decisions? 

10) What did you do when the pieces of information did not match? 

11) How did you decide whether to accept or reject the suggested classification? 

12) Do you think the computer was good or bad at classifying things?  

13) Why? 
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Appendix C: NASA TLX Questionnaire 
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Appendix D: Checklist Between People and Automation Questionnaire 

 

  



218 
 

Appendix E: Participant Consent Form 

 

Consent Form 

 

PhD Research Experiment: Evaluating trust in multi-sensor systems 

 

 Please tick to confirm: 

I am over 18 years old  

I have read and understood the information 
sheet 

 

I have been given the opportunity to ask 
questions about the study 

 

I understand that I am able to withdraw 
myself from the experiment at any time 
during, or afterwards by emailing 

 

 

I understand that all data recorded shall be 
anonymised, and will not be linked to me 
I agree to the anonymous data collected from 
me being used for research purposes 

 

 

 

Name:   ___________________________ 
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Signature: ___________________________ 

 

Date:  ___________________________ 
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Appendix F: Participant Information Sheet 

Experiment Information Sheet 

PhD Research Experiment – Using Autonomous Aids to Classify Aural Information 

Thank you for agreeing to take part in this study! 

Overview: This research is concerned with how classification decisions can be made with the help of 

an autonomous classifier. This experiment is testing a new autonomous AI that classifies sounds. 

These sounds are hydrophone recordings of ships and marine life, and the computer will try and 

classify these recordings. It will offer you a suggested classification, which you can accept or reject. 

To help with this, you can listen to the hydrophone recording of the contact, see a spectrogram 

(frequency information) of the hydrophone recording, see suggested classifications provided by the 

autonomous classifier, and are also provided with a unique type of graphical display known as a 

VINAS. The VINAS is a colourful grid. Each type of contact makes a different coloured pattern on the 

grid. A key to understand the VINAS is provided below, and you will also see this key on your screen. 

Some of the information for each contact may be incorrect – it is up to you to identify which 

information sources you can trust. 

Before you begin, you will be asked to fill in a questionnaire about how trusting you tend to be. 

You will then be asked to classify five contacts at a time. After each classification, you will be asked 

to rate your confidence in your decision. After classifying five contacts, you will be asked to fill in a 

two questionnaires about workload and trust, and can have a short break. Once all contacts have 

been classified, we will have a short discussion about your experience. 

During the task, some performance measures will be collected, including information about time 

taken to complete the task, whether the classification decision was correct, and the self-confidence 

ratings, as well as the questionnaire data.  
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Time: This experiment will take around half an hour to complete. During this time, you can take a 

break from the screen when desired. 

Data Collection: All of the data collected will be anonymised and you will not be identified in any 

processing of this data.  Data will be stored on an encrypted hard drive which is kept in a secure 

location.  If you choose to withdraw from the study, all of your data will be destroyed. You can 

withdraw from the study up to one month after performing the experiment by contacting me using 

the details provided below. Data will be used solely for the purpose of this PhD research experiment 

and may be published in academic journals or conferences. Further details and copies of published 

results will be provided upon request. 

Risks: The experiment involves using a screen and headphones for an extended period of time, 

which may result in eye strain or fatigue. If you would like to take a break at any point, please ask. 

There will be a break provided before completing the end of experiment questionnaires. 

Withdrawal: If you wish to withdraw from the study, or would like further details, please send an 

email to:  

 

Contact Details:               Faye McCabe, LG07, UKRRIN 

 

 

 

 




