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Abstract 

An increased prevalence of Parkinson’s Disease (PD) diagnosis is apparent in the autistic 

(ASD) population. However, genetic studies have failed to provide evidence for a strong link 

between the two conditions, meaning it may not be the case that autistic individuals are 

genetically more likely to develop PD. Anecdotally, movement differences in ASD have been 

likened to those exhibited by individuals with PD. Given that PD diagnosis is primarily 

movement-based, similarities in ASD and PD movement may explain the increased PD 

diagnosis prevalence in the autistic population: if it is indeed the case that autistic movement 

appears parkinsonian, this may facilitate autistic individuals meeting diagnostic criteria for 

PD. This could have serious implications for the specificity of the PD diagnostic process. 

With a lack of direct comparison studies assessing behavioural and cognitive profiles in ASD 

and PD, it is unclear whether quantifiable similarities exist between the two conditions. 

Extant evidence for a potential overlap between the two conditions relies on the comparison 

of findings from separate research studies, and thus is limited due to variation in participant 

demographics and tasks used. 

In this thesis I conducted the first direct comparison of behavioural and cognitive 

profiles in ASD and PD, in addition to members of the general population. Chapter 2 

demonstrated many similarities in the kinematic features of animations (free movement) 

produced by the ASD and PD groups, but only the similarity in jerk between ASD and PD 

was distinct from performance in the general population. All three groups were additionally 

comparable with respect to movement-based theory of mind ability. Chapter 3 conducted a 

more sensitive investigation of autistic and parkinsonian movement using a restricted 

movement task devoid of theory of mind demands. Here, kinematic features were uncovered 

that differed between the three groups (e.g., speed modulation, sub-movements and reaction 

time). This Chapter also determined the utility of movement assessments for classifying 



   

group membership, demonstrating higher levels of classification accuracy when trait 

questionnaires were combined with kinematic features in a range of classification models. 

This highlights that clinical diagnostic processes may be improved through the incorporation 

of kinematic assessments.  

Alongside providing insight into the behavioural and cognitive similarities between 

ASD and PD, the thesis presented novel findings with respect to ASD and PD separately. For 

example, Chapters 2 and 3 conducted the first kinematic assessments of older autistic adults, 

revealing that some, but not all, components of younger autistic movement remain distinct 

from non-autistic movement in older age. In addition, the first assessment of individuals with 

PD on the tasks presented in Chapters 2 and 3 revealed novel kinematic features that differed 

in this population (e.g., speed modulation), and patterns of movement speed differences 

between the two Chapters were aligned with the motor motivation hypothesis of PD.  

Finally, Chapter 4 investigated biological mechanisms underlying movement 

differences between the three groups, setting out evidence from two pharmacological 

intervention studies. Specifically, movement differences resulting from PD dopaminergic 

medication and the dopamine antagonist haloperidol were explored. These studies implicated 

dopamine in a range of ASD- and PD-relevant kinematic features, strengthening the proposal 

that movement differences in ASD and PD are the product of dopaminergic mechanisms. 

Results across the three Chapters are consistent with hyper-dopaminergic functioning in ASD 

and hypo-dopaminergic functioning in PD. Overall, this thesis provides a greater 

understanding of the overlap between behavioural and cognitive presentations of ASD and 

PD, as well as underlying biological mechanisms which may account for this overlap.  
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Chapter 1 – Introduction 

1.1 General Introduction  

Autism Spectrum Disorder (ASD, or autism1) is a developmental condition with 

known differences in social cognition, language and communication (American Psychiatric 

Association, 2013). However, recent studies have shed light upon movement differences in 

autism (Fournier et al., 2010; Gowen & Hamilton, 2013; Leary & Hill, 1996; Mari et al., 

2003). Conversely, Parkinson’s Disease (PD) is a neurodegenerative disorder characterised by 

differences in motor function including bradykinesia (slowed movement), gait differences and 

postural instability (Jankovic, 2008; Moustafa et al., 2016; Zanardi et al., 2021), but a 

growing body of research has highlighted differences in social and emotional processing 

(Czernecki et al., 2021). Thus, both conditions are characterised by co-occurring differences 

in motor function and social cognition (Eddy & Cook, 2018). 

Overlapping traits in ASD and PD have garnered recent attention, with a number of 

review articles commenting on similarities at genetic, behavioural and cognitive levels 

(Hollander et al., 2009; Mai et al., 2023; Morato Torres et al., 2020). Such attention follows 

reports of alarmingly high rates of parkinsonism (i.e., PD symptoms) and PD diagnosis in 

ASD compared to the general population (Croen et al., 2015; Geurts et al., 2022; Hand et al., 

2020; Starkstein et al., 2015). As such, a key question of interest is whether autistic 

individuals are indeed more likely to develop PD, or whether older autistic adults simply 

exhibit behaviour that looks like PD “from the outside”. Genetic investigations of ASD and 

PD do link a number of PD-specific genes to ASD (Labonne et al., 2020; Yin et al., 2016), 

 
1 I will use identity-first terminology (e.g., “autistic person”) following the preferences of the global autistic 
community (Keating et al., 2022).  
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however a strong genetic correlation between the two conditions is not apparent (Sey et al., 

2020; Smeland et al., 2021). This lends weight to the theory that behavioural similarities 

between ASD and PD may at least be partly responsible for the increased PD diagnosis 

prevalence in the autistic population (hereafter “misdiagnosis hypothesis”). Given that PD 

assessments are primarily behavioural, and ancillary investigations are not common (Bloem et 

al., 2021), it is possible that PD diagnosis rates in ASD may be higher than in the general 

population due to movement similarities between the two groups. Further investigation of this 

theory becomes increasingly relevant as recent studies have proposed that movement 

differences could be used to algorithmically detect PD (e.g., Lamba et al., 2021). If this were 

the case, similarities between autistic and parkinsonian movement could lead to autistic 

individuals being classified into a PD group.  

Early studies anecdotally highlight similarities between autistic and parkinsonian 

movement (Mari et al., 2003; Minshew et al., 2004; Vilensky et al., 1981). At present, no 

direct comparison studies exist between ASD and PD. Despite this, both conditions appear to 

show gait differences (Jankovic, 2008; Lum et al., 2021), postural instability (Jankovic, 2008; 

Minshew et al., 2004) and bradykinesia (Jankovic, 2008; Mari et al., 2003), all core features 

of PD. In addition, fine motor control similarities have been noted such as handwriting 

(Godde et al., 2018; Van Gemmert et al., 2003), as well as emotion production (Ricciardi et 

al., 2015; Trevisan et al., 2018). Aside from movement, various cognitive similarities are 

apparent between ASD and PD, most notably in terms of theory of mind (Peron et al., 2009; 

White et al., 2011) and emotion perception (Gray & Tickle-Degnen, 2010; Uljarevic & 

Hamilton, 2013), two domains which often rely on the interpretation of movement cues (Edey 

et al., 2017; Sowden et al., 2021). However, such similarities are drawn from separate 

research studies, meaning that results may be confounded by different sample demographics 
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or tasks used. As such, a primary aim of the current thesis was to conduct the first direct 

comparison study of autistic and parkinsonian movement, as well as movement-based theory 

of mind, whilst either matching or controlling for a range of confounding demographic 

variables. These studies also had the secondary benefit of adding to the sparce older autistic 

adult literature (Mason et al., 2022) and investigating movement-based theory of mind for the 

first time in PD.  

Understanding the nature of the relationship between ASD and PD is of great 

importance for the autistic population. If it is the case that autistic individuals are more likely 

to develop PD, as demonstrated by a genetic overlap, this would highlight a need to adapt 

current clinical procedures. For example, greater awareness of the co-occurrence between the 

two conditions would be needed, as well as the establishment of interdisciplinary clinical care 

teams to ensure communication between movement disorder specialists and psychiatrists (as 

noted by Morato Torres et al., 2020). Conversely, if the overlap between ASD and PD is 

limited to behavioural and cognitive levels, it may be considered that such similarities 

between the two conditions plays a role in the increased prevalence of PD diagnosis in the 

autistic population. This would have serious implications from a clinical diagnostic point-of-

view. If it is the case that older autistic individuals are sometimes falsely diagnosed with PD 

on the basis of outward appearances, and are potentially receiving unnecessary medications as 

a result, the PD diagnosis procedure must be overhauled to guard against this. 

Any similarities between ASD and PD may arise from a common biological 

mechanism. Therefore, an additional aim of the thesis was to uncover the biological 

mechanisms underlying autistic and parkinsonian movement. Given that dopamine function 

has been linked to both ASD (Pavăl, 2017) and PD (Rizek et al., 2016), as well as movement 
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(Eichhorn et al., 1996; Lange et al., 2006; Quattrocchi et al., 2018; Tomassini et al., 2016), the 

second half of the thesis investigates the role of dopamine in a range of movement processes.  

1.2 Literature Review 

1.2.1 Overview on Autism 

What is autism? 

Autism is a condition characterised by socio-communicative differences and restricted 

or repetitive behaviours (American Psychiatric Association, 2013). It is considered a 

developmental condition, with characteristics emerging in early childhood. Approximately 1 

in 100 individuals are diagnosed with autism globally (Zeidan et al., 2022). However, given a 

lack of diagnosis availability in developing countries and cultural differences affecting 

diagnosis rates (Onaolapo & Onaolapo, 2017), this prevalence may in fact be higher. A 

diagnosis is obtained through autism specialists, who use both interview-style and 

observational-based assessments to assess core autistic traits. Typically these diagnoses occur 

in childhood, but there is growing appreciation of the need to improve autism diagnosis 

processes in adulthood (Huang et al., 2020).  

Whilst core features such as differences in social cognition have been extensively 

reviewed (e.g., Uljarevic & Hamilton, 2013; Wilson, 2021), there is a growing body of 

research suggesting movement differences in autism (Fournier et al., 2010; Wang et al., 

2022). These differences emerge in childhood, both in the form of delayed motor 

development and motor atypicalities (Posar & Visconti, 2022). Varcin and Nelson (2016) 

noted that differences in motor processing are an important early indicator of autism, and 

therefore may hold utility as a biomarker of the condition. In addition, recent calls have been 

made to include movement differences as “specifiers” to autism diagnoses (i.e., condition-
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relevant but non-selective symptoms used to further clarify a diagnosis; Licari et al., 2022). 

However, knowledge of movement differences in autism is not widespread. In a study of 

2,084 autistic children, 35.4% of the sample met criteria for motor difficulties according to the 

Vineland Adaptive Behavior Scales (Sparrow & Cicchetti, 1985), but motor difficulties had 

only been reported by the participants’ diagnosing clinicians in 1.34% of the sample (Licari et 

al., 2020). Thus, it is clear that more needs to be done to understand the movement profiles of 

autistic individuals.  

Older autistic adult literature 

Due to the developmental nature of autism, much research focuses on the stages of 

early childhood and adolescence. However, autism is a life-long condition, and it is important 

to understand how autism progresses across the lifespan. Unfortunately, there is a clear 

reduction in knowledge of the presentation and health implications of autism in later stages of 

life due to a lack of research studies conducted in older age groups, something which has been 

highlighted by numerous review papers (Happé & Charlton, 2011; Mukaetova‐Ladinska et al., 

2012; Sonido et al., 2020; Wright et al., 2019). A recent literature review conducted by Mason 

et al. (2022) suggests that autism research in older adults is becoming more abundant, with a 

392% increase in older autistic adult research since 2012, compared to 196% in childhood, 

254% in adolescents and 264% in adults. However, the authors note that there is still a long 

way to go, given that research into older autistic adults only made up 0.4% of all autism 

research published between 2012 and 2022.  

Though studies are limited, we do now have some understanding of aging in autism. 

Whereas some abilities are lower than the general population throughout the lifespan in 

autism, this is not the case for all abilities. For example, executive dysfunction is apparent in 

autistic children and adults (Hill, 2004), but not all executive functions differ from the general 
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population in later life; attention, working memory and fluency appear to be lower in older 

autistic versus non-autistic adults, whereas other cognitive functions including planning and 

cognitive flexibility are comparable between groups (Geurts & Vissers, 2012). In addition, 

whilst poor quality of life, low health status and psychiatric symptoms are more common in 

autistic individuals – compared to their non-autistic counterparts – in both young and older 

adults (Lever & Geurts, 2016b; Rydzewska et al., 2019; van Heijst & Geurts, 2015; Yarar et 

al., 2022), clinical levels of psychiatric conditions such as anxiety, social phobia and eating 

disorders have been found to be more prevalent in younger compared to older autistic adults 

(Lever & Geurts, 2016b; Yarar et al., 2022). Finally, Yarar et al. (2020) reported no 

differences in theory of mind ability between young and older autistic adults. However, whilst 

young autistic adults performed less well than young non-autistic adults, a decline in 

performance with age in the non-autistic population meant that older autistic and non-autistic 

performance was comparable. These results, along with work by Lever and Geurts (2016a), 

highlight a discrepancy between autistic and non-autistic performance at a younger age that 

does not extend to older age (though see Torenvliet et al., 2022). Overall, this body of 

literature demonstrates that not all autistic traits follow the same trajectory across the lifespan. 

A core problem with studying older autistic adults is that there are not many older 

adults diagnosed with autism. This is because diagnosis usually occurs in childhood and, 

given that autism was only added to the Diagnostic and Statistical Manual of Mental 

Disorders (DSM)-III in 1980, there is a “lost-generation” of adults with autism (Lai & Baron-

Cohen, 2015). As such, some studies have opted to investigate the relationship between 

autistic traits in the older population and various dependent variables. For example, evidence 

that executive function is impaired in older autistic adults is supported by studies of autistic 

traits; Stewart et al. (2018) evidenced that individuals over the age of 60 classified as being on 
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the Broad Autism Phenotype (BAP) according to the BAP Questionnaire (BAPQ; Hurley et 

al., 2007) had poorer performance in working memory and episodic memory compared to 

non-BAP individuals (also see Stewart et al., 2023). In addition, elevated rates of psychiatric 

diagnoses have been observed in individuals with high compared to low levels of autistic 

traits in the older population (Stewart et al., 2021). By contrast, the theory of mind pattern of 

performance described previously for young and older autistic and non-autistic adults was not 

supported in a study of autistic traits (Stewart, Wallace, et al., 2020); here, BAP individuals 

exhibited poorer theory of mind performance than non-BAP individuals at both younger and 

older ages (in line with Torenvliet et al., 2022).  

This thesis primarily focuses on movement; thus, it is relevant to note that studies of 

motor function in older autistic adults are not prominent in the literature. Indeed, Mason et al. 

(2022) categorised extant studies of older autistic adults into a number of themes, of which 

any mention to movement or motor function did not occur. Instead, the most popular themes 

were general health (8%), genetics (7.5%), reviews (7.5%) and cognition (7.1%). When 

inspecting the full list of studies acquired in their search, only one study made reference to 

older adult motor function (Linke et al., 2020). This study revealed poorer motor function in 

autistic adults as indexed by the Bruininks Motor Ability Test (BMAT; Bruininks & 

Bruininks, 1978). Autistic adults performed less well on BMAT subscales for manual 

dexterity, coordination, and strength and flexibility, but were comparable to non-autistic 

adults in fine motor, balance and mobility subscales. In addition, two papers in Mason’s 

literature search made reference to parkinsonian-like traits in older autistic adults (one of 

which involved a behavioural assessment); these are discussed in-depth in the next section 

(Geurts et al., 2022; Starkstein et al., 2015). This limited literature clearly indicates a need for 

future work to fully identify and understand movement differences in older autistic adults. 
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1.2.2 Parkinson’s Disease in the Autistic Population 

A growing appreciation of links between developmental and neurodegenerative 

disorders, including both co-occurrence and overlapping symptoms, has emerged in recent 

years (Croen et al., 2015; Gupta et al., 2023; Hand et al., 2020; Morato Torres et al., 2020). 

The current thesis focuses on links between autism and Parkinson’s Disease specifically. 

What is Parkinson’s Disease? 

Parkinson’s Disease is a neurodegenerative condition characterised by bradykinesia 

(slowed movement), tremors and muscular rigidity (Jankovic, 2008; Moustafa et al., 2016; 

Rizek et al., 2016; Uwishema et al., 2022; Zanardi et al., 2021). A wide range of non-motor 

symptoms are also apparent including mood disorders, cognitive decline, and sleep problems 

(Czernecki et al., 2021; Rizek et al., 2016; Uwishema et al., 2022). PD is caused by 

degeneration of dopamine neurons in the substantia nigra of the basal ganglia and the 

accumulation of Lewy bodies composed of misfolded α-synuclein (Kalia & Kalia, 2015; 

Rizek et al., 2016), with symptoms worsening following progression of these pathologies. 

Whilst dopaminergic medication (e.g., levodopa and dopamine agonists) can treat symptoms 

to an extent, degeneration continues over time and medications become less effective.  

Diagnosing PD generally follows a procedure in which behavioural indicators 

(including bradykinesia and at least one of three core features: rigidity, resting tremor, 

postural instability) are integrated with observations of patients’ responses to dopamine 

agonists (Jankovic, 2008; Rizek et al., 2016). Whilst ancillary investigations are not common 

Summary: Autism is a developmental condition associated with differences in both social 
cognition and motor function. Research into older autistic adults is sparse, with a 
particular lack of studies investigating movement differences in this age group.  
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(Bloem et al., 2021), more complex cases may be subject to various forms of imaging (e.g., 

positron emission tomography (PET) or single-photon emission computed tomography 

(SPECT)) to differentiate PD from other parkinsonian disorders.  

Is Parkinson’s Disease prevalent in autism? 

Current studies within the autism literature point to an increased prevalence of 

parkinsonism in the autistic population. Starkstein et al. (2015) conducted an examination of 

parkinsonian motor signs in autistic adults using the Movement Disorders Society-Unified 

Parkinson’s Disease Rating Scale (MDS-UPDRS; Martínez-Martín et al., 1994). They 

reported that 32% of their test sample met the diagnostic criteria for parkinsonism, with 25% 

of individuals not taking antipsychotic medications meeting the criteria. Similarly, a study of 

autistic adolescents revealed significantly more bradykinetic and rigid motor behaviour in the 

autistic group compared to the non-autistic group as measured by the UPDRS (Mostert-

Kerckhoffs et al., 2020). A further study of 296 autistic participants from the Netherlands and 

209 autistic participants from the USA demonstrated positive screening for parkinsonism via 

the Parkinsonism Screening Questionnaire in 17% and 33% of autistic participants 

respectively (Geurts et al., 2022). Together these studies demonstrate that high levels of 

parkinsonism are observed when conducting PD assessments in an autistic sample. 

Importantly, these studies consider the relevance of antipsychotics. Antipsychotic 

medication is commonly prescribed in the autistic population (Houghton et al., 2017), and has 

been found to cause parkinsonism (Brigo et al., 2014). As such, increased parkinsonism in 

ASD may be due to the high use of antipsychotics in this group compared to the general 

population. Reassuringly, both Starkstein and Mostert-Kerckhoff’s studies demonstrated 

elevated parkinsonism in samples of autistic individuals not taking antipsychotics. In addition, 

Geurts’ study failed to find a difference in antipsychotic use between samples with and 
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without parkinsonism. Thus, the idea that high rates of parkinsonism only arise from high 

prevalence of antipsychotic use is rejected.  

Turning to studies of PD diagnosis prevalence, Croen et al. (2015), who conducted a 

study of the health status of autistic individuals, reported a PD prevalence of 0.93% compared 

to 0.03% in the non-autistic sample. Whilst this value is lower than the percentages of 

parkinsonism reported by Starkstein et al. (2015) and Geurts et al. (2022), the discrepancy in 

findings may be accounted for by the age groups sampled. All participants in Starkstein’s 

study were over the age of 39, whereas only 20.7% of the autistic individuals sampled by 

Croen and colleagues were over the age of 39. Participants in Geurts’ study were over the age 

of 50, compared to 9.5% of the sample studied by Croen et al. (2015). It is likely that PD 

prevalence rates would be higher in older populations. Indeed, when Hand et al. (2020) 

assessed PD prevalence rates in an older sample of over 65 year olds, a prevalence of 6.6% 

was reported in a sample of 4785 autistic individuals compared to a 1.2% PD diagnosis 

prevalence in the non-autistic population. These prevalence rates are substantially higher that 

those reported by Croen and colleagues. Overall, whilst PD prevalence rates in the autistic 

population may not be as high as the number of individuals passing parkinsonism screening 

assessments, it is clear that PD diagnoses are much more prevalent in the autistic population 

than in the non-autistic population.  

 

 

 

Summary: Parkinson’s Disease is a neurodegenerative condition characterised by 
movement differences. Increased parkinsonism and Parkinson’s Disease diagnosis 
prevalence is apparent in the autistic population compared to the non-autistic population. 
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1.2.3 Autism and Parkinson’s Disease Genetic Overlap 

Following reports of an increased prevalence of Parkinson’s Disease diagnosis and 

parkinsonism in the autistic population (Croen et al., 2015; Geurts et al., 2022; Hand et al., 

2020; Starkstein et al., 2015), it is important to determine whether it is the case that autistic 

individuals are indeed more likely to develop PD. A crucial step towards answering this 

question is to determine the genetic relationship between ASD and PD – that is, whether there 

is overlap between the genes associated with ASD and the genes associated with PD.  

Specific genes 

Genetic investigations of PD have resulted in the discovery of a number of important 

risk genes for PD (Bloem et al., 2021; Nuytemans et al., 2010). Interestingly, many of these 

genes have also been associated with ASD, including PARK2 (Conceição et al., 2017; 

Glessner et al., 2009; Yin et al., 2016), PINK1 (Zhou et al., 2019) and LRRK2 (Labonne et 

al., 2020). Therefore, it is likely that the DNA of autistic individuals will contain some 

important PD risk genes, meaning that they may have a genetic predisposition to PD. Beyond 

these PD risk genes, a range of other genes have been implicated in the genetic aetiologies of 

both ASD and PD, such as RIT2 (Emamalizadeh et al., 2017), Sema5a (Ding et al., 2008; 

Melin et al., 2006), CNTNAP4 (Wang et al., 2010; Zhang et al., 2020), RAB39B (Mata et al., 

2015; Woodbury-Smith et al., 2017), GPR38/PaelR (Fujita-Jimbo et al., 2012) and CD38 and 

CD157/BST1 (Higashida et al., 2019; Yokoyama et al., 2015). However, this evidence 

overlooks the fact that genetic aetiologies for conditions are not comprised of a single gene, 

rather a combination of many risk variants. A broader picture of polygenic overlap is 

necessary to more fully understand the genetic relationship between ASD and PD. 
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Genome wide association studies 

There are locations throughout a person’s DNA in which differences in nucleotides 

can be found. These specific locations are referred to as single nucleotide polymorphisms 

(SNPs), which are the most common form of genetic variation. SNPs are often located within 

genes, meaning they can affect the functioning of the gene and are causally implicated in 

different conditions. Genome wide association studies (GWAS) have been conducted for both 

ASD and PD in which summary statistics provide a measure of effect size for each SNP with 

regards to their association with the condition. A recent GWAS for ASD was conducted by 

Grove et al. (2019), in which summary statistics were generated from 18,381 cases and 

27,969 controls. All cases were diagnosed with ASD before 2013 by a psychiatrist according 

to International Classification of Diseases 10th Revision (ICD-10; DiSantostefano, 2009). 

Turning to PD, Nalls et al. (2019) generated summary statistics from 37,688 individuals with 

PD, 18,618 UK Biobank proxy-cases who have a first degree relative with PD, and 1,417,791 

controls. Information regarding which SNPs are associated with each condition can be used to 

further understand the genetic overlap between ASD and PD. 

Genetic overlap 

GWAS summary statistics for ASD and PD can be compared to identify the extent to 

which SNPs are associated with both conditions, for example by employing the cross-trait 

Linkage Disequilibrium Score Regression technique (Bulik-Sullivan et al., 2015). This 

technique incorporates knowledge of linkage disequilibrium (LD), the non-random 

association of variants at different positions of the genome. More specifically, LD scores can 

be calculated for each SNP as the sum of its correlations with all other SNPs. If an SNP has a 

large LD score, it is more likely to be associated with a causal variant and therefore the 

specified trait. It is necessary to account for LD scores when investigating the links between 
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genotypes and phenotypes to ensure that causal SNPs are identified rather than SNPs 

associated with causal variants due to large LD scores.  

Null results have been presented when assessing the polygenic relationship between 

ASD and PD via cross-trait Linkage Disequilibrium Score Regression. The Brainstorm 

Consortium et al. (2018) reported a non-significant (but numerically negative) genetic 

correlation between ASD and PD (correlation = -0.20) using ASD GWAS data from The 

Autism Spectrum Disorders Working Group of The Psychiatric Genomics Consortium (2017) 

and PD GWAS data from Nalls et al. (2014). Sey et al. (2020) also found a non-significant 

(but numerically positive) genetic correlation between ASD and PD (correlation = 0.02) using 

more recent GWAS data from Grove et al. (2019) and Nalls et al. (2019) respectively. In 

addition, Smeland et al. (2021) reported no evidence for cross-trait enrichment between ASD 

and PD when using GWAS data from Grove et al. (2019) and Nalls et al. (2019). It is possible 

that relationships may emerge with the development of larger GWAS. However, overall, these 

studies clearly suggest that the genetics underlying ASD and PD are not significantly 

correlated. 

To address the limited power that arises from focusing on individual genes, methods 

which group genes prior to analysis may increase the likelihood of uncovering a genetic 

relationship between conditions. A technique called Multi-marker Analysis of GenoMic 

Annotation (MAGMA) has been developed which collapses GWAS data into gene-level 

groupings prior to assessing genotype-phenotype relationships or genetic relationships 

between conditions (de Leeuw et al., 2015). This approach has provided novel insight into 

ASD-related genes (Grove et al., 2019). Sey et al. (2020) used a modified version of this 

technique known as Hi-C-coupled MAGMA (H-MAGMA) to provide insight into gene-level 

overlap between ASD and PD. Again, no genetic relationship was found between ASD and 
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PD using GWAS data from Grove et al. (2019) and Nalls et al. (2019). Thus, no studies at 

present provide convincing evidence that ASD and PD are genetically correlated.  

Genetic risk 

An additional approach for investigating the genetic overlap of conditions is facilitated 

by the calculation of polygenic risk scores (PRS). PRS are a single value estimate of an 

individual’s propensity to a phenotype and can be calculated using individual-level genetic 

data and GWAS data for the phenotype of interest (Choi et al., 2018). Specifically, PRS are 

calculated as the sum of risk variants corresponding to the phenotype of interest, weighted by 

the effect size estimate from a GWAS on the phenotype. PRS have utility in predicting 

symptoms of both ASD and PD. For example, PD PRS have been associated with cognitive 

and motor decline in PD (Paul et al., 2018) and ASD PRS have been associated with infant 

neuromotor development (Serdarevic et al., 2020). Calculating participants’ PRS for both 

ASD and PD can provide insight into genetic overlap. In a large sample of participants, a 

significant correlation between PRS for ASD and PD would indicate that there is shared 

genetic risk for PD and ASD. Ellis et al. (2020) calculated a range of polygenic risk scores for 

5160 individuals with Huntington’s Disease, including those relating to ASD and PD using 

the Grove et al. (2019) and Nalls et al. (2019) GWAS datasets. No significant correlation was 

found between ASD and PD PRS.  

Family studies 

A small amount of genetic overlap is expected between first-degree relatives. 

Therefore, if autistic individuals have increased levels of PD risk genes, first-degree relatives 

of autistic individuals are more likely to have these genes than members of the general 

population. This means that if autistic individuals are genetically more likely to develop PD, 

this should extend to first-degree relatives of autistic individuals, albeit to a lesser extent. 
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Interestingly, a study of older individuals with (N = 739) and without (N = 11,666) a first-

degree autistic relative revealed that the two groups did not significantly differ in their rates of 

PD diagnosis (Stewart, Corbett, et al., 2020). This brings into question whether the increased 

prevalence of parkinsonism and PD diagnosis in the autistic population arises from increased 

genetic risk, and raises the possibility that this result stems from the presence of PD-like 

movement characteristics in the autistic population (i.e., the misdiagnosis hypothesis).  

1.2.4 Movement in Autism and Parkinson’s Disease 

It is possible that an increased prevalence of parkinsonism in the autistic population is 

due to movement similarities between the two conditions. Whilst anecdotal evidence supports 

such similarities (Figure 1.1), autistic and parkinsonian movement have never been directly 

compared. As such, we rely on interpretation of each separate research silo to build a picture 

of whether movement similarities exist.  

Figure 1.1  

Anecdotal Evidence for Overlap Between Autism and Parkinson’s Disease 

 

Note. Figure contains quotes from participants with Parkinson’s Disease referencing observed 
links to autistic behaviour. 

“What caught my eyes when I read about the 
trial on similarities between PD movements 
and Autism movements is that I have been 
showing signals of PD since my childhood. 
On top of that, my sister, who is a doctor, 
insists that she can see Autism in my 
behaviour, although I am 56 and I was never 
diagnosed by a specialist as being autistic.”

”My wife worked with teenagers with Asperger's for many years. Only a couple days ago 
she said I have started walking in a similar way to some of her students.”

“The connection you are investigating 
between PD and autism is of interest to 
me as 18 months prior to my diagnosis 
my husband used to observe that I didn't 
swing my arms when walking. He used 
to liken me to a character called Jake in 
a drama called Touch. Jake was, I 
believe, on the autism spectrum.”

Summary: Whilst specific PD genes have been linked to ASD, a significant genetic 
correlation between the two conditions is not apparent.  
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Gross motor function 

Much of the behavioural overlap between ASD and PD falls under the category of 

motor differences, with both conditions exhibiting differences in gross motor function. The 

defining characteristics of PD (e.g., slowed movement, problems with gait and posture; 

Jankovic, 2008) cause disruption to everyday activities. Indeed, the UPDRS diagnostic tool 

includes questions relating to eating, dressing and getting out of a chair. Similarly, studies of 

autistic individuals have revealed difficulties with gross motor tasks (Ament et al., 2015; 

Green et al., 2009; Liu, 2013; Staples & Reid, 2010). The use of the Movement Assessment 

Battery for Children (MABC-2) has highlighted particular impairments in everyday tasks 

involving catching and balance (Ament et al., 2015). Green et al. (2009) revealed that, in a 

sample of 101 autistic participants, 79% had “definite” movement problems on the M-ABC 

and an additional 10% were borderline. Such difficulties with gross motor function can be 

better understood through the examination of specific motor function and movement 

differences.  

Despite a lack of direct comparison studies between ASD and PD, there are many 

examples of early studies of autistic behaviour noting similarities between autistic and 

parkinsonian motor function. Bradykinesia – or slowness of movement – is a core feature of 

parkinsonian movement (Jankovic, 2008) that has also been reported in the autistic population 

(e.g., Mari et al., 2003; Maurer & Damasio, 1982). Mari et al. (2003) stated explicitly that the 

slowed movement they observed in ASD had “a strong resemblance to Parkinsonian-type 

bradykinesia". Similarly, individuals with PD often exhibit a complete freezing during their 

movements, a form of akinesia (Perez-Lloret et al., 2014). This can be likened to catatonia, 

characterised by a lack of movement, which has been observed in ASD (Kakooza-Mwesige et 

al., 2008; Mazzone et al., 2014; Realmuto & August, 1991; Wing & Shah, 2000). Severe 
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catatonic features have been reported by 17% of caregivers of autistic individuals over the age 

of 15 (Wing & Shah, 2018). Thus, a slowness (or absence) of movement is characteristic of 

both ASD and PD.  

Gait differences are also apparent in both conditions. Indeed, Vilensky et al. (1981) 

conducted a study of autistic movement and stated that “the gait differences between the 

autistic and normal subjects resembled differences between the gaits of parkinsonian patients 

and of normal adults”. Difference in gait is a core feature of PD (Jankovic, 2008; Mazzoni et 

al., 2012); a meta-analysis of 72 studies reported reduced baseline walking speed, stride 

length, swing time and hip excursion in PD (Zanardi et al., 2021). Multiple studies have 

highlighted gait differences in autistic compared to non-autistic individuals including 

increased stance time and reduced stride length (Vilensky et al., 1981), increased stride length 

variability (Rinehart, Tonge, Iansek, et al., 2006), a lack of smoothness in gait (Nobile et al., 

2011; Rinehart, Tonge, Iansek, et al., 2006), and a difficulty following a straight line (Nobile 

et al., 2011; Rinehart, Tonge, Bradshaw, et al., 2006). A recent meta-analysis of 18 studies 

highlighted extensive gait abnormalities in autism (Lum et al., 2021). Thus, as highlighted by 

Vilensky et al. (1981), gait differences are apparent in both ASD and PD.  

Gait differences are related to postural instability, another key characteristic of PD. 

Individuals with PD often exhibit rigidity in the neck, trunk, elbows and knees resulting in 

flexed posture, and struggle to readjust and maintain posture due to the loss of postural 

reflexes (Jankovic, 2008). Comparably, differences observed in ASD include postural 

abnormalities in the trunk (Nobile et al., 2011; Rinehart, Tonge, Bradshaw, et al., 2006), head 

(Rinehart, Tonge, Bradshaw, et al., 2006) and arms (Rinehart, Tonge, Iansek, et al., 2006), 

and autistic individuals have been found to struggle to make adjustments to posture as seen in 

PD (Maurer & Damasio, 1982). Reduced postural stability in autism has been explicitly 
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likened to that of PD by Minshew et al. (2004): "this type of generalized postural dysfunction 

[observed in autistic participants] can be seen with Parkinson disease". 

It is clear that autistic movement can be likened to the core features of PD including 

bradykinesia, gait differences, and postural instability. Given that PD diagnosis relies on 

behavioural measures indexing these movement features, it is clear how an autistic individual 

may present with elevated parkinsonian traits during such an assessment.  

Fine motor function 

When examining performance on fine motor tasks, such as handwriting, differences 

have been found in both ASD and PD (Beversdorf et al., 2001; Godde et al., 2018; Grace et 

al., 2017; Johnson et al., 2013; McLennan et al., 1972; Thomas et al., 2017; Van Gemmert et 

al., 2003). Specifically, autistic individuals have been found to produce handwriting with 

larger stroke height and width or “macrographia” (Beversdorf et al., 2001; Johnson et al., 

2013), greater size variability (Godde et al., 2018; Grace et al., 2017; Johnson et al., 2013) 

and with less fluency (Godde et al., 2018; Grace et al., 2017) compared to non-autistic 

individuals. Within the PD population, handwriting is also observed to have less fluency 

(Thomas et al., 2017). However, contrary to what is seen in ASD, smaller handwriting or 

“micrographia” is often observed in PD (McLennan et al., 1972; Thomas et al., 2017; Van 

Gemmert et al., 2003).  

In addition to differences in the handwriting produced, the way in which handwriting 

movements are made varies in ASD and PD (as characterised by “kinematic features” 

extracted from movement trajectories). One key example is jerk – or the rate of change in the 

acceleration profile. Individuals in the general population move with a profile that is 

consistent with the minimum mean squared jerk model (Flash & Hogan, 1985; Todorov & 

Jordan, 1998). Here, point-to-point movements are made by accelerating and decelerating 
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gradually, which minimises jerk. By contrast, kinematic analyses have revealed increased jerk 

in the movement profiles of autistic individuals (Cook et al., 2013; Edey et al., 2016) and 

individuals with PD (Alberts et al., 2000). A lack of movement smoothness is also reflected in 

an increased number of sub-movements (or alternations between acceleration and 

deceleration) in both ASD (Cook et al., 2023) and PD (Castiello et al., 2000; Flash et al., 

1992; Lange et al., 2006). However, ASD and PD may differ with respect to velocity and 

acceleration in fine motor control: whilst the slowness of movement observed in gross motor 

function tests in PD appears to extend to fine motor function (Alberts et al., 2000; Broderick 

et al., 2009; Flash et al., 1992; Jankovic, 2008; Lange et al., 2006; Van Gemmert et al., 2003; 

Viviani et al., 2009), faster movement profiles have been observed in ASD handwriting (Cook 

et al., 2013; Grace et al., 2017; Johnson et al., 2013). Thus, it is likely that ASD and PD have 

both similarities and differences in the kinematic features of their movement profiles. 

It is particularly important to quantify similarities between ASD and PD handwriting 

given the suggestion from an increasing number of studies to use handwriting analysis as a 

method of PD diagnosis (Al-Yousef et al., 2020; Carvajal-Castano et al., 2022; Dehghanpur 

Deharab & Ghaderyan, 2022; Drotár et al., 2016; Gerger & Gümüsçü, 2022; Kamble et al., 

2021; Lamba et al., 2021; Netšunajev et al., 2021; Rios-Urrego et al., 2019). If similarities 

between ASD and PD handwriting features are found in direct comparison studies, the use of 

such methods to diagnose PD may lead to an increased misdiagnosis of PD in the autistic 

population. 

Emotion expression 

Movement cues are often used to express emotions, both in terms of facial expressions 

and full body movements (e.g., Dael et al., 2012; Edey et al., 2017; Sowden et al., 2021). For 

example, fast movements are often associated with high arousal emotions such as anger and 
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happiness, whereas slower movements are often interpreted as communicating sadness. Given 

differences in motor function in both PD and ASD, it is unsurprising that studies have 

highlighted differences in emotion expression in the two populations.  

Reduced expressivity has been reported in PD facial expressions (e.g., Jacobs et al., 

1995; Peron et al., 2012; Ricciardi et al., 2015). This is the case for both static and dynamic 

facial expressions, with particular impairments in producing “happy” and “surprise” emotions 

(Ricciardi et al., 2015). In addition to reduced expressivity ratings from observers, analysis of 

movement distance between neutral and emotional facial expressions has confirmed a 

reduction in expressivity in PD compared to the general population (Bandini et al., 2017). 

Further to this, analysis of facial expression kinematics in PD has revealed lower peak 

velocity in posed smiling and voluntary grinning (Marsili et al., 2014). These findings are 

expected given that slowed movement is a core feature of PD. Importantly, the ability of the 

general population to correctly identify emotions expressed by individuals with PD is lower 

compared to inferences made regarding non-PD emotional expressions (Ricciardi et al., 

2017). Thus, these movement differences translate to real-world emotional communication 

difficulties. 

In parallel, differences in facial expression production have been noted in autism 

(Keating & Cook, 2020). A recent meta-analysis by Trevisan et al. (2018) determined that 

autistic individuals produce facial expressions less frequently and for shorter periods of time 

(e.g., Czapinski & Bryson, 2003; Loveland et al., 1994). Contrary to what has been found in 

the PD literature, autistic emotional expressions do not appear to be less intense than the 

general population (e.g., Mathersul et al., 2013). However, as in PD, autistic facial 

expressions are less accurately perceived by the general population (e.g., Brewer et al., 2016). 

It is clear that there is a reduced ability of the general population to correctly identify 
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emotional facial expressions produced by both ASD and PD. This is particularly important as 

a reduced ability to convey emotions in ways others can understand can cause stigma, 

dehumanisation and loneliness (Prenger et al., 2020). 

The reduction of emotional facial expression in PD has been found to extend to the 

production of emotional speech (Peron et al., 2012; Schroder et al., 2010). Similarly, 

differences in vocal production have been noted in studies of autism (Fusaroli et al., 2017), in 

addition to lower subjective ratings of the emotion produced in spontaneous speech (Hubbard 

& Trauner, 2007). It is also highly relevant to note that autistic diagnostic criteria in both the 

Autism Diagnostic Interview (ADI) and Autism Diagnostic Observation Schedule (ADOS) 

include specific mentions of prosody (Lord et al., 2000; Lord et al., 1994). This highlights a 

clear link between a diagnostic feature of autism and traits observed in PD.  

 

1.2.5 Cognition in Autism and Parkinson’s Disease 

Social cognition 

As discussed, both ASD and PD populations exhibit differences in emotion 

expression, leading to less accurate perception by the general population (e.g., Brewer et al., 

2016; Ricciardi et al., 2017). However, from the perspective of the clinical groups, it is the 

general population who express emotions using different movement cues. As such, it follows 

that ASD and PD populations would have difficulty perceiving emotional expressions made 

by the general population. Indeed, a meta-analysis of 34 studies revealed deficits of 

Summary: A range of similar movement differences have been observed in ASD and PD 
including, gross motor function, fine motor control and emotion expression. Due to a lack 
of direct comparison studies, this insight comes from comparing separate research studies 
in ASD and PD populations.  
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individuals with PD in recognising both facial and vocal emotion (Gray & Tickle-Degnen, 

2010), two areas in which differences in production have been observed (Peron et al., 2012). 

Though worse performance has been observed when individuals with PD are not taking 

dopaminergic medication, both medicated and unmedicated groups have been found to have a 

difference in emotion recognition ability relative to the general population (Sprengelmeyer et 

al., 2003). A relationship between emotion production and perception has been explicitly 

evidenced by Ricciardi et al. (2015) and Ricciardi et al. (2017), who demonstrate a positive 

correlation between scores on a task of facial emotion recognition (the Ekman Test) and 

ratings of expressiveness in facial expression production. Alongside this PD literature, a 

number of meta-analyses have provided evidence for emotion recognition differences in ASD 

(Lozier et al., 2014; Uljarevic & Hamilton, 2013). Certain studies have reported selective 

impairments in the recognition of anger in ASD (Keating et al., 2022; Lozier et al., 2014). 

Similarly, studies in PD have provided evidence for worse performance in recognising 

negative emotions including anger (Lawrence et al., 2007; Sprengelmeyer et al., 2003), 

disgust (Sprengelmeyer et al., 2003; Suzuki et al., 2006), fear and sadness (Ariatti et al., 

2008).  

In addition to emotion recognition, differences in theory of mind attribution have been 

reported in both groups. Appropriate mental state attribution has been tested in many 

paradigms including those using static images, stories and dynamic movement-based stimuli. 

For example, the Reading the Mind in the Eyes Test requires participants to interpret images 

of the eye region by selecting a word that best describes what the individual is thinking or 

feeling (Baron‐Cohen et al., 2001). Whilst this task has been commonly used to evidence 

differences in theory of mind ability in both ASD and PD (Bodden et al., 2010; Orso et al., 

2020; Penuelas-Calvo et al., 2019; Seubert-Ravelo et al., 2021), the task itself has come under 
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heavy criticism with suggestions that its task demands are more akin to emotion recognition 

(Oakley et al., 2016; Quesque & Rossetti, 2020). The Yoni Task (Shamay-Tsoory & Aharon-

Peretz, 2007), by contrast, takes a story-based approach in which participants are asked to 

select the appropriate picture to answer first-order questions (e.g., what Yoni identifies with) 

and second-order questions (e.g., whose success Yoni envies). This task has been used to 

show differences in performance by both ASD (Tin et al., 2018) and PD (Bodden et al., 2010) 

groups. The Faux Pas Test (Stone et al., 1998) employs situational judgement questions; 

participants are asked to identify whether stories contain a faux pas or a minor conflict but no 

faux pas. Both PD (Del Prete et al., 2020; Kawamura & Koyama, 2007; Peron et al., 2009; 

Roca et al., 2010) and ASD (Tin et al., 2018) have demonstrated impaired performance on 

this task. Finally, the Animation Perception Task uses dynamic movement-based stimuli to 

express mental states (i.e., two triangles move around the screen to depict various mental 

states). Whilst this task has not been conducted in PD, autistic individuals exhibit a reduction 

in the use of mental state words, and the use of inappropriate mental state words, to describe 

animations (Abell et al., 2000; Castelli et al., 2002; Livingston et al., 2021; White et al., 2011; 

Wilson, 2021). In sum, ASD and PD appear to exhibit differences in theory of mind ability 

across a range of tasks.  

Motivation 

Differences in socio-cognitive performance in ASD and PD may relate to differences 

in motivation and reward processing. A paper by Contreras-Huerta et al. (2020) argued that, 

whilst the majority of socio-cognitive studies focus on whether or not an individual has the 

capacity to complete a given task, one’s motivation to complete the task is often overlooked. 

A lack of motivation is common in individuals with PD (Pedersen et al., 2009). This may be 

due to a combination of a reduction in reward sensitivity and an increase in perceived effort 
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costs causing individuals to choose not to act (Le Heron et al., 2018; Muhammed et al., 2016). 

A lack of motivation in PD has been explicitly linked to task performance in the motor 

domain. Mazzoni et al. (2007) highlighted that individuals with PD were able to perform a set 

number of movements within a required speed range, but that the number of attempts to reach 

this criterion were higher than in members of the general population. These findings informed 

the motor motivation hypothesis, which states that slowness of movement in PD is not due to 

an inability to move quickly, rather a lack of motivation to do so arising from an altered cost-

benefit ratio. Further evidence for the motor motivation hypothesis comes from Gepshtein et 

al. (2014); participants with PD completed a rapid sequential movement task in which hitting 

targets and penalties led to monetary gain and loss respectively. PD participants behaved 

similarly to that of an “ideal planner” in low energy cost conditions: when movements were 

assisted by gravity the PD participants were able to account for their individual motor 

variability in order to maximise expected monetary gain. However, when energy costs were 

increased by countering movements against gravity, performance in the PD group decreased. 

Thus, it appears that modifying the cost-reward trade-off can motivate individuals with PD to 

successfully complete motor tasks.  

A role for motivation has also been proposed to account for autistic traits. The social 

motivation hypothesis of autism posited that socio-communicative autistic traits arise from a 

lack of motivation to engage in social situations as autistic individuals find social stimuli less 

rewarding (Chevallier et al., 2012). It has since been concluded, however, that differences in 

reward sensitivity extend to both social and non-social stimuli (Clements et al., 2018). For 

example, as in PD, decreased reward sensitivity in ASD has been seen to affect individuals’ 

effort-based decision making (Damiano et al., 2012). It is possible that apparent “differences” 
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in various behavioural and cognitive domains in ASD and PD may instead arise from 

differences in motivation and reward processing in the two groups.  

Cognitive rigidity  

Both ASD and PD have been associated with cognitive rigidity and a difficulty 

switching between tasks. A recent review reported that a lack of flexibility is common in 

executive function assessments in ASD (Craig et al., 2016). Meta-analytical evidence 

highlights difficulties in set-shifting in the Wisconsin Card Sorting Test (Westwood et al., 

2016). Further to this, a study by Watanabe et al. (2019) observed that autistic individuals 

were less likely than non-autistic individuals to deviate from a chosen task in a spontaneous 

task-switching test, instead opting to repeat the same task. Interestingly, the rigidity of this 

behaviour was associated with the severity of their restricted repetitive behaviours, a core 

characteristic of autism (American Psychiatric Association, 2013). Turning to PD, executive 

dysfunction is considered a core cognitive feature of the condition and an impairment in task 

switching specifically has been observed using measures such as the Wisconsin Card Sorting 

Test (Dirnberger & Jahanshahi, 2013). It has also been noted by Hollander et al. (2009) that 

repetitive behaviours are prevalent in both ASD and PD. Overall, it is clear that cognitive 

rigidity and task switching difficulties are core characteristics of both ASD and PD.  

 

 

Summary: Similar cognitive profiles exist in ASD and PD, including differences 
compared to the general population in emotion perception and theory of mind ability, 
motivation and reward sensitivity, and executive functions including task switching (i.e., 
cognitive rigidity). 
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1.2.6 Limitations of Existing Research 

Although behavioural and cognitive similarities have been observed between ASD and 

PD, evidence comes from distinct research silos. Consequently, there are many forms of 

variation in participant samples and experimental design which may inhibit the ability to 

directly compare results. 

Differences in group demographics 

Given that there are no direct comparison studies comparing ASD and PD, 

demographic differences in extant studies are apparent. For example, PD studies often recruit 

individuals from an older age group compared to ASD studies, and other demographic factors 

such as gender and Intelligence Quotient (IQ) may not be comparable. These differences 

between groups may either obscure behavioural or cognitive similarities that exist, or 

facilitate the observation of apparent similarities which would not exist for matched groups.  

As previously noted, only 0.4% of autism studies between 2012 and 2022 recruited 

older adults (Mason et al., 2022). By contrast, due to the late onset of PD, studies of PD tend 

to recruit individuals over the age of 50. This is problematic because both movement and 

theory of mind ability have been found to vary with age (Ketcham et al., 2002; Maylor et al., 

2002; Pardini & Nichelli, 2009). A meaningful comparison between ASD and PD must 

therefore be made between similarly aged groups. Whilst studies of older autistic adults exist, 

the movement literature is extremely limited (note that only two studies were identified in a 

meta-analysis by Mason et al., 2022). This means that, at present, it is not possible to compare 

movement studies across autistic individuals and individuals with PD from similar age 

groups. Turning to theory of mind, whilst some studies of older autistic adults exist, the 

findings are mixed. Some studies have shown that differences in theory of mind ability extend 

into older autistic adulthood (Torenvliet et al., 2022), whereas others report a possible age 
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protective effect whereby differences between autistic and non-autistic individuals are not 

apparent in older age (Lever & Geurts, 2016a; Yarar et al., 2020). As such, it is unclear 

whether older autistic adult performance on theory of mind tasks is comparable or not to that 

of individuals with PD.  

Beyond age, other demographic factors have been associated with movement and 

theory of mind ability which are likely to differ between samples, including gender (Baron-

Cohen et al., 2015; Kirkland et al., 2013; Miller & Cronin-Golomb, 2010) and IQ (Buitelaar 

et al., 1999; Forti et al., 2011). This means that differences between groups may arise from 

variability in demographic factors. Importantly, elevated traits of depression, anxiety and 

alexithymia have been observed in both ASD (Hollocks et al., 2019; Kinnaird et al., 2019) 

and PD (Alvarado-Bolanos et al., 2020; Broen et al., 2016; Reijnders et al., 2008). Given that 

these clinical traits have been associated with movement and theory of mind ability (Hezel & 

McNally, 2014; Nestor et al., 2022; Pijpers et al., 2005; Pisani et al., 2021; Sachdev & Aniss, 

1994), it is possible that similarities inferred between ASD and PD in these domains may be 

the result of co-occurring clinical traits rather than the conditions themselves. 

Overlooked experimental paradigms 

Comparing separate ASD and PD literature is further limited by the wide variety of 

tasks used. For example, theory of mind tasks require inferences to be made from a range of 

stimuli including static images (e.g., Reading the Mind in the Eyes Test), dynamic movement-

based stimuli (e.g., the Animation Perception Task), and descriptions/depictions of situations 

(e.g., the Yoni Task; the Faux Pas Test). Each of these tasks tap into different aspects of 

theory of mind; the Faux Pas Test is purely situational whereas the Animation Perception 

Task relies purely on movement cues to represent mental states. It is unclear whether these 

measures are generalisable, meaning that existing studies in the ASD and PD literature may 



  28 
 

not be comparable. Given differences in movement in both groups, it is likely that both 

autistic individuals and individuals with PD exhibit differences in movement-based theory of 

mind. However, no studies using the Animation Perception Task exist in the PD population. 

Further, whilst some measures of theory of mind have been used independently in older 

autistic adults (e.g., the Faux Pas Test; Lever & Geurts, 2016a; Torenvliet et al., 2022), the 

Animation Perception Task has only been used as part of a composite theory of mind score 

(Yarar et al., 2020). As such, it is unclear whether individuals with PD and older autistic 

adults have specific differences in movement-based theory of mind.  

With respect to movement, various measures have been used to quantify differences 

between clinical groups and the general population including gait measures and emotion 

expression. Handwriting and other simple drawing tasks, in particular, have been widely 

analysed in both groups to quantify kinematic features (Beversdorf et al., 2001; Godde et al., 

2018; Grace et al., 2017; Johnson et al., 2013; McLennan et al., 1972; Thomas et al., 2017; 

Van Gemmert et al., 2003). However, whilst a small number of movement studies exist in 

older autistic adults, the measures have been restricted to standardised tests such as the 

BMAT and UPDRS which assess the ability to successfully complete motor function tasks 

including finger tapping and force exertion (Linke et al., 2020; Starkstein et al., 2015). 

Kinematic features extracted from movement profiles have not been assessed. Therefore, 

there is a need to quantify kinematic differences in the older autistic population.  

Some kinematic features that are important in the ASD literature have been 

overlooked in the PD literature. For example, in the general population, movement speed is 

modulated according to the curvature of shapes (Huh & Sejnowski, 2015), whereby 

individuals speed up along straight parts of a shape and slow down for corners. By contrast, in 

the autistic population individuals move with steeper speed modulation – moving fast along 



  29 
 

straight sections and “slamming on the breaks” as they approach corners (Cook et al., 2023; 

Fourie, 2022). This speed profile may be responsible for the apparent lack of smoothness in 

autistic movements. Despite the observation of a lack of movement smoothness in PD, speed 

modulation in PD-produced movements has not been assessed. However, a visual perception 

study revealed that compared to the general population, PD participants opted for a movement 

profile closer to a constant velocity when determining which of a range of elliptical 

movements appeared most “natural” (Dayan et al., 2012). If we assume that individuals’ own 

movement profiles influence perception of movements observed (Aglioti et al., 2008; De 

Marco et al., 2020; Edey et al., 2017; Kilner et al., 2007), Dayan and colleagues’ study 

suggests that lower speed modulation values may be used in PD compared to the general 

population. Thus, it is likely that both ASD and PD groups differ from the general population 

in terms of speed modulation, but in opposite directions.  

Speed modulation values can be extracted from movement trajectories of symmetrical 

shapes characterised by different angular frequencies; that is, the number of curvature 

oscillations per two π of angular displacement (i.e., an ellipse has an angular frequency of 2 as 

you meet two “corners” during one full cycle of the shape; for other examples see Figure 

1.2A). Different speed modulation values have been observed for these shapes in the general 

population, with more gradual speed modulation for higher angular frequency shapes (Figure 

1.2; Cook et al., 2023; Huh & Sejnowski, 2015; Matic & Gomez-Marin, 2019; Matic & 

Gomez-Marin, 2020; Matic & Gomez-Marin, 2022). To fully understand differences in speed 

modulation in ASD and PD, values should be assessed across the angular frequency spectrum.  
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Figure 1.2  

Speed Modulation for Shapes Across the Angular Frequency Spectrum 

 

Note. Participants were members of the general population. (A) Different angular frequency 
shapes and their speed-curvature relationships (i.e., speed modulation). Black dots = 
movement trajectories, ν = angular frequency, log k = log curvature, log v = log velocity, βm = 
measured beta estimate between log k and log v, βp = predicted beta estimate. (B) Power law 
exponents (β) plotted against angular frequency (ν). Green line = prediction, blue dots = mean 
exponent values, error bars = standard deviation, red line = 1/3 power law (i.e., the 
assumption that all movements adhere to a 1/3 beta exponent). Figure taken from Huh and 
Sejnowski (2015).  
 

1.2.7 Potential Mechanistic Overlap 

Whilst reviewing extant literature highlights behavioural and cognitive similarities 

between ASD and PD, it is important to consider why these similarities may occur. Similar 

presentations in ASD and PD are likely to arise if the two conditions have similar underlying 

biological mechanisms. This may explain the increased prevalence of PD diagnosis in the 

Summary: Due to a lack of direct comparison studies between ASD and PD, comparisons 
between the two conditions must be made by reflecting on separate research studies. As 
such, comparisons may be confounded by differences in sample demographics and 
different experimental tasks used to index behaviour.  
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autistic population – it may not be the case that ASD individuals are indeed more likely to 

have co-occurring PD, rather a shared underlying biological mechanism between the two 

conditions may lead to similar presentations and thus increase the likelihood of meeting 

diagnostic criteria for both conditions. To validate this theory, ASD and PD must share a 

biological mechanism which relates to motor function, as this is a core component of PD 

diagnosis. Dopamine is a logical candidate given its strong links to movement (Bartholomew 

et al., 2016; Lange et al., 2006; Rueda-Orozco & Robbe, 2015; Tucha et al., 2006). This 

section therefore presents evidence for differences in dopamine function in ASD and PD, as 

well as dopaminergic modulation of movement, to propose dopamine dysfunction as a shared 

biological mechanism underpinning movement differences in ASD and PD.  

Dopamine function in autism and Parkinson’s Disease 

Dopamine is strongly implicated in the pathology of PD. Dopamine system 

dysfunction, specifically degeneration of dopamine neurons in the substantia nigra, is the 

hallmark of PD (Rizek et al., 2016). The death of dopamine neurons in this region of the basal 

ganglia disrupts dopaminergic function in the nigrostriatal pathway which facilitates 

movement, leading to movement difficulties in PD. Increased α-synuclein levels in PD also 

has links to dopamine function (Kalia & Kalia, 2015; Rizek et al., 2016); α-synuclein plays an 

important role in synaptic transmission, with elevated levels reducing dopamine release 

(Venda et al., 2010). Given that dopamine dysfunction is the cause of PD symptoms, 

dopaminergic medications are the primary form of treatment for PD. This includes both 

levodopa (the precursor to dopamine) to boost dopamine levels and dopamine agonists to 

stimulate surviving dopamine neurons. Overall, dopamine is a strong component of both PD 

pathology and mechanisms of treatment.  
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Less is known about the pathology of ASD, primarily due to the heterogeneous 

presentation of the condition. However, as in PD, differences in both basal ganglia function 

(e.g., volume and cell density) and increased α-synuclein levels have been reported (Morato 

Torres et al., 2020; Sriwimol & Limprasert, 2018; Subramanian et al., 2017). Increased 

understanding of the pathology of ASD has prompted the dopamine hypothesis (Pavăl, 2017). 

The hypothesis states that many of the behavioural and cognitive differences observed in 

ASD, including movement, reward processing and repetitive behaviours, may be the result of 

changes to the dopamine system. Evidence for the dopamine hypothesis comes from a range 

of methodologies, with results conflicted with respect to whether a hyper- or hypo-

dopaminergic state is apparent (Kosillo & Bateup, 2021). For example, PET neuroimaging 

studies have revealed lower presynaptic dopamine levels in autistic children (Ernst et al., 

1997) and increased radioligand binding to the dopamine active transporter in the 

orbitofrontal cortex (Nakamura et al., 2010), thus indicating hypo-dopaminergia. Turning to 

pharmacology, dopaminergic medications have been found to alter behavioural differences in 

ASD, with dopamine antagonists reducing irritability and aggression (Hirsch & Pringsheim, 

2016; Sharma & Shaw, 2012), suggesting that these behaviours arise from a hyper-

dopaminergic state. Finally, evidence for both hyper- or hypo-dopaminergic functioning 

comes from animal studies. Gunaydin et al. (2014) reported that optogenetic stimulation of 

the mesolimbic pathway increased sociability in mice, whereas dopamine antagonism in a 

mouse model of ASD led to the reduction of stereotypic motor behaviour (Presti et al., 2003). 

This pattern of results would lead to the conclusion that reduced sociability in ASD arises 

from hypo-dopaminergia, whereas motor differences may be the product of hyper-

dopaminergia. In sum, dopamine dysfunction is apparent in ASD but evidence is conflicting 

with regards to the direction of this difference. 
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The role of dopamine in movement and motivation 

Dopamine is robustly associated with the speed, or "vigour", of movements. 

Observational studies have linked mice dorsolateral striatal firing rates to walking speed 

(Rueda-Orozco & Robbe, 2015) and bradykinesia to the degeneration of the dopamine system 

in PD (Alberts et al., 2000; Broderick et al., 2009; Lange et al., 2006; Tucha et al., 2006). 

Further to this, intervention studies have provided causal evidence for the role of dopamine in 

movement speed. Optogenetic stimulation to D1 neurons in mice has been found to prompt 

faster movements (Bartholomew et al., 2016). Additionally, human studies have highlighted 

reduced movement speed following the administration of dopamine receptor antagonists 

(Quattrocchi et al., 2018; Tomassini et al., 2016) and faster movement in Parkinson’s 

following dopamine agonism (Eichhorn et al., 1996; Lange et al., 2006). Beyond vigour, 

dopamine has been implicated in other components of movement including the invigoration 

of movements (Bova et al., 2020; da Silva et al., 2018), generating a range of different 

movement speeds (Baraduc et al., 2013), and signalling the start and end points of sub-

movements (Collins et al., 2016).  

A role of dopamine in reward processing and motivation is also widely evidenced 

(Costello et al., 2024). The opportunity costs model states that dopamine signals the average 

reward availability of an environment, with high dopamine signalling indicating a higher level 

of reward availability (Niv et al., 2007). More recent findings have implicated a role for 

dopamine in both encoding expected reward and anticipating effort costs (Varazzani et al., 

2015). This information can then be used to inform decision-making behaviour, influencing 

whether actions will be taken, and the vigour with which they are taken. Indeed, the basal 

ganglia are thought to modulate vigour according to context-specific cost/reward functions 

(Turner & Desmurget, 2010). The opportunity costs model can explain mechanisms 



  34 
 

underlying motor motivation. As previously discussed, the motor motivation hypothesis posits 

that slow movement in PD arises from a lack of motivation to move quickly (Mazzoni et al., 

2007). According to the opportunity costs model, low levels of dopamine in PD should signal 

low average reward availability, and this would reduce motivation to move quickly. This 

raises the question as to whether dopamine governs movement processes per se, or rather the 

motivation to engage in movement processes. 

Inverted-U-shaped dopamine function 

To implicate dopamine in various abilities, manipulating individuals’ dopamine levels 

via pharmacological interventions is common practice. Interestingly, many studies have 

reported that effects of dopaminergic drugs on behaviour – primarily cognitive control – are 

modulated by baseline striatal dopamine synthesis capacity, with opposing drug effects in low 

versus high baseline dopamine groups (Frank & O'Reilly, 2006; Hofmans et al., 2020; 

Schuster et al., 2022). An inverted-U-shaped function has been proposed for the relationship 

between dopamine levels and performance, whereby optimal performance arises from middle 

levels of dopamine and both low and high dopamine are associated with impairments (Cools 

& D'Esposito, 2011). This pattern can lead to opposing drug effects. As seen in Figure 1.3, 

low and high baseline dopamine groups would sit either side of an optimal dopamine level. 

An increase in dopamine levels, for example by a dopamine agonist, would cause dopamine 

levels to become either closer to or further away from the optimal value respectfully, thus 

resulting in either improved or worsened performance. Figure 1.4 translates this function into 

the subsequent relationship between baseline dopamine and drug effects. A negative linear 

relationship is observed, whereby positive drug effects are seen in individuals with low 

baseline dopamine, and negative drug effects are seen in those with high baseline dopamine.  

 



  35 
 

Figure 1.3  

The Inverted-U-Shaped Dopamine Function 

 

Note. This theory proposes that there is an optimal dopamine level for performance (blue 
dotted line). Low baseline dopamine (light green dotted line) would fall below this optimal 
level, and high baseline dopamine (light red dotted line) would fall above it. Increasing 
dopamine (DA) levels (purple arrow) would cause the dopamine levels of those with low 
baseline dopamine to shift closer to the optimal level (dark green dotted line). By contrast, the 
dopamine levels of those with high baseline dopamine would shift further from the optimal 
level (dark red dotted line). As such, performance would be respectively improved and 
worsened.  
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Figure 1.4  

The Relationship Between Baseline Dopamine and Observed Drug Effect for an Inverted-U-

Shaped Dopamine Function 

 

Note. Those with low baseline dopamine exhibit positive drug effects, whereas those with 
high baseline dopamine exhibit negative drug effects.  
 

An inverted-U-shaped function implies that disrupted function can arise from both a 

hyper- and hypo-dopaminergic state. In other words, opposing underlying biological states 

may lead to similarities in performance. This is relevant for the case of ASD and PD. 

Similarities and differences between ASD and PD may be due to opposite biomarkers which 

create the same behaviour in some cases (i.e., those abilities governed by an inverted-U-

shaped function), but opposite behaviour in others (i.e., those with a linear relationship 

between dopamine and performance). Therefore, when investigating the biological basis of 

abilities in which we see similarities and differences between ASD and PD performance, 

measures of baseline dopamine should be incorporated. This will enable the inspection of 

whether an inverted-U-shaped function exists between dopamine levels and performance. 
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Whilst some studies have utilised PET imaging to index baseline striatal dopamine synthesis 

capacity, working memory capacity can serve as a proxy for this, with low working memory 

capacity indicating low dopamine synthesis capacity (Cools et al., 2008; Landau et al., 2009). 

Consequently, working memory performance should be taken into account to fully understand 

the nature of the relationship between dopamine and functions such as movement.  

1.3 The Current Thesis 

1.3.1 Aims of the Current Thesis 

The three main aims of the current thesis are to (1) directly compare ASD and PD on a 

range of movement and theory of mind tasks; (2) provide insight into older autistic movement 

and theory of mind; and (3) advance understanding of the biological mechanisms underlying 

movement differences.  

Directly comparing autism and Parkinson’s Disease 

As previously noted, there is an increased prevalence of PD in the autistic population 

compared to the non-autistic population. However, a review of the literature does not provide 

strong evidence for shared genetic risk for ASD and PD. Instead, many behavioural and 

cognitive similarities can be identified between ASD and PD, particularly in domains such as 

movement that are utilised in PD diagnosis. This may mean that autistic individuals already 

pass threshold on a number of PD assessments due to similarities in autistic and parkinsonian 

Summary: Both ASD and PD are associated with dysfunction of the dopamine system. 
Dopamine has been implicated in both movement and motivation; however, it is unclear 
whether an inverted-U-shaped function exists for the relationship between dopamine and 
these abilities.  



  38 
 

movement profiles, meaning a diagnosis of PD is more readily concluded (or potentially 

misdiagnosed) in autistic individuals. 

Given that no direct comparison studies exist, the current literature does not enable a 

controlled comparison between ASD and PD groups; existing studies vary with respect to 

tasks used and the demographics of the samples tested, which means conclusions of 

similarities may be confounded by extraneous variables. Thus, here I conduct the first direct 

comparison study of both free movement and restricted movement, as well as movement-

based theory of mind ability, in ASD and PD. First, Chapter 2 quantifies differences in theory 

of mind ability in the two groups compared to a general population sample using movement-

based stimuli – a task which has not yet been used in PD. Kinematic features extracted from 

participants’ own theory of mind animations (in which two triangles are moved around the 

screen to depict mental and non-mental states) are compared as a measure of free movement. 

Next, Chapter 3 conducts a more controlled movement-based investigation of ASD and PD, 

identifying kinematic similarities and differences between the two groups when drawing 

restricted shapes. This information is then used to inform the development of classification 

algorithms to determine whether trait questionnaires and/or kinematic features are most useful 

in predicting group membership. These Chapters reveal similarities and differences between 

autistic and parkinsonian traits, which sheds light upon whether autistic individuals may be 

more likely to receive a PD diagnosis (or misdiagnosis) due to similarities in behavioural 

presentations.  

In daily life, any similarities observed between autistic and parkinsonian traits are 

likely to relate to PD performance on dopaminergic medication. This is because the majority 

of individuals with PD are regularly taking dopaminergic medication to alleviate their 

symptoms. Chapter 2 assesses functional day-to-day differences in movement and theory of 
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mind ability by allowing PD participants to be on their dopaminergic medication when 

completing the tasks. Given that PD difficulties remain following medication administration 

(i.e., medication does not fully restore movement differences (Tucha et al., 2006) and in some 

cases has been found to not impact theory of mind ability (Peron et al., 2009)), the 

comparison between ASD and PD “ON-medication” is unlikely to substantially differ from 

that of ASD and PD “OFF-medication”. However, it is important to note that individuals with 

PD will not be taking medication when they initially obtain a diagnosis, meaning that any 

confusion between autistic and parkinsonian movement in the diagnostic process would be 

with respect to unmedicated PD movement profiles. As such, another aim of the thesis was to 

identify similarities between the movement profiles of autistic individuals and individuals 

with PD when not taking their dopaminergic medication. This question was addressed in 

Chapter 3, in which PD participants completed tasks before taking their dopaminergic 

medication in the morning. Overall, these studies provide insight into both the daily 

functioning of individuals with PD, as well as their performance in an unmedicated state. 

Contributing to the older adult autism literature 

The older autistic adult literature is sparse, making up only 0.4% of autism studies 

conducted between 2012 and 2022. Beyond comparing ASD and PD performance, both 

Chapter 2 and Chapter 3 contribute to this limited older autistic adult literature. Here, I detail 

the first direct comparison study of autistic and non-autistic kinematic features in older adults, 

using both the Animation Production Task which includes free movement (Chapter 2), and a 

further controlled assessment of kinematics during restrictive movement (the Shapes Tracing 

Task; Chapter 3). In addition, I provide insight into theory of mind differences in older 

autistic adults (Chapter 2), a field which has garnered conflicting findings in previous studies. 

Specifically, I employed a movement-based theory of mind measure that has only been used 
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previously in a composite theory of mind score. Thus, this thesis leads to a greater awareness 

of behaviours exhibited by autistic adults in older age.  

Understanding the biological mechanisms underlying movement differences 

Whilst Chapters 2 and 3 provide insight into movement similarities and differences 

between ASD and PD, it is unclear how these movement features arise. Chapter 4 details the 

results of two pharmacological intervention studies which reveal the role of dopamine in 

complex movement processes. Specifically, this Chapter focuses on movement features 

deemed to be relevant in classifying group membership to further understand the biological 

basis underlying movement features of ASD and PD. A measure of baseline striatal dopamine 

synthesis capacity is incorporated into the second pharmacological intervention to identify 

whether the relationship between dopamine and movement follows an inverted-U-shaped 

function.  

1.3.2 Participatory Research  

Overview of participatory research  

For research into clinical conditions to reach its full potential for impact, studies must 

incorporate the expertise of people with lived experience. Participatory research refers to the 

involvement and consultation of lived-experience experts throughout the research process, 

and aims to incorporate vital insights from individuals who are members of the populations 

being studied (Cornwall & Jewkes, 1995). Participatory research can be incorporated at all 

stages of the research process, from setting priorities and designing studies to disseminating 

Summary: The current thesis conducts the first direct comparison study of autistic and 
parkinsonian movement, as well as theory of mind ability in the two groups. It further 
adds to the older autistic adult literature, in addition to shedding light on the biological 
mechanisms underlying movement differences.  
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results. There are many benefits to participatory research including, first and foremost, the 

empowerment of lived-experience experts to inform researchers of their priorities and shape 

research with their expertise. Participatory research can also lead to a number of practical 

efficiencies such as increased participant recruitment and retention (Crocker et al., 2018). This 

practice has been adopted by a growing number of researchers and recent calls have been 

made to consult people with lived experience in both the ASD (Fletcher-Watson et al., 2019; 

Gowen et al., 2019; Keating, 2021) and PD (Meinders et al., 2022) literature. 

Participatory research in this thesis 

To set the broad aims of the current work, I utilised existing data on the research 

priorities of ASD and PD groups. Participatory research activities with autistic individuals 

indicate that this group want to see research into aging in autism, co-occurring medical 

conditions and clearer diagnoses. For example, Pellicano et al. (2014) reported the research 

priorities of 122 autistic adults, highlighting that each of these themes were rated between 

“important” and “very important” on average (aging in autism: “what does the future hold for 

autistic adults?”; co-occurring medical conditions: “Why do autistic people appear to be more 

at risk from some medical conditions than non-autistic people?”; clearer diagnoses: “How 

can we better recognise the signs and symptoms of autism?”). In fact, aging in autism was the 

third highest priority of autistic adults, and both “lifespan issues” and “co-occurring 

conditions” were identified as themes in open-ended questions. In addition, Autistica’s Top 

10 Questions for Autism Research, a James Lind Alliance Priority Setting Partnership, 

included references to autistic adults and diagnosis improvement (“How can autism diagnostic 

criteria be made more relevant for the adult population? And how do we ensure that autistic 

adults are appropriately diagnosed?”). Overall, the current thesis addresses these research 
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priorities by aiming to further understand the relationship between aging autism and PD, with 

a view to make diagnostic processes more selective.  

The thesis also addresses a number of PD research priorities (Schipper et al., 2014). 

For example, themes such as medical research (including medication and diagnosis) and 

psychological research (psychological and cognitive functioning) have been highlighted. 

These themes were ranked as the second and third most important by the PD lived experience 

experts (with fundamental research coming in first). Each of these themes is addressed in the 

thesis, including understanding theory of mind ability in PD (“psychological functioning”; 

Chapter 2), improving selectivity of PD movement criteria by comparing performance to 

another clinical population (“diagnosis”; Chapters 2 and 3), and understanding the action of 

medication on movement processes (“medication”; Chapter 4).  

I further conducted my own participatory research activities to inform the specific 

goals of the work and improve the study design. These activities followed guiding principles 

of recognition and remuneration (lived experience experts were paid and acknowledged for 

their time), setting a purpose (each activity had clear outcome goals), and respect and role 

clarity (clear roles with flexible contribution formats and commitment levels were established 

which were attuned to the participants’ strengths and expertise). First, the thesis plan was 

presented to the Birmingham Psychology Autism Research Team Consultancy Committee, a 

group of autistic individuals and autism researchers, to receive feedback on the broad thesis 

aims and specific project plans. Next, PD lived-experience experts (recruited via Parkinson’s 

UK Patient and Public Involvement Network) commented on the research goals and study 

design. Whilst piloting the task, these individuals provided important insights into the 

feasibility for PD participants to complete the tasks both on and off dopaminergic medication, 

and the understandability of instructions provided. Finally, autistic lived-experience experts 
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piloted the task to ensure that the instructions were clear, and the tasks were possible to 

complete. Thus, participatory research in this thesis ensured that I was asking the right 

questions and that my studies were feasible and accessible.  

1.3.3 Experimental Measures 

The current thesis employed two movement tasks: the Animation Production Task 

(Chapter 2) and the Shapes Tracing Task (Chapters 3 and 4). Movement trajectories were 

obtained from each task and various kinematic features were calculated. Table 1 details the 

kinematic features assessed in each Chapter, including definitions and calculations.  

 

 

 

 

 

 

 

 

Summary: Participatory research is an important practice for ensuring that the lived-
experience expertise of groups being studied is heard and incorporated. The current thesis 
used participatory research activities to inform study goals and improve study design.  



  44 
 

Table 1.1  

Kinematic Features Assessed in the Thesis 

Variable Definition Calculation Restricted use? Chapter 
2? 

Chapter 
3? 

Chapter 
4? 

Speed The change in position (x and y 
coordinates) over time 

First-order derivative of the positional non-null 
data (averaged across the trial) 

N/A x x x 

Acceleration The change in speed over time Second-order derivative of the positional non-
null data (averaged across the trial) 

N/A x x  

Jerk The change in acceleration over 
time 

Third-order derivative of the positional non-null 
data (averaged across the trial) 

N/A x x  

Minimum speed Minimum speed values used 
during a trial 

The average of the bottom 10% of speed values 
(per trial) 

N/A x x x 

Maximum speed Maximum speed values reached 
during a trial 

The average of the top 10% of speed values (per 
trial) 

N/A x x x 

Sub-movements Frequency of alternations 
between acceleration and 
deceleration 

The percentage of frames in which a change in 
acceleration sign was observed (per trial) 

N/A x x  

Mean rotation The average rotation of a moving 
object around its own axis 

The differential of each triangles’ orientation in 
degrees over time (a weighted average for the 
two triangles per trial) 

Yes- specific to the 
triangles production task 

x   

Synchronous 
movement 

The amount of time during which 
two objects are moving 

The proportion of frames during which the 
speed of both the red and the blue triangle was 
greater than zero 

Yes- specific to the 
triangles production task 

x   

Spectral Arc 
Length 
(SPARC) 

An alternative, speed-
independent, measure of 
movement smoothness 

The arc length of the magnitude spectrum 
arising from a Fourier transform of the speed 
profile (values calculated for each repeated 
identical sub-element of a shape and averaged to 
obtain a single value per trial) 

Yes- values are higher for 
longer trajectories, meaning 
that SPARC must be 
calculated on pre-defined 
identical shapes 

 x  

Speed 
modulation 

The extent of the modulation of 
movement speed to the curvature 
of a trajectory 

The gradient between instantaneous movement 
speed and curvature, converted to an absolute 
value. 

Yes- specific to the shapes 
tracing task 

 x x 

Speed meta-
modulation 

The extent of the modulation of 
speed modulation values to the 
angular frequency of the shape 
being drawn 

The gradient between speed modulation values 
and the shape’s angular frequency 

Yes- specific to the shapes 
tracing task; requires data 
from a range of angular 
frequency shapes 

  x 
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Chapter 2 – Examining Movement and Movement-Based Theory 

of Mind in Autism and Parkinson’s Disease 

There are anecdotal similarities between ASD and PD in both behavioural and cognitive 

domains, but no direct comparison studies have been conducted. Chapter 2 presents the first 

direct comparison study between autistic individuals, individuals with PD, and control 

participants with respect to movement and movement-based theory of mind. The Animation 

Production Task assessed how individuals used movement cues to represent mental states. 

This task had not yet been employed in older autistic populations or those with PD. 

Subsequently, the Animation Perception Task assessed individuals’ accuracy in attributing 

mental states to animations created by others. This task had not been used in PD and had only 

been used as part of a composite theory of mind score in older autistic adults. This Chapter 

aimed to provide a greater understanding of behavioural and cognitive traits exhibited by 

autistic adults in older age, and whether these were comparable to those exhibited by 

individuals with PD. Participants with PD were ON their dopaminergic medication when 

completing the tasks, meaning comparisons between groups related to everyday functioning. 

 

A pre-registration for the study can be found online at https://osf.io/ek6h7. Content from the 

pre-registration has been reproduced in the current Chapter. Supplementary materials for this 

Chapter can be found in Appendix 1. Data and analysis scripts can be found online at 

https://osf.io/dge6t/?view_only=588a08aa1eb04942a2f1f8bbccc9dede. 

 

 

https://osf.io/ek6h7
https://osf.io/dge6t/?view_only=588a08aa1eb04942a2f1f8bbccc9dede
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2.1 Introduction 

Within clinical populations, a co-occurrence of differences in motor function and 

social cognition is common (Cook, 2016; Eddy & Cook, 2018). This is unsurprising given 

that, in social interactions, movement cues play an important role in representing mental states 

and emotions (Dael et al., 2012; Sowden et al., 2021). Experimental findings have 

demonstrated that in a variety of social cognition paradigms, such as those indexing action 

prediction, imitation and emotion recognition, performance is improved when there is 

similarity between the kinematics of the movement of the participant and the observed 

individual (Aglioti et al., 2008; De Marco et al., 2020; Edey et al., 2017; Kilner et al., 2007). 

In other words, more accurate socio-cognitive inferences occur in interactions between people 

who move in a similar way to express emotions and mental states. It is thought that this is 

because these movements will be more likely to trigger appropriate mental state labels within 

the observer. Appropriate mental state labels are, therefore, more likely to be attributed to the 

situation and this will likely result in emotional responses from the observer that are 

contextually relevant. By contrast, when observing someone whose movements for a given 

mental state are very different from your own, appropriate mental state labels will not be 

triggered and mental state inferences will be less well matched.  

The relevance of movement in social cognition has important implications for 

understanding difficulties faced by those with movement disorders. Parkinson’s Disease is a 

condition characterised by bradykinesia (slowed movement), gait differences and postural 

instability (Jankovic, 2008; Moustafa et al., 2016; Zanardi et al., 2021). Whilst motor 

symptoms are primarily emphasised, socio-cognitive differences such as in emotion 

recognition and theory of mind are also apparent – abilities in which movement cues are vital 

(Czernecki et al., 2021; Gray & Tickle-Degnen, 2010; Ricciardi et al., 2017). By contrast, 
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ASD is a condition in which socio-cognitive differences are considered core features 

(American Psychiatric Association, 2013). A wide body of literature suggests differences 

between autistic and non-autistic individuals in emotion recognition (Keating et al., 2022; 

Uljarevic & Hamilton, 2013) and theory of mind (Abell et al., 2000; White et al., 2011). 

However, recent literature has shed light upon co-occurring movement differences as indexed 

by performance on a variety of motor tasks including coordination, fine motor control and 

whole-body movement (Fournier et al., 2010; Wang et al., 2022). Interestingly, differences in 

gross motor control in autism have been found to correlate with social skills (Wang et al., 

2022). Thus, it may be theorised that, due to a lack of movement similarity, social interactions 

between ASD/PD populations and the general population are more likely to suffer from a 

mismatch in the perceived internal state of the observer and the actual internal state of the 

individual being observed.  

Theory of mind, the ability to appropriately attribute mental states to others, has been 

found to differ in both ASD and PD populations. There are many ways in which mental states 

can be expressed, and the most popular tasks rely on static images or stories rather than 

dynamic movement-based stimuli. The Reading the Mind in the Eyes Test is a classic 

measure that has been used frequently in both ASD and PD to propose differences in theory 

of mind (Bodden et al., 2010; Orso et al., 2020; Penuelas-Calvo et al., 2019; Seubert-Ravelo 

et al., 2021). This task, in which participants are asked to attribute emotions and thoughts to 

images of the eye region of the face, has been heavily criticised as a measure of theory of 

mind on the basis that its task demands are more akin to emotion recognition (Oakley et al., 

2016; Quesque & Rossetti, 2020). In a different visual-based task, the Yoni task (Shamay-

Tsoory & Aharon-Peretz, 2007), participants are asked to select the appropriate picture to 

answer first-order questions (e.g., what Yoni identifies with) and second-order questions (e.g., 
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whose success Yoni envies). Impairments in this task have been reported in both ASD (Tin et 

al., 2018) and PD (Bodden et al., 2010). Alternative measures of theory of mind employ 

situational judgement questions. For example, in the Faux Pas Test (Stone et al., 1998), 

participants are asked to identify whether stories contain a social faux pas or a minor conflict 

but no faux pas. Cognitive understanding (e.g., why do you think the character said it?) and 

affective understanding (e.g., how do you think the character felt?) are also assessed. 

Evidence in PD suggests an impairment on the cognitive component of the faux pas test (Del 

Prete et al., 2020; Kawamura & Koyama, 2007; Peron et al., 2009; Roca et al., 2010), and 

similar evidence has been presented in ASD (Tin et al., 2018). Thus, theory of mind 

differences in ASD and PD are apparent across a variety of non-movement-based tasks.  

Movement is an important component in representing mental states, but the 

aforementioned tasks do not allow for investigation of movement-based theory of mind 

inferences. This literature cannot address the question of whether movement differences in 

ASD and PD may co-occur with differences in movement-based theory of mind ability. By 

contrast, the Animations Task asks participants to ascribe mental states to videos of two 

moving triangles (Abell et al., 2000; Schuster et al., 2021). In conjunction, participants can be 

asked to produce their own animations to represent mental states (Edey et al., 2016; Schuster 

et al., 2021). This task has been widely used in the autism literature to demonstrate theory of 

mind differences, including a reduction in the use of mental state words, and the use of 

inappropriate mental state words, to describe animations (Abell et al., 2000; Castelli et al., 

2002; Livingston et al., 2021; White et al., 2011; Wilson, 2021). Further investigations have 

revealed bi-directional difficulties between autistic and non-autistic adults arising from 

kinematic differences in the animations produced by the two groups (Edey et al., 2016). 

Whilst many studies have used the Animations Task in the younger autistic population, it has 
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only been used in the older autistic population as part of a composite theory of mind score 

(Yarar et al., 2020), meaning that it is unclear whether older autistic adults have differences in 

movement-based theory of mind specifically. In addition, the Animations Task has not yet 

been employed in the PD population, but administration of the dopamine antagonist 

haloperidol results in reduced accuracy in labelling animations (Schuster et al., 2023). 

Haloperidol acts by blocking D2 receptors (Bymaster et al., 1999), which are highly prevalent 

in the basal ganglia (Camps et al., 1989). Given that the pathology of PD relates to the 

degeneration of dopamine neurons in the substantia nigra of the basal ganglia, it is likely that 

a similar pattern of task performance will be observed in PD as under haloperidol. Therefore, 

the current study assesses whether differences in movement-based theory of mind are 

apparent in older autistic adults and individuals with PD.  

The Animations Task also includes a component which enables the assessment of how 

individuals represent mental states themselves. Participants have free reign in how they depict 

both mental and non-mental states using the movement of two triangles. Evidence from 

separate research studies indicates that there are both similarities and differences in the 

movements of autistic individuals and those with PD. For example, parkinsonian movement 

appears to be slower than that of the general population (Alberts et al., 2000; Broderick et al., 

2009; Flash et al., 1992; Jankovic, 2008; Lange et al., 2006; Van Gemmert et al., 2003; 

Viviani et al., 2009), whereas autistic movements are characterised by faster movement 

profiles (Cook et al., 2013; Grace et al., 2017; Johnson et al., 2013). However, whilst 

members of the general population move with minimum jerk (i.e., accelerating and 

decelerating gradually in movements from one point in space to the next (Flash & Hogan, 

1985; Todorov & Jordan, 1998)), jerky movements have been observed in both autistic 

individuals (Cook et al., 2013; Edey et al., 2016) and individuals with PD (Alberts et al., 
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2000). Such jerky movements are comprised of periods of rapidly changing acceleration 

and/or deceleration, and these alternations may be used to interpret movement trajectories as a 

series of sub-movements. There is evidence to suggest a greater number of sub-movements in 

the trajectories of both ASD (Cook et al., 2023) and PD (Castiello et al., 2000; Flash et al., 

1992; Lange et al., 2006) samples. However, it is important to note that these observations are 

generally made from fixed or constrained movements which do not allow individuals free 

reign. To be comparable to movements made in everyday life to depict mental states, 

assessments of free movement should be made (i.e., those in which individuals are able to 

make choices about their movement trajectories). This Chapter sets out to investigate whether 

similar movement profiles would be used by ASD and PD groups when depicting mental 

states, in addition to whether groups would also be comparable with respect to movement-

based theory of mind ability. 

Both ASD and PD groups appear to exhibit differences in movement and theory of 

mind compared to the general population, but a lack of direct comparisons studies between 

the clinical groups means that it is unclear what the relative abilities are. As previously 

discussed, a range of paradigms have been used to index movement and theory of mind 

ability, and the generalisability of performance on these tasks is not known. In addition, 

demographic differences in the participants used are apparent. For example, ASD participants 

are typically either children (Abell et al., 2000) or young adults (e.g., Castelli et al., 2002; 

mean age = 33 years) whereas, due to the late onset of PD, studies of PD tend to recruit 

individuals over the age of 50 (Orso et al., 2020). This is problematic as both movement and 

theory of mind ability have been found to vary with age (Ketcham et al., 2002; Maylor et al., 

2002; Pardini & Nichelli, 2009). A meaningful comparison between ASD and PD 

performance must therefore be made between similarly aged groups (i.e., comparing older 
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autistic adults to individuals with PD). The current literature is not sufficient for this given 

that movement studies in older autistic adults are extremely limited (note that only two studies 

were identified in a meta-analysis by Mason et al., 2022), and theory of mind assessments in 

older autistic adults present conflicting findings; that is, some studies have evidenced that 

theory of mind differences in autism extend to older age (Torenvliet et al., 2022), whereas 

others have reported no difference between autistic and non-autistic older adult performance 

due to an ageing-related decline in the non-autistic group (Lever & Geurts, 2016a; Yarar et 

al., 2020). Beyond age, other potential confounds of theory of mind and movement include 

characteristics such as gender (Baron-Cohen et al., 2015; Kirkland et al., 2013; Miller & 

Cronin-Golomb, 2010) and IQ (Buitelaar et al., 1999; Forti et al., 2011), and clinical traits 

such as depression (Nestor et al., 2022; Sachdev & Aniss, 1994), anxiety (Hezel & McNally, 

2014; Pijpers et al., 2005) and alexithymia (Pisani et al., 2021). Indeed, elevated levels of 

such traits are observed in both ASD (Hollocks et al., 2019; Kinnaird et al., 2019) and PD 

(Alvarado-Bolanos et al., 2020; Broen et al., 2016; Reijnders et al., 2008), meaning any 

similarities between groups may be due to these co-occurring traits. Thus, matching and/or 

controlling for such variables will allow us to identify, separate from confounding factors, the 

extent to which movement and theory of mind in ASD and PD are similar. 

Due to a lack of direct comparison studies, and the use of a wide variety of tasks, the 

existing literature does not provide clear insights into the movement and socio-

communicative differences exhibited by older autistic adults and those with PD. Quantifying 

these differences in a controlled experiment is vital for pinpointing the specific domains in 

which these differences occur, and the similarities between the presentation of ASD and PD. 

The current study set out to analyse movement differences in animations produced by autistic 

individuals, individuals with PD, and control participants and, in conjunction, investigate 
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where differences in movement-based theory of mind ability co-occur. To index kinematics, 

participants produced 30-second animations for mental state, non-mental state and physical 

words by moving two triangles on a touchscreen device (Animation Production Task). To 

index theory of mind ability, participants watched mental and non-mental state animations 

and rated the extent to which they believed the animation depicted each of four target words 

(Animation Perception Task). This Chapter conducts the first direct comparison study of 

motor function and social cognition in ASD and PD compared to the general population. 

2.2 Methods 

2.2.1 Participants 

The current study recruited autistic individuals (ASD; N = 31), individuals with PD 

(PD; N = 33), and control participants (CTRL; N = 31). Table 2.1 displays descriptive 

statistics for each group including age, gender, non-verbal reasoning score and years since 

diagnosis (see Appendix 1 for ethnicity information). Co-occurring movement or 

developmental disorders were set as exclusion criteria. Participants were recruited via 

Parkinson’s UK, Autistica, the University of Birmingham Psychology Autism Research 

Database, the University of Birmingham Older Adults Database, and social media. Informed 

consent was given by all participants and remuneration of £10 per hour was provided. The 

experimental procedure was approved by the local Research Ethics Committee (ERN_18-

1800B and ERN_16-0281AP5). 

2.2.2 Procedure 

First, participants completed an online screening form, a set of questionnaires and the 

Matrix Reasoning Item Bank (MaRs-IB; Chierchia et al., 2019). Following this, participants 
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completed the Animation Production Task and Animation Perception Task at home using a 

touch-screen device that was sent out to them (Samsung Galaxy Tab A7; 10.40-inch 

touchscreen; 2000x1200 pixels). The tasks were programmed in PsychoPy and run on 

Pavlovia (PsychoJS platform version 2021.1.3). PD participants completed these tasks 

approximately 1 hour after taking their first dose of medication in the morning. Participants 

also completed two additional testing days, data from which are analysed in subsequent 

chapters. 

Online questionnaires 

Participants first reported demographic information to enable an eligibility check (i.e., 

official clinical diagnosis of ASD or PD) and to facilitate group matching (e.g., age, gender). 

Following this, participants completed the Autism Quotient (AQ; Baron-Cohen et al., 2006; 

Baron-Cohen et al., 2001) and the Ritvo Autism Asperger Diagnostic Scale (RAADS; Ritvo 

et al., 2011) as measures of autistic traits, section 2 of the Unified Parkinson’s Disease Rating 

Scale (UPDRS; Part II: Motor Aspects of Experiences of Daily Living; Martínez-Martín et 

al., 1994) as a measure of parkinsonian traits, the Toronto Alexithymia Scale (TAS; Bagby et 

al., 1994) as a measure of alexithymic traits, the Patient Health Questionnaire (PHQ; Spitzer 

et al., 1999; Spitzer et al., 2000) as a measure of depression, and the Generalised Anxiety 

Disorder Assessment (GAD; Spitzer et al., 2006) as a measure of anxiety. Questionnaires 

were completed on Qualtrics and were presented in a random order. 

Matrix Reasoning Item Bank 

Participants completed the Matrix Reasoning Item Bank (MaRs-IB; Chierchia et al., 

2019) on Gorilla. The task lasted 8 minutes and in each trial participants had to select the 

appropriate shape to fill the empty cell of a 3 x 3 matrix. Scores were calculated as the 

proportion of correct responses within 8 minutes. The task is a validated measure of non-
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verbal reasoning ability, and such a task-specific measure has been argued to be most 

appropriate for group matching autistic and non-autistic samples (Dawson et al., 2007; 

Mottron, 2004).  

The Animation Tasks 

Participants used the touch-screen device to complete the Animation Tasks (Schuster 

et al., 2021). A new online version of this task was developed specifically for this study, 

which enabled the recording and replaying of animations. Animations were inspired by those 

developed by Heider and Simmel (1944); they involved two triangles moving around a screen 

to depict various words. The task was comprised of two components: production and 

perception (Figure 2.1). The Animation Production Task was always completed prior to the 

Animation Perception Task.  

In the Animation Production Task, participants created 30-second animations 

depicting 6 words (mental state: surprising and mocking; non-mental state: searching and 

following; physical: bouncing and drifting). These categories reflected those of Abell et al. 

(2000). To produce these animations, participants moved a red and a blue triangle around the 

screen using their index fingers. Prior to each animation production phase, participants had 30 

seconds to plan their actions. Animations could be remade if participants were not happy with 

what they had produced. Movement trajectories were recorded during each trial as the x and y 

coordinates of the triangles’ positions across time, at a 60 Hz refresh rate. 

In the Animation Perception Task, participants watched 32 animations and rated the 

extent to which they depicted each of 4 target words (mental state: surprising, mocking; non-

mental state: searching, following) on separate sliding scales. Participants were able to replay 

the video before providing their ratings. The 32 animations presented to each participant were 

randomly selected from pools of pre-existing animations created by control participants in 
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Schuster et al. (2021). The set of animations shown to each participant contained 8 animations 

corresponding to each target word. These 8 animations for each word were randomly selected 

from 8 speed bins to ensure the animations comprised a wide range of kinematics.  

Figure 2.1  

Animation Production Task and Animation Perception Task Trial Structure 

 

Note. Participants first depicted six words in the Animation Production Task (following 30 
seconds of planning time), followed by the completion of 32 trials in the Animation 
Perception Task (during which animations were first watched and then rated on sliding 
scales).  
 

2.2.3 Data Pre-Processing 

Animation production 

Various parameters were calculated using the x and y coordinates of the triangles’ 

positions (derived from the triangles’ centre points) across time. Kinematics included speed, 

acceleration and jerk, minimum speed, maximum speed and sub-movements, whilst 

animation features included mean rotation and synchronous movement. When calculating 

Animation Production Task

Animation Perception Task

Planning Time (30 s)

Animation Production (30 s)

Watching Time (45 s)

Animation Perception Ratings

Repeat (6 words)

Repeat (32 trials)
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parameters (except synchronous movement), separate values were calculated from the 

movement trajectories of each triangle and then a weighted average was calculated based on 

the proportions of movement time of each triangle. These weighted averages were used as 

dependent variables (DVs).  

Speed, acceleration and jerk were calculated as the first-, second-, and third-order 

derivates of the positional non-null data. That is, speed refers to the distance moved (in pixels) 

over time (in seconds); acceleration refers to the change in speed over time; jerk refers to the 

change in acceleration over time. These values were obtained using a smooth differential filter 

at each stage of differentiation (see Huh & Sejnowski, 2015). Minimum and maximum speed 

values were taken as the average of the bottom and top 10% of speed values within a given 

trial. Sub-movements were calculated as the percentage of frames across the animation in 

which a change in acceleration sign was observed.  

Mean rotation was calculated as the average rotation of the triangles around their own 

axis, or the differential of each triangles’ orientation in degrees over time. Synchronous 

movement was calculated as the proportion of time in each trial during which the speed of 

both the red and the blue triangle was greater than zero.  

Outliers were removed from each DV, which were defined as values further than 2 

standard deviations away from the mean. Various transformations were applied to the data to 

ensure normality, such as a square root transformation (speed, acceleration, jerk, mean 

rotation, maximum speed), a reciprocal transformation (minimum speed) and a square 

transformation (sub-movements). Finally, variables were z-scored to centre the data. 

Animation perception  

Accuracy scores for each trial were calculated by subtracting the mean rating for all 

non-target words from the rating for the target word. This score range (-100,100) was shifted 
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to positive integers (0, 200) and outliers were removed. A square transformation and z-score 

transformation were applied to normalise and centre the data. It should be noted that one PD 

participant did not complete the Animation Perception Task, thus reducing the PD sample size 

to 32.  

2.2.4 Analyses 

Group matching analyses were run in R Studio (2022.07.2). Linear mixed models 

(LMMs) were run in MATLAB 2022A using MATLAB’s fitlme function. Bayesian analyses 

were conducted in JASP (0.17.2.1). Data and analysis scripts are available online at 

https://osf.io/dge6t/?view_only=588a08aa1eb04942a2f1f8bbccc9dede. 

Group matching 

To verify group matching on age, non-verbal reasoning, depression, anxiety and 

alexithymia, ANOVAs were conducted with group as a between-participant factors; any 

significant differences were explored using post-hoc t-tests between groups. To assess group 

differences in gender, a chi squared analysis was run. Variables that were not matched 

between groups were included as control variables in subsequent LMM analyses.  

Group differences 

Differences in parkinsonian traits (UPDRS) and autistic traits (RAADS and AQ) 

between groups were assessed using ANOVAs, in which group was entered as a between-

participant factor. Again, post-hoc t-tests were used to unpack any group differences. 

Animation production  

To assess differences in animations produced between groups, LMMs were employed 

for each parameter with participant group, word-type (mental state, non-mental state, 

physical), and their interaction as fixed effects. Age, depression, anxiety and alexithymia were 

https://osf.io/dge6t/?view_only=588a08aa1eb04942a2f1f8bbccc9dede
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also included as fixed effects given that they significantly differed between groups, and their 

predictions of the DVs were assessed. Participant ID was included as a random effect. As 

such, the model formula was as follows: 

 

DV ~ Group * Word-Type + Age + Depression + Anxiety + Alexithymia + (1|Participant ID)  

 

For cases in which a main effect of group or word-type was significant, post-hoc analyses 

were conducted to identify between which groups/word-types there were significant 

differences; this was achieved by running the model above on subsets of the data containing 

only two groups or two word-types.  

To obtain p-values for the fixed effects, ANOVAs were conducted on the model 

coefficients. 

For cases in which a main effect of group was not found, Bayesian ANOVAs were 

conducted to assess evidence for the null hypothesis. Residuals of the DV after controlling for 

age, depression, anxiety and alexithymia were used as input values, and fixed factors of group 

and word-type were used, as well as a random factor of participant ID. Bayes Factors (BF01) 

are reported for the main effect of group, which provide a ratio of the likelihood for the 

observed data under the null hypothesis compared to the alternative hypothesis (Dienes, 

2016). Values of greater than 10, 3-10 and 1-3 were taken as strong, moderate and anecdotal 

evidence for the null hypothesis respectively (Lee & Wagenmakers, 2014). 

Animation perception  

To investigate whether groups differed in Animation Perception accuracy, an LMM 

was employed for accuracy scores with participant group, word-type, movement bin, and their 

interactions as fixed effects. Again, age, depression, anxiety and alexithymia were included as 
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fixed effects. Random effects were included for trial number to account for fatigue or practice 

effects, and animation ID and participant number to account for variance between animation 

videos and participants. Again, an ANOVA was conducted on the model coefficients to obtain 

p-values. The model formula was as follows: 

 

DV ~ Group * Word-Type * Movement Bin + Age + Depression + Anxiety + Alexithymia + 

(1|Trial number) + (1|AnimationID) + (1|Participant ID) 

 

A non-significant main effect of group was followed up with a Bayesian ANOVA 

conducted on accuracy residuals (after controlling for age, depression, anxiety and 

alexithymia), with group, word-type and bin as fixed factors, and trial number, animation ID 

and participant ID as random factors. Bayes Factors (BF01) are reported for the main effect of 

group.  

2.2.5 Pre-Registration and Power Analysis 

A pre-registration for the study can be found online at https://osf.io/ek6h7. Certain 

questionnaires were added to the protocol as control variables following discussions with 

collaborators post-pre-registration (e.g., the RAADS indexing autistic traits, the PHQ 

indexing depression, and the GAD indexing anxiety). In addition, all participants completed 

the UPDRS as an index of parkinsonian traits. Two additional words were included in the 

Animation Production Task (physical: bouncing, drifting). Additional variables were also 

calculated from the Animation Production data (e.g., mean rotation and synchronous 

movement as in Schuster et al. (2021), and minimum and maximum speed). Contrary to the 

https://osf.io/ek6h7
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pre-registered analyses, the current Chapter does not investigate predictors of Animation 

Perception accuracy due to the lack of group differences in accuracy.  

A number of a priori power analyses were calculated with G*power (Erdfelder et al., 

1996) to determine the sample size for the current study. For Animation Production, data from 

Edey et al. (2016) was used which demonstrated increased jerk in animations produced by 

autistic individuals compared to non-autistic individuals; with a Cohen’s d effect size of 0.79 

and 0.05 alpha level, it was determined that a minimum of 27 participants were required per 

group to achieve a power level of 0.80 on a two-tailed test. 

For Animation Perception, data from White et al. (2011) was used due to their 

comparable study design, similar methods of scoring (objective rather than subjective ratings 

of responses) and recruitment of adult participants. The study demonstrated group differences 

between autistic and non-autistic adults on two objective measures of task performance: 

“Multiple-Choice Question (MCQ)-categorisation total” (i.e., total score for categorising 

animations into “no interaction”, “physical interaction” and “mental interaction”) and “MCQ-

feelings” (i.e., total score for selecting the correct feeling within the mentalizing animations). 

Cohen’s d effect sizes were calculated for the difference between means on each measure 

using data provided in the paper (sample size, mean and standard deviation for each group). 

With Cohen’s d effect sizes of 1.35 and 1.83 respectively, and 0.05 alpha level, it was 

determined that a minimum of 10 and 6 participants were required per group respectively to 

achieve a power level of 0.80 on a two-tailed test.  

Thus, at least 30 participants were recruited in each group to exceed the highest 

sample size recommended by these power analyses. Note that it was not possible to conduct 

an a priori power analysis for the exact proposed statistical analyses (i.e., linear mixed 
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models) due to a lack of suitable power analysis methods and existing data (e.g., the 

Animation Tasks have not been run in the PD population). 

2.3 Results 

2.3.1 Group Matching 

Descriptive statistics for each group are listed in Table 2.1, in addition to tests of 

equivalence. Groups did not significantly differ in terms of gender or non-verbal reasoning 

ability. A significant difference in age was found between the three groups which, when 

unpacked, reflected a difference between the PD and ASD groups (t(60.79) = 3.69, p < .001). 

Nevertheless, both clinical groups were age-matched to the CTRL group (ASD: t(58.12) = 

1.32, p = .191; PD: t(55.96) = 1.80, p = .077). Group differences were found in depression 

scores, whereby both the clinical groups had higher scores than CTRLs (ASD: t(41.57) = 

4.61, p < .001; PD: t(45.33) = 5.17, p < .001), but did not differ from each other (t(56.98) = 

0.20, p = .840). Anxiety scores also differed between groups: the ASD group had higher 

scores than both the PD group (t(56.01) = 3.31, p = .002) and the CTRL group (t(57.55) = 

4.51, p < .001), but the PD and CTRL groups did not differ (t(59.99) = 1.41, p = .163). 

Finally, there was a significant group difference in alexithymia scores, which reflected higher 

levels of alexithymic traits in the ASD group compared to the other two groups (PD: t(61.99) 

= 5.43, p < .001; CTRL: t(52.99) = 6.17, p < .001); the PD and CTRL group did not differ 

with respect to alexithymic traits (t(55.30) = 0.25, p = .801).  
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Table 2.1  

Descriptive Statistics and Tests of Equivalence for the Autism, Parkinson’s Disease and 

Control Groups 

 ASD PD CTRL Test of equivalence  
Gender 14 M, 16 M, 1 O 19 M, 14 F, 0 O 16 M, 16 F, 0 O X2(4)= 2.91, p = .572 
Age 55.42[7.91] 62.45[7.31] 58.47[10.25] F(2, 93) = 5.42, p = .006** 
Non-verbal reasoning 0.58[0.15] 0.55[0.13] 0.58[0.16] F(2, 91) = 0.36, p = .697 
Depression 8.1[5.65] 7.8[4.51] 2.9[2.56] F(2, 90) = 13.48, p < .001*** 
Anxiety 9.8[6.04] 5.2[4.61] 3.5[4.87] F(2, 90) = 11.99, p < .001*** 
Alexithymia 61.19[12.65] 43.58[13.31] 44.28[8.69] F(2, 93) = 22.75, p < .001*** 
Years since diagnosis 4.16[2.72] 3.81[2.49] - - 
Parkinsonian traits 3.58[3.81] 10.64[5.59] 0.97[1.67] F(2, 93) = 49.70, p < .001*** 
Autistic traits (RAADS) 32.52[8.04] 10.43[9.43] 6.31[6.35] F(2, 90) = 96.59, p < .001*** 
Autistic traits (AQ) 37.65[7.09] 18.39[6.91] 16.09[5.87] F(2, 93) = 99.84, p < .001*** 

Note. Table contains means (M) and standard deviations (SD): M[SD]. Significant p-values in 
tests of equivalence indicate differences between groups. ASD = Autism Spectrum Disorder, 
PD = Parkinson’s Disease, CTRL = Control, M = male, F = female, O = other. *** p < .001, 
** p < .01 and * p < .05. 

 

2.3.2 Group Differences 

Assessments of parkinsonian traits via UPDRS scores confirmed that the PD group 

scored significantly higher than the CTRL group (t(37.86) = 9.50, p < .001). Interestingly, the 

ASD group also scored significantly higher than the CTRL group (t(40.90) = 3.50, p = .001), 

though their levels remained significantly lower than the PD group (t(56.67) = 5.93, p < .001). 

This indicates that, whilst the autistic participants were not comparable to the PD group itself, 

they did have elevated parkinsonian traits compared to members of the general population.  

In terms of autistic traits, the ASD group scored higher than both the CTRL and PD 

groups on the AQ (ASD-CTRL: t(58.20) = 13.12, p < .001; ASD-PD: t(61.50) = 10.99; p < 

.001) and the RAADS (ASD-CTRL: t(57.07) = 14.33, p < .001; ASD-PD: t(56.92) = 9.83, p < 

.001). There were no significant differences between the PD and CTRL group on either 
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measure (AQ: t(61.94) = 1.45, p = .152; RAADS: t(50.40) = 2.01, p = .050), though mean 

scores were numerically higher in the PD group.  

2.3.3 Animation Production  

Groups can be distinguished by kinematic features. 

Group differences were observed for speed (F(2, 514) = 5.10, p = .006), whereby the 

PD group moved more slowly than CTRLs (F(1, 345) = 7.37, p = .007; beta estimate = 0.291, 

95% Confidence Intervals (95% CI) [-0.503, -0.285]). Similarly, group differences in 

acceleration (F(2, 523) = 5.09, p = .006) reflected a significant main effect of group between 

PD and CTRL (F(1, 348) = 6.50, p = .011), whereby the PD group moved with lower 

acceleration than CTRLs (beta estimate = -0.286, 95% CI [-0.506, -0.065]. Jerk also 

significantly differed between groups (F(2, 523) = 4.95, p = .007); animations produced by 

both PD and ASD groups had lower jerk than CTRLs (PD-CTRL: F(1, 350) = 6.24, p = .013, 

beta estimate = -0.295, 95% CI [-0.526, -0.063]; ASD-CTRL: F(1, 351) = 4.19, p = .041, beta 

estimate = -0.196, 95% CI [-0.384, -0.001]). ASD and PD groups did not differ with respect 

to jerk (p > .05). Maximum speed differed between groups (F(2, 521) = 8.66, p < .001); as 

was the case for average speed, the PD group had a significantly lower maximum speed than 

CTRLs (F(1, 346) = 12.95, p < .001, beta estimate = -0.338, 95% CI [-0.523, -0.153]). 

Finally, group differences in mean rotation were observed (F(2, 515) = 9.50, p < .001), 

whereby the PD group had a lower mean rotation than CTRLs (F(1, 344) = 14.37, p < .001). 

See Figure 2.2 for violin plots of group differences.  
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Figure 2.2  

Violin Plots Depicting Group Differences in Animation Production Task Dependent Variables 

 

Note. Residuals for each dependent variable (after controlling for age, depression, anxiety and 
alexithymia) are plotted for PD (blue), CTRL (purple) and ASD (orange) groups respectively. 
* indicates a significant main effect of group. White dot = median, box = interquartile range. 
PD = Parkinson’s Disease, CTRL = Control, ASD = Autism Spectrum Disorder. 
 

Some kinematic features are the same between groups. 

There were no group differences regarding synchronous movement, minimum speed 

and sub-movements (all p > .05). As such, Bayesian ANOVAs were conducted on these 

variables to identify BF01 factors for the main effect of group. Strong evidence for the null 

hypothesis was found for all three variables (synchronous movement BF01 = 28.55; minimum 

speed BF01 = 31.93; sub-movements BF01 = 32.24). BF01 values for the main effect of group 

for each group comparison are reported in Table 2.2. 
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Table 2.2  

Bayes Factors for Variables with No Group Differences  

 All groups ASD-CTRL ASD-PD PD-CTRL 
Synchronous Movement 28.55 7.39 6.92 6.73 
Minimum Speed 31.93 6.90 7.07 6.61 
Sub-movements 32.24 7.23 6.96 6.58 

 
Note. Table contains BF01 values for the main effect of group obtained in Bayesian ANOVAs. 
ASD = Autism Spectrum Disorder, PD = Parkinson’s Disease, CTRL = Control. 
 

As noted above, no differences (all p > .05) in speed, acceleration, jerk, mean rotation 

and maximum speed were found between the ASD and PD groups, nor between the ASD and 

CTRL groups (except jerk). BF01 values for the main effect of group for these group 

comparisons are reported in Table 2.3. 

Table 2.3  

Bayes Factors for Specific Group Comparisons with No Main Effect of Group 

 ASD-CTRL ASD-PD 
Speed 4.46 6.84 
Acceleration 4.76 6.90 
Jerk - 7.22 
Mean Rotation 2.57 6.65 
Maximum Speed 3.13 6.03 

 
Note. Table contains BF01 values for the main effect of group obtained in Bayesian ANOVAs. 
ASD = Autism Spectrum Disorder, PD = Parkinson’s Disease, CTRL = Control. 
 

Animations varied in kinematic values based on word-type. 

Main effects of word-type were observed for all DVs, but the direction of these effects 

differed between variables (see Figure 2.3). In the majority of cases, physical animations were 

associated with higher levels of the DV and non-mental state animations were associated with 

the lowest. This pattern was clearly observed for jerk and mean rotation. The word-type 

difference observed for jerk (F(2, 523) = 14.60, p < .001), reflected higher jerk in physical 

animations than both mental state animations (F(1, 342) = 6.85, p = .009, beta estimate = 
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0.118, 95% CI [0.029, 0.207]) and non-mental state animations (F(1, 346) = 25.15, p < .001, 

beta estimate = 0.211, 95% CI [0.128, 0.294]). Mental state animations also had significantly 

higher jerk than non-mental state animations (F(1, 354) = 8.11, p = .005, beta estimate = 

0.100, 95% CI [0.031, 0.169]). Similarly, mean rotation differed based on word-type (F(2, 

515) = 38.66, p < .001): physical animation had higher mean rotation than both mental state 

animations (F(1, 333) = 32.19, p < .001, beta estimate = 0.285, 95% CI [0.186, 0.383]) and 

non-mental state animations (F(1, 336) = 98.48, p < .001, beta estimate = 0.420, 95% CI 

[0.337, 0.504]). Mental state animations also had significantly higher mean rotation than non-

mental state animations (F(1, 357) = 10.05, p = .002, beta estimate = 0.136, 95% CI [0.052, 

0.221]).  

In the case of acceleration (main effect of word-type: F(2, 523) = 21.39, p < .001), 

lower levels of the DV were observed in non-mental state animations compared to both 

physical animations (F(1, 346) = 35.73, p < .001, beta estimate = 0.255, 95% CI [0.171, 

0.339]) and mental state animations (F(1, 353) = 28.86, p < .001, beta estimate = 0.185, 95% 

CI [0.117, 0.252]), but physical animations were not significantly higher in acceleration than 

mental state animations (p > .05).  

Conversely, for speed (main effect of word-type: F(2, 514) = 46.80, p < .001), higher 

levels of the DV were observed in physical animations compared to mental state animations 

(F(1, 333) = 58.02, p < .001; beta estimate = 0.349, 95% CI [0.259, 0.439]) and non-mental 

state animations (F(1, 332) = 52.46, p < .001; beta estimate = 0.317, 95% CI [0.231, 0.404]), 

but mental state and non-mental state animations did not differ (p > .05).  

For both synchronous movement and sub-movements, physical animations had the 

highest levels of the DV, but mental state animations had the lowest. When unpacking the 

main effect of word-type on synchronous movement (F(2, 516) = 92.41, p < .001), it was 
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apparent that physical animations had the longest time in which both triangles are moving, 

significantly longer than non-mental state animations (F(1, 350) = 83.15, p < .001, beta 

estimate = 0.362, 95% CI [0.284, 0.440]) and mental state animations (F(1, 342) = 214.86, p 

< .001, beta estimate = 0.546, 95% CI [0.473, 0.619]). Synchronous movement was also 

significantly longer in non-mental state animations compared to mental state animations (F(1, 

336) = 16.10, p < .001, beta estimate = 0.186, 95% CI [0.095, 0.278]). The same pattern was 

observed for sub-movements (main effect of word-type: F(2, 542) = 105.10, p < .001). 

Physical animations had the highest proportion of sub-movements compared to both non-

mental state animations (F(1, 362) = 108.95, p < .001, beta estimate = 0.393, 95% CI [0.319, 

0.467]) and mental state animations (F(1, 359) = 209.48, p < .001, beta estimate = 0.538, 95% 

CI [0.465, 0.611]). Non-mental state animations had a higher proportion of sub-movements 

than mental state animations (F(1, 359) = 12.66, p < .001, beta estimate = 0.146, 95% CI 

[0.065, 0.227]).  

Finally, in some cases, mental state animations were associated with the highest levels 

of the DV. Minimum speed varied between animation types (F(2, 529) = 115.69, p < .001), 

whereby mental state animations had a lower minimum speed than both non-mental state 

animations (F(1, 360) = 27.46, p < .001, beta estimate = 0.178, 95% CI [0.111, 0.244]) and 

physical animations (F(1, 348) = 216.83, p < .001, beta estimate = 0.576, 95% CI [0.499, 

0.653]). Non-mental state animations also had a higher minimum speed than physical 

animations (F(1, 346) = 89.88, p < .001, beta estimate = 0.404, 95% CI [0.320, 0.488]). By 

contrast, for maximum speed (main effect of word-type: F(2, 521) = 17.97, p < .001), mental 

state animations again had the highest maximum speed compared to both physical animations 

(F(1, 342) = 6.06, p = .014, beta estimate = 0.125, 95% CI [0.025, 0.225]) and non-mental 

state animations (F(1, 353) = 58.17, p < .001, beta estimate = 0.263, 95% CI [0.201, 0.562]), 
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but physical animations had a higher maximum speed than non-mental state animations (F(1, 

343) = 7.28, p = .007, beta estimate = 0.134, 95% CI [0.036, 0.232]).  

Figure 2.3  

Violin Plots Depicting Word-Type Differences in Production Task Dependent Variables 

 

Note. Residuals for each dependent variable (after controlling for age, depression, anxiety and 
alexithymia) are plotted for mental state words (blue), non-mental state words (purple) and 
physical words (green). * indicates a significant main effect of word-type. White dot = median, 
box = interquartile range.  
 

Non-group-matched variables did not predict kinematic features. 

Neither age, depression, anxiety or alexithymia predicted speed, acceleration, jerk, 

mean rotation, synchronous movement, minimum speed, maximum speed or sub-movements 

(all p > .05).  
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2.3.4 Animation Perception  

No significant group differences were found with respect to accuracy score (p > .05; 

three-group BF01 = 104.44; PD-CTRL BF01 = 12.11; ASD-CTRL BF01 = 12.88; ASD-PD 

BF01 = 10.81). Given that a selective difference in theory of mind ability would be reflected 

by an interaction between group and word-type (whereby accuracy would differ between 

groups for mental state but not non-mental state words), it is important to note that no such 

interaction was found (p > .05; three-group BF01 = 4866.08; PD-CTRL BF01 = 473.08; ASD-

CTRL BF01 = 74.74; ASD-PD BF01 = 211.43). A significant main effect of word-type was 

observed (F(1, 2837) = 26.16, p < .001) whereby mental state animations were interpreted 

with significantly lower accuracy than non-mental state words (beta estimate = -0.414, 95% 

CI [-0.573, -0.255]). Age was a significant positive predictor of Animation Perception 

accuracy (F(1, 2837) = 7.64, p = .006, beta estimate = 0.010, 95% CI [0.003, 0.016]).  

2.4 Discussion 

The current Chapter analysed movement differences in animations produced by 

autistic individuals, individuals with PD, and control participants. Results demonstrate clear 

dissociations between kinematics produced by the PD group and the general population 

during free movement. Specifically, when on their medication, PD movement profiles were 

slower, had a lower maximum speed, lower acceleration and lower mean rotation than 

CTRLs. Differences in these particular movement features align well with a literature that has 

reported a reduction in “vigour” in PD (Alberts et al., 2000; Broderick et al., 2009; Flash et 

al., 1992; Jankovic, 2008; Lange et al., 2006; Van Gemmert et al., 2003; Viviani et al., 2009). 

Kinematics produced by autistic individuals fell between those of PD and CTRLs, with no 

significant differences with respect to either group. This diverges from literature suggesting 
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faster movements in autism compared to the general population (Cook et al., 2013; Grace et 

al., 2017; Johnson et al., 2013). However, it should be noted that extant studies tend to assess 

movement in younger samples of autistic individuals (e.g., Cook et al., 2013; mean age = 

41.07) or children (e.g., Grace et al., 2017; mean age = 10.58) which may account for the 

discrepancy in findings.  

Whilst ASD and PD performance did not significantly differ on a range of kinematic 

features, similar performance between the two groups could be distinguished from CTRLs 

only in terms of jerk: ASD and PD groups had lower jerk in their movement profiles than 

CTRLs. This is an unusual finding as both PD and ASD are typically associated with jerky 

movements (Alberts et al., 2000; Cook et al., 2013; Edey et al., 2016). A possible explanation 

may be the nature of the jerk measure used. Here, jerk was calculated as the second derivative 

of speed and, as such, the measure was inherently related to speed values. It may be that the 

CTRL group had the highest jerk values as they were moving the fastest, meaning that the 

pattern of jerk values was epiphenomenal of the pattern of speed values. Slower movements 

are indeed expected in PD, whereas fast movements are typically observed in ASD. The 

slower movements observed in the ASD group here may be a result of the inherent link to 

theory of mind. The movement task required participants to depict various scenarios and did 

not provide them with clear instructions or a trajectory to follow. It may be that the autistic 

participants moved more slowly due to a lack of confidence in their mental state depictions. 

More broadly, other task demands such as sustained attention and working memory may have 

disrupted natural kinematics, given differences in executive functioning in both young and 

older autistic adults (Geurts & Vissers, 2012; Hill, 2004). A follow-up study of raw kinematic 

features independent of theory of mind and other cognitive task demands is required to verify 

this hypothesis. 
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The current study allowed for an assessment of how kinematics are generally used to 

depict different situations. Physical animations were drawn the fastest, with greater 

acceleration, jerk and number of sub-movements, higher mean rotation and longer time with 

both triangles moving. By contrast, non-mental state animations were the lowest with respect 

to the kinematic DVs (acceleration, jerk, rotation, sub-movements), with the exception of 

synchronous movement (of which mental state animations had the lowest values) and speed 

(of which both mental and non-mental state animations were comparable). Finally, mental 

state animations had the highest minimum and maximum speed. Thus, this provides clear 

evidence that kinematic features are an important component for depicting and distinguishing 

between various social and non-social situations, in line with extant literature (Dael et al., 

2012; Schuster et al., 2021; Sowden et al., 2021). These differences in kinematics can be 

understood when considering the requirements and features of the animations produced. For 

example, it is rational for mental state animations to contain the lowest proportion of 

synchronous movement as these mental state interactions are often depicted with movement 

in one triangle followed by a response by the other triangle. In addition, it is likely that fast 

animations would not lend themselves to representing a complex narrative, as is required in 

both mental and non-mental state animations. Therefore, it may be that increased kinematic 

values (such as speed) are more likely to be used for physical animations in which a narrative 

does not need to be depicted.  

In addition to analysing movement differences, the current study investigated whether 

there were differences in theory of mind between ASD, PD and CTRL groups. Interestingly, 

no differences in perception accuracy were found between groups (neither across all trials nor 

specific to mental state animation trials). This is in contrast to extant literature demonstrating 

theory of mind differences in both ASD (e.g., Abell et al., 2000) and PD (e.g., Orso et al., 
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2020). However, current evidence in the PD and older autistic adult literature does not relate 

to movement-based theory of mind; therefore, it is possible that theory of mind differences in 

the two groups may relate to different components of theory of mind (e.g., 

cognitive/situational, as indexed in the Faux Pas Task). One possible explanation for these 

results is that – in line with results by Lever and Geurts (2016a) and Yarar et al. (2020) – a 

selective ageing-related decline in the non-autistic group may result in equal performance 

between all three groups. However, in the current Chapter, accuracy in fact positively 

correlates with age, which opposes current literature (Pardini & Nichelli, 2009). Furthermore, 

accuracy was high for all groups (ASD mean[standard deviation] = 46.11[44.78]; PD = 

40.42[41.92]; CTRL = 43.98[45.29]; on a scale from -100 to 100). This demonstrates that 

participants generally selected the correct answer: positive scores indicate a higher target 

word rating than the average of the non-target word ratings; a score of 0 indicates equal 

ratings on target and non-target words – i.e., words cannot be distinguished; a negative score 

indicates a lower target word rating than the average of the non-target word ratings. Given 

that the mean accuracy score was not 100 (i.e., 100% accuracy), ceiling effects were not 

responsible for the lack of group differences. Thus, it appears that all groups exhibited the 

same relatively high level of accuracy.  

The presence of group differences in movement but absence of group differences in 

movement-based theory of mind brings into question whether production and perception are 

as intertwined as current literature suggests. If one’s own movements for representing mental 

states are used as a “blueprint” for interpreting others’ movement-based mental state 

representations, it follows that movement differences between groups should result in 

differences in theory of mind inferences. It is possible that ASD and PD groups do differ from 

the general population in some features of movement, but these may not be the variables that 
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are important for making mental states inferences. For example, synchronous movement 

significantly differed between the different animation word-types, meaning it could be used to 

infer whether an animation contained a mental state depiction, a non-mental state depiction or 

simply a physical depiction. However, synchronous movement in the animations produced 

did not significantly differ between groups. This implies that participants across the three 

groups should have similar synchronous movement “blueprints” which are utilised when 

interpreting animations in the Animation Perception Task. Similar “blueprints” should lead to 

similar performance across all three groups if their inferences are influenced by the proportion 

of synchronous movement in the animations. To further evidence a link between production 

and perception, future work should conduct a systematic assessment of which kinematic 

features are important for conducting mental state inferences in the Animation Perception 

Task, and subsequently investigate whether ASD and PD groups differ from the control 

participants with respect to these variables in the Animation Production Task. This would 

reveal whether movement differences between groups exist for the variables that are used to 

make mental state inferences. 

There are a number of possible explanations for the lack of differences between the 

groups in theory of mind beyond that of a true similarity between groups. Study design, for 

example, may be a factor contributing to increased accuracy. Firstly, participants completed 

the task at home rather than in a laboratory setting which may have boosted their ability, thus 

accounting for the relatively high accuracy scores. It is also possible that at-home testing 

boosted performance to a greater extent in the clinical groups, as anxiety with in-person 

testing may be exacerbated in ASD and PD groups, causing performance in all three groups to 

equalise. Secondly, studies showing theory of mind differences in ASD in the Animation 

Perception Task do not generally require participants to complete the production section of 
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the task (Abell et al., 2000; Castelli et al., 2002; Livingston et al., 2021; White et al., 2011). In 

the current study, participants must first consider how to depict the given scenarios in their 

own animations before perceiving and rating others’ animations. These personal depictions 

could be used to set expectations for what they will see in the perception task, thus increasing 

perception accuracy. However, this boost in performance may again differentially affect the 

ASD and PD groups. It has been proposed that both autistic individuals and those under low 

dopamine conditions (such as in PD), exhibit differences in the weighting of prior beliefs 

compared to incoming sensory information (Friston et al., 2012; Pellicano & Burr, 2012; Van 

de Cruys et al., 2014; Vilares & Kording, 2017). Performance in the Animation Perception 

Task for these individuals may be particularly improved by first-hand experience creating 

their own animations prior to the perception component. The utility of experience in the 

production task for performance in the perception task could be tested by recruiting separate 

participant samples who either perform the production task before or after the perception task, 

or not at all. Comparing this effect across groups may reveal that the production component of 

the task is particularly beneficial for both the ASD and PD groups, leading to the 

normalisation of their performance.  

In line with previous studies (Livingston et al., 2021; Schuster et al., 2021; Schuster et 

al., 2023; White et al., 2011), non-mental state inferences were more accurate than mental 

state inferences for all participant groups. This may be because non-mental state animations 

such as “following” or “searching” have logical physical representations which can be readily 

identified through the triangles’ movement. By contrast, mental state animations are more 

subjective, as there are many ways to physically depict a higher-order mental state interaction 

such as “mocking” or “surprising”. As such, mental state animations may have greater inter-

participant variability compared to non-mental state animations, leading to increased 
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difficulty when labelling mental state animations. Whilst some studies have demonstrated 

equal performance on mental state and non-mental state animation identification in the 

general population (Abell et al., 2000; Castelli et al., 2002; Livingston et al., 2021), this may 

be accounted for by the lack of variation in animations used. For example, many of these 

studies only used animations made by a limited number of creators (sometimes just one 

creator), which would reduce the variability between the animations. This is likely to 

differentially improve mental state perception accuracy, as this word category often holds 

more inter-animation variability, thus leading to equal performance between the two 

conditions.  

To conclude, the current study highlights a range of kinematic similarities and 

differences between the three groups on a task of free movement. Autistic and parkinsonian 

movement did not significantly differ on any kinematic feature which raises the possibility 

that autistic individuals and individuals with PD share movement similarities. However, there 

was only one kinematic feature in which the similar performance between ASD and PD 

groups was distinct from CTRLs (i.e., jerk). Clear kinematic differences were apparent 

between PD and CTRL groups on this free movement task. Unanticipated findings were 

uncovered with regards to ASD and CTRL group differences (e.g., lower jerk values in the 

ASD group), but this may be due to the theory of mind requirement in movement production. 

As such, future studies should utilise pure kinematic assessments to compare movement 

between the three groups. A lack of group difference in theory of mind was also revealed, 

possibly due to task design elements (e.g., at-home testing and production prior to 

perception). Finally, in line with extant literature, word-type was a clear predictor of both 

kinematic features and task accuracy, demonstrating that mental state, non-mental state and 
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physical scenarios differ both in the ways they are depicted and the accuracy with which they 

are perceived. 
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Chapter 3 – An Assessment of Autistic and Parkinsonian 

Movement Profiles to Inform Selective Classification Algorithms 

The previous Chapter revealed no significant movement differences between ASD and PD, 

supporting the theory that movement similarities between the two conditions may contribute 

to a misdiagnosis of PD in ASD. However, there was only one kinematic feature in which 

both groups differed from members of the general population. In the previous Chapter, 

movement was indexed in a task with theory of mind and executive function demands, and 

the free movement profiles obtained could not be used to calculate certain kinematic features 

(e.g., speed modulation and SPARC). As such, a task of restricted movement with no theory 

of mind demands and minimal executive function demands may be more sensitive to detect 

group differences. Chapter 3 employed the Shapes Tracing Task to compare restricted 

movement in ASD and PD. Following group comparisons of kinematic features extracted 

from the Shapes Tracing Task, classification analyses were subsequently employed to identify 

whether trait questionnaires and/or kinematic features were most useful in predicting group 

membership. This Chapter aimed to highlight any movement similarities (and differences) 

between ASD and PD, with a view to comment on the veracity of the theory that older autistic 

individuals may exhibit parkinsonian-like movement differences which enable a more readily 

accessible diagnosis (or misdiagnosis) of PD. Given that individuals with PD will not be 

taking medication when initially obtaining a diagnosis, any confusion between autistic and 

parkinsonian movement in the diagnostic process would be with respect to unmedicated PD 

movement profiles. Consequently, participants with PD were OFF their dopaminergic 

medication when completing the movement task. 
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A pre-registration for the study can be found online at https://osf.io/dnk6j. Content from the 

pre-registration has been reproduced in the current Chapter. Supplementary materials for this 

Chapter can be found in Appendix 2. Data and analysis scripts can be found online at 

https://osf.io/5g7ft/?view_only=a6bde915a13d46b2ad9c61edaa351260. 
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3.1 Introduction 

Whilst the majority of research into ASD has focused on differences in social 

communication, and restricted and repetitive interests (American Psychiatric Association, 

2013), differences in motor function have garnered attention in recent years. A growing body 

of evidence has highlighted differences between autistic and non-autistic individuals in motor 

planning (Gowen & Hamilton, 2013; Mari et al., 2003), execution (Mari et al., 2003; Wang et 

al., 2015) and coordination (Lum et al., 2021). Indeed, meta-analyses have revealed 

significant differences between autistic and non-autistic individuals on a variety of motor 

tasks (Fournier et al., 2010; Wang et al., 2022). Differences are apparent at early stages of the 

condition, with both delayed motor development and motor function atypicalities reported in 

autistic children (Posar & Visconti, 2022). As such, calls have been made to include 

movement differences as “specifiers” to autism diagnoses (i.e., condition-relevant but non-

selective symptoms used to further clarify a diagnosis; Licari et al., 2022). 

Anecdotally, autistic movements have been likened to those of PD (Mari et al., 2003; 

Maurer & Damasio, 1982; Vilensky et al., 1981). However, similarities between autistic 

individuals and individuals with PD may extend further than the behavioural level. Recent 

reports have highlighted an increased prevalence of parkinsonism and PD diagnosis in the 

autistic population (Croen et al., 2015; Geurts et al., 2022; Hand et al., 2020; Mai et al., 2023; 

Starkstein et al., 2015). This raises two interesting possibilities: on the one hand, it is possible 

that autistic individuals are more likely than members of the general population to develop 

PD. For instance, there could be genetic overlap between ASD and PD wherein the same 

genes confer risk for both conditions. However, a number of studies have failed to show a 

significant correlation between the genes associated with ASD and PD (Ellis et al., 2020; Sey 

et al., 2020; Smeland et al., 2021; The Brainstorm Consortium et al., 2018). Alternatively, it 
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may be that autistic individuals are more likely to be diagnosed with PD because they exhibit 

parkinsonian-like movement differences (i.e., the misdiagnosis hypothesis). To address this, it 

is important to quantify the extent to which autistic and parkinsonian movement overlaps. 

Without a direct comparison of the groups’ movement profiles, it is unclear whether 

overlapping movement features may contribute to this prevalent co-diagnosis. This is 

particularly relevant in the context of a wide body of literature using kinematic features to 

classify individuals into PD and non-PD groups (Al-Yousef et al., 2020; Carvajal-Castano et 

al., 2022; Dehghanpur Deharab & Ghaderyan, 2022; Drotár et al., 2016; Gerger & Gümüsçü, 

2022; Kamble et al., 2021; Lamba et al., 2021; Netšunajev et al., 2021; Rios-Urrego et al., 

2019). If autistic and parkinsonian movement is similar, autistic individuals are at risk being 

categorised into the PD group in classification algorithms.  

Whilst no direct comparisons of autistic and parkinsonian movement have been 

conducted, reviewing the literature indicates potential movement similarities including jerky 

movements (Alberts et al., 2000; Cook et al., 2013; Edey et al., 2016) and an increased 

number of alternations between acceleration and deceleration (or "sub-movements"; Castiello 

et al., 2000; Cook et al., 2023; Flash et al., 1992; Lange et al., 2006). Nevertheless, there is 

also evidence of movement differences: a distinction between autistic and parkinsonian 

movement can be made with respect to speed. Whilst autistic individuals have been found to 

move with increased velocity and acceleration (Cook et al., 2013; Grace et al., 2017; Johnson 

et al., 2013), and with reaction times that are comparable to the general population (Ferraro, 

2016), all three of these kinematic features are reduced in PD (Alberts et al., 2000; Bloxham 

et al., 1987; Broderick et al., 2009; Flash et al., 1992; Jankovic, 2008; Lange et al., 2006; 

Pullman et al., 1988; Rafal et al., 1984; Van Gemmert et al., 2003; Viviani et al., 2009). Thus, 
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preliminary work indicates both similarities and differences between autistic and parkinsonian 

movement. 

The aforementioned kinematic features can be computed across a wide range of 

movement trajectories, as seen in Chapter 2, but certain features of movement can only be 

ascertained from set movements. For example, Spectral Arc Length (SPARC; 

Balasubramanian et al., 2012; Balasubramanian et al., 2015) is a measure of movement 

smoothness calculated by applying a Fourier transformation to the speed profile and taking 

the arc length of the resultant magnitude spectrum. For this metric to be comparable between 

participants, it must be calculated on identical movement trajectories, as SPARC values are 

higher for longer movement trajectories. Comparing SPARC to jerk can shed light upon 

whether differences in jerk are an epiphenomenal consequence of effects on speed, as SPARC 

is a speed-independent measure of movement smoothness whereas jerk is not. 

An additional kinematic feature that has been overlooked, specifically in the study of 

PD, is speed modulation. In the general population, movement speed is modulated according 

to the curvature of shapes (Huh & Sejnowski, 2015), whereby individuals speed up along 

straight parts of a shape and slow down for corners. Additionally, this modulation differs 

according to the angular frequency of shapes (i.e., the number of curvature oscillation per two 

π of angular displacement; an ellipse has an angular frequency of 2) adhering to a spectrum of 

power laws, such that more gradual speed modulation is observed for higher angular 

frequency shapes (Cook et al., 2023; Huh & Sejnowski, 2015; Matic & Gomez-Marin, 2019; 

Matic & Gomez-Marin, 2020; Matic & Gomez-Marin, 2022). Speed modulation values are 

higher in the autistic population (Cook et al., 2023; Fourie, 2022) meaning that autistic 

individuals tend to “slam on the breaks” as they approach corners. Speed modulation has not 

been investigated in PD but, given that speed is affected by dopamine dysfunction (Alberts et 
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al., 2000; Broderick et al., 2009; Lange et al., 2006), it is possible that speed modulation may 

also be affected. Thus, speed modulation across the angular frequency spectrum may 

comprise a useful metric on which to compare ASD and PD populations.  

At present, drawing conclusions regarding autistic and parkinsonian movement 

similarities requires the utilisation of findings drawn from separate studies with different 

experimental designs, each varying with respect to participant demographics. This is 

problematic because kinematic features are known to be influenced by a range of factors. For 

example, slower movement is seen with increasing age (Ketcham et al., 2002), lower IQ 

(Forti et al., 2011), and higher levels of depression and anxiety (Pijpers et al., 2005; Sachdev 

& Aniss, 1994) – clinical traits that are known to be elevated in ASD (Hollocks et al., 2019) 

and PD (Broen et al., 2016; Reijnders et al., 2008). Indeed, the movements of those with 

melancholic depression have been quantitatively likened to those of PD (Sachdev & Aniss, 

1994). Gender differences in the motor symptoms of PD have also been reported (Miller & 

Cronin-Golomb, 2010). A primary objective of the current Chapter was to directly compare 

autistic and parkinsonian movement in a single controlled experiment, either matching or – 

where matching was not possible – controlling for these variables.  

Whilst substantial research has employed classification algorithms to separate PD and 

non-PD populations (Al-Yousef et al., 2020; Carvajal-Castano et al., 2022; Dehghanpur 

Deharab & Ghaderyan, 2022; Drotár et al., 2016; Gerger & Gümüsçü, 2022; Kamble et al., 

2021; Lamba et al., 2021; Netšunajev et al., 2021; Rios-Urrego et al., 2019), the relevance of 

movement differences arising from other clinical conditions (such as autism) has been 

overlooked. Existing algorithms do not incorporate, and thus account for, co-occurring 

movement conditions (though see Duque et al., 2023 for a differential diagnosis method for 

PD versus essential tremor). A secondary aim, therefore, was to identify whether movement 
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differences are useful for classifying whether someone might belong to a clinical group (here, 

ASD or PD) or non-clinical group (control; CTRL) and, subsequently, which clinical group 

they belong to. This Chapter assesses how well kinematic features can discriminate between 

ASD, PD and CTRL groups, and whether these predictions are helpful above and beyond 

common questionnaire measures of autistic and parkinsonian traits.  

To summarise, the current Chapter compares the kinematic features of three groups of 

older adults: autistic individuals, individuals with PD and control participants. To index 

kinematics, participants traced set movement trajectories – shapes that have a highly 

predictable relationship between speed and curvature when traced by members of the general 

population (Huh & Sejnowski, 2015) – on a touchscreen device. Kinematic features were 

extracted from participants’ recorded movements and a choice reaction time task was used to 

index reaction time. The current Chapter presents the first controlled comparison of kinematic 

features between these groups on a task of restricted movement, and assesses the utility of 

such kinematic features in predicting group membership. 

3.2 Methods 

3.2.1 Participants 

Three groups were recruited: autistic individuals (ASD; N = 31), individuals with PD 

(PD; N = 32) and control participants (CTRL; N = 31). Descriptive statistics for each 

participant group are detailed in Table 3.1 (see Appendix 2 for ethnicity information). 

Participants were excluded if they had any co-occurring movement or developmental 

disorders. Recruitment occurred via Parkinson’s UK, Autistica, the University of Birmingham 

Psychology Autism Research Database, the University of Birmingham Older Adults 

Database, or social media. All participants gave fully informed consent and received 
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remuneration of £10 per hour. The experimental procedure was approved by the local 

Research Ethics Committee (ERN_18-1800B and ERN_16-0281AP5). 

3.2.2 Procedure 

Participants first completed an online screening form followed by a set of 

questionnaires and the Matrix Reasoning Item Bank (MaRs-IB; Chierchia et al., 2019). 

Subsequently, participants completed two testing days. These testing days occurred at home 

using equipment that was posted to them. On each testing day, participants completed a 

reaction time task and the Shapes Tracing Task using a stylus and touch-screen device 

(Samsung Galaxy Tab A7; 10.40-inch touchscreen; 2000x1200 pixels). The tasks were 

programmed in PsychoPy and run on Pavlovia (PsychoJS platform version 2021.1.4). PD 

participants completed these tasks prior to taking their first dose of dopaminergic medication 

in the morning; this protocol achieved OFF-medication state and is standard practice in the 

literature (e.g., Kojovic et al., 2014; Moore et al., 2010; Whitfield et al., 2018). Performance 

was also recorded on a separate day ON-medication – on this day PD participants completed 

the task approximately one hour after taking their first dose of dopaminergic medication in the 

morning. It should be noted that the order of these days was counterbalanced across 

participants, and the current Chapter only analyses OFF-medication data. To control for 

practice effects, ASD and CTRL participants also completed the tasks on two separate days. 

Testing days were no longer than three days apart for any participant. 

Online questionnaires 

Following demographic questions to check eligibility (i.e., official clinical diagnosis 

of ASD or PD) and to facilitate group matching (e.g., age, gender), participants completed a 

number of questionnaires to index autistic traits (AQ, RAADS), parkinsonian traits (UPDRS 
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Part II), depression (PHQ) and anxiety (GAD). Questionnaires were completed on Qualtrics 

and presented in a random order. 

Matrix Reasoning Item Bank 

Participants completed the Matrix Reasoning Item Bank (MaRs-IB) on Gorilla as 

described in Chapter 2.  

Reaction time task 

The choice reaction time task included 8 practice trials and 40 experimental trials. In 

each trial, participants were asked to use a stylus held in their dominant hand to press a 

stimulus (X) that appeared on the screen in one of four boxes as quickly as possible. 

Shapes Tracing Task 

In the Shapes Tracing Task, participants used a stylus and touch-screen device to trace 

shapes in a counter-clockwise direction for 10 full cycles per trial. They were instructed to 

make these movements “as fluidly as possible”, using a stylus in their dominant hand. Four 

shapes were traced during the task (angular frequencies 4/5, 4/3, 2 and 4; Figure 3.1), with 

shapes not exceeding 9 cm by 9 cm on the device. Eight blocks were completed, two for each 

shape, in a random order. Within each block, seven attempts could be made to complete four 

successful trials, with trials deemed “unsuccessful” if participants lifted their stylus from the 

screen or deviated too far from the shape following a 5-second grace period. Thus, a 

maximum of eight successful trials was possible per shape. A timeout of 90 seconds was set 

for each trial.  
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Figure 3.1  

The Shapes Tracing Task Trial Appearance 

 

Note. A total of eight blocks were completed, two of each shape. During each block, four 
successful trials were to be completed out of a limit of seven attempts. Blocks were presented 
to participants in a random order.  
 

3.2.3 Data Pre-Processing 

Reaction time task 

Scores for the reaction time task were calculated as the average response time (ms) 

across the 40 experimental trials. Outliers, defined as values further than 2 standard deviations 

away from the mean, were removed. It should be noted that reaction time data were not log 

transformed as this variable adhered to a normal distribution without transformation. 

Shapes Tracing Task 

X and y coordinates of the stylus position over time were used to calculate kinematic 

features for each trial. Trials with fewer than 2.5 traces of the shape were removed. The first 

½ π angular displacement of each trial was discounted before data processing. Samples which 

did not achieve a minimal speed (200 pixels per second) within the 5-second grace period 

Repeat (4 trials)
Repeat (4 trials)

Repeat (4 trials)
Repeat (4 trials)

Angular Frequency 4/5
Angular Frequency 4/3

Angular Frequency 2
Angular Frequency 4
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were removed. The device had a maximum sampling rate of 60Hz but, given deviations, 

positional data was resampled using the spline method to achieve a consistent 60Hz. 

Speed, acceleration, jerk, minimum speed, maximum speed and sub-movements were 

all calculated as set out in Chapter 2. Speed modulation values (also known as speed-

curvature gradients; 𝛽 in Equation 1) were calculated as the gradient between tangential 

velocity (𝑣 in Equation 1) and the current curvature of the shape being drawn (𝜅 in Equation 

1), converted to an absolute value. This followed the established filtering and regression 

procedure set out in Huh and Sejnowski (2015) and Cook et al. (2023). A higher speed 

modulation value indicated a steeper adaptation of movement speed to curvature.  

 

𝑣		 ∝ 		 𝜅	!" , log(𝑣)	 ∝ 	−𝛽 ∗ 	log(𝜅)	 

[Equation 1] 

 

SPARC was obtained by calculating the arc length of the magnitude spectrum arising 

from a Fourier transform of the speed profile. A value for each repeated identical sub-element 

of each shape within a trial was calculated and values were averaged to obtain a single value 

per trial. Finally, an error measure reflecting participants’ deviations from the target shape 

was calculated for each trial as the absolute mean of the normal distance to the tangent of the 

nearest point on the shape’s curve (see Madirolas et al., 2022).  

Outliers of each kinematic feature were removed (defined as values further than 2 

standard deviations away from the mean). To meet normality assumptions, a log transform 

was applied to speed, acceleration and jerk values, and a reciprocal transform to the minimum 

speed values. Variables were then z-scored prior to running linear mixed models.  
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3.2.4 Analyses 

Group matching was conducted in R Studio (2022.07.2). Linear mixed models 

(LMMs) were conducted in MATLAB 2022A using MATLAB’s fitlme function. Bayesian 

analyses and classification models were conducted in JASP (0.17.2.1). Data and analysis 

scripts are available online at 

https://osf.io/5g7ft/?view_only=a6bde915a13d46b2ad9c61edaa351260.  

Group matching 

To assess group differences in age, non-verbal reasoning, depression and anxiety, 

ANOVAs were employed in which group was a between-participant factor. Significant 

differences were further explored using post-hoc t-tests between groups. A chi squared 

analysis was run to assess group differences in gender. Any variables that were not matched 

between groups were included in subsequent LMMs as control variables.  

Group differences 

Group differences in parkinsonian traits (UPDRS) and autistic traits (RAADS and 

AQ) were assessed using ANOVAs in which group was a between-participant factor, with 

post-hoc t-tests unpacking any significant group differences. 

Kinematic differences 

To identify kinematic differences between groups, effects-coded LMMs were 

employed for each kinematic feature with group, shape, and group-shape interaction as fixed 

effects. Random effects were included for trial number to account for fatigue or practice 

effects, day of task administration to account for practice effects, and participant number to 

account for within-participant similarities across conditions. Group matching variables that 

were significantly different between groups (i.e., age, depression and anxiety) were also 

https://osf.io/5g7ft/?view_only=a6bde915a13d46b2ad9c61edaa351260
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included in the model, and their predictive ability on DV performance was assessed. As such, 

the model formula was as follows: 

 

DV ~ Group * Shape + Age + Depression + Anxiety + (1|Day) + (1|Trial number) + 

(1|Participant ID) 

 

Follow-up analyses were conducted for cases in which a main effect of group was 

observed, to identify which groups significantly differed on the DV. This was achieved by 

running the model above on subsets of the data only including data from two groups. 

Interactions between group and shape were further investigated to identify on which 

shape the two groups significantly differed. This was achieved by running the following 

model on subsets of the data in which values from two groups on one shape were included: 

 

DV ~ Group + Age + Depression + Anxiety + (1|Day) + (1|Trial number) + (1|Participant ID) 

 

ANOVAs were conducted on the model coefficients to obtain p-values for the fixed 

effects.  

When analysing the reaction time data, the following model was used: 

 

DV ~ Group + Age + Depression + Anxiety + (1|Day) + (1|Participant ID) 

 

Again, to further explore a main effect of group, the model above was rerun on subsets 

of the data in which data for only two groups were included.  
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To assess evidence for the null hypothesis in cases in which group differences in 

kinematic features were not found, Bayesian ANOVAs were conducted. The input values 

were the residuals of the DV after controlling for age, anxiety and depression. Fixed factors 

were group and shape (except in the case of reaction time), and random factors were 

participant ID, trial number (except in the case of reaction time) and day. Bayes Factors 

(BF01) for the main effect of group are reported, with values of 3-10 and 1-3 taken as 

moderate and anecdotal evidence for the null hypothesis respectively (Lee & Wagenmakers, 

2014). 

Classification analyses 

Methods of classification 

To identify how well the three groups could be classified using the obtained data, the 

current study employed three methods of classification: K-Nearest Neighbours (KNN), 

Random Forest (RF), and Support Vector Machine (SVM). KNN is a method of classification 

in which input data are plotted in a multidimensional space. The k nearest neighbour(s) are 

then identified, and group membership predictions are made using the modal identity of those 

neighbours in close proximity. In RF classification, a set of decision trees are constructed 

from the input variables which each return a prediction regarding group membership; the 

majority vote determines the model’s final prediction. RF models required multiple input 

variables and so are not reported for cases in which only one variable acted as the input 

variable. Finally, SVM is a classifier which differentiates between groups through the 

construction of a hyperplane. New observations are mapped onto the same space and 

classifications are made depending on which side of the boundary they fall. These three 

classification methods have been widely used alongside each other in studies of similar 

sample sizes classifying parkinsonian movement (Al-Yousef et al., 2020; Carvajal-Castano et 
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al., 2022; Dehghanpur Deharab & Ghaderyan, 2022; Drotár et al., 2016; Gerger & Gümüsçü, 

2022; Kamble et al., 2021; Lamba et al., 2021; Netšunajev et al., 2021; Rios-Urrego et al., 

2019). Each classification algorithm was based on 80% of the data and the test accuracy 

relates to the accuracy of the classification algorithm in classifying the remaining 20% of the 

dataset. Test accuracy is reported for each method, as well as the mean test accuracy across all 

three methods. The number of nearest neighbours (KNN) and decision trees (RF) were 

optimised for each analysis as per JASP functionality, and the SVM classifications employed 

a linear kernel. 

Feature selection 

Input variables for the analyses consisted of kinematic features (two sets: all kinematic 

features and core kinematic features) and questionnaire measures (three sets: ASD, PD and 

ASD & PD).  

To extract all kinematic features, data from each participant was used to calculate a 

single value of each kinematic feature for each shape: residuals for all DVs were calculated 

after controlling for age, depression and anxiety, and an average was taken for data from the 

same shape across trials and days where relevant. This resulted in 37 input variables for the 

all kinematic features dataset (four shapes x nine kinematic features, plus one reaction time 

value per participant averaged across days).  

Core kinematic features were identified using a supervised filter-based feature 

selection in which kinematic features were selected according to group difference 

significance. For each group comparison, DVs at which a significant group difference was 

found in the above LMM analysis (p < .05) were selected. For example, if a main effect of 

group was found for a given DV between two groups, then values for that DV on all shapes 

would be included in the core kinematic features dataset. However, if a group by shape 
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interaction was observed which only yielded a group difference for a particular shape, then 

the DV value for that specific shape was included in the core kinematic features dataset. 

When multiple groups were included in a classification model, core kinematic features 

included all DVs that significantly differed across the two sides of the classification model 

(i.e., for the ASD/PD versus CTRL comparison, DVs that significantly differed between ASD 

and CTRLs, and PD and CTRLs, were included, but not those that significantly differed 

between ASD and PD (as they grouped as the same class).  

ASD questionnaires comprised performance on the AQ and RAADS, and the PD 

questionnaire comprised performance on the UPDRS. All three questionnaires were included 

in the ASD & PD questionnaires set. Scores used in the classification analyses were residuals 

after controlling for age, depression and anxiety.  

Model details  

First, it was investigated whether kinematic features and/or questionnaires were able 

to classify whether an individual belonged to a clinical or non-clinical population, and 

subsequently which clinical group an individual belonged to. For the former, the ASD and PD 

groups were coded as 1, and the CTRL group as 0, and classification was assessed for 

ASD/PD versus CTRLs. For the latter, analyses were run on a subset of ASD and PD 

participants and classification was assessed for the ASD versus PD comparison. Eleven 

versions of the group classification analyses were run: (1) using ASD questionnaires, (2) 

using the PD questionnaire, (3) using ASD & PD questionnaires, (4) using all kinematic 

features as predictors, (5) using only the core kinematic features as identified in the LMM 

analyses, (6) using ASD questionnaires and all kinematic features, (7) using ASD 

questionnaires and core kinematic features, (8) using the PD questionnaire and all kinematic 

features, (9) using the PD questionnaire and core kinematic features, (10) using ASD & PD 
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questionnaires and all kinematic features, (11) using ASD & PD questionnaires and core 

kinematic features.  

Next, classification models were conducted to assess the utility of kinematic features 

and/or questionnaires for distinguishing ASD from CTRLs (i.e., ASD versus CTRL) and all 

other groups (i.e., ASD versus non-ASD (PD/CTRL)). For each of these group comparisons, 

eight sets of classification models were run: (1) using ASD questionnaires, (2) using ASD & 

PD questionnaires, (3) using all kinematic features, (4) using core kinematic features, (5) 

using ASD questionnaires and all kinematic features, (6) using ASD questionnaires and core 

kinematic features, (7) using both ASD & PD questionnaires and all kinematic features, and 

(8) using both ASD & PD questionnaires and core kinematic features.  

Finally, it was assessed whether kinematic features and/or questionnaires could 

distinguish PD from CTRLs (i.e., PD versus CTRL) and all other groups (i.e., PD versus non-

PD (ASD/CTRL)). Again, eight sets of classification models were run for each group 

comparison: (1) using the PD questionnaire, (2) using ASD & PD questionnaires, (3) using all 

kinematic features, (4) using core kinematic features, (5) using the PD questionnaire and all 

kinematic features, (6) using the PD questionnaire and core kinematic features, (7) using both 

ASD & PD questionnaires and all kinematic features, and (8) using both ASD & PD 

questionnaires and core kinematic features. Given that no significant differences in kinematic 

features were found between the PD and CTRL groups, no models containing core kinematic 

features were run for the PD versus CTRL comparison (i.e., models 4, 6 and 8 were not run). 

3.2.5 Pre-Registration and Power Analysis 

A pre-registration for the study can be found online at https://osf.io/dnk6j. Contrary to 

the pre-registration, here data is only analysed from PD participants OFF their dopaminergic 

https://osf.io/dnk6j
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medication as opposed to both ON and OFF medication. Following discussions with 

collaborators post pre-registration, questionnaires were added as control variables (e.g., 

RAADS, PHQ and GAD). All participants also completed the UPDRS as a measure of 

parkinsonian traits. Additional kinematic features were calculated beyond the pre-registered 

parameters of speed, acceleration, jerk, sub-movements and speed modulation values (i.e., 

SPARC, error measure, minimum speed, maximum speed, and reaction time). Finally, 

classification analyses, listed as exploratory analyses in the pre-registration, are reported. 

An a priori power analysis was calculated with G*power (Erdfelder et al., 1996) using 

data from a pilot study that showed that autistic adults (N = 19) moved with significantly 

higher jerk than non-autistic adults (N = 21) in the Shapes Tracing Task; with a Cohen’s d 

effect size of 0.76 and 0.05 alpha level, it was determined that a minimum of 29 participants 

would be required in each group to achieve a power level of 0.80 for a two-tailed two-group 

comparison. Thus, it was ensured that each participant group had a sample size of at least 30 

to ensure a power level greater than 0.80. Note that it was not possible to conduct an a priori 

power analysis for the exact proposed statistical analyses (i.e., linear mixed models and 

classification analyses) due to a lack of suitable power analysis methods and existing data 

(e.g., the Shapes Tracing Task has not been run in the PD population).  

3.3 Results 

3.3.1 Group Matching 

Table 3.1 presents descriptive statistics for all groups, in addition to tests of 

equivalence. The three groups were matched on gender and non-verbal reasoning ability. 

Significant differences were found for age: whilst both clinical groups were age-matched to 

the CTRL group (ASD-CTRL: t(57.36) = -1.52, p = .135; PD-CTRL: t(56.13) = 1.86, p = 



  95 
 

.068), the ASD and PD groups were not age-matched (t(60.57) = -3.88, p < .001). Groups had 

significantly different levels of depression: whilst there was no difference between ASD and 

PD groups (t(57.40) = 0.23, p = .822), the CTRL group had significantly lower levels of 

depression compared to both the ASD group (t(42.26) = 4.67, p < .001) and the PD group 

(t(45.54) = 5.11, p < .001). Groups also significantly differed with respect to anxiety: whilst 

the CTRL group and PD group were matched (t(58.65) = 1.22, p = .227), the ASD group had 

significantly higher levels of anxiety than both the CTRL group (t(58.08) = 4.57, p < .001) 

and the PD group (t(55.42) = 3.64, p = .001). As such, age, depression and anxiety were 

included in subsequent models as covariates. 

Table 3.1  

Descriptive Statistics and Tests of Equivalence for the Autism, Parkinson’s Disease and 

Control Groups 

 ASD PD CTRL Test of equivalence  
Gender 14 M, 16 M, 1 O 19 M, 13 F 15 M, 16 F X2(4)= 3.25, p = .517 
Age 55.52[8.01] 63.16[7.60] 59.00[9.96] F(2, 91) = 6.27, p = .003** 
Non-verbal reasoning 0.57[0.15] 0.55[0.13] 0.58[0.16] F(2, 89) = 0.43, p = .655 
Depression 8.2[5.59] 7.87[4.56] 3.0[2.58] F(2, 89) = 13.26, p < .001*** 
Anxiety 9.9[5.89] 5.1[4.39] 3.6[4.90] F(2, 89) = 12.86, p < .001*** 
Years since diagnosis 4.23[2.69] 3.69[2.38] - - 
Parkinsonian traits 3.7[3.76] 11.91[6.93] 0.94[1.69] F(2, 91) = 46.81, p < .001*** 
Autistic traits (RAADS) 32.97[8.05] 10.7[9.43] 6.32[6.46] F(2, 89) = 97.31, p < .001*** 
Autistic traits (AQ) 37.61[7.06] 19.19[7.72] 16.03[5.95] F(2, 91) = 87.19, p < .001*** 

Note. Table contains means (M) and standard deviations (SD): M[SD]. Significant p-values in 
tests of equivalence indicate differences between groups. ASD = Autism Spectrum Disorder, 
PD = Parkinson’s Disease, CTRL = Control, M = male, F = female, O = other. *** p < .001, 
** p < .01 and * p < .05. 

 

3.3.2 Group Differences 

As expected, the PD group had significantly higher levels of PD traits, as measured 

via the UPDRS, than both the CTRL (t(34.80) = 8.70, p < .001) and ASD (t(48.13) = 5.84, p < 

.001) groups. As in Chapter 2, whilst numerically below the PD group, the ASD group also 
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had significantly higher levels of PD traits compared to the CTRL group (t(41.67) = 3.79, p < 

.001).  

A further interesting result was observed when assessing autistic traits via the 

RAADS. Elevated autistic traits, relative to the general population, were observed in both the 

ASD group (t(57.30) = 14.37, p < .001) and the PD group (t(51.13) = 2.11, p = .040), though 

a significant difference remained between the two clinical groups (t(56.96) = 9.91, p < .001). 

This indicates that the levels of autistic traits in the PD group were elevated beyond that of the 

CTRL group but did not reach the level of the ASD group.  

Whilst the same pattern of results was observed for mean scores on the AQ (see Table 

3.1), the higher mean score in the PD group compared to the CTRL group was not significant 

(t(58.10) = 1.82, p = .074). The ASD group remained significantly above both the CTRL 

group (t(58.32) = 13.01, p < .001) and PD group (t(60.81) = 9.89; p < .001) in autistic traits 

measured on the AQ.  

3.3.3 Kinematic Differences 

Groups can be distinguished by kinematic features. 

The ASD group significantly differed from both the PD group and CTRL group on 

speed modulation values. A significant interaction between group and shape was observed in 

the main LMM (F(6, 4482) = 13.37, p < .001). For the ASD and PD comparison, a significant 

interaction between group and shape (F(3, 2655) = 15.81, p < .001) was unpacked to reveal a 

significant difference between the two groups for speed modulation values on shape 4 (F(1, 

658) = 5.40, p = .020), in which values in the ASD group were higher than those in the PD 

group (beta estimate = 0.229, 95% CI [0.0354, 0.423]). This result was also reflected in the 

ASD and CTRL comparison, in which the exploration of a significant interaction between 
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group and shape (F(3, 3601) = 10.91, p < .001), revealed a significant difference between 

groups for shape 4 (F(1, 898) = 5.92, p = .015). Here, ASD values were higher than the CTRL 

group (beta estimate = 0.216, 95% CI [0.042, 0.390]). A significant group by shape 

interaction between PD and CTRL (F(3, 2705) = 13.86, p < .001) did not yield significant 

group effects for any individual shape (all p > .05). 

Both the PD group and CTRL group also differed from the ASD group in terms of 

sub-movements, whereas no differences were found between the PD group and the CTRL 

group. A significant interaction between group and shape was present in the main LMM (F(6, 

4450) = 3.75, p < .001). When comparing ASD and PD groups, a main effect of group was 

observed (F(1, 2637) = 4.46, p = .035), whereby a greater number of sub-movements were 

used by the ASD group (beta estimate = 0.197, 95% CI [0.014, 0.379]). A significant 

interaction between group and shape was also observed (F(3, 2637) = 5.55, p < .001). Further 

analyses revealed a main effect of group for shape 4/5 (F(1, 694) = 7.76, p = .005; beta 

estimate = 0.151, 95% CI [0.045, 0.258]), shape 4/3 (F(1, 680) = 5.067, p = .025; beta 

estimate = 0.217, 95% CI [0.028, 0.405]), and shape 4 (F(1, 662) = 6.12, p = .014; beta 

estimate = 0.288, 95% CI [0.059, 0.517]); in each case, an increased number of sub-

movements were used by the ASD group compared to the PD group. For the ASD and CTRL 

comparison, a main effect of group was observed (F(1, 3544) = 4.00, p = .046), with a greater 

number of sub-movements in the ASD group (beta estimate = 0.181, 95% CI [0.004, 0.359]). 

A significant group by shape interaction (F(3, 3544) = 4.14, p = .006) was unpacked to reveal 

a significant main effect of group for shape 4/5 (F(1, 933) = 6.42, p = .011; beta estimate = 

0.127, 95% CI [0.029, 0.226]), shape 4/3 (F(1, 905) = 4.00, p = .046; beta estimate = 0.177, 

95% CI [0.003, 0.350]), and shape 4 (F(1, 898) = 5.46, p = .020; beta estimate = 0.267, 95% 

CI [0.043, 0.491).  



  98 
 

For the reaction time data, a main effect of group was observed in the main LMM 

(F(2, 140) = 3.90, p = .022). Further analyses revealed that only significant group difference 

in reaction time was between the PD group and ASD group (F(1, 83) = 7.18, p = .009); ASD 

reaction times were shorter than PD reaction times (beta estimate = -0.023, 95% CI [-0.040, -

0.006]).  

  In sum, the ASD group significantly differed from the CTRL group in terms of speed 

modulation values for shape 4 and sub-movement values for all shapes (main effect). By 

contrast, reaction time data was able to distinguish the PD and ASD groups, as well as speed 

modulation values for shape 4 and sub-movement values for all shapes (main effect). These 

combinations of DVs were taken as core kinematic features in subsequent classification 

models for ASD versus CTRL and ASD versus PD comparisons respectively (Figure 3.2).  

Figure 3.2  

The Core Kinematic Features Identified for Each Group Comparison 

 

Note. Core kinematic features were determined by a series of linear mixed models, in which a 
significant main effect of group led to the incorporation of that dependent variable as a core 
kinematic feature for that group comparison. ASD = Autism Spectrum Disorder, PD = 
Parkinson’s Disease, CTRL = Control. 
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Some kinematic features are the same between groups. 

No group differences were found for speed, acceleration, jerk, SPARC, or maximum 

and minimum speed (all main effects of group: p > .05). Subsequently, Bayesian ANOVAs 

were conducted on each of these kinematic features, with the main effect of group being the 

result of interest. Moderate evidence for the null hypothesis of no differences between groups, 

as indicated by Bayes Factors (BF01) of 3-10, was found for SPARC (BF01 = 5.987) and 

maximum speed (BF01 = 8.131). Anecdotal evidence for the null hypothesis, as indicated by 

Bayes Factors (BF01) of 1-3, was found for speed (BF01 = 1.490), acceleration (BF01 = 2.165), 

jerk (BF01 = 2.671), and minimum speed (BF01 = 2.852). BF01 values for the main effect of 

group for each group comparison are reported in Table 3.2. 

Importantly, the groups did not differ with respect to the error measure (p > .05), thus 

providing evidence that any kinematic differences did not arise from significant deviations in 

the spatial location of the stylus tip when tracing the shapes. This was supported by moderate 

evidence for the null hypothesis as indicated by a BF01 value of 4.301.  

Table 3.2 

Bayes Factors for Kinematic Features with No Group Differences  

 All groups ASD-CTRL ASD-PD PD-CTRL 
Maximum Speed 8.131 3.046 6.120 2.124 
SPARC 5.987 6.088 2.840 1.421 
Error Measure 4.301 2.451 1.861 1.361 
Minimum Speed 2.852 0.792 4.652 2.751 
Jerk 2.671 3.421 1.935 1.608 
Acceleration 2.165 2.550 1.225 1.734 
Speed 1.490 1.869 0.788 1.560 

 
Note. Table contains BF01 values for the main effect of group obtained in Bayesian ANOVAs. 
ASD = Autism Spectrum Disorder, PD = Parkinson’s Disease, CTRL = Control, SPARC = 
Spectral Arc Length.  
 

As noted in the analysis above, no differences were found between the PD group and 

the CTRL group in terms of speed modulation, sub-movements, or reaction time (all p > .05). 
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This was supported by moderate evidence for the null hypothesis for speed modulation (BF01 

= 4.071), and anecdotal evidence for sub-movements (BF01 = 1.951) and reaction time (BF01 = 

1.709). Further to this, the lack of group difference between the ASD group and the CTRL 

group for reaction time (p > .05) was supported by moderate evidence for the null hypothesis 

(BF01 = 4.974). 

Age is a predictor of kinematic features, but anxiety and depression are not. 

Age significantly predicted speed modulation values (F(1, 4482) = 6.06, p = .014), 

whereby speed modulation values decreased as age increased (beta estimate = -0.017, 95% CI 

[-0.030, -0.003]. A negative prediction was also observed for sub-movements (F(1, 4450) = 

13.02, p < .001; beta estimate = -0.025, 95% CI [-0.039, -0.012]). Slower reaction times were 

observed as age increased (F(1, 140) = 9.18, p = .003; beta estimate = 0.002, 95% CI [0.001, 

0.004]. Finally, age was also a significant negative predictor of speed (F(1, 4450) = 13.20, p < 

.001; beta estimate = -0.037, 95% CI [-0.056, -0.017]), acceleration (F(1, 4464) = 8.13, p = 

.004; beta estimate = -0.029, 95% CI [-0.049, -0.009], and jerk (F(1, 4527) = 5.19, p = .023; 

beta estimate = -0.023, 95% CI [-0.043, -0.003]. No significant predictions of age were 

observed for SPARC, error measure, minimum speed or maximum speed (all p > .05). 

Depression and anxiety did not predict any of the kinematic features (all p > .05). 

3.3.4 Classification Analyses 

Combining questionnaires and kinematic features yielded the strongest classification 

accuracy of clinical versus non-clinical groups. 

When classifying the ASD, PD and CTRL groups into clinical (i.e., ASD and PD) and 

non-clinical (CTRL) groups, the mean test accuracy arising from ASD & PD questionnaires 

(i.e., the AQ, RAADS and UPDRS) was 0.630. This was higher than the mean test accuracy 
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resulting from ASD or PD questionnaires on their own (mean test accuracy = 0.556 and 0.500 

respectively), and from models including all kinematic features (mean test accuracy = 0.584) 

and core kinematic features (mean test accuracy = 0.542). Combining questionnaires and 

kinematic features led to the highest test accuracy, with the strongest model comprised of core 

kinematic features and ASD & PD questionnaires (mean test accuracy = 0.729). Accuracy 

scores for all classification models are detailed in Table 3.3. 

Table 3.3  

Test Accuracy Scores for All Classification Models Predicting Clinical (ASD And PD) Versus 

Non-Clinical (CTRL) Groups  

 Mean KNN RF SVM 
ASD questionnaires 0.556 0.667 0.556 0.444 
PD questionnaire 0.500 0.556 - 0.444 
ASD & PD questionnaires 0.630 0.667 0.667 0.556 
All kinematic features 0.584 0.438 0.688 0.625 
Core kinematic features 0.542 0.438 0.563 0.625 
ASD questionnaires & all kinematic features 0.708 0.625 0.750 0.750 
ASD questionnaires & core kinematic features 0.542 0.500 0.625 0.500 
PD questionnaire & all kinematic features 0.604 0.563 0.688 0.563 
PD questionnaire & core kinematic features 0.646 0.688 0.625 0.625 
ASD & PD questionnaires & all kinematic features 0.688 0.625 0.750 0.688 
ASD & PD questionnaires & core kinematic features 0.729 0.625 0.813 0.750 

Note. KNN = K-Nearest Neighbours; RF = Random Forest; SVM = Support Vector Machine, 
ASD = Autism Spectrum Disorder, PD = Parkinson’s Disease. 

 

Questionnaires alone or in conjunction with kinematic features yielded the strongest 

accuracy for classifying ASD and PD groups. 

When classifying the ASD versus PD groups, using ASD & PD questionnaires yielded 

a stronger mean test accuracy than using ASD or PD questionnaires alone (mean test accuracy 

= 0.917, 0.833 and 0.667 respectively). Using all kinematic features and core kinematic 

features resulted in lower classification accuracy (mean test accuracy = 0.533 versus 0.633 

respectively), however some classification methods yielded a test accuracy close to that of 
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questionnaires (e.g., core kinematic features SVM test accuracy = 0.800). Combining ASD & 

PD questionnaires and core kinematic features resulted in the highest mean test accuracy of 

all models (mean test accuracy = 0.933). Whilst other combinations of kinematics and 

questionnaires yielded weaker mean test accuracy than questionnaires alone (see Table 3.4), 

some models using particular classification methods demonstrated that kinematics increased 

test accuracy scores when added to questionnaire-only models. For example, in the SVM 

models, the ASD questionnaires and all kinematic features model (test accuracy = 0.900) and 

the ASD questionnaires and core kinematic features model (test accuracy = 0.900) had a 

higher test accuracy score than ASD questionnaire alone (test accuracy = 0.833). In addition, 

adding core kinematic features to the PD questionnaire yielded a stronger test accuracy than 

the PD questionnaire alone (test accuracy = 0.900 versus 0.750 respectively). In the KNN 

models, the ASD questionnaires and core kinematic features model had a higher test accuracy 

score than ASD questionnaire alone (test accuracy = 0.900 versus 0.833 respectively). 

Similarly, the PD questionnaire and core kinematic features model had a higher test accuracy 

score than the PD questionnaire alone (test accuracy = 0.600 versus 0.583 respectively).  

Table 3.4  

Test Accuracy Scores for All Classification Models Predicting ASD Versus PD Groups 

 Mean KNN RF SVM 
ASD questionnaires 0.833 0.833 0.833 0.833 
PD questionnaire 0.667 0.583 - 0.750 
ASD & PD questionnaires 0.917 0.917 0.917 0.917 
All kinematic features 0.533 0.500 0.400 0.700 
Core kinematic features 0.633 0.500 0.600 0.800 
ASD questionnaires & all kinematic features 0.767 0.600 0.800 0.900 
ASD questionnaires & core kinematic features 0.767 0.900 0.500 0.900 
PD questionnaire & all kinematic features 0.500 0.400 0.500 0.600 
PD questionnaire & core kinematic features 0.767 0.600 0.800 0.900 
ASD & PD questionnaires & all kinematic features 0.633 0.600 0.400 0.900 
ASD & PD questionnaires & core kinematic features 0.933 0.900 0.900 1.000 

Note. KNN = K-Nearest Neighbours; RF = Random Forest; SVM = Support Vector Machine, 
ASD = Autism Spectrum Disorder, PD = Parkinson’s Disease. 
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Questionnaires alone were generally most useful for classifying ASD and CTRL groups. 

When classifying the ASD versus CTRL groups, the ASD questionnaires yielded a 

stronger mean test accuracy than combining ASD & PD questionnaires (mean test accuracy = 

0.917 and 0.889 respectively). All kinematic features and core kinematic features yielded 

weaker test accuracy scores (mean test accuracy = 0.485 and 0.639 respectively). Combining 

kinematics and questionnaires weakened test accuracy scores compared to questionnaires 

alone, with classifications using core kinematic features yielding stronger scores than those 

using all kinematic features (see Table 3.5). One combination of questionnaires and 

kinematics using a specific classification method resulted in a higher test accuracy than 

questionnaires alone: using ASD & PD questionnaires and all kinematic features resulted in 

an RF test accuracy of 1.000, compared to 0.917 when using ASD & PD questionnaires alone.  

Table 3.5  

Test Accuracy Scores for All Classification Models Predicting ASD Versus CTRL Groups 

 Mean KNN RF SVM 
ASD questionnaires 0.917 1.000 0.833 0.917 
ASD & PD questionnaires 0.889 0.833 0.917 0.917 
All kinematic features 0.485 0.545 0.545 0.364 
Core kinematic features 0.639 0.583 0.667 0.667 
ASD questionnaires & all kinematic features 0.576 0.545 0.364 0.818 
ASD questionnaires & core kinematic features 0.833 0.750 0.833 0.917 
ASD & PD questionnaires & all kinematic features 0.758 0.455 1.000 0.818 
ASD & PD questionnaires & core kinematic features 0.861 0.833 0.833 0.917 

Note. KNN = K-Nearest Neighbours; RF = Random Forest; SVM = Support Vector Machine, 
ASD = Autism Spectrum Disorder, PD = Parkinson’s Disease. 

 

Questionnaires alone were the more useful for classifying autistic and non-autistic 

individuals. 

When classifying the ASD, PD and CTRL groups into ASD and non-ASD (i.e., PD 

and CTRL) groups, a strong mean test accuracy of 0.907 resulted when using either ASD 

questionnaires only or both ASD & PD questionnaires. Classifications using all kinematic 
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features and core kinematic features yielded substantially weaker test accuracy scores, with 

means of 0.605 and 0.563 respectively. Combining questionnaires and kinematics reduced 

mean test accuracy scores compared to questionnaires alone (see Table 3.6). 

Table 3.6  

Test Accuracy Scores for All Classification Models Predicting ASD Versus Non-ASD (PD 

And CTRL) Groups 

 Mean KNN RF SVM 
ASD questionnaires 0.907 0.889 0.944 0.889 
ASD & PD questionnaires 0.907 0.889 0.944 0.889 
All kinematic features 0.605 0.688 0.688 0.438 
Core kinematic features 0.563 0.625 0.438 0.625 
ASD questionnaires & all kinematic features 0.813 0.750 0.813 0.875 
ASD questionnaires & core kinematic features 0.834 0.813 0.875 0.813 
ASD & PD questionnaires & all kinematic features 0.804 0.786 0.750 0.875 
ASD & PD questionnaires & core kinematic features 0.792 0.813 0.813 0.750 

Note. KNN = K-Nearest Neighbours; RF = Random Forest; SVM = Support Vector Machine, 
ASD = Autism Spectrum Disorder, PD = Parkinson’s Disease. 

 

Questionnaires yielded the strongest accuracy for classifying PD versus CTRL. 

When classifying the PD versus CTRL groups, using the PD questionnaire alone 

yielded a stronger mean test accuracy compared to using ASD & PD questionnaires (mean 

test accuracy = 0.875 versus 0.833 respectively). Using all kinematic features and combining 

these with questionnaires yielded weak classification accuracy (see Table 3.7).  
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Table 3.7  

Test Accuracy Scores for All Classification Models Predicting PD Versus CTRL Groups 

 Mean KNN RF SVM 
PD questionnaire 0.875 0.833 - 0.917 
ASD & PD questionnaires 0.833 0.833 0.833 0.833 
All kinematic features 0.600 0.500 0.600 0.700 
PD questionnaire & all kinematic features 0.633 0.600 0.700 0.600 
ASD & PD questionnaires & all kinematic features 0.667 0.800 0.600 0.600 

Note. KNN = K-Nearest Neighbours; RF = Random Forest; SVM = Support Vector Machine, 
ASD = Autism Spectrum Disorder, PD = Parkinson’s Disease. 

 

Questionnaires yielded the strongest accuracy for classifying PD versus non-PD. 

When classifying the three participant groups into PD and non-PD (i.e., ASD and 

CTRL) groups, questionnaires (either the PD questionnaire alone or both ASD & PD 

questionnaires) yielded the strongest classification accuracy (mean test accuracy = 0.833 for 

both models). Kinematics both alone and in conjunction with questionnaires yielded weaker 

test accuracy scores than questionnaires alone (see Table 3.8).  

Table 3.8  

Test Accuracy Scores for All Classification Models Predicting PD Versus Non-PD (ASD And 

CTRL) Groups 

 Mean KNN RF SVM 
PD questionnaire 0.833 0.833 - 0.833 
ASD & PD questionnaires 0.833 0.778 0.778 0.944 
All kinematic features 0.741 0.786 0.813 0.625 
Core kinematic features 0.625 0.688 0.625 0.563 
PD questionnaire & all kinematic features 0.667 0.750 0.688 0.563 
PD questionnaire & core kinematic features 0.792 0.813 0.750 0.813 
ASD & PD questionnaires & all kinematic features 0.667 0.750 0.750 0.500 
ASD & PD questionnaires & core kinematic features 0.729 0.625 0.813 0.750 

Note. KNN = K-Nearest Neighbours; RF = Random Forest; SVM = Support Vector Machine, 
ASD = Autism Spectrum Disorder, PD = Parkinson’s Disease. 
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3.4 Discussion 

Whilst the current Chapter revealed a range of kinematic features that did not differ 

between autistic individuals and individuals with PD, these features were not found to be 

distinct from the general population. This means that the current Chapter does not provide 

evidence for the proposal that ASD and PD movement differences (compared to the general 

population) are similar to each other, something which is required for the veracity of the 

misdiagnosis hypothesis. Instead, it appears that a number of kinematic features could be used 

to distinguish between the three groups. For example, autistic movement differed from 

parkinsonian movement in terms of speed modulation values, sub-movements, and reaction 

time. By contrast, autistic movement only differed from the general population with respect to 

speed modulation values and sub-movements. This is in line with extant literature 

highlighting steeper speed modulation values and a greater number of sub-movements in ASD 

(Cook et al., 2023; Fourie, 2022), and slower reaction times in PD (Bloxham et al., 1987). 

Thus, combinations of these kinematic features may be useful for distinguishing the three 

groups. It should be noted that kinematic differences between groups were not seen for all 

shapes in the Shapes Tracing Task; most notably, the ellipse was the least helpful for 

distinguishing groups. This is particularly important given that many drawing tasks in the 

literature only index elliptical or spiral movements (e.g., Dayan et al., 2012; Fourie, 2022; 

Kamble et al., 2021; Lamba et al., 2021; Rios-Urrego et al., 2019), with only one other study 

utilising other angular frequency-defined shapes (Cook et al., 2023). As such, a 

recommendation of this Chapter is that future studies employ a range of shapes from across 

the full angular frequency spectrum to observe the strongest group differences in kinematic 

features. 
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A core aim of the study was to assess the utility of kinematic measures in predicting 

clinical groups instead of, or in addition to, questionnaire measures; mixed results were found. 

Kinematic features resulted in stronger classification accuracy than questionnaires in three 

cases: classifying clinical versus non-clinical populations, ASD versus PD populations, and 

ASD versus CTRL populations. In the case of clinical versus non-clinical populations, 

combining kinematic features and questionnaire measures yielded the strongest classification 

accuracy. A classification algorithm that can distinguish between clinical and non-clinical 

populations is particularly important given that the current Chapter demonstrated changes to 

kinematic features with increasing age; thus, there is a need to distinguish movement decline 

arising from clinical conditions as opposed to normal ageing. The results of this classification 

algorithm indicate that kinematic features may be useful in conjunction with questionnaires 

for early screening of clinical conditions. In the case of ASD versus PD, the highest mean test 

accuracy arose from the classification model containing both ASD and PD questionnaires in 

addition to core kinematic features. Kinematics were also useful in other models which 

utilised particular classification methods, both alone and in conjunction with questionnaires. 

This indicates that, once it has been determined that an individual exhibits kinematic features 

that differ from normal ageing, further examination of these kinematic features can reveal 

which clinical group the individual belongs to. Finally, in the case of ASD versus CTRL, 

kinematics were only useful in conjunction with questionnaires when using specific 

classification methods. Overall, these cases show promise for classifying clinical groups using 

a variety of subjective and objective measurements. However, when classifying ASD versus 

non-ASD populations, PD versus non-PD populations, or PD versus CTRL, the use of 

kinematics in fact reduced classification accuracy. It is perhaps unsurprising that kinematics 
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had no utility in the latter two cases given the lack of group differences in kinematic features 

between PD and CTRLs in the linear mixed model analyses.  

The questionnaire measures varied with respect to their utility in different 

classification analyses. For example, when distinguishing ASD and PD group from CTRLs 

(as in the clinical versus non-clinical classification), using both ASD & PD questionnaires 

yielded a stronger accuracy than ASD or PD questionnaires alone. This may be because the 

ASD and PD groups – here grouped as one class – each had elevated traits compared to 

CTRLs on both questionnaires, thus aiding classification. However, when distinguishing the 

ASD group from the PD and CTRLs (as the in ASD versus non-ASD comparison), test 

accuracy was the same regardless of whether just ASD questionnaires or both ASD and PD 

questionnaires were used. One possible explanation is that the addition of the PD 

questionnaire did not improve the accuracy of the model because both the PD and ASD 

groups – here grouped as separate classes – score highly on this questionnaire. The same 

pattern of results was seen for the PD versus non-PD comparison: the addition of the ASD 

questionnaire did not strengthen test accuracy scores above and beyond the PD questionnaire 

alone. It is interesting to note that when the CTRL group was removed and the ASD group 

was only compared to PD, it was useful to have both ASD & PD questionnaires in the 

algorithm, as opposed to just one of these questionnaires. This is perhaps because it is only in 

the context of CTRLs that ASD and PD appear similar on these measures, as they both have 

elevated traits compared to CTRLs; however, there are in fact group differences on both 

questionnaires which appear useful in an ASD-PD classification model. In sum, it is clear that 

the questionnaires that yield strongest classification accuracy depend on the group comparison 

made, and there is not one model that is optimal for all comparisons.  
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A move towards including kinematic features in screening clinical conditions has 

advantages over self-report measures. For example, kinematic features are not susceptible to 

biased or inaccurate self-report. With respect to bias, questionnaires for conditions such as 

autism may be limited in their utility due to social desirability bias and the camouflaging of 

autistic traits (Cook et al., 2021; Hull et al., 2017; Keating et al., 2024). Arm movement, 

specifically, may be useful given that more socially-relevant movements such as facial 

expressions can be altered due to camouflaging behaviours (Allely, 2019; Hull et al., 2020). 

With respect to inaccurate self-report, co-occurring conditions such as alexithymia, a 

difficulty identifying and describing one’s own emotions (Bagby et al., 1994; Hickman, 2019; 

Nemiah et al., 1976), may lead to difficulties introspecting for the purposes of questionnaire 

completion (Gaigg et al., 2018; Hickman et al., 2022). This may be particularly exacerbated in 

autism questionnaires which often refer to thoughts and feelings regarding one’s emotions. 

Elevated alexithymic traits have been observed in both ASD (Berthoz & Hill, 2005; Kinnaird 

et al., 2019) and PD (Assogna et al., 2012; Costa et al., 2010) populations and, therefore, 

inaccurate self-report may exist in both groups. In addition, minimally verbal individuals may 

struggle to complete self-report measures, which is a relevant concern as these individuals are 

thought to make up 25-35% of the autistic community (Rose et al., 2016). Objective measures 

are likely to be useful when assessing alexithymic or minimally verbal individuals. In the case 

of self-reported movement differences, subjective measures of symptom severity can yield 

inaccurate responses due to the fact that individuals may have different opinions on what 

movement difficulties are classed as “mild” versus “severe”. In addition, clinician-based 

assessments are also limited by intra- and inter-rater variability, and calls for more objective 

movement-based analyses have been made (Guerra et al., 2023). Thus, refining objective 
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measures of autistic and parkinsonian traits, such as kinematic features, is important for 

advancing diagnosis accuracy.  

The current investigation of the relationship between ASD and PD was prompted by 

literature evidencing increased PD diagnosis prevalence in the autistic population. The current 

Chapter supports these findings by showing elevated PD traits in the ASD population and, 

similarly, elevated ASD traits in the PD population. However, it remains unknown whether 

these elevated trait levels are due to similarities between the two conditions or their co-

occurrence. For example, it may be that members of the ASD group with elevated PD traits 

may actually go on to develop PD, meaning the elevated traits could be early signs of PD 

rather than characteristic of ASD. As such, future studies should ensure longitudinal follow-

ups to determine whether results are confounded by undiagnosed conditions. Relatedly, the 

PD participants are from a generation in which ASD assessments were less readily available 

in adolescence (Lai & Baron-Cohen, 2015); they were born between 1943 and 1975 yet 

autism did not appear in the Diagnostic and Statistical Manual of Mental Disorders (DSM)-

III until 1980. Indeed, the ASD group, also an older adult population, only received their 

diagnoses a mean of 4.23 years prior to completing the study. Given this lack of diagnosis 

availability in adolescence, in addition to difficulties in diagnosing autism in elderly 

individuals with comorbid conditions (van Niekerk et al., 2011; Zagaria, 2019), it is possible 

that the elevated ASD traits in the PD group may actually reflect a missed ASD diagnosis. 

This limitation could be ameliorated in future studies by conducting thorough ASD 

assessments on all PD participants to ensure they are not also autistic, or recruiting non-

autistic individuals with PD who underwent an ASD assessment earlier in life. Nevertheless, 

knowledge of potential overlapping traits between ASD and PD populations will be useful for 

clinicians when making assessments of both conditions. This is particularly relevant as 
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information regarding prevalent co-diagnosis has recently been incorporated into autism-

related healthcare documentation (Haydon et al., 2021), but a note of similarities between 

conditions is absent.  

It should be noted that the current Chapter did not find any movement differences 

between the PD and CTRL groups. This finding is contrary to a wide body of evidence 

indicating clear movement differences between these groups, particularly in terms of 

movement speed and reaction time (e.g., Bloxham et al., 1987; Broderick et al., 2009). One 

reason may be the lack of sensitivity of the apparatus used. Due to the inability to enter the lab 

due to the COVID-19 pandemic, data were collected remotely using touch-screen tablets, as 

opposed to using a more sensitive device with a higher sampling rate. Whilst this did improve 

the real-world applicability of the findings and enabled the assessment whether such a process 

would have utility in clinical settings, a degree of experimental sensitivity was lost. Thus, it 

may be that any existing movement differences were not able to be detected by the 

equipment. Indeed, bayes factors for the null group differences between PD and CTRLs only 

revealed anecdotal evidence, meaning it cannot be strongly concluded that kinematics were 

the same between groups. In combination, given that the current Chapter specifically recruited 

individuals with PD who were early in their diagnosis and did not have extreme tremor, it 

may be that only subtle differences were present between the PD and CTRL groups that could 

not be detected here.  

Although the current Chapter did not find movement differences between PD and 

CTRL groups, differences were found between the PD and CTRL groups in Chapter 2, which 

involved an assessment of free movement as opposed to restricted movement. These patterns 

of data in conjunction with the experimental paradigms align with the motor motivation 

hypothesis (Mazzoni et al., 2007). Mazzoni and colleagues proposed that slowed movement 
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in PD stems from the energetic cost of movement. They state that in PD an implicit decision 

is made to not increase movement speed due to an imbalance in the cost/reward trade-off of 

the energy expenditure required to move faster. In the Animation Production Task used in 

Chapter 2 there is a fixed movement period of 30 seconds during which participants are able 

to move in any way – and at whatever speed – they choose. This means that fast movement is 

not incentivised; participants can move slowly and they will still progress to the next stage of 

the task in the same amount of time. By contrast, in the current Chapter participants 

completed the Shapes Tracing Task in which they were required to trace 10 rotations of the 

shape to complete a successful trial or face redoing the trial (participants were not aware of 

the trial timeout at 90 seconds). This means that if participants moved quickly they were able 

to complete the task in a shorter amount of time, thus fast movement is incentivised in the 

task used in the current Chapter. Therefore, the lack of group difference between PD and 

CTRL here may result from the fact that it is beneficial for the PD participants to move 

quickly and accurately to complete the task.  

This Chapter did not support findings that autistic movement is characterised by 

increased speed, acceleration and jerk (e.g., Cook et al., 2013). However, as in the case of PD 

versus CTRL, low bayes factors were observed for the group similarities, indicating that there 

is not strong evidence to conclude their movements were the same. However, an interesting 

distinction can be made between jerk and SPARC. Bayes factors indicate that evidence for the 

lack of group difference between ASD and CTRL in terms of SPARC was double that of jerk. 

Given that SPARC is a speed-independent measure of movement smoothness, whereas jerk is 

not, this leads us to question whether literature showing decreased smoothness in ASD in fact 

results from an epiphenomenal effect on speed; in other words, a true group difference in 
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movement speed may cause an apparent difference in jerk due to the fact that the calculations 

of the two kinematic features are inherently linked.  

To summarise, the current Chapter identified both similarities and differences in the 

kinematic features used by autistic individuals, individuals with PD, and the general 

population in a task of restricted movement. Whilst the three groups did not differ on a range 

of kinematic features (e.g., speed (average, minimum and maximum), acceleration, jerk and 

SPARC), points of distinction between the three groups included speed modulation values, 

sub-movements and reaction time. This Chapter did not provide evidence for the misdiagnosis 

hypothesis as there were no kinematic variables which were similar between ASD and PD but 

distinct from the general population. Instead, this Chapter proposes that certain kinematic 

features may help distinguish between the three groups. In a number of cases, kinematic 

features (either alone or in conjunction with questionnaire measures) yielded strong 

classification accuracy in models predicting the three participant groups, in particular when 

distinguishing clinical groups from the general population and subsequently identifying which 

clinical group an individual belonged to. This implies that kinematic features may be useful in 

the development of more selective diagnostic procedures.  
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Chapter 4 – Dopaminergic Manipulations Affect the Modulation 

and Meta-Modulation of Movement Speed: Evidence From Two 

Pharmacological Interventions 

Chapters 2 and 3 highlighted both similarities and differences in the behavioural and cognitive 

presentations of ASD and PD. However, whilst similarities were apparent between the two 

groups, many aspects of performance were not additionally distinct from CTRLs. Chapter 3 

highlighted movement differences between ASD and PD which could be useful in 

establishing differential diagnoses, but the biological basis of these movement differences is 

unclear. Understanding the mechanisms underlying similarities and differences between ASD 

and PD performance may elucidate the extent to which ASD and PD overlap at a biological 

(or neurochemical) level. Consequently, Chapter 4 investigated the role of dopamine in 

complex movement processes. The results of two pharmacological intervention studies are set 

out: Study 1 reports movement differences in individuals with PD both ON and OFF their 

dopaminergic medication; Study 2 reports movement differences in individuals from the 

general population on haloperidol (a dopamine receptor blocker, or “antagonist”) and placebo. 

In addition, the dopamine baseline dependency of each drug effect was investigated in Study 

2. As in Chapter 3, both Studies utilised the Shapes Tracing Task. 

 

Supplementary materials for this Chapter can be found in Appendix 3. Data and analysis 

scripts can be found online at 

https://osf.io/vwu5t/?view_only=f1ce99b65142493bb313472f389c2e1f.  

 

 

https://osf.io/vwu5t/?view_only=f1ce99b65142493bb313472f389c2e1f
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Cook, J. L. (2023). Dopaminergic manipulations affect the modulation and meta-modulation 
of movement speed: evidence from two pharmacological interventions. bioRxiv, 2023-07. 
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Abstract 

A body of research implicates dopamine in the average speed of simple movements. 

However, naturalistic movements span a range of different shaped trajectories and rarely 

proceed at a single constant speed; instead, speed is reduced when drawing “corners” 

compared to “straights” (i.e., speed modulation), and the extent of this slowing down is 

dependent upon the global shape of the movement trajectory (i.e., speed meta-modulation) – 

for example whether the shape is an ellipse or a rounded square. By employing two 

pharmacological intervention studies – individuals with Parkinson’s Disease (PD) both ON 

and OFF dopaminergic medication (N = 32) and members of the general population on a D2 

receptor blocker (haloperidol) versus placebo (N = 43) – dopamine is implicated in speed, 

speed modulation and speed meta-modulation. These findings move beyond vigour models 

implicating dopamine in average movement speed, and towards a conceptualisation that 

involves the modulation of speed as a function of contextual information.  

4.1 Introduction 

Dopamine is robustly associated with the speed, or “vigour”, of movements (Alberts et 

al., 2000; Bartholomew et al., 2016; Broderick et al., 2009; Eichhorn et al., 1996; Lange et al., 

2006; Quattrocchi et al., 2018; Rueda-Orozco & Robbe, 2015; Tomassini et al., 2016; Tucha 

et al., 2006). However, naturalistic fluid movements – such as the movements recorded in 

human handwriting, or when a rat navigates a maze – do not simply proceed at a single, 

constant, speed. Rather, humans and non-human animals continuously modulate speed 

according to the curvature of their movements, speeding up along straights and slowing down 

for corners (Huh & Sejnowski, 2015; Lacquaniti et al., 1983). This phenomenon of adapting 

movement speed to curvature is mathematically described by a set of scale-invariant power 
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laws (Huh & Sejnowski, 2015) and is robust across various species (Dagenais et al., 2021; 

James et al., 2020; Zago et al., 2018) and effectors (de’Sperati & Viviani, 1997; Hicheur et 

al., 2005; Lacquaniti et al., 1983; Richardson & Flash, 2002). Speed modulation of this sort is 

thought to be a fundamental principle of biological motion but the role of dopamine in speed 

modulation is unknown. 

Recent advances have shown that speed can also be said to be “meta-modulated” (Huh 

& Sejnowski, 2015). That is, the extent to which one slows down for corners and speeds up 

for straights is dependent on the global shape of one’s movement trajectory: if you were 

drawing a rounded square you would barely modulate your speed (i.e., your speed modulation 

value – or the gradient of the slope between your movement speed and current curvature – 

would be low), whereas speed is dramatically modulated when drawing shapes such as 

ellipses with fewer, and tighter, “corners” (Cook et al., 2023; Huh & Sejnowski, 2015; Matic 

& Gomez-Marin, 2019; Matic & Gomez-Marin, 2020; Matic & Gomez-Marin, 2022). This 

means that you would adapt your speed differently to a specific curvature value based on the 

global shape you are drawing. This observation – that the number of corners in a shape 

influences the degree to which one slows down for said corners and speeds up for straights – 

has been mathematically formalised as a spectrum of power laws (Huh & Sejnowski, 2015). If 

a “corner” is defined as a curvature oscillation per two π of angular displacement, then a 

shape with two “corners” (an ellipse) is defined as having an angular frequency of two, a 

shape with four corners (a rounded square) has an angular frequency of four, and so on. Speed 

modulation (the gradient of the slope between speed and curvature) is modulated as a function 

of angular frequency: the higher the angular frequency the lower the speed modulation. The 

distinction between speed, speed modulation and speed meta-modulation is set out in Figure 

4.1. 
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Figure 4.1 

A Depiction of Speed, Speed Modulation and Speed Meta-Modulation 

 
Note. Ellipses are shaded to represent different movement trajectories, with red shades 
representing slow speeds and yellow shades representing fast speeds. (A) Movements varying 
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in movement speed: the ellipse on the left has been drawn slowly (red shades indicate slow 
speed), whereas the ellipse on the right has been drawn quickly (yellow shades indicate fast 
speed). (B) Movements varying in speed modulation: in the ellipse on the left there are barely 
any changes in speed (shades do not differ much), whereas in the ellipse on the right there is a 
sharp slowing down at the corners (as indicated by the stark change from yellow to red 
shades). These movement profiles would be depicted as low and high modulation of 
movement speed to curvature respectively. (C) Participants varying in speed meta-
modulation: the participant depicted on the left has low speed meta-modulation (i.e., they 
exhibit the same relationship between speed and curvature when drawing different shapes), 
whereas the participant depicted on the right has high speed meta-modulation (i.e., they 
change their speed modulation values based on the shape).  
 

Although fluid, naturalistic movements nearly always require both speed modulation 

and speed meta-modulation, little is known of the role of dopamine in either of these 

processes. A number of existing theories link dopamine and movement speed (Mazzoni et al., 

2007; Niv et al., 2007; Shadmehr et al., 2016; Yoon et al., 2018), however they do not paint a 

clear picture of the relationship between dopamine, speed modulation and speed meta-

modulation. The opportunity costs model, for example, proposes that (tonic) dopamine signals 

average reward availability, with increased dopamine signalling higher reward availability 

and thus enhancing the vigour of movements by increasing the opportunity cost of sloth (Niv 

et al., 2007). This model predicts that movements will be less vigorous under low dopamine 

conditions (e.g., PD OFF-medication, or under haloperidol – a dopamine antagonist). In line 

with this, many studies have shown less vigorous movement under low dopamine conditions, 

including long reaction times on button press paradigms (Beierholm et al., 2013) and slow 

simple reaching arm movements (Mazzoni et al., 2007; Quattrocchi et al., 2018; Tomassini et 

al., 2016). It is, however, unclear how this translates to more complex, naturalistic 

movements. Consider the example of drawing an ellipse: the opportunity cost of sloth is 

uniform and unrelated to curvature or global trajectory – it is no more costly to move slowly 

at corners versus straights. Similarly, it is no more costly to move slowly for low angular 

frequency (e.g., an ellipse) compared to high angular frequency (e.g., a rounded square) 
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shapes. Therefore, it could be argued that the opportunity costs model would predict that low 

dopamine conditions should result in a uniform reduction in the average speed of movement 

with no change to speed modulation or speed meta-modulation (i.e., no modulation as a 

function of curvature or global trajectory). On the other hand, one could argue that curvature 

and vigour are related such that straights require more vigorous movements than corners 

(because straight movements are executed at a higher speed; Cook et al., 2023; Huh & 

Sejnowski, 2015; Matic & Gomez-Marin, 2019; Matic & Gomez-Marin, 2020; Matic & 

Gomez-Marin, 2022), and shapes with more, and less tight, corners (high angular frequency 

shapes) require more vigorous movement (because they tend to be drawn faster; Cook et al., 

2023). Low dopamine conditions, which reduce vigour, might disproportionately affect 

straights and high angular frequency shapes because the requisite movements demand more 

vigour. Under this interpretation, in addition to the effects on speed, the opportunity costs 

model predicts an effect of dopaminergic manipulation on speed modulation and speed meta-

modulation. 

Existing models, therefore, do not provide clear, unequivocal predictions of the effects 

of dopaminergic drugs, or of naturally occurring disruptions of the dopamine system (as in 

PD), on natural movements that include speed modulation and speed meta-modulation. The 

current Chapter investigates the role of dopamine in speed, speed modulation and speed meta-

modulation. To do so, the Shapes Tracing Task is employed in two pharmacological 

intervention studies in which people with PD are studied both ON and OFF dopaminergic 

medication (Study 1), in addition to members of the general population on a D2 receptor 

blocker (haloperidol) versus placebo (Study 2). 
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4.2 Methods (Study 1) 

4.2.1 Participants 

A total of 32 people with PD were recruited, 19 male and 13 female (age range 46-78 

years; mean (SD) = 63.2(7.6); see Appendix 3.1 for ethnicity information). The mean number 

of years since diagnosis was 3.7(2.4) and the average Unified Parkinson’s Disease Rating 

Scale (Part II: Motor Aspects of Experiences of Daily Living; a self-report measure 

appropriate for assessing symptom severity; Rodríguez-Blázquez et al., 2017) was 

11.91(6.93). All participants were taking a form of dopaminergic medication such as levodopa 

and/or dopamine agonists (see Appendix 3.2), and their dosage was calculated as the levodopa 

equivalent dose using an online calculator 

(https://www.parkinsonsmeasurement.org/toolBox/levodopaEquivalentDose.htm). 

Participants were recruited via Parkinson’s UK, the University of Birmingham Older Adults 

Database or social media. All participants gave fully informed consent and received 

renumeration of £10 per hour. The experimental procedure was approved by the local 

Research Ethics Committee (ERN_18-1800B). 

4.2.2 Procedure 

Participants completed two testing days, one to two days apart, which followed the 

same protocol but differed with respect to drug administration. On one of the days, 

participants completed the task prior to taking their first dose of dopaminergic medication in 

the morning. On the other day, participants completed the task approximately 1 hour after 

taking their first dose of dopaminergic medication. These protocols achieved OFF-medication 

and ON-medication states respectively and are standard practice in the literature (Kojovic et 

https://www.parkinsonsmeasurement.org/toolBox/levodopaEquivalentDose.htm
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al., 2014; Moore et al., 2010; Whitfield et al., 2018). The orders of the OFF-medication and 

ON-medication days were counterbalanced across participants. Following the medication 

protocol, participants undertook the Shapes Tracing Task using a stylus and touch-screen 

device (Samsung Galaxy Tab A7; 10.40-inch touchscreen; 2000x1200 pixels). The task was 

programmed in PsychoPy and run on Pavlovia (PsychoJS platform version 2021.1.4). 

Shapes Tracing Task 

In the Shapes Tracing Task, participants traced four different shapes of varying 

angular frequencies (4/5, 4/3, 2, 4). The size of the shapes presented on the device did not 

exceed 9 cm by 9 cm. During each trial, participants were asked to trace around the shape on 

the screen “as fluidly as possible” in a counter-clockwise direction, using a stylus held in their 

dominant hand. Participants completed eight blocks, two for each shape, presented in a 

random order. Each trial required participants to draw 10 full cycles of the shape, and the x 

and y coordinates of the stylus were recorded over time. During each block, participants had a 

total of seven attempts to complete four successful trials. Thus, a maximum of eight 

successful trials per shape was set, with participants limited to completing up to 14 trials to 

achieve this number. If participants significantly deviated from the shape (and into a region 

surrounding the shape which was not displayed to participants) or removed the stylus from the 

touch-screen (after a 5-second grace period), the trial was not classed as “successful”. Each 

trial had a timeout set at 90 seconds.  

4.2.3 Data Pre-Processing 

Shapes Tracing Task 

Trials with fewer than 2.5 traces were excluded. The first samples of every trial which 

did not achieve a minimal speed (200 pixels per second), within the 5-second grace period, 
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were removed to address a discontinuity of reported position at the start of the trial. The 

maximum sampling rate of the tablet was 60Hz, but deviations occurred, thus positional data 

was resampled using the spline method to achieve a consistent 60Hz. Kinematic features were 

calculated for each trial of the experiment using the x and y coordinates recorded over time. 

Movement speed (measured in pixels per second) was calculated as the change in x and y 

coordinates of the stylus location over time by smoothly differentiating the raw positional 

data. A value per trial was taken as the average movement speed across the full trial duration, 

with null data discarded. Maximum and minimum speed values were calculated as the 

average of the top and bottom 10% of speed values obtained during each trial. Speed 

modulation values (also known as speed-curvature gradients; 𝛽 in Equation 1) were calculated 

as the gradient of the relationship between tangential velocity (𝑣 in Equation 1) and the 

current curvature of the shape (𝜅 in Equation 1), converted to an absolute value. 

 

𝑣		 ∝ 		 𝜅	!" , log(𝑣)	 ∝ 	−𝛽 ∗ 	log(𝜅)	 

[Equation 1] 

 

This followed the filtering and regression procedure set out in Huh and Sejnowski 

(2015) and Cook et al. (2023), whereby a smoothing differentiator was first applied, following 

which log velocity was regressed against log curvature using MATLAB’s regress function to 

obtain speed modulation values. A higher speed modulation value indicates a steeper slope of 

the log speed to log curvature relationship. The first ½ π angular displacement of each trial 

was discounted before processing the speed modulation values. To quantify speed meta-

modulation, a novel index was calculated: the gradient of the regression line between speed 

modulation values and an ordinal shape value (using MATLAB’s polyfit function to a 
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polynomial power of 1) was taken to represent the extent to which one changes speed 

modulation values as a function of the shape being draw. To meet normality assumptions, a 

log transform was applied to the movement speed data. Outliers of each DV were removed, 

defined as values further than 2 standard deviations away from the mean. The data were then 

z-scored prior to analysis. 

Data subsetting 

To ensure each participant had data across the range of shapes, speed meta-modulation 

slopes were calculated from participants who had valid trials for at least the shapes with the 

highest and lowest angular frequency values (i.e., shapes 4/5 and 4 in Study 1). To keep 

analyses consistent, analyses on speed and speed modulation in the main text were run on 

subsets of the data excluding participants who did not have valid trials for these shapes. This 

led to the removal of one OFF-medication dataset. Analyses on all datasets for speed and 

speed modulation are reported in Appendix 3.3.2 and Appendix 3.5.2 respectively. 

4.2.4 Analyses 

All analyses were conducted in MATLAB 2022A. All mixed models were run using 

MATLAB’s fitlme function. Data and analysis scripts are available online at 

https://osf.io/vwu5t/?view_only=f1ce99b65142493bb313472f389c2e1f. 

Speed and speed modulation 

To analyse the shapes tracing task data, effects-coded linear mixed models were 

employed for movement speed and speed modulation values with drug state and shape as 

fixed effects, dosage interacting with drug state, and day, trial number and participant ID as 

random effects. 
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DV ~ Drug State * Shape + Drug State:Dosage + (1|Day) + (1|Trial number) + (1|Participant 

ID) 

 

This analysis was repeated for data averaged across trials (i.e., one value per 

participant per shape) to observe the impact on the main effect of drug.  

Maximum and minimum speed values 

Given the possible prediction highlighted in the Introduction that dopaminergic 

manipulation may disproportionately affect high speed movements, maximum and minimum 

speed values were analysed using the following LMM: 

 

DV ~ Drug State * Shape + Drug State:Dosage + (1|Day) + (1|Trial number) + (1|Participant 

ID) 

 

Speed meta-modulation 

For speed meta-modulation, models were run using the following formula:  

 

DV ~ Drug State + Drug State:Dosage + (1|Day) + (1|Participant ID) 

 

ANOVAs were conducted on the model coefficients to obtain p-values for the fixed 

effects.  
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4.3 Methods (Study 2) 

4.3.1 Participants 

A total of 43 participants (24 male, 19 female; age range 18-42 years, mean (SD) = 

26.0(6.3)) were recruited. Participants passed a health screening prior to the experimental 

testing days following the protocol described in Rybicki et al. (2022) and Schuster et al. 

(2022) which involved Body Mass Index (BMI), blood pressure and electrocardiogram QT 

interval checks, as well as relevant medical history. Recruitment was conducted via the 

School of Psychology Research Participation Scheme or social media. All participants gave 

fully informed consent and received renumeration of £10 per hour. The experimental 

procedure was approved by the local Research Ethics Committee (ERN_18_1588). 

4.3.2 Procedure 

Participants completed two testing days, one to four weeks apart, lasting 

approximately 5.5 hours each. Following an on-the-day health check involving blood pressure 

and blood oxygenation levels, participants were administered capsules containing either 

2.5mg of haloperidol (a dopamine D2 receptor antagonist) or a placebo, in a double-blind, 

placebo-controlled, within-subjects design. The orders of the days for haloperidol and placebo 

were pseudorandomised such that half of participants received haloperidol on day 1 and half 

on day 2. Haloperidol dosage and administration times were in line with previous studies in 

the literature demonstrating behavioural and psychological effects (Bestmann et al., 2015; 

Frank & O'Reilly, 2006). At 1.75 hours post-tablet intake, participants completed a working 

memory task, followed by the shapes tracing task 4 hours post-tablet intake. Given that oral 

haloperidol is reported to be at its peak concentration in the blood plasma between 1.7 and 6.1 
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hours post-tablet intake on average (Kudo & Ishizaki, 1999), both tasks were completed 

within the peak range of haloperidol blood plasma concentration, ensuring that drug action 

was likely to occur throughout administration of the tasks. Medical symptoms, blood pressure 

and mood were monitored before capsule administration, three times throughout the testing 

day, and at the end of the testing day.  

Shapes Tracing Task 

The general principles of the shapes tracing task remained the same as in Study 1, with 

a few exceptions. Three shapes were presented to participants (4/3, 2, and 4), as opposed to 

four shapes (Study 1: 4/5, 4/3, 2, and 4) to allow for a greater number of trials for the included 

shapes. The size of the shapes presented on the device did not exceed 12 cm by 12 cm. Each 

shape was traced for a total of 10 trials per shape, as opposed to a maximum of eight trials in 

Study 1, and each trial consisted of 10 x angular frequency (i.e., 10 x 2π radians of angular 

displacement) curvature oscillations (in the case of the ellipse and rounded square this is 10 

complete traces of the shape). Participants were asked to repeat trials if they deviated from the 

shape or removed their stylus from the device. Participants could repeat the trial if they felt 

fluidity was not achieved. The task was programmed and run using MATLAB 2014b 32-bit 

on a Surface Pro 4, using a touch-screen device to record participants’ movements (WACOM 

Cintiq 22 HD drawing tablet).  

Working memory task 

Participants completed a visual working memory task, adapted from the Sternberg 

visual working memory task (Sternberg, 1969), programmed using MATLAB 2017b. The 

task involved 60 experimental trials across five blocks which were completed following 10 

practice trials. In each trial, a fixation cross was presented in the centre of the screen (for a 

variable duration between 500 ms -1000 ms), followed by a list of letters (between five and 
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nine consonants depending on the block; 1000 ms duration) and a blue fixation cross (3000 

ms duration). A single letter was then displayed (4000 ms) and participants indicated with a 

keyboard press whether the letter was present in the previously displayed list (1 = yes, 2 = no, 

3 = unsure). Accuracy and response time were recorded for each trial.  

4.3.3 Data Pre-Processing 

Shapes Tracing Task 

Movement speed (average, maximum and minimum values), speed modulation values 

and speed meta-modulation values were calculated for each trial using the x and y coordinates 

recorded over time, as in Study 1. To meet normality assumptions, a log transform was 

applied to the movement speed and speed modulation data. Outliers of each DV were 

removed, defined as values further than 2 standard deviations away from the mean. Again, 

data were z-scored prior to analysis. Three participants failed to complete both testing days, 

therefore two haloperidol datasets and one placebo dataset are missing from analyses.  

Working memory task 

As in previous studies (e.g., Rybicki et al., 2022; Schuster et al., 2022), working 

memory span was calculated as the percentage of correct responses across all trials. Given 

evidence that baseline working memory span reliably predicts individual dopamine synthesis 

capacity (Cools et al., 2008; Landau et al., 2009), baseline striatal dopamine synthesis 

capacity was estimated using the working memory span obtained under placebo. This value 

was used to explore any baseline dependent effects of the drug, as a body of literature reports 

that effects of dopaminergic drugs are modulated by striatal dopamine synthesis capacity 

(Frank & O'Reilly, 2006; Hofmans et al., 2020; Schuster et al., 2022). Five participants failed 

to complete the working memory task at baseline, thus baseline striatal dopamine synthesis 
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capacity could not be estimated and these participants could not be included in analyses 

incorporating this measure. It should be noted that the correlation between working memory 

span and dopamine synthesis capacity was not replicated in a recent positron emission 

tomography (PET) imaging study (van den Bosch et al., 2023), but this may be due to the use 

of a less sensitive radioligand compared to earlier studies (18F-FDOPA rather than 18F-

FMT).  

Data subsetting 

As in Study 1, speed meta-modulation slopes were calculated for participants who had 

valid trials for at least the shapes with the highest and lowest angular frequency values (i.e., 

shapes 4/3 and 4 in Study 2), and analysis of the other two DVs was also conducted on this 

subset of participants. This reduced the sample size of analyses reported in the main text to 34 

participants under placebo and 31 participants under haloperidol. Analyses on all datasets (N 

= 43) for speed and speed modulation are reported in Appendix 3.4.3 and Appendix 3.6.3 

respectively.  

4.3.4 Analyses 

All analyses were conducted in MATLAB 2022A. All mixed models were run using 

MATLAB’s fitlme function. As in Study 1, all linear mixed models were followed up with an 

ANOVA on the model coefficients to obtain p-values for the fixed effects. Data and analysis 

scripts are available online at 

https://osf.io/vwu5t/?view_only=f1ce99b65142493bb313472f389c2e1f.  

Speed and speed modulation 

To analyse the DVs speed and speed modulation, a series of effects-coded linear 

mixed models were employed. Reported in the main text is a mixed model that incorporated 
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estimated baseline striatal dopamine synthesis capacity as a fixed effect alongside drug state 

and shape, with day, trial number, and participant ID as random effects.  

 

DV ~ Drug State * Shape + Drug State * Estimated Striatal Dopamine Synthesis Capacity + 

(1|Day) + (1|Trial number) + (1|Participant ID) 

 

As in Study 1, this analysis was repeated for data averaged across trials (i.e., one value 

per participant per shape) to observe the impact on the main effect of drug.  

Appendix 3 contain the results of mixed models without the incorporation of estimated 

baseline striatal dopamine synthesis capacity (Appendix 3.4.2 (speed) and Appendix 3.6.2 

(speed modulation)). 

 

DV ~ Drug State * Shape + (1|Day) + (1|Trial number) + (1|Participant ID) 

 

Maximum and minimum speed values 

Given the possible prediction highlighted in the Introduction that dopaminergic 

manipulation may disproportionately affect high speed movements, maximum and minimum 

speed values were analysed using the following LMM: 

 

DV ~ Drug State * Shape + Drug State * Estimated Striatal Dopamine Synthesis Capacity + 

(1|Day) + (1|Trial number) + (1|Participant ID) 
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Speed meta-modulation 

For the speed meta-modulation data, the following models were run, with (main text) 

and without (Appendix 3.8.1) estimated striatal dopamine synthesis capacity respectively: 

 

DV ~ Drug State * Estimated Striatal Dopamine Synthesis Capacity + (1|Day) + (1|Participant 

ID) 

 

DV ~ Drug State + (1|Day) + (1|Participant ID) 

 

When a significant interaction between drug state and estimated striatal dopamine 

synthesis capacity was found, this was unpacked by assessing the relationship between 

estimated striatal dopamine synthesis capacity and the drug effect. For speed and speed 

modulation, the drug effect was calculated for each participant as the mean value of the DV 

under placebo minus the mean value of the DV under haloperidol. For speed meta-

modulation, the drug effect was calculated as speed meta-modulation under haloperidol minus 

speed meta-modulation under placebo. Thus, for all DVs, positive values on the y-axis 

indicate reduced DV values under haloperidol. Following the drug effect calculation, a linear 

model was then employed with estimated striatal dopamine synthesis capacity as predictor 

and Drug Effect and DV. To provide evidence in favour of an inverted-U-shaped function for 

the relationship between baseline dopamine and the DV (Cools & D'Esposito, 2011), a 

negative linear relationship that cuts the x-axis would be expected when plotting the drug 

effect against estimated striatal dopamine synthesis capacity.  
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Independence of drug effects 

Given the presence of drug effects on all three DVs in Study 2, further exploratory 

analyses were implemented on this dataset to investigate whether the drug effects are 

independent from each other. In each case, the control variable (e.g., speed) was included in a 

model predicting the DV (e.g., speed modulation), from which the residuals were saved. 

Models also included day as a random effect, and trial as a random effect for cases in which 

speed or speed modulation were the DV. A mixed model testing the effect of drug was run on 

the resultant residuals, using the corresponding model formula that included estimated striatal 

dopamine synthesis capacity listed above. 

4.4 Results 

In both studies, participants completed the Shapes Tracing Task in which they used a 

stylus and touch screen device to trace a range of shapes (Figure 4.2) for 10 full cycles (where 

a cycle is a complete start point to start point trace of the shape) per trial. Analyses in the 

main text were conducted on subsets of the data in which participants had valid trials for at 

least the shapes with the highest and lowest angular frequency values (Study 1: 4/5 and 4; 

Study 2: 4/3 and 4). Supplementary analyses are detailed in Appendices 3.3-3.8 (including 

additional main text mixed model details, analyses on Study 2 data not accounting for 

estimated baseline striatal synthesis capacity, and analyses on full datasets). In the subsequent 

sections dopaminergic effects on speed, speed modulation and speed meta-modulation are 

reported, combining insight from both studies. Drug effects for speed, speed modulation and 

speed meta-modulation are presented in Table 4.1. 
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Figure 4.2  

Shapes Tracing Task Raw Movement Trajectory Data 

 

Note. Raw trajectory data for all participants under low (Study 1 = OFF Parkinson’s Disease 
medication; Study 2 = haloperidol) and high (Study 1 = ON Parkinson’s Disease medication; 
Study 2 = placebo) dopamine conditions in Study 1 (left) and Study 2 (right), for all trials. 
The colour scheme represents speed from dark pink (low speed) to yellow (high speed).  
 

Table 4.1  

Drug Effects for Speed, Speed Modulation and Speed Meta-Modulation 

 β estimate SE Lower CI Upper CI F statistic DoF p value 
Speed         
Study 1: PD Medication -0.180 0.02 -0. 220 -0.139 75.22 1, 1885 < .001*** 
Study 2: Haloperidol -1.120 0.17 -1.446 -0.794 45.43 1, 1600 < .001*** 
Speed modulation        
Study 1: PD Medication -0.066 0.02 -0.111 -0.021 8.12 1, 1906 .004** 
Study 2: Haloperidol -1.071 0.18 -1.423 -0.719 35.68 1, 1642 < .001*** 
Speed meta-modulation        
Study 1: PD Medication 0.094 0.13 -0.174 0.363 0.49 1, 57 .485 
Study 2: Haloperidol 0.107 0.03 0.046 0.167 12.40 1, 53 .001** 

Note. SE = standard error, DoF = degrees of freedom, CI = confidence interval. *** p < .001, 
** p < .01 and * p < .05. In each case, β estimates relate to the change from high to low 
dopamine conditions.  
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4.4.1 Movement Speed 

Removal of PD medication and administration of haloperidol reduces movement speed. 

PD participants OFF-medication, compared to ON-medication (Study 1; N = 32) 

moved more slowly. That is, a linear mixed model (LMM) including drug state, shape and 

dosage as fixed effects revealed a main effect of drug state on movement speed (F(1, 1885) = 

75.22, p < .001; Figure 4.3) with lower speed observed OFF-medication (beta estimate = -

0.180, 95% CI [-0.220, -0.139]). This significant main effect of drug remained when 

analysing data averaged across trials: F(1, 238) = 12.98, p < .001; beta estimate = -0.183, 95% 

CI [-0.284, -0.083]. There was an additional main effect of shape on movement (as is typical 

for shapes across the angular frequency spectrum; Cook et al., 2023): F(3, 1885) = 139.41, p 

< .001; Appendix 3.3.1). However, there was no interaction between drug state and shape 

(indicating that the effect of the drug did not vary as a function of shape and thus it cannot be 

the case that shapes traced with higher movement speeds were disproportionally affected by 

the drug), nor an interaction between drug state and dosage (all p > .05; Appendix 3.3.1).  

Similarly, administration of the dopamine D2 receptor blocker haloperidol to members 

of the general population (Study 2; N=43) reduced movement speed. An LMM including drug 

state, shape and estimated baseline striatal synthesis capacity as fixed effects revealed a 

significant main effect of drug state (F(1, 1600) = 45.43, p < .001) with lower movement 

speed values in the haloperidol condition compared to the placebo condition (beta estimate: -

1.120, 95% CI [-1.446, -0.794]). As in Study 1, the drug effect remained when analysing data 

averaged across trials: F(1, 173) = 6.38, p = .012; beta estimate = -1.073, 95% CI [-1.911, -

0.235]. Again, a main effect of shape (F(2, 1600) = 175.24, p < .001; Appendix 3.4.1) was 

identified, and no interaction between drug state and shape (p > .05; Appendix 3.4.1), again 

highlighting that the drug effect was not disproportionally higher for shapes traced at higher 
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movement speeds. Results from both studies indicate slowed movement under low dopamine 

conditions. 

A body of literature reports that effects of dopaminergic drugs are modulated by 

striatal dopamine synthesis capacity (Frank & O'Reilly, 2006; Hofmans et al., 2020; Schuster 

et al., 2022) and that working memory capacity can serve as a proxy for this, with low 

working memory capacity indicating low dopamine synthesis capacity (Cools et al., 2008; 

Landau et al., 2009). This literature argues for an inverted-U-shaped function for the 

relationship between baseline dopamine and the effects of dopaminergic drugs on 

performance (Cools & D'Esposito, 2011). To enable the exploration of any baseline 

dependent effects of the drug, participants in Study 2 were asked to complete a working 

memory task (Sternberg, 1969) whilst under placebo. If there is an inverted-U-shaped 

relationship between dopamine and speed, the effect of haloperidol should be moderated by 

striatal dopamine synthesis capacity such that individuals with low striatal dopamine 

synthesis capacity move slower under haloperidol relative to placebo because their (already 

sub-optimally low) dopamine levels are further reduced by haloperidol. In contrast, 

individuals with high striatal dopamine synthesis capacity should show speeding effects of the 

drug because their sub-optimally high levels of dopamine are reduced by haloperidol, thus 

bringing them closer to the optimal level of dopamine for speedy movements. Including a 

proxy for striatal dopamine synthesis capacity (i.e., working memory score) as a covariate in 

the mixed model revealed that the main effect of drug state was indeed moderated by 

estimated striatal dopamine synthesis capacity (F(1, 1600) = 42.04, p < .001; Figure 4.3).  

The interaction between drug state and estimated striatal dopamine synthesis capacity 

was unpacked by calculating the drug effect for each participant (mean speed under placebo 

minus mean speed under haloperidol) and plotting this against estimated baseline striatal 
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dopamine synthesis capacity. Results are plotted in Figure 4.4 (top-left). Positive values on 

the y-axis indicate that participants’ movements were slowed by haloperidol administration, 

and negative values indicate that participants moved faster under haloperidol than placebo. 

The data revealed a negative linear relationship between drug effect and estimated striatal 

dopamine synthesis capacity which cut the x-axis, indicating opposing drug effects in low 

versus high estimated striatal dopamine synthesis capacity groups. That is, a haloperidol-

induced reduction in dopamine caused participants with low estimated striatal dopamine 

synthesis capacity to move slower, and those with high estimated striatal dopamine synthesis 

capacity to move faster. These results suggest that the drug effect on speed was dependent on 

estimated striatal dopamine synthesis capacity. 

Figure 4.3 

A Graph Depicting Drug Effects on Movement Speed 

 

Note. Movement speed residuals plotted for low (green) and high (purple) dopamine 
conditions across 3 groups: individuals with Parkinson’s Disease both OFF and ON their 
dopaminergic medication (Study 1); members of the general population with low working 
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memory capacity (as determined by a median split) under haloperidol or placebo (Study 2); 
members of the general population with high working memory capacity under haloperidol or 
placebo (Study 2). Residuals were calculated after controlling for dosage (Study 1) or 
working memory capacity (Study 2), and trial, participant number and day (Studies 1 and 2). 
Main effects of drug state revealed slower movement speed in low dopamine conditions, with 
an interaction between drug and working memory capacity (i.e., estimated striatal dopamine 
synthesis capacity) in Study 2 indicating opposing drug effects in the two groups. Bars = 
mean, box = SE, shaded region = standard deviation, trial-level values plotted, WMC = 
working memory capacity. 
 
 
Figure 4.4  

Graphs Depicting Estimated Striatal Dopamine Synthesis Capacity Dependency of Drug 

Effects 

 

Note. Each graph presents the drug effect (calculated as the difference in dependent variable 
between low and high dopamine conditions) per participant in Study 2 plotted against the 
estimated striatal dopamine synthesis capacity for that participant. Graphs refer to movement 
speed (top-left), speed modulation (top-right) and speed meta-modulation (bottom) 
respectively. In each case, low dopamine conditions reduce performance on the dependent 
variable in those with low estimated striatal dopamine synthesis capacity, and increase it with 
high estimated striatal dopamine synthesis capacity, as indicated by a linear trend which cuts 
the x-axis. Blue line = line of best fit. 
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4.4.2 Speed Modulation 

Removal of PD medication and administration of haloperidol reduces speed modulation. 

To investigate effects on speed modulation, LMMs were run with speed modulation 

values – the gradient of the regression line between instantaneous movement speed and the 

curvature being drawn – as the DV. Here a main effect of drug state would comprise evidence 

that manipulating dopamine impacts speed modulation. An interaction between drug state and 

shape would be evidence of a drug effect on speed meta-modulation. As such, this section 

focuses on main effects; interactions between drug state and shape in the subsequent section.  

In addition to effects on speed, removal of PD medication (Study 1) affected speed 

modulation. An LMM with drug state, shape and dosage as fixed effects revealed a main 

effect of drug state on speed modulation (F(1, 1906) = 8.12, p = .004; Figure 4.5), whereby 

lower speed modulation values were observed OFF-medication (beta estimate = -0.066, 95% 

CI [-0.111, -0.021]). The drug effect was non-significant when analysing data averaged across 

trials (p > .05). No interaction between drug state and dosage was found (p > .05; Appendix 

3.5.1).  

A comparable analysis with members of the general population (Study 2) revealed a 

parallel drug effect on speed modulation. That is, a LMM with drug state, shape and estimated 

baseline striatal dopamine synthesis capacity as fixed effects and speed modulation as the DV, 

revealed a significant main effect of drug (F(1, 1642) = 35.68, p < .001). Consistent with 

Study 1, speed modulation values were lower under haloperidol compared to placebo (beta 

estimate= -1.071, 95% CI [-1.423, -0.719]). The drug effect remained significant when 

analysing data averaged across trials: F(1, 171)=11.62, p < .001; beta estimate = -1.230, 95% 

CI [-1.942, -0.518]. The interaction between drug state and estimated striatal dopamine 

synthesis capacity was also significant (F(1, 1642) = 42.85, p < .001; Figure 4.5), again 
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illustrating the strong baseline-dependency of the effect. Figure 4.4 (top-right) illustrates a 

significant negative linear relationship between the drug effect and estimated striatal 

dopamine synthesis capacity (F(1, 22) = 6.96, p = .015; beta estimate = -0.065, 95% CI [-

0.116, -0.014]) which again cuts the x-axis, indicating opposing drug effects in low versus 

high estimated striatal dopamine synthesis capacity groups. That is, a reduction in dopamine 

caused participants with low estimated striatal dopamine synthesis capacity to move with 

reduced speed modulation, and those with high estimated striatal dopamine synthesis capacity 

to move with increased speed modulation. Thus, as was the case for speed, the drug effect on 

speed modulation was dependent on estimated striatal dopamine synthesis capacity.  

The Introduction highlighted that a possible prediction from the opportunity costs 

model is that a reduction in vigour following dopaminergic manipulation will 

disproportionately affect high speed movements that require more vigour. This would predict 

a greater effect of the drug on parts of the trajectories that are executed at higher speeds (i.e., 

straights relatives to corners), and may account for reductions in speed modulation values. To 

interrogate the data for evidence in support of this, the average of the top and bottom 10% of 

speed values obtained during each trial were analysed using the same LMM designs as set out 

previously for movement speed. For Study 1 there was no significant effect of drug state on 

either maximum or minimum speed values (maximum values: F(1, 1892) = 1.03, p = .309; 

minimum values: F(1, 1955) = 0.00, p = .984). For Study 2, whilst there was no drug effect on 

maximum speed values (F(1, 1612) = 3.21, p = .073), minimum speed values were 

significantly higher under haloperidol (F(1, 1637) = 12.63, p < .001; beta estimate = 0.801, 

95% CI [0.259, 1.244]), resulting in a reduced range of speed values. Overall, neither study 

provided evidence that dopaminergic manipulation disproportionately affects higher speed 

movements. 
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Figure 4.5  

A Graph Depicting Drug Effects on Speed Modulation 

 

Note. Speed modulation residuals plotted for low (green) and high (purple) dopamine 
conditions across 3 groups: individuals with Parkinson’s Disease both OFF and ON their 
dopaminergic medication (Study 1); members of the general population with low working 
memory capacity (as determined by a median split) under haloperidol or placebo (Study 2); 
members of the general population with high working memory under haloperidol or placebo 
(Study 2). Residuals were calculated after controlling for dosage (Study 1) or working 
memory (Study 2), and trial, participant number and day (Studies 1 and 2). Main effects of 
drug state revealed reduced speed modulation values in low dopamine conditions, with an 
interaction between drug and working memory capacity (i.e., estimated striatal dopamine 
synthesis capacity) in Study 2 indicating opposing drug effects in the two groups. Bars = 
mean, box = SE, shaded region = standard deviation, trial-level values plotted, WMC = 
working memory capacity. 
 

4.4.3 Speed Meta-Modulation 

Administration of haloperidol reduces speed meta-modulation, but PD medication does not. 

To test whether the removal of PD medication (Study 1) would reduce the meta-

modulation of movement speed, a speed meta-modulation index was calculated by regressing 
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angular frequency against speed modulation values and calculating the gradient of the 

regression line. Here, a larger gradient magnitude would indicate a greater difference in speed 

modulation across the angular frequency spectrum. This variable was submitted to an LMM 

with drug state and dosage as fixed effects. There was no significant effect of drug state on 

speed meta-modulation, nor drug state by dosage interaction (p > .05; Appendix 3.7.1). This 

is supported by the lack of a drug state by shape interaction in the speed modulation LMM 

described above for Study 1 (p > .05; Appendix 3.7.1). As such, Study 1 did not find evidence 

supporting a role for dopamine in speed meta-modulation. 

By contrast, in the general population (Study 2), haloperidol reduced the meta-

modulation of speed (F(1, 53) = 12.40, p = .001; beta estimate = 0.107, 95% CI [0.046, 

0.167], Figure 4.6), whereby speed meta-modulation gradients were flatter (i.e., had a lower 

magnitude or were “less negative”) under haloperidol. This indicated that, under haloperidol, 

participants did not utilise a range of speed modulation values across the angular frequency 

spectrum as would be seen in appropriate speed meta-modulation. Instead, the extent to which 

speed was modulated as a function of curvature was similar across all shapes, thus reducing 

the gradient of the relationship between angular frequency shape and speed modulation value. 

This is supported by the presence of a drug state by shape interaction in the speed modulation 

LMM described above for Study 2 (F(1, 1642) = 11.45, p < .001). Therefore, Study 2 presents 

evidence for reduced speed meta-modulation in low dopamine conditions. 
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Figure 4.6  

A Graph Depicting Drug Effects on Speed Meta-Modulation 

 

Note. Speed meta-modulation values for each participant in low (haloperidol; green) versus 
high (placebo; purple) dopamine conditions for Study 2. A main effect of drug state was 
observed, revealing lower speed meta-modulation (closer to zero) in low dopamine 
conditions. Light grey lines represent participant data; black crosses indicate mean values for 
each condition.  
 

As was the case for movement speed and speed modulation, the effect of haloperidol 

on speed meta-modulation was baseline dopamine dependent; a significant interaction 

between drug state and estimated striatal dopamine synthesis capacity (F(1, 53) = 10.95, p = 

.002) was observed. To aid interpretation, the relationship between the drug effect and 

estimated striatal dopamine synthesis capacity was plotted (Figure 4.4, bottom). The drug 

effect (y-axis) was calculated as the speed meta-modulation value under haloperidol minus 

the speed meta-modulation value under placebo. Note that for speed and speed modulation 

(Figure 4.4, top-left and top-right) the drug effect was instead calculated as placebo minus 



  143 
 

haloperidol because more positive speed and speed modulation values indicate higher speed 

and greater speed modulation. Given that more positive speed meta-modulation values 

actually indicate less speed meta-modulation (i.e., flatter slopes for the negative relationship 

between angular frequency and speed modulation), the drug effect was calculated as 

haloperidol minus placebo to ensure that, in line with the other two DVs, positive values on 

the y-axis indicate reduced speed meta-modulation under haloperidol and negative values 

indicate increased speed meta-modulation. Figure 4.4 (bottom) demonstrates an effect 

consistent with the other two DVs: a significant negative linear relationship between drug 

effect and estimated striatal dopamine synthesis capacity (F(1, 19) = 8.31, p = .010; beta 

estimate = -0.003, 95% CI [-0.005, -0.001]). These data again cut the x-axis, indicating 

opposing drug effects whereby, a reduction in dopamine decreased speed meta-modulation for 

participants with low estimated striatal dopamine synthesis capacity, and increased speed 

meta-modulation for those with high estimated striatal dopamine synthesis capacity. As such, 

all three DVs exhibit drug effects that are dependent on estimated striatal dopamine synthesis 

capacity. 

The Introduction highlighted that a possible prediction from the opportunity costs 

model is that a reduction in vigour following dopaminergic manipulation will 

disproportionately affect shapes at higher angular frequencies because these tend to be drawn 

at a higher speed and may therefore require more vigour. To interrogate the data for evidence 

in support of this, the drug state by shape interaction in the speed modulation LMM for Study 

2 was further explored by running the same LMM (excluding shape) on subsets of the data for 

each shape. This revealed that the “flattening of the curve” between angular frequency and 

speed modulation (i.e., reduced speed meta-modulation) under low dopamine conditions was 

driven by larger drug effects for the lower angular frequency shapes than the higher angular 
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frequency shapes (shape 4/3: F(1, 555) = 49.36, p < .001, beta estimate= -1.794, 95% CI [-

2.296, -1.292]; shape 2: F(1, 549) = 14.78, p < .001, beta estimate = -0.928, 95% CI [-1.402, -

0.454]; shape 4: F(1, 534) = 2.95, p = .086, beta estimate = -0.584, 95% CI [-1.251, 0.084]). 

Thus, there is no evidence that dopaminergic manipulation disproportionately affected high 

angular frequency shapes.  

4.4.4 Independent Drug Effects 

Drug effects on speed, speed modulation and speed meta-modulation are independent of 

each other. 

Given the presence of drug effects on all three DVs in Study 2, further exploratory 

analyses were implemented on this dataset to investigate whether the drug effects are 

independent of each other. A main effect of drug remained for speed after controlling for 

speed modulation (F(1, 1569) = 34.40, p < .001) and speed meta-modulation (F(1,1510) = 

52.23, p < .001). Similarly, the effect of the drug on speed modulation persisted after 

controlling for speed (F(1, 1565) = 10.36, p = .001) and speed meta-modulation (F(1, 1554) = 

17.66, p < .001). Finally, the main effect of drug for speed meta-modulation remained after 

controlling for speed (F(1, 53) = 12.41, p = .001) and speed modulation (F(1, 53) = 18.18, p < 

.001). These results indicate that there are separable effects of the drug on speed, speed 

modulation and speed meta-modulation.  

4.5 Discussion 

In line with the vigour literature, the results of the current Chapter showed that low 

dopamine conditions (removal of PD medication and administration of haloperidol relative to 

placebo) reduced movement speed. In addition, haloperidol independently affected speed 
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modulation by reducing participants’ ability to modulate movement speed according to 

curvature. Finally, an independent effect of dopaminergic drugs on speed meta-modulation 

was found: haloperidol reduced participants' ability to titrate their speed modulation such that 

it was appropriately suited to the global trajectory (the angular frequency of the shape). This 

latter effect was seen in members of the general population but not for individuals with PD; it 

is speculated below that this may be due to the incorporation of estimated baseline striatal 

dopamine synthesis capacity in the general population study. Together these results implicate 

dopamine in average movement speed, speed modulation and speed meta-modulation, and 

show that dopamine’s role in movement speed is broader than that which is conceptualised in 

current models linking dopamine and movement. 

Existing models, such as the opportunity costs model, do not provide clear 

unequivocal predictions for the effects of dopaminergic manipulation on naturalistic 

movement. Nevertheless, the Introduction highlighted two possible predictions that can be 

made from the opportunity costs model. One prediction is that low dopamine conditions 

should be associated with speed reductions but with no effects on speed modulation and speed 

meta-modulation. The results presented here clearly diverge from this prediction, showing 

that this interpretation of the opportunity costs model does not align with empirical evidence. 

A second prediction is that dopaminergic manipulation will affect speed, speed modulation 

and speed meta-modulation because reductions in vigour will disproportionately affect high 

speed movements that require more vigour. More specifically, this would predict a greater 

effect of the drug on trajectories that are executed at higher speeds (straights vs. corners) and 

shapes that are executed at higher speeds (high angular frequency shapes). No evidence was 

found to support these predictions. That is, the data did not show that drug state 

disproportionately affected higher speed movements, or that drug state disproportionately 
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affected speed or speed modulation values for high, as opposed to low, angular frequency 

shapes. The results cannot, therefore, easily be conceptualised under current formulations of 

the opportunity costs model. 

It is next considered whether the results of the current Chapter might be consistent 

with other popular models in the literature. Bayesian theories propose that (tonic) dopamine 

signals the precision with which incoming information is stored and represented (Friston et 

al., 2012; Galea et al., 2012; Vilares & Kording, 2017). Under high dopamine – signalling 

high precision – an individual is thought to be more confident in their representation of 

incoming sensory information compared to their prior beliefs, and thus relies more heavily on 

incoming sensory data. Conversely, low dopamine promotes a reliance on prior beliefs. 

Whilst Bayesian theories have not made explicit predictions about the task used, one can 

consider tracing as a task that requires a balance between priors and incoming evidence. One 

has priors, learned through previous experience, that influence our typical speed of movement 

(Hammerbeck et al., 2014) but as we trace around the outline of a shape we encounter 

changes in curvature that demand deviations from these priors. Consequently, if we assume 

that reduced speed modulation and meta-modulation can occur due to an overweighting of the 

prior (typical speed) relative to the incoming (trajectory) information, then the results 

presented here could be considered consistent with Bayesian theories of dopamine and 

movement. Bayesian theories do not, however, provide a comprehensive account of all of the 

results because they do not make clear predictions about average movement speed.  

A more recent theory – the rational inattention account (Mikhael et al., 2021) – merges 

opportunity cost and Bayesian models by proposing that dopamine signals average reward 

availability and that this “pays the cognitive costs” (e.g., attention costs) of increasing 

precision. This is consistent with evidence that dopamine plays a role in both motivational 
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and cognitive control of behaviour (Cools, 2008). By merging both approaches, the rational 

inattention account predicts that low dopamine conditions will be associated with reductions 

in speed, speed modulation and speed meta-modulation.  

Although the data can be considered consistent with the rational inattention account, 

this, nevertheless, leaves unanswered questions about the exact mechanisms by which 

dopamine affects speed modulation and speed meta-modulation. The rational inattention 

account argues that dopamine “pays the cognitive costs” of increasing the precision with 

which incoming information (e.g., trajectory information) is stored and represented but the 

exact nature of these “cognitive costs” are yet to be determined. Mikhael and colleagues 

suggest attention as a candidate cost. If this were the case, in the context of the current 

Chapter, the hypothesis would be that in low dopamine conditions speed modulation (and 

speed meta-modulation) is reduced because participants attend less to changes in trajectory 

curvature because of a reluctance to pay the cognitive costs of selective attention. An 

alternative account has been forwarded by Manohar et al. (2015) who propose that, by 

signalling reward, dopamine permits more aggressive error correction. Thus, in the present 

case, in low dopamine conditions, participants may attend to the changes in curvature but 

would nevertheless fail to appropriately modulate their speed due to a (presumably implicit) 

reluctance to pay the energetic costs of error correction. Further studies are required that 

specifically aim to tease apart whether, in low dopamine conditions, participants were less 

likely to attend to curvature changes, or whether they simply failed to adapt their movements 

to accommodate them.  

Both Mikhael and colleagues and Manohar and colleagues suggest motivation-based 

mechanisms: They do not argue that dopamine changes one’s ability to pay attentional/effort-

based costs, only one’s motivation to do so. Nevertheless, it is possible that dopamine plays a 
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role in motor ability per se. Dopamine has long been linked to the invigoration of movements 

(Bova et al., 2020; da Silva et al., 2018), is thought to play an important role in generating a 

range of different movement speeds (Baraduc et al., 2013), and is key in signalling the start 

and end points of sub-movements (Collins et al., 2016). Given the observation that distinct 

dopamine neurons are involved in reward signalling and self-paced movement (da Silva et al., 

2018; also see Engelhard et al., 2019) it is feasible that dopaminergic manipulations directly 

affect participants’ ability to physically modulate their actions, independent of their 

motivation to do so. In other words, participants may be motivated to adapt movement speed 

as a function of curvature/global trajectory but may be unable to do so, perhaps because they 

have an inadequate range of movement speeds to choose from, and/or they are unable to 

signal the start/end points at which the adaptation should occur. 

Whilst a significant main effect of drug on speed meta-modulation was observed in 

Study 2 (haloperidol compared to placebo), this was not observed in Study 1 (ON versus OFF 

dopaminergic medication in PD). Similarly, the main effect of drug on speed modulation in 

Study 1 was only apparent when analysing trial-level data as opposed to data averaged across 

trials; thus, caution is warranted regarding the effects of dopaminergic manipulation on speed 

modulation in the PD sample. There are a number of possible reasons to account for these null 

results. First, Study 2 accounted for estimated baseline striatal dopamine synthesis capacity by 

including working memory (a proxy measure of synthesis capacity) in its models, resulting in 

larger beta estimates for the effect of drug (e.g., 0.107 compared to 0.008 for speed meta-

modulation, see Appendix 3.8). To be maximally sensitive to the effect of PD medication, 

future studies investigating speed modulation and meta-modulation should therefore 

endeavour to account for baseline striatal dopamine synthesis capacity. Secondly, the two 

types of pharmacological intervention may differentially affect dopaminergic activity states. 
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PD medication is thought to primarily boost tonic dopamine (Galea et al., 2012; Guthrie et al., 

2009), a slow activation of dopamine neurons associated with tracking the average reward 

availability in the environment (Niv et al., 2007). In addition to tonic dopamine, haloperidol is 

thought to additionally affect phasic dopamine (Benoit-Marand et al., 2001; Frank & O'Reilly, 

2006), the firing of dopamine neurons in response to salient (often unexpected) stimuli 

(Schultz, 1998). Given that haloperidol induced robust effects on both speed modulation and 

meta-modulation whereas PD medication did not, it is possible that these variables are 

influenced by phasic mechanisms. Indeed, recent models have posited a role for phasic 

dopamine in kinematics, specifically acting as part of a “velocity control circuit” (Barter et al., 

2015). A final possibility is that different results in Study 1 and 2 are due to differences in the 

neurotransmitter mechanisms of action of the two pharmacological interventions. Haloperidol 

primarily acts as a dopamine D2 receptor antagonist (Benoit-Marand et al., 2001) but can 

additionally affect cortical glutamate and noradrenaline function (López-Gil et al., 2007; 

Muller & Seeman, 1977). Given that glutamate and noradrenaline have been implicated in 

prefrontal mechanisms underlying the flexible adaptation of on-going behaviour in response 

to environmental change (Cook et al., 2019; Cools, 2016; Froböse et al., 2018; Hazy et al., 

2007; Miller & Cohen, 2001; Ott & Nieder, 2019; Swart et al., 2017; van Schouwenburg et 

al., 2010), and that both speed modulation and meta-modulation likely rely upon such 

mechanisms (e.g., changing behaviour to suit the current ‘environment’ (i.e., curvature or 

trajectory shape)), haloperidol’s effect on these two variables may have been amplified by its 

modulation of other neurotransmitter systems in the prefrontal cortex. Whilst possible, this is 

perhaps unlikely given haloperidol’s high affinity with dopamine receptors relative to non-

dopamine receptors.  
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The current studies quantified the effect of dopaminergic modulation across the 

angular frequency spectrum. Set movements were used here to obtain this insight, but these 

findings can be applied to more spontaneous naturalistic movement trajectories. Natural 

movements are made up of a wide range of trajectory shapes and these trajectories can be 

decomposed, using Fourier transform, into densities within different angular frequency bands. 

This means that the insight gained in the current study with respect to dopaminergic 

modulation across the angular frequency spectrum can enable the prediction of the effects of 

dopaminergic drugs across an extensive range of naturalistic movement trajectories. In 

addition, the research has practical implications for drug discovery and PD treatment. For 

example, future studies may build upon the current work to construct classification systems 

that can infer which drug an animal has taken based on their naturalistic movements 

(Wiltschko et al., 2020), and/or predict the effects of novel compounds (i.e., pharmacological 

interventions) on naturalistic movement.  

  To summarise, the current Chapter provides insight from two pharmacological 

intervention studies and implicates dopamine in movement speed, speed modulation and 

speed meta-modulation. Drug effects appeared to be modulated by estimated baseline striatal 

dopamine synthesis capacity such that an inverted-U-shaped function was observed for the 

relationship between dopamine levels and each DV. The involvement of dopamine in these 

three kinematic features extends the theoretical understanding of dopamine function beyond 

that which is conceptualised in current models of vigour. Instead, it appears that dopamine 

also plays a role in the modulation of speed as a function of contextual information. Given 

that speed did not appear to differ between ASD and PD groups in Chapters 2 and 3, whereas 

speed modulation was significantly different between the two groups (Chapter 3), the current 

Chapter implicates dopamine function in both areas of overlap between ASD and PD, and 
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points of distinction. The positive relationship between speed modulation and dopamine in the 

current Chapter, in conjunction with higher speed modulation values in ASD compared to PD 

(Chapter 3), implies hyper-dopaminergic functioning in ASD and hypo-dopaminergic 

functioning in PD. Thus, ASD and PD may be characterised by opposing biomarkers at the 

neurochemical level. The General Discussion addresses how opposing biomarkers may lead 

to opposing performance in some cases and similar performance in others, specifically 

referring to variations in the inverted-U-shaped relationships that dependent variables have 

with dopamine. 
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Chapter 5 – General Discussion 

5.1 Overview of Findings 

5.1.1 Autism and Parkinson’s Disease Overlap 

A primary goal of the thesis was to compare behavioural and cognitive traits of older 

autistic adults, individuals with PD and members of the general population. Chapter 2 

examined movement and movement-based theory of mind ability across these three groups. 

No group differences were uncovered with respect to movement-based theory of mind ability; 

all three groups exhibited a similarly high level of accuracy, with greater accuracy for mental 

state inferences than non-mental state inferences. By contrast, group differences in movement 

were observed. Whilst many kinematic features were similar between ASD and PD, these 

similarities in performance were distinct from CTRLs only for jerk. Clear movement 

differences were found between individuals with PD and control participants where, despite 

being on their dopaminergic medication, individuals with PD moved in a way that was 

slower, had a lower maximum speed, lower acceleration and lower mean rotation than 

CTRLs. The ASD group did not exhibit many movement differences with either group, with 

their performance falling between that of PD and CTRLs. Movement cues were clearly 

important for theory of mind representations – significant differences were found between the 

type of word represented and the kinematic features contained in the animations. In sum, 

movement-based theory of mind ability did not differ between groups, despite group 

movement differences in theory of mind depictions.  

In Chapter 3, kinematic features were extracted from restricted movements as opposed 

to free movement. Whilst many kinematic features did not significantly differ between the 
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three groups, the ASD group could be distinguished from both the PD and CTRL groups via 

speed modulation and sub-movements, with reaction time also distinguishing ASD from PD. 

In contrast to Chapter 2, differences between PD and CTRLs were not found. When using 

kinematic features and trait questionnaires to classify group membership, the addition of 

kinematic features resulted in stronger classification accuracy compared to trait questionnaires 

alone in three cases: classifying clinical versus non-clinical populations, ASD versus PD 

populations, and ASD versus CTRL populations. By contrast, kinematics did not improve 

classification accuracy for ASD versus non-ASD populations, PD versus non-PD populations, 

or PD versus CTRL populations. Overall, this Chapter noted distinctions between ASD and 

PD movement, and these kinematic features were found to be useful in the development of 

classification models.  

5.1.2 Biological Mechanistic Insight  

Chapter 4 provided clear evidence for a role of dopamine in speed, speed modulation 

and speed meta-modulation. In Study 1 – a comparison between individuals with PD both ON 

and OFF their dopaminergic medication – significant reductions in speed and speed 

modulation were observed under low dopamine conditions (i.e., OFF-medication). In Study 2 

– a comparison between members of the general population on haloperidol (a dopamine 

antagonist) and placebo – the same results were found, in addition to a significant reduction in 

speed meta-modulation in low dopamine conditions (i.e., under haloperidol). Study 2 further 

allowed for an investigation of the baseline dependency of the drug effects. All three drug 

effects were found to be moderated by estimated striatal dopamine synthesis capacity. That is, 

those with low estimated striatal dopamine synthesis capacity exhibited a positive relationship 

between dopamine levels and performance, whereas a negative relationship was observed in 
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those with high estimated striatal dopamine synthesis capacity. This suggests that, for all three 

variables, the relationship with dopamine follows an inverted-U-shaped function. Overall, this 

Chapter implicated dopamine as an underlying mechanism of kinematic features that were 

distinct between ASD and PD, and those that appeared similar between the two groups.  

5.2 Interpretation of Findings 

5.2.1 Autism and Parkinson’s Disease Overlap 

Similarities between Autism and Parkinson’s Disease 

The thesis aimed to shed light upon potential similarities in the behavioural and 

cognitive presentations of ASD and PD. The purpose of this assessment was to understand 

whether it is possible that overlapping traits may contribute to the increased diagnosis of PD 

in the ASD population (as noted by many prevalence studies (Croen et al., 2015; Hand et al., 

2020)). The Introduction highlighted that autistic individuals exhibit movement differences in 

domains that are used in PD diagnostic assessments. However, ASD and PD movement had 

not yet been directly compared. Uncovering similarities between ASD and PD but a 

distinction from CTRLs would support the theory that autistic and parkinsonian traits can be 

likened to one another. In Chapter 2, kinematic features were comparable between ASD and 

PD; however, there were also no differences between ASD and the CTRL group for many of 

these variables. However, both ASD and PD animations were found to differ from CTRLs in 

terms of jerk, whilst the two clinical groups did not significantly differ from each other. Thus, 

in this free movement task, assessment of jerk profiles would lead to ASD and PD being 

grouped together, separate from CTRLs. In Chapter 3, there were again a number of 

kinematic features that did not differ between ASD and PD (including speed, acceleration and 

jerk), but these variables also did not differ from CTRLs. Anecdotal-to-moderate evidence for 
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similarities in these variables is surprising given literature demonstrating differences in a 

range of kinematic features between PD and CTRLs (Alberts et al., 2000; Broderick et al., 

2009; Flash et al., 1992; Lange et al., 2006; Van Gemmert et al., 2003; Viviani et al., 2009) 

and ASD and CTRLs (Cook et al., 2013; Edey et al., 2016; Grace et al., 2017; Johnson et al., 

2013). 

Chapters 2 and 3 presented a number of areas in which PD and ASD performance 

were comparable. However, there were not many clear distinctions between these clinical 

groups and the general population. With the exception of jerk, kinematic features that were 

similar between ASD and PD groups did not appear to differ from the general population. As 

such, evidence is limited in support of movement similarities between ASD and PD that may 

lead to an autistic individual exhibiting PD-like movements in a clinical assessment. 

However, it is possible ASD and PD movements may appear similar at a broad level, but 

these similarities do not translate to the same kinematic features being employed by both 

groups. Movements may appear “different” from the general population for a variety of 

underlying reasons. For example, one might employ a jerkier movement profile, a different 

number of sub-movements or an unusual level of speed modulation when moving along a 

trajectory, and this might be observed as a movement that is “lacking smoothness”. Chapter 2 

highlighted that PD differ from CTRLs in terms of speed, acceleration and jerk. In addition, 

Chapter 3 showed distinctions between ASD and CTRLs in terms of speed modulation and 

sub-movements. In a writing task, deviations from typical levels of speed, acceleration and 

jerk (as in PD) and deviations from typical levels of sub-movements and speed modulation (as 

in ASD) may make handwriting appear “less fluid” to the naked eye. Therefore, whilst 

kinematics may not unite performance in ASD and PD, this does not mean that similarities 
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cannot be observed in broader movement profiles. Indeed, existing clinical assessments focus 

on these broader movements as opposed to quantifying kinematics.  

Turning to cognitive similarities, Chapter 2 highlighted no differences in theory of 

mind ability between ASD and PD. However, neither group differed from the CTRL group on 

task performance, meaning that performance on this task would not distinguish ASD and PD 

groups from the general population. The fact that all three groups exhibited comparable levels 

of accuracy is surprising as differences in theory of mind ability have been evidenced between 

both ASD and CTRLs (e.g., Abell et al., 2000) and PD and CTRLs (e.g., Orso et al., 2020). 

However, given that existing evidence in the PD and older autistic adult literature does not 

relate to movement-based theory of mind, it is possible that individuals with PD and older 

autistic adults may only exhibit differences from the general population in other components 

of theory of mind (e.g., cognitive/situational, as indexed in the Faux Pas Task). Theory of 

mind ability is not used in assessments of PD, meaning that these findings do not speak to the 

misdiagnosis hypothesis. However, it was possible that theory of mind may have been an area 

in which similarities could be drawn between ASD and PD in daily life, or a point at which 

ASD and PD could be distinguished. Similar performance on this task between all three 

groups suggests that movement-based theory of mind ability neither contributes to the 

appearance of similarities between ASD and PD, nor is a useful ability for distinguishing 

ASD from PD.  

Differences between Autism and Parkinson’s Disease 

It is possible that ASD and PD movement may appear similar at a gross motor 

function level, but closer inspection of kinematic features may reveal points at which the 

groups can be distinguished. Whilst no differences were found between ASD and PD 

movement in the free movement task in Chapter 2, Chapter 3 shed light upon kinematic 
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features that can distinguish ASD and PD. In this restricted movement task, ASD and PD 

groups differed in terms of speed modulation, sub-movements and reaction time. Speed 

modulation and sub-movements did not specifically distinguish ASD from PD – instead they 

distinguished ASD from both PD and CTRLs, meaning that they hold utility in distinguishing 

ASD from not-ASD (i.e., PD or CTRL) as opposed to indicating which of the three groups an 

individual is likely to belong to (ASD, PD or CTRL). However, significant differences in 

reaction time were specific to the ASD versus PD comparison. Thus, in conjunction with one 

another, these tasks could distinguish both PD and CTRLs from ASD (i.e., CTRL differ from 

ASD in terms of speed modulation and sub-movements but not reaction time; PD differ from 

ASD in terms of speed modulation, sub-movements, and reaction time).  

Insight into variables that differ between groups is useful for developing classification 

algorithms. For example, classification algorithms could be developed to distinguish ASD and 

PD movement in the clinic, and therefore prevent a misdiagnosis of PD in autistic individuals 

who exhibit movement differences that broadly look parkinsonian. Chapter 3 incorporated 

kinematic features into classification algorithms for a range of group comparisons, to assess 

whether variables obtained from movement could provide helpful insight for classifications 

above and beyond (or instead of) questionnaire measures. Firstly, when distinguishing clinical 

versus non-clinical groups (i.e., ASD/PD versus CTRL), combining questionnaires and 

kinematic features was found to yield the strongest classification accuracy. This indicates that 

movement tasks would be useful in clinical assessments to uncover whether or not an 

individual is displaying traits that deviate from the general population. However, this 

algorithm does not speak to what the diagnosis should be. Subsequently, when classifying 

ASD and PD groups, the strongest classification model included both questionnaires and 

kinematics. Overall, a combination of kinematic features and questionnaires appeared most 
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useful for determining whether an individual exhibits clinically relevant behaviour, and then 

subsequently identifying whether that individual should be categorised as ASD or PD. It 

should be noted that the models in which kinematics were useful were not always those 

containing only the core kinematic features (i.e., those that were found to significantly differ 

between groups). Certain classifications yielded stronger accuracy when using all kinematic 

features as opposed to core kinematic features. This indicates that variables that are useful for 

distinguishing groups cannot be ascertained by looking for significant differences alone. 

Variables that do not significantly differ between groups may be useful for distinguishing 

groups in a classification algorithm in conjunction with other variables.  

A shift towards incorporating kinematic features into clinical assessments has 

advantages for a number of reasons. Firstly, kinematic features are objective measures and, 

unlike questionnaire measures, are unlikely to be susceptible to social desirability bias and 

camouflaging (Cook et al., 2021; Hull et al., 2017; Keating et al., 2024). In addition, 

questionnaire measures may not be reliable in certain populations; for example, individuals 

with alexithymia struggle to identify and describe their own emotions (Bagby et al., 1994; 

Hickman, 2019; Nemiah et al., 1976), which may lead to difficulties with self-report 

measures. This is particularly important given increased levels of alexithymia in both ASD 

and PD populations (Assogna et al., 2012; Berthoz & Hill, 2005; Costa et al., 2010; Kinnaird 

et al., 2019). Minimally verbal individuals may also struggle to complete questionnaires, 

which is highly relevant as these individuals are thought to make up 25-35% of the autistic 

community (Rose et al., 2016). Objective measures such as kinematic assessments may be 

particularly useful when studying these groups. Finally, whilst clinical assessments do 

currently incorporate measures of gross and fine motor function, the scoring of these tasks is 
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generally unspecific (e.g., “mild” versus “severe”) and subjective. Consequently, diagnosis 

accuracy may be improved and advanced by incorporating objective kinematic measurements.  

Overall, it appears that there were more similarities between ASD and PD movement 

(distinguished from CTRLs) in the task of free movement (Chapter 2), whereas in a restricted 

movement task there were more kinematic features in which movement could be 

distinguished (Chapter 3). One interpretation is that restricted movement tasks are more useful 

than free movement tasks in differentiating between ASD and PD populations. However, an 

additional factor that should be considered in this interpretation is whether or not the PD 

participants were taking medication at the time of completing the tasks. The tasks in Chapter 

2 were completed ON-medication whereas the tasks in Chapter 3 were completed OFF-

medication. Thus, when addressing the question of whether ASD and PD movements are 

similar, the experimental design cannot tease apart whether there are more similarities in free 

movement compared to restricted movement, or between ASD and PD ON-medication 

compared to ASD and PD OFF-medication. For the sake of improving clinical assessments, it 

should be noted that PD movement OFF their dopaminergic medication is the most accurate 

representation of the parkinsonian movement that ASD groups may be confused with in the 

clinic. This is because when individuals with PD first present in the clinic they have not yet 

received any medication, meaning their movements arise from an unmedicated state. It is 

therefore reassuring that points of distinction between ASD and PD were found in Chapter 3, 

in which parkinsonian movements were quantified from PD participants OFF their 

medication. This implies that, through the use of kinematic features, it should be possible to 

successfully distinguish ASD and PD (OFF-medication) in the clinic.  
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5.2.2 Insight into Parkinson’s Disease Functioning 

In addition to comparing ASD and PD performance, the experiments in the thesis also 

allowed for an assessment of how performance in each condition compared to the general 

population. With respect to PD, Chapter 2 provided evidence in line with a reduction in 

vigour in PD (Alberts et al., 2000; Broderick et al., 2009; Flash et al., 1992; Jankovic, 2008; 

Lange et al., 2006; Van Gemmert et al., 2003; Viviani et al., 2009). Animations created by the 

PD group were slower, had a lower maximum speed, lower acceleration and lower mean 

rotation than those created by CTRLs.  

The pattern of results across Chapters 2 and 3 provided evidence in line with the 

motor motivation hypothesis (Mazzoni et al., 2007). Chapter 2 used the Animation Production 

Task to index kinematic features, a task of free movement in which participants could move 

triangles around the screen in any way – and at whatever speed – they chose. In this task, fast 

movements were not incentivised as there was a fixed 30 second movement period, and 

moving faster would not improve task performance nor reduce the duration of the task. By 

contrast, Chapter 3 indexed kinematic features using the Shapes Tracing Task in which 

participants were required to trace 10 rotations of a given shape before proceeding to the next 

trial. Here, fast movement was incentivised as participants could finish each trial, and the 

overall experiment, in a shorter amount of time if they moved faster. It is interesting to note 

that kinematic differences between PD and CTRLs were only found in Chapter 2 (including 

slower movement speed in the PD group), and not Chapter 3. This is in line with the findings 

by Mazzoni et al. (2007) who stated that slowness of movement in PD is not due to an 

inability to move quickly, rather a lack of motivation to do so. Thus, it may be the case that 

PD participants were incentivised to spend the energetic cost of movement in Chapter 3 in 
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order to complete the task more quickly, but that in Chapter 2 there was no incentive to spend 

the energetic cost to move with increased speed.  

It is important to additionally consider that medication state varied between Chapters 2 

and 3. PD participants were ON-dopaminergic medication when completing tasks in Chapter 

2, whereas they were OFF-dopaminergic medication when completing tasks in Chapter 3. 

Given that PD participants generally exhibit greater movement differences when OFF-

medication, greater differences between PD and CTRLs would have been expected in Chapter 

3 (PD OFF-medication) compared to Chapter 2 (PD-ON medication). However, this was not 

the case – significant differences were found between PD and CTRLs in Chapter 2 but not in 

Chapter 3. This pattern of results does not align with the expected effects of medication. 

Subsequently, it may be that the effect of motor motivation is stronger than that of 

medication, which is why differences were seen in a task of unincentivized (free) movement 

(despite PD participants being ON-medication) but not in a task in which fast movement was 

incentivised (despite PD participants being OFF-medication). Future studies could verify this 

by assessing PD participants on the two tasks under both medication states. 

Finally, the thesis presented the first assessment of PD on a movement-based theory of 

mind task, the Animation Production Task. No significant differences were found between PD 

and CTRLs. This is contrary to existing evidence in the theory of mind literature suggesting 

differences between PD and CTRLs (Bodden et al., 2010; Del Prete et al., 2020; Kawamura & 

Koyama, 2007; Peron et al., 2009; Roca et al., 2010). However, these tasks index different 

components of theory of mind ability; for example, the Faux Pas Task and the Yoni Task 

index cognitive theory of mind (Shamay-Tsoory & Aharon-Peretz, 2007; Stone et al., 1998). 

Therefore, it is possible that individuals with PD exhibit differences in cognitive theory of 

mind but not movement-based theory of mind. Whilst differences in movement-based theory 
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of mind would have been expected due to movement differences in PD, it may be that a 

lifetime of movement experience prior to PD-onset may be sufficient to act as a “blue-print” 

for movement cues in mental state representation. By contrast, there is a wide body of 

literature suggesting loneliness and social isolation in PD (Karlsen et al., 2000; Prenger et al., 

2020; Soleimani et al., 2014), and cognitive theory of mind ability may decline as experience 

in social situations reduces (de Sousa et al., 2018).  

5.2.3 Insight into Older Autistic Adult Functioning 

When comparing ASD performance to that of the general population, a number of 

unexpected findings were observed. For example, a wide body of literature suggests that 

autistic individuals move with a jerkier movement profile than non-autistic individuals (Cook 

et al., 2013; Grace et al., 2017). However, the current thesis provided both null evidence for 

this hypothesis (Chapter 3), and evidence in the opposite direction whereby autistic 

movements were less jerky than non-autistic movements (Chapter 2). To interpret these 

findings in the context of the wider literature, a number of factors must be considered, 

including the nature of the measures calculated and the participants recruited. For example, in 

the current thesis the measure of jerk was susceptible to influence from speed given that it 

was calculated as the second derivative of speed. As such, differences in jerk may be 

epiphenomenal of differences in speed. Numerically (but not significantly) lower speed values 

were observed in the ASD group compared to CTRLs, which may have led to a subsequent 

reduction in jerk values measured in the ASD group. Importantly, when employing a speed-

independent measure of movement smoothness in Chapter 3 (SPARC), no significant 

differences were found between autistic and non-autistic movement. Therefore, it may be 

concluded that movement smoothness does not differ between ASD and CTRLs. It is relevant 
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to note that these studies comprise the first assessment of kinematic features in the older 

autistic adult population. Evidence suggesting jerky movements in autism has come from 

younger samples of autistic individuals (e.g., Cook et al., 2013; mean age = 41.07) or children 

(e.g., Grace et al., 2017; mean age = 10.58). It may be the case that jerk differences between 

autistic and non-autistic individuals are not present in older age, perhaps due to a change in 

kinematic features in the non-autistic population.  

A number of differences between autistic and non-autistic movement profiles were 

replicated in the current thesis. For example, in Chapter 3, significantly steeper speed 

modulation values were observed in the older autistic participants’ movements. This is in line 

with evidence from younger participant samples (Cook et al., 2023; Fourie, 2022). In 

addition, an increased number of sub-movements were employed in autistic movement 

profiles compared to non-autistic movement profiles, another feature of movement that has 

been evidenced in younger autistic samples (Cook et al., 2023). Thus, it appears that some 

components of autistic movement remain distinct from non-autistic movement in older age.  

With respect to theory of mind ability, Chapter 2 indicated no significant differences 

between autistic and non-autistic performance. A number of studies have highlighted that, 

whilst differences in theory of mind have been observed between autistic and non-autistic 

individuals at younger ages, comparable performance exists between autistic and non-autistic 

older adults due to an ageing-related decline in the non-autistic group (Lever & Geurts, 

2016a; Yarar et al., 2020). Chapter 2 appears to support this pattern of results. However, it 

should be noted that age significantly correlated with performance on this task, and that all 

groups exhibited a relatively high level of accuracy, meaning that autistic and non-autistic 

performance cannot be characterised as a similar lack of accuracy.  
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5.2.4 Biological Mechanistic Insight  

Moving beyond behavioural and cognitive differences in ASD and PD, the current 

thesis also aimed to understand the biological mechanisms underpinning these abilities. This 

is because it may be the case that similarities between ASD and PD arise from shared 

biological mechanisms. The thesis investigated the role of dopamine in movement processes, 

given that movement differences were apparent in both ASD and PD (Chapters 2 and 3), and 

dopamine dysfunction has previously been implicated in both conditions (Pavăl, 2017; Rizek 

et al., 2016). Chapter 4 provided evidence for a role of dopamine in movement speed, speed 

modulation and speed meta-modulation. Whilst the exact mechanism is unknown, significant 

drug effects for all three features of movement is consistent with the rational inattention 

account of dopamine. This account states that dopamine signals average reward availability 

and that this “pays the cognitive costs” (e.g., attention costs) of increasing precision (Mikhael 

et al., 2021). Differences in speed may be accounted for by dopaminergic effects on reward 

signalling, whereby an increase in reward signalling in high dopamine conditions enhances 

the vigour of movements due to an increased opportunity cost of sloth (also in line with the 

opportunity costs model (Niv et al., 2007)). Differences in speed modulation and speed meta-

modulation may be accounted for by subsequent effects on precision; that is, dopamine is 

thought to alter the weighting of priors and incoming sensory information and, as such, an 

overweighting of priors (e.g., typical speed) relative to incoming trajectory information (e.g., 

curvature or global trajectory) may alter speed modulation and speed meta-modulation (also 

in line with Bayesian accounts (Friston et al., 2012; Galea et al., 2012; Vilares & Kording, 

2017)).  

The Introduction raised the possibility that dopaminergic mechanisms may explain 

why ASD and PD overlap in some areas but not others. If an ability has an inverted-U-shaped 
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function for its relationship with dopamine, both a hyper- and hypo-dopaminergic state can 

result in the same behavioural performance (Figure 5.1A). By contrast, abilities with a linear 

relationship with dopamine would differ in hyper- and hypo-dopaminergic states (Figure 

5.1B). This demonstrates that opposite biomarkers can cause similarities in some abilities and 

differences in others. In Chapters 2 and 3, speed modulation was found to differ between PD 

and ASD, whereas speed was comparable between groups. An inverted-U-shaped function 

would have therefore been expected for dopamine’s relationship with speed but not speed 

modulation. However, Study 2 revealed a baseline dependency for all drug effects; for speed, 

speed modulation and speed meta-modulation, the relationship between dopamine levels and 

performance followed an inverted-U-shaped function. Whilst a linear relationship between 

dopamine levels and performance may initially appear to best explain the difference in speed 

modulation between ASD and PD, variations in the shape of an inverted-U-shaped curve may 

also account for this pattern of results. Comparable performance between PD and ASD arising 

from hypo- and hyper-dopaminergia respectively would require the two groups’ baseline 

dopamine levels to sit at equidistant points away from optimal level on either side of the curve 

(Figure 5.1A). However, if the peak of the curve is closer to ASD baseline dopamine than PD 

baseline dopamine, ASD performance would be higher than PD performance, thus accounting 

for a difference in performance (Figure 5.1C). In addition, if baseline dopamine levels in PD 

and ASD fell on the same side of the curve’s peak, this would also account for group 

differences in performance (Figure 5.1D).  

Assuming a hypo-dopaminergic state in PD (Rizek et al., 2016) and a hyper-

dopaminergic state in ASD (Presti et al., 2003), Figure 5.1A and Figure 5.1C would require 

CTRL performance to sit above that of PD and ASD. However, Figure 5.1B and Figure 5.1D 

would enable ASD performance to sit above CTRL performance. Given that speed 
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modulation values were higher in ASD than CTRLs (Chapter 3), and that speed modulation 

appears to have an inverted-U-shaped relationship with dopamine (Chapter 4), the 

relationship which would best reflect this is Figure 5.1D. Here, CTRL participants could have 

lower dopamine levels and lower performance than ASD, while an inverted-U-shaped 

function is maintained.  
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Figure 5.1  

A Depiction of Potential Relationships Between Dopamine Levels and Performance 

 

Note. (A) Inverted-U-shaped curve demonstrating comparable performance between ASD and PD; (B) linear relationship demonstrating 
different performance between ASD and PD; (C and D) inverted-U-shaped curves demonstrating different performance between ASD and 
PD. Black line = relationship between dopamine and performance, purple dotted line = ASD baseline dopamine and corresponding 
performance; dark yellow dotted line = PD baseline dopamine and corresponding performance; grey dotted line = CTRL baseline 
dopamine and corresponding performance. PD = Parkinson’s Disease, CTRL = Control, ASD = Autism Spectrum Disorder.
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The results of Chapter 4 allow inferences to be made regarding the mechanism 

underlying speed modulation, something which has been debated in the literature. It has 

previously been suggested that speed modulation has a neural mechanism (Lacquaniti et al., 

1983). For example, it may be that speed modulation arises following instructions made in a 

motor planning process, perhaps with a view to minimising jerk (Huh & Sejnowski, 2015; 

Viviani & Flash, 1995). By contrast, others have posited that speed modulation is an inherent 

product of the constraints of musculo-skeletal joints, and thus has a biomechanical 

mechanism (Gribble & Ostry, 1996; Matic & Gomez-Marin, 2022; Schaal & Sternad, 2001). 

Given that centrally-acting dopamine agonists and antagonists employed in Chapter 4 were 

able to alter speed modulation levels, this aligns better with a neural mechanism for speed 

modulation; indeed, it is unlikely that dopaminergic manipulation caused changes to hard-

wired biomechanical constraints. 

5.2.5 Methodological Advancements 

The current thesis employed a range of techniques to capture and assess movement 

and, as such, has provided novel insight into the utility of such methods for characterising 

group differences. For example, multiple shapes were included in the Shapes Tracing Task, 

characterised by angular frequencies across a wide range of the angular frequency spectrum. 

Chapter 3 indicated that the rounded square (angular frequency = 4) was the most useful 

shape for distinguishing groups. However, many movement studies in the literature utilise 

shapes with lower angular frequencies such as ellipses (angular frequency = 2) or spirals 

(angular frequency = 2/33), which may not be optimal for detecting differences (e.g., Dayan 

et al., 2012; Fourie, 2022; Kamble et al., 2021; Lamba et al., 2021; Rios-Urrego et al., 2019). 

Future studies should employ a range of shapes in movement tasks, in particular those with 
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higher angular frequencies, to optimise the ability to detect group differences. In addition, the 

use of the Shapes Tracing Task provided the first insight into speed modulation in PD, and 

how speed modulation differs following pharmacological intervention. Future studies may 

find this variable useful in characterising movement differences in other clinical conditions 

and pharmacological or neuroscientific investigations. Finally, whilst online versions of the 

Animation Perception Task have been developed (Livingston et al., 2021), this thesis presents 

the first development of an online version of the Animation Production Task. Given that 

differences between ASD, PD and CTRLs were apparent in this task, this online adaptation 

appears to have utility in detecting group differences.  

5.3 Limitations and Future Directions 

5.3.1 Autism and Parkinson’s Disease Overlap 

The current thesis focused primarily on movement overlap between ASD and PD due 

to the fact that PD diagnostic criteria relate to motor function. In addition, movement-based 

theory of mind was assessed due to the proposed link to movement differences. However, 

there are many other areas of overlap that could be examined. The Introduction notes potential 

similarities between ASD and PD in terms of gross motor function (e.g., postural instability, 

gait), emotion expression and recognition, additional components of theory of mind ability 

(e.g., cognitive/situational), motivation and cognitive rigidity. Assessments in these domains 

would help build a more detailed picture of the similarities between ASD and PD and, 

crucially, points at which the conditions can be distinguished. Once a greater understanding of 

similarities between ASD and PD is obtained, this information should be disseminated to 

medical professionals to ensure an awareness of the potential overlap in symptomatology 
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between ASD and PD. Additionally, diagnostic tools may be developed to differentiate 

between PD and movement differences arising from other conditions (e.g., ASD).  

By assessing different abilities in conjunction with one another, it may be revealed 

that apparent similarities between ASD and PD in certain domains may in fact be accounted 

for by overlap in core cognitive features. For example, it is possible that differences in social 

cognition and motor function arise from a lack of motivation to engage in such processes, 

rather than an inability to do so (Clements et al., 2018; Contreras-Huerta et al., 2020; 

Damiano et al., 2012; Mazzoni et al., 2007). As noted in Chapter 4, differences in kinematic 

features such as speed modulation may be explained by motor mechanisms; for example, 

differences in movement invigoration (Bova et al., 2020; da Silva et al., 2018), the range of 

movement speeds generated (Baraduc et al., 2013), or the signalling the start and end points 

of sub-movements (Collins et al., 2016) may all affect speed modulation levels. However, 

differences in kinematic features may not necessarily have a motor basis; it is possible that 

altered speed modulation levels can be explained by a lack of attention to the movement 

trajectory, reduced error correction, or a lack of motivation to modulate movement speed to 

curvature (Manohar et al., 2015; Mazzoni et al., 2007; Mikhael et al., 2021). In addition, 

many motor function and social cognition tasks require efficient task switching. For example, 

in the Animation Tasks (Chapter 2), each trial requires switching between mental 

representations of different mental and non-mental state depictions. In the Shapes Tracing 

Task (Chapters 3 and 4), appropriate speed modulation and meta-modulation are reliant upon 

flexible updating of stimulus features (i.e., the shape’s current curvature or global trajectory). 

Given that cognitive rigidity is a feature of ASD and PD (Dirnberger & Jahanshahi, 2013; 

Westwood et al., 2016), performance on these tasks may be affected in ASD and PD due to an 

inability to switch between mental representations. Future investigations should employ an 
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experimental design that separates motivation and task switching from motor function and 

social cognition, to identify the specific mechanisms affected in ASD and PD, and by 

dopamine function. Greater understanding of the root causes of apparent behavioural and 

cognitive differences in ASD and PD may lead to the development of more appropriately 

targeted interventions to address difficulties experienced in both conditions. 

Various factors were considered in participant recruitment to ensure a well-controlled 

comparison between ASD and PD. Both ASD and PD participants were required to have an 

official clinical diagnosis, and those with other movement disorders and developmental 

disorders were excluded. The CTRL group was matched to the ASD and PD groups in terms 

of gender, non-verbal reasoning and age, and variables that could not be matched across all 

three groups were controlled for in analyses (e.g., age, depression, anxiety, alexithymia). To 

ensure specificity of ASD and PD groups, all ASD participants were required to not have a 

diagnosis of PD and vice versa. However, without a longitudinal design, it is not possible to 

know whether participants in the ASD group may go on to receive a diagnosis of PD. By 

tracking the future diagnoses of ASD participants, subsequent analyses could be conducted on 

participant subsets who did not receive a PD diagnosis in later life. This would ensure that 

results are not confounded by undiagnosed PD in the ASD group. In addition, the PD and 

CTRL participants come from a generation in which ASD diagnoses were not prevalent (Lai 

& Baron-Cohen, 2015), meaning that it may be the case that some of these participants were 

undiagnosed autistic individuals. If this is the case, similarities between these groups and the 

ASD group may be overinflated. Thus, future studies should implement an ASD diagnostic 

screening in PD and CTRL participants to ensure they do not meet ASD diagnostic criteria. 

This would increase confidence that the PD and CTRL groups do not contain any autistic 

participants.  
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Whilst this thesis presents a number of areas in which PD and ASD overlap, the 

evidence is not overwhelming for the misdiagnosis hypothesis. As such, it is important to 

consider additional factors that may account for the increased prevalence of PD diagnosis in 

the ASD population. To ensure a controlled assessment of ASD and PD, the current thesis 

excluded and therefore overlooked the involvement of other conditions. In practice, it may be 

the case that autistic individuals are more likely to have co-occurring movement differences 

that are mistaken for PD. For example, Developmental Coordination Disorder (DCD) is a 

condition characterised by movement differences which has a strong co-occurrence with ASD 

(Bhat, 2020). Future studies should quantify the involvement of co-occurring conditions in the 

relationship between ASD and PD. Another alternative explanation for increased PD 

diagnosis in ASD is that autistic individuals may have more contact with healthcare providers 

compared to non-autistic individuals and, consequently, they may have an increased chance of 

PD symptoms being detected. Overall, it is likely that increased PD diagnosis prevalence in 

ASD is the product of many factors including similarities between conditions at behavioural, 

cognitive and biological/neural levels, as well as genetic contributions and healthcare factors. 

5.3.2 Future Neuroscientific Investigations 

To implicate dopamine in movement processes, two pharmacological interventions 

were conducted (Chapter 4): PD participants ON and OFF their dopaminergic medication 

(Study 1), and members of the general population on haloperidol and placebo (Study 2). In 

addition, inferences regarding dopamine’s involvement in movement processes can be made 

by comparing PD and CTRL performance in Chapters 2 and 3, due to the fact that PD arises 

from a dysfunction to the dopamine system (Rizek et al., 2016). Whilst this thesis provides 

novel insight into the role of dopamine in speed, speed modulation and speed meta-
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modulation, conclusions cannot be made regarding precise neuroanatomical and 

neurophysiological actions. As such, additional neuroscientific investigations such as PET 

imaging may shed light upon the mechanistic action of dopamine in these movement 

processes. Given that PET imaging is costly and requires expertise, the current thesis 

incorporated a working memory task as a proxy measure of baseline striatal dopamine 

synthesis capacity, which has been validated using PET imaging in previous research (Cools 

et al., 2008; Landau et al., 2009). This enabled inferences to be made regarding variables’ 

relationships with dopamine function. Evidence presented in Chapter 4 is consistent with 

inverted-U-shaped relationships between dopamine and the assessed variables (speed, speed 

modulation, and speed meta-modulation). However, future studies should verify these 

proposed inverted-U-shaped relationships by running PET imaging studies to reliably 

quantify baseline striatal dopamine synthesis capacity.  

Whilst the majority of findings are replicated between Study 1 and Study 2, the drug 

effect on speed meta-modulation was only apparent in Study 2. Chapter 4 presents a number 

of reasons that may account for this, primarily focusing on differences in drug action between 

the two studies – PD medication (i.e., levodopa and dopamine agonists) versus haloperidol 

(dopamine antagonist). For example, haloperidol is thought to boost both tonic and phasic 

dopamine (Benoit-Marand et al., 2001; Frank & O'Reilly, 2006), whereas PD medication may 

primarily affect tonic dopamine (Galea et al., 2012; Guthrie et al., 2009). In addition, beyond 

dopamine D2 receptors, haloperidol can additionally affect cortical glutamate and 

noradrenaline function (López-Gil et al., 2007; Muller & Seeman, 1977). This suggests that 

speed meta-modulation may be governed by phasic dopaminergic mechanisms, or that 

glutamate and noradrenaline may be involved – perhaps via prefrontal mechanisms that 

govern flexible adaptation of on-going behaviour in response to environmental change (Cook 
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et al., 2019; Cools, 2016; Froböse et al., 2018; Hazy et al., 2007; Miller & Cohen, 2001; Ott 

& Nieder, 2019; Swart et al., 2017; van Schouwenburg et al., 2010)). However, it is important 

to note that these conclusions are based on the pharmacokinetic properties of the two 

pharmacological interventions. Thus, future work could verify these proposals by combining 

pharmacology with neuroimaging to identify the neural activity and brain loci associated with 

changes in speed meta-modulation following pharmacological interventions.  

Neuroimaging techniques may additionally shed light upon the nature of dopamine 

function in ASD. Whilst PD is characterised by hypo-dopaminergia, current literature presents 

conflicting results regarding dopamine function in ASD. Models of dopamine function in this 

Discussion have assumed hyper-dopamine in ASD due to such findings in the motor domain 

(Presti et al., 2003). In. addition, the results of this thesis are consistent with hyper-

dopaminergic function in ASD (i.e., increased speed modulation values in ASD compared to 

PD and CTRLs). Whilst the current thesis simply compares patterns of performance, more in-

depth neuroscientific investigations would reveal whether similarities between ASD and PD 

are indeed due to dopaminergic mechanisms. As such, further investigations should employ 

techniques such as PET imaging in older autistic adults to confirm the nature of dopamine 

function in ASD.  

5.3.3 Participant Diversity 

The results of the current thesis are limited in terms of their generalisability to all 

individuals. Due to the nature of the research, only older adults were recruited in Chapters 2 

and 3. Given that differences across the lifespan have been observed in movement and theory 

of mind (Ketcham et al., 2002; Maylor et al., 2002; Pardini & Nichelli, 2009), the findings of 

Chapters 2 and 3 may only apply to older individuals. By contrast, Chapter 4 recruited both 
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older individuals with PD (Study 1) and younger individuals from the general population 

(Study 2), which widens the applicability of the findings. Due to practical considerations, an 

opportunity sampling method was employed and therefore limitations in sample diversity 

should be noted. For example, whilst minimally verbal individuals make up 25-35% of the 

autistic population (Rose et al., 2016), these individuals were not represented in the current 

studies. In addition, participants were primarily White British, meaning there was little ethnic 

diversity in the sample. Future research should ensure the recruitment of a more diverse 

sample. Beyond ensuring a more representative dataset, the information could be used to 

strengthen analyses. Indeed, recent classification models of PD and non-PD handwriting have 

developed sex-specific and age-dependent models for optimal classification (Gupta et al., 

2020). Thus, incorporating participant demographics into classification algorithms may lead 

to more accurate group classification.  

5.4 General Conclusion 

The current thesis presented the first empirical comparison of autistic and 

parkinsonian movement, as well as movement-based theory of mind. Whilst ASD and PD 

movement may appear similar at a gross motor function level, close inspection of kinematic 

features revealed points at which the groups could be distinguished. Kinematic features were 

found to be useful in classifying group membership alongside questionnaire measures, which 

is promising for ensuring the validity of diagnoses in these populations. Consequently, 

clinical assessments may benefit from the incorporation of kinematic assessments. In addition 

to similarities and differences between ASD and PD, the thesis highlighted how ASD and PD 

respectively differed from the general population. Movement assessments in older autistic 

adults are sparse and, as such, this thesis provided novel insight into kinematic differences in 



  176 
 

the older autistic population. Movement differences were also apparent in PD, which were in 

line with the motor motivation hypothesis. Notably, no significant group differences were 

observed in terms of movement-based theory of mind, which may be due to the ages of the 

groups being studied (i.e., older adults) or the theory of mind component indexed (i.e., 

movement-based as opposed to cognitive). Turning to the biological basis of group 

differences in movement, this thesis evidenced a role of dopamine in speed, speed modulation 

and speed meta-modulation. Use of a proxy measure of baseline striatal dopamine synthesis 

capacity indicated that these variables had inverted-U-shaped relationships with dopamine 

levels. These results imply that dopaminergic mechanisms govern kinematic features that are 

distinct between ASD and PD, in addition to those that appear similar between groups. 

Results across the three Chapters are consistent with hyper-dopaminergic functioning in ASD 

and hypo-dopaminergic functioning in PD. This work paves the way for future neuroscientific 

investigations of dopaminergic mechanisms underlying movement differences in ASD and 

PD, to verify neural activity and brain loci associated with such differences.  
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Appendix 1 – Supplementary Materials for Chapter 2 

Table A1  

Ethnicity Information for the Autism, Parkinson’s Disease and Control Groups Recruited in 

Chapter 2 

 ASD PD CTRL Total 
Ashkanazi Jewish 1 0 0 1 
Asian Pakistani 0 0 5 5 
White & Pakistani 0 0 1 1 
White American 0 1 0 1 
White British 27 30 26 83 
White European 3 0 0 3 
White Irish 0 1 0 1 
White Other 0 1 0 1 

Note. Table contains count data for each cell. ASD = Autism Spectrum Disorder; PD = 
Parkinson’s Disease; CTRL = Control. 

 

Appendix 2 – Supplementary Materials for Chapter 3 

Table A2 

Ethnicity Information for the Autism, Parkinson’s Disease and Control Groups Recruited in 

Chapter 3 

 ASD PD CTRL Total 
Asian Pakistani 0 0 4 4 
White & Pakistani 0 0 1 1 
White American 0 1 0 1 
White British 28 29 26 83 
White European 3 0 0 3 
White Irish 0 1 0 1 
White Other 0 1 0 1 

Note. Table contains count data for each cell. ASD = Autism Spectrum Disorder; PD = 
Parkinson’s Disease; CTRL = Control. 

 

 

 



  205 
 

Appendix 3 – Supplementary Materials for Chapter 4 

Appendix 3.1 – Ethnicity Information for Study 1 in Chapter 4 

Table A3.1 

Ethnicity Information for Study 1 in Chapter 4 

 Study One 
(PD) 

White American 1 
White British 29 
White Irish 1 
White Other 1 

Note. Table contains count data for each cell. PD = Parkinson’s Disease. 

 

Appendix 3.2 – Types of Medications Taken by Participants in Study 1 in Chapter 4 

Table A3.2  

Types of Medications Taken by Participants in Study 1 in Chapter 4 

 N 
Combined Totals  
Levodopa 23 
Dopamine Agonists 16 
MAO Inhibitors  10 
Those Taking Only One Type of Medication  
Levodopa 9 
Dopamine Agonists 5 
MAO Inhibitors  2 
Those Taking Two Types of Medications  
Levodopa & Dopamine Agonists 11 
Levodopa & MAO Inhibitors 2 
Dopamine Agonists & MAO Inhibitors 1 
Those Taking Three Types of Medications  
Levodopa, Dopamine Agonists & MAO Inhibitors 2 

 
Note. Combined totals refer to how many participants were taking each type of medication 
regardless of the other medications being taken. Subsequent rows break down participants 
into those taking only one type of medication, two types of medication, or all three types of 
medication. MAO = Monoamine oxidase. 
 

 

 



  206 
 

Appendix 3.3 Additional Analyses on Movement Speed in Study 1 

A3.3.1 Additional Mixed Model Details 

To explore the main effect of shape on movement speed, post-hoc tests were 

conducted on subsets of the data to compare two levels of shape. These tests revealed that the 

overall main effect of shape reflected lower movement speeds for lower angular frequency 

shapes (see Figure A3.3.1). Shape 4/5 was traced with the slowest movement speed, followed 

by shape 4/3 (main effect of shape between shapes 4/5 and 4/3: F(1, 963) = 127.95, p < .001), 

followed by shape 4 (main effect of shape between shapes 4/3 and 4: F(1, 941) = 18.50, p < 

.001), with shape 2 traced with the highest speed (main effect of shape between shapes 4 and 

2: F(1, 921) = 28.91, p < .001). The interaction between drug state and shape was non-

significant (F(3, 1885) = 0.29, p = .832) as was the interaction between drug state and dosage 

(F(1, 1885) = 0.15, p = .699).  
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Figure A3.3.1  

A Graph Depicting Drug Effects on Movement Speed in Study 1 

 

Note. Movement speed residuals plotted for low (green; Parkinson’s Disease OFF-
medication) and high (purple; Parkinson’s Disease ON-medication) dopamine conditions for 
each angular frequency-defined shape. Residuals were calculated after controlling for dosage, 
trial, participant number and day. Bars = mean, box = SE, shaded region = standard deviation, 
trial-level values plotted. 
 

A3.3.2 Analysis on All Data 

Analyses reported in the main text (which were conducted on a dataset in which all 

participants had valid trials for at least the shapes with the highest and lowest angular 

frequency values) were repeated for a dataset containing all data, following the removal of 

outliers and a log transform. Importantly our core finding – a main effect of drug state – was 

observed (F(1, 1905) = 71.79, p < .001), with lower movement speeds observed OFF 

medication (beta estimate = -0.172, 95% CI [-0.212, -0.132]). As in our primary analysis 

reported in the main text, a main effect of shape was observed (F(3, 1905) = 137.96, p < 
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.001), with no drug by shape interaction (F(3, 1905) = 0.33, p = .804) or drug by dosage 

interaction (F(1, 1905) = 0.09, p = .762). 

 

Appendix 3.4 Additional Analyses on Movement Speed in Study 2 

A3.4.1 Additional Mixed Model Details 

The main effect of shape on movement speed reflected lower movement speeds for 

lower angular frequency shapes (see Figure A3.4.1). As revealed by post-hoc tests assessing 

the main effect of shape between two levels of the condition, shape 4/3 was traced with the 

slowest movement speed, followed by shape 4 (main effect of shape between shapes 4/3 and 

4: F(1, 1111) = 15.03, p < .001), with shape 2 traced with the highest speed (main effect of 

shape between shapes 4 and 2: F(1, 1039) = 217.10, p < .001). The interaction between drug 

state and shape was non-significant (F(2, 1600) = 2.79, p = .062).  
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Figure A3.4.1  

A Graph Depicting Drug Effects on Movement Speed in Study 2 

 

Note. Movement speed residuals plotted for low (green; haloperidol) and high (purple; 
placebo) dopamine conditions for each angular frequency-defined shape. Residuals were 
calculated after controlling for estimated striatal dopamine synthesis capacity, trial, 
participant number and day. Bars = mean, box = SE, shaded region = standard deviation, trial-
level values plotted. 
 

A3.4.2 Standard Model (not including estimated baseline striatal synthesis capacity) 

A LMM including drug state and shape as fixed effects (but not estimated baseline striatal 

synthesis capacity) revealed a significant main effect of drug state (F(1, 1700) = 10.34, p = 

.001), with lower movement speed values in the haloperidol condition compared to the 

placebo condition (beta estimate: -0.049, 95% CI [-0.079, -0.019]). As in our primary 

analysis, we observed a significant main effect of shape (F(2, 1700) = 157.20, p < .001). 

Unpacking this further with post-hoc tests revealed that, as in the model above, shape 4/3 was 

traced with the slowest movement speed, followed by shape 4 (main effect of shape between 
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shapes 4/3 and 4: F(1, 1177) = 9.96, p = .002), followed by shape 2 (main effect of shape 

between shapes 4 and 2: F(1, 1105) = 216.97, p < .001). In addition, we observed an 

interaction between drug state and shape (F(2,1700) = 4.20, p = .015) in which the strongest 

drug effect was observed for shape 2 (F(1, 523) = 6.04, p = .014, beta estimate = -0.072, 95% 

CI [-0.129, -0.014]), followed by shape 4/3 (F(1, 595) = 6.53, p = .011, beta estimate = -

0.050, 95% CI [-0.089, -0.012]), followed by shape 4 (F(1, 582) = 1.57, p = .211, beta 

estimate = -0.025, 95% CI [-0.064, 0.014]). As such, we again present no evidence that shapes 

typically traced at higher speeds are disproportionately affected by the drug (as shape 4/3 was 

traced the slowest but had the second largest drug effect).  

A3.4.3 Analysis on All Data 

Analysis reported in main text was repeated for a dataset containing all data, following 

the removal of outliers and a log transform. An LMM including drug state, shape and 

estimated baseline striatal synthesis capacity as fixed effects revealed a significant main effect 

of drug state (F(1, 1673) = 46.73, p < .001) with lower movement speed values in the 

haloperidol condition compared to the placebo condition (beta estimate: -1.086, 95% CI [-

1.398, -0.775]). Again, a main effect of shape (F(2, 1673) = 153.39, p < .001) was identified, 

which reflected a pattern whereby shape 4/3 was traced the slowest, followed by shape 4 

(main effect of shape between shapes 4/3 and 4: F(1, 1163) = 12.89, p <.001), followed by 

shape 2 (main effect of shape between shapes 4 and 2: F(1, 1085) = 176.04, p < .001). We 

also observed an interaction between drug state and shape (F(2, 1673) = 3.30, p = .037), 

whereby the largest drug effect was observed for shape 4/3 (F(1, 586) = 52.56, p < .001, beta 

estimate = -1.532, 95% CI [-1.946, -1.117]), followed by shape 4 (F(1, 575) = 20.05, p < 

.001, beta estimate = -0.941, 95% CI [-1.353, -0.528]), followed by shape 2 (F(1, 508) = 6.73, 

p = .010, beta estimate = -0.842, 95% CI [-1.480, -0.205]). Again, this pattern did not provide 
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evidence that shapes traced at higher speeds are disproportionately affected by the drug. The 

overall main effect of drug state was moderated by estimated striatal dopamine synthesis 

capacity (F(1,1673) = 43.21, p <.001), and again a negative linear relationship was found 

between drug effect and estimated striatal dopamine synthesis capacity which cut the x-axis 

(F(1, 29) = 4.68, p = .039; beta estimate = -0.051, 95% CI [-0.100, -0.003]). Thus, with the 

full dataset the pattern of results is the same as in our primary analysis but with the addition of 

a significant interaction between drug state and shape.  

An LMM including drug state and shape as fixed effects (but not estimated baseline 

striatal synthesis capacity) revealed a significant main effect of drug state (F(1, 1773) = 

11.05, p = .001), with lower movement speed values in the haloperidol condition compared to 

the placebo condition (beta estimate: -0.048, 95% CI [-0.076, -0.020]). We observed a 

significant main effect of shape (F(2, 1773) = 137.50, p < .001), with shape 4/3 traced the 

slowest, followed by shape 4 (main effect of shape between shapes 4/3 and 4: F(1, 1229) = 

8.18, p = .004), followed by shape 2 (main effect of shape between shapes 4 and 2: F(1, 1151) 

= 176.97, p < .001). The interaction between drug state and shape was also significant 

(F(2,1773) = 3.88, p = .021), with the strongest drug effect of shape 2 (F(1, 544) = 3.52, p = 

.061, beta estimate = -0.055, 95% CI [-0.112, 0.003]), followed by shape 4/3 (F(1, 622) = 

7.70, p = .006, beta estimate = -0.052, 95% CI [-0.088, -0.015]), followed by shape 4 (F(1, 

607) = 0.47, p = .493, beta estimate = -0.013, 95% CI [-0.050, 0.024]). This pattern of results, 

again, does not indicate that shapes traced at faster speeds are disproportionally affected by 

the drug. 
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Appendix 3.5 Additional Analyses on Speed Modulation in Study 1 

A3.5.1 Additional Mixed Model Details 

Post-hoc tests were conducted on subsets of the data to explore the main effect of 

shape on speed modulation, whereby the main effect of shape for pairs of the shape condition 

were assessed. These analyses revealed that the main effect of shape on speed modulation 

(F(3, 1906) = 676.08, p < .001; see Figure A3.5.1) reflected a pattern in which shape 4 was 

traced with the lowest speed modulation values and shape 2 was traced with the highest, with 

shape 4/3 falling below shape 2 (main effect of shape between shapes 4/3 and 2: F(1, 951) = 

115.36, p < .001), followed by shape 4/5 (main effect of shape between shapes 4/5 and 4/3: 

F(1, 933) = 39.31, p < .001; main effect of shape between shapes 4/5 and 4: F(1, 954) = 

695.78, p < .001). The interaction between drug state and dosage was non-significant (F(1, 

1906) = 2.89, p = .089).  
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Figure A3.5.1  

A Graph Depicting Drug Effects on Speed-Modulation in Study 1 

 

Note. Speed-modulation residuals plotted for low (green; Parkinson’s Disease OFF-
medication) and high (purple; Parkinson’s Disease ON) dopamine conditions for each angular 
frequency-defined shape. Residuals were calculated after controlling for dosage, trial, 
participant number and day. Bars = mean, box = SE, shaded region = standard deviation, trial-
level values plotted. 
 

A3.5.2 Analysis on All Data 

Analysis reported in the main text was repeated for a dataset containing all data, 

following the removal of outliers and a log transform. As in our primary analysis, a main 

effect of drug state was observed (F(1, 1925) = 7.18, p = .007), with lower speed modulation 

values observed OFF medication (beta estimate = -0.062, 95% CI [-0.107, -0.017]). Again, a 

main effect of shape was observed (F(3, 1925) = 672.14, p < .001), and no drug by dosage 

interaction (F(1, 1925) = 2.67, p = .102). 
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Appendix 3.6 Additional Analyses on Speed Modulation in Study 2 

A3.6.1 Additional Mixed Model Details 

As indicated by post-hoc analyses on subsets of the data, the main effect of shape on 

speed modulation (F(2, 1642) = 1092.40, p < .001; see Figure A3.6.1) reflected a pattern in 

which shape 4 was traced with the lowest speed modulation values and shape 4/3 was traced 

with the highest, with shape 2 falling between shapes 4/3 and 4 (main effect of shape between 

shapes 4/3 and 2: F(1, 1106) = 8.32, p = .004; main effect of shape between shapes 2 and 4: 

F(1, 1085) = 1540.70, p < .001). 

Figure A3.6.1  

A Graph Depicting Drug Effects on Speed-Modulation in Study 2 

 

Note. Speed-modulation residuals plotted for low (green; haloperidol) and high (purple; 
placebo) dopamine conditions for each angular frequency-defined shape. Residuals were 
calculated after controlling for estimated striatal dopamine synthesis capacity, trial, 
participant number and day. Bars = mean, box = SE, shaded region = standard deviation, trial-
level values plotted. 
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A3.6.2 Standard Model (not including estimated baseline striatal synthesis capacity) 

A LMM including drug state and shape as fixed effects revealed a significant main 

effect of drug state (F(1, 1730) = 29.85, p < .001; beta estimate = 0.092, 95% CI [0.059, 

0.125]). Again, a main effect of shape was observed (F(2, 1730) = 1036.60, p < .001).  

A3.6.3 Analysis on All Data 

Analysis reported in the main text was repeated for a dataset containing all data, 

following the removal of outliers and a log transform. An LMM including drug state, shape 

and estimated baseline striatal synthesis capacity as fixed effects revealed a significant main 

effect of drug state (F(1, 1719) = 48.10, p < .001) with lower speed modulation values in the 

haloperidol condition compared to the placebo condition (beta estimate: -1.181, 95% CI [-

1.516, -0.847]). Again, a main effect of shape (F(2, 1719) = 1127.40, p < .001) was identified. 

The main effect of drug state was moderated by estimated striatal dopamine synthesis 

capacity (F(1,1719) = 54.82, p <.001), and again a negative linear relationship was found 

between drug effect and estimated striatal dopamine synthesis capacity which cut the x-axis 

(F(1, 29) = 7.41, p = .011; beta estimate = -0.062, 95% CI [-0.109, -0.016]). Thus, this 

analysis on the full dataset revealed the same pattern of results as in our primary analysis. 

An LMM including drug state and shape as fixed effects revealed a significant main 

effect of drug state (F(1, 1807) = 18.81, p < .001; beta estimate = 0.069, 95% CI [0.038, 

0.100]). Again, a main effect of shape was observed (F(2, 1807) = 1065.80, p < .001). 

 

Appendix 3.7 Additional Analyses on Speed Meta-Modulation in Study 1 

A3.7.1 Additional Mixed Model Details 

No main effect of drug state was observed (F(1, 57) = 0.49, p = .485), nor an 

interaction between drug state and dosage (F(1, 57) = 1.04, p = .313). This lack of drug effect 
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on speed meta-modulation is supported by the lack of a drug state by shape interaction in the 

speed-modulation LMM for Study 1 (F(3, 1906) = 0.30, p = .824). 

 

Appendix 3.8 Additional Analyses on Speed Meta-Modulation in Study 2 

A3.8.1 Standard Model (not including estimated baseline striatal synthesis capacity) 

When analysing the data without including estimated baseline striatal synthesis 

capacity as a predictor, the main effect of drug state on speed-meta-modulation remained. We 

again observed that haloperidol reduced the meta-modulation of speed (F(1,59) = 7.93, p = 

.007; beta estimate = 0.008 95% CI [0.002, 0.013]), with shallower meta-modulation 

gradients under haloperidol. 

 


