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Abstract

This thesis addresses two similar problems that combine the theory of Coulomb

drag with the emerging �eld of graphene physics. First, the theory of Coulomb drag

between two graphene mono-layers is extended to include �nite temperature. It is

found that the e�ect is strongly enhanced at intermediate temperatures by coupled

plasmon modes. This behaviour is similar to that seen between two dimensional

electron gasses. In the second, we investigate the �nite temperature polarisability

of a graphene bilayer and apply this to the problem of Coulomb drag in a bilayer

system. We �nd that enhancement due to coupled plasmon modes is suppressed,

and dependence of the position and width of the plasmon peak on carrier density

and interlayer separation is enhanced.
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Chapter 1

General Introduction

The physics of electron-electron (e-e) interaction plays a leading role in a wide range

of condensed matter phenomena. These range from the fractional quantum Hall

e�ect and high-temperature superconductivity, to Wigner crystallisation, exciton

condensates and the Mott transition. In addition, the e-e interaction is central to

problems involving quantum coherence since it is a leading mechanism of electron

dephasing.

Despite its importance, the direct measurement of the e-e interaction through

transport experiments is di�cult. This is a consequence of the e-e interaction's

momentum conserving nature. A scheme for doing so was �rst proposed in 1977 by

Probrebenskii [1] and later by Price [2] in 1983. Their idea involved measuring the

rate at which current, passed through one of two closely spaced conducting layers,

drags charge in the other via the e-e interaction. The layers should be uncoupled.

In other words, far enough apart so that there is no quantum mechanical tunneling

between them. However, they must be close enough so that the weak drag e�ect

can have a measurable in�uence and typically this equates to a layer separation of

around 200Å. This e�ect was to become known as Coulomb drag, and from the

1
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details one can infer something about the character of the e-e interaction.

It was not until the development of advanced semi-conductor fabrication tech-

niques that the experimental realisation of Coulomb drag was made possible. In

1991, Gramila et al. [3] did just that and observed behaviour in broad agreement

with theory. However, there were signi�cant deviations from the predicted result.

This led to a �urry of experimental and theoretical activity that saw Coulomb drag

evolve into a �eld in its own right. The inconsistencies were eventually explained

and this opened the door to the investigation of Coulomb drag in a number of novel

experimental con�gurations. Although the pace of research in the �eld has greatly

reduced, new and surprising results are still emerging. For example, the recent dis-

covery [35] of novel universal conductance �uctuation behaviour in Coulomb drag

systems.

A new and interesting opportunity arose in the �eld with the 2004 discovery of

graphene by Novoselov et al. [51]. Graphene is a two dimensional crystal of car-

bon atoms arranged in a honeycomb lattice and it has some remarkable features.

Speci�cally, its electronic excitations are not described by the Schrödinger equation,

ubiquitous in condensed matter physics, but instead by the relativistic Dirac equa-

tion. Graphene's electrons therefore mimic the physics of quantum electrodynamics

and behave as ultra-relativistic particles, with an e�ective speed of light around 300

times smaller than the true speed.

Although graphene's elementary properties have long been known [40], they were

only used as a starting point for calculations on more readily available carbon al-

lotropes, such as graphite. Since 2004, many new and interesting properties of

graphene have been discovered, both theoretically and experimentally, and it has

become the fastest growing �eld in the condensed matter community. There are
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many interesting of graphene's unusual properties. As of 2009, graphene holds the

records of being the strongest [52] material ever discovered and is approximately

200 times stronger than the strongest steel. At room temperature, it is also the

most conductive, both electrically and thermally [53]. Naturally, this has led to a

great deal of excitement about its potential uses. Despite theses possibilities, the

di�culty in realising them comes from the inability to manufacture graphene sheets

on an industrial scale and there is a great deal of work to be done in this area.

Perhaps the most exciting of graphene's potential uses is that for replacing silicon

as the material of choice for building integrated circuits. As mankind reaches the

physical limits of silicon, graphene may o�er way to continue the trend of Moore's

law. Of particular relevance to this potential application is the physics of two coupled

graphene layers, commonly referred to as a graphene bilayer. A bilayer has the

advantage of possessing a tunable band gap and as such may provide a more realistic

route to viable graphene transistors.

The idea to merge the two �elds of Coulomb drag and graphene is not original

[106, 107]. However, to our knowledge the only calculations so far have been for

two graphene monolayers, and each has used zero temperature expressions for many

of the key terms. In this thesis, we will extend the theory to include a full �nite

temperature treatment. The primary original work of this thesis uses McCann et

al.'s 2006 discovery [85] of the bilayer's low energy Hamiltonian as its starting point.

We investigate the physics of Coulomb drag between two bilayers, deriving on the

way new results for the graphene polarisation and non-linear susceptibility.



Chapter 2

Coulomb Drag

In this chapter, we give a general overview of the physics and history of Coulomb

drag. This is an e�ect whereby charge �owing in one of two closely spaced conducting

layers drag charge in the other. We begin by motivating and describing the drag

e�ect in the context of the electron-electron (e-e) interaction and go on to describe

the mathematical framework of the theory.

Following this, we discuss some of the early discrepancies between theory and

experiment and how they were ultimately resolved. These led to the realisation that

drag experiments exist in one of three regimes. At low temperature (T < 0.1TF

where TF is the Fermi temperature) the exchange of phonons dominates the process.

In the intermediate regime (0.1TF < T < 0.5TF ) the Coulomb force dominates

before succumbing to the presence of coupled plasmon modes at higher temperatures

(T > 0.5TF ).

Upon establishing the behaviour of the canonical drag experiment, we will con-

tinue by summarising some of the later developments and extensions to the �eld.

These include the investigation of drag with correlated disorder and the discovery

of novel universal conductance �uctuation behaviour.

4



2.1. Introduction 5

In the �nal part of the chapter we will present two equivalent derivations for

the drag conductivity. The �rst, a semi-classical approach, uses coupled Boltzmann

equations to derive an expression for the interlayer momentum transfer. This method

is physically transparent but is unable to capture higher order quantum e�ects such

as weak localisation. The second, a fully microscopic approach, starts from the Kubo

formula and treats the interlayer interaction as a perturbation. This is shown to be

equivalent to the Boltzmann approach in the limit of weak impurity scattering.

2.1 Introduction

Perhaps the most basic type of experiments that one could hope to perform on

electronic systems are those involving transport measurements. The e-e interaction

has only an indirect e�ect on the transport properties of most condensed matter

systems. This is a direct consequence of the momentum and total current conserving

nature of the e-e interaction in perfectly pure, translationally invariant systems.

Since transport measurements probe, for example, the average total current, this is

una�ected by e-e momentum transfer where total momentum is conserved.

Despite the above argument, it is possible to measure the e-e directly by con-

sidering a system of two coupled layers. Although total momentum in the system

is conserved, that within an individual layer is not. In principle momentum can

be transferred between the layers via the Coulomb interaction, or indeed any other

relevant interlayer interaction. It was this principle that led Probrebenskii [1] and

later Price [2] to investigate an e�ect which was to become known as Coulomb drag.

They predicted that a current passed through one of two closely spaced conducting

layers (the drive layer) would drag carriers in the other (the drag layer) via interlayer
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Figure 2.1: The basic con�guration of a Coulomb drag experiment. A current I
passing through the drive layer interacts with charge carriers in the drag layer re-
sulting in a transfer of momentum between layers (in opposite direction for electrons
and holes) A net charge builds up at one end of the drag layer as a result of elec-
tron hole asymmetry until its electric �eld balances the force due to Coulomb drag.
Measurements of the voltage VD along the drive layer provide information about the
rate of momentum transfer.

Coulomb scattering (�gure 2.1). By closely spaced it is meant that the layers are far

enough apart so that quantum mechanical tunneling between the layers is negligi-

ble, but close enough so that the interlayer Coulomb interaction is strong (typically

∼ 200Å).

If the drag layer is in open circuit, there will be a build up of charge at one

end that will continue to increase until the electrostatic force exactly balances that

due to the interlayer scattering, whereby the system is in a stationary state The

voltage VD induced across the drag layer is a direct result of the e-e interaction and

in performing such experiments we may hope to learn something of its character.

It was almost 10 years between Price's 1983 theoretical prediction of Coulomb

drag [2] and its �rst experimental observation by Gramila et al. in 1991 [3]. The

reason for this is that the drag e�ect is very small and this is a direct result of

quantum mechanics. The Pauli exclusion principle tells us that no two fermions can

exist in the same state. Therefore, charge carriers in a drag experiment can only

scatter if there is an empty state for them to scatter into. At zero temperature all

states of a fermionic system are occupied up to the Fermi energy EF . All states
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above this energy are empty. The result is that Coulomb drag at zero temperature

is not possible. At �nite temperature however, states close to the Fermi surface

become partially occupied and so interlayer scattering is allowed. Coulomb drag is

therefore driven by the thermal �uctuations of the system. Because these only occur

for the relatively small number of states around the Fermi surface, the e�ect is small.

Based on this, one might suggest that the drag e�ect will scale as T 2 because the

number of partially occupied states increases as ∼ kBT for each layer. As we shall

see, this is broadly correct but a more sophisticated theory is required to model the

experimental results.

The drag e�ect is in fact even smaller than the above argument would suggest.

The current passing through the drive layer consists of electrons above the Fermi

energy and holes below the Fermi energy traveling in opposite directions. If one

considers the electron and hole states to be symmetric, then electrons and holes

in the drag layer will be dragged in the same direction and at the same rate. The

result will be a zero net drag e�ect. The observation of a �nite drag e�ect is therefore

only possible due to the small asymmetry between electron and hole states. This

asymmetry exists because the electrons and holes have slightly di�erent energies

relative to the bottom of the Fermi sea, a consequence of the band's parabolicity.

The net e�ect of this and of the Pauli exclusion principle is to make the drag

e�ect very small indeed. It was not until the development of advanced semicon-

ductor techniques that experimentalists were able to build structures with su�cient

precision to observe Coulomb drag.
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2.2 General Formalism

In this section, we will outline the basic mathematical framework of the theory. If

the drag layer is in open circuit so that the drag current per unit width, JD, is zero,

the drag e�ect is characterised by the drag resistivity ρD (analogous to the standard

transport resistivity). The drag resistivity is de�ned as the ratio of the induced drag

electric �eld ED to the drive current per unit width J1 :

ρD =
ED
J1

; JD = 0, (2.1)

where ED = VD/l. Here, l is the layer length and VD is the voltage across the drag

layer. In most theoretical treatments, the quantity most readily at hand is the drag

conductivity σD. It is elementary to convert from one to the other by casting the

resistivity for the system as a whole into the 2× 2 matrix

ρ =

 ρ11 ρ12

ρ21 ρ22

 , (2.2)

where the ρii are the in-plane layer resistivities and ρij ≡ ρD are the drag resistivity

and, for example, the indices 1, 2 represent the drive and drag layers respectively.

From the relation ρ = σ−1 the drag resistivities in terms of the drag conductivities

are

ρD =
σD

σ11σ22 − σ12σ21

. (2.3)
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The drag conductivity is typically smaller than the intralayer conductivity by a

factor of 10−6 [7] and so a common approximation is to write

ρD '
σD

σ11σ22

. (2.4)

The in-plane conductivities are typically known. This leaves theoretical treat-

ments of Coulomb drag the task of deriving an expression for σD in terms of the

system parameters. These include temperature (T ), interlayer distance (d) and the

details of the interlayer interaction. A number of di�erent approaches [3,7,9,19�21]

all lead to the same general expression for the drag conductivity

σD =
1

16πkBT

∑
q

∫ ∞
0

Γ1(q, ω)Γ2(q, ω) |U12(q, ω)|2

sinh2(ω/2kBT )
dω. (2.5)

An explanation of each of the terms in (2.5) is in order. The term U12(q, ω) is the

e�ective interlayer potential. The expression above is su�ciently general so that

interlayer interactions other than the Coulomb can be investigated with a suitable

choice of U12. In the case of the Coulomb interaction, in order to obtain agreement

with experiment, it is necessary to self consistently account for the screening of

charge between layers. For typical experimental parameters [3] the random phase

approximation is used. This assumes that the system is in the high density limit

where interactions are small and the random phase approximation is asymptotically

exact. The interaction term typically results in a factor of sinh−2 (qd) where d is

the interlayer spacing. This provides an upper cuto� to the momentum sum and

is physically interpreted as �uctuations smaller than the interlayer spacing being

averaged out from the point of view of the drag layer. The result is that �uctuations
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with a wavelength � d do not contribute to the drag rate.

The terms Γi(q, ω) are the non-linear response functions of the charge density in

layer i to an external potential:

δρi(q, ω) = Γi(q, ω)φ2 (q, ω) . (2.6)

Accordingly, the drag e�ect can be viewed as the recti�cation of alternating �uctu-

ations in the drive layer to a direct current in the drag layer. It will be shown below

that for a 2DEG in the weak scattering limit, these functions are proportional to

the imaginary parts of the individual layer linear susceptibilities χi(q, ω). In this

case (2.7) becomes

σD =
1

16πkBT

∑
q

∫ ∞
0

Imχ1(q, ω)Imχ2(q, ω) |U12(q, ω)|2

sinh2(ω/2kBT )
dω. (2.7)

The �nal sinh−2 (~ω/kBT ) factor controls the available phase space for the charge

carriers to scatter into. As described in the previous section, this arises due to the

broadening of the Fermi distribution on each layer at �nite temperature.

Interlayer Interaction The interlayer interaction term U12 is arguably the most

important term in (2.5) because it is responsible for de�ning the character of the mo-

mentum transfer between layers. Although we will primarily consider the Coulomb

interaction, it is su�ciently general so that other interactions such as phonon ex-

change between the layers can be investigated with an appropriate choice of U12.

To get quantitative agreement with experiment, it is essential to take into account

the screening of charge when constructing a Coulombic interaction term. Under the

assumption that the electron gas is in the high density (weakly interacting) limit, it is
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common to approximate the screened interlayer interaction using the random phase

approximation (RPA) [18]. In the RPA, electrons are treated as self-consistently

moving within the background electric �eld of the other electrons. For a single layer

in the RPA, the e�ective intralayer interaction is given by [18]

U(q, ω) =
Vb(q)

ε (q, ω)
=

Vb(q)

1 + Vb(q)χ(q, ω)
(2.8)

where ε(q, ω) is the dielectric function, Vb(q) = 2πe2/q is the bare in-plane Coulomb

interaction (see appendix A) and χ(q, ω) is the polarisability of the electron gas.

The polarisability de�nes the response of the charge δρ(q, ω) to an external potential

ψ(q, ω) through

δρ(q, ω) = −χ(q, ω)ψ(q, ω). (2.9)

The extension to a double layer system is straightforward and requires the bare

interlayer Coulomb interaction

Ub(q) =
2πe2exp(−qd)

q
, (2.10)

where d is the layer separation. This is derived by considering the potential of a

charge situated in one plane, as seen from the other. This is given by

Ub(r) =
e2

√
r2 + d2

, (2.11)

where r, θ are the in-plane radial and angular coordinates of the observation point,
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relative to the charge. Fourier transforming (2.11) we get

Ub(q) =

∫ ∞
0

rdr

∫ 2π

0

dθ
e2

√
r2 + d2

eiqr cos θ = 2πe2

∫ ∞
0

J0(qr)rdr√
r2 + d2

, (2.12)

where Jn = 1
2πin

∫∞
0
eiqr cos θdθ is a Bessel function of the �rst kind. The integral over

r is then performed with the aid of a standard identity [5] and yields (2.10).

The e�ective interlayer interaction is most conveniently expressed as a 2x2 matrix

[15]

Û(q, ω) =
V̂b(q)

1 + χ̂(q, ω)V̂B(q)
, (2.13)

where the o�-diagonal elements U12 = U21 are the interlayer interactions. Some

straightforward algebra results in

U12(q, ω) =
Ub(q)

ε12(q, ω)
=

Ub(q)

[1 + χ1] [1 + χ2]− U2
b (q)χ1χ2

, (2.14)

where χ1 = χ1(q, ω) and χ2 = χ2(q, ω) are the response functions for each layer.

Equation (2.14) is valid for the case where the layers are treated as mathematical

planes. To get quantitative agreement with experiment it is necessary to extend

this result to include a �nite layer thickness in which case the denominator of (2.14)

acquires form factors. A standard approach [4,8] is to model each layer as an in�nite

square well of width L, separated by a well-centre to well-centre distance d. Under

these approximations (2.14) is modi�ed to

U12(q, ω) =
Ub(q)

[1 +Gχ1] [1 +Gχ2]− G̃2U2
b (q)χ1χ2

, (2.15)
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where

G = − 1

2q
e−qd

(
sinh

ql

2

8π2

ql (4π2 + q2L2)

)2

, (2.16)

G̃ = − 1

2q

[
2

qL
+

qL

4π2 + q2L2
−
(

8π2

ql (4π2 + q2L2)

)2

sinh
ql

2
e−qL/2

]
. (2.17)

The e�ect of treating the layers as quantum wells and not as mathematical planes

does not a�ect the qualitative behaviour of the Coulomb drag e�ect. It is necessary

to do so simply to obtain precise agreement between theoretical and experimental

values of the drag rate.

2.3 Early Developments

As already discussed, a naive approach to the temperature dependence of ρD might

suggest that it should vanish as T 2 at low temperatures. This is a result of the scat-

tering being limited by the exclusion principle to within kBT of the Fermi surface.

With the development of advanced semiconductor fabrication techniques, this pre-

diction was �rst put to the test experimentally in the pioneering work of Gramilia

et al. [3]. For the �rst time they were able to produce two independently contacted

quantum wells that were spaced closely enough to observe Coulomb drag.

2.3.1 Double Quantum Wells

The two-dimensional electron gas, made by trapping electrons at doped semicon-

ductor junctions, is perhaps the most proli�c system in which low-dimensional elec-

tronic transport has been studied. Modern fabrication techniques and in particular

molecular beam epitaxy, allow for the controlled construction of ultra high crys-

talline quality semiconductor structures and provide exquisite control of dopant
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Figure 2.2: Independently contacted quantum wells. The Hall bar geometry as used
by Gramila et al. showing upper and lower arm gates. Reproduced from [3].

levels. Modulation doping, in which the carriers are physically separated from the

dopants that create them, have resulted in huge increases in the carrier mobility of

these structures.

It was these techniques that allowed Gramila et al. [3] to construct a double

quantum well (DQW) system with which to study Coulomb drag. They used a

modulation doped GaAs /Al0.3Ga0.7As heterostructure to create a system comprised

of two closely spaced quantum wells, each 200Å thick and separated by ∼ 200Å.

Carriers in the well are constrained to lie in the lowest energy level of the well

but are free in the remaining two dimensions. The system therefore acts as an

approximation to a two dimensional electron gas.

The key to this experiment and others like it is the ability to independently

contact the quantum wells. This was achieved by creating a Hall bar geometry

in which control contacts were placed on each arm above and below the DQWs.

By varying the voltage applied to these gates, carriers in a given layer are locally

depleted. The remaining layer is then independently contacted to that arm of the

Hall bar and ordinary transport measurements can be taken from it.
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Figure 2.3: Temperature dependence of the interlayer momentum transfer rate di-
vided by T 2 for interlayer separations of 175-, 225- and 500-Å. The dashed line
shows the estimated Coulomb contribution to the 500-Å sample. For these samples
the Fermi temperature is approximately 60K. Reproduced from [3].

2.3.2 Phonons

The experiment carried out by Gramilia et al. [3] showed a deviation from the

expected ρD ∼ T 2 behaviour due to Coulomb scattering alone. Although this de-

pendence is roughly satis�ed, con�rming the dominance of the e-e interaction, the

experiment gave a non-monotonic ρD/T 2 with a maximum at ≈ 2K (�gure 2.3).

The Fermi temperature for the samples used is approximately 60K and the overall

temperature dependence and position of the maximum are roughly similar for dif-

ferent layer separations. At a layer separation of 500Å, the observed ρD is simply

too large to be the result of Coulomb scattering alone and this led Gramila et al. to

suggest an additional interlayer interaction.

An initial clue to the nature of this interaction is that the observed scattering

rate shows an extremely weak dependence on layer spacing, once Coulomb scattering

is subtracted from the overall rate. This implies that the interaction is phonon me-

diated because low temperature acoustic phonon mean free paths in these samples
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are on the order of millimetres. One would therefore not expect signi�cant varia-

tion upon changing the layer separation by hundreds of Angstroms. Furthermore,

the observed temperature dependence bears a remarkable resemblance to the well

known interaction of acoustic phonons with 2D electrons [15]. The scattering rate

of this interaction, τ−1
ph , is linear in T at high temperatures, but has a much stronger

temperature dependence of T 5 or T 7 at low temperatures. For samples at these

densities the crossover occurs at a few Kelvin and hence the observed temperature

dependence of τD is broadly consistent with a phonon mediated interaction.

Further evidence for a phonon mediated interaction arises when the dependence

of the scattering rate on the relative electron density of each layer is considered.

The phase space for back scattering diverges in a 2DEG and the phonon scattering

rate is dominated by 2kF phonons [18]. Therefore, a phonon in the drive layer has

a much higher chance of being absorbed by the drag layer if the densities and hence

the Fermi wave vectors are matched. The result is that one would a expect phonon

mediated interaction to produce a peak in the interlayer scattering rate at matched

densities and this is indeed observed. This argument does not hold for the Coulomb

interaction between layers which, as we shall see later, is dominated by small angle

scattering by the factor of e−qd appearing in the interlayer interaction (2.14). Figure

2.4 shows that for the systems considered in [23], a peak at matched densities is

indeed observed at 2.3K where τ−1
D /T 2 is signi�cant, but not at both higher and

lower temperatures where it is small.

So far, the temperature, layer spacing and density dependence of the interlayer

scattering rates strongly support a phonon mediated interaction. A problem arises

when one compares the magnitude of the observed scattering rates with those ob-

tained theoretically. It is found that the observed scattering rates are between 20
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Figure 2.4: Dependence of the interlayer scatting rate on the electron density of
the drag layer (NV ) for three di�erent temperatures. The arrow indicates that the
densities of the two layers are matched. Inset: drag rate at 2.3K with NV replaced
by the gate bias. Reproduced from [23].

and 100 times larger than the calculated results for real phonon exchange, despite

having its characteristic temperature dependence. It was suggested [21, 22, 27] that

in order to get agreement with experiment, a virtual exchange mechanism should

be considered in the form of virtual phonons. Virtual phonons have the property of

not obeying energy conservation and provide a much stronger interaction. This is a

result of the di�erence in dimensionality of the electron and phonon systems. The

result is that although the in-plane components of the virtual phonon's wave vector

are constrained by momentum conservation, the out of plane component is not �xed

by energy conservation as it is for real phonons. Therefore, for a given electronic

excitation there is a line of possible excitations in phonon phase space. In compar-

ison, for real phonons the allowed phase space for a given electronic excitation is

restricted to two points.

The temperature dependence of real and virtual phonon interactions are similar
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but di�er in their magnitudes. It was decided by Gramila et al. [23] that more

evidence was required to indicate virtual over real phonon exchange. They suggested

that although a real phonon exchange interaction will be independent of the layer

separation until it becomes comparable to the phonon mean free path, this is not

true for virtual phonons. Instead, the range of virtual phonon energies able to

contribute to the interaction would decrease as the interlayer distance is increased.

Therefore, an observation of a reduction in τ−1
D for interlayer distances well below

that of the real phonon mean free path would be strong evidence in support of an

additional interlayer interaction. If this interaction is due to virtual phonons it would

be indicated by the fact that the temperature dependence of the virtual phonon

interaction is close to that for real phonons. This was con�rmed experimentally

when Gramila et al. observed a signi�cant decrease in interlayer scattering rate,

with the appropriate temperature dependence, in a system with a layer separation

of 5000Å.

2.3.3 Plasmons

Coherent, collective excitations of the electron gas, known as plasmons, play an

important role in the optical properties of metals and semiconductors. The system

may excite spontaneously, that is, a �nite response may arise from an in�nitesimal

excitation, at the poles of the charge density response function. If a pole lies on the

real axis then it is outside of the electron-hole (e-h) continuum (Imχ = 0) and so

the plasmon cannot decay by electron-hole excitations. As the pole moves o� the

real axis and moves into the e-h continuum, the plasmon develops a �nite lifetime

and it may decay via excitations of e-h pairs. This process is known as Landau

damping [8]. The plasmon dispersion relation is found by looking for zeros of the



2.3. Early Developments 19

dielectric function ε(q, ω) = 1 + Vb(q)χ(q, ω) which to lowest order in q is given

by [10]

ω =


e
(

4πn
m

) 1
2 3D

e
(

4πn
m

) 1
2 q

1
2 2D

(2.18)

In the context of Coulomb drag, it was �rst noted by Flensberg and Hu [8, 24]

that collective charge oscillations of the double layer system, that exist at the poles

of the e�ective interlayer interaction, will enhance the drag rate at su�ciently high

temperatures. For identical layers, χ1 = χ2 ≡ χ, the screened interlayer interaction

U12(q, ω) is given by (2.3):

U12(q, ω) =
Ub(q)

[1 + χ(q, ω)]2 − U2
b (q)χ2(q, ω)

. (2.19)

where Ub(q) = 2πe2exp(−qd)
q

is the bare interlayer interaction (2.10). There are two

plasmon modes, one where the charge oscillations are in phase (optic mode), and

the other where they are out of phase (acoustic mode). Evidence for the symmetric

(in-phase) and antisymmetric (out-of-phase) modes arises if we write (2.19) in the

form

U12(q, ω) =
1

2

[
Vb + Ub

1 + χ(q, ω)(Vb + Ub)
− Vb − Ub

1 + χ(q, ω)(Vb − Ub)

]
. (2.20)

where Vb(q) = 2πe2/q is the bare in-plane Coulomb interaction. At zero temperature

the poles of U12 lie on the real ω axis. This implies that the plasmons lie outside

of the e-h continuum and are therefore stable. Since the expression for the drag

conductivity involves an integration over Im{χ(q, ω)}, there can be no plasmon con-

tribution to the drag rate at zero temperature. At �nite temperature, the plasmon
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poles move o� the real axis and acquire a �nite lifetime, decaying by excitation of

e-h pairs. As the plasmon poles begin to overlap with the e-h continuum the latter

contribute to, and eventually dominate, the drag rate. That the �nite temperature

expressions for χ(q, ω) are required to see a contribution from plasmons explains

why Jauho et al. [4] did not see a plasmon enhancement. At �nite temperature,

there is no analytic expression for χ(q, ω) and so Flensberg and Hu [8, 24] were

forced to evaluate it numerically. They did so using the following expression by

Maldague [28] that expresses the �nite temperature polarisation as an integral over

the zero temperature expression,

χ(q, ω;µ, T ) =

∫ ∞
0

dµ′
χ(q, ω;µ′, T = 0)

4kBT cosh2[(µ− µ′)/2kBT ]
. (2.21)

As usual the chemical potential in two dimensions is obtained via conservation of

particle number and is given by [11]

µ = T ln(eTF /T − 1)/TF . (2.22)

It is possible to obtain the small q dispersion of these plasmon modes under

the assumptions of zero layer thickness and zero temperature. In this limit, the

poles are close to the real axis and so we may look for zeros of the real part of

(2.20). For typical drag experiments where the electronic density is high and kinetic

energy dominates over potential (see section 3.3.2.3), the appropriate 2D polarisation

function, χ(q, ω), is that taken in the RPA. First calculated in 1967 by Stern [12],
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it is given by

χ(q, ω) =
kFm

πq

 q

kF
−

√(
q

2kF
− ω

qvF

)2

− 1−

√(
q

2kF
+

ω

qvF

)2

− 1

 . (2.23)

To calculate the small q plasmon dispersion it is necessary to take χ(q, ω) in the

limits q � 1 and ω > q. This region is outside of the electron-hole continuum and

where the plasmon modes exits. In this limit we have

χ(q, ω) ' − n
m

(
q

ω
)2, (2.24)

where n is the electron density and m the e�ective mass. In the small q limit

Vb + Ub ' 4πe2/q and Vb − Ub ' 4πe2d, which when substituted into (2.20) yields

the dispersions ω±(q) of the two plasmon modes

ω+ = e
(

4πn
m

) 1
2 q

1
2 Optic,

ω− = e
(

2πnd
m

) 1
2 q Acoustic. (2.25)

As the acoustic plasmon mode is lower in energy, it provides the dominant contri-

bution to the drag rate. The plasmon dispersions at zero temperature are shown in

�gure 2.5 for two di�erent values of layer separation, along with the e-h continuum.

At large q the plasmon modes are not well de�ned because the two branches initially

merge and are then Landau damped out of existence.

Flensberg and Hu [24] were able to develop an approximation for the plasmon

contribution to the drag rate that is reasonably accurate up to around 0.5TF . By
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Figure 2.5: The plasmon dispersion for two coupled quantum wells for two di�erent
layer separations at zero temperature. Reproduced from [8].

expanding around the plasmon pole they obtained the expression

τ−1
± =

~2

8πenmkBT

∫ qc,±

0

dqq3 Im[χ(q, ω±(q))]

4 |β±(q)| sinh2[~ω±(q)β/2]
(2.26)

where β±(q) = dRe[χ(q, ω)]/dω |ω=ω± and the parameter qc,± de�nes the value where

the plasmon ceases to exist, i.e. when there are no more solutions to ε (q, ω) = 0 . In

analysing the dependence of the plasmon contribution on the interlayer separation

d, they noted that although the exponential dependence on the layer separation has

dropped out of (2.26), τ± is still d dependent through the d dependence of ω±(q),

β±(q) and qc. As can be seen from �gure 2.5, as d increases the slope of ω−(q)

increases while qc decreases. This is counteracted by the decreasing slope of ω+(q),

although this is a weaker e�ect. The drag rate then decreases with increasing d as

is expected. It is not possible to obtain an analytic expression for the d dependence

of the plasmon contribution. However, Flensberg and Hu were able to determine

numerically that within the range of validity of their approximation, τ−D ∝ d−α where

α ' 3 .
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Figure 2.6: The temperature dependence of the drag rate scaled by T 2 for two
identical GaAs quantum wells with densities n = 1.5×1011cm−2, a well separation of
d = 375Åand a well widths of 200Å. The full bold curve corresponds to calculations
using the �nite-T form of χ(q, ω), the dotted curve to using the T = 0 form of χ,
and the short-dashed curve is based on the static screening approximation of [4].
Reproduced from [8].

The numerical calculations of Flensberg and Hu [24] suggest that at temperatures

above 0.2TF the plasmons dominate the drag e�ect with a peak at around 0.5TF

(see �gure 2.6). At higher temperatures, the plasmons are increasingly Landau

damped and their contribution to the drag rate decreases. They also showed that

the drag rate is maximised when the densities of each layer are matched which is

an important experimental signature of plasmon enhancement. This peak occurs

because the contribution of each layer to the plasmon enhancement is essentially

determined by distance from the e-h continuum to the plasmon dispersion. These

distances are minimised for matched densities.

As the temperature is increased well beyond the Fermi temperature, the 2DEG

begins to behave like a gas of classical particles and is governed by the Maxwell-

Boltzmann distribution. In the high temperature limit it was shown [24] that drag

rate that goes as τ−1
D ∝ T−3/2, although the numerics indicated that does not occur

until around 10TF , for a TF of around 60K.



2.3. Early Developments 24

Figure 2.7: The scaled transresistivity ρDT−2 verses T/TF for di�erent but matched
densities. The dashed (solid) curves are the RPA (Hubbard) calculations of [8]. The
circles are the experimental results of [30]. Reproduced from [30].

The theoretical predictions for plasmon enhancement were put to the test in

experiments by Hill et al. [29] with good qualitative agreement. They found that

the temperature required to excite the plasmons is lower than expected and that,

over the majority of their temperature range, the magnitude of the drag rate was

higher than the prediction. The suggestion that this indicated a failure of the

RPA approximation was bolstered by several attempts [25, 26] to go beyond it.

More closely matching the experimental data, they emphasised the fact that RPA

is only good for very high densities. In general it overestimates the screening so

that the e�ective interlayer interaction is weaker. The comparison with theory

and experiment (�gure 2.7) clearly shows that this is particularly the case at higher

temperatures. In addition, Guven and Tanatar [31] studied coupled plasmon-phonon

modes and found an enhancement to the drag e�ect.
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2.3.4 Disorder

The e�ect of disorder on the drag rate was �rst investigated by Zheng and MacDon-

ald [19]. They used the fact that in the di�usive regime (q < 1/l and ω < 1/τ), the

density response χ(q, ω) is given at small frequencies and wave-vectors by

χ(q, ω) =
dn

dµ

Dq2

Dq2 − iω
, (2.27)

where D = l2/2τ is the di�usion constant, l the mean free path, τ = l/vF the

scattering time and dn/dµ the density of states. They showed that the di�usive

contribution to the drag resistivity is

ρDiffusiveD =
e2β

(kTFd)2

∫ 1/τ

0

dω
ω2

eβ~ω + e−β~ω − 2

∫ 1/l

(ω/D)1/2

dq

q
. (2.28)

In the low temperature, large layer separation limit they were able to obtain an

analytic expression for the drag resistivity and found that

ρD ≈
e2

(kTFd)2
T 2logT, (2.29)

which is valid for l � d, T � TF and kFd� 1. The change in the distance depen-

dence from d−4 in the ballistic case to d−2 in the di�usive case is a direct result of the

change in the wave-vector dependence of Imχ from q−1 to q−2. Zheng and MacDon-

ald numerically calculated the relative correction to the interlayer scattering rate,

τ∆/τB, where τ∆ is the correction due to disorder and τB the ballistic contribution.

These results are shown in �gure 2.8 as a function of sample mobility and it can be

seen that disorder dominates the drag e�ect at low temperatures and mobilities.
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Figure 2.8: The relative correction to the interlayer scattering rate due to disorder
enhancement for several temperatures as a function of sample mobility and for a
layer separation of 500Å and a density of 1.5 × 1011cm−2. The last two plots are
results for the case where one layer has an in�nite mobility and the other a �nite
mobility. Reproduced from [19].

Zheng and MacDonald also estimated the crossover temperature Tc where the

e�ect of disorder on drag becomes observable as

Tc ∼ Tτexp[−3(l/d)2/4ζ(3)], (2.30)

where Tτ = ~/kBτ and ζ (z) is the Riemann zeta function. No experiment has yet

observed Coulomb drag in the di�usive regime. For typical drag experiments this

crossover temperature is below experimentally attainable temperatures.

2.4 Further Developments

By the end of the 1990s, the physical properties of the canonical drag experiment

were well established [15]. Researchers now turned their attention to some novel

extensions to the theory and experiment, and in this section we review a selection

of these.
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2.4.1 Mesoscopic Systems

A mesoscopic system is one whose size is of the order of the coherence length,

Lϕ, of the charge carriers. The coherence length is the distance that the carriers

travel before losing their phase coherence. These systems are essentially in between

the atomic and the bulk regimes and as such the cornerstone of statistical physics

(that principle that systems behave as the average over an ensemble of identical

systems), is no longer applicable. An electron loses its coherence through inelastic

e-e or electron-phonon scattering processes. As temperature decreases, the coherence

length increases as the density of phonons decreases. In the low temperature regime,

e-e scattering dominates the dephasing process [37].

In mesoscopic systems, the wave properties of electrons are observable and man-

ifest themselves in various phenomenon such as weak localisation and universal con-

ductance �uctuations (UCF). Weak localisation is seen in bulk samples and is the

process by which coherent, di�usive electrons, traveling on time reversed paths,

constructively interfere. It manifests itself in a divergence in the resistivity of meso-

scopic systems, as the temperature approaches zero, and a decrease in resistance

with an applied magnetic �eld (negative magnetoresistance). This is a result of the

magnetic �eld interacting with the phase of the interfering electrons. It has been

shown [7,9] that weak localisation has a negligible e�ect on the drag resistance.

Universal conductance �uctuations are not seen in bulk samples and are small

variations in the resistivity. These variations' de�ning characteristic is that they

are reproducible. As parameters such as magnetic �eld, impurity con�guration (re-

con�gured by heating) or carrier density are varied across a range, the resistivity

will vary in a way that will be exactly duplicated if the process is repeated. This
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Figure 2.9: Reproducible �uctuations of the drag resistivity. The black, green,
and red plots show reproduced �uctuations of the drag resistivity, each taken at a
di�erent temperature. The amplitude of the �uctuations are clearly larger at lower
temperatures. (A) Drag resistance measured at low temperatures as a function of
passive layer concentration; T = 1, 0.4 and 0.24 K, from top to bottom. (Inset) ρD
as a function of T for two values of n2 denoted by the dotted lines; solid line is the
expected T 2 dependence of the average drag. (B) ρD as a function of B; T = 0.4,
0.35, and 0.24 K, from top to bottom. (Graphs for higher T are vertically o�set
for clarity.) Single-layer concentration for each layer is 5.8× 1010cm−2. (Inset) The
UCF of the single layer, with an average background resistance of 500 Ω subtracted.
Reproduced from [35].

leads to concepts such as magneto-�ngerprinting whereby a sample's unique and

reproducible resistance �uctuations could in principle be used to identify it.

It was �rst suggested by Aleiner and Narozhny [36] that at low enough temper-

atures and for very small disordered systems, mesoscopic �uctuations may actually

come to dominate the drag conductivity with the sign of the drag current becoming

random. These ideas were �rst put to the test experimentally by Price et al. [35].

They explored the potential for UCF in samples larger and cleaner than theory sug-

gested would produce signi�cant �uctuations. Surprisingly, they found (see �gure

2.9) that although the �uctuating drag resistance was small, it was still four orders

of magnitude higher than predicted by theory.

The authors have provided a possible explanation for this surprising result. In

mesoscopic systems it is not only the conductivity but also the local density of states
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that �uctuates. In their samples, the mean free path between impurity scattering

is large compared to the layer separation. This implies that only relatively large

momentum transfers contribute to the drag conductivity. The uncertainty principle

then demands that the interlayer interactions occur over small distances. Therefore,

�uctuations in properties such as the local density of states govern the drag e�ect.

At the relevant experimental parameters, �uctuations in the local density of states

are known to be much bigger than the average of the sample. Fortunately, this

particular mechanism has a very speci�c temperature dependence and Price et al.

were able to show that their experiment is in good agreement with this behaviour.

This experiment has provided an interesting new way to study not only just the e-e

interaction, but the interplay between the e-e interaction and quantum coherence

e�ects [37].

2.4.2 Correlated Disorder

In conventional Coulomb drag experiments, the carriers in each layer are donated

by doped layers below and above the system. Because screening is e�ective in these

systems, the carriers in each layer are only scattered by the smooth and random po-

tential of the impurities in the closest doped layer. This is the so called independent

impurity model.

Gornyi et al. [34] studied a correlated impurity model in which a doped layer is

placed between the layers of a conventional drag experiment. There is therefore a

correlation in the impurity potential experienced by the carriers of each layer. It was

found that at low temperatures and in the di�usive regime, the correlated impurity

model results in a signi�cant enhancement in the drag e�ect. A cartoon of this

e�ect is that because the carriers are moving within the same impurity potential,
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there is an increased probability for electrons in opposite layers to follow an identical

trajectory. The result is that overall there is an increase in the average time during

which electrons in opposite layers can experience Coulomb scattering.

2.4.3 Tunneling Bridges

Kamenev and Oreg [32] investigated the drag e�ect with local tunneling links be-

tween the layers. Their particular model was to include the presence of point like

bridges (places where electrons may tunnel), between the layers. Such a situation

often occurs in metallic double layer systems [33]. For charge carriers of the same

sign, the drag current �ows in the same direction as the drive current. Kamenev

and Oreg showed that in the presence of tunneling bridges, the interaction between

the tunneling and the Coulomb interaction leads to a drag conductivity that is �nite

at zero temperature and negative for carriers of the same sign.

Two di�erent regimes were identi�ed in which di�erent tunneling mechanisms

cause a negative drag conductivity. If the temperature is not too small then the

drag current is dominated by the following mechanism. As current passes through

the drive layer, a fraction of the carriers tunnel into the drag layer and in doing so

�forget� the direction of their initial momentum (a consequence of the uncertainty

principle). The result is that there is no net contribution to the drag current at this

stage. However, the repulsive Coulomb interaction between the remaining electron

in the drive layer and the tunneled electrons cause the later to move in a direction

opposite to the drive current. The net result is a negative drag conductivity. At

lower temperatures the dominant process is one that involves coherent tunneling to

the drag layer and back, accompanied by the Coulomb interaction. It was shown

that this mechanism has a strong temperature dependence that is logarithmically
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divergent as T → 0.

2.5 Derivation of the Drag Conductivity

The �rst microscopic theoretical treatment of the drag e�ect was given by Jauho and

Smith [4] and was based on a Boltzmann equation approach. Alternative treatments

include the Green's function formalism [7, 9], presented in section 2.5.2, the mem-

ory function formalism [19] and the collective excitation approach [20]. Although

studying Coulomb drag through the Boltzmann equation is semi-classical and hence

unable to capture higher order quantum e�ects, such as weak localisation, it has

the advantage of providing a transparent origin for the terms appearing in equation

(2.7). With this in mind it is instructive to look at this approach in some detail.

2.5.1 The Boltzmann Equation Approach

This calculation due to Jauho et al. [4] is valid under the condition of weak scat-

tering (ωτ > 1). It uses coupled, linearised Boltzmann transport equations to

calculate the transfer of momentum from the drive to the drag layer. This approach

is semi-classical in the sense that although the Boltzmann equation treats scattering

classically, quantum mechanics enters the procedure via the de Broglie relation and

the use of the Fermi equilibrium distribution function.

The calculation proceeds as follows. After obtaining the Boltzmann equation

and the collision term for interlayer scattering, the resulting expression is linearised

under the assumption of weak interlayer scattering. Following this, it is coupled with

the in-plane Boltzmann equation for the drive layer, linearised under the assumption

of weak intralayer impurity scattering. After a series of technical manipulations, the
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resulting expression will be written in terms of the polarisabilities, χ(q, ω), of each

individual layer.

The Boltzmann equation describes the evolution of the non-equilibrium distri-

bution function f (r,k, t) as a function of time. It is one of the most important

equations of non-equilibrium statistical mechanics. The distribution function is de-

�ned so that f (r,k, t) drdk is the number of particles that, at time t, have a position

within an element dr about r, and a momentum within an element dk about k. In

the absence of collisions, and in the presence of an external force F, particle conser-

vation demands that

f

(
r +

k

m
dt,k + Fdt, t+ dt

)
drdk− f (r,k, t) drdk = 0. (2.31)

In the presence of collisions, the resulting change in distribution function must equal

(2.31),

f

(
r +

k

m
dt,k + Fdt, t+ dt

)
drdk− f (r,k, t) drdk =

(
∂f

∂t

)
coll

drdkdt. (2.32)

Dividing (2.32) by drdkdt and taking the in�nitesimal limit, we arrive at the Boltz-

mann equation,

∂f

∂t
+
∂f

∂r
· v +

dk

dt
· df
dk

=

(
∂f

∂t

)
coll

. (2.33)

In general, solutions to (2.33) are non-linear integro-di�erential equations that must

be evaluated numerically. There are several approximations that are commonly used

in Boltzmann equation calculations in order to make the problem more tractable.

The �rst is to linearise the Boltzmann equation and restrict the problem to small
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deviations from equilibrium. The distribution function can then be written as

f 0 (k) + ∆f (k) , where f 0 (k) is the equilibrium distribution function and ∆f (k) is

small. The second commonly used technique for evaluating the Boltzmann equation

is to approximate the collision term by a relaxation time form by writing,

(
∂f

∂t

)
c

= −f (k)− f 0 (k)

τk
= −∆f (k)

τk
. (2.34)

This implies that the collisions restore the non-equilibrium distribution function

f (k) to its equilibrium value f 0 (k) in a characteristic time τk. In a further sim-

pli�cation, the scattering time τk is often taken as being momentum independent,

τ . It is possible to derive an expression for the drag rate assuming a momentum

dependent scattering time [38]. However, the result is not expressible in terms of

the individual layer susceptibilities.

In calculating the interlayer collision rate in a Coulomb drag system it will be

necessary to work with an explicit form for the collision term. For a single layer,

it is straightforward to construct the collision integral by considering the phase

space restrictions to scattering, along with the scattering probability Ωk,k′ . The

probability per unit time that an electron in a state k will be scattered into a state

with the same spin, contained in an in�nitesimal element dk′ around k′, is Ωk,k′dk
′.

However, not all of the states in dk′ are empty. As a consequence of the exclusion

principle, the actual rate of scattering will be reduced by the fraction of occupied

states, 1− f (k′). Now, the probability per unit time P (k) of an electron in a state

k, leaving dk via collisions, must be the sum over all k′ of the probability to scatter

into a state k′:

P (k) =

∫
dk′

(2π)d
Ωk,k′ (1− f (k′)) . (2.35)
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The total number of electrons per unit time that undergo a scattering event in the

in�nitesimal volume dk around k, and consequently leave it, is P (k) f (k) . The

change in the distribution function due to these collisions is therefore,

(
∂f (k)

∂t

)
out

= −f(k)P (k) = −f (k)

∫
dk′

(2π)d
Ωk,k′ (1− f (k′)) . (2.36)

To evaluate
(
∂f(k)
∂t

)
in
, we note that the probability per unit time that electron in a

state k′ is scattered into dk around k is Ωk′,kdk
′. Because only a fraction of these

states are occupied, the probability is reduced by a factor f (k′). Similarly, due to

the exclusion principle, the fraction of k states available for scattering into reduces

the scattering probability by a factor 1 − f (k) . The total number of electrons per

unit time scattering into dk is therefore,

(
∂f (k)

∂t

)
in

= (1− f (k))

∫
dk′

(2π)d
Ωk′,kf (k′) . (2.37)

The total change in f per unit time due to collisions is therefore

(
∂f (k)

∂t

)
c

=

(
∂f (k)

∂t

)
out

+

(
∂f (k)

∂t

)
in

(2.38)

=

∫
dk′

(2π)d
[Ωk′,k (1− f (k)) f (k′)− Ωk,k′f (k) (1− f (k′))]

where, for a Coulomb drag system where each layer is taken as a mathematical

plane, d = 2.
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Figure 2.10: Diagram representing interlayer scattering.

2.5.1.1 Interlayer Scattering

Equation (2.38) describes the change of the distribution function as a result of scat-

tering with impurities in a given layer. The quantity of interest in calculating the

drag resistivity is the change of the distribution function as a result of scattering

events between electrons in di�erent layers. We may extend (2.38) to this case by

noting that such scattering events involve two incoming and two outgoing momenta

(see �gure 2.10). Therefore, the scattering probability, Ω, becomes a function of four

momenta and the occupancy of the two extra states must be taken into account. En-

forcing energy conservation with Dirac δ functions and including spin summations,

the collision term for interlayer electron-electron scattering is

(
∂f1

∂t

)
c

=
∑

σ1′ ,σ2,σ2′

∫
dk1′

(2π)2

∫
dk2

(2π)2

∫
dk2′

(2π)2 Ω (1, 2 : 1′, 2′) (2.39)

×S (f1, f2, f1′ , f2′) δ (k1 + k2 − k1′ − k2′) δ (ε1 + ε2 − ε1′ − ε2′)

where S (f1, f2, f1′ , f2′) = f1′f2′ (1− f1) (1− f2) − f1f2 (1− f1′) (1− f2′). It should

be noted that in equilibrium (fi = f 0
i ), the detailed balance condition implies that

the should be no net �ow of probability around a closed cycle of states. There-

fore, S (f 0
1 , f

0
2 , f

0
1′ , f

0
2′) = 0. Therefore, momentum transfer to the drag layer arises

because of the asymmetry of the electron distribution of one layer relative to the
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other.

The delta function involving momentum in (2.39) allows us to omit a momentum

integration and we may therefore write
(
∂f1
∂t

)
c

=

∑
σ1′ ,σ2,σ2′

∫
dk1′

(2π)2

∫
dk2

(2π)2 Ω (1, 2 : 1′, 2′)S (f1, f2, f1′ , f2′) δ (ε1 + ε2 − ε1′ − ε2′) ,

(2.40)

where σi are spin variables and a dash indicates a state after a scattering event. The

function Ω (1, 2 : 1′, 2′) is the probability that two electrons in states k1σ1 and k2σ2

will scatter into the states k1′ , σ1′ and k2′ , σ2′ . Time reversal symmetry is assumed

so that Ω (1, 2 : 1′, 2′) = Ω (1′, 2′ : 1, 2).

It turns out that it is useful to recast the collision integral using terms of the

form fi
1−fi , allowing us to exploit the identity f0i

1−f0i
= exp

(
− εi−µ

kBT

)
. To this end,

energy conservation's demand that ε1 + ε2 = ε1′ + ε2′ allows us to write,

f 0
1

1− f 0
1

f 0
2

1− f 0
2

=
f 0

1′

1− f 0
1′

f 0
2′

1− f 0
2′
, (2.41)

and S (f1, f2, f1′ , f2′) =

= (1− f1) (1− f2) (1− f1′) (1− f2′)

[
f1′f2′

(1− f1′) (1− f2′)
− f1f2

(1− f1) (1− f2)

]
.

(2.42)

Next, we linearise the distribution fi under the assumption of weak interlayer scat-

tering to yield,

fi = f 0
i + ∆fi ' f 0

i +
∂f 0

i

∂ε
ζi (ε) = f 0

i + f 0
i

(
1− f 0

i

)
ψi (ε) , (2.43)
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and similarly,

fi
1− fi

' f 0
i

1− f 0
i

+
f 0
i

1− f 0
i

ψi (ε) , (2.44)

where ψi (ε) = −ζi (ε) /kBT is a slowly varying function of energy, ε. Substituting

(2.44) , (2.41) and (2.43) into (2.42) gives for the linearised S term,

S (f1, f2, f1′ , f2′) '
(
1− f 0

1′

) (
1− f 0

2′

)
f 0

1 f
0
2 [ψ2′ + ψ1′ − ψ2 + ψ1] +O

(
ψ2
)
. (2.45)

Substituting this into (2.40) we arrive at the linearised collision integral:

(
∂f1

∂t

)
c

= −
∑

σ1′σ2σ2′

∫
dk1′

(2π)2

∫
dk2

(2π)2 Ω (1, 2 : 1′, 2′) [ψ1 + ψ2 − ψ1′ − ψ2′ ]

×f 0
1f

0
2

(
1− f 0

1′

) (
1− f 0

2′

)
δ (ε1 + ε2 − ε1′ − ε2′) . (2.46)

If we assume that impurity scattering in the drive layer (2) is weak so that the

distribution function in this layer is not far from equilibrium, then the dynamics

of this layer can then be described by the single layer Boltzmann equation in the

relaxation time approximation:

eE.vk
df 0

2

dε
=

∆f (k)

τ2

, (2.47)

where ∆f(k) ' ∂f02
∂ε
ζ2 (ε) is the change in the distribution function from equilibrium.

Noting that ζ2 (ε) = kBTψ2 (ε) and then choosing the direction of the current to be

parallel to the x-axis, we can express the deviation functions ψ2 and ψ2′ as

ψ2 = − 1

kBT
τ2ev2xE2, ψ2′ = − 1

kBT
τ2ev2x′E2. (2.48)
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Because no current is �owing in the drag layer the distribution function is the

equilibrium one, corresponding to ψ1 = ψ1′ = 0. Assuming that the e�ective masses

in both layers are identical, momentum conservation gives v2x − v2x′ = v1x′ − v1x =

~
m

(k1x′ − k1x). With this in mind we substitute (2.48) into (2.46) to get

(
∂f1

∂t

)
c

= − τ2e
2

mkBT

∑
σ1′σ2σ2′

∫
dk1′

(2π)2

∫
dk2

(2π)2 Ω (1, 2 : 1′, 2′) (2.49)

× [k1x′ − k1x] f
0

1f
0

2

(
1− f 0

1′

) (
1− f 0

2′

)
δ (ε1 + ε2 − ε1′ − ε2′) .

If we multiply (2.49) by k1x and integrate over momentum and spin, we get the rate

of transfer of momentum from the drive to the drag layer,

dP

dt
= − τ2e

2

mkBT

∑
σ1σ1′σ2σ2′

∫
dk1

(2π)2

∫
dk1′

(2π)2

∫
dk2

(2π)2 Ω (1, 2 : 1′, 2′) (2.50)

×k1x [k1x′ − k1x] f
0

1f
0

2

(
1− f 0

1′

) (
1− f 0

2′

)
δ (ε1 + ε2 − ε1′ − ε2′) .

The summation over spins may be evaluated by noting that only two of the four

variables are independent since σ1 = σ1′ and σ2 = σ2′ , providing an additional

factor of 4. Furthermore, the right-hand side of (2.50) may be simpli�ed by noting

the symmetry of the integrand with respect to the interchange of 1 and 1′. This

implies that k1x (k1′x − k1x) = k1′x (k1x − k1′x) and so k2
1x = k2

1′x. In addition, the

relaxation rate is independent of whether the electric �eld is taken along the x or y

axis. Consequently, we may average the contribution from each so that

1

2
(k1′x − k1x)

2 ≡ 1

4
(k1′ − k1)2 =

q2

4
. (2.51)
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where q is the interlayer momentum transfer. Substituting this into (2.49) gives

dP

dt
= −e~E2τ2

mkBT

∫
dk1

(2π)2

∫
dk1′

(2π)2

∫
dk2

(2π)2 Ω (1, 2 : 1′, 2′) (2.52)

×q2f 0
1f

0
2

(
1− f 0

1′

) (
1− f 0

2′

)
δ (ε1 + ε2 − ε1′ − ε2′) .

If we assume that the scattering amplitude, Ω, depends only on q and not on the

speci�c momentum values, the integral over k1′ can be replaced by an integral over

q to give

dP

dt
= − e~E2τ2

4mkBT
4

∫
dq

(2π)2

∫
dk1

(2π)2

∫
dk2

(2π)2 Ω (q) q2 (2.53)

×f 0
1f

0
2

(
1− f 0

1′

) (
1− f 0

2′

)
δ (ε1 + ε2 − ε1′ − ε2′) .

A few more technical manipulations are now needed to cast (2.53) in terms of the

layer density-density response functions. Noting the following two identities,

δ (ε1 + ε2 − ε1′ − ε2′) = ~
∫ ∞
−∞

dωδ (ε1 + ε1′ − ~ω) δ (ε2 + ε2′ + ~ω) , (2.54)

f 0 (ε)
[
1− f 0 (ε+ ~ω)

]
=
f 0 (ε)− f 0 (ε+ ~ω)

1− e−
~ω
kBT

, (2.55)

we substitute these into (2.53) and use the identity

(
1− e+ ~ω

kBT

)(
1− e−

~ω
kBT

)
= −4sinh2

(
~ω

2kBT

)
, (2.56)
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to yield

dP

dt
=

e~2E2τ2

mkBT

∫ ∞
−∞

dω

∫
dq

(2π)2 Ω (q)
q2

sinh2
(

~ω
2kBT

) (2.57)

×
{∫

dk1

(2π)2

(
f 0 (ε1)− f 0 (ε1 + ~ω)

)
δ (ε1 + ε1′ − ~ω)

}
×
{∫

dk2

(2π)2

(
f 0 (ε2)− f 0 (ε2 − ~ω)

)
δ (ε2 + ε2′ + ~ω)

}
.

The terms in curly brackets in (2.57) are proportional to the imaginary part of the

individual layer density-density response functions Imχ1 (q, ω) and Imχ2 (q,−ω).

Using the oddness of Imχi (q, ω) with respect to ω, the second of these terms may

be written as − 1
π
Imχ2 (q, ω). Observing that the integrand in (2.57) is an even

function of ω, we now change the limits of the integral over ω from
∫∞
−∞to

∫∞
0

and

get,

dP

dt
=

e~2E2τ2

4π2mkBT

∫ ∞
0

dω

∫
dq

(2π)2 Ω (q)
q2

sinh2
(

~ω
2kBT

)Imχ1(q, ω)Imχ2(q, ω). (2.58)

2.5.1.2 Drag Resistivity

In order to obtain an expression for the drag resistivity we must �rst invoke Newton's

second law and equate the rate of momentum transfer to the drag layer, to the total

force per particle on the electrons in the drag layer due to the induced electric �eld

ED:

dP

dt
= n2eED, (2.59)
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where n2 is the carrier density of the drag layer. This is the condition for a steady

state. Substituting in (2.58) we have

n2eED =
e~2E2τ2

4π2mkBT

∫ ∞
0

dω

∫
dq

(2π)2 Ω (q)
q2

sinh2
(

~ω
2kBT

)Imχ1(q, ω)Imχ2(q, ω).

(2.60)

To proceed, we write the drag resistivity ρD in terms of an interlayer scattering rate

τD, in analogy with the Drude conductivity, so that

ρD =
ED
J1

=
m

n2e2τD
. (2.61)

Using the standard Drude expression

J1 =
n2e

2τ1

m
E1, (2.62)

where E1 is the electric �eld across the drive layer and τ1 the transport scattering

time. We then combine (2.61) and (2.62) to yield

ED
E1

=
τ1

τD
. (2.63)

Combining equations (2.60), (2.61) and (2.62) we have for the drag resistivity

ρD =
1

2π2e2n1n2

∫ ∞
0

dqΩ (q) q3

∫ ∞
0

dω
β

4 sinh2
[
βω
2

]Imχ1(q, ω)Imχ2(q, ω). (2.64)

In general, equation (2.64) must be evaluated numerically. In order to extract an

analytic result we make a number of approximations. Foremost, we assume that

each layer is identical so that Imχ1 = Imχ2 ≡ Imχ and n1 = n2 ≡ n. We then
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approximate the scattering probability Ω(q) using the Born approximation [4], valid

under the assumption of weak scattering. The Born approximation states that the

scattering probability is proportional to the square of the interaction potential so

that

Ω(q) = |eU12(q, ω = 0)|2 , (2.65)

where U12(q, ω = 0) is the static screened interlayer interaction (2.14). The conse-

quence of using static screening in demonstrated in �gure (2.6) where it can be seen

that it overestimates the drag resistivity at intermediate temperatures. Under these

approximations we have

ρD '
1

2π2n2

∫ ∞
0

dq |U12(q, ω = 0)| q3

∫ ∞
0

dω
β

4 sinh2
[
βω
2

]Imχ(q, ω). (2.66)

To obtain an analytic result, we must calculate (2.66) under the assumptions of large

layer separation (d� q−1) and low temperature (T → 0). In the limit of large layer

separation, we have for the interlayer interaction

U12(q, ω = 0) ' πq

q2
TF sinh (qd)

. (2.67)

The consequence of taking the low temperature limit (T → 0) is that the frequency

integral of (2.66) is cut o� at low ω. In this limit, the imaginary part of the polar-

isability becomes

Imχ (q, ω) ' m2ω

2πqkF
. (2.68)

With the use of equations (2.66), (2.67) and (2.68), the drag resistivity is now written

in terms of elementary integrals. Performing these, it can be shown that in the limit
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of large layer separation and low temperature, the drag resistivity reduces to

ρD =
πk2

BT
2ζ(3)

16e2q2
TFE

2
Fk

2
Fd

4
(2.69)

where ζ(z) is the Riemann Zeta function.

2.5.2 The Green's Function Approach

This calculation is due to Kamenev and Oreg [9] and Flensberg et al. [7] and uses

linear response theory, starting from the Kubo formula to �nd the leading order

Feynman diagrams that contribution to the drag conductivity. The Kubo formula

for the drag conductivity is [9]

σD(Q,Ω) =
1

ΩS

∫ ∞
0

dteiΩt 〈[J1(x, t), J2(x′, 0)]〉 (2.70)

where Q, Ω are the wave vector and frequency of the external �eld, Ji is the current

operator in the i'th layer and S is the area of the system.

(Q,iΩn ) (Q,iΩn )

(q,iωn )

(Q+ q,iΩn + iωn )

Figure 2.11: Diagram corresponding to the current-current correlation function to
second order in the inter-layer Coulomb interaction. The shaded triangles corre-
sponds to the non-linear susceptibilities, Γ(q, ω), appearing in (2.72).

The full Hamiltonian for the Coulomb drag system is of the general form H =

H1 + H2 + H12 where Hi are the individual layer Hamiltonians and H12 is the
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interlayer contribution. The interlayer term has the form

H12 (r1, r2) =

∫
d3r1

∫
d3r2ρ1 (r1)U12(r1−r2)ρ2 (r2) (2.71)

where U12(r1 − r2) is the screened interlayer interaction. Treating H12 as a per-

turbation, they found that the leading order contribution to the drag conductivity

is second order in the interlayer interaction, corresponding to the diagram in �gure

2.11. In the uniform system (Q→ 0) and DC(Ω→ 0) limit, the leading contribution

to drag conductivity has the form

σD =
1

16πkBT

∑
q

∫ ∞
0

dω
Γ1(q, ω)Γ2(q, ω) |U12(q, ω)|2

sinh2 (~ω/2kBT )
. (2.72)

The three point correlation functions, Γi(q, ω), appearing in (2.72) are the central

characters in this formalism and correspond to the shaded triangles in �gure 2.11.

They are the non-linear susceptibilities (NLS) of layer i and can be evaluated under

various levels of approximation. Here, as in [7,9], the approximation taken is that of

non-interacting electrons scattering against random impurities, corresponding to the

high density limit. This allows one to express the non-linear susceptibilities in terms

of Green's functions. It is easier to work initially in the �nite frequency Matsubara

representation, before analytically continuing to real frequencies and taking the DC

limit.
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Figure 2.12: The Feynman diagram representing ∆ (k,q, iε, iΩ, iω).

Each correlation function, Γi, is the sum of contributions from diagrams with

clockwise and anti-clockwise propagating Green's functions (�gure 2.12) and corre-

spond to

Γi (q; iΩ + iω) = (2.73)∑
k

∑
iε

[∆ (k,q, iε, iΩ, iω) + ∆ (k,−q, iε, iΩ,−iω − iΩ)]

where

∆ (k,q, iε, iΩ, iω) = G (k, iε) J(k)γ(k,k, iε+ iΩ) (2.74)

×G (k, iε+ iΩ) η (k,k + q; iε+ iΩ, iε+ iω + iΩ)

×G (k + q, ik + iΩ + iω) η (k + q, iε; iε+ iω + iΩ, iε)

and the summation is over Fermi frequencies iε. The functions γ and η are the

current and charge vertex corrections respectively, and consist of ladder diagrams

that take into account correlated intralayer impurity scattering. In what follows we

will take the weak scattering limit, in which case charge vertex corrections can be

ignored (see section 2.3.4 for a discussion of Coulomb drag in the di�usive regime).

Correlated impurity scattering between the layers is also ignored. Taking these
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into account would otherwise involve introducing impurity lines crossing from one

triangle to the other (see section 2.4.2 for a discussion of correlated disorder). The

current vertex cannot be ignored as it is important to take into account the fact

that small angle scattering events contribute more to the conductivity. In general,

this leads to the transport lifetime (τtr) and the impurity lifetime being (τ) being

di�erent but in the weak scattering limit γ(k) = τtr(k)/τ(k) [10]. In what follows

we will assume that the current operator includes this correction.

The summation over Fermionic frequencies is evaluated by decomposing the

Feynman diagram for (2.74) into allowed (internally consistent and non-zero) com-

binations of advanced (-) and retarded (+) Green's functions and then converting

the summations over ikm into contour integrals. The demand of a positive external

frequency, Ω, and the interaction lines provide the �rst inequalities:

Ω > 0; ω < 0; ω + Ω > 0.

The only two non-zero contributions come from the triangle functions, ∆, with ε < 0,

ε+ Ω > 0. This leads to two possible combinations ∆1 and ∆2 where,

The other two possibilities have three Green's functions of the same type and so
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contribute nothing because their poles are on same side of the real axis. Writing ∆1

and ∆2 out explicitly and summing over k and ε we have,

∑
k,ε

∆1 = −
∑
k

∑
−ω−Ω<ε<0

Ga
k(iε)J(k)Gr

k(iε+ iΩ)Gr
k+q(iε+ iΩ + iω), (2.75)

∑
k,ε

∆2 = −
∑
k

∑
0<ε<−ω−Ω

Ga
k(iε)J(k)Gr

k(iε+ iΩ)Ga
k+q(iε+ iΩ + iω). (2.76)

We now convert the above summations into contour integral, following the standard

prescription [10] of making the replacement

β−1
∑
iε

f(iε) = − 1

2πi

∮
dznF (z)f(z) (2.77)

where nF is the Fermi distribution function. After performing the contour integral,

we analytically continue back to real frequencies and take the DC (Ω→ 0) limit to

yield,

∑
k,ε

∆1 =
∑

k

∫∞
∞

nF (ε)dε
2πi

{
Ga

k(ε)J(k)Gr
k(ε)Gr

k+q(ε+ ω) (2.78)

−Ga
k(ε− ω)J(k)Gr

k(ε− ω)Gr
k+q(ε)

}
,∑

k,ε

∆2 =
∑

k

∫∞
∞

nF (ε)dε
2πi

{
Ga

k(ε− ω)J(k)Gr
k(ε− ω)Ga

k+q(ε) (2.79)

−Ga
k(ε)J(k)Gr

k(ε)Ga
k+q(ε+ ω)

}
.

Summing (2.78) and (2.79) gives, for the �rst of the two triangle functions in (2.73),
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∑
k

∑
iε ∆ (k,q, iε, iΩ, iω) =

∑
k,ε ∆1 +

∑
k,ε ∆2

=
1

2πi

∑
k

∫ ∞
∞

nF (ε)dε
{
Ga

k(ε)J(k)Gr
k(ε)

[
Gr

k+q(ε+ ω)−Ga
k+q(ε+ ω)

]
(2.80)

− Ga
k(ε− ω)J(k)Gr

k(ε− ω)
[
Gr

k+q(ε)−Ga
k+q(ε)

]}
.

Now, making a change of variables ε → ε + ω in the second term of (2.80) yields,∑
k

∑
iε ∆ (k,q, iε, iΩ, iω) =

1

2πi

∫ ∞
∞

dε [nF (ε+ ω)− nF (ε)]Ga
k(ε)J(k)Gr

k(ε)
[
Gr

k+q(ε+ ω)−Ga
k+q(ε+ ω)

]
.

(2.81)

Recalling (2.73), Γ (q; iΩ + iω) =
∑

k,iε [∆ (k,q, iε, iΩ, iω) + ∆ (k,−q, iε, iΩ,−iω − iΩ)],

in the DC limit the second term can be obtained from the �rst by setting q→ −q

and ω → −ω. With this in mind we have our �nal Green's function expression for

Γ(q, ω):

Γ(q, ω) =
1

2πi

∫ ∞
∞

dε [nF (ε+ ω)− nF (ε)]Ga
k(ε)J(k)Gr

k(ε)
[
Gr

k+q(ε+ ω)−Ga
k+q(ε+ ω)

]
+{q → −q, ω → −ω}. (2.82)

This expression is extremely important as it forms the basis for deriving the NLS

for graphene monolayers and bilayers.

Derivation of the Boltzmann Equation Result We proceed to derive the

Boltzmann equation result for the drag resistivity (2.64) by employing the identi-

ties [10] Gr (k, ω) − Ga (k, ω) = −iA(k, ω) and Gr (k, ω)Ga (k, ω) = τA (k, ω) and
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substituting in the momentum operator J(k) = k/m. With these, (2.82) becomes

Γ (q, ω) =
−τ

2πm
k
∑
k

∫ ∞
−∞

dε [nF (ε+ ω)− nF (ε)]A (k + q, ε+ ω)A (k,ε)

+{q → −q, ω → −ω}. (2.83)

We now perform a change of variables k → k + q in the second term of (2.83) and

swap the order of the Fermi functions. This yields

Γ (q, ω) =
τ

2πm
q
∑
k

∫ ∞
−∞

dε [nF (ε+ ω)− nF (ε)]A (k + q, ε+ ω)A (k,ε) (2.84)

In the weak scattering limit the full impurity Green functions become free Green

functions since the self energy vanishes in the non-interacting case. Furthermore, the

use of free Green functions implies that the spectral functions reduce to δ functions

so that

A (k, ε) = 2πδ(εk). (2.85)

Employing the identity
∫∞
−∞ dεδ (ε+ ω − ξk+q) δ (ε− ξk) = δ (ξk + ω − ξk+q) and

1
α±iδ = C 1

α
∓ iπδ (α), equation (2.83) takes the form

Γ (q, ω) =
2τ

m
q
∑
k

Im

{
nF (ξk+q)− nF (ξk)

ξk+q − ξk − ω − iδ

}
(2.86)

after which it is trivial to see that (2.86) may be written in terms of the layer

susceptibility function as

Γ (q, ω) =
2τ

m
qImχ(q, ω). (2.87)
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It is convenient for calculating the transresistivity to write (2.87) in terms of the in

plane conductivity via the usual Drude result σii = e2niτi/m so that (reintroducing

system labels)

Γi (q, ω) =
2σii
e2ni

qImχi(q, ω). (2.88)

Substituting (2.88) into the transconductivity (2.72) yields,

σD =
−2σ11σ22

e2n1n2

∑
q

q2 |U12(q)|2
∫ ∞
−∞

dω

2π
[∂ωnB(ω)] Imχ1(q, ω)Imχ2(q, ω) (2.89)

where the fact that Imχ (q, ω) is odd in both q and ω has been used. Therefore,

ρD =
2

e2n1n2

∑
q

q2 |U12(q)|2
∫ ∞
−∞

dω

2π
[∂ωnB(ω)] Imχ1(q, ω)Imχ2(q, ω)

=
−4

e2n2kBT

∑
q

q2 |U12(q)|2
∫ ∞

0

dω

2π

Imχ(q, ω)2

4sinh2
[
βω
2

] (2.90)

where in the second line it has been assumed that the layers are identical. Finally,

agreement with the Boltzmann transport calculation (2.64) is achieved by converting

the sum over q to an integral to give

ρD =
1

2π2n1n2

∫ ∞
0

dq |U12(q)|2 q3

∫ ∞
0

dω
β

4sinh2
[
βω
2

] [Imχ(q, ω)]2 . (2.91)

Since the above calculation ignores all higher order (quantum-mechanical) processes,

such was weak localisation, it is perhaps not surprising that the same result was

obtainable via the Boltzmann transport approach.



Chapter 3

Graphene

In this chapter, we give a general overview of the history and physical properties of

graphene, a potentially revolutionary two dimensional crystal within which electrons

take on the characteristics of ultra-relativistic particles. After a brief introduction,

we discuss the reason for its relatively recent discovery, despite long standing theo-

retical knowledge of its properties. In order for graphene to exists, it must overcome

the predictions of the Mermin-Wagner theorem which states that it is impossible for

macroscopically large two dimensional crystals to exit. Graphene overcomes this by

rippling in the third dimension, whilst retaining the two dimensional character of

its electronic properties. In addition, we discuss the technique that allows graphene

to be searched for and classi�ed with an optical microscope. The interference e�ect

at its heart is responsible for catalysing this emerging �eld.

In the second half of the chapter, we discuss some of the electronic properties of

graphene, primarily the unusual chiral Dirac fermion quasiparticles that characterise

graphene physics. These are the result of the electron's interactions with the back-

ground lattice, leading to low energy excitations that have a linear dispersion, and

are best described using the two dimensional Dirac equation. Details of graphene's

51
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band structure, demonstrating why it is classi�ed as a gap-less semiconductor, are

given. Following this, we move on to the basic electronic properties of a graphene

bilayer and highlight the essential di�erences with a monolayer. In particular, the

retention of the property of pseudospin and the restoration of a quadratic quasipar-

ticle spectrum.

In the �nal section, we discuss the open question of graphene's minimum con-

ductivity. This is an e�ect whereby conductivity of undoped graphene is quantized,

despite the fact that at zero doping the electronic density of states vanishes. It

remains perhaps the biggest unsolved problem in graphene physics.

3.1 Introduction

On Earth, carbon is arguably the most important of all elements in the periodic

table. The �exibility of its bonds make it the central component of life, all of

organic chemistry and of course our hydrocarbon based society. It is able to form

an unlimited number of di�erent structures of varying dimensionality and displays

an array of interesting phenomena. Three dimensional structures consisting of only

carbon atoms are familiar in everyday life in the form of diamond and graphite

(see �gure 3.1). Less familiar are the lower dimensional allotropes of carbon such

as graphene. Graphene is a one atom thick layer of carbon atoms arranged in a

honeycomb lattice. It plays a leading role in understanding the physical properties

of carbon nanotubes and fullerenes (commonly known as Buckyballs) because it

forms the basis of their structures.

Carbon nanotubes are made by rolling up graphene along a given axis and recon-

necting the carbon bonds. They can be modeled as one dimensional structures and
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Figure 3.1: Carbon allotropes of varying dimensionality. From left to right; diamond,
graphite, graphene, nanotubes, fullerenes. Reproduced from [41].

have been the subject of a great deal of theoretical and experimental interest [39].

Fullerenes are carbon atoms arranged into a sphere and may be treated as zero di-

mensional objects with discrete energy levels. To make fullerenes from graphene, it

is necessary to introduce pentagons into the structure.

Although the basic properties of graphene, such as its band structure and un-

usual semi-metallic behaviour, have long been known [40], its actual realisation was

for a long time considered improbable. Its properties were instead used as a start-

ing point to study graphite (from the Greek word �graphein�, to draw, to write),

�rst discovered in a mine near Borrowdale in Cumbria in the 16th century, and an

important material in the post-war era for its use in the nuclear �ssion industry. Ex-

perimental and theoretical interest in graphene was revitalised when in 2004 a group

at Manchester university, led by Andre Geim, succeeded for the �rst time in isolating

a graphene �ake [51]. Graphene physics is currently the fastest expanding area of

condensed matter physics, and graphene's highly unusual mechanical and electronic

properties hold promise for a staggering number of technological applications.

As of 2009, graphene holds the records of being the strongest [52] material ever

discovered and is approximately 200 times stronger than the strongest steel. At room

temperature, it is also the most conductive, both electrically and thermally [53]. For

example, it is approximately 30% more electrically conductive than silver, previously

the most conductive material at room temperature. Many of its unique properties
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can be traced to its unusual low energy excitations that are massless, chiral, Dirac

fermions (see section 3.3). In undoped graphene, the electronic dispersion mimics

the physics of quantum electrodynamics, but with an e�ective speed of light that

is 300 times smaller than c. Indeed, many of the unusual properties of quantum

electrodynamics show up in graphene, but at much smaller speeds where their mag-

nitude is enhanced [43].

3.2 Fabrication

The early history of graphene is full of many surprises, starting with the fact that

for many years it was thought that it could not exist in an isolated form. The reason

for this pessimism originated with an argument put forward more than seventy years

ago by Landau and Peierls [46�48], and later extended by Mermin [49] into what

is now known as the Mermin-Wagner theorem. They argued that a strictly 2D

crystal would be thermodynamically unstable due to a divergence in the density of

long wavelength phonons. At �nite temperature, this would lead to displacements

comparable to the lattice spacing. This argument was supported by experimental

evidence showing that the melting temperature of thin �lms rapidly decreases with

decreasing thickness [50,63].

It came a surprise then when in 2004, Novoselov et al. [51] reported the discov-

ery of graphene. A year later they reported the discovery of other free standing

two dimensional atomic crystals such as single layer boron nitride [55]. What was

also surprising was that these crystals displayed a remarkable high crystal quality,

especially so in the case of graphene. With the bene�t of hindsight, the existence

of graphene has been reconciled [56] with the earlier arguments that it should not
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Figure 3.2: Stability in two dimensions. An artist's impression of ripples in a
graphene sheet. Reproduced from [86].

exist. The suggestion is that graphene avoids the divergence in the phonon density

of states by forming ripples on a scale of ≈ 10nm in the third dimension. Although

this increases the elastic energy, it is more than compensated for by the suppression

of the thermal vibrations.

Consequently, it could be argued that graphene is not a truly two dimensional

crystal. However, it should be remembered that broadly speaking, the graphene is

still no more three dimensional than the surface of an apple is to an ant. Although

there may be e�ects of moving over a curved surface, both still have only two

spatial degrees of freedom. In fact, it has been shown that rippled graphene retains

its characteristic electronic properties where, for ripples that change slowly on the

lattice scale, the curvature can be recast as an e�ective magnetic �eld [57]. In

the opposite case they are equivalent to potential scatterers and are screened in

the normal way [58]. That graphene is inherently curved has led some to make

analogies of Dirac fermions propagating on a locally curved surface, to problems of

quantum gravity [59]. The question remains however as to what extent two, three, or

more graphene layers should be considered two dimensional crystals. The question

is, as more layers are added, when does the system resemble the bulk behaviour of
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Figure 3.3: Left: Scanning electron microscope image of a strongly crumpled
graphene sheet on a Si wafer. The image width is 20µm. The Si wafer can be
seen in the bottom right corner. Image reproduced from [86]. Right: Transmission
electron microscope image of a graphene layer with a resolution of ∼ 1Å (atoms
appear white). Reproduced from [87].

graphite? In fact it is known that the electronic properties of graphene layers change

quickly as layers are added with the system behaving as bulk graphite approaching

ten layers [60]. Already for a bilayer, the behaviour is markedly changed. Although

many of the important features of monolayer graphene, such as pseudospin and zero

band gap, (sec. 3.3.3) remain. As more layers are added, many of the distinguishing

features of graphene's electronic properties disappear and it can be argued that one,

two, and more layers should be identi�ed as three di�erent types of 2D crystals [45].

From the point of view of screening, this distinction is sensible because the screening

length in graphite is approximately 5Å, equating to less than two layers' thickness.

For systems larger than this, a distinction must be made between the surface and

the bulk.

The technique that Novoselov et al. [51] used to create their graphene samples

is technically known as micro-mechanical cleavage. Initially, they were applying

adhesive tape to graphite and transferring the residue to a SiO2 substrate (�gure

3.3). The technique has since been re�ned. In hindsight, every time that a pencil

is used some graphene is created. This should not be surprising because graphite
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Figure 3.4: Graphitic samples on SiO2 substrates of varying thickness and illumi-
nated with a range of sources. (a) A 300nm SiO2 substrate illuminated by white
light. Graphene is visible as the lightest areas set against the background substrate.
(b) Another 300nm substrate but illuminated with green light at 560nm showing
a marked improvement in contrast over white light. (c) A 200nm substrate illu-
minated with white light. Even three layers of graphene are not distinguishable.
Reproduced from [64]

is composed of stacks of weakly bonded graphene sheets. In fact, this is the reason

that graphite is so useful as a writing material. The real breakthrough of Novoselov

et al. [51] was to develop a method of �nding single graphene �akes amongst a sea

of graphitic �akes.

3.2.1 Making Graphene Visible

It was not possible to search for graphene �akes using established techniques, such

as atomic force or electron microscopy, because they do not provide a strong enough

signature of a monolayer and are slow at searching micrometer length scales. Re-

markably, the technique that Novoselov et al. [51] used to search for graphene �akes

used an optical microscope and the human brain's image processing capability.

By placing the graphitic sample onto a thin (∼ 100nm) SiO2 layer, itself on top of
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a Si substrate, they were able to exploit an interference e�ect that is strong enough

to distinguish between one and two layers of graphene. By carefully choosing the

SiO2 layer thickness, the e�ect was maximised. Graphene monolayers then appeared

under the microscope as areas darker than the background substrate but lighter than

the surrounding multilayered graphitic pieces.

The nature of this interference e�ect was studied theoretically by Blake et al. [64]

who showed that graphene's opacity was in part responsible for the e�ect's extreme

sensitivity. In fact, not only is the opacity of graphene staggeringly high for a one

atom thick layer, but it also has a startlingly simple value of πα ≈ 2.3%, where

α = e2/~c ≈ 1/137 is the �ne structure constant (c is the real speed of light). It

is unusual in condensed matter physics to �nd phenomena that are de�ned only

by fundamental constants and not a material's properties. Other examples include

the quantum of resistivity, h/e2, that appears in universal conductance �uctuations

and various transport experiments, and the magnetic �ux quantum, h/2e, that

appears in superconductivity. What is particularly unusual in this case is that

an unsophisticated quantity such as opacity is de�ned in terms of a constant that

is usually associated with quantum electrodynamics. The �ne structure constant

describes the coupling between relativistic electrons and light and is an empirical

parameter in the standard model of particle physics.

Blake et al. [64] were able to derive theoretically the contrast between a graphene

�ake and the substrate, as a function of wavelength and SiO2 thickness (�gure 3.5).

It was shown that given a suitable choice of monochromatic source, graphene can

be found on any thickness of SiO2. It was clear however that a thickness of 100nm

produces the greatest contrast for visible searching. They applied the same approach

to other insulating substrates and were able to �nd, for example, graphene on 50nm
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Figure 3.5: Plot showing the contrast of a graphene �ake and the substrate as a
function of SiO2 thickness and wavelength. The colour scale on the right shows the
expected contrast. A thickness of 100nm is clearly the best choice for searching for
graphene with white light. Reproduced from [64].

Si3N4 using blue light.

3.2.2 Macroscopic Graphene

The development of a reliable way to make macroscopic quantities of graphene is

one of the major obstacles yet to be overcome on the way to real world applications

of graphene. As it stands, graphene is currently the most expensive material known

to man with 1mg costing the equivalent of the gross domestic product of the USA.

There are now many methods of producing graphene in small and often uncontrolled

quantities, ranging from epitaxial growth [68], to cutting open carbon nanotubes

[67]. Macroscopic scale graphene sheets have been chemically derived from graphite

crystals and graphene oxides, but the purity of these samples is in serious doubt.

One of the most promising recent attempts [66] at making large scale, patterned,

graphene �lms involves using chemical vapour deposition on nickel layers. The

authors were then able to transfer their graphene onto a substrate and demonstrated

that its quality was comparable to that of micro-mechanically cleaved samples.
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3.3 Electronic Properties

In the following section, we present the elementary electronic properties of monolayer

and bilayer graphene. From a tight binding description, �rst investigated in 1947 by

Wallace [40], we shall see that the elementary excitations of both systems have the

properties of pseudospin and chirality but have di�erent low energy dispersions. For

an excellent review of the electronic properties of graphene, the reader is referred to

Novoselov et al. [43].

3.3.1 The Carbon Atom

As the 6th element in the periodic table, carbon consists if six electrons, six protons.

Nuclei with six or seven neutrons form the stable isotopes 12C and 13C respectively.

The isotope 12C is by far the most abundant in nature, making up around 99% of all

carbon atoms, with much of the remaining 1% consisting of 13C. However, a small

number (approximately 1 in 1012) are 14C, a radioactive isotope that β−decays into

14N with a half life of ≈ 5700 years. Despite its relative rarity, 14C is an important

isotope because it concentrates in organic materials, allowing one to approximate a

sample's age through the abundance of 14C [44].

Carbon's six electrons have a 1s22s22p2 orbital con�guration in the ground state.

The two electrons in the 1s orbital form a deep valence band and are therefore

irrelevant to chemical reactions. The remaining 4 electrons occupy the 2p (2px,2py

and 2pz) and 2s orbitals. For an isolated carbon atom, it is energetically favourable

to put two electrons in the 2s orbital and two in the 2p orbitals because the 2p

orbitals are 4eV higher in energy. In the presence of other atoms, the situation is

di�erent and it is instead favourable to excite a 2s electron to the third 2p orbital to
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form covalent bonds with the other atoms. This excited state then consists of four

quantum-mechanical states, |2s〉, |2px〉, |2py〉 and |2pz〉, and a quantum mechanical

superposition of the |2s〉 state with n |2pi〉 states is known as spn hydridisation.

These superpositions are critical to the understanding of carbon physics.

Figure 3.6: Schematic view of the sp1 hybridisation. The �gure shows on the l.h.s.
the electronic density of the |2s〉 and |2px〉 orbitals and on the r.h.s. that of the
hybridised ones. Reproduced from [44].

3.3.1.1 sp1 Hydridisation

In sp1 hybridisation (commonly referred to as simply sp hybridisation), the |2s〉

state forms a superposition with a 2p orbital (|2px〉 for example), leaving the others

una�ected. For a superposition in which each original state has an equal weight, we

have the symmetric (|sp+〉) and anti-symmetric (|sp−〉) combinations [44]

|sp+〉 =
1√
2

(|2s〉+ |2px〉) ,

|sp−〉 =
1√
2

(|2s〉 − |2px〉) . (3.1)

The electronic density of these hybridised states form a shape resembling an asym-

metric lemniscate (�gure 3.6), with the larger of the two lobes in the +x (−x)
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Figure 3.7: Schematic view of the acetylene molecule.The propeller-like 2py and 2pz
orbitals of the two C atoms strengthen the covalent sv bond by forming two p bonds
(not shown). Reproduced from [44].

direction for the |sp−〉 (|sp−〉) states. This form of hybridisation is responsible for

the acetylene molecule in which overlapping sp1 orbitals form a strong covalent (σ)

bond (see �gure 3.7). In addition, the remaining unhybridised 2p orbitals form two

additional (π) bonds that are weaker than the σ bond.

3.3.1.2 sp2 Hydridisation

This form of hybridisation is central to the physics of the graphitic allotropes and

consists of a superposition of the 2s orbital and two 2p orbitals. Choosing these to

be the |2px〉 and |2py〉 states, the result is three states in the xy − plane separated

by 120◦ and given by [44]

∣∣sp2
1

〉
=

1√
3

(
|2s〉 −

√
2

3
|2py〉

)
,

∣∣sp2
2

〉
=

1√
3
|2s〉+

√
2

3

(√
3

2
|2px〉+

1

2
|2py〉

)
,

∣∣sp2
3

〉
= − 1√

3
|2s〉+

√
2

3

(
−
√

3

2
|2px〉+

1

2
|2py〉

)
. (3.2)

The remaining unhybridised 2pz orbital lies perpendicular to the xy − plane. Their

combined electronic density resembles a three lobed rose curve. (�gure 3.8).

In graphene, each carbon atom is σ bonded to its three neighbouring carbon
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Figure 3.8: Schematic view of the sp2 hybridisation. The orbitals form angles of
120◦. Reproduced from [44].

Figure 3.9: The quantum-mechanical ground state of the benzene ring is a superpo-
sition of the two con�gurations which di�er by the position of the p bonds. The p

electrons are therefore delocalised over the ring. Reproduced from [44].

atoms making six σ bonds per hexagonal unit cell. In addition to these, the remain-

ing 2pz pair up to form 3 π bonds that strengthen half of the carbon-carbon (C-C)

bonds. Naively, one would expect this to result in a distorted hexagon since the

double bond C-C distance (0.135 nm) is shorter than that for a single bond (0.142

nm). However, the measured C-C distance for all of the bonds is roughly the average

of these two distances at 0.142 nm.

This puzzle was solved in 1931 by Pauling [42] in the context of the benzene

ring (a hexagon of carbon atoms with hydrogen bound to the remaining in-plane,

sp2 states). He showed that the ground state consisted of a quantum mechanical

superposition of the two possible con�gurations, a single and a double bond (�gure

3.9). When applied to a graphene sheet, one sees that the ground state is a super-

position of all possible combinations of single and double bonds with the π electrons

are delocalised over the entire lattice. This explains the good conduction properties

of graphitic allotropes.
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Figure 3.10: sp3 hybridisation with an angle of 109.5◦ between the four orbitals.
Reproduced from [44].

3.3.1.3 sp3 Hybridisation

We mention for completeness this third class of hybridisation that involves the super-

position of the 2s orbital and all three of the 2p orbitals, known as sp3 hybridisation.

The consideration of sp3 hybridisation is important in understanding the structure

of diamond. The resulting electron density consists of four club-like orbitals, sep-

arated by 109.5◦, that form a corner of a tetrahedron (see �gure 3.10). The fact

that all four valence electrons form σ bonds explains not only the hardness and high

thermal conductivity of diamond, but also its electrically insulating character.

3.3.2 Monolayer Graphene

As shown in �gure 3.11, graphene consists of carbon atoms arranged hexagonally.

The lattice is not Bravais but can be viewed as two intersecting triangular lattices,

with a basis of two atoms per unit cell. The nearest neighbour vectors are given by

δ1 =
a

2
(1,
√

3), δ2 =
a

2
(1,−

√
3), δ3 = −a(1, 0). (3.3)

and the lattice vectors by

a1 =
a

2
(3,
√

3), a2 =
a

2
(3,−

√
3), (3.4)
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Figure 3.11: Left: Lattice structure of graphene, made out of two interpenetrating
triangular lattices (a1 and a2 are the lattice unit vectors, and δi, i = 1, 2, 3 are the
nearest neighbour vectors); Right: corresponding Brillouin zone. The Dirac cones
sit at the K and K' points. Reproduced from [43].

where a ≈ 1.42Å is the distance between carbon atoms. From these, the reciprocal

lattice vectors are

b1 =
2π

3a
(1,
√

3), b2 =
2π

3a
(1,−

√
3). (3.5)

At the corners of the Brillouin zone lie the two high symmetry points K and K ′.

For reasons outlined below, these are known as the Dirac points but are sometimes

referred to as the charge neutrality points. In momentum space they have the

coordinates

K =
2π

3a
(1,

1√
3

), K ′ =
2π

3a
(1,− 1√

3
). (3.6)

We now investigate the low energy dynamics of graphene by considering a tight-

binding Hamiltonian that takes into account nearest neighbour and next nearest

neighbour hopping:

H = −t
∑
〈i,j〉,σ

(
a†σ,ibσ,i + h.c.

)
− t′

∑
〈〈i,j〉〉,σ

(
a†σ,ibσ,i + h.c.

)
. (3.7)

where the operators a†σ,i and aσ,i respectively create and destroy an electron of spin

σ on site Ri of sublattice A. The b
†
σ,i and bσ,i operators are equivalent to these but
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for sublattice B. The energies t (≈ 2.8eV ) and t′ (≈ 0.1eV ) [69] are the nearest

neighbour and next nearest neighbour hopping energies respectively. A nearest

neighbour hop takes the electron between sublattices, while a next nearest neighbour

hop takes it onto the same sublattice. This Hamiltonian leads to the energy bands

[40]

E±(q) = ±t
√

3 + f(q)− t′f(q)

f(q) = 2 cos
(√

3qya
)

+ 4 cos

(√
3

2
qya

)
cos(

3

2
qxa), (3.8)

where the +̇(−) refers to the upper (lower) band. In the absence of t′, the dispersion

is clearly symmetric around zero energy and in �gure 3.12 we show the band structure

according to (3.8), with and without t′ = 0. The two bands meet at the Dirac

points with zero gap and it is for this reason that graphene is classed as a zero gap

semiconductor. In fact, at zero doping the Fermi energy passes through the Dirac

points and so the carrier type can be tuned continuously between p- and n-type with

the appropriate application of an electric �eld. This is known as an ambipolar �eld

e�ect [45].

The cones that surround each Dirac point are known in the literature as valleys

and, as discussed previously, there are two such valleys within the Brillouin zone.

If one assumes that the physics in each valley is equivalent, then the e�ect of both

may be taken in account by including an extra valley degeneracy of 2, in addition

to the usual spin degeneracy.

It is possible to obtain the dispersion close to the Dirac points, (3.6), by setting

q = K+k where |k| � |K|. Expanding up to second order in k, the dispersion has
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Figure 3.12: Left: Energy spectrum for t = 2.7eV and t′ = 0 showing the that
bands are symmetric around the Dirac point. Right: Energy spectrum for t′ = 0.2t.
The bands are no longer symmetric and the Dirac point has shifted down in energy.

the form

E±(k) ≈ ±υF |k|+O(k2). (3.9)

This dispersion is clearly conical and has the rather unusual feature of a photon like,

momentum independent, Fermi velocity, vF = 3ta/2 ≈ 1 × 106m/s ≈ c/300 [40],

where c is the real speed of light. This is in contrast to the usual vF = k/m.

Graphene's linear spectrum at the Dirac points has been con�rmed by experiments

using angle resolved photo emission spectroscopy (ARPES) [77].

Including next nearest neighbour hopping (t′), the position of the Dirac point is

shifted and particle-hole symmetry is broken, the two bands becoming asymmetric.

Up to second order in k and including t′, the dispersion takes the form [43],

E±(q) ≈ 3t′ ± υF |k| −
(

9t′a2

4
± 3ta2

8
sin (3θk)

)
|k|2 , (3.10)

where θk = tan−1 (ky/kx). The term in sin (3θk) gives a three fold symmetry to the

electronic spectrum as we move away from the Dirac point (�gure 3.13). This feature
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Figure 3.13: Contour plot of the positive energy band clearly showing the three
fold symmetry of trigonal warping.

of the spectrum has become known in the literature as trigonal warping [71,72].

It is possible to obtain an analytic expression for the graphene density of states

per unit cell, but only in the case of t′ = 0 [73] (see �gure 3.14 ). In this case it is

given by [43]

ρ(E) =
4

π2

|E|
t2

1√
Z0

F

(
π

2
,

√
Z1

Z0

)
(3.11)

Z0 =


(
1 +

∣∣E
t

∣∣)2 −
(
(Et )

2
−1
)2

4
; −t ≤ E ≤ t

4
∣∣E
t

∣∣ ; −3t ≤ E ≤ −t, or t ≤ E ≤ 3t

Z0 =


4
∣∣E
t

∣∣ ; −t ≤ E ≤ t(
1 +

∣∣E
t

∣∣)2 −
(
(Et )

2
−1
)2

4
; −3t ≤ E ≤ −t, or t ≤ E ≤ 3t

Close to the Dirac points the density of states D(ε) is given by [43]

D(ε) =
gsgv |ε|
2πυ2

F

, (3.12)
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Figure 3.14: Schematic plot of the density of states for electrons in graphene in the
absence of next nearest neighbour hopping. The dashed line indicates the density
of states obtained at linear order (equation 3.12). The divergences at ±t are known
as van-Hove singularities and are due to the saddle points at the borders of the
Brillouin zone. Reproduced from [44].

where gs = 2 and gv = 2 are the spin and valley degeneracies respectively. At the

Dirac points it is clear that the density of states vanishes and as a result there is no

screening there.

3.3.2.1 Dirac fermions

The linear, mass independent dispersion of graphene is reminiscent of ultra-relativistic

particles and it is a key feature of physics close to the Dirac point. This analogy deep-

ens when one considers the e�ective Hamiltonian close to the Dirac points. Here,

one �nds that the electron's interactions with the two equivalent sublattices leads to

quasiparticles that are more naturally described in terms of the (2+1)-dimensional

Dirac equation, as opposed to the Schrödinger equation that is so ubiquitous in con-

densed matter physics. These quasiparticles are formally known as massless Dirac

fermions and as the name suggests behave as massless, relativistic spin-1
2
particles.

They may also be viewed as being equivalent to neutrinos that have gained an elec-

tronic charge, although given their origins it is perhaps the former description that
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is more natural.

At K, these low energy quasiparticles are formally described by the following

Dirac like Hamiltonian [40,74]

ĤK = υF

 0 kx − iky

kx + iky 0

 = υFσ·k, (3.13)

where k is the quasiparticle momentum and σ = (σx, σy) is a 2D vector of Pauli

matrices. As we have already established (3.9), the above Hamiltonian has eigenen-

ergies E = ±υF |k|, with the momentum independent Fermi velocity acting as an

e�ective speed of light. The Hamiltonian of the remaining Dirac point is the same

as above, but with σ replaced by σ∗. It is important to realise that these Pauli ma-

trices are not acting in spin space but instead on the sublattice degrees of freedom.

The result is that the eigenstates of (3.13) are themselves two component vectors

in sublattice space (spinors). The similarity of the sublattice index (A, B) to spin

index (up, down) has led to the sublattice degree of freedom becoming referred to

as pseudospin.

The eigenstates of ĤK, labeled by ψ±,K(k), have contributions from both sub-

lattices and are given by

ψ±,K(k) =
1√
2

 e−iθk/2

±eiθk/2

 , (3.14)

with θk = tan−1 (ky/kx). For the remaining Dirac point K′, ψ±,K′(k) = ψ∗±,K(k).

An interesting feature of these eigenfunctions is that if the phase θk is rotated by

2π then the eigenfunction changes sign, indicating an overall change in phase of π.
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This feature is a characteristic of spinors known as a Berry's phase and leads to

some interesting phenomena in graphene such as weak anti-localisation [57,75].

Because the eigenfunctions (3.14) are composed of contributions from both sub-

lattices, it follows that the sublattice index is not a good quantum number. Instead,

quasiparticles near to the Dirac points exist in states of de�nite chirality, de�ned

as the projection of σ onto the direction of motion k. This may be seen by �rst

de�ning the quantum mechanical operator for chirality ĥ:

ĥ = σ · k

|k|
. (3.15)

Acting this operator on (3.13) shows that the eigenstates (3.14) are also eigenstates

of ĥ with eigenvalues ±1. This demonstrates that electrons (holes) exist in states of

de�nite positive (negative) chirality, with the components of pseudospin projected

parallel (antiparallel) to momentum. A similar relation holds for states near K′

but with opposite chirality and projection (see �gure 3.15). This situation with

chirality is similar to the conjugated electron and hole states that appear in QED.

The fundamental reason for this in graphene is that the k electron and the −k

hole states are connected because they originate from the same sublattices and are

governed by the same Dirac equation. This is quite di�erent to the situation that

normally arises in condensed matter physics where electrons and holes are described

by independent Schrodinger equations, with independent e�ective masses. This is a

consequence of the Seitz sum rule [76].

Chirality, as well as pseudospin, are important concepts in graphene physics

because many of its unusual electronic properties arise from them. It should be

remembered however that chirality only exists as a good quantum number so long
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Figure 3.15: Relation between band index λ, valley (K,K
′
), and chirality h in

graphene. Reproduced from [44].

as the Hamiltonian (3.13) is valid. It is therefore an asymptotic property of graphene

approaching the Dirac points.

3.3.2.2 Is graphene a Fermi liquid?

As discussed elsewhere (Section 2.1), information about the character of a mate-

rial's electron-electron interactions is important because it determines many of its

physical properties. The question as to whether or not graphene's Dirac fermion

quasiparticles �t into the normal Fermi liquid picture is of particular importance

because Fermi liquid theory allows one to greatly simplify calculations involving the

interacting electron liquid.

First put forward by Landau [80], the central premise in Fermi liquid theory is

that as interactions are adiabatically turned on between free electrons, the quantum

numbers of the system are preserved, unless there is a phase transition. The single

particle excitations of the non-interacting fermions are replaced by incoherent collec-

tive excitations of the electron liquid, known as quasiparticles. The quasiparticles

preserve the spin, charge and momentum of the non-interacting case, but with a

renormalised (e�ective) mass.
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Quantities such as speci�c heat and compressibility show the same qualitative

behaviour in a Fermi liquid, but often with di�erent magnitudes. These can be used

to indicate whether or not a system is behaving as a Fermi liquid and furthermore,

measurements of, for example, the speci�c heat can be used to estimate the e�ective

mass.

That the physics of the Fermi liquid can be described within the framework of

the free Fermi gas, with a renormalised mass, immediately raises an issue when

investigating graphene close to the Dirac points. This is because the quasiparticles

there behave as massless particles. It has been shown [79] that close to the Dirac

points, the quasiparticles acquire an e�ective velocity, as opposed to an e�ective

mass. Furthermore, it has been con�rmed [78] by ARPES experiments that the

quasiparticle picture is preserved.

In undoped graphene, when the Fermi energy lies exactly at the Dirac point, Das

Sarma et al. [79] showed that the system behaves as marginal Fermi liquid. Using

diagrammatic perturbation theory, they were able to show that the quasiparticle

lifetime scales linearly in energy but that unphysically, the renormalised Fermi ve-

locity diverges logarithmically at the Dirac points. The result is that the step in the

Fermi function vanishes, whereby the concept of a Fermi surface no longer applies.

At �nite doping, it was shown that graphene displays ordinary Fermi liquid

behaviour with the Fermi velocity renormalising in a similar fashion to an ordinary

2DEG. This is a result of the emergence of intraband and plasmon excitations, as

well as the return of a �nite density of states, restoring Fermi liquid behaviour.

It has been shown more recently [81], that the speci�c heat of doped graphene

has normal Fermi liquid, linear in temperature behaviour. Very far away from

the Dirac points it is not surprising that the system should behave as a Fermi
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liquid because the system has as ordinary quadratic dispersion and is composed of

ordinary �Schrödinger� fermions. There as yet exists no robust theory for describing

the presumably smooth crossover between this regime and the pseudo-relativistic

behaviour close to the Dirac points.

Even for experiments involving undoped graphene, there will inevitably be a

�nite Fermi energy due to either charge from a substrate and / or rippling of the

graphene itself [58]. As we will see in section 3.4, there is evidence that undoped

graphene splits into puddles of positively and negatively doped regions, within which

the Fermi liquid picture holds. In almost all realistic situations it is therefore rea-

sonable to treat graphene as a normal Fermi liquid.

3.3.2.3 Screening and Plasmons

Of particular interest to studies of Coulomb drag is the nature of screening and

plasmons in graphene close to the Dirac points. In the majority of 2DEG drag ex-

periments and theoretical treatments, screening has been taken in the random phase

approximation. This approximation is valid in the high density limit where kinetic

energy dominates over potential. It is critical to understand whether or not this

approximation is appropriate for use in graphene systems. In an interacting elec-

tron system, the quantity that paramaterises the ratio (RE) of the average potential

energy to the average kinetic energy is the Wigner-Seitz radius (rs), de�ned as the

mean electronic separation;

rs =


(

3
4πn

) 1
3 3D

(
π
n

) 1
2 2D,

(3.16)
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where n is the electronic density. The average potential energy is

〈Potential Energy〉 ≈ 1

2

e2

κrs
, (3.17)

where κ is the background dielectric constant. Using the graphene dispersion (3.9),

the average kinetic energy is

〈Kinetic Energy〉 ≈ 2πvF
λ
≈ vFπ

rs
, (3.18)

and therefore we have for the ratio (RE) of the potential to the kinetic energy,

〈Potential Energy〉
〈Kinetic Energy〉

=
e2

κπvF
(3.19)

which is clearly independent of rs and therefore the density, n. This constant rela-

tionship is markedly di�erent to the usual 2D
(
RE v n−1/2

)
and 3D

(
RE v n−1/3

)
case for electron liquids, where interaction e�ects increase with increasing density

n. It should however be remembered that (3.19) only holds close to the Dirac point

where the quasiparticle spectrum is linear. It will therefore fail at high enough dop-

ing. An estimate for RE can be obtained for experimentally relevant systems by

assuming that the graphene substrate used in SiO2 so that κ = 4 and therefore

RE ∼ 0.5. This shows that graphene is a weakly interacting system for all carrier

densities. The RPA is asymptotically exact in the RE � 1 limit and so it is an

excellent approximation for graphene [84].

Treating screening in the RPA, the dynamical screening function (or dielectric
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Figure 3.16: Particle-hole continuum and collective modes of: (a) 2DEG; (b) un-
doped graphene; (c) doped graphene. Reproduced from [43].

function) is given by [18]

ε(q, ω) = 1 + υ(q)χ(q, ω), (3.20)

where υ(q) = 2πe2/κq is the bare 2D coulomb interaction and χ(q, ω) is the 2D

polarisability. The polarisability is calculated as usual from the bare bubble diagram

and is given by (see section 5.2) [82]

χ(q, ω) =
∑
λ,λ′=±

∑
k

(1 + λλ′ cos θ+)
nF (εk,λ′)− nF (εk+q,λ)

ω + εk,λ′ − εk+q,λ + iδ
. (3.21)

For undoped (intrinsic) graphene at zero temperature we have nF (εk,−) = 1 and

nF (εk,+) = 0. Therefore, there are no intraband transitions, only interband tran-

sitions between the upper and lower cones are allowed. As these have a relatively
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high energy cost, intrinsic graphene does not support any electron-hole excitations

at low energy and at zero temperature. The polarisability (3.21) has been evaluated

in this case and found to have the simple analytic form [83]

χ(q, ω) =
q2

4
√
v2
F q

2 − ω2
. (3.22)

In doped (extrinsic) graphene, where nF (εk,λ) = [exp {β (εk,λ − µ) + 1}], intraband

transitions are allowed. An analytic form for the polarisability has been found [82]

that is a great deal more complicated than (3.22) and the reader is referred to [82] for

details. However, it is worth mentioning a few limiting cases. In the long wavelength

(q → 0) limit it has been shown that [82]

χ(q, ω) ≈


D(EF )v2F q

2

2ω2

[
1− ω2

4E2
F

]
,

D(EF )
[
1 + i ω

vF q

]
,

vF q < ω < 2EF ,

ω < vF q,

(3.23)

and for the static (ω = 0) case,

χ(q) ≈


D(EF ),

D(EF )

[
1 + πq

8kF
− 1

2

√
1− 4k2F

q2
− q

4kF
sin−1 2kF

q

]
,

q < 2kF ,

q > 2kF ,

(3.24)

where D(EF ) = 2kF/πυF is the graphene density of states at the Fermi energy. By

looking for the zeros of the dielectric function, (3.20), they were able to determine

the plasmon mode dispersion of doped monolayer graphene (�gure 3.16). They

found that in the q → 0 limit, the plasmon dispersion has the form

ωp(q → 0) = ω0
√
q (3.25)
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Figure 3.17: Im
[
ε−1

12 (q, ω, T )
]
plotted at 0.1TF and for three di�erent layer separa-

tions. From left to right 3.5k−1
F , 2.5k−1

F and 1.5k−1
F . As the layer separation decreases

the plasmon modes are seen to move further apart.

where ω0 =
√

2e2EF/κ. This leading order behaviour has exactly the same q1/2 form

as for a normal 2D plasmon. The di�erence however is in the density dependence

of the plasma frequency, which goes as n1/4 compared to n1/2 in a 2DEG. This is a

direct consequence of the graphene's relativistic dispersion.

Ramezanali et al. [81] were able to derive a semi-analytic expression for the

�nite temperature polarisability, χ(q, ω, T ), of doped graphene, given by χ(q, ω, T ) =

Reχ(q, ω, T ) + Imχ(q, ω, T ) with

Imχ(q, ω, T ) =
1

π

∑
α=±

{
θ(υF q − ω)q2f(υF q, ω)

[
G

(α)
+ (q, ω, T )−G(α)

− (q, ω, T )
]

+ θ(ω − υF q)q2f(ω, υF q)
[
−π

2
δα,− +H

(α)
+ (q, ω, T )

]}
, (3.26)

Reχ(q, ω, T ) =
1

π

∑
α=±

{
−2kBT ln

[
1 + eαµ(T )/kBT

]
υ2
F

+ θ(ω − υF q)

×q2f(ω, υF q)
[
G

(α)
− (q, ω, T )−G(α)

+ (q, ω, T )
]

+ θ(υq − ω)q2f(υF q, ω)
[
−π

2
δα,− +H

(α)
− (q, ω, T )

]}
, (3.27)
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where,

f(x, y) =
1

2
√
x2 − y2

, (3.28)

G
(α)
± (q, ω, T ) =

∫ ∞
1

du

√
u2 − 1

exp
(
|υF qu±ω|−2αµ(T )

2kBT

)
+ 1

, (3.29)

H
(α)
± (q, ω, T ) =

∫ 1

−1

du

√
1− u2

exp
(
|υF qu±ω|−2αµ(T )

2kBT

)
+ 1

. (3.30)

Their numerical results (�gure 3.17) showed that although, as expected, the in-

tralayer region of the e-h continuum is bounded by ω ≤ q, the interlayer region

acquires a signi�cant weight at small ω and q, even for temperatures as low as

T = 0.2TF .

3.3.3 Bilayer Graphene

A great deal of theoretical and experimental activity stemmed from the 2004 fabri-

cation of graphene monolayers. More recently, graphene bilayers have become the

subject of intense research, primarily because they o�er the possibility of opening up

a band gap, while retaining many of the properties associated with chiral quasipar-

ticles. A graphene bilayer is simply two parallel graphene monolayers close enough

so that they are coupled by interlayer tunneling. The distance between them is

essentially identical to the graphite interlayer spacing [43].

McCann et al. [85] were the �rst to investigate the low energy Hamiltonian of a

graphene bilayer and their �ndings were later con�rmed by several other authors [88�

90]. They did so by employing a tight binding approach to two graphene monolayers

arranged according to Bernal stacking. With four atoms per unit cell, if A, B and

Ã, B̃ are the sublattices of the bottom and top layers respectively, Bernal (Ã− B)
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Figure 3.18: Left: Schematic of the bilayer lattice (bonds in the bottom layer A,
B are indicated by solid lines and in the top layer Ã, B̃ by dashed lines) containing
four sites in the unit cell: A (blue circles), B̃ (yellow hashed), ÃB dimer (solid).
Right: the lattice of a monolayer. Reproduced from [85].

stacking has every B site directly below an Ã site, but the A and B̃ sites do not sit

directly above or below another site (�gure 3.18).

The bilayer lattice shares some features of its hexagonal Brillouin zone with a

graphene monolayer and has two inequivalent corners K (ξ = 1) and K′ (ξ = −1)

that form two valleys and are labeled by ξ = ±. Like the monolayer, the Fermi

energy lies at these points for an undoped system. The bilayer Hamiltonian forms

four bands (�gure 3.21), two low energy gap-less bands (ε(1)
± ) and two high energy

bands (ε(2)
± ). The starting point for the tight binding calculation is the second

quantized Hamiltonian [43],

Ĥ = γ0

∑
〈i,j〉

∑
m,σ

(
a†m,i,σbm,j,σ + h.c.

)
− γ1

∑
j,σ

(
a†1,j,σa2,j,σ + h.c.

)
(3.31)

− γ3

∑
j,σ

(
a†1,j,σb2,j,σ + a†2,j,σb1,j,σ + h.c.

)
− γ4

∑
j,σ

(
b†1,j,σb2,j,σ + h.c.

)
.

The above Hamiltonian is characterised by several parameters that relate to the

amplitudes or both in-plane and out-of-plane hopping. The parameter γ0 ≡ γAB =

γÃB̃ ' 2.8eV controls the nearest in-plane neighbour hopping and is identical to
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the nearest neighbour hopping amplitude t (3.7) that appears in the monolayer

system. The strongest interlayer coupling forms a dimer and comes from hopping

between the directly opposite sites Ã and B. It is controlled by the parameter

γ1 ≡ γÃB ' 0.39eV and forms the two higher energy bands (ε(2)
± ), with energy ≥ γ1.

The weakest coupling taken into account in [85] is A− B̃ hopping, controlled by the

parameter γ3 ≡ γAB̃ ' 0.315eV . In principle one should take into account hopping

between sites B and B̃ with an energy γ4 ' 0.2eV . Taking into account higher order

hopping introduces a negligible overlap between the low energy bands.

One of the most interesting features of bilayer graphene is the ability to open

up a gap, ∆, between the two bands (ε(1)
± ) via asymmetric doping of the layers.

It is this feature in particular that may lead the the bilayer becoming important

for graphene electronics devices. At the corners of the Brillouin zone, at either K

(ξ = 1) or K′ (ξ = −1) the Hamiltonian has the form [85]

Ĥ = ξ



1
2
∆ υ3π 0 υπ†

υ3π
† −1

2
∆ υπ 0

0 υπ† −1
2
∆ ξγ1

υπ 0 ξγ1
1
2
∆


, (3.32)

where π = kx + iky, π† = kx − iky, and the in-plane (υ) and out-of-plane (υ3)

velocities are given by υ =
(√

3/2
)
aγ0/~ and υ3 =

(√
3/2
)
aγ3/~ respectively (a is

the lattice constant and υ3 ' 0.1υ). The in-plane velocity, υ, is the same as that

appearing in the monolayer calculation. Just as the monolayer Hamiltonian (3.13)

acts on the subspace of sites A and B, the bilayer Hamiltonian (3.32) acts on the

subspace of sites A, B, Ã and B̃. The band structure near the K points (�gure
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Figure 3.19: Left: 2D band dispersion near to one of the K points (t⊥ ≡ γ1).
Reproduced from [88]. Right: 3D bands structure of bilayer graphene near to one
of the K points as plotted from (3.33).

3.21) is given by

∓ εα±(k) =
γ2

1

2
+

∆2

2
+

(
υ2 +

υ2
3

2

)
|k|2 + (−1)α

[(
γ2

1 − υ2
3 |k|

2)2

4

+υ2 |k|2
[
γ2

1 + u2 + υ2
3 |k|

2]+ 2ξγ1υ3υ
2 |k|3 cos 3θk

] 1
2

, (3.33)

where α = 1, 2 labels the bands high and low energy bands respectively (�gure 3.19)

and θk = tan−1 (ky/kx). Equation (3.33) describes the four bands, two low energy

bands (ε1
+, ε

1
−) that meet with zero gap (for ∆ = 0) at zero energy, and two higher

energy bands (ε2
+, ε

2
−) with

∣∣ε2
±
∣∣ > γ1.

In the low energy regime, where only the low energy bands (ε1
±) are relevant,

electrons are mostly localised on the A and B̃ sites (those not directly opposite a site

in the adjacent layer). This is demonstrated [88, 90] by real space electron density

calculations that show a triangular structure for the bilayer (�gure 3.20). This is in

contrast to the monolayer case where the electrons are evenly distributed between
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Figure 3.20: The phase (using grey colouring with the corresponding scale to the
far right) of one of the two degenerate wave functions at the K point for (Left)
monolayer and (Right) bilayer graphene with a contour plot of the electron density
superimposed (both calculated at 1Å above the surface). The monolayer electron
density is shared between the A and B sites forming the usual hexagonal pattern.
For the bilayer this pattern is missing as the electron density is con�ned to the A
(or equivalently B̃) sublattice forming a triangular pattern. Reproduced from [90].

the sublattices and the expected hexagonal structure is seen. Consequently, the low

energy dynamics of a bilayer can be described by a 2× 2 Hamiltonian acting in the

A, B̃ subspace. Valid within the energy range |ε| < 1
4
γ1, it was shown [85] that the

low energy states of a bilayer are described by the following Hamiltonian, Ĥ =

1

2m

 0
(
π†
)2

π2 0

+ξυ3

 0 π

π† 0

+ξ∆

1

2

 1 0

0 −1

− υ2

γ2
1

 π†π 0

0 −ππ†


 .

(3.34)

The �rst term, quadratic in k, describes A� B̃ hopping via the dimer state formed

between Ã and B. The second term (linear in k) is the bilayer equivalent of trigonal

warping and describes direct A � B̃ hopping. The third term takes into account

the e�ect of a gap, ∆, that as previously stated, is induced via asymmetric doping

of the bilayer.

In contrast to monolayer graphene, the trigonal warping term for the bilayer has a
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Figure 3.21: Constant energy lines (in units of γ1) of the graphene bilayer dispersion
relation (3.33). Shown for the positive eigenvalues in the (kx,ky) plane around the
K point of the Brillouin zone (at the origin in this �gure). The asymmetry of the
Fermi line at the K ′ valley is inverted. Reproduced from [61].

profound e�ect on the band dispersion at very low energies
(
|ε| < 1

2
γ1 (υ3/υ)2 ' 2× 10−3eV

)
,

where it dominates. This corresponds to a charge density n ≤ 1 × 10−11cm−2. Its

e�ect is to change the topology of the band from parabolic into four pockets, one

circular �central� pocket and three satellite elliptical �leg� parts (�gure 3.21). At

zero energy these legs meet, forming cones with a linear spectrum.

For intermediate energies
(

1
2
γ1 (υ3/υ)2 < |ε| < 1

4
γ1

)
the �rst term of (3.34) dom-

inates and the quasiparticles behave as chiral fermions with a Hamiltonian

Ĥ =
1

2m

 0 [kx − iky]2

[kx + iky]
2 0

 , (3.35)

and a parabolic dispersion

ε = ±|k|
2

2m
. (3.36)

The quasiparticles' e�ective mass m = γ1/2υ
2 is estimated [85] to be light at m '

0.054me and, in contrast to the monolayer, have a Berry's phase of 2π.
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At yet higher energies, |ε| > 1
4
γ1 ' 0.1eV , the Hamiltonian (3.34) does not

hold and the dispersion again becomes linear [85] . In the crossover between the

parabolic and linear dispersion at high energies, and before the lower band is reached

(|ε| = γ1), the dispersion can be approximated by [85]

ε1
± ≈ ±γ1

√1 +
4υ |k|2

γ2
1

− 1

 . (3.37)

The crossover occurs at |k| ' γ1/υ and corresponds to a carrier density n ≈ 4.36×

1012. This is below the density at which the upper bands
(
ε2
±
)
become occupied,

estimated to be n ≈ 3.49× 1013.

In principle, calculations of the low energy properties of the bilayer should use

a Hamiltonian describing all of the above regimes. The theoretical framework to

describe the e�ects of chirality in the complicated crossover regimes remains to

be developed. Fortunately, for most experimental systems of interest, the relevant

Hamiltonian is the one describing chiral fermions with a quadratic spectrum (3.35).

It has been estimated [62] that charged impurities from the substrate will induce

a residual charge density that corresponds to ε ≥ 0.01eV . This is above the range

at which the trigonal warping term dominates. Furthermore, typical experimental

systems induce charge densities below, or comparable to, the high energy crossover

from a parabolic to a linear dispersion (n ≈ 4.36× 1012). Therefore, as long as the

system in question has a charge density in the range

1× 10−11cm−2 < n < 4.36× 1012cm−2, (3.38)
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or equivalently energy in the range

2× 10−3eV < |ε| < 0.1eV, (3.39)

it is justi�able to make the simplifying assumption that the system may be described

by (3.35).

3.3.3.1 Screening and Plasmons

The full details of screening and plasmons in bilayer graphene is an area yet to be

explored in the literature and will form part of the original work of this thesis. The

case of static screening has been considered at zero temperature [92]. From the bare

bubble (RPA) diagram, the dynamic polarisability is found to be (see for example

Section 5.2)

χ(q, ω) =
∑
λ,λ′=±

∑
k

(1 + λλ′ cos 2θ+)
nF (εk,λ′)− nF (εk+q,λ)

ω + εk,λ′ − εk+q,λ + iδ
. (3.40)

In the static limit, this reduces to

χ(q) =
∑
λ,λ′=±

∑
k

(1 + λλ′ cos 2θ+)
nF (εk,λ′)− nF (εk+q,λ)

εk,λ′ − εk+q,λ

. (3.41)

For an intrinsic (undoped) bilayer, it was shown that the static polarisability (arising

from interband transitions) equals a constant for all k and is given by

χ(q) = D(EF ) ln 4, (3.42)
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where D(EF ) is the density of states at the Fermi surface, given by 2m/π. This is

quite di�erent from both the 2DEG and single layer graphene case. The former is

a factor of 4 smaller and only constant for q ≤ 2kF . For a graphene monolayer the

static polarisability is proportional to k and given by χSLG(q) = q/4υF .

In the extrinsic (doped) case the static polarisability was shown to have the form

χ(q)

D(EF )
=

2k2
F + q2

2k2
F q

√
q2 − 4k2

F + ln
q −

√
q2 − 4k2

F

q +
√
q2 − 4k2

F

− θ(q − 2kF )

(√
4k4

F + q4

2k2
F

− ln

[
k2
F −

√
k4
F + q4/4

2k2
F

])
. (3.43)

3.4 Minimum Conductivity

One of the most intriguing properties of graphene is its �nite minimal conductiv-

ity at the Dirac points that is of the order of the conductance quantum e2/h per

valley/spin. Note that it is conductivity quantization and not conductance quanti-

zation (often associated with transport through quantum wires). This is essentially

conductivity without charge carriers since the density of states vanishes at the Dirac

points. This feature of graphene is potentially important for electronic application.

The experimental results [93] indicate that the conductivity approaches its quan-

tized value for an ideal crystal and is therefore independent of scattering (�gure

3.22). This is completely at odds with conventional transport theory where, at low

temperatures, conductivity is limited by impurity scattering.

There has been a great deal of theoretical activity trying to explain the precise

value of the minimum conductivity, for example [94�97]. None so far has succeeded,

with most predicting a minimum conductivity of 4e2/hπ. This is approximately

π times smaller than the experimental value and has led to the problem becoming
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Figure 3.22: Minimum conductivity of graphene. Independent of their carrier
mobility µ, di�erent graphene devices exhibit approximately the same conductivity
at the neutrality point (open circles) with most data clustering around ≈ 4e2/h
indicated for clarity by the dashed line (A.K.G. and K.S.N., unpublished work;
includes the published data from [93]). The high-conductivity tail is attributed to
macroscopic inhomogeneity. By improving the homogeneity of the samples, svmin
generally decreases, moving closer to ≈ 4e2/h. The green arrow and symbols show
one of the devices that initially exhibited an anomalously large value of svmin but
after thermal annealing at ≈ 400K its svmin moved closer to the rest of the statistical
ensemble. Most of the data are taken in the bend resistance geometry where the
macroscopic inhomogeneity plays the least role. Reproduced from [45].
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Figure 3.23: Spatial density �uctuations and electron/hole puddles. Colour map of
the spatial density variations in the graphene �ake extracted from surface potential
measurements at high density and when the average carrier density is zero. The
blue regions correspond to holes and the red regions to electrons. The black contour
marks the zero density contour. Reproduced from [45,100].

known as �the mystery of the missing pi�. It is one of the great outstanding problems

in graphene physics. Many of the theories so far rely on the linear spectrum and

hence the vanishing density of states of graphene. However, experiments on graphene

bilayers [98,99] also indicate a minimum conductivity of e2/h per valley/spin. This

suggests than the minimum conductivity is an e�ect of chirality and not the linear

spectrum. It is not clear at this point whether or not the discrepancy between

experiment and theory is due to inaccurate approximations about electron scattering

in graphene, or because experiments so far have only probed a limited set of sample

parameters e.g. length to width ratios [95].

In attempts to solve the mystery, there has been a great deal of interest in

the e�ects of microscopic inhomogeneities in graphene. Although pure, undoped
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graphene has its Fermi energy at the Dirac points, it is reasonable to suggest that in

a realistic sample, disorder, ripples or dopants will shift the local Fermi energy away

from the Dirac points. The result will be the formation of �puddles� of electron and

hole carrier regions. It has been shown that this is indeed the case, except that these

puddles are an intrinsic property of graphene, not related to the substrate. [100].

It is not at �rst obvious how this relates to minimum conductivity as the sample

average carrier density will still be zero. However, modeling the carrier puddles as a

random network of resistors [101], through which the current percolates has resulted

in good agreement with experiment. The boundaries of the electron and hole regions

can be seen as conventional p-n junctions, forming a potential barrier through which

a carrier may tunnel.

It is here than an interesting feature of relativistic particles known as the Klein

paradox comes into play. The Klein paradox in relativistic quantum mechanics, and

consequently graphene, states that for particular angles of incidence, a carrier may

tunnel through an arbitrary high barrier without a reduction in amplitude. In fact,

only for an in�nitely high potential does the transparency become perfect and in

general the tunneling probability is only weakly dependent on the barrier height.

In non-relativistic quantum mechanics such tunneling would result in a reduction

of the wave-function's amplitude. It is not yet known whether this relativistic ef-

fect, or indeed any other, holds the key to solving issues surrounding the minimum

conductivity.



Chapter 4

Graphene Monolayer Systems

In this chapter, we perform a full �nite temperature calculation of Coulomb drag

between two graphene mono-layers. After a brief introduction, we will derive a semi-

analytic expression for the graphene non-linear susceptibility, representing the �rst

original work of this thesis.

Following this, we will use a semi-analytic expression for the �nite temperature

graphene polarisability (derived in [81]) to study, for the �rst time, the behaviour

of �nite temperature plasmons modes in the double layer graphene system.

In the �nal original calculation of this chapter, we will combine the above results

to calculate the �nite temperature drag resistivity at various carrier densities and

interlayer spacings. Our results show that the drag e�ect is dominated by plasmons

at around 0.2TF (approximately room temperature) and should therefore be exper-

imentally accessible. This is in contrast to a prediction made elsewhere [106] that

suggests that none will be seen until T ≈ TF . For comparison, the plasmon contri-

bution to drag between two dimensional electron gasses peaks at around 0.5TF [8].

We will then discuss the behaviour of the drag resistivity at very small interlayer

distances (≈ 30Å) where the plasmon enhancement is weak due to a competition

91
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between phase space terms, and the strength and position of the plasmon peaks.

4.1 Introduction

There are several di�erences between graphene and a two dimensional electron gas

(2DEG) that make it an intriguing system in which to study the Coulomb drag

e�ect. Foremost, its linear dispersion and chiral properties may be expected to lead

to some novel drag e�ects with which to probe direct interactions between Dirac

Fermions. There is some precedence for this since other transport properties of

graphene show unusual features such as weak localisation and minimum conductivity

(see chapter 3). As we shall see, an e�ect of the linear dispersion is that the non-

linear susceptibility (NLS) is not simply proportional to the imaginary part of the

individual layer polarisability, as is the case for a 2DEG system in the weak scattering

limit. Furthermore, interband transitions, as well as the more usual intraband ones,

need to be accounted for. This is not normally the case in a 2DEG semiconductor

system because its band gap prevents low energy interband transitions.

Another important di�erence between these two systems is that it should be

possible to study the drag e�ect in graphene at much smaller interlayer distances

than in a conventional drag system. This is because interlayer tunneling will not

occur between graphene layers until the out of plane π orbitals begin to overlap at

approximately 3.5Å [106]. Below this distance the system will begin to behave as a

single graphene bilayer (section 3.3.3 ).

As an extremely clean and strictly two dimensional system, the added compli-

cations of modeling disorder and a �nite well width are no longer as relevant to

a graphene monolayer drag system, and in a sense we might expect to observe a
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purer drag e�ect. As yet, there have been no actual drag experiments performed

in graphene systems although, it is understood that some groups are investigating

such experiments. [105]

Perhaps disappointingly, a 2007 theoretical investigation by Das Sarma et al.

[106] of Coulomb drag in graphene, performed with zero temperature expressions

for the NLS and polarisation, showed strikingly similar behaviour at �nite doping

to that of a 2DEG system. At zero doping they showed that the symmetry of

the system around the Dirac point precludes a drag e�ect, so long as one does

not include the e�ects of trigonal warping or strong disorder [107]. Away from the

Dirac point one sees the same d−4, T 2 behavior of the drag resistivity in the limit

of low temperature and large interlayer spacing, although the strength of the e�ect

typically an order of magnitude greater. Interestingly, the fact that graphene's Fermi

temperature is typically an order of magnitude higher than that of a GaAs 2DEG

means that this low temperature behaviour should be observable up to a higher

absolute temperature.

The calculation of Das Sarma et al. only included temperatures up to 0.2TF and

displayed conservative behaviour, with the drag resistivity decreasing slightly faster

than T 2 away from zero temperature. The calculation showed no evidence of any

plasmon enhancement up to this temperature and in fact the authors put forward

an argument that that there will be no such enhancement in a graphene system until

one approaches the Fermi temperature. Their argument was primarily based on the

fact that (see section 4.2) the graphene intraband excitations are strictly bound to a

region ω < υF q. The result is that as temperature is increased, intraband excitations

never acquire a weight in the region containing the plasmon dispersions. This is in

contrast to the case of a 2DEG system where, at �nite temperatures, the migration
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of electron-hole (e-h) excitations into the path of the plasmons dispersions drives

the plasmon enhancement to the drag e�ect. Therefore, the only possible source

of a plasmon enhancement to graphene drag come from the interband region of

the e-h continuum. Das Sarma et al. predicted that this would not happen until

approximately the Fermi temperature, at around 1000K. This is clearly outside of

typical experiment parameters. As we shall show in this chapter, this is not the case

and interband transitions enhance the drag e�ect at much lower temperatures.

4.2 The Non-Linear Susceptibility

As usual, the central quantity in the drag calculation is the non-linear susceptibility

(NLS), Γi(q, ω), appearing in the general expression for the drag conductivity (2.72)

σD =
1

16πkBT

∑
q

∫ ∞
0

dω
Γ1(q, ω)Γ2(q, ω) |U12(q, ω)|2

sinh2 (~ω/2kBT )
. (4.1)

where i labels the layer. As we have already seen (section 2.5.2), the 2DEG NLS

in the weak scattering limit is proportional to the individual layer polarisabilities.

This is not the case in graphene and it is a direct consequence of the fact that

the graphene current operator is not directly proportional to momentum, itself a

consequence of its linear dispersion. In this section, we will derive a semi-analytic

expression for the �nite temperature NLS. Following that, we will state the small q

and ω limit of the zero temperature expression for the NLS, originally derived by

Das Sarma et al. [106], allowing us to reproduce an analytic expression for the drag

resistivity in the limit of large interlayer spacing and T → 0.

We will not derive the general expression for general form of the graphene NLS
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in this chapter as the structure of the calculation is broadly similar to that presented

in the next chapter for bilayer graphene. It can be shown [106] that the graphene

NLS in the weak scattering limit has the form

Γ(q, ω) = τ
∑
λ,λ′=±

∑
k′

[
Jk′+q
λλ − Jk′

λ′λ′

]
Im

{
(1 + λλ′ cos θ+)

nF (εk′λ′)− nF (εk′+q,λ)

ω + εk′λ′ − εk′+q,λ + iδ

}
(4.2)

where θ+ = φk′+q−φk is the scattering angle from momentum k to k+q, λ, λ′ label

the bands, εkλ = λυF |k′| and ω > 0. The impurity dressed charge-current operator,

expressed in the chiral basis which diagonalises the problem, is [106]

Jk
λλ = λ(

τtr
τ

)υF cosφk′ . (4.3)

The non-linear susceptibility can be broken into two parts, an interband (λ 6= λ′)

and an intraband (λ = λ′) term so that

Γ(q, ω) = Γinterλ6=λ′(q, ω) + Γintraλ=λ′ (q, ω). (4.4)

The intraband term corresponds to low energy electron-hole conduction band exci-

tations bounded by ω < vF q. The interband contributions are in general an order

O (q2) smaller than the intraband contribution at zero temperature [106].

4.2.1 Coulomb Drag in Intrinsic Graphene

For the case where at least one of the layers is undoped, with the Fermi energy

passing exactly through the Dirac point, there is no net drag e�ect (σD = 0). As

we have discussed previously (section 2.1), a consequence of electron-hole symmetry
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is that the momentum transfer from each works in opposite directions, resulting in

a zero net drag e�ect. This is precisely the case at the Dirac point where there is

a mirror symmetry from one side to the other. If the drive layer is doped and the

drag layer is undoped, equal numbers of electrons and holes are dragged resulting

in a zero drag current. Similarly, if the drive layer is undoped and the drag layer is

doped, there are equal number of electrons and holes driving the drag current [106].

It has been suggested that this fact may be used to ones advantage when looking

for non-linearities in the graphene spectrum at the Dirac point. Sources of these

non-linearities are e�ects such as corrections due to next nearest neighbour hopping,

impurity scattering and trigonal warping. It was shown [107] that there will be a

�nite drag conductivity at the Dirac point due to trigonal warping. Furthermore,

it was argued that it could be distinguished from the other mechanisms mentioned

above by its dependence on system parameters such as the layer separation. In this

thesis we will only consider the case of drag in doped graphene systems, under the

assumption that the strength of the drag caused by subtle non-linearities will be

small compare to the conventional drag e�ect.

4.2.2 Finite Temperature Intraband NLS

We will now manipulate (4.2) into a form that lends itself to explicit calculation and

do so under the assumption of electron doping. Consequently, at zero temperature

nF (εk,−) = 1 and nF (εk′,+) = θ(kF − k), whereas at �nite temperature we have

nF (εk′,λ) = [exp (β (λεk′ − µ)) + 1]−1 . (4.5)
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From (4.2), we have for the intraband contribution (ΓIntra = Γλ,λ
′=+ + Γλ,λ

′=−)

ΓIntra = −πτ
∑

k′,λ=±

[
Jλλk′+q − Jλλk′

]
(1+cos θ+) [nF (εk′,λ)− nF (εk′+q,λ)] δ(ω+εk′,λ−εk′+q,λ).

(4.6)

We will �rst calculate the λ = λ′ = + term, Γ++, where

Γ++ = −πτ
∑
k′

[
J++
k′+q − J

++
k′

]
(1+cos θ+) [nF (εk′,+)− nF (εk′+q,+)] δ(ω+εk′,+−εk′+q,+).

(4.7)

The calculation can be simpli�ed somewhat by noting that the current operators

are even with respect to φk → φ−k. Therefore, we may make a change of variables

k → −k − q in the term of (4.7) involving the Fermi function nF (εk′+q,+) and

thereby write

Γ++ = −πτ
∑
k′

[
J++
k′+q − J

++
k′

]
(1+cos θ+)nF (εk′,+)δ(ω+εk′,+−εk′+q,+)−{ω → −ω} .

(4.8)

To evaluate this expression, we will need to write the φ dependent terms as

functions of the θ, the angle between the vectors k′ and q. We proceed by noting

that since the angles φk′ and φk′+q, which are measured with respect to an axis

parallel to the current direction, are integrated over and so for convenience we may

choose the vector q to be parallel to that axis. This gives

J++
k′+q − J

++
k′ =

τtr
τ
evF

(
k′ cos θ + q√

k′2 + q2 + 2k′q cos θ
− cos θ

)
(4.9)
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The case for 1 + cos θ+ is more simple. We have

1 + cos θ+ = 1 + cos(φk′+q − φk) = 1 +
q cos θ + k′√

k′2 + q2 + 2k′q cos θ
. (4.10)

Returning to (4.8) and writing the sum over momentum as an integral, we have for

the non-linear intraband susceptibility

Γ++ = −4
πτtreυF
(2π)2

∫ ∞
0

k′dk′
∫ 2π

0

dθ

[
k′cosθ + q

Q
− cosθ

] [
1 +

q cos θ + k′

Q

]

×nF (εk′,+)δ(ω + εk′,+ − εk′+q,+)− {ω → −ω} , (4.11)

where Q =
√
k2 + q2 + 2kqcosθ and we have taken into account the 2× 2 spin and

valley degeneracy. Introducing εk,λ = λυFk explicitly,

Γ++ = −τtreυF
π

∫ ∞
0

k′dk′
∫ 2π

0

dθ

[
k′cosθ + q

Q
− cosθ

] [
1 +

q cos θ + k′

Q

]

×nF (εk′,+)δ(ω + υFk
′ − υFQ)− {ω → −ω} . (4.12)

It is convenient at this stage to introduce the dimensionless variables k = k′/kF ,

x = q/kF and y = ω/EF . Making use of the identity δ(αx) = 1
|α|δ(x) and noting
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that EF = υFkF we then have

Γ++ = −2α

∫ ∞
0

kdk

∫ 2π

0

dθ

[
kcosθ + x

Q
− cosθ

] [
1 +

x cos θ + k

Q

]

×nF (εk,+)δ(y + k −Q)− {ω → −ω} , (4.13)

where Q =
√
k2 + x2 + 2kxcosθ and α = τtrekF

2π
. The angular integration can be

carried out via the delta function which provides the conditions

k >
x− y

2
& y ≤ x. (4.14)

Making the change of variable Q =
√
k2 + x2 + 2kxcosθ so that

dθ =
QdQ√

4k2x2 − (Q2 − k2 − x2)2
, cos θ =

Q2 − k2 − x2

2kx
, (4.15)

equation (4.14) becomes

Γ++ = −α
x

∫ ∞
x−y
2

kdk

∫
QdQ

[
Q2 − k2 + x2

Q
− Q2 − k2 − x2

k

]
(4.16)

×
[
1 +

Q2 + k2 − x2

2kQ

]
nF (εk,+)δ(y + k −Q)√
4k2x2 − (Q2 − k2 − x2)2

θ(x− y)− [ω → −ω] .

Evaluating the integrand at Q = y + k,
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Γ++ = −α
x

∫ ∞
x−y
2

kdk

[
(y + k)2 − k2 + x2

y + k
− (y + k)2 − k2 − x2

k

]
(4.17)

×

[
1 +

(y + k)2 + k2 − x2

2k (y + k)

]
nF (εk,+) (y + k) θ(x− y)√

4k2x2 −
(
(y + k)2 − k2 − x2

)2
− {y → −y} .

The term in the square root factorises into
√

(x2 − y2)(2k − x+ y)(2k + x+ y). We

then have,

Γ++ = − α

x
√
x2 − y2

∫ ∞
x−y
2

kdk

[
2yk + y2 + x2

y + k
− 2yk + y2 − x2

k

]
(4.18)

×
[
1 +

2k2 + 2yk + y2 − x2

2k (y + k)

]
nF (εk,+) (y + k)√

(2k − x+ y)(2k + x+ y)
θ(x− y)− {y → −y} .

Putting the terms in square brackets over common denominators

Γ++ = − α

x
√
x2 − y2

∫ ∞
x−y
2

kdk

[
(x2 − y2) (2k + y)

k(k + y)

] [
(2k − x+ y)(2k + x+ y)

2k(k + y)

]

× nF (εk,+) (y + k)√
(2k − x+ y)(2k + x+ y)

θ(x− y)− [y → −y] , (4.19)

and then tidying up a little yields

Γ++ = −α
√
x2 − y2

2x

∫ ∞
x−y
2

dknF (εk,+)

[
(2k + y)

√
(2k − x+ y)(2k + x+ y)

k(k + y)

]
θ(x−y)−{y → −y}

(4.20)

We proceed by making the substitution u = 2k
x

+ y
x
so that k = (xu − y)/2 and
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dk = x
2
du. This gives

Γ++ = −α
√
x2 − y2

∫ ∞
1

dunF (εu,+)
xu
√

(xu− x)(xu+ x)

(xu− y)(xu+ y)
θ(x− y)− {y → −y}

Expanding the denominator we have our �nal form for the �nite temperature ΓIntra

Γ++(x, y, T ) = −α
√
x2 − y2

∫ ∞
1

dunF (εu,+)
u
√
u2 − 1

u2 − y2

x2

θ(x−y)−{y → −y} , (4.21)

where α = τtrekF
2π

.

Moving on to the λ = λ′ = − term, Γ−−, we have

Γ−− = −πτ
∑
k′

[
Jk′+q
−− − Jk′

−−

]
(1+cos θ+) [nF (εk′,−)− nF (εk′+q,−)] δ(ω+εk′,−−εk′+q,−),

(4.22)

which as we have already seen can be written as

Γ−− = −πτ
∑
k′

[
Jk′+q
−− − Jk′

−−

]
(1+cos θ+)nF (εk′,−)δ(ω+εk′,−−εk′+q,−)− [ω → −ω].

(4.23)

Making use of the identities Jk′

λλ = −Jk′

−λ−λ, εk′,λ = −εk′,−λ and δ(ax) = 1
|a|δ(x)

yields,

Γ−− = +πτ
∑
k′

[
Jk′+q

++ − Jk′

++

]
(1+cos θ+)nF (εk′,−)δ(−ω+εk′,+−εk′+q,+)−{ω → −ω} .

(4.24)

Therefore, we have shown that

Γ−− = Γ++nF (εk′,−)

nF (εk′,+)
. (4.25)
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Applying (3.11) to (2.3), we have for Γ−−,

Γ−− = −α
√
x2 − y2

2x
θ(x− y)

∫ ∞
x−y
2

dknF (εk,−)

[
(2k + y)

√
(2k − x+ y)(2k + x+ y)

k(k + y)

]
−{y → −y} . (4.26)

Repeating the steps that led up to (2.47) we have �nally for both intraband terms,

Γ−− = −α
√
x2 − y2θ(x− y)

∫ ∞
1

dunF (εu,−)
u
√
u2 − 1

u2 − y2

x2

− [y → −y] , (4.27)

Γ++ = −α
√
x2 − y2θ(x− y)

∫ ∞
1

dunF (εu,+)
u
√
u2 − 1

u2 − y2

x2

− [y → −y] , (4.28)

with

nF (εu,λ) =

[
exp

(
λ |xu− y| − 2µ′

2T ′

)
+ 1

]
,−1 (4.29)

where µ′ = µ/EF is the dimensionless chemical potential and T
′
= T/TF the dimen-

sionless temperature. De�ning a function

Mλ
±(x, y, T ′) =

∫ ∞
1

u
√
u2 − 1

[u2 − y2x−2]
[
exp

(
λ|xu±y|−2µ′

2T ′

)
+ 1
]du, (4.30)

we can write ΓIntra in the compact form

ΓIntra = −α
∑
λ=±

√
x2 − y2θ(x− y)

[
Mλ

+(x, y, T ′)−Mλ
−(x, y, T ′)

]
, (4.31)

where α = τtrekF
2π

.
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4.2.3 Finite Temperature Interband NLS

From (4.2) we have for the intraband contribution (λ 6= λ′), ΓInter = Γλ=1,λ′=−1 +

Γλ=−1,λ′=1

= −πτ
∑
k′

[
Jk′+q

++ − Jk′

−−

]
(1− cos θ+) [nF (εk′,−)− nF (εk′+q,+)] δ(ω + εk′,− − εk′+q,+)

(4.32)

−πτ
∑
k′

[
Jk′+q

++ − Jk′

−−

]
(1− cos θ+) [nF (εk′,+)− nF (εk′+q,−)] δ(ω + εk′,+ − εk′+q,−).

The second term in (4.32) is zero because every term in its δ function is always

positive. Therefore,

ΓInter = −πτ
∑
k′

[
Jk′+q

++ − Jk′

−−

]
(1−cos θ+) [nF (εk′,−)− nF (εk′+q,+)] δ(ω+εk′,−−εk′+q,+).

(4.33)

Changing variables k′ → −k′−q in the second of (4.33) involving nF (εk′+q,+), which

we shall call Γ(2), we have

Γ(2) = −πτ
∑
k′

[
J−k

′

++ − J
−k′−q
−−

]
(1−cos θ+)nF (ε−k′,+)δ(ω+ε−k′−q,−−ε−k′,+) (4.34)

Using the fact that J−k
′
= Jk′ and ε−k′λ = εk′λ we have,

Γ(2) = πτ
∑
k′

[
Jk′

++ − J
k′+q
−−

]
(1− cos θ+)nF (εk′,+)δ(ω + εk′+q−, − εk′,+) (4.35)

which, using εk′,−λ = −εk′,λ we can write as

Γ(2) = πτ
∑
k′

[
Jk′

++ − J
k′+q
−−

]
(1− cos θ+)nF (εk′,+)δ(ω + εk′,− − εk′+q+,). (4.36)
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Using Jk
λλ = −Jk

−λ−λ,

Γ(2) = πτ
∑
k′

[
Jk′+q

++ − Jk′

−−

]
(1− cos θ+)nF (εk′,+)δ(ω + εk′,− − εk′+q+,). (4.37)

Therefore, we have for ΓInter,

ΓInter = −πτ
∑
k′

[
Jk′+q

++ − Jk
−−

]
(1−cos θ+) [nF (εk′,−)− nF (εk′,+)] δ(ω+εk′,−−εk′+q,+).

(4.38)

As before, we now write the φ dependent terms as functions of θ. For the current

operators we have,

Jk′+q
++ − Jk′

−− =
τtr
τ
evF

(
k′ cos θ + q√

k′2 + q2 + 2k′q cos θ
+ cos θ

)
, (4.39)

and for 1− cos θ+,

1− cos θ+ = 1− cos(φk′+q − φk′) = 1− q cos θ + k′√
k′2 + q2 + 2k′q cos θ

. (4.40)

Returning to (4.33) and writing the sum over momentum as an integral, we have

for the non-linear interband susceptibility

ΓInter = −4
πτtrevF
(2π)2

∫ ∞
0

k′dk′
∫ 2π

0

dθ

[
k′ cos θ + q

Q
+ cos θ

] [
1− q cos θ + k′

Q

]

× [nF (εk′,−)− nF (εk′,+)] δ(ω + εk′,− − εk′+q,+), (4.41)
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where Q =
√
k′2 + q2 + 2k′q cos θ and we have included the 2 × 2 spin and valley

degeneracy. Introducing εk′,λ = λυFk
′ explicitly,

ΓInter = −τtrevF
π

∫ ∞
0

k′dk′
∫ 2π

0

dθ

[
k′ cos θ + q

Q
+ cosθ

] [
1− q cos θ + k′

Q

]

× [nF (εk′,−)− nF (εk′,+)] δ(ω − υFk′ − υFQ). (4.42)

We now once again introduce the dimensionless variables k = k′/kF , x = q/kF and

y = ω/EF . Making use of the identity δ(αx) = 1
|α|δ(x) and noting that EF = υFkF

we have

ΓInter = −2α

∫ ∞
0

kdk

∫ 2π

0

dθ

[
k cos θ + x

Q
+ cosθ

] [
1− x cos θ + k

Q

]

× [nF (εk,−)− nF (εk,+)] δ(y − k −Q), (4.43)

where Q =
√
k2 + x2 + 2kx cos θ and α = τtrekF

2π
. The angular integration can be

carried out via the delta function which provides the conditions

y − x
2

< k <
y + x

2
x ≤ y. (4.44)

Making the change of variables Q =
√
k2 + x2 + 2kxcosθ so that

dθ =
QdQ√

4k2x2 − (Q2 − k2 − x2)2
, cos θ =

Q2 − k2 − x2

2kx
, (4.45)

equation (4.14) becomes
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ΓInter = −α
x

∫ y−x
2

y−x
2

kdk

∫
QdQ

[
Q2 − k2 + x2

Q
+
Q2 − k2 − x2

k̃

]
(4.46)

×
[
1− Q2 + k2 − x2

2kQ

]
[nF (εk,−)− nF (εk,+)] θ(y − x)√

4k2x2 − (Q2 − k2 − x2)2
δ(y − k −Q).

Evaluating the integrand at Q = y − k,

ΓInter = −α
x

∫ y+x
2

y−x
2

kdk


(
y − k̃

)2

− k̃2 + x2

y − k̃
+

(
y − k̃

)2

− k̃2 − x2

k̃


(4.47)

×

[
1− (y − k)2 + k2 − x2

2k (y − k)

]
nF (εk,−) (y − k) θ(y − x)√

4kx2 −
(
(y − k)2 − k2 − x2

)2
,

the term in the square root factorises into
√

(y2 − x2)(x+ y − 2k)(2k + x− y) and

we have

ΓInter = − α

x
√
y2 − x2

∫ y+x
2

y−x
2

kdk

[
y2 + x2 − 2yk

y − k
+
y2 − x2 − 2yk

k

]
(4.48)

×
[
1− 2k2 − 2yk + y2 − x2

2k (y − k)

]
[nF (εk,−)− nF (εk,+)] (y − k) θ(y − x)√

(x+ y − 2k)(2k + x− y)
.

Putting the terms in square brackets over common denominators,

ΓInter = − α

x
√
y2 − x2

∫ y+x
2

y−x
2

k

[
(y2 − x2)(y − 2k)

k (k − y)

]
(4.49)

×
[

(x+ y − 2k)(2k + x− y)

2k (y − k)

]
[nF (εk,−)− nF (εk,+)] (y − k) θ(y − x)√

(x+ y − 2k)(2k + x− y)
dk̃.
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Tidying up a little,

ΓInter = −α
√
y2 − x2

2x

∫ y+x
2

y−x
2

dk

[
y − 2k

k (k − y)

]√
(x+ y − 2k)(2k + x− y)

× [nF (εk,−)− nF (εk,+)] θ(y − x). (4.50)

We proceed by making the substitution u = 2k
x
− y

x
so that k = (xu + y)/2 and

dk = x
2
du. This gives

ΓInter = +α
√
y2 − x2

∫ 1

−1

[
xu
√

(x− xu)(x+ xu)

(xu+ y)(xu− y)

]

× [nF (εu,−)− nF (εu,+)] θ(y − x)du. (4.51)

Expanding out the terms in round brackets, we have for our �nal form for ΓInter

ΓInter = −α
√
y2 − x2

∫ 1

−1

[
u
√

1− u2

u2 − y2

x2

]
[nF (εu,+)− nF (εu,−)] θ(y − x)du. (4.52)

with

nF (εu,λ) =

[
exp

(
λ |xu− y| − 2µ′

2T ′

)
+ 1

]−1

, (4.53)

where µ′ = µ/EF is the dimensionless chemical potential and T
′
= T/TF the dimen-

sionless temperature. De�ning a function

Nλ
±(x, y, T ′) =

∫ 1

−1

u
√

1− u2

[u2 − y2x−2]
[
exp

(
λ|xu±y|−2µ′

2T ′

)
+ 1
]du (4.54)
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we can write ΓIntra in the compact form

ΓInter = −α
∑
λ=±

√
y2 − x2θ(y − x)λNλ

+(x, y, T ′). (4.55)

4.2.4 Summary and Discussion

We have shown that the graphene �nite temperature non-linear susceptibilityΓ(x, y, T ′) =

ΓIntra + ΓInter is

Γ(x, y, T ) = −α
∑
λ=±

{
θ(x− y)f(x, y)

[
Mλ

+ −Mλ
−
]

+ λθ(y − x)f(y, x)Nλ
+

}
, (4.56)

Mλ
±(x, y, T ′) =

∫ ∞
1

u
√
u2 − 1

[u2 − y2x−2]
[
exp

(
λ|xu±y|−2µ′

2T ′

)
+ 1
]du,

Nλ
±(x, y, T ′) =

∫ 1

−1

u
√

1− u2

[u2 − y2x−2]
[
exp

(
λ|xu±y|−2µ′

2T ′

)
+ 1
]du,

f(x, y) =
√
x2 − y2,

and where k = k′/kF , x = q/kF , y = ω/EF , T ′ = T/TF , µ′ = µ/EF , and α = τtrekF
2π

.

Equation (4.56) represents the �rst original work of this thesis. It is evaluated

numerically for three di�erence temperature in �gure 4.1, clearly showing that the

intralayer contribution (ω > υF q) migrates toward the origin as the temperature

increase. As we will see, this is crucial to driving the plasmon enhancement to the

drag e�ect as it quickly overlaps with the plasmon dispersions.
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Figure 4.1: The �nite temperature graphene non-linear susceptibility. Density plots
of |Γ(q/kF , ω/EF , T )| /α as a function of ω and q for three di�erent temperatures.
From left to right 0.01TF , 0.1TF and 0.2TF . The colour scale shows the value of
the non-linear susceptibility in units of α = τtrekF

2π
. The intraband contribution

is restricted to the region ω < υF q and the interband contribution to ω > υF q.
The interband contribution is seen to migrate toward the origin with increasing
temperature.

4.2.5 Zero Temperature

The zero temperature graphene non-linear susceptibility was �rst derived by Das

Sarma et al. [106]. At zero temperature and for electron doping, the lower band the

Fermi function nF (εk̃,−) = 1 whereas nF (εk̃,+) = θ
(
kF − k̃

)
. The result is that for

the intraband contribution the Fermi functions of (4.2) cancel and we are left with

only one intraband term, Γ++, given by equation (4.20) with an upper momentum

cuto� of 1. The calculation is now reduced to a series of elementary integrals and

after some straightforward but tedious algebra one arrives at

ΓIntraT=0 = −α (x2 − y2)

x
θ(x− y)θ(2− x− y)

{
2

√
(y + x− 2)(y − x− 2)√

x2 − y2

(4.57)

−

[
tan−1

(√
(y + x− 2)(y − x− 2)

√
x2 − y2

x2 − 2− (y − 2)y

)
− πθ

[
y(y − 2)− x2 + 2

]]}

−{y → −y}, where α = τtrekF
2π

. Similarly, for the intraband contribution (4.32) the

di�erence of the two Fermi functions gives a lower momentum cuto� of 1. This leads
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Figure 4.2: The absolute value of the zero temperature non-linear susceptibility
Γ (q, ω) = ΓIntraT=0 (q, ω) + ΓInterT=0 (q, ω) (as derived in [106]) as a function of ωand q.
The colour scale shows the value of the non-linear susceptibility in units of α = τtrekF

2π
.

to

ΓInterT=0 = −α (y2 − x2)

x
θ(y − x)θ(x+ y − 2)θ(x− y + 2)

{
2

√
(x+ y − 2)(x− y − 2)√

y2 − x2

(4.58)

−

[
tan−1

(√
(x+ y − 2)(x− y − 2)

√
y2 − x2

x2 − 2− (y − 2)y

)
− πθ

[
x2 − 2− y(y − 2)

]]}
.

A plot of the zero temperature NLS is shown in �gure 4.2, showing clearly that the

interband contribution (y > x) resides high up on the y axis and therefore has no

weight to contribute to the drag e�ect as zero temperature.

It will be useful in deriving the analytic result of section 4.4 to give an expression

for the small y and x limit of Γ(x,y). In this case, the interband contribution has

no weight and (4.57) reduces to

Γ(x, y) = ΓIntraT=0 (x, y) ≈
4eτtrkFy

EFπ
=

4eτtrω

vFπ
x, y � 1 (4.59)

where ω = EFy. This expression will be useful in deriving a result for the drag rate

that is valid in the limit of lower temperature (T � TF ) and large interlayer spacing

(kFd� 1).
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4.3 Screening and Plasmons

As we have already discussed (section 3.3.2.3), the random phase approximation

(RPA) is an excellent choice for graphene as it is a weakly interacting system. In

the RPA the screened intralayer potential is given by (2.8)

U(q, ω) =
Ub(q)

1 + χ(q, ω)
≡ Ub(q)

ε(q, ω)
(4.60)

where Ub(q) = 2πe2exp(−qd)/q is the bare interlayer Coulomb interaction and

χ(q, ω) is the graphene polarisability. We showed in section 2.2 that under the RPA

and treating the graphene layers as identical, the screened interlayer interaction

(2.19)

U12(q, ω) =
Ub(q)

[1 + χ(q, ω)]2 − U2
b (q)χ2(q, ω)

≡ Ub(q)

ε12(q, ω)
. (4.61)

Das Sarma et al. [82] were the �rst to derive an analytic expression for the �nite

frequency polarisability at zero temperature and �nite doping. Its form is formidable

and so it will not be stated here. It will be useful in deriving the analytic result of

section 4.4 to give the zero temperature, large layer separation expression (d−1 �

q, kF , qTF ) limit of (4.61). In this limit we have

U12(q, ω) ≈ q

4πe2 sinh(qd)χ2(q, ω)
. (4.62)

As T → 0, the integral governing the drag conductivity (2.7) is restricted to small

frequencies ω by the sinh2 (ω/2kB) appearing in the denominator. Consequently,

we may take the static limit of the polarisability where it is real and equals the
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graphene density of states (3.24). We have

χ(q, ω → 0) ≈
2kF
πvF

. (4.63)

Substituting this into (4.62), the large d, small ω limit of the interlayer interaction

is

U12(q, ω) ≈ πe2q

q2
TF sinh qd

(4.64)

where qTF = 4e2kF/υF is the Thomas Fermi Screening wave-vector for graphene

[106].

The �nite temperature graphene polarisability was �rst considered by Ramezanali

et al. (2009, [81]). They were able to derive a semi-analytic expression and showed

that it has real and imaginary parts given by

Imχ(q, ω, T ) =
1

π

∑
α=±

{
θ(υF q − ω)q2f(υF q, ω)

[
G

(α)
+ (q, ω, T )−G(α)

− (q, ω, T )
]

+ θ(ω − υF q)q2f(ω, υF q)
[
−π

2
δα,− +H

(α)
+ (q, ω, T )

]}
, (4.65)

Reχ(q, ω, T ) =
1

π

∑
α=±

{
−2kBT ln

[
1 + eαµ(T )/kBT

]
υ2
F

+ θ(ω − υF q)

×q2f(ω, υF q)
[
G

(α)
− (q, ω, T )−G(α)

+ (q, ω, T )
]

+ θ(υq − ω)q2f(υF q, ω)
[
−π

2
δα,− +H

(α)
− (q, ω, T )

]}
, (4.66)

where,

f(x, y) =
1

2
√
x2 − y2

, (4.67)

G
(α)
± (q, ω, T ) =

∫ ∞
1

du

√
u2 − 1

exp
(
|υF qu±ω|−2αµ(T )

2kBT

)
+ 1

, (4.68)
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Figure 4.3: The �nite temperature graphene polarisability showing the imaginary
(upper) and real (lower) parts for temperatures 0.05TF (left) and 0.5TF (right). The
imaginary part, which represents the electron-hole continuum, is seen to migrate
toward the origin although it is only the interband (ω > υF q) region that does so.
In real part has most of its weight in the region ω < υF q.

H
(α)
± (q, ω, T )

∫ 1

−1

du

√
1− u2

exp
(
|υF qu±ω|−2αµ(T )

2kBT

)
+ 1

. (4.69)

As for the NLS, the intraband contribution is restricted to the region where ω < υF q

and the interband contribution to ω > υF q. The real and imaginary parts of the

polarisation are plotted separately in �gure 4.3 at two di�erent temperatures.

Das Sarma et al. [82] showed that the plasmon dispersion in a single graphene

layer has the familiar q dependence

ωp(q → 0) = ω0
√
q (4.70)
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Figure 4.4: Im [ε−1(x, y, T )] plotted for three di�erent temperatures, from left to
right 0.05TF , 0.1TF and 0.2TF . As the temperature increases, the interband e-h
continuum (ω > υF q) migrates towards the origin, progressively damping the single
layer plasmon with dispersion ω ∝ √q.

in the q → 0 limit where ω0 =
√

2e2EF/κ. The plasmon dispersion is found to lie

outside of the intraband particle hole continuum and as such the plasmon cannot

decay via intraband excitations. Instead, as temperature increases the interband

contribution migrates down towards the origin and as it does so overlaps with the

plasmon mode. This is best illustrated by plotting the imaginary part of the recip-

rocal of the dielectric function Im [ε−1(q, ω, T )] (�gure 4.4). The dielectric function

has peaks at the plasmon dispersion but it is also proportional to Imχ(q, ω). It

therefore provides a measure of the weight of particle-hole excitations available to

the plasmon. At the lowest temperature (T = 0.05TF ), there is little overlap with

the electron-hole continuum. Consequently, the plasmon is lightly damped, giving a

large magnitude over a small area that follows the dispersion. As the temperature

increases, the plasmon acquires a lifetime (width) as it overlaps with the contin-

uum and it can decay via particle hole excitations. This process is know as Landau

damping. The result is a lower maximum amplitude, spread over a wider region of

the plane.

The issue of plasmons in the double graphene layer system was considered by

Das Sarma et al. [82] at zero temperature. By �nding the poles of the interlayer
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Figure 4.5: A density plot of Im
[
ε−1

12 (q, ω, T )
]
plotted at kFd = 2.5 and for three

di�erent temperatures. From left to right 0.01TF , 0.5TF and 0.2TF . As the temper-
ature increases, the interband e-h continuum (ω > υF q) migrates towards the origin,
progressively damping the coupled interlayer acoustic (out of phase) and optic (in
phase) plasmons modes.

interaction (4.61), they found that at small q the plasmon dispersions have the form

ω+(q) ≈ ω0

√
2q (4.71)

ω−(q) ≈ 2ω0

√
dq (4.72)

where ω0 =
√

2e2EF/2κ and ω+(q), ω−(q) are the optical (in phase) and acous-

tic (out of phase) plasmon modes, respectively. These show the same qualitative

behaviour as plasmons in a 2DEG drag system (2.25).

To our knowledge, the case of �nite temperature is yet to be considered and we do

so now. Following the same path as above, in �gure 4.5 we plot the imaginary part

of the reciprocal of the interlayer dielectric function Im
[
ε−1

12 (q, ω, T )
]
, the results of

which are shown in the �gure for three di�erent temperatures at kFd = 2.5. As for

the single layer, as the temperature is increased the interband contribution migrates

towards the origin, progressively damping both plasmon modes.

Of particular relevance to the drag e�ect is the way in which the plasmon modes

vary as the interlayer distance changes. To this end, we show in �gure 4.6 the

function Im
[
ε−1

12 (q, ω, T )
]
for three di�erence layer separations d, at T = 0.1TF . As
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Figure 4.6: A density plot of Im
[
ε−1

12 (q, ω, T )
]
plotted at 0.1TF and for three dif-

ferent layer separations. From left to right 3.5k−1
F , 2.5k−1

F and 1.5k−1
F . As the layer

separation decreases the plasmon modes are seen to move further apart.

the layer separation increases, the acoustic plasmon mode is seen to move further

away from the optical mode.

4.4 Limit of Low Temperature and Large Interlayer

Spacing

In general, calculations of the drag resistivity must be carried out numerically. How-

ever, it is possible to obtain an analytic result in the limit of low temperature (T → 0)

and large interlayer spacing (d−1 � kF , qTF ). In this limit, the dominant contribu-

tion to the drag resistivity comes from a region with small q and ω. To this end we

recall the expression for the NLS in this limit (4.59)

Γ(q, ω) ' 4τtreω

πvF
(4.73)

as well as that for the interlayer interaction (4.64)

U12(q, ω) ' πe2q

q2
TF sinh qd

. (4.74)
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We will now work toward an analytic expression for the drag resistivity by substi-

tuting (4.73) and (4.74) into the general expression for the drag conductivity (4.1)

σD =
1

16πkBT

∑
q

∫ ∞
0

Γ1Γ2 |U12(q, ω)|2

sinh2 (ω/2kBT )
dω. (4.75)

Doing so, as well as converting the summation into an integral yields

σD =
τ 2
tre

6

2kBTq4
TFπ

2υ2
F

∫ ∞
0

∫ ∞
0

q2ω2

sinh2 (qd) sinh2
(

ω
2kBT

)dqdω (4.76)

Making use of the identity

∫ ∞
0

xp

4 sinh2
(
x
2

)dx = p!ζ(p) (4.77)

where ζ(p) is the Riemann Zeta function, we may perform the integrals over ω and

q to give ∫ ∞
0

ω2

sinh2
(

ω
2kBT

)dω =
8

6
π2k3

BT
3 (4.78)

and ∫ ∞
0

q3

sinh2 qd
dq =

6

4d4
ζ(3). (4.79)

Putting this all together yeids the �nal expression of the drag conductivity in

the low temperature limit;

σD =
τ 2
tre

2k2
BT

2ζ(3)

πq4
TFυ

2
Fd

4
(4.80)

To convert (4.80) into a resistivity we must make use of the relation (2.4)

ρD ' −
σD

σL1σL2

,
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where σL1 and σL2 are the longitudinal conductivities given by [106]

σ11 = σ22 =
e2EF τtr

π
.

Reintroducing Plank's constant and writing the �nal expression in terms of qTF we

have for the drag resistivity

ρD =
~πe2k2

BT
2ζ(3)

q4
TFυ

2
Fd

4
. (4.81)

To get agreement with [106], we expand two of the Thomas-Fermi wave-vectors by

making the replacement q2
TF = (4e2kF/υF )

2. This yields,

ρD =
πk2

BT
2ζ(3)

16e2q2
TFE

2
Fk

2
Fd

4
. (4.82)

The drag resistivity in this limit therefore displays the same dependence on tem-

perature (∼ T 2), layer separation (∼ d−4) and density (∼ n−3) as that of a 2DEG

system (2.69), but is smaller in magnitude.

4.5 Numerical Results

Das Sarma et al. [106] numerically evaluated the zero temperature drag conductivity

for a range of system parameters (�gure 4.7). Their results showed qualitatively

similar behaviour to a 2DEG system but with an order of magnitude increase in

the strength of the drag conductivity. Calculating up to 0.2TF , they discovered no

plasmon enhancement and indeed argued that none should be seen until T ≈ TF .

Their argument was that since the intraband excitations are bounded by ω < υF q,
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Figure 4.7: |ρD| /(T/TF )2 vs T/TF for higher values of T up to 0.2TF . Up-
per panel: for �xed interlayer distance d = 500Å and di�erent values of density
n = 1011cm−2 (solid line), 5 × 1011cm−2 (dashed line), 1012cm−2 (dot-dashed line),
corresponding to TF = 431, 963, 1361 K, respectively; Lower panel: for �xed den-
sity n = 1011cm−2 and di�erent values of interlayer distance d = 300Å (solid line),
150Å (dashed line), and 30Å (dot-dashed line). Reproduced from [106].

any plasmons excitations would have to come from the intraband excitations. That

these reside above an energy ω ≈ EF mean that there are only accessible by the

drag integral (4.1) at temperatures approaching the Fermi energy.

We believe that this argument is �awed because it underestimates the rate at

which the interband continuum migrates toward the origin with increasing tem-

perature and therefore the extent to which the integrand acquires weight from the

plasmon modes. As we can see from �gure 4.1, by 0.2TF it has weight well below

ω = EF . Although relatively small, it is su�cient to pick up the plasmon modes

strongly. In �gure 4.8, we plot the full �nite temperature integrand for �ve temper-

atures. It is clear that at 0.08TF the �nite temperature integrand has a signi�cant

enhancement from the plasmon modes, in contrast to the zero temperature result

(�gure 4.7). By 0.2TF the modes are fully exposed, after which they are progressively

Landau damped.

The above suggests that the drag rate will demonstrate a plasmon enhancement,
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Figure 4.8: The dimensionless integrand of the drag conductivity (4.1) for n =
1.5 × 10−11cm−2 and d = 375Å. (a)-(e): The full �nite temperature integrand at
T = 0.06, 0.08, 0.1, 0.2, 0.3TF respectively. (f): The zero temperature susceptibility
and polarisation integrand of [106] at T = 0.08TF . The full �nite temperature
integrand has a weight from the plasmon modes starting at around 0.08TF . By
0.2TF the modes are fully exposed. In contrast, the integrand of [106], (f), that has
almost no plasmon weighting at 0.08TF .
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in contrast to the zero temperature prediction. Indeed, this is what we �nd and

in �gure 4.9 we numerically evaluate the drag conductivity, divided by T 2, for a

range of carrier densities n and interlayer distances d. The enhancement of the

drag e�ect due to plasmons is clearly demonstrated with a peak in the drag rate

at approximately 0.2TF . This is in contrast to 2DEG drag which shows a plasmon

peak at approximately 0.5TF (�gure 2.6). Since 0.2TF corresponds to approximately

room temperature, the plasmon enhancement to the graphene drag rate should be

experimentally observable.

Of particular interest are the results plotted for a range of interlayer spacings

(�gure 4.9 (a)). As the distance is decreased, the plasmon peak decreases in relative

height above the T = 0 level. By d = 30Å it does not rise above it. The drag

resistivity integrand at d = 30Å is plotted in �gure 4.10 for several temperatures.

There are several key di�erences between these and those plotted for d = 375Å in

�gure 4.8. Foremost, at d = 30Å the dimensionless interlayer distance kFd = 0.53

compared to kFd = 2.57 at d = 375Å. The result is that the momentum cuto� of

the drag integral (4.1) is much higher for d = 30Å and consequently we see that the

integrand extends much further along the q axis. Consequently, when the plasmon

modes are activated their contribution to the drag integrand is smaller relative to

whole.
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Figure 4.9: |ρD| /(T/TF )2 vs T/TF . (a) Fixed density n = 1012cm−2 and several
interlayer distances. The dominance of the plasmon peak is seen to decrease with
decreasing interlayer distance. (b) Fixed interlayer distance ˙d = 500Å and several
densities. The plasmon enhancement is seen to increase with decreasing density.
Both plots show a peak due to plasmon enhancement at ≈ 0.2TF compared to
0.5TF for 2DEG drag .
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Figure 4.10: The dimensionless integrand of the drag conductivity (4.1) for d = 30Å
(kFd = 0.53) for three di�erent temperatures. From left to right 0.05TF , 0.125TF ,
0.2TF . The integrand extends far along the q axis at this distance. By 0.125TF , the
acoustic plasmon is the dominant mode but its relative contribution to the overall
integrand is less than for larger interlayer distances.

The second reason for this behaviour can be seen from �gure 4.11 which shows

several plots of the interlayer potential and non-linear susceptibility, at �xed ω.

As the interlayer distance is decreased, the position and magnitude of the right

(acoustic) mode moves to higher values of q and decreases rapidly in magnitude.

The result of its decrease in magnitude is a decrease in its contribution to the drag

rate. Conversely, by moving to higher values of q the plasmon enters a region of

increasing non-linear susceptibility weight (see �gure 4.11 (f)), thereby increasing its

contribution to the drag rate. There is therefore a competition between the weight

of the non-linear susceptibility at higher q and the decreasing plasmon magnitude

there. This is in addition to the decrease in the plasmon's relative contribution to

the drag integrand already mentioned. This explains the results at d = 30Å where

the plasmons are much less dominant. Indeed, one would expect that for still smaller

interlayer distances the plasmon contribution could become undetectable.
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4.6 Conclusion

In this chapter, we performed a full �nite temperature calculation of Coulomb drag

between two graphene mono-layers. After a brief introduction, we derived a semi-

analytic expression for the graphene non-linear susceptibility, representing the �rst

original work of this thesis.

Following this, we used a semi-analytic expression for the �nite temperature

graphene polarisability (derived in [81]) to study, for the �rst time, the behaviour

of �nite temperature plasmons modes in the double layer graphene system.

In the �nal original calculation of this chapter, we combined the above results to

calculate the �nite temperature drag resistivity at various carrier densities and in-

terlayer spacings. Our results showed that the drag e�ect is dominated by plasmons

at around 0.2TF (approximately room temperature) and should therefore be exper-

imentally accessible. This is in contrast to a prediction made elsewhere [106] that

suggests that none will be seen until T ≈ TF . For comparison, the plasmon contribu-

tion to drag between two dimensional electron gasses peaks at around 0.5TF [8]. We

then discussed the behaviour of the drag resistivity at very small interlayer distances

(≈ 30Å) where the plasmon enhancement is weak, due to a competition between

phase space terms and the strength and position of the plasmon peaks.
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Figure 4.11: (a)-(e): The interlayer potential at �xed values of ω/EF for several
interlayer distances and temperatures. As the interlayer distance is increased the
right plasmon mode is seen to exist at lower values of q and increase in magnitude
relative to the left mode. As ω/EF and T/TF is increased the modes broaden as
they are Landau damped. (f) The non-linear susceptibility at �xed ω/EF for several
temperatures. Most of the weight is at large q in the region of the left plasmon mode
and is seen to increase as the temperature is increased.



Chapter 5

Graphene Bilayer Systems

In this chapter we investigate Coulomb drag between two graphene bilayers, ar-

ranged far enough apart so that there is no coupling between them. Throughout,

we remain in the regime within which the low energy Hamiltonian of McCann et

al. [85] is valid. Before numerically evaluating the drag conductivity itself we will

perform two preliminary calculations, each an original work.

First, we will derive a semi-analytic expression for the �nite temperature po-

larisability, re-deriving on the way the general expression of Das Sarma et al. [62].

We investigate both the single layer and coupled layer plasmon modes and upon

numerical evaluation �nd them to be within the intra-band continuum, even at

zero temperature. This is in contrast to the mono-layer case and will be key to

interpreting the Coulomb drag results.

Second, with equation 2.82 as our starting point, we derive a general expression

for the bilayer non-linear susceptibility (NLS). We arrive at a form identical to that

for a mono-layer, but with the bilayer Berry's phase of 2π. This will lead us to derive

a semi-analytic expression for the bilayer NLS which we evaluate numerically.

Following these preliminary calculation, we proceed by numerically evaluating

126
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the drag resistivity of two graphene bilayers. We �nd that the low temperature be-

haviour is similar (∼ T 2) to that for 2DEGs and monolayers. However, in contrast to

these the plasmon enhancement at intermediate temperature is strongly suppressed

by Landau damping of the plasmon modes. This is a result of the plasmon modes

being within the e-h continuum, even at zero temperature. We also �nd that the

density and interlayer separation dependence of the position and width of the plas-

mon peak is stronger than for the 2DEG and monolayer systems. An explanation

for this is suggested.

5.1 Introduction

The Coulomb drag e�ect between graphene bilayers is in some sense an intermediate

case between the standard 2DEG and monolayer systems. With bilayers, we have

a system within which the electronic spectrum is quadratic, as for a 2DEG. The

di�erence of course is that the bilayer quasiparticles are chiral and one would expect

this fact to result in a signi�cant departure from the standard 2DEG behaviour.

However, in contrast to the 2DEG system, it is not necessary to take into account a

�nite layer thickness and this simpli�es the calculations somewhat. In addition, it

is possible to study bilayer drag at the same small interlayer separations that were

possible in the monolayer system. This is because the out of plane π orbitals no not

begin to overlap until approximately 3.5Å [106]. Below this distance, the system

will start to behave as a graphene quad-layer with properties more similar to that

of bulk graphite.

A naive analysis of the system would suggest that compared to the monolayer

system, the strength of the drag e�ect will be smaller with bilayers. The reason for
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Figure 5.1: Feynman Diagram: The imaginary time polarisation bubble.

its size in the monolayer system can largely be traced to the vanishing density of

states at the Dirac point, implying weak screening of the interlayer potential. This

does not apply to the bilayer.

Throughout this chapter, we restrict ourselves to the regime in which the low

energy Hamiltonian of McCann et al. [85] is valid. This amounts to restricting the

range of electronic densities (n) to

1× 10−11cm−2 < n < 4.36× 1012cm−2. (5.1)

(see section 3.3.3). Fortunately, this range is typical to experiments on both 2DEG,

monolayer and bilayer systems.

5.2 Polarisability

In the random phase approximation, the graphene bilayer polarisability is given

by the bare bubble diagram (�gure 5.1) [92]. Working in the �nite temperature,

imaginary frequency Matsubara formalism, the Feynman rules [17] give us for the

polarisability,

χ(q, iω) = −
∑
k

T
∑
ε

tr
{
G̃k (iε) G̃k+q (iε+ iω)

}
, (5.2)
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where T is the temperature tr {} is the trace and the minus sign is from the Fermion

loop. The Green's functions Gk(iε) = (iε − Ĥk)−1 are 2 × 2 matrices in sub-

lattice space, where Ĥ is the bilayer Hamiltonian (3.35). The calculation is greatly

simpli�ed by transforming to a basis in which the Hamiltonian and hence the Green's

functions, are diagonal. As for the monolayer, the bilayer Hamiltonian is diagonal

in the chiral basis, i.e eigenstates of the Hamiltonian are states of de�nite chirality

and not pseudospin. The unitary matrix that transforms from the pseudospin to

chiral basis is

U †k =
1√
2

 ei2φk 1

ei2φk −1

 , (5.3)

where φk = tan−1 (ky/kx) . We can therefore express (5.2) in the chiral basis as,

χ(q, iω) = −
∑
k

T
∑
ε

tr
{
U †kGk (iε)UkU

†
k+qGk+q (iε+ iω)Uk+q

}
. (5.4)

Using the fact that the trace is invariant under cyclic permutations, we can write

(5.4) as

χ(q, iω) = −
∑
k

T
∑
ε

tr
{
Gk (iε)UkU

†
k+qGk+q (iε+ iω)Uk+qU

†
k

}
. (5.5)

This allows us to de�ne the operators

U+ = UkU
†
k+q =

1

2

 e−i2θ+ + 1 e−i2θ+ − 1

e−i2θ+ − 1 e−i2θ+ + 1

 , (5.6)

U †+ = Uk+qU
†
k =

1

2

 ei2θ+ + 1 ei2θ+ − 1

ei2θ+ − 1 ei2θ+ + 1

 (5.7)
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where θ+ = φk+q − φk is the scattering angle. Expressing (5.5) in terms of these

operators yields

χ(q, iω) = −
∑
k

T
∑
ε

tr
{
Gk (iε)U+Gk+q (iε+ iω)U †+

}
. (5.8)

Employing the more compact notation Gij
k+q(iε + iω) ≡ Gij

1 and Gij
k (iε) ≡ Gij

2 ,

where i and j label the rows and columns respectively, we will now calculate the

trace explicitly by taking each term in turn from the right. Remembering that the

Green's functions are now diagonal we have,

G1U
†
+ =

1

2

 (
ei2θ+ + 1

)
G11

1 ,
(
ei2θ+ − 1

)
G11

1(
ei2θ+ − 1

)
G22

1 ,
(
ei2θ+ + 1

)
G22

1

 , (5.9)

U+G1U
†
+ =

1

4

 2(1+cos 2θ+)G11
1 +2(1−cos 2θ+)G22

1 , 2i sin θ+G11
1 −2i sin θ+G22

1

−2i sin θ+G11
1 +2i sin θ+G22

1 , 2(1−cos 2θ+)G11
1 +2(1+cos 2θ+)G22

1

 ,

(5.10)

G2U+G1U
†
+ =

1

2

 (1+cos 2θ+)G11
2 G11

1 +(1−cos 2θ+)G11
2 G22

1 −

− (1−cos 2θ+)G22
2 G11

1 +(1+cos 2θ+)G22
2 G22

1

 .

(5.11)

Finally, taking the trace of (5.11) yields

tr
{
G2U+G1U

†
+

}
= −1

2

∑
λλ′=±

Gk+q,λ′(iε)Gk+q,λ(iε+ iω), (5.12)
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Figure 5.2: Contours in the complex frequency (ε) plane, C and C', used to calculate
the energy summation of equation (5.13).

where we have used the notation G11
k (iε) ≡ Gk,+(iε) and G22

k (iε) ≡ Gk,−(iε). Sub-

stituting this into (5.8), the polarisation takes the form

χ(q, iω) = −1

2

∑
λλ′=±

∑
k

(1 + λλ′ cos 2θ)T
∑
ε

Gk,λ′(iε)Gk+q,λ(iε+ iω). (5.13)

The summation over the frequency is evaluated using the standard techniques [17]

of complex analysis, as follows. With polarisation now in terms of Green's functions

of the form Gkλ(iε) = (iε− ξkλ)−1, we have

T
∑
ε

Gk,λ′(iε)Gk+q,λ(iε+ iω) = T
∑
ε

1

(iε− ξkλ′) (iε+ iω − ξk+qλ)
. (5.14)

Note that the complex Fermi function, nF (z) = [exp(z/T ) + 1]−1, has poles at

z = iε = i(2n+ 1)πT , where n is an integer. Each pole has a residue −T , the result

of which is to be able to write (5.14) via the residue theorem as

− T
∑
ε

1

(iε− ξkλ′) (iε+ iω − ξk+qλ)
=

1

2πi

∮
C

nF (z)

(z − ξkλ′) (z + iω − ξk+qλ)
, (5.15)
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where C is a contour enclosing the imaginary axis (�gure 5.2). We now consider a

new contour C ′, also shown in �gure 5.2. It not only encloses the poles along the

imaginary axis but also the two poles at z1 = ξk+qλ − iω and z2 = ξkλ′ . The sum of

the residues of these two poles is simply

nF (ξk,λ)

ξkλ′ + iω − ξk+qλ

+
nF (ξk+q,λ − iω)

ξkλ′ + iω − ξk+qλ

=
nF (ξk,λ)− nF (ξk+q,λ)

iω + ξk,λ′ − ξk+q,λ

, (5.16)

where in the last line we have used the fact that nF (ξk+q,λ − iω) = nF (ξk+q,λ) (the

−iω just adds an extra factor of e−2πmi = 1 to the exponential in the denominator).

Using (5.16), and the fact that as C ′ →∞ the contour
∮
C′

= 0, we may once again

use the residue theorem to write

∮
C′

F (z)nF (z) = 0 =
nF (ξk,λ)− nF (ξk+q,λ)

iω + ξk,λ − ξk+q,λ

− T
∑
ε

1

(iε− ξkλ′) (iε+ iω − ξk+qλ)
.

(5.17)

Therefore, we have

T
∑
ε

1

(iε− ξkλ′) (iε+ iω − ξk+qλ)
=
nF (ξk,λ′)− nF (ξk+q,λ)

iω + ξk,λ′ − ξk+q,λ

. (5.18)

Substituting (5.18) into (5.13) gives

χ(q, iω) = −1

2

∑
λλ′=±

∑
k

(1 + λλ′ cos 2θ)
nF (ξk,λ′)− nF (ξk+q,λ)

iω + ξk,λ′ − ξk+q,λ

. (5.19)

Finally, we analytically continue to real frequencies, iω → ω + iδ, to yield

χ(q, ω) = −1

2

∑
λλ′=±

∑
k

(1 + λλ′ cos 2θ)
nF (ξk,λ′)− nF (ξk+q,λ)

ω + ξk,λ′ − ξk+q,λ + iδ
. (5.20)
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Figure 5.3: Three density plots showing the real part of the graphene bilayer polar-
isability Reχ(q, ω) as a function of ω and q, at T = 0.05TF . Left: The intraband
contribution. Centre: The interband contribution. Right: The combined contri-
bution. The colour scale shows the value of Reχ(q, ω) in units of N(EF ), where
N(EF ) is the density of states at the Fermi energy.

5.2.1 Finite Temperature Evaluation

In appendix C, we derive semi-analytic expressions for the �nite temperature polar-

isability (5.20). The result is composed of intraband (λ = λ′) and interband (λ 6= λ′)

parts, and is given by

χ(x, y) = χIntra(x, y) + χInter(x, y) (5.21)

where

Imχ(x, y) = ImχIntra + ImχInter, Reχ(x, y) = ReχInter(x, y) + ReχInter(x, y)

(5.22)

and

ImχIntra =
m

2π

∫ ∞
0

dk
[nF (ξk−)− nF (ξk+)] (η− + 2k2)

2

k (k2 + y)
√

4k2x2 − η2
−

θ(k2 − s−)− {y → y} , (5.23)

(5.24)

ImχInter =
m

2π

∫ ∞
0

dk [nF (ξk,−)− nF (ξk,+)]

√
(η− + 2kx− 2k2)(2k2 + 2kx− η−)

k (k2 − y)
,
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Figure 5.4: Three density plots showing the imaginary part of graphene bilayer po-
larisability, Imχ(q, ω), as a functon of ω and q at T = 0.01T . Left: The intraband
contribution. Centre: The interband contribution. Right: The combined con-
tribution. The fact that the contributions overlap is the main di�erence with the
monolayer, where the individual contributions to the NLS occupy independent areas
of the q−ω plane. The colour scale shows the value of Imχ(q, ω) in units of N(EF ),
where N(EF ) is the density of states at the Fermi energy.

ReχIntra =
m

π

∫ ∞
0

[nF (ξk+)− nF (ξk−)]

k (k2 + y)

[
k2 + y −

∣∣k2 − x2
∣∣ (5.25)

−sgn(η−)θ (s− − k2) (2k2 + η−)
2

2x
√
s− − k2

]
dk + {y → −y} ,

ReχInter =
m

π

∫ ∞
0

[nF (ξk+)− nF (ξk−)]

k(k2 + y)

[
k2 + y +

∣∣k2 − x2
∣∣ (5.26)

−(2k2 − 2k + η+) (2k2 + 2k + η+)√
(2k2 + η+)2 − 4k2x2

θ
(∣∣2k2 + η

∣∣− 2kx
) dk + {y → −y} .

In �gure 5.3, we have numerically evaluated the real part of bilayer polarisability

at 0.05TF . We have created density plots of the intraband, interband and combined

contributions. Little information of use can be extracted from these as the real part's

primary contribution to the drag e�ect is in its control over the plasmon dispersions.

Of greater interest are the density plots of the imaginary part of the polarisability

(�gure 5.4). These are important as they de�ne the electron-hole continuum through

which plasmons may decay. The bilayer continuum is quite di�erent that of both

the monolayer and 2DEG. The primary di�erence that the intraband and interband
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contributions are not restricted to their own regions, as they were in the monolayer.

The consequences of this are twofold. First, the intraband continuum may migrate

over a wider are so that it is more likely to pick up a plasmon mode. Second, since

the intraband and interband regions overlap, a plasmon mode decaying via electron-

hole excitation within this region may do so simultaneously via both. This feature

was missing in the monolayer and could result in increased Landau damping. The

most immediate di�erence between the bilayer and 2DEG continuum is the existence

of interband excitation which do not exist for a 2DEG.

5.3 The Non-Linear Susceptibility

As with any Coulomb drag calculation, the central quantity is the nonlinear suscep-

tibility (NLS). In this section we will derive the graphene bilayer nonlinear suscep-

tibility, starting from the general expression (2.82) in terms of Green's functions,

derived in chapter 2. Following this, we will evaluate the angular part of the NLS

and obtain a semi-analytic expression for �nite temperature.

5.3.1 Derivation

The derivation presented in this section will lead us to the following expression for

the graphene bilayer nonlinear susceptibility;

Γ(q, ω) = τ
∑
λ,λ′=±

∑
k

[
Jk+q
λλ′ − J

k
λλ′

]
Im

{
(1 + λλ′ cos 2θ+)

nF (εk,λ′)− nF (εk+q,λ)

ω + εk,λ′ − εk+q,λ + iδ

}
,

(5.27)

where θ+ = φk+q − φk is the scattering angle and Jk
λ,λ′ is the impurity dressed

current operator in the chiral basis. Interestingly, the only di�erence between this
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and the monolayer susceptibility is the argument of cos which is just θ+ for the

monolayer. The starting point of the derivation is the expression (2.82) for the

nonlinear susceptibility in terms of advanced and retarded Green's functions;

Γ (q, ω) =
−1

2πi

∑
k

∫ ∞
−∞

dε
[
nε+ωF − nεF

]
G̃a

k(ε)J̃kG̃
r
k(ε)

[
G̃a

k+q(ε+ ω)− G̃r
k+q(ε+ ω)

]

+ {q→ −q, ω → −ω} . (5.28)

The fact that the graphene bilayer Hamiltonian is a 2 × 2 matrix in pseudospin

means that the corresponding Green's functions and operators are themselves 2× 2

matrices. When calculating its nonlinear susceptibility we must therefore take the

trace over the resulting matrix so that

Γ (q, ω) =
−1

2πi

∑
k

∫ ∞
−∞

dε
[
nε+ωF − nεF

]
tr
{
G̃a

k(ε)J̃kG̃
r
k(ε)

[
G̃a

k+q(ε+ ω)− G̃r
k+q(ε+ ω)

]}

+ {q→ −q, ω → −ω} . (5.29)

The algebra involved in deriving (5.29) is greatly simpli�ed by transforming to a basis

in which the Hamiltonian and hence the Green's functions are diagonal (note that the

current operator is not diagonal in this basis). Again, as for the monolayer the bilayer

Hamiltonian is diagonal in the chiral basis, i.e eigenstates of the Hamiltonian are

states of de�nite chirality and not pseudospin. The unitary matrix that transforms
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from the pseudospin to chiral basis is

U †k =
1√
2

 ei2φk 1

ei2φk −1

 (5.30)

where φk = tan−1 (ky/kx) . We can therefore express (5.29) in the chiral basis by

making the replacements

G̃k(ε) = U †kGk(ε)Uk (5.31)

J̃k = U †kJkUk (5.32)

G̃k(ε)− G̃k(ε) = U †k [Gk(ε)−Gk(ε)]Uk (5.33)

so that

Γ (q, ω) =
−1

2πi

∑
k

∫ ∞
−∞

dε
[
nε+ωF − nεF

]
tr
{
U †kG

a
k(ε)UkU

†
kJkUkU

†
kG

r
k(ε)Uk

(5.34)

× U †k+q

[
Ga

k+q(ε+ ω)−Gr
k+q(ε+ ω)

]
Uk+q

}
+ {q→ −q, ω → −ω} .

Making use of the fact that the trace is invariant under cyclic permutations of

the operators and that by de�nition UkU
†
k = I, we can write (5.34) as Γ (q, ω) =

− 1
2πi

∑
k

∫∞
−∞ dε

×
([
nε+ωF − nεF

]
tr
{
UkU

†
k+q

[
Ga

k+q(ε+ ω)−Gr
k+q(ε+ ω)

]
Uk+qU

†
kG

a
k(ε)JkG

r
k(ε)

}
(5.35)

+
[
nε−ωF − nεF

]
tr
{
UkU

†
k−q

[
Ga

k−q(ε− ω)−Gr
k−q(ε− ω)

]
Uk−qU

†
kG

a
k(ε)JkG

r
k(ε)

})
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where we have explicitly written the second {q→ −q, ω → −ω} term. It is conve-

nient at this stage to de�ne two new operators U+ and U− where

U+ = UkU
†
k+q =

1

2

 e−i2θ + 1 e−i2θ − 1

e−i2θ − 1 e−i2θ + 1

 (5.36)

U− = UkU
†
k−q =

1

2

 e+i2θ + 1 e+i2θ − 1

e+i2θ − 1 e+i2θ + 1

 (5.37)

where θ = φk+q−φk is the scattering angle. It will be useful to note that U− = U †+.

In terms of these new operators, (5.40) becomes

Γ(q,ω)=− 1
2πi

∑
k

∫∞
−∞ dε([nε+ωF −nεF ]tr{U+[Gak+q(ε+ω)−Grk+q(ε+ω)]

(5.38)

× U†+G
a
k(ε)JkG

r
k(ε)}+ [nε−ωF −nεF ]tr{U−[Gak−q(ε−ω)−Grk−q(ε−ω)]U†−Gak(ε)JkG

r
k(ε)})

We can simplify this expression somewhat by performing a change of variables ε→

ε+ ω in the second term. This yields

Γ (q, ω) =
−1

2πi

∑
k

∫ ∞
−∞

dε
[
nε+ωF − nεF

] [
tr
{
U+

[
Ga

k+q(ε+ ω)−Gr
k+q(ε+ ω)

]
(5.39)

× U †+G
a
k(ε)JkG

r
k(ε)

}
− tr

{
U−
[
Ga

k−q(ε)−Gr
k−q(ε)

]
U †−G

a
k(ε+ ω)JkG

r
k(ε+ ω)

}]
.
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Furthermore, we can introduce the spectral function Ak(ω), which is in fact a diag-

onal matrix, via the identity [10]

Ga
k(ω)−Gr

k(ω) = iAk(ω) (5.40)

so that

Γ = − 1

2π

∑
k

∫ ∞
−∞

dε
[
nε+ωF − nεF

] [
tr
{
U+Ak+q(ε+ ω)U †+G

a
k(ε)JkG

r
k(ε)

}
(5.41)

−tr
{
U−Ak−q(ε)U †−G

a
k(ε+ ω)JkG

r
k(ε+ ω)

}]
.

The next stage is to evaluate the trace. After some lengthy algebra that is nonethe-

less greatly simpli�ed by the use of the chiral basis, we arrive at

Γ = − 1

2π

∑
k

∫ ∞
−∞

dε
[
nε+ωF − nεF

]
[T1 + T2 − T3 − T4] = (5.42)

where

4T1 = A11
k−q(ε){[ei2θ+1][e−i2θ+1]J11

k G11,a
k (ε+ω)G11,r

k (ε+ω) + [ei2θ+1][e−i2θ−1]J12
k G22,a

k (ε+ω)G11,r
k (ε+ω)}

+A22
k−q(ε){[ei2θ−1][e−i2θ−1]J11

k G11,a
k (ε+ω)G11,r

k (ε+ω) + [ei2θ−1][e−i2θ+1]J21
k G22,a

k (ε+ω)G11,r
k (ε+ω)},
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4T2 = A11
k−q(ε){[ei2θ−1][e−i2θ+1]J21

k G11,a
k (ε+ω)G22,r

k (ε+ω) + [ei2θ−1][e−i2θ−1]J22
k G22,a

k (ε+ω)G22,r
k (ε+ω)}

+A22
k−q(ε){[ei2θ+1][e−i2θ−1]J21

k G11,a
k (ε+ω)G22,r

k (ε+ω) + [ei2θ+1][e−i2θ+1]J22
k G22,a

k (ε+ω)G22,r
k (ε+ω)},

4T3 = A11
k+q(ε+ω){[e−i2θ+1][ei2θ+1]J11

k G11,a
k (ε)G11,r

k (ε) + [e−i2θ+1][e+i2θ−1]J12
k G22,a

k (ε)G11,r
k (ε)}

+A22
k+q(ε+ω){[e−i2θ−1][e+i2θ−1]J11

k G11,a
k (ε)G11,r

k (ε) + [e−i2θ−1][ei2θ+1]J21
k G22,a

k (ε)G11,r
k (ε)},

4T4 = A11
k+q(ε+ω){[e−i2θ−1][ei2θ+1]J21

k G11,a
k (ε)G22,r

k (ε) + [ei2θ−1][e−i2θ−1]J22
k G22,a

k (ε)G22,r
k (ε)}

+A22
k+q(ε+ω){[e−i2θ+1][ei2θ−1]J21

k G11,a
k (ε)G22,r

k (ε) + [e−i2θ+1][ei2θ+1]J22
k G22,a

k (ε)G22,r
k (ε)}.

To proceed, we take the high density, non-interacting limit by replacing the

spectral functions with δ functions so that

Aiik(ε) ≡ 2πδ(ε− ξk,i), (5.43)

where ξk,λ = λυFk is the bilayer dispersion. We can do likewise with the Green's
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function products by employing the useful identity [?]

Gii,a
k (ω)Gjj,r

k (ω) = 2τδ(ε− ξk) i = j (5.44)

= 2τδ(ε− ξk,i)δ(ξk,i − ξk,j) i 6= j, (5.45)

where τ is the impurity scattering rate. The consequence of (5.45) is that since

ξk,i = ξk,j only at k = 0, and we are ultimately integrating over k, terms propor-

tional to products of Green's functions where i 6= j vanish. These terms all involve

o�-diagonal elements of the current operator and so, perhaps surprisingly, only di-

agonal elements of the current operator contribute to the non-linear susceptibility.

Employing the notation ξk,1 ≡ ξk,+, ξk,2 ≡ ξk,− and making use of the following

identities [
ei2θ + 1

] [
e−i2θ + 1

]
= 2 (1 + cos 2θ) , (5.46)

[
ei2θ − 1

] [
e−i2θ − 1

]
= 2 (1− cos 2θ) , (5.47)

the above considerations give for the non-linear susceptibility

Γ = −τ
∑
k

∫ ∞
−∞

dε
[
nε+ωF − nεF

]
[T1 + T2 − T3 − T4] , (5.48)

where

T1 = (1 + cos 2θ) J+
k δ(ε− ξk−q,+)δ(ε+ ω − ξk+) + (1− cos 2θ) J+

k δ(ε− ξk−q,−)δ(ε+ ω − ξk+)
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T2 = (1− cos 2θ) J−k δ(ε− ξk−q,+)δ(ε+ ω − ξk−) + (1− cos 2θ) J−k δ(ε− ξk−q,+)δ(ε+ ω − ξk−)

T3 = (1 + cos 2θ) J+
k δ(ε+ ω − ξk+q,+)δ(ε− ξk+) + (1− cos 2θ) J+

k δ(ε+ ω − ξk+q,−)δ(ε− ξk+)

T4 = (1− cos 2θ) J−k δ(ε+ ω − ξk+q,+)δ(ε− ξk−) + (1 + cos 2θ) J−k δ(ε+ ω − ξk+q,−)δ(ε− ξk−).

We now evaluate the energy integral of (5.48) via the identity [5]

∫ ∞
−∞

dεδ (ε− α) δ (ε− β) f (ε) = δ (α− β) f(ε).

This yields

Γ = −τ
∑
k

[T1 + T2 − T3 − T4] , (5.49)

where

T1 = [nF (ξk,+)− nF (ξk−q,+)]C+J
+
k δ(ω − ξk,+ + ξk−q,+)

+ [nF (ξk,+)− nF (ξk−q,−)]C−J
+
k δ(ω − ξk,+ + ξk−q,−)

T2 = [nF (ξk,−)− nF (ξk−q,+)]C−J
−
k δ(ω − ξk,− + ξk−q,+)

+ [nF (ξk,−)− nF (ξk−q,+)]C−J
−
k δ(ω − ξk,− + ξk−q,+)

T3 = [nF (ξk+q,+)− nF (ξk,+)]C+J
+
k δ(ω + ξk,+ − ξk+q,+)

+ [nF (ξk+q,−)− nF (ξk,+)]C−J
+
k δ(ω + ξk,+ − ξk+q,−)
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T4 = [nF (ξk+q,+)− nF (ξk,−)]C−J
−
k δ(ω + ξk,− − ξk+q,+)

+ [nF (ξk+q,−)− nF (ξk,−)]C+J
−
k δ(ω + ξk,− − ξk+q,−).

and C± = 1 ± cos 2θ. Proceeding by making a change of variables k → −k − q in

T1 and T2, and making us of the symmetries ξkλ = ξ−k,λ and Jk = J−k, we have

T1 = [nF (ξk+q,+)− nF (ξk,+)] (1 + cos 2θ) J+
k+qδ(ω + ξk,+ − ξk+q,+)

+ [nF (ξk+q,+)− nF (ξk,−)] (1− cos 2θ) J+
k+qδ(ω + ξk,− − ξk+q,+) (5.50)

T2 = [nF (ξk+q,−)− nF (ξk,+)] (1− cos 2θ) J−k δ(ω + ξk,+ + ξk+q,−)

+ [nF (ξk+q,−)− nF (ξk,+)] (1− cos 2θ) J−k δ(ω + ξk,+ + ξk−q,−). (5.51)

We can now write the non-linear susceptibility in the compact form

Γ(q, ω) = τ
∑
λ,λ′=±

∑
k

[
Jk+q
λ − Jk

λ

]
Im

{
(1 + λλ′ cos 2θ)

nF (εk,λ′)− nF (εk+q,λ)

ω + εk,λ′ − εk+q,λ + iδ

}
,

(5.52)

where Jk
λ,λ′ = 2λ τtr

τ
evF cosφk is the impurity dressed current operator in the chiral

basis.
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5.3.2 Evaluation

We will now partially evaluate the bilayer nonlinear susceptibility and obtain a

semi-analytic expression for �nite temperature. Our starting point is equation 5.52;

Γ(q, ω) = τ
∑
λ,λ′=±

∑
k

[
Jk+q
λ − Jk

λ′

]
Im

{
(1 + λλ′ cos 2θ)

nF (εk,λ′)− nF (εk+q,λ)

ω + εk,λ′ − εk+q,λ + iδ

}
(5.53)

where θ = φk+q − φk is the scattering angle and Jk
λ ≡ Jk

λ,λ′δλλ′ = 2λ τtr
τ
evF cosφk.

The angles φk and φk+q are measured with respect to an axis parallel to the current

direction, which we shall choose as the x-axis. Since we are summing over k, we

may for convenience choose the vector q to be parallel to that axis so that

cosφk+q =
(k + q) · x̂
|k + q|

≡ (k + q) · q
|k + q| |q|

=
k cos θ + q√

k2 + q2 + 2kq cos θ
, (5.54)

cosφk =
k · x̂
|k|
≡ k · q
|k| |q|

= cos θ. (5.55)

The di�erence of current operators in (5.53) can therefore be written in terms of θ

as

Jk+q
λ −Jk

λ == 2eλvF
τtr
τ

(√
k2 + q2 + 2kq cos θ (k cos θ + q)√

k2 + q2 + 2kq cos θ
− k cos θ

)
= 2eλvF

τtr
τ
q

(5.56)

Jk+q
λ −Jk

−λ = 2eλvF
τtr
τ

(√
k2 + q2 + 2kq cos θ (k cos θ + q)√

k2 + q2 + 2kq cos θ
+ k cos θ

)
= 2eλvF

τtr
τ

(q+2k cos θ)

(5.57)
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5.3.2.1 Intraband

For the intraband contribution (λ = λ′) we have

ΓIntra(q, ω) =
2τtreq

m

∑
λ=±

∑
k

λIm

{
(1 + cos 2θ)

nF (εk,λ)− nF (εk+q,λ)

ω + εk,λ − εk+q,λ + iδ

}
. (5.58)

It is clear that (5.58) is closely related to the imaginary part of intraband contribu-

tion of the polarisability (5.20)

χ(q, ω) = −1

2

∑
λλ′=±

∑
k

(1 + λλ′ cos 2θ)
nF (ξk,λ′)− nF (ξk+q,λ)

ω + ξk,λ′ − ξk+q,λ + iδ
. (5.59)

via

ΓIntra(q, ω) = −4
τtre

m
q
{

Imχ++(q, ω)− Imχ−−(q, ω)
}

(5.60)

where, as before,

χλλ
′
(q, ω) = −1

2

∑
k

(1 + λλ′ cos 2θ)
nF (ξk,λ′)− nF (ξk+q,λ)

ω + ξk,λ′ − ξk+q,λ + iδ
. (5.61)

Using (C.0.61),

ImχIntra =
m

2π

∫ ∞
0

dk
[nF (ξk−)− nF (ξk+)] (η− + 2k2)

2

k (k2 + y)
√

4k2x2 − η2
−

θ(k2−s−)−{y → y} , (5.62)

ΓIntra may be written in the semi-analytic form

ΓIntra(x, y) = −γx
∫ ∞

0

dk
[nF (ξk−) + nF (ξk+)] (η− + 2k2)

2

k (k2 + y)
√

4k2x2 − η2
−

θ(k2 − s−)− {y → y} .

(5.63)

where x = q/kF y = ω/EF and γ = 2τtrekF
π
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5.3.2.2 Interband

For the intraband contribution (λ 6= λ′), the situation is slightly more complicated.

We have

ΓInter(q, ω) = 2τtreυF
∑
λ6=λ′

∑
k

λ(q+2k cos θ)Im

{
(1 + cos 2θ)

nF (εk,λ)− nF (εk+q,λ)

ω + εk,λ − εk+q,λ + iδ

}
.

(5.64)

The terms proportional to the q and 2k cos θ, which we shall label ΓInter(1) and ΓInter(2)

respectively, will again be closely related to the polarisability. We �nd that

ΓInter(1) (q, ω) = 2τtreυF
∑
λ6=λ′

∑
k

λqIm

{
(1 + cos 2θ)

nF (εk,λ)− nF (εk+q,λ)

ω + εk,λ − εk+q,λ + iδ

}
(5.65)

= −4τtreυF q
{

Imχ+−(q, ω)− Imχ−+(q, ω)
}
, (5.66)

where, as before,

χλλ
′
(q, ω) = −1

2

∑
k

(1 + λλ′ cos 2θ)
nF (ξk,λ′)− nF (ξk+q,λ)

ω + ξk,λ′ − ξk+q,λ + iδ
. (5.67)

The Imχ−+ term vanishes identically because all terms in its δ functions are positive.

Therefore, we only need to consider Imχ+−,

Imχ+− =
m

2π

∫ ∞
0

dk [nF (ξk,−)− nF (ξk,+)]

√
(η− + 2kx− 2k2)(2k2 + 2kx− η−)

k (k2 − y)
,

(5.68)
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we have

ΓInter(1) (x, y) = −γx
∫ ∞

0

dk [nF (ξk,−)− nF (ξk,+)]

√
(η− + 2kx− 2k2)(2k2 + 2kx− η−)

k (k2 − y)
,

(5.69)

where γ = 2mτtrekF υF
π

.

We now calculate

ΓInter(2) (q, ω) = 2τtreυF
∑
λ6=λ′

∑
k

λIm

{
2k cos θ(1 + cos 2θ)

nF (εk,λ)− nF (εk+q,λ)

ω + εk,λ − εk+q,λ + iδ

}
,

(5.70)

by noting that in appendix C we calculated the angular integral by �rst making the

substitution Q = 2k2 +2kx cos θ and then evaluating the integrand at y−x2. Under

these operations

2k cos θ =
Q− 2k2

x
=
y − x2 − 2k2

x
≡ η− − 2k2

x
. (5.71)

Noting that once more the Imχ−+ term vanishes, we simply multiply (5.69) by (5.71)

to get

ΓInter(2) (x, y) = −γ
x

∫ ∞
0

dk [nF (ξk,−)− nF (ξk,+)]
(
η− − 2k2

) √(η− + 2kx− 2k2)(2k2 + 2kx− η−)

k (k2 − y)
.

(5.72)

Summing (5.69) and (5.72) together to give for the interband contribution to yield

ΓInter(x, y) =
γ

x

∫ ∞
0

dk [nF (ξk,−)− nF (ξk,+)]
(
2k2 − y

) √(η− + 2kx− 2k2)(2k2 + 2kx− η−)

k (k2 − y)
,

(5.73)

where γ = 2mτtrekF υF
π

.
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5.3.2.3 Summary and Discussion

We have shown that the graphene bilayer susceptibility is closely related to the

imaginary part of the polarisability Imχ, more so than for a monolayer because the

bilayer current operator is proportional to k. The reason that it is not direction

proportional to Imχ, as it is for a 2DEG, is a consequence of the chirality. Overall,

we have shown that

ΓIntra(x, y) = ΓIntra(x, y) + ΓIntra(x, y) (5.74)

with

ΓIntra(x, y) = −γx
∫ ∞

0

dk
[nF (ξk−) + nF (ξk+)] (η− + 2k2)

2

k (k2 + y)
√

4k2x2 − η2
−

θ(k2 − s−)− {y → y} .

(5.75)

ΓInter(x, y) =
γ

x

∫ ∞
0

dk [nF (ξk,−)− nF (ξk,+)]
(
2k2 − y

) √(η− + 2kx− 2k2)(2k2 + 2kx− η−)

k (k2 − y)
,

(5.76)

where x = q/kF y = ω/EF and γ = 2τtrekF υF
π

.

In �gure 5.5 we numerically evaluate the NLS and show density plots for the

intraband, interband and combined contributions. As was the case for the imaginary

part of the polarisability (�gure 5.4), the two contributions overlap. Of particular

not is the rich structure of the full NLS. This results from the relative sign of

the intraband and interband contributions and is not seen in either a 2DEG or

monolayer.
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Figure 5.5: Three density plots showing the graphene bilayer nonlinear susceptibility
(5.74), at T = 0.1TF . Left: The intraband contribution. Middle: The interband
contribution. Right: The combined contribution. The rich structure of the com-
bined contribution arises because of their relative sign. This highlights the main
di�erence with the monolayer, where the individual contributions to the NLS oc-
cupy independent areas of the q − ω plane. The colour scale shows the value of the
nonlinear susceptibility in units of γ = 2τtrekF υF

π
.

5.4 Plasmons

Key to the analysis of the drag e�ect is an understanding of a system's plasmon

modes. Since we have not obtained a fully analytic zero temperature expression

for the polarisability, it is not possible to �nd the low q dispersions. However, as

we did for the monolayer, we may investigate their dependence on temperature and

interlayer distance by analysing the imaginary part of the inverse dielectric function

Im [ε−1(x, y, T )]. To this end, in �gure 5.6 we show a density plot of Im [ε−1(x, y, T )]

for a single bilayer at T = 0.01TF . Surprisingly, the plasmon mode lies completely

within the continuum. This implies that a non-decaying plasmon can not exist

within this regime since it will immediately decay via Landau damping.

Of importance to the Coulomb drag system is the question of where the coupled

plasmon modes begin to overlap with the e-h continuum. This will determine to what

extent the drag e�ect is enhanced by them. In �gure 5.7 we show density plots of

Im
[
ε−1

12 (x, y, T )
]
, where ε12 is the e�ective interlayer dielectric constant, for a range

of temperatures and interlayer spacings, with a density of 1011cm−1. Again, the
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Figure 5.6: The bilayer plasmon mode. The density plot shows Im [ε−1(q, ω, T )],
where ε(q, ω, T ) is the dielectric function, at T = 0.01TF . The plasmon mode lies
completely within the e-h continuum, implying that any plasmon will quickly decay
via Landau damping.

plasmon modes are immediately well within the electron hole continuum, implying

heavy Landau damping. In addition, the position of the modes appear to be more

weakly dependent on the interlayer separation than for a monolayer and have a quite

di�erent shape (�gure 4.6). By 0.5TF , the modes have completely merged.

5.5 The Drag Conductivity

Combining the result obtained so far, we now calculate the bilayer system drag

density for a range of variables. In �gure 5.8 we plot |ρD| /(T/TF )2 vs T/TF for

a �xed carrier density of n = 1011cm−2 and a range interlayer distances. There is

very little plasmon enhancement to the drag resistivity as might have been expected

from the result for the polarisability and NLS. In addition, the plasmon peak is seen

to drift to higher temperatures and broaden, as the interlayer distance is decreased.

Although this e�ect is present in the monolayer, is it is much more pronounced here.

At very low temperatures, the drag rate appears to go as T 2, as it does for the 2DEG
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Figure 5.7: Coupled plasmon modes. Three plots showing the inverse interlayer
dielectric constant Im

[
ε−1

12 (q, ω, T )
]
, at a carrier density of n = 1011cm−2, and for

several temperatures and interlayer spacings d. Left: T = 0.001TF , d = 1000Å.
Centre: T = 0.001TF , d = 100Å. Right: T = 0.05TF , d = 100Å. Both modes are
well within the e-h continuum, implying heavy Landau damping. The modes appear
to be more weakly dependent on layer separation that their monolayer counterparts.
Already by 0.5TF the modes have merged.

Figure 5.8: |ρD| /(T/TF )2 vs T/TF Left: A �xed carrier density of n = 1011cm−2

and a range interlayer distances. Right: A �xed interlayer spacing of 300Åand a
range of carrier densities. The peak due to plasmon enhancement is far less pro-
nounced than it is for the monolayer system, a consequence of Landau damping.
Unlike the monolayer system, the plasmon peak is seen to drift to higher tempera-
tures and broaden as the interlayer distance and / or density is decreased.
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and monolayer systems.

A similar description holds for the density dependence. In �gure 5.8 we also

plot |ρD| /(T/TF )2 vs T/TF for an interlayer spacing of 300Å and a range of carrier

densities. Again, little plasmon enhancement is seen as a result of heavy Landau

damping and the drag rate appears to go as T 2 at low temperatures. The plasmon

peak is seen to drift to higher temperatures and broaden, as the interlayer density

is decreased.

The general behaviour appear to be for the plasmon enhancement peak to shift to

higher temperatures and broaden as the interlayer distance or density is decreased.

This is illustrated in �gure 5.9, showing density plots of the drag integrand (2.91).

The two density plots are for systems with carrier densities of ˙n = 1011cm−2and

n = 1012cm−2, corresponding to Fermi temperatures of 51K and 514K respectively.

The higher density system is dominated by the damped plasmon modes at this

temperature, whereas the lower density system is not. This is a consequence of both

the relatively weak plasmon modes and the di�erence in Fermi temperatures. That

the plasmon peaks are much weaker than in the monolayer system can be seen by

comparing the interlayer potential of the bilayer and monolayer at �xed ω, as shown

in �gure 5.10. The monolayer plasmon peak is seen to be an order of magnitude

higher and they are much more clearly de�ned. The broadening in the bilayer case

is evidence for Landau damping..

The observed behaviour may be explained as follows. The consequence of the

large di�erence in Fermi temperatures is to make far more of the ω axis available to

the higher density system. This is due to the sinh−1(~ω/kBT ) term in the denom-

inator of the drag integral (2.91) restricting the region of integration to a few TF .

This results in the higher density system being able to pick up the region contain-
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Figure 5.9: Density plots of the dimensionless integrand of equation (2.91) at T =
0.08TF and d = 300Å, and carrier densities of 1012cm−2 (left) and 1011cm−2 (right).
The higher density system is clearly dominated by the plasmon modes in comparison
to the low density system.

ing the plasmon modes, and become dominated by them, more quickly. Although

this applies equally to the monolayer system, the fact that the plasmon modes here

are weaker means that the system must capture more of the ω axis in order to be

dominated by plasmons. Therefore the trend for lower plasmon peak temperatures

with increasing density is enhanced in the bilayer system. A similar argument holds

for increasing interlayer distances.

5.6 Conclusion and Further Work

In this chapter, we have studied Coulomb drag in a double graphene bilayer system.

This has led us to derive semi-analytic �nite temperature expressions for both the

bilayer polarisability and non-linear susceptibility. Both of these calculations repre-

sent original work. Using these results, we have calculated the drag resistivity and

found that the plasmon enhancement in a bilayer system is strongly suppressed by

Landau damping in comparison to 2DEG and monolayer systems. This is a con-
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Figure 5.10: The interlayer potential for a bilayer (left) and a monolayer (right) at
ω/EF = 0.25 and T = 0.08TF . The monolayer's peaks are an order of magnitude
higher and much more clearly de�ned. This is evidence for early Landau damping
in the bilayer system.

sequence of the plasmon modes being entirely within the e-h continuum, even at

low temperature. In the low temperature limit, is it noted that the system seems

to have the usual T 2 behaviour. We have also suggested an explanation for the ob-

servation that the position and width of the plasmon peak is more strongly density

and interlayer distance dependent than for the other systems.

There are many possible improvement to be made to this work and ways in which

it could be extended. Foremost, fully analytic expressions for the polarisability and

NLS would allow one to calculate the low-q plasmon modes and attempt to �nd an

analytic result for the drag resistivity in the low temperature, large interlayer sep-

aration limit. This would allow more a more rigorous comparison to the monolayer

and 2DEG system.

Perhaps a more natural extension would be to use the existing machinery to look

at Coulomb drag between composite systems. That is to say, Coulomb drag between

any combination of a bilayer, monolayer or 2DEG. No new calculations would need

to be performed as it would only be a matter of adapting the numerics. From the
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result obtained so far, it seems likely that such systems would display relatively

conservative behaviour.

It would also be interesting to extend the theory outside of the range of validity of

McCann et al.'s low energy Hamiltonian. There could be interesting e�ects related

to the crossover regimes of the full bilayer Hamiltonian. It is probable that this

would represent a formidable technical challenge. More simply, one could look the

drag e�ect between bilayers in which a band gap has been opened. Of course it goes

without saying that all of the above may be extended to include magnetic �elds,

disorder and phonons.

In conclusion, it remains to be seen which aspects of Coulomb drag in graphene

systems contains the richest new physics. However, it is clear that there is a great

deal of new ground to explore.



Chapter 6

Thesis Summary

This thesis began with two introductory chapters. The �rst gave a general overview

of the �eld of Coulomb drag, discussing both the nomenclature and history of the

subject. The second chapter introduced the physical properties of graphene, and

particular attention was payed to its electronic properties.

Following this, the �rst of this thesis' projects was presented in chapter 3. Here,

the �nite temperature graphene nonlinear susceptibility was derived, representing

the �rst original work of this thesis. This was used, in combination with previously

known results, to calculate the drag rate between two graphene layers. It was found

that the drag rate is enhanced by coupled plasmon modes at around 0.2TF , in

disagreement with an earlier prediction by Das Sarma [106].

The �nal chapter of this thesis studied Coulomb drag between two graphene

bilayers. Expressions for both the �nite temperate polarisability and nonlinear sus-

ceptibility of a graphene bilayer were derived. These were combined to calculate the

drag rate between two graphene bilayers. It was found that in contrast to the single

layer case, plasmon enhancement at intermediate temperature is strongly suppressed

by Landau damping.
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Appendix A

Two Dimensional Fourier Transform

of the Electron Potential

The potential in real space is

φ (r) =
e

r
. (A.0.1)

It follows that the two-dimensional Fourier transform of A.0.1 is

φ (p) = e

∫
1

r
eiq·rdr. (A.0.2)

Converting to polar coordinates,

φ (p) = e

∫ ∞
0

dr

∫ 2π

0

eiqrcosθdθ. (A.0.3)

With the use of Bessel's �rst integral [5],

Jn (z) =
1

2πin

∫ 2π

0

eizcosθeinθdθ, (A.0.4)
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we have

φ (p) = 2πe

∫ ∞
0

J0 (qr) dr. (A.0.5)

This is in the form of a Hankel transform [5]

Hp (y) =

∫ ∞
0

xh (x) Jp (xy) dx (A.0.6)

of order p = 0. A property of Hankel transforms is that for h (x) = 1
x
, H0 (y) = 1

y
.

Finally,

φ (p) =
2πe

q
. (A.0.7)



Appendix B

The Linear Response Theory of

Coulomb Drag

This calculation is due to Kamenev and Oreg [9] and Flensberg et al. [7], and uses

�eld theoretic techniques to evaluate the transresistivity. In the original papers, the

authors demonstrated the power of this approach by extending the analysis to the

case of disorder and localisation. The calculation will proceed as follows. Working

with the drag conductivity σ21 and the Kubo formula in the Matsubara formalism,

the interaction representation will be employed in order to expand the S-matrix in

powers of the interlayer interaction. Following this, the lowest non-vanishing order

in the dc limit will be evaluated and analytically continued back to real frequencies.

It will be shown that in the ballistic (weak scattering) limit this reproduces (2.64).

B.0.1 The Kubo Formula

The starting point of the calculation is the Kubo formula [10], that expresses the

drag conductivity in terms of the retarded current-current correlation function Παβ
ij .
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In momentum and frequency space

σαβij (Q; Ω) =
1

ΩS
Παβ
ij (Q; Ω), (B.0.1)

where α, β label the Cartesian coordinates, Ω is the frequency and S the system

area. The subscripts i, j label the subsystems and for the drag conductivity i 6= j.

The retarded current-current correlation function Πr
ij is then de�ned in the time

domain as

Πij(x− x′; t− t′) = −iθ(t− t′) 〈[ji(x, t), jj(x′, t′)]〉 . (B.0.2)

where the i, j subscripts denote the layer, ji(x, t) is the usual current operator and

~ = 1.

The current-current correlation function is most conveniently evaluated via the

imaginary time (Matsubara) formalism; the fundamental concept of which is to take

zero temperature �eld theory and make the transformation

t→ −iτ. (B.0.3)

The task now is to express equation (B.0.1) as an expansion in powers of the inter-

action between the layers and then evaluate the most relevant terms. The quantity

with which it is easiest to do this is the imaginary time, time ordered correlation

function,

Πij(x− x′; τ − τ ′) = −〈Tτ{ji(x, τ)jj(x
′, τ ′)}〉 . (B.0.4)

where the operator Tτ time orders the τ terms. Equation (B.0.4) is related to (B.0.2)
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via their frequency domain representations by the analytic continuation

Πr
ij(x− x′; Ω) = limiΩn→Ω+iδΠ(x− x′; iΩn) (B.0.5)

where

Πij(x− x′; iΩn) =

∫ β

0

dτeiΩnτΠij(x− x′; τ) (B.0.6)

Πij(x− x′; τ) =
1

β

∑
n

e−iΩnτΠij(x− x′; iΩn) (B.0.7)

and β = 1
kBT

. Using the above relations, the following will evaluate the leading order

terms of a perturbative expansion of Πij (x− x′; τ) via the Matsubara technique

and where necessary analytically continue back to real frequencies to obtain their

contribution to the drag conductivity.

B.0.2 Perturbative Expansion

Consider now the full system Hamiltonian H = H1 + H2 + H12 where Hi are the

individual layer Hamiltonians and H12 is the interaction between them, given by

H12 (r1, r2) =

∫
dr1

∫
dr2ρ1 (r1)U12(r1−r2)ρ2 (r2) (B.0.8)

Where ri is a coordinate in the i'th layer and ρi is the charge density. In (B.0.4)

the τ dependence of the current operator is determined by the full Hamiltonian. To

develop a perturbative expansion in powers of the interaction term H12 it must be

isolated by transforming to the interaction representation, upon which [10]

Πij(x− x′, τ − τ ′) = −〈Tτ{S(β)j1(x, τ)j2(x′, τ)}〉
〈S(β)〉

. (B.0.9)
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The τ dependence of the current operators is now determined by the individual layers

and hence they are decoupled. This is assumed throughout the remainder of the

calculation. The S-matrix S(β) describes the evolution of the system in imaginary

time and is given by

S(β) = Tτexp

[
−
∫ β

0

dτ1H12(τ1)

]
. (B.0.10)

Employing the linked cluster theorem [10] the denominator in (B.0.9) cancels all of

the unconnected diagrams in the numerator and as such it may be neglected so long

as only connected diagrams are included in the expansion. Recognising this,

Πij(x− x′, τ − τ ′) = −〈Tτ{S(β)j1(x, τ)j2(x′, τ)}〉 . (B.0.11)

Expanding (B.0.10) as a power series in H12,

S(β) ≈ 1− Tτ
∫ β

0

dτ1H12(τ1) +
1

2
Tτ

∫ β

0

∫ β

0

dτ1dτ2H12(τ1)H12(τ2) + ... (B.0.12)

Since the interaction between layers is small compared to the individual subsystem

Hamiltonians it is reasonable to assume that the leading order terms are the relevant

ones.

Zeroth order

Substituting the zeroth order term from (B.0.12) into (B.0.11) provides

Π
(0)
21 (x− x′, τ − τ ′) = −〈Tτ{j1(x, τ)j2(x′, τ)}〉 . (B.0.13)
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Comparing this to (B.0.2) it is clear that the zeroth order term vanishes since the

current operators are decoupled and hence commute.

First order The �rst order term in (B.0.12) leads to

Πij(x− x′, τ − τ ′)(1) =

∫ β

0

dτ1

∫
dr1dr2 〈Tτ{j(x, τ)ρ1(r1, τ1)}〉

(B.0.14)

× U12(r1 − r2) 〈Tτ{ρ2(r2, τ1)j(x′, τ ′)}〉

where the correlation function has been factorised into layers since they are

independent in the interaction picture. The density operators in (B.0.14) may be

written in terms of current operators by considering the continuity equation

5 ·j(r, t) = −∂ρ(r, t)

∂t
(B.0.15)

the Fourier transform of which yields

ρ(q,iΩ) =
q

iΩ
j(q,Ω). (B.0.16)

Making use of this leads to the �rst order contribution to the drag conductivity

σ21 (q,Ω)(1) =
1

ie2Ω
σ22(q,Ω)q2U12 (q)σ11(q,Ω) (B.0.17)

It is clear that () does not give a meaningful contribution to the drag conductivity

in the dc [Ω→ 0] limit [7].

Second order
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The second order term of equation (B.0.12) leads to

Π21 (x− x′, τ − τ ′) = −1

2

∫ β

0

dτ1

∫ β

0

dτ2

∫
dr1

∫
dr2

∫
dr′1

∫
dr′2U12(r1 − r2)U12(r′1 − r′2)

× 〈Tτρ1(r1, τ1)ρ2(r2, τ2)ρ1(r′1, τ2)ρ2(r′2, τ2)j1(x, τ)j(x′, τ ′)〉 . (B.0.18)

Again, since the operators for the two layers are decoupled the expectation value in

(B.0.18) can be factorised into individual layers so that

Π21 (x− x′, τ ′ − τ) = −1

2

∫ β

0

dτ1

∫ β

0

dτ2

∫
dr1dr2dr

′
1dr

′
2U12(r1 − r2)U12(r′1 − r′2)

× Γ1(xτ, r1τ1, r
′
1τ1)Γ2(x′τ ′, r2τ2, r

′
2τ2). (B.0.19)

where for brevity, the function

Γ(xτ,x′τ ′,x′′τ ′′) = −〈Tτ {j(xτ)ρi(x
′τ ′)ρi(x

′′τ ′′)}〉 (B.0.20)

has been introduced. Assuming that the layers are translationally invariant (B.0.19)

may be Fourier transformed so that [7]

Π(Q; iΩn)(2) = − 1

2υ

∑
q

1

β

∑
iωn

U12(q)U∗(Q + q) (B.0.21)

× Γ1(Q + q,q; iΩn + iωn, iωn)Γ(−Q− q,−q;−iΩn − iωn,−iωn)

where ν is the layer volume, the iωn sum is over Boson frequencies and the layers

are assumed to be of identical size. Equation (B.0.21) corresponds to the diagram

of �gure B.1 where the shaded triangles represent the Γ functions.
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(Q,iΩn ) (Q,iΩn )

(q,iωn )

(Q+ q,iΩn + iωn )

Figure B.1: Diagram corresponding to the current-current correlation function to
second order in the inter-layer Coulomb interaction.

It is here that the power of the Matsubara formalism is demonstrated. Rewriting

(B.0.21) as

Π21(Q; iΩn)(2) =
1

2υ

∑
q

U12(q)U∗(Q + q)S(iΩn) (B.0.22)

where

S(iΩn) = − 1

β

∑
iωn

Γ1(iΩn + iωn, iωn)Γ2(−iΩn − iωn,−iωn) (B.0.23)

and the momentum arguments have been suppressed, the summation over Bose

frequencies may be carried out by noting that the function Γ(z+ iΩn, z) has branch

cuts as Im(iΩn + z) = 0 and Im(z) = 0. The discrete frequency summation may

then be converted to a contour integral (see �gure B.2) by making the replacement

1
β

∑
iωn

f(iωn)→ −(2πi)−1
∮
dznB(z)f(z) upon which (B.0.23) becomes

S(iΩ) =
1

2πi

∮
dznB(z)Γ1(iΩn + z, z)Γ2(−iΩn − z,−z). (B.0.24)

It can be shown [7] that only only the horizontal contours need to be considered so
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Figure B.2: Branch cuts and contour of B.0.24.

that,

S(iΩn) =
1

2πiβ

∫ ∞
−∞

dznB(z)Γ(iΩn + z, z + iδ)Γ(−iΩn − z,−z − iδ) (B.0.25)

+
1

2πiβ

[∫ ∞
−∞

dznB(z − iΩn)Γ(z + iδ, z − iΩn)Γ(−z − iδ,−z + iΩn)−

−
∫ ∞
−∞

dznB(z)Γ(iΩn + z, z − iδ)Γ(−iΩn − z,−z + iδ) ]

− 1

2πiβ

∫ ∞
−∞

dznB(z − iΩn)Γ(z − iδ, z − iΩn)Γ(−z + iδ,−z + iΩn).

Analytically continuing to real frequencies in accordance with (B.0.5) and employing

the notation

Γ(±,±) = Γ1(iΩn + iωn → Ω + ω ± iδ, iωn → ω ± iδ) (B.0.26)

Γ(±,±) = Γ2(−iΩn − iωn → −Ω− ω ± iδ,−iωn → −ω ± iδ)
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(B.0.25) becomes,

S(Ω) =
1

β

∫ ∞
−∞

dω

2πi
[nB(ω + Ω)− nB(ω)] Γ1 (+,−) Γ2 (−,+) (B.0.27)

+
1

β

∫ ∞
−∞

dω

2πi
[nB(ω)Γ1 (+,+) Γ2 (−,−)− nB (ω + Ω) Γ1 (−,−) Γ2 (+,+)] .

The function Γi (+,−) and Γi (+,−) may be shown [7] to vanish identically in the

dc limit. With this in mind and reintroducing momentum arguments the retarded

correlation function is

Π
r(2)
21 (Q,Ω) =

1

2βυ

∑
q

U12(q)U∗(Q+q)

∫ ∞
−∞

dω

2πi
[nB(ω + Ω)− nB(ω)] Γ1 (+,−) Γ2 (−,+)

(B.0.28)

Substituting the above into (B.0.1) gives for the second order contribution to the

drag conductivity

σ
(2)
12 (Q,Ω) =

−e2

2υ

∑
q

U12(q)U∗(Q + q)

∫ ∞
−∞

dω

2π
[nB(ω + Ω)− nB(ω)](B.0.29)

× Γ1 (q,q;ω + iδ, ω − iδ) Γ2 (−q,−q′ω − iδ,−ω + iδ) .

For a uniform (Q = 0) system in the dc limit (Ω → 0), the drag conductivity is

therefore

σD ≡ σ
(2)
12 =

−e2

2υ

∑
q

|U12(q)|2
∫ ∞
−∞

dω

2π
[∂ωnB(ω)] (B.0.30)

× Γ1 (q,q;ω + iδ, ω − iδ) Γ2 (−q,−q′ω − iδ,−ω + iδ) .
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This expression is exact and must be approximated in an appropriate limit in order

to obtain useful results.



Appendix C

Graphene Bilayer Polarisability

The graphene polarisability derived in section 5.2 is given by

χ(q, ω) = −1

2

∑
λλ′=±

∑
k

(1 + λλ′ cos 2θ)
nF (ξk,λ′)− nF (ξk+q,λ)

ω + ξk,λ′ − ξk+q,λ + iδ
. (C.0.1)

C.0.3 Real Part

We will now evaluate the real part of the (C.0.1), given by

Reχ(q, ω) = −1

2

∑
λ,λ′=±

∑
k′

(1 + λλ′ cos 2θ+)
nF (ξk′,λ′)− nF (ξk′+q,λ)

ω + ξk′,λ′ − ξk′+q,λ

. (C.0.2)

where θ+ = φk+q − φk is the scattering angle.

Intraband : Starting with the intraband (λ = λ′ = +) term,

Reχ++ = −1

2

∑
k′

(1 + cos 2θ+)
nF (ξk′+)− nF (ξk′+q+)

ω + ξk′+ − ξk′+q+

= −1

2

∑
k′

(1 + cos 2θ+)
nF (εk′+)

ω + ξk′+ − ξk′+q+

+ {ω → −ω}. (C.0.3)

169
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Using the identity 1+cos 2θ+ = 2 cos2 θ+ this can we written as

Reχ++ = −
∑
k

cos2 (θ+)
nF (εk′+)

ω + ξk′+ + ξk′+q

− {ω → −ω}. (C.0.4)

We can expresscos2 (θ+) in terms of θ, the angle between the vectors as k′ and q via

cos(φk′+q − φk′) =
(k′ + q) · k′

|k′ + q| |k′|
=

q cos θ + k′√
k′2 + q2 + 2kq cos θ

(C.0.5)

so that,

Reχ++ = −
∑
k′

(
q cos θ + k′√

k′2 + q2 + 2kq cos θ

)2
nF (εk′+)

ω + ξk′+ − ξk′+q+

+{ω → −ω}. (C.0.6)

We we focus �rst on the �rst term of (C.0.4) which we shall label χ++
(1) and later take

ω → −ω to �nd the second term Reχ++
(2) . Writing the sum over k as an integral and

writing the energy terms explicitly

Reχ++
(1) =

1

π2

∫ ∞
0

k′dk′
∫ 2π

0

dθ
(q cos θ + k′)2 nF (ξk′+)

(k2 + q2 + 2k′q cos θ)
(
ω + k

′2

2m
− k′2+q2+2k′q cos θ

2m

) ,
(C.0.7)

where we have taken account of the 2× 2 spin and valley degeneracy and taken the

. It is useful to now switch to the dimensionless variables x = q/kF , y = ω/EF and

k = k′/kF so that

Reχ++
(1) =

2m

π2

∫ ∞
0

kdk

∫ 2π

0

dθ
(x cos θ + k)2 nF (εk+)

(k2 + x2 + 2kx cos θ) (x2 − y + 2kx cos θ)
. (C.0.8)
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To proceed, we split this integral up using partial fraction. Labeling Q = 2kx cos θ

we have

(Q/2k + k)2

(k2 + x2 +Q) (x2 − y +Q)
=

1

4k2
+

(2k2 + y − x2)
2

4k2 (k2 + y) (x2 − y +Q)
− (k2 − x2)

2

4k2 (k2 + y) (k2 + x2 +Q)
.

(C.0.9)

This leads to

Reχ++
(1)

= m
2π2

∫∞
0

nF (ξk+)

k
dk
∫ 2π
0 dθ

 1︸︷︷︸
A

+
(2k2 + y − x2)

2

(k2 + y) (x2 − y + 2kx cos θ)︸ ︷︷ ︸
B

−
(k2 − x2)

2

(k2 + y) (k2 + x2 + 2kx cos θ)︸ ︷︷ ︸
C

,
(C.0.10)

the individual terms of which we shall label A, B and C.

A : Calculating term A �rst,

A =
m

2π2

∫ ∞
0

nF (ξk+)

k
dk

∫ 2π

0

dθ =
m

π

∫ ∞
0

nF (ξk+)

k
dk. (C.0.11)

B :

Moving on to term B,

B =
m

2π2

∫ ∞
0

∫ 2π

0

nF (ξk+)

k

(2k2 + y − x2)
2

(k2 + y) (x2 − y + 2kx cos θ)
dkdθ. (C.0.12)
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We can calculate the angular integral by making use of the following identity from

complex analysis

∫ 2π

0

1

A+B cos θ
=

2πsgn(A)√
A2 −B2

|A| > |B|

= 0 otherwise. (C.0.13)

Applying (C.0.13) to (C.0.12), we get

B =
m

π

∫ ∞
0

nF (ξk+)

k

(2k2 + y − x2)
2
sgn(x2 − y)

(k2 + y)
√

(x2 − y)2 − 4k2x2

θ
((
x2 − y

)2 − 4k2x2
)
dk.

(C.0.14)

Employing the notation η± = y±x2 and s± = η2
±/4x

2, we can then write B, (C.0.14),

as

B = sgn(−η+)
m

π

∫ ∞
0

nF (ξk+)

k

(2k2 + η−)
2
θ (s− k2)

(k2 + y)
√
η2
− − 4k2x2

dk (C.0.15)

= −sgn(η−)
m

2πx

∫ ∞
0

nF (ξk+)

k

(2k2 + η−)
2
θ (s− k2)

(k2 + y)
√
s− − k2

dk. (C.0.16)

C : Moving onto term C,

C = − m

2π2

∫ ∞
0

∫ 2π

0

nF (ξk+)

k

(k2 − x2)
2

(k2 + y) (k2 + x2 + 2kx cos θ)
dkdθ, (C.0.17)

we can again evaluate the angular integral with the use of (C.0.13) to give

C = −m
π

∫ ∞
0

nF (ξk+)

k

(k2 − x2)
2
θ(k2 + x2 − 2kx)

(k2 + y)
√

(k2 + x2)2 − 4k2x2

dk. (C.0.18)
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Since k2 + x2 > 2kx is always satis�ed, there are no constraints on k. Noting that

(k2 + x2)
2 − 4k2x2 = (k2 − x2)

2, we have �nally,

C = −m
π

∫ ∞
0

nF (ξk+)

k

|k2 − x2|
(k2 + y)

dk. (C.0.19)

Bringing together (C.0.11), (C.0.16) and (C.0.19), we have shown that

Reχ++(x, y, T ) =
m

π

∫ ∞
0

nF (ξk+)

k
dk − sgn(η)

m

2πx

∫ ∞
0

nF (ξk+)

k

(2k2 + η−)
2
θ (s− k2)

(k2 + y)
√
s− − k2

dk

−m
π

∫ ∞
0

nF (ξk+)

k

|k2 − x2|
(k2 + y)

dk + {y → −y} (C.0.20)

Reχ−− : We will now calculate the (λ = λ′ = −) term, given by

Reχ−− = −1

2

∑
k′

(1 + cos 2θ+)
nF (ξk′−)− nF (ξk′+q−)

ω + ξk′− − ξk′+q−
(C.0.21)

= −1

2

∑
k′

(1 + cos 2θ+)
nF (ξk′−)

ω + ξk′− − ξk′+q−
+ {ω → −ω}. (C.0.22)

Using the identity εk,λ = −εk,−λ, we can write this as

Reχ−− = −1

2

∑
k′

(1 + cos 2θ+)
nF (εk′−)

−ω + ξk′+ − ξk′+q+

+ {ω → −ω}, (C.0.23)
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which is just χ++ with nF (ξk′+) replaced by nF (ξk′−). Therefore we have

Reχ−−(x, y, T ) =
m

π

∫ ∞
0

nF (ξk−)

k
dk − sgn(η−)

m

2πx

∫ ∞
0

nF (ξk+)

k

(2k2 + η−)
2
θ (s− − k2)

(k2 + y)
√
s− − k2

dk

−m
π

∫ ∞
0

nF (ξk−)

k

|k2 − x2|
(k2 + y)

dk + {y → −y}. (C.0.24)

Recalling the expression for χ++(x, y, T ), (C.0.20):

Reχ++(x, y, T ) = +
m

π

∫ ∞
0

nF (ξk+)

k
dk − sgn(η−)

m

2πx

∫ ∞
0

nF (ξk+)

k

(2k2 + η−)
2
θ (s− − k2)

(k2 + y)
√
s− − k2

dk

−m
π

∫ ∞
0

nF (ξk+)

k

|k2 − x2|
(k2 + y)

dk + {y → −y}. (C.0.25)

Combining both intraband terms we have

χIntra =
m

π

∫ ∞
0

[(k2 + y)− |k2 − x2|] [nF (ξk+)− nF (ξk−)]

k (k2 + y)
dk (C.0.26)

−sgn(η)θ
(
s− − k2

) m

2πx

∫ ∞
0

[nF (ξk+)− nF (ξk−)] (2k2 + η−)
2

k (k2 + y)
√
s− − k2

dk + {y → −y}.

Bringing each term in (C.0.26) under the same integral, we have

χIntra =
m

π

∫ ∞
0

[nF (ξk+)− nF (ξk−)]

k (k2 + y)

[
k2 + y −

∣∣k2 − x2
∣∣− sgn(η−)θ (s− − k2) (2k2 + η−)

2

2x
√
s− − k2

]
+{y → −y} (C.0.27)
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Interband : We will now evaluate the intraband terms of the real part of the

polarisability, starting with (λ = +, λ′ = −), given by [see (C.0.2)]

Reχ+− = −1
2

∑
k′

(1− cos 2θ+)
nF (ξk′−)− nF (ξk′+q+)

ω + ξk′− − ξk′+q+

. (C.0.28)

By making a change of variables k′ → −k′ − q in the second term of (C.0.28) it can

be shown that

Reχ+− = −1

2

∑
k′

(1− cos 2θ+)
nF (ξk′−)− nF (ξk′+)

ω + ξk′− − ξk′+q+

. (C.0.29)

Using the identity 1− cos 2θ+ = 2 (1− cos2 θ+) and then using (C.0.5) to write the

Berry's phase term in terms of θ, we have

Reχ+− = −
∑
k′

(
1− (q cos θ + k′)2

k′2 + q2 + 2k′q cos θ

)
nF (ξk′−)− nF (ξk′+)

ω + ξk′− − ξk′+q+

,(C.0.30)

= −
∑
k′

q2 [1− cos2 θ] [nF (ξk′−)− nF (ξk′+)]

(k′2 + q2 + 2k′q cos θ) (ω + ξk′− − ξk′+q+)
. (C.0.31)

As before, we now switch to the dimensionless variables x = q/kF , y = ω/EF and

k = k′/kF . Writing the sum over k' as as integral we have

Reχ+− = −2mx2

π2

∫ ∞
0

∫ 2π

0

k [1− cos2 θ] [nF (ξk−)− nF (ξk+)]

(k2 + x2 + 2kx cos θ) (y − 2k2 − x2 − 2kx cos θ)
dθdk,

(C.0.32)

where we have taken account of the 2 × 2 spin and valley degeneracy written the

ξk,λ = λ
2m
|k| terms explicitly. We proceed by applying partial fractions. Labeling
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Q = 2kx cos θ we have

(1− (Q/2kx)2)
2

(k2 + x2 +Q) (y − x2 − 2k2 −Q)
=

1

4k2
+

(2k2 + y − x2)
2

4k2 (k2 + y) (x2 − y +Q)
− (k2 − x2)

2

4k2 (k2 + y) (k2 + x2 +Q)

(C.0.33)

to write

Reχ+− = −mx
2

2π2

∫ ∞
0

∫ 2π

0

[nF (ξk−)− nF (ξk+)]

k

×

 1︸︷︷︸
A

+
(k2 − 2k + x2) (k2 + 2k + x2)

(k2 − y) (k2 + x2 + 2kx cos θ)︸ ︷︷ ︸
B

− (2k2 − 2k − η−) (2k2 + 2k − η−)

(k2 − y) (2k2 − η− + 2kx cos θ)︸ ︷︷ ︸
C

 dθdk,

where we have employed the same notation as in the intraband band case, η± =

y ± x2, and labeled the terms A, B and C.

A : Calculating term A �rst,

A = −mx
2

2π2

∫ ∞
0

[nF (ξk−)− nF (ξk+)]

k
dk

∫ 2π

0

dθ = −mx
2

π

∫ ∞
0

[nF (ξk−)− nF (ξk+)]

k
dk.

(C.0.34)

which is analytic at k = 0 because the term [nF (ξk−)− nF (ξk+)] ∼ k as k → 0.

B: Moving on to term B,

B = −mx
2

2π2

∫ ∞
0

∫ 2π

0

[nF (ξk−)− nF (ξk+)]

k

(k2 − 2k + x2) (k2 + 2k + x2)

(k2 − y) (k2 + x2 + 2kx cos θ)
dθdk.

(C.0.35)
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We can calculate the angular integral by making use of (C.0.13) to yield

B = −mx
2

π

∫ ∞
0

[nF (ξk−)− nF (ξk+)]
(k2 − 2k + x2) (k2 + 2k + x2)

k(k2 − y)
√

(k2 + x2)− 4k2x2
dk,(C.0.36)

= −mx
2

π

∫ ∞
0

[nF (ξk−)− nF (ξk+)]
(k2 + x2)

2 − 4k2

k(k2 − y) (k2 − x2)
dk (C.0.37)

C : Moving onto term C,

C = +
mx2

2π2

∫ ∞
0

∫ 2π

0

[nF (ξk−)− nF (ξk+)]
(2k2 − 2k − η−) (2k2 + 2k − η−)

k (k2 − y) (2k2 − η− + 2kx cos θ)
dθdk,

(C.0.38)

we can again use (C.0.5) to evaluate the angular integral and yield

C = +
mx2

π

∫ ∞
0

[nF (ξk−)− nF (ξk+)]
(2k2 − 2k − η−) (2k2 + 2k − η−)

k (k2 − y)
√

(2k2 − η−)2 − 4k2x2

θ
(∣∣2k2 − η−

∣∣− 2kx
)
dk.

(C.0.39)

Bringing together (C.0.39), (C.0.37) and (C.0.34), we have shown that

Reχ+−(x, y, T ) = −mx
2

π

∫ ∞
0

[nF (ξk−)− nF (ξk+)]

k(k2 − y)

[
k2 − y +

(k2 + x2)
2 − 4k2

(k2 − x2)

−(2k2 − 2k − η−) (2k2 + 2k − η−)√
(2k2 − η−)2 − 4k2x2

θ
(∣∣2k2 − η−

∣∣− 2kx
) dk.(C.0.40)

Reχ−+ : Moving in to the (λ = −1,λ′ = +) term, given by

Reχ−+ = −1

2

∑
k′

(1− cos 2θ+)
nF (ξk′+)− nF (ξk′−)

ω + εk′+ − εk′+q−
(C.0.41)
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Using the identity εk,λ = −εk,−λ, we can write this as

Reχ−+ = −1

2

∑
k′

(1 + cos 2θ+)
nF (ξk′−)− nF (ξk′+)

−ω + εk′− − εk′+q+

= Reχ+− (ω → −ω) . (C.0.42)

Therefore we can write the real part of the interband polarisability as

ReχInter(x, y, T ) = −mx
2

π

∫ ∞
0

[nF (ξk−)− nF (ξk+)]

k(k2 − y)

[
k2 − y +

(k2 + x2)
2 − 4k2

(k2 − x2)
(C.0.43)

−(2k2 − 2k − η−) (2k2 + 2k − η−)√
(2k2 − η−)2 − 4k2x2

θ
(∣∣2k2 − η−

∣∣− 2kx
) dk + {y → −y}

In order to combine this expression with that for ReχIntra it is easier to work with

the y → −y term so that η− → −η+. Switching the order of the Fermi functions we

have

ReχInter(x, y, T ) =
m

π

∫ ∞
0

[nF (ξk+)− nF (ξk−)]

k(k2 + y)

[
k2 + y +

(k2 + x2)
2 − 4k2

(k2 − x2)
(C.0.44)

−(2k2 − 2k + η+) (2k2 + 2k + η+)√
(2k2 + η+)2 − 4k2x2

θ
(∣∣2k2 + η

∣∣− 2kx
) dk + {y → −y} .

Therefore, we have for ReχInter(x, y, T )

Reχ(x, y, T ) = ReχInter(x, y, T ) + ReχInter(x, y, T ) (C.0.45)
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where

ReχIntra =
m

π

∫ ∞
0

[nF (ξk+)− nF (ξk−)]

k (k2 + y)

[
k2 + y −

∣∣k2 − x2
∣∣ (C.0.46)

−sgn(η−)θ (s− − k2) (2k2 + η−)
2

2x
√
s− − k2

]
dk + {y → −y} ,

ReχInter =
m

π

∫ ∞
0

[nF (ξk+)− nF (ξk−)]

k(k2 + y)

[
k2 + y +

∣∣k2 − x2
∣∣ (C.0.47)

−(2k2 − 2k + η+) (2k2 + 2k + η+)√
(2k2 + η+)2 − 4k2x2

θ
(∣∣2k2 + η

∣∣− 2kx
) dk + {y → −y} .

C.0.4 Imaginary Part

We will now evaluate the imaginary part of the graphene bilayer polarisability (5.20),

given by

Imχ(q, ω) =
π

2

∑
λ,λ′=±

∑
k′

(1+λλ′ cos 2θ+) [nF (ξk′,λ′)− nF (ξk′+q,λ)] δ (ω + ξk′,λ′ − ξk′+q,λ) .

(C.0.48)

where θ+ = φk+q − φk is the scattering angle.

Intraband : Starting with the intraband (λ = λ′ = +) term, we again express the

Berry's phase term in terms of cos θ (C.0.5). We have

Imχ++ = π
∑
k′

[nF (ξk′+)− nF (ξk′+q+)]
(q cos θ + k′)2

k′2 + q2 + 2kq cos θ
δ (ω + ξk′+ − ξk′+q+) .(C.0.49)

A change of variable in the second term allows use to write

Imχ++ = π
∑
k′

nF (ξk′+) (q cos θ + k′)2

k′2 + q2 + 2k′q cos θ
δ (ω + ξk′+ − ξk′+q+)− {ω → ω} .(C.0.50)



Chapter C. Graphene Bilayer Polarisability 180

As before, we write the sum over k′ as an integral and then covert to the dimen-

sionless variables x = q/kF , y = ω/EF and k = k′/kF to yield

Imχ++ =
2m

π

∫ ∞
0

kdk

∫ 2π

0

dθ
nF (ξk+) (x cos θ + k)2

k2 + x2 + 2kx cos θ
δ
(
y − x2 − 2kx cos θ

)
−{y → y} .

(C.0.51)

The delta function places limits on k by demanding that

k >

∣∣∣∣y − x2

2x

∣∣∣∣ ≡ |η−|2x
. (C.0.52)

We proceed via the change of variables Q = 2kx cos θ so that

dθ = − dQ√
4k2x2 −Q2

(C.0.53)

and (C.0.51) becomes

Imχ++ = −2m

π

∫ ∞
0

kdk

∫
dQ

nF (ξk+) (Q/2k + k)2

(k2 + x2 +Q)
√

4k2x2 −Q2
δ
(
y − x2 −Q

)
θ(k2 − s−)

−{y → y} (C.0.54)

= −m
2π

∫ ∞
0

dk

∫
dQ

nF (ξk+) (Q+ 2k2)
2

k (k2 + x2 +Q)
√

4k2x2 −Q2
δ
(
y − x2 −Q

)
θ(k2 − s−)

−{y → y} (C.0.55)

Evaluating the angular integral by setting Q = y − x2 ≡ η− yields,

Imχ++ = −m
2π

∫ ∞
0

dk
nF (ξk+) (η− + 2k2)

2

k (k2 + y)
√

4k2x2 − η2
−
θ(k2 − s−)− {y → y} . (C.0.56)
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Imχ−−: Moving on to the λ = λ′ = −1 term, we have

Imχ−− = π
∑
k′

nF (ξk′−) (q cos θ + k′)2

k′2 + q2 + 2k′q cos θ
δ (ω + ξk′− − ξk′+q−)− {ω → ω} .(C.0.57)

Using ξk′,λ = −ξk′,−λ and δ(αx) = 1
|x|δ(x) we can write (C.0.57) as

Imχ−− = π
∑
k′

nF (ξk′−) (q cos θ + k′)2

k′2 + q2 + 2k′q cos θ
δ (−ω + ξk′+ − ξk′+q−)− {ω → ω} (C.0.58)

= −π
∑
k′

nF (ξk′−) (q cos θ + k′)2

k′2 + q2 + 2k′q cos θ
δ (ω + ξk′+ − ξk′+q−)− {ω → ω} .(C.0.59)

This is the same as ˙Imχ++ (C.0.50) but with nF (ξk′−) replaced with −nF (ξk′+) and

therefore

Imχ−− =
m

2π

∫ ∞
0

dk
nF (ξk−) (η− + 2k2)

2

k (k2 + y)
√

4k2x2 − η2
−
θ(k2 − s−)− {y → y} . (C.0.60)

Therefore, combining (C.0.56) and (C.0.60) we have for ImχIntra = Imχ++ +Imχ−−,

ImχIntra =
m

2π

∫ ∞
0

dk
[nF (ξk−)− nF (ξk+)] (η− + 2k2)

2

k (k2 + y)
√

4k2x2 − η2
−

θ(k2 − s−)− {y → y} .

(C.0.61)

Interband : Moving on to the interband term (λ 6= λ′) term we immediately

notice that for the λ = − and λ′ = + term,

Imχ−+(q, ω) =
π

2

∑
k′

(1− cos 2θ+) [nF (ξk′,+)− nF (ξk′+q,−)] δ (ω + ξk′,+ − ξk′+q,−) ,

(C.0.62)
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every term in the delta function is positive since ω > 0. Therefore, Imχ−+ = 0 and

we only need to consider λ = +, λ′ = −,

ImχInter(q, ω) =
π

2

∑
k′

(1− cos 2θ+) [nF (ξk′,−)− nF (ξk′+q,+)] δ (ω + ξk′,− − ξk′+q,+) .

(C.0.63)

A change of variable k→ −k− q allows us to write

ImχInter(q, ω) =
π

2

∑
k′

(1− cos 2θ+) [nF (ξk′,−)− nF (ξk′,+)] δ (ω + ξk′,− − ξk′+q,+) .

(C.0.64)

As usual we write the Berry's phase term in terms of cos θ,

1− cos 2θ+ = 2
(
1− cos2 θ+

)
= 2− 2 (q cos θ + k′)2

k′2 + q2 + 2k′q cos θ
=

2q2 (1− cos2 θ)

k′2 + q2 + 2k′q cos θ
,

(C.0.65)

so that

ImχInter = πq2
∑
k′

[nF (ξk′,−)− nF (ξk′,+)]

(
1− cos2 θ

k′2 + q2 + 2k′q cos θ
,

)
δ (ω + ξk′,− − ξk′+q,+) .

(C.0.66)

As in the previous calculations, we now write the sum over k as an integral convert

to the dimensionless variables x = q/kF , y = ω/EF and k = k/kF to yield

ImχInter =
2mx2

π

∫ ∞
0

kdk

∫ 2π

0

dθ [nF (ξk,−)− nF (ξk,+)] (C.0.67)

×
(

1− cos2 θ

k2 + x2 + 2kx cos θ
,

)
δ
(
y − x2 − 2k2 − 2kx cos θ

)
.
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The delta function provides the condition

√
2η− + x2 − x2 < 2k <

√
2η− + x2 + x2 (C.0.68)

where as usual η± = y − x2. We proceed by evaluating the angular integral by

making he substitution Q = 2k2 + 2kx cos θ so that

dθ =
−dQ

2kx
√

1− cos2 θ
, (C.0.69)

and (C.0.67) becomes ImχInter =

−mx
π

∫ ∞
0

dk

∫
dQ [nF (ξk,−)− nF (ξk,+)]

√
1− cos2 θ

k2 + x2 +Q− 2k2
δ
(
y − x2 −Q

)
(C.0.70)

=
−m
2π

∫ ∞
0

dk

k

∫
dQ [nF (ξk,−)− nF (ξk,+)]

√
4k2x2 − (Q− 2k2)2

Q+ x2 − k2
δ
(
y − x2 −Q

)
.

Evaluating this at Q = y − x2 yields,

ImχInter =
m

2π

∫ ∞
0

dk [nF (ξk,−)− nF (ξk,+)]

√
4k2x2 − (y − x2 − 2k2)2

k (k2 − y)
(C.0.71)

=
m

2π

∫ ∞
0

dk [nF (ξk,−)− nF (ξk,+)]

√
(η− + 2kx− 2k2)(2k2 + 2kx− η−)

k (k2 − y)

C.0.5 Result

So we have �nally for the graphene bilayer �nite temperature polarisability,

χ(x, y, T ) = χIntra(x, y, T ) + χInter(x, y, T ) (C.0.72)
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where

Imχ(x, y, T ) = ImχIntra + ImχInter, (C.0.73)

Reχ(x, y, T ) = ReχInter(x, y, T ) + ReχInter(x, y, T ) (C.0.74)

and

ImχIntra =
m

2π

∫ ∞
0

dk
[nF (ξk−)− nF (ξk+)] (η− + 2k2)

2

k (k2 + y)
√

4k2x2 − η2
−

θ(k2 − s−)− {y → y} ,

(C.0.75)

ImχInter =
m

2π

∫ ∞
0

dk [nF (ξk,−)− nF (ξk,+)]

√
(η− + 2kx− 2k2)(2k2 + 2kx− η−)

k (k2 − y)
,

(C.0.76)

ReχIntra =
m

π

∫ ∞
0

[nF (ξk+)− nF (ξk−)]

k (k2 + y)

[
k2 + y −

∣∣k2 − x2
∣∣ (C.0.77)

−sgn(η−)θ (s− − k2) (2k2 + η−)
2

2x
√
s− − k2

]
dk + {y → −y} ,

ReχInter =
m

π

∫ ∞
0

[nF (ξk+)− nF (ξk−)]

k(k2 + y)

[
k2 + y +

∣∣k2 − x2
∣∣ (C.0.78)

−(2k2 − 2k + η+) (2k2 + 2k + η+)√
(2k2 + η+)2 − 4k2x2

θ
(∣∣2k2 + η

∣∣− 2kx
) dk + {y → −y} .
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